Sun StorageTek™ 2500 Series
Array Release Notes

Release 1.3

Sun Microsystems, Inc.
www.sun.com

Part No. 820-4349-11
March 2008, Revision A

Submit comments about this document at: http://www.sun.com/hwdocs/feedback
L'ABSENCE DE CONTREFAÇON.

TOUTE GARANTIE IMPLICITE RELATIVE À LA QUALITÉ MARCHANDE, À L'APTITUDE À UNE UTILISATION PARTICULIÈRE OU À
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISÉE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
LA DOCUMENTATION EST FOURNIE "EN L'ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES,
aux licences écrites de Sun.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, Sun Fire, Sun StorEdge, Solaris, Java, Sun StorageTek, et Solstice
DiskSuite sont des marques ou des marques déposées de Sun Microsystems, Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

Legato Networker is a registered trademark of Legato Systems Inc.

Netscape Navigator and Mozilla are trademarks or registered trademarks of Netscape Communications Corporation in the United States and other countries.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features in This Release</td>
<td>2</td>
</tr>
<tr>
<td>Sun StorageTek 2500 Array Features</td>
<td>2</td>
</tr>
<tr>
<td>New Features</td>
<td>2</td>
</tr>
<tr>
<td>Array Features</td>
<td>3</td>
</tr>
<tr>
<td>Auto Service Request Feature</td>
<td>3</td>
</tr>
<tr>
<td>Premium Features</td>
<td>4</td>
</tr>
<tr>
<td>2500 Series Array Ship Kit Contents</td>
<td>4</td>
</tr>
<tr>
<td>Array Controller Kits</td>
<td>4</td>
</tr>
<tr>
<td>Sun StorageTek 2501 Array Expansion Kit</td>
<td>5</td>
</tr>
<tr>
<td>Management Software</td>
<td>5</td>
</tr>
<tr>
<td>System Requirements</td>
<td>5</td>
</tr>
<tr>
<td>Array Firmware Version Information</td>
<td>6</td>
</tr>
<tr>
<td>Disk Drives and Tray Capacity</td>
<td>7</td>
</tr>
<tr>
<td>Data Host Requirements</td>
<td>8</td>
</tr>
<tr>
<td>Supported HBAs and Switches</td>
<td>8</td>
</tr>
<tr>
<td>2540 Array Data Host Requirements</td>
<td>9</td>
</tr>
<tr>
<td>2530 Data Host Requirements</td>
<td>10</td>
</tr>
<tr>
<td>2510 Array Data Host Requirements</td>
<td>11</td>
</tr>
<tr>
<td>Installing Array Baseline Firmware</td>
<td>12</td>
</tr>
</tbody>
</table>
Installing the 06.70.00.11 Firmware Patch 13
Installing Release 6.0.1 Firmware Baseline 15
Installing the 6.70.54.10 Patch for 48 Drive Support 15

Known Issues 16
iSCSI Issues 16
SAS Issues 17
Hardware and Firmware Issues 18
Documentation Issues 27
Array Configuration Naming Convention 28
Connecting Expansion Trays 28
Cabling an Expansion Tray to a Controller Tray 29
Cabling Additional Expansion Trays 30
Operational Information 34

A. SAS Single Path Configuration 39
Planning for SAS Single Path Connections 40
SAS OS and Patch Requirements 40
Solaris 10 Restrictions 40
Planning the Cabling Topology 42
Suggested Naming Convention in the Sun StorageTek Common Array Manager Software 43
Completing the Configuration Worksheet 46
Configuring Single Path Connections 47
Configuring Storage in the Sun StorageTek Common Array Manager Software 49
Adding More Devices 50

Troubleshooting 52
Errors When Trying to Establish Communication 52
Verifying Single Path Information After Replacing Controllers 53
Tables

TABLE 1 Controller Firmware Versions 6
TABLE 2 Sun StorageTek 2500 Series Array Controller Information for 6.0.1 6
TABLE 3 Sun StorageTek 2500 Series Array NVSRAM Information 7
TABLE 4 Sun StorageTek 2500 Series Array IOM Information 7
TABLE 5 Supported Disk Drives 7
TABLE 6 Supported Data Host Platforms for 2540 Arrays 9
TABLE 7 Required Solaris Patches for 2540 Data Host Platforms 10
TABLE 8 Data Host Platform Support for 2530 Arrays 10
TABLE 9 Required Solaris Patches for Data Host Platforms for the 2530 Arrays 11
TABLE 10 Supported Data Host Platforms for 2510 Arrays 12
TABLE 11 Required Solaris Patches for 2510 Data Host Platforms 12
TABLE 12 Required 06.70.00.11 Firmware Patches 13
TABLE 13 Controller and Expansion Tray Configurations 28
TABLE 14 1x2 Array Configuration Cabling Example 29
TABLE 15 1x3 Array Configuration Cabling 30
TABLE 16 1x4 Array Configuration Cabling 32
TABLE A-1 Naming Modifications to Make in the Sun StorageTek Common Array Manager Software 44
TABLE A-2 Collect Configuration Information 46
Sun StorageTek 2500 Series Array
Release Notes, Release 1.3

This document contains important release information about the Sun StorageTek™
2500 Series Arrays and information that was not available at the time the product
documentation was published. These release notes cover the Sun StorageTek 2500
Series Array, Release 1.3 and 06.70.42.10 firmware, and related hardware issues.
Read this document so that you are aware of issues or requirements that can affect
the installation and operation of the Sun StorageTek 2500 Arrays.

A firmware patch for the Sun StorageTek Common Array Manager Software, Release
6.0.1, adds support for a third expansion tray and 48 drives. Refer to “Installing the
6.70.54.10 Patch for 48 Drive Support” on page 15.

For information on management software requirements, operations, and issues, see
the Sun StorageTek Common Array Manager Software Release Notes, Release 6.0.1.

The release notes consist of the following sections:

- “Features in This Release” on page 2
- “System Requirements” on page 5
- “Installing Array Baseline Firmware” on page 12
- “Known Issues” on page 16
- “Release Documentation” on page 35
- “Service Contact Information” on page 36
- “Third-Party Web Sites” on page 36
- “SAS Single Path Configuration” on page 39
Features in This Release

This section describes the main features of the Sun StorageTek 2500 Array 1.3 release, including the following:

- “Sun StorageTek 2500 Array Features” on page 2
- “New Features” on page 2
- “2500 Series Array Ship Kit Contents” on page 4
- “Management Software” on page 5

Sun StorageTek 2500 Array Features

The Sun StorageTek 2540 Array, the Sun StorageTek 2530 Array, the Sun StorageTek 2510 Array, the Sun StorageTek 2501 Expansion Module, are a family of storage products.

The Sun StorageTek 2500 Arrays contains disk drives for storing data and controllers that provide the interface between a data host and the disk drives. The Sun StorageTek 2540 Array provides a Fibre Channel connection from the data host to the controller. The Sun StorageTek 2530 Array provides a Serial Attached SCSI (SAS) connection from the data host to the controller. The new Sun StorageTek 2510 Array supports Internet Small Computer Systems Interface (iSCSI) over Ethernet networks.

The Sun StorageTek 2501 Expansion Module provides additional storage. You can attach the drive expansion tray to the Sun StorageTek 2540, 2530, and 2510 Arrays.

New Features

- Three Expansion Tray (48 Drive) Support (requires patch)
- The Sun StorageTek 2510 Array with iSCSI Support

Release 1.3 supports iSCSI on the Sun StorageTek 2510 Array. iSCSI uses the Small Computer Systems Interface (SCSI) protocol over Ethernet networks to communicate between client initiators and target storage devices.

Consult the Sun StorageTek 2500 Series Array Hardware Installation Guide for initial information about configuring iSCSI and the online help in the management software for additional information and procedures.
Array Features

Common features:
- One drive expansion tray Serial Attached SCSI (SAS) connector per controller with 3 Gb/s drive expansion tray connection speed
- Maximum connection of 48 disk drives (one controller tray and three drive expansion trays)
- Dual redundant controllers
- Serial Attached SCSI (SAS) disk drives
- SATA 500 GB Drive
- 512-MB cache per controller or 1 GB mirrored cache

Sun StorageTek 2540 features:
- Fibre Channel (FC) controller tray
- Two data host ports per controller that support a fiber-optic interface with 1, 2, or 4 Gb/s data host connection speed

Sun StorageTek 2530 features:
- SAS controller tray
- Three SAS host ports with 3 Gb/s host connection speed per controller
- SAS Multipath support

Sun StorageTek 2510 features:
- SAS controller tray
- Two iSCSI Ethernet host ports with 1 Gigabit per second host connection speed

Auto Service Request Feature

Auto Service Request (ASR) is a feature of the array management software that monitors the array system health and performance and automatically notifies the Sun Technical Support Center when critical events occur. Critical alarms generate an automatic Service Request case. The notifications enable Sun Service to respond faster and more accurately to critical on-site issues.

You enable the Auto Service Request capability by using the Sun StorageTek Common Array Manager software to register devices to participate in the ASR service. Refer to the Sun StorageTek Common Array Manager Release Notes, Release 6.0.1 or higher, for more information.
Premium Features

Premium features require licenses which must be ordered separately. The following premium features are available for 2500 Series Arrays:

- 4 storage domains
- 8 storage domains
- 16 storage domains
- Data Snapshot (4 per volume and 128 per array)

Note – The 2500 Series Arrays provide two free storage domains. Storage domain licenses are required to map additional initiators on data hosts to volumes.

2500 Series Array Ship Kit Contents

The Sun StorageTek 2500 Series Array controller and expansion trays are shipped separately. The AC power cords are ordered separately. The following is a list of the contents in the tray ship kits. There may also be Read Me first notices.

Array Controller Kits

Common contents:

- One pair left and right end caps (plastic bezels)
- Two 6-meter RJ45-RJ45 Ethernet cables (one per controller module)
- One RJ45-DIN9 cable
- One RJ45-DB9 adapter
- One RJ45-DB9 adapter (with null modem)
- Sun StorageTek Common Array Manager Software CD
- *Sun StorageTek Common Array Manager Software Installation Guide*
- *Common Array Manager sscs CLI Quick Reference Card*
- *Sun StorageTek 2500 Series Array Hardware Installation Guide*
- *Accessing Documentation* card
- One Sun Safety Document
Content for the 2540 controller tray only:

- Four 4 Gbps FC SFPs (2 per FC Controller module)

Sun StorageTek 2501 Array Expansion Kit

Ship kit for each 2501 expansion tray:

- Two copper SAS cables (one per I/O module)
- One pair left and right end caps (plastic bezels)
- Accessing Documentation guide

Note – .5 meter SAS cables are being replaced with 1 meter SAS cables. The .5 meter cable will ship for a period of time. The 1 meter SAS cable can be ordered separately.

Management Software

The Sun StorageTek Common Array Manager software (6.0.1 and above) provides an easy-to-use interface from which you configure, manage, and monitor Sun StorageTek storage systems, including the Sun StorageTek 2500 Series Array. You can also use the Common Array Manager software to diagnose problems, view events, and monitor the health of your array. Each release of the Common Array Manager provides the latest firmware updates for all the arrays it supports and provides the means to upload the firmware to them.

The Common Array Manager is the only supported management software for the 2500 Series Array. Refer to the Release Notes and other Sun StorageTek Common Array Manager documentation described in “Release Documentation” on page 35.”

System Requirements

The software and hardware products that have been tested and qualified to work with the Sun StorageTek 2500 Series Array are described in the following sections:

- “Array Firmware Version Information” on page 6
- “Disk Drives and Tray Capacity” on page 7
- “Data Host Requirements” on page 8
Array Firmware Version Information

The following table describes 2500 Series array controller firmware versions, how they were delivered and their pre-requisites.

TABLE 1 Controller Firmware Versions

<table>
<thead>
<tr>
<th>Firmware</th>
<th>Delivered in Release or Patch</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.70.00.11</td>
<td>CAM 5.1.3 or 6.0.0 -03 patch</td>
<td>CAM 5.1.3 or 6.0.0.</td>
</tr>
<tr>
<td>06.70.00.14</td>
<td>CAM 6.00 -04 and -05 patch</td>
<td>CAM 6.0.0</td>
</tr>
<tr>
<td>06.70.42.10</td>
<td>CAM 6.0.1 firmware baseline</td>
<td>For 2540 and 2530 arrays, the 06.70.00.11 patch must be installed first.</td>
</tr>
<tr>
<td>06.70.54.10</td>
<td>CAM 6.0.1 patch for 48 drive support</td>
<td>CAM 6.0.1 must be installed. Refer to “Installing the 6.70.54.10 Patch for 48 Drive Support” on page 15 for instructions. You can install the 06.70.54.10 firmware from 06.70.00.11 or 06.70.42.10.</td>
</tr>
</tbody>
</table>

The following section lists the firmware baseline files to work with this 2500 Series Array Release 1.3 and delivered with the Sun StorageTek Common Array Manager software, Release 6.0.1.

For the latest patches available for your system, check SunSolve at: http://www.sunsolve.sun.com.

In the following tables, the file path listed in the Firmware File column (for example, nge/RC_0670xxxx_desperado.dlp) is the relative path to the /images subdirectory where the firmware files are located.

TABLE 2 Sun StorageTek 2500 Series Array Controller Information for 6.0.1

<table>
<thead>
<tr>
<th>Controller</th>
<th>Version</th>
<th>Firmware File</th>
</tr>
</thead>
<tbody>
<tr>
<td>2510</td>
<td>06.70.42.10</td>
<td>nge/RC_06704210_desperado_apollo_1532.dlp</td>
</tr>
<tr>
<td>2530</td>
<td>06.70.42.10</td>
<td>nge/RC_06704210_desperado_apollo_133x.dlp</td>
</tr>
<tr>
<td>2540</td>
<td>06.70.42.10</td>
<td>nge/RC_06704210_desperado_apollo_1932.dlp</td>
</tr>
</tbody>
</table>
TABLE 3 lists the NVSRAM information for the Sun StorageTek 2500 arrays.

TABLE 3 Sun StorageTek 2500 Series Array NVSRAM Information

<table>
<thead>
<tr>
<th>NVSRAM</th>
<th>Version</th>
<th>Firmware File</th>
</tr>
</thead>
<tbody>
<tr>
<td>2510</td>
<td>N1532-670843-001</td>
<td>nge/N1532-670843-001.dlp</td>
</tr>
<tr>
<td>2510-Simplex</td>
<td>N1532-670843-901</td>
<td>nge/N1532-670843-901.dlp</td>
</tr>
<tr>
<td>2530</td>
<td>N133X-670843-001</td>
<td>nge/N133X-670843-001.dlp</td>
</tr>
<tr>
<td>2530-Simplex</td>
<td>N133X-670843-901</td>
<td>nge/N133X-670843-901.dlp</td>
</tr>
<tr>
<td>2540</td>
<td>N1932-670843-001</td>
<td>nge/N1932-670843-001.dlp</td>
</tr>
<tr>
<td>2540-Simplex</td>
<td>N1932-670843-901</td>
<td>nge/N1932-670843-901.dlp</td>
</tr>
</tbody>
</table>

TABLE 4 lists the IOM information for the 2500 Series Arrays

TABLE 4 Sun StorageTek 2500 Series Array IOM Information

<table>
<thead>
<tr>
<th>IOM</th>
<th>Version</th>
<th>Firmware File</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500 SAS</td>
<td>0186</td>
<td>nge/esm0186.esm</td>
</tr>
</tbody>
</table>

Disk Drives and Tray Capacity

TABLE 5 lists the size, speed, and tray capacity for the supported disk drives in the Sun StorageTek 2500 Series Array.

TABLE 5 Supported Disk Drives

<table>
<thead>
<tr>
<th>Drive</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST373455SSUN72G - 0892</td>
<td>72-GB, 15,000-RPM, SAS drives (3 Gbps); 876 GB per tray</td>
</tr>
<tr>
<td>ST314655SSUN146G - 0892</td>
<td>146-GB, 15,000-RPM, SAS drives (3 Gbps); 1752 GB per tray</td>
</tr>
<tr>
<td>ST330055SSUN300G - 0892</td>
<td>300-GB, 15,000-RPM, SAS drives (3 Gbps); 3600 GB per tray</td>
</tr>
<tr>
<td>HUS1573SBSUN72G - SA02</td>
<td>72-GB, 15,000-RPM, SAS drives, 876 GB per tray</td>
</tr>
<tr>
<td>HUS1514SBSUN146G - SA02</td>
<td>146-GB, 15,000-RPM, SAS drives, 1752 GB per tray</td>
</tr>
</tbody>
</table>
Data Host Requirements

This section provides the data host requirements of the 2500 Series Array at the time this document was produced. These requirements can change; for complete up-to-date compatibility requirements, contact your Sun sales or support representative.

Data host requirements for 2540 arrays, which support Fibre Channel connections to the data host, are different from 2530 arrays, which use SAS connections to the data host, and the 2510 array, which uses Ethernet connections.

Supported HBAs and Switches

For supported HBAs and switches, refer to:

https://extranet.stortek.com/interop/interop

<table>
<thead>
<tr>
<th>Drive Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUS1530SBSUN300G - SA02</td>
<td>300-GB, 15,000-RPM, SAS drives, 3600 GB per tray</td>
</tr>
<tr>
<td>HDS7250SASUN500G - AJ0A</td>
<td>500-GB, 7200-RPM, SATA II drives; 6 TB or 6000 GB per tray</td>
</tr>
<tr>
<td>HUA7210SUN1.0T - A90A</td>
<td>1-TB (1000-GB), 12 TB or 12000 GB per tray</td>
</tr>
<tr>
<td>HUA7250SBSUN500G - A90A</td>
<td>500-GB, 7200 RPM, Serial ATA, 6 TB or 6000 GB per tray</td>
</tr>
<tr>
<td>HUA7275SUN750G - A90A</td>
<td>750-GB, 7200 RPM Serial ATA drives, (3 Gbps), 9000 GB per tray</td>
</tr>
<tr>
<td>ST37500NSSUN750G - 3AZK</td>
<td>750-GB, 7200-RPM, Serial ATA drives (3 Gbps), 9000 GB per tray</td>
</tr>
<tr>
<td>ST34000SSUN0.4T - 0543</td>
<td>400-GB, 10000-RPM, Serial Attached SCSI drives (3 Gbps), 4.8 TB or 4800 GB per tray</td>
</tr>
</tbody>
</table>
2540 Array Data Host Requirements

The 2540 Array supports Fibre Channel-only connections to the data host. The information in this section applies only to data hosts with Fibre Channel connections.

TABLE 6 lists the supported host Operating Systems (OSs) and multipathing availability. HBAs must be ordered separately, from Sun or their respective manufacturers. Sun HBAs can be ordered from the following site: http://www.sun.com/storagetek/networking.jsp

You can download HBA drivers and other host software from the Sun Downloads, http://www.sun.com/download/index.jsp. Download operating system updates from the web site of the operating system company.

The data hosts require software for multipath or single path support. Follow the instructions in the *Sun StorageTek 2500 Series Array Hardware Installation Guide* to download and install the software from the Sun Download Center.

Solaris patches can be downloaded from:
http://www.sun.com/software/download/

or

TABLE 6 Supported Data Host Platforms for 2540 Arrays

<table>
<thead>
<tr>
<th>Host OS</th>
<th>Multipathing Support</th>
<th>Cluster Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris 9</td>
<td>SAN 4.4.12 and higher</td>
<td>Sun Cluster 3.1</td>
</tr>
<tr>
<td>Solaris 10 SPARC</td>
<td>included in OS</td>
<td>Sun Cluster versions SC 3.1, SC 3.2 (2, 3, or 4 nodes)</td>
</tr>
<tr>
<td>Solaris 10 x64</td>
<td>included in OS</td>
<td>Sun Cluster versions SC 3.1, SC 3.2 (2, 3, or 4 nodes)</td>
</tr>
<tr>
<td>Windows 2003</td>
<td>MPIO</td>
<td>Microsoft Cluster Server</td>
</tr>
<tr>
<td>Linux Red Hat 4/5;</td>
<td>RDAC</td>
<td>Linux Cluster</td>
</tr>
<tr>
<td>SUSE 9/10 SP1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 7 lists the required patches for Solaris data hosts.

TABLE 7 Required Solaris Patches for 2540 Data Host Platforms

<table>
<thead>
<tr>
<th>Solaris Version</th>
<th>Required Patch (Minimum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris 9</td>
<td>SAN 4.4.12</td>
</tr>
<tr>
<td></td>
<td>113039 patch</td>
</tr>
<tr>
<td>Solaris 10 SPARC</td>
<td>120011-14</td>
</tr>
<tr>
<td></td>
<td>125081-14</td>
</tr>
<tr>
<td>Solaris 10 x64</td>
<td>120012-14</td>
</tr>
<tr>
<td></td>
<td>125082-14</td>
</tr>
</tbody>
</table>

2530 Data Host Requirements

The 2530 Array supports SAS-only connections to data hosts. The information in this section applies only to data hosts with SAS connections.

TABLE 8 lists supported 2530 data host platforms and indicates the kind of support they have for SAS connections.

TABLE 8 Data Host Platform Support for 2530 Arrays

<table>
<thead>
<tr>
<th>Host OS</th>
<th>SAS Support</th>
<th>Multipathing Support</th>
<th>Cluster Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris 10, SPARC</td>
<td>yes</td>
<td>Included in OS with</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>patch 125081-10.</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See TABLE 9.</td>
<td></td>
</tr>
<tr>
<td>Solaris 10, x64</td>
<td>yes</td>
<td>Included in OS with</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>patch 125081-10.</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See TABLE 9.</td>
<td></td>
</tr>
<tr>
<td>Windows 2003</td>
<td>yes</td>
<td>MPIO</td>
<td>Microsoft Cluster Server</td>
</tr>
<tr>
<td>Red Hat 4/5;</td>
<td>yes</td>
<td>RDAC</td>
<td>Linux Cluster</td>
</tr>
<tr>
<td>SUSE 9/10 SPI</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 9 Required Solaris Patches for Data Host Platforms for the 2530 Arrays

<table>
<thead>
<tr>
<th>Solaris Version</th>
<th>Required Patch (Minimum)</th>
</tr>
</thead>
</table>
| Solaris 10 SPARC | Solaris 10 Update 4 or equivalent kernal and patches
118833-36 patch (required by 120011-14)
120011-14 (minimum for single path)
119042-01
126538-01
127111-07*
125081-14 (minimum for multipath) |
| Solaris 10 x64 | Solaris 10 Update 4 or equivalent kernal and patches
118855-36 (required by 120012-14)
120012-14 patch (minimum for single path)
119043-01
126539-01
125082-14. (minimum for multipath) |

* 12111-07 is a pre-requisite patch and must be installed prior to 125081-14 only if a system administrator wishes to have a per-HBA mpxio-disable setting for an UltraSPARC host where the SAS HBA is connected with the PCI-e interface.

This issue does not occur if there is no per-hba mpxio-disable setting. This issue does not occur on PCI-X attached SAS HBAS. This issue does not occur on x86/x64 hosts.

2510 Array Data Host Requirements

The 2510 Array supports iSCSI with Ethernet connections to Network Interface Cards (NICs) on the data host.
TABLE 10 lists the supported host Operating Systems (OSs) and multipathing availability. You can download host software from the Sun Downloads, http://www.sun.com/download/index.jsp. Download operating system updates from the web site of the operating system company.

TABLE 10 Supported Data Host Platforms for 2510 Arrays

<table>
<thead>
<tr>
<th>Host OS</th>
<th>Multipathing Support</th>
<th>Cluster Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris 10 SPARC</td>
<td>included in OS</td>
<td>Not yet supported</td>
</tr>
<tr>
<td>Solaris 10 x64</td>
<td>included in OS</td>
<td>Not yet supported</td>
</tr>
<tr>
<td>Windows 2003</td>
<td>MPIO</td>
<td>Microsoft Cluster Server</td>
</tr>
<tr>
<td>Linux</td>
<td>RDAC</td>
<td>Linux Cluster</td>
</tr>
<tr>
<td>Red Hat 4/5; SUSE 9/10 SP1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 11 lists the required patches for 2510 Solaris data hosts.

TABLE 11 Required Solaris Patches for 2510 Data Host Platforms

<table>
<thead>
<tr>
<th>Solaris Version</th>
<th>Required Patch (Minimum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris 10 SPARC</td>
<td>Solaris 10 Update 1, Build 6 or later</td>
</tr>
<tr>
<td></td>
<td>118833-36</td>
</tr>
<tr>
<td></td>
<td>119090-25</td>
</tr>
<tr>
<td>Solaris 10 x64</td>
<td>Solaris 10 Update 1, Build 6 or later</td>
</tr>
<tr>
<td></td>
<td>118855-36</td>
</tr>
<tr>
<td></td>
<td>119091-26</td>
</tr>
</tbody>
</table>

Installing Array Baseline Firmware

This section describes release-specific steps for installing the firmware baseline for this release.
Note — For 2540 or 2530 arrays only. You can install the 06.70.42.10 firmware baseline only if your array already runs the 06.70.00.11 firmware which is included in Table 12 on page 13. The patches are based on the installed version of Sun StorageTek Common Array Manager software: 5.1.3 or 6.0. If you need to install the patch, perform the off-line upgrade in “Installing the 06.70.00.11 Firmware Patch” on page 13 before installing the Release 1.3 firmware baseline.
ST 2510 arrays do not need this patch. For ST 2510 arrays, proceed to “Installing Release 6.0.1 Firmware Baseline” on page 15.

Installing the 06.70.00.11 Firmware Patch

This release requires that you have 06.70.00.11 firmware installed before upgrading to the baseline firmware. The 06.70.00.11 firmware was delivered with firmware patches based on the installed version of Sun StorageTek Common Array Manager software: 5.1.3 or 6.0.0 You must have one of the patches installed before proceeding with the Release 1.3 (CAM v6.0.1) firmware baseline installation.

<table>
<thead>
<tr>
<th>TABLE 12 Required 06.70.00.11 Firmware Patches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun StorageTek Common Array Manager 5.1.3</td>
</tr>
<tr>
<td>Solaris 127486</td>
</tr>
<tr>
<td>Windows 127487</td>
</tr>
<tr>
<td>Linux 127488</td>
</tr>
</tbody>
</table>

The patches are available from the Sun Download Center:
http://www.sun.com/software/download/
or

To Install the 06.70.00.11 Firmware Patch

1. Download the patch listed in “Required 06.70.00.11 Firmware Patches” on page 13 from the Sun download center.
2. Stop all IO from all of the connected data hosts.
Note – This patch must be applied offline. Switches that are set up to use WWPN zoning especially require that this array firmware upgrade be performed offline as there is a potential loss of access to the controllers if the WWPNs change. Switches that use port zoning do not have the loss of access potential.

3. Unmount any file systems associated with the volumes on the array.
 Use system administration commands for your operating system CLI to unmount the volumes.

4. Login to the management host as root.

5. Follow the instructions in the README in the patch to:
 a. Download or copy the patch to the software installation directory
 b. Untar and/or unzip the patch
 c. Apply the patch

6. Use Sun StorageTek Common Array Manager software to upgrade the firmware.
 a. On the Java Web Console page, click Sun StorageTek Common Array Manager.
 b. Go to the Storage System Summary page and select the arrays to be upgraded.
 c. Click the Upgrade Firmware button.
 d. Follow the prompts.

7. When the management software indicates that the firmware upgrade is complete, restart each array controller one at a time.
 a. Turn on the power switch on the controller.

8. When the controllers are back online, use the management software to verify that the volumes are assigned to the active controller.
 The Volume Details page allows you to select the owning controller.

9. For switches that use WWPN zoning, updating firmware in this patch will update the existing WWPNs. You will need to correct all zoning to match these new WWPNs.

10. Restart the I/O from the data hosts.

11. Remount any file systems associated with the volumes on the array.
 Use system administration commands in your Operating System CLI to mount the volumes.
Installing Release 6.0.1 Firmware Baseline

Once you have installed the required patch noted in the last section, you can use the Common Array Manager software to install the current 6.70.42.10 firmware baseline required for this release. The Common Array Manager software and baseline firmware is included on the Sun StorageTek 2500 Series Array CD, or in the package you obtain from the Sun Download Center:

▼ To Install Firmware Baseline on the Array

1. Install the current management software and register the array, as described in Sun StorageTek Common Array Manager Software Installation Guide, Release 6.0.1 or higher.

2. Install the firmware baseline on the array using the Common Array Manager interface.

You can upgrade the firmware on the 2540 Array without stopping I/O. For firmware for expansion modules, disk drives, and IOMs, it is recommended that a maintenance period of low activity be scheduled in order to execute the upgrade process.

a. On the Java Web Console page, click Sun StorageTek Common Array Manager.
b. Go to the Storage System Summary page and select the arrays to be upgraded.
c. Click the Install Firmware Baseline button.
d. Follow the prompts to install the baseline.

Installing the 6.70.54.10 Patch for 48 Drive Support

After you install the Sun StorageTek Common Array Manager software, v6.0.1, you can apply the 06.70.54.10 patch. That patch adds support for a third expansion tray and 48 drives. The patch numbers are:

- Solaris 137294
- Windows 137295
- Linux 137296

The patches are available from the Sun Download Center:
http://www.sun.com/software/download/
Known Issues

The following sections provide information about known issues and bugs filed against this product release:

- “iSCSI Issues” on page 16
- “SAS Issues” on page 17
- “Hardware and Firmware Issues” on page 18
- “Documentation Issues” on page 27
- “Operational Information” on page 34

If a recommended workaround is available for a bug, it follows the bug description.

iSCSI Issues

NEBS Compliance of ST 2510 Array

The ST 2510 array is not currently NEBS Level 3 compliant. It will become compliant approximately 8 weeks post-RR. Customers relying on this NEBS certification should check with their Sun representatives before acquiring this array for NEBS-specific applications to verify that the ST 2510 is certified.

Out-of-Band Management May Lose Connectivity

Bug 6615356 – SYMbol task ServsymRpcHandle periodically dies, causing the management software to lose communication with the array.

The cause has been identified and will be corrected in future releases.

Workaround – Rebooting the array corrects the problem.
Negative Values Returned for iSCSI Statistics Counters

Bug 6611655 – Negative counter values display for iSCSI Statistics large counter values. The values should be unsigned.

Workaround – Resetting the baseline under Administration->Performance in the management software resets the values.

Initiator with the Same Name as a Host Creates an Error

Bug 6624755 – For iSCSI on the 2510 Array only, creating an initiator with the same name as a host returns error message 57: "The operation cannot complete because the identifier or name you provided already exists. Please provide another identifier or name and then retry the operation."

Workaround – Do not create an initiator with the same name as a host.

2510 Array Shows as Host Board Type “Unknown”.

Bug 6620100 – For the 2510 Array, the Controller Summary page of the management software shows the Host Board Type as **UNKNOWN**. For example:

```java
public static final int HB_TYPE_UNKNOWN = 1
```

Workaround – Keep a manual record of iSCSI host boards.

IPv6 Statistics Display on iSCSI TCP/IP Page

Bug 6651908 – IPv6 performance statistics display on the iSCSI Performance - Ethernet - TCP/IP page in the management software. They should not.

Workaround – Ignore the IPv6 performance statistics on this page.

SAS Issues

SAS Ports Link Status May Be Incorrect

Bug 6560293 and **6650124** – The SAS port link status in the management software may be incorrect.

Workaround – None.
Removing a SAS Controller Results in False Status

Bug 6522947 – Removing a SAS controller results in outdated information on the Controller Details page in the management software. The status correctly reports the controller as removed. Replacing the controller corrects the state.

For SAS, Creating New Volumes During Heavy Input-Output Can Result In Errors

Bug 6522938 – For SAS, using the CLI to create a new volume on an array with high data input and output returns in a timeout and an error code of 4.

Workaround – Verify if the new volume was created and if not try the operation when there is less I/O traffic.

Hardware and Firmware Issues

This section describes general issues related to the Sun StorageTek 2500 Series Array hardware and firmware.

World Wide Port Names Cannot be used as Initiators

Bug 6527155 – Do not use World Wide Port Names as names for initiators. Doing so will result in serious problems in array operations. The Common Array Manager software will prevent you from doing this.

Service Required LED Lights After Data Host Power On

Bug 6587720 – The Array Service Required LED will light after powering down a data host, connecting FC cables between the HBA and controllers, and powering up the host server.

This is working as designed. Under a Direct Connect environment, rebooting the connected data host will cause a FC link down alarm. This is an expected alarm and the Amber Service Required LED is expected to illuminate. As soon as the link is back up, the Alarm should clear and the LED should turn off. The same behavior would be expected if a cable were unplugged form the HBA, or if there was a error with the HBA port or the HBA itself.
Under a switch environment, this will not occur unless a cable is unplugged from the switch, the switch is rebooted, or is having errors. Rebooting the host will not cause the link to go down because the link from the controller SFP to the switch will remain ‘up’.

Plugging Cable into Wrong Port on a Hot System Can Cause a Panic

Bug 6541881 – A cable pull returned to the wrong HBA port can cause a panic. The cause is known and a fix is being worked on.

Workaround – Try to ensure that you plug the cable back into the port it was originally in if your system is running. If you need to move the cable to a different port, try to do so when the system is not online.

Disabled Snapshot can be Re-enabled after a Firmware Update

Bug 6529172 – A snapshot volume that is disabled can be automatically re-enabled after a firmware update occurs. If the snapshot volume is full, it can start generating warning events.

Workaround – Disable the snapshot again after the firmware update.

Adding Expansion Unit with Existing Storage Domain Info can Cause Event

Bug 6550702 and 6547615 – If you migrate an expansion module with licensed storage domains into an array that has a different number of licenses, an alarm will be generated.

Workaround – For a mismatch of license numbers, disable the licenses on the expansion module. Then disable the storage domains on the expansion module. The array will return to the licenses for the array (which is compliant), and the alarm will clear. Add any new licenses, if needed.

Port Speed should be “Unknown” for a Link that is in a Down State

Bug 6560279 – When a FC port is not connected to a Fabric or FC-AL topology, the Port Summary table reports the speed as 4Gbps. The port speed should read “Unknown” in the Summary page.
Array Returns Drive Type as ”All” if One of the Removed Disk is Configured as a Hotspare

Bug 6581396 – The `sscs list fru` command displays Disk Type and Description as ”All” and ”All disk drive” respectively for a removed disk drive which was configured as a hotspare.

It should display ”Unknown” as a drive type and ”Unknown disk drive” in the Description field.

Upgrading IOM Firmware Can Result In Failback Failure

Bug 6509762 - After a firmware upgrade to an Input-Output Module (IOM), the array will display a Check Condition - Microcode Changed message on all hosts.

After a firmware upgrade, an automatic failback was generated. When the switch port connecting the data host was enabled, the auto failback failed, indicating that it did not process the MICROCODE_CHANGED message.

Workaround – There are two workarounds:

1) Perform a manual failover. The issue will not happen.

2) After updating the IOM firmware, manually forcing a failover and failback of all effected LUNs on any mapped Solaris host will clear out the condition.

Failover May Generate False Error Messages

Bug 6509331 – In Solaris, under heavy data traffic, host-initiated failover may generate error messages in `/var/adm/messages` even though the failover is successful.

Workaround – In the CLI, use the Solaris `luxadm` command to verify that the failover was successful.

1. View the controller:

   ```bash
   $ luxadm di /dev/rdsk/c9t600A0B8000245D4C0000310A458A852Bd0s2
   DEVICE PROPERTIES for disk:
   /dev/rdsk/c9t600A0B8000245D4C0000310A458A852Bd0s2
     Vendor:          SUN
     Product ID:      LCSM100_F
     Revision:        0617
     Serial Num:      1T60325953
     Unformatted capacity: 3072.000 MBytes
   ```
Write Cache: Enabled
Read Cache: Enabled
Minimum prefetch: 0x3
Maximum prefetch: 0x3
Device Type: Disk device
Path(s):
/dev/rdsk/c9t600A0B8000245D4C0000310A458A852Bd0s2
/devices/scsi_vhci/ssd@g600a0b8000245d4c0000310a458a852b:c,raw
Controller
/devices/ssm00,0/pci018,600000/SUNW,qlc01/fp00,0
 Device Address 202400a0b8245db7,5
 Host controller port WWN 210000e08b883b2e
 Class secondary
 State STANDBY
Controller
/devices/ssm00,0/pci018,600000/SUNW,qlc01,1/fp00,0
 Device Address 202500a0b8245db7,5
 Host controller port WWN 210100e08ba83b2e
 Class primary
 State ONLINE

Note that the primary controller is online.

2. Issue the failover command.
 An error message is generated indicating failure.

 $ luxadm failover secondary
 /dev/rdsk/c9t600A0B8000245D4C0000310A458A852Bd0s2
 Error: Unable to perform failover, standby path unavailable

3. Verify the path characteristics.

 $ luxadm di /dev/rdsk/c9t600A0B8000245D4C0000310A458A852Bd0s2
 DEVICE PROPERTIES for disk:
 /dev/rdsk/c9t600A0B8000245D4C0000310A458A852Bd0s2
 Vendor: SUN
 Product ID: LCSM100_F
 Revision: 0617
 Serial Num: 1T60326060
 Unformatted capacity: 3072.000 MBytes
Write Cache: Enabled
Read Cache: Enabled
 Minimum prefetch: 0x3
 Maximum prefetch: 0x3
Device Type: Disk device
Path(s):
 /dev/rdsk/c9t600a0b8000245d4c0000310a458a852bd0s2
 /devices/scsi_vhci/ssd@g600a0b8000245d4c0000310a458a852b:c,raw
Controller
 /devices/ssm@0,0/pci@18,600000/SUNW,qlc@1/fp00,0
 Device Address 202400a0b8245db7,5
 Host controller port WWN 210000e08b883b2e
 Class secondary
 State ONLINE
Controller
 /devices/ssm@0,0/pci@18,600000/SUNW,qlc@1,1/fp00,0
 Device Address 202500a0b8245db7,5
 Host controller port WWN 210100e08ba83b2e
 Class primary
 State STANDBY

Note that the secondary controller is now online, indicating that the failover occurred.

Pushing Drive Housing Too Far Unseats Drive

Bug 6514411 – Inserting a disk drive into a tray by pushing on its housing until it is all the way in causes the drive to stop without being fully inserted and with the drive handle protruding.
Workaround – The correct way to insert a disk drive into the tray is as follows:

▼ Remove and Replace a Disk Drive

1. Push the release button next to the disk drive to release the latch handle.

 FIGURE 1 Releasing the Latch Handle

 ![Release button and Latch/Handle]

 Caution – Potential loss of data access - Data might be lost if an active disk drive is removed. If you remove an active disk drive accidentally, wait at least 30 seconds before reinserting it.

2. Use the latch handle to slowly pull the failed disk drive out of the tray.

 Caution – Use care when handling any disk drive. Make sure all ESD precautions are being followed.

3. When the drive is removed push the latch handle in to protect the failed disk drive from damage.

4. Unpack the new disk drive and do one of the following:
 - Place the failed disk drive in the packing materials so that you can return it to Sun for proper disposal.
 - Properly dispose of the failed disk drive.

5. Wait 30 seconds after the failed disk drive has been removed.

6. On the new disk drive, push the release button to release the latch handle.
7. Partially insert the drive into desired slot location. See FIGURE 2.

Caution – In some drive bays, full insertion at this point without controlling the motion of the lever may cause the lever to bind.

![FIGURE 2 Inserting the Drive.](image)

8. Grasp the lever and continue inserting the drive until you can easily rotate the lever toward the closed or latched position. See FIGURE 3.

![FIGURE 3 Pushing the Disk Drive Latch.](image)

9. Press firmly on the lever until it latches and the drive is fully inserted. See FIGURE 4.
Note – Pressing harder should not cause additional inward motion of the drive.

The latch handle will click into place when the drive is fully inserted.

FIGURE 4 Fully Inserting the Drive.

10. After the disk drive is fully inserted, the green Ready/Active LED will flash and then remain on to indicate a ready state.

A flashing Ready/Active LED indicates that data is being restored to the new disk drive.

Note – Depending on your configuration, the array might automatically reconstruct data to the new disk drive. If the array uses hot spares, it might need to complete reconstruction on the hot spare before it copies the data to the new disk drive. This could increase the time required to complete this procedure.

▼ Verify and Complete the Disk Replacement

1. Access the Service Advisor software and verify that the State value is Enable and Status value is OK for the new disk drive

 If the State and Status values are not Enable and OK, contact your Sun Service provider or your next level of technical support.

2. From the Service Advisor software, do the following:
 - Generate a new CRU inventory.
 - Release the array from maintenance.
 - Validate the disk firmware revision level.
On x86 Platform, `luxadm probe` Command Displays Entries of UTM (Management) LUNs

Bug 6482519 – The `luxadm probe` command displays UTM LUNs on x86 platforms. The UTM (Management) LUN is a reserved space, normally hidden, where the specific configuration settings for your array are stored.

Recharging a Battery in a Controller Results in a Failed Battery Event

Bug 6502673 – A battery replaced in a controller reports a failed battery event, while it is recharging. After the battery is fully recharged, this alarm will go away.

Battery Events Do Not Identify the Battery’s Controller Location

Bug 6503171 – Battery event messages do not specify which of the two controllers the referenced battery is in.

For battery events, the array only reports the tray where it occurs, not the slot.

Workaround – For non-critical events, collect the support data and find the corresponding event in the MEL log. For critical events, the third amber LED lights on the front of the controller with the failed battery.

A Bad SFP May Not Generate a Fault Indicator

Bug 6514739 – If a bad SFP is inserted in the FC port of a 2540 array, there may not an indication in the fault list that it is bad.

Certain failure modes of an SFP may not be detected by the array firmware immediately upon insertion and the management software could report the link state as optimal.

However, when you initiate I/O on the channel with the damaged SFP, it will be reported as failed.

Workaround – Check the fault LED and link LED for link failure. Check the event log for a failure event at the time of the SFP insertion and when you initiate I/O.

Insufficient Reserve Space Fails Resnap

Bug 6523608 – Refreshing a snapshot does not update the filesystem if there is insufficient reserve space, yet a message displays indicating success. The array’s event log says the resnap completed successfully.
Workaround – In the snapshot feature of the management software, configure snapshots to fail if sufficient reserve space is not available. The fail message will prompt you to increase the reserve space.

Array Does Not Timeout and Clear Pending Firmware Download Session of Previous Failure

Bug 6523624 – If a firmware upgrade to an expansion module fails, the array may not clear the failed session automatically.

Workaround – After 20 minutes, retry the upgrade. If the upgrade fails again, power cycle the array to clear the failure.

Increased Common Array Manager Response Time

A busy array can increase the management software’s response time.

Service Advisor Does Not Verify Disk is Ready to be Removed

Bug 6501029 – When the management software lists a disk as failed and the Service Advisor procedure for replacing drives is followed, the step to verify that the disk is ready to remove may not list the failed disk.

Workaround – Use an alternative menu option, Array Troubleshooting and Recovery, to view the status of the disk.

Documentation Issues

This section describes known issues and bugs related to the Sun StorageTek 2500 Series Array release documentation.

Third Expansion Tray (48 Drive) Cabling

A patch is available for Release 6.0.1 that adds support for a third expansion tray and 48 drives. Cabling instructions for the third expansion tray has not yet been added to Sun StorageTek 2500 Series Array Hardware Installation Guide or Service Advisor.
Array Configuration Naming Convention

The configuration naming convention is “controllers x trays” where the first number is the controller tray and the second is the sum of the controller tray and the number of expansion trays. For example, 1x1 is a standalone controller tray, 1x2 is the controller tray and one expansion tray, 1x3 is the controller tray and 2 expansion trays, 1x4 is the controller tray and 3 expansion trays (TABLE 13).

<table>
<thead>
<tr>
<th>Configuration Identifier</th>
<th>Controller Tray</th>
<th>Number of Expansion Trays</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1x2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1x3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1x4</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Note – Do not add more expansion trays than the array supports.

Use the following instructions to connect the dual-RAID controller tray to one or more expansion trays.

Connecting Expansion Trays

Keep the following points in mind when adding expansion trays to your storage array:

- Expansion trays should be added with the power to the array on. Limiting I/O traffic is recommended for the duration of the reconfiguration.
- Controller and expansion trays may be shipped with protective plastic plugs in the SAS expansion ports. Remove these before connecting cables.
- Expansion trays are added serially, in two chains (channel one through the A-side controller and modules, and channel two through the B-side controller and modules). The SAS cable from the expansion port on a controller connects to the In port (Up arrow) on an expansion tray drive module. The SAS cable from a drive module on expansion tray 1 to a corresponding drive module on expansion tray 2 connects from the Out port on expansion tray 1 to the corresponding In port on expansion tray 2. This pattern repeats for each additional drive module on a channel. See TABLE 15 for an illustration of this reverse cabling pattern.
To connect cables for maximum redundancy, controller B must be cabled to the expansion tray B-side modules in the opposite order as the expansion tray A-side modules. That means the last drive module in the A-side chain from controller A must be the first drive module in the B-side chain from controller B. See Table 15 for an illustration of cabling for maximum tray level redundancy.

- On all SAS cables, affix a label to each end of the cable.

Cabling an Expansion Tray to a Controller Tray

A Controller tray has two expansion ports, one on the Controller A module and one on the Controller B module. To connect an expansion tray, connect an SAS cable from each expansion port on the controller to each In port on the expansion tray. Table 14 shows a 1x2 array configuration consisting of one controller tray and one expansion tray. Two SAS cables are required.

Table 14 1x2 Array Configuration Cabling Example

To cable a 1x2 array configuration:

1. Locate the Controller A and Controller B expansion ports at the back of the controller tray (Table 14).
2. Locate the In and Out expansion ports at the A-side and B-side back of the expansion tray (Table 14).
3. Connect one SAS cable between the Controller A expansion port and the A-side In port on the expansion tray (Table 14).
4. Connect one SAS cable between the Controller B expansion port and the B-side In port on the expansion tray (TABLE 14).

Cabling Additional Expansion Trays

Each additional expansion tray is added to the preceding expansion tray by connecting SAS cables from the Out ports of the first tray to the In ports of the next tray. TABLE 15 illustrates a 1x3 array configuration consisting of one controller tray and two expansion trays. The cable connections on the B-side are reversed (the cable from the controller A expansion port goes to the In port of expansion tray 1; the cable from the controller B expansion port goes to the In port on expansion tray 2) for maximum redundancy. This pattern continues for each additional tray you add. Two more SAS cables are required for each additional tray.

TABLE 15 1x3 Array Configuration Cabling
To cable a 1x3 array configuration for maximum redundancy:

1. **Locate the Controller A and Controller B expansion ports at the back of the controller tray (TABLE 15).**

2. **Locate In and Out expansion ports at the A-side and B-side back of the expansion tray (TABLE 15).**

3. **Connect one SAS cable between the Controller A expansion port and the A-side expansion In port of expansion tray 1 (TABLE 15).**

4. **Connect one SAS cable between the Controller B expansion Out port and the B-side expansion In port of expansion tray 2 (TABLE 15).**

5. **Connect one SAS cable between the expansion tray 1 Out port and the A-side expansion In port of expansion tray 2 (TABLE 15).**

6. **Connect one SAS cable between the expansion tray 2 B-side Out port and the B-side In port of expansion tray 1 (TABLE 15).**
To cable a 1x4 array configuration for maximum redundancy:

1. Locate the Controller A and Controller B expansion ports at the back of the controller tray (TABLE 16).

2. Locate In and Out expansion ports at the A-side and B-side back of the expansion tray (TABLE 16).

3. Connect one SAS cable between the Controller A expansion port and the A-side expansion In port of expansion tray 1 (TABLE 16).

4. Connect one SAS cable between the Controller B expansion Out port and the B-side expansion In port of expansion tray 3 (TABLE 16).

5. Connect one SAS cable between the expansion tray 1 Out port and the A-side expansion In port of expansion tray 2 (TABLE 16).

6. Connect one SAS cable between the expansion tray 3 B-side Out port and the B-side In port of expansion tray 2 (TABLE 16).
7. Connect one SAS cable between the expansion tray 2 Out port and the A-side expansion In port of expansion tray 3 (TABLE 15).

8. Connect one SAS cable between the expansion tray 2 B-side Out port and the B-side In port of expansion tray 1 (TABLE 15).

Solaris 8 Not Supported For Data Hosts

The Sun StorageTek 2500 Series Array Hardware Installation Guide, part number 820-0015-10, lists Solaris 8 as supported for data hosts. Only Solaris 9 and/or 10 are supported, depending on the application.

Add Expansion Modules with Array Power On.

Bug 6538943 - The Sun StorageTek 2500 Series Array Hardware Installation Guide, Part No. 820-0015-10, states in Chapter 2:

“Expansion trays must be added with the power to the array and I/O data transfer turned off.”

This is incorrect. It is best to add an expansion tray to a running array instead of one that is powered off. Limiting I/O traffic is recommended for the duration of the reconfiguration.

1x3 Cabling Procedure Error

Step 6 on page 51 of Sun StorageTek 2500 Series Array Hardware Installation Guide states, “Connect one SAS cable between the expansion tray 2 B-side Out port and the B-side In port of expansion tray 2.” This is incorrect. You should connect the cable between the expansion tray 2 B-side Out port and the B-side In port of expansion tray 1.

Corresponding Figure 19 is correct.

Default IP Address Netmasks

The Sun StorageTek 2500 Array Hardware Installation Guide documents the default IP addresses (Configuring IP Address of the Array Controllers), but does not include the netmask. The netmask for the default addresses is 255.255.255.0.
Flathead Screwdriver Required

Bug 6515249 – In Chapter 2 of the *Sun StorageTek 2500 Array Hardware Installation Guide* the list of tools needed for the array installation in a rack does not list a flathead screwdriver, which is required if you need to loosen the rail extension screws.

Service Life of Battery is Three Years

The service life of the battery pack is three years, at the end of which the battery pack must be replaced. The *Sun StorageTek 2500 Array Hardware Installation Guide* incorrectly lists the life as two years.

Operational Information

This section provides useful operational information not documented elsewhere.

In-band Requirements for Linux

In-band for Linux requires Linux Red Hat Enterprise v5.1.

Wait 60 Seconds Before Replacing Drives

When a drive fails, wait 60 seconds after removing the failed drive before you put in a new drive.

License Required for Storage Domains

The 2500 Series array includes two storage domains. You must purchase a premium license to use additional storage domains.

When Performing an Array Import, Do Not Modify Configuration

Configure management objects while an import array job is running might interfere with the import. Be sure that everyone who uses the destination array does not configure any objects (including volumes, initiators, mappings, etc.) while the import is in progress.
Using a Volume Before It Is Fully Initialized

When you create a volume and label it, you can start using the volume before it is fully initialized.

Controller Tray Battery Information

During boot-up, the battery light might flash for an extended period. The battery charger performs a series of battery qualification tests before starting a battery charge cycle. This series of tests occurs at subsystem power-up. The tests are automatically reinitialized approximately every 25 hours by a timer.

Each controller tray contains a user-replaceable lithium ion battery pack for cache backup in case of power loss. The on-board battery is capable of holding a 2-gigabyte cache for three days (72 hours). The service life of the battery pack is three years, at the end of which the battery pack must be replaced (it is field-replaceable).

Release Documentation

Following is a list of documents related to the Sun StorageTek 2500 Series Array. For any document number with nn as a version suffix, use the most current version available.

You can search for this documentation online at:
http://www.sun.com/documentation/

<table>
<thead>
<tr>
<th>Application</th>
<th>Title</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site planning information</td>
<td>Sun StorageTek 2500 Series Array Site Preparation Guide</td>
<td>820-0024-nn</td>
</tr>
<tr>
<td>Regulatory and safety information</td>
<td>Sun StorageTek 2500 Series Array Regulatory and Safety Compliance Manual</td>
<td>820-0025-nn</td>
</tr>
<tr>
<td>Array hardware installation instructions</td>
<td>Sun StorageTek 2500 Series Array Hardware Installation Guide</td>
<td>820-0015-nn</td>
</tr>
<tr>
<td>Release-specific information for the Sun StorageTek Common Array Manager</td>
<td>Sun StorageTek Common Array Manager Release Notes</td>
<td>820-3997-nn</td>
</tr>
<tr>
<td>Management software installation and basic configuration information</td>
<td>Sun StorageTek Common Array Manager Software Installation Guide</td>
<td>820-2934-nn</td>
</tr>
</tbody>
</table>
In addition, the Sun StorageTek 2500 Series Array includes the following online documentation:

- Sun StorageTek Common Array Manager online help
 Contains system overview and configuration information.

- Service Advisor
 Provides guided FRU replacement procedures with system feedback. You can access Service Advisor from the Sun StorageTek Common Array Manager software.

- sscs man page commands for the CLI
 Provides help on man page commands available on a management host or on a remote CLI client.

Service Contact Information

If you need help installing or using this product, go to:

http://www.sun.com/service/contacting

Third-Party Web Sites

Sun is not responsible for the availability of third-party web sites mentioned in this document. Sun does not endorse and is not responsible or liable for any content, advertising, products, or other materials that are available on or through such sites.
or resources. Sun will not be responsible or liable for any actual or alleged damage or loss caused by or in connection with the use of or reliance on any such content, goods, or services that are available on or through such sites or resources.
This appendix describes special instructions to configure SAS single path connections between a data host running Solaris 10 operating system and a Sun StorageTek 2530 Array.

Note – Multipath and single path configurations are supported for all Sun StorageTek 2500 Series Arrays. Sun recommends multipath configurations for data protection.

This appendix consists of the following sections:
- “SAS OS and Patch Requirements” on page 40
- “Solaris 10 Restrictions” on page 40
- “Planning for SAS Single Path Connections” on page 40
- “To Collect Host Information” on page 41
- “To Collect Initiator Information” on page 41
- “Planning the Cabling Topology” on page 42
- “Suggested Naming Convention in the Sun StorageTek Common Array Manager Software” on page 43
- “Completing the Configuration Worksheet” on page 46
- “Configuring Single Path Connections” on page 47
- “To Connect the Host and Array” on page 47
- “To Identify the Target ID” on page 51
- “Adding More Devices” on page 50
- “Troubleshooting” on page 52
- “Verifying Single Path Information After Replacing Controllers” on page 53
Planning for SAS Single Path Connections

Key requirements to configuring Solaris SAS single path are:

- Configuring one host per initiator
- Following the suggested file naming conventions
- Editing the sd.conf file

Before configuring single path, you need to collect host, initiator, and topology information, review the naming conventions, and prepare a table of configuration information as outlined in the following sections.

Follow the procedures in the following order to ensure smooth operations:

- “SAS OS and Patch Requirements” on page 40
- “Solaris 10 Restrictions” on page 40
- “To Collect Host Information” on page 41
- “To Collect Initiator Information” on page 41
- “Planning the Cabling Topology” on page 42
- “Suggested Naming Convention in the Sun StorageTek Common Array Manager Software” on page 43
- “Completing the Configuration Worksheet” on page 46

SAS OS and Patch Requirements

The Sun StorageTek 2530 arrays supports single path connections with the operating systems and patches listed in “2530 Data Host Requirements” on page 10.

Note – Solaris 9 and Sun Cluster 3.x are not supported.

Solaris 10 Restrictions

- Solaris 10 OS does not dynamically discover volumes.
- You might have to edit the sd.conf file to recognize the new or undiscovered volumes as documented in this chapter.
On Solaris 10 OS, the target id is generated from the World Wide Names (WWNs) of both the HBA initiators and the controller ports. Replacing controllers can change the target id. Review the file naming after changing controllers to make sure the naming conventions for single path in this document are still met.

▼ To Collect Host Information

1. Issue the `hostname` command to collect the host information.

   ```
   # hostname
   csqa221-163
   
   # hostname
   csqa221-168
   ```

 This example uses two data hosts running Solaris 10 OS.

▼ To Collect Initiator Information

1. Issue the `dmesg` command to collect initiator information. (The initiator of data on the HBA.)

   ```
   # dmesg | grep WWN
   Apr 9 17:02:26 csqa221-163 mpt1: Port 0/PHYs 0-3 (wide-port)
   WWN: 0x500605b000253410
   
   Apr 9 17:02:26 csqa221-163 mpt1: Port 1/PHYs 4-7 (wide-port)
   WWN: 0x500605b000253414
   
   # dmesg | grep WWN
   Apr 9 17:00:38 csqa221-168 mpt3: Port 0/PHYs 0-3 (wide-port)
   WWN: 0x500605b0000db020
   
   Apr 9 17:00:38 csqa221-168 mpt3: Port 1/PHYs 4-7 (wide-port)
   WWN: 0x500605b0000db024
   ```

 In each of the above lines in the output is embedded valuable information as shown in the following example:

 - **mpt3**: Port 0/PHYs 0-3 (wide-port) WWN: 0x500605b0000db020
 - **mpt3** - HBA
 - Port 0 - Port 0 or 1. Both PCI-X and PCIe HBAs are dual ported.
 - PHYs 0-3 - Each physical port has 4 channels (numbered 0 – 3) and is called PHY in SAS terminology
 - WWN: 0x500605b0000db020 - the World Wide Name. Note the last four digits.
Note – The initiator information is printed at boot-up time. If the dmesg command does not return any output, the same information can be obtaining by searching on the WWN string in the `/var/adm/messages` files.

To Collect Controller and Target ID Information

Use the `cfgadm -al` command to collect information about the controllers and the Target ID. The scsi-bus code identifies the SAS controller.

```
# cfgadm -al
Ap_Id Type Receptacle Occupant Condition
Ap_Id Type Receptacle Occupant Condition
c0 scsi-bus connected configured unknown
c0::dsk/c0t0d0 disk connected configured unknown
c0::dsk/c0t1d0 disk connected configured unknown
c5 scsi-bus connected configured unknown
c5::dsk/c5t9d0 disk connected configured unknown
c5::es/ses2 disk connected configured unknown
c6 scsi-bus connected configured unknown
c6::dsk/c6t9d0 disk connected configured unknown
c6::es/ses3 disk connected configured unknown
unconfigured ok
```

Planning the Cabling Topology

The Sun StorageTek 2540 Array, with a Fibre Channel data path, has built-in drivers with dynamic discovery and multipathing capabilities.

The Sun StorageTek 2530 Array, if configured for SAS single path, does not have these capabilities. There is no utility to correlate the connections between initiators, HBA ports and controller ports. You have to plan the topology prior to configuring single path connections.
In the examples that follow, the topology is listed in FIGURE A-1

FIGURE A-1 Topology of the 2530 array when connected to data hosts.

1 – data hosts
csq221-163, csq221-168

2 – Dual ported HBA initiator 1
 csq221-163 – WWN ending in 3410
 csq221-168 – WWN ending in b630

3 – Dual ported HBA initiator 2
 csq221-163 – WWN ending in 3414
 csq221-168 – WWN ending in b624

4 – Controller host ports

5 – Controller A of ST2530

6 – Controller B of ST2530

Suggested Naming Convention in the Sun StorageTek Common Array Manager Software

The following suggests an optional naming convention to assure that the initiators are mapped correctly to the volumes. You can use the naming modifications listed in TABLE A-1 in the Sun StorageTek Common Array Manager software to improve the operations.
TABLE A-1 Naming Modifications to Make in the Sun StorageTek Common Array Manager Software

<table>
<thead>
<tr>
<th>CAM Components</th>
<th>Solaris Single Path Configuration</th>
<th>Naming Modification</th>
<th>Comments</th>
</tr>
</thead>
</table>
| **Initiator names** | Naming modifications
1. Start with the letter i- to denote that this is an initiator
2. Add data host name (example - csqa221-163)
3. Add the HBA controller information (example - mpt1)
4. Add the last 4 characters of the WWN (example - 3410) | Start with i-
Add naming of associated components. | Example –
i-csqa221-163-mpt1-3410
i-csqa221-163-mpt1-3414
i-csqa221-168-mpt3-b020
i-csqa221-168-mpt3-b024 |
| **Hosts** | The initiator is associated with a particular:
* Data host (example - csqa221-163)
* HBA controller (example - mpt1)
* Initiator Port WWN (last four letters, example - 3410) | Start with vh- (for virtual host)
Add naming of associated components. | Example –
vh-csqa221-163-mpt1-3410
vh-csqa221-163-mpt1-3414
vh-csqa221-168-mpt3-b020
vh-csqa221-168-mpt3-b024 |
| **Host Groups** | In CAM, create one host (virtual host) per initiator
The host is associated with a particular:
* Data host (example - csqa221-163)
* HBA controller (example - mpt1)
* Initiator Port WWN (last four letters, example - 3410) | Start with hg- (for host group)
Add data host name | Example –
hg-csqa221-163
hg-csqa221-168 |
<table>
<thead>
<tr>
<th>Host Group Restrictions</th>
<th>Include all hosts in the host group with the corresponding data host name.</th>
<th>Include all hosts in the host group with the corresponding data host name.</th>
<th>Include all hosts in the host group with the corresponding data host name.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Naming modifications</td>
<td>Start the volume name with either A- or B- to denote which controller is the preferred controller.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example - hg-csqa221-163 contains vh-csqa221-163-mpt1-3410 and vh-csqa221-163-mpt1-3414 hosts and vh-csqa221-168 contains vh-csqa221-168-mpt3-b020 and vh-csqa221-168-mpt3-b024 hosts.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumes</td>
<td>Ensure that all volumes beginning with A- are owned by Controller A and all volumes beginning with B- are owned by Controller B.</td>
<td>Ensure that all volumes beginning with A- are owned by Controller A and all volumes beginning with B- are owned by Controller B.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example - A-vol1, A-vol2 and so on to denote that these volume's preferred owner is Controller A.</td>
<td></td>
</tr>
<tr>
<td>Mapping Volumes to Hosts</td>
<td>Map volumes to a host group, not to a host. (This maps the volume to all hosts in the host group.)</td>
<td>Map volumes to a host group, not to a host. (This maps the volume to all hosts in the host group.)</td>
<td>Map volumes to a host group, not to a host. (This maps the volume to all hosts in the host group.)</td>
</tr>
<tr>
<td></td>
<td>(This maps the volume to all hosts in the host group.)</td>
<td>Note - it is especially important with single path that ownership be correct as failover will not occur as it does with multipath.</td>
<td>Note - it is especially important with single path that ownership be correct as failover will not occur as it does with multipath.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naming modifications</td>
<td>Start the volume name with either A- or B- to denote which controller is the preferred controller.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example - Map A-vol1 to hg-csqa221-163 instead of to vh-csqa221-163-mpt1-3410</td>
<td></td>
</tr>
</tbody>
</table>

TABLE A-1 Naming Modifications to Make in the Sun StorageTek Common Array Manager Software
Completing the Configuration Worksheet

Whether you use the suggested naming strategy or not, you can use the following table as a guideline when collecting all information prior to configuring single path connections.

TABLE A-2 Collect Configuration Information

<table>
<thead>
<tr>
<th>Component Type</th>
<th>Component Name</th>
<th>Your Value</th>
<th>Example</th>
<th>Result to Add to CAMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data host</td>
<td># hosts</td>
<td>2</td>
<td>This information translates to the host groups</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data host1</td>
<td>csqa221-163</td>
<td>Host group 1 = hg-csqa221-163</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data host2</td>
<td>csqa221-168</td>
<td>Host group 2 = hg-csqa221-168</td>
<td></td>
</tr>
<tr>
<td>Initiators</td>
<td># of HBAs in data host1</td>
<td>1</td>
<td>This information translates into initiator names and virtual host names. See Figure A-3.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Initiator 0 WWN, last 4 characters, HBA controller</td>
<td>0x500605b000253410, 3410, mpt1</td>
<td>Initiator 1 = i-csqa221-163-mpt1-3410 Virtual host 1 = vh-csqa221-163-mpt1-3410</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Initiator 0 WWN, last 4 characters</td>
<td>0x500605b000253414, 3414, mpt1</td>
<td>Initiator 2 = i-csqa221-163-mpt1-3414 Virtual host 2 = vh-csqa221-163-mpt1-3414</td>
<td></td>
</tr>
<tr>
<td></td>
<td># of HBAs in data host2</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Initiator 0 WWN, last 4 characters</td>
<td>0x500605b0003b020, b020, mpt3</td>
<td>Initiator 3 = i-csqa221-168-mpt3-b020 Virtual host 3 = vh-csqa221-168-mpt3-b020</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Initiator 0 WWN, last 4 characters</td>
<td>0x500605b0003b024, b024, mpt3</td>
<td>Initiator 4 = i-csqa221-168-mpt3-b024 Virtual host 4 = vh-csqa221-168-mpt3-b024</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Single Path Connections

With the information collected, you can now proceed to make the connections and configure the software for single path connections as documented in the following sections:

- “To Connect the Host and Array” on page 47
- “Configuring Storage in the Sun StorageTek Common Array Manager Software” on page 49
- “To Identify the Target ID” on page 51
- “Adding More Devices” on page 50

▼ To Connect the Host and Array

1. Establish a hand shake between the host and the array

 a. Physically connect the cables for your specific topology.
 In the steps to follow, it is assumed that connections have been made as per the topology depicted in Figure 1.

 b. Issue the following command once from each of the data hosts:

      ```bash
      # /usr/sbin/devfsadm
      #
      ```
If no output displays, the command ran successfully. By executing the above command, a hand shake is established between the data host and the ST2530 array.

2. Log into the Sun StorageTek Common Array Manager software as outlined in the Sun StorageTek Common Array Manager Software Installation Guide.

3. On the New Initiator page, view existing WWNs of initiators in Sun StorageTek Common Array Manager software as shown in FIGURE A-2.

FIGURE A-2 WWN after Using the devised Command.
Configuring Storage in the Sun StorageTek Common Array Manager Software

Follow the usual steps to configure storage in the Sun StorageTek Common Array Manager software. You can use the suggested naming conventions as you configure.

Before you begin, review the following configuration notes:

- Do not map volumes to the hosts you created. Map the volumes only to host groups. If you map to hosts, you will have to change the mappings if you switch to a multipath configuration.
- When mapping multiple volumes, assign the first volume LUN number 0. A Solaris 10 data host does not need any changes to recognize LUN 0 of a target. The procedure to identify the targeted depends on this step.
- LUN 31 (named Access) is the UTM LUN and cannot be used. The UTM LUN is reserved for in-band RAID management.
- Ensure that volumes are on the preferred controllers. Example - set all volumes named with the prefix A- to be owned by Controller A.
- FIGURE A-3 shows an example of creating initiators using the naming convention outlined in “Naming Modifications to Make in the Sun StorageTek Common Array Manager Software” on page 44 using the New Initiator page.

▼ To Configure Storage in the Management Software

Use the Sun StorageTek Common Array Manager software to configure the following:

- Host Groups
- Creating one host for every initiator
- Adding Hosts to Host Groups
- Creating volumes and associated objects using the Volume Creation Wizard.
- Mapping the Volumes to Host Groups

For more information, review the online help, especially the “Planning for Volume Creation” topic.
Adding More Devices

Before the host can see more devices, identify the target ID and update the /kernel/drive/sd.conf file as noted in the following sections:

- “To Identify the Target ID” on page 51
- “To Update the /kernel/drv/sd.conf File” on page 51
To Identify the Target ID

1. Ensure that LUN ID 0 is mapped to a data host correctly as requested in “Configuring Single Path Connections” on page 47.

2. Identify the controllers and target ID using the cfgadm command, noting which elements have the proper bus.

   ```
   # cfgadm -al
   Ap_Id   Type         Receptacle   Occupant    Condition
   c0      scci-bus     connected    configured   unknown
   c0::dsk/c0t0d0 disk         connected    configured   unknown
   c0::dsk/c0t1d0 disk         connected    configured   unknown
   c5      scci-bus     connected    configured   unknown
   c5::dsk/c5t9d0 disk         connected    configured   unknown
   c5::es/ses2 disk         connected    configured   unknown
   c6      scci-bus     connected    configured   unknown
   c6::dsk/c6t9d0 disk         connected    configured   unknown
   c6::es/ses3 disk         connected    configured   unknown
   unconfigured ok
   ```

To Update the /kernel/drv/sd.conf File

1. Edit the /kernel/drv/sd.conf file. Add any additional luns for the Target ID.

   ```
   # name="sd" parent="mpt" target=9 lun=0;
   name="sd" parent="mpt" target=9 lun=1;
   name="sd" parent="mpt" target=9 lun=2;
   name="sd" parent="mpt" target=9 lun=3;
   [ .. ]
   name="sd" parent="mpt" target=9 lun=30;
   ```

 Note – Add lun entries to the targets for each of your configured volumes. Adding unnecessary lun entries to this file will increase boot time.

2. Reboot the array to place the changes to sd.conf file into effect.

   ```
   # reboot -- -r
   ```

 After reboot, you should be able to see the volumes.
3. **Review devices using the format command.**

In the `format` command output, for each controller, you should be able to see the Target ID and the lun. In the example below, for controller 5 (c5t9d0), the target id is 9 and the lun is 0.

```
# format
Searching for disks...done

c3t9d0: configured with capacity of 40.00GB
AVAILABLE DISK SELECTIONS:
0. c0t0d0 <SUN72G cyl 14087 alt 2 hd 24 sec 424>
   /pci@1f,700000/pci@0/pci@2/pci@0/pci@8/LSILogic,sas@1/sd@0,0
1. c0t1d0 <SUN72G cyl 14087 alt 2 hd 24 sec 424>
   /pci@1f,700000/pci@0/pci@2/pci@0/pci@8/LSILogic,sas@1/sd@1,0
2. c5t9d0 <SUN-LCSM100_S-0617 cyl 20478 alt 2 hd 64 sec 64>
   /pci@1f,700000/pci@0/pci@9/LSILogic,sas@0/sd@9,0
...
```

4. **Before using the volumes, you must label the disks using the `format` command.**

5. **After labeling the disk, verify the labels by looking at the detailed partition table using the `format verify` option.**

Troubleshooting

Errors When Trying to Establish Communication

If you get an error when attempting to write the label and/or when you are trying to write to a device specifically in a dual controller configuration, it is likely that the LUN is currently owned by the controller that the host is not connected to.
If this happens, go to the Volume Details Page for the volume associated with this LUN and change the owner as noted in FIGURE A-4.

FIGURE A-4 Changing Volume Ownership on the Volume Details Page.

Verifying Single Path Information After Replacing Controllers

Take the following steps to ensure smooth continuation of operations when replacing controllers.

On Solaris 10 OS, the Target ID is generated by using the World Wide Names of both the HBA initiators and the controller ports. When replacing controllers, there is a very high possibility that the target id will change. Therefore, caution must be exercised when replacing controllers.
Prior to replacing the controller, note how and where the devices are being used. Typically, a system administrator will either use the devices as raw devices or create file systems on them. When a file system is created, the mount point information is typically placed in the /etc/vfstab file.

▼ To Update Single Path Information After Replacing Controllers

1. **After replacing the controller, follow the steps to identify the new target id** in “To Identify the Target ID” on page 51 and “To Update the /kernel/drv/sd.conf File” on page 51.

2. **Make changes to /etc/vfstab and any other places to reflect the change in the target id.**