Programming Interfaces Guide

Process State Transition

Applications that have strict real-time constraints might need to prevent processes from being swapped or paged out to secondary memory. A simplified overview of UNIX process states and the transitions between states is shown in the following figure.

Figure 3–2 Process State Transition Diagram

 A running process can be preempted to memory, where it is runnable, or sleep in memory. A process in memory can be swapped.

An active process is normally in one of the five states in the diagram. The arrows show how the process changes states.

Both paging and swapping cause delay when a process is ready to run again. For processes that have strict timing requirements, this delay can be unacceptable.

To avoid swapping delays, real-time processes are never swapped, though parts of such processes can be paged. A program can prevent paging and swapping by locking its text and data into primary memory. For more information, see the memcntl(2) man page. How much memory can be locked is limited by how much memory is configured. Also, locking too much can cause intolerable delays to processes that do not have their text and data locked into memory.

Trade-offs between the performance of real-time processes and the performance of other processes depend on local needs. On some systems, process locking might be required to guarantee the necessary real-time response.


Note –

See Dispatch Latency for information about latencies in real-time applications.