
Using the BPEL Designer and
Service Engine

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 821–0017
June 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

091005@22749

Contents

Using the BPEL Designer and Service Engine ... 7
Overview ..8

The JBI Runtime Environment ...8
The BPEL Designer ...9
The BPEL Service Engine .. 10
The Composite Application Project .. 11

BPEL Designer and Service Engine Features ... 11
BPEL Service Engine Features .. 11
Supported WS-BPEL 2.0 Constructs ... 12

Understanding the BPEL Module Project .. 23
Creating Sample Processes in the BPEL Designer ... 24

Navigating in the BPEL Designer .. 26
The BPEL Designer Window .. 26
The BPEL Editor Views ... 27
Element Documentation and Report Generation ... 28
The Navigator Window ... 29
The Properties Window .. 32
Scrolling .. 32
Collapsing and Expanding Process Blocks in the Diagram .. 32
Zooming In and Out of the Diagram ... 33
Printing BPEL Diagrams and Source Files .. 33

Creating a BPEL Module Project ... 35
Software Requirements and Installation ... 36
Starting GlassFish ... 36
Creating a new BPEL Module Project .. 38
Creating the XML Schema and the WSDL Document .. 39
Creating a BPEL Process Using the BPEL Designer .. 40
Creating a Composite Application Project ... 45

3

Building and Deploying the Composite Application Project ... 46
Testing the Composite Application ... 47
Summary ... 49

Developing a BPEL Process Using the Diagram .. 49
The BPEL Diagram .. 50
Configuring Element Properties in the Design View .. 51
Finding Usages of BPEL Components .. 51
Saving Your Changes ... 52

The BPEL Designer Palette Elements .. 52
Placeholders .. 53
The Process Element .. 54
The Web Service Elements .. 55
Using the Invoke Element ... 55
Using the Receive Element .. 57
Using the Reply Element ... 59
Using the Partner Link Element ... 61
The Basic Activities .. 66
Using the Assign Element ... 66
Using the JavaScript Element ... 67
Using the Validate Element .. 69
Using the Empty Element ... 70
Using the Wait Element .. 70
Using the Throw Element ... 71
Using the Rethrow Element .. 72
Using the Exit Element .. 72
Using the Compensate Element ... 72
Using the CompensateScope Element .. 73
The Structured Activities .. 74
Using the If Element .. 74
Using the While Element .. 75
Using the Repeat Until Element ... 76
Using the For Each Element ... 76
Using the Pick Element ... 77
Using the Flow Element .. 78
Using the Sequence Element .. 79
Using the Scope Element ... 80

Contents

Using the BPEL Designer and Service Engine • June 20094

Using the BPEL Mapper ... 82
About the BPEL Mapper ... 82
Creating BPEL Mappings .. 83
Working with Predicates ... 85
XPath Function Reference .. 86
Mapping Examples .. 89
Using Type Cast and Pseudo-Components .. 92

Using Normalized Message Properties ... 96
Using Normalized Message Properties in a BPEL Process .. 96
General Normalized Message Properties .. 101

Using Handlers .. 103
Using a Fault Handler .. 103
Using an Event Handler .. 105
Using a Compensation Handler ... 108
Using a Termination Handler .. 108

Using Correlation .. 109
Understanding Correlation. Using the Correlation Wizard .. 109

Validation ... 114
Validation Criteria ... 114
Validation Types .. 114
Notifications ... 115

BPEL Process Logging and Alerting .. 117
Defining Logging ... 118
Defining Alerting ... 121

Configuring the BPEL Service Engine Runtime Properties ... 122
Accessing the BPEL Service Engine Runtime Properrties .. 122
Runtime Property Descriptions ... 123

BPEL Service Engine Deployment Artifacts .. 127
Testing and Debugging BPEL Processes .. 128

Testing a BPEL Process ... 128
Debugging BPEL Processes .. 131
BPEL Debugger Windows .. 139

Monitoring the BPEL Service Engine .. 146
Installing the BPEL Monitor API and Command Line Monitoring Tool 146
Using the BPEL Monitor Command Line Tool ... 146

Configuring Quality of Service (QOS) Properties, Throttling, and Redelivery 150

Contents

5

Configuring the Quality of Service Properties .. 150
Quality of Service Properties .. 152
Configuring Message Throttling .. 155
Configuring Redelivery ... 155

Using Dynamic Partner Links and Dynamic Addressing .. 157
Using a Literal to Construct an Endpoint ... 157
Using an Existing Partner Link's Endpoint ... 158
Using an Incoming Message to Extract the Endpoint ... 159
Using a Database Query to Provide an Endpoint ... 160
Sending Service Endpoint References ... 160

Configuring Persistence for the BPEL Service Engine .. 161
Setting the JVM Classpath to the Database JDBC Drivers .. 162
Configuring the User and Database for Persistence .. 163
Creating an XA Connection Pool and a JDBC Resource .. 165
Creating a Non-XA Connection Pool and JDBC Resource .. 167
Enabling Persistence for the BPEL Service Engine .. 167
Truncating and Dropping Tables .. 168

Configuring Failover for the BPEL Service Engine ... 169
Failover Considerations .. 169

BPEL BluePrints .. 170
Troubleshooting .. 170

Using BPEL Schemas Different from the BPEL 2.0 Specification .. 171
Ports ... 172
Travel Reservation Service Endpoint Conflict ... 173
Test Run .. 175
Test Run Failures .. 175
Disabling Firewalls when Using Servers ... 175
Required Correlation Set Usage is Not Detected by the Validation System 176

Contents

Using the BPEL Designer and Service Engine • June 20096

Using the BPEL Designer and Service Engine

One of the primary means of orchestrating web services is the use of Business Process Execution
Language (BPEL). This guide provides an overview of the the BPEL Designer and the BPEL
Service Engine, and describes how to use these tools to design, edit, compile, and deploy BPEL
processes ways in which the IDE enables you to edit, compile, and deploy BPEL processes
compliant with the WS-BPEL 2.0 specification.

The BPEL Designer is a graphic BPEL editor that enables you to easily create and edit BPEL
processes, deploy them to the BPEL Service Engine, and run these processes in test or debug
modes.

The BPEL Service Engine is a JSR 208-compliant JBI runtime component that provides services
for executing WS-BPEL 2.0, an XML-based language used to program business processes.

What You Need to Know

The following topics contain introductory and conceptual information for the BPEL Designer
and Service Engine.

■ “Overview” on page 8
■ “BPEL Designer and Service Engine Features” on page 11
■ “Understanding the BPEL Module Project” on page 23
■ “Navigating in the BPEL Designer” on page 26

Creating a Project

The following topics contain instructions for using the BPEL Designer to create a BPEL Module
Project.

■ “Creating a BPEL Module Project” on page 35

Using the BPEL Designer

The following topics contain information about using the BPEL Designer.

■ “Developing a BPEL Process Using the Diagram” on page 49

7

■ “The BPEL Designer Palette Elements” on page 52
■ “Using the BPEL Mapper” on page 82
■ “Using Normalized Message Properties” on page 96
■ “Using Handlers” on page 103
■ “Using Correlation” on page 109
■ “Validation” on page 114
■ “BPEL Process Logging and Alerting” on page 117

Using the BPEL Service Engine

The following topics contain information about using the BPEL Service Engine in a project.
■ “Configuring the BPEL Service Engine Runtime Properties” on page 122
■ “BPEL Service Engine Deployment Artifacts” on page 127
■ “Testing and Debugging BPEL Processes” on page 128
■ “Monitoring the BPEL Service Engine” on page 146

Advanced Operations

The following topics contain information about advanced operations for the BPEL Designer
and Service Engine.
■ “Configuring Quality of Service (QOS) Properties, Throttling, and Redelivery” on page 150
■ “Using Dynamic Partner Links and Dynamic Addressing” on page 157
■ “Configuring Persistence for the BPEL Service Engine” on page 161
■ “Configuring Failover for the BPEL Service Engine” on page 169
■ “BPEL BluePrints” on page 170
■ “Troubleshooting” on page 170

Overview
The section covers the following topics:

“The JBI Runtime Environment” on page 8

“The BPEL Designer” on page 9

“The BPEL Service Engine” on page 10

“The Composite Application Project” on page 11

The JBI Runtime Environment
The Java Business Integration (JBI) runtime environment provides the runtime capability for
SOA tools in the NetBeansTM IDE. The JBI runtime environment includes several components
that interact using a services model. This model is based on Web Services Description Language

Overview

Using the BPEL Designer and Service Engine • June 20098

(WSDL) 2.0. Components that supply or consume services within the JBI environment are
referred to as Service Engines. One of these components is the “The BPEL Service Engine” on
page 10 that provides services for executing business processes. Components that provide
access to services that are external to the JBI environment are called Binding Components.

JBI components are installed as part of the GlassFish application server, which is packaged with
the NetBeans IDE.

To view the installed or deployed JBI components:
1. In the IDE, open the Services window, expand the GlassFish V2 node and expand the JBI

node.
2. If you do not see the JBI node, you need to start the Application Server by choosing Start

from the pop-up menu of the GlassFish V2 node.

For a detailed overview of the Java Business Integration concept and a description of JBI nodes,
see the JBI Component Technical Overview.

The BPEL Designer
The BPEL Designer provides a highly-graphic framework that allows you to create and visualize
business processes that are compliant with the WS-BPEL 2.0 specification. The BPEL Designer

Overview

Using the BPEL Designer and Service Engine 9

feature of the NetBeans IDE allows you to easily create and edit BPEL processes. These
processes can then be executed by the BPEL Service Engine on the GlassFish Application Server.

The BPEL Designer consists of four editing windows called views:
■ Source View: The Source tab displays the underlying code for the business process. You can

use the Source view to write your entire business process if you like, or just use it to review
and edit the underlying code created when using the BPEL Designer's automated features to
create your business process.

■ Design View:The Design view provides a highly-graphical BPEL editor that lets you visually
author a diagram of your business process by adding, editing, configuring and deleting
BPEL elements. Elements are selected from the BPEL Designer Palette and dropped directly
into the Design diagram. The constructed diagram in the Design view is automatically
generated into BPEL source code compliant with the BPEL 2.0 specification.

■ Mapper View: The Mapper tab provides a framework for processing and directing business
process data. The Mapper is designed to enable you to graphically edit activities that have
various expressions: assignments, conditions, and queries, the most common of these being
XPath expressions.

■ Logging View: The Logging mapper enables you to graphically define and "tune up" server
side logging. Logging is used to write specified expression values or partner link endpoint
reference information to the server log, and alerting enables the user to to be notified of this
information. Logging and alerting are supported for almost all BPEL activities.

The BPEL Service Engine
The BPEL Service Engine provides runtime services for deploying BPEL processes. The BPEL
Service Engine is used to execute WS-BPEL 2.0 (or simply BPEL) compliant business processes.
WS-BPEL 2.0 (Web Services Business Process Execution Language) is an XML-based language
used to program business processes.

Business processes typically involve the exchange, or orchestration, of messages between the
process and other web services known as partner services. The contract between a business
process and partner services is described in WSDL 1.1. The message exchange between a
business process and partner services is wrapped in the WSDL 1.1 message wrapper, as defined
by the JBI specification, and routed via the JBI Normalized Message Router (NMR). The NMR
interacts with external web services, not resident on the local JVM, via binding components.
Binding components are responsible for encapsulating protocol-specific details. Transactions
between the BPEL Service Engine and collocated EJBs or web components are handled through
the Java EE service engine.

WS-BPEL 2.0 utilizes several XML specifications: WSDL 1.1, XML Schema 1.0, XPath 1.0, and
XSLT 1.0. Note that the JBI specification is targeted toward WSDL 2.0 and accommodates
WSDL 1.1 by defining the wrapper. The BPEL Service Engine supports one-way,
request-response operations (as defined in WSDL 1.1), within stateful, long-running

Overview

Using the BPEL Designer and Service Engine • June 200910

interactions that involve two or more parties. Asynchronous request-response is accomplished
using two one-way operations, one implemented by a partner, the other implemented by the
business process using correlation.

The Composite Application Project
The Composite Application project is used to create a Service Assembly that can be deployed to
the Java Business Integration (JBI) runtime environment.

Within the Composite Application project, you can:

■ Assemble an application that uses multiple project types (for example, BPEL Module or
XSLT Module projects).

■ Configure external/edge access protocols (SOAP, JMS, SMTP, and others).
■ Build JBI deployment packages.
■ Deploy the application image to the target JBI component.
■ Monitor the status of JBI components and applications.

To deploy a Composite Application to the BPEL Service Engine, it must include a JBI module
created from a BPEL Module project. Within a Composite Application Project that includes a
JBI module, you can also create and execute test cases that can then be run against the deployed
BPEL processes.

For more information about working with Composite Application projects, see
“Understanding the BPEL Module Project” on page 23 and “Testing and Debugging BPEL
Processes” on page 128 sections of this guide.

BPEL Designer and Service Engine Features
This section contains the following information:

■ BPEL Service Engine Features
■ BPEL Designer Features
■ Supported WS-BPEL 2.0 Constructs

BPEL Service Engine Features
Following features are supported by the BPEL Service Engine:

■ Standard JBI 1.0 engine component
■ Supports BPEL 2.0 Specification
■ Provides and consumes web services defined by using WSDL 1.1

BPEL Designer and Service Engine Features

Using the BPEL Designer and Service Engine 11

■ Exchanges messages in JBI-defined XML document format for wrapped WSDL 1.1 message
parts

■ Implements endpoint status monitoring
■ Supports multiple-thread execution
■ Supports debugging of business processes
■ Supports database persistence of business process instances for reliable recovery from

system failure
■ Supports load balancing and failover when clustered

Supported WS-BPEL 2.0 Constructs
The following WS-BPEL 2.0 constructs are inplemented by the BPEL Service Engine

Features Support

Process

WS-BPEL 2.0 process root element. The
Process element is present in the BPEL
Designer diagram by default.

Supported Elements
extensions
import
partnerLinks
variables
correlationSets
faultHandlers
eventHandlers

Supported Attributes
name
targetNamespace

Not Supported
queryLanguage (xpath only)
expressionLanguage (xpath only)
suppressJoinFailure
abstractProcess
exitOnStandardFault

Extensions

More Information

BPEL Designer and Service Engine Features

Using the BPEL Designer and Service Engine • June 200912

Features Support

Variable

Supplies the mechanism used to hold messages
that make up the state of a business process.

Supported Elements
name
messageType
type
element

Supported Attributes

Extensions

More Information

Correlation

Tracks the multiple long-running exchanges of
messages that typically take place between a
BPEL process and its partner services. The
correlation mechanism helps to route
messages to appropriate process instances.

Supported Elements

Supported Attributes

Extensions

More Information

EventHandlers

Invokes a specific action concurrently with a
specified corresponding event.

Supported Elements
onEvent
onAlarm

Supported Attributes

Extensions

More Information

FaultHandlers

Defines the activities that are executed as a
response to faults resulting from invoked
services.

Supported Elements
catch
catchAll

Supported Attributes

Extensions

More Information

Import

Used within a process to clearly express
dependency upon external XML Schema or
WSDL definitions. The Process element can
have any number of Import elements as initial
children, preceeding any other child element.

Supported Elements
Supported Attributes

namespace
location
importType

Extensions

More Information

Web Services

BPEL Designer and Service Engine Features

Using the BPEL Designer and Service Engine 13

Features Support

Invoke

Invokes a one-way or request-response
operation on a portType offered by a partner. It
enables the business process to send messages
to partners. The operation is defined in the
partner's WSDL file.

Supported Elements
correlations
toPart
fromPart

Not Supported
catch
catchAll
compensationHandler

Supported Attributes
partnerLink
portType
operation
inputVariable
outputVariable

Extensions

More Information

Receive

Allows the business process to do a blocking
wait for a particular message to arrive.

Supported Elements
correlations
fromPart

Supported Attributes
partnerLink
portType
operation
Variable
createInstance
messageExchange

Extensions

More Information

BPEL Designer and Service Engine Features

Using the BPEL Designer and Service Engine • June 200914

Features Support

Reply

Returns a message from the process to the
same partner that initiated the operation. The
combination of Receive and Reply activities
creates a request-response operation.

Supported Elements
correlations
toPart

Supported Attributes
partnerLink
portType
operation
Variable
faultName
messageExchange

Extensions

More Information

BPEL Designer and Service Engine Features

Using the BPEL Designer and Service Engine 15

Features Support

PartnerLink

Identifies the parties that interact with your
business process. Each link is defined by a
partner link type and a role name.

Supported Elements
Supported Attributes

name
partnerLinkType
myRole
partnerRole

Not Supported
initializePartnerRole

Extensions

More Information

Basic Activities

Assign

Assigns values to variables. You use the Assign
element to copy data from one variable to
another, construct and calculate the values of
expressions, and store new data in variables.
Expressions are required to perform simple
computation or operate message selections,
properties, and literal constants to produce a
new value for variables.

Supported Elements
copy (child elements from and to)
extensibleAssign

Supported Attributes
from (name="variable" type="NCName")
from (name="part" type="NCName")
to (name="variable" type="NCName")
to (name="part" type="NCName")
validate
from (name="expressionLanguage" type="anyURI" —
xpath only)
from (name="property" type="QName")
from (name="partnerLink" type="NCName")
from (name="endpointReference" type="bpws:tRoles")
from (name="opaque" type="bpws:tBoolean")
to (name="queryLanguage" type="anyURI")
to (name="property" type="QName")
to (name="partnerLink" type="NCName")

Extensions

More Information

BPEL Designer and Service Engine Features

Using the BPEL Designer and Service Engine • June 200916

Features Support

JavaScript

Acts like an Assign activity that enables you to
use JavaScript (E4X), rather than using XPath
1.0.

Supported Elements
copy (child elements from and to)
extensibleAssign

Supported Attributes
Validate

Extensions

More Information

Validate

Validates the values of variables against their
associated XML and WSDL data definition.
The element includes a Variables property that
lists the variables for the process, and allows
you to specify which variables to validate.
When one or more variables prove invalid
against a corresponding XML definition, a
standard fault, bpel:invalidVariables, is
thrown.

Supported Elements
Supported Attributes

variable

Extensions

More Information

Empty

Used as a placeholder within a process to catch
and suppress faults or to help synchronize
actions within a flow activity that are executed
concurrently.

Supported Elements

Supported Attributes

Extensions

More Information

Wait

Waits for a specified time or until a deadline is
reached.

Supported Elements
for
until

Supported Attributes

Extensions

More Information

Throw

Used to signal a specific internal fault, and can
provide a QName and information for that
fault.

Supported Elements
Supported Attributes

faultName
faultVariable

Extensions

More Information

BPEL Designer and Service Engine Features

Using the BPEL Designer and Service Engine 17

Features Support

ReThrow

Used to rethrow a fault.

Supported Elements

Supported Attributes

Extensions

More Information

Exit

Terminates the execution of a business process
instance.

Supported Elements

Supported Attributes

Extensions

More Information

Compensate

Invokes the compensation handler of a
particular scope.

Supported Elements

Supported Attributes

Extensions

More Information

CompensateScope

Invokes the compensation handler of a
particular scope.

Supported Elements

Supported Attributes

Extensions

More Information

Structured Activities

If

Supports conditional behavior of a business
process instance. The If activity consists of
conditional branches defined by the If and Else
If elements, followed by an optional Else
branch. The conditions on If and Else If
branches are evaluated in the order they
appear. During execution, the first branch
whose condition holds true is taken and
provides the activity specified for the If activity.
In other words, if there are several Else If
branches whose conditions hold true, only the
first of them will be executed.

Supported Elements
elseIf
condition

Supported Attributes

Extensions

More Information

BPEL Designer and Service Engine Features

Using the BPEL Designer and Service Engine • June 200918

Features Support

While

Repeatedly execute one or more activities as
long as specific conditions are in place at the
beginning of each iteration.

Supported Elements
condition

Supported Attributes

Extensions

More Information

RepeatUntil

Repeatedly executes one or more activities as
long as specific conditions are in place after the
execution of each iteration. This element
contains other elements that are repeated until
the success criteria you specify are met. If the
condition you specify leads to true, the
activities listed will be executed once.

Supported Elements
condition

Supported Attributes

Extensions

More Information

ForEach

Repeatedly execute its contained scope activity
exactly N+1 times where N equals the Final
Counter Value minus the Start Counter Value.

Supported Elements
startCounterValue
finalCounterValue
completionCondition

Supported Attributes
counterName

Not Supported
parallel

Extensions

More Information

Pick

Blocks a process and waits until a specified
events occurs. After one of the specific event
occurs, the activity associated with this event is
performed. The possible events are the arrival
of a message or a timer-based alarm. The
selected activity is dependent upon which
event occurs first.

Supported Elements
onMessage
onAlarm

Supported Attributes
variable

Extensions

More Information

Flow

Defines a set of activities that will execute
concurrently (in parallel). This is a structured
activity, containing other activities separated
into individual control paths or branches. You
can embed as many paths in the activity as you
want, and they will all be executed
simultaneously.

Supported Elements
Not Supported

links

Supported Attributes

Extensions

More Information

Sequence

Used to nest a series of activities in a process.
Activities within a sequence execute in strict
sequential order, completing when the last
activity within the nest has finished.

Supported Elements

Supported Attributes

Extensions

More Information

BPEL Designer and Service Engine Features

Using the BPEL Designer and Service Engine 19

Features Support

Scope

Essentially, this activity is a collection of child
activities that can have their own Variables,
Fault and Event Handlers, and correlation sets.
The Scope activity provides the behavior
context for the child elements.

Supported Elements
variables
faultHandlers
eventHandlers

Not Supported
partnerLinks
correlationSets
compensationHandler
terminationHandler

Supported Attributes
Not Supported

isolated
exitOnStandardFault

Extensions

More Information

Other Activities

OnMessage Supported Elements
Supported Attributes

variable

Extensions

More Information

OnMsgCommon Supported Elements
fromPart
correlations

Supported Attributes
partnerLink
portType
operation
messageExchange

Extensions

More Information

OnAlarmPick

Specifies an event that is triggered when a
given duration variable is exceeded.

Supported Elements

Supported Attributes

Extensions

More Information

BPEL Designer and Service Engine Features

Using the BPEL Designer and Service Engine • June 200920

Features Support

CompletionCondition Supported Elements
Supported Attributes

countCompletedBranchesOnly

Extensions

More Information

Catch

Used to intercept a specifically defined type of
fault.

Supported Elements
faultName
faultVariable
faultMessageType
faultElement

Supported Attributes

Extensions

More Information

OnEvent

Indicates that a specified event is triggered
when a message arrives.

Supported Elements
messageType
variable

Supported Attributes

Extensions

More Information

BPEL Designer and Service Engine Features

Using the BPEL Designer and Service Engine 21

Features Support

Activity Supported Elements
Not Supported

targets
sources

Supported Attributes
name

Not Supported
suppressJoinFailure

Extensions

More Information

property

Defines a unique name and associates it with
an XML Schema simple type.

Supported Elements
Supported Attributes

name
type
element

Extensions

More Information

BPEL Designer and Service Engine Features

Using the BPEL Designer and Service Engine • June 200922

Features Support

propertyAlias

Defines a globally named property as an alias.

Supported Elements
query

Supported Attributes
propertyName
messageType
part

Not Supported
queryLanguage (xpath only)

Extensions

More Information

PartnerLinkType

Expresses the dependences between services by
defining each service's role.

Supported Elements
role

Supported Attributes
name

Extensions

More Information

Role

Specifies one WSDL portType.

Supported Elements
Supported Attributes

name
portType

Extensions

More Information

CorrelationWithPattern Supported Elements

Supported Attributes

Extensions

More Information

Understanding the BPEL Module Project
The BPEL Module project is a group of source files which includes BPEL files, WSDL files, and
XML schema files. Within a BPEL Module project, you can author a business process compliant
with the WS-BPEL 2.0 language specification.

The BPEL Module project provides point-and-click support for the following:

■ Using the New Project wizard to create a BPEL Module project and a Composite
Application project.

Understanding the BPEL Module Project

Using the BPEL Designer and Service Engine 23

■ Importing WSDL Resources to act as partner services in the business process.
■ Creating new WSDL resources, as needed.
■ Importing XML Schema resources.
■ Adding BPEL activities to the business process diagram; further defining the elements by

using Property Editor dialog boxes, Properties window, and pop-up menu actions.
■ Creating and changing the source code of the BPEL, WSDL and XSD files.
■ Checking and validating XML source code.
■ Building and adding the project as a JBI module to a Composite Application project.
■ Test running BPEL processes by sending sample messages to the deployed process or

processes.
■ Debugging deployed business processes

Steps to Create a BPEL Module Project

Accordingly, the typical procedure to follow when building a BPEL process is:

1. “Creating a new BPEL Module Project” on page 38 using the New Project wizard.
2. “Creating a Composite Application Project” on page 45. For sample processes, Composite

Application projects are created automatically for you. For the processes created from
scratch, you create the Composite Application project manually.

3. Add JBI Modules to the Composite Application project.
4. (Optional) Build the Composite Application project and make sure that the Application

Server is started.
5. Build and Deploy the Composite Application Project the Composite Application project to

the BPEL Service Engine.
6. Create test cases.

For sample processes, test cases are automatically created; for new projects, you need to
create at least one test case.

7. Run one or all test cases.
8. (Optional) Debug the BPEL process.

Creating Sample Processes in the BPEL Designer
The best way to get acquainted with constructing BPEL diagrams is to create sample processes.
You can design your BPEL process by modifying existing sample processes.

For samples, the New Project sample wizard automatically generates both types of projects,
BPEL Module and Composite Application, so you do not need to separately create each of these
projects. The IDE automatically adds the sample BPEL Module project as a JBI module to the
Composite Application project.

Understanding the BPEL Module Project

Using the BPEL Designer and Service Engine • June 200924

In the BPEL Designer, you can create the following sample processes:

■ A Synchronous Sample Process
■ An Asynchronous Sample Process
■ Travel Reservation Service sample

A Synchronous Sample Process
A synchronous process refers to a conversation style in which the client sends a message to the
process, waits for a reply, and continues work only when the reply comes back. When you
create a synchronous sample process, the IDE generates a skeletal process with a single
synchronous operation and the required WSDL and XML schema files.

An Asynchronous Sample Process
An asynchronous process applies to long-running conversations in which the client does not
wait for a reply from the process before continuing its work. Instead of returning the result
synchronously to the client, this process accepts the client's request, performs work that might
be long-running, and then asynchronously calls back to the client when the work is done. When
you create an asynchronous process, the IDE generates a skeletal process with one incoming
and one outgoing asynchronous operation and the required WSDL and XML schema files.

Note that any particular process can consist of an arbitrary collection of synchronous and
asynchronous interactions with one or more conversational partners.

Travel Reservation Service Sample
This sample is a real-world BPEL process sample constructed using the majority of BPEL
elements and several partner web services.

Together with the Travel Reservation Service sample, the wizard creates another project,
Reservation Partner Services, a basic EJB and JMS based implementation of the three partner
services.

Creating a Sample BPEL Module Project
The following steps describe the general flow for creating a new project from a sample BPEL
module project.

▼ To create a sample BPEL Module project:

Choose File → New Project (Ctrl-Shift-N).

In the Categories list, expand the Samplesnode and select SOA.

In the Projects list, select the sample project you want to create and click Next.

1

2

3

Understanding the BPEL Module Project

Using the BPEL Designer and Service Engine 25

In the Name and Location page, name the project and specify the location of project files.

Click Finish.
The wizard creates two types of projects for the selected sample: a sample BPEL Module project
and a sample Composite Application project. You are free to modify the sample business
process and or add additional BPEL processes to the BPEL Module. To deploy, test-run, and
debug the BPEL process, use the Composite Application project.

Navigating in the BPEL Designer
This section explores the navigation capabilities of the BPEL Designer.

“The BPEL Editor Views” on page 27

“The Navigator Window” on page 29

“The Properties Window” on page 32

“Scrolling” on page 32

“Zooming In and Out of the Diagram” on page 33

“Printing BPEL Diagrams and Source Files” on page 33

The BPEL Designer Window
The new BPEL file opens in the Design view of the BPEL Designer.

4

5

Navigating in the BPEL Designer

Using the BPEL Designer and Service Engine • June 200926

To open the BPEL Designer, either create a new BPEL Process or open an existing BPEL
Process. The image above shows the NetBeans IDE open to the BluePrint1 Project's BPEL
process in the BPEL Designer. If the Pallet and Properties windows are not displayed in your
current view, click Windows → Reset Windows from the NetBeans menu.

The BPEL Designer includes the following components:
■ BPEL Editor — The center pane displays the BPEL Editor. The Design view of the BPEL

Editor enables you to visually model the business process. The BPEL Designer automatically
generates BPEL code that corresponds to the visual design.

■ Pallet — The Pallet, available in the designers upper-right pane of the Design view, provides
easy access to the BPEL elements.

■ Properties Window — The Properties window, available in the lower-right pane of the
Design view, provides the property sheet for any selected component or activity.

■ Navigator Window — The Navigator window, available in the lower-left pane, shows the
BPEL Logical View of the BPEL process.

■ Source View — Click the Source button, and the Source view of the BPEL Editor displays
the code for the current process.

■ BPEL Mapper — To see the BPEL Mapper view, select a BPEL activity in the Design view of
the editor, then click the Mapper button. The Mapper view of the BPEL Editor provides a
framework that enables you to define and direct BPEL process data.

■ BPEL Logger — To see the BPEL Logger view, select a BPEL activity in the Design view of
the editor, then click the Logger button. The Logger, similar in appearance to the BPEL
Mapper view, enables you to select the level of logging for the various process activities.

The BPEL Editor Views
In the BPEL Editor you can switch between Source View, Design View, Mapper View and
Logging View. All the views are always kept in sync.
■ Design View — The Design view is a business processes designer where you can author a

diagram of your business process. In the Design view, you add, edit, and delete diagram
elements. The diagram constructed in the Design view is automatically generated into BPEL
source code compliant with the WS-BPEL 2.0 specification with the exceptions listed in the
BPEL 2.0 Language Constructs section of the BPEL Service Engine User's Guide
(https://open-esb.dev.java.net/kb/preview3/ep-bpel-se.html).
The Design view opens by default when you double-click a BPEL source file from a BPEL
Module project in the Projects window. To switch to the corresponding place in the Source
view, right-click an element in the Design view and select Go to Source (Alt-O).

■ Source View — The Source view shows the underlying code for a business process diagram.
The Source view is based on the IDE's XML Source view and provides access to
conveniences such as code folding, XML syntax highlighting, and code completion.

Navigating in the BPEL Designer

Using the BPEL Designer and Service Engine 27

https://open-esb.dev.java.net/kb/preview3/ep-bpel-se.html
https://open-esb.dev.java.net/kb/preview3/ep-bpel-se.html

You can perform source level editing as well as visual designing. The BPEL Designer will
perform round-trip two-way engineering to ensure that the Design view and Source view
remain synchronized with each other. The IDE will automatically re-parse the BPEL source
file and rebuild the diagram every time you perform manual edits of the source file.
To switch to the corresponding place in the Design view, place a cursor at the line in the
Source view, right-click and choose Go to Design (Alt-D).

■ Mapper View — The BPEL Mapper provides a framework for processing and directing
BPEL process data. The BPEL Mapper can be used to assign values or to set conditions. To
switch to the the Mapper view press Ctrl-Shift-F9 or click the Mapper tab on the editor
toolbar. For more information refer to the “Using the BPEL Mapper” on page 82 section.

■ Logging View — The Logging view provides you with the capability to set logging or
alerting rules for the process. To switch to the the Logging view press Alt-L or click the
Logging tab on the editor toolbar. For more information see the Logging and Alerting
section.

Cloning Document Views
The Clone Document feature is a customization option which enables you to clone documents
views. For example, if you want to see both the source and the design view of a BPEL process at
the same time (or the Design and Mapper view) follow the instructions below.

Several views of one document are always kept in sync.

▼ To Clone the Document View:

Open the BPEL file

Right click the tab with the file name and choose Clone Document. Another tab with the same
document will be created.

Drag and drop one of the tabs to the location you choose: left, right or to the bottom of the
screen. An orange frame will show you where the window you are dragging will be placed.

Element Documentation and Report Generation
The BPEL Designer includes a feature that allows you to create comments (documentation)
attached to the elements of a BPEL process. This documentation is then included with the
source code of the BPEL process and can later be extracted and included in a report.

Creating Documentation for an Element
1. Select an element on the diagram or in the Navigator window.

1

2

3

Navigating in the BPEL Designer

Using the BPEL Designer and Service Engine • June 200928

2. Click the selected element's Documentation icon which appears next to the selected element
in the diagram.
A documentation window appears.

3. Type any information or comments that you feel are useful, into the Documentation
window. This documentation is now available to you whenever you open the
Documentation window, and is also written to the element's Properties file.

Generation a Report
The Report Generation feature of the BPEL Designer enables you to generate a PDF document
describing the BPEL Process. By creating a custom report you can create a more verbose report
or include information for only those elements that have documentation, in the report.

1. From the BPEL Diagram toolbar, press the Generate Report button. The report, in PDF
format, is added to the project's Process files in the Projects window.

The report includes the following information:
■ The name of the process
■ The diagram
■ Information about partner links
■ Information about imported documents
■ A list of all defined variables
■ Information about the process elements
■ Documentation created for the process elements

2. To customize a report so it includes all of the element properties, or to include only elements
that have documentation, click the Customize Report button in the BPEL Diagram toolbar.

A Customize Report dialog box appears.
■ Choose Generate Verbose Report to include all of the element properties in the report.
■ Choose Include Only Elements with Documentation to only include elements with

documentation in the report.
3. Click OK, and click the Generate Report button. If a report already exists, the new report

will overwrite the existing report in the Projects window.

The Navigator Window
The Navigator window is a companion of the BPEL Designer. If the Navigator window is not
visible, you can manually invoke it by selecting Window → Navigating → Navigator from the
main menu or pressing the Ctrl-7 key combination.

The Navigator window provides two distinct views of the BPEL process: BPEL Logical View and
XML View. You can switch between the XML View and BPEL Logical View using the
drop-down menu in the upper part of the Navigator window.

Navigating in the BPEL Designer

Using the BPEL Designer and Service Engine 29

XML View
The XML View is identical to the Navigator view that is available for all XML documents
opened in the IDE. The XML View is a companion to the BPEL Source view. Double-click any
Navigator node and the Source view adjusts the current line of code to show the selected
element.

Logical View
The Navigator also provides the BPEL Logical View of BPEL processes. When you select BPEL
constructs in the Design view, the BPEL Logical View shows the same element selected.
Alternatively, when you select a node in the BPEL Logical View's tree, the corresponding
element is selected on the diagram.

Right-clicking the nodes in the BPEL Logical View invokes pop-up menus with actions relevant
to the particular node. For example, for the Assign element, the actions are Go to Source, Go to
Design, Wrap With, Move Up and Move Down, Toggle Breakpoint, Delete, Show BPEL
Mapper, and Properties. The Go to Source and Go to Design actions, available for most of the
nodes, have associated keyboard shortcuts: Alt-O for Go to Source and Alt-D for Go to Design.

In general, the nodes in the Navigator window correspond to the elements on the diagram. In
addition, there are nodes, such as Variables and Correlation Sets, that are related to
functionality not directly accessible from the diagram.

To view the variables used in the business process, expand the Variables node in the BPEL
Logical View of the Navigator window. For variables, the following commands are available in
the pop-up menu:

■ Go To Source. Opens the source of the BPEL file and places the cursor at the place where the
variable is mentioned for the first time.

■ Go To Type Source. Opens the source file that contains a definition of the variable type.
This can be, for example, a WSDL file.

■ Find Usages. Shows usages of variables in the BPEL file. This command is also available
from the pop-up menu for correlation sets and Partner Link elements.

Of particular relevance is the Imports node, which lists XSD and WSDL files referenced with
the help of the Import element in your BPEL file. Using the pop-up menu for the Imports node,
you can add reference to an XSD or WSDL file. Note that only files located in the project folder
may be referenced.

▼ To add a resource file (WSDLor XSD) as an import:

In the BPEL Logical View of the Navigator window, right-click the Imports node and choose one
of the following, depending on the format of the imported file: Add WSDL Import or Add
Schema Import.

1

Navigating in the BPEL Designer

Using the BPEL Designer and Service Engine • June 200930

In the Create New Import dialog box, select the file in your project structure to add it as import.

Note – Before you can import a file, you must first add the files stored in your project directory to
the project structure, then you can add them as imports. The files that are already referenced are
displayed in the strikethrough style.

View the values in the read-only Namespace and Type fields and click OK.
The resource file you have just added appears under the Imports node in the Navigator window.

▼ To add a property to a WSDL file:
From the Navigator window you can add properties and property aliases to the WSDL files
referenced in the BPEL document.

In the BPEL Logical View of the Navigator window, right-click a WSDL file under the Imports
node and choose Add Property from the pop-up menu.

In the Create New Correlation Property dialog box, specify the property name.

Select the property type and click OK.

▼ To add a property alias to a WSDL file:

In the BPEL Logical View of the Navigator window, right-click a WSDL file under the Imports
node and select Add Property Alias from the pop-up menu.

In the Create New Property Alias dialog box, click Browse next to the Property field to specify
the property.

In the Property Chooser dialog box, select the property for which you are creating the alias and
click OK. The Property Type field in the Create New Property Alias dialog box is populated with
the type.

In the Map Property To tree, expand the WSDL file node and select the message or message part.

To add a query, enter the query string in the Query text field.
If the Synchronous with Tree checkbox is selected, the Query field is updated each time you
change the selection in the Map Property To tree.

Click OK.

For more information on defining properties and property aliases with the WSDL Editor, refer
to Using the WSDL Editor.

2

3

1

2

3

1

2

3

4

5

6

See Also

Navigating in the BPEL Designer

Using the BPEL Designer and Service Engine 31

The Properties Window
The Properties window contains the properties information for the currently selected element
of the process. You can also use the IDE's Properties window to configure all BPEL element
properties. The contents of the Properties window differs depending on the active element of
the process. To open the Properties window, choose Window → Properties or press
Ctrl-Shift-7.

Scrolling
When you open a BPEL file from the Projects window, the diagram opens in the Editing Mode
of the Design view by default. In this mode, you can edit the diagram and scroll through it. The
Editing Mode is enabled when the Navigation mode is selected on the Editor toolbar.

In the Editing Mode, you can scroll through the diagram by using the following methods:

■ Turning the mouse wheel
■ Using the horizontal and vertical scroll bars
■ Using the thumbnail view to select the section of the diagram to display. To access the

thumbnail view, click the Thumbnail button located below vertical scroll bar, or press
Ctrl+B

■ Pressing the Tab key to move through elements

Collapsing and Expanding Process Blocks in the
Diagram
The diagram enables you to collapse and expand process blocks to allow you to focus on other
processes.

Navigating in the BPEL Designer

Using the BPEL Designer and Service Engine • June 200932

▼ To collapse and expand a process block:

Click on the block's border to highlight the block. A Collapse button appears above the left
corner of the block.

Click the Collapse button. The process block is displayed as a small block in the diagram flow.

To expand the process block, click the Expand icon in the center of the collapsed process block.
That block is expanded.

Zooming In and Out of the Diagram
The zoom feature enables you to reduce or enlarge the size of your diagram to get a closer view
or to see more of the diagram at a reduced size. You can change the zoom value using the Zoom
Value drop-down list on the Editor toolbar.
■ To scale the diagram to fit the window, click Fit Diagram.
■ To scale the diagram width to fit the window width, click the Fit Width button.

The minimum scale size is 33% and some large diagrams might not fit entirely the window.

To change the scale do one of the following:
■ Click Zoom In or Zoom Out button on the toolbar.
■ Click Fit Diagram button on the toolbar to scale the diagram to fit the window.
■ Click Fit Width button on the toolbar to scale the diagram width to fit the window.
■ Turn on the Navigation Mode on the toolbar, then you can zoom in and out using the

mouse wheel.

Printing BPEL Diagrams and Source Files
You can print BPEL diagrams and source files and customize printing settings, including
border, headers, footers, colors, line numbers, and zooming, to suit your preferences.

▼ To preview and print a BPEL diagram or source file:

Open a BPEL file in the Design view.

Choose File from the main menu and select one of the following commands:

■ Print Preview. Preview the print layout or configure print settings.
■ Print to HTML. Print the .BPEL file as an HTML file.

1

2

3

1

2

Navigating in the BPEL Designer

Using the BPEL Designer and Service Engine 33

▼ To customize print options:

In the IDE, select an object you want to print.

In the Print Preview window, click Print Options. The Print Options dialog box opens.

Change the print settings to suit your preferences:

■ Print Border — Adds a border to the printed page. Click the Color icon to change the
border color.

■ Print Header and Print Footer. — Specifies the text, alignment, color, and font of the
header and footer.
■ To hide the header or footer, clear the Print Header or Print Footer checkboxes,

respectively.
■ To specify the header or footer pattern text, click in the field corresponding to the

alignment (Left, Center, or Right) and select one of the buttons below. For example, to
add the time of printing at the bottom left corner, select the Print Footer checkbox, click
into the Left field, and click the "Time of printing " icon.

■ Click the Choose Footer Color and Choose Footer Font icons to modify the color and
the font for the page header and footer.

■ Line Numbers — Specifies whether to print line numbers for source files.
■ Wrap Lines — Wraps the lines to fit them on the page.
■ Print as in Editor — The printed page will look like you see it in the editor.
■ Text Font and Color — Specifies the color and font of the text when you are printing, for

example, source files.
■ Background Color — Specifies the background color.
■ Line spacing — Specifies the value for line spacing.
■ Zoom — Specifies the scale for the printed text or diagram on the page. You can select to fit

width or height or choose a specific zoom scale.

Click OK.

▼ To customize page settings:

In the IDE, select an object you want to print.

Choose File → Print Preview.

In the Print Preview window, click Page Setup. The Page Setup dialog box opens.

1

2

3

4

1

2

3

Navigating in the BPEL Designer

Using the BPEL Designer and Service Engine • June 200934

You can also invoke the Page Setup dialog box by choosing File → Page Setup.

On the Page Setup page specify the following parameters:

■ Paper size
■ Source of the paper
■ Paper orientation
■ Margin sizes

Click Printer button and specify the printer.

Click OK.

Creating a BPEL Module Project
The proceeding sections describe the steps used to create a simple BPEL Module project. To
demonstrate the procedures we are using the Synchronous sample project.

Accordingly, the typical procedure to follow when building a BPEL process is:

1. “Creating a new BPEL Module Project” on page 38 using the New Project wizard. Creating
the BPEL module project also includes:

a. Creating an XML Schema using the XSD Editor.
b. Creating the WSDL Documents using the New WSDL Editor.
c. Create the BPEL Processes using the BPEL Designer.

2. “Creating a Composite Application Project” on page 45.

When new projects are created using the sample projects that are included with GlassFish,
the Composite Application projects are created automatically. When you create a project
from scratch, you need to create the Composite Application project manually.

3. Add JBI Modules to the Composite Application project.

4. (Optional) Build the Composite Application project and make sure that the Application
Server is started.

5. Build and Deploy the Composite Application Project to the BPEL Service Engine.

6. Create test cases.

For sample processes, test cases are automatically created; for new projects, you need to
create at least one test case.

7. Run one or all test cases.

8. (Optional) Debug the BPEL process.

4

5

6

7

Creating a BPEL Module Project

Using the BPEL Designer and Service Engine 35

Software Requirements and Installation
The following sections walk you through the Synchronous sample project to demonstrate the
steps involved in creating and running a BPEL Module project.

It is assumed that you have installed the following:

■ GlassFish ESB Installation, which includes the following:
■ GlassFish v2 Update Release 2 (UR2)
■ NetBeans IDE 6.1 ML
■ Open ESB core components
■ Java Business Integration (JBI) service engines
■ Java Business Integration (JBI) binding components
■ Java Business Integration (JBI) component tooling

■ JDK (Java Development Kit) 6

Note – You must have the JDK (Java Development Kit) software installed and JAVA_HOME set
prior to installing GlassFish ESB or the Installer will halt the installation. See Installing the JDK
Software and Setting JAVA_HOME for details.

To get the latest installation of GlassFish ESB, see GlassFish ESB Downloads.

To download Shared Libraries, JAR files, or NetBeans-module files for BPEL SE, see BPEL
Service Engine Downloads.

Starting GlassFish
The BPEL Service Engine starts together with GlassFish. Before deploying and performing test
runs of a Composite Application project in the NetBeans IDE, make sure that the GlassFish
Application Server is started.

▼ To check the Status of the GlassFish V2 Application Server in the
NetBeans IDE

If the Services window is not visible, choose Window→ Services.

In the Services window, expand the Serversnode.
The Servers node should contain a GlassFish V2 subnode. If the GlassFish V2 node does not
appear, go to “To Register the GlassFish V2 Application Server with the NetBeans IDE” on
page 37:

1

2

Creating a BPEL Module Project

Using the BPEL Designer and Service Engine • June 200936

https://open-esb.dev.java.net/Downloads.html
http://java.sun.com/javase/downloads/index.jsp
http://wiki.open-esb.java.net/Wiki.jsp?page=Inst_jdk_javahome_t.txt
http://wiki.open-esb.java.net/Wiki.jsp?page=Inst_jdk_javahome_t.txt
https://open-esb.dev.java.net/Downloads.html
https://open-esb.dev.java.net/BPELSE.html
https://open-esb.dev.java.net/BPELSE.html

If a green arrow badge appears on the GlassFish V2 node, the server is running. If a green
arrow badge does not appear, go to “To Start the GlassFish V2 Application Server in the
NetBeans IDE” on page 37.

▼ To Register the GlassFish V2 Application Server with the NetBeans IDE

If the Services window is not visible, choose Window→ Services.

In the Services window, right-click the Servers node and choose Add Server from the pop-up
menu.
The Add Server Instance dialog box opens.

In the Choose Server page of the dialog box, select GlassFish V2 from the Server field.
The Add Server Instance dialog box opens.

(Optional) In the Name field, change the default name for the server.
The IDE uses this name to identify the server.

Click Next.
The Platform Location Folder page opens.

In the Platform Location field, click Browse and select the installation location of the application
server.

Select the Register Local Default Domain radio button and click Next.

Enter the user name and password for the domain's administrator.
If you accepted the default values during the installation, the user name is admin and the
password is adminadmin.

Click Finish.

▼ To Start the GlassFish V2 Application Server in the NetBeans IDE

In the Services window, right-click the GlassFish V2 node and choose Start.

Wait for the following message to appear in the Output window:
Application server startup complete.

When the server is running, the IDE displays a green arrow badge on theGlassFish V2 node.

The BPEL Service Engine is represented as sun-bpel-engine in the Services window of the
IDE, under the GlassFish V2 → JBI nodes.

1

2

3

4

5

6

7

8

9

1

2

Creating a BPEL Module Project

Using the BPEL Designer and Service Engine 37

Creating a new BPEL Module Project
The following sections use the Synchronous sample project, and provide step-by-step
directions for creating a simple BPEL module project, using the Synchronous sample project.

▼ Create a BPEL Module project

In the NetBeans IDE, choose File > New Project.

The New Projects wizard appears.

Under Categories, select Service Oriented Architecture.

Under Projects, select BPEL Moduleand click Next.

In the Name and Location page, enter the project name (for this example HelloWorld) and
specify the project location or accept the defaults.

1

2

3

4

Creating a BPEL Module Project

Using the BPEL Designer and Service Engine • June 200938

Click Finish.

The Projects window now contains a project node for the BPEL Module project.

Creating the XML Schema and the WSDL Document
Generally, the steps used to create a BPEL module project are:

1. Create a New BPEL Project
2. Create the XML Schema or XSD file
3. Create the WSDL Documents
4. Create the BPEL Process

The XSD file (XML Schema) helps to define the projects message structure or operations.
Complex message structures are defined in the XSD file and imported into the WSDL
Document. The WSDL Documents define the interfaces for the project. The BPEL Designer
enables you to graphically design your BPEL business process.

5

Creating a BPEL Module Project

Using the BPEL Designer and Service Engine 39

To create the XML Schema and WSDL Document for this tutorial, following the directions
provided in Creating a “Hello World” Composite Application. After you have created the XML
Schema and WSDL, return here.

Creating a BPEL Process Using the BPEL Designer
Now that you have created your XML Schema and WSDL Document, you can create your BPEL
process.

▼ Create the BPEL Process

In the Projects window, expand your BPEL module project node, right-click the Process Files
node, and choose New→ BPEL Process from the pop-up menu.

The New BPEL Process dialog box appears.

Enter a name for the process file name (HelloWorldProcess for this example), and click Finish.

The new BPEL file opens in the Design view of the BPEL Designer.

If the Palette and Properties windows are not displayed in your current view, click Windows →
Reset Windows on the NetBeans menu.

1

2

Creating a BPEL Module Project

Using the BPEL Designer and Service Engine • June 200940

http://www.netbeans.org/kb/61/soa/helloworldca.html

Add a partner link to the BPEL Process.

a. In the Projects window, expand your project's Process Files node and select the .wsdl file
(Synchronous.wsdl for this example).

b. Drag the .wsdlfile from the Projects window to the left side of the Design view canvas.
The IDE provides visual prompts to show you where you can drop the selection.

The BPEL Editor adds a partner link to the canvas.

3

Creating a BPEL Module Project

Using the BPEL Designer and Service Engine 41

Add a Receive activity to the BPEL Process.

a. From the Web Service section of the Palette window, select the Receive activity.

b. Drag the Receive activity to the HelloWorldProcess process box in the Design view canvas,
between the Process Start and the Process End activities.

The Receive1 activity is added to the process box.

c. Click the Receive1 activity's Edit icon.

The Receive1 Property Editor appears.

d. On the Main tab, change the value in the Name field to start.

e. From the Partner Link drop-down list, choose PartnerLink1.

The IDE populates the Operation field with NewWSDLOperation.

f. Click the Createbutton next to the Input Variable Field.

The New Input Variable dialog box appears. Click OK to accept the default values.

g. Click OK to close the Receive1 Property Editor.

The Design view displays the new connection between PartnerLink1 and the Start activity
in the process box.

4

Creating a BPEL Module Project

Using the BPEL Designer and Service Engine • June 200942

Add a Reply activity to the BPEL Process.

a. Select the Reply activity in the Web Service section of the Palette. Drag and drop the Reply
to the prompt between the Start activity and the Process End activity in the process box
on the design view canvas.

A Reply1 activity is added to the design view canvas.

b. Click the Reply1 activity's Edit icon.

The Reply1 Property Editor appears.

c. On the Main tab, change the value in the Name field to End.

d. From the Partner Link drop-down list, choose PartnerLink1.

The IDE populates the Operation field with NewWSDLOperation.

e. To create anew output variable, make sure that Normal Response is selected, and click the
Createbutton next to the Input Variable Field.

The New Input Variable dialog box appears. Click OK to accept the default values.

f. Click OK to close the Reply1 Property Editor.

The Design view displays the new connection between the End activity in the process box
and PartnerLink1.

5

Creating a BPEL Module Project

Using the BPEL Designer and Service Engine 43

Add a Assign activity to the BPEL Process.

a. Select the Assign activity in the Basic Activities section of the Palette. Drag and drop the
Assign to the prompt between the Start activity and the End activity in the process box on
the design view canvas.

The Assign1 activity is added to the design view canvas.

b. Select the Assign1 activity and click the Mapper button on the editors toolbar.

The BPEL Mapper appears.

c. Map the paramAnode under Variables→ NewWSDLOperationIn→ inputType in the
Output pane of the BPEL Mapper, to the paramAnode under Variables→
NewWSDLOperationOut→ resultType in the Input pane of the Mapper. To do this, select
theparamAnode under Variables→ NewWSDLOperationIn→ inputType in the Output
pane, and drag your cursor to the paramAnode under Variables→ NewWSDLOperationOut

→ resultType in the Input pane.

This assignment copies the input statement into the output.

6

Creating a BPEL Module Project

Using the BPEL Designer and Service Engine • June 200944

To save your changes click the Save All icon in the IDE menu bar.

Creating a Composite Application Project
A BPEL Module project is not directly deployable. You must first add a BPEL Module project, as
a JBI module, to a Composite Application project. You can then deploy the Composite
Application project. Deploying the project makes the service assembly available to the
application server and enables its service units to run.

▼ Create a new Composite Application project

Choose File > New Project (Ctrl-Shift-N).

In the Categories list choose Service Oriented Architecture, in the Projects list choose
Composite Application, and click Next.

In the Name and Location page, change the project name to HelloWorldApplication, and
specify the location of project files.

To set the new Composite Application the main project as main, leave the Set as Main Project
checkbox selected, and click Finish.

To add the BPEL Module as a JBI module to the Composite Application project, right-click the
new Composite Application and choose Add JBI Module from the pop-up menu.

The Select Project dialog box opens.

Select the HelloWorld project you created earlier and click Add Project JAR Files.

The Select Project dialog box closes and the HelloWorld.jar file is added to the JBI
Modules node of the HelloWorldApplication Composite Application

7

1

2

3

4

5

6

Creating a BPEL Module Project

Using the BPEL Designer and Service Engine 45

Building and Deploying the Composite Application
Project
Building a project compiles the BPEL source file and packages the BPEL file and web service
artifacts, including WSDL and XSD files, into a JAR archive. Deploying the project compiles the
files in the Composite Application project, packages the compiled BPEL and related web service
artifacts (including WSDL and XSD files) into an archive, and deploys them to the Application
Server.

▼ Build and deploy the Composite Application Project:

Right-click the Composite Application project's node, and choose Build from the pop-up menu.

When the build is complete the Output window reports Build Successful. If the Output
window is not visible, choose Window → Output → Output.

Right-click the Composite Application project's node, and choose Deploy.

Deployment has succeeded when you see a Build successful message in the GlassFish tab of
the Output window.

Open the Services window and expand Servers→ GlassFish V2→ JBI→ Service

Assemblies to see your new deployed Service Assembly.

If you do not see the deployed project, right-click the Service Assemblies node and choose
Refresh.

1

2

3

4

Creating a BPEL Module Project

Using the BPEL Designer and Service Engine • June 200946

Testing the Composite Application
You can test your Composite Application project by adding test cases, binding to the operation,
supplying input, and then using the tester.

▼ Test the HelloWorldApplication Composite Application project

In the Projects window, expand the HelloWorldApplication project node, right-click the Test
node, and choose New Test Case from the pop-up menu.

The New Test Case wizard opens.

Accept the default test case name, TestCase1, and click Next.

From the Select the WSDL Document page, expand the HelloWorld - Proecss Files node,
select Synchronous.wsdl, and click Next.

From the Select the Operation to Test page, select the Operation1 and click Finish.

A new TestCase1 node is added under the project's Test node in the Projects window,
containing two subnodes, Input and Output.

The Source Editor appears containing the Input file, Input.xml

1

2

3

4

Creating a BPEL Module Project

Using the BPEL Designer and Service Engine 47

Note – If the Source Editor does not contain a tab for Input.xml, double-click the Input node in
the Projects window to open the file.

From the Input.xml tab of the Source Editor, do the following:

a. Locate the line:
<syn:paramA>?string?<syn:paramA>

b. Replace ?string? with Hello World, so that the line appears as follows:
<syn:paramA>Hello World<syn:paramA>

c. From the NetBeans IDE menu bar, click the Save All button.

In the Projects window, double-click the Output node under Test→ TestCase1.

Output.xml is opened in the Source Editor. Initially, Output.xml is empty until the first test run
populates the file.

In the Projects window, right-click the TestCase1node and choose Run from the pop-up menu.

When the Overwrite Empty Output dialog box appears, click Yes to accept new output. The
first test run populates the Output.xml file displayed in the Source Editor.

5

6

7

Creating a BPEL Module Project

Using the BPEL Designer and Service Engine • June 200948

The test compares the output to the contents of the output file. Because the first run of the test
has nothing to compare itself to, the first test fails. Subsequent test runs will compare their
output with the contents of Output.xml and should succeed.

Run the test again.

The testcase is compared to the current output file and succeeds.

Summary
You just created the HelloWorld, synchronous sample project. This sample project is available
in the NetBeans IDE's samples file under Project/Samples/SOA/Synchronous BPEL Process.

This tutorial above demonstrates how to:

■ Create a Bpel Module project
■ Use the BPEL Designer to create a BPEL process
■ Build and deploy a Composite Application project to GlassFish
■ Create and run test cases

Developing a BPEL Process Using the Diagram
This section includes the following topics for getting started with the diagram:

■ “The BPEL Diagram” on page 50
■ “Configuring Element Properties in the Design View” on page 51
■ “Finding Usages of BPEL Components” on page 51
■ “Saving Your Changes” on page 52

8

Developing a BPEL Process Using the Diagram

Using the BPEL Designer and Service Engine 49

The BPEL Diagram
The BPEL diagram (BPEL Design View) is the visual representation of the BPEL Process. On
the diagram you can author business process by adding and configuring activities. You can also
edit existing .bpel files. To open a .bpel file double-click it's name in the Projects window. By
default, the process diagram will be open.

In the Design view, you can perform the following operations on elements:
■ Create elements by dragging elements from the Palette to the diagram. The Design view

supports the notion of "drop points", which means that you must align elements with these
drop points when you drag them. Not all elements are created via drag-and-drop from the
Palette. These other elements are created using pop-up menus which are invoked when you
right-click an existing diagram element.

■ Select elements on a diagram. A single click on an element selects it. Selection is a necessary
step in performing several other operations, such as deleting, moving, or editing an element.

■ Invoke pop-up menu actions for diagram elements. Each BPEL element has a pop-up
menu. This pop-up menu can be invoked by right-clicking the element. The pop-up menu
will offer a set of actions which are relevant to the selected element.

■ Move diagram elements. You can move diagram elements by selecting the element and
then dragging it to a new location. If you move a container element, all its children move
along with the container.

■ Edit element names in the Design view directly. Double-click the element name on the
diagram to edit it.

■ Invoke XML Validation. You can invoke XML validation by clicking the Validate XML
button on the Design view editor toolbar. For more information, see the Validation section.

■ Apply filters to diagram elements. The Editor toolbar contains the Show Partner Links and
Show Sequences toggle buttons. Both Partner Link elements and Sequence elements are
shown by default. Clicking the Show Partner Links button hides the Partner Link elements
on the diagram. Clicking the Show Sequences button hides the Sequence containers on the
diagram. Clicking either button a second time will again reveal the Partner Link elements, or
the Sequence elements on the diagram, respectively.

Note – You cannot add new Partner Link or Sequence elements to the diagram if you chose
not to show them.

■ Finding elements on the diagram. You can find BPEL elements in the Design view by their
names or types. You can use either the Find bar (Edit > Find or Ctrl-F) or the Advanced
Search feature (Edit > Advanced Search or Alt-Shift-F). In the Find bar, select the type of
search you want to perform, type in the search query and click Find. In the Advanced Search
dialog box, you can refine your search query and search BPEL elements by their name
and/or type.

Developing a BPEL Process Using the Diagram

Using the BPEL Designer and Service Engine • June 200950

■ Collapsing or expanding elements on the diagram. When a large diagram is open in the
Design view, you can collapse or expand container elements, such as Sequence or Scope,
using the quick action buttons that appear near the selected elements. By default, when you
open a diagram in the Design view, you can see all container elements expanded. To expand
all elements on the diagram, click the Expand All icon on the Editor toolbar. You can use
the following combinations of keys: Enter to expand the selected element, Shift-Enter to
collapse the selected element, and Alt-Enter to expand all elements on the diagram.

■ Wrapping activities with container elements. You can wrap elements with container
activities in a single click. The wrap feature is useful, for example when you want to quickly
place an activity inside another activity. In the Design view, right-click the activity you want
to wrap, point to the Wrap With option, and select the wrapper BPEL activity.

Configuring Element Properties in the Design View
After you add BPEL activities to a diagram, you need to configure them. You can do this using
either the Property Editor dialog boxes or the IDE's Properties window. Note that Property
Editor dialog boxes are available only for some elements.

To open the Property Editor for an element, do one of the following:
■ Right-click the element and choose Edit.
■ Double-click the element.

To open the Properties window for an element, right-click the element and choose Properties.
The properties for this element are displayed in the standard IDE's Properties window. If the
IDE's Properties window is not open, choose Window > Properties from the main menu
(Ctrl-Shift-7).

Finding Usages of BPEL Components
For BPEL files, the Find Usages command determines where the following elements are used in
the associated .bpel files:
■ Variable
■ Partner Link
■ Correlation set

▼ To find usages of a BPEL component:

In the IDE, open the BPEL file (.bpel) you want to work with.
By default, the IDE opens the Design view for the BPEL file.

In the Design view, select the element for which you want to see usages.
You can also select the element in the BPEL Logical View of the Navigator window.

1

2

Developing a BPEL Process Using the Diagram

Using the BPEL Designer and Service Engine 51

Right-click the element either in the Design view or in the Navigator window and choose Find
Usages (Alt-F7) from the pop-up menu.
The IDE opens the XML Usages window in the lower part of the IDE. The first time you invoke
the Find Usages function, the window has no tabs. For each consequent query, the IDE adds a
Find XML Usages tab that shows the usages of the component you selected.

(Optional) To go to the source for an element and double-click that element in the tree. The right
part of the XML Usages windows is a visual representation of element usages throughout the
project.

Saving Your Changes
The BPEL Designer synchronizes the Design and Source views as follows:

■ Changes you make in a diagram are reflected immediately in the corresponding source
code.

■ Changes you make in the source code are reflected on the diagram when you switch to the
Design view.

To save changes in the Design or Source view, choose File → Save or press Ctrl-S.

The BPEL Designer Palette Elements
This section is the palette elements reference.

“The Process Element” on page 54

“Using the Invoke Element” on page 55

“Using the Receive Element” on page 57

“Using the Reply Element” on page 59

“Using the Partner Link Element” on page 61

“Using the Assign Element” on page 66

“Using the JavaScript Element” on page 67

“Using the Validate Element” on page 69

“Using the Empty Element” on page 70

“Using the Wait Element” on page 70

“Using the Throw Element” on page 71

3

4

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine • June 200952

“Using the Rethrow Element” on page 72

“Using the Exit Element” on page 72

“Using the Compensate Element” on page 72

“Using the CompensateScope Element” on page 73

“Using the If Element” on page 74

“Using the While Element” on page 75

“Using the Repeat Until Element” on page 76

“Using the For Each Element” on page 76

“Using the Pick Element” on page 77

“Using the Flow Element” on page 78

“Using the Sequence Element” on page 79

“Using the Scope Element” on page 80

A process diagram represents the connected elements in a business process. To edit a diagram,
icons in the Design view Palette are dragged and dropped onto the BPEL diagram. These icons
represent Web Service activities, basic activities, and structured activities in the business
process.

Placeholders
The BPEL Designer diagram provides placeholder the mark places on the diagram where you
can insert an element. The behavior of element placeholders illustrates how the BPEL Designer
enforces the rules of the WS-BPEL 2.0 specification.

When you drag an element from the Palette, you can see placeholders showing acceptable drop
points for this element. These drop points reflect the construction logic of the diagram. As you
move the mouse pointer on the diagram, a placeholder that is active for the current mouse
pointer position is highlighted. Align the dragged element with one of the placeholders and
release the mouse button to insert the element.

Some placeholders are always present on the diagram marking the places where it is necessary
to insert an activity so that the BPEL process is valid. These are the places inside container
elements, for example the If element.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine 53

The Process Element
The Process element is already present in your diagram. The New Project wizards always create
a skeletal BPEL file that contains at least a process element. Therefore, the Process element is
not part of the Palette. The Process element is assumed to be present, as it is the minimum
requirement for a BPEL file.

Usage
1. Right-click the Process element and choose Add from the pop-up menu to add the

following:
■ Variable
■ Correlation Set
■ Event Handlers
■ Fault Handlers
■ WSDL Import
■ Schema Import

2. Specify the name and the target namespace of the Process element in the Properties window,
invoked by right-clicking the element and choosing Properties.

Processes
A BPEL process can be synchronous or asynchronous. A synchronous BPEL process blocks the
client (the one which is using the process) until the process finishes and returns a result to the
client. An asynchronous process does not block the client. Rather it uses a callback to return the
result (if any). Usually we use asynchronous processes for longer-lasting processes and
synchronous for processes that return a result in a relatively short time. If a BPEL process uses
asynchronous web services, the process itself is usually also asynchronous.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine • June 200954

The Web Service Elements
The Web Service section of the BPEL Designer Palette contains icons for the following business
process elements:

■ “Using the Invoke Element” on page 55
■ “Using the Receive Element” on page 57
■ “Using the Reply Element” on page 59
■ “Using the Partner Link Element” on page 61

These elements represent requests, responses, and agreements between a process and its
partner services.

Using the Invoke Element
The Invoke element enables the business process to invoke a one-way or request-response
operation on a portType offered by a partner. It enables the business process to send messages
to partners. The operation is defined in the partner's WSDL file.

Usage
1. In the Design view, drag the Invoke element from the Palette to the diagram.

2. Perform one of the following procedures to associate the Invoke element with a Partner Link
element:
■ Directly draw a message flow from the Invoke element to the target Partner Link.
■ Double-click the Invoke element. A dialog opens where you can examine or change the

following:
■ The name of the Invoke element.
■ The partner link that is invoked.
■ The operation associated with the Invoke element.
■ The input variable associated with the Invoke element.
■ The output variable.

Both input and output variables can be created or browsed through this dialog.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine 55

In the Property Editor dialog box, you can either create a variable or use an existing variable to
hold input and output data. Click the Create button to create a variable for the Invoke element,
and click Browse to choose an existing variable.

Note that when you click the Browse button, the Input Variable Chooser or the Output Variable
Chooser dialog boxes opens. In these dialog boxes, a checkbox with the option to show variables
with appropriate types appears. This checkbox restricts the list of available variables to those
which are of the proper type for the activity you are configuring. In this way the Design view
helps you develop valid BPEL code.

Correlations
Correlation sets on invoke activities, which deal with outbound operations, are used to validate
that outgoing messages contain data which is consistent with the data contained within
specified correlation set instances. The Correlations tab in the Invoke Property Editor dialog
box enables you to examine or specify a correlation set.

The tab shows:

■ Names of correlation sets
■ The initiation of a correlator
■ The pattern associated with the correlation

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine • June 200956

For more information see “Understanding Correlation. Using the Correlation Wizard” on
page 109.

Using the Receive Element
The Receive element allows the business process to do a blocking wait for a particular message
to arrive.

Usage
1. In the Design view, drag the Receive element from the Palette to the diagram.

2. Double-click the Receive element (or right-click it and choose Edit) to configure its
properties. Here the example is provided for the Travel Reservation Service sample:
■ The name of the Receive element (ReceiveItinerary).
■ The partner link (Travel).
■ The operation associated with the Receive element (buildItinerary).
■ The input variable to the Receive element (ItineraryIn).

Select Browse for the Input Variable to open the Input Variable chooser, where you can
choose other variables associated with this process. Select Create to create a new variable.

■ Create Instance. If selected, an instance of the BPEL process starts when an associated
message arrives. Note that if the Receive activity is the first activity in your business
process, the Create Instance checkbox must be selected.

3. You can also edit some of the element's properties in the Properties window. To open the
window, right-click the Receive element and choose Properties or choose Window >
Properties (Ctrl-Shift-7) from the main menu. You can edit the information by clicking on
the ellipsis button. You cant edit the shadowed information from this window, to change it
open the property editor as described above.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine 57

Correlations
The Correlations tab in the Receive Property Editor dialog box enables you to examine or
specify a correlation set.

The tab shows:

■ Names of correlation sets
■ The initiation of a correlator

For more information see “Understanding Correlation. Using the Correlation Wizard” on
page 109.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine • June 200958

Using the Reply Element
Use this activity to return a message from the process to the same partner that initiated the
operation. The combination of Receive and Reply activities creates a request-response
operation.

This activity is used in a synchronous (request/response) operation, and specifies the same
partner, port type and operation as the Receive activity that invoked the process.

Usage
1. In the Design view, drag the Reply element from the Palette to the diagram.

2. Double-click the Reply element (or right-click and choose Edit) to open a Property Editor
dialog box for the Reply element. In this dialog box, you can specify the following:
■ The name of the element.
■ The Partner Link.
■ The operation.
■ Type of response: Normal Response or Fault Response.

■ Select Normal Response if the Reply element is to be used for the normal response
message type. Optionally, specify the output variable: either create a new output
variable or browse for an existing variable.

■ Select Fault Response if the Reply element is to be used to send a fault message.
Choose a fault name and, optionally, specify the fault variable: either create a new
fault variable or browse for an existing variable.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine 59

3. You can also edit some of the element's properties in the Properties window. To open the
window, right-click the Receive element and choose Properties or choose Window >
Properties (Ctrl-Shift-7) from the main menu. You can edit the information by clicking on
the ellipsis button. You cant edit the shadowed information from this window, to change it
open the property editor as described above.

Correlations
The Correlations tab in the Reply Property Editor dialog box enables you to examine or specify
a correlation set.

The tab shows:
■ Names of correlation sets
■ The initiation of a correlator

For more information see “Understanding Correlation. Using the Correlation Wizard” on
page 109.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine • June 200960

Using the Partner Link Element
Partner Link elements identify the parties that interact with your business process. Each link is
defined by a partner link type and a role name.

Partner Link Types and Roles
The type determines the relationship between a process and its partners by defining the roles
played by each service in a conversation. The relationship is further determined by specifying
the port type provided by each service to receive messages. Each role specifies one port type in
the WSDL file.

Roles determine the conversational aspect of this process or its partner. You use a single role for
a synchronous operation as the results are returned using the same operation. You use two roles
in an asynchronous operation as the partner role switches during a callback.

It is easy to confuse partner links and partner link types, however:

■ Partner link types and roles are special WSDL extensions defined by the BPEL specification.
As such, they are defined in WSDL files, not in the process BPEL file.

■ Partner Link is a BPEL 2.0 element. It is defined in the process BPEL file.

Partner link types are prerequisites to the Partner Link element definition. A Partner Link
element can only be defined by referring to a particular partner link type and role which, as
mentioned, must be defined in a WSDL file.

Usage
To add the Partner Link element to the BPEL process, do one of the following:

■ Drag the Partner Link element from the Palette to the diagram.
■ Drag a WSDL file node from the same project in the Projects window to the diagram.
■ Drag a WSDL file node from a different project in the Projects window to the diagram.
■ Drag a web service node from an EJB project or a Web Application project in the Projects

window to the diagram.

Note: When you drag the web service node, the BPEL Designer retrieves the WSDL file from
the Application Server. To successfully retrieve the WSDL file, the Application Server has to be
running and the web service project must be deployed.

When you drag the Partner Link element, a WSDL file node, or a web service node to the
diagram, the Partner Link Property Editor appears.

The Partner Link Property Editor
The Partner Link Property Editor dialog box enables you to establish partner links for your
BPEL processes.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine 61

The Partner Link Property Editor dialog box enables you to establish partner links for your
BPEL processes. The Partner Link Property Editor is invoked by double-clicking a Partner Link
element on the diagram, or right-clicking the Partner Link element and choosing Edit. The
Partner Link Property Editor also appears when you drag the Partner Link element, a WSDL file
node, or a web service node to the diagram.

With the Partner Link Property Editor, you can specify:

■ The Partner Link name
■ The WSDL file associated with the Partner Link

Further on you can choose whether to use the existing partner link type or create a new partner
link type.

If the WSDL file you selected contains partner link types, the Use Existing Partner Link Type
option is selected and the Partner Link Type drop-down list is populated with the partner link
types found in the WSDL file. You can use one of the existing partner link types or select the Use
a Newly Created Partner Link Type option to create a new partner link type.

If the WSDL file does not contain partner link types, the Use a Newly Created Partner Link Type
option is selected.

■ Use Existing Partner Link Type
1. Choose the partner link type from the drop-down list. The My Role and/or Partner Role

fields are filled in automatically.
2. To swap the roles of the business process itself (My Role) and the partner (Partner Role),

click the Swap Roles button.
■ Use a Newly Created Partner Link Type

1. Specify the WSDL file in which to add a partner link type. You can do one of the
following:
■ Add the partner link type to the wrapper WSDL file, as suggested by the IDE in the

Create in File field by default. If you choose this option, the IDE will automatically
create the wrapper WSDL file in your project structure. You can use wrapper WSDL
files when the original WSDL file is read-only or when you do not want to modify the
original WSDL file. The original WSDL file will be imported to the newly created
wrapper WSDL file.

■ Add the partner link type to a WSDL file within your project. Click Browse and locate
the WSDL file in which to add the partner link type.

2. Specify the partner link type name.
3. Specify the role of the business process itself (My Role) and/or the role of the partner

(Partner Role) as follows:
■ Select the appropriate checkbox.
■ Specify the role name.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine • June 200962

■ Choose the port type from the drop-down list.

You can also review and modify the Partner Link's properties in the Properties window invoked
by right-clicking the element and choosing Properties.

Partner Link Layout
The partner links are placed in the left and right margins of the process diagram. Service
requestors are placed on the left side, service providers are placed on the right side. To define
the role and to choose the appropriate side for each partner link the IDE uses the order of roles
defined for the partnerLinkType in the WSDL file. The role defined first in the partnerLinkType
in the WSDL file is considered to be a service role, the second defined role is considered to be
the role for the requestor and callback receiver. If the roles are defined in the reverse order in the
WSDL file (the callback receiver role is defined in the first place, and the service role in the
second place) then you get the improper partner link layout in the BPEL process diagram,
though the operation is not damaged. If a partner link appears on the wrong side you should go
to the WSDL file and swap places for the role definitions in the partnerLinkType.

Dynamic Partner Links and Dynamic Addressing
During the design-time of an application, you may need to configure certain services whose
endpoints (addresses) are not known beforehand, or it may be necessary to change an endpoint

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine 63

reference while the application is running. The Dynamic Partner link feature allows you to
dynamically assign an endpoint reference to the partner link. This means that you can use one
partner link for subsequent calls to different web-services (provided that the services use the
same interface).

See “Using Dynamic Partner Links and Dynamic Addressing” on page 157 for additional use
cases and more information.

Assigning an Endpoint Reference

Each partner link defines abstract information and concrete information. While abstract
information, describing the web-service interface, should be static, the concrete information,
such as the address and port, can be discovered and used dynamically.

Note – For successful deployment of the process, a partner link should be completely defined.
When you deploy the project, the WSDL file for the partner link should contain and define both
the abstract and the concrete information for the partner link, including address and port,
though later the concrete information can be changed independently from the WSDL file.

Note – The BPEL specification mandates that only the partner endpoint reference (EPR) can be
changed dynamically. In BPEL terms, only the partnerRole of a partner link element can have a
new value assigned. The myRole value doesn't change after the BPEL has been deployed.

To assign a new endpoint reference to a partner link you can use the standard Assign activity
and the BPEL Mapper.

The EPR information can be provided in several different ways:

■ Use literal to construct endpoint: Provide the endpoint address as literal syntax and map it
to the partner link.

■ Use an existing partner link's endpoint: Extract a partner link's endpoint and assign it to
another partner link in the BPEL Mapper.

■ Use an incoming message to extract the endpoint address: Define the message with the
end point schema as part of it, and use the message variable to assign the endpoint to the
partner link at runtime.

■ Using a database query to provide an endpoint address The BPEL service does a dynamic
addressing invocation, with the address coming from a database.

Each of these options is explained in more detail in the advanced section of this book. For more
information on each of these alternatives, see “Using Dynamic Partner Links and Dynamic
Addressing” on page 157.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine • June 200964

If you use an incoming message, an EPR schema should be defined as a part of the message in
WSDL. To assign the EPR to a partner link, use the message variable.

▼ To assign a new endpoint reference to a partner link from a variable:

Create a new Assign activity in the process.

Open the BPEL Mapper.

In the target tree on the right, find the partner link to which you want to deliver a new concrete
part.

In the source tree, find a variable containing the new endpoint address.

The address of the web-service can be defined in terms of different schemas, and the JBI
container requires a special data type called ServiceRefType which is a simple wrapper for any
endpoint-describing data type.

To wrap your data:

■ In the mapper toolbar, choose BPEL → Wrap with Service Reference.

■ This function is a doXslTranform function that uses a predefined XSL-style sheet. A new
concrete part is assigned to the partner link.

1

2

3

4

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine 65

Note – The runtime supports only schemas included into WS-BPEL 2.0 specification. The
WS-Addressing schema is not included in the BPEL specification and as a result it is not
supported by the BPEL runtime. When the WS-Addressing schema is used for the first time it is
copied from NetBeans global catalog to the BPEL Module project source root and further the
project refers to the local copy of the schema. The adressing.xsd schema also appears among the
Module's procees files in the Projects window.

The Basic Activities
The Basic Activities section of the BPEL Designer Palette contains icons for the following
business process elements:

■ “Using the Assign Element” on page 66
“Using the JavaScript Element” on page 67
“Using the Validate Element” on page 69
“Using the Empty Element” on page 70
“Using the Wait Element” on page 70
“Using the Throw Element” on page 71
“Using the Rethrow Element” on page 72
“Using the Exit Element” on page 72
“Using the Compensate Element” on page 72
“Using the CompensateScope Element” on page 73

Using the Assign Element
The Assign activity assigns values to variables. You use the Assign element to copy data from
one variable to another, construct and calculate the values of expressions, and store new data in
variables. Expressions are required to perform simple computation or operate message

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine • June 200966

selections, properties, and literal constants to produce a new value for variables. The Assign
activity can contain one or more elementary assignments.

Usage
Use the BPEL Mapper to define the copy rules for the Assign activity or add expressions. For
more information, refer to the “Assign Activity Scenario” on page 90 section of the guide.

Double-click the Assign activity on the diagram to open Mapper view of the activity. If this
window is not visible, you can invoke it manually, by choosing Window → Other → BPEL
Mapper from the main menu.

Assign Element Properties
The Properties window of the Assign element, invoked by right-clicking the element and
choosing Properties, contains two properties:

■ Name: The name of the element.
■ Assignments Count:The number of assignment rules specified for the element.
■ Validate: Specifies whether the Assign activity validates variables modified by the activity.

When the value is “yes” , the Assign activity will validate all of the variables it modifies. If the
validation fails because one of the variables is invalid to its corresponding XML definition,
then a standard fault bpel:invalidVariables is thrown. The default value is N/A.

■ Documentation: User documentation attached to the element. This documentation is
included with the source code of the BPEL process and can be extracted and included in a
report.

Using the JavaScript Element
The JavaScript activity acts like an Assign activity that enables you to use JavaScript (E4X),
rather than using XPath 1.0. In many cases JavaScript can perform the same logic as XPath with
much fewer processes.

Usage
Drag the JavaScript element from the Palette to the diagram. The JavaScript activity is added to
the diagram and an empty extension assign operation is added to the source.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine 67

Double-click the JavaScript element in the diagram to open the JavaScript Editor. From the
editor you can assign input and output expressions, and add your JavaScript code to the editor's
text field.

The JavaScript Editor's Input button opens a dialog box to specify the input mapping between
BPEL and JavaScript variables.

In the same way, the editor's Output button opens another dialog box to specify the output
mapping between JavaScript and BPEL variables.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine • June 200968

JavaScript Element Properties
The Properties window of the Assign element, invoked by right-clicking the element and
choosing Properties, contains two properties:

■ Name: The name of the element.
■ Validate: Specifies whether the JavaScript (Assign) activity validates any variables modified

by the activity. When the value is “yes” , the activity will validate all of the variables it
modifies. If the validation fails because one of the variables is invalid to its corresponding
XML definition, then a standard fault bpel:invalidVariables is thrown. The default value
is N/A.

■ Documentation: User documentation attached to the element. This documentation is
included with the source code of the BPEL process and can be extracted and included in a
report.

Using the Validate Element
The Validate element is used to validate the values of variables against their associated XML and
WSDL data definition. The element includes a Variables property that lists the variables for the
process, and allows you to specify which variables to validate. When one or more variables
prove invalid against a corresponding XML definition, a standard fault,
bpel:invalidVariables, is thrown.

Usage
Drag and drop the Validate element to the diagram between Process Start and Process End.
From the Validate Properties, click the Variables edit button. Select the variables you want
validated from the Variables dialog box.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine 69

Using the Empty Element
The Empty element has no operation associated with it. It is usually used as a placeholder within
a process, to catch and suppress faults, or to help synchronize actions within a flow activity that
are executed concurrently.

The Empty element can be used when someone else will be implementing a business process, or
when the activities within a flow activity need to be synchronized.

Usage
Drag the Empty element from the Palette to the diagram.

Using the Wait Element
Use a Wait element to specify a wait condition based on a unit of time or a duration.
Double-click the Wait element on the diagram to open Mapper view of the activity.

Usage
Drag the Wait element from the Palette to the diagram. Like other elements, it must be placed in
the correct position in the process flow; otherwise you will not see the element in the diagram.

Right-click the element in the diagram and choose Properties to invoke a Properties window.
Using the Properties window, you can specify:

■ Name: Specifies a name of the element.
■ Alarm Type: Specifies the alarm type. The available options are:

■ For: Specifies a duration for the process to wait
■ Until: Specifies the time until which the process is delayed.

■ For: Specifies the wait time in years, months, days, hours, minutes, and seconds. Click the
edit button to open the Wait For dialog box where you specify the time in accordance with
the selected expiration type. * __Documentation__: User documentation attached to the
element. This documentation is included with the source code of the BPEL process and can
be extracted and included in a report.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine • June 200970

■ Documentation: User documentation attached to the element. This documentation is
included with the source code of the BPEL process and can be extracted and included in a
report.

Using the Throw Element
Use this activity to signal an internal fault.

Usage
In defining the properties of this element, you can specify a fault name and a fault variable.
These details can then be passed onto a fault handler that is configured to deal with this kind of
exception.

Throw Element Properties
The properties of the Throw element are configured from the Properties window.

The options are:

■ Name: The name of the element.
■ Fault Name: The Fault Name is a QName. You can use any name. The dialog box lets you

choose a standard or already defined fault or specify a new one. The next time the the dialog
box is opened, the newly defined faults appear inside of User Defined Faults folder. These
are collected from the current BPEL file only. Clicking the ellipsis button (...) invokes the
Fault Name dialog box.
You can use the WSDL Editor to add fault definitions to the WSDL file. For more
information, see the Configuring Port Types Using the WSDL View section of Using the
WSDL Editor.

■ Fault Variable: Click the ellipsis button to specify the name of the variable, already declared
in the BPEL file, that will contain the fault message.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine 71

■ Documentation: User documentation attached to the element. This documentation is
included with the source code of the BPEL process and can be extracted and included in a
report.

Using the Rethrow Element
The Rethrow activity can only be used within a fault handler. The Rethrow activity is used to
rethrow the fault caught by the fault handler. Before adding the Rethrow element to the BPEL
process, you should add a Fault Handler element to the Process or Scope element and add a
Catch or Catch All element to the Fault Handler container.

Usage
■ If you have not added a Fault Handler container to the diagram, in the Design view

right-click the Scope or Process element and choose Add → Fault Handlers.
■ Right-click the Fault Handler container and choose Add → Add Catch or Add → Catch All.
■ Drag the Rethrow element from the Palette to the diagram and place it inside the Catch or

Catch all element of the Fault Handler container.

There are no properties to be defined for the Rethrow element as it rethrows the fault caught by
the Fault Handler.

Using the Exit Element
Use this activity to halt the execution of an activity or a process: either within the process,
within a structured activity, or within a handler.

Usage
In the Design view, drag the Exit element from the Palette to the diagram.

Note: The BPEL runtime does not support Exit within the Flow and On Alarm elements, or
within the On Event child of the Event Handler element.

Using the Compensate Element
The Compensate element is used to start compensation on all inner scopes that have
successfully completed. The Compensate activity can only be used within Catch, CatchAll,
Compensation Handler or Termination Handler elements.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine • June 200972

Before adding Compensate element to the process, be certain to add one of the following to
either the Process or Scope element:
■ A Fault Handler and Catch or Catch All
■ A Compensation Handler
■ A Termination Handler

The Compensate activity causes compensation of all scopes immediately enclosed in the scope
containing the fault handler, compensation handler, or termination handler with the
Compensate activity.

Usage
From the Palette, drag the Compensate activity and place it inside the Catch, CatchAll,
Compensation Handler or Termination Handler element on the diagram. The Compensate
activity requires no property configuration, its behavior is predefined.

Using the CompensateScope Element
The CompensateScope element is used to start compensation on a specific scope that has
successfully completed. The CompensateScope activity can only be used within Catch,
CatchAll, Compensation Handler or Termination Handler elements.

Before adding the CompositeScope element, add one of the following to the Process or Scope
element:
■ A Fault Handler and Catch or Catch All
■ A Compensation Handler
■ A Termination Handler

The Compensate Scope activity enables compensation for one specified Scope or Invoke
element enclosed into the scope that contains the handler with the Compensate Scope activity
by invoking the compensation handler of the Scope or Invoke element.

Usage
1. From the Palette, drag the CompensateScope activity and place it inside the Catch, CatchAll,

Compensation Handler or Termination Handler element on the diagram.
2. Right-click the CompensateScope element and choose Properties.
3. In the Properties dialog box, configure the following:

■ Name: Enter a name for the element.
■ Target: From the drop-down list, select a scope or an invoke activity to be compensated.
■ Documentation: User documentation attached to the element. This documentation is

included with the source code of the BPEL process and can be extracted and included in
a report.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine 73

The Structured Activities
The Structured Activities section of the BPEL Designer Palette contains icons for the following
business process elements:

■ “Using the If Element” on page 74
“Using the While Element” on page 75
“Using the Repeat Until Element” on page 76
“Using the For Each Element” on page 76
“Using the Pick Element” on page 77
“Using the Flow Element” on page 78
“Using the Sequence Element” on page 79
“Using the Scope Element” on page 80

Using the If Element
The If activity supports conditional behavior of a business process instance. The If activity
consists of conditional branches defined by the If and Else If elements, followed by an optional
Else branch. The conditions on If and Else If branches are evaluated in the order they appear.
During execution, the first branch whose condition holds true is taken and provides the activity
specified for the If activity. In other words, if there are several Else If branches whose conditions
hold true, only the first of them will be executed.

If none of the branches evaluates to true, then the Else path is chosen. If the Else branch is not
explicitly specified, this branch is considered to contain an Empty activity. The If activity is
complete when the activity of the selected branch completes.

Usage
1. In the Design view, drag the If element from the Palette to the diagram.
2. Double-click the If element on the diagram or select the Mapper tab on the toolbar.

The BPEL Mapper opens.
3. Specify the condition for the If element using the BPEL Mapper.

For more information, refer to the “If Activity Scenario” on page 91 section of the guide.
You can also specify the condition manually in the Properties window, invoked by
right-clicking the element and choosing Properties.

4. (Optional) In the Properties window, enter the name for the If element.
5. Add the element that will be executed if the condition is true into the If element. Configure

the nested element. If you add another element into the If element, the nested elements are
automatically wrapped in the Sequence element.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine • June 200974

6. Add other branches (Else If and Else) as described below.

Adding an Else If Branch to the If Element
1. Right-click the If element and choose Add Else If.

2. Add an activity to the Else If that will be executed if the condition defined for this Else If
element is true. To define a condition, use the BPEL Mapper.

3. (Optional) Add more Else If activities by choosing Add Else If and add activities to them.

Adding an Else Branch to the If Element
Drag the activity you want to be executed on the Else branch onto the connector path marked
with a slash mark. Configure the nested activity.

Reordering Else If Branches
In the Design view, drag the Else If branch that you want reordered and drop it onto the
placeholder that appears next to another Else If branch.

Using the While Element
Use the While element to repeatedly execute one or more activities as long as specific conditions
are in place at the beginning of each iteration. This element contains other elements that are
repeated while success criteria you specify are met. If the condition you specify leads to false,
none of the activities listed will be executed.

Note: the While element first checks the validity of the condition and then executes the iterative
activity. Conversely, the “Using the Repeat Until Element” on page 76 element first executes
the activity and then checks the validity of the condition.

Usage
1. In the Design view, drag the While element from the Palette to the diagram.

2. Drag an activity that will be repeatedly executed and place it inside the While element. If
needed, configure the activity's properties.

3. Use the Properties window to specify the name and condition of the While element. You can
enter the condition manually or use the BPEL Mapper to generate the condition for you.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine 75

Using the Repeat Until Element
Use the Repeat Until element to repeatedly execute one or more activities as long as specific
conditions are in place after the execution of each iteration. This element contains other
elements that are repeated until the success criteria you specify are met. If the condition you
specify leads to true, the activities listed will be executed once.

Note – the Repeat Until element first executes the iterative activity and then checks the validity of
the condition. Conversely, the While element first checks the validity of the condition and then
executes the activity.

Usage
1. In the Design view, drag the Repeat Until element from the Palette to the diagram.
2. Drag activities that will be repeatedly executed and place them inside the Repeat Until

element. If needed, configure the activity's properties.
3. Use the Properties window to specify the name and condition of the Repeat Until element.

You can enter the condition manually or use the BPEL Mapper to generate the condition for
you.

Using the For Each Element
Use the For Each element to repeatedly execute its contained scope activity exactly N+1 times
where N equals the Final Counter Value minus the Start Counter Value.

Usage
1. In the Design view, drag the For Each element from the Palette to the diagram.
2. Add elements that will be repeatedly executed from the Palette into the For Each element.

The elements that you add are automatically wrapped into the Scope element.
3. Right-click the For Each element and choose Properties to open its Properties window.

The Properties window for the For Each element includes the following properties:
■ Name: Specifies the name of the For Each element.
■ Counter Variable Name: Declares the counter variable name.
■ Start Counter Value: Sets the start counter value. Use the BPEL Mapper to generate an

integer value expression.
■ Final Counter Value: Sets the final counter value. Use the BPEL Mapper to generate an

integer value expression.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine • June 200976

When the For Each activity is started, the expressions in Start Counter Value and Final
Counter Value are evaluated for the first and only time. That is, once the two values are
returned they remain constant for the lifespan of the activity. If the Start Counter Value
is greater than the Final Counter Value, then no iteration will be performed.

■ Completion Condition: (Optional) Specifies an integer value expression. After
execution of each directly enclosed activity, the number of completed activities is
checked against this value. When the number of completed activities equals the value of
the specified expression, no further activities are started. When the expression value is
greater than the available number of iterations, then no iteration will be started.

■ Count Completed Branches Only: (Optional) If this checkbox is selected, it tells the
runtime to only count the branches that have completed successfully. If this checkbox is
cleared, all branches, completed successfully or unsuccessfully, will be counted.

■ Documentation: User documentation attached to the element. This documentation is
included with the source code of the BPEL process and can be extracted and included in
a report.

Using the Pick Element
The Pick element blocks the process and waits until one of the specified events occurs. After the
specific event occurs, the activity associated with this event is performed. The possible events
are the arrival of a message or a timer-based alarm. The occurrence of the events is mutually
exclusive. If more than one of the events occurs, then the selection of the activity to perform
depends on which event occurred first.

The Pick activity provides two branches, On Message and On Alarm. The branch whose
condition is satisfied first (i.e. a message is received or the specified timer expires) is executed.
When you add a Pick element to your diagram, it automatically includes one On Message
statement in which you specify the properties of the message that the process awaits from a
partner service. Each Pick element must include at least one On Message statement. The On
Alarm branch contains a timer you can use to specify how long the process is to wait.

Usage
1. In the Design view, drag the Pick element from the Palette to the diagram.
2. For the On Message branch, configure the properties of the message for which the process is

waiting. The configuration is similar to that of the “Usage” on page 57 element.
3. From the Palette, drag the activity that will be executed and place it inside the On Message

branch. Configure the activity's properties.
4. (Optional) Add more On Message branches by choosing Add → On Message from the

pop-up menu and configure them as described above.
5. (Optional) Add one or more On Alarm branches following the procedure below.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine 77

Adding an On Alarm branch
1. Right-click the Pick element and choose Add → On Alarm from the pop-up menu.
2. Configure the timer via the Properties window, invoked by right-clicking the element and

choosing Properties. The available options are:
■ Alarm Type: Specifies the type of alarm. The type can be one of the following:

■ For: Specifies a duration for the process to wait.
■ Until: Specifies a deadline for the process.

■ For/Until: Used to configure the deadline or the duration for the chosen alarm type.
Click the ellipsis button (...) to specify the time. You can also use the BPEL Mapper.

■ Documentation: User documentation attached to the element. This documentation is
included with the source code of the BPEL process and can be extracted and included in
a report.

3. Find the activity you want executed after the time expires, and drag it from the Palette to the
placeholder inside the On Alarm element.

4. (Optional) Add one or more On Alarm branches as described above.

Pick Element Properties
The Properties window for the Pick element, invoked by right-clicking the element and
choosing Properties, includes the following fields:

■ Create Instance: If set to yes, a new process instance will be created when the specified
event occurs. If you do not plan to start a new process instance, keep the default N/A value.

■ Name: Specifies the name of the For Each element.
■ Documentation: User documentation attached to the element. This documentation is

included with the source code of the BPEL process and can be extracted and included in a
report.

Using the Flow Element
Use the Flow element to define a set of activities that will execute concurrently (in parallel).

The Flow activity is a structured activity, containing other activities separated into individual
control paths or branches. You can embed as many paths in the activity as you want, and they
will all be executed simultaneously.

During execution, each path is executed concurrently, and the activities on each are executed in
the order in which they appear, unless they are the source of a link. When the activities are the
source of a link, the condition of the link and the join condition of the activity must be
evaluated. If the link conditions that lead to an activity conflict with those of its join condition,
then a fault is thrown on that activity.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine • June 200978

Usage
In the Design view, drag the Flow Element from the Palette to the diagram.

Drag an element to the placeholder inside the Flow element. If you add another element into the
same branch of the Flow element, the elements within a branch are automatically wrapped in
the Sequence element.

Adding Branches to the Flow Element
You can add one or more branches to the Flow element. The Flow element has a special user
interaction style. It always shows a placeholder for the next branch that you might wish to add.
To add a new branch, drag an element from the Palette to the immediately available "next
branch" placeholder.

Changing the Order of Elements inside Flow
To change the order of activities inside the Flow element:

1. In the Design view, right-click the Flow element and select Change Order.
2. Select an element and use the Move up or Move down buttons to change the position of the

element inside the container.

Using the Sequence Element
Use the Sequence element to nest a series of activities into your process. The activities within a
sequence will execute in strict sequential order. Process execution returns to the business
process when the last activity within the nest has completed.

Usage
Drag the Sequence element from the Palette to the diagram.

Adding Child Activities to the Sequence
You can add one or more child activities to the Sequence. The Sequence element has a special
user interaction style. It always shows one or more valid placeholders for the next activity that
you might wish to add. To add a new child activity, drag and drop an element from the Palette
onto the immediately available next or previous activity placeholder.

Changing the Order of Elements inside Sequence
To change the order of activities inside the Sequence element:

1. In the Design view, right-click the Sequence element and select Change Order.
2. Select an element and use the Move up or Move down buttons to change the position of the

element inside the container.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine 79

Using the Scope Element
The Scope activity is essentially a collection of child activities that can have their own Variables,
Fault and Event Handlers, and correlation sets. The Scope activity provides the behavior
context for the child elements. The attributes defined for a parent Scope have local visibility
inside this Scope. For example, the variables declared for a Scope are visible only inside that
Scope and all nested Scopes. These variables can then be used for the child activities of this
Scope.

Usage
1. In the Design view, drag the Scope element from the Palette to the diagram.
2. Right-click the element and choose Add from the pop-up menu to add the following:

■ “Variables” on page 80
■ “Using an Event Handler” on page 105
■ “Using a Fault Handler” on page 103

3. In the Design view, drag elements from the Palette and place them inside the Scope element.
4. Configure the elements.
5. (Optional) Specify the name of the Scope element in the Properties window, invoked by

right-clicking the element and choosing Properties.

Variables
Variables in BPEL programming function just as they do in other programming languages: they
hold temporary values, form parts of expressions, or are passed as parameters to external
partners. Normally, you need a variable for every message sent to or received from a partner
service. The BPEL Designer supports the following types of variables:

■ WSDL Message type. These variables correspond to web service message types that are
defined in WSDL files imported by the process. In a BPEL file (.bpel), these variables must
specify a value for the messageType attribute. Message type variables are used to hold data in
interactions between the process and its partner services.

■ XML Schema type. These variables correspond to simple or complex XML Schema data
types. The XML schema types themselves are defined in XML Schema files (.xsd) or in
WSDL files that are imported into the process. In a BPEL file, variables of this type must
specify a value for the type attribute.

■ XML Schema element. These variables correspond to XML Schema elements.The XML
schema elements themselves are defined in XML Schema files (.xsd) or in WSDL files that
are imported into the process. In a BPEL file, variables of this type must specify a value for
the element attribute.

■ Built-in type. Variables of this type are standard simple types defined in the XML Schema
specification.

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine • June 200980

Global and Local Variables

The variables defined at the Process root are global variables, which have a global visibility
throughout the entire process. The variables defined within a particular Scope are visible only
inside that Scope and all nested Scopes. These variables are called local variables. A variable
defined for an inner Scope element can hide an upper defined variable of the same name.

The name of a variable must be unique among the names of all variables defined within the
same Scope.

▼ To define a variable:

Right-click the Process or Scope element and select Add > Variable.

In the Create New Variable dialog box, name the variable. The name should be unique within
this Scope element.

Expand the node corresponding to the type of the new variable and select its type. You have the
following options:

■ Built-in Types: Expand the Built-in Types node, select the type's name, and click OK.
■ Message Type: Expand a .wsdl file node, select a message type and click OK.
■ XML Schema: Expand an .xsd file node or a .wsdl file that contains an embedded schema.

Expand the Global Complex Type, Global Simple Type, or Global Elements Simple nodes,
select the appropriate type, and click OK.

For your convenience, global types of variables are displayed in bold.

(Optional) Clear the Show Imported Files Only checkbox to view the contents of non-imported
WSDL and XML schema files.

Click OK.

By default, the Create New Variable dialog box only shows those files that have already been
referenced in the process. However, the project may contain other WSDL and XSD files which
have not yet been imported into the process. If you select a type for the new variable that is
defined in a non-imported file, the IDE will automatically add the required import to the BPEL
process.

You can also add variables from the “The Navigator Window” on page 29 window. To add a
variable, select BPEL Logical View in the Navigator, expand your BPEL Module project's node,
right-click the Variables node and choose Add Variable.

1

2

3

4

5

The BPEL Designer Palette Elements

Using the BPEL Designer and Service Engine 81

▼ To edit a variable:

In the Navigator window, select BPEL Logical View.

Expand BPEL Module project's node > Variables and double-click the variable you want to edit.

In the Property Editor dialog box for the variable, change the variable type and name.

Click OK.

Using the BPEL Mapper
The section describes how to use the BPEL Mapper.

“About the BPEL Mapper” on page 82

“Creating BPEL Mappings” on page 83

“Working with Predicates” on page 85

“XPath Function Reference” on page 86

“Mapping Examples” on page 89

About the BPEL Mapper
The BPEL Mapper provides a framework for processing and directing BPEL process data. This
framework consists of the following components:

■ Menu Bar. The menu bar provides operators, necessary elements, and XPath functions you
use to create BPEL mappings. You can also enhance or extend BPEL mappings by
incorporating predicates that consist of XPath functions.
On the right side of the menu bar, you can use the following buttons to work with function
boxes, or functoids:
■ Expand Mapped Nodes — Expands all mapped nodes.
■ Collapse All — Collapses all function boxes. This command is useful when you work

with numerous function boxes in the mapping pane.
■ All — All nodes are displayed.
■ Output — . Only connected nodes wil be dispayed.

■ Source tree pane — The source tree pane is placed on the left and contains a tree
component that provides access to a business process's data variables and partnerlinks.

1

2

3

4

Using the BPEL Mapper

Using the BPEL Designer and Service Engine • June 200982

■ Mapping pane — The mapping pane contains a canvas for creating BPEL mappings. When
you select a function from the menu bar, a function box appears in the mapping pane. If the
function accepts any arguments, then the left side of the function box has one connector for
each argument. If an argument is optional, then a question mark appears after the argument
name. The right side of the function box has one connector for the result. You can use the
BPEL Mapper with the following business process elements:
■ Assign activity — You can define one or more copy assignments.
■ If activity — You can define the condition.
■ Else If element within an If activity — You can define the condition.
■ For Each activity — You can define the condition.
■ Repeat Until activity — You can define the condition.
■ While activity — You can define the condition.
■ Wait activity — You can specify the deadline or duration.
■ onAlarm event — You can specify the deadline or duration..

■ Destination tree pane — This pane is placed on the right. Tree component of the
destination pane depends on the business process element that you are mapping. The pane
contains the following components:
■ For an Assign activity, the right pane contains the same tree component as the left pane.
■ For an If activity, Else If element, For Each activity, Repeat Until activity, and While

activity, the right pane contains a Result node.
■ For the Wait activity, the right pane contains a Deadline or Duration node.

▼ To open the BPEL Mapper window:

Open the BPEL diagram and do one of the following:

a. Double-click the element that requires BPEL Mapper. The Mapper tab opens.

b. Select an element that requires the mapper and on the diagram toolbar click the Mapper
tab.

If you want to see the mapper and the diagram of the process at the same time, you can place the
mapper to a separate window. For more information see Cloning Document Views.

Creating BPEL Mappings
You can create a mapping from the source tree pane directly to the destination tree pane,
without using any of the functions. This type of mapping can be any of the following:

■ Variable to variable
■ Part to part
■ XSD element to XSD element

●

Using the BPEL Mapper

Using the BPEL Designer and Service Engine 83

■ XSD attribute to XSD attribute
■ Partner link to partner link

You can also create a mapping that uses one or more XPath functions from the BPEL Mapper's
menu bar. For example, if the BPEL process includes a Wait activity that waits for a period of
time, then you can use the Duration Literal function to specify the duration.

▼ To create a mapping without using any functions:

In the source tree pane, expand the tree component until the node that you want to map from
appears.

If the destination tree pane contains a tree component, then expand the tree component until
the node that you want to map to appears.

Select the node in the source tree pane and drag the pointer to the node in the destination tree
pane.
A link connects the nodes.

▼ To use a function in a mapping:

In the destination tree pane, expand the tree and select the node you want to map to. A blue
area appears on the mapping pane. The functions you choose will appear here.

Click the drop-down menu that contains the function.

Click the function.
A function box appears in the mapping pane.

Map any arguments into the appropriate connector on the left side of the function box. The
source can be a node in the source tree pane or the output from another function box. If an
argument is optional, then a question mark appears after the argument name.

Map the result from the right side of the function box. The destination can be a node in the
destination tree pane or the input into another function box.

1

2

3

1

2

3

4

5

Using the BPEL Mapper

Using the BPEL Designer and Service Engine • June 200984

▼ To delete a link or function in a mapping:

Select the link or function.

Press Delete.

Working with Predicates
The BPEL Mapper enables you to create a predicate that consists of XPath functions.

A predicate applies a condition to a node that can have multiple values. The result is the subset
of nodes that satisfy the condition.

For example, assume that a node represents the number of products. If you want to select all
products whose number is greater than 50, then you can use the greater than and number

literal functions to define the condition.

Once you create a predicate, you can use the predicate in an assignment. For example, you can
copy data from a predicate in the source tree pane to a node in the destination tree pane.

You can edit or delete an existing predicate.

▼ To create a predicate:

In the source tree pane, right-click a node (schema element or attribute) and choose New
Predicate.
The Predicate Editor appears.

Use XPath functions to create the condition for the predicate. Map the result to the predicate
node in the destination tree pane.

1

2

1

2

Using the BPEL Mapper

Using the BPEL Designer and Service Engine 85

Click OK.
The editor adds the predicate node immediately below the original node. The condition appears
in brackets.

▼ To edit a predicate:

In the source tree pane, right-click the predicate node and choose Edit Predicate.

Modify the condition.

Click OK.

▼ To delete a predicate:

In the source tree pane, right-click the predicate node and choose Delete Predicate.

Click Yes.

XPath Function Reference
A collection of XPath functions are available in the BPEL Mapper's menu bar. These functions
are based on the XPath 1.0 specification.

Each function has zero or more arguments. Each function returns a single result.

The menu bar contains the following drop-down menus: “Operator” on page 86, “Boolean” on
page 87, “String” on page 87, “Nodes” on page 88, “Number” on page 88, “Date & Time” on
page 89, and “BPEL” on page 89.

Operator
The Operator menu contains the following functions:

■ Greater — Greater than.
■ Greater or Equal
■ Less — Less than.
■ Less or Equal
■ Addition
■ Subtraction
■ Multiplication
■ Division — The operator returns the quotient for a given dividend and divisor.

3

1

2

3

1

2

Using the BPEL Mapper

Using the BPEL Designer and Service Engine • June 200986

■ Remainder — The operator returns the remainder for a given dividend and divisor #
Negative

■ Negative
■ Not Equal
■ Equal

Boolean
The Boolean menu contains the following functions:

■ Logical And — If both arguments are true, then the function returns true. If either
argument is false, then the function returns false.

■ Logical Or — If either argument is true, then the function returns true. If both arguments
are false, then the function returns false.

■ Logical Not — If the argument is false, then the function returns true. If the argument is
true, then the function returns false.

■ Language — Returns true or false depending on whether the language of the context node is
the same as or is a sublanguage of the language specified in the argument.

■ Logical False — Returns false.
■ Logical True — Returns true.
■ Boolean — Converts the argument to a boolean. For detailed information about the logic,

see the XPath 1.0 specification.

String
The String menu contains the following functions:

■ Contains — Uses the following logic: If the first argument string contains the second
argument string, then the function returns true. Otherwise, the function returns false.

■ Normalize Space — Returns the argument string with whitespace normalized by stripping
leading and trailing whitespace and by replacing sequences of whitespace characters with a
single space.

■ String — Converts an object to a string.
■ Starts With — Uses the following logic: If the first argument string starts with the second

argument string, then the function returns true. Otherwise, the function returns false.
■ String Length — Returns the number of characters in the string.
■ Substring — Returns the substring of the first argument starting at the position specified in

the second argument with the length specified in the third argument. The position of the
first character is 1, the position of the second character is 2, and so on. The third argument is

Using the BPEL Mapper

Using the BPEL Designer and Service Engine 87

optional. If the third argument is not specified, then the function returns the substring
starting at the position specified in the second argument and continuing to the end of the
string.

■ Substring Before — Returns the substring of the first argument string that precedes the first
occurrence of the second argument string in the first argument string. If the first argument
string does not contain the second argument string, then the function returns an empty
string.

■ Substring After — Returns the substring of the first argument string that follows the first
occurrence of the second argument string in the first argument string. If the first argument
string does not contain the second argument string, then the function returns an empty
string.

■ Translate — Returns the first argument string with occurrences of characters in the second
argument string replaced by the character at the corresponding position in the third
argument string.

■ Concat — Returns the concatenation of the arguments.
■ String Literal — Enables you to enter a string literal.

Nodes
The Nodes menu contains the following functions:
■ Local Name — Returns the local part of the expanded name of the node in the argument

node-set that is first in document order. (An expanded name consists of a local part and a
namespace URI.)

■ Name — Returns the qualified name that represents the expanded name of the node in the
argument node-set that is first in document order. (An expanded name consists of a local
part and a namespace URI.)

■ Namespace URI — Returns the namespace URI of the expanded name of the node in the
argument node-set that is first in document order. (An expanded name consists of a local
part and a namespace URI.)

■ Position — Returns the context position.
■ Last — Returns the context size.
■ Count — Returns the number of nodes in the argument node-set.

Number
The Number menu contains the following functions:
■ Number — Converts the argument to a number. For detailed information about the logic,

see the XPath 1.0 specification.
■ Number Literal — Enables you to enter a number literal.
■ Round — Returns the number that is closest to the argument and that is an integer.

Using the BPEL Mapper

Using the BPEL Designer and Service Engine • June 200988

■ Sum — Returns the sum, for each node in the argument node-set, of the result of converting
the string values of the node to a number.

■ Floor — Returns the largest number that is not greater than the argument and that is an
integer.

■ Ceiling — Returns the smallest number that is not less than the argument and that is an
integer.

Date & Time
The Date & Time menu contains the following functions:

■ Current Date — Provides the current date.
■ Current Time — Provides the current time.
■ Current Date and Time — Provides the current date and time.
■ Deadline — Provides the specified end time.
■ Duration Literal — Enables you to enter a duration literal. Use the format specified in the

XML Schema specification.

BPEL
The BPEL menu contains the following functions:

■ Do XSL Transform — This is an XPath extension function defined in WS-BPEL
specification. It can be used in a BPEL Assign activity to call an XSLT transformation.

■ Get Variable Property — Provides the property of the variable.
■ Wrap with Service Reference — This is a special case of Do XSL Transform function used

to transform data into Service
■ Do Marshal — Performs serialization of an object.
■ Do UnMarshal — Performs deserialization of an object.
■ GUID — Provides the GUID Name.
■ Get BP ID — Gets the Business Process Identification.
■ XML Literal — Enables you to enter an XML literal.

Mapping Examples
These examples illustrate several mapping scenarios:

■ “Assign Activity Scenario” on page 90
■ “If Activity Scenario” on page 91
■ “Predicate Scenario” on page 91

Using the BPEL Mapper

Using the BPEL Designer and Service Engine 89

Assign Activity Scenario
Assume that you want a BPEL process to copy data received from a partner. Do the following
tasks:

1. Add an Assign activity after the Receive activity.

2. Use the BPEL Mapper to define one or more copy assignments. To open the BPEL Mapper,
double-click the Assign activity on the diagram or select the Mapper tab on the toolbar.

The following example shows a copy assignment that does not use any XPath functions. The
itinerary part of the ItineraryIn variable is copied to the itinerary part of the
ItineraryOut variable. Notice that the left pane and the right pane contain the same tree
component.

The following example shows a copy assignment that uses the concat XPath function. The
input variable paramA is concatenated to the end of the string literal Parameter A: and copied
to the output variable paramA.

Using the BPEL Mapper

Using the BPEL Designer and Service Engine • June 200990

If Activity Scenario
Assume that you want to execute a series of steps only if a certain condition is true. Do the
following tasks:

1. Add an If activity to the BPEL process.
2. Use the BPEL Mapper to define the Boolean condition. To open the BPEL Mapper,

double-click the If activity on the diagram or select the Mapper tab on the toolbar.
3. Add the steps inside the If activity.

The following example shows a mapping for the condition. The mapping uses the Not XPath
function, which is available from the Boolean node on the menu bar. If the itinerary has an
airline reservation, then the Not XPath function returns true. The result is mapped to the
Result node in the right pane.

Predicate Scenario
Assume that you want a BPEL process to copy itinerary data from itineraries of customers with
no more than two in their party. The input records include a variable that specifies the number
of passengers in the customer's party. Do the following tasks:

1. In the left pane of the BPEL Mapper window, right-click the repeating node that is marked
with an asterisk (*) and choose New Predicate.
The Predicate Editor window appears.

2. Add the Less XPath function to the middle pane.
3. Add the number literal XPath function to the middle pane. Set the value to 3.
4. Map the variable node to the first argument of the Less XPath function.
5. Map the result of the number literal XPath function to the second argument of the Less

XPath function.
6. Map the result of the Less Than XPath function to the Result node in the right pane.
7. Click OK.

Using the BPEL Mapper

Using the BPEL Designer and Service Engine 91

The following example shows how the mapping appears in the Predicate window. Once you
click OK, you can use the predicate node in a copy assignment.

If the BPEL process received the following XML, then the predicate would select the first Air
tag.

<Air>

<NumberInParty>2</NumberInParty>

</Air>

<Air>

<NumberInParty>4</NumberInParty>

</Air>

<Air>

<NumberInParty>6</NumberInParty>

</Air>

Using Type Cast and Pseudo-Components
Type Cast and Pseudo-components are provided to support type inheritance, help build
message structure, and prevent validation errors. Type Casting addresses a problem in which a
base complex type does not contain the same elements as the derived type.

For example, a variable may have a base type, containing two attributes and two elements, and a
derived type inherited from the base type, containing an additional attribute and element.

Using the BPEL Mapper

Using the BPEL Designer and Service Engine • June 200992

When the message is declared in a WSDL for use in BPEL, the base type is used to declare the
message. So, in this example, from the Mapper view of the XML structures we see the variable's
base type that does not contain the additional element and attribute.

Since the Mapper is designed to allow you to graphically link elements and attributes, these
structures need to be available in the mapper view. To allow mapping of derived type attributes
and elements, which are implied by the base type, the Mapper enables you to cast an object to
another type - in this example, to the derived type.

Using the BPEL Mapper

Using the BPEL Designer and Service Engine 93

To cast an object to another type:

1. From the Mapper view of the project's bpel file, right-click the variable that has the base type
and click Cast To in the pop-up menu. The Subtype Chooser appears displaying a tree with
the original type as the root and subtypes under the root. If there are no subtypes, only the
original type will appear in the box.

2. To cast the original variable to the derived type, select derivedType in the Subtype Chooser
and click OK. The derivedType variable appears in the Mapper.

3. Expand the derivedType variable in the Mapper and note that the additional attribute and
element are now available to use for mapping.

Type Cast
The Type Cast option allows you to explicitly cast an object to another type. This only works for
objects that have a schema type.

In the BPEL Mapper the following object can be casted:

■ Schema Element
■ Schema Attribute
■ Variable (except variables of the WSDL Message type)
■ Message Part

Using the BPEL Mapper

Using the BPEL Designer and Service Engine • June 200994

Pseudo-Component
The Pseudo-component feature is similar to Type Cast. The XML Schema introduces xsd:any.
It declares that an element can be located in the XML document and have any name and type.
The BPEL mapper allows you to add to the tree elements, which correspond to xsd:any. Such
elements don't appear in the schema, but they look similar to other elements. That is why they
are called pseudo-elements. The user can map from and to a pseudo-element the same way as
for an ordinary element. This also applies to the xsd:anyAttribute. The user can create
pseudo-attributes to use for mapping and design purposes.

In the Mapper's Input and Output trees, xsd:any appears as an element node with the name
"Any Element" and xsd:anyAttribute as an attribute with the name "Any Attribute". Both
have the pop-up menu item "Cast To...", which calls the special dialog box used to specify a
name, namespace and type for the new pseudo-component. For xsd:any any global type can be
chosen. For xsd:anyAttribute only the global simple types are suggested. In both cases the
settings allow you to choose global types from several different sources. The completed
pseudo-components appear in the tree with the name pattern (castToElementName)Any

Element or (castToAttributeName)Any Attribute.

Type Cast and Validation
Validation is passive in regard to type casts and pseudo-components, meaning that validation
does not object to an unknown component if it is a qualified type cast or it is declared as a
pseudo-component.

Type Cast and Pseudo Component Limitations
The type cast is used to avoid runtime errors, but there are several reasonable limitations:

■ An object of a specific schema type can be cast only to a subtype. This applies to elements,
attributes, variables and message parts. The XML Schema has two derivations, extension
and restriction, both of which are supported by type cast.

■ xsd:any contains additional attributes which might restrict the possible element type.

Using the BPEL Mapper

Using the BPEL Designer and Service Engine 95

■ Only global types can be used when you declare a pseudo-component. Global attributes or
elements cannot be used. The target of the type must be referencable, and as such should be
global.

■ You cannot nest type casts, pseudo-components, and mixed declarations.
■ You cannot add a new predicate to a casted component or its part.
■ You cannot mix two or more type casts or pseudo components in an XPath expression. A

type cast cannot be associated with a specific part of an expression, but only with the
expression as a whole.

Using Normalized Message Properties
Normalized Message properties are commonly used to specify metadata that is associated with
message content. javax.jbi.security.subject and javax.jbi.message.protocol.type are
two examples of standard normalized Message properties defined in the JBI Specification.

Normalized Message properties are used to provide additional capabilities in Open ESB, such
as:

■ Getting and Setting transport context properties. For example, HTTP headers in the
incoming HTTP request, or file names read by the File Binding Component

■ Getting and Setting protocol specific headers or context properties (SOAP headers)
■ Getting and Setting additional message metadata. For example. a unique message identifier,

or an endpoint name associated with a message
■ Dynamic configurations. For example, to dynamically overwrite the statically configured

destination file name at runtime

Some of the use cases mentioned above require protocol/binding specific properties, typically
used by a particular binding component. Other properties are considered common or general
purpose properties that all participating JBI components make use of, for example, the message
ID property, which can be utilized to uniquely identify or track a given message in the
integration.

Using Normalized Message Properties in a BPEL
Process
The Normalized Message properties are accessed from the BPEL Designer Mapper view. When
you expand a variable's Properties folder it exposes the variables predefined NM properties. If
the specific NM property you need is not currently listed, additional NM properties can be
added.

Using Normalized Message Properties

Using the BPEL Designer and Service Engine • June 200996

Using Predefined Normalized Message Properties in a BPEL Process
Predefined Normalized Message properties are ready for use, from a variable's Properties file.

▼ To use predefined normalized message properties in a BPEL process

From the Design View diagram, select the activity with the process you want to edit.

Click Mapper to switch to the Mapper view of the BPEL process.

From the Output pane, expand the Variable you want to edit and its Properties file.
The Properties file contains the predefined Normalized Message (NM) properties.

To use a predefined NM Property, select the property and use it to build an expression or an
assign.

Adding Additional Normalized Message Properties to a BPEL Process
If the specific NM Property you want is not listed, you can add additional NM properties.

There are two options available when adding NM Properties:

■ Add NM Property Shortcut: This option typically supports simple type properties, in that it
does not grant access to some data within the NM Property.

■ Add NM Property: This option provides access to data within the NM property used to
build expressions.

1

2

3

4

Using Normalized Message Properties

Using the BPEL Designer and Service Engine 97

▼ To add a Normalized Message Property Shortcut to a BPEL process

From the Output or Input panes of the BPEL Mapper, expand the node for the variable to which
you want to add an NM property. Right-click that variables Propertiesdirectory node and
select Add NM Property Shortcut from the pop-up menu.

The Add NM Property Shortcut dialog box appears.

Enter the information for the new NM property into the the Add NM Property Shortcut dialog
box, as follows:

a. Property Name: The NM property name (see each binding component's documentation for
available NM properties).

b. Display Name:The display name for the NM property. This is a user-defined name that
appears in the Mapper tree. The display name is optional.

Click OK.

The new NM property is added to the Mapper tree under the variables Properties directory. The
property can now be used in assigns and to build expressions.

▼ To edit an NM Property Shortcut

To edit an existing NM property shortcut, right-click the NM property shortcut in the BPEL
Mapper tree and choose Edit NM Property Shortcut in the pop-up menu.

The Add NM Property Shortcut dialog box appears.

Edit the NM Property Name or Display Name, and click OK.

1

2

3

1

2

Using Normalized Message Properties

Using the BPEL Designer and Service Engine • June 200998

▼ To delete an NM Property Shortcut

To delete an NM property shortcut, right-click the property in the Mapper tree.

Choose Delete NM Property Shortcut in the pop-up menu.

The NM Property Shortcut is deleted.

▼ To add a Normalized Message Property to a BPEL process

From the Output or Input panes of the BPEL Mapper, expand the node for the variable to which
you want to add an NM property. Right-click that variables Propertiesdirectory node and
select Add NM Property from the pop-up menu.

The Add NM Property dialog box appears.

Enter the information for the new NM property in the the Add NM Property dialog box, as
follows:

a. Property Name: User-defined property name. This name is displayed in mapper tree and
stored in WSDL file.

b. Type or Element:Displays the property type or element associated with the selected node in
the Map Property To tree.

c. Associate property with message: To associate the new NM property with all variables of any
message type select this checkbox.

d. Map Property To: The Map Property To tree displays all of the predefined NM properties.
This is used to build a query or choose a property type.

When you select a node within the property tree the Type or Element and Query fields are
populated automatically. Valid endpoint nodes are displayed in bold.

e. New NM Property: Select the New NM Property checkbox to add a specific NM property, and
enter the name of the property in the New NM Property field. The new NM property is added
to the Map Property To tree.

f. Sync with tree:When this checkbox is selected, the Query field is automatically synchronized
with the selected node in the Map Property To tree.

g. Query: Displays the query type associated with the selected node in the Map Property To

tree.

1

2

1

2

Using Normalized Message Properties

Using the BPEL Designer and Service Engine 99

Click OK. The new NM property name is added to the tree in the BPEL Mapper, and the NM
property is stored in nmPropertiesDefinitions.wsdl as a pair of elements: <vprop:property>
and <vprop:propertyAlias>

3

Using Normalized Message Properties

Using the BPEL Designer and Service Engine • June 2009100

The new NM property can now be used in assigns and to build expressions.

▼ To delete an NM Property

To delete a new NM property, right-click the property in the Mapper tree.

Choose Delete NM Property in the pop-up menu.

The property is deleted.

BPEL Code Generation Using NM Properties
Data copied from an NM property or an NM property shortcut generates code that is similar to
the following:

<from variable="inputVar" sxnmp:nmProperty="org.glassfish.openesb.file
.outbound.dcom.username"/>

Data copied from WSDL properties based on NM property generates code that is similar to the
following:

<from variable="inputVar" property="ns3:DemoNMProperty"/>

When properties and NM properties are used to build an expression, code similar to the
following code is generated:

<from>concat(bpws:getVariableProperty(’inputVar’, ’ns3:DemoNMProperty’),

sxnmp:getVariableNMProperty(’inputVar’,’org.glassfish.openesb.file.outbound.dcom.

username’))</from>

An NM property used in a condition generates code that is similar to the following:

<condition>sxnmp:getVariableNMProperty(’inputVar’, ’my.nmProperty.boolean’)</condition>

General Normalized Message Properties
Normalized Message properties are either General, available to all participating JBI
components, or protocol/binding specific, used by a particular binding component. The
following General NM properties are available to all binding components.

1

2

Using Normalized Message Properties

Using the BPEL Designer and Service Engine 101

TABLE 1 General Normalized Message Properties

Property Name Type Description and Use

org.glassfish.openesb.
messaging.groupid

java.lang.String Uniquely identifies a message with the group to
which a message belongs. For example, it applies the
RM sequence group number for SOAP messages, or
a time stamped file name (where the file record
message comes from).

This property is optional.

org.glassfish.openesb.
messaging.messageid

java.lang.String Uniquely identifies a message. For batch processing
this might be a record number (for example, a
particular record in a file), or a GUID.

This property is mandatory.

org.glassfish.openesb.
messaging.lastrecord

java.lang.String The value is a string representation of boolean
("true" or "false"). This property can be used to
signal the last record in a group, e.g. the last record
in a RM sequence for SOAP messages, or the last
record in a file when multiple record processing is
turned on for File BC.

This property is optional.

org.glassfish.openesb.
exchange.endpointname

java.lang.String The value a string representation of the endpoint
name set on the exchange. This represents the
endpoint name of the "owner" of the message, and
could be made available by JBI runtime.

Binding Component Specific Normalized Message Properties
Binding components each have their own protocol specific Normalized Message properties.
These include inbound and outbound specific, as well as general NM properties for each
binding component.

For a list of binding component specific NM properties, refer to the following:

■ File Binding Component NM Properties
■ HTTP (SOAP) Binding Component NM Properties
■ JMS Binding Component NM Properties

Using Normalized Message Properties

Using the BPEL Designer and Service Engine • June 2009102

http://wiki.open-esb.java.net/Wiki.jsp?page=FileBCNMProperties
http://wiki.open-esb.java.net/Wiki.jsp?page=HTTPBCNMProperty
http://wiki.open-esb.java.net/Wiki.jsp?page=JMSBCNMProperties

Using Handlers
The following sections describe, in order of their appearance:

■ The circumstances under which you would use a specific handler.
■ The use of those elements within the context of the BPEL Designer.

“Using a Fault Handler” on page 103

“Using an Event Handler” on page 105

“Using a Compensation Handler” on page 108

“Using a Termination Handler” on page 108

Using a Fault Handler
The BPEL language provides the capability to catch and manage exceptions using fault
handlers. For example, exceptions occur when web services return different data than was
expected. If faults are not handled, the entire BPEL process can be thrown into a faulted state.
Therefore, to prevent the entire process from fault, you can add fault handlers to catch and
manage exceptions within particular Scopes.

When to Use
Each fault handler contains an activity that runs in case of an error. For example, a partner
service is notified if an error has occurred. Fault handlers can be added to the entire process or
to individual Scope elements.

You can attach one Fault Handler container to either the Process or the Scope elements. Inside
the Fault Handlers container, you can create several Catch activities configured to catch specific
kinds of faults, or one Catch All handler element to catch all the exceptions not caught by
specific handlers.

Usage
1. Right-click the Scope or Process element and choose Add > Fault Handlers.

An empty container element appears.
2. Right-click the Fault Handler container and choose Add > Catch or Add > Catch All.

You may add as many specific Catch elements as you wish to the Fault Handlers group. You
can add only one Catch All element per Fault Handlers container.

3. Add an activity to the Catch or Catch All element that will be executed in case of a fault.

Using Handlers

Using the BPEL Designer and Service Engine 103

Catch Element
Use this element to intercept and deal with a specific kind of fault.

This element is used within an appropriate Fault Handlers container element.

Catch Element Properties
The properties of the Catch element are defined in the Properties window. You can also
right-click the element on the diagram and choose Properties.

The available properties are:

■ Fault Name — Selects the qname of the fault from the list of faults, which contains faults
defined in the WSDL files. You can also specify a new user-defined fault in a fault handler or
in a throw.

■ Fault Variable Name — Specifies the name of a variable. The Catch is the receiver of the
fault. The fault is produced by either a throw, a partner, or system. The fault variable puts
the message's data into the fault. This variable is created and initialized in the Catch.

■ Fault Variable Type — Specify the type of the variable. The type can be either Message
(WSDL) or Global Element (XSD).

Catch All Element
Use the Catch All element to intercept and deal with all faults that are not caught by an
associated catch element.

The Catch All element is used within a fault handler window along with one or more Catch
elements. It is defined within a Fault Handlers container element along with one or more Catch
elements.

There are no properties for the Catch All element. Its behavior is pre-defined and requires no
property configuration.

Using Handlers

Using the BPEL Designer and Service Engine • June 2009104

Using an Event Handler
The entire BPEL process as well as each individual Scope can be associated with a set of Event
Handlers that are invoked concurrently if the corresponding event occurs. The actions taken
within an Event Handler can be any type of activity, such as Sequence or Flow. The only
immediate child of an Event Handler is Scope, so when you drag an element from the Palette
into an Event Handler, it is automatically wrapped in Scope.

When to Use
There are two types of events:

■ Incoming messages, which correspond to a request/response or one-way operation in
WSDL. These messages are specified using the On Event elements.

■ Alarms, or timers, which invoke activities after the specified periods or when a deadline is
reached. The times are specified using the On Alarm elements.

Note – Event handlers do not interfere with the main flow of the business process. If an event
occurs, and an event handler is executed, the main flow will be executed also.

This means, one shouldn't use event handlers, for example, to send replies to requests received
in the main fllow, because the main flow might also send a reply which will never be seen by the
client, and this can lead to various issues.

On the contrary, a good use-case for event handlers would be to request a business process
status. In this case, the activities in the event handler will collect data about the state of the
business process, and then reply to the request that triggered the event handler.

Using Handlers

Using the BPEL Designer and Service Engine 105

This picture can be a bit misleading. The request should be caught by handler itself but not by
an internal Receive. I mean that the inbound arrow should come to handler itself, but not to an
internal circle, which can be treated like a receive.

Usage
1. Right-click the Process element or any Scope and choose Add → Event Handlers.
2. Once you have added an Event Handlers container, you can right-click on the Event

Handlers element to add an On Event or On Alarm branch. You may add as many specific
On Event or On Alarm elements as you wish, to the Event Handlers group.

On Event Element
The On Event element indicates that the specified event waits for a message to arrive. The
interpretation of this tag and its attributes is very similar to a Receive activity.

Usage
1. Right-click the Event Handlers container and choose Add > On Event.
2. Double-clicking the On Event element opens a Property Editor where you can

specify/change the following:
■ The partner link
■ The operation associated with the On Event element
■ The event variable

3. Right-click the On Event element and choose Properties to open a Properties window to
review and modify the properties of the element. In addition to the properties present in the
Property Editor dialog box, the Properties window contains the Port Type and Type field.

Using Handlers

Using the BPEL Designer and Service Engine • June 2009106

The Correlations tab in the On Event Property Editor dialog box enables you to examine or
specify a correlation set.

The tab shows:

■ A correlation sets' name
■ The initiation of a correlator

For more information see “Understanding Correlation. Using the Correlation Wizard” on
page 109.

On Alarm Element
The On Alarm element specifies the deadline for or the duration of the nested Scope.

On Alarm Element Properties
The properties of the On Alarm element are defined in the Properties window, invoked by
right-clicking the element on the diagram and choosing Properties. The available properties
are:

■ Alarm Type is used to choose the type of alarm. The available options are:
■ For — Sets the duration for the process to wait.
■ Until — Specifies the deadline for the process.
■ Repeat Every — . Specifies the frequency of process initiation. It initiates the process

each time the specified duration period expires. The clock for the very first duration
starts when the associated scope starts.

■ For + Repeat Every — Specifies the frequency of process initiation after the duration of a
specified wait time. The process is initiated each time the duration period specified in the
Repeat Every field expires. The first alarm is fired when the period of time specified in the
For field expires.

Using Handlers

Using the BPEL Designer and Service Engine 107

■ Until + Repeat Every — Specifies the frequency of process initiation based on the
specified deadline. The process will be initiated each time the duration period specified
in the Repeat Every field expires. The first alarm is fired when the deadline specified in
the Until field is reached.

■ The second (and third, where available) property is used to specify the duration or deadline
for the selected alarm type.

Using a Compensation Handler
A business process often contains several nested transactions. The overall business transaction
can fail or be cancelled after many enclosed transactions have already been processed. Then it is
necessary to reverse the effect obtained during process execution. For example, a travel
planning process can include several nested transactions to book a ticket, to reserve a hotel and
a car. If the trip is cancelled, the reservation transactions must be compensated for by
cancellation transactions in the appropriate order. For such cases, WS-BPEL provides you with
the capability to define compensation actions.

When to Use
A Compensation Handler is a container for the activities that perform compensation actions.
You can add one Compensation Handler to either the Scope or the Invoke elements. The
compensation handler can be invoked by “Using the CompensateScope Element” on
page 73“Using the Compensate Element” on page 72 activity.

▼ To add a Compensation Handler to Scope or Invoke elements:

Right-click the Scope or Invoke element and choose Add > Compensation Handler. An empty
container element appears.

From the Palette, drag one or several activities that will be executed and place them inside the
Compensation Handler container. Configure the properties of each activity.

Note – You do not have to configure any properties for the compensation handler.

Using a Termination Handler
The termination handler is used to control the termination of a running scope. The termination
of a running scope happens if a scope or process enclosing it has faulted.

1

2

Using Handlers

Using the BPEL Designer and Service Engine • June 2009108

When to Use
When a fault is thrown inside a scope or process, a fault handler associated with the scope or
process should be run, but before that all the running activities inside the faulted scope or
process should be terminated. If a faulted scope or process has any enclosed scopes which are
still running, they also should be terminated. Terminating a scope means terminating activities
inside it and executing the termination handler associated with the scope.

Note that a scope can be terminated only if, it is either running normally, is running its
compensation handler or termination handler. A completed scope as well as a scope that is
faulted or is running its fault handlers cannot be terminated.

The termination handler is a container for the activities that will be performed in case a scope is
terminated. You can add one termination handler for a scope.

If a fault occurs inside the termination handler of a scope, the fault is not propagated to the
enclosing scope.

▼ To add a Termination Handler to Scope or Process elements:

In the Design view right-click the Scope element and choose Add > Termination Handler. An
empty container element appears.

From the Palette, drag one or several activities that will be executed and place them inside the
Termination Handler container. Configure the properties of each activity.

Note – You do not have to configure any properties for the termination handler.

Using Correlation
Correlation mechanism is used to route messages to the right processes. The section describes
how to define correlation.

“Understanding Correlation. Using the Correlation Wizard” on page 109

Understanding Correlation. Using the Correlation
Wizard
The BPEL Service Engine runtime uses a mechanism called correlation to track the multiple,
long-running exchanges of messages that typically take place between a BPEL process and its
partner services. The correlation mechanism helps to route messages to appropriate process
instances.

1

2

Using Correlation

Using the BPEL Designer and Service Engine 109

A message in a conversation is connected with a composite value made up of one or more
properties defined in a WSDL file. A property is a field within a message identified by a query.
Queries are specified by special constructs called property aliases.

Thus, correlation sets are used to support stateful collaboration between web services in a
standardized, implementation independent way. Correlation sets rely on the correlation data
tokens stored in the message envelopes, headers, or business documents themselves. The
declaration of correlation relies on the declarative properties of messages.

The following terms apply to correlation:
■ Property — A property is an abitrarily named token. It must be a simple type. It is defined in

a WSDL file.
■ Property alias — A property alias is a rule that tells the BPEL runtime how to map data from

a message into a property value. You can define several property aliases for a property that
will be used as a correlation value. You would do this if the same property value needs to be
mapped from more than one message, which is typical in correlation. For instance, if two
different messages have the same part that you want to extract. Then you need one property
and two property aliases - one for each message). Property aliases are defined in a WSDL file.

■ Correlation set — A correlation set is a compound key made up of one or more property
values, actually it is a property set. The BPEL runtime uses this key to ensure that messages
are routed to the right process instance for a particular conversation. A correlation set is
defined in a BPEL file.

■ Correlations — Correlations mark the activities, identify the correlation sets by name and
indicate which correlation sets occur in the messages being sent or received.

Elements That Use and Express Correlation
Correlation sets can be defined for the Process element. The defined correlation sets are then
used by message activities (Invoke, Reply, and Receive), which describe a conversation between
a process and a partner service.

Correlation sets on Invoke activities are used to verify that outbound messages contain data that
is consistent with the data found within specified correlation set instances.

Correlation set names are also used in the onMessage branches of Pick elements and in the
onEvent variant of event handlers.

Defining Correlation Using the Correlation Wizard
There are two ways to define correlation:
■ Use the Correlation wizard which will automatically perform all the main steps. This is the

most easy and convenient way to define correlation. Usually you do not have to know in
details how does correlation work. The Wizard will make it for you.

■ Define correlation manually

Using Correlation

Using the BPEL Designer and Service Engine • June 2009110

The Correlation Wizard is used to define correlations for two messaging activities, such as
Invoke, Reply, Receive, OnEvent or onMessage branch of Pick element.

Note – The wizard is only used to create a correlation. You cannot use the wizard to edit a
correlation.

▼ To create correlation using the Correlation Wizard:

In the Design view, right click the activity that requires correlation and choose Define
Correlation.

The Correlation Wizard opens. If correlation is required for an activity, the Designer places a
warning icon on the diagram.

In the Correlation wizard, select the messaging activity. From the drop-down list choose an
initiating messaging activity. The activity chosen here initiates the correlation set. Click Next.

1

2

Using Correlation

Using the BPEL Designer and Service Engine 111

For Step 2 of the wizard, define the correlation. In the Output pane (left pane) of the wizard the
tree structure represents the message that the initiating activity sends or receives. In the Input
pane (right pane) The tree structure represents the message passed by the correlating activity.

Connect the messages parts that define correlation by selecting the node in the Output (source)
pane and dragging your cursor to the appropriate node in the Input (destination) pane.

Once the correlation is set, the wizard creates properties and property aliases in a WSDL file,
defines a correlation set in the BPEL file, and associates the correlation set with the activities you
selected.

Note that properties and property aliases are written to a new WSDL file that you can see among
the process files of the BPEL Module. The original WSDL file for the partner service is imported
to the new WSDL. For all correlation created using the wizard, both properties and property
aliases are written to this file. Partner WSDL files are imported. The correlation set defined in
the BPEL file refers to the new WSDL.

3

4

Using Correlation

Using the BPEL Designer and Service Engine • June 2009112

▼ Defining Correlation Manually

Define one or more properties in the WSDL file using the WSDL Editor or add a property to a
WSDL file.

Define property aliases in the WSDL file using the WSDL Editor add a property to a WSDL file.

Define a correlation set for the Process in the BPEL file, using one or more of the previously
defined properties.
To define a correlation set:

a. In the Design view, right-click the Process element and choose Add → Correlation Set.
Alternatively, in the BPEL Logical View of the Navigator window, right-click the
Correlation Sets node and choose Add Correlation Set.

b. In the Add Correlation Set dialog box, specify the name for the correlation set and click Add
to add properties.

c. In the Property Chooser dialog box, expand the WSDL file node, and select a property to add
to the set.

d. (Optional) Clear the Show Imported Files Only checkbox to view the contents of
non-imported WSDL and XML schema files.
By default, the Property Chooser dialog box only shows those files that have already been
referenced in the process. However, the project may contain other .wsdl and .xsd files which
have not yet been imported into the process. If you select a type for the new property that is
defined in a non-imported file, the IDE will automatically add the required import to the
BPEL process.

The correlation sets defined for the Process have global visibility. The name of a correlation
set must be unique among the names of other correlation sets.

e. Click OK.

Associate one or more correlation sets with a message that is sent or received in an Invoke,
Receive, Reply, or Pick activity.

a. In the Design view, double-click an element (Invoke, Receive, Reply, the On Message branch
of Pick, or the On Event branch of an Event Handlers container element).

b. In the Property Editor, select the Correlations tab and click Add.

c. In the Choose a Correlation Set dialog box, expand the Correlation Sets node, select the
correlation set and click OK.

1

2

3

4

Using Correlation

Using the BPEL Designer and Service Engine 113

d. Choose the Initiate attribute for this correlation set from the Initiate drop-down list. You can
select one of the following options:

■ Yes. The activity must attempt to initiate the correlation set.
■ Join. The activity must attempt to initiate the correlation set if the correlation set is not

yet initiated.
■ No. The activity must not attempt to initiate the correlation set. This is the default

option.

e. For an Invoke activity, specify the message pattern.
From the Pattern drop-down list, select a pattern attribute to indicate whether the
correlation applies to the outbound message (request), inbound message (response), or both
(request-response).

f. (Optional) Add more correlation sets as needed and click OK.

Validation
The BPEL Designer has a built-in BPEL code validation functionality that helps developers
create well-formed, valid and standard-compliant code. The code is checked for errors and the
user is notified if validation fails.

Validation Criteria
The Validator checks the BPEL process in accordance with the following criteria:

1. For conformance with the BPEL 2.0 schema.
See the “Troubleshooting” on page 170 section of this guide for more information about
using BPEL schemas different from the BPEL 2.0 specification.

2. For compliance with static analysis rules defined in the WS-BPEL 2.0 specification.
3. For broken references.
4. For constructs that are valid per the BPEL 2.0 specification but are not yet supported by the

Sun BPEL Service Engine.

Validation Types
The BPEL Designer provides two types of validation:

Real-time validation

Validation

Using the BPEL Designer and Service Engine • June 2009114

This type of validation is invoked automatically and does not require any explicit actions from
the user. Only the current file is checked. The validation is performed in accordance with all the
criteria mentioned above, except for validation for conformance with the BPEL 2.0 schema.

Explicit validation

This type of validation requires that the user explicitly invoke the validation process. All
imported XSD and WSDL files are also checked. The validation is performed in accordance
with all the criteria mentioned above.

To invoke explicit validation, do one of the following:

■ In the Source view, right-click the source to invoke the pop-up menu and choose Validate
XML (Alt-Shift-F9)

■ In the Design view, click the Validate XML button (Alt-Shift-F9) on the Editor toolbar.

Notifications
The user is notified about validation errors or success in the Outpur window, in the Design
view, and in the Navigator.

The Output window
The results of validation appear in the Output window if validation has been invoked explicitly.
If validation fails, the Output window contains errors and/or warnings:

If validation is successful, there are no warnings or errors in the Output window.

Validation

Using the BPEL Designer and Service Engine 115

The Design view
The Design view shows the results of both real-time and explicit validation in callout windows
on the diagram and the error stripe.

In the diagram, a red cross next to an element on the diagram means that the element has not
passed validation and the output contains errors. A yellow triangle with an exclamation mark
means that the element has not passed validation and the output contains warnings. If there are
both errors and warnings, the Design view shows a red cross. If you click the cross or the
triangle, a callout window appears with a list of errors and/or warnings:

The callout window includes messages related to validation in accordance with all the criteria
listed above. Messages related to the real-time validation are constantly updated.

In the Design view, validation results are also shown by the error stripe, which is a strip to the
right of the scroll bar that contains red marks if some elements have not passed validation. The
error stripe represents the entire diagram, not just the portion that is currently displayed. You
can immediately see if your BPEL process contains errors without having to scroll through the
entire diagram. You can click a red mark to jump to the element that causes problems. If no
errors are detected, the small square in the error stripe is green.

Validation

Using the BPEL Designer and Service Engine • June 2009116

The Navigator window
The Navigator window shows the results of both real-time and explicit validation by adding a
red cross or a yellow triangle to the element's icon if validation has failed. For example, in the
screenshot below, the AirlineReserved receive activity has not passed validation and the
output contains errors.

BPEL Process Logging and Alerting
The Sun BPEL Service Engine provides you with the ability to trace the message or expression
values during the process execution. The Logging and Alerting feature make use of standart
WS-BPEL extension mechanism. Logging and alerting are supported for almost all BPEL
activities.

The NetBeans IDE provides the ability to define logging and alerting for the process activities.

■ Logging is used to write specified expression values or partner links endpoint reference
information to the server log.

■ Alerting allows you to receive an alert with this information.

After you set the logging or alerting conditions and the BPEL process is executed, specified
expression values are written to the server log file or an alert is sent to the user, depending on
the log level.

Both logging and alerting are defined in the Logging mapper. The Logging mapper is available
from the Design or Source view menu bar.

BPEL Process Logging and Alerting

Using the BPEL Designer and Service Engine 117

Defining Logging
When defining logging for an activity you can trace the value of the following components :

■ Variable
■ Part
■ Expression

In the mappings you can use one or more XPath functions from the menu bar.

▼ To log the variable value:

On the diagram, select an activity. The logging will be performed in connection with the activity
execution.

Go to the Logging tab of the BPEL Editor. The Logging mapper opens. You can also open the
Logging mapper by right clicking the activity and choosing Go To → Logging (Alt-L).

In the source tree pane, expand the variables tree until the variable to be traced is visible.

In the destination tree pane expand the activity node. The nodes designating the moment of
logging become visible.

Choose when the logging entry should be made and expand the appropriate node:

■ LOG_onStart. The variable value is written to the log when the activity starts.
■ LOG_onComplete. The variable value is written to the log when the activity execution is

complete.

Define the level of logging. Drag the connection from the variable to be traced to the
appropriate node in the destination tree pane. The following levels of logging are available:

■ Severe
■ Warning
■ Info
■ Config
■ Fine
■ Finer

To make a search of the value recorded to the log file, you can concatenate the value with the
string literal as shown on the figure below.

1

2

3

4

5

6

BPEL Process Logging and Alerting

Using the BPEL Designer and Service Engine • June 2009118

In the Design view a small icon appears to the lower-right of the activity when it has logging
defined. By clicking the icon you can switch to the Logging mapper.

The entry to the log is only made if the log level defined for the variable corresponds to the log
level specified for the BPEL Service Engine on the application server.

▼ To set the log level for the BPEL Service Engine
The log level for the BPEL Service Engine is specified in the GlassFish Admin Console. To set
the log level for the BPEL Service Engine:

In the NetBeans Services window, expand the Servers node and ensure that the GlassFish
application server is running. A green arrow badge next to the server node indicates that the
server is running. If the server is not running, right click the server name and choose Start from
the context menu.

Open the Admin Console in your browser. To do this, follow the steps:

■ Right click GlassFish V2 application server node, and choose Properties from the context
menu. The Servers window opens. On the Servers pane, GlassFish V2 should be selected.

1

2

BPEL Process Logging and Alerting

Using the BPEL Designer and Service Engine 119

■ On the Connection tab, copy the contents of the Location field (by default it is
localhost:4848).

■ Paste the string to the browser and press Enter. The GlassFish Admin Console opens in the
browser window.

Log in to the Admin Console using your username and password. By default, the username is
admin and the password is adminadmin.

On the left pane under the JBI node choose Components → sun-bpel-engine. The BPEL service
engine properties page opens.

On the BPEL service engine properties page, select the Loggers tab. On the Loggers tab you can
specify log levels for the individual loggers.

Choose the appropriate log level for the sun-bpel-engine from the drop down list.

If logging is defined for a process activity, and the log level specified for it corresponds to the log
level set for the BPEL SE, after you perform a test run of the process, the selected variable value
will be written to the server log file.

Note – The project should be deployed to the application server.

▼ To view the log file:

In the Services window, under the Servers node, right click GlassFish V2 application server node
and choose View Server log from the context menu. TheGlassFish server log opens in the Output
window. The activity message value will be included in the log, you can use Search to find it.
Note, that some overhead information is hidden.

You can also open the log in a text editor and see the full information. Navigate to <application
server installation directory>/domains/domain1/log/ and open the server.log file with the text
editor. The information provided in the log includes the following points, divided with the
vertical bar:

■ Date and time of the entry
■ Log level
■ Manager type (for logging this is Trace Manager)
■ Thread
■ The message value

Here is the sample of the log entry :

3

4

5

6

1

2

BPEL Process Logging and Alerting

Using the BPEL Designer and Service Engine • June 2009120

[#|2008-03-25T09:26:18.796+0300|INFO|sun-appserver9.1|com.sun.jbi.engine.bpel.core.bpel.trace.BPE

version="1.0" encoding="UTF-8"?><jbi:message
xmlns:msgns="http://localhost/SynchronousSample/SynchronousSample"
name="input1" type="msgns:requestMessage" version="1.0"
xmlns:jbi="http://java.sun.com/xml/ns/jbi/wsdl-11-wrapper"><jbi:part><syn:typeA
xmlns:syn="http://xml.netbeans.org/schema/SynchronousSample">
<syn:paramA>Hello World</syn:paramA>

</syn:typeA></jbi:part></jbi:message>|#]

Defining Alerting
Alerting feature enables you to get notification in case specified events happen. Alerting events
are connected with the execution of the process activities.

As a general rule-of-thumb, whenever you log you may also want to consider sending an alert
notification of the appropriate severity as you see fit. Fatal, Critical, and Major Alert
Notification Severities map well to a SEVERE logging category. The Minor and Warning Alert
Notification Severities map well to a WARNING logging category. The Info Alert Notification
Severity maps well to an INFO logging category.

The general workflow for defining alerting is as follows:

1. Set the alert level for your activity. This is done from the Logging Mapper, similar to the way
you define Logging. Map the variable in the Output pane for which you want an alert, to the
appropriate Alert activity and alert level, for example, ALERT_onComplete - major.

The Alert notification levels are:
■ Fatal
■ Critical
■ Major
■ Minor
■ Warning

2. Ensure the application server is running and deploy the project.
3. From the Admin Console, choose or create MBean client and subscribe to getting event

notifications. The client will extract alerting messages and perforn specified actions (write to
log/send e-mail/do nothing).

4. Run the process and get notified.

BPEL Process Logging and Alerting

Using the BPEL Designer and Service Engine 121

Configuring the BPEL Service Engine Runtime Properties
The BPEL Service Engine runtime properties can be configured from the NetBeans IDE, or
from a command prompt (command line interface) during installation.

Configuration Properties are Grouped by Purpose

The configuration properties are grouped together for specific purposes.
■ Debugging the BPEL Service Engine business process:

■ Debug Enabled
■ Debug Port

■ Persistence and Recovery configuration:
■ Persistence Enabled
■ Non XA Data Source Name
■ XA Data Source Name

■ Tuning:
■ Number of Threads
■ Lease Renewal Interval
■ Life Span of Waiting Requests

■ Monitoring:
■ Monitoring Enabled
■ Monitoring Variable Enabled
■ KPI Enabled

Accessing the BPEL Service Engine Runtime
Properrties
To display or edit the properties in the NetBeans IDE, do the following:

1. From the Services tab of the NetBeans IDE, expand the Servers node.
2. Start your application server, for example GlassFish v2. To do this, right-click your

application server and select Start from the shortcut menu.
3. Under the application server, expand the JBI → Service Engines nodes and select the BPEL

Service Engine. The current BPEL Service Engine properties are displayed at the right side of
the NetBeans IDE. You can also double-click the BPEL Service Engine to open a properties
window.

4. Edit the properties as needed. To apply any changes you make to the runtime BPEL Service
Engine properties, stop and restart the BPEL Service Engine.

Configuring the BPEL Service Engine Runtime Properties

Using the BPEL Designer and Service Engine • June 2009122

Runtime Property Descriptions
The following table include descriptions for the BPEL Service Engine runtime properties

Property Name Description Default Value

General Properties

Configuring the BPEL Service Engine Runtime Properties

Using the BPEL Designer and Service Engine 123

Property Name Description Default Value

Description Description of the JBI Component This is a bpel
service engine.

Name Name of the JBI Component. Specifies a
unique name in the JBI environment. If you
are installing more than one BPEL Service
Engine in a JBI environment, make sure
that each is unique. This can be changed in
the descriptor (jbi.xml) for the component.
When the service unit deploys the
component, it is matched with target
component name defined in its descriptor –
jbi.xml

sun-bpel-engine

State State of the JBI Component. Started,
Stopped, or Shutdown

Started

Type Type of the JBI Component (service-engine
or binding-component)

service-engine

Identification Properties

Build Number Date and time stamp for the current build <build_number>

Spec Version BPEL specification fully supported by this
build

<spec_version>

Configuration

Debug Enabled Specifies whether the debugger can be used.
A Selected the checkbox indicates that you
can attach the debugger and debug the
business process definition

Select the checkbox
to enable. The
default is
unchecked

Debug Port Specifies the port number at which the
BPEL Service Engine listens for the
debugger UI to connect. The default value
is sufficient in most cases. If more than on
instance of the BPEL Service Engine is
running on the same computer, make sure
that unique, non-conflicting ports are
assigned to each. Do not allow other
applications to use these assigned ports

3343

Persistence Enabled When the checkbox is checked, persistence
is enabled. The BPEL Service Engine
persists the state of the business process
instance at the configured data source for
recovery in the event of a crash

Select the checkbox
to enable. The
default is
unchecked

Configuring the BPEL Service Engine Runtime Properties

Using the BPEL Designer and Service Engine • June 2009124

Property Name Description Default Value

Non XA Data Source Name Specifies the non-XA data source where the
BPEL Service Engine persists the state of
the business process, to be used for
recovery in the event of a crash

Example:
jdbc/bpelseNonXA

XA Data Source Name Specifies the XA data source where the
BPEL Service Engine persists the state of
the business process, to be used for
recovery in the event of a crash

Example:
jdbc/bpelseXA

Number of Threads Specifies the number of threads allowed to
execute BPEL definitions. Configure this to
equal the number of CPUs for the system to
achieve maximum throughput

10

Lease Renewal Interval This property is only used for clustered
environments. It specifies the interval (in
seconds) at which the BPEL Service Engine
renews its lease to continue to own the
business process instance it is currently
executing

60 (seconds)

Life Span of Waiting Request Specifies the life span of a request after it is
received. If the request is not consumed
within the specified time, the BPEL Service
Engine responds with an error for that
request. The time is specified in seconds. A
value of "0" indicates that the life span is
indefinite

0

Monitoring Enabled Specifies whether the Service Engine
business process instance and activities at
the configured data source are monitored

Select the checkbox
to enable. The
default is
unchecked

Monitoring Variable Enabled Specifies whether the Service Engine
enables changes to the monitoring variable
value at the configured data source. This
property is only applicable when
Monitoring Enabled is checked

Select the checkbox
to enable. The
default is
unchecked

KPI Enabled Specifies whether the Service Engine posts
real-time KPI (key performance indicator)
events

Select the checkbox
to enable. The
default is
unchecked

Transformation Engine Specifies which transformation processor is
used to execute XSL stylesheets. The
choices are XSLT_1_0 and XSLT_2_0

XSLT_1_0

Configuring the BPEL Service Engine Runtime Properties

Using the BPEL Designer and Service Engine 125

Property Name Description Default Value

Statistics

Activated Endpoints The number of activated endpoints 0

Active Exchanges The number of active exchanges 0

Avg. Component Time The average message exchange component
time in milliseconds

0

Avg. D.C. Time The average message exchange delivery
channel time in milliseconds

0

Avg. Msg. Service Time The average message exchange message
service time in milliseconds

0

Avg. Response Time The average message exchange response
time in milliseconds

0

Completed Exchnges The total number of completed exchanges 0

Error Exchanges The total number of error exchanges 0

Received Dones The total number of received dones 0

Received Errors The total number of received errors 0

Received Faults The total number of received faults 0

Received Replies The total number of received replies 0

Received Requests The total number of received requests 0

Sent Dones The total number of sent dones 0

Sent Errors The total number of sent errors 0

Sent Faults The total number of sent faults 0

Sent Replies The total number of sent replies 0

Sent Requests The total number of sent requests 0

Up Time The up time of this component in
milliseconds

0

Configuring the BPEL Service Engine Runtime Properties

Using the BPEL Designer and Service Engine • June 2009126

Property Name Description Default Value

Loggers Specifies the user-designated level of logging for each event.
Each logger can be set to record information at any of the
following levels:
■ FINEST: provides highly detailed tracing
■ FINER: provides more detailed tracing
■ FINE: provides basic tracing
■ CONFIG: provides static configuration messages
■ INFO: provides informative messages
■ WARNING: messages indicate a warning
■ SEVERE: messages indicate a severe failure
■ OFF: no logging messages

BPEL Model (independent) com.sun.bpel.model.impl INFO

sun-bpel-engine com.sun.jbi.engine.bpel INFO

Service Unit Manager com.sun.jbi.engine.bpel.BPELSEDeployer INFO

BPELSEInOutThread com.sun.jbi.engine.bpel.BPELSEInOutThreadINFO

EngineChannel com.sun.jbi.engine.bpel.EngineChannel INFO

DeploymentLookup com.sun.jbi.engine.bpel.com.sun.jbi.common.qos.descriptor.DeploymentLookupINFO

MessagingChannel com.sun.jbi.engine.bpel.com.sun.jbi.common.qos.messaging.MessagingChannelINFO

BPELInterpreter com.sun.jbi.engine.bpel.core.bpel.engine.impl.BPELInterpreterINFO

BPEL Process Manager com.sun.jbi.engine.bpel.core.bpel.engine.impl.BPELProcessManagerImplINFO

BPEL Cluster Manager com.sun.jbi.engine.bpel.core.bpel.engine.impl.ClusterManagerINFO

BPEL Scalability Manager com.sun.jbi.engine.bpel.core.bpel.engine.impl.ScalabilityManagerINFO

BPEL Assignment com.sun.jbi.engine.bpel.core.bpel.model.runtime.impl.AssignUnitImplINFO

BPEL State Manager com.sun.jbi.engine.bpel.core.bpel.persist.impl.StateManagerImplINFO

BPEL Service Engine Deployment Artifacts
The BPEL Service Engine requires the following artifacts to execute a business process:

■ BPEL Documents: define the activity sequence to execute.
■ WSDL Documents: define the contract between the business process and partner services.
■ Optional XSDs: define exchanged XML documents; XSDs can be defined inline within

WSDL documents.

BPEL Service Engine Deployment Artifacts

Using the BPEL Designer and Service Engine 127

These artifacts are packaged into a service unit, and in turn packaged into the service assembly,
along with other JBI component's service units, based on the internal/external partner services
requirements.

Service assemblies and service units can be deployed to JBI runtime and corresponding
components using Ant scripts provided with the NetBeans IDE. The JBI
DeploymentServiceMBean interprets the deployment descriptor, jbi.xml, and deploys the
service unit to the associated component.

Testing and Debugging BPEL Processes
The section describes how to test and debug BPEL processes.

“Testing a BPEL Process” on page 128

“Debugging BPEL Processes” on page 131

“BPEL Debugger Windows” on page 139

Testing a BPEL Process
Testing a deployed business process application involves using test cases that act as remote
partner services. These test cases send SOAP messages to the BPEL Service Engine.

In simple words, the interaction process is as follows:

■ The BPEL Service Engine receives the SOAP message, creates an instance of the BPEL
process, and starts executing the instance. A BPEL process can have many running
instances.

■ The BPEL Service Engine receives a message and, using correlation, routes it to the
appropriate instance of the process. If an instance does not yet exist, a new instance is
created.

To test-run a deployed business process application, you need to configure test cases to act as
remote partner services sending SOAP messages to the BPEL Service Engine.

Creating and Running a Test Case
In order to obtain test results you must do the following:

1. Add a test case to your BPEL project.
2. Set the test properties.
3. Customize the test input file.
4. Run the test case.

Testing and Debugging BPEL Processes

Using the BPEL Designer and Service Engine • June 2009128

All steps in this section assume the following:
■ You have already created a new BPEL Module Project containing a WSDL file that defines

an operation you want to test.
■ You have successfully completed a build of the BPEL Module Project.
■ You have added your BPEL Module project to a Composite Application project as a JBI

Module.

Adding a Test Case to your BPEL Project

▼ To add a test case and bind it to a BPEL operation

In the NetBeans IDE Projects window, expand your Composite Application project to expose the
Test folder.

Right-click Test, and choose New Test Case from the pop-up menu. This launches the New Test
Case wizard.
This launches the New Test Case wizard.

In the Enter the Test Case Name step, enter a name for the test case and click Next.

In the Select the WSDL Document step, open the BPEL Module project,select the WSDL file
containing the operation you want to test, and click Next.

In the Select the Operation to Test step, select the operation you want to test, and click Finish.
In the Projects tree, a new folder is created under the Test node, containing two files: Input.xml
and Output.xml.

Note – If you view the test case in the Files window, you see Concurrent.properties as a third file.

Setting the Test Properties

▼ To set the test properties

In the Projects window, under the Composite Application > Test node, right-click the node for
the test case and choose Properties from the pop-up menu.

Set the properties of the test case as follows:

■ Description — string
■ Destination — URL (from the .wsdl file's <soap:address location="THIS"> tag)

1

2

3

4

5

1

2

Testing and Debugging BPEL Processes

Using the BPEL Designer and Service Engine 129

Identifies the location of the web service to be tested.
■ SoapAction — (default: blank)
■ Input File — (read-only; generated by system)

Name of the input file. This file contains the input data for the test case.
■ Output File — (read-only; generated by system)

Name of the output file. This file contains the output data for the test case.
■ Concurrent Threads — integer; default = 1

Each thread can invoke the test case multiple times (see the following property). Thus, if
conc=2 and inv=3, the test case will be run 6 times (two threads, each run thrice).

■ Invokes Per Thread — integer; default = 1
Number of times each thread invokes the test case.

■ Test Timeout (sec) — integer; default = 30
How long each thread has to finish. If it does not finish in the allotted time, then an
exception is thrown.

■ Calculate Throughput — boolean
■ Comparison Type — drop-down list with the following options:

■ identical — Considers the output and actual output as a stream of characters.
■ binary — Considers the output and actual output as a stream of bytes.
■ equals — Considers the output and actual output as a XML documents.

■ Feature Status — drop-down list with the following options:
■ progress — Marks test completion as "success", regardless of actual outcome.
■ done — Records actual outcome of test.

Customizing Test Input

▼ To customize test input

In the Projects window, expand the Test node and the node for a specific test case.

Right-click Input and click Edit.

Modify the contents as needed. For example, wherever you see <value>?string?</value> click
within ?string? and replace it with a string of any length. However, within such strings, do not
include the characters“<”(less-than sign) or“&”(ampersand) unless you use them with XML
semantics.

When you are satisfied, click Save.

1

2

3

4

Testing and Debugging BPEL Processes

Using the BPEL Designer and Service Engine • June 2009130

Right-click Output.xml and choose Edit to examine the contents:

■ If it is empty, this is a special state that triggers a special operation when the test is run.
■ Each time the test is run, the current output is compared to the contents of Output.xml. If

any differences are detected, they will be stored in the Actual_yymmddhhmmss .xml file
under the test case folder. However, in the special case where Output.xml starts null, then
the output is written to Output.xml.

■ In each run after the first, assuming Output.xml is no longer null, its contents are preserved.
In other words, a previous output is never overwritten by new results.

Running Test Cases
To run a single test case

To run a single test case, right-click the node for your specific test case, and choose Run. Check
the Output window for the results.

To run all test cases in a project

To run all test cases in a project, right-click your Composite Application project and choose
Test (Alt+F6) from the pop-up menu. Check the Output window for the results.

Looking at Test Case Results
The first time you run your test, the results correctly report that it has failed. This happens
because the output produced does not match the (empty) Output.xml file, and the file?s null
content is replaced with the output of the first run. If you run the test again without changing
the input, the second and subsequent runs report success, since the output matches the contents
of Output.xml.

Test results are displayed in the Output window. Detailed results are also displayed in the JUnit
Test Results window, which opens automatically when you run a test case. If you change the
value in the Input.xml and re-run the test:
■ If the feature-status property is set to progress, then the test indicates success even though a

mismatch occurred.
■ If the feature-status property is set to done, then the test indicates failure.

If you right-click the test case node and click Diff in the pop-up menu, the window displays the
difference between the latest output and the contents of Output.xml.

Debugging BPEL Processes
Debugging a BPEL process follows the same general principles as debugging a Java application.
Debugging a BPEL process involves setting breakpoints in the source code and executing the

5

Testing and Debugging BPEL Processes

Using the BPEL Designer and Service Engine 131

process step-by-step within a debugging session. The BPEL Debugger provides a visual
representation of the BPEL process execution. This enables you to view and change variables,
monitor the results of executing expressions, and use fault breakpoints to monitor the state of
variables before a fault is thrown.

Steps in Debugging BPEL Processes
The main steps in debugging BPEL processes are:

1. Confirm that the GlassFish application server has started.

2. Create test cases.

For sample processes, test cases are automatically created; for new projects, you need to
create at least one test case.

3. Open the BPEL process file either in the Source view or Design view.

4. Set breakpoints in the code or on the diagram. Optionally, add watches for XPath
expressions in your process or add fault breakpoints.

5. Start a debugging session. Watch the BPEL Debugger Console window for confirmation
that the debugging session has started.

6. Within the debugging session, run one or several test cases.

7. View execution of BPEL processes on the diagram in the Design view or in the BPEL Process
Execution window and view running instances of BPEL processes in the BPEL Process
Instances window.

8. When an instance stops at a breakpoint, step through the code or the diagram, examine the
values of variables in the BPEL Variables window, or observe the values of XPath
expressions in the Watches window.

9. Finish the debugging session.

Starting and Finishing a BPEL Debugging Session
A debugging session begins when you connect the BPEL Debugger to the BPEL Service Engine.
Only one debugging session can be running with the BPEL Service Engine at a given time.

After a BPEL debugging session starts, you can execute process instances step-by-step,
inspecting the values of BPEL variables and XPath expressions in the Local Variables and
Watches windows. You can monitor the execution of a BPEL process within a debugger session
on the diagram in the Design view: the activities that are being executed are highlighted on the
diagram as the current execution position advances. The BPEL Process Execution window also
shows the execution of the BPEL process.

Testing and Debugging BPEL Processes

Using the BPEL Designer and Service Engine • June 2009132

▼ To prepare the debugging environment

In the Services window, make sure that the GlassFish V2 Application Server is running. The
Application Server is running if it has subnodes and is marked with a green triangle.

If the server is not started, right-click it and choose Start from the pop-up menu.

In the IDE, open the BPEL process in either the Source or Design view.

Set breakpoints in the BPEL process.

To set breakpoints in the Source view, click next to the line where you want to set the
breakpoint.

To set breakpoints on the diagram, switch to the Design view, right-click the element and
choose Toggle Breakpoint from the pop-up menu. A red square appears at the top of the
element with a breakpoint.

1

2

3

Testing and Debugging BPEL Processes

Using the BPEL Designer and Service Engine 133

The Toggle Breakpoint pop-up menu command is also available for the elements in the
Navigator BPEL Logical View. For the elements with breakpoints, the Navigator shows a small
red box (ReceiveItinerary).

Optionally, you can add watches to monitor XPath expressions. To add a watch, copy the XPath
expression you want to monitor, choose Run → Add Watch from the main menu, and paste the
expression into the Watch Expression field. Click OK.

Note – You can also add XPath expressions that are not present in the code, but that would be
valuable from the debugging point of view.

▼ To start and finish a debugging session on the BPEL Engine

In the Projects window, right-click the Composite Applications project you want to debug and
choose Debug (BPEL) from the pop-up menu.
A debug session is established on the BPEL Service Engine.

11:35:17 Connecting to localhost:3343

4

1

Testing and Debugging BPEL Processes

Using the BPEL Designer and Service Engine • June 2009134

■ Enables debugging with the BPEL Service Engine (sets the DebugEnabled property of the
BPEL Service Engine to true)

■ Builds the Composite Application project and all JBI Modules added to this project
■ Deploys the Composite Application project to the BPEL Service Engine
■ Starts the debugging session by connecting the BPEL Debugger to the BPEL Service Engine

Therefore, whenever you start a debugging session you can be sure that the latest version of the
BPEL process is deployed on the BPEL Service Engine.

Now you can run a test case and monitor the execution of the BPEL process until it stops or
reaches a breakpoint. As the process advances, the current context is displayed on the diagram
and in the BPEL Process Execution window.

If you have several debugging sessions (you may have a Java debugging session running at the
same time) and want to change the current session, double-click the name of this session in the
Sessions window. Alternatively, right-click the session you want to make current and select
Make Current. This session becomes current and the BPEL Process Instances, Watches and
Local Variables Windows are updated to show the data related to the new current session.

When you want to finish a debugging session, open the pop-up menu for the session you want
to stop and choose Finish in the Sessions window or select Finish Debugger Session on the
toolbar. A message that the debugging session is finished is displayed in the BPEL Debugger
Console.

To finish all debugging sessions, in the Sessions window, right-click any session and choose
Finish All.

Watch the BPEL Debugger Console window for confirmation. The connection might take some
time to complete. When it is successfully completed, you can see the new session in the Sessions
window and the following messages in the BPEL Debugger Console:

■ 11:35:17 Connecting to localhost:3343

■ 11:36:19 Debug session started

The Debug (BPEL) command performs the following actions:
■ Enables debugging with the BPEL Service Engine (sets the DebugEnabled property of

the BPEL Service Engine to true)
■ Builds the Composite Application project and all JBI Modules added to this project
■ Deploys the Composite Application project to the BPEL Service Engine
■ Starts the debugging session by connecting the BPEL Debugger to the BPEL Service

Engine Therefore, whenever you start a debugging session you can be sure that the latest
version of the BPEL process is deployed on the BPEL Service Engine

2

Testing and Debugging BPEL Processes

Using the BPEL Designer and Service Engine 135

Now, run a test case and monitor the execution of the BPEL process until it stops or reaches a
breakpoint.
As the process advances, the current context is displayed on the diagram and in the BPEL
Process Execution window.

If you have several debugging sessions (you may have a Java debugging session running at the
same time) and want to change the current session, double-click the name of this session in the
Sessions window. Alternatively, right-click the session you want to make current and select
Make Current. This session becomes current and the BPEL Process Instances, Watches and
Local Variables Windows are updated to show the data related to the new current session.

To finish a debugging session, open the pop-up menu for the session you want to stop and
choose Finish in the Sessions window, or select Finish Debugger Session on the toolbar.
A message that the debugging session is finished is displayed in the BPEL Debugger Console.

To finish all debugging sessions, in the Sessions window, right-click any session and choose
Finish All.

Using Breakpoints to Debug BPEL Processes
Breakpoints are used to instruct the BPEL Debugger to stop execution at the specified place of a
BPEL process. When a BPEL process instance reaches a breakpoint, it becomes suspended and
you can step into the code, change the current process instance in the BPEL Process Instances
window, track the execution of the process instance in the BPEL Process Execution window and
in the Design view, examine the values of variables in the Local Variables window, view the
process partner links in the Partner Links window and view the values of XPath expressions in
the Watches window.

You can also use fault breakpoints to check the values of variables before a fault is thrown.

To view and organize the breakpoints currently set in the IDE, open the Breakpoints window by
choosing Windows → Debugging → Breakpoints (Alt-Shift-5). For each breakpoint, you can
see the name of the file and the line where this breakpoint is located. In the Breakpoints window
you can enable and disable breakpoints by checking or removing the checkbox in the Enabled
column.

▼ To set a breakpoint in a BPEL process

In the IDE, open the BPEL file in either the Source or Design view.

Do one of the following:

■ In the Source view, click the left margin of the row where you want to place a breakpoint.
■ In the Design view, right-click an element where you want to place a breakpoint and choose

Toggle Breakpoint (Ctrl-F8).

3

4

5

1

2

Testing and Debugging BPEL Processes

Using the BPEL Designer and Service Engine • June 2009136

In the Design view, breakpoints are displayed as small red squares on top of specific
elements. In the Source view, breakpoints are shown as red squares on the left margins of
code lines.
Alternatively, you can set and remove breakpoints in the BPEL Logical view of the Navigator
window by choosing Toggle Breakpoint from the pop-up menu. In the Navigator window
breakpoints are shown as small red squares attached to elements.
Once the project has reached the breakpoint it is suspended. You can manage the
subsequent execution using the commands available in the Run menu or as buttons on the
toolbar.

Debugging Commands

The following commands are available from within the debugging session:

■ Pause. Once the user activates this action, the process will continue till it reaches the first
element on which it can stop. If there is no current process instance, the debugger will wait
for the first execution event from any process instance.

■ Continue (F5). Once the process has reached the breakpoint or is paused you can choose
Continue. This action causes the current process instance to run until it encounters the next
breakpoint or until the instance completes. The state of the instance changes to Running.

■ Step Into (F7). Steps to the next BPEL activity. As you step, the current line indicator
advances, the current position is highlighted on the diagram, and the contents of the BPEL
Debugger windows change accordingly. If the current activity has any enclosed elements,
the process will step to the first enclosed element. Sometimes it is not visible on the diagram
but is reflected in the BPEL Process Execution window. For example, if an Assign activity
has <copy> element inside it, from the Assign the process will step to Copy.

■ Step Over (F8). Steps to the next BPEL activity of the same level as the current activity. If the
current activity has any enclosed elements, they all are executed without suspension.

■ Step Out (Ctrl-F7). Steps to the next higher level activity of the process. For example, an
Assign activity has several Copy elements inside. If one of the Copy elements is the current
activity, performing Step Out will move you to the next activity of the Assign level and you
will not have to step through all the Copy elements.

■ Run to Cursor (F4). Runs the BPEL process to the position selected in the Navigator
window (BPEL Logical View), on the diagram (in the Design view) or to the cursor location
in the Source view. When the location of the cursor is reached, the process instance becomes
suspended.

▼ To remove a breakpoint from the BPEL process

In the Source view, On the diagram, click the left margin of the line that contains the breakpoint.1

Testing and Debugging BPEL Processes

Using the BPEL Designer and Service Engine 137

In the Breakpoints window, right-click the breakpoint you want to remove and choose Delete.
Choosing Delete All from the pop-up menu removes all breakpoints currently set in the
NetBeans IDE.

3. In the Design view, right-click the element that has a red breakpoint mark and choose Toggle
Breakpoint.

To disable a breakpoint

To disable a breakpoint do one of the following:

■ On the diagram, click on the small red square indicating the breakpoint. This disables the
breakpoint but does not remove it completely.

■ In the Breakpoints window, clear the Enabled checkbox for the breakpoint you want to
disable.

Group operations over breakpoints

The toolbar contains three buttons for group operations over the process breakpoints.

■ Enable Breakpoints for Selected Element. Enables all the breakpoints for the selected
element and it's enclosed elements.

■ Disable Breakpoints for Selected Element. Disables all the breakpoints for the selected
element and it's enclosed elements.

■ Delete Breakpoints for Selected Element. Deletes all the breakpoints for the selected
element and it's enclosed elements. If no element is selected on the diagram, the Process
element is considered selected for the operations.

Monitoring Execution of BPEL Processes
When a running process reaches a breakpoint, the Design view highlights the current position
of the debugger and uses colors to differentiate between the states of BPEL activities. As the
process advances, the colors and icons for the activities on the diagram are updated to reflect the
execution progress.

On the diagram, the following notation is used:

■ Green color (glowing). The breakpoint set for the activity is reached.
■ Gray color (grayed-out effect). The activity has not been executed yet.
■ Green triangle. The activity is now being executed.
■ Blue triangle. The activity has been successfully completed.

2

3

Testing and Debugging BPEL Processes

Using the BPEL Designer and Service Engine • June 2009138

You can also monitor the execution of current BPEL process instances in the BPEL Process
Execution window (see below).

BPEL Debugger Windows
When a debugging session starts, debugger windows are displayed below the editing area. The
Sessions, BPEL Process Instances, BPEL Variables, and BPEL Process Execution windows
contain information related to BPEL processes running within the current debugging section.

If a debugger window is not displayed, choose Window > Debugging > window-name (for
example, Window > Debugging > BPEL Process Instances).

The Breakpoints and Watches are standard IDE debugger windows. They display all
breakpoints and watches set in the IDE.

Testing and Debugging BPEL Processes

Using the BPEL Designer and Service Engine 139

Sessions Window
The Sessions window lists all open debugging sessions, including Java and BPEL debugging
sessions. For the BPEL Service Engine, only one session can be started. However, the Sessions
window also displays other open debugging sessions, such as Java sessions. Only one of the
open debugging sessions can be current, and it is shown in bold. Other debugger windows, such
as BPEL Process Instances, BPEL Process Execution, and BPEL Variables, display data related
only to the current debugging session.

The information provided for each session includes:
■ Name. The name of the session.
■ State. The current state of the session. Sessions can be starting or running.
■ Language. The language of the application debugged in this session.

You can perform the following actions on sessions available in the pop-up menu:
■ Make current. Makes the selected session current.
■ Finish. Finishes the selected session.
■ Finish all. Finishes all debugging sessions.

BPEL Process Instances Window
The BPEL Process Instances window lists all BPEL process instances deployed to the BPEL
Service Engine and their currently running instances. For each process instance correlation sets
and Faults are listed as subnodes.

If the current session is not a BPEL Debugger session, this window is empty. The BPEL Process
Instances window is populated when a debugging session starts on the BPEL Service Engine, or
when the current session is a BPEL Debugger session.

The information displayed for each process instance includes the instance name, unique
instance ID, and its state.

Process instances can exist in one of the following states:
■ Running. The instance is currently being executed on the BPEL Service Engine.
■ Suspended. The instance has been suspended for some reason. For example, the process

instance has reached a breakpoint.
■ Unknown. The status of the instance is unknown.

Testing and Debugging BPEL Processes

Using the BPEL Designer and Service Engine • June 2009140

A process instance that is current is shown in bold. A process instance becomes current when it
reaches a breakpoint or when you manually make it current.

To make a process instance current, do one of the following:

■ Double-click the process instance.
■ Right-click the process instance and choose Make Current from the pop-up menu.

To terminate a process instance:

■ Right-click the process instance and select Terminate from the pop-up menu. The process
instance is terminated and removed from the list.

Correlation Sets and Faults information

For the Correlation Sets node the information comes out during the process execution.

For each process instance correlation set, a list of properties it includes is shown. For the
properties, type and value information is displayed. Find more information on Correlation sets,
properties, and property aliases here: “Using Correlation” on page 109.

Local Variables Window
The Local Variables window shows the structure of local variables and their values for the
current process instance and current position. The current position is the place where the
current process instance became suspended. When you change the current process instance,
the records in the Local Variables window are updated to reflect the variables for the new
current process instance and the new current position.

The structure of local variables is shown as a tree. The information provided for each variable
includes the variable name and value.

Testing and Debugging BPEL Processes

Using the BPEL Designer and Service Engine 141

In the Local Variables window you can do the following:

■ View the variable structure. To do this, expand the variable node in the tree.
■ View and edit the values of variables. To edit the value of a variable, click the ellipsis (...)

button and enter the new value in the editor window.
■ The structure of local variables is shown as a tree. The information provided for each

variable includes the variable name and value.

Watches Window
The Watches window shows the list of XPath expressions that you want to monitor. You add
watches explicitly before or during the debugging session. The Watches window shows the
expression and its value. The value of the expression may change as the process advances
depending on the logic of your process.

Testing and Debugging BPEL Processes

Using the BPEL Designer and Service Engine • June 2009142

▼ To set watches in the BPEL process:

(Optional) Be sure that the Watches window is visible or choose Window → Debugging →
Watches (Alt-Shift-2) to view it.

If you want to enter an XPath expression from your BPEL process, copy it using one of the
following methods:

■ In the Source view, copy the XPath expression you want to watch. The XPath expressions
can be found inside the <condition> tag.

■ In the Design view, select an element that has an expression and copy the expression from
the Condition row in the Properties window.

Right-click inside the Watches window and choose New Watch.

In the Watch Expression field of the New Watch dialog box, do one of the following:

■ Paste the XPath expression you have copied.
■ Enter any valid expression that is compliant with XPath 1.1.

(Optional) If needed, add more watches.

Ensure that a debugging session is running and perform a test run.

As the process instance reaches a breakpoint and becomes suspended, examine the values of
the expressions being watched in the Value column of the Watches window.

BPEL Process Execution Window
The BPEL Process Execution window graphically represents the progress of executing the
current BPEL process instance in the BPEL Debugger. When you change the current process
instance, the process tree in the BPEL Process Execution window is updated to reflect the state
of the new current process instance and the new current position.

In the BPEL Process Execution window, the following colors are used to display the state of
BPEL activities:

■ Green — The activity is being executed at the moment.
■ Gray — The activity has not been executed yet.
■ Black — The activity has been executed.

BPEL Process Execution Window displays the following information:

■ Name — The name of the activity.
■ Thread — The thread in which the activity is/was executed. For the nodes that have not yet

been executed no thread information is provided.

1

2

3

4

5

6

7

Testing and Debugging BPEL Processes

Using the BPEL Designer and Service Engine 143

■ Line — Contains the path to the file and the line number for the activity in the file.
■ XPath — Shows XPath expression pointing to the activity.

Note – In the BPEL Process Execution window, you can only view the progress of executing
BPEL processes. You cannot perform any actions in this window.

BPEL Partner Links Window
The Partner Links window lists the all the partner links defined in the BPEL Process.

The information provided for the partner links includes:

■ My Role
■ Partner Role: Used for two-way operations only
■ Endpoint: Endpoint information available for dynamically defined partner links only. For

more information see “Dynamic Partner Links and Dynamic Addressing” on page 63

Testing and Debugging BPEL Processes

Using the BPEL Designer and Service Engine • June 2009144

BPEL Debugger Console Messages
You can see the following messages in the BPEL Debugger Console:

Connecting to <host>:<port>

The Debugger is attempting to connect to the BPEL service engine.

Debug session started

The Debugger has successfully connected to the BPEL service engine and the debug session
has started.

Unable to start a debug session : Unable to connect to <host>:<port> : Connection

timed out: connect

If you see this message, verify the following:
■ The GlassFish V2 Application Server is running.
■ The BPEL service engine is started.
■ The DebugEnabled property of the BPEL service engine is set to true.
■ The host name is the host name of the machine that runs the GlassFish V2 Application

Server you are connecting to (localhost by default).
■ The port value is the same as the DebugPort property of the BPEL service engine you are

connecting to (3343 by default).

Unable to start a debug session : Already connected to <host>:<port>

You already have a running debug session attached to this particular service engine.

Debug session terminated : Target disconnected

The Debugger lost connection to the server. Check that the server is running and the
network is up.

Stop connecting

You explicitly terminated the debug session when it was connecting.

Debug session finished

You explicitly terminated the debug session when it was running.

Testing and Debugging BPEL Processes

Using the BPEL Designer and Service Engine 145

Monitoring the BPEL Service Engine
You can monitor BPEL Service Engine instances using the Command Line tool or from your
own monitoring application using the BPEL Monitor API library. These monitoring tools
enable you to view and change BPEL variable values, and suspend, resume, or terminate BPEL
instances.

Installing the BPEL Monitor API and Command Line
Monitoring Tool
The bpelMonitorTool.zip file contains the BPEL Monitor API, the Command Line Monitoring
tool, the BPELManagement API Javadoc and the BPEL Monitor User Manual.

▼ To install the monitoring tool:

Create a new directory named bpelsemonitor in your file-system, for example,
C:\GlassFishESB\glassfish\addons\bpelsemonitor.

Download the bpelMonitorTool.zip and extract the file to your new bpelsemonitor directory.

Edit the monitorcommand.properties file, included in the bpelMonitorTool.zip file, with
appropriate values for your environment.

Make script executable, as follows:

■ For Unix:
a. cd to scripts.
b. chmod a+x runbpelmonitor.sh.
c. Execute runbpelmonitor.sh in the scripts directory.

■ For Windows:
Execute runbpelmonitor.bat in the scripts directory.

Note – If you are using the BPEL Monitor API alone in your own monitoring application, you
need the bpelmonitor-api.jar and the other JAR files downloaded in the lib directory.

Using the BPEL Monitor Command Line Tool
The lightweight command line monitoring tool uses the BPEL Monitoring API library to
manage tasks interactively.

1

2

3

4

Monitoring the BPEL Service Engine

Using the BPEL Designer and Service Engine • June 2009146

http://download.java.net/jbi/binaries/open-jbi-components/main/nightly/latest/ojc/bpelMonitorTool.zip

▼ To use the BPEL Monitor command line tool
Enable monitoring in the BPEL Service Engine properties.

From the NetBeans IDE Services window, Start the GlassFish Application Server.

Start the sun-bpel-engine, under JBI → Service Engines.

Once the Service Engine has started, open the properties.
There are two properties related to BPEL monitoring:

■ Monitoring Enabled - required for using the BPEL Monitor API as well as every command
in the Command Line Tool for BPEL monitoring.

■ Monitoring Variable Enabled - required for using variable related API such as
changeVariableValue, getVariableValue, listBPELVaraibles, as well as
getInvokeeInstance, getInvokerInstance, and command:l, v, k, pr, and ch.

Set the Monitoring Enabled property to true (checked). Set Monitoring Variable Enabled to true
also if you are using variable related API.

Note – To monitor a BPEL project using the command line tool, deploy the project after the
Monitor Enabled property is set to true, otherwise, the "a" command might not produce the
correct results.

From your command line, cd to /bpelmonitor/scripts and execute runbpelmonitor.sh.

Before You Begin

1

2

3

4

5

Monitoring the BPEL Service Engine

Using the BPEL Designer and Service Engine 147

The following list of available commands is displayed:

■ [a] Show deployed bpel processes
■ (su="suName") The service unit name is found in the NetBeans IDE Services window under

/JBI/Service Assemblies/YourServiceAssembly/
■ [b] Show bpel instances status

([processId="string"] [status="running|completed|suspended|terminated|faulted"]
[instid="instanceId"] [max="maximumInstances"]
[sort="startTime|endTime|updatedTime"] [order="asc|desc"])

■ [c] Show activity status on bpel instance
(instid="instanceId")

■ [f] Show instance fault
(instid="instanceId")

■ [s] Suspend bpel instance
([instid="instanceId1|instanceId2|instanceId3|..."] [processId="string"] [csv="The CSV
File"])

■ [r] Resume bpel instance
([instid="instanceId1|instanceId2|instanceId3|..."] [processId="string"] [csv="The CSV
File"])

■ [t] Terminate bpel instance
([instid="instanceId1|instanceId2|instanceId3|..."] [processId="string"] [csv="The CSV
File"])

■ [l] List bpel variables
(instid="instanceId" [varname="variableName"])

■ [v] View bpel variable value
(instid="instanceId" varid="variableId")

■ [k] Change bpel variable value
(instid="instanceId" varid="variableId" newval="theNewValue" [part="partName"]
[xpath="theXpathToTheLeafNodeToChange"])

■ [ch] Show invokee bpel instances status
(instid="instanceId" [actid="invokeActivityId"])

■ [pr] Show invoker bpel instances status
(instid="instanceId" [actid="receiveActivityId"])

■ [h] Help
■ [e] Exit

After the prompt ">", type the letter of the command, or type "help" or "h" for help or
examples.

6

Monitoring the BPEL Service Engine

Using the BPEL Designer and Service Engine • June 2009148

IF you type "help" or "h" it displays the list of commands again, and includes the following:

■ Press: m + return for examples and usage.
■ Press: other key + return to return.

Command Usage Pattern
The "help" or "h" command displays a list of available commands and the required and optional
parameters for each command. For example:
[l] List bpel variables

(instid="instanceId" varname="variableName")

In this example, "l" is the command letter. instidis a required parameter. varnameis an optional
parameter, which is implied by the enclosing brackets ([]). Parameters that are not enclosed by
brackets are required with the command.

To specify a command with parameters do the following:

■ After the prompt ">", type the letter of the command and any required parameters and any
optional parameters as follows: >l instid="192.168.0.117:757d7361:115d8cdb431:-7fdc"
varname="NewWSDLOperationIn"

■ Specify the parameter and value as paramName=?Value?. The double quotes are required
for the value. There are no spaces between and after '='.

■ Type the command and its params in one line, or use '\' to continue to next line.
■ Specify mulitple value for a parm using '|', for example:

>b status=”running|completed|terminated”

■ You can direct the command output to a file in file system, either in append or overwrite
mode. This can be done for any command in the same way, the output to the console is
unchanged.

The output can be written to the specified file in the following modes:
■ Writing the output to the file, given the full file path, overwriting the file if it currently

exists:
>b status="running" >"c:\work\output.txt"

■ Writing the output to the file, given the full file path, appending to the file if it currently
exists:
>b status="running" >"c:\work\output.txt"+

More Information
For a more extensive manual on how to use the BPEL Monitor Command Line tool, see the
BPEL Monitor User Manual included with the ZIP file.

Monitoring the BPEL Service Engine

Using the BPEL Designer and Service Engine 149

Configuring Quality of Service (QOS) Properties, Throttling,
and Redelivery

Quality of Service features are configured from the CASA Editor, and include properties used to
configure Retry (Redelivery) and Throttling.

This section contains the following topics:

■ “Configuring the Quality of Service Properties” on page 150
■ “Configuring Message Throttling ” on page 155
■ “Configuring Redelivery” on page 155

Configuring the Quality of Service Properties
The QOS attributes are configured from the Config QoS Properties Editor, accessed from the
Composite Application Service Assembly (CASA) Editor.

For an example of how to access the Config QOS Properties Editor, see “Configuring an
Endpoint for Throttling” on page 155

▼ To access the Config QOS Properties Editor

From the NetBeans IDE Projects window, right-click the Service Assembly node under your
composite application, and select Edit from the pop-up menu.

The CASA Editor opens containing your composite application.

1

Configuring Quality of Service (QOS) Properties, Throttling, and Redelivery

Using the BPEL Designer and Service Engine • June 2009150

If you don't see the connections between your JBI Modules and your WSDL ports, you might
need to build your project. Click the CASA Editor's Build Project button.

All connections are now visible.

In the CASA Editor, click the QOS icon located on the connection between the JBI Module and
the WSDL port you that want to configure.

The QOS Properties Editor appears.

2

3

Configuring Quality of Service (QOS) Properties, Throttling, and Redelivery

Using the BPEL Designer and Service Engine 151

Quality of Service Properties

Attribute Description Value/Example

Consumer Settings

Service Name Specifies the consumer service name. Click the
ellipses button to open the QName Editor and
either select an existing Namespace URI or
enter a new Namespace URI and prefix.

{http//j2ee.netbeans.org/wsdl/SoapBasicAuth}SoapBasicAuthService

Endpoint Name Specifies the consumer endpoint name. Click
the ellipses button to open an edit window.

SoapBasicAuthPortWssToken

Provider Settings

Service Name Specifies the provider service name. Click the
ellipses button to open the QName Editor and
either select an existing Namespace URI or
enter a new Namespace URI and prefix.

{http//enterprise.netbeans.org/bpel/SoapcAuthBP/SoapBasicAuthWssToken

Endpoint Name Specifies the Provider endpoint name. Click
the ellipses button to open an edit window.

SoapBasicAuthWssTokenPortType_myRole

RedeliveryExtension Settings

maxAttempts Specifies the number of retries to attempt
before using the on-failure option.

20

Configuring Quality of Service (QOS) Properties, Throttling, and Redelivery

Using the BPEL Designer and Service Engine • June 2009152

Attribute Description Value/Example

waitTime Specifies time (in milliseconds) to wait
between redelivery attempts.

300

Configuring Quality of Service (QOS) Properties, Throttling, and Redelivery

Using the BPEL Designer and Service Engine 153

Attribute Description Value/Example

on-failure Specifies the type of action to be taken when
message exchange (ME) re-delivery attempts
have been exhausted.
The on-failure options are
■ delete: When the final defined delivery

attempt has failed, the QoS utility
abandons the message exchanges (ME)
and returns a Done status to the JBI
component, which proceeds to its next
process instance. This option is only
supported for In-Only message exchanges.

■ error: When the final defined delivery
attempt has failed, the QoS utility returns
an Error status to the JBI component, and
the JBI component throws an Exception.
This is the default option, and is
supported for both In-Only and In-Out
message exchanges.

■ redirect: Similar to the delete option,
except that the QoS utility re-routes the
ME to the configured redirect endpoint
when the maxAttempts count has been
exhausted. If the QoS utility is successful
in routing the message to the redirect
endpoint, a Done status is returned to the
JBI component; otherwise, an Error

status is returned. This option is
supported for In-Only message exchanges
only.

■ suspend: The QoS utility returns an Error

status to the JBI component if it is not able
to deliver the ME to the actual
provisioning endpoint. After the
re-delivery attempts have been exhausted,
the JBI Component suspends the process
instance. This option is only supported if
monitoring is enabled in the JBI
Component, since the user must use the
monitoring tool to resume a suspended
instance. This option is supported for
both In-Only and In-Out message
exchanges.

delete

Configuring Quality of Service (QOS) Properties, Throttling, and Redelivery

Using the BPEL Designer and Service Engine • June 2009154

Attribute Description Value/Example

ThrottlingExtension Settings

maximum-ConcurrencyLimitSpecifies the maximum number of concurrent
messages that can be processed on a specific
connection. This number is used to set up the
maximum number of concurrent messages
that the internal endpoint sends to the the
provider endpoint.

10

Configuring Message Throttling
Throttling allows you to set the maximum number of concurrent messages that are processed
by a particular endpoint. Increased message load and large message payloads can cause memory
usage spikes that can decrease performance. Throttling limits resource consumption so that
consistent performance is maintained.

Configuring an Endpoint for Throttling
Throttling is a QOS feature configured from the CASA Editor.

▼ To configure Throttling for an endpoint

In the CASA Editor, click the QOS icon located on the link between the JBI Module and the
WSDL port you want to configure.
The QOS Properties Editor appears.

In the QOS Properties Editor, click the property field for maximumConcurrencyLimit under
ThrottlingExtension, and enter an integer for the maximum number of concurrent messages
allowed for this endpoint.

Click Close.
The appropriate throttling configuration for the connection is generated in the project's jbi.xml
file, when the service assembly is built.

Configuring Redelivery
Redelivery is a Quality of Service mechanism that handles message delivery when first-time
delivery fails. Redelivery allows you to define the number of attempts that the system makes to
deliver a message, the time between attempts, and the final result for an undeliverable message
or non-responsive endpoint.

1

2

3

Configuring Quality of Service (QOS) Properties, Throttling, and Redelivery

Using the BPEL Designer and Service Engine 155

Redelivery is configured for a specific connection from the Composite Application Service
Assembly (CASA) Editor, by clicking the QoS icon for that connection. This opens the Config
QoS Properties for that connection. From the RedeliveryExtension section of the editor,
configure the Redelivery properties.

The Redelivery configuration parameters are:

■ maxAttempts — Specifies the number of times that the project attempts to re-deliver a
message. An error status is returned to the JBI component for each failed attempt.

■ waitTime — Specifies the time, in milliseconds, that the project waits between redelivery
attempts.

■ on-failure — Specifies the actions taken and the message destination when the specified
redelivery attempts have been exhausted. This parameter has four options: delete, redirect,
suspend, and error.

The on-failure parameter has four options: delete, redirect, suspend, and error.
■ delete — The delete option specifies that when the final attempt to re-deliver the

message has failed, the QoS utility deletes the message and returns a Done status to the
JBI component, at which time the component proceeds to its next process. The delete
option only supports In-Only message exchanges.

■ redirect — The redirect option specifies that after the final attempt to re-deliver the
message has failed, the QoS utility redirects the message to a user-defined endpoint, such
as a “dead-message” folder. Upon successful delivery to the redirect endpoint, the QoS
utility returns a Done status to the JBI component, at which time the component
proceeds to its next process. The redirect option only supports In-Only message
exchanges.

■ suspend — The suspend option specifies that when the final attempt to re-deliver the
message has failed, the JBI component suspends the process instance . This option is
only supported if monitoring is enabled in the JBI Component, since the user must use
the monitoring tool to resume a suspended instance. This option is supported for both
In-Only and In-Out message exchanges.

■ error — The error option specifies that when the final attempt to re-deliver the message
is exhausted, the JBI component throws an exception. This option is only supported if
monitoring is enabled in the JBI Component, since the user must use the monitoring
tool to resume a suspended instance. This option is supported for both In-Only and
In-Out message exchanges.

Note: The on-failure options: delete and redirect, cannot be applied to In-Out message
exchanges because In-Out message exchanges require a specific response from the process
instance to proceed further, and as such, the return value for these options does not suffice.

For more information regarding Redelivery, see Redelivery (http://
wiki.open-esb.java.net/Wiki.jsp?page=Redelivery).

Configuring Quality of Service (QOS) Properties, Throttling, and Redelivery

Using the BPEL Designer and Service Engine • June 2009156

http://wiki.open-esb.java.net/Wiki.jsp?page=Redelivery
http://wiki.open-esb.java.net/Wiki.jsp?page=Redelivery

Using Dynamic Partner Links and Dynamic Addressing
When you are designing an application, you may need to configure certain services whose
endpoints (addresses) are not known beforehand, or it may be necessary to change an endpoint
reference while the application is running. The Dynamic Partner link feature allows you to
dynamically assign an endpoint reference to the partner link. This means that you can use one
partner link for subsequent calls to different web-services (provided that the services use the
same interface).

There are several different ways to construct the end point information in BPEL. To deliver the
address information to the partner link you can use standard a Assign activity and the BPEL
Mapper. In the following examples the endpoint address follows the WS-Addressing schema.
Refer to WS-Addressing standard (WS-A).

Note – Dynamic Addressing is only implemented for SOAP (HTTP Binding Component).

Using a Literal to Construct an Endpoint
The BPEL literal syntax can be used to define an endpoint address and assign it to a partner link.
The following code sample shows a BPEL literal used to define an HTTP endpoint assigned to a
partner link.

<bpws:assign name="Assign2">
<bpws:copy>

<bpws:from>

<bpws:literal>

<sref:service-ref>

<ns1:EndpointReference>

<wsa:Address>

http://localhost:8080/StockQuoteService

/StockQuotePort

</wsa:Address>

<wsa:ServiceName PortName="stockQuotePort">
ns3:stockQuoteService>

</wsa:ServiceName>

</ns1:EndpointReference>

</sref:service-ref>

</bpws:literal>

</bpws:from>

bpws:to partnerLink="plStockQuote"/>
</bpws:copy>

</bpws:assign>

Using Dynamic Partner Links and Dynamic Addressing

Using the BPEL Designer and Service Engine 157

http://schemas.xmlsoap.org/ws/2004/08/addressing/
http://www.w3.org/Submission/ws-addressing/

In this scenario, you are invoking a partner link that is associated with a SOAP (HTTP)
endpoint. That partner link, on the binding side of the application, acts as a proxy for BPEL to
the external world.

In this example, we have an XML fragment that displays an Assign activity. The Assign has a
copy and points to a literal address inline. When you invoke the service, you can assign a
different address as a variable value in the invoke properties. In addition to assigning value to
variable, you also assign a value to the partner link. Then, when the service is invoked, the
HTTP Binding Component stops using the deployment address and instead uses the address
that you just assigned.

The partnerLink "plStockQuote" could be subsequently used in an invoke.

Note that the WS-A defined schema object should be wrapped in an element called
service-ref, that is defined in the BPEL. For more information about using the service-ref
wrapper, refer to the BPEL Specification, section 6.3.

Using an Existing Partner Link's Endpoint
The endpoint of one partner link can be assigned to another partner link. The following BPEL
Mapping and code sample show how the partnerRole endpoint of PartnerLink1 is copied to
PartnerLink2.

Mapping the PartnerLink1 partnerRole to PartnerLink2 generates the following source code.

<assign name="Assign2">
<copy>

<from partnerLink="PartnerLink1" endpointReference="partnerRole"/>
<to partnerLink="PartnerLink2"/>

</copy>

</assign>

In this example, PartnerLink1 is associated with a SOAP address. Instead of using that address,
you want to use PartnerLink2. You send the address of PartnerLink1 to PartnerLink2.
PartnerLink1 partnerRole endpoint is copied to PartnerLink2.

PartnerLink2 can also be used in subsequent invokes.

Using Dynamic Partner Links and Dynamic Addressing

Using the BPEL Designer and Service Engine • June 2009158

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html#_Toc164738489

Using an Incoming Message to Extract the Endpoint
To extract an endpoint address from an incoming message, the message must be defined with
the endpoint schema as part of the message. The following code sample show one way that this
can be done.

<types>

<xsd:schema targetNamespace="http://j2ee.netbeans.org/wsdl/dynamicPL">
<xsd:import namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"
schemaLocation="http://schemas.xmlsoap.org/ws/2004/08/addressing/"/>

</xsd:schema>

</types>

<message name="dynamicPLOperationRequest">
<part name="part1" element="wsa:EndpointReference"/>

</message>

Note that the prefix wsa is defined to point to
http://schemas.xmlsoap.org/ws/2004/08/addressing.

Use this message variable to assign the endpoint to a partner link at runtime. A special BPEL
mapper function, "Wrap with Service Reference" makes it easy to map the WS-A message to a
partner link, as demonstrated below.

Choosing the BPEL Mapper option Wrap with Service Reference adds the doXslTransform

method box to the Mapper canvas.

Using Dynamic Partner Links and Dynamic Addressing

Using the BPEL Designer and Service Engine 159

The doXslTransform Method box generates the BPEL doXslTransform() function, as shown in
the code sample below.

<assign name="Assign1">
<copy>

<from>ns0:doXslTransform(’urn:stylesheets:wrap2serviceref.xsl’,

$DynamicPLOperationIn.part1)</from>

<to partnerLink="PartnerLink1"/>
</copy>

</assign>

The stylesheet for the transformation is already defined by the editor.

Using a Database Query to Provide an Endpoint
Expanding on the last example, you can also have a BPEL service do a dynamic addressing
invocation, with the address coming from a database.

You start with a composite application that is triggered by something such as a input file. You
do not want to use the address that is directly assigned to the file, so you do a database query or
database select for the address.

The composite application triggers the Database Binding Component to do a simple select from
a table that contains addresses. The composite application takes the results from the database
query and puts it into the BPEL Mapper and maps the query result to the variable where you
normally put your dynamic SOAP address. The Mapper assigns this address to the partner link.

Sending Service Endpoint References
A service can send its own endpoints, that can then be used as call back addresses, using the
following type of mapping.

Using Dynamic Partner Links and Dynamic Addressing

Using the BPEL Designer and Service Engine • June 2009160

The PartnerLink1 myRole is mapped to the DynamicPLOperationIn part1. This generates the
following code sample.

<assign name="Assign2">
<copy>

<from partnerLink="PartnerLink1" endpointReference="myRole"/>
<to variable="DynamicPLOperationIn" part="part1"/>

</copy>

</assign>

When the variable “DynamicPLOperationIn” is used in subsequent invokes in the BPEL, the
endpoint information is passed on to the partner.

Note – The BPEL Specification states that only the partner address can be changed dynamically.
In BPEL terms, this means that only the partnerRole of a partner link can be assigned a value,
and myRole does not change after the BPEL process has been deployed.

Configuring Persistence for the BPEL Service Engine
In order to ensure the integrity of your business process data in the case of a system failure, you
can configure the BPEL Service Engine to persist business process data to a database. With
BPEL Persistence enabled, the BPEL Service Engine recovers business process data that would
otherwise be lost, and continues processing from the point of system failure.

The BPEL Service Engine supports MySQL, Derby (JavaDB), and Oracle. This section describes
how to configure the BPEL Service Engine, the user, and the database, to persist data.

This section includes the following topics:

■ “Setting the JVM Classpath to the Database JDBC Drivers” on page 162
■ “Configuring the User and Database for Persistence” on page 163
■ “ Creating an XA Connection Pool and a JDBC Resource” on page 165
■ “ Creating a Non-XA Connection Pool and JDBC Resource” on page 167

Configuring Persistence for the BPEL Service Engine

Using the BPEL Designer and Service Engine 161

■ “Enabling Persistence for the BPEL Service Engine” on page 167
■ “Truncating and Dropping Tables” on page 168

Setting the JVM Classpath to the Database JDBC
Drivers
The database JDBC drivers must be either set in the GlassFish JVM classpath (preferred) or
placed in the /glassfish/lib directory before you create the connection pools. This is not
necessary for the Derby (JavaDB) database, but is required for Oracle or MySQL. For example, if
you are using JDK 6, you would set your GlassFish JVM classpath to the ojdbc6.jar file, which is
the Oracle database JDBC driver file for JVM 6.

▼ To set the GlassFish JVM Classpath settings

Open the GlassFish Admin Console. To access the Admin Console, do the following:

a. From the Services window of the NetBeans IDE, start the GlassFish server.

b. Right-click the GlassFish server and select View Admin Console from the popup menu.
The login screen of the Admin Console appears.

c. Open the Admin Console using the default username and password:

■ Username: admin
■ Password: adminadmin

To access the GlassFish JVM classpath settings:

a. From the Admin Console's Common Tasks window, click Application Server.
The Application Server settings appear in the console window to the right.

b. Click the JVM Settings tab and the Path Settings sub-tab.

In the Classpath Suffix field, type the full path for your database JDBC driver on your local
directory. For example, C:\GlassFishESB\drivers\oracle11gDriver\ojdbc6.jar.

Click Save, and restart GlassFish.

Setting the JVM Classpath for GlassFish Clustering
Additional steps must be taken when setting the GlassFish JVM Classpath to the Database
drivers in a clustered environment. For additional information see “Configuring the BPEL
Service Engine for Clustering” in Configuring GlassFish ESB for Clustering.

1

2

3

4

Configuring Persistence for the BPEL Service Engine

Using the BPEL Designer and Service Engine • June 2009162

http://docs.sun.com/doc/820-7848/jbi_cluster-bpel_p?a=view
http://docs.sun.com/doc/820-7848/jbi_cluster-bpel_p?a=view

Configuring the User and Database for Persistence
This section describes how to configure an appropriate user and database, to persist data.

Derby (JavaDB)
The BPEL Service Engine uses the JDBC resource created in the Application Server to make the
necessary database connection for persistence. NetBeans is bundled with the JavaDB database,
which is the Sun's supported distribution of the open source Apache Derby database. The BPEL
Service Engine is configured to connect to the JavaDB database by default.

It is not necessary to create a user and database for Derby. Just create the connection pools and
include the "create" flag in the database name, and set the value to "true". For example:
DatabaseName → bpelseDB;create=true.

Oracle
Create the Oracle database user with required privileges and tablespace for BPEL Service
Engine persistence.

▼ To create the Oracle database user

Log into Oracle as sysdba. For example, from the command prompt enter: sqlplus
"sys/syspassword@tnsentry as sysdba". You need to include sqlplus in the path and the tns
entry for the Oracle database.

Execute the following script using the default values:
CREATE TABLESPACE bpelsedb DATAFILE ’bpelsedb.dat’ SIZE 512M

REUSE AUTOEXTEND ON NEXT 2048M MAXSIZE UNLIMITED;

CREATE USER bpelse_user IDENTIFIED BY bpelse_user DEFAULT TABLESPACE

bpelsedb QUOTA UNLIMITED ON bpelsedb TEMPORARY TABLESPACE temp QUOTA 0M ON system;

GRANT CREATE session to bpelse_user;

GRANT CREATE table to bpelse_user;

GRANT CREATE procedure to bpelse_user;

GRANT select on sys.dba_pending_transactions to bpelse_user;

GRANT select on sys.pending_trans$ to bpelse_user;

GRANT select on sys.dba_2pc_pending to bpelse_user;

GRANT execute on sys.dbms_system to bpelse_user;

GRANT select on SYS.dba_2pc_neighbors to bpelse_user;

GRANT force any transaction to bpelse_user;

Click Here, for more information and to download the latest scripts for Oracle.

Note – The above code is wrapped for display purposes.

1

2

Configuring Persistence for the BPEL Service Engine

Using the BPEL Designer and Service Engine 163

http://wiki.open-esb.java.net/jbiwiki/attach/BPELSEConfiguration/bpelse-oracle-create-user-1.sql

Tip – The user can also connect to the database from NetBeans or other SQL clients by giving the
username "sys as sysdba". The password should be the same as that of the system user. You can
also change the user, tablespace and datafile name, and size/quota, as per your choice and
requirements.

MySQL
Create the MySQL database user with required privileges and database for BPEL Service Engine
persistence.

▼ To create the MySQL database user

Log into MySQL as root. For example, from the command prompt enter: mysql -h host -u
root -p.
You need to include the MySQL bin folder in the path. You can omit the host if you are
connecting from the same machine.

Execute the following script using the default values:
CREATE DATABASE BPELSE_USER_DB;

GRANT ALL ON BPELSE_USER_DB.* TO ’BPELSE_USER’@’%’ IDENTIFIED BY ’BPELSE_USER’;

Click Here, for more information and to download the scripts for MySQL.

Setting max_allowed_packet

When a MySQL client or the mySQL server gets a packet that is larger than the
max_allowed_packet bytes, it issues a "Packet too large" error and closes the connection. By
default this value is configured low. You must increase this value for large messages. Set the
value of this parameter to the size of the biggest message you anticipate.

To set max_allowed_packet:

1. Open the "my.ini" file under the MySQL server install directory.
2. Search for the "max_allowed_packet" parameter. If the file does not have it, add the

parameter to the file.
3. Set the value as needed. To set the value to 1GB, enter the value as one of the following:

max_allowed_packet=1073741824

max_allowed_packet=1G

4. Restart the MySQL Server.

For more information see Setting max_allowed_packet and Using Options to Set Program
Variables.

1

2

Configuring Persistence for the BPEL Service Engine

Using the BPEL Designer and Service Engine • June 2009164

http://wiki.open-esb.java.net/jbiwiki/attach/BPELSEConfiguration/create_bpelse_user.sql
http://www.mysql.com/news-and-events/newsletter/2003-08/a0000000216.html
http://dev.mysql.com/doc/refman/5.0/en/program-variables.html
http://dev.mysql.com/doc/refman/5.0/en/program-variables.html

Note – The current version of the JDBC driver for MySQL, MySQL Connector/J, version 5.1.6,
has a bug which can cause errors when an XA connection is used. As such, using this driver can
cause fatal exceptions in the BPEL Service Engine. A patch for MySQL Connector/J version
5.1.6, is available, and will be included in subsequent releases of MySQL Connector/J. For more
information on the patch, see http://bugs.mysql.com/bug.php?id=35489.

Creating an XA Connection Pool and a JDBC Resource

Note – Before you setup and test the Connection Pools, you must first set the GlassFish JVM
classpath for your database JDBC drivers. See “Setting the JVM Classpath to the Database JDBC
Drivers” on page 162 for more information.

▼ To create an XA Connection Pool:

Log into the GlassFish Admin Console. To do this, right-click your application server node, in the
Services window under Servers, and choose View Admin Console.

You can also open the Admin Console from your web browser using the correct URL. For
example: http://localhost:4848.

In the navigation tree, expand the following nodes: Resources → JDBC.

Select Connection Pools, and in the right panel, click the New button.

Under General Settings, specify a name (such as bpelseDBXA).

Set the Resource Type to javax.sql.XADataSource.

Set the database vendor to the appropriate database vendor (Derby, Oracle or MySQL). Click
next.

1

2

3

4

5

6

Configuring Persistence for the BPEL Service Engine

Using the BPEL Designer and Service Engine 165

http://wiki.open-esb.java.net/jbiwiki/attach/BPELSEConfiguration/mysql-connector-java-5.1.6-bin.jar
http://wiki.open-esb.java.net/jbiwiki/attach/BPELSEConfiguration/mysql-connector-java-5.1.6-bin.jar
http://bugs.mysql.com/bug.php?id=35489

From the New JDBC Connection Pool (Step 2 of 2) window, under Connection Validation, enable
Allow Non Component Callers.

Under Additional Properties, specify the following properties for your database:

■ Derby:
■ ServerName → machine-name
■ DatabaseName → DatabaseName: bpelseDB;create=true
■ User → bpelse_user
■ Password → bpelse_user

■ Oracle:
■ URL → jdbc:oracle:thin:@machine-name:port:sid
■ User → bpelse_user
■ Password → bpelse_user

■ MySQL:
■ URL → jdbc:mysql://machine-name:port/databasename
■ User → bpelse_user
■ Password → bpelse_user

If you did not use the default values, make sure that the ServerName, User, Password and
DatabaseName values are those that you specified when you created the database.

Click Finish. The new user and database are created.

Click the connection pool name and click the Ping button to verify your database connection.

Click Finish.

7

8

9

10

11

Configuring Persistence for the BPEL Service Engine

Using the BPEL Designer and Service Engine • June 2009166

▼ Create a new JDBC resource:

From the Admin Console navigation tree, expand the Resources→ JDBCnodes, and select JDBC
Resources.

In the right panel, click the Newbutton.

Provide a JNDIName (such as jdbc/bpelseDB) and specify the JDBC Connection Pool (bplseDB)
you created previously. You will use this JNDIName later when you enable persistence in the
BPEL Service Engine properties.

Expand the Configuration node and select Transaction Service (or Configuration → server-config
→ Transaction Service, if clustering is configured).

For the On Restart parameter, enable Automatic Recovery by selecting the Enabled check box.

Creating a Non-XA Connection Pool and JDBC
Resource
To create a non-XA Connection Pool, follow the same procedures used to create an XA
Connection Pool and JDBC Resource, but substitute bpelseDB as the name, and
javax.sql.ConnectionPoolDataSource as the Resource Type.

Note – Before you setup and test the Connection Pools, you must first set the GlassFish JVM
classpath for your database JDBC drivers. See “Setting the JVM Classpath to the Database JDBC
Drivers” on page 162 for more information.

Enabling Persistence for the BPEL Service Engine
Persistence is configured in the BPEL Service Engine runtime properties.

▼ To enable persistence for the BPEL Service Engine

In the NetBeans IDE Services window, expand the Sun Java System Application Server

(GlassFish) → JBI → Service Engines Nodes.

Right-click sun-bpel-engine and select Properties.
The sun-bpel-engine Properties window appears.

Set the PersistenceEnabled property to true.

1

2

3

4

5

1

2

3

Configuring Persistence for the BPEL Service Engine

Using the BPEL Designer and Service Engine 167

Set the Non XA Data Source Name property to specify the JNDIName of the non-XA JDBC
resource that you created when you configured the database.

Set the XA Data Source Name property to specify the JNDIName of the XA JDBC resource that
you created when you configured the database.

Click Close to save your settings.

See “Configuring the BPEL Service Engine Runtime Properties” on page 122 for property
descriptions.

Stop, shut down, and start the BPEL Service Engine to enable your new settings.

Truncating and Dropping Tables
The following notes provide drop and truncate scripts as well as additional information about
configuring persistence. Some of the instructions mentioned here may change, so check back
for updates or contact the BPEL Service Engine team if you have questions.

4

5

6

7

Configuring Persistence for the BPEL Service Engine

Using the BPEL Designer and Service Engine • June 2009168

When the BPEL Service Engine is started, it queries the database for the existence of the tables
required for persistence. If these tables are not available, the BPEL Service Engine will create the
required tables.

Drop and Truncate Scripts
To download the scripts, click Drop and Truncating Table Scripts. You can also refer to How to
Delete From UI for more information.

For the script to drop an Oracle user, use the following:
DROP TABLESPACE BPELSE_USER_DB INCLUDING CONTENTS AND DATAFILES CASCADE

CONSTRAINTS;

Configuring Failover for the BPEL Service Engine
In order to optimize and ensure business process throughput on highly scalable systems, the
BPEL Service Engine supports load balancing and failover. Load balancing distributes
processing over multiple BPEL Service Engines via multiple BPEL service units. Failover
prevents processing from being interrupted by picking up business processes from any failed
systems and processing them to completion.

Load Balancing

When a business process needs to be scaled to meet heavier processing needs, you can distribute
it across multiple service engines, running on multiple processors or systems, to increase
throughput. The BPEL Service Engine's load balance algorithm automatically distributes
processing across multiple engines.

Failover

When your business process is configured for load balancing, the BPEL Service Engine's
failover capabilities ensure throughput of running business process instances. When a business
process instance encounters an engine failure, any suspended instances are picked up by the
next available BPEL Service Engine.

To configure failover, set the BPEL Service Engine property, EngineExpiryInterval to register
itself as alive frequently enough to meet the demands of your system. Optimizing this property
setting might require some testing. The default setting is 15.

Failover Considerations
In order to configure failover for BPEL Service Engines, you must adhere to the following
guidelines:

■ Persistence must be enabled for both load balancing and failover.

Configuring Failover for the BPEL Service Engine

Using the BPEL Designer and Service Engine 169

http://wiki.open-esb.java.net/jbiwiki/attach/BPELSEConfiguration/bpelse-drop-truncate-scripts.zip
http://wiki.open-esb.java.net/Search.jsp?query=ExtendedManagementActions
http://wiki.open-esb.java.net/Search.jsp?query=ExtendedManagementActions
http://wiki.open-esb.java.net/jbiwiki/attach/BPELSEConfiguration/bpelse-oracle-drop-user.sql

■ To run persistence, all BPEL Service Engines must be restarted.
■ Service assemblies must be deployed manually across all clustered JBI environments.
■ Failover is implemented consistently for the specific protocol and binding components

involved in a given business process.
■ Only a single database can be used for all BPEL Service Engines when implementing

failover.
■ The database must be highly available; should the database fail, failover will fail.
■ When a BPEL Service Engine fails, a single BPEL Service Engine picks up those instances

without distributing them across the balanced system. Consequently, a large number of
failed over instances can overload an entire system, one service engine at a time, as a sort of
domino effect.

■ All BPEL Service Engines in a load balanced system must reside in the same time zone.

BPEL BluePrints
BPEL BluePrints are developed to teach and promote good practices in developing business
processes. Together they present solutions for developing business processes that logically
combine, orchestrate, and consume web services.

The BPEL BluePrints are located at:

https://blueprints.dev.java.net/bpcatalog/ee5/soa/index.html (https://
blueprints.dev.java.net/bpcatalog/ee5/soa/index.html)

The following BPEL BluePrints are available for download:
■ BPEL BluePrint 1: Synchronous Web Service Interactions Using BPEL
■ BPEL BluePrint 2: Asynchronous Web Service Interactions Using BPEL
■ BPEL BluePrint 3: Fault Handling Using BPEL
■ BPEL BluePrint 4: Message-Based Coordination of Events Using BPEL
■ BPEL BluePrint 5: Concurrent Asynchronous Coordination of Events Using BPEL

Troubleshooting
Troubleshooting.

“Using BPEL Schemas Different from the BPEL 2.0 Specification” on page 171

“Ports” on page 172

“Test Run Failures” on page 175

“Disabling Firewalls when Using Servers” on page 175

BPEL BluePrints

Using the BPEL Designer and Service Engine • June 2009170

https://blueprints.dev.java.net/bpcatalog/ee5/soa/index.html
https://blueprints.dev.java.net/bpcatalog/ee5/soa/index.html

Using BPEL Schemas Different from the BPEL 2.0
Specification
This release of the BPEL Designer supports the BPEL 2.0 final specification and does not
support previous specifications. This means that when you open the BPEL files that comply
with the previous versions of the specification, the BPEL Designer shows the Unable to Show
the Diagram message.

If you see this message, do the following:

■ Check the specification version that the BPEL file complies with. BPEL files that comply
with the BPEL 2.0 specification have the following string:
xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable"

WSDL files that contain PartnerLinkType definitions should have the following string:
xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"

Replace the namespaces in your files with those above and try to open the BPEL file in the
BPEL Designer.

■ Make sure that the BPEL constructs used in your process are compatible with the BPEL 2.0
specification.

Service Endpoint Conflict
When deploying two or more Composite Application projects, a service endpoint conflict
might occur and the deployment fails. In case of the service endpoint conflict, the following
message is displayed:

Deploy service assembly failed. (partial success)

MESSAGE: (SOAPBC_DEPLOY_2) Failed to deploy: java.lang.Exception:

An activated endpoint already has the same SOAP Address location:

http://localhost:18181/SynchronousSample

C:\<...>\SynchronousSample1Application\nbproject\build-impl.xml:209:

Service assembly deployment failed.

BUILD FAILED (total time: 31 seconds)

This could typically arise from trying to deploy nearly identical processes that are packaged in
different Composite Application projects. The workaround for this issue is to use different
endpoints during the deployment of different Composite Application projects.

Explanation: Even though you are deploying distinct Composite Applications and distinct
BPEL processes, by default they will have the same endpoint addresses defined in their
SynchronousSample.wsdl files. They will both contain the following endpoint address:

<service name="service1">
<port name="port1" binding="tns:binding1">

<documentation/>

Troubleshooting

Using the BPEL Designer and Service Engine 171

<soap:address location="http://localhost:18181/SynchronousSample"/>
</port>

</service>

If you attempt to deploy two Composite Applications (for example,
SynchronousSampleApplication and SynchronousSample1Application) with identical
service endpoints, the deployment of the second one will fail due to the endpoint conflict.

You may wish to deploy more than one version of a Composite Application because you want
to modify one or both of these processes and deploy both of them at the same time. Or you may
want to compare their behavior. To do this you must first make their endpoint addresses
distinct. This means editing the process WSDL file and adjusting the soap:address location
attribute so that there is no conflict. You can adjust either the port number or the service name.
For example, either of these would be sufficiently distinct from the original:

<soap:address location="http://localhost:18182/SynchronousSample"/>

or

<soap:address location="http://localhost:18181/SynchronousSampleNew"/>

Relationship of Service Endpoint to Test Cases
Each Test Case in the Composite Application project will attempt to send the input message to
the target process when you invoke the Test action. In order to know where to send the message,
each test case has a property called destination. You can modify this property in the
Properties window. To invoke the Properties window, right-click the test case node and choose
Properties from the pop-up window.

destination=http://localhost:18181/SynchronousSample

The value of the destination property is set at the time the test case is created. So if you
subsequently change the service endpoint you will need to manually adjust the destination
attribute for any previously generated test cases. Newly generated test cases, of course, will be
OK.

Ports

GlassFish V2 Application Server HTTP Port
By default, the installer attempts to configure the Application Server's HTTP port to be 8080.
Some of the sample processes assume the 8080 value. If for any reason, the Application Server's
HTTP port is not 8080, you will have to make adjustments to the samples.

In particular, the Travel Reservation Service sample will require several adjustments.

Troubleshooting

Using the BPEL Designer and Service Engine • June 2009172

Assume, for instance, that the Application Server is listening on HTTP port 8090 (not on the
default 8080). In this case, you will have to do the following:

Adjust Reservation Partner Services WSDL files

1. In the TravelReservationService BPEL Module project, change the soap address value in the
AirlineReservationService.wsdl from

<soap:address

location="http://localhost:8080/webservice/AirlineReservationService"/>

to

<soap:address

location="http://localhost:8090/webservice/AirlineReservationService"/>

2. Similarly, update the soap address values in VehicleReservationService.wsdl and
HotelReservationService.wsdl.

Note: To find out which HTTP port the Application Server is listening on, open the Services
window, right-click the GlassFish V2 Application Server's node and choose View Admin
Console. This opens the GlassFish V2 Application Server Administration Console in your
browser. Type username and password (default values are admin/adminadmin) and log in. Click
Application Server in the left pane and choose the General tab in the right pane. The HTTP port
value you need is the first in the HTTP Port(s): line.

Alternatively, find the following lines in the Application Server log:

WEB0712: Starting Sun-Java-System/Application-Server HTTP/1.1 on 8080

WEB0712: Starting Sun-Java-System/Application-Server HTTP/1.1 on 8181

WEB0712: Starting Sun-Java-System/Application-Server HTTP/1.1 on 4848

The value you need is in the first line.

Travel Reservation Service Endpoint Conflict
Refer to the “Service Endpoint Conflict” on page 171 section above for a general description of
the problem. In case of the Travel Reservation Service sample, however, you have to take these
additional steps:

If port 18181 is not available, and if you want to run TRS on another port, such as port 19191,
perform the following steps:

Change URLs
Open TravelReservationService.wsdl.

In the service tag change,

Troubleshooting

Using the BPEL Designer and Service Engine 173

soap:address

location="http://localhost:18181/TravelReservation/buildItinerary"/

to

soap:address

location="http://localhost:19191/TravelReservation/buildItinerary"/

Similarly, update URL's for airlineReserved, hotelReserved and vehicleReserved.

Adjust the Partner EJB project, ReservationPartnerServices

Perform the following steps:

1. In the IDE, open the ReservationPartnerServices project.

(The IDE created the ReservationPartnerServices project in the location where you created
the TravelReservationService project.)

2. In the Projects window, expand the ReservationPartnerServices project node, expand the
Configuration Files node, and then double-click the ejb-jar.xml node to open the file in
the visual editor.

3. In the Design view, under Enterprise Beans, click ReservationCallBackProviderMDB to
expand the entry. Expand Bean Environment and then Environment Entries.

4. Under Environment Entries, select each entry and click Edit to change the 18181 port
number in the Entry Value field.

For example, for AirlineCallbackURL, change

http://localhost:18181/TravelReservation/airlineReserved

to

http://localhost:19191/TravelReservation/airlineReserved

Update the Destination Property

In the TravelReservationServiceApplication Composite project expand the Test node. For
each test case node under it:

1. Right-click the test case node and choose Properties.

2. In the Properties window, update the value of the Destination property.

Example:

Change http://localhost:18181/TravelReservation/buildItinerary

to

http://localhost:19191/TravelReservation/buildItinerary

Troubleshooting

Using the BPEL Designer and Service Engine • June 2009174

Test Run
When executing a test case:

■ If the Output.xml file is empty (it is empty after a new test case is created), then you are
asked whether the Output.xml should be populated with the response from the first test run.
This first test run output will indicate that the test run failed.

■ If the Output.xml file is not empty, then the results obtained are compared with the content
of the file; if they match, the test execution is marked as passed.

Test Run Failures
If you receive a failed test run, you can do one of the following:

■ Check the response message after a failed test run. The response message is available under
the test case node in the Projects window. The response message is time stamped.

You can verify that the response does not match the expected response (that is, Output.xml)
and this might help you understand the problem.

■ Check the Server log file after a failed test run.

To do so, go to the IDE's Runtime tab. Select the View Server Log action on the GlassFish
V2 Application Server node.

This shows the contents of the server log and might contain information about why a test
run failed.

One particular case of test run failures is related to tests that use content-based correlation
embedded in Input.xml (for example, the Input.xml files in the Travel Reservation Service test
cases have <UniqueID>...</UniqueID> as the basis for correlation). In this situation, if you run
the test case when there is already a running process instance initiated by the same test case, the
second process instance will not be initiated and the test will fail. The following message will
appear in the GlassFish V2 Application Server log:

Exception occurred while executing a business process instance.

com.sun.jbi.engine.bpel.core.bpel.exception.CorrelationAlreadyExists: An instance is associated with the correlation

<...>

Disabling Firewalls when Using Servers
You might have to disable any firewall in order to successfully deploy run, debug, or test
applications on the Application Server or business processes on the BPEL Server.

Troubleshooting

Using the BPEL Designer and Service Engine 175

Required Correlation Set Usage is Not Detected by the
Validation System
The BPEL service engine requires strict usage of correlation sets. Currently the validation
system does not detect violations of the following requirements:

■ On Message: The On Message element must have a valid <correlations> child if the On
Message is used in a Pick activity that does not have the createInstance="yes" attribute.

■ Receive: The Receive element must have a valid <correlations> child if it does not have
the createInstance="yes" attribute.

■ On Event: The On Event element must have a valid <correlations> child.

See the NetBeans IDE 6.1 Release Notes for other known issues for the SOA pack.

Troubleshooting

Using the BPEL Designer and Service Engine • June 2009176

	Using the BPEL Designer and Service Engine
	Using the BPEL Designer and Service Engine
	Overview
	The JBI Runtime Environment
	To view the installed or deployed JBI components:

	The BPEL Designer
	The BPEL Service Engine
	The Composite Application Project

	BPEL Designer and Service Engine Features
	BPEL Service Engine Features
	Supported WS-BPEL 2.0 Constructs

	Understanding the BPEL Module Project
	Creating Sample Processes in the BPEL Designer
	A Synchronous Sample Process
	An Asynchronous Sample Process
	Travel Reservation Service Sample
	Creating a Sample BPEL Module Project
	To create a sample BPEL Module project:

	Navigating in the BPEL Designer
	The BPEL Designer Window
	The BPEL Editor Views
	Cloning Document Views
	To Clone the Document View:

	Element Documentation and Report Generation
	Creating Documentation for an Element
	Generation a Report

	The Navigator Window
	XML View
	Logical View
	To add a resource file (WSDL or XSD) as an import:
	To add a property to a WSDL file:
	To add a property alias to a WSDL file:

	The Properties Window
	Scrolling
	Collapsing and Expanding Process Blocks in the Diagram
	To collapse and expand a process block:

	Zooming In and Out of the Diagram
	Printing BPEL Diagrams and Source Files
	To preview and print a BPEL diagram or source file:
	To customize print options:
	To customize page settings:

	Creating a BPEL Module Project
	Software Requirements and Installation
	Starting GlassFish
	To check the Status of the GlassFish V2 Application Server in the NetBeans IDE
	To Register the GlassFish V2 Application Server with the NetBeans IDE
	To Start the GlassFish V2 Application Server in the NetBeans IDE

	Creating a new BPEL Module Project
	Create a BPEL Module project

	Creating the XML Schema and the WSDL Document
	Creating a BPEL Process Using the BPEL Designer
	Create the BPEL Process

	Creating a Composite Application Project
	Create a new Composite Application project

	Building and Deploying the Composite Application Project
	Build and deploy the Composite Application Project:

	Testing the Composite Application
	Test the HelloWorldApplication Composite Application project

	Summary

	Developing a BPEL Process Using the Diagram
	The BPEL Diagram
	Configuring Element Properties in the Design View
	Finding Usages of BPEL Components
	To find usages of a BPEL component:

	Saving Your Changes

	The BPEL Designer Palette Elements
	Placeholders
	The Process Element
	Usage
	Processes

	The Web Service Elements
	Using the Invoke Element
	Usage
	Correlations

	Using the Receive Element
	Usage
	Correlations

	Using the Reply Element
	Usage
	Correlations

	Using the Partner Link Element
	Partner Link Types and Roles
	Usage
	The Partner Link Property Editor
	Partner Link Layout
	Dynamic Partner Links and Dynamic Addressing
	To assign a new endpoint reference to a partner link from a variable:

	The Basic Activities
	Using the Assign Element
	Usage
	Assign Element Properties

	Using the JavaScript Element
	Usage
	JavaScript Element Properties

	Using the Validate Element
	Usage

	Using the Empty Element
	Usage

	Using the Wait Element
	Usage

	Using the Throw Element
	Usage
	Throw Element Properties

	Using the Rethrow Element
	Usage

	Using the Exit Element
	Usage

	Using the Compensate Element
	Usage

	Using the CompensateScope Element
	Usage

	The Structured Activities
	Using the If Element
	Usage
	Adding an Else If Branch to the If Element
	Adding an Else Branch to the If Element
	Reordering Else If Branches

	Using the While Element
	Usage

	Using the Repeat Until Element
	Usage

	Using the For Each Element
	Usage

	Using the Pick Element
	Usage
	Adding an On Alarm branch
	Pick Element Properties

	Using the Flow Element
	Usage
	Adding Branches to the Flow Element
	Changing the Order of Elements inside Flow

	Using the Sequence Element
	Usage
	Adding Child Activities to the Sequence
	Changing the Order of Elements inside Sequence

	Using the Scope Element
	Usage
	Variables
	To define a variable:
	To edit a variable:

	Using the BPEL Mapper
	About the BPEL Mapper
	To open the BPEL Mapper window:

	Creating BPEL Mappings
	To create a mapping without using any functions:
	To use a function in a mapping:
	To delete a link or function in a mapping:

	Working with Predicates
	To create a predicate:
	To edit a predicate:
	To delete a predicate:

	XPath Function Reference
	Operator
	Boolean
	String
	Nodes
	Number
	Date & Time
	BPEL

	Mapping Examples
	Assign Activity Scenario
	If Activity Scenario
	Predicate Scenario

	Using Type Cast and Pseudo-Components
	Type Cast
	Pseudo-Component
	Type Cast and Validation
	Type Cast and Pseudo Component Limitations

	Using Normalized Message Properties
	Using Normalized Message Properties in a BPEL Process
	Using Predefined Normalized Message Properties in a BPEL Process
	To use predefined normalized message properties in a BPEL process
	Adding Additional Normalized Message Properties to a BPEL Process
	To add a Normalized Message Property Shortcut to a BPEL process
	To edit an NM Property Shortcut
	To delete an NM Property Shortcut
	To add a Normalized Message Property to a BPEL process
	To delete an NM Property
	BPEL Code Generation Using NM Properties

	General Normalized Message Properties
	Binding Component Specific Normalized Message Properties

	Using Handlers
	Using a Fault Handler
	When to Use
	Usage
	Catch Element
	Catch Element Properties
	Catch All Element

	Using an Event Handler
	When to Use
	Usage
	On Event Element
	Usage
	On Alarm Element
	On Alarm Element Properties

	Using a Compensation Handler
	When to Use
	To add a Compensation Handler to Scope or Invoke elements:

	Using a Termination Handler
	When to Use
	To add a Termination Handler to Scope or Process elements:

	Using Correlation
	Understanding Correlation. Using the Correlation Wizard
	Elements That Use and Express Correlation
	Defining Correlation Using the Correlation Wizard
	To create correlation using the Correlation Wizard:
	Defining Correlation Manually

	Validation
	Validation Criteria
	Validation Types
	Notifications
	The Output window
	The Design view
	The Navigator window

	BPEL Process Logging and Alerting
	Defining Logging
	To log the variable value:
	To set the log level for the BPEL Service Engine
	To view the log file:

	Defining Alerting

	Configuring the BPEL Service Engine Runtime Properties
	Accessing the BPEL Service Engine Runtime Properrties
	Runtime Property Descriptions

	BPEL Service Engine Deployment Artifacts
	Testing and Debugging BPEL Processes
	Testing a BPEL Process
	Creating and Running a Test Case
	Adding a Test Case to your BPEL Project
	To add a test case and bind it to a BPEL operation

	Setting the Test Properties
	To set the test properties

	Customizing Test Input
	To customize test input

	Running Test Cases
	Looking at Test Case Results

	Debugging BPEL Processes
	Steps in Debugging BPEL Processes
	Starting and Finishing a BPEL Debugging Session
	To prepare the debugging environment
	To start and finish a debugging session on the BPEL Engine

	Using Breakpoints to Debug BPEL Processes
	To set a breakpoint in a BPEL process
	Debugging Commands
	To remove a breakpoint from the BPEL process
	To disable a breakpoint
	Group operations over breakpoints

	Monitoring Execution of BPEL Processes

	BPEL Debugger Windows
	Sessions Window
	BPEL Process Instances Window
	Correlation Sets and Faults information

	Local Variables Window
	Watches Window
	To set watches in the BPEL process:

	BPEL Process Execution Window
	BPEL Partner Links Window
	BPEL Debugger Console Messages

	Monitoring the BPEL Service Engine
	Installing the BPEL Monitor API and Command Line Monitoring Tool
	To install the monitoring tool:

	Using the BPEL Monitor Command Line Tool
	To use the BPEL Monitor command line tool
	Command Usage Pattern
	More Information

	Configuring Quality of Service (QOS) Properties, Throttling, and Redelivery
	Configuring the Quality of Service Properties
	To access the Config QOS Properties Editor

	Quality of Service Properties
	Configuring Message Throttling
	Configuring an Endpoint for Throttling
	To configure Throttling for an endpoint

	Configuring Redelivery

	Using Dynamic Partner Links and Dynamic Addressing
	Using a Literal to Construct an Endpoint
	Using an Existing Partner Link's Endpoint
	Using an Incoming Message to Extract the Endpoint
	Using a Database Query to Provide an Endpoint
	Sending Service Endpoint References

	Configuring Persistence for the BPEL Service Engine
	Setting the JVM Classpath to the Database JDBC Drivers
	To set the GlassFish JVM Classpath settings
	Setting the JVM Classpath for GlassFish Clustering

	Configuring the User and Database for Persistence
	Derby (JavaDB)
	Oracle
	To create the Oracle database user

	MySQL
	To create the MySQL database user
	Setting max_allowed_packet

	Creating an XA Connection Pool and a JDBC Resource
	To create an XA Connection Pool:
	Create a new JDBC resource:

	Creating a Non-XA Connection Pool and JDBC Resource
	Enabling Persistence for the BPEL Service Engine
	To enable persistence for the BPEL Service Engine

	Truncating and Dropping Tables
	Drop and Truncate Scripts

	Configuring Failover for the BPEL Service Engine
	Failover Considerations

	BPEL BluePrints
	Troubleshooting
	Using BPEL Schemas Different from the BPEL 2.0 Specification
	Service Endpoint Conflict
	Relationship of Service Endpoint to Test Cases

	Ports
	GlassFish V2 Application Server HTTP Port

	Travel Reservation Service Endpoint Conflict
	Change URLs

	Test Run
	Test Run Failures
	Disabling Firewalls when Using Servers
	Required Correlation Set Usage is Not Detected by the Validation System

