
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Sun Java™ System RFID Software
3.0 Developer’s Guide

Part No. 819-4686-10
February 2006, Revision A

http://www.sun.com/hwdocs/feedback

Copyright 2006 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the
U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, Solaris, Jini, J2EE, and JDBC are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license
and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks
are based upon an architecture developed by Sun Microsystems, Inc.

SAP, mySAP, SAP R/3, and SAP NetWeaver are trademarks or registered trademarks of SAP AG in Germany and in several other countries.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export
or import laws in other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or
indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists,
including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2006 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des
applications de brevet en attente aux Etats-Unis et dans d’autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l’Université de Californie. UNIX est une arque
déposée aux Etats-Unis et dans d’autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java, Solaris, Jini, J2EE, et JDBC sont des marques de
fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

SAP, mySAP, SAP R/3, et SAP NetWeaver sont des marques de fabrique ou des marques déposées de SAP AG en Allemagne et dans plusieurs
autres pays.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui, en outre, se conforment aux
licences écrites de Sun.

Les produits qui font l’objet de cette publication et les informations qu’il contient sont régis par la legislation américaine en matière de contrôle
des exportations et peuvent être soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations finales, ou
utilisateurs finaux, pour des armes nucléaires, des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou
indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités
figurant sur les listes d’exclusion d’exportation américaines, y compris, mais de manière non exclusive, la liste de personnes qui font objet d’un
ordre de ne pas participer, d’une façon directe ou indirecte, aux exportations des produits ou des services qui sont régis par la legislation
américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFACON.

Contents

Before You Begin 7

Before You Read This Book 7

Documentation Formatting Conventions 8

General Conventions 8

Typographic Conventions 9

Related Documentation 9

Sun Welcomes Your Comments 10

1. Introduction to Sun Java System RFID Software Programming Platform 11

RFID Software Architecture Overview 11

Structure of a Configuration Object 14

RFID Event Processing Basics 15

Identifier Objects 16

Event Objects 16

Processing RFID Event Manager Information 17

Managing RFID Event Manager Devices 19

2. Creating Custom Filters and Connectors 21

Setting Up Your NetBeans Environment 21

▼ To Download and Install NetBeans 22
Contents 3

▼ To Download and Install the RFID Software Toolkit 22

▼ To Set Up the Example Filter Project 25

▼ To Create the RFID Library for the Custom Component Examples 28

▼ To Build and Test the Sample Filter Project 31

Creating a Custom Filter 31

Understanding the Sample EPCTypeFilter 32

▼ To Customize the Sample Filter 32

▼ To Compile the Customized Filter 41

Using the Filter Template JUnit Test 42

▼ To Modify and Run the JUnit Test 42

Integrating Custom Components With the RFID Event Manager 47

▼ To Add the EPCTypeFilter Custom Filter to the Demo Configuration
Object 47

Creating a Custom Connector 51

▼ To Create a Sample Connector Project 51

3. Using RFID Device Client APIs 53

Implementation of the ReaderClient API 54

Reader Client Constructor Parameters 54

EMSEventListener 61

ReaderClient API Reference 61

Building a Sample Reader Client Program 64

▼ To Set Up the Sample Reader Client Environment 65

▼ To Run the Sample Reader Client Program 65

Explaining the Sample Reader Client 66

Implementation of the PrinterClient API 68

PrinterClient API Reference 68
4 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

Building a Sample Printer Client 69

▼ To Set Up the Sample Printer Client Environment 70

▼ To Run the Sample Printer Client Program 70

Explaining the Sample Printer Client 71

4. Using Web Services for Device Access 73

Overview of Web Services for Device Access 73

Web Services Interface Reference 74

Web Services for Reader Access Java Interface 74

Web Services for Printer Access Java Interface 76

Creating and Running the Web Services for a Device Access Client 77

Prerequisites for Running the Web Services Client Examples 78

▼ (Optional) To Access the NetBeans IDE 4.1 Quick Start Guide for Web
Services 78

▼ To Configure the Environment for the Web Services Client Examples 79

Writing the Static Web Services Client 80

▼ To Run the Static Web Services Client Example 80

Writing the Dynamic Web Services Client Example 82

▼ To Run the Dynamic Web Services Client 82

5. ALE Web Services 85

Broad Architecture 85

ALE Service Architecture 86

Other Considerations 88

Using ALE Web Services Client (ALEClient) API 89

Client Checklist 89

▼ To Set Up the ALE Client Environment 90

▼ To Run the ALE Web Services Client 90

Troubleshooting for ALE Client 91
Contents 5

6. Using RFID Information Server Client API 93

Architecture 93

Database Tables 94

Connecting to RFID Information Server 97

Exchanging Data With RFID Information Server 101

Modifying RFID Information Server Tables 103

Using Table Request Objects 103

Using the Update/Delete/Query Request Object 105

Querying RFID Information Server Database Tables 107

Processing RFID Information Server Responses 109

Handling Exceptions 111

How to Catch an EPCISException Error 112

How to Throw an EPCISException Error 113

7. PML Utilities 115

Introduction 115

Capturing Tag Observations Using PML Core 116

PML Utilities Packages 117

PML Core Package 117

PML Parser Package 119

Class Path Requirements 120

UML Class Diagram For PML Package 121
6 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

Before You Begin

This developer’s guide for Sun Java™ System RFID Software 3.0 (RFID software)
contains information for the Enterprise software developer who needs to access the
data from the RFID tag reader system. The Developer’s Guide is not aimed at the
reader adapter developer. Reader adapter information is covered in the Sun Java
System RFID Software Toolkit Guide included with the Sun Java System RFID Software
Toolkit. The adapter information is in the AdapterDevelopment.pdf file.

Screen shots vary slightly from one platform to another. Although almost all
procedures use the interface of the RFID software components, occasionally you
might be instructed to enter a command at the command line.

Before You Read This Book
You should be familiar with RFID concepts and with the following topics:

■ Jini™ network technology concepts
■ Java™ programming and concepts
■ Java™ DataBase Connectivity technology- JDBC™ concepts and usage
■ Java™ 2 Platform, Enterprise Edition (J2EE™) technology and usage
■ Client-server programming model
■ Familiarity in managing large enterprise systems
■ Administration of one of the supported application servers
■ Administration of one of the supported databases
7

Note – Sun is not responsible for the availability of third-party web sites mentioned
in this document. Sun does not endorse and is not responsible or liable for any
content, advertising, products, or other materials that are available on or through
such sites or resources. Sun will not be responsible or liable for any actual or alleged
damage or loss caused or alleged to be caused by or in connection with use of or
reliance on any such content goods or services that are available on or through such
sites or resources.

Documentation Formatting Conventions
This section describes the types of conventions used throughout this guide:

■ General Conventions
■ Conventions Referring to Directories

General Conventions
The following general conventions are used in this guide:

■ File and directory paths are given in UNIX® format (with forward slashes
separating directory names).

■ URLs are given in the format:

http://server.domain/path/file.html where server is the server name where
applications are run; domain is your Internet domain name; path is the server’s
directory structure; and file is an individual filename.

■ UNIX-specific descriptions throughout this manual apply to the Linux operating
system as well, except where Linux is specifically mentioned.
8 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

Typographic Conventions

Related Documentation
The following table lists the tasks and concepts that are described in the Sun Java™

System RFID Software manuals and Release Notes. If you are trying to accomplish a
specific task or learn more about a specific concept, refer to the appropriate manual.

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .cvspass file.
Use DIR to list all files.
Search is complete.

AaBbCc123 What you type, when contrasted
with on-screen computer output

> login

:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.
These are called class options.
You must save your changes.

AaBbCc123 Command-line variable; replace
with a real name or value

To delete a file, type DEL filename.

For information about See the following

Late-breaking information about the software and the
documentation

Sun Java System RFID
Software 3.0 Release Notes

Installing Sun Java™ System RFID Software Sun Java System RFID
Software 3.0 Installation
Guide
Before You Begin 9

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Email your comments to Sun at this address: docfeedback@sun.com

Please include the part number (819-4686-10) of the document in the subject line of
your email.

The following RFID Software administration topics:
• RFID Software overview
• Configuring the RFID Event Manager
• Configuring Communication with SAP AII
• Using the RFID Management Console
• Configuring the RFID Information Server
• RFID device adapter reference
• RFID Event Manager component reference
• RFID Event Manager configuration file reference

Sun Java System RFID
Software 3.0 Administration
Guide

The following topics for RFID software developers:
• Introduction to Sun Java System RFID Software

programming platform
• Creating custom filters and connectors
• Using RFID Device client APIs
• Using web services for device access
• Using Application Level Event (ALE) web services API
• Using RFID Information Server client APIs
• PML utilities

Sun Java System RFID
Software 3.0 Developer’s
Guide

For information about See the following
10 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

CHAPTER 1

Introduction to Sun Java System
RFID Software Programming
Platform

This chapter describes the architecture of the Sun Java™ System RFID Software 3.0
(RFID Software) and introduces the programming mechanisms that are available for
using the information generated by the physical devices that comprise your RFID
network. Subsequent chapters contain more details. The following topics are covered
in this chapter:

■ RFID Software Architecture Overview
■ Structure of a Configuration Object
■ RFID Event Processing Basics
■ Processing RFID Event Manager Information
■ Managing RFID Event Manager Devices

RFID Software Architecture Overview
The RFID Software consists of the following four major modules:

■ RFID Event Manager
■ RFID Configuration Manager (a component of the RFID Event Manager)
■ RFID Management Console
■ RFID Information Server

The RFID Event Manager communicates with RFID sensor devices to gather
information from the physical world. This information can be stored in the RFID
Information Server for future analysis. The information can also be sent
continuously to third-party applications as it arrives at the RFID Event Manager.

The RFID Configuration Manager is a graphical user interface (GUI) application that
is used to specify the set of devices connected to the RFID Event Manager. You also
use the RFID Configuration Manager to statically define how to process the
information within the RFID Event Manager and where to send the information after
this processing.
11

You can also use the RFID Event Manager to dynamically specify how to process the
incoming information and define the subsequent consumers of the processed
information. This guide describes the programming mechanisms that developers can
use to dynamically control sensor devices and to define rules for processing the
information collected by the devices.

You use the RFID Management Console to monitor and manage the status of the
devices that are connected to the RFID Event Manager. The RFID Management
Console enables system administrators to monitor statistics and change runtime
parameters for each of these devices.

The RFID Event Manager is a distributed platform consisting of a single Control
Station and one or more Execution Agents. In the simplest and most common
scenario, the Execution Agent and Control Station are installed on the same
computer. The Execution Agent is responsible for communicating with the physical
devices, processing the information, and posting the information to the consumers of
the information. The system administrator uses the RFID Configuration Manager,
which is installed as part of the Control Station component, to create one or more
Configuration Objects. A Configuration Object specifies one or more devices to
control and specifies a set of components that process the device information. The
set of information-processing components is called a Business Processing Semantic
Unit (BPS).

In the simplest scenario, each Configuration Object is executed by a single Execution
Agent. In a large RFID network with many deployed devices, the RFID Event
Manager functionality is scaled by installing multiple Execution Agents on separate
computers. In this more complex deployment, the Control Station provisions each of
the Configuration Objects to a separate Execution Agent in round-robin fashion. The
Control Station continuously monitors the status of the Execution Agents. To
provide high processing availability, if an Execution Agent fails, the Configuration
Object is provisioned to another Execution Agent.

The following illustration shows the overall components and communication flows
comprising the RFID Software.
12 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

Connector

Filter

Adapter

Execution
Agent

Reader

Reader

Reader

Device Provision

SAP AII
Web Service

ALE
Web Service

Device
Web Service

Monitor

WS-I

RMI

HTTP, JMS, RMI

ALE

SAP AII
XML

Management
Console

Configuration
Manager

Control Station

App Server

Connector

Filter

Adapter

Execution
Agent

Registry
Chapter 1 Introduction to Sun Java System RFID Software Programming Platform 13

Structure of a Configuration Object
A Configuration Object consists of a collection of components called adapters, filters,
and connectors. The components are linked in a chain to process events arriving
from the RFID devices. Typically, an adapter component begins the chain by
receiving information from the device and sending information to the device. Filters
are used in the middle of the chain to remove noise, such as excessive read events, or
to perform other data manipulation. Connectors (also called loggers) are at the end of
the chain to collect data for back-end processes or listeners (also called consumers). A
back-end process might be the RFID Information Server or a third-party software
application. The following figure shows an example of a Configuration Object
receiving information from an RFID reader and posting the processed information to
the RFID Information Server.

FIGURE 1-1 Structure of the RFID Event Manager Configuration Object.

The components of the Configuration Object are defined as follows:

■ Adapter – This component implements the communication protocol for a specific
type of device. The adapter is equivalent to an operating system driver. The
adapter handles the details of communicating with the hardware devices. Each
adapter collects and transmits information to a specific manufacturer and model
of RFID device. The adapter then transmits the collected information to the next
component in the BPS.

■ Filter – A filter component might modify the information flowing from an
adapter to a connector in the following ways:

■ The filter can reduce the amount of information in a meaningful way. For
example, a filter can prevent duplicate events from passing through to the
connector.
14 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

■ The filter can add metadata to the information going to the connector. This
metadata can add meaning to the event. For example, you might locate and
configure multiple readers in a doorway. Then you might use a filter to
indicate to the connector when an event represents a tag coming in or going
out of the doorway. Using this method reduces the quantity of data needing to
be processed by the RFID application. By sending only clean, complete
information to the application, the application code can focus on business-
oriented functionality, rather than on sifting through raw, unprocessed event
data.

■ Connector – A connector sends the information originating from the RFID readers
to applications that use the information. Connectors bind the RFID Event Manager
to RFID or sensor-based applications. A connector puts the information into an
acceptable format for the application. Many of the connectors provided with the
RFID Software 3.0 release package the data in XML messages that conform to the
Auto-ID Center PMLCore specification. See Chapter 7 for details on using the
Java library included in the RFID Event Manager installation.

Note – These RFID Event Manager components are subclasses of
com.sun.autoid.ems.AbstractComponent, a class that follows the Composite
design pattern (described in the book Design Patterns: Elements of Reusable Object-
Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides). This pattern enables the RFID Event Manager to work with filters,
connectors, and adapters using the same interface at a basic level. The
AbstractComponent class also provides various services required by these three
class types.

RFID Event Processing Basics
As the name implies, the RFID Event Manager is an event-driven platform.
Components (adapters, filters, and connectors) generate events to communicate with
each other. Every component is an event producer, and every component can register
itself with other components to consume their events. Typically, an adapter listens
and/or queries the physical device for information. The information is then
packaged inside an event object, and this event object is posted to the listeners that
were previously registered with the adapter. As shown in FIGURE 1-1, the adapter
receives Electronic Product Code (EPC) information from the RFID device, packages
the information as an Identifier object and posts the event to the two filters that
have previously registered themselves as consumers of the adapter events. The
filters, in turn, manipulate the information and post the events to the respective
Chapter 1 Introduction to Sun Java System RFID Software Programming Platform 15

connector, which consumes the events from a particular reader. The connector then
packages the event in a manner that is understood by the application that consumes
the event.

Note – The Javadoc documentation for the RFID Software is available as part of the
Sun Java System RFID Software Toolkit. See “To Download and Install the RFID
Software Toolkit” on page 22 for information on getting the toolkit.

Identifier Objects
RFID data captured by adapters is packaged in Identifier objects. See the API
specifications (Javadoc documentation) for the com.sun.autoid.identity
package – rfid-toolkit-dir/docs/api/index.html.

Identifier Objects include the following:

■ Numeric identifier – A general purpose Identifier object consisting of a
number.

■ EPC identifier – The Electronic Product Code (EPC) assigned to a physical item.
Several subcategories are defined as follows:

■ EPC_GIAI – Global individual asset identifier
■ EPC_GID – General identifier
■ EPC_GRAI – Global reusable asset identifier
■ EPC_SGLN – Serialized global location number
■ EPC_SGTIN – Serialized global trade identification number
■ EPC_SSCC – Serialized shipping container code
■ DoD – U. S. Department of Defense construct

In addition to the unique ID, the Identifier object might contain a set of generic
properties. The properties can be interpreted by the filters in an application-
dependent manner. See the Javadoc documentation for the RfidTag object.

Event Objects
The RFID Event Manager components, adapters, filters, and connectors, can
generate and consume event objects from other components. See the API
specifications for the com.sun.autoid.event package –
rfid-toolkit-dir/docs/api/index.html. The base class is Event.

Event objects include the following:

■ Identifier events as follows:
16 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

a. IdentifierEvent – This object carries a single Identifier object, which
represents the EPC (Electronic Product Code) or other type of identifier
detected by the device, and any other properties that are specific to the adapter
and application.

b. IdentifierListEvent – This object is similar to IdentifierEvent, but
carries multiple Identifier objects that were detected by the same device.

c. DeltaEvent – This object carries multiple Identifier objects, but separates
the information into two categories:

i. Objects coming into the device's field of view

ii. Objects moving out of the device's field of view

■ MiscEvent – The MiscEvent object carries an event containing a generic set of
properties defined by the adapter or filter implementer. The properties are
application dependent.

■ StatusEvent – The StatusEvent object carries a message describing the
status of the device.

This guide provides details on how to create custom filters and connectors. You can
create custom event types, provided they are sub-classed from
com.sun.autoid.event.Event. If you create your own event types, then your
filter cannot feed other filters and connectors that do not know how to handle the
new event type. The best practice is to support the IdentifierEvent,
IdentifierListEvent, DeltaEvent, StatusEvent, and MiscEvent types in
your filters and connectors and refrain from creating new event types unless
absolutely necessary.

Processing RFID Event Manager
Information
There are four main mechanisms for consuming information generated by the
devices connected to the RFID Event Manager.

■ RFID Configuration Manager – Use the RFID Configuration Manager to
statically define one or more connectors that post information to an application.
This requires the least amount of programming by an application developer, but
is restricted to one-way notifications initiated by the RFID Event Manager. See the
Sun Java System RFID Software 3.0 Administration Guide for details on using the
RFID Configuration Manager.
Chapter 1 Introduction to Sun Java System RFID Software Programming Platform 17

■ EPCglobal Application Level Events (ALE) – Use ALE to specify the type of
events the application consumes. When using ALE, the application generates
XML messages that define the events of interest. The application needs to be
programmed to handle the XML messages that are received containing the
requested information. To facilitate development, the Sun Java System RFID
Software Toolkit provides a Java library implementing the necessary APIs to use
ALE. See Chapter 5 of this guide for more details.

The EPCglobal Application Level Events (ALE) Specification, Version 1.0 specifies
only one-way communication to the device to obtain RFID tag identifier
information. The specification does not implement a mechanism for getting tag
user data, for programming tags, or for managing the devices. Any Java or non-
Java application that complies with the EPCglobal ALE 1.0 specification can
communicate with the RFID Event Manager.

At the time of this release, EPCglobal is in the process of defining a new version
of the ALE specification that will specify a standard method to obtain user data
and program tags, among other things. Sun Microsystems, Inc. is actively
participating in the definition of this standard and plans to provide an updated
library and implementation as the specification process progresses.

■ Java APIs – Use the Java ReaderClient APIs to control devices, program RFID
tags, read and write user memory and tag identification on RFID transponders
(tags) using the Java library bundled with the RFID Software 3.0. Your application
communicates directly with the RFID Event Manager by using Java RMI (Java
Remote Method Invocation) without the need to convert between protocols and
data representation. See Chapter 3 of this guide for more details.

■ Web services for device access – Use the web services for device access when you
need to cross firewalls using SOAP or you need to communicate with the RFID
Event Manager from a non-Java application. This mechanism gives you the same
functionality as the Java ReaderClient API, but is implemented as a web
service. The RFID Event Manager and the client application exchange SOAP
messages when using this mechanism. SeeChapter 4 of this guide for more
details.

These mechanisms are not mutually exclusive. You can use them in conjunction with
each other to achieve a task. You might choose to use ALE to obtain tag information,
and then use the device access web services to get user data and program tags. There
may be applications where you want to mix and match web service and Java APIs.
For example, you might use the Java ReaderClient API to communicate with
RFID devices in your local network and use the ALE Java library or the device
access web services to communicate with an RFID Event Manager in a remote
network across the continent.
18 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

Managing RFID Event Manager Devices
Many times an application needs to get device identification or to control the
gathering and sending of information. Use the Java ReaderClient APIs or web
services for device access APIs to instruct a device when to start gathering data, to
stop gathering data, to get device status and to get device identification information.

System administrators can use the RFID Management Console to perform these
same tasks from a web interface without any need for programming. See the Sun
Java System RFID Software 3.0 Administration Guide for details on using the RFID
Management Console.
Chapter 1 Introduction to Sun Java System RFID Software Programming Platform 19

20 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

CHAPTER 2

Creating Custom Filters and
Connectors

This chapter describes how to create your own custom filters and connectors. The
Sun Java System RFID Software Toolkit includes a sample template for creating a
filter. The procedures in this chapter use the RFID Software Toolkit in conjunction
with the NetBeans™ IDE, version 4.1 to describe the creation of a sample custom
filter. The following topics are included:

■ Setting Up Your NetBeans Environment
■ Creating a Custom Filter
■ Integrating Custom Components With the RFID Event Manager
■ Creating a Custom Connector

Setting Up Your NetBeans Environment
The Sun Java System RFID Software Toolkit includes a NetBeans plug-in (.nbm),
com-sun-autoid-toolkit.nbm, that contains various templates and code
examples. One of these templates is the EPCTypeFilter. You can us it to simplify the
creation of custom components for the RFID Software. The RFID Software
Toolkit .nbm contains source templates to use as a basis for your custom code.

To install the RFID Software Toolkit NetBeans plug-in, you first download and
install the NetBeans 4.1 IDE. Then, you need to set up your development
environment using the following procedures:

■ “To Download and Install NetBeans” on page 22
■ “To Download and Install the RFID Software Toolkit” on page 22
■ “To Set Up the Example Filter Project” on page 25
■ “To Create the RFID Library for the Custom Component Examples” on page 28
■ “To Build and Test the Sample Filter Project” on page 31
21

▼ To Download and Install NetBeans
1. Download NetBeans 4.1 from http://java.sun.com/j2se/1.4.2/download-

netbeans.html.

2. Install the NetBeans IDE according to the instructions.

3. Use the following procedures to set up the NetBeans environment for your RFID
component development.

▼ To Download and Install the RFID Software
Toolkit

1. Download the RFID Software Toolkit, RfidToolkit.zip, from the Sun Partner
Advantage web site http://partneradvantage.sun.com/.

The software toolkit is available at the following URL:
http://partneradvantage.sun.com/protected/partners/technology
/rfid/ once you log in to the membership center.

2. Unzip the file to a directory on your system.

3. After launching NetBeans, choose Tools → Update Center.

The Update Center Wizard appears.
22 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

http://partneradvantage.sun.com/protected/partners/technology/rfid/
http://partneradvantage.sun.com/protected/partners/technology/rfid/
http://partneradvantage.sun.com/
http://java.sun.com/j2se/1.4.2/download-netbeans.html
http://java.sun.com/j2se/1.4.2/download-netbeans.html

4. Select Install Manually Downloaded Modules (.nbm files) and click Next.

5. Click Add and browse to the com-sun-autoid-toolkit.nbm file from the
unzipped RfidToolkit.zip archive.
Chapter 2 Creating Custom Filters and Connectors 23

6. Select the NBM and click OK.

7. Click Next.

The RfidToolkit appears in the Include in Install list.
24 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

8. Click Next and accept the license agreement by clicking Accept.

You see a short visual cue that the IDE updater is installing the module.

9. When the installation is complete, click Next.

The View Certificates and Install Modules page appears.

10. Select the check box next to RfidToolkit - version 3.

An Unsigned Module dialog box appears.

11. Select Yes and click Finish.

Now you are ready to set up your samples. To use the RFID filter project, proceed to
the next section.

▼ To Set Up the Example Filter Project
1. In NetBeans, choose File → New Project.

The New Project wizard appears.

2. Under Categories, select RfidToolkit.

3. Under Projects, select RfidFilter.
Chapter 2 Creating Custom Filters and Connectors 25

4. Click Next.

5. In the RFID Project Name field, type EPCTypeFilter.

Notice that when you type the RFID Project Name, the IDE automatically suggests
this name for the name of the RFID Project Folder.

6. For the RFID Project Location field, click Browse, navigate to any directory on
your computer and create a new folder called Projects.

Your RFID projects will be stored in this location.

7. Confirm that Set as Main Project is selected.
26 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

8. In the Create Package field, type the value, com.mycompany.

This is the package name of the filter.

9. In the Filter Name field, type EPCTypeFilter.

10. Click Finish.

Your RFID filter project appears in the Projects window.

Note – To use the built-in JUnit tests, you need to add JAR files to the RFID library.
Continue to the next procedure.
Chapter 2 Creating Custom Filters and Connectors 27

▼ To Create the RFID Library for the Custom
Component Examples
Use this procedure to create a library that is used for both the RFID filter and
connector projects.

1. In the IDE Projects window, under the EPCTypeFilter node, right-click Libraries.

2. Select Add Library from the context menu.

A dialog appears. You need to create a new library called RFID.

Note – Adding a new RFID library only has to be done once. Use this procedure for
the first RFID custom component project. After the library has been added, you can
go directly from step 5 to step 11.

3. Click Manage Libraries in the dialog.

4. Click New Library and type the following values:

■ Library Name: RFID
■ Library Type: Class Libraries

5. Click OK.

6. Under Libraries, confirm that the RFID library is selected.

7. Now add the required JAR files as listed for your platform by performing these
steps for each of the JAR files to be added:

a. Click Add Jar/Folder on the right hand side of the dialog.
28 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

b. Browse to the JAR file location and select the JAR file.

c. Click Add Jar/Folder to add the JAR file to the library.

The following tables show the location of the JAR files for each supported platform.

TABLE 2-1 Location of JAR Files on Solaris

Location Name of Required JAR file

/opt/SUNWrfid/lib sun-rfid-common.jar

/opt/SUNWrfid/lib/util concurrent.jar

/usr/share/lib jaxb-api.jar
jaxb-impl.jar
xsdlib.jar
jaxb-libs.jar
jax-qname.jar
namespace.jar
relaxngDatatype.jar

/opt/SUNWjdmk/5.1/lib jmx.jar

TABLE 2-2 Location of JAR Files on Linux

Location Name of Required JAR file

/opt/sun/rfidem/lib sun-rfid-common.jar

/opt/sun/rfidem/lib/utils concurrent.jar
jaxb-api.jar
jaxb-impl.jar
xsdlib.jar
jaxb-libs.jar
jax-qname.jar
namespace.jar
relaxngDatatype.jar

/opt/sun/jdmk/5.1/lib jmx.jar
Chapter 2 Creating Custom Filters and Connectors 29

8. When you are finished adding the JAR files to the RFID library, confirm that your
Library class path is complete.

The dialog should appear similar to the following screen capture (from a Windows
system).

9. Click OK.

This takes you back to the Add Library dialog. You only add a Library once.

10. Select the RFID library from the list and click Add Library.

The libraries appear in the Projects windows as shown in the following screen
capture. You should now be able to build and test successfully.

TABLE 2-3 Location of JAR Files on Windows

Location Name of Required JAR file

C:\Program Files\Sun\RFID Software\
rfidem\lib

sun-rfid-common.jar

C:\Program Files\Sun\RFID Software\
rfidem\lib\utils

concurrent.jar
jaxb-api.jar
jaxb-impl.jar
xsdlib.jar
jaxb-libs.jar
jax-qname.jar
namespace.jar
relaxngDatatype.jar

C:\Sun\rfidem\lib\SUNWjdmk\5.1\lib jmx.jar
30 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

▼ To Build and Test the Sample Filter Project
1. Right-click EPCTypeFilter project in the Projects window.

2. Select Clean and Build Project from the context menu.

The project should compile with no errors.

3. Right-click EPCTypeFilter again and select Test Project from the context menu.

A successful test is indicated by the message “Build Successful” in the bottom panel.

An unsuccessful test indicates the specific failure as the last item in the output
window. If the test fails, it is likely that you do not have all of the RFID libraries
added to the project. See “To Create the RFID Library for the Custom Component
Examples” on page 28 for the complete list of required libraries and instructions for
adding them.

At this point, you have a sample filter that builds and test cleanly. Proceed to the
next section to learn more about customizing the sample filter.

Creating a Custom Filter
This section shows how EPCTypeFilter was created using the NetBeans IDE. To
follow these steps, you must have Netbeans 4.1 installed properly with the com-
sun-autoid-toolkit.nbm module installed and the RFID libraries configured as
described in the previous section, “Setting Up Your NetBeans Environment” on
page 21.
Chapter 2 Creating Custom Filters and Connectors 31

This section contains the following procedures:

■ To Customize the Sample Filter
■ To Compile the Customized Filter
■ To Modify and Run the JUnit Test

Understanding the Sample EPCTypeFilter
EPCTypeFilter is an example filter that screens for specific EPC types and sizes. It
is a real-world example of a filter that you can usefully deploy. It contains enough
detail to enable you to use the ideas on filter development of all types.

EPCTypeFilter filters out identifiers that do not match the set of EPC types that
are configured in the filter. For example, if the EPCTypeFilter is configured to
accept SGLN Identifiers (identifiers of class
com.sun.autoid.identity.EPC_SGLN_64 or
com.sun.autoid.identity.EPC_SGLN_96), then all Identifier objects that
are not of type SGLN are excluded from the filter's output.

Similarly, EPCTypeFilter filters out Identifier objects that do not match the
configured EPC sizes. So if EPCTypeFilter is configured to accept only 96-bit tags,
then all Identifier objects representing tags of other sizes are excluded from the
filter's output.

You can use multiple rules. You can specify that the filter only accept SGLN and
SSCC Identifiers from 96-bit tags. The result is that Identifier objects of class
com.sun.autoid.identity.EPC_SGLN_96 and
com.sun.autoid.identity.EPC_SSCC_96 pass through EPCTypeFilter.

The first step in creating a functional EPCTypeFilter example is to define the
properties that are needed for configuring the filter. The filter description makes it
clear that you need two properties:

■ A property to specify the EPC types accepted by the filter
■ A property to specify the EPC sizes accepted by the filter

It is good practice to add a description of these types to the Javadoc comments. The
procedure starts by completing the class documentation.

▼ To Customize the Sample Filter
1. Launch NetBeans.

2. If the EPCTypeFilter project is not open, open it.
32 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

3. Modify the class documentation to include text that describes the filter’s
functionality and the new configuration properties that you are adding to
EPCTypeFilter.

a. Expand the Source Packages node in the Projects window.

b. Expand the com.mycompany node.

c. Double-click EPCTypeFilter.java.

The source code appears in the Source Editor of the IDE.
Chapter 2 Creating Custom Filters and Connectors 33

d. Modify the class documentation to look like the following:

As you can see, the properties, EPCTypes and EPCSizes, are used to identify the
types and sizes of EPCs that pass through EPCTypeFilter.

Note – As you add the necessary code modifications, use the NetBeans Source
Editor option Reformat Code to keep the code formatted properly. To do this, right-
click in the background of the Source Editor and select Reformat Code from the
context menu.

CODE EXAMPLE 2-1 Example Class Documentation

/*
* The EPCTypeFilter filter plugs into the Sun Microsystems RFID
* Event Manager. Filters are situated between input devices and
connectors
* (also known as loggers) and are used to modify or remove identifiers
* from a stream of identifiers coming from an input device (usually an
* RFID reader).
*
* The EPCTypeFilter passes only specific types of EPCS, which are
* user configurable. This filter identifies the type of identifier, and
* if it is in the set of configured EPCTypes and has one of the configured
* EPCSizes the Identifier passes through the filter.
*
* This filter assumes that all specified EPCSizes apply to all EPCTypes,
* and does rigorous checking to ensure that there is no misconfiguration.
* As a result, it may be necessary to configure two or more EPCTypeFilter
* instances in combination to achieve the desired effect. This filter
* recognizes events of type IdentifierEvent, IdentifierListEvent
* and DeltaEvent, and outputs events of the same types.
* If an event is passed to this filter that is not recognized by the
* filter, the default behavior is to throw an exception.
* This behavior can be overridden by setting the DieOnUnknownEvent
* property to “false”.
*
* Properties for EPCTypeFilter are as follows:
* LogLevel - set the logging level see java.util.logging.level
* EPCTypes - ‘DoD’, GIAI’, ‘GID’, ‘GRAI’, ‘SGLN’, ‘SGTIN’, ‘SSCC’,
* ‘TYPEIII’, ‘TYPE1’
*
* EPCSizes - ‘96’, ‘64’ (default is ‘64,96’)
* DieOnUnknownEvent - default = true if this filter should throw an
* exception if an unrecognized event is passed in. The value
* should be false otherwise.
*/
34 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

4. Add a Map object to hold the configuration.

Because the filtering process uses this field, it is important that the information be
stored in a manner that enables the filter to quickly determine whether or not a
specific Identifier object should pass through or be excluded. The example uses a
Map object for this purpose. The key is the Identifier object’s class. A Boolean
value indicates whether the class is passed through the filter. This implements the
essence of the filtering mechanism as simple, fast look up. Add the epcMap field at
the end of the list of fields near the top of the class as follows:

■ After this code:

■ Add this code:

5. Now initialize the epcMap object.

This code creates entries in the epcMap for every available type of EPC. Initially all
entries are set to Boolean.FALSE, indicating that none of the EPCs are accepted. In
a subsequent step, the filter reads the Properties object passed to the constructor
and directs that information to the initialization method so the appropriate entries
are set to Boolean.TRUE, indicating that they should pass through the filter. Add
the initializeEPCMap method after the constructor as follows:

■ After this code:

TABLE 2-4 Unknown Event Exception

/**
* Specifies the behavior when an unknown event type is passed to this
* filter. The default behavior is to throw an exception. This can be
* overridden by setting the “DieOnUnknownEvent” property to false.
*/
private boolean dieOnUnknownEvent = true;

TABLE 2-5 Add epcMap Object

/**
* A map that contains EPCS of interest. This map associates a Class
* object with a Boolean value indicating whether we are interested in it
* or not.
*/
private Map epcMap = new HashMap();

CODE EXAMPLE 2-2 Constructor Code.

/*

* Log the properties if the logger is appropriately configured

*/

if (logger.getLevel().intValue() <= Level.CONFIG.intValue()){
Chapter 2 Creating Custom Filters and Connectors 35

 Enumeration e = properties.propertyNames();

while (e.hasMoreElements()) {

String propertyName = (String)e.nextElement();

String value = (String)properties.getProperty(propertyName);

logger.log(Level.CONFIG, "EPCTypeFilter {0}={1}",

new Object[] {propertyName, value});

 }

}

CODE EXAMPLE 2-2 Constructor Code.
36 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

■ Add this code:

CODE EXAMPLE 2-3 Initialize the epcMap Object

/**
* Initializes the EPC map, which maps a Class instance to a Boolean,
* indicating our interest in the EPC type.

*

* @param epcTypes the set of types we are interested in

* @param sizes the set of sizes we are interested in

*/

private void initializeEPCMap(Collection epcTypes, Collection epcSizes)

throws ClassNotFoundException {

this.epcMap.put(com.sun.autoid.identity.DoD_64.class, Boolean.FALSE);

this.epcMap.put(com.sun.autoid.identity.DoD_96.class, Boolean.FALSE);

this.epcMap.put(com.sun.autoid.identity.EPC_GIAI_64.class,Boolean.FALSE);

this.epcMap.put(com.sun.autoid.identity.EPC_GIAI_96.class,Boolean.FALSE);

this.epcMap.put(com.sun.autoid.identity.EPC_GID_96.class,Boolean.FALSE);

this.epcMap.put(com.sun.autoid.identity.EPC_GRAI_64.class,Boolean.FALSE);

this.epcMap.put(com.sun.autoid.identity.EPC_GRAI_96.class,Boolean.FALSE);

this.epcMap.put(com.sun.autoid.identity.EPC_SGLN_64.class,Boolean.FALSE);

this.epcMap.put(com.sun.autoid.identity.EPC_SGLN_96.class,Boolean.FALSE);

this.epcMap.put(com.sun.autoid.identity.EPC_SGTIN_64.class,
Boolean.FALSE);

this.epcMap.put(com.sun.autoid.identity.EPC_SGTIN_96.class,
Boolean.FALSE);

this.epcMap.put(com.sun.autoid.identity.EPC_SSCC_64.class,Boolean.FALSE);

this.epcMap.put(com.sun.autoid.identity.EPC_SSCC_96.class,Boolean.FALSE);

this.epcMap.put(com.sun.autoid.identity.EPC_TYPEIII_64.class,
Boolean.FALSE);

this.epcMap.put(com.sun.autoid.identity.EPC_TYPEI_64.class,
Boolean.FALSE);

/*

* Now go through and set the EPC classes we are interested in to True.

*/

Iterator types = epcTypes.iterator();

while (types.hasNext()) {

String type = (String)types.next();

Iterator sizes = epcSizes.iterator();

while (sizes.hasNext()) {

String size = (String)sizes.next();

Class epcClass = null;

try {

epcClass =

Class.forName("com.sun.autoid.identity.EPC_" + type +
"_" + size);
Chapter 2 Creating Custom Filters and Connectors 37

The sample filter takes advantage of the format of the EPC class names to populate
the map. The form holds true, except for the com.sun.autoid.identity.DoD_64
and com.sun.autoid.identity.DoD_96 classes. These are dealt with by catching
the ClassNotFound exception that results from trying to instantiate an
EPC_DoD_64 or EPC_DoD_96 class, and trying the form that is not preceded by
“EPC_”.

6. To complete the initialization of the map, read the EPCTypes and EPCSizes
properties from the Properties object that is passed to the constructor.

The types and sizes are represented as comma-separated Identifier objects
matching the name and size of the allowed identifiers. For example, if the EPCTypes
is set to "SGLN,DoD" and EPCSizes is set to "64,96", EPCTypeFilter is
configured to accept all Identifier objects of class as follows:

■ com.sun.autoid.identity.EPC_SGLN_64
■ com.sun.autoid.identity.EPC_SGLN_96
■ com.sun.autoid.identity.DoD_64
■ com.sun.autoid.identity.DoD_96

Knowing that the property is a String containing a comma-separated list and the
initializeEPCMap method accepts a collection, the final initialization code
converts the comma-separated list into a collection and call the initialization method.
Add this code to the constructor:

■ After this code:

} catch (ClassNotFoundException cnfe) {

/*

* There is one EPC that doesn’t fit the above
* template.

*/

epcClass =Class.forName("com.sun.autoid.identity."
+ type + "_" + size);

}

this.epcMap.put(epcClass, Boolean.TRUE);

this.logger.log(Level.CONFIG, "EPCTypeFilter adding EPC Type
{0} of size {1}",

new Object[] {type, size});

}

}

}

CODE EXAMPLE 2-3 Initialize the epcMap Object (Continued)
38 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

■ Add this code:

/**
* Instantiate a EPCTypeFilter filter with the specified properties.
*
* @param properties the Properties object to use for initialization of the
* filter
*/
public EPCTypeFilter(Properties properties) {

super(EPCTypeFilter.MY_NAME, properties);
/*
* Set the appropriate log level based on the “LogLevel” property.
*/
String logLevel = properties.getProperty(“LogLevel”);
if (null != logLevel) {

this.setLogLevel(logLevel);
}
String dieOnUnknown = properties.getProperty(“DieOnUnknownEvent”);
if (null != dieOnUnknown) {

this.dieOnUnknownEvent =
Boolean.valueOf(dieOnUnknown).booleanValue();

}
/*
* Log the properties if the logger is appropriately configured.
*/
if (logger.getLevel().intValue() <= Level.CONFIG.intValue()) {

Enumeration e = properties.propertyNames();
while (e.hasMoreElements()) {

String propertyName = (String)e.nextElement();
String value = (String)properties.getProperty(propertyName);
logger.log(Level.CONFIG, “EPCTypeFilter {0}={1}”,
new Object[] {propertyName, value});

}
}

}

CODE EXAMPLE 2-4 Code to Read the EPCTypes and EPCSizes Properties

/**

* Read the interesting identifier types and sizes and prepare the map

* accordingly.

*/

String epcTypes = properties.getProperty("EPCTypes");

if (null == epcTypes) {

throw new IllegalArgumentException("\"EPCTypes\" property must be

configured");
Chapter 2 Creating Custom Filters and Connectors 39

7. Add code to modify the processOneIdentifier method to filter out all
Identifier objects that were not specified in the configuration.

This modification requires getting the class of the Identifier object and checking
the epcMap contents to see whether the Identifier object should pass through or
be rejected.

Change the processOneIdentifier method as follows:

■ After this code:

}

Collection epcNames = new LinkedList();

StringTokenizer tokenizer = new StringTokenizer(epcTypes, " ,\t\n\r\f");

while (tokenizer.hasMoreTokens()) {

String epcType = tokenizer.nextToken();

epcNames.add(epcType);

}

/*

* Read the size(s) that we are interested in.

*/

String sizes = properties.getProperty("EPCSizes");

if (sizes == null) {

/*

* By default, look for 64 and 96 bit tags of this type.

*/

sizes = "64,96";

}

Collection epcSizes = new LinkedList();

tokenizer = new StringTokenizer(sizes, " ,\t\n\r\f");

while (tokenizer.hasMoreElements()) {

String size = tokenizer.nextToken();

epcSizes.add(size);

}

try {

this.initializeEPCMap(epcNames, epcSizes);

} catch (ClassNotFoundException cnfe) {

throw new IllegalArgumentException("Could not initialize the

EPCTypeFilter: "

+ cnfe.getMessage());

}

}

CODE EXAMPLE 2-4 Code to Read the EPCTypes and EPCSizes Properties (Continued)
40 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

■ Add this code:

■ And delete this code:

An Identifier object is accepted by adding the object to the
identifiersToSend Collection object. Only Identifier objects that are
added to this Collection object are sent. The code that sends the event can be
found in the process method.

With this code modification, the EPCTypeFilter example is complete. The
example shows the initialization of the filter, the scheme used to determine if an EPC
type should be accepted or rejected by the filter, and the mechanics of filtering the
Identifier objects.

▼ To Compile the Customized Filter
1. Save the EPCTypeFilter.java file.

* TODO: Modify this method to filter events.
*
* @param identifier the Identifier to examine for filtering
* @param action one of TAG_SEEN, TAG_IN, TAG_OUT, specifying the tag
* activity @param identifiersToSend a Collection of identifiers that will
* be sent
*/
private void processOneIdentifier(Identifier identifier, int action,

Collection identifiersToSend) throws Exception {
/*
* To filter out this identifier, simply don’t add it to the list. You
* can also add properties to the identifier with code similar to:
* identifier.addProperty("key", "value");
*/

CODE EXAMPLE 2-5 Modify the Filter

Class identifierClass = identifier.getClass();

Boolean interesting = (Boolean)this.epcMap.get(identifierClass);

if (null != interesting && interesting.booleanValue()) {

identifiersToSend.add(identifier);

}

identifiersToSend.add(identifier);
Chapter 2 Creating Custom Filters and Connectors 41

2. Right-click the EPCTypeFilter node in the Projects window.

3. Select Clean and Build Project from the context menu.

You see BUILD SUCCESSFUL at the bottom of the output window.

Using the Filter Template JUnit Test
A JUnit test is created as part of the filter template. This test needs to be modified
because your new filter requires initialization of the EPCTypes and EPCSizes
properties.

▼ To Modify and Run the JUnit Test
1. Expand the Test Packages node in the Projects window.

2. Expand the com.sun.rfid.filter node.

3. Double-click the EPCTypeFilterTest.java file.

The JUnit test source code appears in the main window.

4. Modify the setUp method to initialize the EPCTypes and EPCSizes properties.

■ After this code:

■ Add this code:

You have initialized EPCTypeFilter to accept only Identifier objects of type
SGLN and SSCC, of both 96-bit and 64-bit sizes. This filter now accepts Identifier
objects of the following classes:

■ com.sun.autoid.identity.EPC_SGLN_96

**
* Sets up the test fixture. Called before every test case method.
*/
protected void setUp() {

this.props = new Properties();
this.props.put("LogLevel", LOGLEVEL_TEST);

CODE EXAMPLE 2-6 Modify the JUnit Test

this.props.put("EPCTypes", "SGLN,SSCC");
this.props.put("EPCSizes", "96,64");
42 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

■ com.sun.autoid.identity.EPC_SGLN_64
■ com.sun.autoid.identity.EPC_SSCC_96
■ com.sun.autoid.identity.EPC_SSCC_64

You can run the test now to see if it is working.

5. Right-click the EPCTypeFilter node in the Projects window.

6. Select Test Project from the context menu.

7. Check the output window for the result.

You find that the test indicates a failure as follows:

This message indicates the filter is actually working. Of the 13 Identifier objects
passed in to this filter, only four were accepted. To fix this last problem, proceed to
the next step.

8. Modify the testProcessIdentifierEvent method in the
EPCTypeFilterTest.java file.

Testcase:
testProcessIdentifierListEvent(com.sun.rfid.filter.EPCTypeFilter
Test): FAILED
Expected 13 identifiers expected:<13> but was:<4>
Chapter 2 Creating Custom Filters and Connectors 43

■ After this code:

■ Replace this code:

■ With this code:

With this modification, the unit test now specifies how many Identifier objects to
expect in the result.

/**
* Test the processing of events. This method should be modified to send
* interesting events to the filter and ensure that the appropriate events
* get filtered or modified properly.
*/
public void testProcessIdentifierEvent() {

this.filter.reset();
int tagCount = this.tags.length;
long timestamp = System.currentTimeMillis();
try {

for (int index = 0; index < tagCount; index++) {
Identifier identifier = IdentifierFactory.createEPC(new

URI(this.tags[index]));
IdentifierEvent event = new IdentifierEvent(identifier,

READER, timestamp, "IdentifierEvent from " +
READER);

this.filter.postEvent(event);
}

} catch (Exception e) {
fail("Unexpected failure of EPC creation");

}
/**
* Wait for the identifiers to be processed.
*/
this.pause(1000);

assertEquals("Expected " + tagCount + " identifiers", tagCount,
this.filter.getPassCount());

TABLE 2-6 Modify JUnit test

assertEquals("Expected 4 identifiers", 4,
this.filter.getPassCount());
44 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

9. Modify the testProcessIdentifierListEvent method in the
EPCTypeFilterTest.java file.

This change again indicates how many Identifiers are expected to pass through the
filter.

Change the JUnit code as follows:

■ After this code:

■ Replace this code:

■ With this code:

/**
* Test to ensure that the EPCTypeFilter filter can handle events of type
* IdentifierListEvent.
*/
public void testProcessIdentifierListEvent() {

this.filter.reset();
int tagCount = this.tags.length;
long timestamp = System.currentTimeMillis();
try {

IdentifierListEvent event = new IdentifierListEvent(READER,
timestamp, "IdentifierListEvent from " + READER);

for (int index = 0; index < tagCount; index++) {
Identifier identifier = IdentifierFactory.createEPC(new

URI(this.tags[index]));
event.addIdentifier(identifier);

}
this.filter.postEvent(event);

} catch (Exception e) {
fail("Unexpected failure of EPC creation");

}
/**
* Wait for the identifiers to be processed.
*/
this.pause(1000);

assertEquals("Expected " + tagCount + " identifiers", tagCount,
this.filter.getPassCount());

CODE EXAMPLE 2-7 Modify JUnit Test

assertEquals("Expected 4 identifiers", 4,
this.filter.getPassCount());
Chapter 2 Creating Custom Filters and Connectors 45

10. Modify the testProcessDeltaEvent method in the EPCTypeFilterTest.java
file.

This modification is specific to the DeltaEvents method and is the same
modification as in Step 8 and Step 9.

■ After this code:

CODE EXAMPLE 2-8 Existing JUnit ProcessDeltaEvent Method

/**

* Test to ensure that the EPCTypeFilter filter can handle events

* of type DeltaEvent.

*/

public void testProcessDeltaEvent() {

this.filter.reset();

int tagCount = this.tags.length;

long timestamp = System.currentTimeMillis();

try {

DeltaEvent event = new DeltaEvent(READER, timestamp,

"DeltaEvent from " + READER);

Collection tagsIn = new LinkedList();

Collection tagsOut = new LinkedList();

for (int index = 0; index < tagCount; index++) {

Identifier identifier =

IdentifierFactory.createEPC(new URI(this.tags[index]));

/*

* Even index identifiers into tagsIn; odd into tagsOut.

*/

if (index % 2 == 0) {

tagsIn.add(identifier);

} else {

tagsOut.add(identifier);

}

}

event.setTagsIn(tagsIn);

event.setTagsOut(tagsOut);

this.filter.postEvent(event);

} catch (Exception e) {

fail("Unexpected failure of EPC creation");

}

/**

* Wait for the identifiers to be processed.

*/

this.pause(1000);
46 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

■ Replace this code:

■ With this code:

11. Save the EPCTypeFilterTest.java file and test the filter again. (See Step 5
through Step 7).

Look for “BUILD SUCCESSFUL” in the last line of the output window.

Integrating Custom Components With
the RFID Event Manager
This section describes how to integrate the EPCTypeFilter custom filter into the RFID
Event Manager. The RFID Configuration Manager enables you to connect various
RFID Event Manager components (adapter, filters and connectors) to create a
processing chain known as Business Processing Semantics (BPS). See Sun Java System
RFID Software 3.0 Administration Guide for more details. For this example, you use
the RFID Configuration Manager to add the EPCTypeFilter custom filter to an
existing BPS, the default Demo Configuration Object.

▼ To Add the EPCTypeFilter Custom Filter to
the Demo Configuration Object

1. If you have not already done so, start the RFID Configuration Manager.

2. Add the new EPCTypeFilter to the RFID Configuration Manager and configure its
properties by using these steps:

a. From the RFID Configuration Manager menu, choose Roles → Edit.

The RFID Role and Component Editor window appears.

assertEquals("Expected " + tagCount + " identifiers", tagCount,
this.filter.getPassCount());

CODE EXAMPLE 2-9 New JUnit ProcessDeltaEvent Method

assertEquals("Expected 4 identifiers", 4,
this.filter.getPassCount());
Chapter 2 Creating Custom Filters and Connectors 47

b. In the navigation tree, under the Roles node, select the Demo role.

c. Choose Filter → New.

Set up the filter properties as shown in the following screen capture.

d. Click Ok.

The EPCTypeFilter filter is added to the navigation tree in the left pane.

3. Add the EPCTypeFilter to the Demo Role by following these steps:

a. In the navigation tree, expand the Components node and expand the Filters
node.

b. Right-click EPCTypeFilter and choose Add to Role from the contextual menu.

A dialog box appears and prompts you to assign a unique name to this
component.

c. Type RfidEPCTypeFilter and click Ok.

The RfidEPCTypeFilter component appears in the drawing pane.

4. Connect the components in the necessary order by following these steps:

a. Select and right-click the arrow that connects the Rfid Delta filter and the
RfidFile logger components.
48 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

b. Choose Delete from the contextual menu.

The arrow disappears.

c. Connect the RfidDelta component to the RfidEPCTypeFilter component.

To do so, click the port (the small square at the center of each component) on the
RfidDelta component and drag a line to the RfidEPCTypeFilter component.

d. Connect the RfidEPCTypeFilter to the RfidFile logger component.

Click the port on the RfidEPCTypeFilter component and drag a line to the RfidFile
logger component. The drawing pane shows the new component flow as seen in
the following screen capture.
Chapter 2 Creating Custom Filters and Connectors 49

5. Add the JAR file for the new EPCTypeFilter component by following these steps:

a. From the RFID Role and Component Editor menu, choose Plug-in → Add
Implementation Class JAR.

b. Use the file chooser to navigate to the EPCTypeFilter.jar, select the JAR file and
click Ok.

6. Close the RFID Role and Component Editor window.

7. Delete any existing Demo Configuration Object.

This is necessary so that you can create a new Demo Configuration Object to pick up
the changes that you made to the Demo role.

8. Create a new Demo Configuration Object by using the following steps:
50 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

a. Choose Configuration → New.

b. Select Demo as the Base Role.

c. In the Configuration Object Name field, type EPCTypeFilter.

d. Select the PMLReader as the Input Point and click Ok.

9. Choose File → Save and save your new EPCTypeFilter Configuration Object.

Now you are ready to start the RFID Event Manager and use the new Demo
Configuration Object.

Creating a Custom Connector
The Sun Java System RFID Software Toolkit NetBeans plug-in (.nbm), com-sun-
autoid-toolkit.nbm, also contains a template called RfidConnector. You can
use it to simplify the creation of custom connectors for the RFID Software.

To install the RFID Software Toolkit NetBeans plug-in, you first download and
install the NetBeans 4.1 IDE. Then, if you have not already done so, you need to set
up your development environment using the following procedures:

■ “To Download and Install NetBeans” on page 22
■ “To Download and Install the RFID Software Toolkit” on page 22

▼ To Create a Sample Connector Project
1. Follow the steps in the procedure “To Set Up the Example Filter Project” on

page 25 with one change. In Step 3, select RfidConnector instead of RfidFilter.

For the purposes of this example, name your sample connector project,
RFIDConnector.

2. Confirm the default name for the connector, MyConnector.

3. If you have not already done so, perform the procedure “To Create the RFID
Library for the Custom Component Examples” on page 28 to create the necessary
RFID library.

This library is used for both the sample filter and the sample connector.

4. Now, make the following changes to the sample code so that the project will build
correctly:

a. Open the file, MyConnector.java.
Chapter 2 Creating Custom Filters and Connectors 51

b. In the IDE’s Source editor, search for the following line of code and remove the
line of code from the java source file:

c. Search for the following line of code:

d. Change this line to the following:

e. Search for the following line of code:

f. Just after this line of code, add the following code:

5. Right-click the RFIDConnector project in the Projects window.

6. Select Clean and Build from the context menu.

The project should compile with no errors.

7. Now you can read through the comments in this code and modify it to create your
custom connector.

 tagsOut = new LinkedList();

this.passCounter += identifierCount;

this.identifierCounter += identifierCount;

private long identifierCounter = 0L;

private long discardCounter = 0L;
52 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

CHAPTER 3

Using RFID Device Client APIs

This chapter describes how to use the Java APIs for reader and printer clients.

Each Execution Agent provides one or more reader services. A reader service is a
specialized web service that communicates with the RFID device, processes the
information as directed by the RFID Event Manager configuration object, and
communicates with the RFID Information Server or third-party Enterprise Resource
Planning (ERP) systems. Configuration objects are defined for each specific reader
using the RFID Configuration Manager. See the Sun Java System RFID Software 3.0
Administration Guide if you are not familiar with the concept of a configuration object
and how they are defined.

In the RFID Event Manager, the reader service performs the work of gathering RFID
tag events. The reader service communicates the state of its components to the
management service (another specialized web service). The communication from the
reader service to the management service enables the RFID Management Console to
monitor the components.

Previous releases of the RFID Software required developers to be familiar with Jini
programming in order to discover the reader service in the Jini lookup server and to
invoke the service’s device access methods.

A set of reader and printer client APIs has been implemented to hide some of the
complexity of working directly with Jini services.

This chapter includes the following topics:

■ Implementation of the ReaderClient API
■ Implementation of the PrinterClient API
53

Implementation of the ReaderClient
API
The implementation of the ReaderClient API is contained in the
com.sun.autoid.util.ReaderClient class and is packaged in the sun-rfid-
common.jar JAR file.

This section covers the following topics:

■ Reader Client Constructor Parameters
■ EMSEventListener
■ ReaderClient API Reference
■ Building a Sample Reader Client Program
■ Explaining the Sample Reader Client

Reader Client Constructor Parameters
There are many ways of instantiating a ReaderClient constructor. The various
parameters for the ReaderClient constructors are described in the following
sections:

■ Reader Client Groups Parameter
■ Reader Client Locators Parameter
■ Reader Client readerName Parameter
■ Reader Client eventID Parameter
■ Reader Client logical Parameter

Reader Client Groups Parameter

During installation of the RFID Event Manager Control Station, you are prompted to
enter a group name. All readers configured for this Control Station are associated by
that group name. If a second Control Station is started, a unique group name for this
Control Station must be assigned. All readers in this Control Station are then
associated by this new group name. The ReaderClient class uses this group name
to help narrow the search for a given reader. If no group name is specified, then all
groups are searched.

Many of the ReaderClient constructors take a String[] groups argument. This
argument is a String array of group names. If all groups are to be searched, then
the argument is null. You can use the ReaderClient method String[]
getGroups(String groupStr) to create this array of group names. The
54 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

getGroups () method takes a String of group names and returns a String array
of group names. Each group name is separated from the next group name by a
space, a tab or a comma, with a special case for all or none.

Reader Client Locators Parameter

By default, a reader client can only find those readers that are running on RFID
Event Manager Execution Agents and Control Stations within the same subnet. You
can extend the search for readers outside this subnet by adding locators. A locator is
defined in terms of a URL format. For example, jini://hostname:port.

The variable, hostname, is the host name or IP address of a machine that is running
the RFID Event Manager Control Station that manages the reader services that you
want to add to the reader search list.

The, variable, port, is the Jini lookup server port number. This port number is
optional when defining a new locator, unless you customized the port number
during the installation of the RFID Event Manager. If you add a Jini location and the
port number is not specified, the default Jini lookup server port, 4160, is used. If you
customized the Jini lookup server port during installation, you must specify the
same port number when you add a locator to this Jini lookup server. The port
number must match the one used during installation.

Many of the ReaderClient constructors take a LookupLocator[] locators
argument. This should be a LookupLocator array of locator objects or null if only
the local subnet is to be searched. You might also use the ReaderClient method
LookupLocator[] getLocators(String locatorStr) to create this array of
locator objects. The getLocators () method takes a String of locator values in
the URL format Each locator is separated from the next location by a space, a tab or
a comma, and returns an array of LookupLocator objects.

Reader Client readerName Parameter

All ReaderClient constructors require you to supply a reader name as an input.
This reader name is the name of the specific device as configured in the RFID
Configuration Manager.

For example, you might specify PMLReader or testIntermecReader as the
readerName parameter to the ReaderClient constructor to reach one of the two
devices shown in the following screen capture. To create your own specific readers,
consult the Sun Java System RFID Software 3.0 Administration Guide. The
testIntermecReader shown in the screen shot is for demonstration purposes and
does not represent a real reader.
Chapter 3 Using RFID Device Client APIs 55

Reader Client eventID Parameter

An eventID is a unique number used by the RFID Software to identify remote event
producers (REProducer) for tag events. Client applications use this identifier to
connect to a specific REProducer component. In RFID Software 3.0, each reader
automatically creates a REProducer component using a randomly generated unique
number.

Note – In RFID Software 2.0, you had to use a separate REProducer component in
the reader's processing chain specifically for this purpose and then use the eventID
to locate the REProducer. It is no longer necessary to include a REProducer
connector for this purpose.

Generally, you should locate the reader's internal REProducer by using the reader's
physical name. If you want to control the assignment of the eventID number, you
define a Handle property in the reader’s configuration.

Some of the ReaderClient constructors take an eventID parameter. If an
eventID is specified, then the reader client connects to the default REProducer and
matches a reader with this eventID.

The eventID may be null. If the eventID is null, then the reader's event producer
is found by using the reader's physical name. The reader physical name is the name
assigned to the reader when you define the physical device using the RFID
Configuration Manager. See “To Define the RFID System Physical Devices” in the
Sun Java System RFID Software 3.0 Administration Guide.
56 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

When an eventID is specified, the reader adapter configuration must contain a
Handle property. To establish a connection to the reader's event producer, the value
of the Handle property must match the reader client eventID parameter.

You use the RFID Configuration Manager to add a Handle property to a reader
adapter. The reader adapter configuration is referred to as a device in the RFID
Configuration Manager. Handle is not a default property for a device, so you must
add the Handle property using the RFID Configuration Manager. See “To Add a
Handle Configuration Property to a Device” on page 57.

▼ To Add a Handle Configuration Property to a Device

Prerequisite – This procedure assumes that you are familiar with how to use the
RFID Configuration Manager. See the Sun Java System RFID Software 3.0
Administration Guide for more information on how to define and configure devices in
the RFID network.

1. If you have not already done so, start the RFID Configuration Manager.

2. From the RFID Configuration Manager menu, choose Devices → Edit.

A dialog listing the available devices appears.

3. Select the specific reader and click Ok.

For the purposes of this example, the testIntermecReader was selected. An edit
dialog box for the device appears as shown in the following screen capture.
Chapter 3 Using RFID Device Client APIs 57

4. Select any configuration property name field.

5. Right-click and choose Add Property from the context menu.

A blank row appears enabling you to add the Name and Value for the new property.

6. In the new configuration property Name field, type Handle.

7. In the Value field, type 55123 and click Ok.

The new configuration property is added to the device. The following screen capture
shows the newly added configuration property of Handle with a value of 55123
added to the testIntermecReader.
58 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

8. Choose File → Save to save your change.

Using the configuration that is shown in this example procedure, use the Handle
value of 55123 to create a ReaderClient as shown in the following code example.

Reader Client logical Parameter

One of the ReaderClient constructors enables you to specify the String logical.
This String refers to a group of logical readers that have been defined during the
RFID Event Manager configuration. For example, a single dock door may have
several readers positioned strategically around the door to enable the best read
possible as pallets pass through the door. It might be useful to group these readers
into a logical group that can be tracked as a single unit. The logical parameter
enables you to discover a reader when the reader is part of a specific logical group.

To use the logical parameter, you must define a logical group using the RFID
Configuration Manager. For example, you might create a logical group named, Dock
Door 1 that contains two readers, DockDoorEast and DockDoorWest. This enables

CODE EXAMPLE 3-1 Creating a ReaderClient

public class MyReaderClient implements EMSEventListener {
public static void mainString[] args) {
System.setSecurityManager(new RMISecurityManager());
long eventID = 55123;
ReaderClient = new ReaderClient(“testIntermecReader”, eventId, this);

}
...

}

Chapter 3 Using RFID Device Client APIs 59

you to refer to both of these readers using the logical name of Dock Door 1. Use the
RFID Configuration Manager to configure two readers with a logicalReaders
property of Dock Door 1.

A ThingMagic Mercury4 reader named DockDoorEast that is configured with a
logicalReaders property, Dock Door 1, appears in the following screen capture
from the RFID Configuration Manager. You would configure the reader at
DockDoorWest in the same way.

Note – When you configure a device to be part of a logicalReaders group, if the
logicalReaders property does not already appear in the Configuration Properties
list, you can add it to the device configuration. Use a procedure similar to that
described for adding the Handle property. See “To Add a Handle Configuration
Property to a Device” on page 57.

EMSEventListener
The ReaderClient API also enables you to specify an EMSListener to receive
reader events. If specified, this listener is registered with the default reader event
producer and receives events using the postEvent() method. The
EMSEventListener can be null.
60 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

ReaderClient API Reference
All of the public ReaderClient APIs are listed in the following table.

TABLE 3-1 ReaderClient Interfaces

Constructors and Methods Description

ReaderClient(String readerName) • Creates a new ReaderClient instance
matching on the readerName in ALL
groups.

• The default event producer is used.
• No remote listener is registered. If one is

used, it must be manually registered using
the addEMSEventListener() method.

ReaderClient(String readerName, String[]groups) • Creates a new ReaderClient instance
matching on the reader name in groups
specified by the groups parameter. See
getGroups () method for details.

• The default Event Producer is used.
• No remote listener is registered. If one is

used, it must be manually registered using
the addEMSEventListener() method.

ReaderClient(String readerName, String[]groups,
Locator[] locators)

• Creates a new ReaderClient instance
matching on the Reader Name in groups
specified by the groups parameter. See
getGroups () method for details.

• The local subnet is searched in addition to
hosts specified by the locators parameter.
See getLocators() method for details.

• The default Event Producer is used.
• No Remote Listener is registered. If one is

used, it must be manually registered using
the addEMSEventListener() method.

ReaderClient(String readerName, EMSEventListener
listener)

• Creates a new ReaderClient instance
matching on the Reader Name in ALL
groups.

• The default Event Producer is used
• The specified listener is registered to the

default reader event producer.
Chapter 3 Using RFID Device Client APIs 61

ReaderClient(String readerName, long eventID,
EMSEventListener listener)

• Creates a new ReaderClient instance
matching on the Reader Name in ALL
groups.

• The specified listener is registered to the
default reader event producer for a reader
adapter that has explicitly set its Handle id
and must match the eventID parameter.

ReaderClient(String readerName, long eventID,
String[] groups, EMSEventListener listener)

• Creates a new ReaderClient instance
matching on the Reader Name in groups
specified by the groups parameter. See
getGroups () method for details.

• The default Event Producer is used.
• The specified listener is registered to the

default reader event producer for a reader
adapter that has explicitly set its Handle id
and must match the eventID parameter.

ReaderClient(String readerName, String[]groups,
EMSEventListener listener)

• Creates a new ReaderClient instance
matching on the Reader Name in groups
specified by the groups parameter. See
getGroups () method for details.

• The default Event Producer is used.
• The specified listener is registered to the

default reader event produce to receive
reader events.

ReaderClient(String readerName, String[] groups,
Locator[] locators, EMSEventListener listener)

• Creates a new ReaderClient instance
matching on the Reader Name in groups
specified by the groups parameter (see
getGroups () method for details.

• The local subnet is searched as well as any
additional hosts as specified by the
locators parameter. See getLocators()
method for details.

• The default Event Producer is used.
• The specified listener is registered to the

default reader event producer to receive
reader events.

TABLE 3-1 ReaderClient Interfaces (Continued)

Constructors and Methods Description
62 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

ReaderClient(String readerName, long eventID,
String[] groups, Locator[] locators,
EMSEventListener listener)

• Creates a new ReaderClient instance
matching on the Reader Name in groups
specified by the groups parameter (see
getGroups () method for details.

• The local subnet is searched in addition to
hosts specified by the locators parameter.
See getLocators() method for details.

• The specified listener is registered to the
default reader event producer for a reader
adapter that has explicitly set its Handle id
and must match the eventID parameter.

ReaderClient(String readerName, long eventID,
String logical, String[] groups, Locator[]
locators, EMSEventListener listener)

• Creates a new ReaderClient instance
matching on the Reader Name in groups
specified by the groups parameter. See
getGroups () method for details.

• The local subnet is searched in addition to
hosts specified by the locators parameter.
See getLocators() method for details.

• The specified listener is registered to the
default reader event producer for a reader
adapter that has explicitly set its Handle id
and must match the eventID parameter.

• See “Reader Client logical Parameter” on
page 59 for details of the logical
parameter.

terminate Terminates discovery of the reader.

checkReaderStatus Returns true if the reader has been discovered
and is connected to its device, else returns
false.

getLastList Gets the last tag list, the tag list is not cleared.
A subsequent call to getLastList returns the
same list, unless the Remote Event Producer
has caused the list to be updated.

takeLastList Takes the last tag list and clears it afterwards.
A subsequent call to getLastList or
takeLastList does not return the same list.
The subsequent call returns a new list if it has
been updated by the Remote Event Producer,
or return null, if no update has taken place.

TABLE 3-1 ReaderClient Interfaces (Continued)

Constructors and Methods Description
Chapter 3 Using RFID Device Client APIs 63

Building a Sample Reader Client Program
A sample reader client program is included in the Sun Java System RFID Software
Toolkit. After unzipping the RfidToolkit.zip file into a directory of your choice,
toolkit-dir, you can find SampleTagReaderClient.java in the following directory:
toolkit-dir/samples/readerAccess/standAlone.

Before running SampleTagReaderClient, confirm the following prerequisites:

■ The RFID Event Manager has been started.

■ You can see that the Tag Viewer is receiving tag events from the RFID Event
Manager.

takeLastList (msecs) Takes the last tag list and clears it afterwards.
A subsequent call to getLastList or
takeLastList does not return the same list.
The subsequent call returns a new list if the last
has been updated by the Remote Event
Producer, or returns null, if no update has
taken place.
This method waits for a period of time for the
list to be updated if the list is empty when the
call is first made.

getReader Get the reader interface for this reader. Might
return null if the reader has not yet been
discovered.

getReader (msecs) Get the reader interface for this reader. Might
return null if the reader has not yet been
discovered by the specified wait time.

addEMSEventListener Add an EMSEventListener to the Remote
Event Producer to be notified of reader events.

removeEMSEventListener Remove an EMSEventListener from the
Remote Event Producer canceling notification
of reader events

TABLE 3-1 ReaderClient Interfaces (Continued)

Constructors and Methods Description
64 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

▼ To Set Up the Sample Reader Client
Environment

1. Change to the directory containing the reader client sample program.

For example, on a Solaris system where toolkit-dir represents the directory where you
downloaded and unzipped the RFID Software Toolkit zip file.

2. Verify that the build.properties file is correct for your installation.

You might need to modify the rfid.home property to point to your specific RFID
Event Manager installation.

3. Verify that the build.xml file target sampletagreader contains the correct
jvmarg parameter values for your environment as follows.

■ -Dcom.sun.autoid.ReaderName – The name of the reader you want to access.

■ -Dcom.sun.autoid.JiniGroup – The name of the group that you specified
during installation of your RFID Event Manager. The default value is AutoID-
hostname.

■ -Dcom.sun.autoid.TagBitSize – The size of the tag that you want to write.

▼ To Run the Sample Reader Client Program
1. Change to the directory containing the reader client sample program.

For example, on a Solaris system where toolkit-dir represents the directory where you
downloaded and unzipped the RFID Software Toolkit zip file.

2. Run the reader client using the ant sampletagreader target.

3. Run the writer client using the ant sampletagwriter target.

cd toolkit-dir/samples/readerAccess/standAlone

cd toolkit-dir/samples/readerAccess/standAlone

> ant sampletagreader

> ant sampletagwriter
Chapter 3 Using RFID Device Client APIs 65

Explaining the Sample Reader Client
To create a reader client, you first must set the system security manager and a
security policy. This is necessary because you use Jini network technology to
discover the reader using the ReaderClient APIs. This step is shown in the
following code example.

Set the codebase property so that the ReaderClient can register a notification call
back with the Jini lookup service as follows:

Then use one of the many ReaderClient constructors to find the reader.

When you install the RFID Event Manager, you supply a Jini group name. By
default, this name is AutoID-hostname. The default RFID Event Manager installation
also configures the PMLReader adapter. The PML simulator software simulates tags
being sent to the PMLReader adapter. To start the PML simulator software, run the
pmlreader script.The script can be found in the rfid-install-dir/bin directory. See
the Sun Java System RFID Software 3.0 Administration Guide for more details. Using
the default installation configuration and a host name of myHost, the following code
example shows how to create a ReaderClient that discovers the PMLReader.

CODE EXAMPLE 3-2 Setting an RMI Security Manager and the Security Policy

// You must first create an RMI Security manager
System.setSecurityManager(new RMISecurityManager());
// Must also set the security policy
if(System.getProperty("java.security.policy") == null)
System.setProperty("java.security.policy", "./policy.all");

CODE EXAMPLE 3-3 Setting the codebase Property for the Jini Lookup Service

// Must set code base so that the ReaderClient can register a
// notification call back with the Jini Lookup Service
if(System.getProperty("java.rmi.server.codebase") == null)

System.setProperty("java.rmi.server.codebase",
"http://localhost:52493/sdm-dl.jar");

CODE EXAMPLE 3-4 Finding the PMLReader Reader in the AutoID-myHost Group

String readerName = "PMLReader";
String groupStr = "AutoID-myHost";
String locatorStr = null;
ReaderClient readerClient = null;
66 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

After creating the ReaderClient object, you might use it to get the actual reader
interface. The reader interface can be used to access and control the reader.

For example, the following code samples illustrate how to get a list of tags from the
reader and how to check the status of a reader.

try {
readerClient = new ReaderClient(readerName,

ReaderClient.getGroups(groupStr),
ReaderClient.getLocators(locatorStr));

// Now get the actual reader implementation
Reader reader = client.getReader(3*1000);

}
}

CODE EXAMPLE 3-5 Printing a List of Tags From the PMLReader Service

// Get tag list from the reader object obtained above using the
// client.getReader() method.
java.util.Collection c = reader.getTagList(readerName, 500);
if (c != null){

Iterator i = c.iterator();
while (i.hasNext()) {

Event event = (Event)i.next();
if (event instanceof IdentifierListEvent) {

IdentifierListEvent eventList = (IdentifierListEvent) event;
System.out.println("The following tags were read from the
reader: "

+ eventList.getSource());
Iterator j = eventList.getTagList().iterator();
while (j.hasNext()) {

Identifier epc = (Identifier)j.next();
System.out.println("tag= " + epc.getURI());

}
}

}

CODE EXAMPLE 3-4 Finding the PMLReader Reader in the AutoID-myHost Group
(Continued)
Chapter 3 Using RFID Device Client APIs 67

Implementation of the PrinterClient
API
The implementation of the PrinterClient API is contained in the
com.sun.autoid.util.PrinterClient class and is packaged in the sun-rfid-
common.jar JAR file.

The PrinterClient.java class extends the ReaderClient.java class and offers
additional methods for printing tags. A printer client can be used to find printers
using the printer adapter name in the same manner that reader clients find readers
using the ReaderClient APIs.

This section covers the following topics:

■ PrinterClient API Reference
■ Building a Sample Printer Client
■ Explaining the Sample Printer Client

PrinterClient API Reference
All of the public PrinterClient APIs are listed in the following table.

TABLE 3-2 PrinterClient Interfaces

Constructors and Methods Description

PrinterClient(String printerName) Creates a new instance of PrinterClient
matching on the printer name in ALL groups.

PrinterClient(String printerName, String[] groups) Creates a new instance of PrinterClient
matching on the printer name in groups
specified by the groups parameter.
68 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

Building a Sample Printer Client
A sample printer client program is included in the Sun Java System RFID Software
Toolkit. After unzipping the RfidToolkit.zip file into a directory of you choice,
toolkit-dir, you can find SamplePrinterClient.java in the following directory:
toolkit-dir/samples/readerAccess/standAlone.

Before running SamplePrinterClient, confirm the following prerequisites:

■ The RFID Event Manager has been started.

■ You have properly configured the printer adapter using the RFID Configuration
Manager. Confirm that the configuration contains the correct IP address and port
for the printer device.

PrinterClient(String printerName, String[] groups,
LookupLocator[] locators)

Creates a new instance of PrinterClient
matching on the printer name in groups
specified by the groups parameter.
The local subnet is searched as well as any
additional hosts that are specified by the
locators parameter.

printTag(Identifier id, Properties properties) Programs the single tag in the printer field of
action and prints a label.
The id is the Identifier that is written to the
tag.
The properties are applied to a template.

printTag(Identifier id, String printStream) Programs the single tag in the printer field of
action and prints a label.
The id is the Identifier that is written to the
tag.
printStream is a String that is sent
directly, unchanged, as a print command for
this printer.

TABLE 3-2 PrinterClient Interfaces (Continued)

Constructors and Methods Description
Chapter 3 Using RFID Device Client APIs 69

▼ To Set Up the Sample Printer Client
Environment

1. Change to the directory containing the printer client sample program.

For example, on a Solaris system where toolkit-dir represents the directory where you
downloaded and unzipped the RFID Software Toolkit zip file.

2. Verify that the build.properties file is correct for your installation.

You might need to modify the rfid.home property to point to your specific RFID
Event Manager installation.

3. Verify that the build.xml file target sampleprinterclient contains the correct
jvmarg parameter values for your environment as follows.

■ -Dcom.sun.autoid.ReaderName – The name of the printer to which you want
to print. In the default build.xml file, the ZebraPrinter is specified.

■ -Dcom.sun.autoid.JiniGroup – The name of the Jini group that you specified
during installation of your RFID Event Manager. The default value is AutoID-
hostname.

■ -Dcom.sun.autoid.TagBitSize – The size of the tag that you want to write.

arg – Specifies the identifier to print on the tag. Replace the arg value with the
identifier that you want printed on the tag. The default value looks similar to the
following:

▼ To Run the Sample Printer Client Program
1. Change to the directory containing the printer client sample program.

For example, on a Solaris system where toolkit-dir represents the directory where you
downloaded and unzipped the RFID Software Toolkit zip file.

cd toolkit-dir/samples/readerAccess/standAlone

<arg value="urn:epc:id:gid:10.1002.37">

cd toolkit-dir/samples/readerAccess/standAlone
70 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

2. Run the printer client using the ant samplegprinterclient target.

Explaining the Sample Printer Client
Configure a printer device using the RFID Configuration Manager. This example
prints to a Zebra Technologies printer with the device name ZebraPrinter. See Sun
Java System RFID Software 3.0 Administration Guide for procedures to define the
physical printer device for the RFID Event Manager.

The default build.xml file specifies the readerName variable as ZebraPrinter. If
you configure a different printer adapter, you need to modify this variable in the
sampleprinterclient target. Modify the tag identifier that you wish to print by
modifying the arg value parameter in the sampleprinterclient target of
build.xml as described in Step 3 of the procedure “To Set Up the Sample Printer
Client Environment” on page 70.

The first step in creating a printer client is to set the system security manager. This is
necessary because the printer client uses Jini network technology to discover the
printer.

See “Setting an RMI Security Manager and the Security Policy” on page 66.

Use one of the three PrinterClient constructors to find the printer.

> ant sampleprinterclient

CODE EXAMPLE 3-6 Finding the ZebraPrinter Printer Instance

String printerName = System.getProperty("com.sun.autoid.ReaderName",
"ZebraPrinter");

try {
PrinterClient client = new PrinterClient(printerName);
// Wait while looking for the reader

System.out.println("Wait while looking for the " + printerName
+ " reader ...");

Thread.sleep(3*1000);
} catch (Exception ex){

ex.printStackTrace();
}

Chapter 3 Using RFID Device Client APIs 71

After creating the PrinterClient object, you can use it to print tags. The following
code example shows how to print the Identifier
urn:epc:id:gid:10:1002:37, which was specified in the default build.xml file,
using the ZebraPrinter instance that was discovered using CODE EXAMPLE 3-6.

CODE EXAMPLE 3-7 Printing to the ZebraPrinter Instance

// Create properties for printing
int count = 1; // default
Properties properties = new Properties()
properties.put("template", "default"); // default
properties.put("COUNT", String.valueOf(count));
properties.put("description", "Sample");
properties.put("SHIP_TO_CUSTOMER_NAME",

"Sun Microsystems”);
properties.put("SHIP_TO_ADDRESS1", "Network Circle");
properties.put("SHIP_TO_CITY", "Santa Clara");
properties.put("SHIP_TO_STATE_PROV", "California");
properties.put("SHIP_TO_POSTAL", "94087");

String UCC = null;
if (id instanceof EPC_SGTIN_BASE) {

UCC = ((EPC_SGTIN_BASE)id).getGTIN14();
}else if (id instanceof EPC_SSCC_BASE) {

UCC = ((EPC_SSCC_BASE)id).getSSCC();
}else if(id instanceof EPC_GIAI_BASE){

UCC = ((EPC_GIAI_BASE)id).getGIAI();
}else if (id instanceof EPC_GRAI_BASE) {

UCC = ((EPC_GRAI_BASE)id).getGRAI();
}else if (id instanceof EPC_SGLN_BASE) {

UCC = ((EPC_SGLN_BASE)id).getSGLN();
}
if(UCC != null)

properties.put("UCC", UCC);
// Finally, print the Identifier
.printTag(id, properties);
72 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

CHAPTER 4

Using Web Services for Device
Access

In addition to the Java APIs described in Chapter 3, the Sun Java™ System RFID
Software 3.0 provides two web services that can be used by Java and non-Java client
applications to access RFID devices. The web services for device access can be
installed by using the custom installation option of the RFID Event Manager
installer. This chapter describes how to use these web services and includes the
following topics:

■ Overview of Web Services for Device Access
■ Web Services Interface Reference
■ Creating and Running the Web Services for a Device Access Client

Overview of Web Services for Device
Access
These web services expose the device client Java interface of Sun RFID Event
Manager. So any client application, including standalone Java applications, web
clients, J2EE application clients, and other native clients, can use the common XML-
based interface to interact with readers configured in the RFID Event Manager

The device access web services are only available if you install the RFID Event
Manager using the custom installation option and choose the Web Services for ALE
and Device Access component. See the Sun Java System RFID Software 3.0 Installation
Guide for information on using this option of the RFID Event Manager installer.

The device access web services are described by the WSDL located at the following
URLs:

■ http://em-hostname:app-server-port/readeraccess/ReaderAccess?WSDL
■ http://em-hostname:app-server-port/printeraccess/PrinterAccess?WSDL
73

The variable, em-hostname, is the host name of the machine where the RFID Event
Manager is installed. The app-server-port, is your application server HTTP port
number.

For example, using Sun Java System Application Server 8.1 Platform Edition
listening on port 8080, the URL is
http://localhost:8080/readeraccess/ReaderAccess?WSDL.

Web Services Interface Reference
This section describes the interfaces for the device access web services as follows:

■ Web Services for Reader Access Java Interface
■ Web Services for Printer Access Java Interface

The following terms are used in the interface descriptions:

■ Identifier – Refers to the numeric ID stored in the RFID tag.

■ EPC – Electronic Product Code. An identifier that follows the EPCglobal TDS 1.1
specification.

■ TagType – The type of RFID tag. The type can be ISO 18000-6B, EPCglobal, UHF
Gen2, EPCglobal Class 1, EPCglobal Class 0 or 0+, and others. See the API
specifications for the com.sun.autoid.identity package. The API
specifications are included with the RFID Software Toolkit – toolkit-dir\docs\
api\index.html

■ Indicators – External devices that can be connected to the RFID reader, such as
industrial light stacks (red/yellow/green). The lights can indicate if a tag has
been successfully read. The indicators might control whether a process should
proceed or be halted for inspection.

Web Services for Reader Access Java Interface
The implementation of the reader access Java interface API is contained in the
following class, ReaderAccessSEI.java.
74 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

The following table lists the public ReaderAccessSEI APIs:

TABLE 4-1 ReaderAccessSEI Interfaces

Method Description

runCommand Sends a command to a RFID reader.

getStatus Returns the status of the RFID reader.

triggerTagList Tells all the RFID readers to inquire about the list of tags in
the readers field of view.

getTagList Gets the current tags from the RFID reader.

writeIdentifier Write an Identifier to the RFID reader.

changeIndicators Turns the indicators attached to the RFID reader on or off.

readUserData Reads the contents of the user data memory area for the
identified RFID tag.

writeUserData Writes the specified data to the user data memory area of the
specified RFID tag.

getUserDataSize Returns the size of the user data memory area in bytes.

getTagProtocol Returns the protocol for the specified RFID tag.

getTagType Returns the type of the specified RFID tag.

lockEpc Some RFID tags contain an Identifier memory area that is
read-only. If the tab memory area supports read/write
capability, this method can be used to lock the EPC identifier
area of the RFID tag.

lockUserData Locks the user memory data area of the specified RFID tag.

killTag Permanently disables the RFID tag for the specified
Identifier.

gatherUserDataEnabled Determines if automatic gathering of the user data is
necessary during the RFID tag inventory operation.

enableGatherUserData Enables or disables the automatic gathering of user data
during the RFID tag inventory operation.

getEPC Get the reader EPC identifier from the reader name.

getDescription Get the reader description.

getHandle Get the reader Handle.
Chapter 4 Using Web Services for Device Access 75

Web Services for Printer Access Java Interface
The implementation of the printer access Java interface API is contained in the
following class, PrinterAccessSEI.java.

All of the public PrinterAccessSEI APIs are listed in the following table.

getRole Get the reader role.
• This field is used to indicate a business process role and

should not be confused with the concept of an RFID Event
Manager role, a term that is described in the Sun Java
System RFID Software 3.0 Administration Guide.

isAutoRead Returns true if automatic read mode is on. Returns false if
otherwise.

setAutoRead Enables or disables the automatic read mode.

TABLE 4-2 PrinterAccessSEI Interfaces

Method Description

getStatus Returns the status of the RFID printer.

getEPC Returns the RFID printer EPC Identifier from printer name.

getDescription Returns the RFID printer description.

getHandle Returns the RFID printer Handle.

TABLE 4-1 ReaderAccessSEI Interfaces (Continued)

Method Description
76 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

Creating and Running the Web Services
for a Device Access Client
To discover a specific reader service in the RFID Jini lookup server, you need to
supply the following parameters:

■ String name – The reader or printer name
■ String groups – The Jini lookup group names
■ String locators – The Jini lookup locators

These parameters are described in more detail in “Reader Client Constructor
Parameters” on page 54 of Chapter 3 of this guide.

To simplify the call parameters, the DeviceFinder class has been defined to
package these three parameters. You must create a DeviceFinder object that
defines the name of the reader you wish to access, along with the necessary Jini
information, such as the list of Jini groups in which to search for the reader and any
Jini locators that may be necessary to find readers running in an RFID Event
Manager on a different subnet. The list of Jini groups and Jini locators may be null.
If null is specified for the groups argument, then all Jini groups are searched. If null
is specified for the locators argument, then only readers running on the same

getRole Returns the RFID printer Role.

PrintTag (with
properties)

• Programs the single tag in the RFID printer’s field of action and
prints a label. The Properties object is applied to a template
identified by the template property. The default template is
used, if a template property is not specified.

• When you invoke the printTag method, the framework
automatically adds the values for the properties HEXEPC and
URNEPC to the Properties object. You still need to include the
two properties in your template.

• Strings of the form ${rfid.myproperty} in the template are
replaced with the value of myproperty from the Properties object
that is passed to the printTag method. This mechanism enables
each printed label to have data customized for that specific label.

PrintTag (with
data stream)

Programs the single tag in the RFID printer’s field of action and
prints the label with the data contained in the supplied String. The
String is sent to the printer verbatim with no dynamic substitution
of data.

TABLE 4-2 PrinterAccessSEI Interfaces (Continued)

Method Description
Chapter 4 Using Web Services for Device Access 77

subnet on which the client is running are found. You can specify multiple groups
and locators in either String by using a space, tab, or comma as the separator
character.

The four types of device clients that can be used to interact with the RFID device
access web services are the following:

■ Static stub client
■ Dynamic proxy client
■ Dynamic invocation interface client
■ Application client

This guide focuses on the first two methods and provides examples of how to
develop the reader access client. The examples are packaged as NetBeans projects
and are included in the Sun Java System RFID Software Toolkit (RFID Software
Toolkit).

Prerequisites for Running the Web Services Client
Examples
To use the examples you need an installation of the NetBeans 4.1 IDE. You also need
to download and install the RFID Software Toolkit.nbm and set up your RFID
environment. Use the following procedures to set up your NetBeans environment.

■ “To Download and Install NetBeans” on page 22
■ “To Download and Install the RFID Software Toolkit” on page 22

If you are not familiar with the NetBeans 4.1 IDE, refer to the NetBeans 4.1 Quick
Start Guides.

▼ (Optional) To Access the NetBeans IDE 4.1
Quick Start Guide for Web Services

1. After installing and starting the NetBeans 4.1 IDE, choose Help → Tutorials →
Quick Start Guide.

The Getting Started with NetBeans IDE 4.1 Quick Start Guide web page appears in
your web browser.

2. Click Web services.

The NetBeans IDE 4.1 Quick Start Guide for Web Services web page appears.
78 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

3. Review the instructions as needed to get started creating your own web services
clients.

When you are ready, proceed to the examples in this chapter. The following sections
of this chapter describe using the ReaderAccess client example to illustrate how to
develop a web service client.

▼ To Configure the Environment for the Web
Services Client Examples
Prerequisite – Confirm that you have installed the NetBeans 4.1 IDE and installed
the RFID Software Toolkit. See “Prerequisites for Running the Web Services Client
Examples” on page 78.

1. Start your application server.

2. Confirm that the reader client web service has been deployed as part of your RFID
Event Manager installation.

See the Sun Java System RFID Software 3.0 Installation Guide.

3. Confirm that Sun Java System Application Server 8.1 is configured in NetBeans.

For example, use the following steps:

a. In the IDE’s Runtime window, right-click Servers and choose Add Server from
the contextual menu.

The Choose Server pane of the Add Server wizard appears.

b. Select Sun Java System Application Server 8.1 and click Next.

Browse to the location of your application server installation.
Chapter 4 Using Web Services for Device Access 79

c. Select your application server and click Next.

The Enter Registration Properties pane of the wizard appears.

d. Type the registration properties following the instructions on the wizard pane
and click Finish.

The Sun Java System Application Server 8.1 instance is added to the IDE’s
Runtime window.

4. Start the RFID Event Manager and the readers that you plan to use.

For this example, start the PMLReader.

Writing the Static Web Services Client
The static client example shows the simplest way to write a client for the reader
access web service. The static web service client makes method calls through a stub,
a local object that acts as a proxy for the remote service. Because the stub is created
at development time (as opposed to runtime), it is usually called a static stub.

▼ To Run the Static Web Services Client Example
1. Confirm that you have successfully complete the procedure, “To Configure the

Environment for the Web Services Client Examples” on page 79.

2. Start the NetBeans 4.1 IDE.
80 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

3. Choose File → Open Project Folder.

The Open Project dialog box appears.

4. Navigate to the directory containing the static client.

For example, if the directory where you downloaded and unzipped the RFID
Software Toolkit is toolkit-dir. The static client is located at
toolkit-dir/samples/readerAccess/webServices/static. The
ReaderAccessClientStaticWS project is listed as shown in the following screen
capture.

5. Click Open Project Folder.

To resolve the reference problem described in the following message, create a library
named jwsdp. See “To Create the RFID Library for the Custom Component
Examples” on page 28 for the general steps to use. Add the JAR files in the following
locations:

■ UNIX – /usr/share/lib

■ Microsoft Windows – C:\Program Files\Sun\RFID Software\rfidem\
lib\utils
Chapter 4 Using Web Services for Device Access 81

6. In the Projects window, navigate to the following files and configure the URL with
the correct host name and port number.

http://em-hostname:app-server-port/readeraccess/ReaderAccess

■ ReaderAccessClientStaticWS → Source Packages → com.mcompany →
ReaderAccessClient.java

■ ReaderAccessClientStaticWS → Source Packages → conf → ReaderAccess-client-
config.xml

7. In the Projects windows, right-click the static client project node and choose Run
Project.

The IDE rebuilds and runs the project.

Writing the Dynamic Web Services Client
Example
In contrast to the static web service client described in the preceding section, a
dynamic client calls a remote procedure through a dynamic proxy. The dynamic
proxy is a class that is created during runtime. Although the source code for the
static stub client relies on an implementation-specific class, the code for the dynamic
proxy client does not have this limitation.

▼ To Run the Dynamic Web Services Client
1. Confirm that you have successfully complete the procedure, “To Configure the

Environment for the Web Services Client Examples” on page 79.

2. Start the NetBeans 4.1 IDE.

3. Choose File → Open Project Folder.

The Open Project dialog box appears.

4. Navigate to the directory containing the dynamic web service client.

For example, if the directory where you downloaded and unzipped the RFID
Software Toolkit is toolkit-dir. The dynamic client is located at
toolkit-dir/samples/readerAccess/webServices/dynamic. The
ReaderAccessClientDynamicProxyWS project is listed as shown in the following
screen capture.
82 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

5. Click Open Project.

6. (Optional) To refresh the WSDL, use the following steps.

a. In the Projects window, expand the Web Service References node.

b. Select the ReaderAccess.wsdl node and right-click.

c. Choose Refresh WSDL from the contextual menu.

The Refresh WSDL for Web Service Client dialog box appears.

d. Change the Original WSDL location if necessary and click OK.

7. In the Projects window, navigate to the following files and configure the URL with
the correct host name and port number.

http://em-hostname:app-server-port/readeraccess/ReaderAccess

■ Web Pages → WEB-INF → wsdl → ReaderAccess-config.xml
■ Configuration Files → ReaderAccess-client-config.xml

8. Right-click the project node, ReaderAccessClientDynamicProxyWS, and choose
Run Project from the contextual menu.

The IDE rebuilds the project and deploys it to your application server. The
ReaderAccessClient servlet is invoked and a JSP appears in your web browser as
shown in the following screen capture.
Chapter 4 Using Web Services for Device Access 83

9. Type the Reader Name and the Jini Group and click Submit.

You see something similar to the following in your web browser.
84 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

CHAPTER 5

ALE Web Services

This chapter describes the Sun Java System RFID Software 3.0 implementation of the
EPCglobal Application Level Events (ALE) specification, also known as collection
and filtering. ALE is a web service specification containing a WSDL to define,
configure, and request reports. There is also an XML schema for requesting reports
and for the reports themselves. You should be thoroughly familiar with Application
Level Events (ALE) Specification, Version 1.0 before using the ALE components. The
specification can be found at the EPCglobal web site
http://www.epcglobalinc.com.

The following topics are included in this chapter:

■ Broad Architecture
■ ALE Service Architecture
■ Other Considerations
■ Using ALE Web Services Client (ALEClient) API

Broad Architecture
The Sun Java RFID Software implements the ALE web service using Java API for
XML-based RPC (JAX-RPC). This is contained in the sun-ale-service.war file
and is deployed to an application server, such as Sun Java System Application
Server 7, 8.1. This service acts as an intermediary to a Jini RMI service contained
within the RFID Event Manager.

The implementation of ALE in the RFID Event Manager is based on a new service
named ALE. This service implements the WSDL methods described in the
specification. The ALE service uses Java RMI (Java Remote Method Invocation).
Report requests and report messages are implemented as POJO (Plain old Java
objects) in the package com.sun.autoid.ale.spec.
85

http://www.epcglobalinc.com.

To conform to the ALE specification, the ALE WSDL is processed using JAX-RPC to
generate Java web service classes. These classes include client-side classes that work
with the POJO objects contained in com.sun.autoid.ale.spec. The ALE WSDL
common server and client code is packaged into sun-alesvc-common.jar. An
ALE client API is implemented to hide some of the complexity of the JAX-RPC code.
The ALE client API is described in the section titled, “Using ALE Web Services
Client API”. A sample of using the ALE client API is listed in CODE EXAMPLE 4-2.

The ALE XML schema is processed using JAXB and the generated files are placed
into package com.sun.autoid.ale.xml. There is generally a one-to-one mapping
of the JAXB generated objects to the classes in com.sun.autoid.ale.spec. The
class com.sun.autoid.ale.XMLUtil provides methods to translate back and
forth between the JAXB representation and the POJO representation of the spec
classes.

ALE functionality includes a requirement to register for reader events based on the
ALE request. So, the ALE service discovers all readers and when a request becomes
active, the ALE service registers with the event producer
(com.sun.autoid.logger.REProducer in Connector) on the reader. The
mechanics of how this is done is described later.

ALE Service Architecture
The ALE Service is deployed as a Jini RMI service in the RFID Event Manager. Each
ALE report request is translated into an event processing network, including
devices, filters, and connectors.

The ALE specification contains the concept of a physical reader and a logical reader.
A logical reader can be comprised of one or more physical readers. To discover the
physical or logical readers, the ALE implementation uses the reader name as defined
in the Configuration Object for the reader and also uses the logicalReaders
property for the reader. The logicalReaders property comprises a comma-
separated list of logical names. A reader may belong to more than one logical group.
For example, if a reader belongs to the logical groups named Dock Door 1 and
Receiving, the logicalReaders property is set to the values Dock Door 1 and
Receiving.

The ALE implementation constantly searches for all readers on the system and
maintains the current list of physical and logical names. If the reader service goes
offline and the reader specified in the ALE event cycle specification cannot be
located, an ALE exception is thrown.
86 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

The ALEEventFilter implements the event cycle as described in the ALE
specification. The event cycle is a state machine as described in the specification.
Basically, an event cycle is started, tag events are gathered, and when the event cycle
finishes, the tag list is pushed out to the ALEEventReportFilter. To fully
understand the ALEEventFilter it is necessary to understand the ALE
specification. An ECSpec describes an event cycle and one or more reports that are
to be generated from it. It contains a list of logical Readers whose read cycles are to
be included in the event cycle, a specification of how the boundaries of event cycles
are to be determined, and a list of specifications each of which describes a report to
be generated from this event cycle. A sample of an ECSpec is listed in
CODE EXAMPLE 5-1.

The ALE specification identifies external triggers that can start or stop the event
cycle. These triggers are specified as URIs, but the interpretation of the URI is up to
the implementation. In Sun's implementation, the URIs behave as follows:

■ An EPC pattern-matching URI - the trigger is fired when an EPC is seen that
matches.

■ JMS URI - designates a queue or topic to receive messages

■ HTTP URI - which is opened and read to receive a message.

■ FILE URI - which is opened and read to receive a message.

■ TCP URI - designates a socket, which is opened and read to receive a message.

■ Anything else, default is to always fire.

For the JMS, HTTP, FILE and TCP URIs the format of the payload is a simple XML
document. For example:

At the end of an event cycle, as defined by the ALE specification, the
ALEEventFilter creates an ALEEvent that contains a list of tags and a list or
readers that produced the tag events. This is passed to the
ALEEventReportFilter which takes the input and creates a MiscEvent that
contains a property that holds the ECReport object.

In the ALE specification, the definition of the report and the subscription to receive
the report output are two distinct operations. Therefore, when a subscribe request
comes in, a specialized logger is created to handle the request.

The types of loggers are:

■ JMS Logger - the Report XML is include as the payload message to a JMS queue
or topic

■ File logger - where the Report XML is written to a local file

■ TCP logger - where the Report is written to a socket

<Trigger fired=”true” />
<Trigger fired=”false”/>
Chapter 5 ALE Web Services 87

■ Poll logger - where the Report is returned as a String to the poll request

■ All other loggers are treated as an URL, which is opened for writing

An event cycle cannot start until at least one subscriber is registered to receive the
reports. When subscriptions are registered, the appropriate Logger is created and
dynamically linked to the ALEEventReportFilter. Similarly, when a subscription
is removed, the Logger is stopped and disconnected from the
ALEEventReportFilter.

Lastly, when a Report specification is “undefined,” all the processing components
are stopped, and dynamically removed from the ALE service.

Other Considerations
Because ALE has been implemented as RFID Event Manager components, the
components can be used in the same way other components are used. The ECSpec
can be set up using the component properties. In this way, the ALE components can
be permanently attached to a reader, if needed. A sample configuration file
demonstrating this can be found in the Sun Java System RFID Software 3.0
Administration Guide, Appendix C.

CODE EXAMPLE 5-1 Sample ECSpec file

<?xml version="1.0" encoding="UTF-8"?>
<ECSpec xmlns="urn:epcglobal:ale:xsd:1"

includeSpecInReports="true"
creationDate="2005-02-07T13:42:40.790-05:00"
schemaVersion="1.0">

<logicalReaders xmlns="">
<logicalReader>Reader</logicalReader>

</logicalReaders>
<boundarySpec xmlns="">
<startTrigger>http://localhost/start</startTrigger>
<duration>2000</duration>
<stableSetInterval>0</stableSetInterval>

</boundarySpec>
<reportSpecs xmlns=””>
<reportSpec reportIfEmpty=”false”

reportName="report"
reportOnlyOnChange=”false”>

<reportSet set="CURRENT"/>
<output includeCount=”false” includeList="true"/>

</reportSpec>
</reportSpecs>

</ECSpec>
88 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

Using ALE Web Services Client
(ALEClient) API
The ALE web service client, MyAleClient.java, is a sample program for the
purposes of illustrating how to create a Java client that communicates with the ALE
web service. It is installed when the ALE custom option is selected during
installation of the RFID Event Manager and is located in
rfid-install-dir/rfidem/samples/ale/aleclient. Where rfid-install-dir is one of
the following depending on your platform:

■ Solaris – /opt/SUNWrfid
■ Linux – /opt/sun/rfidem
■ Microsoft Windows – C:\Program Files\Sun\RFID Software\rfidem\

This sample includes all the necessary tools for compiling and running the sample
program. It also includes a sample ECSpec that can be used to query the ALE web
service for tag data.

Client Checklist
Before running MyAleClient, be sure to confirm the following items:

■ The ALE client software must be started on the same machine on which the RFID
Event Manager is installed. This is necessary because the ALE service depends on
specific JAX libraries, which are installed with the RFID Event Manager.
Alternatively, you can copy the necessary files from a machine where the RFID
Event Manager is already installed and then set the JAX_LIB_PATH environment
variable to that directory. See Step 3 in the procedure “To Set Up the ALE Client
Environment” on page 90.

■ Your application server is running

■ Confirm that the server.policy file in the application server has been updated
by the Event Manager installer or you did it manually.

Note – Note, the application server must be restarted after the policy file has been
changed.

■ The ALE web service was properly deployed to the application server. See
Chapter 3 – “To Install the Event Manager Using Custom Installation” of the RFID
Software Installation Guide for instructions on installing the ALE web service.

■ The RFID Event Manager is running.

■ Confirm that you are receiving tags from the Event Manager in the tag viewer
Chapter 5 ALE Web Services 89

▼ To Set Up the ALE Client Environment
1. Change to the directory containing the ALE sample directory.

■ Solaris - /opt/SUNWrfid/samples/ale/aleclient

■ Linux - /opt/sun/rfidem/samples/ale/aleclient

■ Windows - C:\Program Files\Sun\RFID Software\rfidem\samples\
ale\aleclient

2. Create a lib directory in the aleclient directory.

Solaris - mkdir -p lib

3. Copy the following JAR files to the new lib directory.

■ Solaris - /opt/SUNWrfid/lib/sun-alesvc-common.jar and sun-rfid-
common.jar

■ Linux - /opt/sun/rfidem/lib/sun-alesvc-common.jar and sun-rfid-
common.jar

■ Windows - C:\Program Files\Sun\RFID Software\rfidem\lib\sun-
alesvc-common.jar and sun-rfid-common.jar

4. Verify that the build_properties.xml file is correct for your installation.

▼ To Run the ALE Web Services Client
1. Be sure that you have confirmed all items in the client checklist (see “Client

Checklist” on page 89) and performed the procedure “To Set Up the ALE Client
Environment” on page 90.

2. Set the environment variable, JAX_LIB_PATH as follows. For example, using the
csh shell for Solaris and Linux:

■ Solaris

■ Linux

■ Windows

setenv JAX_LIB_PATH /usr/share/lib

setenv JAX_LIB_PATH /opt/sun/share/lib

set JAX_LIB_PATH=\C:\Program Files\Sun\RFID Software\rfidem\\lib\
utils
90 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

3. Edit the build.xml file found in the sample aleclient directory and change the
localhost and port number to match your target environment.

For example, change the runMyAleClient ant target value as follows – change the
following:

to the following:

Troubleshooting for ALE Client
Symptom: You see an ImplementationException with the following message
when you run the ALE client

Solution: Confirm that the RFID Event Manager is running and sufficient time has
elapsed to enable all components to start.

<arg value=http://localhost/ALEService/ale

<arg value=http://em-hostname/app-server-port/ALEService/ale

[java] Message for the exception: Connection to ALE Services is
not available at this time
Chapter 5 ALE Web Services 91

92 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

CHAPTER 6

Using RFID Information Server
Client API

This chapter describes the Sun Java™ System RFID Software Information Server and
the client API for interfacing with RFID Information Server.

The following topics are covered:

■ Architecture
■ Database Tables
■ Connecting to RFID Information Server
■ Exchanging Data With RFID Information Server
■ Modifying RFID Information Server Tables
■ Querying RFID Information Server Database Tables
■ Processing RFID Information Server Responses
■ Handling Exceptions

Architecture
The Sun Java System RFID Software Information Server (IS) is a J2EE application
that runs on one of the supported application servers. RFID Information Server
stores all data in a relational database. In this release of Sun Java System RFID
Software, RFID Information Server is supported on the following databases:

■ Oracle Database 9i
■ Oracle Database 10g
■ PostgreSQL 8.0.4

External applications interface with the RFID Information Server through XML
message exchange. Requests and responses are expressed in XML and conform to an
XML schema. The RFID Information Server supports HTTP and JMS message
transports. The RFID Software provides a Java client library that can be used to
93

access the RFID Information Server from your software applications. The APIs used
to query and manipulate data in the RFID Information Server are independent of the
protocol used. The following figure shows the architecture.

Database Tables
This section describes the Sun Java System RFID Software database table names and
keys.

TABLE 6-1 RFID Information Server Database Tables

Name Definition Keys

CONTAINER_TYPE Each entry in this table represents
a type of container.
Container types are specific to a
deployment. Common container
types include pallets, cases, inner
packs and items.

Primary – NAME

CONTAINMENT Maintains a hierarchy of container
relationships between EPCs.
Each container is identified by the
parent EPC. The parent may have
zero or more child EPCs. Because
a child EPC can represent a
container, the hierarchy can be
arbitrarily deep.

Primary – EPC

CONTAINMENT_LOG Maintains the history of
containment relationships
between container EPCs.

RFIDIS
Java Client

Library
epcis-client.jar

RFID
Information

Server

Client Application

RDBMS

XML/HTTP

XML/JMS
94 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

CURRENT_OBSERVATION Maintains the list of tags that are
being reported as currently visible
at a sensor.
This table can only be used in
conjunction with the RFID Event
Manager’s Delta filter.
To keep the table consistent the

RFID Information Server relies on
the TagsIn and TagsOut
property of the Delta event.

Foreign – SENSOR_EPC

CUSTOMER Maintains the customer shipment
information.

Primary – CUSTOMER_ID

EPCLOG Maintains a history of shipments.
This log provides a record of the
EPCs (each representing a specific
product or container) that
comprised each shipment.

Primary – LOG_ID
Foreign – EPC,
SHIPPING_ID

LOCATION Maintains the physical locations. Primary – LOCATION_ID
Foreign – EPC

OBSERVATION_LOG Maintains the history of all tag
observations.
Each entry in the table represents
an observation which contains the
EPC of the observer (sensor), the
EPC of the observed value and the
time at which it was observed.

Foreign – SENSOR_EPC

ORGANIZATION A manufacturer or distributor of
goods.

Primary –
ORGANIZATION_ID

ORGANIZATION_EXT Maintains a set of properties
associated with an
ORGANIZATION entry. These
properties reference their
respective ORGANIZATION
using the ORGANIZATION_ID
field. The properties consist of
name and value pairs.

Foreign –
ORGANIZATION_ID

ORGANIZATION_XREF Identifies the hierarchy of an
organization. This table is
designed to describe a structure
where an organization is part of a
division and the division is part of
a company and so on.

Primary –
ORGANIZATION_ID
Foreign –
ORGANIZATION_ID,
PARENT_ORG

TABLE 6-1 RFID Information Server Database Tables (Continued)

Name Definition Keys
Chapter 6 Using RFID Information Server Client API 95

PRODUCT A class of items, or Stock Keeping
Unit (SKU) identified by a GTIN
or UPC code.

Primary – PRODUCT_ID
Foreign –
MANUFACTURER_ID

PRODUCT_EXT Maintains a set of properties
associated with a PRODUCT
entry. These properties reference
their respective PRODUCT
instance using the PRODUCT_ID
field. The properties consist of
name and value pairs.

Foreign – PRODUCT_ID

SENSOR An RFID reader or antenna
uniquely identified by an EPC.

Primary – EPC

SHIPPING_INFO Maintains the information specific
to a particular shipment.

By using this table, the
CUSTOMER table, and EPCLOG,
it is possible to find all of the
shipments to a specific customer
and to identify which products or
containers were in the shipments.

Primary – SHIPPING_ID
Foreign – CUSTOMER_ID

TAG_ALLOCATION Assigns and de-assigns ranges of
EPC number and keep track of
them.

Primary –
TAG_ALLOCATION_ID

TAG_ALLOCATION_LOG Maintains the history of all tag
allocated.

TX_LOG Associates a set of EPCs with a
business transaction ID.
Common transaction IDs include
PO numbers and ASNs.

Foreign – UNIT

UNIT A tagged entity identified by a
unique EPC. An entry in the UNIT
table can represent a pallet, case
or any other entity that’s tracked.

Primary – EPC
Foreign – PRODUCT_ID,
UNIT_TYPE,
LOCATION_ID, OWNER_ID

UNIT_EXT Maintains a set of properties
associated with a UNIT entry.
These properties reference their
respective UNIT instance by using
the EPC field. The properties
consist of name and value pairs.

Foreign – EPC

TABLE 6-1 RFID Information Server Database Tables (Continued)

Name Definition Keys
96 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

Connecting to RFID Information Server
The com.sun.autoid.epcis.client.EpcisConnection class represents a
communication link between an application and RFID Information Server. An
instance of the EpcisConnection class can support multiple requests. The
transport protocol used by the connection is specified using the appropriate
constructor. The user name and password that are used are the ones that are
specified for access to the RFID Information Server. The process of creating users for
access to the RFID Information Server reports and index page is described in the
installation guide for this product. See Chapter 5 in the Sun Java System RFID
Software 3.0 Installation Guide.

You specify the RFID Information Server database schema by using one of the
following Java System properties:

■ rfidis.db.schema – Use this property to specify the URL of the database
schema for the RFID IS.

The format of the URL is http://epcis-host:port/epcis/EpcisDbSchema.xml.
Replace the variable, epcis-host, with the host name or IP address where your
RFID Information Server is installed. The variable, port, is an optional port
number for Application Server. The usual default port number is 80. For example,
http://host1.sun.com/epcis/EpcisDbSchema.xml would point to the
web server listening on port 80 that is hosting the RFID Information Server. The
URL http://host1.sun.com:8080/epcis/EpcisDbSchema.xml specifies
the web server on port 8080 that is hosting the RFID Information Server.

■ rfidis.db.schema.file – Use this property to specify a file on the local file
system that defines the database schema. For example
/opt/sun/schema/EpcisDbSchema.xml.

You can set these properties in the following ways:

■ On the command line when invoking java – For example, use the following
command.

■ From a software program – For example, use the following code.

java -Drfidis.db.schema.file=/opt/sun/schema/EpcisDbSchema.xml
com.mycompany.rfid.ISClient

System.setProperty("rfidis.db.schema.file",
"/opt/sun/schema/EpcisDbSchema.xml");
Chapter 6 Using RFID Information Server Client API 97

If at least one of these properties is not set, then the RFID Information Server client
API tries to infer the value. If the EPCISConnection is an HTTP type, then the
URL is constructed from the URL for the RFID Information Server that is passed in
the EPCISConnection constructor. If this constructed URL can be successfully
contacted, then the system property rfidis.db.schema is set to this constructed
URL. If connecting to that URL fails, the following URLs are tested in order,
http://localhost/epcis/EpcisDbSchema.xml and
http://localhost:8080/epcis/EpcisDbSchema.xml. If connectivity is
successful to one of these constructed URLs, then the property, rfidis.db.schema
is set to the first one that successfully connects.

If all the connection attempts that use the constructed URLs fail, then an
EPCISException is thrown from the EPCISConnection constructor.

If the properties, rfidis.db.schema and rfidis.db.schema.file, are set
prior to the EPCISConnection constructor, then there is no connectivity check
during the EPCISConnection constructor and no exception will be thrown.
However, if connectivity cannot be established later on, when you access the RFID
Information Server APIs, then EPCISExceptions are thrown at that time.

This section contains the following code examples:

■ “Establishing a Connection Using HTTP” on page 99.

■ “Establishing a JMS Topic Connection on Sun Java System Application Server 8.1”
on page 99 – When using the File System Context include fscontext.jar in
your class path. This JAR file can be found in the Application Server installation
at appsvr-install-dir/imq/lib. Also see the Sun Java System RFID Software 3.0
Administration Guide for detailed instructions on enabling JMS usage.

■ “Establishing a JMS Queue Connection on Sun Java System Application Server 8.1” on
page 99 – The Java Naming and Directory Interface (JNDI) is part of the Java platform,
providing applications based on Java technology with a unified interface to multiple
naming and directory services. To enable the Application Server remote JNDI, you
must first deploy the Message Queue Resource Adapter (imqjmsra.rar) to the
Application Server. For a development reference, see the "Developing Java Clients"
chapter in the Sun Java System Application Server Platform Edition 8.1 2005Q1 Developer's
Guide at http://docs.sun.com/source/819-0079/index.html. Include the
following JAR files in the class path:

■ appserv-rt.jar – available at appsvr-install-dir/lib

■ j2ee.jar – available at appsvr-install-dir/lib

■ appserv-admin.jar – available at appsvr-install-dir/lib

■ imqjmsra.jar – available at
appsvr-install-dir/lib/install/applications/jmsra

Note – Do not include the fscontext.jar in your class path when using a remote
JNDI.
98 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

http://docs.sun.com/source/819-0079/index.html

■ “Establishing a Connection Using JMS on BEA WebLogic Server 8.1 SP4” on
page 100.

■ “Closing the Connection” on page 100.

CODE EXAMPLE 6-1 Establishing a Connection Using HTTP

EpcisConnection conn = new EpcisConnection(
"http://hostname.xyz.com/epcis/service", // url to the IS service
"proxy.xyz.com", // proxy host
"8080", // proxy port
"myname", // user name
"mypassword"); // password

CODE EXAMPLE 6-2 Establishing a JMS Topic Connection on Sun Java System Application
Server 8.1

EpcisConnection conn = new EpcisConnection(
"com.sun.jndi.fscontext.RefFSContextFactory",
"file:///imq_admin_objects", // file system JNDI provider URL
"TopicConnectionFactory", // name of the connection factory
"epcisTopic", // name of the topic
"true", // user JMS (true or false)
"myname", // user name
"mypassword"); // password

CODE EXAMPLE 6-3 Establishing a JMS Queue Connection on Sun Java System
Application Server 8.1

EcpisConnection conn = new EpcisConnection (
null,//Initial context factory
"iiop://localhost:3700", //URL of the App Server JNDI provider
"jms/QueueConnectionFactory", //name of the Connection Factory for the JMS
queue
"jms/epcisQueue", //name of the domain for the JMS queue
EPCISConstants.CONNECTION_TYPE_JMS_QUEUE, //the domain of the JMS queue
"myname", // user name
"mypassword"); // password
Chapter 6 Using RFID Information Server Client API 99

Closing the Connection

Calling the close() method on the connection calls the close() method of the
underlying HttpURLConnection or TopicConnection object. It is recommended
that the call to the close() method be captured in a finally block.

CODE EXAMPLE 6-4 Establishing a Connection Using JMS on BEA WebLogic Server 8.1
SP41

1 If the initial-context-factory is not specified, the default is

com.sun.jndi.fscontext.RefFSContextFactory.

EcpisConnection conn = new EpcisConnection (
"weblogic.jndi.WLInitialContextFactory", // JNDI initial context factory
"t3://localhost:7001", // JNDI provider URL
"jms/TopicConnectionFactory", // name of the connection factory
"jms/epcisTopic", // name of the topic
"true",
"username", // authentication username
"password"); // authentication password

CODE EXAMPLE 6-5 Closing the Connection

EpcisConnection conn = null;
try {

conn = ... //initialize the connection here
} catch (Exception e) {

e.printStackTrace();
} finally {

try {
conn.close();

} catch (Exception e) {
e.printStackTrace();

}
}

100 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

Exchanging Data With RFID Information
Server
Transfer objects are client-side representations of data that are exchanged between
RFID Information Server and an application. The data in a Transfer object may be
stored in one or more database tables. The Java class to database object relationships
are shown in TABLE 6-2. Unit, Product, Organization, Container, Sensor,
ContainerType, Transaction and Observation are all transfer objects.

You would typically expect to be able to insert, query, modify and delete these
objects from the database. But the Transaction and Observation objects are
exceptions to this rule. You use the UpdateRequest object to record an
Observation or Transaction. Once an Observation or Transaction is
recorded, it cannot be modified. In addition, an Observation cannot be deleted.
There is no notion of erasing a past observation. The OBSERVATION_LOG table
maintains the history of observations.

TABLE 6-2 Java Class to Database Objects Relationships

Package Name Java Class Name Request Object Database Object

com.sun.autoid.epcis.clien
t

ValueObjectWrapper

The superclass of all
other classes in this
table.

Request

ContainerType ContainerTypeRequest An entry in the
CONTAINER_TYPE
table

ContainmentLog ContainmentLogRequest An entry in the
CONTAINMENTLOG
table

Customer CustomerRequest An entry in the
CUSTOMER table

EpcLog EpcLogRequest An entry in the
EPCLOG table

Location LocationRequest An entry in the
LOCATION table

Observation ObservationRequest An entry in the
OBSERVATION_LOG
or
CURRENT_OBSERVATI
ON table
Chapter 6 Using RFID Information Server Client API 101

Organization OrganizationRequest An entry in the
ORGANIZATION table.

OrganizationXref OrganizationXrefRequest An entry in the
ORGANIZATION_XRE
F table.

Product ProductRequest An entry in the
PRODUCT table

Sensor SensorRequest An entry in the
SENSOR table

TagAllocation TagAllocationRequest An entry in the
TAG_ALLOCATION
table

TagAllocationLog TagAllocationLogRequest An entry in the
TAG_ALLOCATION_L
OG table

Unit UnitRequest An entry in the UNIT
table. A Unit could be a
case, pallet or any other
entity being tracked

com.sun.autoid.epcis.business

Container ContainerRequest1 A set of rows in the
CONTAINMENT table
that correspond to a
hierarchy of containers.

Transaction TransactionRequest2 A set of rows in the
TX_LOG table grouped
by TX_ID.

com.sun.autoid.epcis.dao

PrimaryKey A primary key value
and table name

1 Included in package com.sun.autoid.epcis.client

2 Included in package com.sun.autoid.epcis.client

TABLE 6-2 Java Class to Database Objects Relationships (Continued)

Package Name Java Class Name Request Object Database Object
102 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

Modifying RFID Information Server
Tables
You can work with the RFID Information Server Transfer objects in the following
two ways:

■ Use table Request objects that implement a create/retrieve/update/delete
(CRUD) pattern, otherwise known as a Data Accessor Object (DAO) pattern.
Request objects implement the basic operations on the Transfer objects. This is
the recommended method for interacting with the Transfer objects.

■ Use the direct APIs. Using these APIs might be necessary if you extend the tables,
create new tables, or want to create Observation object.s. The available APIs
include the following objects:

■ FindByAttrRequest
■ UpdateRequest
■ DeleteRequest

Using Table Request Objects
A table Request object implements the CRUD pattern for an RFID Information
Server table. Not all tables support the update and delete operations. Some tables do
not have a natural primary key, thus a retrieval operation might return a list of
matching Transfer objects.

Note – Observation objects must be created using the UpdateRequest object.

CODE EXAMPLE 6-6 Creating a Product

EpcisConnection conn = new EpcisConnection(...)
// Create Product client
ProductRequest req = new ProductRequest(conn);
//Create Product
Product create = new Product();
create.setProductId("26");
create.setManufacturerId("1");
create.setName("Test Product");
create.setGtin("00067933861108");
create.setDescription("Product to be inserted");
create.setObjectClass("3");
Chapter 6 Using RFID Information Server Client API 103

// Create Product
req.create(create);

CODE EXAMPLE 6-7 Retrieving a Product

EpcisConnection conn = new EpcisConnection(...)
// Create Product client
ProductRequest req = new ProductRequest(conn);
Product p2 = req.get("26");
if(p2 != null) {
System.out.println(“Found Product: “ + p2.getDescription());

}else {
System.out.println(“Product # 26 not found!”);

}

CODE EXAMPLE 6-8 Updating a Product

EpcisConnection conn = new EpcisConnection(...)
// Create Product client
ProductRequest req = new ProductRequest(conn);
Product p2 = req.get("26");
if(p2 != null) {
p2.setDescription("modified product description");
req.update(p2);

}else {
System.out.println(“Product # 26 not found!”);

}

CODE EXAMPLE 6-9 Deleting a Product

EpcisConnection conn = new EpcisConnection(...)
// Create Product client
ProductRequest req = new ProductRequest(conn);
Product p2 = req.get("26");
if(p2 != null) {
req.delete(p2);

}else {
System.out.println(“Product # 26 not found!”);

}

CODE EXAMPLE 6-6 Creating a Product (Continued)
104 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

Using the Update/Delete/Query Request Object
A request class represents an update, delete or query request to the Information
Server. All request classes extend the abstract
com.sun.autoid.epcis.client.Request class. Instances of a request class are
converted to an XML format so that they can be sent over the wire.

TABLE 6-3 Request Classes and Code Examples

Class Description Code Examples

UpdateRequest Provides methods to update the RFID
Information Server database tables.
Instances of this class process insert and
modify operations on Unit, Product,
Organization, Container, Sensor and
ContainerType transfer objects.

CODE EXAMPLE 6-10

CODE EXAMPLE 6-11

CODE EXAMPLE 6-12

CODE EXAMPLE 6-13

DeleteRequest Provides methods to delete entries from
the RFID Information Server tables. For
most tables, the class uses a PrimaryKey
object to identify the entry to delete.

CODE EXAMPLE 6-14

CODE EXAMPLE 6-15

CODE EXAMPLE 6-16

CODE EXAMPLE 6-10 Inserting a Unit

EpcisConnection conn = new EpcisConnection(...)
UpdateRequest updateReq = new UpdateRequest(conn);

Unit unit = new Unit();
unit.setEpc("urn:epc:id:gid:2.1.1");
unit.setExpiryDate(Calendar.getInstance());
unit.setProductId("1");
unit.setUnitType("ITEM");
unit.setAttr1("192.168.1.2"); // persists the non-EPC data
UpdateResponse updateResp = updateReq.add(unit);

CODE EXAMPLE 6-11 Inserting a Transaction

ArrayList epcs = new ArrayList();
epcs.add("urn:epc:id:gid:1.402.1");
epcs.add("urn:epc:id:gid:1.301.2");
Chapter 6 Using RFID Information Server Client API 105

II

Note – Containers can be deleted by specifying the parent EPC of the container. The
method only deletes the contents of the top most container. If the children of the
parent EPC are containers then their contents are not deleted.

Transaction trans = new Transaction("PO-909", Calendar.getInstance(),null,
epcs);

updateResp = updateReq.createTransaction(trans);

CODE EXAMPLE 6-12 Inserting Observations Using the PML Method

DeltaEvent deltaEvent = ...
Sensor sensor = EventUtil.toSensor(deltaEvent);
UpdateResponse updateResp = updateReq.postPML(sensor);

CODE EXAMPLE 6-13 Insert Observations Using the ValueObject Method

Observation obs = new Observation(new ObservationLogVO());
obs.setSensorEpc("urn:epc:id:gid:1.1.1");
obs.setObservationType("NewExternal");
obs.setObservationValue("urn:epc:id:sgtin:0084691.142752.405");
obs.setTimestamp(Calendar.getInstance());
obs.setAttr1("Some test junk");

ArrayList voList = new ArrayList();
voList.add(obs);
UpdateRequest updateReq = new UpdateRequest(conn);
UpdateResponse updateResp = updateReq.add(voList);

CODE EXAMPLE 6-14 Deleting a Container

DeleteRequest deleteReq = new DeleteRequest(conn);
PrimaryKey pk =
new PrimaryKey("urn:epc:id:gid:1.402.1", “CONTAINMENT”);
ArrayList pkList =new ArrayList();
pkList.add(pk);
DeleteResponse deleteResp =
deleteReq.deleteByPk(pkList);

CODE EXAMPLE 6-11 Inserting a Transaction (Continued)
106 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

Note – The TX_LOG table does not have a primary key. The transaction to delete is
identified by the TX_ID value.

Querying RFID Information Server
Database Tables
Query conditions are expressed as simple attribute comparisons. The valid
comparators are eq, lt, and gt. These comparators can be used when comparing
the values of fixed attributes. When comparing the value of an extended attribute,
the only valid operator is eq. If more than one condition is specified, append each
comparator by using the AND operator. If no conditions are specified, then the
query returns all the entries in the selected table.

The following table lists the query classes and code examples.

CODE EXAMPLE 6-15 Delete a Unit

PrimaryKey pk = new PrimaryKey("urn:epc:id:gid:1.103.1", “UNIT”);
ArrayList pkList =new ArrayList();
pkList.add(pk);
DeleteResponse deleteResp = deleteReq.deleteByPk(pkList);

CODE EXAMPLE 6-16 Delete a Transaction

ArrayList txIdList = new ArrayList();
txIdList.add("PO-909");
DeleteResponse deleteResp = deleteReq.deleteTxById(txIdList);
Chapter 6 Using RFID Information Server Client API 107

TABLE 6-4 Query Request Classes and Code Examples

Class Description Code Example

FindByAttrRequest Handles queries on a specified table in
the RFID Information Server

CODE EXAMPLE 6-17

CODE EXAMPLE 6-18

CODE EXAMPLE 6-19

ContainmentRequest Handles queries on the
CONTAINMENT table. A containment
query condition can express a parent or
child relationship. It can also specify if
the search should recursively return all
the EPCs in the hierarchy or only the
immediate EPCs.

CODE EXAMPLE 6-20

CODE EXAMPLE 6-21

CODE EXAMPLE 6-17 All Transactions in the TX_LOG Table

FindByAttrRequest findReq =
new FindByAttrRequest(conn, "TX_LOG");
FindByAttrResponse findResp = findReq.process();

CODE EXAMPLE 6-18 Query for a specific EPC from the OBSERVATION Table

FindByAttrRequest findReq =
new FindByAttrRequest(conn, "OBSERVATION_LOG");
findReq.addCondition
("OBSERVATION_VALUE", "urn:epc:id:gid:1.402.1", "eq");
findResp = findReq.process();

CODE EXAMPLE 6-19 Conditional Query From the UNIT Table

FindByAttrRequest findReq =
new FindByAttrRequest(conn, "UNIT");
findReq.addCondition
("EXPIRY_DATE", Calendar.getInstance(), "gt");
findReq.addCondition("PRODUCT_ID", new Integer(1), "eq");
findResp = findReq.process();
108 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

Processing RFID Information Server
Responses
A response message from the Information Server is marshalled into a response
object. All response classes extend com.sun.autoid.epcis.client.Response.
The following table lists the response classes with examples.

CODE EXAMPLE 6-20 Querying for the Parent of an EPC Recursively

ContainmentResponse contReq = new ContainmentRequest(conn);
ContainmentResponse contResp =
contReq.process("urn:epc:id:gid:1.103.1",
ContainmentRequest.PARENT_OF,
true);

CODE EXAMPLE 6-21 Querying for the Immediate Child EPCs of a Given EPC

ContainmentResponse contResp =
contReq.process("urn:epc:id:gid:1.402.1",
ContainmentRequest.CHILD_OF,
false);

TABLE 6-5 Response Classes and Code Examples

Class Description Code Example

UpdateResponse Represents the status of the update
request. Failure status is captured as a
string. The status reported by a JDBC
driver is returned verbatim

CODE EXAMPLE 6-22

DeleteResponse Represents the status of a delete
request. Failure status is captured as a
string.

CODE EXAMPLE 6-23
Chapter 6 Using RFID Information Server Client API 109

FindByAttrResponse Collects all the transfer objects that are
returned as a result of a
FindByAttrRequest. The transfer
objects are generally returned as
ArrayLists. The ArrayList may
contain zero or more elements.

CODE EXAMPLE 6-24

CODE EXAMPLE 6-25

ContainmentResponse This class can return the result as an
ArrayList of EPCs or as a
Container object. The former is useful
if quick traversal of the result set is
needed while the latter preserves the
hierarchical relationships between the
EPCs.

CODE EXAMPLE 6-26
CODE EXAMPLE 6-27

CODE EXAMPLE 6-22 Testing the Success of an Update Request

UpdateResponse updateResp = updateReq.modify(unit);
System.out.println("ModifyUnit. Success -> " +
updateResp.success() + ". Should be true");

CODE EXAMPLE 6-23 Testing the Success of a Delete Request

DeleteResponse deleteResp = deleteReq.deleteByPk(pkList);
System.out.println("Success -> " + deleteResp.success());

CODE EXAMPLE 6-24 Printing the Number of Transaction Objects Returned

FindByAttrResponse findResp = findReq.process();
System.out.println("Results -> Got " +
findResp.getTransactions().size());

CODE EXAMPLE 6-25 Printing the Attribute Value of the Returned UNIT Object

FindByAttrRequest findReq = new FindByAttrRequest(conn, "UNIT");
findReq.addCondition("EPC", "urn:epc:id:gid:1.103.1", "eq");
findResp = findReq.process();

TABLE 6-5 Response Classes and Code Examples (Continued)

Class Description Code Example
110 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

Handling Exceptions
Use the classes of the package, com.sun.autoid.epcis.EPCISException.
EPCISException inherits and extends the Java Standard Edition standard
Exception class.

EPCISException is defined as shown in the following code example:

System.out.println("Results -> Got " + findResp.getUnits().size()
);
if (findResp.getUnits().size() > 0)
{
 Unit unit = (Unit)findResp.getUnits().get(0);
 System.out.println("Got unit with manufacture date : " +
unit.getManufactureDate());
}

CODE EXAMPLE 6-26 Using getResultSet()

ContainmentResponse contResp =
contReq.process("urn:epc:id:gid:1.103.1",
ContainmentRequest.PARENT_OF,
true);
System.out.println("Results -> Got " +
contResp.getResultSet().size());

CODE EXAMPLE 6-27 Using getRoot()

ContainmentResponse contResp =
contReq.process("urn:epc:id:gid:1.103.1",
ContainmentRequest.PARENT_OF,
true);
System.out.println("Results -> Got " + contResp.getRoot().getEpc()
);

CODE EXAMPLE 6-28 Define EPCISException

public class EPCISException extends Exception {
...

public EPCISException(String message) {

CODE EXAMPLE 6-25 Printing the Attribute Value of the Returned UNIT Object (Continued)
Chapter 6 Using RFID Information Server Client API 111

How to Catch an EPCISException Error
A program can catch the EPCISException error by using a combination of the try,
catch, and finally blocks as shown in the following code example:

super (message);
}

}

CODE EXAMPLE 6-29 Catch EPCISException

public class MyQuery {

 public static void main(String[] args) {
 EpcisConnection conn = null;
 String epcisUrl = null;
 String httpProxyHost = null;
 String httpProxyPort = null;
 String epcisUsername = null;
 String epcisPassword = null;

 // get the properties for EpcisConnection
 ...
 try {
 conn = new EpcisConnection(
 epcisUrl,
 httpProxyHost,
 httpProxyPort,
 epcisUserName,
 epcisPassword);
 // querying EPCIS
 ...
 } catch (EPCISException e) {
 }
 finally {
 ...
 }
 ...
 }
}

CODE EXAMPLE 6-28 Define EPCISException (Continued)
112 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

How to Throw an EPCISException Error
A program can use EPCISException to indicate an error occurred. To throw an
EPCISException, you use the throw statement and provide an exception message
as shown in the following code example:

CODE EXAMPLE 6-30 Throw Internal Exception

public class FindByAttrRequest extends Request {

 /**
 * Process the query and get a response synchronously.

* Called after the conditions have been set. This results in
 * a request to the EPCIS
 * @return The response object.
 */
 public FindByAttrResponse process() throws EPCISException{
 FindByAttrResponse findByAttrResp = null;
 EpcisMsgXML response = conn.synchAction (request);
 findByAttrResp = new FindByAttrResponse (response);
 reset();
 return findByAttrResp;
 }

}

Chapter 6 Using RFID Information Server Client API 113

114 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

CHAPTER 7

PML Utilities

This chapter describes the Sun Java System RFID Software PML Utilities. The
following sections are included:

■ Introduction
■ Capturing Tag Observations Using PML Core
■ PML Utilities Packages
■ Class Path Requirements
■ UML Class Diagram For PML Package

Introduction
The purpose of the core physical markup-language (PML Core) is to provide a
standardized format for the exchange of data captured by the sensors in an RFID
infrastructure, for example, RFID readers. This data is exchanged between the Event
Manager and other applications. PML Core provides a set of XML schemas that
define the interchange format for the transmission of the data values captured.

The PML Utilities Java library provides helper classes to parse and manipulate PML
Core messages. This library is intended for use in any application that interfaces
with the Event Manager. These utilities are located in the file sun-rfid-
common.jar. TABLE 7-1 lists the default locations of this file for the supported
platforms.

TABLE 7-1 Location of PML Utilities JAR File

Platform Location

Solaris OS /opt/SUNWrfid/lib

Linux /opt/sun/rfidem/lib

Microsoft Windows C:\Program Files\Sun\RFID Software\rfidem\lib
115

Supported version is PML_Core v1.0 (AutoID Center recommendation 15 September,
2003).

Capturing Tag Observations Using PML
Core
This section describes a sample core message for capturing tag observations.

CODE EXAMPLE 7-1 Sample Core Message for Capturing Tag Observations

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!-- The root element of PML Core -->
<Sensor xmlns="urn:autoid:specification:interchange:PMLCore:xml:schema:1">
<!-- The EPC of the reader specified in the reader adapter properties -->

<ns1:ID xmlns:ns1=
"urn:autoid:specification:universal:Identifier:xml:schema:1">urn:epc:id:gid
:1.1.100

</ns1:ID>
<!-- The root element for an observation -->

<Observation>
<ns2:ID xmlns:ns2=

"urn:autoid:specification:universal:Identifier:xml:schema:1">2
</ns2:ID>

<!-- The time when the observation was recorded by the reader
adapter -->

<DateTime>2004-05-21T18:28:16.633-07:00</DateTime>
<!-- If the PML is generated from a Delta Event the value of Command is
either TagsIn or TagsOut -->

<Command>TagsOut</Command>
<!-- A tag observation -->

<Tag>
<!-- The EPC of the observed tag in identity URI format -->

<ns3:ID xmlns:ns3=
"urn:autoid:specification:universal:Identifier:xml:schema:1">urn:epc:id:gid
:1.1.110</ns3:ID>

</Tag>
<Tag>

<ns4:ID xmlns:ns4=
"urn:autoid:specification:universal:Identifier:xml:schema:1">urn:
epc:id:gid:1.1.105</ns4:ID>

</Tag>
116 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

PML Utilities Packages
This section describes the following PML utilities packages:

■ Package - com.sun.autoid.pmlcore.pml
■ Package - com.sun.autoid.pmlcore.pmlparser

PML Core Package
The com.sun.autoid.pmlcore.pml package is generated from the PML Core
XML Schema document using the JAXB compiler. The generated classes can be used
to traverse an existing Java object graph or to create a new one. See
CODE EXAMPLE 7-2.

<Tag>
<ns5:ID xmlns:ns5=

"urn:autoid:specification:universal:Identifier:xml:schema:1">urn:epc:id:gid
:1.1.104</ns5:ID>

</Tag>
</Observation>

</Sensor>

CODE EXAMPLE 7-2 Sample XML to Create a New PML Message

/**
 * Create a sample PML Core XML message.
 */
 public SensorType createPMLCore() {
 SensorType sensor = null;
 try {
 PmlParser pmlParser = new PmlParser();
 ObjectFactory objFactory =
pmlParser.getPMLObjectFactory();
 sensor = objFactory.createSensor();

/* Create the reader EPC */
 IdentifierType idType =
objFactory.createIdentifierType();
 idType.setValue("urn:epc:id:gid:1.700.1");
 sensor.setID(idType);

CODE EXAMPLE 7-1 Sample Core Message for Capturing Tag Observations (Continued)
Chapter 7 PML Utilities 117

 /* Create the Observation object */
 List obsList = sensor.getObservation();
 ObservationType obs =
objFactory.createObservationType();
 obsList.add(obs);

/* Timestamp of the observation */
 obs.setDateTime(Calendar.getInstance());

/* The command element is optional.
 if specified it is either :
 TagsIn or TagsOut */
 obs.setCommand("TagsIn");

/* Observation ID is currently ignored */
 idType = objFactory.createIdentifierType();
 idType.setValue("1");
 obs.setID(idType);

/* create Tags and assign them to the Observation object
*/
 TagType tag = objFactory.createTagType();
 idType = objFactory.createIdentifierType();
 idType.setValue("urn:epc:id:gid:10.10.1");
 tag.setID(idType);
 obs.getTag().add(tag);

 tag = objFactory.createTagType();
 idType = objFactory.createIdentifierType();
 idType.setValue("urn:epc:id:gid:10.10.2");
 tag.setID(idType);
 obs.getTag().add(tag);

/* debug */
 System.out.println("Sensor BEGIN");

SensorUtil.dump((com.sun.autoid.pmlcore.pml.Sensor)sensor);
 System.out.println("Sensor END");

 } catch (JAXBException jbe) {
 jbe.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();
 }
 return sensor;
 }

CODE EXAMPLE 7-2 Sample XML to Create a New PML Message (Continued)
118 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

PML Parser Package

Unmarshalling an XML File Using the PmlParser

TABLE 7-2 Database Tables

Java Class Descriptor

PmlParser A Parser that reads Product Markup Language and creates a
Java Object Graph.

SensorUtil A class to dump the Sensor JAXB Tree.

CODE EXAMPLE 7-3 Sample XML to Unmarshall a PML Core XML File

/* Unmarshall a PML Core XML file */
 public Sensor pmlCoreFromFile() {
 Sensor sensor = null;
 try {

/* Create an instance of PmlParser */
 PmlParser pmlParser = new PmlParser();

/* Call the unmarshall method */
 sensor = pmlParser.unmarshalPML(new
File("./pml_sample.xml"));

/* debug message */
 System.out.println("Sensor BEGIN");
 SensorUtil.dump(sensor);
 System.out.println("Sensor END");
 } catch (JAXBException jbe) {
 jbe.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();
 }
 return sensor;
 }
Chapter 7 PML Utilities 119

Class Path Requirements
The JAR files (JAXB 1.0.4 and its dependant jar files from Java WSDP 1.5) that are
used to compile and run an application that uses the PML utilities are shown in
TABLE 7-3.

TABLE 7-3 PML Utilities Jar Files

$JWSDP_HOME/jaxb/lib/jaxb-api.jar

$JWSDP_HOME/jaxb/lib/jaxb-impl.jar

$JWSDP_HOME/jaxb/lib/jaxb-libs.jar

$JWSDP_HOME/jwsdp-shared/lib/namespace.jar
$JWSDP_HOME/jwsdp-shared/lib/relaxngDatatype.jar
$JWSDP_HOME/jwsdp-shared/lib/jax-qname.jar
$JWSDP_HOME/jwsdp-shared/lib/xsdlib.jar

$JWSDP_HOME/jaxp/lib/jaxp-api.jar
$JWSDP_HOME/jaxp/lib/endorsed/dom.jar
$JWSDP_HOME/jaxp/lib/endorsed/sax.jar
$JWSDP_HOME/jaxp/lib/endorsed/xercesImpl.jar
120 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

UML Class Diagram For PML Package
Chapter 7 PML Utilities 121

122 Sun Java System RFID Software 3.0 Developer’s Guide • February 2006

	Sun Java™ System RFID Software 3.0 Developer’s Guide
	Contents
	Before You Begin
	Introduction to Sun Java System RFID Software Programming Platform
	RFID Software Architecture Overview
	Structure of a Configuration Object
	RFID Event Processing Basics
	Identifier Objects
	Event Objects

	Processing RFID Event Manager Information
	Managing RFID Event Manager Devices

	Creating Custom Filters and Connectors
	Setting Up Your NetBeans Environment
	To Download and Install NetBeans
	To Download and Install the RFID Software Toolkit
	To Set Up the Example Filter Project
	To Create the RFID Library for the Custom Component Examples
	To Build and Test the Sample Filter Project

	Creating a Custom Filter
	Understanding the Sample EPCTypeFilter
	To Customize the Sample Filter
	To Compile the Customized Filter
	Using the Filter Template JUnit Test
	To Modify and Run the JUnit Test

	Integrating Custom Components With the RFID Event Manager
	To Add the EPCTypeFilter Custom Filter to the Demo Configuration Object

	Creating a Custom Connector
	To Create a Sample Connector Project

	Using RFID Device Client APIs
	Implementation of the ReaderClient API
	Reader Client Constructor Parameters
	Reader Client Groups Parameter
	Reader Client Locators Parameter
	Reader Client readerName Parameter
	Reader Client eventID Parameter
	To Add a Handle Configuration Property to a Device
	Reader Client logical Parameter

	EMSEventListener
	ReaderClient API Reference
	Building a Sample Reader Client Program
	To Set Up the Sample Reader Client Environment
	To Run the Sample Reader Client Program
	Explaining the Sample Reader Client

	Implementation of the PrinterClient API
	PrinterClient API Reference
	Building a Sample Printer Client
	To Set Up the Sample Printer Client Environment
	To Run the Sample Printer Client Program
	Explaining the Sample Printer Client

	Using Web Services for Device Access
	Overview of Web Services for Device Access
	Web Services Interface Reference
	Web Services for Reader Access Java Interface
	Web Services for Printer Access Java Interface

	Creating and Running the Web Services for a Device Access Client
	Prerequisites for Running the Web Services Client Examples
	(Optional) To Access the NetBeans IDE 4.1 Quick Start Guide for Web Services
	To Configure the Environment for the Web Services Client Examples
	Writing the Static Web Services Client
	To Run the Static Web Services Client Example
	Writing the Dynamic Web Services Client Example
	To Run the Dynamic Web Services Client

	ALE Web Services
	Broad Architecture
	ALE Service Architecture
	Other Considerations
	Using ALE Web Services Client (ALEClient) API
	Client Checklist
	To Set Up the ALE Client Environment
	To Run the ALE Web Services Client
	Troubleshooting for ALE Client

	Using RFID Information Server Client API
	Architecture
	Database Tables
	Connecting to RFID Information Server
	Closing the Connection

	Exchanging Data With RFID Information Server
	Modifying RFID Information Server Tables
	Using Table Request Objects
	Using the Update/Delete/Query Request Object

	Querying RFID Information Server Database Tables
	Processing RFID Information Server Responses
	Handling Exceptions
	How to Catch an EPCISException Error
	How to Throw an EPCISException Error

	PML Utilities
	Introduction
	Capturing Tag Observations Using PML Core
	PML Utilities Packages
	PML Core Package
	PML Parser Package
	Unmarshalling an XML File Using the PmlParser

	Class Path Requirements
	UML Class Diagram For PML Package

