System Administration Guide: Resource Management and Network Services

Chapter 16 Accessing Remote File Systems (Reference)

This chapter provides an introduction to the NFS commands. This chapter also provides information about all of the pieces of the NFS environment and how these pieces work together.

NFS Files

You need several files to support NFS activities on any computer. Many of these files are ASCII, but some of the files are data files. Table 16–1 lists these files and their functions.

Table 16–1 NFS Files

File Name 

Function 

/etc/default/fs

Lists the default file system type for local file systems. 

/etc/default/nfs

Lists configuration information for lockd and nfsd.

/etc/default/nfslogd

Lists configuration information for the NFS server logging daemon, nfslogd.

/etc/dfs/dfstab

Lists the local resources to be shared. 

/etc/dfs/fstypes

Lists the default file-system types for remote file systems. 

/etc/dfs/sharetab

Lists the local and remote resources that are shared. See the sharetab(4) man page. Do not edit this file.

/etc/mnttab

Lists file systems that are currently mounted, including automounted directories. See the mnttab(4) man page. Do not edit this file.

/etc/netconfig

Lists the transport protocols. Do not edit this file.

/etc/nfs/nfslog.conf

Lists general configuration information for NFS server logging. 

/etc/nfs/nfslogtab

Lists information for log post-processing by nfslogd. Do not edit this file.

/etc/nfssec.conf

Lists NFS security services. Do not edit this file. 

/etc/rmtab

Lists file systems that are remotely mounted by NFS clients. See the rmtab(4) man page. Do not edit this file.

/etc/vfstab

Defines file systems to be mounted locally. See the vfstab(4) man page.

The first entry in /etc/dfs/fstypes is often used as the default file-system type for remote file systems. This entry defines the NFS file-system type as the default.

Only one entry is in /etc/default/fs: the default file-system type for local disks. You can determine the file-system types that are supported on a client or server by checking the files in /kernel/fs.

/etc/default/nfslogd

This file defines some of the parameters that are used when using NFS server logging. The following parameters can be defined.

CYCLE_FREQUENCY

Determines the number of hours that must pass before the log files are cycled. The default value is 24 hours. This option is used to prevent the log files from growing too large.

IDLE_TIME

Sets the number of seconds nfslogd should sleep before checking for more information in the buffer file. This parameter also determines how often the configuration file is checked. This parameter, along with MIN_PROCESSING_SIZE, determines how often the buffer file is processed. The default value is 300 seconds. Increasing this number can improve performance by reducing the number of checks.

MAPPING_UPDATE_INTERVAL

Specifies the number of seconds between updates of the records in the file-handle-to-path mapping tables. The default value is 86400 seconds or one day. This parameter helps keep the file-handle-to-path mapping tables up-to-date without having to continually update the tables.

MAX_LOGS_PRESERVE

Determines the number of log files to be saved. The default value is 10.

MIN_PROCESSING_SIZE

Sets the minimum number of bytes that the buffer file must reach before processing and writing to the log file. This parameter, along with IDLE_TIME, determines how often the buffer file is processed. The default value for is 524288 bytes. Increasing this number can improve performance by reducing the number of times the buffer file is processed.

PRUNE_TIMEOUT

Selects the number of hours that must pass before a file-handle-to-path mapping record times out and can be pruned. The default value is 168 hours or 7 days.

UMASK

Specifies the file mode creation mask for the log files that are created by nfslogd. The default value is 0137.

/etc/nfs/nfslog.conf

This file defines the path, file names, and type of logging to be used by nfslogd. Each definition is associated with a tag. Starting NFS server logging requires that you identify the tag for each file system. The global tag defines the default values. You can use the following parameters with each tag as needed.

defaultdir=path

Specifies the default directory path for the logging files.

log=path/filename

Sets the path and file name for the log files.

fhtable=path/filename

Selects the path and file name for the file-handle-to-path database files.

buffer=path/filename

Determines the path and file name for the buffer files.

logformat=basic|extended

Selects the format to be used when creating user-readable log files. The basic format produces a log file that is similar to some ftpd daemons. The extended format gives a more detailed view.

If the path is not specified, the path that is defined by defaultdir is used. Also, you can override defaultdir by using an absolute path.

To identify the files more easily, place the files in separate directories. Here is an example of the changes that are needed.


% cat /etc/nfs/nfslog.conf
#ident  "@(#)nfslog.conf        1.5     99/02/21 SMI"
#
  .
  .
# NFS server log configuration file.
#

global  defaultdir=/var/nfs \
        log=nfslog fhtable=fhtable buffer=nfslog_workbuffer

publicftp log=logs/nfslog fhtable=fh/fhtables buffer=buffers/workbuffer

In this example, any file system that is shared with log=publicftp would use the following values:

NFS Daemons

To support NFS activities, several daemons are started when a system goes into run level 3 or multiuser mode. The mountd and nfsd daemons are run on systems that are NFS servers. The automatic startup of the server daemons depends on the existence of entries that are labeled with the NFS file-system type in /etc/dfs/sharetab. The lockd and statd daemons are run on NFS clients and servers to support NFS file locking.

automountd

This daemon handles the mount and unmount requests from the autofs service. The syntax of the command is as follows:

automountd [ -Tnv ] [ -D name=value ]

The command behaves in the following ways:

The default value for the automount map is /etc/auto_master. Use the -T option for troubleshooting.

lockd

This daemon supports record-locking operations on NFS files. The lockd daemon manages RPC connections between the client and the server for the Network Lock Manager (NLM) protocol. The daemon is normally started without any options. You can use three options with this command. See the lockd(1M) man page. These options can either be used from the command line or by editing the appropriate string in /etc/default/nfs. Changing /etc/default/nfs makes the change persist through system reboots. This feature is only available in the Solaris 9 release. The only way to make these changes permanent in other releases is to change /etc/init.d/nfs.client.

The LOCKD_GRACE_PERIOD=graceperiod parameter in /etc/default/nfs selects the number of seconds that the clients have to reclaim locks after a server reboot. During this time, the NFS server only processes reclaims of old locks. All other requests for service must wait until the grace period is over. This option affects the NFS server-side response, so this response can be changed only on an NFS server. The default value for graceperiod is 45 seconds. Reducing this value means that NFS clients can resume operation more quickly after a server reboot. However, a reduction increases the possibility that a client might not be able to recover all its locks. This same behavior can be used on the command line by starting the daemon with the -g graceperiod option.

The LOCKD_RETRANSMIT_TIMEOUT=timeout parameter in /etc/default/nfs selects the number of seconds to wait before retransmitting a lock request to the remote server. This option affects the NFS client-side service. The default value for timeout is 15 seconds. Decreasing the timeout value can improve response time for NFS clients on a noisy network. However, this change can cause additional server load by increasing the frequency of lock requests. The same parameter can be used from the command line by starting the daemon with the -t timeout option.

The LOCKD_SERVERS=nthreads parameter in /etc/default/nfs specifies the maximum number of concurrent threads that the server handles per connection. Base the value for nthreads on the load that is expected on the NFS server. The default value is 20. Each NFS client that uses TCP uses a single connection with the NFS server. Therefore, each client can use a maximum of 20 concurrent threads on the server. All NFS clients that use UDP share a single connection with the NFS server. Under these conditions, you might have to increase the number of threads that are available for the UDP connection. A minimum calculation would be to allow two threads for each UDP client. However, this number is specific to the workload on the client, so two threads per client might not be sufficient. The disadvantage to using more threads is that when the threads are used, more memory is used on the NFS server. If the threads are never used, however, increasing nthreads has no effect. The same parameter can be used from the command line by starting the daemon with the nthreads option.

mountd

This daemon handles file-system mount requests from remote systems and provides access control. The mountd daemon checks /etc/dfs/sharetab to determine which file systems are available for remote mounting and which systems are allowed to do the remote mounting. You can use the -v option and the -r option with this command. See the mountd(1M) man page.

The -v option runs the command in verbose mode. Every time an NFS server determines the access that a client should get, a message is printed on the console. The information that is generated can be useful when trying to determine why a client cannot access a file system.

The -r option rejects all future mount requests from clients. This option does not affect clients that already have a file system mounted.

nfsd

This daemon handles other client file-system requests. You can use several options with this command. See the nfsd(1M) man page for a complete listing. These options can either be used from the command line or by editing the appropriate string in /etc/default/nfs. Changing /etc/default/nfs makes the change persist through system reboots. This feature is only available in the Solaris 9 release. The only way to make these changes permanent in other releases is to change /etc/init.d/nfs.server.

The NFSD_LISTEN_BACKLOG=length parameter in /etc/default/nfs sets the length of the connection queue over connection-oriented transports for NFS and TCP. The default value is 32 entries. The same selection can be made from the command line by starting nfsd with the -l option.

The NFSD_MAX_CONNECTIONS=#_conn parameter in /etc/default/nfs selects the maximum number of connections per connection-oriented transport. The default value for #_conn is unlimited. The same parameter can be used from the command line by starting the daemon with the -c #_conn option.

The NFSD_SERVER=nservers parameter in /etc/default/nfs selects the maximum number of concurrent requests that a server can handle. The default value for nservers is 1, but the startup scripts select 16. The same selection can be made from the command line by starting nfsd with the nservers option.

Unlike older versions of this daemon, nfsd does not spawn multiple copies to handle concurrent requests. Checking the process table with ps only shows one copy of the daemon running.

nfslogd

This daemon provides operational logging. NFS operations that are logged against a server are based on the configuration options that are defined in /etc/default/nfslogd. When NFS server logging is enabled, records of all RPC operations on a selected file system are written to a buffer file by the kernel. Then nfslogd post-processes these requests. The name service switch is used to help map UIDs to logins and IP addresses to host names. The number is recorded if no match can be found through the identified name services.

Mapping of file handles to path names is also handled by nfslogd. The daemon tracks these mappings in a file-handle-to-path mapping table. One mapping table exists for each tag that is identified in /etc/nfs/nfslogd. After post-processing, the records are written to ASCII log files.

statd

This daemon works with lockd to provide crash and recovery functions for the lock manager. The statd daemon tracks the clients that hold locks on an NFS server. If a server crashes, on rebooting statd on the server contacts statd on the client. The client statd can then attempt to reclaim any locks on the server. The client statd also informs the server statd when a client has crashed so that the client's locks on the server can be cleared. You have no options to select with this daemon. For more information, see the statd(1M) man page.

In the Solaris 7 release, the way that statd tracks the clients has been improved. In all earlier Solaris releases, statd created files in /var/statmon/sm for each client by using the client's unqualified host name. This file naming caused problems if you had two clients in different domains that shared a host name, or if clients were not resident in the same domain as the NFS server. Because the unqualified host name only lists the host name, without any domain or IP-address information, the older version of statd had no way to differentiate between these types of clients. To fix this problem, the Solaris 7 statd creates a symbolic link in /var/statmon/sm to the unqualified host name by using the IP address of the client. The new link resembles the following:


# ls -l /var/statmon/sm
lrwxrwxrwx   1 daemon          11 Apr 29 16:32 ipv4.192.9.200.1 -> myhost
lrwxrwxrwx   1 daemon          11 Apr 29 16:32 ipv6.fec0::56:a00:20ff:feb9:2734 -> v6host
--w-------   1 daemon          11 Apr 29 16:32 myhost
--w-------   1 daemon          11 Apr 29 16:32 v6host

In this example, the client host name is myhost and the client's IP address is 192.9.200.1. If another host with the name myhost were mounting a file system, two symbolic links would lead to the host name.

NFS Commands

These commands must be run as root to be fully effective, but requests for information can be made by all users:

automount

This command installs autofs mount points and associates the information in the automaster files with each mount point. The syntax of the command is as follows:

automount [ -t duration ] [ -v ]

-t duration sets the time, in seconds, that a file system is to remain mounted, and -v selects the verbose mode. Running this command in the verbose mode allows for easier troubleshooting.

If not specifically set, the value for duration is set to 5 minutes. In most circumstances, this value is good. However, on systems that have many automounted file systems, you might need to increase the duration value. In particular, if a server has many users active, checking the automounted file systems every 5 minutes can be inefficient. Checking the autofs file systems every 1800 seconds, which is 30 minutes, could be more optimal. By not unmounting the file systems every 5 minutes, /etc/mnttab can become large. To reduce the output when df checks each entry in /etc/mnttab, you can filter the output from df by using the -F option (see the df(1M) man page) or by using egrep.

You should consider the idea that adjusting the duration also changes how quickly changes to the automounter maps are reflected. Changes cannot be seen until the file system is unmounted. Refer to Modifying the Maps for instructions on how to modify automounter maps.

clear_locks

This command enables you to remove all file, record, and share locks for an NFS client. You must be root to run this command. From an NFS server, you can clear the locks for a specific client. From an NFS client, you can clear locks for that client on a specific server. The following example would clear the locks for the NFS client that is named tulip on the current system.


# clear_locks tulip

Using the -s option enables you to specify which NFS host to clear the locks from. You must run this option from the NFS client, which created the locks. In this situation, the locks from the client would be removed from the NFS server that is named bee.


# clear_locks -s bee

Caution – Caution –

This command should only be run when a client crashes and cannot clear its locks. To avoid data corruption problems, do not clear locks for an active client.


mount

With this command, you can attach a named file system, either local or remote, to a specified mount point. For more information, see the mount(1M) man page. Used without arguments, mount displays a list of file systems that are currently mounted on your computer.

Many types of file systems are included in the standard Solaris installation. Each file-system type has a specific man page that lists the options to mount that are appropriate for that file-system type. The man page for NFS file systems is mount_nfs(1M). For UFS file systems, see mount_ufs(1M).

The Solaris 7 release includes the ability to select a path name to mount from an NFS server by using an NFS URL instead of the standard server:/pathname syntax. See How to Mount an NFS File System Using an NFS URL for further information.


Caution – Caution –

The version of the mount command that is included in any Solaris release from 2.6 to the current release does not warn about invalid options. The command silently ignores any options that cannot be interpreted. Ensure that you verify all of the options that were used so that you can prevent unexpected behavior.


mount Options for NFS File Systems

The subsequent text lists some of the options that can follow the -o flag when you are mounting an NFS file system.

bg|fg

These options can be used to select the retry behavior if a mount fails. The -bg option causes the mount attempts to be run in the background. The -fg option causes the mount attempt to be run in the foreground. The default is -fg, which is the best selection for file systems that must be available. This option prevents further processing until the mount is complete. -bg is a good selection for non-critical file systems, because the client can do other processing while waiting for the mount request to complete.

forcedirectio

This option improves performance of sequential reads on large files. Data is copied directly to a user buffer. No caching is done in the kernel on the client. This option is off by default.

largefiles

With this option, you can access files that are larger than 2 Gbytes on a server that is running the Solaris 2.6 release. Whether a large file can be accessed can only be controlled on the server, so this option is silently ignored on NFS version 3 mounts. Starting with release 2.6, by default, all UFS file systems are mounted with largefiles. For mounts that use the NFS version 2 protocol, the largefiles option causes the mount to fail with an error.

nolargefiles

This option for UFS mounts guarantees that no large files can exist on the file system. See the mount_ufs(1M) man page. Because the existence of large files can only be controlled on the NFS server, no option for nolargefiles exists when using NFS mounts. Attempts to NFS-mount a file system by using this option are rejected with an error.

public

This option forces the use of the public file handle when contacting the NFS server. If the public file handle is supported by the server, the mounting operation is faster because the MOUNT protocol is not used. Also, because the MOUNT protocol is not used, the public option allows mounting to occur through a firewall.

rw|ro

The -rw and -ro options indicate whether a file system is to be mounted read-write or read-only. The default is read-write, which is the appropriate option for remote home directories, mail-spooling directories, or other file systems that need to be changed by users. The read-only option is appropriate for directories that should not be changed by users. For example, shared copies of the man pages should not be writable by users.

sec=mode

You can use this option to specify the authentication mechanism to be used during the mount transaction. The value for mode can be one of the values that is shown in Table 16–2. The modes are also defined in /etc/nfssec.conf.

Table 16–2 NFS Security Modes

Mode 

Selected Authentication Service 

krb5

Kerberos Version 5 

krb5i

Kerberos Version 5 with integrity 

krb5i

Kerberos Version 5 with privacy 

none

No authentication 

dh

Diffie-Hellman (DH) authentication 

sys

Standard UNIX authentication 

soft|hard

An NFS file system that is mounted with the soft option returns an error if the server does not respond. The hard option causes the mount to continue to retry until the server responds. The default is hard, which should be used for most file systems. Applications frequently do not check return values from soft-mounted file systems, which can make the application fail or can lead to corrupted files. If the application does check the return values, routing problems and other conditions can still confuse the application or lead to file corruption if the soft option is used. In most situations, the soft option should not be used. If a file system is mounted by using the hard option and becomes unavailable, an application that uses this file system hangs until the file system becomes available.

Using the mount Command

Both of these commands mount an NFS file system from the server bee read-only:


# mount -F nfs -r bee:/export/share/man /usr/man

# mount -F nfs -o ro bee:/export/share/man /usr/man

This command uses the -O option to force the man pages from the server bee to be mounted on the local system even if /usr/man has already been mounted. See the following:


# mount -F nfs -O bee:/export/share/man /usr/man

This command uses client failover:


# mount -F nfs -r bee,wasp:/export/share/man /usr/man

Note –

When used from the command line, the listed servers must support the same version of the NFS protocol. Do not mix version 2 and version 3 servers when running mount from the command line. You can use mixed servers with autofs. Autofs automatically selects the best subset of version 2 or version 3 servers.


Here is an example of using an NFS URL with the mount command:


# mount -F nfs nfs://bee//export/share/man /usr/man

Use the mount command with no arguments to display file systems that are mounted on a client.


% mount
/ on /dev/dsk/c0t3d0s0 read/write/setuid on Tues Jan 24 13:20:47 1995
/usr on /dev/dsk/c0t3d0s6 read/write/setuid on Tues Jan 24 13:20:47 1995
/proc on /proc read/write/setuid on Tues Jan 24 13:20:47 1995
/dev/fd on fd read/write/setuid on Tues Jan 24 13:20:47 1995
/tmp on swap read/write on Tues Jan 24 13:20:51 1995
/opt on /dev/dsk/c0t3d0s5 setuid/read/write on Tues Jan 24 13:20:51 1995
/home/kathys on bee:/export/home/bee7/kathys              
  intr/noquota/nosuid/remote on Tues Jan 24 13:22:13 1995

umount

This command enables you to remove a remote file system that is currently mounted. The umount command supports the -V option to allow for testing. You might also use the -a option to umount several file systems at one time. If mount_points are included with the -a option, those file systems are unmounted. If no mount points are included, an attempt is made to unmount all file systems that are listed in /etc/mnttab, except for the “required” file systems, such as /, /usr, /var, /proc, /dev/fd, and /tmp. Because the file system is already mounted and should have an entry in /etc/mnttab, you do not need to include a flag for the file-system type.

The -f option forces a busy file system to be unmounted. You can use this option to unhang a client that is hung while trying to mount an unmountable file system.


Caution – Caution –

By forcing an unmount of a file system, you can cause data loss if files are being written to.


Using the umount Command

This example unmounts a file system that is mounted on /usr/man:


# umount /usr/man

This example displays the results of running umount -a -V:


# umount -a -V
umount /home/kathys
umount /opt
umount /home
umount /net

Notice that this command does not actually unmount the file systems.

mountall

Use this command to mount all file systems or a specific group of file systems that are listed in a file-system table. The command provides a way to do the following:

Because all file systems that are labeled as NFS file-system type are remote file systems, some of these options are redundant. For more information, see the mountall(1M) man page.

Using the mountall Command

These two examples are equivalent:


# mountall -F nfs

# mountall -F nfs -r

umountall

Use this command to unmount a group of file systems. The -k option runs the fuser -k mount_point command to kill any processes that are associated with the mount_point. The -s option indicates that unmount is not to be performed in parallel. -l specifies that only local file systems are to be used, and -r specifies that only remote file systems are to be used. The -h host option indicates that all file systems from the named host should be unmounted. You cannot combine the -h option with -l or -r.

Using the umountall Command

This command unmounts all file systems that are mounted from remote hosts:


# umountall -r

This command unmounts all file systems that are currently mounted from the server bee:


# umountall -h bee

share

With this command, you can make a local file system on an NFS server available for mounting. You can also use the share command to display a list of the file systems on your system that are currently shared. The NFS server must be running in order for the share command to work. The NFS server software is started automatically during boot if an entry is in /etc/dfs/dfstab. The command does not report an error if the NFS server software is not running, so you yourself must verify that the software is running.

The objects that can be shared include any directory tree. However, each file system hierarchy is limited by the disk slice or partition that the file system is located on. For instance, sharing the root (/) file system would not also share /usr, unless these directories are on the same disk partition or slice. Normal installation places root on slice 0 and /usr on slice 6. Also, sharing /usr would not share any other local disk partitions that are mounted on subdirectories of /usr.

A file system cannot be shared if that file system is part of a larger file system that is already being shared. For example, if /usr and /usr/local are on one disk slice, /usr can be shared or /usr/local can be shared. However, if both directories need to be shared with different share options, /usr/local must to be moved to a separate disk slice.


Note –

You can gain access to a file system that is read-only shared through the file handle of a file system that is read-write shared. However, the two file systems have to be on the same disk slice. You can create a more secure situation. Place those file systems that need to be read-write on a separate partition or separate disk slice from the file systems that you need to share as read-only.


Non-File System-Specific share Options

Some of the options that you can include with the -o flag are as follows.

rw|ro

The pathname file system is shared read-write or read-only for all clients.

rw=accesslist

The file system is shared read-write for the clients that are listed only. All other requests are denied. Starting with the Solaris 2.6 release, the list of clients that are defined in accesslist has been expanded. See Setting Access Lists With the share Command for more information. You can use this option to override an -ro option.

NFS-Specific share Options

The options that you can use with NFS file systems include the following.

aclok

This option enables an NFS server that supports the NFS version 2 protocol to be configured to do access control for NFS version 2 clients. Without this option, all clients are given minimal access. With this option, the clients have maximal access. For instance, on file systems that are shared with the -aclok option, if anyone has read permissions, everyone does. However, without this option, you can deny access to a client who should have access permissions. A decision to permit too much access or too little access depends on the security systems already in place. See “Using Access Control Lists (ACLs)” in System Administration Guide: Security Services for more information about access control lists (ACLs).


Note –

To use ACLs, ensure that clients and servers run software that supports the NFS version 3 and NFS_ACL protocols. If the software only supports the NFS version 3 protocol, clients obtain correct access but cannot manipulate the ACLs. If the software supports the NFS_ACL protocol, the clients obtain correct access and can manipulate the ACLs. Starting with release 2.5, the Solaris system supports both protocols.


anon=uid

You use uid to select the user ID of unauthenticated users. If you set uid to -1, the server denies access to unauthenticated users. You can grant root access by setting anon=0, but this option allows unauthenticated users to have root access, so use the root option instead.

index=filename

When a user accesses an NFS URL, the -index=filename option forces the HTML file to load, instead of displaying a list of the directory. This option mimics the action of current browsers if an index.html file is found in the directory that the HTTP URL is accessing. This option is the equivalent of setting the DirectoryIndex option for httpd. For instance, suppose that the dfstab file entry resembles the following:


share -F nfs -o ro,public,index=index.html /export/web

These URLs then display the same information:


nfs://<server>/<dir>
nfs://<server>/<dir>/index.html
nfs://<server>//export/web/<dir>
nfs://<server>//export/web/<dir>/index.html
http://<server>/<dir>
http://<server>/<dir>/index.html
log=tag

This option specifies the tag in /etc/nfs/nfslog.conf that contains the NFS server logging configuration information for a file system. This option must be selected to enable NFS server logging.

nosuid

This option signals that all attempts to enable the setuid or setgid mode should be ignored. NFS clients cannot create files with the setuid or setgid bits on.

public

The -public option has been added to the share command to enable WebNFS browsing. Only one file system on a server can be shared with this option.

root=accesslist

The server gives root access to the hosts in the list. By default, the server does not give root access to any remote hosts. If the selected security mode is anything other than -sec=sys, you can only include client host names in the accesslist. Starting with the Solaris 2.6 release, the list of clients that are defined in accesslist is expanded. See Setting Access Lists With the share Command for more information.


Caution – Caution –

Granting root access to other hosts has wide security implications. Use the -root= option with extreme caution.


sec=mode[:mode]

mode selects the security modes that are needed to obtain access to the file system. By default, the security mode is UNIX authentication. You can specify multiple modes, but use each security mode only once per command line. Each -mode option applies to any subsequent -rw, -ro, -rw=, -ro=, -root=, and -window= options until another -mode is encountered. The use of -sec=none maps all users to user nobody.

window=value

value selects the maximum lifetime in seconds of a credential on the NFS server. The default value is 30000 seconds or 8.3 hours.

Setting Access Lists With the share Command

In Solaris releases prior to 2.6, the accesslist that was included with either the -ro=, -rw=, or -root= option of the share command was restricted to a list of host names or netgroup names. Starting with the Solaris 2.6 release, the access list can also include a domain name, a subnet number, or an entry to deny access. These extensions should simplify file access control on a single server without having to change the namespace or maintain long lists of clients.

This command provides read-only access for most systems but allows read-write access for rose and lilac:


# share -F nfs -o ro,rw=rose:lilac /usr/src

In the next example, read-only access is assigned to any host in the eng netgroup. The client rose is specifically given read-write access.


# share -F nfs -o ro=eng,rw=rose /usr/src

Note –

You cannot specify both rw and ro without arguments. If no read-write option is specified, the default is read-write for all clients.


To share one file system with multiple clients, you must type all options on the same line. Multiple invocations of the share command on the same object “remember” only the last command that is run. This command enables read-write access to three client systems, but only rose and tulip are given access to the file system as root.


# share -F nfs -o rw=rose:lilac:tulip,root=rose:tulip /usr/src

When sharing a file system that uses multiple authentication mechanisms, ensure that you include the -ro, -ro=, -rw, -rw=, -root, and -window options after the correct security modes. In this example, UNIX authentication is selected for all hosts in the netgroup that is named eng. These hosts can only mount the file system in read-only mode. The hosts tulip and lilac can mount the file system read-write if these hosts use Diffie-Hellman authentication. With these options, tulip and lilac can mount the file system read-only even if these hosts are not using DH authentication. However, the host names must be listed in the eng netgroup.


# share -F nfs -o sec=dh,rw=tulip:lilac,sec=sys,ro=eng /usr/src

Even though UNIX authentication is the default security mode, UNIX authentication is not included if the -sec option is used. Therefore, you must include a -sec=sys option if UNIX authentication is to be used with any other authentication mechanism.

You can use a DNS domain name in the access list by preceding the actual domain name with a dot. The string that follows the dot is a domain name, not a fully qualified host name. The following entry allows mount access to all hosts in the eng.example.com domain:


# share -F nfs -o ro=.:.eng.example.com /export/share/man

In this example, the single “.” matches all hosts that are matched through the NIS or NIS+ namespaces. The results that are returned from these name services do not include the domain name. The “.eng.example.com” entry matches all hosts that use DNS for namespace resolution. DNS always returns a fully qualified host name. So, the longer entry is required if you use a combination of DNS and the other namespaces.

You can use a subnet number in an access list by preceding the actual network number or the network name with “@”. This character differentiates the network name from a netgroup or a fully qualified host name. You must identify the subnet in either /etc/networks or in an NIS or NIS+ namespace. The following entries have the same effect if the 129.144 subnet has been identified as the eng network:


# share -F nfs -o ro=@eng /export/share/man
# share -F nfs -o ro=@129.144 /export/share/man
# share -F nfs -o ro=@129.144.0.0 /export/share/man

The last two entries show that you do not need to include the full network address.

If the network prefix is not byte aligned, as with Classless Inter-Domain Routing (CIDR), the mask length can be explicitly specified on the command line. The mask length is defined by following either the network name or the network number with a slash and the number of significant bits in the prefix of the address. For example:


# share -f nfs -o ro=@eng/17 /export/share/man
# share -F nfs -o ro=@129.144.132/17 /export/share/man

In these examples, the “/17” indicates that the first 17 bits in the address are to be used as the mask. For additional information on CIDR, look up RFC 1519.

You can also select negative access by placing a “-” before the entry. Note that the entries are read from left to right. Therefore, you must place the negative access entries before the entry that the negative access entries apply to:


# share -F nfs -o ro=-rose:.eng.example.com /export/share/man

This example would allow access to any hosts in the eng.example.com domain except the host that is named rose.

unshare

This command allows you to make a previously available file system unavailable for mounting by clients. You can use the unshare command to unshare any file system—whether the file system was shared explicitly with the share command or automatically through /etc/dfs/dfstab. If you use the unshare command to unshare a file system that you shared through the dfstab file, be careful. Remember that the file system is shared again when you exit and reenter run level 3. You must remove the entry for this file system from the dfstab file if the change is to continue.

When you unshare an NFS file system, access from clients with existing mounts is inhibited. The file system might still be mounted on the client, but the files are not accessible.

Using the unshare Command

This command unshares a specific file system:


# unshare /usr/src

shareall

This command allows for multiple file systems to be shared. When used with no options, the command shares all entries in /etc/dfs/dfstab. You can include a file name to specify the name of a file that lists share command lines. If you do not include a file name, /etc/dfs/dfstab is checked. If you use a “-” to replace the file name, you can type share commands from standard input.

Using the shareall Command

This command shares all file systems that are listed in a local file:


# shareall /etc/dfs/special_dfstab

unshareall

This command makes all currently shared resources unavailable. The -F FSType option selects a list of file-system types that are defined in /etc/dfs/fstypes. This flag enables you to choose only certain types of file systems to be unshared. The default file system type is defined in /etc/dfs/fstypes. To choose specific file systems, use the unshare command.

Using the unshareall Command

This example should unshare all NFS-type file systems:


# unshareall -F nfs

showmount

This command displays one of the following:

The command syntax is as follows:

showmount [ -ade ] [ hostname ]

-a

Prints a list of all the remote mounts. Each entry includes the client name and the directory. 

-d

Prints a list of the directories that are remotely mounted by clients. 

-e

Prints a list of the files that are shared or are exported. 

hostname

Selects the NFS server to gather the information from. 

If hostname is not specified the local host is queried.

Using the showmount Command

This command lists all clients and the local directories that the clients have mounted.


# showmount -a bee
lilac:/export/share/man
lilac:/usr/src
rose:/usr/src
tulip:/export/share/man

This command lists the directories that have been mounted.


# showmount -d bee
/export/share/man
/usr/src

This command lists file systems that have been shared.


# showmount -e bee
/usr/src								(everyone)
/export/share/man					eng

setmnt

This command creates an /etc/mnttab table. The mount and umount commands consult the table. Generally, you do not have to run this command manually, as this command runs automatically when a system is booted.

Other Useful Commands

These commands can be useful when troubleshooting NFS problems.

nfsstat

You can use this command to gather statistical information about NFS and RPC connections. The syntax of the command is as follows:

nfsstat [ -cmnrsz ]

-c

Displays client-side information 

-m

Displays statistics for each NFS-mounted file system 

-n

Specifies that NFS information is to be displayed on both the client side and the server side 

-r

Displays RPC statistics 

-s

Displays the server-side information 

-z

Specifies that the statistics should be set to zero 

If no options are supplied on the command line, the -cnrs options are used.

Gathering server-side statistics can be important for debugging problems when new software or new hardware is added to the computing environment. Running this command a minimum of once a week, and storing the numbers, provides a good history of previous performance.

Using the nfsstat Command


# nfsstat -s

Server rpc:
Connection oriented:
calls      badcalls   nullrecv   badlen      xdrcall    dupchecks  dupreqs
11420263   0          0          0           0          1428274    19
Connectionless:
calls      badcalls   nullrecv   badlen      xdrcall    dupchecks  dupreqs
14569706   0          0          0           0          953332     1601

Server nfs:
calls      badcalls
24234967   226
Version 2: (13073528 calls)
null       getattr    setattr    root        lookup     readlink   read
138612 1%  1192059 9% 45676 0%   0 0%        9300029 71% 9872 0%   1319897 10%
wrcache    write      create     remove      rename     link       symlink
0 0%       805444 6%  43417 0%   44951 0%    3831 0%    4758 0%    1490 0%
mkdir      rmdir      readdir    statfs
2235 0%    1518 0%    51897 0%   107842 0%
Version 3: (11114810 calls)
null       getattr    setattr    lookup      access     readlink   read
141059 1%  3911728 35% 181185 1% 3395029 30% 1097018 9% 4777 0%   960503 8%
write      create     mkdir      symlink     mknod      remove     rmdir
763996 6%  159257 1%  3997 0%    10532 0%    26 0%      164698 1%  2251 0%
rename     link       readdir    readdirplus fsstat     fsinfo     pathconf
53303 0%   9500 0%    62022 0%   79512 0%    3442 0%    34275 0%   3023 0%
commit    
73677 0%  

Server nfs_acl:
Version 2: (1579 calls)
null       getacl     setacl     getattr     access    
0 0%       3 0%       0 0%       1000 63%    576 36%   
Version 3: (45318 calls)
null       getacl     setacl    
0 0%       45318 100% 0 0%

The previous listing is an example of NFS server statistics. The first five lines relate to RPC and the remaining lines report NFS activities. In both sets of statistics, knowing the average number of badcalls or calls and the number of calls per week can help identify a problem. The badcalls value reports the number of bad messages from a client. This value can point out network hardware problems.

Some of the connections generate write activity on the disks. A sudden increase in these statistics could indicate trouble and should be investigated. For NFS version 2 statistics, the connections to note are setattr, write, create, remove, rename, link, symlink, mkdir, and rmdir. For NFS version 3 statistics, the value to watch is commit. If the commit level is high in one NFS server as compared to another almost identical server, check that the NFS clients have enough memory. The number of commit operations on the server grows when clients do not have available resources.

pstack

This command displays a stack trace for each process. The pstack command must be run by the owner of the process or by root. You can use pstack to determine where a process is hung. The only option that is allowed with this command is the PID of the process that you want to check. See the proc(1) man page.

The following example is checking the nfsd process that is running.


# /usr/proc/bin/pstack 243
243:    /usr/lib/nfs/nfsd -a 16
 ef675c04 poll     (24d50, 2, ffffffff)
 000115dc ???????? (24000, 132c4, 276d8, 1329c, 276d8, 0)
 00011390 main     (3, efffff14, 0, 0, ffffffff, 400) + 3c8
 00010fb0 _start   (0, 0, 0, 0, 0, 0) + 5c

The example shows that the process is waiting for a new connection request, which is a normal response. If the stack shows that the process is still in poll after a request is made, the process might be hung. Follow the instructions in How to Restart NFS Services to fix this problem. Review the instructions in NFS Troubleshooting Procedures to fully verify that your problem is a hung program.

rpcinfo

This command generates information about the RPC service that is running on a system. You can also use this command to change the RPC service. Many options are available with this command. See the rpcinfo(1M) man page. The following is a shortened synopsis for some of the options that you can use with the command:

rpcinfo [ -m | -s ] [ hostname ]

rpcinfo -T transport hostname [ progname ]

rpcinfo [ -t | -u ] [ hostname ] [ progname ]

-m

Displays a table of statistics of the rpcbind operations

-s

Displays a concise list of all registered RPC programs 

-T

Displays information about services that use specific transports or protocols 

-t

Probes the RPC programs that use TCP 

-u

Probes the RPC programs that use UDP 

transport

Selects the transport or protocol for the services 

hostname

Selects the host name of the server you need information from 

progname

Selects the RPC program to gather information about 

If no value is given for hostname, the local host name is used. You can substitute the RPC program number for progname, but many users can remember the name and not the number. You can use the -p option in place of the -s option on those systems that do not run the NFS version 3 software.

The data that is generated by this command can include the following:

Using the rpcinfo Command

This example gathers information on the RPC services that are running on a server. The text that is generated by the command is filtered by the sort command to make the output more readable. Several lines that list RPC services have been deleted from the example.


% rpcinfo -s bee |sort -n
   program version(s) netid(s)                         service     owner
    100000  2,3,4     udp6,tcp6,udp,tcp,ticlts,ticotsord,ticots rpcbind     superuser
    100001  4,3,2     ticlts,udp,udp6                  rstatd      superuser
    100002  3,2       ticots,ticotsord,tcp,tcp6,ticlts,udp,udp6 rusersd     superuser
    100003  3,2       tcp,udp,tcp6,udp6                nfs         superuser
    100005  3,2,1     ticots,ticotsord,tcp,tcp6,ticlts,udp,udp6 mountd      superuser
    100007  1,2,3     ticots,ticotsord,ticlts,tcp,udp,tcp6,udp6 ypbind      superuser
    100008  1         ticlts,udp,udp6                  walld       superuser
    100011  1         ticlts,udp,udp6                  rquotad     superuser
    100012  1         ticlts,udp,udp6                  sprayd      superuser
    100021  4,3,2,1   tcp,udp,tcp6,udp6                nlockmgr    superuser
    100024  1         ticots,ticotsord,ticlts,tcp,udp,tcp6,udp6 status      superuser
    100029  3,2,1     ticots,ticotsord,ticlts          keyserv     superuser
    100068  5         tcp,udp                          cmsd        superuser
    100083  1         tcp,tcp6                         ttdbserverd superuser
    100099  3         ticotsord                        autofs      superuser
    100133  1         ticots,ticotsord,ticlts,tcp,udp,tcp6,udp6 -           superuser
    100134  1         ticotsord                        tokenring   superuser
    100155  1         ticots,ticotsord,tcp,tcp6        smserverd   superuser
    100221  1         tcp,tcp6                         -           superuser
    100227  3,2       tcp,udp,tcp6,udp6                nfs_acl     superuser
    100229  1         tcp,tcp6                         metad       superuser
    100230  1         tcp,tcp6                         metamhd     superuser
    100231  1         ticots,ticotsord,ticlts          -           superuser
    100232  10        udp,udp6                         sadmind     superuser
    100234  1         ticotsord                        gssd        superuser
    100235  1         tcp,tcp6                         -           superuser
    100242  1         tcp,tcp6                         metamedd    superuser
    100249  1         ticots,ticotsord,ticlts,tcp,udp,tcp6,udp6 -           superuser
    300326  4         tcp,tcp6                         -           superuser
    300598  1         ticots,ticotsord,ticlts,tcp,udp,tcp6,udp6 -           superuser
    390113  1         tcp                              -           unknown
 805306368  1         ticots,ticotsord,ticlts,tcp,udp,tcp6,udp6 -           superuser
1289637086  1,5       tcp                              -           26069

This example shows how to gather information about a particular RPC service by selecting a particular transport on a server.


% rpcinfo -t bee mountd
program 100005 version 1 ready and waiting
program 100005 version 2 ready and waiting
program 100005 version 3 ready and waiting
% rpcinfo -u bee nfs
program 100003 version 2 ready and waiting
program 100003 version 3 ready and waiting

The first example checks the mountd service that is running over TCP. The second example checks the NFS service that is running over UDP.

snoop

This command is often used to watch for packets on the network. The snoop command must be run as root. The use of this command is a good way to ensure that the network hardware is functioning on both the client and the server. Many options are available. See the snoop(1M) man page. A shortened synopsis of the command follows:

snoop [ -d device ] [ -o filename ] [ host hostname ]

-d device

Specifies the local network interface 

-o filename

Stores all the captured packets into the named file 

hostname

Displays packets going to and from a specific host only 

The -d device option is useful on those servers that have multiple network interfaces. You can use many other expressions besides setting the host. A combination of command expressions with grep can often generate data that is specific enough to be useful.

When troubleshooting, make sure that packets are going to and from the proper host. Also, look for error messages. Saving the packets to a file can simplify the review of the data.

truss

You can use this command to see if a process is hung. The truss command must be run by the owner of the process or by root. You can use many options with this command. See the truss(1) man page. A shortened syntax of the command follows:

truss [ -t syscall ] -p pid

-t syscall

Selects system calls to trace 

-p pid

Indicates the PID of the process to be traced 

The syscall can be a comma-separated list of system calls to be traced. Also, starting syscall with an ! selects to exclude the listed system calls from the trace.

This example shows that the process is waiting for another connection request from a new client.


# /usr/bin/truss -p 243
poll(0x00024D50, 2, -1)         (sleeping...)

The previous example shows a normal response. If the response does not change after a new connection request has been made, the process could be hung. Follow the instructions in How to Restart NFS Services to fix the hung program. Review the instructions in NFS Troubleshooting Procedures to fully verify that your problem is a hung program.

How the NFS Service Works

The following sections describe some of the complex functions of the NFS software.

Version 2 and Version 3 Negotiation

NFS servers might be supporting clients that are not using the NFS version 3 software. So, part of the initiation procedure includes negotiation of the protocol level. If both the client and the server can support version 3, that version is used. If either the client or the server can only support version 2, that version is selected.

You can override the values that are determined by the negotiation by using the -vers option with the mount command. See the mount_nfs(1M) man page. Under most circumstances, you should not have to specify the version level, as the best level is selected by default.

UDP and TCP Negotiation

During initiation, the transport protocol is also negotiated. By default, the first connection-oriented transport that is supported on both the client and the server is selected. If this selection does not succeed, the first available connectionless transport protocol is used. The transport protocols that are supported on a system are listed in /etc/netconfig. TCP is the connection-oriented transport protocol that is supported by the release. UDP is the connectionless transport protocol.

When both the NFS protocol version and the transport protocol are determined by negotiation, the NFS protocol version is given precedence over the transport protocol. The NFS version 3 protocol that uses UDP is given higher precedence than the NFS version 2 protocol that is using TCP. You can manually select both the NFS protocol version and the transport protocol with the mount command. See the mount_nfs(1M) man page. Under most conditions, allow the negotiation to select the best options.

File Transfer Size Negotiation

The file transfer size establishes the size of the buffers that are used when transferring data between the client and the server. In general, larger transfer sizes are better. The NFS version 3 protocol has an unlimited transfer size. However, starting with the Solaris 2.6 release, the software bids a default buffer size of 32 Kbytes. The client can bid a smaller transfer size at mount time if needed, but under most conditions this bid is not necessary.

The transfer size is not negotiated with systems that use the NFS version 2 protocol. Under this condition, the maximum transfer size is set to 8 Kbytes.

You can use the -rsize and -wsize options to set the transfer size manually with the mount command. You might need to reduce the transfer size for some PC clients. Also, you can increase the transfer size if the NFS server is configured to use larger transfer sizes.

How File Systems Are Mounted

When a client needs to mount a file system from a server, the client must obtain a file handle from the server. The file handle must correspond to the file system. This process requires that several transactions occur between the client and the server. In this example, the client is attempting to mount /home/terry from the server. A snoop trace for this transaction follows.


client -> server PORTMAP C GETPORT prog=100005 (MOUNT) vers=3 proto=UDP
server -> client PORTMAP R GETPORT port=33492
client -> server MOUNT3 C Null
server -> client MOUNT3 R Null 
client -> server MOUNT3 C Mount /export/home9/terry
server -> client MOUNT3 R Mount OK FH=9000 Auth=unix
client -> server PORTMAP C GETPORT prog=100003 (NFS) vers=3 proto=TCP
server -> client PORTMAP R GETPORT port=2049
client -> server NFS C NULL3
server -> client NFS R NULL3 
client -> server NFS C FSINFO3 FH=9000
server -> client NFS R FSINFO3 OK
client -> server NFS C GETATTR3 FH=9000
server -> client NFS R GETATTR3 OK

In this trace, the client first requests the mount port number from the portmap service on the NFS server. After the client receives the mount port number (33492), that number is used to ping the service on the server. After the client has determined that a service is running on that port number, the client then makes a mount request. When the server responds to this request, the server includes the file handle for the file system (9000) being mounted. The client then sends a request for the NFS port number. When the client receives the number from the server, the client pings the NFS service (nfsd). Also, the client requests NFS information about the file system that uses the file handle.

In the following trace, the client is mounting the file system with the public option.


client -> server NFS C LOOKUP3 FH=0000 /export/home9/terry
server -> client NFS R LOOKUP3 OK FH=9000
client -> server NFS C FSINFO3 FH=9000
server -> client NFS R FSINFO3 OK
client -> server NFS C GETATTR3 FH=9000
server -> client NFS R GETATTR3 OK

By using the default public file handle (which is 0000), all of the transactions to obtain information from the portmap service and to determine the NFS port number are skipped.

Effects of the -public Option and NFS URLs When Mounting

Using the -public option can create conditions that cause a mount to fail. Adding an NFS URL can also confuse the situation. The following list describes the specifics of how a file system is mounted when you use these options.

Client-Side Failover

By using client-side failover, an NFS client can switch to another server if the server that supports a replicated file system becomes unavailable. The file system can become unavailable under one of the following circumstances.

The failover, under these conditions, is normally transparent to the user. Thus, the failover can occur at any time without disrupting the processes that are running on the client.

Failover requires that the file system be mounted read-only. The file systems must be identical for the failover to occur successfully. See What Is a Replicated File System? for a description of what makes a file system identical. A static file system or a file system that is not changed often is the best candidate for failover.

You cannot use file systems that are mounted by using CacheFS with failover. Extra information is stored for each CacheFS file system. This information cannot be updated during failover, so only one of these two features can be used when mounting a file system.

The number of replicas that need to be established for every file system depends on many factors. Ideally, you should have a minimum of two servers. Each server should support multiple subnets. This setup is better than having a unique server on each subnet. The process requires that each listed server be checked. Therefore, if more servers are listed, each mount is slower.

Failover Terminology

To fully comprehend the process, you need to understand two terms.

What Is a Replicated File System?

For the purposes of failover, a file system can be called a replica when each file is the same size and has the same vnode type as the original file system. Permissions, creation dates, and other file attributes are not considered. If the file size or vnode types are different, the remap fails and the process hangs until the old server becomes available.

You can maintain a replicated file system by using rdist, cpio, or another file transfer mechanism. Because updating the replicated file systems causes inconsistency, follow these suggestions for best results:

Failover and NFS Locking

Some software packages require read locks on files. To prevent these products from breaking, read locks on read-only file systems are allowed but are visible to the client side only. The locks persist through a remap because the server does not “know” about the locks. Because the files should not change, you do not need to lock the file on the server side.

Large Files

Starting with 2.6, the Solaris release supports files that are over 2 Gbytes. By default, UFS file systems are mounted with the -largefiles option to support the new capability. Previous releases cannot handle files of this size. See How to Disable Large Files on an NFS Server for instructions.

If the server's file system is mounted with the -largefiles option, a Solaris 2.6 NFS client can access large files without the need for changes. However, not all 2.6 commands can handle these large files. See largefile(5) for a list of the commands that can handle the large files. Clients that cannot support the NFS version 3 protocol with the large file extensions cannot access any large files. Although clients that run the Solaris 2.5 release can use the NFS version 3 protocol, large file support was not included in that release.

How NFS Server Logging Works

NFS server logging provides records of NFS reads and writes, as well as operations that modify the file system. This data can be used to track access to information. In addition, the records can provide a quantitative way to measure interest in the information.

When a file system with logging enabled is accessed, the kernel writes raw data into a buffer file. This data includes the following:

The nfslogd daemon converts this raw data into ASCII records that are stored in log files. During the conversion, the IP addresses are modified to host names and the UIDs are modified to logins if the name service that is enabled can find matches. The file handles are also converted into path names. To accomplish the conversion, the daemon tracks the file handles and stores information in a separate file handle-to-path table. That way, the path does not have to be re-identified each time a file handle is accessed. Because no changes to the mappings are made in the file handle-to-path table if nfslogd is turned off, you must keep the daemon running.

How the WebNFS Service Works

The WebNFS service makes files in a directory available to clients by using a public file handle. A file handle is an address that is generated by the kernel that identifies a file for NFS clients. The public file handle has a predefined value, so the server does not need to generate a file handle for the client. The ability to use this predefined file handle reduces network traffic by eliminating the MOUNT protocol. This ability should also accelerate processes for the clients.

By default, the public file handle on an NFS server is established on the root file system. This default provides WebNFS access to any clients that already have mount privileges on the server. You can change the public file handle to point to any file system by using the share command.

When the client has the file handle for the file system, a LOOKUP is run to determine the file handle for the file to be accessed. The NFS protocol allows the evaluation of only one path name component at a time. Each additional level of directory hierarchy requires another LOOKUP. A WebNFS server can evaluate an entire path name with a single multicomponent lookup transaction when the LOOKUP is relative to the public file handle. Multicomponent lookup enables the WebNFS server to deliver the file handle to the desired file without exchanging the file handles for each directory level in the path name.

In addition, an NFS client can initiate concurrent downloads over a single TCP connection. This connection provides quick access without the additional load on the server that is caused by setting up multiple connections. Although web browser applications support concurrent downloading of multiple files, each file has its own connection. By using one connection, the WebNFS software reduces the overhead on the server.

If the final component in the path name is a symbolic link to another file system, the client can access the file if the client already has access through normal NFS activities.

Normally, an NFS URL is evaluated relative to the public file handle. The evaluation can be changed to be relative to the server's root file system by adding an additional slash to the beginning of the path. In this example, these two NFS URLs are equivalent if the public file handle has been established on the /export/ftp file system.


nfs://server/junk
nfs://server//export/ftp/junk

How WebNFS Security Negotiation Works

The Solaris 8 release includes a new protocol so a WebNFS client can negotiate a selected security mechanism with a WebNFS server. The new protocol uses security negotiation multicomponent lookup, which is an extension to the multicomponent lookup that was used in earlier versions of the WebNFS protocol.

The WebNFS client initiates the process by making a regular multicomponent lookup request by using the public file handle. Because the client has no knowledge of how the path is protected by the server, the default security mechanism is used. If the default security mechanism is not sufficient, the server replies with an AUTH_TOOWEAK error. This reply indicates that the default mechanism is not valid. The client needs to use a stronger default mechanism.

When the client receives the AUTH_TOOWEAK error, the client sends a request to the server to determine which security mechanisms are required. If the request succeeds, the server responds with an array of security mechanisms that are required for the specified path. Depending on the size of the array of security mechanisms, the client might have to make more requests to obtain the complete array. If the server does not support WebNFS security negotiation, the request fails.

After a successful request, the WebNFS client selects the first security mechanism from the array that the client supports. The client then issues a regular multicomponent lookup request by using the selected security mechanism to acquire the file handle. All subsequent NFS requests are made by using the selected security mechanism and the file handle.

WebNFS Limitations With Web Browser Use

Several functions that a web site that uses HTTP can provide are not supported by the WebNFS software. These differences stem from the fact that the NFS server only sends the file, so any special processing must be done on the client. If you need to have one web site configured for both WebNFS and HTTP access, consider the following issues:

Secure NFS System

The NFS environment is a powerful way and convenient way to share file systems on a network of different computer architectures and operating systems. However, the same features that make sharing file systems through NFS operation convenient also pose some security problems. Historically, most NFS implementations have used UNIX (or AUTH_SYS) authentication, but stronger authentication methods such as AUTH_DH have also been available. When using UNIX authentication, an NFS server authenticates a file request by authenticating the computer that makes the request, but not the user. Therefore, a client user can run su and impersonate the owner of a file. If DH authentication is used, the NFS server authenticates the user, making this sort of impersonation much harder.

With root access and knowledge of network programming, anyone can introduce arbitrary data into the network and extract any data from the network. The most dangerous attacks are those attacks that involve the introduction of data. An example is the impersonation of a user by generating the right packets or by recording “conversations” and replaying them later. These attacks affect data integrity. Attacks that involve passive eavesdropping—merely listening to network traffic without impersonating anybody—are not as dangerous, as data integrity is not compromised. Users can protect the privacy of sensitive information by encrypting data that is sent over the network.

A common approach to network security problems is to leave the solution to each application. A better approach is to implement a standard authentication system at a level that covers all applications.

The Solaris operating environment includes an authentication system at the level of remote procedure call (RPC)—the mechanism on which NFS operation is built. This system, known as Secure RPC, greatly improves the security of network environments and provides additional security to services such as the NFS system. When the NFS system uses the facilities that are provided by Secure RPC, it is known as a Secure NFS system.

Secure RPC

Secure RPC is fundamental to the Secure NFS system. The goal of Secure RPC is to build a system that is at minimum as secure as a time-sharing system. In a time-sharing system all users share a single computer. A time-sharing system authenticates a user through a login password. With data encryption standard (DES) authentication, the same authentication process is completed. Users can log in on any remote computer just as users can log in on a local terminal. The users' login passwords are their passports to network security. In a time-sharing environment, the system administrator has an ethical obligation not to change a password to impersonate someone. In Secure RPC, the network administrator is trusted not to alter entries in a database that stores public keys.

You need to be familiar with two terms to understand an RPC authentication system: credentials and verifiers. Using ID badges as an example, the credential is what identifies a person: a name, address, birthday, and so on. The verifier is the photo that is attached to the badge. You can be sure the badge has not been stolen by checking the photo on the badge against the person who is carrying the badge. In RPC, the client process sends both a credential and a verifier to the server with each RPC request. The server sends back only a verifier because the client already “knows” the server's credentials.

RPC's authentication is open ended, which means that a variety of authentication systems can be plugged into it, such as UNIX, DH, and KERB.

When UNIX authentication is used by a network service, the credentials contain the client's host name, UID, GID, and group-access list. However, the verifier contains nothing. Because no verifier exists, a superuser could falsify appropriate credentials by using commands such as su. Another problem with UNIX authentication is that UNIX authentication assumes all computers on a network are UNIX computers. UNIX authentication breaks down when applied to other operating systems in a heterogeneous network.

To overcome the problems of UNIX authentication, Secure RPC uses DH authentication.

DH Authentication

DH authentication uses the Data Encryption Standard (DES) and Diffie-Hellman public-key cryptography to authenticate both users and computers in the network. DES is a standard encryption mechanism. Diffie-Hellman public-key cryptography is a cipher system that involves two keys: one public and one secret. The public keys and secret keys are stored in the namespace. NIS stores the keys in the public-key map. These maps contain the public key and secret key for all potential users. See the System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP) for more information on how to set up the maps.

The security of DH authentication is based on a sender's ability to encrypt the current time, which the receiver can then decrypt and check against its own clock. The timestamp is encrypted with DES. The requirements for this scheme to work are as follows:

If a network runs a time-synchronization program, the time on the client and the server is synchronized automatically. If a time-synchronization program is not available, timestamps can be computed by using the server's time instead of the network time. The client asks the server for the time before starting the RPC session, then computes the time difference between its own clock and the server's. This difference is used to offset the client's clock when computing timestamps. If the client and server clocks get out of synchronization to the point where the server begins to reject the client's requests, the DH authentication system on the client resynchronizes with the server.

The client and server arrive at the same encryption key by generating a random conversation key, also known as the session key, and by using public-key cryptography to deduce a common key. The common key is a key that only the client and server are capable of deducing. The conversation key is used to encrypt and decrypt the client's timestamp. The common key is used to encrypt and decrypt the conversation key.

KERB Authentication

Kerberos is an authentication system that was developed at MIT. Encryption in Kerberos is based on DES. Kerberos support is no longer supplied as part of Secure RPC, but a server-side and client-side implementation is included with the Solaris 9 release. See “Introduction to SEAM” in System Administration Guide: Security Services for more information about the Solaris 9 implementation of Kerberos Authentication.

Using Secure RPC With NFS

Be aware of the following points if you plan to use Secure RPC:

Autofs Maps

Autofs uses three types of maps:

Master Autofs Map

The auto_master map associates a directory with a map. The map is a master list that specifies all the maps that autofs should check. The following example shows what an auto_master file could contain.


Example 16–1 Sample /etc/auto_master File


# Master map for automounter 
# 
+auto_master 
/net            -hosts           -nosuid,nobrowse 
/home           auto_home        -nobrowse 
/xfn            -xfn
/-              auto_direct     -ro  

This example shows the generic auto_master file with one addition for the auto_direct map. Each line in the master map /etc/auto_master has the following syntax:

mount-point map-name [ mount-options ]

mount-point

mount-point is the full (absolute) path name of a directory. If the directory does not exist, autofs creates the directory if possible. If the directory exists and is not empty, mounting on the directory hides its contents. In this situation, autofs issues a warning.

The notation /- as a mount point indicates that the map in question is a direct map, and no particular mount point is associated with the map as a whole.

map-name

map-name is the map autofs uses to find directions to locations, or mount information. If the name is preceded by a slash (/), autofs interprets the name as a local file. Otherwise, autofs searches for the mount information by using the search that is specified in the name-service switch configuration file (/etc/nsswitch.conf). Special maps are also used for /net and /xfn. See Mount Point /net and Mount Point /xfn for more information.

mount-options

mount-options is an optional, comma-separated list of options that apply to the mounting of the entries that are specified in map-name, unless the entries in map-name list other options. Options for each specific type of file system are listed in the mount man page for that file system. For example, see the mount_nfs(1M) man page for NFS-specific mount options. For NFS-specific mount points, the bg (background) and fg (foreground) options do not apply.

A line that begins with # is a comment. All the text that follows until the end of the line is ignored.

To split long lines into shorter ones, put a backslash (\) at the end of the line. The maximum number of characters of an entry is 1024.


Note –

If the same mount point is used in two entries, the first entry is used by the automount command. The second entry is ignored.


Mount Point /home

The mount point /home is the directory under which the entries that are listed in /etc/auto_home (an indirect map) are to be mounted.


Note –

Autofs runs on all computers and supports /net and /home (automounted home directories) by default. These defaults can be overridden by entries in the NIS auto.master map or NIS+ auto_master table, or by local editing of the /etc/auto_master file.


Mount Point /net

Autofs mounts under the directory /net all the entries in the special map -hosts. The map is a built-in map that uses only the hosts database. Suppose that the computer gumbo is in the hosts database and it exports any of its file systems. The following command changes the current directory to the root directory of the computer gumbo.


% cd /net/gumbo

Autofs can mount only the exported file systems of host gumbo, that is, those on a server available to network users as opposed to those on a local disk. Therefore, all the files and directories on gumbo might not be available through /net/gumbo.

With the /net method of access, the server name is in the path and is location dependent. If you want to move an exported file system from one server to another, the path might no longer work. Instead, you should set up an entry in a map specifically for the file system you want rather than use /net.


Note –

Autofs checks the server's export list only at mount time. After a server's file systems are mounted, autofs does not check with the server again until the server's file systems are automatically unmounted. Therefore, newly exported file systems are not “seen” until the file systems on the client are unmounted and then remounted.


Mount Point /xfn

This mount point provides the autofs directory structure for the resources that are shared through the FNS namespace. See the System Administration Guide: Naming and Directory Services (FNS and NIS+) for more information about FNS.

Direct Autofs Maps

A direct map is an automount point. With a direct map, a direct association exists between a mount point on the client and a directory on the server. Direct maps have a full path name and indicate the relationship explicitly. The following is a typical /etc/auto_direct map:


/usr/local          -ro \
   /bin                   ivy:/export/local/sun4 \
   /share                 ivy:/export/local/share \
   /src                   ivy:/export/local/src
/usr/man            -ro   oak:/usr/man \
                          rose:/usr/man \
                          willow:/usr/man 
/usr/games          -ro   peach:/usr/games 
/usr/spool/news     -ro   pine:/usr/spool/news \
                          willow:/var/spool/news 

Lines in direct maps have the following syntax:

key [ mount-options ] location

key

key is the path name of the mount point in a direct map.

mount-options

mount-options is the options that you want to apply to this particular mount. These options are required only if the options differ from the map default. Options for each specific type of file system are listed in the mount man page for that file system. For example, see the mount_cachefs(1M) man page for CacheFS specific mount options.

location

location is the location of the file system. One or more file systems are specified as server:pathname for NFS file systems or :devicename for High Sierra file systems (HSFS).


Note –

The pathname should not include an automounted mount point. The pathname should be the actual absolute path to the file system. For instance, the location of a home directory should be listed as server:/export/home/username, not as server:/home/username.


As in the master map, a line that begins with # is a comment. All the text that follows until the end of the line is ignored. Put a backslash at the end of the line to split long lines into shorter ones.

Of all the maps, the entries in a direct map most closely resemble the corresponding entries in /etc/vfstab. An entry might appear in /etc/vfstab as follows:


dancer:/usr/local - /usr/local/tmp nfs - yes ro 

The equivalent entry appears in a direct map as follows:


/usr/local/tmp     -ro     dancer:/usr/local

Note –

No concatenation of options occurs between the automounter maps. Any options that are added to an automounter map override all options that are listed in maps that are searched earlier. For instance, options that are included in the auto_master map would be overridden by corresponding entries in any other map.


See How Autofs Selects the Nearest Read-Only Files for Clients (Multiple Locations) for other important features that are associated with this type of map.

Mount Point /-

In Example 16–1, the mount point /- tells autofs not to associate the entries in auto_direct with any specific mount point. Indirect maps use mount points that are defined in the auto_master file. Direct maps use mount points that are specified in the named map. Remember, in a direct map the key, or mount point, is a full path name.

An NIS or NIS+ auto_master file can have only one direct map entry because the mount point must be a unique value in the namespace. An auto_master file that is a local file can have any number of direct map entries if entries are not duplicated.

Indirect Autofs Maps

An indirect map uses a substitution value of a key to establish the association between a mount point on the client and a directory on the server. Indirect maps are useful for accessing specific file systems, such as home directories. The auto_home map is an example of an indirect map.

Lines in indirect maps have the following general syntax:

key [ mount-options ] location

key

key is a simple name without slashes in an indirect map.

mount-options

mount-options is the options that you want to apply to this particular mount. These options are required only if the options differ from the map default. Options for each specific type of file system are listed in the mount man page for that file system. For example, see the mount_nfs(1M) man page for NFS-specific mount options.

location

location is the location of the file system. One or more file systems are specified as server:pathname.


Note –

The pathname should not include an automounted mount point. The pathname should be the actual absolute path to the file system. For instance, the location of a directory should be listed as server:/usr/local, not as server:/net/server/usr/local.


As in the master map, a line that begins with # is a comment. All the text that follows until the end of the line is ignored. Put a backslash (\) at the end of the line to split long lines into shorter ones. Example 16–1 shows an auto_master map that contains the following entry:


/home      auto_home        -nobrowse    

auto_home is the name of the indirect map that contains the entries to be mounted under /home. A typical auto_home map might contain the following:


david                  willow:/export/home/david
rob                    cypress:/export/home/rob
gordon                 poplar:/export/home/gordon
rajan                  pine:/export/home/rajan
tammy                  apple:/export/home/tammy
jim                    ivy:/export/home/jim
linda    -rw,nosuid    peach:/export/home/linda

As an example, assume that the previous map is on host oak. Suppose that the user linda has an entry in the password database that specifies her home directory as /home/linda. Whenever linda logs in to computer oak, autofs mounts the directory /export/home/linda that resides on the computer peach. Her home directory is mounted read-write, nosuid.

Assume the following conditions occur: User linda's home directory is listed in the password database as /home/linda. Anybody, including Linda, has access to this path from any computer that is set up with the master map referring to the map in the previous example.

Under these conditions, user linda can run login or rlogin on any of these computers and have her home directory mounted in place for her.

Furthermore, now Linda can also type the following command:


% cd ~david

autofs mounts David's home directory for her (if all permissions allow).


Note –

No concatenation of options occurs between the automounter maps. Any options that are added to an automounter map override all options that are listed in maps that are searched earlier. For instance, options that are included in the auto_master map are overridden by corresponding entries in any other map.


On a network without a name service, you have to change all the relevant files (such as /etc/passwd) on all systems on the network to allow Linda access to her files. With NIS, make the changes on the NIS master server and propagate the relevant databases to the slave servers. On a network that is running NIS+, propagating the relevant databases to the slave servers is done automatically after the changes are made.

How Autofs Works

Autofs is a client-side service that automatically mounts the appropriate file system. When a client attempts to access a file system that is not presently mounted, the autofs file system intercepts the request and calls automountd to mount the requested directory. The automountd daemon locates the directory, mounts it within autofs, and replies. On receiving the reply, autofs allows the waiting request to proceed. Subsequent references to the mount are redirected by the autofs. No further participation is required by automountd until the file system is automatically unmounted by autofs after a period of inactivity.

The components that work together to accomplish automatic mounting are the following:

The automount command, which is called at system startup time, reads the master map file auto_master to create the initial set of autofs mounts. These autofs mounts are not automatically mounted at startup time. These mounts are points under which file systems are mounted in the future. These points are also known as trigger nodes.

After the autofs mounts are set up, these mounts can trigger file systems to be mounted under them. For example, when autofs receives a request to access a file system that is not currently mounted, autofs calls automountd, which actually mounts the requested file system.

After initially mounting autofs mounts, the automount command is used to update autofs mounts as necessary. The command compares the list of mounts in the auto_master map with the list of mounted file systems in the mount table file /etc/mnttab (formerly /etc/mtab). automount then makes the appropriate changes. This process allows system administrators to change mount information within auto_master and have those changes used by the autofs processes without having to stop and restart the autofs daemon. After the file system is mounted, further access does not require any action from automountd until the file system is automatically unmounted.

Unlike mount, automount does not read the /etc/vfstab file (which is specific to each computer) for a list of file systems to mount. The automount command is controlled within a domain and on computers through the namespace or local files.

The following is a simplified overview of how autofs works.

The automount daemon automountd starts at boot time from the /etc/init.d/autofs script (see Figure 16–1). This script also runs the automount command, which reads the master map and installs autofs mount points. See How Autofs Starts the Navigation Process (Master Map) for more information.

Figure 16–1 /etc/init.d/autofs Script Starts automount

The context describes the graphic.

Autofs is a kernel file system that supports automatic mounting and unmounting.

When a request is made to access a file system at an autofs mount point, the following occurs:

  1. Autofs intercepts the request.

  2. Autofs sends a message to the automountd for the requested file system to be mounted.

  3. automountd locates the file system information in a map, creates the trigger nodes, and performs the mount.

  4. Autofs allows the intercepted request to proceed.

  5. Autofs unmounts the file system after a period of inactivity.


Note –

Mounts that are managed through the autofs service should not be manually mounted or unmounted. Even if the operation is successful, the autofs service does not check that the object has been unmounted, resulting in possible inconsistencies. A reboot clears all of the autofs mount points.


How Autofs Navigates Through the Network (Maps)

Autofs searches a series of maps to navigate through the network. Maps are files that contain information such as the password entries of all users on a network or the names of all host computers on a network. Effectively, the maps contain network-wide equivalents of UNIX administration files. Maps are available locally or through a network name service such as NIS or NIS+. You create maps to meet the needs of your environment by using the Solstice System Management Tools. See Modifying How Autofs Navigates the Network (Modifying Maps).

How Autofs Starts the Navigation Process (Master Map)

The automount command reads the master map at system startup. Each entry in the master map is a direct map name or an indirect map name, its path, and its mount options, as shown in Figure 16–2. The specific order of the entries is not important. automount compares entries in the master map with entries in the mount table to generate a current list.

Figure 16–2 Navigation Through the Master Map

The context describes the graphic.

Autofs Mount Process

What the autofs service does when a mount request is triggered depends on how the automounter maps are configured. The mount process is generally the same for all mounts. However, the final result changes with the mount point that is specified and the complexity of the maps. Starting with the Solaris 2.6 release, the mount process has also been changed to include the creation of the trigger nodes.

Simple Autofs Mount

To help explain the autofs mount process, assume that the following files are installed.


$ cat /etc/auto_master
# Master map for automounter
#
+auto_master
/net        -hosts        -nosuid,nobrowse
/home       auto_home     -nobrowse
/xfn        -xfn
/share      auto_share
$ cat /etc/auto_share
# share directory map for automounter
#
ws          gumbo:/export/share/ws

When the /share directory is accessed, the autofs service creates a trigger node for /share/ws, which can be seen in /etc/mnttab as an entry that resembles the following entry:


-hosts  /share/ws     autofs  nosuid,nobrowse,ignore,nest,dev=###

When the /share/ws directory is accessed, the autofs service completes the process with these steps:

  1. Pings the server's mount service to see if the service is alive.

  2. Mounts the requested file system under /share. Now, the /etc/mnttab file contains the following entries:


    -hosts  /share/ws     autofs  nosuid,nobrowse,ignore,nest,dev=###
    gumbo:/export/share/ws /share/ws   nfs   nosuid,dev=####    #####

Hierarchical Mounting

When multiple layers are defined in the automounter files, the mount process becomes more complex. Suppose that you expand the /etc/auto_shared file from the previous example to contain the following:


# share directory map for automounter
#
ws       /       gumbo:/export/share/ws
         /usr    gumbo:/export/share/ws/usr

The mount process is basically the same as the previous example when the /share/ws mount point is accessed. In addition, a trigger node to the next level (/usr) is created in the /share/ws file system so that the next level can be mounted if it is accessed. In this example, /export/share/ws/usr must exist on the NFS server in order for the trigger node to be created.


Caution – Caution –

Do not use the -soft option when specifying hierarchical layers. Refer to Autofs Unmounting for an explanation of this limitation.


Autofs Unmounting

The unmounting that occurs after a certain amount of idle time is from the bottom up (reverse order of mounting). If one of the directories at a higher level in the hierarchy is busy, only file systems below that directory are unmounted. During the unmounting process, any trigger nodes are removed and then the file system is unmounted. If the file system is busy, the unmount fails and the trigger nodes are reinstalled.


Caution – Caution –

Do not use the -soft option when specifying hierarchical layers. If the -soft option is used, requests to reinstall the trigger nodes can time out. The failure to reinstall the trigger nodes leaves no access to the next level of mounts. The only way to clear this problem is to have the automounter unmount all of the components in the hierarchy. The automounter can complete the unmount either by waiting for the file systems to be automatically unmounted or by rebooting the system.


How Autofs Selects the Nearest Read-Only Files for Clients (Multiple Locations)

The example direct map contains the following:


/usr/local          -ro \
   /bin                   ivy:/export/local/sun4\
   /share                 ivy:/export/local/share\
   /src                   ivy:/export/local/src
/usr/man            -ro   oak:/usr/man \
                          rose:/usr/man \
                          willow:/usr/man
/usr/games          -ro   peach:/usr/games
/usr/spool/news     -ro   pine:/usr/spool/news \
                          willow:/var/spool/news 

The mount points /usr/man and /usr/spool/news list more than one location, three locations for the first mount point, two locations for the second mount point. This means any of the replicated locations can provide the same service to any user. This procedure is sensible only when you mount a file system that is read-only, as you must have some control over the locations of files that you write or modify. You don't want to modify files on one server on one occasion and, minutes later, modify the “same” file on another server. The benefit is that the best available server is used automatically without any effort that is required by the user.

If the file systems are configured as replicas (see What Is a Replicated File System?), the clients have the advantage of using failover. Not only is the best server automatically determined, but if that server becomes unavailable, the client automatically uses the next-best server. Failover was first implemented in the Solaris 2.6 release.

An example of a good file system to configure as a replica is man pages. In a large network, more than one server can export the current set of man pages. Which server you mount the man pages from does not matter if the server is running and exporting its file systems. In the previous example, multiple mount locations are expressed as a list of mount locations in the map entry.


/usr/man -ro oak:/usr/man rose:/usr/man willow:/usr/man 

In this example, you can mount the man pages from the servers oak, rose, or willow. Which server is best depends on a number of factors, including the following:

During the sorting process, a count is taken of the number of servers that support the NFS version 2 and NFS version 3 protocols. Whichever protocol is supported on the most servers becomes the protocol that is supported by default. This selection provides the client with the maximum number of servers to depend on.

After the largest subset of servers with the same protocol version is found, that server list is sorted by proximity. Servers on the local subnet are given preference over servers on a remote subnet. The closest server is given preference, which reduces latency and network traffic. Figure 16–3 illustrates server proximity.

Figure 16–3 Server Proximity

The context describes the graphic.

If several servers that support the same protocol are on the local subnet, the time to connect to each server is determined and the fastest server is used. The sorting can also be influenced by using weighting (see Autofs and Weighting).

If version 3 servers are more abundant, the sorting process becomes more complex. Normally, servers on the local subnet are given preference over servers on a remote subnet. A version 2 server can complicate matters, as a version 2 server might be closer than the nearest version 3 server. If a version 2 server is on the local subnet and the closest version 3 server is on a remote subnet, the version 2 server is given preference. This preference is only checked if more version 3 servers exist than version 2 servers. If more version 2 servers exist, only a version 2 server is selected.

With failover, the sorting is checked once at mount time to select one server from which to mount, and again anytime the mounted server becomes unavailable. Multiple locations are useful in an environment where individual servers might not export their file systems temporarily.

This feature is particularly useful in a large network with many subnets. Autofs chooses the nearest server and therefore confines NFS network traffic to a local network segment. In servers with multiple network interfaces, list the host name that is associated with each network interface as if the interface were a separate server. Autofs selects the nearest interface to the client.

Autofs and Weighting

You can influence the selection of servers at the same proximity level by adding a weighting value to the autofs map. For example:


/usr/man -ro oak,rose(1),willow(2):/usr/man

The numbers in parentheses indicate a weighting. Servers without a weighting have a value of zero and, therefore, are most likely to be selected. The higher the weighting value, the lower the chance that the server is selected.


Note –

All other server selection factors are more important than weighting. Weighting is only considered when selecting between servers with the same network proximity.


Variables in a Map Entry

You can create a client-specific variable by prefixing a dollar sign ($) to its name. The variable helps you to accommodate different architecture types that are accessing the same file-system location. You can also use curly braces to delimit the name of the variable from appended letters or digits. Table 16–3 shows the predefined map variables.

Table 16–3 Predefined Map Variables

Variable 

Meaning 

Derived From 

Example 

ARCH

Architecture type 

uname -m

sun4u

CPU

Processor type 

uname -p

sparc

HOST

Host name 

uname -n

dinky

OSNAME

Operating system name 

uname -s

SunOS

OSREL

Operating system release 

uname -r

5.8

OSVERS

Operating system version (version of the release) 

uname -v

GENERIC

You can use variables anywhere in an entry line except as a key. For instance, suppose that you have a file server that exports binaries for SPARC and x86 architectures from /usr/local/bin/sparc and /usr/local/bin/x86 respectively. The clients can mount through a map entry such as the following:


/usr/local/bin	   -ro	server:/usr/local/bin/$CPU

Now the same entry for all clients applies to all architectures.


Note –

Most applications that are written for any of the sun4 architectures can run on all sun4 platforms, so the -ARCH variable is hard-coded to sun4 instead of sun4m.


Maps That Refer to Other Maps

A map entry +mapname that is used in a file map causes automount to read the specified map as if it were included in the current file. If mapname is not preceded by a slash, autofs treats the map name as a string of characters and uses the name-service switch policy to find the map name. If the path name is an absolute path name, automount checks a local map of that name. If the map name starts with a dash (-), automount consults the appropriate built-in map, such as xfn or hosts.

This name service switch file contains an entry for autofs that is labeled as automount, which contains the order in which the name services are searched. The following file is an example of a name service switch file.


#
# /etc/nsswitch.nis:
#
# An example file that could be copied over to /etc/nsswitch.conf;
# it uses NIS (YP) in conjunction with files.
#
# "hosts:" and "services:" in this file are used only if the /etc/netconfig
# file contains "switch.so" as a nametoaddr library for "inet" transports.
# the following two lines obviate the "+" entry in /etc/passwd and /etc/group.
passwd:         files nis
group:          files nis

# consult /etc "files" only if nis is down.
hosts:          nis [NOTFOUND=return] files
networks:       nis [NOTFOUND=return] files
protocols:      nis [NOTFOUND=return] files
rpc:            nis [NOTFOUND=return] files
ethers:         nis [NOTFOUND=return] files
netmasks:       nis [NOTFOUND=return] files
bootparams:     nis [NOTFOUND=return] files
publickey:      nis [NOTFOUND=return] files
netgroup:       nis
automount:      files nis
aliases:        files nis
# for efficient getservbyname() avoid nis
services:       files nis 

In this example, the local maps are searched before the NIS maps. Therefore, you can have a few entries in your local /etc/auto_home map for the most commonly accessed home directories. You can then use the switch to fall back to the NIS map for other entries.


bill               cs.csc.edu:/export/home/bill
bonny              cs.csc.edu:/export/home/bonny

After consulting the included map, if no match is found, automount continues scanning the current map. Therefore, you can add more entries after a + entry.


bill               cs.csc.edu:/export/home/bill
bonny              cs.csc.edu:/export/home/bonny
+auto_home 

The map that is included can be a local file or a built-in map. Remember, only local files can contain + entries.


+auto_home_finance      # NIS+ map
+auto_home_sales        # NIS+ map
+auto_home_engineering  # NIS+ map
+/etc/auto_mystuff      # local map
+auto_home              # NIS+ map
+-hosts                 # built-in hosts map 

Note –

You cannot use + entries in NIS+ or NIS maps.


Executable Autofs Maps

You can create an autofs map that executes some commands to generate the autofs mount points. You could benefit from using an executable autofs map if you need to be able to create the autofs structure from a database or a flat file. The disadvantage to using an executable map is that the map needs to be installed on each host. An executable map cannot be included in either the NIS or the NIS+ name service.

The executable map must have an entry in the auto_master file.


/execute    auto_execute

Here is an example of an executable map:


#!/bin/ksh
#
# executable map for autofs
#

case $1 in
	         src)  echo '-nosuid,hard bee:/export1' ;;
esac

For this example to work, the file must be installed as /etc/auto_execute and must have the executable bit set. Set permissions to 744. Under these circumstances, running the following command causes the /export1 file system from bee to be mounted:


% ls /execute/src

Modifying How Autofs Navigates the Network (Modifying Maps)

You can modify, delete, or add entries to maps to meet the needs of your environment. As applications and other file systems that users require change their location, the maps must reflect those changes. You can modify autofs maps at any time. Whether your modifications are effective the next time automountd mounts a file system depends on which map you modify and what kind of modification you make.

Default Autofs Behavior With Name Services

Booting invokes autofs by using the /etc/init.d/autofs script and checks for the master auto_master map. Autofs is subject to the rules that are discussed subsequently.

Autofs uses the name service that is specified in the automount entry of the /etc/nsswitch.conf file. If NIS+ is specified, as opposed to local files or NIS, all map names are used as is. If NIS is selected and autofs cannot find a map that autofs needs, but finds a map name that contains one or more underscores, the underscores are changed to dots. This change allows the old NIS file names to work. Then autofs checks the map again, as shown in Figure 16–4.

Figure 16–4 How Autofs Uses the Name Service

The context describes the graphic.

The screen activity for this session would resemble the following example.


$ grep /home /etc/auto_master
/home           auto_home

$ ypmatch brent auto_home
Can't match key brent in map auto_home.  Reason: no such map in
server's domain.

$ ypmatch brent auto.home
diskus:/export/home/diskus1/&

If “files” is selected as the name service, all maps are assumed to be local files in the /etc directory. Autofs interprets a map name that begins with a slash (/) as local regardless of which name service autofs uses.

Autofs Reference

The remaining sections of this chapter describe more advanced autofs features and topics.

Metacharacters

Autofs recognizes some characters as having a special meaning. Some characters are used for substitutions, and some characters are used to protect other characters from the autofs map parser.

Ampersand (&)

If you have a map with many subdirectories specified, as in the following, consider using string substitutions.


john        willow:/home/john
mary        willow:/home/mary
joe         willow:/home/joe
able        pine:/export/able
baker       peach:/export/baker

You can use the ampersand character (&) to substitute the key wherever the key appears. If you use the ampersand, the previous map changes to the following:


john        willow:/home/&
mary        willow:/home/&
joe         willow:/home/&
able        pine:/export/&
baker       peach:/export/&

You could also use key substitutions in a direct map, in situations such as the following:


/usr/man						willow,cedar,poplar:/usr/man

You can also simplify the entry further as follows:


/usr/man						willow,cedar,poplar:&

Notice that the ampersand substitution uses the whole key string. Therefore, if the key in a direct map starts with a / (as it should), the slash is carried over, and you could not do, for example, the following:


/progs				&1,&2,&3:/export/src/progs 

The reason is that autofs would interpret the example as the following:


/progs 				/progs1,/progs2,/progs3:/export/src/progs
Asterisk (*)

You can use the universal substitute character, the asterisk (*), to match any key. You could mount the /export file system from all hosts through this map entry.


*						&:/export

Each ampersand is substituted by the value of any given key. Autofs interprets the asterisk as an end-of-file character.

Special Characters

If you have a map entry that contains special characters, you might have to mount directories that have names that confuse the autofs map parser. The autofs parser is sensitive to names that contain colons, commas, spaces, and so on. These names should be enclosed in double quotations, as in the following:


/vms    -ro    vmsserver: -  -  - "rc0:dk1 - "
/mac    -ro    gator:/ - "Mr Disk - "