JavaScript is required to for searching.
Skip Navigation Links
Exit Print View
Oracle Solaris Cluster Data Services Planning and Administration Guide
search filter icon
search icon

Document Information

Preface

1.  Planning for Oracle Solaris Cluster Data Services

2.  Administering Data Service Resources

Overview of Tasks for Administering Data Service Resources

Configuring and Administering Oracle Solaris Cluster Data Services

Registering a Resource Type

How to Register a Resource Type

Upgrading a Resource Type

How to Install and Register an Upgrade of a Resource Type

How to Migrate Existing Resources to a New Version of the Resource Type

Downgrading a Resource Type

How to Downgrade a Resource to an Older Version of Its Resource Type

Creating a Resource Group

How to Create a Failover Resource Group

How to Create a Scalable Resource Group

Tools for Adding Resources to Resource Groups

How to Add a Logical Hostname Resource to a Resource Group by Using the clsetup Utility

How to Add a Logical Hostname Resource to a Resource Group Using the Command-Line Interface

How to Add a Shared Address Resource to a Resource Group by Using the clsetup Utility

How to Add a Shared Address Resource to a Resource Group Using the Command-Line Interface

How to Add a Failover Application Resource to a Resource Group

How to Add a Scalable Application Resource to a Resource Group

Bringing Online Resource Groups

How to Bring Online Resource Groups

Enabling a Resource

How to Enable a Resource

Quiescing Resource Groups

How to Quiesce a Resource Group

How to Quiesce a Resource Group Immediately

Suspending and Resuming the Automatic Recovery Actions of Resource Groups

Immediately Suspending Automatic Recovery by Killing Methods

How to Suspend the Automatic Recovery Actions of a Resource Group

How to Suspend the Automatic Recovery Actions of a Resource Group Immediately

How to Resume the Automatic Recovery Actions of a Resource Group

Disabling and Enabling Resource Monitors

How to Disable a Resource Fault Monitor

How to Enable a Resource Fault Monitor

Removing Resource Types

How to Remove a Resource Type

Removing Resource Groups

How to Remove a Resource Group

Removing Resources

How to Remove a Resource

Switching the Current Primary of a Resource Group

How to Switch the Current Primary of a Resource Group

Disabling Resources and Moving Their Resource Group Into the UNMANAGED State

How to Disable a Resource and Move Its Resource Group Into the UNMANAGED State

Displaying Resource Type, Resource Group, and Resource Configuration Information

Changing Resource Type, Resource Group, and Resource Properties

How to Change Resource Type Properties

How to Change Resource Group Properties

How to Change Resource Properties

How to Modify a Logical Hostname Resource or a Shared Address Resource

Clearing the STOP_FAILED Error Flag on Resources

How to Clear the STOP_FAILED Error Flag on Resources

Clearing the Start_failed Resource State

How to Clear a Start_failed Resource State by Switching Over a Resource Group

How to Clear a Start_failed Resource State by Restarting a Resource Group

How to Clear a Start_failed Resource State by Disabling and Enabling a Resource

Upgrading a Preregistered Resource Type

Information for Registering the New Resource Type Version

Information for Migrating Existing Instances of the Resource Type

Reregistering Preregistered Resource Types After Inadvertent Deletion

How to Reregister Preregistered Resource Types After Inadvertent Deletion

Adding or Removing a Node to or From a Resource Group

Adding a Node to a Resource Group

How to Add a Node to a Scalable Resource Group

How to Add a Node to a Failover Resource Group

Removing a Node From a Resource Group

How to Remove a Node From a Scalable Resource Group

How to Remove a Node From a Failover Resource Group

How to Remove a Node From a Failover Resource Group That Contains Shared Address Resources

Example - Removing a Node From a Resource Group

Migrating the Application From a Global-Cluster Voting Node to a Global-Cluster Non-Voting Node

How to Migrate the Application From a Global-Cluster Voting Node to a Global-Cluster Non-Voting Node

Synchronizing the Startups Between Resource Groups and Device Groups

Managed Entity Monitoring by HAStoragePlus

Troubleshooting Monitoring for Managed Entities

Additional Administrative Tasks to Configure HAStoragePlus Resources for a Zone Cluster

How to Set Up the HAStoragePlus Resource Type for New Resources

How to Set Up the HAStoragePlus Resource Type for Existing Resources

Configuring an HAStoragePlus Resource for Cluster File Systems

Sample Entries in /etc/vfstab for Cluster File Systems

How to Set Up the HAStoragePlus Resource for Cluster File Systems

How to Delete an HAStoragePlus Resource Type for Cluster File Systems

Enabling Highly Available Local File Systems

Configuration Requirements for Highly Available Local File Systems

Format of Device Names for Devices Without a Volume Manager

Sample Entries in /etc/vfstab for Highly Available Local File Systems

How to Set Up the HAStoragePlus Resource Type by Using the clsetup Utility

How to Set Up the HAStoragePlus Resource Type to Make File Systems Highly Available Other Than Solaris ZFS

How to Set Up the HAStoragePlus Resource Type to Make a Local Solaris ZFS Highly Available

How to Delete an HAStoragePlus Resource That Makes a Local Solaris ZFS Highly Available

Upgrading From HAStorage to HAStoragePlus

How to Upgrade From HAStorage to HAStoragePlus When Using Device Groups or CFS

How to Upgrade From HAStorage With CFS to HAStoragePlus With Highly Available Local File System

Modifying Online the Resource for a Highly Available File System

How to Add File Systems Other Than Solaris ZFS to an Online HAStoragePlus Resource

How to Remove File Systems Other Than Solaris ZFS From an Online HAStoragePlus Resource

How to Add a Solaris ZFS Storage Pool to an Online HAStoragePlus Resource

How to Remove a Solaris ZFS Storage Pool From an Online HAStoragePlus Resource

How to Recover From a Fault After Modifying the FileSystemMountPoints Property of an HAStoragePlus Resource

How to Recover From a Fault After Modifying the Zpools Property of an HAStoragePlus Resource

Changing the Cluster File System to a Local File System in an HAStoragePlus Resource

How to Change the Cluster File System to Local File System in an HAStoragePlus Resource

Upgrading the HAStoragePlus Resource Type

Information for Registering the New Resource Type Version

Information for Migrating Existing Instances of the Resource Type

Distributing Online Resource Groups Among Cluster Nodes

Resource Group Affinities

Enforcing Collocation of a Resource Group With Another Resource Group

Specifying a Preferred Collocation of a Resource Group With Another Resource Group

Distributing a Set of Resource Groups Evenly Among Cluster Nodes

Specifying That a Critical Service Has Precedence

Delegating the Failover or Switchover of a Resource Group

Combining Affinities Between Resource Groups

Zone Cluster Resource Group Affinities

Replicating and Upgrading Configuration Data for Resource Groups, Resource Types, and Resources

How to Replicate Configuration Data on a Cluster Without Configured Resource Groups, Resource Types, and Resources

How to Upgrade Configuration Data on a Cluster With Configured Resource Groups, Resource Types, and Resources

Enabling Oracle Solaris SMF Services to Run With Oracle Solaris Cluster

Encapsulating an SMF Service Into a Failover Proxy Resource Configuration

Encapsulating an SMF Service Into a Multi-Master Proxy Resource Configuration

Encapsulating an SMF Service Into a Scalable Proxy Resource Configuration

Tuning Fault Monitors for Oracle Solaris Cluster Data Services

Setting the Interval Between Fault Monitor Probes

Setting the Timeout for Fault Monitor Probes

Defining the Criteria for Persistent Faults

Complete Failures and Partial Failures of a Resource

Dependencies of the Threshold and the Retry Interval on Other Properties

System Properties for Setting the Threshold and the Retry Interval

Specifying the Failover Behavior of a Resource

Denying Cluster Services For a Selected Non-Global Zone

How to Deny Cluster Services For a Non-Global Zone

How to Allow Cluster Services For a Non-Global Zone

A.  Standard Properties

B.  Legal RGM Names and Values

C.  Data Service Configuration Worksheets and Examples

Index

Tuning Fault Monitors for Oracle Solaris Cluster Data Services

Each data service that is supplied with the Oracle Solaris Cluster product has a built-in fault monitor. The fault monitor performs the following functions:

The fault monitor is contained in the resource that represents the application for which the data service was written. You create this resource when you register and configure the data service. For more information, see the documentation for the data service.

System properties and extension properties of this resource control the behavior of the fault monitor. The default values of these properties determine the preset behavior of the fault monitor. The preset behavior should be suitable for most Oracle Solaris Cluster installations. Therefore, you should tune a fault monitor only if you need to modify this preset behavior.

Tuning a fault monitor involves the following tasks:

Perform these tasks when you register and configure the data service. For more information, see the documentation for the data service.


Note - A resource's fault monitor is started when you bring online the resource group that contains the resource. You do not need to start the fault monitor explicitly.


Setting the Interval Between Fault Monitor Probes

To determine whether a resource is operating correctly, the fault monitor probes this resource periodically. The interval between fault monitor probes affects the availability of the resource and the performance of your system as follows:

The optimum interval between fault monitor probes also depends on the time that is required to respond to a fault in the resource. This time depends on how the complexity of the resource affects the time that is required for operations such as restarting the resource.

To set the interval between fault monitor probes, set the Thorough_probe_interval system property of the resource to the interval in seconds that you require.

Setting the Timeout for Fault Monitor Probes

The timeout for fault monitor probes specifies the length of time that a fault monitor waits for a response from a resource to a probe. If the fault monitor does not receive a response within this timeout, the fault monitor treats the resource as faulty. The time that a resource requires to respond to a fault monitor probe depends on the operations that the fault monitor performs to probe the resource. For information about operations that a data service's fault monitor performs to probe a resource, see the documentation for the data service.

The time that is required for a resource to respond also depends on factors that are unrelated to the fault monitor or the application, for example:

To set the timeout for fault monitor probes, set the Probe_timeout extension property of the resource to the timeout in seconds that you require.

Defining the Criteria for Persistent Faults

To minimize the disruption that transient faults in a resource cause, a fault monitor restarts the resource in response to such faults. For persistent faults, more disruptive action than restarting the resource is required:

A fault monitor treats a fault as persistent if the number of complete failures of a resource exceeds a specified threshold within a specified retry interval. Defining the criteria for persistent faults enables you to set the threshold and the retry interval to accommodate the performance characteristics of your cluster and your availability requirements.

Complete Failures and Partial Failures of a Resource

A fault monitor treats some faults as a complete failure of a resource. A complete failure typically causes a complete loss of service. The following failures are examples of a complete failure:

A complete failure causes the fault monitor to increase by 1 the count of complete failures in the retry interval.

A fault monitor treats other faults as a partial failure of a resource. A partial failure is less serious than a complete failure, and typically causes a degradation of service, but not a complete loss of service. An example of a partial failure is an incomplete response from a data service server before a fault monitor probe is timed out.

A partial failure causes the fault monitor to increase by a fractional amount the count of complete failures in the retry interval. Partial failures are still accumulated over the retry interval.

The following characteristics of partial failures depend on the data service:

For information about faults that a data service's fault monitor detects, see the documentation for the data service.

Dependencies of the Threshold and the Retry Interval on Other Properties

The maximum length of time that is required for a single restart of a faulty resource is the sum of the values of the following properties:

To ensure that you allow enough time for the threshold to be reached within the retry interval, use the following expression to calculate values for the retry interval and the threshold:

retry_interval >= 2 x threshold × (thorough_probe_interval + probe_timeout)

The factor of 2 accounts for partial probe failures that do not immediately cause the resource to be failed over or taken offline.

System Properties for Setting the Threshold and the Retry Interval

To set the threshold and the retry interval, set the following system properties of the resource:

Specifying the Failover Behavior of a Resource

The failover behavior of a resource determines how the RGM responds to the following faults:

To specify the failover behavior of a resource, set the Failover_mode system property of the resource. For information about the possible values of this property, see the description of the Failover_mode system property in Resource Properties.