Writing Device Drivers

Interrupt Handler Responsibilities

The interrupt handler has a set of responsibilities to perform. Some are required by the framework, and some are required by the device. All interrupt handlers are required to do the following:

The following example shows an interrupt routine.


Example 7–2 Interrupt Example

static uint_t
xxintr(caddr_t arg)
{
    struct xxstate *xsp = (struct xxstate *)arg;
    uint8_t         status; 
    volatile  uint8_t  temp;

    /*
     * Claim or reject the interrupt.This example assumes
     * that the device's CSR includes this information.
     */
    mutex_enter(&xsp->high_mu);
    /* use data access routines to read status */
    status = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);
    if (!(status & INTERRUPTING)) {
            mutex_exit(&xsp->high_mu);
            return (DDI_INTR_UNCLAIMED); /* dev not interrupting */
    }
    /*
     * Inform the device that it is being serviced, and re-enable
     * interrupts. The example assumes that writing to the
     * CSR accomplishes this. The driver must ensure that this data
     * access operation makes it to the device before the interrupt
     * service routine returns. For example, using the data access
     * functions to read the CSR, if it does not result in unwanted
     * effects, can ensure this.
     */
    ddi_put8(xsp->data_access_handle, &xsp->regp->csr,
            CLEAR_INTERRUPT | ENABLE_INTERRUPTS);
               /* flush store buffers */
    temp = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);
    
    mutex_exit(&xsp->mu);
    return (DDI_INTR_CLAIMED);
}

Most of the steps performed by the interrupt routine depend on the specifics of the device itself. Consult the hardware manual for the device to determine the cause of the interrupt, detect error conditions, and access the device data registers.