
International Language
Environments Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 806–6642–10
May, 2002

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, Java, XView, ToolTalk, Solstice AdminTools, SunVideo and Solaris
are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC
trademarks are based upon an architecture developed by Sun Microsystems, Inc. SunOS, Solaris, X11, SPARC, UNIX, PostScript, OpenWindows,
AnswerBook, SunExpress, SPARCprinter, JumpStart, Xlib

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

020304@3332

Contents

Preface 15

1 Solaris Internationalization Overview 21

New Internationalization and Localization Features 22
Internationalization and Localization Defined 23

Basic Steps in Internationalization 23
Localization Functions in Solaris Interfaces 25

What Is a Locale? 26
Full and Partial Locales 27
Behavior Affected by Locales 28
Locale Categories 28

Using Locale Categories for Localization 29
Time Formats 29
Date Formats 30
Numbers 30
Currency 31

Language Word and Letter Differences 33
Word Delimiters 33
Sort Order 34
Character Sets 34

Keyboard Differences 36
Differences in Paper Sizes 37

2 General Internationalization Features 39

Support for Codeset Independence 39

3

CSI Approach 40
CSI-enabled Commands 40
Solaris 9 CSI-enabled Libraries 41

Locale Database 41
Process Code Format 42
Multibyte Support Environment 42
Dynamically Linked Applications 43
Changed Interfaces 43
ctype Macros 44
Internationalization APIs in libc 45
genmsg Utility 52
User Defined and User Extensible Code Conversions 53

3 Localization in the Solaris 9 Environment 55

Software Support for Localization 55
Summary of the Solaris 9 Locale Packages 55
Additional Locales in This Release 56

Supported Locales 57
Multiple Key Compose Sequences for Locales 63
Keyboard Support in the Solaris 9 Product 64

Changing Between Keyboards on SPARC Systems 66
Changing Between Keyboards on Intel Systems 69

4 Supported Asian Locales 77

Asian Supported Locales 77
Input Method Auxiliary Window Support for Simplified and Traditional Chinese

78
Thai Localization 80

Thai Input Method Auxiliary Window 80
Simplified Chinese Localization 80
Traditional Chinese Localization 83
Japanese Localization 86

Japanese Locales 86
Japanese Character Sets 86
Japanese Fonts 87
Japanese Input Systems 88
Terminal Setting for Japanese Terminals 88

4 International Language Environments Guide • May, 2002

Japanese iconv Module 89

User-Defined Character Support 89

Differences Between Partial and Full Locales 89

Korean Localization 90

5 Overview of UTF-8 Locale Support 93

Unicode Overview 93

Unicode Locale: en_US.UTF-8 Support Overview 94

Desktop Input Methods 96

Script Selection and Input Modes 97

Accessing Input Mode 97

Traditional Chinese Input Mode 114

Traditional Chinese (Hong Kong) Input Mode 114

Unicode Hexadecimal Input Mode 114

Table Lookup Input Mode 115

System Environment 115

Locale Environment Variable 115

TTY Environment Setup 116

Code Conversions 119

DtMail 120

Programming Environment 122

FontSet Used with X Applications 123

FontList Definition in CDE/Motif Applications 123

6 Complex Text Layout 125

Overview of CTL Technology 125

Overview of CTL Architecture 126

CTL Support for X Library Based Applications 126

New XOC Resources 126

Changes in Motif to Support CTL Technology 127

XmNlayoutDirection 128

Determining the Layout Direction 128

XmStringDirection 129

XmRendition 129

Additional Layout Behavior 130

XmText and XmTextField 131

Character Orientation Action Routines 132

Contents 5

Character Orientation Additional Behavior 132
XmText Action Routines 132

XmTextFieldGetLayoutModifier 135
XmTextGetLayoutModifier 135
XmTextFieldSetLayoutModifier 136
XmTextSetLayoutModifier 136
XmStringDirectionCreate 137
UIL Arguments 137
How to Develop CTL Applications 138

Layout Direction 138
Creating a Rendition 139

Editing a Rendition 140
Creating a Render Table in a Resource File 141
Creating a Render Table in an Application 142
Horizontal Tabs 143
Mouse Selection 144
Keyboard Selection 145
Text Resources and Geometry 145
Porting Instructions 146

7 Print Filter Enhancement With mp 147

Printing for UTF-8 147
mp Print Filter Enhancement Overview 148

Using mp with the Locale Specific Font Configuration File mp.conf 149
Using mp With the Locale-specific PostScript Prologue Files 149
Using mp as an Xprt (X Print Server) Client 149
Localization of the Configuration File 150

Customizing Existing prolog Files and Adding New prolog Files 156
PostScript File Customization 156
.xpr File Customization 159
Creating a New .xpr File 162

6 International Language Environments Guide • May, 2002

A iconv Code Conversions 165

B Partial Locale Package List on Software CDs 193

C Full Locale Package List on Languages CD 201

Index 221

Contents 7

8 International Language Environments Guide • May, 2002

Tables

TABLE 1–1 International Time Formats 29
TABLE 1–2 International Date Formats 30
TABLE 1–3 International Numeric Conventions 31
TABLE 1–4 International Monetary Conventions 31
TABLE 1–5 User Locales To Support the Euro Currency 32
TABLE 1–6 German Locale and Corresponding LC_MONETARY 33
TABLE 1–7 Common International Page Sizes 37
TABLE 2–1 Messaging Functions in libc 45
TABLE 2–2 Code Conversion in libc 46
TABLE 2–3 Regular Expressions in libc 46
TABLE 2–4 Wide Character Class in libc 46
TABLE 2–5 Modify and Query Locale in libc 47
TABLE 2–6 Query Locale Data in libc 47
TABLE 2–7 Character Classification and Transliteration in libc 47
TABLE 2–8 Character Collation in libc 48
TABLE 2–9 Monetary Formatting in libc 49
TABLE 2–10 Date and Time Formatting in libc 49
TABLE 2–11 Multibyte Handling in libc 49
TABLE 2–12 Wide Character and String Handling in libc 50
TABLE 2–13 Formatted Wide-character Input and Output in libc 51
TABLE 2–14 Wide Stringslibc 51
TABLE 2–15 Wide-character Input and Output inlibc 51
TABLE 3–1 Asia 57
TABLE 3–2 Australasia 58
TABLE 3–3 Central America 59
TABLE 3–4 Central Europe 59

9

TABLE 3–5 Eastern Europe 59

TABLE 3–6 Middle East 60

TABLE 3–7 North Africa 60

TABLE 3–8 North America 61

TABLE 3–9 Northern Europe 61

TABLE 3–10 South America 62

TABLE 3–11 South Europe 62

TABLE 3–12 Western Europe 63

TABLE 3–13 Diacritical Characters Created With Compose Key 63

TABLE 3–14 Support for Regional Keyboards 64

TABLE 3–15 Layouts for Type 4, 5, and 5c Keyboards 66

TABLE 4–1 Summary of Asian Locales 77

TABLE 4–2 TrueType Fonts for the zh_CN.EUC Locale 81

TABLE 4–3 Bitmap Fonts for the zh_CN.EUC Locale 82

TABLE 4–4 TrueType Fonts for the zh_CN.GBK Locale 82

TABLE 4–5 Bitmap Fonts for the zh_CN.GBK Locale 82

TABLE 4–6 TrueType Fonts for the zh_CN.GB18030 Locale 82

TABLE 4–7 Bitmap Fonts for the zh_CN.GB18030 Locale 83

TABLE 4–8 Codeset Conversions for Simplified Chinese 83

TABLE 4–9 Traditional Chinese TrueType Fonts for the zh_TW Locales 84

TABLE 4–10 Traditional Chinese Bitmap Fonts for the zh_TW Locales 85

TABLE 4–11 TrueType Fonts for the zh_HK.BIG5HK Locale 85

TABLE 4–12 Bitmap Fonts for the zh_HK.BIG5HK Locale 85

TABLE 4–13 Codeset Conversions for Traditional Chinese 85

TABLE 4–14 Japanese Bitmap Fonts 87

TABLE 4–15 Japanese TrueType Fonts 88

TABLE 4–16 Solaris 9 Korean Bitmap Fonts for the ko Locale 91

TABLE 4–17 Solaris 9 Korean Bitmap Fonts for the ko.UTF-8 Locale 91

TABLE 4–18 Solaris 9 Korean TrueType Fonts for the ko/ko.UTF-8 Locales 91

TABLE 4–19 Korean iconv 92

TABLE 5–1 Input Mode Switch Key Sequences 99

TABLE 5–2 Common Latin-1 Compose Key Sequences 100

TABLE 5–3 Common Latin-2 Compose Key Sequences 104

TABLE 5–4 Common Latin-3 Compose Key Sequences 106

TABLE 5–5 Common Latin-5 Compose Key Sequences 107

TABLE 5–6 Common Latin-9 Compose Key Sequences 107

TABLE 5–7 32–bit STREAMS Modules Supported by en_US.UTF-8 116

TABLE 5–8 64–bit STREAMS Modules Supported by en_US.UTF-8 116

10 International Language Environments Guide • May, 2002

TABLE 6–1 New Resources in XmRendition 129

TABLE 6–2 New Resources in Xm CTL 131

TABLE 6–3 UIL 137

TABLE 7–1 Optional Keyword/Value Pairs 153

TABLE A–1 Available Unicode Related iconv Code Conversion Modules 165

TABLE A–2 Available Unicode and IBM/Microsoft EBCDIC and PC Code Page
Related iconv Code Conversions Modules 186

TABLE A–3 Available iconv Code Conversions - IBM and Microsoft EBCDIC/PC
Code Pages to UTF-8 188

TABLE B–1 List of Partial Locales 193

TABLE C–1 Simplified Chinese 201

TABLE C–2 French 203

TABLE C–3 German 205

TABLE C–4 Italian 206

TABLE C–5 Japanese 208

TABLE C–6 Korean 211

TABLE C–7 Spanish 213

TABLE C–8 Swedish 215

TABLE C–9 Traditional Chinese 216

TABLE C–10 Asian Shared 219

Tables 11

12 International Language Environments Guide • May, 2002

Figures

FIGURE 1–1 Functions and Structure of Locales in the Solaris Operating
Environment 24

FIGURE 3–1 Arabic Keyboard 69
FIGURE 3–2 Belgian Keyboard 69
FIGURE 3–3 Cyrillic (Russian) Keyboard 69
FIGURE 3–4 Danish Keyboard 70
FIGURE 3–5 Finnish Keyboard 70
FIGURE 3–6 French Keyboard 70
FIGURE 3–7 German Keyboard 71
FIGURE 3–8 Italian Keyboard 71
FIGURE 3–9 Japanese Keyboard 71
FIGURE 3–10 Korean Keyboard 72
FIGURE 3–11 Netherlands (Dutch) Keyboard 72
FIGURE 3–12 Norwegian Keyboard 72
FIGURE 3–13 Portuguese Keyboard 73
FIGURE 3–14 Spanish Keyboard 73
FIGURE 3–15 Swedish Keyboard 73
FIGURE 3–16 Swiss (French) Keyboard 74
FIGURE 3–17 Swiss (German) Keyboard 74
FIGURE 3–18 Traditional Chinese Keyboard 74
FIGURE 3–19 Turkish F Keyboard 75
FIGURE 3–20 Turkish Q Keyboard 75
FIGURE 3–21 United Kingdom Keyboard 75
FIGURE 3–22 United States Keyboard 76
FIGURE 3–23 U.S.A./UNIX Keyboard 76
FIGURE 4–1 Interface Model for Auxiliary Window Support 79

13

FIGURE 5–1 Input Mode Selection Window 97

FIGURE 5–2 Arabic Keyboard 107

FIGURE 5–3 Cyrillic (Russian) Keyboard 108

FIGURE 5–4 Greek Euro Keyboard 109

FIGURE 5–5 Greek UNIX Keyboard 109

FIGURE 5–6 Hebrew Keyboard 110

FIGURE 5–7 Hindi Keyboard 111

FIGURE 5–8 Hindi-Shift Keyboard 111

FIGURE 5–9 Japanese Keyboard 112

FIGURE 5–10 Korean Keyboard 113

FIGURE 5–11 Thai Keyboard 113

FIGURE 5–12 DtMail New Message Window 122

FIGURE 6–1 CTL Architecture 126

FIGURE 6–2 Layout Direction 138

FIGURE 6–3 Tabbing Behavior 143

14 International Language Environments Guide • May, 2002

Preface

The International Language Environments Guide describes internationalization features
that are new in the Solaris™ 9 operating environment. It contains important
information on how to use this release to build global software products that support
various languages and cultural conventions.

This publication describes the basic attributes associated with language enabling, as
well as specific features provided by the Solaris platform to facilitate global
application development and administration of language services around the world.

Specifically, this preface contains information about:

� “Who Should Use This Guide” on page 15
� “How This Guide Is Organized” on page 16
� “Related Books and Sites” on page 16

Where appropriate, this guide points you to other guides in the documentation set
that contain additional or more detailed information on internationalization features
in this release. You get pointers to how to order Sun documents online, and the
typographic conventions used in the guide.

Who Should Use This Guide
This guide is intended for software developers and administrators who want to design
global products and applications for the Solaris 9 operating environment.

This guide assumes knowledge of the C programming language.

All operating system information pertains to the SunOS™ 5.9 operating environment.

15

How This Guide Is Organized
The chapters in this guide are organized as follows:

� Chapter 1 describes the new internationalization and localization features in Solaris
9, including the introduction of the euro () in several countries.

� Chapter 2 describes support for Codeset Independence, CSI, and the APIs in libc
for the Solaris 9 product.

� Chapter 3 describes the contents of the Solaris 9 localized product, including
localizing the multilingual Solaris product, and new keyboard support, including
nineteen new keyboards.

� Chapter 4 describes the Asian supported locales, input systems, and character
support.

� Chapter 5 covers the en_US.UTF-8 locales and the internationalization features
incorporated into this release. These include the Cyrillic, Greek, Arabic, Hebrew,
Hindi, and Thai input methods, as well as those for the Japanese, Korean, and
Simplified and Traditional Chinese input modes.

� Chapter 6 describes Complex Text Layout (CTL) extensions that enable Motif APIs
to support writing systems that require complex transformations between logical
and physical text representations, such as Arabic, Hebrew, and Thai.

� Chapter 7 explains printing support under the Solaris 9 operating environment,
with specific information for European and Asian printing, and the mp(1) print
filter enhancement.

� Appendix A contains lists of tables of available iconv conversions.
� Appendix B contains a table of the partial localization package names on the OS

CD.
� Appendix C contains tables representing the language packages on the language

CD. There are tables for Simplified Chinese, French, German, Italian, Japanese,
Korean, Spanish, Swedish, Traditional Chinese, and Shared.

Related Books and Sites

Sun Global Application Developer Corner
For information to help developers globalize their applications, refer to the Sun Global
Application Developer Corner (Sun GADC)

16 International Language Environments Guide • May, 2002

The Sun Global Application Developer Corner is an updated web version of the
previously released Sun Global Application Developer Kit 1.0. It is accessible at:
http://www.sun.com/developers/gadc

Sun’s Global Application Developer Corner contains comprehensive
internationalization tools and documentation that address various design and
development issues encountered while creating global software, including how to test
for global compliance and troubleshoot problems.

The site includes testing tools such as the Sun Multibyte English (MBE) locale, which
allows developers to test their internationalized applications using pseudo English.
This has been extremely useful for English-speaking developers who need to test their
applications developed in a specific native language. The Sun Multibyte English locale
is available for free download. Other useful resources include sample references and
code in C, white papers on international language support found in the Solaris
operating environment, technical articles, and useful globalization links for quick
reference. There is a checklist available for developers to use to assess the
internationalization of a product, as well as a contact page for you to ask any Sun
globalization-related queries.

Java Development Kit
For information about the Java Development Kit, see
http://java.sun.com/j2se/1.3/docs/guide/intl/index.html

Solaris Common Desktop Environment
The Solaris Common Desktop Environment: Programmer’s Guide is also part of the CDE
Developer’s Collection that is shipped on the Solaris documentation CD.

OSF/Motif Information
OSF/Motif Programmer’s Guide, Release 1.2 Englewood Cliffs, New Jersey, Prentice-Hall,
1993. The Open Software Foundation’s (OSF) Guide describes how to use the
OSF/Motif application programming interface to create Motif applications. It presents
an overview of Motif widget set architecture, explains the Motif toolkit, and gives
models and examples of Motif applications.

PostScript Information
This set of books is essential for successfully developing PostScript applications.

Preface 17

The PostScript Language Reference Manual (Second Edition) is the standard reference
work for PostScript. It is the definitive documentation of every operator, Display
PostScript (DPS), Level 1, and Level 2. The book covers the fundamentals of PostScript
as a device-independent printing language. The special capabilities for handling fonts
and characters in PostScript are explained. The book’s Appendix E also explains
standard character sets and encoding vectors. It discusses the organization of fonts
that are built into interpreters or supplied from other sources.

Programming the Display PostScript System with X is for application developers who are
working with X Windows and Display PostScript. The book documents how to write
applications that use Display PostScript to produce information for the screen display
and the printer output. It describes coding techniques in detail.

The X Window System has been extended with the X Display PostScript system (often
described as X/DPS). It uses application-callable libraries on the client side and
corresponding extensions on the X server side.

Internationalization Process Under the Solaris
Operating Environment
Tuthill, Bill, and David Smallberg. Creating Worldwide Software: Solaris International
Developer’s Guide, 2nd edition. Mountain View, California, Sun Microsystems Press,
1997. Available through books@sun.com and www.sun.com/books/. The book
offers a general overview of the internationalization process under the Solaris
operating environment.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

18 International Language Environments Guide • May, 2002

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

Preface 19

20 International Language Environments Guide • May, 2002

CHAPTER 1

Solaris Internationalization Overview

This section discusses some general information about internationalization and
localization.

� “New Internationalization and Localization Features” on page 22
� “Internationalization and Localization Defined” on page 23
� “What Is a Locale?” on page 26
� “Using Locale Categories for Localization” on page 29
� “Language Word and Letter Differences” on page 33

The Solaris 9 product includes full Unicode 3.1 support, as defined in Unicode and
ISO/IEC 10646, for selected locales. The Solaris 9 release is a major release for Sun’s
international markets. It includes a number of new features.

The Solaris 9 operating environment has been designed to speak the languages of the
world since its inception. With a pluggable, service-based approach to globalization,
the Solaris internationalization architecture eases development, deployment and
management of applications and language services around the world. In one
convenient, multilingual product, users benefit from extensive support for 39 different
languages and 162 locales, including complex text layout environments needed to
support Thai and Hindi, and bidirectional layout environments for languages like
Arabic and Hebrew.

The Solaris internationalization architecture provides a flexible and pluggable method
of handling input methods, character set encodings, codeset conversion and other
basic aspects of language services. You can choose between the powerful tools already
provided, or customize your environment. You can deploy applications in multiple
language environments without knowing how input methods work or which codeset
converter needs to be enabled, simply by following standard APIs. You can also
customize particular language attributes. The architecture enables you to change
converter tables or add a new input method editor.

The source code for the Solaris X globalization framework was released to the open
community in the fall of 2000. You now have the ability to enhance compatibility and
interoperability of global applications by following a common reference

21

implementation while also participating in the evolution of the code base. The codeset
independent approach to globalization enables you to operate in native encoded
environments or join the growing world of Unicode. The Solaris framework gives the
power to scale across platforms with a rich set of data converters designed to ensure
interoperability between various encodings and various platforms (from Microsoft
Windows or Macintosh, for example).

Solaris also helps multinational corporations scale their server administration
worldwide. Unlike competitive platforms, the Solaris platform uses a service-based
approach to administration of language services. Server administrators can enable
language services remotely across a worldwide network, regardless of the client
system. This client-independent approach enables the easy upgrade of the system
without changing client applications. For example, an Arabic-speaking user needing to
read an email from an internet cafe in Paris would still be able to read that email in his
or her own language without modifying the local client application.

New Internationalization and
Localization Features
The following features are new to the Solaris 9 release:

� Additional Unicode (UTF-8) locale support features for Thailand, India, Hong
Kong, Turkey, Egypt, Brazil, Finland, and Belgium (Walloon).

� Latin-3 character support in Unicode locales.
� PCL support in mp printing filter.
� Traditional Chinese (Hong Kong) Big5+HKSCS locale (zh_HK.BIG5HK).
� Traditional Chinese (Hong Kong) UTF-8 locale (zh_HK.UTF-8).
� Thai UTF-8 locale (th_TH.UTF-8).
� Thai ISO8859–11 locale (th_TH.ISO8859–11).
� Hindi script support in Unicode locales.
� Hindi UTF-8 locale (hi_IN.UTF-8).
� ISCII iconv module to support conversion between ISCII and UTF-8 encodings.
� Collation locales for Asian Solaris.
� New zh_CN.GB18030 locale to support the new GB18030–2000 standard.
� HKSCS iconv modules.
� New Chinese input methods.
� Thai input methods enhancement.
� Input Method Auxiliary Window support for Asian Solaris.

22 International Language Environments Guide • May, 2002

� Additional Japanese iconv module conversions for Fujitsu JEF, Hitachi KEIS and
NEC JIPS.

� Euro currency. Only those locales participating in using the euro have the euro
symbol defined as their national currency symbol. The other ISO8859-15 locales
support the euro symbol .

� Enhanced Unicode iconv modules. The iconv modules have been added and
enhanced for various new Unicode encoding formats and international and de facto
industry standard codesets.

� Unicode 3.1 support in Unicode locales.
� Support of new iconv code conversions for ISO8859–16.

Internationalization and Localization
Defined
Internationalization and localization are different procedures. Internationalization is
the process of making software portable between languages or regions, while
localization is the process of adapting software for specific languages or regions.
Internationalized software can be developed using interfaces that modify program
behavior at runtime in accordance with specific cultural requirements. Localization
involves establishing online information to support a language or region, called a
locale.

Unlike software that must be completely rewritten before it can work with different
native languages and customs, internationalized software does not require rewriting.
The internationalized software can be ported from one locale to another without
change. The Solaris system is internationalized, providing the infrastructure and
interfaces you need to create internationalized software.

Basic Steps in Internationalization
An internationalized application’s executable image is portable between languages
and regions. To internationalize software, you should:

� Use the interfaces described in this book to create software with an environment
that can be modified dynamically without the necessity of recompiling.

� Divide software into executable code and messages. The messages include all
printable and displayable messages that the user might see. Keep the message
strings in a message catalog.

Message strings are translated for a language or region. A locale includes the message
strings and methods to specify sorting.

Chapter 1 • Solaris Internationalization Overview 23

To use a localized version of a product, the user sets certain environment variables.
The product then displays messages in their translated form. Date, time, currency and
other information is formatted and displayed according to locale-specific conventions.
Message translations and online help contents are provided throughout different
layers, as described in the following diagram.

24 International Language Environments Guide • May, 2002

X Protocol

XIM
Protocols

Application
Locales

CDE
Locales

CDE/Motif
Libraries

OS
Locales

SunOS
System
Libraries

Language
Engines

X Input
Method
Server

STREAMS
Modules

SunOS
Kernel

Applications

Hardware

X Server

X Locales

X11 Window
System
Libraries

X Protocol

Application

Platform

Note:

Each "Locale" contains translated
messages, help files, resource settings,
fonts, and language engines for the layer.

The CDE Locales and X Locales possibly
include Layout Engine.

The Application Locales include translated
messages and resource settings for locales,
from an application provider. These are
loaded by way of I18N system interfaces.

I18N STREAMS modules support
necessary code conversions for the
terminal environment.

FIGURE 1–1 Functions and Structure of Locales in the Solaris Operating Environment

Localization Functions in Solaris Interfaces
The OS locale layer provides the basic locale database and functions that are plugged
into the OS system interface at the application’s runtime. Applications access these OS
locale modules through standard APIs.

Chapter 1 • Solaris Internationalization Overview 25

The X11 locale layer provides the interface to X input method and X output method so
that the X11 applications can allow local text input and display. Fonts are provided to
enable applications to display characters from various languages.

CDE/Motif is built on top of the X11 window system. Hence, it can utilize the X11
locale capability through X11 APIs. Solaris localizations have various locale-specific
configurations for CDE applications in order to make the desktop functional within
the target locale. Message translations and online help contents are provided
throughout different layers.

What Is a Locale?
A key concept for application programs is that of a program’s locale. The locale is an
explicit model and definition of a native-language environment. The notion of a locale
is explicitly defined and included in the library definitions of the ANSI C Language
standard.

A locale consists of a number of categories for which there is country-dependent
formatting or other specifications. A program’s locale defines its codesets, date and
time formatting conventions, monetary conventions, decimal formatting conventions,
and collation (sort) order.

A locale can be composed of a base language, the country (territory) of use, and
optional codeset. Codeset is usually assumed. For example, German is de, an
abbreviation for Deutsch, while Swiss German is de_CH, CH being an abbreviation for
Confederation Helvetica. This allows for specific differences by country, such as
currency units notation.

More than one locale can be associated with a particular language, which allows for
regional differences. For example, an English-speaking user in the United States can
select the en_US locale (English for the United States), while an English-speaking user
in Great Britain can select en_GB (English for Great Britain).

Generally the locale name is specified by the LANG environment variable. Locale
categories are subordinate to LANG, but can be set separately, in which case they
override LANG. If the LC_ALL operand is set, it overrides not only LANG, but all the
separate locale categories as well.

The locale naming convention is:

language[_territory][.codeset] [@modifier]

where a two-letter language code is from ISO 639, a two-letter territory code is from ISO
3166, codeset is the name of the codeset that is being used in the locale, and modifier is
the name of the characteristics that differentiate it from the locale without the modifier.

26 International Language Environments Guide • May, 2002

All Solaris product locales preserve the Portable Character Set characters with
US-ASCII code values.

For more information on the Portable Character Set, refer to “X/Open CAE
Specification: System Interface Definitions, Issue 5” (ISBN 1–85912–186–1).

A single locale can have more than one locale name. For example, POSIX is the same
as C.

Full and Partial Locales
A full Solaris locale has all of the listed functions and the localized system messages in
the relevant language. Partial locales have no localized messages installed. All locales in
the Solaris environment are capable of displaying localized messages, provided that
localized messages for the relevant language are installed. For example, the following
locales can be either partial or full locales:

� de_DE.ISO8859–1
� de_DE.ISO8859–15
� de_DE.UTF-8
� de_AT.ISO8859–1
� de_AT.ISO8859–15
� de_CH.ISO8859–1

When the German message translations are installed using the Language CD, all of the
above locales become full locales because they have access to a fully translated desktop.
The language CD contains message translations for the following languages and
locales:

� German
� French
� Spanish
� Swedish
� Italian
� Japanese
� Korean
� Simplified Chinese locale
� Traditional Chinese locale

All partial locales are available on the Software CD. Message translations are available
on the Languages CD.

All English locales are also full locales and are available on the Software CD.

Chapter 1 • Solaris Internationalization Overview 27

Behavior Affected by Locales
Different cultures often use different conventions for writing the date and time,
formatting numbers, delimiting words and phrases, and quoting material. Throughout
the system, a locale determines the behavior of the following items:

� Encoding and processing of text data.
� Identifying the language and encoding of resource files.
� Rendering and layout of text strings.
� Interchanging text that is used for interclient text communication.
� Selecting the input method (that is, which codeset is generated) and the processing

of text data.
� Font and icon files that are culturally specific.
� Actions and file types.
� User Interface Definition (UID) files.
� Date and time formats.
� Numeric formats.
� Monetary formats.
� Collation order.
� Regular expression handling specific to the locale.
� Format for informative and diagnostic messages and interactive responses.

The Solaris environment separates language and culture-dependent information from
the application and saves it outside the application. Doing so eliminates the need to
translate, rewrite, or recompile the application for each market. The only requirement
to enter a new market is to localize the external information to the local language and
customs.

Locale Categories
The locale categories are as follows:

LC_CTYPE Controls the behavior of character handling functions.

LC_TIME Specifies date and time formats, including month names, days of
the week, and common full and abbreviated representations.

LC_MONETARY Specifies monetary formats, including currency symbol for the
locale, thousands separator, sign position, the number of fractional
digits, and so forth.

LC_NUMERIC Specifies the decimal delimiter (or radix character), the thousands
separator, and the grouping.

28 International Language Environments Guide • May, 2002

LC_COLLATE Specifies a collation order, and regular expression definition for the
locale.

LC_MESSAGES Specifies the language in which the localized messages are written,
affirmative and negative responses of the locale (yes and no
strings and expressions).

LO_LTYPE Specifies the layout engine that provides information about
language rendering. Language rendering (or text rendering)
consists of text shaping and directionality.

Using Locale Categories for Localization
The localization of a product should be done in consultation with native users in that
target language or region. Certain information styles and formats might seem
perfectly obvious and universal to the developer but to the user, they could look
awkward, wrong, or even offensive. The following sections describe the elements in
the Solaris operating environment that you can control and specify so that you can
successfully localize your product.

Time Formats
The following table shows some of the ways in which different locales write 11:59 P.M.

TABLE 1–1 International Time Formats

Locale Format

Canadian 23:59

Finnish 23.59

German 23.59 Uhr

Norwegian 23.59

Thai 23:59

Great Britain 23:59

Time is represented by both a 12-hour clock and a 24-hour clock. The hour and minute
separator can be either a colon (:) or a period (.).

Chapter 1 • Solaris Internationalization Overview 29

Time zone splits occur between and within countries. Although a time zone can be
described in terms of how many hours it is ahead of, or behind, Coordinated
Universal Time, UTC (or Greenwich Mean Time, GMT), this number is not always an
integer. For example, Newfoundland is in a time zone that is half an hour different
from the adjacent time zone.

Daylight Savings Time (DST) starts and ends on different dates that can vary from
country to country. Many countries do not implement DST at all. Additionally,
Daylight Savings Time can vary within a time zone. In the U.S. it is a state decision.

Date Formats
The following table shows some of the date formats used around the world. Notice
that even within a country, there can be variations.

TABLE 1–2 International Date Formats

Locale Convention Example

Canadian (English) dd/mm/yy 24/08/01

Danish yyyy-mm-dd 2001–08–24

Finnish dd.mm.yyyy 24.08.2001

French dd/mm/yyyy 24/08/2001

German yyyy-mm-dd 2001–08–24

Italian dd/mm/yy 24/08/01

Norwegian dd-mm-yy 24–08–01

Spanish dd-mm-yy 24-08-01

Swedish yyyy-mm-dd 2001-08-24

Great Britain dd/mm/yy 24/08/01

United States mm-dd-yy 08-24-01

Thai dd/mm/yyyy 24/08/2001

Numbers
Great Britain and the United States are two of the few places in the world that use a
period to indicate the decimal place. Many other countries use a comma instead. The
decimal separator is also called the radix character. Likewise, while Great Britain and
the United States use a comma to separate groups of thousands, many other countries
use a period instead, and some countries separate thousands groups with a thin space.

30 International Language Environments Guide • May, 2002

Data files containing locale-specific formats are frequently misinterpreted when
transferred to a system in a different locale. For example, a file containing numbers in
a French format is not useful to a British-specific program.

The following table shows some commonly used numeric formats.

TABLE 1–3 International Numeric Conventions

Locale Large Number

Canadian (English) 4,294,967.00

Danish 4.294 967.295,00

Finnish 4 294 967 295,00

French 4 294 967 295,00

German 4,294,967.00

Italian 4.294.967,00

Norwegian 4.294.967.295,00

Spanish 4.294.967.295,00

Swedish 4 294 967 295,00

Great Britain 4,294,967,295.00

Uhited States 4,294,967,295.00

Thai 4,294,967,295.00

Note – There are no particular locale conventions that specify how to separate
numbers in a list.

Currency
Currency units and presentation order vary greatly around the world. Local and
international symbols for currency can differ. The following table shows monetary
formats in some countries.

TABLE 1–4 International Monetary Conventions

Locale Currency Example

Canadian (English) Dollar ($) $1,234.56

Chapter 1 • Solaris Internationalization Overview 31

TABLE 1–4 International Monetary Conventions (Continued)
Locale Currency Example

Canadian (French Dollar ($) 1 234,56$

Danish Kroner (kr) Kr 1.234,56

Finnish Euro () 1 234,56

French Euro () 1,234

Japanese Yen (¥) ¥ 1,234

Norwegian Krone (kr) kr 1.234,56

Swedish Krona (Kr) 1 234,56 Kr

Great Britain Pound (£) £1,234.56

United States Dollar ($) $1,234.56

Thai Baht 2539 Baht

Euro Euro () 5,000

The Solaris 9 software supports the euro currency. Local currency symbols are still
available for backward compatibility.

TABLE 1–5 User Locales To Support the Euro Currency

Region Locale Name ISO Codeset

Austria de_AT.ISO8859-15 8859-15

Belgium (French) fr_BE.ISO8859-15 8859-15

Belgium (Flemish) nl_BE.ISO8859-15 8859-15

Denmark da_DK.ISO8859-15 8859-15

Finland fi_FI.ISO8859-15 8859-15

France fr_FR.ISO8859-15 8859-15

Germany de_DE.ISO8859-15 8859-15

Ireland en_IE.ISO8859-15 8859-15

Italy it_IT.ISO8859-15 8859-15

Netherlands nl_NL.ISO8859-15 8859-15

Portugal pt_PT.ISO8859-15 8859-15

Catalan Spain ca_ES.ISO8859-15 8859–15

Estonia et_EE.ISO8859–15 8859–15

32 International Language Environments Guide • May, 2002

TABLE 1–5 User Locales To Support the Euro Currency (Continued)
Region Locale Name ISO Codeset

Spain es_ES.ISO8859-15 8859-15

Sweden sv_SE.ISO8859-15 8859-15

Great Britain en_GB.ISO8859-15 8859-15

U.S.A. en_US.ISO8859-15 8859-15

Euro locales are based on the ISO8859–15 codeset.

Keep in mind that a converted currency amount can take up more or less space than the
original amount. To illustrate: $1,000 can become 1.307.000.

The current status of the locale settings for locales within the euro zone is illustrated
for the LC_MONETARY operand of the locale utility. The status for Germany, for
example, is shown in the following table.

TABLE 1–6 German Locale and Corresponding LC_MONETARY

Locale LC_MONETARY

de_DE.ISO8859–1 DM

de_DE.ISO8859–15 Euro

de_DE.UTF-8 Euro

de_DE.ISO8859–15@euro Euro

de_DE.UTF-8@euro Euro

Language Word and Letter Differences
This section describes important differences between languages.

Word Delimiters
In English, words are usually separated by a space character. In languages such as
Chinese, Japanese, and Thai, however, there is often no delimiter between words.

Chapter 1 • Solaris Internationalization Overview 33

Sort Order
Sorting order for particular characters is not the same in all languages. For example,
the character “ö” sorts with the ordinary “o” in Germany, but sorts separately in
Sweden, where it is the last letter of the alphabet. In some languages, characters have
weight to determine the priority of the character sequences. For example, the Thai
dictionary defines sorting through the sequences of characters that have different
weights.

Character Sets
Character sets can differ in the number of alphabetic characters and special characters.
While the English alphabet contains only 26 characters, some languages contain many
more characters. Japanese, for example, can contain over 20,000 characters, Chinese
can contain even more characters.

Western European Alphabets
The alphabets of most western European countries are similar to the standard
26-character alphabet used in English-speaking countries, but there are often some
additional basic characters, some marked (or accented) characters, and some ligatures.

Japanese Text
Japanese text is composed of three different scripts mixed together: Kanji ideographs
derived from Chinese, and two phonetic scripts (or syllabaries), hiragana and
katakana.

Although each character in hiragana has an equivalent in katakana, hiragana is the
most common script, with cursive rather than block-like letter forms. Kanji characters
are used to write root words. Katakana is mostly used to represent “foreign” words,
that is, words “imported” from languages other than Japanese.

Kanji has tens of thousands of characters, but the number commonly used has been
declining steadily over the years. Now only about 3500 are frequently used, although
the average Japanese writer has a vocabulary of about 2000 kanji characters.
Nonetheless, computer systems must support more than 7000 because that is what the
Japan Industry Standard (JIS) requires. In addition, there are about 170 hiragana and
katakana characters. On average, 55% of Japanese text is hiragana, 35% kanji, and 10%
katakana. Arabic numerals and Roman letters are also present in Japanese text.

Although completely avoiding the use of kanji is possible, most Japanese readers find
a text that is composed without any kanji hard to understand.

34 International Language Environments Guide • May, 2002

Korean Text
Korean text can be written using a phonetic writing system called Hangul. Hangul has
more than 11,000 characters, which consist of consonants and vowels known as jamos.
About 3000 characters from the entire Hangul vocabulary of characters are usually
used in Korean computer systems. Korean also uses ideographs based on the set
invented in China, called hanja. Korean text requires over 6000 hanja characters. Hanja
is used mostly to avoid confusion when Hangul would be ambiguous. Hangul
characters are formed by combining consonants and vowels. After combining them,
they can compose one syllable, which is a Hangul character. Hangul characters are
often arranged in a square, so that the group takes up the same space as a hanja
character. Arabic numerals, Roman letters, and special symbol characters are also
present in Korean text.

Thai Text
A Thai character can be defined as a column position on a display screen with four
display cells. Each column position can have up to three characters. The composition
of a display cell is based on the Thai character’s classification. Some Thai characters
can be composed with another character’s classification. If they can be composed
together, both characters are in the same cell. Otherwise, they are in separate cells.

Chinese Text
Chinese usually consists entirely of characters from the ideographic script called
hanzi.

� In the People’s Republic of China (PRC) there are about 7000 commonly used hanzi
characters in the GB2312 (zh locale), more than 20,000 characters in the GBK
charset (zh.GBK locale), and about 30,000 characters in the GB18030-2000 charset
(zh_CN.GB18030 locale), including all CJK extension A characters defined in
Unicode 3.0.

� In Taiwan, the most frequently used charsets are the CNS11643-1992 (zh_TW locale)
and the Big5 (zh_TW.BIG5 locale). They share about 13,000 hanzi characters.

� In Hong Kong, 4702 characters have been added into the Big5 charset to become
the Big5-HKSCS charset (zh_HK.BIG5HK).

If a character is not a root character, it usually consists of two or more parts, two being
most common. In two-part characters, one part generally represents meaning, and the
other represents pronunciation. Occasionally both parts represent meaning. The
radical is the most important element, and characters are traditionally arranged by
radical, of which there are several hundred. A single sound can be represented by
many different characters, which are not interchangeable in usage. A single character
can have different sounds.

Chapter 1 • Solaris Internationalization Overview 35

Some characters are more appropriate than others in a given context—the appropriate
one is distinguished phonetically by the use of tones. By contrast, spoken Japanese
and Korean lack tones.

Several phonetic systems represent Chinese. In the People’s Republic of China the
most common is pinyin, which uses Roman characters and is widely employed in the
West for place names such as Beijing. The Wade-Giles system is an older phonetic
system, formerly used for place names such as Peking. In Taiwan zhuyin (or bopomofo),
a phonetic alphabet with unique letter forms, is often used instead.

Hebrew Text
Hebrew text is used for writing scripts in the Hebrew and Yiddish languages, and
predates the English language by thousands of years. Hebrew is an example of a
bidirectional script, in that Hebrew letters are written and read from right to left, while
numbers are read from left to right. Any English text that is embedded in Hebrew text
is also read from left to right.

Hebrew uses a 27-character alphabet, and takes punctuation marks and numbers from
the standard Latin (or English) alphabet. Hebrew text also includes vowel and
pronunciation marks. These marks appear either as a dot (Dagesh) inside the base
character, vowel marks below the character, or accents to the upper left of the
character. These marks are generally only used in liturgical text, and are rarely seen in
day-to-day use. There are also no uppercase letters in Hebrew.

Hindi Text
Hindi text is written in a script called Devanagari, which means "the writing of the
gods". Hindi is a phonetic language, and is written as a series of syllables. Each
syllable is built up of alphabetic pieces (the Devanagari characters) of three types:
consonant letters, independent vowels and dependent vowel signs. The syllable itself
consists of a consonant and vowel core, with an optional preceding consonant. Unlike
English, which starts from a baseline, Devanagari characters hang from a horizontal
line (called the head stroke) written at the top of the characters. These characters can
combine or change shape depending on their context. Like Hebrew, Hindi text makes
no distinction between uppercase or lowercase letters.

Keyboard Differences
Not all characters on the U.S. keyboard appear on other keyboards. Similarly, other
keyboards often contain many characters not visible on the U.S. keyboard.

36 International Language Environments Guide • May, 2002

Note – On SPARC™ machines, the Compose key can be used to produce any Latin
character with a diacritic in any of the supported ISO8859 character sets.

The Compose key can be used with Latin-based locales, but not with Korean, Chinese,
or Japanese locales, except the UTF-8 locales.

Any keyboard can be used to input characters from any locale because input is
handled by the Solaris operating environment.

Differences in Paper Sizes
Within each country, a small number of paper sizes are commonly used. Normally, one
of those sizes is much more common than the others. Most countries follow ISO
Standard 216: “Writing paper and certain classes of printed matter-Trimmed sizes-A
and B series.”

Internationalized applications should not make assumptions about the page sizes
available to them. The Solaris system provides no support for tracking output page
size. Tracking this is the responsibility of the application program. The following table
shows common international page sizes.

TABLE 1–7 Common International Page Sizes

Paper Type Dimensions Countries

ISO A4 21.0 cm by 29.7 cm Everywhere except U.S.

ISO A5 14.8 cm by 21.0 cm Everywhere except U.S.

JIS B4 25.9 cm by 36.65 cm Japan

JIS B5 18.36 cm by 25.9 cm Japan

U.S. Letter 8.5 inches by 11 inches U.S. and Canada

U.S. Legal 8.5 inches by 14 inches U.S. and Canada

Chapter 1 • Solaris Internationalization Overview 37

38 International Language Environments Guide • May, 2002

CHAPTER 2

General Internationalization Features

This section discusses several internationalization features contained in the Solaris 9
environment.

� “Support for Codeset Independence” on page 39
� “Locale Database” on page 41
� “Process Code Format” on page 42
� “Multibyte Support Environment” on page 42
� “Dynamically Linked Applications” on page 43
� “Changed Interfaces” on page 43
� “ctype Macros” on page 44
� “Internationalization APIs in libc” on page 45
� “genmsg Utility” on page 52

Support for Codeset Independence
EUC is an abbreviation for Extended UNIX Code. The Solaris 9 operating environment
supports non-EUC encodings such as PC-Kanji (better known as Shift_JIS) in Japan,
Big5 in Taiwan, and GBK in the People’s Republic of China. Because a large part of the
computer market demands non-EUC codeset support, the Solaris 9 environment
provides a solid framework to enable both EUC and non-EUC codeset support. This
support is called Codeset Independence, or CSI.

The goal of CSI is to remove dependencies on specific codesets or encoding methods
from Solaris operating environment libraries and commands. The CSI architecture
allows the Solaris operating environment to support any UNIX file system safe
encoding. CSI supports a number of new codesets, such as UTF-8, PC-Kanji, and Big5.

39

CSI Approach
Codeset independence enables application and platform software developers to keep
their code independent of any encoding, such as UTF-8, and also provides the ability
to adopt any new encoding without having to modify the source code. This
architecture approach differs from Java™ internationalization in that Java requires
applications to be UTF-16–dependent.

Many existing internationalized applications (for example, Motif) automatically inherit
CSI support from the underlying system. These applications work in the new locales
without modification.

CSI is inherently independent from any codesets. However, the following assumptions
about file code encodings (codesets) still apply to the Solaris 9 environment:

� File code is a superset of ASCII.

� NULL byte value (0x00) does not appear as part of multibyte character bytes for
support of null-terminated multibyte character strings.

� ASCII Slash character byte value (0x2f) does not appear as part of multibyte
character bytes for support of the UNIX path names.

CSI-enabled Commands
This section lists the CSI-enabled commands in the Solaris 9 environment. The man
page for each command has an attribute section that indicates whether the command
is CSI-enabled.

All commands are in the /usr/bin directory, unless otherwise noted.

/usr/lib/diffh
/usr/sbin/accept
/usr/sbin/reject
/usr/ucb/lpr
/usr/xpg4/bin/awk
/usr/xpg4/bin/cp
/usr/xpg4/bin/date
/usr/xpg4/bin/du
/usr/xpg4/bin/ed
/usr/xpg4/bin/edit
/usr/xpg4/bin/egrep
/usr/xpg4/bin/env
/usr/xpg4/bin/ex
/usr/xpg4/bin/expr
/usr/xpg4/bin/fgrep
/usr/xpg4/bin/lp
/usr/xpg4/bin/ls

/usr/xpg4/bin/more
/usr/xpg4/bin/mv
/usr/xpg4/bin/nice
/usr/xpg4/bin/nohup
/usr/xpg4/bin/od
/usr/xpg4/bin/pr
/usr/xpg4/bin/rm
/usr/xpg4/bin/sed
/usr/xpg4/bin/sort
/usr/xpg4/bin/tail
/usr/xpg4/bin/tr
/usr/xpg4/bin/vedit
/usr/xpg4/bin/vi
/usr/xpg4/bin/view
acctcom
apropos
batch

bdiff
cancel
cat
catman
chgrp
chmod
chown
cmp
col
comm
compress
cpio
csh
csplit
cut
diff
diff3

40 International Language Environments Guide • May, 2002

disable
echo
expand
file
find
fold
ftp
gencat
geteopt
getoptcvt
head
join
jsh
kill
ksh
lp
man
mkdir
msgfmt

news
nroff
pack
paste
pcat
pg
printf
priocntl
ps
pwd
rcp
red
remsh
rksh
rsmdir
rsh
script
sdiff
settime

sh
split
strconf
strings
sum
tabs
tar
tee
touch
tty
uncompress
unexpand
uniq
unpack
wc
whatis
write
xargs
zcat

Solaris 9 CSI-enabled Libraries
Nearly all functions in libc (/usr/lib/libc.so) are CSI-enabled. However, the
following functions in libc are not CSI-enabled because they are EUC-dependent
functions:

� csetcol()
� csetlen()
� euccol()
� euclen()
� eucscol()
� getwidth()
� csetno()
� wcsetno()

In the Solaris 9 product, libgen /usr/ccs/lib/libgen.a and libcurses
/usr/ccs/lib/libcurses.a are internationalized but not CSI-enabled.

Locale Database
The locale database format and structure is private and subject to change in a future
release. Therefore, when developing an internationalized application, do not directly
access the locale database. Instead, use the internationalization APIs in libc,
described in “Internationalization APIs in libc” on page 45.

Chapter 2 • General Internationalization Features 41

Note – When working with the Solaris 9 environment, use the locale databases that
are included with the Solaris 9 product. Do not use locales from previous Solaris
versions.

Process Code Format
The process code format, which is also known as wide-character code format in the
Solaris 9 product, is private and subject to change in a future release. Therefore, when
developing an international application, do not assume the process code format is the
same. Instead, use the internationalization APIs in libc described in
“Internationalization APIs in libc” on page 45.

Note – The process code for all Unicode locales is in UTF-32 representation. For more
detail on UTF-32, refer to the “Unicode Standard Annex #19: UTF 32” and “Unicode
Standard Annex #27: Unicode 3.1” from The Unicode Consortium or
http://www.unicode.org/.

Multibyte Support Environment
A multibyte character is a character that cannot be stored in a single byte, such as
Chinese, Japanese, or Korean characters. These characters require 2, 3, or 4 bytes of
storage. A more precise definition can be found in ISO/IEC 9899:1990 subclause 3.13.

The Amendment 1 to ANSI C, which is also known as ISO/IEC 9899:1990, added new
internationalization features, collectively known as the Multibyte Support
Environment (MSE). Amendment 1 defines additional internationalization APIs for
multibyte codesets with state and also for better wide-character handling support.

The programming model enables these multibyte characters to be read in as logical
units and stored internally as wide characters. These wide characters can be processed
by the program as logical entities in their own right. Finally, these wide characters can
be written out, undergoing appropriate translation, as logical units.

This procedure is analogous to the way single-byte characters are read in,
manipulated, and written out again. The MSE enables programs to be written to
handle multibyte characters using the same programming model that is used for
single-byte characters.

42 International Language Environments Guide • May, 2002

Dynamically Linked Applications
Solaris 9 product users can choose how to link applications with the system libraries,
such as libc, by using dynamic linking or static linking. Any application that requires
internationalization features in the system libraries must be dynamically linked. If the
application has been statically linked, the operation to set the locale to anything other
than C and POSIX using the setlocale function will fail. Statically linked
applications can be operated only in C and POSIX locales.

By default, the linker program tries to link the application dynamically. If the
command line options to the linker and the compiler include -Bstatic or -dn
specifications, your application might be statically linked. You can check whether an
existing application is dynamically linked using the /usr/bin/ldd command.

For example, if you type:

% /usr/bin/ldd /sbin/sh

the command indicates that the /sbin/sh command is not a dynamically linked
program, as shown by the following response:

ldd: /sbin/sh: file is not a dynamic executable or shared object

If you type:

% /usr/bin/ldd /usr/bin/ls

the command displays the following message:

libc.so.1 => /usr/lib/libc.so.1

libdl.so.1 => /usr/lib/libdl.so.1

This message indicates that the /usr/bin/ls command has been dynamically linked
with two libraries, libc.so.1 and libdl.so.1.

Changed Interfaces
libw and libintl have moved to libc and are no longer in libw and libintl.

The shared objects ensure runtime compatibility for existing applications and, together
with the archives, provide compilation environment compatibility for building
applications. However, you no longer must build applications against libw or
libintl.

For more information on filters, see the Linker and Libraries Guide.

Chapter 2 • General Internationalization Features 43

The following list shows the stub entry points in libw.

fgetwc
fgetws
fputwc
fputws
getwc
getwchar
getws
isenglish
isideogram
isnumber
isphonogram
isspecial
iswalnum
iswalpha
iswcntrl
iswctype
iswdigit
iswgraph
iswlower
iswprint

iswpunct
iswspace
iswupper
iswxdigit
putwc
putwchar
putws
strtows
towlower
towupper
ungetwc
watoll
wcscat
wcschr
wcscmp
wcscoll
wcscpy
wcscspn
wcsftime
wcsclen

wscncat
wcsncmp
wcsncpy
wcspbrk
wcsrchr
wcsspn
wcstod
wcstok
wcstol
wcstoul
wcswcs
wcswidth
wcsxfrm
wctype
wcwidth
wscasecmp
wscat
wschr
wscmp
wscol

wscoll
wscpy
wscspn
wsdup
wslen
wsncasecmp
wsncat
wsncmp
wsncpy
wspbrk
wsprintf
wsrchr
wsscanf
wsspn
wstod
wstok
wstol
wstoll
wstostr
wsxfrm

This shorter list contains stub entry points in libintl:

bindtextdomain
dcgettext
dgettext
gettext
textdomain

ctype Macros
Character classification and character transformation macros are defined in
/usr/include/ctype.h. The Solaris 9 environment provides a set of ctype macros
that support character classification and transformation semantics defined by XPG4.
For all XPG4 and XPG4.2 applications to automatically access new macros, one of the
following conditions must be met:

� _XPG4_CHAR_CLASS is defined.
� _XOPEN_SOURCE and _XOPEN_VERSION=4 are defined.
� _XOPEN_SOURCE and _XOPEN_SOURCE_EXTENDED=1 are defined.

44 International Language Environments Guide • May, 2002

Because _XOPEN_SOURCE, _XOPEN_VERSION, and _XOPEN_SOURCE_EXTENDED
bring in extra XPG4 related features in addition to new ctype macros, non-XPG4 or
XPG4.2 applications should use __XPG4_CHAR_CLASS__.

Corresponding ctype functions also exist. The Solaris 9 environment functions also
support XPG4 semantics. Refer to the ctype(3C) man page for details.

Internationalization APIs in libc
The Solaris 9 environment offers two sets of APIs:

� Multibyte (file codes)
� Wide characters (process code)

Wide-character codes are fixed-width units of logical entities. Therefore, you do not
have to keep track of maintaining proper character boundaries when you are using
multibyte characters.

When a program takes input from a file, you can convert your file’s multibyte data
into wide-character process code directly with input functions like fscanf(3S) and
fwscanf(3S) or by using conversion functions like mbtowc(3C) and mbsrtowcs(3C)
after the input. To convert output data from wide-character format to multibyte
character format, use output functions like fwprintf(3S) and fprintf(3S), or apply
conversion functions like wctomb(3C) and wcsrtombs(3C) before the output.

The tables in the remainder of this chapter describe the internationalization APIs
included in the Solaris 9 product.

The following table describes the messaging function APIs in libc.

TABLE 2–1 Messaging Functions in libc

Library Routine Description

catclose() Close a message catalog

catgets() Read a program message

catopen() Open a message catalog

dgettext() Get a message from a message catalog with domain specified

dcgettext() Get a message from a message catalog with domain and category
specified

textdomain() Set and query the current domain

Chapter 2 • General Internationalization Features 45

TABLE 2–1 Messaging Functions in libc (Continued)
Library Routine Description

bindtextdomain() Bind the path for a message domain

gettext() Retrieve text string from message database

The following table describes the code conversion function APIs in libc.

TABLE 2–2 Code Conversion in libc

Library Routine Description

iconv() Convert codes

iconv_close() Deallocate the conversion descriptor

iconv_open() Allocate the conversion descriptor

Thise following table describes the regular expression APIs in libc.

TABLE 2–3 Regular Expressions in libc

Library Routine Description

regcomp() Compile the regular expression

regexec() Execute regular expression matching

regerror() Provide a mapping from error codes to error messages

regfree() Free memory allocated by regcomp()

fnmatch() Match file name or path name

The following table describes the wide character function APIs in libc.

TABLE 2–4 Wide Character Class in libc

Library Routine Description

wctype() Define character class

wctrans() Define character mapping

The following table lists the modify and query locale in libc.

46 International Language Environments Guide • May, 2002

TABLE 2–5 Modify and Query Locale in libc

Library Routine Description

setlocale() Modify and query a program’s locale

The following table lists the query locale data in libc.

TABLE 2–6 Query Locale Data in libc

Library Routine Description

nl_langinfo() Get language and cultural information of current locale

localeconv() Get monetary and numeric formatting information of current
locale

The following table describes the character classification function APIs in libc.

TABLE 2–7 Character Classification and Transliteration in libc

Library Routine Description

isalpha() Is character alphabetic?

isupper() Is character uppercase?

islower() Is character lowercase?

isdigit() Is character a digit?

isxdigit() Is character a hex digit?

isalnum() Is character alphabetic or digital?

isspace() Is character a space?

ispunct() Is character a punctuation mark?

isprint() Is character printable?

iscntrl() Is character a control character?

isascii() Is character an ASCII character?

isgraph() Is character a visible character?

isphonogram() Is wide character a phonogram?

isideogram() Is wide character an ideogram?

isenglish() Is wide character in English alphabet from a supplementary
codeset?

Chapter 2 • General Internationalization Features 47

TABLE 2–7 Character Classification and Transliteration in libc (Continued)
Library Routine Description

isnumber() Is wide character a digit from a supplementary codeset?

isspecial() Is special wide character from a supplementary codeset?

iswalpha() Is wide character alphabetic?

iswupper() Is wide character uppercase?

iswlower() Is wide character lowercase?

iswdigit() Is wide-character a digit?

iswxdigit() Is wide character a hex digit?

iswalnum() Is wide character an alphabetic character or digit?

iswspace() Is wide character a white space?

iswpunct() Is wide character a punctuation mark?

iswprint() Is wide character a printable character?

iswgraph() Is wide character a visible character?

iswcntrl() Is wide character a control character?

iswascii() Is wide character an ASCII character?

toupper() Convert a lowercase character to uppercase.

tolower() Convert an uppercase character to lowercase.

towupper() Convert a lowercase wide character to uppercase.

towlower() Convert an uppercase wide character to lowercase.

towctrans() Wide character mapping.

The following table describes the character collation function APIs in libc.

TABLE 2–8 Character Collation in libc

Library Routine Description

strcoll() Collate character strings

strxfrm() Transform character strings for comparison

wcscoll() Collate wide-character strings

wcsxfrm() Transform wide-character strings for comparison

The following table describes the monetary handling function APIs in libc.

48 International Language Environments Guide • May, 2002

TABLE 2–9 Monetary Formatting in libc

Library Routine Description

localeconv() Get monetary formatting information for the current locale

strfmon() Convert monetary value to string representation

The following table describes the date and time formatting in libc.

TABLE 2–10 Date and Time Formatting in libc

Library Routine Description

getdate() Convert user format date and time.

strftime() Convert date and time to string representation. The %u conversion
function conforms to the X/Open CAE Specification, System
Interfaces and Headers, Issue 4, Version 2. This function represents a
weekday as a decimal number [1,7], with 1 now representing
Monday.

strptime() Date and time conversion.

The following table describes the multibyte handling function APIs in libc.

TABLE 2–11 Multibyte Handling in libc

Library Routine Description

btowc() Single-byte to wide-character conversion

mbrlen() Get number of bytes in character (restartable)

mbsinit() Determine conversion object status

mbrtowc() Convert a character to a wide-character code (restartable)

mbsrtowcs() Convert a character string to a wide-character string (restartable)

mblen() Get number of bytes in a character

mbtowc() Convert a character to a wide-character code

mbstowcs() Convert a character string to a wide-character string

The following table describes the wide character and string handling in libc.

Chapter 2 • General Internationalization Features 49

TABLE 2–12 Wide Character and String Handling in libc

Library Routine Description

wcsncat() Concatenate wide-character strings to length n

wsdup() Duplicate wide-character string

wcscmp() Compare wide-character strings

wcsncmp() Compare wide-character strings to length n

wcscpy() Copy wide-character strings

wcsncpy() Copy wide-character strings to length n

wcschr() Find character in wide-character string

wcsrchr() Find character in wide-character string from right

wcslen() Get length of wide-character string

wscol() Return display width of wide-character string

wcsspn() Return span of one wide-character string in another

wcscspn() Return span of one wide-character string not in another

wcspbrk() Return pointer to one wide-character string in another

wcstok() Move token through wide-character string

wscwcs() Find string in wide-character string

wcstombs() Convert wide-character string to multibyte string

wctomb() Convert wide-character to multibyte character

wcwidth() Determine number of column positions of a wide character

wcswidth() Determine number of column positions of a wide-character string

wctob() Wide character to single byte conversion

wcrtomb() Convert a wide-character code to a character (restartable)

wcstol() Convert wide-character string to long integer

wcstoul() Convert wide-character string to unsigned long integer

wcstod() Convert wide-character string to double precision

wcsrtombs() Convert a wide-character string to a character string (restartable)

wcscat() Concatenate wide-character strings

The following table describes the formatted wide-character input and output in libc.

50 International Language Environments Guide • May, 2002

TABLE 2–13 Formatted Wide-character Input and Output in libc

Library Routine Description

wsprintf() Generate wide-character string according to format

wsscanf() Formatted input conversion

fwprintf() Print formatted wide-character output

fwscanf() Convert formatted wide-character input

wprintf() Print formatted wide-character output

wscanf() Convert formatted wide-character input

swprintf() Print formatted wide-character output

swscanf() Convert formatted wide-character input

vfwprintf() Wide-character formatted output of a stdarg argument list

vswprintf() Wide-character formatted output of a stdarg argument list

This table describes the wide strings function APIs in libc.

TABLE 2–14 Wide Stringslibc

Library Routine Description

wscasecmp() Compare wide-character strings, ignore case differences

wsncasecmp() Process code-string operations

wcsstr() Find a wide-character substring

wmemchr() Find a wide character in memory

wmemcmp() Compare wide characters in memory

wmemcpy() Copy wide characters in memory

wmemmove() Copy wide characters in memory with overlapping areas

wmemset() Set wide characters in memory

The following table describes the wide-character input and output in libc.

TABLE 2–15 Wide-character Input and Output inlibc

Library Routine Description

fgetwc() Get multibyte character from stream, convert to wide character

Chapter 2 • General Internationalization Features 51

TABLE 2–15 Wide-character Input and Output inlibc (Continued)
Library Routine Description

getwchar() Get multibyte character from stdin, convert to wide character

fgetws() Get multibyte string from stream, convert to wide character

getws() Get multibyte string from stdin, convert to wide character

fputwc() Convert wide character to multibyte character, puts to stream

fwide() Set stream orientation

putwchar() Convert wide character to multibyte character, puts to stdin

fputws() Convert wide character to multibyte string, puts to stream

putws() Convert wide character to multibyte string, puts to stdin

ungetwc() Push a wide character back into input stream.

genmsg Utility
The new genmsg utility can be used with the catgets() family of functions to create
internationalized source message catalogs. The utility examines a source program file
for calls to functions in catgets and builds a source message catalog from the
information it finds. For example:

% cat example.c
...
/* NOTE: %s is a file name */
printf(catgets(catd, 5, 1, "%s cannot be opened."));
/* NOTE: "Read" is a past participle, not a present

tense verb */
printf(catgets(catd, 5, 1, "Read"));
...

% genmsg -c NOTE example.c
The following file(s) have been created.

new msg file = "example.c.msg"
% cat example.c.msg
$quote "
$set 5
1 "%s cannot be opened"

/* NOTE: %s is a file name */
2 "Read"

/* NOTE: "Read" is a past participle, not a present

tense verb */

52 International Language Environments Guide • May, 2002

In the above example, genmsg is run on the source file example.c, which produces a
source message catalog named example.c.msg. The -c option with the argument
NOTE causes genmsg to include comments in the catalog. If a comment in the source
program contains the string specified, the comment appears in the message catalog
after the next string extracted from a call to catgets.

You can use genmsg to number the messages in a message set automatically.

For more information, see the genmsg(1) man page.

To generate a formatted message catalog file, use the gencat(1) utility.

For information on the message extraction utility for Portable Message files (.po files)
and also on how to generate message object files (.mo files) from the .po files, see the
xgettext(1), and msgfmt(1) man pages, respectively.

User Defined and User Extensible Code
Conversions
Solaris users can create user-defined codeset converters by using the geniconvtbl
utility.

This utility enables user-defined and user-customizable codeset conversions with a
standard system utility and interface like iconv(1) and iconv(3C). This feature
enhances the ability of an application to deal with incompatible data types,
particularly data generated from proprietary or legacy applications. Modification to
existing Solaris codeset conversions is also supported.

More details and also examples can be found in the geniconvtbl(1) and
geniconvtbl(4) man pages. Sample input source files for the utility are also available
for reference from the /usr/lib/iconv/geniconvtbl/srcs/ directory.

Once the user-defined code conversions are prepared and placed as specified in the
geniconvtbl(1) man page, users can use the code conversions from the iconv(1)
utility and the iconv(3C) functions of both 32-bit and 64-bit Solaris operating
environments.

Chapter 2 • General Internationalization Features 53

54 International Language Environments Guide • May, 2002

CHAPTER 3

Localization in the Solaris 9
Environment

This section discusses several localization features contained in the Solaris 9
environment.

� “Software Support for Localization” on page 55
� “Supported Locales” on page 57
� “Multiple Key Compose Sequences for Locales” on page 63
� “Keyboard Support in the Solaris 9 Product” on page 64

Software Support for Localization
This section contains information about the Solaris 9 locale packages, localization
content on the Solaris 9 CD-ROMs, localization functions in the interfaces, and script
enabling.

Summary of the Solaris 9 Locale Packages
All Solaris 9 locale packages are classified into two categories.

The first category is for partial locales, which are the enablers of the locales. With
partial locales installed on the system, users can input, display, print text and run
applications on the target locales, while the OS/GUI messages from Solaris are
English. All partial locale packages are available on the Solaris Software CDs. Japanese
and Asian pertial locales are packaged according to the language and the other partial
locales are packaged according to the geographic region.

The second category is for full locale packages. These packages include translations of
software messages, online help files, optional fonts, and language-specific features.
Full locale packages provide the full set of language features to many languages. All
locales based on the following languages are full locales:

55

� German
� French
� Spanish
� Swedish
� Italian
� Japanese
� Korean
� Simplified Chinese
� Traditional Chinese

Full locale packages are packaged according to the language and are available on the
Language CD.

Note – Partial locale packages (locale enablers) must be installed in order for the full
locales to be functional.

During the Solaris installation process, you are prompted to choose which geographic
regions require your support. The locale support available after installation completes
depends on the choices made at this stage. Partial locales are installed from the Solaris
Software CD-ROMs with the Solaris 9 Operating Environment and full locales are
installed from the Languages CD. If you do not need full locale support, you can skip
the installation from the Languages CD-ROM during the installation process. Note
that the English locale is installed as the default.

Additional Locales in This Release
The new partial locales for this release are the addition of UTF–8 locales for Russian
and Polish, two new locales for Catalan, a new Thai locale, a new Indic locale, two
new Traditional Chinese locales, and a new Simplified Chinese locale. The locale
names are:

� ar_EG.UTF-8

� ca_ES.ISO8859–1

� ca_ES.ISO8859–15

� fi_FI.UTF-8

� fr_BE.UTF-8

� pl_PL.UTF-8

� pt_BR.UTF-8

� ru_RU.UTF-8

� tr_TR.UTF-8

� th_TH.UTF-8

56 International Language Environments Guide • May, 2002

� hi_IN.UTF-8

� zh_HK.BIG5HK

This is a Traditional Chinese (Hong Kong) Big5–HKSCS locale. It is a full locale if
the Traditional Chinese message packages are installed from the Languages CD.

� zh_HK.UTF-8

This is a Traditional Chinese (Hong Kong) UTF—8 locale. It is a full locale if the
Traditional Chinese message packages are installed from the Languages CD.

� zh_CN.GB18030

This is a Simplified Chinese GB18030 locale. It is a full locale if the Simplified
Chinese message packages are installed from the Languages CD.

Supported Locales
The following tables list all the locales supported by the Solaris 9 environment. The
locale names have been updated in keeping with international naming standards.

TABLE 3–1 Asia

Locale User Interface Territory Codeset Language Support

hi_IN.UTF-8 English India UTF-81 Hindi (UTF-8) Unicode 3.1

ja Japanese Japan eucJP2 Japanese (EUC)

JIS X 0201-1976

JIS X 0208-1990

JIS X 0212-1990

ja_JP.eucJP Japanese Japan eucJP Japanese (EUC)

JIS X 0201-1976

JIS X 0208-1990

JIS X 0212-1990

ja_JP.PCK Japanese Japan PCK3 Japanese (PC kanji)

JIS X 0201-1976

JIS X 0208-1990

ja_JP.UTF-8 Japanese Japan UTF-8 Japanese (UTF-8) Unicode 3.1

Chapter 3 • Localization in the Solaris 9 Environment 57

TABLE 3–1 Asia (Continued)
Locale User Interface Territory Codeset Language Support

ko_KR.EUC Korean Korea 1001 Korean (EUC) KS X 1001

ko_KR.UTF-8 Korean Korea UTF-8 Korean (UTF-8) Unicode 3.1

th_TH.UTF-8 English Thailand UTF-8 Thai (UTF-8) Unicode 3.1

th_TH.TIS620 English Thailand TIS620.2533 Thai TIS620.2533

zh_CN.EUC Simplified
Chinese

PRC gb23124 Simplified Chinese (EUC)
GB2312-1980

zh_CN.GBK Simplified
Chinese

PRC GBK 5 Simplified Chinese (GBK)

zh_CN.GB18030 Simplified
Chinese

PRC GB18030–2000
Simplified Chinese
(GB18030–2000) GB18030–2000

zh_CN.UTF-8 Simplified
Chinese

PRC UTF-8 Simplified Chinese (UTF-8)
Unicode 3.1

zh_HK.BIG5HK Traditional
Chinese

Hong Kong Big5+HKSCS Traditional Chinese
(BIG5+HKSCS)

zh_HK.UTF-8 Traditional
Chinese

Hong Kong UTF-8 Traditional Chinese (UTF-8)
Unicode 3.1

zh_TW.EUC Traditional
Chinese

Taiwan cns11643 Traditional Chinese (EUC)
CNS 11643-1992

zh_TW.BIG5 Traditional
Chinese

Taiwan BIG5 Traditional Chinese (BIG5)

zh_TW.UTF-8 Traditional
Chinese

Taiwan UTF-8 Traditional Chinese (UTF-8)
Unicode 3.1

1. UTF-8 is the UTF-8 defined in ISO/IEC 10646–1:2000 and also Unicode 3.1.

2. eucJP signifies the Japanese EUC codeset. Specification of ja_JP.eucJP locale conforms to UI_OSF Japanese Environment
Implementation Agreement Version 1.1 and ja locale conforms to the traditional specification from the past Solaris releases.

3. PCK is also known as Shift_JIS (SJIS).

4. gb2312 signifies Simplified Chinese EUC codeset, which contains GB 1988–80 and GB 2312–80.

5. GBK signifies GB extensions. This includes all GB 2312–80 characters and all Unified Han characters of ISO/IEC 10646–1, as well as
Japanese Hiragana and Katakana characters. It also includes many characters of Chinese, Japanese, and Korean character sets and of
ISO/IEC 10646–1

TABLE 3–2 Australasia

Locale User Interface Territory Codeset Language Support

en_AU.ISO8859-1 English Australia ISO8859-1 English (Australia)

en_NZ.ISO8859-1 English New Zealand ISO8859-1 English (New Zealand)

58 International Language Environments Guide • May, 2002

TABLE 3–3 Central America

Locale User Interface Territory Codeset Language Support

es_CR.ISO8859-1 Spanish Costa Rica ISO8859-1 Spanish (Costa Rica)

es_GT.ISO8859-1 Spanish Guatemala ISO8859-1 Spanish (Guatemala)

es_NI.ISO8859-1 Spanish Nicaragua ISO8859-1 Spanish (Nicaragua)

es_PA.ISO8859-1 Spanish Panama ISO8859-1 Spanish (Panama)

es_SV.ISO8859-1 Spanish El Salvador ISO8859-1 Spanish (El Salvador)

TABLE 3–4 Central Europe

Locale User Interface Territory Codeset Language Support

cs_CZ.ISO8859-2 English Czech
Republic

ISO8859-2 Czech (Czech Republic)

de_AT.ISO8859-1 German Austria ISO8859-1 German (Austria)

de_AT.ISO8859-15 German Austria ISO8859-15 German (Austria, ISO8859-15 -
Euro)

de_CH.ISO8859-1 German Switzerland ISO8859-1 German (Switzerland)

de_DE.UTF-8 German Germany UTF-8 German (Germany, Unicode
3.1)

de_DE.ISO8859-1 German Germany ISO8859-1 German (Germany)

de_DE.ISO8859-15 German Germany ISO8859-15 German (Germany,
ISO8859-15 - Euro)

fr_CH.ISO8859-1 French Switzerland ISO8859-1 French (Switzerland)

hu_HU.ISO8859-2 English Hungary ISO8859-2 Hungarian (Hungary)

pl_PL.ISO8859-2 English Poland ISO8859-2 Polish (Poland)

pl_PL.UTF-8 English Poland UTF-8 Polish (Poland, Unicode 3.1)

sk_SK.ISO8859-2 English Slovakia ISO8859-2 Slovak (Slovakia)

TABLE 3–5 Eastern Europe

Locale User Interface Territory Codeset Language Support

bg_BG.ISO8859-5 English Bulgaria ISO8859-5 Bulgarian
(Bulgaria)

et_EE.ISO8859-15 English Estonia ISO8859-15 Estonian (Estonia)

Chapter 3 • Localization in the Solaris 9 Environment 59

TABLE 3–5 Eastern Europe (Continued)
Locale User Interface Territory Codeset Language Support

hr_HR.ISO8859-2 English Croatia ISO8859-2 Croatian (Croatia)

lt_LT.ISO8859-13 English Lithuania ISO8859-13 Lithuanian
(Lithuania)

lv_LV.ISO8859-13 English Latvia ISO8859-13 Latvian (Latvia)

mk_MK.ISO8859-5 English Macedonia ISO8859-5 Macedonian
(Macedonia)

ro_RO.ISO8859-2 English Romania ISO8859-2 Romanian
(Romania)

ru_RU.KOI8-R English Russia KOI8-R Russian (Russia,
KOI8-R)

ru_RU.ANSI1251 English Russia ansi-1251 Russian (Russia,
ANSI 1251)

ru_RU.ISO8859-5 English Russia ISO8859-5 Russian (Russia)

ru_RU.UTF-8 English Russia UTF-8 Russian (Russia,
Unicode 3.1)

sh_BA.ISO8859-2@bosnia English Bosnia ISO8859-2 Bosnian (Bosnia)

sl_SI.ISO8859-2 English Slovenia ISO8859-2 Slovenian
(Slovenia)

sq_AL.ISO8859-2 English Albania ISO8859-2 Albanian
(Albania)

sr_YU.ISO8859-5 English Serbia ISO8859-5 Serbian (Serbia)

tr_TR.ISO8859-9 English Turkey ISO8859-9 Turkish (Turkey)

tr_TR.UTF-8 English Turkey UTF-8 Turkish (Turkey,
Unicode 3.1)

TABLE 3–6 Middle East

Locale User Interface Territory Codeset Language Support

He English Israel ISO8859-8 Hebrew (Israel)

TABLE 3–7 North Africa

Locale User Interface Territory Codeset Language Support

ar_EG.UTF-8 English Egypt UTF-8 Arabic (Egypt)

60 International Language Environments Guide • May, 2002

TABLE 3–7 North Africa (Continued)
Locale User Interface Territory Codeset Language Support

Ar English Egypt ISO8859-6 Arabic (Egypt)

TABLE 3–8 North America

Locale User Interface Territory Codeset Language Support

en_CA.ISO8859-1 English Canada ISO8859-1 English (Canada)

en_US.ISO8859-1 English USA ISO8859-1 English (U.S.A.)

en_US.ISO8859-15 English USA ISO8859-15 English (U.S.A., ISO8859-15 -
Euro)

en_US.UTF-8 English USA UTF-8 English (U.S.A., Unicode 3.1)

fr_CA.ISO8859-1 French Canada ISO8859-1 French (Canada)

es_MX.ISO8859–1 Spanish Mexico ISO8859–1 Spanish (Mexico)

TABLE 3–9 Northern Europe

Locale User Interface Territory Codeset Language Support

da_DK.ISO8859–1 English Denmark ISO8859–1 Danish (Denmark)

da_DK.ISO8859–15 English Denmark ISO8859–15 Danish (Denmark,
ISO8859–15–Euro)

fi_FI.ISO8859–1 English Finland ISO8859–1 Finnish, Unicode 3.1)

fi_FI.ISO8859–15 English Finland ISO8859–15 Finnish (Finland,
ISO8859–15–Euro)

fi_FI.UTF-8 English Finland UTF-8 Finnish (Finland)

is_IS.ISO8859–1 English Iceland ISO8859–1 Icelandic (Iceland)

no_NO.ISO8859–1@bokmal English Norway ISO8859–1 Norwegian (Norway-Bokmal)

no_NO.ISO8859–1@nyorsk English Norway ISO8859–1 Norwegian (Norway-Nynorsk)

sv_SE.ISO8859–1 Swedish Sweden ISO8859–1 Swedish (Sweden)

sv_SE.ISO8859–15 Swedish Sweden ISO8859–15 Swedish (Sweden,
ISO8859–15–Euro)

sv_SE.UTF-8 Swedish Sweden UTF-8 Swedish (Sweden, Unicode
3.1)

Chapter 3 • Localization in the Solaris 9 Environment 61

TABLE 3–10 South America

Locale User Interface Territory Codeset Language Support

es_AR.ISO8859-1 Spanish Argentina ISO8859-1 Spanish (Argentina)

es_BO.ISO8859-1 Spanish Bolivia ISO8859-1 Spanish (Bolivia)

es_CL.ISO8859-1 Spanish Chile ISO8859-1 Spanish (Chile)

es_CO.ISO8859-1 Spanish Colombia ISO8859-1 Spanish (Colombia)

es_EC.ISO8859-1 Spanish Ecuador ISO8859-1 Spanish (Ecuador)

es_PE.ISO8859-1 Spanish Peru ISO8859-1 Spanish (Peru)

es_PY.ISO8859-1 Spanish Paraguay ISO8859-1 Spanish (Paraguay)

es_UY.ISO8859-1 Spanish Uruguay ISO8859-1 Spanish (Uruguay)

es_VE.ISO8859-1 Spanish Venezuela ISO8859-1 Spanish (Venezuela)

pt_BR.ISO8859-1 English Brazil ISO8859-1 Portuguese (Brazil)

pt_BR.UTF-8 English Brazil UTF-8 Portuguese (Brazil, Unicode
3.1)

TABLE 3–11 South Europe

Locale User Interface Territory Codeset Language Support

ca_ES.ISO8859-1 English Spain ISO8859-1 Catalan (Spain)

ca_ES.ISO8859-15 English Spain ISO8859-15 Catalan (Spain, ISO8859-15 -
Euro)

el_GR.ISO8859-7 English Greece ISO8859-7 Greek (Greece)

es_ES.ISO8859-1 Spanish Spain ISO8859-1 Spanish (Spain)

es_ES.ISO8859-15 Spanish Spain ISO8859-15 Spanish (Spain, ISO8859-15 -
Euro)

es_ES.UTF-8 Spanish Spain UTF-8 Spanish (Spain, Unicode 3.1)

it_IT.ISO8859-1 Italian Italy ISO8859-1 Italian (Italy)

it_IT.ISO8859-15 Italian Italy ISO8859-15 Italian (Italy, ISO8859-15 -
Euro)

it_IT.UTF-8 Italian Italy UTF-8 Italian (Italy, Unicode 3.1)

pt_PT.ISO8859-1 English Portugal ISO8859-1 Portuguese (Portugal)

pt_PT.ISO8859-15 English Portugal ISO8859-15 Portuguese (Portugal,
ISO8859-15 - Euro)

62 International Language Environments Guide • May, 2002

TABLE 3–12 Western Europe

Locale User Interface Territory Codeset Language Support

en_GB.ISO8859-1 English Great Britain ISO8859-1 English (Great Britain)

en_IE.ISO8859-1 English Ireland ISO8859-1 English (Ireland)

fr_BE.ISO8859-1 French Belgium-WalloonISO8859-1 French (Belgium-Walloon,
Unicode 3.1)

fr_BE.UTF-8 French Belgium-WalloonUTF-8 French (Belgium-Walloon,
Unicode 3.1)

fr_FR.ISO8859-1 French France ISO8859-1 French (France)

fr_FR.UTF-8 French France UTF-8 French (France, Unicode 3.1)

nl_BE.ISO8859-1 English Belgium-FlemishISO8859-1 Dutch (Belgium-Flemish)

nl_NL.ISO8859-1 English Netherlands ISO8859-1 Dutch (Netherlands)

Multiple Key Compose Sequences for
Locales
Many of the Solaris locales, especially the European and Unicode locales, allow input
of various characters by using so-called “dead key sequences,” which are also known
as Compose key sequences.

The Compose key sequence input is used to input characters with diacritical marks
and other characters that are not shown on the keyboard key caps.

The following table shows a few examples of Compose key sequences. For more
complete information about the Compose key sequences, see “English/European
Input Mode” on page 99.

TABLE 3–13 Diacritical Characters Created With Compose Key

Mark Compose Key
Combination

Example

Diaeresis ” Compose A “ —> A with diaeresis

Caron V Compose Z v —> Z with caron

Breve u Compose G u —> G with breve

Ogonek a Compose A a —> A with Ogonek

Chapter 3 • Localization in the Solaris 9 Environment 63

TABLE 3–13 Diacritical Characters Created With Compose Key (Continued)
Mark Compose Key

Combination
Example

Cedilla , Compose K , —> K with cedilla

Registered Sign R O Compose R O —> Registered sign

Inverted Exclamation Mark ! ! Compose ! ! —> Inverted Exclamation
Mark

Note – If the current locale’s codeset does not have a corresponding character, a
compose sequence cannot be used. For example, since there is no Z with a caron in
ISO8859–1, it is not possible to input a Z with a caron in the en_US.ISO8859–1
locale.

Keyboard Support in the Solaris 9
Product
Solaris recognizes and supports various keyboards with different key layouts made for
specific regions, and layout support for both Sun SPARC and Intel Architecture (IA)
platforms. Solaris 9 supports the regional keyboards listed in the following table:

TABLE 3–14 Support for Regional Keyboards

Region Country Sun Keyboard (Type 4/5/5c) Sun Keyboard (Type
6)

PC Keyboard

Asia Japan X X X

Korea X X X

Taiwan X X X

Europe Belgium X X X

Czech Republic X X

Denmark X X X

Finland X

France X X X

64 International Language Environments Guide • May, 2002

TABLE 3–14 Support for Regional Keyboards (Continued)
Region Country Sun Keyboard (Type 4/5/5c) Sun Keyboard (Type

6)
PC Keyboard

Germany X X X

Great Britain X X X

Greece X X

Hungary X X

Italy X X X

Latvia X X

Lithuania X X

The Netherlands X X X

Norway X X X

Poland X X

Portugal X X X

Russia X X X

Spain X X X

Sweden X X X

Switzerland (French) X X X

Switzerland
(German)

X X X

Turkey X X X

America Canada (French) X X X

Latin America
(Spanish)

X

U.S.A. X X X

Middle East Arabic X X

For regions with keyboard layouts that conform to the International Standard, such as
China, use the keyboard layout support provided for the U.S.A. to input the locale’s
characters. The underlying keyboard mappings are identical. Some countries, like
Japan, Turkey, and Switzerland have multiple keyboards, because multiple languages
are being used, or because multiple keyboard layouts exist.

Sun Type 4, 5, and 5c keyboards use Sun I/O interfaces through a Mini DIN 8–pin
connection. Sun Type 6 keyboards have two versions of interfaces:

Chapter 3 • Localization in the Solaris 9 Environment 65

� Sun I/O through a Mini DIN 8–pin connection
� USB

Sun keyboard types are printed on the back of each Sun keyboard.

PC keyboards use various interfaces, such as PS/2 or USB, for example.

Changing Between Keyboards on SPARC Systems
Users can change keyboard layouts in the Solaris product by using the DIP switch
settings under most of Sun Type 4, 5 and 5c keyboards. A list of keyboard type, names
and corresponding layout ids that can be used for the DIP switch settings is in the
/usr/openwin/share/etc/keytables/keytable.map file.

Note – Users cannot change the layouts of Type 6 keyboards because there are no DIP
switches at the back of the keyboards. Some Type 5 and 5c keyboards, for instance,
U.S.A., U.S.A./UNIX, and Japanese keyboards have jumpers instead of DIP switches.
There are no utilities or tools for both SPARC and IA platforms (apart from a standard
UNIX tool, like xmodmap(1)) bundled into the Solaris 9 operating environment for
switching keyboards.

The following is a table of the layout id values for Type 4, 5, and 5c keyboards. (1 =
switch up, 0 = switch down).

TABLE 3–15 Layouts for Type 4, 5, and 5c Keyboards

DIP Switch Keyboard (Keytable file) Setting in Binary

0 U.S.A. (US4.kt) 000000

1 U.S.A. (US4.kt) 000001

2 Belgium (FranceBelg4.kt) 000010

3 Canada (Canada4.kt) 000011

4 Denmark (Denmark4.kt) 000100

5 Germany (Germany4.kt) 000101

6 Italy (Italy4.kt) 000110

7 The Netherlands (Netherland4.kt) 000111

8 Norway (Norway4.kt) 001000

9 Portugal (Portugal4.kt) 001001

66 International Language Environments Guide • May, 2002

TABLE 3–15 Layouts for Type 4, 5, and 5c Keyboards (Continued)
DIP Switch Keyboard (Keytable file) Setting in Binary

10 (0x0a) Latin America/Spanish (SpainLatAm4.kt) 001010

11 (ox0b) Sweden (SwedenFin4.kt) 001011

12 (0x0c) Switzerland/French (Switzer_Fr4.kt) 001100

13 (0x0d) Switzerland/German (Switzer_Ge4.kt) 001101

14 (0x0e) Great Britain (UK4.kt) 001110

16 (0x10) Korea (Korea4.kt) 010000

17 (0x11) Taiwan (Taiwan4.kt) 010001

33 (0x21) U.S.A. (US5.kt) 100001

34 (0x22) U.S.A./UNIX (US_UNIX5.kt) 100010

35 (0x23) France (France5.kt) 100011

36 (0x24) Denmark (Denmark5.kt) 100100

37 (0x25) Germany (Germany5.kt) 100101

38 (0x26) Italy (Italy5.kt) 100110

39 (0x27) The Netherlands (Netherland5.kt) 100111

40 (0x28) Norway (Norway5.kt) 101000

41 (0x29) Portugal (Portugal5.kt) 101001

42 (0x2a) Spain (Spain5.kt) 101010

43 (0x2b) Sweden (Sweden5.kt) 101011

44 (0x2c) Switzerland/French (Switzer_Fr5.kt) 101101

45 (0x2d) Switzerland/German (Switzer_Ge5.kt) 101110

46 (0x2e) Great Britain (UK5.kt) 101111

47 (0x2f) Korea (Korea5.kt) 101111

48 (0x30) Taiwan (Taiwan5.kt) 110000

49 (0x31) Japan (Japan5.kt) 110001

50 (0x32), see also
63 (0x3f)

Canada/French (Canada_Fr5.kt) 110010

51 0(x33) Hungary (Hungary5.kt) 110011

52 (0x34 Poland (Poland5.kt) 110100

53 (0x35) Czech (Czech5.kt) 110101

Chapter 3 • Localization in the Solaris 9 Environment 67

TABLE 3–15 Layouts for Type 4, 5, and 5c Keyboards (Continued)
DIP Switch Keyboard (Keytable file) Setting in Binary

54 (0x36) Russia (Russia5.kt) 110110

55 (0x37) Latvia (Latvia5.kt) 110111

56 (0x38) see also 62
(0x3e)

Turkey-Q5 (TurkeyQ5.kt) 111000

57 (0x39) Greece (Greece5.kt) 111001

58 (0x3a) Arabic (Arabic5.kt) 111011

59 (0x3b) Lithuania (Lithuania5.kt) 111010

60 (0x3c) Belgium (Belgian5.kt) 111100

62 (0x3e) Turkey-F5 (TurkeyF5.kt) 111110

63 (0x3f) Canada/French (Canada_Fr5_TBITS5.kt) 111111

Keytable file names with 4 are for a Type 4 keyboard. Keytable file names with 5 are
for a Type 5 keyboard.

Changing the layout from one keyboard layout to another layout (Czech for example),
requires the following steps:

1. Find out the correct DIP switch id (or layout id) either from the table or from the
/usr/openwin/share/etc/keytables/keytable.mp file. The layout id
value in the keytable.mp file is a decimal value.

For Czech, the layout id is 53 in decimal (0x35 in hexadecimal).

2. Convert the layout id to binary, or use a proper “Setting in Binary” value from the
column in the above table. For base conversion, calculator utilities such as
dtcalc(1) may be used.

The correct binary value for the Czech keyboard is 110101.

3. Become superuser. Shut down and power off the system.

4. Change the DIP switch settings at the back of the keyboard by using the binary
value in step 2.

The first DIP switch is on your left. Move the switch up for “1” and down for “0”.

The Czech keyboard binary value 110101, corresponds to: up up down up down
up.

5. Power on and boot the system for use.

68 International Language Environments Guide • May, 2002

Note – Unlike Type 4 keyboards, Type 5 and 5c keyboards have only five DIP
switches. For the Type 5 and 5c keyboards, disregard the first binary digit. For the
Czech Type 5c keyboard, for example, the correct DIP switch settings are “Up Down
Up Down Up”, using only the last five digits from 10101.

Changing Between Keyboards on Intel Systems
On Intel architecture systems, a keyboard is selected during the kdmconfig(1M) part
of the installation. To change this at any time after installation, first exit your GUI
desktop environment to the command-line mode. As superuser, type kdmconfig to
run the program. Follow the instructions to get the desired keyboard layout.

Keyboard Layout Illustrations
The following figure shows the Arabic keyboard.

FIGURE 3–1 Arabic Keyboard

The following figure shows the Belgian keyboard.

FIGURE 3–2 Belgian Keyboard

The following figure shows the Cyrillic keyboard.

Chapter 3 • Localization in the Solaris 9 Environment 69

FIGURE 3–3 Cyrillic (Russian) Keyboard

The following figure shows the Danish keyboard.

FIGURE 3–4 Danish Keyboard

The following figure shows the Finnish keyboard.

FIGURE 3–5 Finnish Keyboard

The following figure shows the French keyboard.

70 International Language Environments Guide • May, 2002

FIGURE 3–6 French Keyboard

The following figure shows the German keyboard.

FIGURE 3–7 German Keyboard

The following figure shows the Italian keyboard.

FIGURE 3–8 Italian Keyboard

The following figure shows the Japanese keyboard,

Chapter 3 • Localization in the Solaris 9 Environment 71

FIGURE 3–9 Japanese Keyboard

The following shows the Korean keyboard,

FIGURE 3–10 Korean Keyboard

The following shows the Netherlands (Dutch) keyboard,

FIGURE 3–11 Netherlands (Dutch) Keyboard

The following figure shows the Norwegian keyboard.

72 International Language Environments Guide • May, 2002

FIGURE 3–12 Norwegian Keyboard

The following figure shows the Portuguese keyboard.

FIGURE 3–13 Portuguese Keyboard

The following figure shows the Spanish keyboard.

FIGURE 3–14 Spanish Keyboard

The following figure shows the Swedish keyboard.

Chapter 3 • Localization in the Solaris 9 Environment 73

FIGURE 3–15 Swedish Keyboard

The following figure shows Swiss (French) keyboard.

FIGURE 3–16 Swiss (French) Keyboard

The following figure shows the Swiss (German) keyboard.

FIGURE 3–17 Swiss (German) Keyboard

The following figure shows the Traditional Chinese keyboard.

74 International Language Environments Guide • May, 2002

FIGURE 3–18 Traditional Chinese Keyboard

The following figure shows the Turkish F keyboard.

FIGURE 3–19 Turkish F Keyboard

The following figure shows the Turkish Q keyboard.

FIGURE 3–20 Turkish Q Keyboard

The following figure shows the United Kingdom keyboard.

Chapter 3 • Localization in the Solaris 9 Environment 75

FIGURE 3–21 United Kingdom Keyboard

The following figure shows the United States keyboard.

FIGURE 3–22 United States Keyboard

The following figure shows the U.S.A./UNIX keyboard.

FIGURE 3–23 U.S.A./UNIX Keyboard

76 International Language Environments Guide • May, 2002

CHAPTER 4

Supported Asian Locales

The following sections describe the Asian supported locales:

� “Thai Localization” on page 80
� “Simplified Chinese Localization” on page 80
� “Traditional Chinese Localization” on page 83
� “Japanese Localization” on page 86
� “Korean Localization” on page 90

Asian Supported Locales
The following table provides the a summary of Asian supported locales.

TABLE 4–1 Summary of Asian Locales

Language Locale Name Description Supported Character Set

Korean ko

ko.UTF-8

Korean (EUC)

Korean (UTF-8)

KS X 1001

KS X 1005–1

Simplified Chinese zh_CN.EUC

zh_CN.GBK

zh_CN.GB18030

zh_CN.UTF-8

Simplified Chinese (EUC)

Simplified Chinese (GBK)

Simplified Chinese
(GB18030–2000)

Simplified Chinese (UTF-8)

GB 2312-1980

GBK

GB18030–2000

Unicode 3.1

77

TABLE 4–1 Summary of Asian Locales (Continued)
Language Locale Name Description Supported Character Set

Traditional Chinese zh_TW.EUC

zh_TW.UTF-8

zh_TW.BIG5

zh_HK.BIG5HK

zh_HK.UTF—8

Traditional Chinese (EUC)

Traditional Chinese (UTF-8)

Traditional Chinese (BIG5)

Traditional Chinese
(BIG5+HKSCS)

Traditional Chinese (UTF-8)

CNS 11643 –1992

Unicode 3.1

BIG5

BIG5+HKSCS

Unicode 3.1

Japanese ja

ja_JP.eucJP

ja_JP.PCK

ja_JP.UTF-8

Japanese (EUC)

Japanese (EUC)

Japanese (PCK)

Japanese (UTF-8)

JIS1

JIS2

Unicode3.1

Thai th_TH.TIS620

th_TH.UTF-8

th_TH.ISO8859-11

Thai (TIS620.2533)

Thai (UTF-8)

Thai(ISO8859-11)

TIS620.2533

Unicode 3.1

ISO8859-11

Hindi hi_IN.UTF-8 Hindi (UTF-8) Unicode 3.1

1. JIS X 0201-1976, JIS X 0208-1990 and JIS X 0212-1990

2. JIS X 0201–1976 and JIS X 0208–1990

Input Method Auxiliary Window
Support for Simplified and Traditional
Chinese
This window provides a friendly and extensible input method management tool for all
Chinese customer., A new input method auxiliary window supports the following new
functions and utilities:

� Input method switching
� Chinese full-width/half-width character mode switching
� Chinese/English punctuation mode switching
� Input method properties setting
� Input method selection
� Lookup tables for GB2312/GBK/GB18030/CNS11643/Big5/HKSCS/Unicode

character sets

78 International Language Environments Guide • May, 2002

� Virtual keyboard

For more detailed information, please see the Simplified Chinese User’s Guide and the
Traditional Chinese User’s Guide.

The input method auxiliary windows supports all UTF-8 locales and the following
Chinese locales:

� zh/zh_CN.EUC
� zh.GBK/zh_CN.GBK
� zh.UTF-8/zh_CN.UTF-8
� zh_TW/zh_TW.EUC
� zh_TW.BIG5
� zh_TW.UTF-8
� zh_HK.BIG5HK
� zh_HK.UTF-8
� zh_CN.GB18030

Two kinds of input methods are supported:

� Methods based on a code table such as CangJie
� Methods developed by a vendor (such as NewPinYin or NeiMa)

The interface model for auxiliary window support is shown in the following figure.

SunIM LE
Interface

SunIM X-Aux Interface

X Protocol

Internal Interface

Aux – Proxy/IM – Server

SunIM X-Aux
Interface Adapter

Chinese Auxiliary Window

Chinese Language Engine
(Interface Module)

Code Table IMNewPinYin IM

code tablesdictionary

FIGURE 4–1 Interface Model for Auxiliary Window Support

Chapter 4 • Supported Asian Locales 79

Thai Localization
According to the Thai IT Standard, there are three input levels for the Thai character
sequence checking method:

1. Passthrough level, no input check.
2. Basic input check level.
3. Strict input check level.

In the Solaris 9 release, the default input check level is still passthrough level. This
means no sequence check, which is the same level as in previous Solaris releases. You
can use the F2 Function key to switch between the three levels:

passthrough -> basic -> strict -> passthrough

Thai Input Method Auxiliary Window
A Thai input method auxiliary window supports the following new functions and
utilities:

� Switching between the three input levels (passthrough/basic/strict)
� Thai virtual keyboard

Click the input level button on the auxiliary bar to select a specific Thai input level
and input check level. Click the keyboard button to display the Thai virtual keyboard.
Use the Thai virtual keyboard to input Thai characters.

Simplified Chinese Localization
Simplified Chinese in the Solaris 9 environment provides four locales: zh, zh.GBK,
zh_CN.GB18030, and zh.UTF-8. In the zh locale, the EUC scheme is used to encode
GB2312–80. The zh.GBK locale supports the GBK codeset, which is a superset of
GB2312–80.

The new GB18030–2000 codeset is now supported in the zh_CN.GB18030 locale.

Simplified Chinese is used mostly in the People’s Republic of China (PRC) and in
Singapore.

The following input methods are supported for the zh locale:

� New QuanPin

80 International Language Environments Guide • May, 2002

� New ShuangPin
� QuanPin
� ShuangPin
� GB2312 NeiMa
� English-Chinese
� Optional codetable input methods
� Input method auxiliary window support for Simplified Chinese

The following input methods are supported for the zh_CN.GB18030 locale:

� New QuanPin
� New ShuangPin
� QuanPin
� ShuangPin
� GB18030–2000 NeiMa
� English-Chinese
� Optional codetable input methods
� Input method auxiliary window support for Simplified Chinese

The following input methods are supported for both the zh.GBK and the zh.UTF-8
locales:

� New QuanPin
� New ShuangPin
� QuanPin
� ShuangPin
� GBK NeiMa
� English-Chinese
� Optional codetable input methods
� Input method auxiliary window support for Simplified Chinese

The auxiliary window for Chinese input methods provides a friendly and extensible
input method user interface for all Chinese locales. See “Input Method Auxiliary
Window Support for Simplified and Traditional Chinese” on page 78.

For more detailed information about auxiliary windows for Chinese input methods,
please see Simplified Chinese User’s Guide and Traditional Chinese User’s Guide.

The following table shows the TrueType fonts for the zh locale.

TABLE 4–2 TrueType Fonts for the zh_CN.EUC Locale

Full Family Name Subfamily Format Vendor Encoding

Fangsong R TrueType Hanyi GB2312.1980

Hei R TrueType Monotype GB2312.1980

Kai R TrueType Monotype GB2312.1980

Chapter 4 • Supported Asian Locales 81

TABLE 4–2 TrueType Fonts for the zh_CN.EUC Locale (Continued)
Full Family Name Subfamily Format Vendor Encoding

Song R TrueType Monotype GB2312.1980

The following table shows the bitmap fonts for the zh locale.

TABLE 4–3 Bitmap Fonts for the zh_CN.EUC Locale

Full Family Name Subfamily Format Encoding

Song B PCF (14,16) GB2312.1980

Song R PCF (12,14,16,20,24) GB2312.1980

The following table shows the TrueType fonts for the zh_CN.GBK locale.

TABLE 4–4 TrueType Fonts for the zh_CN.GBK Locale

Full Family Name Subfamily Format Vendor Encoding

Fangsong R TrueType Zhongyi GBK

Hei R TrueType Zhongyi GBK

Kai R TrueType Zhongyi GBK

Song R TrueType Zhongyi GBK

The following table shows the bitmap fonts for the zh_CN.GBK locale.

TABLE 4–5 Bitmap Fonts for the zh_CN.GBK Locale

Full Family Name Subfamily Format Encoding

Song R PCF (12,14,16,20,24) GBK

The following table shows the TrueType fonts for the zh_CN.GB18030 locale.

TABLE 4–6 TrueType Fonts for the zh_CN.GB18030 Locale

Family Name Subfamily Format Vendor Encoding

FangSong R TrueType FangZheng GB18030–2000

Song R TrueType FangZheng GB18030–2000

Hei R TrueType FangZheng GB18030–2000

Kai R TrueType FangZheng GB18030–2000

The following table shows bitmap fonts for the zh_CN.GB18030 locale.

82 International Language Environments Guide • May, 2002

TABLE 4–7 Bitmap Fonts for the zh_CN.GB18030 Locale

Family Name Subfamily Format Encoding

Song R PCF(12,14,16,20,24) GB18030–2000

The following table shows the supported codeset conversions for Simplified Chinese.

TABLE 4–8 Codeset Conversions for Simplified Chinese

Code Symbol Target Code Symbol

GB2312-80 zh_CN.euc ISO 2022-7 zh_CN.iso2022-7

GB2312-80 zh_CN.euc ISO 2022-CN zh_CN.iso2022-CN

GB2312-80 zh_CN.euc UTF-8 UTF-8

GB18030 zh_CN.gb18030 UTF-8 UTF-8

HZ-GB-2312 HZ-GB-2312 GB2312–80 zh_CN.euc

HZ-GB-2312 HZ-GB-2312 GBK zh_CN.gbk

HZ-GB-2312 HZ-GB-2312 UTF-8 UTF-8

ISO2022-7 zh_CN.iso2022-7 GB2312-80 zh_CN.euc

ISO2022-CN zh_CN.iso2022-CN GB2312-80 zh_CN.euc

ISO2022-CN zh_CN.iso2022-CN UTF-8 UTF-8

ISO2022-CN zh_CN.iso2022-CN zh.GBK zh_CN.gbk

UTF-8 UTF-8 GB2312-80 zh_CN.euc

UTF-8 UTF-8 GB18030 zh_CN.gb18030

UTF-8 UTF-8 ISO2022-CN zh_CN.iso2022-CN

UTF-8 UTF-8 zh.GBK zh_CN.gbk

zh.GBK zh_CN.gbk ISO2022-CN zh_CN.iso2022-CN

zh.GBK zh_CN.gbk UTF-8 UTF-8

Traditional Chinese Localization
Traditional Chinese in the Solaris 9 product provides five locales:

� zh_TW.EUC where the EUC scheme is used to encode the CNS11643.1992 codeset
� zh_TW.BIG5 where the locale supports Big5

Chapter 4 • Supported Asian Locales 83

� zh_TW.UTF-8 where the locale supports Unicode 3.1

� zh_HK.BIG5HK where the locale supports Big5-HKSCS

� zh_HK.UTF-8 where the locale supports Unicode 3.1

Traditional Chinese is used mostly in Taiwan and Hong Kong, China. The following
input methods are supported in the zh_TW.EUC, zh_TW.BIG5, and zh_TW.UTF-8
locales:

� New ChuYin
� ChuYin
� TsangChieh
� Array
� BoShiaMy
� DaYi
� JianYi
� Cantonese
� EUC NeiMa
� Big5 NeiMa
� English-Chinese
� Optional codetable input methods (such as PinYin)
� Input method auxiliary window support for Traditional Chinese

The following input methods are supported in the zh_HK.BIG5HK and
zh_HK.UTF-8 locales.

� ChuYin
� TsangChieh
� Array
� BoShiaMy
� DaYi
� JianYi
� Cantonese
� BIG5+HKSCS NeiMa
� English-Chinese
� Optional codetable input methods (such as PinYin)
� Input method auxiliary window support for Traditional Chinese
� New ChuYin

The following table shows the Traditional Chinese TrueType Fonts for the zh_TW
locales.

TABLE 4–9 Traditional Chinese TrueType Fonts for the zh_TW Locales

Full Family Name Subfamily Format Vendor Encoding

Hei R TrueType Hanyi CNS11643.1992

Kai R TrueType Hanyi CNS11643.1992

84 International Language Environments Guide • May, 2002

TABLE 4–9 Traditional Chinese TrueType Fonts for the zh_TW Locales (Continued)
Full Family Name Subfamily Format Vendor Encoding

Ming R TrueType Hanyi CNS11643.1992

The following table shows the Traditional Chinese bitmap fonts for the zh_TW locales.

TABLE 4–10 Traditional Chinese Bitmap Fonts for the zh_TW Locales

Full Family Name Subfamily Format Encoding

Ming R PCF (12,14,16,20,24) CNS11643.1992

The following table shows the TrueType fonts for the zh_HK.BIG5HK locale.

TABLE 4–11 TrueType Fonts for the zh_HK.BIG5HK Locale

Family Name Subfamily Format Vendor Encoding

Ming R TrueType FangZheng Big5–HKSCS

Hei R TrueType FangZheng Big5–HKSCS

Kai R TrueType FangZheng Big5–HKSCS

The following table shows the bitmap fonts for the zh_HK.BIG5HK locale.

TABLE 4–12 Bitmap Fonts for the zh_HK.BIG5HK Locale

Family Name Subfamily Format Encoding

Ming R PCF(12,14,16,20,24) Big5–HKSCS

The following table shows the supported codeset conversions for Traditional Chinese.

TABLE 4–13 Codeset Conversions for Traditional Chinese

Code Symbol Target Code Symbol

BIG5 zh_TW-big5 CNS 11643 zh_TW-euc

BIG5 zh_TW-big5 ISO2022–CN zh_TW-iso2022–CN-EXT

BIG5 zh_TW-big5 UTF-8 UTF-8

BIG5+HKSCS zh_HK.big5hk UTF-8 UTF-8

CNS 11643 zh_TW-euc BIG5 zh_TW-big5

CNS 11643 zh_TW-euc UTF-8 UTF-8

Chapter 4 • Supported Asian Locales 85

TABLE 4–13 Codeset Conversions for Traditional Chinese (Continued)
Code Symbol Target Code Symbol

CNS 11643 zh_TW-euc ISO2022-7 zh_TW-iso2022-7

CNS 11643 zh_TW-euc ISO2022-CN-EXT zh_TW-iso2022-CN-EXT

CNS 11643 zh_TW-euc UTF-8 UTF-8

ISO2022-7 zh_TW-iso2022-7 CNS 11643 zh_TW-euc

ISO2022-7 zh_TW-iso2022-7 UTF-8 UTF-8

ISO2022-CN zh_TW-iso2022-CN-EXT BIG5 zh_TW-big5

ISO2022-CN-EXT zh_TW-iso2022-CN-EXT CNS 11643 zh_TW-euc

UTF-8 UTF-8 BIG5 zh_TW-big5

UTF-8 UTF-8 BIG5+HKSCS zh_HK.big5hk

UTF-8 UTF-8 CNS 11643 zh_TW-euc

UTF-8 UTF-8 ISO 2022-7 zh_TW-iso2022-7

Japanese Localization
This section describes Japanese locale-specific information.

Japanese Locales
Four Japanese locales, which support different character encodings, are available in
the Solaris 9 environment. The ja and ja_JP.eucJP locales are based on the
Japanese EUC. The ja_JP.eucJP locale conforms to the UI-OSF Japanese
Environment Implementation Agreement Version 1.1 and the ja locale conforms to
the traditional specification from earlier Solaris releases. The ja_JP.PCK locale is
based on PC-Kanji code (known as Shift_JIS) and the ja_JP.UTF-8 is based on
UTF-8.

See the eucJP(5) man page for a map between Japanese EUC and the character set.
See the PCK(5) man page for the map between PC-Kanji code and the character set.

Japanese Character Sets
The supported Japanese character sets are:

� JIS X 0201–1976

86 International Language Environments Guide • May, 2002

� JIS X 0208–1990
� JIS X 0212–1990
� JIS X 0213–2000 (only characters defined in Unicode 3.1)

JIS X 0212–1990 is not supported in the ja_JP.PCK locale. JIS X 0213–2000 is
supported in the ja_JP.UTF-8 locale only. Not all characters defined in the JIS X
0213–2000 are available. Only those characters defined in the Unicode 3.1 character set
are available.

Vendor-defined characters (VDC) and user-defined characters (UDC) are also
supported. VDCs occupy unused (reserved) code points of JIS X 0208–1990 or JIS X
0212–1990. UDCs occupy the same code points as VDCs, except those code points
allocated for VDCs.

Japanese Fonts
Three Japanese font formats are supported: bitmap, TrueType and Type1. The Japanese
Type1 font includes only JIS X 0212 for printing. The Type1 font is also used by UDC.

Japanese bitmap fonts are described in the following table.

TABLE 4–14 Japanese Bitmap Fonts

Full Family Name Subfamily Format Vendor Encoding

sun gothic R, B PCF(12,14,16,20,24) JIS X 0208–1983,

JIS X 0201–1976

sun minchou R PCF(12,14,16,20,24) JIS X 0208–1983,

JIS X 0201–1976

ricoh hg
gothic b

R PCF(10,12,14,16,18,20,24)RICOH JIS X 0208–1983, JIS X
0201–1976

ricoh hg
mincho l

R PCF(10,12,14,16,18,20,24)RICOH JIS X 0208–1983, JIS X
0201–1976

ricoh gothic R PCF(10,12,14,16,18,20,24)RICOH JIS X 0212–1990, JIS X
0213–2000

ricoh mincho R PCF(10,12,14,16,18,20,24)RICOH JIS X 0212–1990, JIS X
0213–2000

ricoh
heiseimin

R PCF(12,14,16,18,20,24) RICOH JIS X 0212–1990

Japanese TrueType fonts are described in the following table.

Chapter 4 • Supported Asian Locales 87

TABLE 4–15 Japanese TrueType Fonts

Full Family Name Subfamily Format Vendor Encoding

ricoh hg gothic
b

Fixed TrueType RICOH JIS X 0208–1983, JIS X
0201–1976

ricoh hg mincho
l

Fixed TrueType RICOH JIS X 0208–.1983, JIS X
0201–1976

ricoh gothic Fixed,
Proportional

TrueType RICOH JIS X 0201–176, JIS X
0208–1983, JIS X 0213–2000

ricoh mincho Fixed,
Proportional

TrueType RICOH JIS X 0201–1976, JIS X
0208–1983, JIS X 0213–2000

ricoh heiseimin Fixed TrueType RICOH JIS X 0212–1990

Japanese Input Systems
ATOK12 is the default Japanese input system in the Solaris 9 environment. It is
available for all Japanese locales and all UTF-8 locales when the Japanese locale is
installed. The Wnn6 Japanese input system is also available for all Japanese locales.
You can switch input systems from the Workspace menu. For Japanese Solaris 1.x BCP
support, the kkcv Japanese input system is available.

The following example describes how you would input Japanese input using ATOK12.

1. Turn conversion mode on by pressing Control + spacebar.

2. Type Kana character text (for example kanjihenkan).

3. Convert to kanji character by pressing the spacebar.

To display other kanji characters, press the space bar to display the conversion
candidate table. Type the number you want to select.

4. To commit the entire text to kanji character text, press return.

Press the down arrow key to commit only selected characters.

5. Turn conversion mode off by pressing Control + spacebar.

Terminal Setting for Japanese Terminals
Using Japanese locales on a character-based terminal (TTY) requires that you use
terminal settings to make line editing work correctly.

� If your terminal is a CDE Terminal emulator (dtterm), use stty(1) with argument
-defeucw in any Japanese locale (ja, ja_JP.PCK, or ja_JP.UTF-8). An example
in locale ja is:

% setenv LANG ja
% stty defeucw

88 International Language Environments Guide • May, 2002

� If your terminal is not a CDE Terminal emulator, but the codeset of your terminal is
the same as that of the current locale, use stty(1) with argument -defeucw.

� If your terminal’s codeset doesn’t match that of the current locale, use setterm(1)
to enable code conversion. For example, if you are in locale ja but your terminal
requires PCK (Shift_JIS code), specify:

% setenv LANG ja
% setterm -x PCK

See the setterm(3CURSES) man page for details.

Japanese iconv Module
Several Japanese codeset conversions are supported with iconv(1) and iconv(3). See
the iconv_ja(5) man page for details.

User-Defined Character Support
The user-defined character utility sdtudctool handles both outline (Type1) and
bitmap (PCF) fonts. Some utilities are also available to migrate the UDC fonts that
were created by old utilities in prior releases, such as fontedit, type3creator, and
fontmanager.

Differences Between Partial and Full Locales
The following components are only available in the Japanese full locale environment
with the Language CD:

� Translated message, help, and man pages
� Wnn6 Japanese input system
� Japanese Solaris 1.x BCP support
� Mincho (min*) typeface bitmap fonts
� JIS X 0212 Type1 fonts for printing
� Japanese-specific dumb printer and jpostprint support
� Legacy Japanese utilities such as kanji(1)

Chapter 4 • Supported Asian Locales 89

Korean Localization
In December 1995, the Korean government announced a standard Korean codeset, KS
X 1005–1, which is based on ISO 10646-1/Unicode 2.0.

The ISO-10646 character set uses two universal character sets:

� UCS-2. Universal Character Set (two-byte form)
� UCS-4. Universal Character Set (four-byte form).

The ISO-10646 character set cannot be used directly on IBM PC-based operating
systems. For example, the kernel and many other modules of the Solaris operating
environment interpret certain byte values as control instructions, such as a null
character (0x00) in any string. The ISO-10646 character set can be encoded with any bit
combinations in the first or subsequent bytes. The ISO-10646 characters cannot be
freely transmitted through the Solaris system with these limitations.

In order to establish a migration path, the ISO-10646 character set defines the UCS
Transformation Format (UTF), which recodes the ISO-10646 characters without using
C0 controls (0x00..0x1F), C1 controls (0x80..0x9F), space (0x20), and DEL (0x7F).

The ko.UTF-8 is a Solaris locale to support KS X 1005–1, the Korean standard
codeset. This locale supports all characters in the previous KS X 1005 and all 11,172
Korean characters. Korean UTF-8 supports the Korean language-related ISO-10646
characters and fonts. Because ISO-10646 covers all characters in the world, all of the
various input methods and fonts are supplied so that you can input and output any
character in any language. Before Universal UTF/UCS becomes available, Korean
UTF-8 supports the ISO-10646 code subset that is related to Korean characters as well
as all other characters in the previous Korean standard codeset, and extended ASCII.

In the ko locale, the EUC scheme is used to encode KS X 1001. The ko.UTF-8 locale
supports the KS X 1005–1/Unicode 2.0 codeset, which is a superset of KS X 1001.
These two locales look the same to the end user, but the internal character encoding is
different. The Korean Solaris product supports the following input methods:

For the ko locale:

� Hangul 2–BeolSik (one set of consonants and one set of vowels)
� Hangul-Hanja conversion
� Special character
� Hexadecimal code

For the ko.UTF-8 locale:

� Hangul 2–BeolSik (one set of consonants and one set of vowels)
� Hangul-Hanja conversion
� Special character
� Hexadecimal code

90 International Language Environments Guide • May, 2002

The following table shows the Korean bitmap fonts for the ko locale.

TABLE 4–16 Solaris 9 Korean Bitmap Fonts for the ko Locale

Full Family Name Subfamily Format Encoding

Gothic R/B PCF (12,14,16,18,20,24) KS X 1001

Graphic R/B PCF (12,14,16,18,20,24) KS X 1001

Haeso R/B PCF (12,14,16,18,20,24) KS X 1001

Kodig R/B PCF (12,14,16,18,20,24) KS X 1001

Myeongijo R/B PCF (12,14,16,18,20,24) KS X 1001

Pilki R/B PCF (12,14,16,18,20,24) KS X 1001

Round gothic R/B PCF (12,14,16,18,20,24) KS X 1001

The following table shows the Korean bitmap fonts for the ko.UTF-8 locale.

TABLE 4–17 Solaris 9 Korean Bitmap Fonts for the ko.UTF-8 Locale

Full Family Name Subfamily Format Encoding

Gothic R/B PCF (12,14,16,18,20,24) KS X 1001 (Johap)

Graphic R/B PCF (12,14,16,18,20,24) KS X 1001 (Johap)

Haeso R/B PCF (12,14,16,18,20,24) KS X 1001 (Johap)

Kodig R/B PCF (12,14,16,18,20,24) KS X 1001 (Johap)

Myeongijo R/B PCF (12,14,16,18,20,24) KS X 1001 (Johap)

Pilki R/B PCF (12,14,16,18,20,24) KS X 1001 (Johap)

The following table shows the Korean TrueType Fonts for the ko/ko.UTF-8 locales.

TABLE 4–18 Solaris 9 Korean TrueType Fonts for the ko/ko.UTF-8 Locales

Full Family Name Subfamily Format Vendor Encoding

Kodig/Gothic R TrueType Hanyang Unicode

Myeongijo R TrueType Hanyang Unicode

Haeso R TrueType Hanyang Unicode

Round gothic R TrueType Hanyang Unicode

The following table shows the Korean iconv.

Chapter 4 • Supported Asian Locales 91

TABLE 4–19 Korean iconv

Code Symbol Target Code Symbol

IBM CP933 cp933 UTF-8 (Unicode 2.0) ko_KR-UTF-8

ISO646 646 KS X 1001 5601

ISO2022-KR iso2022-7 KS X 1001 ko_KR-euc

ISO2022-KR iso2022-7 UTF-8 (Unicode 2.0) ko_KR-UTF-8

KS X 1001 5601 UTF-8 UTF-8

KS X 1001 EUC-KR UTF-8 UTF-8

KS X 1001 KSC5601 UTF-8 UTF-8

KS X 1001 ko_KR-euc UTF-8 (Unicode 2.0) ko_KR-UTF-8

KS X 1001 ko_KR-euc ISO2022-KR ko_KR-iso2022-7

KS X 1001 ko_KR-euc KS X 1001 ko_KR-johap

KS X 1001 ko_KR-euc KS X 1001 ko_KR-johap92

KS X 1001 ko_KR-euc KS X 1001 ko_KR-nbyte

KS X 1001 ko-KR-nbyte KS X 1001 ko_KR-euc

KS X 1001 ko-KR-johap UTF-8 (Unicode 2.0) ko_KR-UTF-8

KS X 1001 ko-KR-johap KS X 1001 ko_KR-euc

KS X 1001 ko-KR-johap92 UTF-8 (Unicode 2.0) ko_KR-UTF-8

KS X 1001 ko-KR-johap92 KS X 1001 ko_KR-euc

UTF-8 UTF-8 KS X 1001 5601

UTF-8 UTF-8 KS X 1001 EUC-KR

UTF-8 UTF-8 KS X 1001 KSC5601

UTF-8 ko-KR-UTF-8 IBM CP 933 cp 933

UTF-8 ko-KR-UTF-8 KS X 1001 ko_KR-euc

UTF-8 ko-KR-UTF-8 ISO2022-KR ko_KR-iso2022-7

UTF-8 ko-KR-UTF-8 KS X 1001 ko_KR-johap

UTF-8 ko-KR-UTF-8 KS X 1001 ko_KR-johap92

92 International Language Environments Guide • May, 2002

CHAPTER 5

Overview of UTF-8 Locale Support

This section describes the following

� “Unicode Overview” on page 93
� “Unicode Locale: en_US.UTF-8 Support Overview” on page 94
� “Desktop Input Methods ” on page 96
� “System Environment” on page 115
� “Code Conversions” on page 119
� “DtMail” on page 120
� “Programming Environment” on page 122

Unicode Overview
The Unicode Standard is the universal character encoding standard used for
representation of text for computer processing. It is fully compatible with the
international standards ISO/IEC 10646-1:2000 and ISO/IEC 10646–2:2001, and
contains all the same characters and encoding points as ISO/IEC 10646. The Unicode
Standard provides additional information about the characters and their use. Any
implementation that conforms to Unicode also conforms to ISO/IEC 10646.

The Unicode Standard provides a consistent way of encoding multilingual plain text
and facilitates exchanging international text files. Computer users who deal with
multilingual text, business people, linguists, researchers, scientists, and others find
that the Unicode Standard greatly simplifies their work. Mathematicians and
technicians, who regularly use mathematical symbols and other technical characters,
also find the Unicode Standard valuable.

The maximum possible number of code points Unicode can support is 1,114,112
through seventeen 16-bit planes. Each plane can support 65,536 different code points.

93

Among the more than one million code points that Unicode can support, version 3.1
currently defines 94,140 characters at plane 0, 1, 2, and 14. Planes 15 and 16 are for
private use, also known as user-defined characters. Planes 15 and 16 together can
support total 131,068 user-defined characters.

Unicode can be encoded using any of the following character encoding schemes:

� UTF-8
� UTF-16
� UTF-32

UTF-8 is a variable-length encoding form of Unicode that preserves ASCII character
code values transparently. This form is used as file code in Solaris Unicode locales.

UTF-16 is a 16-bit encoding form of Unicode. In UTF-16, characters up to 65,535 are
encoded as single 16-bit values. Characters mapped above 65,535 to 1,114,111 are
encoded as pairs of 16-bit values (surrogates).

UTF-32 is a fixed-length, 21-bit encoding form of Unicode usually represented in a
32-bit container or data type. This form is used as the process code (wide-character
code) in Solaris Unicode locales.

For more details on the Unicode Standard and ISO/IEC 10646 and their various
representative forms, refer to:

� The Unicode Standard, Version 3.0, The Unicode Standard Annex #19: UFT-32, and The
Unicode Standard Annex #27: Version 3.1 from The Unicode Consortium

� ISO/IEC 10646-1:2000, Information Technology-Universal Multiple-Octet Character
Set (UCS) - Part 1: Architecture and Basic Multilingual Plane

� ISO/IEC 10646-2: Information Technology-Universal Multiple-Octet Character Set
(UCS) - Part 2: Secondary Multilingual Plane for Scripts and Symbols,
Supplementary Plane for CJK Ideographs, Special Purpose Plane

� The Unicode Consortium web site at http://www.unicode.org/.

Unicode Locale: en_US.UTF-8 Support
Overview
The Unicode/UTF-8 locales support Unicode 3.1. The en_US.UTF-8 locale provides
multiscript processing support by using UTF-8 as its codeset. This locale handles
processing of input and output text in multiple scripts, and was the first locale with
this capability in the Solaris operating environment. The capabilities of other UTF-8
locales are similar to those of en_us.UTF-8; the discussion of en_US.UTF-8 that
follows applies equally to these locales.

94 International Language Environments Guide • May, 2002

Note – UTF-8 is a file-system safe Universal Character Set Transformation Format of
Unicode / ISO/IEC 10646-1 formulated by X/Open-Uniforum Joint
Internationalization Working Group (XoJIG) in 1992 and approved by ISO and IEC, as
Amendment 2 to ISO/IEC 10646-1:1993 in 1996. This standard has been adopted by
the Unicode Consortium, the International Standards Organization, and the
International Electrotechnical Commission as a part of Unicode 2.0 and ISO/IEC
10646-1.

Unicode locales in Solaris support the processing of every code point value that is
defined in Unicode 3.1 and ISO/IEC 10646-1 and 10646-2. Supported scripts include
not only pan-European scripts and Asian scripts but also complex text layout scripts
such as Arabic, Hebrew, Hindi, and Thai. Due to limited font resources, the Solaris 9
software includes only character glyphs from the following character sets:

� ISO 8859-1 (most Western European languages, such as English, French, Spanish,
and German)

� ISO 8859-2 (most Central European languages, such as Czech, Polish, and
Hungarian)

� ISO 8859-4 (Scandinavian and Baltic languages)

� ISO 8859-5 (Russian)

� ISO 8859-6 (Arabic, including many more presentation form character glyphs)

� ISO 8859–7 (Greek)

� ISO 8859–8 (Hebrew)

� ISO 8859-9 (Turkish)

� TIS 620.2533 (Thai, including many more presentation form character glyphs)

� ISO 8859–15 (most Western European languages with euro sign)

� GB 2312–1980 (Simplified Chinese)

� JIS X 0201–1976, JIS X 0208–1990 (Japanese)

� KSC 5601–1992 Annex 3 (Korean)

� GB 18030 (Simplified Chinese)

� HKSCS (Traditional Chinese, Hong Kong)

� Big5 (Traditional Chinese, Taiwan)

� IS 13194.1991, also known as ISCII (Hindi, including many more presentation-form
character glyphs)

If you try to view characters for which the en_US.UTF-8 locale does not have
corresponding glyphs, the locale displays a “no-glyph” glyph instead, as shown in the
following illustration:

Chapter 5 • Overview of UTF-8 Locale Support 95

The locale is selectable at installation time and may be designated as the system
default locale.

The same level of en_US.UTF-8 locale support is provided for both 64-bit and 32-bit
Solaris systems.

Note – Motif and CDE desktop applications and libraries support the en_US.UTF-8
locale. However, XView™ and OLIT libraries do not support the en_US.UTF-8 locale.

Desktop Input Methods
CDE provides the ability to enter localized input for an internationalized application
using Xm Toolkit. The XmText[Field] widgets are enabled to interface with input
methods from each locale. Input methods are internationalized because some
language environments write their text from right-to-left, top-to-bottom, and so forth.
Within the same application, you can use different input methods that apply several
fonts.

The pre-edit area displays the string that is being pre-edited. This can be done in four
modes:

� OffTheSpot
� OverTheSpot (default)
� Root
� None

In OffTheSpot mode, the location is just below the Main Window area at the right of
the status area. In OverTheSpot mode, the pre-edit area is at the cursor point. In Root
mode, the pre-edit and status areas are separate from the client’s window.

96 International Language Environments Guide • May, 2002

For more details, refer to the XmNpreeditType resource description on the
VendorShell(3X) man page.

Note – In the Solaris 9 environment, native Asian input methods exist for
Simplified/Traditional Chinese, Japanese, and Korean. These methods are in addition
to the current multiscript input methods for Unicode locales.

The following discussion includes descriptions of selected input methods, how to use
them, and how to switch between them.

Script Selection and Input Modes
Solaris Unicode locales support multiple scripts. Every Unicode locale has a total of
fourteen input modes:

� English/European

� Cyrillic
� Greek
� Arabic
� Hebrew
� Thai
� Japanese
� Korean
� Simplified Chinese
� Traditional Chinese
� Traditional Chinese (Hong Kong)
� Hindi
� Unicode Hexadecimal and Octal code input methods
� Table lookup input method

Accessing Input Mode
You can switch into a particular input mode by using a Compose key combination or
through the input mode selection window. To access the input mode selection
window, press mouse button 1 in the status area at the bottom left corner of your
application window. The input mode selection window is shown in following figure.

Chapter 5 • Overview of UTF-8 Locale Support 97

FIGURE 5–1 Input Mode Selection Window

Input Mode Switch Key Sequences
You can change the current input mode to a new input mode by using the key
sequences listed in Table 5–1. The only restriction for using these key sequences is that
if you are in one of the Asian input modes, you need to switch back to
English/European input mode by pressing Control and spacebar together. Once you
are in the English/European input mode, you can switch freely to any other input
mode by using the key sequences.

The following key sequences show how to switch to Cyrillic from the
English/European input mode:

� Press the Compose key.
� Press and release c.
� Press c.

98 International Language Environments Guide • May, 2002

TABLE 5–1 Input Mode Switch Key Sequences

Key Sequences Input Mode

Control + Spacebar English/European

Compose c c Cyrillic

Compose g g Greek

Compose a r Arabic

Compose h h Hebrew

Compose t t Thai

Compose h i Hindi

Compose j a Japanese

Compose k o Korean

Compose s c Simplified Chinese

Compose t c Traditional Chinese

Compose h k Traditional Chinese (Hong Kong)

Compose u o Unicode octal code input method

Compose u h Unicode hexadecimal code input
method

Compose l l Table lookup input method

English/European Input Mode
The English/European input mode includes the English alphabet plus characters with
diacritical marks (for example, á, è, î, õ, and ü) and characters (such as ¡, §, ¿) from
European scripts.

This input mode is the default mode for any application. The input mode is displayed
at the bottom left corner of the GUI application window.

To insert characters with diacritical marks or special characters from Latin-1, Latin-2,
Latin-4, Latin-5, and Latin-9, you must type a Compose key sequence, as described in
the following examples.

To display the Ä character:

� Press and release the Compose key.
� Press Shift and A simultaneously. Release Shift and A.
� Press and release ".

To display the ¿, character:

Chapter 5 • Overview of UTF-8 Locale Support 99

� Press and release the Compose key.
� Press and release ?.
� Press and release ?.

When there is no Compose key available on your keyboard, you can emulate its
operation by simultaneously pressing the Control key and the Shift key.

For the input of the Euro currency symbol (Unicode value U+20AC) from the locale,
you can use any one of following input sequences:

� AltGraph and E together
� AltGraph and 4 together
� AltGraph and 5 together

With these input sequences, you press both keys simultaneously. If there is no
AltGraph key available on your keyboard, you can substitute the Alt key.

The following tables show the most commonly used compose sequences for Latin-1,
Latin-2, Latin-3, Latin-4, Latin-5, and Latin-9 script input for the Solaris operating
environment.

The following table lists the common Latin-1 Compose key sequences.

TABLE 5–2 Common Latin-1 Compose Key Sequences

Press Compose, then Press
and Release Then Press and Release Result

spacebar spacebar no-break space

s 1 superscripted 1

s 2 superscripted 2

s 3 superscripted 3

! ! inverted exclamation mark

x o currency symbol ¤

p ! paragraph symbol ¶

/ u mu u

’ " acute accent ´

, , (comma) cedilla Ç

" " diaeresis ¨

- ^ macron ¯

o o degree °

x x multiplication sign x

100 International Language Environments Guide • May, 2002

TABLE 5–2 Common Latin-1 Compose Key Sequences (Continued)
Press Compose, then Press
and Release Then Press and Release Result

+ - plus-minus ±

- - soft hyphen –

- : division sign ÷

- a ordinal (feminine) ª

- o ordinal (masculine) º

- , (comma) not sign ¬

. . middle dot ·

1 2 vulgar fraction ½

1 4 vulgar fraction ¼

3 4 vulgar fraction ¾

< < left double angle quotation mark «

> > right double angle quotation mark »

? ? inverted question mark ¿

A ‘ (backquote) A grave À

A ’ (single quote) A acute Á

A * A ring above Å

A " A diaeresis Ä

A ^ A circumflex Â

A ~ A tilde Ã

A E AE diphthong Æ

C , (comma) C cedilla Ç

C o copyright sign ©

D - Capital eth

E ‘ (backquote) E grave È

E ’ E acute É

E " E diaeresis Ë

E ^ E circumflex Ê

I ‘ (backquote) I grave Ì

Chapter 5 • Overview of UTF-8 Locale Support 101

TABLE 5–2 Common Latin-1 Compose Key Sequences (Continued)
Press Compose, then Press
and Release Then Press and Release Result

I ’ I acute Í

I " I diaeresis ˙

I ^ I circumflex Î

L - pound sign £

N ~ N tilde Ñ

O ‘ (backquote) O grave Ò

O ’ O acute Ó

O / O slash Ø

O " O diaeresis Ö

O ^ O circumflex Ô

O ~ O tilde Õ

R O registered mark ®

T H Thorn Þ

U ‘ (backquote) U grave Ù

U ’ U acute Ú

U " U diaeresis Ü

U ^ U circumflex Û

Y ’ Y acute ý

Y - yen sign ¥

a ‘ (backquote) a grave à

a ’ a acute á

a * a ring above å

a " a diaeresis ä

a ~ a tilde ã

a ^ a circumflex â

a e ae diphthong æ

c , (comma) c cedilla ç

c / cent sign ¢

102 International Language Environments Guide • May, 2002

TABLE 5–2 Common Latin-1 Compose Key Sequences (Continued)
Press Compose, then Press
and Release Then Press and Release Result

c o copyright sign ©

d - eth

e ‘ (backquote) e grave è

e ’ e acute é

e " e diaeresis ë

e ^ e circumflex ê

i ‘ (backquote) i grave ì

i ’ i acute í

i " i diaeresis ï

i ^ i circumflex î

n ~ n tilde ñ

o ‘ (backquote) o grave ò

o ’ o acute ó

o / o slash ø

o " o diaeresis ö

o ^ o circumflex ô

o ~ o tilde õ

s s German double s ß also known as
sharp S

t h thorn Þ

u ‘ (backquote) u grave ù

u ’ u acute ú

u " u diaeresis ü

u ^ u circumflex û

y ’ y acute y

y " y diaeresis ÿ

| | broken bar ¦

The following table lists the common Latin-2 and Latin-4 Compose key sequences.

Chapter 5 • Overview of UTF-8 Locale Support 103

TABLE 5–3 Common Latin-2 Compose Key Sequences

Press Compose, then Press and
Release Press and Release Result

a spacebar ogonek

u spacebar breve

v spacebar caron

" spacebar double acute

A a A ogonek

A u A breve

C ’ C acute

C v C caron

D v D caron

- D D stroke

E v E caron

E a E ogonek

L ’ L acute

L - L stroke

L > L caron

N ’ N acute

N v N caron

O > O double acute

S ’ S acute

S v S caron

S , S cedilla

R ’ R acute

R v R caron

T v T caron

T , T cedilla

U * U ring above

U > U double acute

Z ’ Z acute

104 International Language Environments Guide • May, 2002

TABLE 5–3 Common Latin-2 Compose Key Sequences (Continued)
Press Compose, then Press and
Release Press and Release Result

Z v Z caron

Z . Z dot above

k k kra

A _ A macron

E _ E macron

E . E dot above

G , G cedilla

I _ I macron

I ~ I tilde

I a I ogonek

K , K cedilla

L , L cedilla

N , N cedilla

O _ O macron

R , R cedilla

T | T stroke

U ~ U tilde

U a U ogonek

U _ U macron

N N Eng

a _ a macron

e _ e macron

e . e dot above

g , g cedilla

i _ i macron

i ~ i tilde

i a i ogonek

k , k cedilla

Chapter 5 • Overview of UTF-8 Locale Support 105

TABLE 5–3 Common Latin-2 Compose Key Sequences (Continued)
Press Compose, then Press and
Release Press and Release Result

l , l cedilla

n , n cedilla

o _ o macron

r , r cedilla

t | t stroke

u ~ u tilde

u a u ogonek

u _ u macron

n n eng

The following table lists the common Latin-3 Compose key sequences.

TABLE 5–4 Common Latin-3 Compose Key Sequences

Press Compose, then Press and
Release

Press and Release Result

C > C circumflex

C . C dot above

G > G circumflex

G . G dot above

H > H circumflex

J > j circumflex

S > S circumflex

U u U breve

c > c circumflex

c . c dot above

g > g circumflex

g . g dot above

h > h circumflex

106 International Language Environments Guide • May, 2002

TABLE 5–4 Common Latin-3 Compose Key Sequences (Continued)
Press Compose, then Press and
Release

Press and Release Result

j > j circumflex

s > s circumflex

u u u breve

The following table lists the common Latin-5 Compose key sequences.

TABLE 5–5 Common Latin-5 Compose Key Sequences

Press Compose, then Press and
Release Press and Release Result

G u G breve

I . I dot above

g u g breve

i . i dotless

The following table lists the Common Latin-9 Compose key sequences.

TABLE 5–6 Common Latin-9 Compose Key Sequences

Press Compose, then Press and
Release

Press and Release Result

o e Ligature oe

O E Ligature OE

Y " Y diaeresis

Arabic Input Mode
To switch to Arabic input mode, either type Compose a r, or select Arabic from the
input mode selection window. For information on accessing the input mode selection
window, see Figure 5–1.

The following figure shows the Arabic keyboard layout.

Chapter 5 • Overview of UTF-8 Locale Support 107

FIGURE 5–2 Arabic Keyboard

Cyrillic Input Mode
To switch to Cyrillic input mode, either press Compose c c, or select Cyrillic from the
Input Mode Selection Window. For information on accessing the input mode selection
window, see Figure 5–1.

The Cyrillic (Russian) keyboard layout appears in the following figure.

FIGURE 5–3 Cyrillic (Russian) Keyboard

After you switch to Cyrillic input mode, you cannot enter English or European text. To
switch back to the English/European input mode, type Control and spacebar
together, or select English/European input mode from the Input Mode Selection
Window by clicking in the status area. See Figure 5–1.

You can also switch into other input modes by typing the corresponding input mode
switch key sequence.

Greek Input Mode
To switch to Greek input mode, either press Compose g g, or select Greek, from the
input mode selection window. For information on accessing the input mode selection
window, see Figure 5–1.

108 International Language Environments Guide • May, 2002

After you switch to Greek input mode, you cannot enter English or European text. To
switch back to the English/European input mode, type Control and spacebar
together, or select English/European input mode from the Input Mode Selection
Window by clicking in the status area. The Greek Euro keyboard layout appears in the
following figure.

FIGURE 5–4 Greek Euro Keyboard

The following figure shows the Greek UNIX keyboard.

Chapter 5 • Overview of UTF-8 Locale Support 109

FIGURE 5–5 Greek UNIX Keyboard

Hebrew Input Mode
To switch into Hebrew input mode, either press Compose h h, or select Hebrew from
the input mode selection window. For information on accessing the input mode
selection window, see Figure 5–1.

The following figure shows the Hebrew keyboard layout.

110 International Language Environments Guide • May, 2002

FIGURE 5–6 Hebrew Keyboard

Hindi Input Mode
To switch to Hindi input mode, either press Compose h i, or select Hindi from the
input mode selection window. For more information on accessing the input mode
selection window, see Figure 5–1. To switch back to English/European input mode
type Control and spacebar together, or select English/European input mode from
the input mode selection window by clicking in the status area.

FIGURE 5–7 Hindi Keyboard

The keyboard for Hindi-Shift is shown in the following figure.

Chapter 5 • Overview of UTF-8 Locale Support 111

FIGURE 5–8 Hindi-Shift Keyboard

Japanese Input Mode
To switch to Japanese input mode, either press Compose j a, or select Japanese from
the input mode selection window. For information on accessing the input mode
selection window, see Figure 5–1.

To use the native Japanese input system, you need to install one or more of the
Japanese locales and reboot the system. After you install the Japanese locale, you can
use ATOK12 in all UTF-8 locales. Wnn6 is not available in UTF-8 locales except
ja_JP.UTF-8.

FIGURE 5–9 Japanese Keyboard

Korean Input Mode
To switch to Korean input mode, either press Compose k o, or select Korean from the
input mode selection window. For information on accessing the input mode selection
window, see Figure 5–1.

112 International Language Environments Guide • May, 2002

To have the native Korean input system, you need to install one or more Korean
locales on your system. Once you install the Korean locale, you can use the native
Korean input system. For more details on how to use the Korean Input System, refer
to Korean Solaris User’s Guide.

FIGURE 5–10 Korean Keyboard

Simplified Chinese Input Mode
To switch to Simplified Chinese input mode, either press Compose s c, or select
S-Chinese from the input mode selection window. For information on accessing the
input mode selection window, see Figure 5–1.

To use the native Simplified Chinese input system, you need to install one or more
Simplified Chinese locales on your system. For more details on how to use Simplified
Chinese Input System, refer to Simplified Chinese Solaris User’s Guide.

Thai Input Mode
To switch to Thai input mode, either press Compose t t, or select Thai, from the
input mode selection window. For information on accessing the input mode selection
window, see Figure 5–1.

To switch back to English/European input mode type Control and spacebar
together, or select English/European input mode from the input mode selection
window by clicking in the status area.

The Thai keyboard layout is shown in the following figure.

Chapter 5 • Overview of UTF-8 Locale Support 113

FIGURE 5–11 Thai Keyboard

Traditional Chinese Input Mode
To switch to Traditional Chinese input mode, either press Compose t c, or select
T-Chinese from the input mode selection window. For information on accessing the
input mode selection window, see Figure 5–1.

To have access to the native Traditional Chinese input system, you need to install one
or more Traditional Chinese locales at your system. For more details on how to use the
Traditional Chinese Input System, refer to Traditional Chinese Solaris User’s Guide.

Traditional Chinese (Hong Kong) Input Mode
To switch to Traditional Chinese input mode, either press Compose h k, or select
T-Chinese (Hong Kong) from the input mode selection window. For information on
accessing the input mode selection window, see Figure 5–1.

To have access to the native Traditional Chinese (Hong Kong) input system, you need
to install one or more Traditional Chinese (Hong Kong) locales on your system.

Unicode Hexadecimal Input Mode
To switch to Unicode hexadecimal code input method input mode, either press
Compose u h, or select Unicode Hex from the input mode selection window. To
switch to the octal number system, press Compose u o or select Unicode Octal. For
information on accessing the input mode selection window, see Figure 5–1.

To use these input modes, you need to know either the hexadecimal or the octal code
point values of the characters. Refer to The Unicode Standard, Version 3.0 for the
mapping between code point values and characters.

If you are in the Unicode hexadecimal code input mode, to input a character you
would type four hexadecimal digits. Some sample hexadecimal values are:

114 International Language Environments Guide • May, 2002

� 00A1 for Inverted Exclamation Mark
� 03B2 for Greek Small Letter Beta
� AC00 for a Korean Hangul Syllable
� 30A1 for Japanese Katakana Letter A
� 4E58 for a Unified Han character

You can use both uppercase and lowercase letters of A, B, C, D, E, and, F for
hexadecimal digits. If you prefer the octal number system instead of hexadecimal
numbers, you can input octal digits, 0 to 7. If you mistype a digit or two, you can
delete the digits by using the Delete or Backspace key.

Table Lookup Input Mode
To switch to table lookup input mode, either press Compose l l, or select Lookup
from the input mode selection window. For information on accessing the input mode
selection window, see Figure 5–1.

The second lookup window shows candidates for the group only display, 80
candidates at a time maximum. Press Control n for the next set of candidates or
Control p for previous set of candidates.

System Environment
This section describes locale environment variables, TTY environment setup, 32–bit
and 64–bit STREAMS modules , and terminal support.

Locale Environment Variable
Be sure you have the en_US.UTF-8 locale installed on your system. To check current
locale settings in various categories, use the locale(1) utility.

system% locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_MONETARY="en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"

LC_ALL=

To use the en_US.UTF-8 locale desktop environment, choose the locale first. In a TTY
environment, choose the locale first by setting the LANG environment variable to
en_US.UTF-8, as in the following C-shell example:

Chapter 5 • Overview of UTF-8 Locale Support 115

system% setenv LANG en_US.UTF-8

Make sure that the LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_NUMERIC,
LC_MONETARY, and LC_TIME categories are not set, or are set to en_US.UTF-8. If any
of these categories is set, they override the lower-priority LANG environment variable.
See the setlocale(3C) man page for more details about the hierarchy of
environment variables.

You can also start the en_US.UTF-8 environment from the CDE desktop. At the CDE
login screen’s Options -> Language menu, choose en_US.UTF-8.

TTY Environment Setup
Depending on the terminal and terminal emulator that you are using, you might need
to push certain codeset-specific STREAMS modules onto your streams.

For more information on STREAMS modules and streams in general, see the
STREAMS Programming Guide.

The following table shows STREAMS modules supported by the en_US.UTF-8 locale
in the terminal environment.

TABLE 5–7 32–bit STREAMS Modules Supported by en_US.UTF-8

32–bit STREAMS Module Description

/usr/kernel/strmod/u8lat1 Code conversion STREAMS module
between UTF-8 and ISO8859–1
(Western European)

/usr/kernel/strmod/u8lat2 Code conversion STREAMS module
between UTF-8 and ISO8859–2
(Eastern European)

/usr/kernel/strmod/u8koi8 Code conversion STREAMS module
between UTF-8 and KOI8–R (Cyrillic)

The following table lists the 64–bit STREAMS modules supported by en_US.UTF-8.

TABLE 5–8 64–bit STREAMS Modules Supported by en_US.UTF-8

64-bit STREAMS module Description

/usr/kernel/strmod/sparcv9/u8lat1 Code conversion STREAMS module between
UTF-8 and ISO8859-1 (Western European)

/usr/kernel/strmod/sparcv9/u8lat2 Code conversion STREAMS module between
UTF-8 and ISO8859-2 (Eastern European)

116 International Language Environments Guide • May, 2002

TABLE 5–8 64–bit STREAMS Modules Supported by en_US.UTF-8 (Continued)
64-bit STREAMS module Description

/usr/kernel/strmod/sparcv9/u8koi8 Code conversion STREAMS module between
UTF-8 and KOI8-R (Cyrillic)

Loading a STREAMS Module at Kernel
To load a STREAMS module at kernel, first become root.

To determine whether you are running a 64-bit Solaris or 32-bit Solaris system, use the
isainfo(1) utility as follows:

system# isainfo -v
64-bit sparcv9 applications

32-bit sparc applications

If the command returns this information, you are running the 64-bit Solaris system. If
you are running the 32-bit Solaris system, the utility shows the following:

system# isainfo -v

32-bit sparc applications

Use modinfo(1M) to be certain that your system has not already loaded the
STREAMS module:

system# modinfo | grep modulename

If the STREAMS module, such as u8lat1, is already installed, the output looks as
follows:

system# modinfo | grep u8lat1

89 ff798000 4b13 18 1 u8lat1 (UTF-8 <--> ISO 8859-1 module)

If the module is already installed, you do not need to load it. However, if the module
has not yet been loaded, use modload(1M) as follows:

system# modload /usr/kernel/strmod/u8lat1

This command loads the 32–bit u8lat1 STREAMS module at the kernel so you can
push it onto a stream. If you are running the 64–bit Solaris product, use modload(1M)
as follows:

system# modload /usr/kernel/strmod/sparcv9/u8lat1

The STREAMS module is loaded at the kernel and you can now push it onto a stream.

To unload a module from the kernel, use modunload(1M), as shown below. In this
example, the u8lat1 module is being unloaded.

system# modinfo | grep u8lat1
89 ff798000 4b13 18 1 u8lat1 (UTF-8 <--> ISO 8859-1 module)

system# modunload -i 89

Chapter 5 • Overview of UTF-8 Locale Support 117

dtterm and Terminals Capable of Input and Output of
UTF-8 Characters
Unlike in previous releases of the Solaris operating environment, the dtterm(1)
Terminal and any other terminals that support input and output of the UTF-8 codeset
do not need to have any additional STREAMS modules in their stream. ldterm(7M)
module is now codeset independent and supports Unicode/UTF-8 as well.

To set up the proper terminal environment for the Unicode locales, use the stty(1)
utility. To query the current settings use the -a option of the stty(1) utility, as
shown below:

system% /bin/stty -a

Note – Because /usr/ucb/stty is not internationalized, use /bin/stty instead.

Terminal Support for Latin-1, Latin-2, or KOI8-R
For terminals that support only Latin-1 (ISO8859-1), Latin-2 (ISO8859-2), or KOI8-R,
you should have the following STREAMS configuration:

head <-> ttcompat <-> ldterm <-> u8lat1 <-> TTY

This configuration is only for terminals that support Latin-1. For Latin-2 terminals,
replace the STREAMS module u8lat1 with u8lat2. For KOI8-R terminals, replace
the module with u8koi8.

Make sure you already have the STREAMS module loaded into the kernel.

To set up the STREAMS configuration shown above, use strchg(1M), as shown in the
second command line of the example:

system% cat > tmp/mystreams
ttcompat
ldterm
u8lat1
ptem
^D

system% strchg -f /tmp/mystreams

Be sure that you are either root or the owner of the device when you use strchg(1).
To see the current configuration, use strconf(1) as follows:

system% strconf
ttcompat
ldterm
u8lat1
ptem
pts

118 International Language Environments Guide • May, 2002

system%

To reset the original configuration, set the STREAMS configuration as follows:

system% cat > /tmp/orgstreams
ttcompat
ldterm
ptem
^D

system% strchg -f /tmp/orgstreams

Saving the Settings in ~/.cshrc

Assuming the necessary STREAMS modules are already loaded with the kernel, you
can save the following lines in your .cshrc file (C shell example) for convenience:

setenv LANG en_US.UTF-8
if ($?USER != 0 && $?prompt != 0) then

cat >! /tmp/mystreams$$ << _EOF
ttcompat
ldtterm
u8lat1
ptem

_EOF
/bin/strchg -f /tmp/mystreams$$
/bin/rm -f /tmp/mystreams$$
/bin/stty cs8 -istrip defeucw

endif

With these lines in your.cshrc file, you do not have to type all of the commands each
time you use the STREAMS module. Note that the second _EOF should start from the
first column of the file.

Code Conversions
Unicode locale support adds various code conversions among major codesets of many
countries through iconv(1), iconv(3C), and sdtconvtool(1).

In the Solaris 9 environment, the utility geniconvtbl enables user-defined code
conversions. The user-defined code conversions created with the geniconvtbl utility
can be used with both iconv(1) and iconv(3). For more detail on this utility, refer to
thegeniconvtbl(1) and geniconvtbl(4) man pages.

The available fromcode and tocode names that can be applied to iconv(1),
iconv_open(3C), and sdtconvtool(1) are shown in the tables in Appendix A. For
more details on iconv code conversion, see the iconv(1), iconv_open(3C), iconv

Chapter 5 • Overview of UTF-8 Locale Support 119

(3) , iconv_close(3C) geniconvtbl(1) geniconvtbl(4) and sdtconvtool(1)
man pages. For more information on available code conversions, see the
iconv_en_US.UTF-8(5), iconv(5), iconv_ja(5), iconv_ko(5), iconv_zh(5), and
iconv_zh_TW(5) man pages. Also see Appendix A.

Note – UCS-2, UCS-4, UTF-16 and UTF-32 are all Unicode/ ISO/IEC 10646
representation forms that recognize Byte Order Mark (BOM) characters defined in the
Unicode 3.1 and ISO/IEC 10646-1:2000 standards if the character appears at the
beginning of the character stream. Other forms, like UCS-2BE, UCS-4BE, UTF-16BE,
and UTF-32BE are all fixed-width Unicode/ISO/IEC 10646 representation forms that
do not recognize the BOM character and also assume big endian byte ordering.
Representation forms like UCS-2LE, UCS-4LE, UTF-16LE, and UTF-32LE, on the other
hand, assume little endian byte ordering. They also do not recognize the BOM
character.

For associated scripts and languages of ISO8859–* and KO18–*, see
http://czyborra.com/charsets/iso8869.html.

DtMail
As a result of increased coverage in scripts, Solaris 9 DtMail running in the
en_US.UTF-8 locale supports the following character sets, indicated by MIME
names:

� US-ASCII (7-bit US ASCII)
� UTF-8 (UCS Transmission Format 8 bit)
� UTF-7 (UCS Transmission Format 7 bit)
� ISO-8859-1 (Latin-1)
� ISO-8859-2 (Latin-2)
� ISO-8859-3 (Latin-3)
� ISO-8859-4 (Latin-4)
� ISO-8859-5 (Latin/Cyrillic)
� ISO-8859-6 (Latin/Arabic)
� ISO-8859-7 (Latin/Greek)
� ISO-8859-8 (Latin/Hebrew)
� ISO-8859-9 (Latin-5)
� ISO-8859-10 (Latin-6)
� ISO-8859-13 (Latin-7/Baltic)
� ISO-8859-14 (Latin-8/Celtic)
� ISO-8859-15 (Latin-9)
� ISO-8859-16 (Latin-10)
� KOI8-R (Cyrillic)
� ISO-2022-JP and EUC-JP (Japanese)

120 International Language Environments Guide • May, 2002

� ISO-2022-KR and EUC-KR (Korean)
� ISO-2022-CN (Simplified Chinese)
� ISO-8859–13 (Latin-7/Baltic)
� ISO-8859–14 (Latin-8/Celtic)
� KOI8–U (Cyrillic/Ukrainian)
� Shift_JIS (Japanese in Shift JIS)
� GB2312 (Simplified Chinese in EUC)
� TIS-620 (Thai)
� UTF-16 (UCS Transmission Format 16 bit)
� UTF-16BE (UTF-16 Big-Endian)
� UTF-16LE (UTF-16 Little-Endian)
� Windows-1250
� Windows-1251
� Windows-1252
� Windows-1253
� Windows-1254
� Windows-1255
� Windows-1256
� Windows-1257
� Windows-1258
� Big5 (Traditional Chinese)
� UTF-32 (UCS Transmission Format 32 bit)
� UTF-32BE (UTF-32 Big-Endian)
� UTF-32LE (UTF-32 Little-Endian)

This support supports users to view virtually any kind of email encoded in various
character sets from any region of the world in a single instance of DtMail. DtMail
decodes received email by looking at the MIME charset and content transfer encoding
provided with the email. Windows-125x MIME charsets are supported.

For sending email, you need to specify a MIME charset that is understood by the
recipient mail user agent (mail client), or you can use the default MIME charset
provided by the en_US.UTF-8 locale. You can switch the character set of outgoing
email, in the New Message window, press Control Y, or click the Format menu
button and then click the Change Char Set button. The next available character set
name displays in the bottom left corner at the top of the Send button.

If your email message header or message body contains characters that cannot be
represented by the MIME charset specified, the system automatically switches the
charset to UTF-8 which can represent any character.

If your message contains characters from the 7-bit US-ASCII character set only, the
default MIME charset of your email is US-ASCII. Any mail user agent can interpret
such email messages without loss of characters or information.

Chapter 5 • Overview of UTF-8 Locale Support 121

If your message contains characters from a mixture of scripts, the default MIME
charset is UTF-8. Any 8-bit characters of UTF-8 are encoded with Quoted-Printable
encoding. For more details on MIME, registered MIME charsets, and Quoted-Printable
encoding, refer to RFCs 2045, 2046, 2047, 2048, 2049, 2279, 2152, 2237, 1922, 1557, 1555,
and 1489.

FIGURE 5–12 DtMail New Message Window

Programming Environment
Internationalized applications should automatically enable the en_US.UTF-8 locale.
However, proper FontSet/XmFontList definitions in the application’s resource file are
required.

122 International Language Environments Guide • May, 2002

For information on internationalized applications, see Creating Worldwide Software:
Solaris International Developer’s Guide, 2nd edition.

FontSet Used with X Applications
For information about the FontSet used with X applications, please see “Unicode
Locale: en_US.UTF-8 Support Overview” on page 94.

Because the Solaris 9 environment supports the CDE desktop environment, each
character set has a guaranteed set of fonts.

The following is a list of the Latin-1 fonts that are supported in the Solaris 9 product:

-dt-interface system-medium-r-normal-xxs sans utf-10-100-72-72-p-59-iso8859-1
-dt-interface system-medium-r-normal-xs sans utf-12-120-72-72-p-71-iso8859-1
-dt-interface system-medium-r-normal-s sans utf-14-140-72-72-p-82-iso8859-1
-dt-interface system-medium-r-normal-m sans utf-17-170-72-72-p-97-iso8859-1
-dt-interface system-medium-r-normal-l sans utf-18-180-72-72-p-106-iso8859-1
-dt-interface system-medium-r-normal-xl sans utf-20-200-72-72-p-114-iso8859-1

-dt-interface system-medium-r-normal-xxl sans utf-24-240-72-72-p-137-iso8859-1

For information on CDE common font aliases, including -dt-interface user-*
and -dt-application-* aliases, see Common Desktop Environment:
Internationalization Programmer’s Guide.

In the en_US.UTF-8 locale, utf is also included in the locale’s common font aliases
as an additional attribute in the style field of the X logical font description name.
Therefore, to have a proper set of fonts, the additional style has to be included in the
font set creation as in the following example:

fs = XCreateFontSet(display,
"-dt-interface system-medium-r-normal-s*utf*",

&missing_ptr, &missing_count, &def_string);

FontList Definition in CDE/Motif Applications
As with FontSet definition, the XmFontList resource definition of an application
should also include the additional style attribute supported by the locale.

*fontList:\
-dt-interface system-medium-r-normal-s*utf*:

Chapter 5 • Overview of UTF-8 Locale Support 123

124 International Language Environments Guide • May, 2002

CHAPTER 6

Complex Text Layout

Complex Text Layout (CTL) extensions enable Motif APIs to support writing systems
that require complex transformations between logical and physical text
representations, such as those required for Arabic, Hebrew, and Thai. CTL Motif
provides character shaping, such as ligatures, diacritics, and segment ordering , and
supports the transformation of static and dynamic text widgets. It also supports
right-to-left and left-to-right text orientation and tabbing for dynamic text widgets.
Because text rendering is handled through the rendition layer, other widget libraries
can be easily extended to support CTL.

Overview of CTL Technology
To leverage the new features, users must have the Portable Layout Services (PLS)
library and the appropriate language engine. CTL uses PLS as the interface to the
language engine, and uses the language engine to transform text before the text is
rendered. Applications that support CTL must include additional resources, as
described in the CTL documentation.

Specifically, XomCTL supports the following complex language shaping and
reordering features provided by underlying locale-dependent PLS module
transformations:

� Positional variation
� Ligation (many-to-one) and character composition (one-to-many)
� Diacritics
� Bidirectionality
� Symmetrical swapping
� Numeral shaping
� String validation

125

Overview of CTL Architecture
The CTL architecture is organized as shown in Figure 6–1. Dt Apps at the top of the
stack employs Motif CTL functionality for rendering text. Motif in turn interfaces with
locale-specific language engines using PLS, and performs transformations to support
positional variation, numeral shaping, and so on.

The CTL architecture is built to support new languages by adding a new
locale-specific engine. In other words, support for Thai and Vietnamese can be added
without altering Motif or Dt Apps.

PLS/Portable Layout Services

XomCTLMotif

DT Apps/XomCTL Apps

UMLE/Ar/HE/TH/. . .

FIGURE 6–1 CTL Architecture

CTL Support for X Library Based
Applications
XomCTL (Complex Text Layout support in X Library Output Module) allows all pure
X Windows applications (such as an X-based terminal emulator) to have CTL support.
XomCTL provides a full-featured Open Source XI18N implementation including X11
dumb font support.

New XOC Resources
The following XOC resources are provided by the Solaris 9 environment:

XNText Enables user to set the text buffer on which CTL
operation needs to be performed.

126 International Language Environments Guide • May, 2002

XNTextLayoutNumGlyphs Provides number of glyphs for the text in the text
buffer.

XNTextLayoutModifier Same as XmNLayoutModifier of Motif.

XNTextLayoutProperty Same as PLS Property, input-to-output and
output-to-input.

XNTextLayoutMapInpToOut Same as PLS Property, input-to-output and
output-to-input.

XNTextLayoutMapOutToInp Same as PLS Property, input-to-output and
output-to-input.

Descriptions of these may be obtained from the specification of X/Open or PLS
Portable Layout Services.

Changes in Motif to Support CTL
Technology
The following chages to Motif support the CTL technology:

XmNlayoutDirection Controls object layout.

XmStringDirection Specifies the direction in which the system
displays characters of a string.

XmRendition Adds new pseudo resources to
XmRendition.

XmText and XmTextField Affects the layout behavior of the text
associated with the XmRendition.

XmTextFieldGetLayoutModifier Returns the layout modifier string of a
rendition layout object.

XmTextGetLayoutModifier Returns the value of the current layout
object settings of the rendition associated
with the widget.

XmTextFieldSetLayoutModifier Sets the layout modifier values for the
layout object tied to its rendition.

XmTextSetLayoutModifier Modifies the layout object settings of a
rendition associated with the widget.

XmStringDirectionCreate Creates a compound string.

Chapter 6 • Complex Text Layout 127

XmNlayoutDirection
The XmNlayoutDirection resource1 controls object layout. It interacts with the
orientation value of the LayoutObject in the manner described below.

Determining the Layout Direction
When XmNlayoutDirection is specified as XmDEFAULT_DIRECTION, then the
widget’s layout direction is set at creation time from the governing pseudo-XOC. In
the case of dynamic text (XmText and XmTextField), the governing pseudo-XOC is
the one that is associated with the XmRendition used for the widget. In the case of
static text (XmList, XmLabel, XmLabelG), the layout direction is set from the first
compound string component that specifies a direction. This specification happens in
one of two ways:

Directly The component is of type XmSTRING_COMPONENT_LAYOUT_PUSH or
XmSTRING_COMPONENT_DIRECTION.

Indirectly The component is of type XmSTRING_COMPONENT_LOCALE_TEXT,
XmSTRING_COMPONENT_WIDECHAR_TEXT, or
XmSTRING_COMPONENT_TEXT, from the component’s associated
XmRendition’s and associated LayoutObject.

When XmNlayoutDirection is not specified as XmDEFAULT_DIRECTION, and the
XmNlayoutModifier @ls orientation value is not specified explicitly in the
layout modifier string, then the XmNlayoutDirection value is passed through to
the XOC and its LayoutObject.

If both XmNlayoutDirection and the XmNlayoutModifier @ls orientation
value are explicitly specified, then the behavior is mixed. The XmNlayoutDirection
controls widget object layout, and the XmNlayoutModifier @ls orientation
value controls layout transformations.

See CAE Specification: Portable Layout Services: Context-dependent and Directional Text.
The Open Group: Feb 1997; ISBN 1-85912-142-X; document number C616 for a
description of portable functions for handling context-dependent and bidirectional
text transformations as a logical extension to the existing POSIX locale model. The
document is intended for system and application programmers who want to provide
support for complex-text languages.

1 See section 11.3 of the Motif Programmer’s Guide (Release 2.1) for an overview of XmNlayoutDirection, and especially for a
description of the interaction between XmStringDirection and XmNlayoutDirection.

128 International Language Environments Guide • May, 2002

XmStringDirection
XmStringDirection is the data type used to specify the direction in which the
system displays characters of a string.

The XmNlayoutDirection resource sets a default rendering direction for any
compound string (XmString) that does not have a component specifying the
direction of that string. Therefore, to set the layout direction, you need to set the
appropriate value for the XmNlayoutDirection resource. You do not need to create
compound strings with specific direction components. When the application renders
an XmString, the application should look to see if the string was created with an
explicit direction (XmStringDirection). If there is no direction component, the
application should check the value of the XmNlayoutDirection resource for the
current widget and use that value as the default rendering direction for the
XmString.

XmRendition
CTL adds the new pseudo resources to XmRendition listed in the following table:

TABLE 6–1 New Resources in XmRendition

Name Class/Type Access Default Value

XmNfontType XmCFontType/XmFontType CSG XmAS_IS

XmNlayoutAttrObject XmClayoutAttrObject/String CG NULL

XmNlayoutModifier XmClayoutModifier/String CSG NULL

XmNfontType
Specifies the type of the Rendition font object. For CTL, the value of this resource
must be the XmFONT_IS_XOC value. If the value does not match, then the
XmNlayoutAttrObject and XmNlayoutModifier resources are ignored.

When the value of this resource is XmFont_IS_XOC, and if the XmNfont resource is
not specified, then at create time the value of the XmNfontName resource is
converted into an XOC object in either the locale specified by the
XmNlayoutAttrObject resource or the current locale. Furthermore, the value of
the XmNlayoutModifier resource is passed through to any layout object
associated with the XOC.

Chapter 6 • Complex Text Layout 129

XmNlayoutAttrObject
Specifies the layout AttrObject argument. This resource is used to create the
layout object associated with the XOC associated with this XmRendition. Refer to
the layout services m_create_layout() specification for the syntax and semantics
of this string. See the description of XmNfontType for an explanation of the
interaction between the Layout Modifier Orientation output value and the
XmNlayoutDirection widget resource.

XmNlayoutModifier
Specifies the layout values to be passed through to the layout object used with the
XOC for this XmRendition. For the syntax and semantics of this string, see CAE
Specification.

Setting this resource using XmRendition{Retrieve,Update} causes the string
to be passed through to the layout object associated with the XOC associated with
this rendition. This is the mechanism for configuring layout services dynamically.
Unpredictable behavior can result if the Orientation, Context, TypeOfText,
TextShaping, or ShapeCharset are changed.

Additional Layout Behavior
The XmNlayoutModifier affects the layout behavior of the text associated with the
XmRendition. For example, if the layout default treatment of numerals is
NUMERALS_NOMINAL, the user can change to NUMERALS_NATIONAL by setting
XmNlayoutModifier to @ls numerals=nominal:national, or @ls
numerals=:national.

The layout values can be classified into the following groups:

� Encoding description-TypeOfText, TextShaping, ShapeCharset (and locale
codeset)

TypeOfText is essentially segment ordering and can be illustrated with opaque
blocks. Modifying these values dynamically, through the rendition object, is not
usually meaningful, and is almost certain to result in unpredictable behavior.

� Layout behavior-Orientation, Context, ImplicitAlg, Swapping, and
Numerals. Orientation and Context should not be modified dynamically. You
can safely modify ImplicitAlg, Swapping, and Numerals.

� Editing behavior-CheckMode

130 International Language Environments Guide • May, 2002

XmText and XmTextField
Xm CTL extends XmText and XmTextField by adding a parallel set of movement
and deletion actions that operate visually, patterned after the Motif 2.0 CSText
widget. The standard Motif 2.1 Text and TextField do not distinguish between
logical and physical order: next and forward mean “to the right,” while previous and
backward mean “to the left.” CSText, however, makes the proper distinction and
defines a new set of actions with strictly physical names (for example,
left-character(), delete-right-word(), and so on). All of these action
routines are defined to be sensitive to the XmNlayoutDirection of the widget and
to call the appropriate next- or previous- action. The Xm CTL extensions are slightly
more complex than the CSText extensions. The Xm CTL extensions are sensitive not
to the global orientation of the widget, but to the specific directionality of the physical
characters surrounding the cursor, as determined by the pseudo-XOC, including
neutral stabilization.

There is also a new resource to control selection policy, to provide a rendition tag, and
to control alignment.

The set of new Xm CTL actions is roughly the cross product of
{Move,Delete,Kill} by {Left,Right} by {Character,Word}, and is listed
below.

TABLE 6–2 New Resources in Xm CTL

Name Class/Type Access Default Value

XmNrenditionTag XmCRenditionTag/XmRString CSG XmFONTLIST_DEFAULT_TAG

XmNalignment XmCAlignment/XmRAlignment CSG XmALIGNMENT_BEGINNING

XmNeditPolicy XmCEditPolicy/XmREditPolicy CSG XmEDIT_LOGICAL

XmNrenditionTag
Specifies the rendition tag of the XmRendition that is in the XmNrenderTable
resource, used for this widget.

XmNalignment
Specifies the text alignment used in the widget. Only XmALIGNMENT_END and
XmALIGNMENT_CENTER are supported.

XmNeditPolicy
Specifies the editing policy used for the widget, either XmEDIT_LOGICAL or
XmEDIT_VISUAL. In the case of XmEDIT_VISUAL, selection, cursor movement, and
deletion are in a visual style. Setting this resource also changes the translations for
the standard keyboard movement and deletion events either to the new “visual”
actions list or to the existing logical actions.

Chapter 6 • Complex Text Layout 131

Character Orientation Action Routines
The forward-cell() and backward-cell() actions query the orientation of the
character in the direction specified. If the direction is left-to-right, they call the
corresponding next-/forward- or previous-/backward- variants:

Character Orientation Additional Behavior
The actions determine the orientation of characters by using the Layout Services
transformation OutToInp and Property buffers (for the nesting level). The widget’s
behavior is therefore dependent on the locale-specific transformation. If the
information in the OutToInp or, especially, Property buffers is inaccurate, the
widget might behave unexpectedly. Moreover, as the locale-specific modules fall
outside of the scope of this specification, bi-directional editing behavior can differ from
platform to platform for the same text, application, resource values, and
LayoutObject configuration.

The visual mode actions result in a display of cell-based behavior. The logical mode
actions result in logical character-based behavior. For example, the
delete-right-character() operation deletes the input buffer characters that
correspond to the display cell. That is, one input buffer character whole
LayoutObject transformation “property” byte “new cell indicator” is 1, and all of
the succeeding characters whose “new cell indicator”2 is 0.

Similarly, for backward-character(), the insertion point is moved backward one
character in the input buffer, and the cursor is redrawn at the visual location
corresponding to the associated output buffer character. This means that several
keystrokes are required to move across a composite display cell; the cursor does not
actually change display location as the insertion point moves across input buffer
characters whose “new cell indicator” is 0 (that is, diacritics or ligature fragments).

This means that deletion operates either from the logical/input buffer side, or from the
display cell level of the physical/output side. There is no mode for a strict, physical
character-by-character deletion, since there is no one-to-one correspondence between
the input and output buffers. A given physical character can represent only a fragment
of a logical character, for example.

XmText Action Routines
The follwoing list describes the XmText action routines.

left-character(extend)
If the XmNeditPolicy is XmEDIT_LOGICAL and is called without arguments, the
insertion cursor moves back logically by a character. If the insertion cursor is at the

2 For more information on the Property buffer, see the specification for m_transform_layout() in CAE Specification.

132 International Language Environments Guide • May, 2002

beginning of the line, the insertion cursor moves to the logical last character of the
previous line, if one exists. Otherwise, the insertion cursor position doesn’t change.

If the XmNeditPolicy is XmEDIT_VISUAL, then the cursor moves to the left of the
cursor position. If the insertion cursor is at the beginning of the line, then it moves
to the end character of the previous line, if one exists.

If left-character() is called with an extend argument, the insertion cursor
moves, as in the case of no argument, and extends the current selection.

The left-character() action produces calls to the
XmNmotionVerifyCallback procedures with the reason value
XmCR_MOVING_INSERT_CURSOR. If called with an extend argument, this action
can produce calls to the XmNgainPrimaryCallback procedures. See the callback
description in the Motif Programmer’s Reference for more information.

right-character(extend)
If the XmNeditPolicy is XmEDIT_LOGICAL and is called without any arguments,
it moves the insertion cursor logically forward by a character. If the insertion cursor
is at the logical end of the line, it moves the insertion cursor to the logical starting
of the next line, if one exists.

If the XmNeditPolicy is XmEDIT_VISUAL, then the cursor moves to the right of
the cursor position. If the insertion cursor is at the end of the line, it moves the
insertion cursor to the starting of the next line, if one exists.

If called with an argument of extend, it moves the insertion cursor, as in the case
of no argument, and extends the current selection.

The right-character() action produces calls to the
XmNmotionVerifyCallback procedures with the reason value
XmCR_MOVING_INSERT_CURSOR. If called with extend argument, this can
produce calls to the XmNgainPrimaryCallback procedures. See the callback
description in the Motif Programmer’s Reference for more information.

right-word(extend)
If the XmNeditPolicy is XmEDIT_LOGICAL and is called without any arguments,
it moves the insertion cursor to the logical starting of the logical succeeding word, if
one exists; otherwise, it moves to the logical end of the current word. If the
insertion cursor is at the logical end of the line or in the logical last word of the line,
it moves the cursor to the logical first word in the next line, if one exists; otherwise,
it moves to the logical end of the current word.

If the XmNeditPolicy is XmEDIT_VISUAL and is called without arguments, it
moves the insertion cursor to the first nonwhite space character after the first white
space character to the right or after the end of the line.

If called with an argument of extend, it moves the insertion cursor, as in the case
of no argument, and extends the current selection.

Chapter 6 • Complex Text Layout 133

The left-word() action produces calls to the XmNmotionVerifyCallback
procedures with the reason value XmCR_MOVING_INSERT_CURSOR. If called with
extend argument, this can produce calls to the XmNgainPrimaryCallback
procedures. See the callback description in the Motif Programmer’s Reference for more
information.

delete-left-character()
If the XmNeditPolicy is XmEDIT_LOGICAL, it is equivalent to
delete-previous-char(). If the XmNeditPolicy is XmEDIT_VISUAL, then in
normal mode, if there is a non-null selection, it deletes the selection; otherwise it
deletes the character left of the insertion cursor. In add mode, if there is a non-null
selection, the cursor is not disjointed from the selection and XmNpendingDelete is
set to True, it deletes the selection; otherwise, it deletes the character left of the
insertion cursor. This can impact the selection.

The delete-left-character() action produces calls to the
XmNmodifyVerifyCallback procedures with reason value
XmCR_MODIFYING_TEXT_VALUE and the XmNvalueChangedCallback
procedures with reason value XmCR_VALUE_CHANGED.

delete-right-character()
If the XmNeditPolicy is XmEDIT_VISUAL, it is equivalent to
delete-next-character(). If the XmNeditPolicy is XmEDIT_VISUAL, then
in normal mode, if there is a non-null selection, it deletes the selection; otherwise, it
deletes the character right of the insertion cursor. In add mode, if there is a non-null
selection and the cursor is not disjointed from the selection, the
XmNpendingDelete is set to True and the selection is deleted; otherwise, the
character right of the insertion cursor is deleted. This can impact the selection.

The delete-right-character() action produces calls to the
XmNmodifyVerify-Callback procedures with reason value
XmCR_MODIFYING_TEXT_VALUE, and the XmNvalue-ChangedCallback
procedures with reason value XmCR_VALUE_CHANGED.

A few cell-based routines are implemented to support character composition,
ligatures, and diacritics. In other words, two or more characters might be represented
by a single glyph occupying one presentation cell.

The XmText cell action routines are as follows:

backward-cell(extend)
Moves the insertion cursor back one cell. If the XmNeditPolicy is
XmEDIT_LOGICAL, then the insertion cursor is moved to the start of the cell that
precedes the current cell logically, if one exists; otherwise, it moves to the start of
the current cell.

If the XmNeditPolicy is XmEDIT_VISUAL, then the cursor moves to the start of
cell to the left of the cursor, if one exists. The prev-cell() action produces calls to
the XmNmotionVerifyCallback procedures with the reason value

134 International Language Environments Guide • May, 2002

XmCR_MOVING_INSERT_CURSOR. If called with an extend argument, this can
produce calls to the XmNgainPrimaryCallback procedures. See the callback
description in the Motif Programmer’s Reference for more information.

forward-cell(extend)
Moves the insertion cursor to the start of the logical next cell, if one exists;
otherwise it moves it to the end of the cell. If the XmNeditPolicy is
XmEDIT_LOGICAL, then the cursor moves forward one cell.

If the XmNeditPolicy is XmEDIT_VISUAL, then the cursor moves to the start of
the cell to the right of the cursor position, if one exists; otherwise, it moves to the
end of the current cell. The forward-cell() action produces calls to the
XmNmotionVerifyCallback procedures with the reason value
XmCR_MOVING_INSERT_CURSOR. If called with an extend argument, this can
produce calls to the XmNgainPrimaryCallback procedures. See the callback
description in the Motif Programmer’s Reference for more information.

XmTextFieldGetLayoutModifier
XmTextFieldGetLayoutModifier() returns the layout modifier string that reflects
the state of the layout object tied to its rendition.

The syntax for XmTextFieldGetLayoutModifier() is:

#include <Xm/TextF.h>
String XmTextFieldGetLayoutModifier(Widget widget)

XmTextFieldGetLayoutModifier() accesses the value of the current layout object
settings of the rendition associated with the widget. When the layout object modifier
values are changed using a convenience function, the
XmTextFieldGetLayoutModifier function returns the complete state of the layout
object, not only the changed values.

XmTextFieldGetLayoutModifier() returns the layout object modifier values in
the form of a string value.

XmTextGetLayoutModifier
XmTextGetLayoutModifier() returns the layout modifier string that reflects the
state of the layout object tied to its rendition.

The syntax for XmTextGetLayoutModifier() is:

Chapter 6 • Complex Text Layout 135

#include <Xm/Text.h>
String XmTextGetLayoutModifier(Widget widget)

XmTextGetLayoutModifier accesses the value of the current layout object settings
of the rendition associated with the widget. When the layout object modifier values
are changed using a convenience function, the XmTextGetLayoutModifier function
returns the complete state of the layout object, not just the changed values.

XmTextGetLayoutModifier returns the layout object modifier values in the form of
a string value.

XmTextFieldSetLayoutModifier
XmTextFieldSetLayoutModifier() sets the layout modifier values, which
changes the behavior of the layout object tied to its rendition.

The syntax for XmTextFieldSetLayoutModifier() is:

#include <Xm/TextF.h>
void XmTextFieldSetLayoutModifier(Widget widget,string layout_modifier)

XmTextFieldSetLayoutModifier modifies the layout object settings of a rendition
associated with the widget. When the layout object modifier values are set using this
convenience function, only the attributes specified in the input parameter are changed;
the rest of the attributes remain untouched.

XmTextSetLayoutModifier
XmTextSetLayoutModifier() sets the layout modifier values, which changes the
behavior of the layout object tied to its rendition.

The syntax for XmTextSetLayoutModifier() is:

#include <Xm/Text.h>
void XmTextSetLayoutModifier(Widget widget,string layout_modifier)

XmTextSetLayoutModifier modifies the layout object settings of a rendition
associated with the widget. When the layout object modifier values are set using this
convenience function, only the attributes specified in the input parameter are changed;
the rest of the attributes are left untouched.

136 International Language Environments Guide • May, 2002

XmStringDirectionCreate
XmStringDirectionCreate creates a compound string.

The syntax for XmTextSetLayoutModifier() is:

#include <Xm/Xm.h>
XmString XmStringDirectionCreate(direction)
XmStringDirection direction

XmStringDirectionCreate creates a compound string with a single component, a
direction with the given value. On the other hand, the XmNlayoutDirection
resource sets a default rendering direction for any compound string (XmString) that
does not have a component specifying the direction for that string. Therefore, to set
the layout direction, all you need to do is set the appropriate value for the
XmNlayoutDirection resource. You need not create compound strings with specific
direction components. When the application renders an XmString, it should look to
see if the string was created with an explicit direction (XmStringDirection). If there
is no direction component, the application should check the value of the
XmNlayoutDirection resource for the current widget and use that value as the
default rendering direction for the XmString.

UIL Arguments
The following table shows the UIL arguments.

TABLE 6–3 UIL

UIL Argument Name Argument Type

XmNlayoutAttrObject String

XmNlayoutModifier String

XmNrenditionTag String

XmNalignment Integer

XmNeditPolicy Integer

Chapter 6 • Complex Text Layout 137

How to Develop CTL Applications
The following sections show how to develop CTL applications.

Layout Direction
The direction of a compound string is stored so that the data structure is equally
useful for describing text in left-to-right languages such as English, Spanish, French,
and German, or for text in right-to-left languages, such as Hebrew and Arabic. In
Motif applications, you can set the layout direction using the XmNlayoutDirection
resource from the VendorShell or MenuShell. Manager and Primitive widgets (as well
as Gadgets) also have an XmNlayoutDirection resource. The default value is
inherited from the closest ancestor with the same resource.

In the case of an XmText widget, you must specify the vertical direction as well.
Setting the layoutDirection to XmRIGHT_TO_LEFT results in the string direction
from right-to-left, but the cursor moves vertically down. If the vertical direction is
important and you require top to bottom alignment, be sure to specify
XmRIGHT_TO_LEFT_TOP_TO_BOTTOM, which specifies that the components are laid
out from right-to-left first and then top-to-bottom, and results in the desired behavior.

Furthermore, the behavior of XmText and TextField widgets is influenced by the
XmNalignment and XmNlayoutModifier resources of the XmRendition. These
resources, in addition to XmNlayoutDirection, control the layout behavior of the
Text widget. This behavior is illustrated in Figure 6–2.

The input string used in the figure is:

The XmNlayoutModifier string @ls orientation= setting values for the
following figure are shown in the left column.

138 International Language Environments Guide • May, 2002

Layout Direction: XmLEFT_TO_RIGHT

XmALIGNMENT_BEGINNING XmALIGNMENT_END

@ls orientation=

@ls orientation=

ltr:ltr

rtl:rtl

Layout Direction: XmRIGHT_TO_LEFT

XmALIGNMENT_BEGINNING XmALIGNMENT_END

@ls orientation=

@ls orientation=

ltr:ltr

rtl:rtl

FIGURE 6–2 Layout Direction

As the illustration shows, XmNAlignment dictates whether the text is flush right or
left in conjunction with the layout direction. XmNlayoutModifier breaks the text
into segments and arranges them left-to-right or right-to-left, depending on the
orientation value. In other words, if the XmNlayoutDirection is
XmRIGHT_TO_LEFT, and the XmNAlignment value is XmALIGNMENT_BEGINNING,
the string is flush right.

Creating a Rendition
The following code creates an XmLabel whose XmNlabelString is of the type
XmCHARSET_TEXT, using the Rendition whose tag is “ArabicShaped.” The
Rendition is created with an XmNlayoutAttrObject of “ar” (corresponding to the
locale name for the Arabic locale) and a layout modifier string that specifies for the
output buffer a Numerals value of NUMERALS_CONTEXTUAL and a ShapeCharset
value of “unicode-3.0.”

Chapter 6 • Complex Text Layout 139

The locale-specific layout module transforms its input text into an output buffer of
physical characters encoded using the 16-bit Unicode 3.0 codeset. Because an explicit
layout locale has been specified, this text is rendered properly independent of the
runtime locale setting. In this example, the input is encoded in ISO 8859–6.

int n;
Arg args[10];
Widget w;
XmString labelString;
XmRendition rendition;
XmStringTag renditionTag;
XmRenderTable renderTable;

/* alef lam baa noon taa - iso8859-6 */
labelString = XmStringGenerate("\307\344\310\346\312\", NULL

XmCHARSET_TEXT, "ArabicShaped");
w = XtVaCreateManagedWidget("a label", xmLabelWidgetClass, parent,

XmNlabelString, labelString,
XmNlabelType, XmSTRING,

NULL);
n = 0;
XtSetArg(args[n], XmNfontName, "-*-*-medium-r-normal-*-24-*-*-*-*-*-*");

n++;
XtSetArg(args[n], XmNfontType, XmFONT_IS_XOC); n++;
XtSetArg(args[n], XmNlayoutAttrObject, "ar"); n++;
XtSetArg(args[n], XmNlayoutModifier,

"@ls numerals=:contextual, shapecharset=iso8859-6"); n++;
renditionTag = (XmStringTag) "ArabicShaped";
rendition = XmRenditionCreate(w, renditionTag, argcs
s, n);
renderTable =

XmRenderTableAddRenditions(NULL, &rendition, 1, XmREPLACE_MERGE);

XtVaSetValues(w, XmNrenderTable, renderTable, NULL);

Editing a Rendition
The following code creates a TextField widget and a RenderTable with a single
Rendition. Both the XmNlayoutAttrObject and XmNlayoutModifier pseudo
resources have been left unspecified and therefore default to NULL. This value means
the layout object associated with the Rendition belongs to the default locale, if one
exists.

For this example to work properly, the locale must be set to one whose codeset is ISO
8859-6 and whose locale-specific layout module can support the IMPLICIT_BASIC
algorithm. The Rendition’s LayoutObject’s ImplicitAlg value is modified
through the Rendition’s XmNlayoutModifier pseudo resource.

int n;
Arg args[10];
Widget w;

XmRendition rendition;
XmStringTag renditionTag;

140 International Language Environments Guide • May, 2002

XmRenderTable renderTable;
w = XmCreateTextField(parent, "text field", args, 0);
n = 0;

XtSetArg(args[n], XmNfontName, "-*-*-medium-r-normal-*-24-*-*-*-*-*-*-*");
n++;
XtSetArg(args[n], XmNfontType, XmFONT_IS_XOC); n++;

renditionTag = (XmStringTag) "ArabicShaped";
rendition = XmRenditionCreate(w, renditionTag, args, n);
renderTable =

XmRenderTableAddRenditions(NULL, &rendition, 1, XmREPLACE_MERGE);
XtVaSetValues(w, XmNrenderTable, renderTable, NULL);

....
n = 0;
XtSetArg(args[n], XmNlayoutModifier, "@ls implicitalg=basic");

n++;

XmRenditionUpdate(rendition, args, n);

Creating a Render Table in a Resource
File
Renditions and render tables should be specified in resource files for a properly
internationalized application. When the render tables are specified in a file, the
program binaries are made independent of the particular needs of a given locale, and
can be easily customized to local needs.

Render tables are specified in resource files with the following syntax:
resource_spec:[tag[,tag]*]

where tag is some string suitable for the XmNtag resource of a rendition.

This line creates an initial render table containing one or more renditions as specified.
The renditions are attached to the specified tags:

resource_spec[*|.] rendition[*|.]resource_name:value

The following examples illustrate the CTL resources related to XmRendition that can
be set using resource files. The fontType must be set to FONT_IS_XOC for the layout
object to take effect. The layoutModifier specified using @ls is passed on to the
layout object by the rendition object.

For a complete list of resources that can be set on the layout object using
layoutModifier, see CAE Specification: Portable Layout Services: Context-dependent and
Directional Text, The Open Group: Feb 1997; ISBN 1-85912-142-X; document number
C616.

Chapter 6 • Complex Text Layout 141

Creating a Render Table in an
Application
Before creating a render table, an application program must first have created at least
one of the renditions that is part of the table. The
XmRenderTableAddRenditions() function, as its name implies, is also used to
augment a render table with new renditions. To create a new render table, call the
XmRenderTableAddRenditions() function with a NULL argument in place of an
existing render table.

The following code creates a render table using a rendition created with
XmNfontType set to XmFONT_IS_XOC.

int n;
Arg args[10];
Widget w;
XmString labelString;
XmRendition rendition;
XmStringTag renditionTag;
XmRenderTable renderTable;

/* alef lam baa noon taa - iso8859-6 */
labelString = XmStringGenerate("\307\344\310\346\312\", NULL

XmCHARSET_TEXT, "ArabicShaped");
w = XtVaCreateManagedWidget("a label", xmLabelWidgetClass, parent,

XmNlabelString, labelString,
XmNlabelType, XmSTRING,

NULL);
n = 0;
XtSetArg(args[n], XmNfontName, "-*-*-medium-r-normal-*-24-*-*-*-*-*-*-*");

n++;
XtSetArg(args[n], XmNfontType, XmFONT_IS_XOC); n++;
XtSetArg(args[n], XmNlayoutAttrObject, "ar"); n++;
XtSetArg(args[n], XmNlayoutModifier,

"@ls numerals=nominal:contextual, shapecharset=iso8859-6"); n++;
renditionTag = (XmStringTag) "ArabicShaped";
rendition = XmRenditionCreate(w, renditionTag, args, n);
renderTable =

XmRenderTableAddRenditions(NULL, &rendition, 1, XmREPLACE);

XtVaSetValues(w, XmNrenderTable, renderTable, NULL);

142 International Language Environments Guide • May, 2002

Horizontal Tabs
To control the placement of text, a compound string can contain tab characters. To
interpret those characters on display, a widget refers to the rendition in effect for that
compound string, where it finds a list of tab stops. However, the dynamic
widgets,TextField and XmText, do not use the tab resource of the rendition.
Instead, they compute the tab width using the formula of 8*(width of character
0).

The tab measurement is the distance from the left margin of the compound string
display. This distance is measured from the right margin, if the layout direction is
right-to-left. Regardless of the direction of the text (Arabic right-to-left or English
left-to-right), the tab inserts space to the right or left, as specified by the layout
direction (XmNlayoutDirection).

The text following a tab is always aligned at the tab stop. The tab stop is calculated
from the start of the widget, which in turn is influenced by XmNlayoutDirection.
The behavior of the tabs and their interaction with directionality of the text and the
XmNlayoutDirection of the widget is illustrated in the following figure.

The input for this illustration is abc\tdef\tgh.

Chapter 6 • Complex Text Layout 143

Layout Direction: XmLEFT_TO_RIGHT

Layout Direction: XmRIGHT_TO_LEFT

FIGURE 6–3 Tabbing Behavior

Mouse Selection
The user makes a primary selection with mouse button 1. Pressing this button
deselects any existing selection and moves the insertion cursor and the anchor to the
position in the text where the button is pressed. Dragging while holding down
mouxse button 1 selects all text between the anchor and the pointer position,
deselecting any text outside the range.

The text selected is influenced by the resource XmNeditPolicy, which can be set to
XmEDIT_LOGICAL or XmEDIT_VISUAL. If the XmNeditPolicy is set to
XmEDIT_LOGICAL, and if the text selected is bi-directional, the selected text is not
contiguous visually and is a collection of segments. This is because the text in the
logical buffer does not have a one-to-one correspondence with the display.

144 International Language Environments Guide • May, 2002

As a result, the contiguous buffer of logical characters of bidirectional text, when
rendered does not result in a continuous stream of characters. Conversely, when the
XmNeditPolicy is set to XmEDIT_VISUAL, the selected text can be contiguous
visually but is segmented in the logical buffer. Therefore, the sequence of selection,
deletion, and insertion of bidirectional text at the same cursor point does not result in
the same string.

Keyboard Selection
The selection operation available with the mouse is also available with the keyboard.
The combination of Shift-arrow keys allows the selection of text.

The selected text is influenced by the resource XmNeditPolicy, which can be set to
XmEDIT_LOGICAL or XmEDIT_VISUAL. If the XmNeditPolicy is set to
XmEDIT_LOGICAL, and if the selected text is bidirectional, the selected text is not
contiguous visually. Because the text in the logical buffer does not have one-to-one
correspondence with the display, the contiguous buffer of logical characters of
bidirectional text, when rendered, does not result in a continuous stream of characters.

Conversely, when the XmNeditPolicy is set to XmEDIT_VISUAL, the text selected
can be contiguous visually but is segmented in the logical buffer. Therefore, the
sequence of selection, deletion, and insertion of bidirectional text at the same cursor
point does not result in the same string.

Text Resources and Geometry
The text resources that relate to geometry are the following:

� The render table XmNrenderTable that the widget uses to select a font or font set
and other attributes in which to display the text.

The Text and Textfield widgets can use only the font-related rendition
resources, such as XmNfontType. These widgets can also specify the attributes of
the layout object, such as XmNlayoutAttrObject, usually a locale identifier, and
XmNlayoutModifier, which specifies the layout values to be passed through to
the Layout Object associated with the XOC associated with this XmRendition.

� A resource (XmNwordWrap) that specifies whether lines are broken at word
boundaries when the text would be wider than the widget.

Breaking a line at a word boundary does not insert a new line into the text. In the
case of cursive languages like Arabic, if the word length is greater than the widget
length, the word is wrapped to the next line, but the first character in the next line

Chapter 6 • Complex Text Layout 145

is shaped independently of the previous character in the logical buffer.

Porting Instructions
The new Motif library enabled for Complex Text Layout (CTL) , is located in
/usr/dt/lib/libXm.so.4. If your application links to libXm.so.3 it does not
support CTL. ldd app_name shows the library to which the application is linking. To
port the existing applications to enable CTL, you need to perform the following steps.

1. Add -DSUN_CTL to your Makefile. This flag is important and includes the
necessary data structures to support CTL. This should be set during compilation.

2. Recompile the existing application. This recompilation automatically links with the
CTL-enabled Motif library libXm.so.4

3. Add the XmText.translations resources to your application resource file.
Without these resources, the layout engine of the locale does not launch.

4. Refer to the sample application attached to your documentation.

Note – Use the font name that is available and appropriate to your locale in the
fontName resource.

For example, if you want the cell-based character movement (Thai) in XmTextField
or XmText widgets, set the translations of the corresponding widgets as follows:

XmText.translations: #override \n\

<Key>osfRight:forward-cell() \n\

<Key>osfLeft:backward-cell() \n\

<Key>osfDelete:delete-next-cell() \n\

<Key>osfBackSpace:delete-previous-cell() \n\

146 International Language Environments Guide • May, 2002

CHAPTER 7

Print Filter Enhancement With mp

This chapter describes print enhancement with mp. It discusses the following topics:

� “Printing for UTF-8” on page 147
� “mp Print Filter Enhancement Overview” on page 148
� “Localization of the Configuration File” on page 150
� “Locale-dependent prolog Files” on page 156
� “Customizing Existing prolog Files and Adding New prolog Files” on page 156
� “PostScript File Customization” on page 156
� “.xpr File Customization” on page 159
� “Creating a New .xpr File” on page 162

Printing for UTF-8
An enhanced mp(1) print filter is available in the Solaris 9 environment that can print
various input file formats including flat text files written in UTF-8. It uses TrueType
and Type 1 scalable fonts and X11 bitmap fonts available on the Solaris system. It can
also make use of printer resident fonts and can act as an X print server client.

The output from the utility is standard PostScript and can be sent to any PostScript
printer. mp(1) can also output any page description language when working as an X
Print server client, mp is supported by the print server.

To use the utility, type the following:

system% mp filename | lp

You can also use the utility as a filter, since the utility accepts stdin stream

system% cat filename | mp | lp

:

147

You can set the utility as a printing filter for a line printer. For example, the following
command sequence tells the printer service LP that the printer lp1 accepts only mp
format files. This command also installs the printer lp1 on port /dev/ttya. See the
lpadmin(1M) man page for more details.

system# lpadmin -p lp1 -v /dev/ttya -I MP
system# accept lp1
system# enable lp1

Using lpfilter(1M), you can add the utility for a filter as follows:

system# lpfilter -f lp1 -F pathname

The command tells LP that a converter (in this case, mp) is available through the filter
description file named pathname. pathname contains the following:

Input types: simple
Output types: MP
Command: /usr/bin/mp

The filter converts the default type file input to PostScript output using
/usr/bin/mp.

To print a UTF-8 text file, use the following command

system% lp -T MP UTF-8-file

Refer to the mp man page for more detail.

mp Print Filter Enhancement Overview
The mp print filter is enhanced in the Solaris 9 release. The latest mp can work
internally in three different modes to produce the output file in a locale to print
international text. The available modes are:

� mp working with locale-specific font configuration file mp.conf.
� mp working with locale-specific PostScript prolog file prolog.ps.
� mp working as an Xprt (X Print Server) client.

The following sections describe when to use a specific printing method and which
configuration and supporting files are used by mp for these printing methods.

148 International Language Environments Guide • May, 2002

Using mp with the Locale Specific Font
Configuration File mp.conf
If the -D or -P option is not given in the command line, this printing method is the
default method, unless the prolog.ps file is present in either of
the/usr/openwin/lib/locale/$LANG/print or
/usr/lib/lp/locale/$LANG/mp directories. The prolog.ps file forces mp to
print using PostScript embedded fonts in the file. Even if a prolog.ps exists in a
locale, using the -M option ignores the prolog.ps file and uses a mp.conf file, if it
exists, instead.

This method uses the /usr/lib/lp/locale/$LANG/mp/mp.conf font
configuration file. You may not need to change this file unless you need to print using
alternate fonts. This file can be configured with TrueType, Type 1 or .pcf fonts.
/usr/lib/lp/locale/C/ contains .ps print page layout files common for this
mode of printing as well as the next method. A description of how to customize these
files is provided in “Customizing Existing prolog Files and Adding New prolog
Files” on page 156.

Using mp With the Locale-specific PostScript
Prologue Files
If the -D or -P option is not given in the command line, and
/usr/openwin/lib/locale/$LANG/print/prolog.ps exists, then the
prolog.ps file is prepended to the output. Depending upon the print style of the
.ps prolog page, the layout file is also prepended to the output.

This method of printing makes use of PostScript font files only. Customization of
prolog.ps files is described in “Using mp as an Xprt (X Print Server) Client”
on page 149.

Using mp as an Xprt (X Print Server) Client
This support enables mp to print output for any printer connected to the network
supported by an X Print Server. PostScript and many versions of PCL are also
supported with this command.

If either the -D or -P command opton is used, and no XPDISPLAY variable is set in
your environment, the print server startup script starts an Xprt server at port 2100 in
the machine in which the client is running. The script also terminates the print server
after mp completes. If XPDISPLAY is set, the mp client tries to contact the print server
running at XPDISPLAY. In this case, no attempt is made to start the server if it is not
running.

Chapter 7 • Print Filter Enhancement With mp 149

.The /usr/lib/lp/locale/C/mp directory contains .xpr print page layout files for
mp working as the Xprt client. These are sample files created for 300 dpi printers. If
the target printer has a different dpi value, the dpi value will automatically be
converted to the target printer’s resolution.

Localization of the Configuration File
Configuration files provide the flexibility for adding or changing font entries, or font
group entries.

The system default configuration file /usr/lib/lp/locale/$LANG/mp/mp.conf
where $LANG is a locale environment variable in the locale in which printing occurs.
Users can have a personal configuration file that can be specified by the -u config.file
path option.

A ligature or variant glyph that has been encoded as a character for compatibility is
called a presentation form. The mp.conf file is used mainly for mapping the
intermediate code points in a locale to the presentation forms in the encoding of the
font that is used to print that code point.

Intermediate code points can either be wide characters, or output of the Portable
Layout Services (PLS) layer. Complex Text Layout printing requires that the
intermediate code points be PLS output. The default intermediate code generated by
mp(1) is PLS output.

Font formats currently supported are Portable Compiled Format (PCF), TrueType, and
Type1 format. Both system-resident and printer-resident Type1 fonts are supported.
Keep in mind the following about the format and contents of the mp.conf
configuration file:

� Lines must begin with a valid keyword (directive).
� Arguments to a keyword must appear on the same line as the keyword.
� Lines that begin with a # character are treated as comments until the end of the

line.
� Numeric arguments that begin with 0x are interpreted as a hexadecimal number.

The different sections in the mp.conf file include:

� Font aliasing
� Font group definition

� Mapping from the intermediate code ranges to the font group in a locale
� Associating each font with the shared object that maps the intermediate code

points to the presentation forms in the font encoding

150 International Language Environments Guide • May, 2002

Font Aliasing
The font aliasing section of the mp.conf file is used to define alias names for each font
used for printing. Each line in this section is of the form:

FontNameAlias font-alias-name font-type font-path

font-alias-name
The usual convention for aliasing a font name is to specify the encoding/script
name of the font followed by a letter that indicates whether the font is Roman,
Bold, Italic, or BoldItalic (R, B, I or BI).

For example, /usr/openwin/lib/X11/fonts/75dpi/courR18.pcf.Z,
because it is an iso88591 Roman font, can be given the alias name iso88591R.

font-type
Specify PCF for .pcf fonts, Type1 for Adobe Type1 fonts, and TrueType for
truetype fonts. Only these three kinds of fonts can be configured in this mp.config
file.

font-path
Give the absolute path name for the font files here. For Type1 printer-resident fonts,
just specify the font name, such as Helvetica.

For example,

FontNameAlias prnHelveticaR Type1 Helvetica

Font Group Definition
You can combine same-type fonts to form a font group. The format of the font group is
as follows.

keyword FontGroup.

fontgroupname The group name for the fonts.

GroupType The font type. Create font groups for the same type of fonts only
(PCF, Type1, TrueType).

Roman The Roman Font name in the font group.

Bold The Bold Font name in the font group.

Italic The Italic Font name in the font group.

BoldItalic The BoldItalic Font name in the font group.

For creating a group, only a Roman font entry is required. The Bold, Italic, and
BoldItalic fonts are optional. The different types of fonts are used to display the header
lines for mail/news articles, for example. If only the Roman font is defined, it is used
in place of other fonts.

Chapter 7 • Print Filter Enhancement With mp 151

Mapping Section
The mapping section of the mp.conf files maps from the intermediate code ranges to
the font group in a locale. Each line in this section is as follows.

keyword MapCode2Font.

range_start A 4–byte hexadecimal value that starts with 0x, that indicates the start
of the code range to map to one or more font group.

range_end Indicates the end of the code range to map. It can be ’-’ in which case
only a single intermediate code point is mapped to the target font.

group A Type1, PCF, or TrueType font group, with which the presentation
forms are to be printed.

Association Section
The association section of the mp.conf file associates each font with the shared object
that maps the intermediate code points to the presentation forms in the fonts
encoding. Each line in this section is as follows.

keyword CnvCode2Font.

font alias name The alias name defined for the font.

mapping function Takes in the intermediate code and returns
presentation forms in fonts encoding, which is in
turn used to get the glyph index, and draw the
glyph.

file path having mapping function The .so file name that contains the mapping
function. You can use the utility in dumpcs to find
out the intermediate codeset for EUC locales.

Note – The current TrueType engine used by mp (1) can deal only with format 4 and
PlatformID 3 cmap. That is, you can only configure Microsoft .ttf files. Additionally,
the character map encoding has to be Unicode or Symbol for the TrueType font engine
to work correctly. Because most of the .ttf fonts in the Solaris environment obey
these restrictions, you can map all TrueType fonts in Solaris software within the
mp.conf file.

When you create a shared object for mapping a font that corresponds to a PCF type1
X Logical Fonts Description (XLFD), then create the shared object that maps from the
intermediate code range to the encoding specified by XLFD. For example:

-monotype-arial-bold-r-normal-bitmap-10-100-75-75-p-54-iso8859-8

152 International Language Environments Guide • May, 2002

The corresponding PCF font is:

/usr/openwin/lib/locale/iso_8859_8/X11/fonts/75dpi/ariabd10.pcf.Z

This font is encoded in isoISO 8859-8, so shared objects have to map between
intermediate code and corresponding ISO 8859-8 code points.

If a TrueType font with XLFD:

-monotype-arial-medium-r-normal--0-0-0-0-p-0-iso8859-8

has the corresponding font:

/usr/openwin/lib/locale/iso_8859_8/X11/fonts/TrueType/arial__h.ttf

you should map between the intermediate code and Unicode, because the cmap
encoding for the previous TrueType font is in Unicode. In the example of this TrueType
font, suppose a sample intermediate code in the en_US.UTF-8 locale that corresponds
to a Hebrew character (produced by the PLS layer) is 0xe50000e9. Because the font is
Unicode encoded, design the function within the corresponding .so module in such a
way that when you are passing 0xe50000e9, the output corresponds to presentation
form in Unicode. The example here is 0x000005d9.

The function prototype for the mapping function should be:

unsigned int function(unsigned int inter_code_pt)

The following are optional keyword/value pairs that you can use in mp.conf:

PresentationForm WC/PLSOutput

The default value is PLSOutput. If the user specifies WC, then the intermediate code
points that are generated are wide characters. For CTL printing, this default value
should be used.

If the locale is a non-CTL locale and has the keyboard value is PLSOutput, that value is
ignored and the mp(1) generates wide-character codes instead.

You can use the optional keyword/value pairs listed in the following table if the locale
supports CTL. These variables can assume any of the possible values given in the
middle column of the table.

TABLE 7–1 Optional Keyword/Value Pairs

Optional Keyword Optional Value Default

Orientation ORIENTATION_LTR/

ORIENTATION_RTL/

ORIENTATION_CONTEXTUAL

ORIENTATION_LTR

Chapter 7 • Print Filter Enhancement With mp 153

TABLE 7–1 Optional Keyword/Value Pairs (Continued)
Optional Keyword Optional Value Default

Numerals NUMERALS_NOMINAL/

NUMERALS_NATIONAL/

NUMERALS_CONTEXTUAL

NUMERALS_NOMINAL

TextShaping TEXT_SHAPED/

TEXT_NOMINAL/

TEXT_SHFORM1/

TEXT_SHFORM2/

TEXT_SHFORM3/

TEXT_SHFORM4

TEXT_SHAPED

Adding a Printer-resident Font
The following example illustrates the steps that you need to follow when you add a
new PCF, TrueType, or Type1 printer-resident font to the configuration file.

Replace the font for displaying characters in the range 0x00000021 - 0x0000007f
with a TrueType font instead of the currently configured PCF font.

Before adding a new font, look at various components in the configuration file that
correspond to the currently configured font, as shown next.

FontNameAlias iso88591R PCF /usr/openwin/lib/X11/fonts/75dpi/courR18PCF.Z
FontNameAlias iso88591B PCF /usr/openwin/lib/X11/fonts/75dpi/courB18PCF.Z
.
.
.
FontGroup iso88591 PCF iso88591R iso88591B
.
.
.
MapCode2Font 0x00000020 0x0000007f iso88591
.
.
.
CnvCode2Font iso88591R _xuiso88591 /usr/lib/lp/locale/$LANG/mp/xuiso88591.so

CnvCode2Font iso88591B _xuiso88591 /usr/lib/lp/locale/$LANG/mp/xuiso88591.so

Suppose you selected
/usr/openwin/lib/locale/ja/X11/fonts/TT/HG-MinchoL.ttf as your
candidate for doing the mapping in the en_US.UTF-8 locale. Because this is a
Unicode character-mapped TrueType font file, in the mapping function within the .so
module you only need to have a function that directly returns the incoming ucs-2 code
points.

154 International Language Environments Guide • May, 2002

unsigned short _ttfjis0201(unsigned short ucs2) {
return(ucs2);

}

Save this in a ttfjis0201.c file. Create a shared object as follows.

cc -G -Kpic -o ttfjis0201.so ttfjis0201.c

But if you are mapping a PCF file, such as
/usr/openwin/lib/locale/ja/X11/fonts/75dpi/gotmrk20.pcf.Z, then
look in the fonts.dir file in the
/usr/openwin/lib/locale/ja/X11/fonts/75dpi/ directory. Become familiar
with the encoding, corresponding to XLFD, which is:

-sun-gothic-medium-r-normal--22-200-75-75-c-100-jisx0201.1976-0

If jisx0201 is the encoding, prepare a shared object that maps from ucs-2 to jisx0201.
You need to obtain the mapping table for creating the .so module (if one is not
already provided). For a Unicode locale, find the mappings from the many charsets to
Unicode under ftp.unicode.org/pub/MAPPINGS/. Follow these mappings(1)(1)
in order to write a xu2jis0201.c file:

unsigned short _xu2jis0201(unsigned short ucs2) {
if(ucs2 >= 0x20 && ucs2 <= 0x7d)

return (ucs2);
if(ucs2==0x203e)

return (0x7e);
if(ucs2 >= 0xff61 && ucs2 <= 0xff9f)

return (ucs2 - 0xff60 + 0xa0);
return(0);

}

When you create a mapping file, include all the UCS-2 to jisx0201 cases.

cc -G -o xu2jis0201.so xu2jis0201.c

Creating a Shared Object File
This example creates a shared object file.

Add this font by adding the following lines to the corresponding sections of mp.conf.
The following example shows how to add the TrueType font. The PCF font follows the
same pattern except that you change the keyword to PCF instead of TrueType.

FontNameAlias jis0201R TrueType /home/fn/HG-Minchol.ttf
FontGroup jis0201 TrueType jis0201R
MapCode2Font 0x0020 0x007f jis0201

CnvCode2Font jis0201R _ttfjis0201 <.so path>

where the .so path points to the xu2jis0201.so file.

Chapter 7 • Print Filter Enhancement With mp 155

Invoking mp(1) with the changed mp.conf file causes the range 0x0020-0x007f to
be printed in the new font. Map the other Japanese character ranges too with the same
.so file, for example, the range 0x0000FF61 0x0000FF9F.

To maintain backward compatibility, the
/usr/openwin/lib/locale/$LANG/print/prolog.ps file, if it exists, is used to
create output in the current locale, where $LANG is one of the locale components. In
that situation, no configuration file mechanism is used.

Refer to /usr/lib/lp/locale/en_US.UTF-8/mp/mp.conf, which is a sample
mp.conf file.

Customizing Existing prolog Files and
Adding New prolog Files
The prolog files can be divided into two main categories:

� PostScript prolog files (.ps)
� X print server client prolog files(.xpr).

PostScript File Customization
The PostScript files fall into the following categories:

� Common prolog file

� Print layout prolog files

Locale-dependent prolog Files
The purpose of the prolog.ps file is to set up non-generic fonts. Applications use
these predefined PostScript font names for printing. The prolog file must define at
least the following font names for Desk Set Calendar manager and mp.

� LC_Times-Roman
� LC_Times-Bold
� LC_Helvetica
� LC_Helvetica-Bold
� LC_Courier
� LC_Helvetica-BoldOblique
� LC_Times-Italic

The following example uses these fonts to print the particular local character set
specified:

156 International Language Environments Guide • May, 2002

100 100 moveto
/LC_Times-Roman findfont 24 scale font setfont
(Any text string in your locale) show

The Solaris localization kit provides a sample prolog.ps file for the Japanese
environment. Alternatively, this file is found in the
/usr/openwin/lib/locale/ja/print/ directory.

The following example shwos how to add or change composite fonts in an existing
prolog.ps.

%
(Foo-Fine) makecodeset12
(Base-Font) makeEUCfont

%

Suppose you want to define a composite font called LC_Base-Font:

LC_Base-Font is a composite font of Foo-Fine and a base font called Base-Font.
Foo-Fine is a font that contains the local character set. You do not need any in-depth
PostScript knowledge to add or change a font.

The best way to create a prolog.ps File is to study the example version. In the
example prolog.ps, two routines need to be written, makecodeset12 and
makeEUCfont. Makecodeset12 sets up local font-encoding information. This
routine might differ from locale to locale. MakeEUCfont combines the base font and
the locale font to form a composite font. The creator of the prolog file should have
good knowledge of PostScript in order to write makecodeset12 and makeEUCfont.

prolog.ps file support is kept for backward compatibility only. Do not create a new
prolog.ps file for the printing needs of a locale. Use mp.conf instead.

The path for prolog.ps is

/usr/openwin/lib/locale/$LANG/print/prolog.ps

Common PostScript prolog Files
The common prolog file is mp.common.ps.

Every other page layout prolog file needs to include this file.

The mp.common.ps file resides in the /usr/lib/lp/locale/C/mp/ directory,
contains a PostScript routine to re-encode a font from the standard encoding to the
ISO 8859–1 encoding. The .reencodeISO routine is called from the print layout
prolog files to change encoding of the fonts. Usually this prolog file does not need
any customization. If the users are creating their own prolog files, set the
environment variable MP_PROLOGUE to point to the directory that contains the
modified prolog files.

Chapter 7 • Print Filter Enhancement With mp 157

Print Layout prolog Files
The print layout prolog files, mp.*.ps files, contain routines for controlling the page
layout for printing. In addition to giving a header and a footer for a print page with
user name, print date, and page number, these prolog files can provide other
information. For example, the prolog files can give effective print area dimensions
and landscape and portrait mode of printing to be used.

The Print Layout prolog files are:

� mp.pro.ps
� mp.pro.alt.ps
� mp.pro.fp.ps
� mp.pro.ps
� mp.pro.ts.ps
� mp.pro.altl.ps
� mp.pro.ff.ps
� mp.pro.l.ps
� mp.pro.ll.ps
� mp.pro.tm.ps

A set of standard functions needs to be defined in every prolog file. These functions
are called when a new print page starts, a print page ends, or a new column ends. The
implementations of these functions define the print attributes of the printout.

The following PostScript variables are defined at runtime by the mp(1) binary. All the
print layout files can use these variables for printing dynamic information such as
user name, subject, print time. This information taken from the variables
normally appears in the header or footer of the print page.

User The name of the user who is running mp, obtained from
the system passwd file.

MailFor Variable used to hold the name of the type of article to
print. The possible values for this variable are:

� “Listing for” - When the input is a text file
� “Mail for” - When the input is a mail file
� “Article from” - When the input is an article from a

news group

Subject The subject taken from the mail and news headers. You
can use the -s option to force a subject to the mail and
news files as well as to normal text files.

Timenow The time of print that appears in the header and footer.
This information is taken from the localtime()
function.

The following functions are implemented in print layout prolog files. All these
functions can use subfunctions.

158 International Language Environments Guide • May, 2002

endpage usage : page_number endpage

Called when the bottom of a printed page is reached.
This function restores the graphic context of the page
and issues a “showpage.” In some prolog files the
header and footer information is displayed in only a
page-by-page mode rather than in a column-by-column
mode. You can implement this function to call
subfunctions that display the header and footer gray
scale lozenges.

newpage usage : page_number newpage

Routines or commands to be executed when a new
page begins. Setting landscape print mode, saving the
print graphic context, and translating the page
coordinates are some of the functions for routine.

endcol usage : page_number col_number endcol

Used to display header and footer information. Move
to the new print position, and so forth.

For adding new print layout prolog files, you need to define the following variables
explicitly within the print layout prolog file.

NumCols Number of columns in a print page. Default is 2.

PrintWidth Width of print area in inches. Default is 6.

PrintHeight Height of print area in inches. Default is 9.

.xpr File Customization
These files are located by default at /usr/lib/lp/locale/C/mp/. An .xpr file
corresponds to each PostScript prolog layout file, except for mp.common.ps. You
can define an alternate prolog directory by defining the MP_PROLOGUE environment
variable.

These files work as keyword/values pairs. Lines that start with # are considered
comments. Spaces separate different tokens unless explicitly stated. Three main
sections for each .xpr file are bound by the following keyword pairs:

� STARTCOMMON/ENDCOMMON
� STARTPAGE/ENDPAGE
� STARTCOLUMN/ENDCOLUMN
� STARTFORCEDPAGE/ENDFORCEDPAGE
� STARTFORCEDCOLUMN/ENDFORCEDCOLUMN

Chapter 7 • Print Filter Enhancement With mp 159

Certain keyword/value pairs can be used in these three areas. Each area is described
next.

STARTCOMMON/ENDCOMMON Keywords
All the keyword/value pairs that appear after the STARTCOMMON keyword and before
the ENDCOMMON keyword define general properties of the print page. Different valid
values for a keyword are separated by using "/".

ORIENTATION 0/1
"0" means the printing occurs in portrait and "1" means in landscape.

PAGELENGTH unsigned-integer
A value that indicates the number of lines per logical page.

LINELENGTH unsigned-integer
A value that indicates the number of single column characters per line.

NUMCOLS unsigned-integer
The number of logical pages per physical page.

HDNGFONTSIZE unsigned-integer
The heading font point size in decipoints.

BODYFONTSIZE unsigned-integer
The body font point size in decipoints.

PROLOGDPI unsigned-integer
The dots-per-inch scale in which the current .xpr file is created.

YTEXTBOUNDARY unsigned-integer
This y-coordinate establishes the boundary for text printing in a page or logical
page (column). This boundary is used as an additional check to see whether text
printing is occurring within the expected area. This boundary is needed for
Complex Text Layout and EUC printing, as character height information obtained
from corresponding fonts can be wrong.

STARTTEXT unsigned-integer unsigned-integer
The decipoint x/y points where the actual text printing starts in the first logical
page in a physical page.

PAGESTRING 0/1
The 1 indicates that a "Page" string needs to be appended before the page number
in the heading.

0 indicates that only the page number is displayed.

EXTRAHDNGFONT font string 1, font string 2, ... font string n
The ’font string 1’ to ’font string n’ are X Logical Font Descriptions. The Token that
separates the keyword EXTRAHDNGFONT from the comma separated font name
list is ", not spaces or tabs. These fonts are given preference over the built-in fonts
when the heading is printed. Usually, EXTRABODYFONT is used to assign

160 International Language Environments Guide • May, 2002

printer-resident fonts that are configured in
/usr/openwin/server/etc/XpConfig/C/print/models/<model
name>/fonts directory.

The fonts.dir file contains the XLFD of the printer-resident fonts.

Usually a font is specified as

"-monotype-Gill Sans-Regular-r-normal- -*-%d-*-*-p-0-iso8859-2"

in the .xpr file. "%d", if present, is replaced by mp(1) to the point size of the current
heading fonts in the .xpr file. The x resolution and y resolution are specified by *
and the average width field is set as 0 to indicate selection of a scalable font, if
possible. You can give more specific font names also.

EXTRABODYFONT font string 1, font string 2, ... font string n
The same as EXTRAHDNGFONT, except that these fonts are used to print the page
body.

XDISPLACEMENT signed/unsigned int
Gives the x coordinate displacement to be applied to the page for shifting the
contents of the page in the x direction. This displacement can be a +ve or -ve value.

YDISPLACEMENT signed/unsigned int
The same as x displacement except that the shifting happens in the y direction.

These two keywords are useful when you find that some printers have nonstandard
margin widths and you need to shift the printed contents in a page.

STARTPAGE/ENDPAGE

The keyword value pairs in this section are bound by STARTPAGE and ENDPAGE
keywords. This section contains drawings and heading information that is to be
applied for a physical page. A physical page can contain many logical pages, but all
the drawing routines that are contained between these keywords are applied only
once to a physical page.

The valid drawing entities are LINE and ARC. XDrawLine() and XDrawArc()
functions are executed on values of these keywords.

The dimensions within this section are mapped in PROLOGDPI units. Angles are in
degrees.

LINE x1 y1 x2 y2 The x/y unsigned coordinates define a pair of points
for connecting a line.

ARC x y width height
angle1 angle2

x and y are both unsigned integers that represent the
arc origin. Width and height are unsigned integers that
represent the width and height of the arc.

USERSTRINGPOS x y Unsigned coordinates represent the position in which
the user information is printed on the heading.

Chapter 7 • Print Filter Enhancement With mp 161

TIMESTRINGPOS x y Unsigned coordinates represent the position in which
the time for printing is printed on the heading.

PAGESTRINGPOS x y Unsigned coordinates represent the position to print
the page string for each printed page.

SUBJECTSTRINGPOS x y Unsigned coordinates represent the position to print
the subject in the page.

STARTFORCEDPAGE/ENDFORCEDPAGE

When the -n option is given to mp, all the decorations given within a
STARTPAGE/ENDPAGE section do not print. However, everything included within a
STARTFORCEDPAGE/ENDFORCEDPAGE section prints even if the -n option is given.

STARTCOLUMN/ENDCOLUMN

All keywords are the same as secribed in “STARTPAGE/ENDPAGE” on page 161 except
that the entries in this section are applied to NUMCOLS times to a physical page.

If NUMCOLS is 3, then the printable area of the physical page is divided into three, and
lines, arcs, or heading decorations appear three times per page.

STARTFORCEDCOLUMN/ENDFORCEDCOLUMN

When the -n option is given to mp, all the decorations given within a
STARTCOLUMN/ENDCOLUMN section do not print. However, everything included
within a STARTFORCEDCOLUMN/ENDFORCEDCOLUMN section prints even if the -n
option is given.

Creating a New .xpr File
The following values are the mp(1) program defaults for different keywords if these
values are not specified in the .xpr file for the STARTCOMMON/ENDCOMMON section.

ORIENTATION 0
PAGELENGTH 60
LINELENGTH 80
YTEXTBOUNDARY 3005
NUMCOLS 01
HDNGFONTSIZE 120
PROLOGDPI 300

162 International Language Environments Guide • May, 2002

STARTTEXT 135 280
PAGESTRING 0

No default values are needed for the other two sections bound by
STARTPAGE/ENDPAGE and STARTCOLUMN/ENDCOLUMN.

When you create a new .xpr prolog file, you need to specify only the values that
differ from the default.

To create a page with no decoration, use four logical pages per physical page, in
portrait format.

� STARTCOMMON
� NUMCOLS 04
� LINELENGTH 20
� ENDCOMMON

In this situation, you do not need the other two sections:

� STARTPAGE/ENDPAGE
� STARTCOLUMN/ENDCOLUMN

These parameters are not needed if you are not putting decorations on the printed
page. All the coordinates are in 300 dpi default unless you are not specifying the
PROLOGDPI keyword. If target printer resolution is different, the .xpr file is scaled to
fit into that resolution by the program.

When you create a .xpr file, you must know the paper dimensions beforehand. For
U.S. paper, 8.5x11 inches, for a printer of resolution 300 dpi, 2550X3300 are the total
dimensions. Most printers cannot print from the top left corner of the paper. Instead,
they put some margin around the physical paper. That means that even if you try to
print from 0,0 the printing won’t be in the top left corner of the page. You need to
consider this limitation when you create a new .xpr file.

Chapter 7 • Print Filter Enhancement With mp 163

164 International Language Environments Guide • May, 2002

APPENDIX A

iconv Code Conversions

The following table lists the Unicode-related code conversion modules available in the
Solaris 9 Environment.

TABLE A–1 Available Unicode Related iconv Code Conversion Modules

From Code (Symbol) To Code (Symbol)

646 (ISO 646) UCS-2

646 (ISO 646) USC-2BE

646 (ISO 646) UCS-2LE

646 (ISO 646) USC-4

646 (ISO 646) USC-4BE

646 (ISO 646) USC-4LE

646 (ISO 646) UTF-8

646 (ISO 646) UTF-16

646 (ISO 646) UTF-16BE

646 (ISO 646) UTF-16LE

646 (ISO 646) UTF-32

646 (ISO 646) UTF-32BE

646 (ISO 646) UTF-32LE

ISO8859–11 UTF-8

8859-1 (ISO8859-1) UCS-2

8859-1 (ISO8859-1) UCS-2BE

8859-1 (ISO8859-1) UCS-2LE

165

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

8859-1 (ISO8859-1) UCS-4

8859-1 (ISO8859-1) UCS–4BE

8859-1 (ISO8859-1) UCS-4LE

8859-1 (ISO8859-1) UTF-8

8859-1 (ISO8859-1) UTF-16

8859-1 (ISO8859-1) UTF-16BE

8859-1 (ISO8859-1) UTF-16LE

8859-1 (ISO8859-1) UTF-32

8859-1 (ISO8859-1) UTF-32BE

8859-1 (ISO8859-1) UTF-32LE

8859-2 (ISO8859-2) UCS-2

8859-2 (ISO8859-2) UCS-2BE

8859-2 (ISO8859-2) UCS-2LE

8859-2 (ISO8859-2) UCS-4

8859-2 (ISO8859-2) UCS–4BE

8859-2 (ISO8859-2) UCS-4LE

8859-2 (ISO8859-2) UTF-8

8859-2 (ISO8859-2) UTF-16

8859-2 (ISO8859-2) UTF-16BE

8859-2 (ISO8859-2) UTF-16LE

8859-2 (ISO8859-2) UTF-32

8859-2 (ISO8859-2) UTF-32BE

8859-2 (ISO8859-2) UTF-32LE

8859-3 (ISO8859-3) UCS-2

8859-3 (ISO8859-3) UCS-2BE

8859-3 (ISO8859-3) UCS-2LE

8859-3 (ISO8859-3) UCS-4

8859-3 (ISO8859-3) UCS–4BE

166 International Language Environments Guide • May, 2002

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

8859-3 (ISO8859-3) UCS-4LE

8859-3 (ISO8859-3) UTF-8

8859-3 (ISO8859-3) UTF-16

8859-3 (ISO8859-3) UTF-16BE

8859-3 (ISO8859-3) UTF-16LE

8859-3 (ISO8859-3) UTF-32

8859-3 (ISO8859-3) UTF-32BE

8859-3 (ISO8859-3) UTF-32LE

8859-4 (ISO8859-4) UCS-2

8859-4 (ISO8859-4) UCS-2BE

8859-4 (ISO8859-4) UCS-2LE

8859-4 (ISO8859-4) UCS-4

8859-4 (ISO8859-4) UCS–4BE

8859-4 (ISO8859-4) UCS-4LE

8859-4 (ISO8859-4) UTF-8

8859-4 (ISO8859-4) UTF-16

8859-4 (ISO8859-4) UTF-16BE

8859-4 (ISO8859-4) UTF-16LE

8859-4 (ISO8859-4) UTF-32

8859-4 (ISO8859-4) UTF-32BE

8859-4 (ISO8859-4) UTF-32LE

8859-5 (ISO8859-5) UCS-2

8859-5 (ISO8859-5) UCS-2BE

8859-5 (ISO8859-5) UCS-2LE

8859-5 (ISO8859-5) UCS-4

8859-5 (ISO8859-5) UCS–4BE

8859-5 (ISO8859-5) UCS-4LE

8859-5 (ISO8859-5) UTF-8

Appendix A • iconv Code Conversions 167

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

8859-5 (ISO8859-5) UTF-16

8859-5 (ISO8859-5) UTF-16BE

8859-5 (ISO8859-5) UTF-16LE

8859-5 (ISO8859-5) UTF-32

8859-5 (ISO8859-5) UTF-32BE

8859-5 (ISO8859-5) UTF-32LE

8859-6 (ISO8859-6) UCS-2

8859-6 (ISO8859-6) UCS-2BE

8859-6 (ISO8859-6) UCS-2LE

8859-6 (ISO8859-6) UCS-4

8859-6 (ISO8859-6) UCS–4BE

8859-6 (ISO8859-6) UCS-4LE

8859-6 (ISO8859-6) UTF-8

8859-6 (ISO8859-6) UTF-16

8859-6 (ISO8859-6) UTF-16BE

8859-6 (ISO8859-6) UTF-16LE

8859-6 (ISO8859-6) UTF-32

8859-6 (ISO8859-6) UTF-32BE

8859-6 (ISO8859-6) UTF-32LE

8859-7 (ISO8859-7) UCS-2

8859-7 (ISO8859-7) UCS-2BE

8859-7 (ISO8859-7) UCS-2LE

8859-7 (ISO8859-7) UCS-4

8859-7 (ISO8859-7) UCS–4BE

8859-7 (ISO8859-7) UCS-4LE

8859-7 (ISO8859-7) UTF-8

8859-7 (ISO8859-7) UTF-16

8859-7 (ISO8859-7) UTF-16BE

168 International Language Environments Guide • May, 2002

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

8859-7 (ISO8859-7) UTF-16LE

8859-7 (ISO8859-7) UTF-32

8859-7 (ISO8859-7) UTF-32BE

8859-7 (ISO8859-7) UTF-32LE

8859-8 (ISO8859-8) UCS-2

8859-8 (ISO8859-8) UCS-2BE

8859-8 (ISO8859-8) UCS-2LE

8859-8 (ISO8859-8) UCS-4

8859-8 (ISO8859-8) UCS–4BE

8859-8 (ISO8859-8) UCS-4LE

8859-8 (ISO8859-8) UTF-8

8859-8 (ISO8859-8) UTF-16

8859-8 (ISO8859-8) UTF-16BE

8859-8 (ISO8859-8) UTF-16LE

8859-8 (ISO8859-8) UTF-32

8859-8 (ISO8859-8) UTF-32BE

8859-8 (ISO8859-8) UTF-32LE

8859-9 (ISO8859-9) UCS-2

8859-9 (ISO8859-9) UCS-2BE

8859-9 (ISO8859-9) UCS-2LE

8859-9 (ISO8859-9) UCS-4

8859-9 (ISO8859-9) UCS–4BE

8859-9 (ISO8859-9) UCS-4LE

8859-9 (ISO8859-9) UTF-8

8859-9 (ISO8859-9) UTF-16

8859-9 (ISO8859-9) UTF-16BE

8859-9 (ISO8859-9) UTF-16LE

8859-9 (ISO8859-9) UTF-32

Appendix A • iconv Code Conversions 169

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

8859-9 (ISO8859-9) UTF-32BE

8859-9 (ISO8859-9) UTF-32LE

8859-10 (ISO8859-10) UCS-2

8859-10 (ISO8859-10) UCS-2BE

8859-10 (ISO8859-10) UCS-2LE

8859-10 (ISO8859-10) UCS-4

8859-10 (ISO8859-10) UCS–4BE

8859-10 (ISO8859-10) UCS-4LE

8859-10 (ISO8859-10) UTF-8

8859-10 (ISO8859-10) UTF-16

8859-10 (ISO8859-10) UTF-16BE

8859-10 (ISO8859-10) UTF-16LE

8859-10 (ISO8859-10) UTF-32

8859-10 (ISO8859-10) UTF-32BE

8859-10 (ISO8859-10) UTF-32LE

8859-13 (ISO8859-13) UCS-2

8859-13 (ISO8859-13) UCS-2BE

8859-13 (ISO8859-13) UCS-2LE

8859-13 (ISO8859-13) UCS-4

8859-13 (ISO8859-13) UCS–4BE

8859-13 (ISO8859-13) UCS-4LE

8859-13 (ISO8859-13) UTF-8

8859-13 (ISO8859-13) UTF-16

8859-13 (ISO8859-13) UTF-16BE

8859-13 (ISO8859-13) UTF-16LE

8859-13 (ISO8859-13) UTF-32

8859-13 (ISO8859-13) UTF-32BE

8859-13 (ISO8859-13) UTF-32LE

170 International Language Environments Guide • May, 2002

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

8859-14 (ISO8859-14) UCS-2

8859-14 (ISO8859-14) UCS-2BE

8859-14 (ISO8859-14) UCS-2LE

8859-14 (ISO8859-14) UCS-4

8859-14 (ISO8859-14) UCS–4BE

8859-14 (ISO8859-14) UCS-4LE

8859-14 (ISO8859-14) UTF-8

8859-14 (ISO8859-14) UTF-16

8859-14 (ISO8859-14) UTF-16BE

8859-14 (ISO8859-14) UTF-16LE

8859-14 (ISO8859-14) UTF-32

8859-14 (ISO8859-14) UTF-32BE

8859-14 (ISO8859-14) UTF-32LE

8859-15 (ISO8859-15) UCS-2

8859-15 (ISO8859-15) UCS-2BE

8859-15 (ISO8859-15) UCS-2LE

8859-15 (ISO8859-15) UCS-4

8859-15 (ISO8859-15) UCS–4BE

8859-15 (ISO8859-15) UCS-4LE

8859-15 (ISO8859-15) UTF-8

8859-15 (ISO8859-15) UTF-16

8859-15 (ISO8859-15) UTF-16BE

8859-15 (ISO8859-15) UTF-16LE

8859-15 (ISO8859-15) UTF-32

8859-15 (ISO8859-15) UTF-32BE

8859-15 (ISO8859-15) UTF-32LE

8859-16 (ISO8859-16) UCS-2

8859-16 (ISO8859-16) UCS-2BE

Appendix A • iconv Code Conversions 171

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

8859-16 (ISO8859-16) UCS-2LE

8859-16 (ISO8859-16) UCS-4

8859-16 (ISO8859-16) UCS–4BE

8859-16 (ISO8859-16) UCS-4LE

8859-16 (ISO8859-16) UTF-8

8859-16 (ISO8859-16) UTF-16

8859-16 (ISO8859-16) UTF-16BE

8859-16 (ISO8859-16) UTF-16LE

8859-16 (ISO8859-16) UTF-32

8859-16 (ISO8859-16) UTF-32BE

8859-16 (ISO8859-16) UTF-32LE

eucJP UTF-8

gb2312 UTF-8

iso2022 UTF-8

ko_KR-cp933 UTF-8

ko_KR-euc UTF-8

ko_KR-iso2022–7 UTF-8

ko_KR-johap UTF-8

ko_KR-johap92 UTF-8

zh_TW-euc UTF-8

zh_TW-cp937 UTF-8

zh_TW-iso2022–7 UTF-8

GBK UTF-8

FujitsuJEF-ascii-code UTF-8

FujitsuJEF-ascii-face UTF-8

FujitsuJEF-kana-code UTF-8

FujitsuJEF-kana-face UTF-8

HitachiKEIS83 UTF-8

172 International Language Environments Guide • May, 2002

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

HitachiKEIS90 UTF-8

ISO-2022–JP UTF-8

KOI8-R UCS-2

KOI8-R UCS-2BE

KOI8-R UCS-2LE

KOI8-R UCS-4

KOI8-R UCS–4BE

KOI8-R UCS-4LE

KOI8-R UTF-8

KOI8-R UTF-16

KOI8-R UTF-16BE

KOI8-R UTF-16LE

KOI8-R UTF-32

KOI8-R UTF-32BE

KOI8-R UTF-32LE

KOI8-U UCS-2

KOI8-U UCS-2BE

KOI8-U UCS-2LE

KOI8-U UCS-4

KOI8-U UCS-4BE

KOI8-U UCS-4LE

KOI8-U UTF–8

KOI8-U UTF-16

KOI8-U UTF-16BE

KOI8-U UTF-16LE

KOI8-U UTF-32

KOI8-U UTF-32BE

KOI8-U UTF-32LE

Appendix A • iconv Code Conversions 173

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

NECJIPS UTF-8

PCK UTF-8

UCS-2 646 (ISO 646)

UCS-2 8859-1 (ISO8859-1)

UCS-2 8859-2 (ISO8859-2)

UCS-2 8859-3 (ISO8859-3)

UCS-2 8859-4 (ISO8859-4)

UCS-2 8859-5 (ISO8859-5)

UCS-2 8859-6 (ISO8859-6)

UCS-2 8859-7 (ISO8859-7)

UCS-2 8859-8 (ISO8859-8)

UCS-2 8859-9 (ISO8859-9)

UCS-2 8859-10 (ISO8859-10)

UCS-2 8859-13 (ISO8859-13)

UCS-2 8859-14 (ISO8859-14)

UCS-2 8859-15 (ISO8859-15)

UCS-2 8859-16 (ISO8859-16)

UCS-2 KOI8-R

UCS-2 KOI8-U

UCS-2 UCS-4

UCS-2 UCS-4BE

UCS-2 UCS-4LE

UCS-2 UTF-7

UCS-2 UTF-8

UCS-2BE 646 (ISO 646)

UCS-2BE 8859-1 (ISO8859-1)

UCS-2BE 8859-2 (ISO8859-2)

UCS-2BE 8859-3 (ISO8859-3)

174 International Language Environments Guide • May, 2002

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UCS-2BE 8859-4 (ISO8859-4)

UCS-2BE 8859-5 (ISO8859-5)

UCS-2BE 8859-6 (ISO8859-6)

UCS-2BE 8859-7 (ISO8859-7)

UCS-2BE 8859-8 (ISO8859-8)

UCS-2BE 8859-9 (ISO8859-9)

UCS-2BE 8859-10 (ISO8859-10)

UCS-2BE 8859-13 (ISO8859-13)

UCS-2BE 8859-14 (ISO8859-14)

UCS-2BE 8859-15 (ISO8859-15)

UCS-2BE 8859-16 (ISO8859-16)

UCS-2BE KOI8-R

UCS-2BE KOI8-U

UCS-2BE UCS-4

UCS-2BE UCS-4BE

UCS-2BE UCS-4LE

UCS-2BE UTF-8

UCS-2LE 646 (ISO 646)

UCS-2LE 8859-1 (ISO8859-1)

UCS-2LE 8859-2 (ISO8859-2)

UCS-2LE 8859-3 (ISO8859-3)

UCS-2LE 8859-4 (ISO8859-4)

UCS-2LE 8859-5 (ISO8859-5)

UCS-2LE 8859-6 (ISO8859-6)

UCS-2LE 8859-7 (ISO8859-7)

UCS-2LE 8859-8 (ISO8859-8)

UCS-2LE 8859-9 (ISO8859-9)

UCS-2LE 8859-10 (ISO8859-10)

Appendix A • iconv Code Conversions 175

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UCS-2LE 8859-13 (ISO8859-13)

UCS-2LE 8859-14 (ISO8859-14)

UCS-2LE 8859-15 (ISO8859-15)

UCS-2LE 8859-16 (ISO8859-16)

UCS-2LE KOI8-R

UCS-2LE KOI8-U

UCS-2LE UCS-4

UCS-2LE UCS-4BE

UCS-2LE UCS-4LE

UCS-2LE UTF-8

UCS-2LE UTF-32

UCS-2LE UTF-32BE

UCS-2LE UTF-32LE

UCS-4 646

UCS-4 8859-1 (ISO8859-1)

UCS-4 8859-2 (ISO8859-2)

UCS-4 8859-3 (ISO8859-3)

UCS-4 8859-4 (ISO8859-4)

UCS-4 8859-5 (ISO8859-5)

UCS-4 8859-6 (ISO8859-6)

UCS-4 8859-7 (ISO8859-7)

UCS-4 8859-8 (SO 8859-8)

UCS-4 8859-9 (ISO8859-9)

UCS-4 8859-10 (ISO8859-10)

UCS-4 8859-13 (ISO8859-13)

UCS-4 8859-14 (ISO8859-14)

UCS-4 8859-15 (ISO8859-15)

UCS-4 8859-16 (ISO8859-16)

176 International Language Environments Guide • May, 2002

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UCS-4 KOI8-R

UCS-4 KOI8-U

UCS-4 UCS-2

UCS-4 UCS-2BE

UCS-4 UCS-2LE

UCS-4 UTF-7

UCS-4 UTF-8

UCS-4 UCS-16

UCS-4 UCS-16BE

UCS-4 UCS-16LE

UCS-4 UTF-32

UCS-4 UCS-32BE

UCS-4 UCS-32LE

UCS-4BE 646

UCS-4BE 8859-1 (ISO8859-1)

UCS-4BE 8859-2 (ISO8859-2)

UCS-4BE 8859-3 (ISO8859-3)

UCS-4BE 8859-4 (ISO8859-4)

UCS-4BE 8859-5 (ISO8859-5)

UCS-4BE 8859-6 (ISO8859-6)

UCS-4BE 8859-7 (ISO8859-7)

UCS-4BE 8859-8 (SO 8859-8)

UCS-4BE 8859-9 (ISO8859-9)

UCS-4BE 8859-10 (ISO8859-10)

UCS-4BE 8859-13 (ISO8859-13)

UCS-4BE 8859-14 (ISO8859-14)

UCS-4BE 8859-15 (ISO8859-15)

UCS-4BE 8859-16 (ISO8859-16)

Appendix A • iconv Code Conversions 177

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UCS-4BE KOI8-R

UCS-4BE KOI8-U

UCS-4BE UCS-2

UCS-4BE UCS-2BE

UCS-4BE UCS-2LE

UCS-4BE UCS-8

UCS-4BE UCS-16

UCS-4BE UCS-16BE

UCS-4BE UCS-16LE

UCS-4BE UCS-32

UCS-4BE UCS-32BE

UCS-4BE UCS-32LE

UCS-4LE 646 (ISO 646)

UCS-4LE 8859-1 (ISO8859-1)

UCS-4LE 8859-2 (ISO8859-2)

UCS-4LE 8859-3 (ISO8859-3)

UCS-4LE 8859-4 (ISO8859-4)

UCS-4LE 8859-5 (ISO8859-5)

UCS-4LE 8859-6 (ISO8859-6)

UCS-4LE 8859-7 (ISO8859-7)

UCS-4LE 8859-8 (SO 8859-8)

UCS-4LE 8859-9 (ISO8859-9)

UCS-4LE 8859-10 (ISO8859-10)

UCS-4LE 8859-13 (ISO8859-13)

UCS-4LE 8859-14 (ISO8859-14)

UCS-4LE 8859-15 (ISO8859-15)

UCS-4LE 8859-16 (ISO8859-15)

UCS-4LE KOI8-R

178 International Language Environments Guide • May, 2002

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UCS-4LE KOI8-U

UCS-4LE UCS-2

UCS-4LE UCS-2BE

UCS-4LE UCS-2LE

UCS-4LE UTF-16

UCS-4LE UTF-16BE

UCS-4LE UTF-16LE

UCS-4LE UTF-8

UTF-7 UCS-2

UTF-7 UCS-4

UTF-7 UCS-8

UTF-8 646 (ISO 646)

UTF-8 8859-1 (ISO8859-1)

UTF-8 8859-2 (ISO8859-2)

UTF-8 8859-3 (ISO8859-3)

UTF-8 8859-4 (ISO8859-4)

UTF-8 8859-5 (ISO8859-5)

UTF-8 8859-6 (ISO8859-6)

UTF-8 8859-7 (ISO8859-7)

UTF-8 8859-8 (ISO8859-8)

UTF-8 8859-9 (ISO8859-9)

UTF-8 8859-10 (ISO8859-10)

UTF-8 8859-11 (ISO8859-11)

UTF-8 8859-13 (ISO8859-13)

UTF-8 8859-14 (ISO8859-14)

UTF-8 8859-15 (ISO8859-15)

UTF-8 8859-16 (ISO8859-16)

UTF-8 eucJP

Appendix A • iconv Code Conversions 179

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UTF-8 gb2312

UTF-8 iso2022

UTF-8 ko_KR-euc

UTF-8 ko_KR-johap

UTF-8 ko_KR-johap92

UTF-8 ko_KR-iso2022–7

UTF-8 zh_TW-euc

UTF-8 zh_TW-iso2022–7

UTF-8 zh_TW-cp937

UTF-8 FujitsuJEF-ascii-code

UTF-8 FujitsuJEF-ascii-face

UTF-8 FujitsuJEF-kana-code

UTF-8 FujitsuJEF-kana-face

UTF-8 GBK

UTF-8 HitachiKEIS83

UTF-8 HitachiKEIS90

UTF-8 ISO-2022–JP

UTF-8 KOI8–R

UTF-8 KOI8-U

UTF-8 UTF-7

UTF-8 NECJIPS

UTF-8 PCK

UTF-8 UCS-2

UTF-8 UCS-2BE

UTF-8 UCS-2LE

UTF-8 UCS-4

UTF-8 UCS-4BE

UTF-8 UCS-4LE

180 International Language Environments Guide • May, 2002

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UTF-8 UTF-7

UTF-8 UTF-16

UTF-8 UTF-16BE

UTF-8 UCS-16LE

UTF-16 646 (ISO 646)

UTF-16 8859-1 (ISO8859-1)

UTF-16 8859-2 (ISO8859-2)

UTF-16 8859-3 (ISO8859-3)

UTF-16 8859-4 (ISO8859-4)

UTF-16 8859-5 (ISO8859-5)

UTF-16 8859-6 (ISO8859-6)

UTF-16 8859-7 (ISO8859-7)

UTF-16 8859-8 (ISO8859-8)

UTF-16 8859-9 (ISO8859-9)

UTF-16 8859-10 (ISO8859-10)

UTF-16 8859-13 (ISO8859-13)

UTF-16 8859-14 (ISO8859-14)

UTF-16 8859-15 (ISO8859-15)

UTF-16 8859-15 (ISO8859-15)

UTF-16 8859-16 (ISO8859-16)

UTF-16 KOI8-R

UTF-16 KOI8-U

UTF-16 UCS-4

UTF-16 UCS-4BE

UTF-16 UCS-4LE

UTF-16 UTF-8

UTF-16BE 646 (ISO 646)

UTF-16BE 8859-1 (ISO8859-1)

Appendix A • iconv Code Conversions 181

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UTF-16BE 8859-2 (ISO8859-2)

UTF-16BE 8859-3 (ISO8859-3)

UTF-16BE 8859-4 (ISO8859-4)

UTF-16BE 8859-5 (ISO8859-5)

UTF-16BE 8859-6 (ISO8859-6)

UTF-16BE 8859-7 (ISO8859-7)

UTF-16BE 8859-8 (ISO8859-8)

UTF-16BE 8859-9 (ISO8859-9)

UTF-16BE 8859-10(ISO8859-10)

UTF-16BE 8859-13 (ISO8859-13)

UTF-16BE 8859-14 (ISO8859-14)

UTF-16BE 8859-15 (ISO8859-15)

UTF-16BE 8859-16 (ISO8859-16)

UTF-16BE KOI8-R

UTF-16BE KOI8-U

UTF-16BE UCS-4

UTF-16BE UCS-4BE

UTF-16BE UCS-4LE

UTF-16BE UTF-8

UTF-16LE 646 (ISO 646)

UTF-16LE 8859-1 (ISO8859-1)

UTF-16LE 8859-2 (ISO8859-2)

UTF-16LE 8859-3 (ISO8859-3)

UTF-16LE 8859-4 (ISO8859-4)

UTF-16LE 8859-5 (ISO8859-5)

UTF-16LE 8859-6 (ISO8859-6)

UTF-16LE 8859-7 (ISO8859-7)

UTF-16LE 8859 -8 (ISO8859-8)

182 International Language Environments Guide • May, 2002

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UTF-16LE 8859-9 (ISO8859-9)

UTF-16LE 8859-10 (ISO8859-10)

UTF-16LE 8859-13 (ISO8859-13)

UTF-16LE 8859-14 (ISO8859-14)

UTF-16LE 8859-15 (ISO8859-15)

UTF-16LE 8859-16 (ISO8859-16)

UTF-16LE KOI8-R

UTF-16LE KOI8-U

UTF-16LE UCS-4

UTF-16LE UCS-4BE

UTF-16LE UCS-4LE

UTF-16LE UTF-8

UTF-32 UTF-8

UTF-32 UCS-2

UTF-32 UCS-2BE

UTF-32 UCS-2LE

UTF-32 UCS-4

UTF-32 UCS-4BE

UTF-32 UCS-4LE

UTF-32 UTF-16

UTF-32 UTF-16LE

UTF-32 UTF–32BE

UTF-32 646 (ISO 646)

UTF-32 ISO8859–1

UTF-32 ISO8859–2

UTF-32 ISO8859–3

UTF-32 ISO8859–4

UTF-32 ISO8859–5

Appendix A • iconv Code Conversions 183

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UTF-32 ISO8859–6

UTF-32 ISO8859–7

UTF-32 ISO8859–8

UTF-32 ISO8859–9

UTF-32 ISO8859–10

UTF-32 ISO8859–13

UTF-32 ISO8859–14

UTF-32 ISO8859–15

UTF-32 ISO8859–16

UTF-32 KOI8–R

UTF-32 KOI8–U

UTF-32BE UTF-8

UTF-32BE UCS-2

UTF-32BE UCS-2BE

UTF-32BE UCS-2LE

UTF-32BE UCS-4

UTF-32BE UCS-4BE

UTF-32BE UCS-4LE

UTF-32BE UTF-16

UTF–32BE UTF-16BE

UTF-32 BE UTF-16LE

UTF-32BE 646 (ISO 646)

UTF-32BE ISO8859–1

UTF-32BE ISO8859–2

UTF-32BE ISO8859–3

UTF-32BE ISO8859–4

UTF-32BE ISO8859–5

UTF-32BE ISO8859–6

184 International Language Environments Guide • May, 2002

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UTF-32BE ISO8859–7

UTF-32BE ISO8859–8

UTF-32BE ISO8859–9

UTF-32BE ISO8859–10

UTF-32BE ISO8859–13

UTF-32BE ISO8859–14

UTF-32BE ISO8859–15

UTF-32BE ISO8859–16

UTF-32BE KOI8–R

UTF-32BE KOI8–U

UTF-32LE UTF-8

UTF-32LE UCS-2

UTF-32LE UCS-2BE

UTF-32LE UCS-2LE

UTF-32LE UCS-4

UTF-32LE UCS-4BE

UTF-32LE UCS-4LE

UTF32–LE UTF-16

UTF32–LE UTF-16BE

UTF-32LE UTF-16LE

UTF-32LE 646 (ISO 646)

UTF-32LE ISO8859–1

UTF-32LE ISO8859–2

UTF-32LE ISO8859–3

UTF-32LE ISO8859–4

UTF-32LE ISO8859–5

UTF-32LE ISO8859–6

UTF-32LE ISO8859–7

Appendix A • iconv Code Conversions 185

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UTF-32LE ISO8859–8

UTF-32LE ISO8859–9

UTF-32LE ISO8859–10

UTF-32LE ISO8859–13

UTF-32LE ISO8859–14

UTF-32LE ISO8859–15

UTF-32LE ISO8859–16

UTF-32LE KOI8–R

UTF-32LE KOI8–U

Note – UTF-EBCDIC is a new IBM codepage name. The Solaris 9 environment also
supports bidirectional UTF-8 <—> UTF-EBCDIC conversion.

The following table lists the Unicode and IBM/Microsoft EBCDIC and PC iconv code
conversion modules available in the Solaris 9 Environment.

TABLE A–2 Available Unicode and IBM/Microsoft EBCDIC and PC Code Page Related
iconv Code Conversions Modules

From Code (Symbol) To Code (Symbol)

UTF-8 IBM-037

UTF-8 IBM-273

UTF-8 IBM-277

UTF-8 IBM-278

UTF-8 IBM-280

UTF-8 IBM-284

UTF-8 IBM-285

UTF-8 IBM-297

UTF-8 IBM-420

UTF-8 IBM-424

186 International Language Environments Guide • May, 2002

TABLE A–2 Available Unicode and IBM/Microsoft EBCDIC and PC Code Page Related
iconv Code Conversions Modules (Continued)
From Code (Symbol) To Code (Symbol)

UTF-8 IBM-500

UTF-8 IBM-850

UTF-8 IBM-852

UTF-8 IBM-855

UTF-8 IBM-856

UTF-8 IBM-857

UTF-8 IBM-862

UTF-8 IBM-864

UTF-8 IBM-866

UTF-8 IBM-869

UTF-8 IBM-870

UTF-8 IBM-871

UTF-8 IBM-875

UTF-8 IBM-880

UTF-8 IBM-1025

UTF-8 IBM-1026

UTF-8 IBM-1112

UTF-8 IBM-1122

UTF-8 IBM-921

UTF-8 IBM-922

UTF-8 IBM-1046

UTF-8 IBM-1140

UTF-8 IBM-1141

UTF-8 IBM-1142

UTF-8 IBM-1143

UTF-8 IBM-1144

UTF-8 IBM-1145

Appendix A • iconv Code Conversions 187

TABLE A–2 Available Unicode and IBM/Microsoft EBCDIC and PC Code Page Related
iconv Code Conversions Modules (Continued)
From Code (Symbol) To Code (Symbol)

UTF-8 IBM-1146

UTF-8 IBM-1147

UTF-8 IBM-1148

UTF-8 IBM-1149

UTF-8 CP850

UTF-8 CP852

UTF-8 CP855

UTF-8 CP857

UTF-8 CP862

UTF-8 CP864

UTF-8 CP866

UTF-8 CP869

UTF-8 CP874

UTF-8 CP1250

UTF-8 CP1251

UTF-8 CP1252

UTF-8 CP1253

UTF-8 CP1254

UTF-8 CP1255

UTF-8 CP1256

UTF-8 CP1257

UTF-8 CP1258

The following table lists the available iconv code conversions IBM and Microsoft
EBCDIC/PC code pages to UTF-8.

TABLE A–3 Available iconv Code Conversions - IBM and Microsoft EBCDIC/PC Code
Pages to UTF-8

UTF-EBCDIC UTF-8

IBM-037 UTF-8

188 International Language Environments Guide • May, 2002

TABLE A–3 Available iconv Code Conversions - IBM and Microsoft EBCDIC/PC Code
Pages to UTF-8 (Continued)
UTF-EBCDIC UTF-8

IBM-273 UTF-8

IBM-277 UTF-8

IBM-278 UTF-8

IBM-280 UTF-8

IBM-284 UTF-8

IBM-285 UTF-8

IBM-297 UTF-8

IBM-420 UTF-8

IBM-424 UTF-8

IBM-500 UTF-8

IBM-850 UTF-8

IBM-852 UTF-8

IBM-855 UTF-8

IBM-856 UTF-8

IBM-857 UTF-8

IBM-862 UTF-8

IBM-864 UTF-8

IBM-866 UTF-8

IBM-869 UTF-8

IBM-870 UTF-8

IBM-871 UTF-8

IBM-875 UTF-8

IBM-880 UTF-8

IBM-921 UTF-8

IBM-922 UTF-8

IBM-1025 UTF-8

IBM-1026 UTF-8

IBM-1046 UTF-8

Appendix A • iconv Code Conversions 189

TABLE A–3 Available iconv Code Conversions - IBM and Microsoft EBCDIC/PC Code
Pages to UTF-8 (Continued)
UTF-EBCDIC UTF-8

IBM-1112 UTF-8

IBM-1122 UTF-8

IBM-1140 UTF-8

IBM-1141 UTF-8

IBM-1142 UTF-8

IBM-1143 UTF-8

IBM-1144 UTF-8

IBM-1145 UTF-8

IBM-1146 UTF-8

IBM-1147 UTF-8

IBM-1148 UTF-8

IBM-1149 UTF-8

CP850 UTF-8

CP852 UTF-8

CP855 UTF-8

CP857 UTF-8

CP862 UTF-8

CP864 UTF-8

CP866 UTF-8

CP869 UTF-8

CP874 UTF-8

CP1250 UTF-8

CP1251 UTF-8

CP1252 UTF-8

CP1253 UTF-8

CP1254 UTF-8

CP1255 UTF-8

CP1256 UTF-8

190 International Language Environments Guide • May, 2002

TABLE A–3 Available iconv Code Conversions - IBM and Microsoft EBCDIC/PC Code
Pages to UTF-8 (Continued)
UTF-EBCDIC UTF-8

CP1257 UTF-8

CP1258 UTF-8

Appendix A • iconv Code Conversions 191

192 International Language Environments Guide • May, 2002

APPENDIX B

Partial Locale Package List on
Software CDs

The following table lists the packages and contents of the Software CDs.

TABLE B–1 List of Partial Locales

Package Name Description

JSatsvr Japanese Input System ATOK12 root files for Japanese Solaris.

JSatsvu Japanese Input System ATOK12 usr files for Japanese Solaris.

JSatsvw Japanese Input System ATOK12 X11 support files for Japanese
Solaris

NSCPcpcom Simplified Chinese partial version of Netscape Communicator 4.7
supporting International security.

NSCPhpcom Traditional Chinese partial version of Netscape Communicator
4.7 supporting International security.

NSCPjacom Japanese (common) localization of Netscape Communicator 4.7
supporting International security.

NSCPkpcom Korean Partial version of Netscape Communicator 4.78
supporting International security.

SUNW5ttf Traditional Chinese TrueType fonts package.

SUNWale Common files shared by Chinese, Japanese and Korean locales. It
is a required package to run Asian Language Environment.

SUNWaled Man pages shared by Chinese, Japanese, and Korean locales.

SUNWalex Common files shared by Chinese, Japanese and Korean locales.
This package is required to run Asian Language Environment
(64-bit).

SUNWauadt Australasia CDE Support.

SUNWauaos Australasia OS Support.

193

TABLE B–1 List of Partial Locales (Continued)
Package Name Description

SUNWauaow Australasia Open Windows Support.

SUNWauaox Australasia 64-bit Open Windows Support.

SUNWcamdt Central America CDE Support.

SUNWcamos Central America OS Support.

SUNWcamow Central America Open Windows Support.

SUNWcamox Central America 64-bit OS Support.

SUNWcdt Simplified Chinese Localizations for CDE Desktop Login
Environment.

SUNWceudt Central Europe CDE Support.

SUNWceuos Central Europe OS Support.

SUNWceuow Central Europe Open Windows Support.

SUNWceuox Central Europe 64-bit OS Support.

SUNWcleu Simplified Chinese (EUC) Language Environment specific files. It
is a required package to run Simplified Chinese (EUC) Language
Environment.

SUNWcleux Simplified Chinese Language Environment specific files. It is a
required package to run Simplified Chinese Language
Environment (64-bit).

SUNWcttf Simplified Chinese (EUC) True Type fonts.

SUNWcufnt Simplified Chinese (UTF-8) X Windows Platform required fonts.

SUNWcxplt Simplified Chinese X Windows Platform Software Package.

SUNWdelu

SUNWdespl Spell Checking Engine - German Dictionary.

SUNWeeudt Eastern Europe CDE Support.

SUNWeeuos Eastern Europe OS Support.

SUNWeeuow Eastern Europe Open Windows Support.

SUNWeeuox Eastern Europe 64-bit OS Support.

SUNWeslu Spanish message files for Live Upgrade L10N.

SUNWesspl Spell Checking Engine - Spanish Dictionary.

SUNWeu8df American English/UTF-8 Core Desktop Files.

SUNWeu8os American English/UTF-8 L10N For OS Environment User Files.

194 International Language Environments Guide • May, 2002

TABLE B–1 List of Partial Locales (Continued)
Package Name Description

SUNWeu8ox American English/UTF-8 L10N For OS Environment User Files
(64–bit).

SUNWeudba American English/UTF-8 L10N For CDE Base.

SUNWeudbd American English/UTF-8 L10N For CDE Dtbuilder.

SUNWeudda American English/UTF-8 L10N For CDE Desktop Applications.

SUNWeudhr American English/UTF-8 L10N For CDE Help Runtime.

SUNWeudhs American English/UTF-8 L10N For CDE Help Runtime.

SUNWeudis American English/UTF-8 L10N For CDE Icons.

SUNWeudiv American English/UTF-8 L10N For Desktop Image tools.

SUNWeudlg American English/UTF-8 L10N For CDE Desktop Login
Environment.

SUNWeudmg American English/UTF-8 L10N For Desktop Window Manager.

SUNWeuezt American English/UTF-8 L10N For Desktop Power Pack
Applications.

SUNWeuhed American English/UTF-8 L10N For CDE Help Developer
Environment.

SUNWeuluf American English/UTF-8 L10N For Environment User Files.

SUNWeulux American English/UTF-8 L10N For Environment User Files
(64–bit).

SUNWeusru American English/UTF-8 L10N For Solaris User Registration.

SUNWfrlu French message files for Live Upgrade L10N.

SUNWfrspl Spell Checking Engine - French Dictionary.

SUNWgttf Simplified Chinese (GBK) True Type Fonts.

SUNWgxfnt Simplified Chinese (GBK) X Windows Platform required fonts.

SUNWgxplx Simplified Chinese (GBK) X Windows Platform Software Package
(64-bit).

SUNWhdt Traditional Chinese Localizations for CDE Desktop Login
Environment.

SUNWhkdt Traditional Chinese (Hong Kong) localization for CDE Desktop
Login Environment.

SUNWhkfnt Traditional Chinese BIG5 (Hong Kong) X Windows Platform
required Fonts Package.

Appendix B • Partial Locale Package List on Software CDs 195

TABLE B–1 List of Partial Locales (Continued)
Package Name Description

SUNWhkleu Traditional Chinese (Hong Kong) Language Environment user
files.

SUNWhklex Traditional Chinese (Hong Kong) language Environment user
files (64-bit).

SUNWhkplt Traditional Chinese (Hong Kong) X Windows Platform Software
Package.

SUNWhkplx Traditional Chinese (Hong Kong) X Windows Platform Software
Package (64-bit).

SUNWhkttf Traditional Chinese Hong Kong Supplementary Character Set
True Type Fonts Package.

SUNWhleu Traditional Chinese Language Environment specific files. It is a
required package to run Traditional Chinese Language
Environment.

SUNWhleux Traditional Chinese (EUC) Language Environment specific files. It
is a required package to run Traditional Chinese Language
Environment (64-bit).

SUNWhttf Traditional Chinese TrueType Fonts Package.

SUNWhufnt Traditional Chinese (UTF-8) X Windows Platform required Fonts.

SUNWhxfnt Traditional Chinese X Windows Platform required Fonts Package.

SUNWhxplt Traditional Chinese X Windows Platform Software Package.

SUNWi1cs X11 ISO8859-1 Codeset Support.

SUNWi2cs X11 ISO8859-2 Codeset Support.

SUNWi2of X11 fonts for ISO-8859-2 character set (optional fonts).

SUNWi5cs X11 ISO8859–5 Codeset Support.

SUNWi7cs X11 ISO8859–7 Codeset Support.

SUNWi9cs X11 ISO8859–9 Codeset Support.

SUNWi13cs X11 ISO8859-13 Codeset Support.

SUNWi15cs X11 ISO8859-15 Codeset Support.

SUNWiiimr Internet/Intranet Input Method Framework (Root).

SUNWiiimu Internet/Intranet Input Method Framework (Usr).

SUNWindt Indic localizations for CDE Desktop Login Environment.

SUNWinfnt Indic (UTF-8) X Windows Platform Required Fonts.

196 International Language Environments Guide • May, 2002

TABLE B–1 List of Partial Locales (Continued)
Package Name Description

SUNWinleu Indic package contains Indic language environment specific files.
It is a required package for running Indic language environment.

SUNWinlex Indic package contains Indic language environment specific files.
It is a required package for running the Indic language
environment (64–bit).

SUNWinplt Indic X Window System platform software.

SUNWinttf Indic TrueType Fonts.

SUNWitlu Italian message files for Live Upgrade L10N.

SUNWitspl Spell Checking Engine - Italian Dictionary.

SUNWj3jmp Japanese Localizations for J2SDK RELEASE man pages.

SUNWjedt Japanese (EUC) Localization for CDE DESKTOP LOGIN
ENVIRONMENT.

SUNWjexpx Japanese (EUC) Localizations for X Window System platform
software (64-bit).

SUNWjfpr Stream modules for Japanese Feature Package (JFP); it is a
required package to run JFP environment.

SUNWjfpu Japanese Feature Package (JFP) specific files for usr; it is a
required package to run JFP environment.

SUNWjfpux Japanese Feature Package (JFP) specific 64-bit files for usr; it is a
required package to run JFP environment.

SUNWjman Japanese Feature Package Man Pages to see English man pages
for SUNWjfpr and SUNWjfpu.

SUNWjulcf Japanese UTF-8 Locale Environment Common Files.

SUNWjxplt Japanese Localizations for X Window System platform software.

SUNWkdt Korean Localizations for CDE Desktop Login Environment.

SUNWkleu Korean Language Environment specific files. It is a required
package to run Korean Language Environment.

SUNWkleux Korean (EUC) Language Environment specific files. It is a
required package to run Korean Language Environment (64-bit).

SUNWkttf Korean True Type Fonts.

SUNWkxfnt Korean X Windows Platform Required Fonts

SUNWkxplt Korean X Windows Platform Software Package.

SUNWmeadt Middle East CDE Support.

Appendix B • Partial Locale Package List on Software CDs 197

TABLE B–1 List of Partial Locales (Continued)
Package Name Description

SUNWmeaos Middle East OS Support.

SUNWmeaow Middle East OW Support.

SUNWmeaox Middle East 64-bit OS Support.

SUNWnafos Northern Africa OS Support.

SUNWnafow Northern Africa OW Support.

SUNWnafox Northern Africa 64-bit OS Support.

SUNWneudt Northern Europe CDE Support.

SUNWneuos Northern Europe OS Support.

SUNWneuow Northern Europe OW Support.

SUNWneuox Northern Europe 64-bit OS Support.

SUNWplow OpenWindows enabling for Partial Locales.

SUNWplow1 OpenWindows enabling for Supplementary Partial Locales.

SUNWsamdt Southern America CDE Support.

SUNWsamos Southern America OS Support.

SUNWsamow Southern America OW Support.

SUNWsamox Southern America 64-bit OS Support.

SUNWseudt Southern Europe CDE Support.

SUNWseuos Southern Europe OS Support.

SUNWseuow Southern Europe Open Windows Support.

SUNWseuox Southern Europe 64-bit OS Support.

SUNWsvis Swedish install software localization.

SUNWsvlu Swedish message files for Live Upgrade L10N.

SUNWsvspl Spell Checking Engine - Swedish Dictionary.

SUNWtdbas Thai Localizations for CDE Base functionality.

SUNWtddst Thai Localizations for CDE Desktop Applications.

SUNWtddte Thai Localizations for CDE Desktop Login Environment.

SUNWtdft Thai Localizations for CDE Fonts.

SUNWtdwm Thai Localizations for CDE Desktop Window Manager.

198 International Language Environments Guide • May, 2002

TABLE B–1 List of Partial Locales (Continued)
Package Name Description

SUNWtleu Thai Language Environment specific files. It is a required package
to run Thai Language Environment.

SUNWtleux Thai Language Environment specific files. It is a required package
to run Thai Language Environment (64-bit)

SUNWtxplt Thai X Windows Platform Software Package.

SUNWweudt Western Europe CDE Support.

SUNWweuos Western Europe OS Support.

SUNWweuow Western Europe Open Windows Support.

SUNWweuox Western Europe 64-bit OS Support.

Appendix B • Partial Locale Package List on Software CDs 199

200 International Language Environments Guide • May, 2002

APPENDIX C

Full Locale Package List on Languages
CD

The following table lists the Simplified Chinese language packages and their contents.

TABLE C–1 Simplified Chinese

Package Name Description

NSCPccom
Simplified Chinese Localization of Netscape Communicator 4.7 supporting
International security.

NSCPcucom zh.UTF-8 Localization of Netscape Communicator 4.7 supporting International
security.

NSCPgcom zh.GBK Localization of Netscape Communicator 4.7 supporting International
security.

SUNWcacx Simplified Chinese AccessX client program.

SUNWcadis Simplified Chinese (EUC) Localizations for admintool and GUI install.

SUNWcadma Simplified Chinese (EUC) Localizations for Software used to perform system
administration tasks. Admintool requires both this and the SUNWhadis packages for
Simplified Chinese (EUC) Localization.

SUNWcbcp Simplified Chinese (EUC) Language Environment binary compatibility files.

SUNWcdab Simplified Chinese (EUC) Localizations for CDE Desktop Application Builder.

SUNWcdbas Simplified Chinese (EUC) Localizations for CDE Base functionality.

SUNWcdcl Simplified Chinese Localizations for Solaris Diskless Client Management
Applications.

SUNWcddst Simplified Chinese (EUC) Localizations for CDE Desktop Applications.

SUNWcddte Simplified Chinese (EUC) Localizations for CDE Desktop Login Environment.

SUNWcdezt Simplified Chinese (EUC) Localizations for Desktop Power Pack Applications.

SUNWcdft Simplified Chinese (EUC) Localizations for CDE Fonts.

201

TABLE C–1 Simplified Chinese (Continued)
Package Name Description

SUNWcdhcm Simplified Chinese Localizations for DHCP Manager.

SUNWcdhe Simplified Chinese (EUC) Localizations for CDE Help Runtime environment.

SUNWcdhev Simplified Chinese (EUC) CDE Help Volumes.

SUNWcdhez Simplified Chinese (EUC) (Common) Desktop Power Pack Help Volumes.

SUNWcdicn Simplified Chinese (EUC) Localizations for CDE Icons.

SUNWcdim Simplified Chinese (EUC) Localizations for CDE ImageTool.

SUNWcdwm Simplified Chinese (EUC) Localizations for CDE Desktop Window Manager.

SUNWcepmw Simplified Chinese (EUC) Localization for Power Management OW Utilities.

SUNWcfdl Simplified Chinese Solaris Font Downloader for Adobe Postscript TCP/IP printers.

SUNWcj2p Simplified Chinese Localization of Java Plug-in 1.2.2.

SUNWcj2rt Java virtual machine and core class libraries (Simplified Chinese supplement).

SUNWcjmfp Simplified Chinese Localization for JMF player

SUNWckcsr Simplified Chinese (EUC) KCMS Runtime Environment.

SUNWcleex Simplified Chinese Language Environment specific files. It is a required package to
run Simplified Chinese Language Environment (64-bit) - Extension.

SUNWcleue Simplified Chinese (EUC) Language Environment specific files. It is a required
package to run Simplified Chinese (EUC) Language Environment.

SUNWclvma Simplified Chinese Localizations for Solaris Volume Management.

SUNWclvmg Simplified Chinese Localizations for Solaris Volume Management.

SUNWcmga Simplified Chinese Solaris Management Applications.

SUNWcorte Simplified Chinese (EUC) Open Look Toolkits Runtime Environment Package.

SUNWcos This package contains Simplified Chinese Language Environment specific files. It is
a required package to run Simplified Chinese Language Environment.

SUNWcpdas Simplified Chinese Localization for tools to synchronize desktop applications with
the Palm Pilot PDA.

SUNWcreg Simplified Chinese (EUC) Localizations for Solaris User Registration.

SUNWcrmui Simplified Chinese Resource Management User Interface Components.

SUNWcsadl Simplified Chinese (EUC) Localizations for Solstice Admintool launcher and
associated libraries.

SUNWcscgu Simplified Chinese Localizable Solaris Smart Card Administration - Graphical User
Interface component.

202 International Language Environments Guide • May, 2002

TABLE C–1 Simplified Chinese (Continued)
Package Name Description

SUNWcsfw Simplified Chinese localizable message files for SFW consolidation.

SUNWcsmc Simplified Chinese Solaris Management Console 2.0.

SUNWctltk Simplified Chinese (EUC) ToolTalk Runtime Package.

SUNWcttfe Simplified Chinese (EUC) TrueType Fonts.

SUNWcudc Simplified Chinese (EUC) Localizations for User Defined Character tool for Solaris
CDE environment.

SUNWcwbc Simplified Chinese Localizations for Solaris WBEM Services.

SUNWcwbcp Simplified Chinese (EUC) OpenWindows Binary Compatibility Package.

SUNWcwdev Simplified Chinese Localizations for Solaris WBEM Services.

SUNWcwsr2 Simplified Chinese Localizations for Solaris Product Registry.

SUNWcwsrv Simplified Chinese Localizations for Solaris Product Registry Viewer.

SUNWcxe Simplified Chinese (EUC) X Windows Platform Software Package.

SUNWcxfnt Simplified Chinese (EUC) X Windows Platform Required Fonts.

SUNWcxman Simplified Chinese (EUC) X Windows Online User Man Pages Package.

SUNWgttfe Simplified Chinese (GBK) True Type Fonts.

The following table lists the French language packages and their contents.

TABLE C–2 French

Package Name Description

NSCPfrcdo French Localization of Netscape Communicator 4.7 supporting U.S. security.

NSCPfrcom French Localization of Netscape Communicator 4.7 supporting International
security.

SUNWfbcp French OS Binary Compatibility Package.

SUNWfdcl Diskless Client Management Application French Localization.

SUNWfdhcm French Localizations for DHCP Manager.

SUNWffdl Localizable strings for the Font Downloader.

SUNWfj2rt Java virtual machine and core class libraries (French supplement).

SUNWfjmfp Localizable JMF Player for playing audio and video files.

SUNWflvma French Localizations for Solaris Volume Management API’s.

Appendix C • Full Locale Package List on Languages CD 203

TABLE C–2 French (Continued)
Package Name Description

SUNWflvmg French Localizations for Solaris Volume Management Application.

SUNWfmgp Solaris Management Applications French Localization.

SUNWforte French OPEN LOOK (R) toolkits runtime environment.

SUNWfpdas French tools to synchronize desktop applications with the Palm Pilot PDA.

SUNWfrbas Base L10N fr CDE functionality to run a CDE application.

SUNWfrdis French Localizations for admintool and GUI install.

SUNWfrdma French Localizations for Software used to perform system administration tasks.

SUNWfrdst CDE Desktop Applications.

SUNWfrdte CDE Desktop Environment.

SUNWfrhe CDE Help L10N fr Runtime Environment.

SUNWfrhed CDE L10N fr Help Developer Environment.

SUNWfrhev CDE Help Volumes.

SUNWfrhez French Localizations for Desktop Power Pack Help Volumes.

SUNWfrim CDE Desktop apps.

SUNWfrj2p French Localization of Java Plug-in 1.2.2.

SUNWfrmui French Resource Management for Solaris.

SUNWfros Localizable message files for the OS-Networking consolidation.

SUNWfrpmw French (EUC) Localizations for Power Management Open Windows Utilities.

SUNWfrreg Solaris User Registration prompts at desktop login for user registration.

SUNWfrsmc Solaris Management Console French Localization.

SUNWfrwbc French Localisations for Solaris WBEM Services.

SUNWfrwm French CDE Desktop Window Manages Messages.

SUNWfrws2 French Localizations Solaris Product Registry.

SUNWfrwsv French Localizations for Solaris Product Registry Viewer.

SUNWfsadl French Localizations for Solstice Admintool launcher and associated libraries.

SUNWfscgu French Localization for Solaris Smart Card Administration - Grahical User Interface
component.

SUNWfsfw French localizable message files for SFW consolidation.

SUNWftltk French ToolTalk binaries and shared libraries.

204 International Language Environments Guide • May, 2002

TABLE C–2 French (Continued)
Package Name Description

SUNWfwacx French OPEN LOOK (R) AccessX.

SUNWfwbcp French OpenWindows Binary Compatibility Package.

SUNWfwdev French Sun WBEM SDK resources.

SUNWfxplt French X Windows platform software.

The following table lists the German language packages and their contents.

TABLE C–3 German

Package Name Description

NSCPdecom
German Localization of Netscape Communicator 4.7 supporting International
security.

SUNWdbcp German OS Binary Compatibility Package.

SUNWddcl German Localizations for Solaris Diskless Client Management Application.

SUNWddhcm German Localizations for DHCP Manager.

SUNWdebas Base L10N German CDE functionality to run a CDE application.

SUNWdedis German Localizations for admintool and GUI install.

SUNWdedma German Localizations for Software used to perform system administration tasks.

SUNWdedst CDE Desktop Applications.

SUNWdedte CDE Desktop Login Environment.

SUNWdehe CDE Help L10N German Runtime Environment.

SUNWdehed CDE L10N German Help Developer Environment.

SUNWdehev CDE Help Volumes.

SUNWdehez German Localizations for Desktop Power Pack Help Volumes.

SUNWdeim CDE Desktop apps.

SUNWdej2p German Localization of Java Plug-in 1.2.2.

SUNWdeos Localizable message files for the OS-Networking consolidation.

SUNWdepmw German (EUC) Localizations for Power Management OW Utilities.

SUNWdereg Solaris User Registration prompts at desktop login for user registration.

SUNWdesmc Solaris Management Console German Localization.

SUNWdewbc German Localisations for Solaris WBEM Services.

Appendix C • Full Locale Package List on Languages CD 205

TABLE C–3 German (Continued)
Package Name Description

SUNWdewm German CDE Desktop Window Manages Messages.

SUNWdews2 German Localisations Solaris Product Registry.

SUNWdewsv German Localisations for Solaris Product Registry Viewer.

SUNWdfdl Localizable strings for the Font Downloader.

SUNWdj2rt Java virtual machine and core class libraries (German supplement).

SUNWdjmfp Localizable JMF Player for playing audio and video files.

SUNWdlvma German Localizations for Solaris Volume Management API’s.

SUNWdlvmg German Localizations for Solaris Volume Management Application.

SUNWdmgp Solaris Management Applications German Localization.

SUNWdorte German OPEN LOOK® toolkits runtime environment.

SUNWdpdas German tools to synchronize desktop applications with the Palm Pilot PDA.

SUNWdrmui German Resource Management for Solaris.

SUNWdsadl German Localizations for Solstice Admintool launcher and associated libraries.

SUNWdscgu Localizable Solaris Smart Card Administration - Grahical User Interface component.

SUNWdsfw German localizable message files for SFW consolidation.

SUNWdtltk German ToolTalk binaries and shared libraries.

SUNWdwacx German OPEN LOOK® AccessX.

SUNWdwbcp German OpenWindows Binary Compatibility Package.

SUNWdwdev German Sun WBEM SDK resources.

SUNWdxplt German X Windows platform software.

The following table lists the Italian language packages and their contents.

TABLE C–4 Italian

Package Name Description

NSCPitcom
Italian Localization of Netscape Communicator 4.78 supporting International
security.

SUNWibcp Italian OS Binary Compatibility Package.

SUNWidcl Diskless Client Management Application Italian Localization.

SUNWidhcm Italian Localizations for DHCP Manager.

206 International Language Environments Guide • May, 2002

TABLE C–4 Italian (Continued)
Package Name Description

SUNWifdl Localizable strings for the Font Downloader.

SUNWij2rt Java virtual machine and core class libraries (Italian supplement).

SUNWijmfp Localizable JMF Player for playing audio and video files.

SUNWilvma Italian Localizations for Solaris Volume Management API’s.

SUNWilvmg Italian Localizations for Solaris Volume Management Application.

SUNWimgp Solaris Management Applications Italian Localization.

SUNWiorte Italian OPEN LOOK (R) toolkits runtime environment.

SUNWipdas Italian tools to synchronize desktop applications with the Palm Pilot PDA.

SUNWirmui Italian Resource Management for Solaris.

SUNWisadl Italian Localizations for Solstice Admintool launcher and associated libraries.

SUNWiscgu Localizable Solaris Smart Card Administration - Grahical User Interface component.

SUNWisfw Italian localizable message files for SFW consolidation.

SUNWitbas Base L10N it CDE functionality to run a CDE application.

SUNWitdis talian Localizations for admintool and GUI install.

SUNWitdma Italian Localizations for Software used to perform system administration tasks.

SUNWitdst CDE it Desktop Applications messages.

SUNWitdte CDE Italian Desktop Login Environment.

SUNWithe CDE Help L10N it Runtime Environment.

SUNWithed CDE L10N it Help Developer Environment.

SUNWithev CDE Help Volumes.

SUNWithez Italian Localization for CDE Help Volumes.

SUNWitim CDE Italian Desktop Image editor.

SUNWitj2p Italian Localization of Java Plug-in 1.2.2.

SUNWitltk Italian ToolTalk binaries and shared libraries.

SUNWitos Localizable message files for the OS-Networking consolidation.

SUNWitpmw Italian (EUC) Localizations for Power Management OW Utilities.

SUNWitreg Solaris User Registration prompts at desktop login for user registration.

SUNWitsmc Solaris Management Console Italian Localization.

Appendix C • Full Locale Package List on Languages CD 207

TABLE C–4 Italian (Continued)
Package Name Description

SUNWitwbc Italian Localisations for Solaris WBEM Services.

SUNWitwm Italian CDE Desktop Window Manages Messages.

SUNWitws2 Italian Localisations Solaris Product Registry.

SUNWitwsv Italian Localisations for Solaris Product Registry Viewer.

SUNWiwacx Italian OPEN LOOK (R) AccessX.

SUNWiwbcp Italian OpenWindows Binary Compatibility Package.

SUNWiwdev Italian Sun WBEM SDK resources.

SUNWixplt Italian X Windows platform software.

The following table lists the Japanese language packages and their contents.

TABLE C–5 Japanese

Package Name Description

NSCPjecom Japanese (EUC) Localization of Netscape Communicator 4.7 supporting
International security.

NSCPjpcom Japanese (PCK) Localization of Netscape Communicator 4.7 supporting
International security.

NSCPjucom Japanese (UTF-8) Localization of Netscape Communicator 4.7 supporting
International security.

SUNWjadcl Japanese Localizations for Solaris Diskless Client Management Application.

SUNWjadis Japanese (EUC) Localizations for admintool and GUI install.

SUNWjadma Japanese (EUC) Localizations for Software used to perform system administration
tasks. Admintool requires both this and SUNWjadis packages for Japanese (EUC)
Localization.

SUNWjaj2p Japanese Localization of Java Plug-in 1.2.2.

SUNWjbcp Japanese (EUC) utilities including libc and locale data to provide a
binary-compatible execution environment for SunOS 4.x applications.

SUNWjcs3f Japanese JIS X0212 Type1 fonts for printing.

SUNWjdab Japanese (Common) Localization for CDE Desktop Application Builder.

SUNWjdbas Japanese (Common) Localization for CDE application basic runtime environment.

SUNWjddst Japanese (EUC) Localization for CDE Desktop Applications.

SUNWjddte Japanese (EUC) Localization for Solaris Desktop Login Environment

208 International Language Environments Guide • May, 2002

TABLE C–5 Japanese (Continued)
Package Name Description

SUNWjdhcm Japanese Localizations for DHCP Manager

SUNWjdhe Japanese (EUC) Localization for CDE Help Runtime environment

SUNWjdhed Japanese (EUC) Localization for CDE Help Developer Environment

SUNWjdhev Japanese (Common) Localization for CDE Help Volumes

SUNWjdhez Japanese (Common) Localizations for Desktop Power Pack Help Volumes

SUNWjdim Japanese (EUC) Localization for Solaris CDE Image Viewer.

SUNWjdma Japanese Localization for CDE MAN PAGES.

SUNWjdoc Japanese Documentation Tools.

SUNWjdwm Japanese (EUC) Localization for CDE Desktop Window Manager.

SUNWject Japanese (EUC) Localizations for UTF-8 Code Conversion Tool.

SUNWjedev Japanese (EUC) Development Environment Package specific files.

SUNWjeezt Japanese (EUC) Localizations for Desktop Power Pack Applications.

SUNWjej2m Japanese (EUC) man pages.

SUNWjeman Japanese Feature Package Man Pages to see Japanese (EUC) manpages for
SUNWjfpr and SUNWjfpu and Japanese manpages for SUNWman and SUNWaled.

SUNWjepmm Japanese (EUC) Power Management OW Utilities Man Pages.

SUNWjepmw Japanese (EUC) Localizations for Power Management OW Utilities.

SUNWjeudc Japanese (EUC) Localizations for User Defined Character tool for Solaris CDE
environment.

SUNWjfdl Japanese Localization for Solaris Desktop Font Downloader for Adobe PostScript
printers.

SUNWjfpre Stream modules for Japanese Feature Package (JFP). It is a extended package to run
JFP environment.

SUNWjfpue Japanese Feature Package (JFP) specific files for user. It is a extended package to run
JFP environment.

SUNWjfxmn English manpages of Japanese features for X Window System.

SUNWjj2rt Japanese Java virtual machine and core class libraries.

SUNWjjmfp Japanese Localization for JMF player.

SUNWjkcsr Japanese (EUC) Localizations for Kodak Color Management System Runtime.

SUNWjlvma Japanese Localizations for Solaris Volume Management API’s.

SUNWjlvmg Japanese Localizations for Solaris Volume Management Application.

Appendix C • Full Locale Package List on Languages CD 209

TABLE C–5 Japanese (Continued)
Package Name Description

SUNWjmane Japanese Feature Package Man Pages (Extension) to see English manpages for
SUNWjfpre and SUNWjfpue.

SUNWjmfrn Japanese (EUC) Localizations for Motif 1.2.3 RunTime Kit.

SUNWjmga Japanese Solaris Management Applications.

SUNWjorte Japanese (EUC) Localizations for OPEN LOOK toolkits runtime environment.

SUNWjos Japanese ON message files.

SUNWjpdas Japanese Localization for tools to synchronize desktop applications with the Palm
Pilot PDA.

SUNWjpj2m Japanese (PCK) man pages.

SUNWjreg Japanese Localizations for Solaris User Registration.

SUNWjrmui Japanese Resource Management for Solaris.

SUNWjsadl Japanese (EUC) Localizations for Solstice Admintool launcher and associated
libraries.

SUNWjscag Japanese Localization for Solaris Smart Card Administration - Grahical User
Interface component.

SUNWjsfw Japanese localizable message files for SFW consolidation.

SUNWjsmc Japanese Solaris Management Console 2.0.

SUNWjtlmn Japanese (EUC) ToolTalk manual pages for ToolTalk programmers, OpenWindows
users, and Common Desktop Environment (CDE) users.

SUNWjtltk Japanese Localizations for ToolTalk binaries and shared libraries needed for
Common Desktop Environment (CDE), OpenWindows, and all ToolTalk clients.

SUNWjuj2m Japanese (UTF-8) man pages.

SUNWjwacx Japanese (EUC) Localizations for AccessX client program.

SUNWjwbc Japanese Localizations for Solaris WBEM Services.

SUNWjwbcp Japanese (EUC) Localizations for Support files, programs, and libraries for
OpenWindows Binary Compatibility.

SUNWjwbd Japanese Localizations for Sun WBEM SDK resources.

SUNWjwncr Japanese Input System, Wnn6 Client, (Root).

SUNWjwncu Japanese Input System, Wnn6 Client, (Usr).

SUNWjwncx Japanese Input System, Wnn6 Client X Window System.

SUNWjwndt Japanese Input System, Wnn6 Client for CDE.

210 International Language Environments Guide • May, 2002

TABLE C–5 Japanese (Continued)
Package Name Description

SUNWjwnsr Japanese Input System, Wnn6 Server, (Root).

SUNWjwnsu Japanese Input System, Wnn6 Server, (Usr).

SUNWjws2 Japanese Localizations for Solaris Product Registry.

SUNWjwsv Japanese Localizations for Solaris Product Registry Viewer.

SUNWjxfa Japanese (Common) Localizations for Font Administration application for Solaris
platforms.

SUNWjxfnt Japanese X Window System Fonts (required fonts), gothic bold fonts and TrueType
map files.

SUNWjxim Japanese X Window System X Input Method Server Package.

SUNWjxoft Sun Minchou bitmap fonts.

SUNWjxpmn Japanese (EUC) X Window System online programmers man pages.

SUNWjxumn Japanese (EUC) X Window System online user man pages.

The following table lists the Korean language packages and their contents.

TABLE C–6 Korean

Package Name Description

NSCPkocom
Korean Localization of Netscape Communicator 4.7 supporting International
security.

NSCPkucom
ko.UTF-8 localization of Netscape Communicator 4.78 supporting International
security.

SUNWkacx Korean AccessX client program.

SUNWkadis Korean Localizations for admintool and GUI install.

SUNWkadma Korean Localizations for Software used to perform system administration tasks.
Admintool requires both this and SUNWkadis packages for Korean localization.

SUNWkbcp This package contains Korean Language Environment binary compatibility files.

SUNWkcoft Korean/Korean UTF-8 common optional font package.

SUNWkdab Korean Localizations for CDE Desktop Application Builder.

SUNWkdbas Korean Localizations for CDE Base functionality.

SUNWkdcl Korean Localizations for Solaris Diskless Client Management Application.

SUNWkdcst The Localized tools package for Korean.

Appendix C • Full Locale Package List on Languages CD 211

TABLE C–6 Korean (Continued)
Package Name Description

SUNWkddst Korean Localizations for CDE Desktop Applications.

SUNWkddte Korean Localizations for CDE Desktop Login Environment.

SUNWkdezt Korean (EUC) Localizations for Desktop Power Pack Applications.

SUNWkdft Fonts for the common desktop environment, Korean L10N CDE.

SUNWkdhcm Korean Localizations for DHCP Manager.

SUNWkdhe Korean Localizations for CDE Help Runtime environment.

SUNWkdhev Korean CDE Help Volumes.

SUNWkdhez Korean (Common) Localizations for Desktop Power Pack Help Volumes.

SUNWkdicn Korean Localizations for CDE Icons.

SUNWkdim Korean Localizations for CDE Imagetool.

SUNWkdwm Korean Localizations for CDE Desktop Window Manager.

SUNWkepmw Korean (EUC) Localization for Power Management OW Utilities.

SUNWkfdl Korean Solaris Font Downloader for Adobe Postscript (tm) TCP/IP printers.

SUNWkj2rt Java virtual machine and core class libraries (Korean supplement).

SUNWkjmfp Korean Localization for JMF player.

SUNWkkcsr Korean (EUC) KCMS Runtime Environment.

SUNWkleex Korean Language Environment specific files. It is a required package to run Korean
Language Environment (64-bit).

SUNWkler This package contains the stream modules for Korean Language Environment. It is a
required package to run Korean Language Environment.

SUNWkleue This package contains Korean Language Environment specific files. It is a required
package to run Korean Language Environment.

SUNWklvma Korean Localizations for Solaris Volume Management API’s.

SUNWklvmg Korean Localizations for Solaris Volume Management Application.

SUNWkmga Korean Solaris Management Applications.

SUNWkoj2p Korean Localization of Java Plug-in 1.2.2.

SUNWkorte Korean OPENLOOK Toolkits Runtime Environment Package.

SUNWkos This package contains Korean Language Environment specific files. It is a required
package to run Korean Language Environment.

SUNWkpdas Korean Localization for tools to synchronize desktop applications with the Palm
Pilot PDA.

212 International Language Environments Guide • May, 2002

TABLE C–6 Korean (Continued)
Package Name Description

SUNWkreg Korean Localizations for Solaris User Registration.

SUNWkrmui Korean Resource Management User Interface Components.

SUNWksadl Korean Localizationsfor Solstice Admintool launcher and associated libraries.

SUNWkscgu Korean Localizable Solaris Smart Card Administration - Grahical User Interface
component.

SUNWksfw Korean localizable message files for SFW consolidation.

SUNWksmc Korean Solaris Management Console 2.0.

SUNWktltk Korean ToolTalk Runtime Package Package.

SUNWkttfe Korean True Type Font Extension.

SUNWkudc Korean (EUC) Localizations for User Defined Character tool for Solaris CDE
environment.

SUNWkuxft Korean UTF-8 X Windows Platform Required Fonts.

SUNWkwbc Korean Localisations for Solaris WBEM Services.

SUNWkwbcp Korean OpenWindows Binary Compatibility Package.

SUNWkwdev Korean Localizations for Solaris WBEM Services.

SUNWkwsr Korean prodreg 2.0 Localizable text resources.

SUNWkwsr2 Korean Localizations for Solaris Product Registry.

SUNWkwsrv Korean Localizations for Solaris Product Registry Viewer.

SUNWkxe Korean X Windows Platform Software Package.

SUNWkxfte Korean X Windows Platform Required Fonts

SUNWkxman Korean X Windows Online User Man Pages Package

The following table lists the Spanish language packages and their contents.

TABLE C–7 Spanish

Package Name Description

NSCPescom
Spanish Localization of Netscape Communicator 4.7 supporting International
security.

SUNWedcl Diskless Client Management Application Spanish Localization.

SUNWedhcm Spanish Localizations for DHCP Manager.

Appendix C • Full Locale Package List on Languages CD 213

TABLE C–7 Spanish (Continued)
Package Name Description

SUNWefdl Localizable strings for the Font Downloader.

SUNWej2rt Java virtual machine and core class libraries (Spanish supplement).

SUNWejmfp Localizable JMF Player for playing audio and video files.

SUNWelvma Spanish Localizations for Solaris Volume Management API’s.

SUNWelvmg Spanish Localizations for Solaris Volume Management Application.

SUNWemgp Solaris Management Applications Spanish Localization.

SUNWeorte Spanish OPEN LOOK (R) toolkits runtime environment.

SUNWepdas Spanish Localizations for tools to synchronize desktop applications with the Palm
Pilot PDA.

SUNWermui Spanish Resource Management for Solaris.

SUNWesadl Spanish Localizations for Solstice Admintool launcher and associated libraries.

SUNWesbas Base L10N fr CDE functionality to run a CDE application.

SUNWescgu Localizable Solaris Smart Card Administration - Grahical User Interface component.

SUNWesdis Spanish Localizations for admintool and GUI install.

SUNWesdma Spanish Localizations for Software used to perform system administration tasks.

SUNWesdst CDE Desktop Applications.

SUNWesdte CDE Desktop Login Environment.

SUNWesfw Spanish localizable message files for SFW consolidation.

SUNWeshe CDE Help L10N es Runtime Environment.

SUNWeshed CDE L10N es Help Developer Environment.

SUNWeshev CDE Help Volumes.

SUNWeshez Spanish Localizations for Desktop Power Pack Help Volumes.

SUNWesim CDE Desktop apps.

SUNWesj2p Spanish Localization of Java Plug-in 1.2.2.

SUNWesos Localizable message files for the OS-Networking consolidation.

SUNWespmw Spanish (EUC) Localizations for Power Management OW Utilities.

SUNWesreg Solaris User Registration prompts at desktop login for user registration.

SUNWessmc Solaris Management Console Spanish Localization.

SUNWeswbc Spanish Localisations for Solaris WBEM Services.

214 International Language Environments Guide • May, 2002

TABLE C–7 Spanish (Continued)
Package Name Description

SUNWeswm Spanish CDE Desktop Window Manages Messages.

SUNWesws2 Spanish Localisations Solaris Product Registry.

SUNWeswsv Spanish Localisations for Solaris Product Registry Viewer.

SUNWetltk Spanish ToolTalk binaries and shared libraries.

SUNWewacx Spanish OPEN LOOK (R) AccessX.

SUNWewdev Spanish Sun WBEM SDK resources.

SUNWexplt Spanish X Windows platform software.

The following table lists the Swedish language packages and their contents.

TABLE C–8 Swedish

Package Name Description

NSCPsvcom
Swedish Localization of Netscape Communicator 4.7 supporting International
security.

SUNWsdcl Diskless Client Management Application Swedish Localization.

SUNWsdhcm Swedish Localizations for DHCP Manager.

SUNWsfdl Localizable strings for the Font Downloader.

SUNWsj2rt Java virtual machine and core class libraries (Swedish supplement).

SUNWsjmfp Localizable JMF Player for playing audio and video files.

SUNWslvma Swedish Localizations for Solaris Volume Management API’s.

SUNWslvmg Swedish Localizations for Solaris Volume Management Application.

SUNWsmgp Solaris Management Applications Swedish Localization.

SUNWsorte Swedish OPEN LOOK (R) toolkits runtime environment.

SUNWspdas Swedish tools to synchronize desktop applications with the Palm Pilot PDA.

SUNWsrmui Swedish Resource Management for Solaris.

SUNWssadl Swedish Localizations for Solstice Admintool launcher and associated libraries.

SUNWsscgu Localizable Solaris Smart Card Administration - Grahical User Interface component.

SUNWssfw Swedish localizable message files for SFW consolidation.

SUNWstltk Swedish ToolTalk binaries and shared libraries.

SUNWsvbas Base Swedish CDE functionality messages.

Appendix C • Full Locale Package List on Languages CD 215

TABLE C–8 Swedish (Continued)
Package Name Description

SUNWsvdis Swedish Localizations for admintool and GUI install.

SUNWsvdma Swedish Localizations for Software used to perform system administration tasks.

SUNWsvdst Swedish CDE Desktop Applications messages.

SUNWsvdte Swedish CDE Desktop Login Environment messages.

SUNWsvhe Swedish CDE Help Runtime Environment.

SUNWsvhed Swedish CDE Help Developer Environment messages.

SUNWsvhev CDE Help Volumes.

SUNWsvhez Swedish Localizations for Desktop Power Pack Help Volumes.

SUNWsvim Swedish CDE Image editor messages.

SUNWsvj2p Swedish Localization of Java Plug-in 1.2.2.

SUNWsvos Localizable message files for the OS-Networking consolidation.

SUNWsvpmw Swedish (EUC) Localizations for Power Management Open Windows. Utilities

SUNWsvreg Solaris User Registration prompts at desktop login for user registration.

SUNWsvsmc Solaris Management Console Swedish Localization.

SUNWsvwbc Swedish Localizations for Solaris WBEM Services.

SUNWsvwm Swedish CDE Desktop Window Manages Messages.

SUNWsvws2 Swedish Localisations Solaris Product Registry.

SUNWsvwsv Swedish Localisations for Solaris Product Registry Viewer.

SUNWsvwsv Swedish Localisations for Solaris Product Registry Viewer.

SUNWswacx Swedish Open Look AccessX.

SUNWsxplt Swedish X Windows platform software.

SUNWvbcp Swedish OS Binary Compatibility Package.

The following table lists the Traditional Chinese language packages and their contents.

TABLE C–9 Traditional Chinese

Package Name Description

NSCP5com
zh_TW.BIG5 Localization of Netscape Communicator 4.7 supporting International
security.

216 International Language Environments Guide • May, 2002

TABLE C–9 Traditional Chinese (Continued)
Package Name Description

NSCPhcom Traditional Chinese Localization of Netscape Communicator 4.7 supporting
International security.

NSCPhucom zh_TW.UTF-8 Localization of Netscape Communicator 4.7 supporting International
security.

SUNW5ttfe Traditional Chinese True Type Fonts Package Extension.

SUNW5xfnt Traditional Chinese BIG5 X Windows Platform required Fonts Package.

SUNWhacx Traditional Chinese AccessX client program.

SUNWhadis Traditional Chinese (EUC) Localizations for admintool and GUI install.

SUNWhadma Traditional Chinese (EUC) Localizations for Software used to perform system
administration tasks. Admintool requires both this and SUNWhadis packages for
Traditional Chinese (EUC) Localization.

SUNWhbcp This package contains Traditional Chinese Language Environment binary
compatibility files.

SUNWhdab Traditional Chinese Localizations for CDE Desktop Application Builder.

SUNWhdbas Traditional Chinese Localizations for CDE Base functionality.

SUNWhdcl Traditional Chinese Localizations for Solaris Diskless Client Management
Application.

SUNWhddst Traditional Chinese Localizations for CDE Desktop Applications.

SUNWhddte Traditional Chinese Localizations for CDE Desktop Login Environment.

SUNWhdezt Traditional Chinese (EUC) Localizations for Desktop Power Pack Applications.

SUNWhdft Traditional Chinese Localizations for CDE Fonts.

SUNWhdhcm Traditional Chinese Localizations for DHCP Manager.

SUNWhdhe Traditional Chinese Localizations for CDE Help Runtime environment.

SUNWhdhev Traditional Chinese CDE Help Volumes

SUNWhdhez Traditional Chinese (Common) Localizations for Desktop Power Pack Help
Volumes.

SUNWhdicn Traditional Chinese Localizations for CDE Icons.

SUNWhdim Traditional Chinese Localizations for CDE Imagetool.

SUNWhdwm Traditional Chinese Localizations for CDE Desktop Window Manager.

SUNWhepmw Traditional Chinese (EUC) Localization for Power Management OW Utilities.

Appendix C • Full Locale Package List on Languages CD 217

TABLE C–9 Traditional Chinese (Continued)
Package Name Description

SUNWhfdl Traditional Chinese Solaris Font Downloader for Adobe Postscript TCP/IP printers.

SUNWhj2p Traditional Chinese Localization of Java Plug-in 1.2.2.

SUNWhj2rt Java virtual machine and core class libraries (Traditional Chinese supplement).

SUNWhjmfp Traditional Chinese Localization for JMF player.

SUNWhkcsr Traditional Chinese (EUC) KCMS runtime environment.

SUNWhkdcl Traditional Chinese (Hong Kong) Localizations for Solaris Diskless Client
Management Application.

SUNWhkeex Traditional Chinese (Hong Kong BIG5) Language Environment specific files. It is a
required package to run Traditional Chinese (Hong Kong BIG5) Language
Environment (64-bit).

SUNWhkeue This package contains Traditional Chinese (Hong Kong) Language Environment
specific files. It is a required package to run Traditional Chinese (Hong Kong)
Language Environment.

SUNWhklvmg Traditional Chinese (Hong Kong) Localizations for Solaris Volume Management
Application.

SUNWhkmga Traditional Chinese (Hong Kong) Solaris Management Applications.

SUNWhkrmui Traditional Chinese (Hong Kong) Resource Management User Interface
Components.

SUNWhksmc Traditional Chinese (Hong Kong) Solaris Management Console 2.0.

SUNWhkxe Traditional Chinese(Hong Kong) X Windows Platform Software Package.

SUNWhleex Traditional Chinese Language Environment specific files. It is a required package to
run Traditional Chinese Language Environment (64-bit).

SUNWhleue Traditional Chinese Language Environment specific files. It is a required package to
run Traditional Chinese Language Environment.

SUNWhlvma Traditional Chinese Localizations for Solaris Volume Management API’s.

SUNWhlvmg Traditional Chinese Localizations for Solaris Volume Management Application.

SUNWhmga Traditional Chinese Solaris Management Applications.

SUNWhorte Traditional Chinese OPENLOOK Toolkits Runtime Environment Package.

SUNWhos This package contains Traditional Chinese Language Environment specific files. It is
a required package to run Traditional Chinese Language Environment.

SUNWhpdas Traditional Chinese Localization for tools to synchronize desktop applications with
the Palm Pilot PDA.

SUNWhreg Traditional Chinese Localizations for Solaris User Registration.

218 International Language Environments Guide • May, 2002

TABLE C–9 Traditional Chinese (Continued)
Package Name Description

SUNWhrmui Traditional Chinese Resource Management User Interface Components.

SUNWhsadl Traditional Chinese Localizationsfor Solstice Admintool launcher and associated
libraries.

SUNWhscgu Traditional Chinese Localizable Solaris Smart Card Administration - Grahical User
Interface component.

SUNWhsfw Traditional Chinese localizable message files for SFW consolidation.

SUNWhsmc Traditional Chinese Solaris Management Console 2.0.

SUNWhtltk Traditional Chinese ToolTalk Runtime Package Package.

SUNWhttfe Traditional Chinese True Type optional Fonts Package Extension.

SUNWhudc Traditional Chinese (EUC) Localizations for User Defined Character tool for Solaris
CDE environment.

SUNWhwbc Traditional Chinese Localisations for Solaris WBEM Services.

SUNWhwbcp Traditional Chinese OpenWindows Binary Compatibility Package.

SUNWhwdev Traditional Chinese Localizations for Solaris WBEM Services.

SUNWhwsr2 Traditional Chinese Localizations for Solaris Product Registry.

SUNWhwsrv Traditional Chinese Localizations for Solaris Product Registry Viewer.

SUNWhxe Traditional Chinese X Windows Platform Software Package.

SUNWhxman Traditional Chinese X Windows Online User Man Pages Package.

The following table lists the shared packages and their contents.

TABLE C–10 Asian Shared

Package Name Description

SUNWabcp Asian common files for SunOS 4.x Binary Compatibility.

SUNWudct User Defined Character tool for Solaris CDE environment.

Appendix C • Full Locale Package List on Languages CD 219

220 International Language Environments Guide • May, 2002

Index

Numbers and Symbols
@ls numerals=nominal:national, 130
16-bit Unicode 3.0 codeset, 140

A
alphabets, 34
APIs, 45
applications

FontSet/XmFontList definitions, 122
internationalizing, 123
linking to system libraries, 43
XPG4, 45

Arabic
character support, 95

Arabic keyboard, 108
Asian supported locales, 78
AttrObject, 130

B
Belgian keyboard, 110

C
catgets(), 52
CDE

en_US.UTF-8 locale support of, 94
CDE input methods, 96
character support, 95

Chinese text
linguistic introduction, 35

code conversion modules, 165, 186, 188
code conversion STREAMS modules, 116
code conversions, 120
codeset

character support, 95
codeset independence (CSI)

dynamically linked applications, 43
Extended UNIX Code (EUC), 39
file code encodings, 40
Java internationalization, 40
locale database format and structure, 41
multibyte character support, 42
process code format, 42
Shift-JIS codeset, 39
Solaris 9 environment commands, 40
Solaris 9 environment libraries, 41

collation locales for Asian Solaris, 22
commands

CSI-capable, 40
common prolog file, 156
Complex Text Layout (CTL), 16

architecture overview, 126
character shaping, 125
complex language shaping, 125
creating a render table, 141
creating a rendition, 139
diacritics, 125
dynamic text widgets, 125
editing a rendition, 140
horizontal tabs, 143
keyboard selection, 145

221

Complex Text Layout (CTL) (continued)
language engine, 125
layout direction, 138
ligatures, 125
Motif, 127
Motif library porting instructions, 146
mouse selection, 144
PLS, 125
segment ordering, 125
static and dynamic text, 125
tabbing, 125
technology overview, 125
text orientation, 125
text rendering, 125
text resources and geometry, 145
X Library Output Module (XOM), 126
XOC resources, 126

Compose key, 37
compose sequences, 108, 110, 112

Latin-1, 100, 103
Latin-2, 104
Latin-3, 106
Latin-4, 106
Latin-5, 107
Latin-9, 107

Context, 130
conversion

multibyte and wide character process
code, 45

conversions, 120
Coordinated Universal Time, 30
creating message catalogs, 52
.cshrc, 119
CSText, 131
ctype macros, 44
Cyrillic input mode, 108, 110, 113
Czech

character support, 95

D
date formats, 30
Daylight Savings Time (DST), 30
developer’s cluster, 95
DST (Daylight Savings Time), 30
Dt Apps, 126

DtMail
MIME character sets, 120

dtterm, 118
dynamic linking, 43

E
editing behavior, 130
en_US.UTF-8

fontset definitions, 123
support, 94

English
character support, 95
input mode, 99

environment variable
LANG, 116

Euro currency, 23

F
font aliasing, 150
font group definition, 150
FontSet definitions, 123
French language packages, 203
full localization package

French, 203
German, 205
Italian, 206
Japanese, 89, 208
Korean, 211
Shared, 219
Simplified Chinese, 201
Spanish, 213
Swedish, 215
Traditional Chinese, 216

full Solaris locale, 27

G
genmsg utility, 52
German

character support, 95
German language packages, 205
GMT offset, 30

222 International Language Environments Guide • May, 2002

Greek
character support, 95
input mode, 108, 113

Greek euro keyboard, 110
Greek input mode, 108
Greek UNIX keyboard, 110
Greenwich Mean Time offset, 30

H
hangul in Korean, 35
hanja in Korean, 35
hanzi in Chinese, 35
Hebrew

character support, 95
Hebrew keyboard, 111
Hebrew text, 36
Hindi

character support, 95
Hindi script support, 22
Hindi text, 36
hiragana in Japanese, 34
HKSCS iconv modules, 22
Hungarian

character support, 95

I
IA

keyboards, 76
iconv

Japanese character code conversion, 89
iconv conversion module

IBM/Microsoft EBCDIC, 186
IBM/Microsoft EBCDIC/PC code

pages, 188
PC code page, 186
Unicode-related, 165

input mode
en_US.UTF-8 locale, 97

input modes
Cyrillic, 107, 110, 112
English, 99
Greek, 108, 113

internationalization
definition of, 23

internationalization (continued)
ISO Latin-1, 26

internationalization APIs, 45
internationalizing applications, 123
ISO-10646, 94
ISO Latin-1, 26
ISO8859-n character support, 95
Italian language packages, 206

J
Japanese

character set, 86
character support, 95
font, 87
full localization package, 89
iconv module, 23, 89
input system, 88
locales, 86
localization, 86

Japanese input mode, 112
Japanese language packages, 208
Japanese text

hiragana, 34
Kanji, 34
katakana, 34
linguistic introduction, 34

K
kanji in Japanese, 34
katakana in Japanese, 34
keyboard layout

Arabic keyboard, 69
Belgian keyboard, 69
Danish keyboard, 70
Finnish keyboard, 70
French keyboard, 70
German keyboard, 71
Italian keyboard, 71
Japanese keyboard, 71
Korean keyboard, 72
Netherlands (Dutch) keyboard, 72
Norwegian keyboard, 72
Portuguese keyboard, 73
Spanish keyboard, 73

Index 223

keyboard layout (continued)
Swedish keyboard, 73
Swiss (French) keyboard, 74
Swiss (German) keyboard, 74
Traditional Chinese keyboard, 74
Turkish F keyboard, 75
type 4, 5, and 5c keyboards, 66
United Kingdom keyboard, 75
United States keyboard, 76
US/UNIX keyboard, 76

keyboards, 36, 64
changing keyboards on IA, 76
changing on SPARC, 69

Korean
bitmap font, 91
character support, 95
iconv module, 92
input method, 90
locales, 90
localization, 90

Korean input mode, 112
Korean language packages, 211
Korean text

Hangul, 35
hanja, 35
linguistic introduction, 35

Korean TrueType, 91

L
LANG

environment variable, 116
LANG environment variable, 115
Latin-1 compose sequences, 103
Latin-2 compose sequences, 104
Latin-3

compose sequences, 107
Latin-4 compose sequences, 106
Latin-5 compose sequences, 107
Latin-9 compose sequences, 107
Latin-n terminals, 118
layout behavior, 130
Layout Modifier Orientation, 130
Layout Services, 130
layoutDirection, 138
LayoutObject, 128
LC_ALL, 26

libc, 43, 45
character classification and

transliteration, 47
character collation, 48
code conversion, 46
date and time formatting, 49
formatted wide-character input and

output, 51
messaging, 45
modify and query locale, 47
monetary handling, 49
multibyte handling, 49
query locale data, 47
regular expressions, 46
wide character, 46
wide character and string handling, 50
wide-character input and output, 51
wide strings, 51

libraries, linking applications to, 43
linking applications, 43
loading

STREAMS modules, 117
local environment variable, 115
locale contents, 57, 77
locale dependent prolog file, 156
locale utility, 115
locales, 39

base language, 26
categories of, 28
character sets, 34
codeset, 26
country of use, 26
cultural conventions, 28
currency, 24
currency formats, 31
date formats, 30
definition of, 26
environment variables, 115
keyboard differences, 36
number formats, 30
page sizes, 37
sort order, 34
time formats, 29
word delimiters, 33

localization
definition of, 23

localization of the configuration file, 150

224 International Language Environments Guide • May, 2002

M
m_create_layout(), 130
mapping to font group, 150
mbtwoc(), 45
message catalogs, 52
modinfo command, 117
mp, 22, 147
mp, 16
multibyte file code conversion, 45
mystreams file, 119

N
new keyboard support, 16
number formats

conventions, 31
decimal places, 30
radix characters, 30
separators, 30
thousands separators, 30

Numerals, 139
NUMERALS_CONTEXTUAL, 139
NUMERALS_NATIONAL, 130
NUMERALS_NOMINAL, 130

O
Orientation, 130
OutToInp, 132

P
partial localization package, 193

Australasia, 193
Central America, 194
common files for Chinese, Japanese and

Korean, 193
Eastern Europe, 194
Indic, 196
ISO8859, 196
Korean, 197
Netscape Communicator 4.7, 193
Southern America, 198
Southern Europe, 198
Swedish, 198

partial localization package (continued)
Thai, 198
Traditional Chinese, 195
Western Europe, 199

People’s Republic of China, 36
pinyin in Chinese, 36
Polish

character support, 95
Portable Layout Services (PLS), 125

bi-directionality, 125
feature list, 125
ligation, 125
numeral shaping, 125
string validation, 125
symmetrical swapping, 125

print filter, 147
print filter enhancement, 16, 148
print layout prolog file, 156
printing filter, 22
prolog file

common, 156
locale dependent, 156
print layout, 156

prolog files, 156
Property, 132
pseudo-XOC, 128

R
Render Table, 141
Russian

character support, 95

S
saving

STREAMS modules settings, 119
/sbin/sh command, 43
Scandinavian and Baltic language

character support, 95
script selection, 97
setlocale man page, 116
setting

terminal options, 118
setup

TTY environment, 116

Index 225

ShapeCharset, 130, 139
Simplified and Traditional Chinese

auxiliary window support, 79
input method, 78

Simplified Chinese
character support, 95
input method, 81
locales, 80

Simplified Chinese input mode, 113
Simplified Chinese language packages, 201
Solaris 9

Asian locales, 77
Chinese codeset, 83
features, 22
Japanese input system, 88
Korean localization, 90
locale contents, 57, 77

Spanish
character support, 95
language packages, 213

SPARC keyboards, 69
static linking, 43
strchg command, 118
strconf command, 118
STREAMS module

32–bit STREAMS, 116
64–bit STREAMS, 116
loading, 117
saving settings, 119
TTY environment setup, 116
u8lat1, 118
u8lat2, 118

string
XmTextFieldGetLayoutModifier, 135

Swedish language packages, 215
system libraries

linking applications to, 43

T
table lookup input method mode, 115
terminal options, setting, 118
terminal support for Latin-1, Latin-2, or

KOI8-R, 118
terminals

Latin-n, 118
Latin-n terminals, 118

TextField, 138
TextShaping, 130
Thai

character sequence checking, 80
character support, 95
input method, 80

Thai ISO8859–1, 22
Thai keyboard, 114
Thai text, 35
Thai UTF-8, 22
time zones, 30
Traditional Chinese

input method, 84
locales, 83

Traditional Chinese (Hong Kong)
Big5+HKSCS locale, 22
UTF-8 locale, 22

Traditional Chinese input mode, 114
Traditional Chinese language packages, 216
TTY environment setup, 116
Turkish

character support, 95
Tuthill, Bill, 18
TypeOfText, 130

U
UIL, 137
Unicode 3.1

support, 94
Unicode overview, 93
/usr/include/ctype.h

ctype macros, 44
/usr/ucb/stty

use /bin/stty directory, 118
UTC, 30
UTF-8 encoding, 94
utilities

genmsg, 52
locale, 115

W
Western European

character support, 95
Western European alphabets, 34

226 International Language Environments Guide • May, 2002

Western European languages
character support, 95

wide character
process code, 45

wide character expression, 39

X
X Logical Fonts Description, 152
X/Open-Uniforum Joint Internationalization

Working Group, 94
XLFD, 152
XmALIGNMENT_CENTER, 131
XmALIGNMENT_END, 131
XmCR_MOVING_INSERT_CURSOR, 133
XmDEFAULT_DIRECTION, 128
XmEDIT_LOGICAL, 131, 133, 144
XmEDIT_VISUAL, 144
XmEDIT_VISUAL, 131
XmFont_IS_XO, 129
XmFONT_IS_XOC, 129, 142
XmLabel, 128, 139
XmLabelG, 128
XmList, 128
XmNalignment, 131, 138
XmNAlignment, 139
XmNeditPolicy, 131, 144

left-character(), 133
XmNfont, 129
XmNfontName, 129
XmNfontType, 129
XmNgainPrimaryCallback, 133
XmNlabelString, 139
XmNlayoutAttrObject, 129
XmNlayoutDirection, 128
XmNlayoutDirection, 128, 137
XmNlayoutModifier, 128, 138
XmNlayoutModifier, 130
XmNmotionVerifyCallback, 133
XmNrenderTable, 131, 145
XmNrenditionTag, 131
XmRenderTableAddRenditions, 142
XmRendition, 127, 130, 138
XmRendition{Retrieve,Update}, 130
XmString, 129, 137
XmSTRING_COMPONENT_LAYOUT_PUSH, 128
XmSTRING_COMPONENT_LOCALE_TEXT, 128

XmSTRING_COMPONENT_TEXT, 128
XmSTRING_COMPONENT_WIDECHAR_TEXT, 128
XmStringDirection, 129, 137
XmStringDirectionCreate, 137
XmText, 128, 131, 138
XmTextField, 128, 131
XmTextFieldGetLayoutModifier, 135
XmTextFieldSetLayoutModifier, 136
XmTextGetLayoutModifier, 136
XmTextSetLayoutModifier, 136
XoJIG, 94
XPG4 applications, 45
xpr, 156

Index 227

228 International Language Environments Guide • May, 2002

