
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Writing FCode 2.x Programs

Part No.: 802-1941-10
Revision A, November 1995

Please
Recycle

 1993 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc. and the University of California, respectively. Third-party font software in this product is protected by
copyright and licensed from Sun’s Font Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun logo, the SMCC logo, and OpenBoot are
trademarks or registered trademarks of Sun Microsystems, Inc. UNIX and OPEN LOOK are registered trademarks of UNIX
System Laboratories, Inc.. All other product names mentioned herein are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCworks, and SPARCompiler are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark and product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

Preface. xv

Ordering Sun Documents . xviii

1. SBus Cards and FCode . 1

FCode PROM Format . 2

Interpreting FCode. 2

Device Identification . 2

Creating and Executing FCode Definitions 3

2. Elements of FCode Programming . 5

Colon Definitions . 6

Stack Operations . 7

Additional Information . 8

Programming Style . 8

Commenting Code. 8

Short Definitions . 9

Stack Comments. 9

iv Writing FCode 2.x Programs—November 1995

 A Minimum FCode Program. 10

 FCode Classes . 11

Primitive FCodes . 12

System FCodes . 12

Interface FCodes. 13

Local FCodes . 13

3. Producing FCode. 15

FCode Source . 15

Tokenizing FCode Source . 16

FCode Binary Format . 17

Testing FCode on the Target Machine . 17

Configuring the Target Machine . 18

Setting Appropriate Configuration Parameters 18

Modifying The Expansion Bus Probe Sequence. 19

Getting to the Forth Monitor . 20

Using the Forth Monitor to Download FCode 20

Using dload to Load from Ethernet. 21

Using dlbin to Load From Serial Port A. 21

Using boot to Load From Hard Disk, Floppy Disk, or Ethernet
22

Using the Forth Monitor to Interpret an FCode Program. 22

Interpretation Under OpenBoot 2 . 23

Interpretation Under OpenBoot 1 . 25

Using the Forth Monitor to Browse a Device Node. 26

Contents v

Device Node Browsing Under OpenBoot 2 27

Device Node Browsing Under OpenBoot 1 28

Using the Forth Monitor to Test a Device Node Driver 29

Device Node Methods Under OpenBoot 2 29

Device Node Methods Under OpenBoot 1 32

Testing FCode in Source Form . 32

Producing an FCode PROM . 33

Exercising an Installed FCode PROM . 33

Exercising FCode Under OpenBoot 2 34

Exercising FCode Under OpenBoot 1 34

4. Packages . 37

Package Definitions, Package Instances, and Device Nodes . . 38

Plug-in Device Drivers . 38

Package Methods . 39

Required Methods . 39

Recommended Methods . 40

Package Data Definitions . 41

Accessing Other Packages . 42

Debugging Packages . 49

Package Mappings. 49

nvramrc . 49

Modifying Package Properties . 49

Standard Support Packages . 50

Sun Disk-Label Support Package. 50

vi Writing FCode 2.x Programs—November 1995

TFTP Booting Support Package . 51

Deblocker Support Package . 52

5. Properties . 55

Standard FCode Properties . 56

Standard FCode Properties For Cards (General) 57

Device-type Specific Properties For SBus Cards 57

General Properties For Parent Nodes 57

Properties For SBus Parent Nodes . 57

Standard Properties . 58

Manipulating Properties . 72

Property Creation and Modification 72

Property Values . 73

Property Encoding. 73

Property Retrieval . 73

Property Decoding. 74

Property-Specific FCodes . 75

6. Block and Byte Devices . 77

Block Devices . 77

Byte Devices . 78

Required Methods . 78

Required Properties . 80

Device Driver Examples . 81

Simple Block Device Driver . 81

Extended Block Device Driver . 82

Contents vii

Complete Block and Byte Device Driver 90

7. Display Devices. 101

Required Methods . 101

Required Properties . 102

Device Driver Examples . 102

Simple Display Device Driver . 102

Extended Display Device Driver . 103

Complete Display Device Driver . 108

8. Hierarchical Devices. 115

Required Methods . 115

SBus Addressing . 119

SBus Required Properties . 119

VMEBus Addressing . 120

VMEBus Required Properties. 120

Device Driver Examples . 120

Basic Hierarchical Device Driver . 121

Extended Hierarchical Device Driver 124

Complete Hierarchical Device Driver 132

9. Network Devices. 149

Required Methods . 150

Required Device Properties . 151

Optional Device Properties. 151

Device Driver Examples . 152

Simple Network Device Example . 152

viii Writing FCode 2.x Programs—November 1995

Sample Driver With Test and Debugging Methods. 154

Bootable Network Device Driver Example. 166

10. Serial Devices . 193

Required Methods . 193

Required Properties . 194

Device Driver Examples . 194

Simple Serial FCode Program . 194

Extended Serial FCode Program . 195

Complete Serial FCode Program . 198

11. FCode Dictionary . 203

A. FCode Reference . 333

FCode Primitives . 333

FCodes by Function . 334

FCodes by Byte Value . 354

FCodes by Name . 366

Version 2 FCodes . 378

B. OpenBoot Interrupt Testing . 381

C. FCode Memory Allocation . 387

For OpenBoot 2 . 387

For OpenBoot 1 . 388

D. Changes in FCode Usage for OpenBoot 1. 389

FCode For OpenBoot 1 Systems . 389

FCode Programming Style 1. 390

FCode Programming Style 2. 390

Contents ix

FCode Programming Style 3 . 391

Other OpenBoot 1 Restrictions. 391

Total FCode Program Size. 391

Old-style Memory Mapping And Unmapping 392

Memory Mapping Size Limits . 392

Large General-purpose Mappings. 392

Memory De-allocation. 393

Total Properties . 393

Interpretation of my-address and my-space 393

my-address Volatility . 393

free-virtual and Properties . 393

Changes in new-device and finish-device Usage 394

Index . 395

x Writing FCode 2.x Programs—November 1995

xi

Table P-1 Typographic Conventions . xvii

Table 2-1 Stack Item Notation. 9

Table 3-1 FCode Binary Format . 17

Table 3-2 FCode Header Format . 17

Table 3-3 File Download/Execute-related Toolkit Commands. 20

Table 3-4 Commands for Browsing the Device Tree 26

Table 4-1 Package Access FCodes . 43

Table 4-2 Manipulating phandles and ihandles 44

Table 4-3 Method-Access Words . 48

Table 4-4 Sun Disk Label Package Methods . 51

Table 4-5 TFTP Package Methods . 52

Table 4-6 Deblocker Package Methods . 52

Table 5-1 Standard Device Types . 61

Table 5-2 Child-Parent Address Relationships . 68

Table 5-3 status property values. 71

Table 5-4 Property-specific FCodes . 75

Tables

xii Writing FCode 2.x Programs—November 1995

Table 7-1 Required Display Device Properties. 102

Table 8-1 Required SBus Properties . 119

Table 8-2 Required VMEbus Properties . 120

Table 9-1 Required Network Device Properties. 151

Table 9-2 Optional Network Device Properties . 151

Table 10-1 Serial Driver Required Properties . 194

Table 11-1 Escape Sequences in Text Strings . 204

Table A-1 Stack Manipulation . 334

Table A-2 Arithmetic Operations . 335

Table A-3 Memory Operations . 336

Table A-4 Atomic Access . 336

Table A-5 Data Exception Tests . 337

Table A-6 Comparison Operations . 337

Table A-7 Text Input . 338

Table A-8 ASCII Constants. 338

Table A-9 Numeric Input . 338

Table A-10 Numeric Primitives . 339

Table A-11 Numeric Output . 339

Table A-12 General-purpose Output . 340

Table A-13 Formatted Output . 340

Table A-14 begin Loops . 340

Table A-15 Conditionals . 340

Table A-16 do Loops . 341

Table A-17 Control Words . 341

Table A-18 Strings . 341

Tables xiii

Table A-19 Defining Words . 342

Table A-20 Dictionary Compilation . 342

Table A-21 Dictionary Search. 342

Table A-22 Conversions Operators . 343

Table A-23 Memory Buffers Allocation . 343

Table A-24 Miscellaneous Operators . 344

Table A-25 Internal Operators, (invalid for program text) 344

Table A-26 Memory Allocation . 346

Table A-27 Non-volatile Parameters. 346

Table A-28 Properties . 346

Table A-29 Commmonly-used Properties . 347

Table A-30 System Version Information . 347

Table A-31 Device Activation Vector Setup. 347

Table A-32 Self-test utility Routines . 347

Table A-33 Time Utilities . 348

Table A-34 Machine-specific Support. 348

Table A-35 User-set terminal Emulation Values . 349

Table A-36 Terminal Emulator-set Terminal Emulation Values 349

Table A-37 Terminal Emulation Routines* . 349

Table A-38 Frame Buffer Parameter Values* . 350

Table A-39 Font Operators . 350

Table A-40 One-bit Framebuffer Utilities . 350

Table A-41 Eight-bit Framebuffer Utilities . 351

Table A-42 Package Support . 351

Table A-43 Asynchronous Support. 352

xiv Writing FCode 2.x Programs—November 1995

Table A-44 Miscellaneous Operations . 352

Table A-45 Interpretation . 353

Table A-46 Error Handling. 353

Table A-47 FCodes by Byte Value . 354

Table A-48 FCodes by Name . 366

Table A-49 Version 2 FCodes . 378

Table B-1 Interrrupt-handling words. 381

Table B-2 Interrupt register format. 383

xv

Preface

This manual, Writing FCode 2.x Programs, replaces both Writing FCode Programs
for SBus Cards and Writing FCode 2.0 Programs.

Who Should Use This Book
This manual is written for designers of SBus interface cards and other devices
that use the FCode interface language. It assumes that you have some
familiarity with SBus card design requirements and Forth programming.

The material covered in this manual is specifically for those developing FCode
applications on OpenBoot 2.0 or later SPARCsystems, and those developing
SBus cards for either OpenBoot 2.0 only or both OpenBoot 1.0 and OpenBoot
2.0 and later systems.

This manual also assumes that you have read and understood SBus
Specification B.0 (or later) and OpenBoot Command Reference.

How This Book Is Organized
• Chapter 1, “SBus Cards and FCode”, introduces the basic relationships

between FCode device drivers and the hardware that they control.
• Chapter 2, “Elements of FCode Programming”, introduces the basic

elements of FCode, stack notation, and programming style.
• Chapter 3, “Producing FCode”, describes the process of producing FCode

programs, from source file to testing working programs.
• Chapter 4, “Packages”, describes the basic units of FCode program function.

xvi Writing FCode 2.x Programs—November 1995

• Chapter 5, “Properties”, describes properties, which define how an FCode
device driver program “sees” the hardware that it controls.

• Chapter 6, “Block and Byte Devices” through Chapter 10, “Serial Devices”
describe currently-defined device types, programming requirements, and
give some examples of device drivers for the various device types.

• Chapter 11, “FCode Dictionary”, describes currently-defined FCode words,
their functions and use, with brief programming examples.

• Appendix A, “FCode Reference”, lists all currently-defined Fcode words
according to functional grouping, name, and byte value.

• Appendix B, “OpenBoot Interrupt Testing”, describes how to go about
dealing with interrupts when testing SBus devices, including programming
examples.

• Appendix C, “FCode Memory Allocation”, describes guidelines for memory
allocation and deallocation in FCode.

• Appendix D, “Changes in FCode Usage for OpenBoot 1”, describes
differences in programming style between OpenBoot 1 and OpenBoot 2
practice, and changes in usage of FCode words that have changed between
OpenBoot 1 and OpenBoot 2.

Related Books
This manual does not pretend to cover everything you need to know to write
FCode drivers for SBus cards. You’ll have to read some other books, too.

For information about SBus, OpenBoot 2.0, SBus device drivers, and writing
device drivers for Sun workstations, see the following Sun manuals:

• OpenBoot Command Reference, 800-6076-11
• OpenBoot Quick Reference, 800-5675-11
• SBus Specification B.0, 800-5922-10
• Writing SBus Device Drivers, 800-4455-10

For more information about Forth and Forth programming, see:

• Mastering Forth, Anita Anderson and Martin Tracy. Brady Communication
Company, Inc., 1989.

• Forth: A Text and Reference, Mahlon G. Kelly and Nicholas Spies. Prentice
Hall.

• Starting FORTH, Leo Brody. FORTH, Inc., second edition, 1987.
• Forth: a New Model, Jack Woehr. M & T Books, 1992.
• OpenBoot Command Reference, 800-6076-11

Preface xvii

Software Tools
Some programs specifically mentioned in this manual for use in developing
FCode programs are included on a diskette in the SBus Developer’s Kit.
Instructions for using these programs are included on the diskette.

If you don’t have access to a complete SBus Developer’s Kit, or if your
SPARCstation doesn’t have a diskette drive, contact the Sun SBus Technical
Support Group (sbustech@Sun.com) for the software.

What Typographic Changes and Symbols Mean
The following table describes the typeface changes and symbols used in this
book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and directories;
on-screen computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 What you type, contrasted with on-screen
computer output

system% su
Password:

AaBbCc123 Command-line placeholder:
replace with a real name or value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms, or words to be
emphasized

Read Chapter 6 in User’s Guide. These are called
class options.
You must be root to do this.

Code samples are included in boxes and may display the following:

% UNIX C shell prompt system%

ok OpenBoot command prompt ok

$ UNIX Bourne and Korn shell prompt system$

Superuser prompt, all UNIX shells system#

xviii Writing FCode 2.x Programs—November 1995

This manual follows a number of typographic conventions:

• Text beginning with a capitalized letter indicates a key name or a panel
button on a window-based program. For example:

Press the Control-C key.

When you see two key names separated by a dash, press and hold the first
key down, then press the second key. For example:

To press Control-C, press and hold Control, then press C.

• In a command line, square brackets indicate an optional entry and italics
indicate an argument that you must replace with the appropriate text. For
example:

cd [directory]

Ordering Sun Documents
The SunDocs Order Desk is a distribution center for Sun Microsystems
technical documentation. You can use major credit cards and company
purchase orders. You can order documentation in the following ways:

Sun Welcomes Your Comments
Please use the Reader Comment Card that accompanies this document. We are
interested in improving our documentation and welcome your comments and
suggestions.

You can also email or fax your comments to us. Please include the part number
of your document in the subject line of your email or fax message.

• Email: smcc-docs@sun.com

• Fax: SMCC Document Feedback
1-415-786-6443

In the U.S.A. Outside the U.S.A.

Call 1-800-247-0250 Call 1-801-342-3450

Fax 1-801-373-6798 Fax 1-801-373-6798

World Wide Web: http://www.sun.com/sundocs/catalog.html

Preface xix

xx Writing FCode 2.x Programs—November 1995

1

SBus Cards and FCode 1

Each SBus card must have a PROM whose contents identify the device and its
characteristics.

The SBus card’s PROM may also include an optional software driver that lets
you use the card as a boot device or a display device during booting. The
software driver may also include diagnostic selftest code.

In addition to designing hardware, the process of developing SBus devices
may include writing, testing, and installing FCode drivers for the device. These
drivers, if present, serve three functions:

• To exercise the device during development, and to verify its functionality.
• To provide the necessary driver to be used by the system boot PROM during

power-up.
• To provide device configuration information.

In practice, these functions overlap substantially. The same code needed by the
system boot PROM usually serves to significantly test the device as well,
although additional code may be desired to fully verify proper behavior of the
device. The PROM code is used before and during the boot sequence. After the
boot sequence finishes, and while not using the OpenBoot Forth Monitor, most
SBus device use is through SunOS drivers.

SBus device PROMs must be written in the FCode programming language,
which is similar to Forth-83. FCode is described in more detail in Chapter 2,
“Elements of FCode Programming”.

2 Writing FCode 2.x Programs—November 1995

1

FCode PROM Format
An FCode PROM begins at address 0 within the SBus card’s physical address
space. Its size can range from 30 bytes up to 32K bytes. Typical sizes are 60
bytes (for a simple card that identifies itself but does not need a driver) and 1-
4K bytes (for a card with a boot driver). It is good practice to make FCode boot
drivers as short as is practical.

An FCode PROM must be organized as follows:

• Header (8 bytes: consisting of magic number, version number, length,
checksum).

• Body (FCode program; 0 or more bytes).
• End Token (either End0, a zero byte, or End1, an alternative all 1’s byte).

Interpreting FCode
For each SBus slot, the FCode program is interpreted during bootup as follows:

• Location 0 of the SBus PROM is read with an 8-bit or 32-bit access. If there is
no response (as when there is no card in that slot), the slot is subsequently
ignored.

• If the high-order byte of the value returned from the first access is not the
FCode magic numbers 0xfd or 0xf1 , the slot is subsequently ignored.

• If the high-order byte is 0xfd or 0xf1 , the PROM is assumed to contain a
valid FCode program. The FCode is then interpreted by starting at location
0 and reading one byte at a time, executing a procedure associated with
each FCode value.

• Interpretation ceases when the FCode 0x00 or 0xff (End0 or End1) is
encountered.

Device Identification
An FCode PROM must identify its device. This identification must include, at
a minimum, the driver name, used to link the device to its SunOS driver.
Identification information may include additional characteristics of the device
for the benefit of the operating system and the CPU boot PROM.

SBus Cards and FCode 3

1

In most systems, the CPU’s FCode interpreter will store each device’s
identification information in a device tree that has a node for each device. Each
device node has a property list that identifies and describes the device. The
property list is created as a result of interpreting the program in the FCode
PROM.

Each property must have a name and a value. The name is a string and the
value is an array of bytes, which may encode strings, numbers, and various
other data types.

See Chapter 5, “Properties” for more information.

Creating and Executing FCode Definitions
Many FCode programs create executable routines, called colon definitions (or
methods) that typically read from and write to device locations to control
device functions. These definitions are also stored in the device tree node for
that device.

Once defined, these routines may typically be executed under any of the
following circumstances:

• Interactively at the OpenBoot ok prompt (for selftest or other purposes).
• By the OpenBoot system (for using this boot or display system during

system start-up).
• Automatically during FCode interpretation (for power-on initialization or

other purposes).

4 Writing FCode 2.x Programs—November 1995

1

5

Elements of FCode Programming 2

FCode is based on the Forth-83 dialect of the Forth language, with the
following major differences:

• The FCode tokenizer program uses normal textfiles, rather than the
BLOCKs and block editing of Forth-83, and contains its own predefined
words for file transfers.

• Forth-83 is designed for 16-bit machines. FCode is designed for 32-bit
machines, so FCode handles 16 and 32-bit quantities differently than Forth-
83.

 FCode has these characteristics:

• The source format is machine and system independent.
• The binary format (FCode) is machine, system, and position independent.
• The binary format is compact.
• The binary format may be interpreted easily and efficiently.
• Programs are easy to develop and debug.
• The source format can easily be translated to binary format.
• The binary format can be untranslated back to a source format.

Forth commands are called words, and are roughly analogous to procedures in
other languages. Unlike other languages, such as C, which have operators and
syntactic characters and procedures, in Forth every word is a procedure.

Forth words consist of one to 31 printable characters, separated by one or more
spaces from subsequent words.

6 Writing FCode 2.x Programs—November 1995

2

Forth uses a left-to-right reverse Polish notation, like some scientific
calculators. The basic structure of Forth is: do this, now do that, now do
something else, and so on.

New Forth words are defined as sequences of previously existing words.
Subsequently, new words may be used to create still more words.

FCode is a byte-coded translation of a Forth program. Translating Forth source
code to FCode involves replacing the Forth word names (stored as text strings)
with their equivalent FCode numbers. The tokenized FCode takes up less
space in PROM than the original ASCII textfile form of the Forth program from
which it was derived.

For purposes of this manual, the term FCode indicates both binary-coded
FCode and the Forth programs written as ASCII text files for later conversion
to binary-coded FCode.

Except where a distinction between the two forms is explicitly stated, the use
of FCode in this manual can be assumed to apply equally to both FCode and
Forth.

Colon Definitions
Two concepts are critical to understanding FCode (or Forth):

• A colon definition creates a new word with the same behavior of a
sequence of existing words. A colon definition begins with a colon and ends
with a semicolon.

• Most parameter passing is done through a pushdown, last-in, first-out
stack.

Normally, the action associated with an FCode word is performed when the
FCode word is encountered. This is called interpret state. However, you can
switch from interpret state to compile state.

In interpret state, FCode words are executed as they are encountered. Interpret
state operates until encountering a “:”. The word “:” does the following:

• Allocates a new FCode word and associates it with the name immediately
following the colon

• Switches to compile state

Elements of FCode Programming 7

2

During compile state operation, FCodes are saved for later execution, rather
than being executed immediately. The sequence thus compiled is installed in
the action tables as a new word, and can be later used in the same way as if it
were a built-in word.

Compile state continues until a “;” is read, switching operation back to
interpret state.

FCode words encountered after the colon are compiled into RAM for later use,
until a semicolon is encountered. The word “;“does the following:

• Compiles an end-of-procedure FCode word
• Switches to interpret state

After compilation, the newly-assigned FCode word can be either interpreted or
compiled as part of yet another new word.

If you define a new word having the same spelling as an existing word, the
new definition supersedes the older one(s), but only for subsequent usages of
that word.

Here’s an example of a colon definition, defining a new FCode word dac! :

Stack Operations
Each FCode word is specified by its effect on the stack and any side effects,
such as accessing memory. Most FCode words affect only the stack, by
removing arguments from the stack, performing some operation on them, and
putting the result or results back on the stack.

The stack effects of an FCode word is described by a stack comment, included
in the colon definition.

In the previous example, the stack comment, beginning with “(” and ending
with “) ”, shows that dac! takes three parameters from the stack, and doesn’t
replace them with anything when it’s done.

You can place stack comments anywhere in a colon definition, and you should
include them anywhere that they will enhance clarity.

 : dac! (data addr reg# --) swap dac ! dac + ! ;

8 Writing FCode 2.x Programs—November 1995

2

The rightmost argument is on top of the stack, with any preceding arguments
beneath it. In other words, arguments are pushed onto the stack in left to right
order, leaving the most recent one (the rightmost one in the diagram) on the
top.

Following the stack comment in the preceding example are a series of words
that describe the behavior of dac! . Executing dac! is the same as executing
the list of words in its colon definition.

Note that FCode words are separated by spaces, tabs, or newlines; “(data ”
is not the same as “(data ”. Any visible character is part of a word, and not
a separator.

While case is not significant, by convention FCode is written in lower case.

Additional Information
For more information about Forth programming, needed to use available
FCode primitives, refer to the Forth-related books listed in “Related Books,” on
page xvi.

Programming Style
Some people have described Forth as a write-only language. While it
sometimes ends up that way, it is possible to write Forth (and FCode)
programs that can be read and understood by more than just the original
programmer.

Commenting Code

Comment code extravagantly, then consider adding more comments. The
comments can help you and others maintain your code, and they don’t add to
the final size of the resulting FCode PROM.

Typical practice is to use “() ” for stack comments and “\ ” for other
descriptive text and comments.

Elements of FCode Programming 9

2

Short Definitions

Keep word definitions short. If your definition exceeds half a page, try to break it
up into two or more definitions. If it grows to a page or longer, you should
break it up, if only to make the code easier to support in the future.

A good size for a word definition is one or two lines of code.

Stack Comments

Always include stack comments in word definitions. It can be useful to compare
intended function with what the code really does. Here’s an example of a word
definition with acceptable style.

Stack items are generally written using descriptive names to help clarify
correct usage. See the table below for stack item abbreviations used in this
manual.

\ xyz-map establishes a virtual-to-physical mapping for each of the
\ useful addressable regions on the board

: xyz-map (--)

\ Base-address Offset Size create-mapping
\ then save virtual address

 my-address 40.0000 + 4 map-sbus (virtaddr)
 is status-register ()
 my-address 80.0000 + frame-buf-size map-sbus (virtaddr)
 is frame-buffer-adr ()
;

Table 2-1 Stack Item Notation

Notation Description

| Alternate stack results, for example: (input -- adr len false | result true).

? Unknown stack items (changed from ???).

??? or [...] Unknown stack items.

acf Code field address.

adr Memory address (generally a virtual address).

byte b xxx 8-bit value (smallest byte in a 32-bit word).

10 Writing FCode 2.x Programs—November 1995

2

 A Minimum FCode Program
If an SBus card is not needed during the boot process, a minimal FCode
program that merely declares the name of the device will often suffice. Here is
an example of an acceptable minimum program:

This program creates a “name” property called “SUNW,bison ” that will be
used by the SunOS driver’s identify routine to identify this device, and
declares the location and size of on-board registers. The name that you use
should always begin with your company name.

Note – To avoid name conflicts between different companies’ products, use
your company’s public stock symbol.

char 7-bit value (smallest byte), high bit unspecified.

cnt
len
size

Count or length.

flag xxx? 0 = false; any other value = true (usually -1).

long L xxx 32-bit value.

n n1 n2 n3 Normal signed values (32-bit).

+n u Unsigned, positive values (32-bit).

n[64]
(n.low n.hi)

Extended-precision (64-bit) numbers (2 stack items).

phys Physical address (actual hardware address).

pstr Packed string (adr len means unpacked string).

virt Virtual address (address used by software).

word w xxx 16-bit value (smallest two bytes in a 32-bit word).

fcode-version1
" SUNW,bison" xdrstring " name" attribute
my-address h# 20.0000 +
my-space h# 100
“ reg” attribute
end0

Table 2-1 Stack Item Notation (Continued)

Notation Description

Elements of FCode Programming 11

2

You can also use the following shorthand form. The FCode program generated
will be equivalent to the minimum program given above.

You might also want to include additional code to declare additional
properties, create selftest routines, or to initialize the device after power-on.

 FCode Classes
There are four general classes of FCode source words:

• Primitives. These words generally correspond directly to conventional Forth
words, and implement functions such as addition, stack manipulation, and
control structures.

• System. These are extension words implemented in the boot PROMs, and
implement functions such as memory allocation and device attribute
reporting.

• Interface. These are specific to particular types of devices, and implement
functions such as draw-character .

• Local. These are private words definitions, implemented and used by
devices.

Each FCode primitive is represented in the SBus card’s PROM as a single byte.
Other FCodes are represented in the SBus PROM as two consecutive bytes. The
first byte, a value from 1 to 0xf, may be thought of as an escape code.

One-byte FCode numbers range in value from 0x10 to 0xfe . Two-byte FCode
numbers begin with a byte in the range 0x01 to 0x0f , and end with a byte in
the range 0x00 to 0xff . The single-byte values 0x00 and 0xff signify “end of
program” (either value will do; conventionally, 0x00 is used):

Currently-defined FCodes are listed according to both functional groups and in
numeric order in Appendix A, “FCode Reference”.

fcode-version1
" SUNW,bison" name
my-address h# 20.0000 + my-space h# 100 reg
end0

12 Writing FCode 2.x Programs—November 1995

2

Primitive FCodes
There are more than 300 primitive FCode words, most of which exactly parallel
Forth-83 words, divided into three groups:

• FCode words that generate a single FCode byte
• tokenizer macros
• tokenizer directives

Primitive FCode words that have an exact parallel with standard Forth-83
words are given the same name as the equivalent Forth-83 word. Chapter 11,
“FCode Dictionary”, contains further descriptions of primitive FCodes.

There are about another 70 tokenizer macros, most of which also have direct
Forth-83 equivalents. These are convenient source code words translated by the
tokenizer into short sequences of FCode primitives.

tokenizer directives are words that generate no FCodes, but are used to
control the interpretation process. Cross-compiler directives include the words

• binary , decimal , hex , and octal
• b#, d#, h#, and o#
• headers and headerless
• \ and (
• .(
• alias

System FCodes
System FCodes are used by all classes of FCode drivers for various system-
related functions. System FCodes may be either service words or configuration
words.

• Service words are available to the device’s FCode driver when needed for
functions such as memory mapping or diagnostic routines.

• Configuration words are included in the driver to document characteristics
of the driver itself. These “properties” are passed up to the device’s SunOS
driver.

Elements of FCode Programming 13

2

Interface FCodes
Interface FCodes are standard routines used by the workstation’s CPU to
perform the functions of the SBus card’s device. Different classes of devices
will each use only the appropriate set of interface FCodes.

For example, if the system wants to paint a character on the display screen, it
does it by calling the interface FCode routine draw-character . This requires
the frame buffer’s FCode driver to assign its own definition into the draw-
character interface word. It does this as follows

When my-install executes, draw-character has the behavior of my-draw .

Local FCodes
Local FCodes are assigned, where needed, to words defined within the body of
SBus driver code. There are over 2000 FCode byte values allocated for local
FCodes. The byte values are meaningful only within the context of a particular
driver. Different drivers reuse the same set of byte values.

: my-draw (char --) \ “local” word to draw a character.
 ... \ Definition contents.
; \ end of my-draw definition.
: my-install (--) \ local word to install all interfaces.
 ...
 [’] my-draw is draw-character
 ...
;

14 Writing FCode 2.x Programs—November 1995

2

15

Producing FCode 3

FCode Source
An FCode source file is essentially a Forth language source code file. The basic
Forth words available to the programmer are listed in the FCode Dictionary
chapter of this manual. Typically Forth source files are named with a .fth
suffix. FCode source files follow the same convention.

FCode programs have the following format:

fcode-version1 is a macro which directs the tokenizer to create an FCode
header. For a description of the FCode header see “FCode Binary Format” on
page 17. fcode-version1 produces a header including the version1
FCode. The macro fcode-version2 is similar except it produces a header
containing the start1 FCode. This macro may also be used to begin the
FCode source. However since OpenBoot version 1 systems only recognize
version1, plug-in device FCode that must run in OpenBoot version 1
systems must use fcode-version1 .

See Appendix D, “Changes in FCode Usage for OpenBoot 1” for more
information on differences between version 1 and version 2 FCode usage.

\ Title comment describing the program that follows

fcode-version1

< body of the FCode program >

end0

16 Writing FCode 2.x Programs—November 1995

3

end0 is an FCode that marks the end of an FCode program. It must be at the
end of the program or erroneous results may occur. end1 is an alternative but
end0 is recommended.

The comment in the first line is not strictly necessary in many cases but it is
recommended since some OpenBoot tools require it.

Tokenizing FCode Source
The process of converting FCode source to FCode binary is referred to as
tokenizing. A tokenizer program coverts FCode source words to their
corresponding byte-codes, as indicated in the FCode Dictionary chapter. A
tokenizer program together with instructions describing its use is available
from the Sun SBus Support Group.

An FCode program’s source may reside across multiple files. The fload
tokenizer directive may be used to direct the tokenizer input stream to another
file. fload acts like an #include statement in C. When fload is encountered
the tokenizer begins processing the file named by the fload directive. When
the named file is completed, tokenizing continues with the file that issued the
fload . fload directives may be nested.

Typically, the tokenizer produces a file in the following format based on the
UNIXtm a.out format:

• Header - 32 bytes
• FCode header - 8 bytes
• FCode binary - remainder of file

The header has the following format:

• 4 bytes - 0x01030107 (hexadecimal)
• 4 bytes - Size in bytes of the FCode binary
• 4 bytes - 0x0
• 4 bytes - 0x0
• 4 bytes - 0x0
• 4 bytes - Load point of the file
• 4 bytes - 0x0
• 4 bytes - 0x0

You can use this file to load either an FCode PROM or system memory for
debugging as described in “Using the Forth Monitor to Download FCode” on
page 20.

Producing FCode 17

3

The load point of the file is not used when burning an FCode PROM, but is
used by Forth Monitor commands that load FCode files into system memory.
The tokenizer available from the SBus Support Group sets the load point to be
the recommended 0x4000 address.

By convention, the file output by the tokenizer has the suffix .fcode .

FCode Binary Format
The format of FCode binary that is required by the OpenBoot FCode evaluator is
as follows:

The format of the FCode header is:

Testing FCode on the Target Machine
Once you have created the FCode binary you may test it using the OpenBoot
Forth Monitor. The Forth Monitor provides facilities to allow you to load your
program into system memory and direct the FCode evaluator to interpret it
from there. This allows you to avoid having to burn a PROM and attach it to
your plug-in board with each FCode revision during the debug process. See
the OpenBoot Command Reference for complete documentation on the use of the
Forth Monitor.

The FCode testing process generally involves the following steps:

Table 3-1 FCode Binary Format

Element Structure

FCode header eight bytes

Body 0 or more bytes

End byte-code 1 byte either the end0 or end1 byte-code

Table 3-2 FCode Header Format

Byte(s) Content

0 One of the FCodes: version1,start1,start2,start3,start4

1 reserved

2 and 3 16-bit checksum of the FCode body

4 through 7 count of bytes in the FCode binary image including the header

18 Writing FCode 2.x Programs—November 1995

3

1. Configuring the target machine. This includes installing the hardware
associated with the FCode program into the target machine and powering-
up the machine to the OpenBoot Forth Monitor.

2. Loading the FCode program into memory from a serial line, a network, a
hard disk, or a floppy disk.

3. Interpreting the FCode program to create a device node(s) on the OpenBoot
device tree.

4. Browsing the device node(s) to verify proper FCode interpretation.

5. Exercising the FCode program’s device driver methods complied into the
device node, if any.

If the FCode program does not include any methods which involve using the
actual hardware then the program may be tested without installing the
hardware.

Configuring the Target Machine

Setting Appropriate Configuration Parameters

Before powering-down the target machine to install the target hardware, a few
NVRAM parameters should be set to appropriate values. You can set them
from the Forth Monitor as follows:

Setting auto-boot? to false tells OpenBoot not to boot the OS upon a
machine reset but rather to enter the Forth Monitor at the ok prompt.

Setting fcode-debug? to true tells the OpenBoot FCode evaluator to save
the names of words created by interpreting FCode words which were
tokenized with headers on. This is in addition to words defined with
external on - whose names are always saved. fcode-debug? defaults to
false to conserve RAM space in normal machine operation. With the names
saved, the debugging methods described in later sections will be easier since it
will be easier to read decompiled FCode.

 ok setenv auto-boot? false

 ok setenv fcode-debug? true

Producing FCode 19

3

Modifying The Expansion Bus Probe Sequence

The start-up sequence in the machine’s OpenBoot implementation will be
programmed to examine all expansion buses at well-known locations for the
presence of plug-in devices and their onboard FCode PROM program. It then
invokes the FCode evaluator to interpret the program. This process is called
probing the device.

When using the Forth Monitor to load and interpret an FCode program in
system memory, it is better to configure OpenBoot to not automatically try to
probe the device. The probing will be done manually (as explained later) from
the Forth Monitor after the FCode program is loaded into memory.

Configuring an OpenBoot implementation not to probe a given slot on a given
expansion bus may be done in various ways which are implementation
dependent. That is, they will be different for different systems and different
expansion buses.

Many machines have an NVRAM parameter called sbus-probe-list which
defines which SBus card slots will be probed during start up and the order in
which they will be probed.

For example, on the SPARCstation2, sbus-probe-list has a default value of
0123. Setting sbus-probe-list to 013 directs OpenBoot during start-up to
probe first SBus slots 0 (built-in devices), then slot 1, and finally slot 3. This
leaves SBus slot 2 unprobed, free for use by the device under development.

Methods to prevent probing a given slot for other types of expansion buses
may involve using the nvramrc. An nvramrc script could be used to patch
an implementation specific OpenBoot word which defines the bus’s probe
sequence or to modify a property of the expansion buses device node which
describes the sequence.

After the FCode program is debugged and programmed in PROM on the
device and you want to do a full system test (including automatic probing of
the new device), restore the expansion bus probing configuration to the
default.

20 Writing FCode 2.x Programs—November 1995

3

Getting to the Forth Monitor

After completing the configuration described above, power-down the machine
and install the device. Then power-up the system and it should stop at the ok
prompt ready for Forth Monitor commands.

Note – On the SPARCstation1 and SPARCstation1+, SBus slot 3 may be used
only for SBus slave devices, such as framebuffers. Unlike slots 1 and 2, it may
not be used for SBus master devices, such as disk drive or network interfaces.

Using the Forth Monitor to Download FCode
Complete directions for using the Forth Monitor to download files to system
memory are provided in the OpenBoot Command Reference. This chapter
contains a synopsis for FCode program files. FCode words used to help
download and execute FCode source files are shown below.

Table 3-3 File Download/Execute-related Toolkit Commands

FCode Stack Notation Function

begin-package (arg-adr arg-len reg-adr reg-len path-adr path-len --) Initialize device tree for executing FCode.

select-dev (path-adr path-len --) Open specified device node and make it the
current node.

set-args (arg-adr arg-len reg-adr reg-len --) Sets values returned by my-args , my-space
and my-address for the current node.

end-package (--) Complete device tree entry and return to
Forth Monitor environment.

unselect-dev (--) Closes current node and return to Forth
Monitor environment.

new-slot-node
(1.x only)

(--) Prepare device tree for new entry.

execute-
device-method

(... path-adr path-len cmd-adr cmd-len -- ... ok?) Execute named command within the
specified device tree node.

probe-slot
(1.x only)

(slot# --) Setup and execute FCode in the given SBus
slot.

Producing FCode 21

3

Using dload to Load from Ethernet

dload loads files over Ethernet at a specified address, as shown below.

In the above example, filename must be relative to the server's root. Use 4000

(hex) as the address for dload input.

FCode programs loaded with dload must be in the format described in
“Tokenizing FCode Source”. The tokenizer provided by the SBus Support
Group can output these files.

dload uses the trivial file transfer protocol (TFTP), so the server may need to
have its permissions adjusted for this to work.

Using dlbin to Load From Serial Port A

dlbin may be used to load files over serial line A. Connect the target system's
serial port A to a machine that is able to transfer a file on request. The
following example assumes a tip window setup on a Sun system which will
provide the FCode file. (See the OpenBoot Command Reference for information on
setting tip connections.)

1. At the ok prompt, type:

2. In the tip window of the other system, send the file:

The ok prompt will reappear on the screen of the target system.

FCode programs loaded with dlbin must be in the format described in
“Tokenizing FCode Source”. dlbin loads the files at the entry point indicated
in the file header. It is recommended that this address be 0x4000.

ok 4000 dload filename

ok dlbin

~C (local command) cat filename
(Away two seconds)

22 Writing FCode 2.x Programs—November 1995

3

Using boot to Load From Hard Disk, Floppy Disk, or Ethernet

You can also load an FCode program with boot , the command normally used
to boot the operating system. Use the following format:

device-specifier is either a full device path name or a device alias. See the
OpenBoot Command Reference for information on device path names and aliases.

For a hard disk or floppy partition, filename is relative to the resident file
system. See the OpenBoot Command Reference for information on creating a
bootable floppy disk. For a network, filename is relative to the system's root
partition on its root server. In both cases, the leading / must be omitted from
the file path.

The -h flag specifies that the program should be loaded, but not executed. This
flag must be included since otherwise boot will attempt to automatically
execute the file assuming it is executable binary.

boot uses intermediate booters to accomplish its task. When loading from a
hard disk or floppy disk, the OpenBoot firmware first loads the disk's boot
block, which in turn loads a second-level booter. When loading over a network,
the firmware uses TFTP to load the second-level booter. In both cases, filename
and -h are passed to these intermediate booters.

The output file produced by a tokenizer may need to be converted to the
format required by the secondary boot program. For example, Solaris 2.x
intermediate booters require ELF format. fakeboot , a program available from
the Sun SBus Support Group, may be useful in this process.

The location in memory where the FCode program is loaded depends on the
secondary boot program and the fakeboot program.

Using the Forth Monitor to Interpret an FCode Program
FCode program interpretation involves creating a device node on the device tree.

There are some basic differences between the device tree of version 2 and of
version 1. Improvements were made in version 2 that involve the form of
physical addresses associated with device nodes and the ability to include

ok boot [device-specifier] [filename] -h

Producing FCode 23

3

device driver methods in device nodes. Thus use of the FCode evaluator to
interpret an FCode Program differs for OpenBoot version 2 and OpenBoot
version 1 systems.

Interpretation Under OpenBoot 2

For version 2, device nodes are also known as packages. Creating a device node
from downloaded FCode involves the following steps:

1. Setting up the environment with begin-package .

For example, a begin-package call for creating a device node for an SBus
card installed in slot #3 of a SPARCstation2 looks like:

In the example, the string, /sbus, indicates that the device node which will be
created by the FCode program is to be a child node of the /sbus node in the
device tree.

In general, any device node which supports child nodes - called parent nodes -
may be used as this argument to begin-package. The device node defined
by the FCode program will be made a child of that node. The full device
pathname from the root node must be given. Another example of an SBus
parent node is on a SPARCstation10 where its device pathname is
/iommu/sbus.

In the example, the string, “3,0” indicates the SBus slot number, 3, and byte-
offset, 0, within the slot’s address space where the device node is to be based.

In general, this string is a pair of values separated by a comma which identify
the physical address associated with the expansion slot. The form of this
physical address depends on the physical address space defined by the parent
node. For children of an SBus node, the form is slot-number,byte-offset .
Other parent nodes will define different address spaces.

The physical address pair value is retrieved within the FCode program with
both the my-address and my-space FCodes.

In the example, the initial 0 0 represents a null argument string passed to the
FCode program.

ok 0 0 “ 3,0” “ /sbus” begin-package

24 Writing FCode 2.x Programs—November 1995

3

This argument string is retrieved within the FCode program with the my-args
FCode. Generally, FCode programs do not take arguments at interpretation
time so this will usually be the null string. (For the SPARCstation2, when the
FCode PROM on an SBus card is automatically interpreted during system
power-on, this is set to a null string).

begin-package is defined as:

select-dev (adr len --) - Opens the input device node (the parent node)
and makes it the current instance.

new-device (--) - Initializes a new device node as a child of the currently
active node and makes it the current instance.

set-args (arg-adr arg-len reg-adr reg-len --) - Sets the values returned by
my-args , my-space , and my-address for the current instance.

2. Interpreting the loaded FCode with byte-load

byte-load is the Forth Monitor command that invokes the FCode evaluator
to compile the FCode program into the current instance.

For FCode programs downloaded with dload or dlbin use:

4000 is the load address recommended to be used as input to dload and as the
entry point in the file loaded by dlbin . The argument, 1, is the byte spacing
between FCode byte-codes which byte-load is to expect. For FCode loaded
into memory this is always 1.

For FCode programs downloaded with boot , the address at which the FCode
is loaded depends on the second level booter and the program that is used to
convert the FCode file to a format accepted by the booter, such as fakeboot .
For example, if the file is loaded with the FCode binary starting at 4030 use:

3. Closing the environment with end-package.

: begin-package select-dev new-device set-args ;

ok 4000 1 byte-load

ok 4030 1 byte-load

Producing FCode 25

3

end-package finishes up the creation of the device tree node.

It is defined as:

finish-device (--) Completes the device tree node initialized by new-
device and changes the current instance to be the parent node.

unselect-dev (--) Closes the parent device tree node and returns to the
normal Forth Monitor environment. That is, there is no longer a current
instance or active package.

Interpretation Under OpenBoot 1

OpenBoot Version 1 was only implemented in early SPARCstations which only
contain the SBus expansion bus. Thus the following discussion assumes an
FCode program for an SBus plug-in device on early SPARCstations.

1. Setting up the environment

In version 1, the user sets only the value of my-address . Unlike version 2,
my-address is defined as the offset - from the base of the SBus in the systems
root address space - of the SBus slot in which the device is installed.

Set my-address as in the following example for SBus slot 1:

Hexadecimal slot offsets for the SPARCstation1/1+, SPARCstation IPC and
SPARCstation 1E are:

• 0x200.0000 - Slot 1
• 0x400.0000 - Slot 2
• 0x600.0000 - Slot 3

In version 1 the user prepares the device tree for a new entry by issuing the
new-slot-node command. This command assumes that the new device will
be the child of the SBus nexus node in the slot indicated by my-address .

ok end-package

: end-package finish-device unselect-dev ;

ok 200.0000 is my-address

ok new-slot-node

26 Writing FCode 2.x Programs—November 1995

3

new-slot-node is not in OpenBoot versions 1.0 or 1.1, but you can download
it with the reheader.fth file available from the Sun SBus Support Group, or
enter the following patch directly:

2. Interpreting the downloaded FCode with byte-load

For version 1, use byte-load to interpret the FCode program as described for
version 2.

Using the Forth Monitor to Browse a Device Node
The capability to view device nodes as well as what is contained in device
nodes is different in OpenBoot versions 1 and 2. In version 2, the Forth
Monitor has built-in many more commands to navigate the device tree.

Table 3-4 lists available OpenBoot commands supporting device node
browsing:

\ For OpenBoot version 1.0

: new-slot-node (--)

 ffe9b192 execute

 my-address ffe93da0 execute

 slot# ffe9bd6e execute

;

\ For OpenBoot version 1.1

: new-slot-node (--)

 ffe9b152 execute

 my-address ffe9499c execute

 slot# ffe9bd56 execute

;

Table 3-4 Commands for Browsing the Device Tree

Command Description

.attributes Display the names and values of the current node’s properties.

cd device-path Select the indicated device node, making it the current node.

cd node-name Search for a node with the given name in the subtree below the current node, and select
the first such node found.

Producing FCode 27

3

Device Node Browsing Under OpenBoot 2

Once a device node has been created, you may use the Forth Monitor to
browse the node. See the OpenBoot Command Reference for a more complete
discussion on this. Below is a brief synopsis of the available commands.

• show-devs displays all known devices in the device tree.

• cd sets the active package to a named node so its contents may be viewed.
For example, to make the ACME company’s SBus device named
“ACME,widget” the active package on a SPARCstation2:

• find-device is essentially identical to cd differing only in the way the
input pathname is passed.

• .attributes displays the names and values of all the properties created
for the active package.

• get-attribute returns the value of the specified property from the active
package.

• ls displays the names of all child nodes, if any, of the active package.

cd .. Select the device node that is the parent of the current node.

cd / Select the root machine node.

device-end De-select the current device node, leaving no node selected.

find-device (path-adr path-len --) Select device node, like cd .

get-attribute (name-adr name-len -- true | value-adr value-len false) Returns property value.

ls Display the names of the current node’s children.

pwd Display the device path name that names the current node.

show-devs [device-path] Display all the devices known to the system directly beneath a given level in the device
hierarchy. show-devs used by itself shows the entire device tree.

words Display the names of the current node’s methods.

ok cd /sbus/ACME,widget

ok “ /sbus/ACME,widget” find-device

Table 3-4 Commands for Browsing the Device Tree

Command Description

28 Writing FCode 2.x Programs—November 1995

3

• words shows the names of the device node methods, if any, created by the
FCode program. It shows all words which were defined with external
and, if fcode-debug? was true when the FCode was interpreted, the
words defined with headers .

• see wordname decompiles wordname.

• device-end undoes the effects of the cd or find-device command
putting the system back into the normal Forth Monitor environment.

• pwd displays the device pathname of the active package.

Device Node Browsing Under OpenBoot 1

For version 1, only device node properties are included in device nodes and
there are no commands built in the Forth Monitor to view them. Here is some
Forth code which may be loaded into a version 1 system to view device nodes
and their properties. It defines the command,.dev , with the following usage:

\ Forth program to display device node properties
3 /l* constant /prop
: printable? (char -- flag) bl h# 7e between ;
: .cstring (adr --) begin dup c@ dup while emit 1+ repeat 2drop ;
: xtype (adr len --)
 bounds ?do i c@ dup printable? if emit else drop then loop
;
: xdump (adr len --) bounds ?do i unaligned-@ .h /l +loop ;
: to-column (column# --) #out @ - 1 max spaces ;
: .props (prop-adr --)
 begin dup l@ while
 dup l@ .cstring
 dup la1+ l@ over 2 la+ l@ swap
 d# 16 to-column 2dup xtype
 d# 32 to-column xdump cr
 /prop +
 repeat drop
;
: .dev (adr -- [next-adr’] [child-adr])
 .” Node at: “ dup .h cr
 dup 2 la+ l@ ?dup if .props then
 dup >r l@ ?dup if .” Next: “ dup .h then
 r> la1+ l@ ?dup if .” Child: “ dup .h then cr
;
ok root-info .dev

Producing FCode 29

3

Using the Forth Monitor to Test a Device Node Driver
The Forth Monitor provides the capability to test the device node driver
methods of an FCode program by allowing the user to execute individual
methods from the Forth Monitor prompt.

OpenBoot version 2 has much more robust support for device node methods
than version 1. In version 2, there are basically two ways to invoke device node
methods. They are described below. For version 1 considerations see the third
part of this section.

Device Node Methods Under OpenBoot 2

Using select-dev

select-dev initializes an execution environment for the methods of the input
device node methods. It allows the user to subsequently execute the methods
directly by name.

For example, on a SPARCstation2 execute this command as follows:

select-dev performs the following:

• It effectively calls "cd /sbus/ACME,widget” to make the named device
the active package. This makes all the device methods “visible” to the Forth
Monitor.

• Establishes a chained set of package instances for each node in the path. In
particular, this makes an instance of all data items of the device node
available to its methods.

• Opens all device nodes in the path by calling the open method of each.
select-dev assumes open (and close) methods in each node in the path
and so the device node under test must have one.

(displays root node)
ok .dev
(displays next node)
ok .dev

ok “ /sbus/ACME,widget” select-dev

30 Writing FCode 2.x Programs—November 1995

3

Once these steps are performed the current device node methods may be
executed by simply typing their name at the prompt. For example:

 As is generally true of the Forth language, if execution of the method exposes
an error in the code, the error may be isolated by executing the component
words of the method step-by-step. Use see to decompile the method. And
then type the component words individually until the error is evident. For
example:

This process may be performed recursively by decompiling the component
words and then individually executing their component words. This is much
easier if most of the words were defined with the headers directive. Use
showstack to enable automatic printing of the Forth stack after the execution
of each step to ensure correct stack behavior.

Device nodes may also be modified “on-the-fly” by any of the following:

• Entering new methods definitions. These methods are compiled into the
device node like the methods in the FCode program that created the node.

• Redefining a method to include some function neglected in the first
definition. (Only subsequent uses of the method are affected.) For example:

ok clear-widget-register

ok fetch-widget-register .

0

ok

ok see clear-widget-register

: clear-widget-register

 enable-register-write

 0 widget-register rl!

 disable-register-write

;

ok enable-register-write

ok 0 widget-register rl!

ok disable-register-write

ok : open open initialize-widget-register-2 ;

Producing FCode 31

3

• Use patch to edit word definitions. See the OpenBoot Command Reference for
information on how to use this command.

Of course these modifications only stay in effect until the machine is reset and
once they are working you’ll probably want to include the modifications to the
FCode program source.

unselect-dev reverses the effects of select-dev by calling the close
method of each device in the path of the current active node, destroying the
package instance of each node, and returning to the normal Forth Monitor
environment. Execute unselect-dev as follows:

Using execute-device-method

execute-device-method is used to execute a method directly from the
normal Forth Monitor environment. That is, it is not necessary to manually
make the device node the current instance before executing the method. For
example:

execute-device-method returns true if it successfully executes the
method; false , if not.

execute-device-method performs the following steps before invoking the
method:

• Temporarily sets the named device node to be the active package.

• Temporarily establishes a chained set of package instances for each node in
the path. In particular, this makes an instance of all data items of the device
node available to its methods.

• Temporarily opens all device nodes in the name device path except the last
device node in the pathname.

Note that the last item in the above list is a significant departure from how
select-dev works. Since the device open method is not executed, any
method invoked in this manner must be able to stand alone - not requiring any
preestablished state which normally is created by open.

ok unselect-dev

ok “ /sbus/ACME,widget” “ test-it” execute-device-method

32 Writing FCode 2.x Programs—November 1995

3

In summary, execute-device-method is provided to allow execution of
device node methods which have been designed to provide their own state
initialization and therefore to execute without previous execution of the open
method. A typical example is a selftest method.

Device Node Methods Under OpenBoot 1

With the exception of framebuffer device drivers, it not recommended to make
use of device node methods in version 1. Since booting from plug-in boards is
not supported in version 1 the only beneficial methods would be for device
diagnostics.

Some reasons to avoid device methods in version 1 are:

1. There are several FCode words not supported in version 1. Therefore
methods designed to run on version 2 and version 1 must use the old, less
functional, set of FCodes.

2. Plug-in board device methods are not compiled into the associated device
node. They are compiled into the main Forth vocabulary. This makes it
impossible to provide a standard way for users to invoke diagnostic
methods across different devices. The methods must be named specially and
users must be informed of that name in order to pick them out of the many
OpenBoot Forth words.

3. There is limited dictionary space in many version 1 systems.

Testing FCode in Source Form
The Forth Monitor provides the capability to skip the tokenizer and download
FCode program source directly. This practice is not recommended since there is
not much advantage to this except to save a small amount of time tokenizing
the program. And, in fact, there are some down sides:

• It may cause problems in the long run since generally the Forth Monitor
recognizes a larger number of words that does the FCode evaluator. So the
FCode program developer who tests with FCode source may develop and
test a program only to find that some of the words he used are not FCode
words and will not be accepted by the tokenizer and the FCode evaluator.
This will require the developer to rewrite code.

• To load source you should comment out fcode-version1 and end0 .

Producing FCode 33

3

• Since the download commands accept only one file any fload ed files must
be put in-line.

To load an ASCII Forth source file over serial line A you use the command, dl .
In addition to loading the file over the serial line it compiles the Forth source
while it is loading without requiring a extra command. Therefore the
developer must execute begin-package before downloading. See the
OpenBoot Command Reference for details on the use of dl.

To load a program over a network with dload or from a disk with boot
follow the instructions in the OpenBoot Command Reference. These commands
do not evaluate the Forth source so downloading may be done before begin-
package . dload requires that the source file begin with the two characters,
“\ “ (backslash space).

For OpenBoot version 1, using source code directly may cause problems since
some FCode words do not have name headers and will thus be unrecognized.
A file named reheader.fth , available from the Sun SBus Support Group, may
be downloaded and executed to provide the missing words.

Producing an FCode PROM
The output of the tokenizer program is used to make an actual FCode PROM.
If your PROM burning tools do not accept the format, you may need to
develop a format conversion utility.

Exercising an Installed FCode PROM
You may either let OpenBoot automatically evaluate the FCode program from
the PROM or you may remove the device from the OpenBoot probing as
discussed earlier in “Configuring the Target Machine”.

The same process discussed for testing FCode programs which are loaded to
system memory may be used to test FCode programs already loaded into
PROM on the device.

34 Writing FCode 2.x Programs—November 1995

3

Exercising FCode Under OpenBoot 2

If you take the device out of the probing sequence, a device node may be built
manually as in the following example for a SPARCstation2 with the device
installed in SBus slot 1:

This is essentially the same sequence as outlined for evaluating FCode loaded
into system memory except that the user must map in and map out the FCode
PROM by using the decode-unit and use the map-in and map-out methods
of the parent device node. For more information about these methods, see
Chapter 8, “Hierarchical Devices”.

You may browse the device node and exercise the device methods in the same
way as described earlier. You may also define new methods and patch existing
ones. Of course these modifications will only remain until a system reset.

Exercising FCode Under OpenBoot 1

 If you take the device out of the probing sequence, a device node may be built
manually as in the following example with the device installed in SBus slot 2:

ok 10000 constant rom-size

ok “ /sbus” select-dev

ok “ 1,0” decode-unit (offset space)

ok rom-size map-in (fcode-vadr)

ok new-device (fcode-vadr)

ok “ “ “ 1,0” set-args (fcode-vadr)

ok dup 1 byte-load (fcode-vadr)

ok finish-device (fcode-vadr)

ok rom-size map-out

ok unselect-dev

ok 2 probe-slot

Producing FCode 35

3

In this case, probe-slot is equivalent to:

ok 400.0000 is my-address

ok new-slot-node

ok my-address 10000 map-sbus (fcode-vadr)

ok dup 1 byte-load (fcode-vadr)

ok 10000 free-virtual

36 Writing FCode 2.x Programs—November 1995

3

37

A package is a group of functions, or methods, that implements a specific
interface. A package implements a library of functions that may then be called,
as needed, by FCode programs.

For many devices, this is not particularly useful, but it will be useful for FCode
programs that:

• implement bootable devices

• call functions or properties from other packages, or

• implement functions intended to be called from other packages

A plug-in package is a package that is not permanently resident in the main
OpenBoot PROM. Plug-in packages are written in FCode. Since FCode is
represented with a machine-independent binary format, it lets the same plug-
in packages be used on machines with different CPU instruction sets.

A package’s references to OpenBoot PROM system functions are resolved and
the functions defined by the package are made available to other parts of the
OpenBoot during the linking process. This is performed at run-time, when
OpenBoot interprets (probes) the package. Thus, plug-in packages do not need
to be pre-linked with a particular OpenBoot implementation.

OpenBoot only needs to know the beginning address of the package in order to
probe it. Once probed, the package becomes a working part of OpenBoot, until
the system is reset or turned off. A package exports its interface to OpenBoot,
and to other packages, as a vocabulary of Forth words.

Packages 4

38 Writing FCode 2.x Programs—November 1995

4

Many packages implement a specific interface; a standard set of functions.
Different packages may implement the same interface. For example, there may
be two display device driver packages, each implementing the standard
display device interface, but for two different display devices.

There may also be multiple instances of a single package. For example, a plug-
in disk driver may have as many instances as there are disks of that type.

Package Definitions, Package Instances, and Device Nodes
A package consists of

• methods (software procedures)
• properties (externally-visible information describing the package), and
• data (information used internally by the package).

Package data consists of uninitialized data, corresponding to Forth buffers, and
initialized data, corresponding to Forth variables, values and deferred words.
The initial values of the initialized data are stored within the package.

Each package is associated with exactly one device node, so you can use the
terms package and device node interchangeably.

The active package is the package whose methods are currently visible.

An instance is a set of values for a package’s data. Before a package’s methods
may be executed, an instance must be created. You create an instance from a
package by allocating memory for the package’s data and setting the contents
of that memory to the initial values stored in the package. Multiple instances
may be created from the same package, and may exist simultaneously.

The current instance is whatever instance is in use at a given time. When a
package method accesses a data item, it refers to the copy of that data item that
is associated with the current instance.

Plug-in Device Drivers
Plug-in device drivers are plug-in packages implementing simple device
drivers. The interfaces to these drivers are designed to provide a primitive I/O
capability.

Packages 39

4

Plug-in drivers are used for such functions as booting the operating system
from that device, or displaying text on the device before the operating system
has activated its own drivers. Plug-in drivers are made available to other parts
of the OpenBoot PROM during the probing phase of the OpenBoot PROM
start-up sequence.

Plug-in drivers must be programmed to handle portability problems, such as
hardware alignment restrictions and byte ordering of external devices. With
care, you can write a driver so that it is portable to a variety of systems in
which the device could conceivably operate.

Plug-in drivers are intended to be stored in ROM located on the device itself,
so that the act of installing the device automatically makes its plug-in driver
available to the OpenBoot PROM.

For devices with no provision for such a plug-in driver ROM, the plug-in
driver could be located elsewhere, perhaps in ROM located on a different
device or in an otherwise unused portion of the main OpenBoot PROM.

Package Methods

Required Methods

A package that is intended for use by OpenBoot (bootable, for example) must
always implement the two following methods:

open (-- ok?)

Prepare the package for subsequent use. open typically allocates resources,
maps, initializes devices, and performs a brief sanity check (no check at all may
be acceptable). true is returned if successful, false if not. When open is
called, the parent instance chain has already been opened, so this method may
call its parent’s methods.

close (--)

Restore the package to its “not in use” state. close typically turns off devices,
unmaps, and deallocates resources. close is executed before its parent is
closed, so the parent’s methods are available to close . It is an error to close a
package which is not open.

40 Writing FCode 2.x Programs—November 1995

4

Recommended Methods

The following methods are highly recommended. If possible, they should be
present even if they are only stubs.

reset --)

Put the package into a “quiet” state. reset is primarily for packages that do
not automatically assume a quiet state after a hardware reset, such as devices
that turn on with interrupt requests asserted.

selftest (-- error#)

Test the package. selftest is invoked by the OpenBoot test word. It returns
0 if no error found or a package-specific error number if a failure is noticed.

test does not open the package before executing selftest , so selftest is
responsible for establishing any state necessary to perform its function prior to
starting the tests, and for releasing any resources allocated after completing the
tests. There should be no user interaction with selftest , as the word may be
called from a program with no user present.

If the device was already open when selftest is called, a new instance will
still be created and destroyed. A well-written selftest should handle this
possibility correctly, if appropriate.

If the device is already open, but it is not possible to perform a complete
selftest without destroying the state of the device, the integrity of the open
device should take precedence, and the selftest process should test only those
aspects of the device that can be tested without destroying device state. The
inability to fully test the device should not be reported as an error result; an
error result should occur only if selftest actually finds a device fault.

The "device already open" case happens most commonly for display devices,
which are often used as the console output device, and thus remain open for
long periods of time. When testing a display device that is already open, it is
not necessary to preserve text that may already be on the screen, but the device
state should be preserved to the extent that further text output can occur and
be visible after selftest exits. Any error messages that are displayed by the
selftest method will be sent to the console output device, so when testing an

Packages 41

4

already-open display device, such error messages should be avoided during
times when selftest has the device in a state where it is unable to display
text.

selftest is not executed within an open/close pair. When selftest
executes, a new instance is created (and destroyed). It will have its own set of
variables, values, and so forth. These quantities are not normally shared with
an instance opened with the normal open routine for the package.

Note – selftest should be written to do its own mapping and unmapping.

Package Data Definitions
The usual Forth words can be used to create and use package data areas:

The data areas defined above are shared among all open instances of the
package. If a value is changed, for instance, the new value will persist until it
is changed again, independent of the creation and destruction of package
instances.

All open instances of a package can access and change the value, which
changes it for all other instances.

Usually a package does not share values among open instances. Consequently,
you will usually want to use the following constructions to define package
data areas local to a given package instance:

variable bar
5 value grinch
defer stub
create ival x , y , z ,
7 buffer: foo
ival foo 7 move

instance variable bar
5 instance value grinch
instance defer stub
7 instance buffer: foo

42 Writing FCode 2.x Programs—November 1995

4

You should use the instance approach whenever possible. Using instance
defines data areas that are re-initialized every time a package instance is
created (usually by opening the package), so each instance gets its own copy of
the data area. For example, changes to bar in one instance will not affect the
contents of bar in another instance. (Note that create operates across all the
instances, and cannot be made instance-specific.)

The total amount of data space consumed by that package is remembered as
part of the package definition when finish-device executes to finish the
package definition. Also, the contents of all the variable s, value s, and
defer s at the time finish-device executes are also stored as part of the
package definition.

An instance of the package is created when that package is later opened. Data
space is allocated for that instance (the amount of which was remembered in
the package definition). The portion of that data space corresponding to the
initialized variable s, value s, and defer s is initialized from the values
stored in the package definition. Data space associated with buffer: ’s is not
initialized.

You can add new methods and new properties to a package definition at any
time, even after finish-device has been executed for that package. To do so,
select the package and proceed to create definitions or properties.

However, it is not possible to add new data items to a package definition after
finish-device has been executed for that package. finish-device sets
the size of the data space for that package, and from then on it is fixed.

Accessing Other Packages
A particular package can often use the support of other, previously defined
packages. There are two types of packages whose methods can be used
directly:

• the parent of the package being defined
• standard support packages in the /packages node of the device tree

Packages 43

4

Phandles and Ihandles
A package definition is identified by its phandle . find-package returns the
phandle of a package definition in the /packages node. The phandle is then
used to open that support package. For example:

returns either false (not found), or phandle true .

Opening a support package with open-package returns an ihandle . This
ihandle is used primarily to call the methods of the support package, and to
close the support package when it is no longer needed.

An instance argument string must be supplied when opening any package (it
may be null). The instance argument string can then be accessed from within
the opened package with the my-args FCode (see below for details). For
example (assume that phandle has already been found):

If the package cannot be opened, an ihandle of 0 is returned.

The following FCodes are used to find and open packages (within the
/packages node):

“ deblocker" find-package

" 5,3,0" phandle open-package (ihandle)

Table 4-1 Package Access FCodes

Name Stack Comment Description

find-package (name-adr name-len -- false | phandle true) Find the package specified by the string
name-adr name-len within /packages .
Returns the phandle of the package, if
found.

open-package (arg-adr arg-len phandle -- ihandle | 0) Open an instance of the package phandle,
return the ihandle of the opened package,
or 0 if unsuccessful. The package is
opened with an instance argument string
specified by arg-adr arg-len.

$open-package (arg-adr arg-len name-adr name-len -- ihandle | 0) Shortcut word to find and open a package
within the /packages node in one
operation.

44 Writing FCode 2.x Programs—November 1995

4

An example of using $open-package follows:

Don’t confuse phandle with ihandle. Here’s how to use them:

1. Find the phandle of a package.

2. Use this phandle to open an instance of the package; this will give an
ihandle.

3. Use the ihandle to access the methods of the package.

4. When done accessing the methods of the package, use the ihandle to close
the instance of the package with close-package .

Use ihandle>phandle to open another instance of the current package or its
parent. my-self and my-parent return ihandles, which can be converted
into phandles with ihandle>phandle .

To open another instance of the current package, use:

To open another instance of the parent package, use:

" 5,3,0" " deblocker"
$open-package (ihandle | 0)

Table 4-2 Manipulating phandles and ihandles

Name Stack Comment Description

my-self (-- ihandle) Return the instance handle of the currently-executing package
instance.

my-parent (-- ihandle) Return the instance handle of the parent of the currently-executing
package instance.

ihandle>phandle (ihandle -- phandle) Convert an instance handle to a package handle.

close-package (ihandle --) Close an instance of a package.

my-self ihandle>phandle open-package

my-parent ihandle>phandle open-package

Packages 45

4

Instance Arguments and Parameters

An instance argument (my-args) is a string that is passed to a package when it
is opened. The string may contain parameters of any sort, based on the needs
of the package, or can simply be a null-string if no parameters are needed. A
null string is generated either with " " or 0 0 .

The instance argument passed may be accessed from inside the package with
the my-args FCode.

Note – A package is not required to inspect the passed arguments.

If the argument string contains several parameters separated by a common
character, you can pick off the pieces from within the package with left-
parse-string . You can use any character as the separator; a comma is
commonly used for this.

Note – Avoid using blanks or the / character, since these will confuse the
parsing of any pathname.

A new value for my-args is passed every time a package is opened. This can
happen under a number of circumstances:

1. The my-args string will be null when FCode on an SBus card is interpreted
automatically by the OpenBoot system at power-on.

2. The my-args string is determined by a parameter to the begin-package
tool used to set up the device tree when FCode is downloaded and
interpreted interactively.

3. The my-args string can be set with set-args before a particular slot is
probed, if SBus probing is being controlled from nvramrc .

The above three instances happen only once, when the package FCode is
interpreted for the first time. If you want to preserve the initial value for my-
args , the FCode program should copy it into a local buffer to preserve the
information.

Whenever a package is reopened, a new value for my-args is supplied at that
time. The method for supplying this new value depends on the method used to
open the package, as described below.

46 Writing FCode 2.x Programs—November 1995

4

4. The instance argument (my-args) is supplied as a string parameter to the
commands open-package or $open-package .

5. Monitor commands, such as select-dev , test , and execute-device-
method , supply the entire pathname to the device being opened. This
approach lets an instance argument be supplied as part of the pathname
itself. For example, to open the SBus device “SUNW,bwtwo” with the
argument string “5,3,0”, enter:

A more complicated (and fictitious) example is the following:

Here the string “test” is passed to the SUNW,fremly package as it is opened,
the string “print” is passed to the grumpin package as it is opened, and the
string “1034,5” is passed to the SUNW,fht package as it is opened.

Package Addresses

Another piece of information available to a package is its address relative to its
parent package. Again, there are two main ways to pass this address to the
package:

• Part of the pathname of the package
• A string parameter given to the probe words

As an example of the first method, suppose the following package is being
opened:

Then the address of the /sd package relative to the /esp package is 3,0 . Note
that this address must match the initial value of the “reg” property (if
present) of the /sd package.

ok " /sbus/SUNW,bwtwo:5,3,0" select-dev
ok

ok " /sbus/SUNW,fremly:test/grumpin@7,32:print/SUNW,fht:1034,5"
ok select-dev
ok

ok "/sbus/esp/sd@3,0:b" select-dev

Packages 47

4

The package can find its relative address with my-unit , which returns the
address as a pair of numbers. The first number (high) is the number before the
comma in the example above, and the second number (low) is the number after
the comma. Note that these are numbers, not strings.

As an example of the second method, suppose a test version of an FCode
package is being interpreted:

Here the my-args parameters for the new FCode are null, the initial address is
3,0 and it will be placed under the /sbus node.

The initial address can be obtained through my-address and my-space .
Typically, you use my-space and my-address (plus an offset) to create the
package’s "reg" property, and also to map in needed regions of the device.

Executing Methods
A method is identified by its execution token, which is returned by find-
method for other packages. The token is actually the Forth acf for the word.
For words in the package being defined, the Forth word [’] returns an
execution token.

The execution token is used to execute a method in another package, and also
to schedule a method for automatic, repeated execution by the system clock
interrupt. See the alarm FCode.

Accessing the methods of a package can be done in one of the following ways
(there are other ways as well, but these cover the common cases), with the last
approach generally the best:

Because finding is inherently a slow process, if a method is to be used
repeatedly, the last technique is recommended. The idea is to save the ihandle
and phandle of the package in question, together with the execution token of
the method needed, so that the overhead of finding them gets paid only one
time, instead of every time the method is executed.

ok 0 0 " 3,0" " /sbus" begin-package
ok

$open-package $call-method
find-package open-package $call-method
find-package open-package find-method call-package

48 Writing FCode 2.x Programs—November 1995

4

For example, the following method is simple, but if slow called repeatedly:

 A more complex, but if called repeatedly, much faster construct:

Because device access time often dominates I/O operations, the benefit of this
extra code probably won’t be noticed. It is only justified if the particular
method will be called often.

A shortcut word to call a method in the parent package is $call-parent .
This is equivalent to using my-parent $call-method .

: add-offset (x.byte# -- x.byte#’)
 my-args " disk-label" $open-package (ihandle)
 " offset" rot (name-adr name-len ihandle)
 $call-method
;

0 value label-ihandle \ place to save the other package’s ihandle
0 value offset-method \ place to save found method’s acf
: init (--)
 my-args " disk-label" $open-package (ihandle) is label-ihandle
 " offset" label-ihandle ihandle>phandle (name-adr name-len phandle) find-method if
 (acf) is offset-method
 else ." Error: can’t find method"
 then
;
: add-offset (d.byte# -- d.byte#’)
 offset-method label-ihandle call-package
;

Table 4-3 Method-Access Words

Name Stack Comment Description

find-method (adr len phandle -- false | acf
true)

Find the method named adr len within the package phandle.
Returns false if not found.

call-package ([...] acf ihandle -- [...]) Execute the method acf within the instance ihandle.

$call-method ([...] adr len ihandle -- [...]) Shortcut word to find and execute the method adr len within
the package instance ihandle.

$call-parent ([...] adr len -- [...]) Execute the method adr len within the parent’s package
instance. Exactly equivalent to calling my-parent $call-
method .

Packages 49

4

Debugging Packages

Package Mappings

Mappings set up by a package persist across instances (unless explicitly
unmapped). Passing the mapped addresses between instances is not usually
worth the convolutions involved. It is usually better for each new instance to
do its own mappings, being sure to unmap resources as they are no longer
needed.

If you save virtual addresses into a value , be sure to use the instance
declarations (see “Package Data Definitions” on page 41).

nvramrc

Machines that support packages will generally also support the nvramrc
facility. nvramrc is a special area in the NVRAM that can contain Monitor
commands to be executed by OpenBoot as the machine powers on. These
commands can be used to specify behavior during start up or to define changes
for later execution.

For example: assume a card in SBus slot#2 (named XYZ,me) needs custom
attributes set by the user. nvramrc contents would include:

After editing nvramrc , turn on the nvram parameter use-nvramrc? and
reset the machine to activate the contents of nvramrc . See OpenBoot Command
Reference for more about editing nvramrc contents.

Modifying Package Properties

To modify the properties of a package, first probe the package to get it into
memory. Normally, probing is done automatically after the nvramrc
commands are executed.

probe-all
cd /sbus/XYZ,me
" type5" xdrstring " xyzmode" attribute
device-end
install-console
banner

50 Writing FCode 2.x Programs—November 1995

4

See Chapter 5, “Properties“, for more information about properties.

Standard Support Packages
The /packages node of the device tree is special. It is a hierarchical node, but
instead of describing a physical bus, /packages serves as a parent node for
some software package nodes. The children of /packages are general-
purpose software packages not attached to any particular hardware device.
The “physical address space” defined by /packages is a trivial one: all
addresses are the same — 0,0. Its children are distinguished by name alone.

The children of /packages are used by other packages to implement
commonly used functions. They may be opened with the FCodes open-
package or $open-package , and closed with close-package . There are
three support packages that are included as standard children of /packages .

Sun Disk-Label Support Package

Disk (block) devices are random-access, block-oriented storage devices with
fixed-length blocks. Disks may be subdivided into several logical “partitions”,
as defined by a disk label—a special disk block, usually the first one, containing
information about the disk. The disk driver is responsible for appropriately
interpreting a disk label. The driver may use the standard support package
/disk-label if it does not implement a specialized label.

/disk-label interprets a standard Sun disk label, reading any “partitioning”
information contained in it. It includes a first stage disk boot protocol for the
standard label. load is the most important method defined by this package.

Packages 51

4

This package uses the read and seek methods of its parent (in practice, the
package which opens this one to use the support routines). /disk-label
defines the following methods:

TFTP Booting Support Package

The /obp-tftp package implements the Internet Trivial File Transfer Protocol
(TFTP) for use in network booting. It is typically used by a network device
driver for its first stage network boot protocol. Again, load is the most
important method defined by this package.

Table 4-4 Sun Disk Label Package Methods

Name Stack diagram Description

open (-- flag) Reads and verifies the disk label accessed by the read and seek methods
of its parent instance. Selects a disk partition based upon the text string
returned by my-args . For the standard Sun disk label format, the argument
is interpreted as follows:

Argument Partition

<none> 0

a or A 0

b or B 1

... ...

g or G 7

Returns -1 if the operation succeeds. As a special case, if the argument is the
string “nolabel ”, open returns -1 (success) without attempting to read or
verify the label.

close (--) Frees all resources that were allocated by open .

load (adr -- size) Reads a stand-alone program from the “standard” disk boot block location
for the partition specified when the package was opened. Places the
program at memory address adr , returning its length size . For the
standard Sun disk format, the stand-alone program is 7.5K bytes beginning
512 bytes from the start of the partition.

offset (x.rel-- x.abs) Returns the 64-bit absolute byte offset x.abs corresponding to the 64-bit
partition-relative byte offset x.rel . In other words, adds the byte location
of the beginning of the selected partition to the number on the stack.

52 Writing FCode 2.x Programs—November 1995

4

This package uses the read and write methods of its parent, and defines the
following methods:

Deblocker Support Package

The /deblocker package makes it easy to implement byte-oriented device
methods, using the block-oriented or record-oriented methods defined by
devices such as disks or tapes. It provides a layer of buffering between the
high-level byte-oriented interface and the low-level block-oriented interface.
/deblocker uses the max-transfer , block-size , read-blocks and
write-blocks methods of its parent, and defines the following methods:

Table 4-5 TFTP Package Methods

Name Stack diagram Description

open (-- flag) Prepares the package for subsequent use, returning -1 if the operation
succeeds and 0 otherwise.

close (--) Frees all resources that were allocated by open .

load (adr -- size) Reads the default stand-alone program from the default TFTP server,
placing the program at memory address adr and returning its length size.
For the standard Sun TFTP booting protocol, RARP (Reverse Address
Resolution Protocol) is used to acquire the IP address corresponding to the
system’s MAC address (equivalent to its Ethernet address). From the IP
address, the default file name is constructed, of the form <Hex-IP-
Address>.<architecture> (for example, C0092E49.SUN4C). Then obp-tftp
tries to TFTP read that file, first trying the server that responded to the
RARP request, and if that fails, then broadcasting the TFTP read request.

Table 4-6 Deblocker Package Methods

Name Stack diagram Description

open (-- flag) Prepares the package for subsequent use, allocating the buffers used by the
deblocking process based upon the values returned by the parent instance’s max-
transfer and block-size methods. Returns -1 if the operation succeeds, 0
otherwise.

close (--) Frees all resources that were allocated by open .

Packages 53

4

read (adr len -- actual) Reads at most len bytes from the device into the memory buffer beginning at adr .
Returns actual , the number of bytes actually read, or 0 if the read operation
failed. Uses the parent’s read-blocks method as necessary to satisfy the request,
buffering any unused bytes for the next request.

write (adr len -- actual) Writes at most len bytes from the device into the memory buffer beginning at adr .
Returns actual , the number of bytes actually read, or 0 if the write operation
failed. Uses the parent’s write-blocks method as necessary to satisfy the
request, buffering any unused bytes for the next request.

seek (x.position -- flag) Sets the device position at which the next read or write will take place. The
position is specified by the 64-bit number x.position . Returns 0 if the operation
succeeds or -1 if it fails.

Table 4-6 Deblocker Package Methods

Name Stack diagram Description

54 Writing FCode 2.x Programs—November 1995

4

55

Properties 5

Properties are created by FCode PROMs. The CPU’s boot PROM understands
certain property names that tell it things such as the type of the device (disk,
tape, network, display, and so on). The CPU boot PROM may use this
information to determine how to use the device (if at all) during the boot
process.

SunOS understands other property names that give information used for
configuring the operating system automatically. These properties include the
driver name, the addresses and sizes of the device’s registers, and interrupt
levels and interrupt vectors used by the device.

Other properties may be used by individual SunOS device drivers. The names
of such properties and the interpretation of their values is subject to agreement
between the writers of the FCode PROM and the SunOS driver, but may
otherwise be arbitrarily chosen. For example, a display device might declare
width, height, and depth properties to allow a single SunOS driver to
automatically configure itself for one of several similar but different devices.

A package’s properties identify the characteristics of the package and its
associated physical device, if any. You can create a property either with the
attribute FCode, or with the name, reg , intr , model , and device-type
FCodes, described below.

56 Writing FCode 2.x Programs—November 1995

5

For example, a framebuffer package might export its register addresses,
interrupt levels, and framebuffer size. Every package has an associated
property list, which is arbitrarily extensible. Use the Forth Monitor command
.attributes to display the names and values of the current node’s
properties.

Each property has a property name and a property value.

• The property name identifies the particular property. This name is composed
of a string of printable characters. Uppercase characters should not be used
in the name string since some systems may convert them to lower case.

• The property value specifies the contents, or value, of a particular property.
The value is an array of bytes that may be used to encode integer numbers,
text strings, or other forms of information.

Many derived data types can be encoded into the primitive “array of bytes”
data type, for example:

• integer. Encoded as 4 bytes, big endian
• text string. Encoded as a null-terminated sequence of bytes
• physical address range. Encoded as 3 integers: space, offset, size
• structure. The concatenation of other types, with no padding or internal

alignment
• array. The concatenation of n examples of some type

If an FCode program tries to create the same property (with the same name)
more than once for a given package, the new property supercedes the old one.

You can add new properties during the lifetime of a product. For backward
compatibility, an FCode or device driver program that needs the value of a
particular property should consider the possibility that the property does not
exist, in which case the program should supply its own default value.

Standard FCode Properties
A number of FCode properties have been defined and used by some or all
current implementations of OpenBoot. These are listed below.

A package should never create any property using any of the following names,
unless the defined meanings and structures are used. Doing otherwise can
result in system errors occurring.

Properties 57

5

Standard FCode Properties For Cards (General)
• address
• device_type
• interrupts
• intr
• model
• name
• params
• parity-generated
• reg
• slave-burst-sizes
• status

Device-type Specific Properties For SBus Cards
• address-bits , (network)
• character-set , (display)
• down-burst-size s, (sbus)
• local-mac-address , (network)
• mac-address , (network)
• max-frame-size , (network)

General Properties For Parent Nodes
• clock-frequency
• ranges
• scsi-initiator-id

Properties For SBus Parent Nodes
• burst-sizes
• bus-parity-generated
• one-pending-retry
• slave-only
• slot-address-bits
• up-burst-sizes

58 Writing FCode 2.x Programs—November 1995

5

Standard Properties

“address”

This is an optional property that declares currently-mapped device virtual
addresses. It is generally used to declare large regions of existing mappings, in
order to enable the SunOS device driver to reuse those mappings to conserve
system resources.

The contents of the property are an arbitrary number of virtual addresses. The
correspondence between declared addresses and the set of mappable regions of
a particular device is device-dependent.

See also: free-virtual, attribute

“address-bits”

This optional property, when declared in “network ” devices, indicates the
number of address bits needed to address this device on its network. Used as:

See also: attribute and Chapter 9, “Network Devices”.

-1 value my-buffers
-1 value my-dma-adr
: map-me (--)
 my-address 10.0000 + my-space 1.0000 “ map-in” $call-parent (virt1)
 is my-buffers
 2000 “ dma-alloc” $call-parent (virt2) is my-dma-adr
 my-buffers xdrint my-dma-adr xdrint xdr+ “ address” attribute
;
: unmap-me (--)
 my-dma-adr 2000 “ dma-free” $call-parent
 my-buffers 1.0000 “ map-out” $call-parent
 “ address” delete-attribute
;

d# 48 xdrint “ address-bits” attribute

Properties 59

5

“burst-sizes”

This required property is located in every SBus controller node in the system.
Its value is a bit mask of burst transfer sizes supported by this SBus
implementation. If bit n is 1, then transfer size 2n bytes is supported. For
instance, 9 means that 8-byte and 1-byte transfers are supported.

Support for the extended (64-bit) SBus protocol is also indicated by this
property, using the next-higher 16 bits of the value.

Thus, an SBus controller which supports transfer sizes of 1,2,4,8,16,32,64 bytes
would have a “burst-sizes ” value of 0x007f. An SBus controller which also
supports extended (64-bit) transfers of 8,16,32,64,128 bytes would have a
“burst-sizes ” value of 0x00f8007f.

Notice that particular destination devices may be more restrictive in the
allowed transfer sizes. This property only describes the transfer sizes allowed
by the SBus controller itself.

It is acceptable for an SBus controller to omit this property, as long as some
parent node is assured of having the correct value. A plug-in device should use
get-inherited-attribute to query this property.

Some early systems only support 16-byte bursts (as well as 1,2,4 byte
transfers), but do not declare the “burst-sizes ” property at all. Thus, a
missing “burst-sizes ” should be assumed to be equivalent to a “burst-
sizes ” value of 0x0017. Used as:

See also: slave-burst-sizes, attribute , Chapter 8, “Hierarchical
Devices”.

“bus-parity-
generated”

This optional property, when present on an SBus controller node, indicates that
this SBus is generating parity on SBus transactions. A null value is used.

See also Chapter 8, “Hierarchical Devices”.

h# 7f xdrint “ burst-sizes” attribute

60 Writing FCode 2.x Programs—November 1995

5

“character-set”

This optional property, when declared in “display ” or “serial ” devices,
indicates the recognized character set for this device. The contents are a text
string.

A typical value is “ISO8859-1 ”. 8859-1 is the number of the ISO specification
for that particular character set, which essentially covers the full range of
western European languages. To get a list of possible values, consult the X
registry. There is an address for it in the X11R5 documentation.

Used as:

See also: attribute , Chapter 7, “Display Devices” and Chapter 10, “Serial
Devices”.

“clock-frequency”

This property may be queried (using get-inherited-attribute) by a plug-
in device, to determine the clock frequency for this bus (if appropriate). The
value is returned in Hertz (cycles per second).

Any bus nexus node implementing a bus with a basic clock frequency (such as
SBus) must either publish this property, or ensure that the correct value will be
returned if a child queries for this value using get-inherited-attribute .
For example:

See also: Chapter 8, “Hierarchical Devices”.

“device_type”

This optional property declares the type of this plug-in device. The type need
not be declared, unless this device is intended to be usable for booting. If this
property is declared, using one of the following key values listed next, then the

“ ISO8859-1” xdrstring “ character-set” attribute

d# 2.000.000 xdrint
“ clock-frequency” attribute

Properties 61

5

FCode program must follow the required conventions for that particular type
of device, by implementing a specified set of properties and procedures
(methods). Used as:

Defined key values for this property are:

See also: device-type , attribute

“down-burst-sizes”

This optional property, when declared in an SBus slave acting as a bus bridge
(such as an “sbus ” device), denotes transfer sizes allowed to the subordinate
bus. The value is encoded similarly to “burst-sizes ”.

See also Chapter 8, “Hierarchical Devices”.

“interrupts”

This optional property declares the interrupt level(s) for this plug-in device.
The contents are one or more integers. Note that the bus-level interrupt (not
the CPU-level interrupt) is specified.

“ display” xdrstring “ device_type” attribute

Table 5-1 Standard Device Types

Device Type Device Characteristics

display Framebuffer or other similar display device, usable for message display during booting. See
Chapter 7, “Display Devices” for the requirements of this type of device.

network Packet-oriented network device, such as Ethernet, usable as a boot file source. See Chapter 9,
“Network Devices” for the requirements of this type of device.

block Random-access, block-oriented device, such as a disk drive, usable as a boot file source. See
Chapter 6, “Block and Byte Devices” for the requirements of this type of device.

byte Random-access, byte-oriented device, such as a tape drive, usable as a boot file source. See
Chapter 6, “Block and Byte Devices” for the requirements of this type of device.

serial Byte-oriented device, such as a serial port, usable for console input and/or console output. See
Chapter 10, “Serial Devices” for the requirements of this type of device.

sbus SBus controller node, which lets you attach plug-in SBus devices. Some SBus controller nodes set
their “device_type ” to “hierarchical ” and set their “name” to “sbus”. See Chapter 8,
“Hierarchical Devices” for the requirements of this type of device.

62 Writing FCode 2.x Programs—November 1995

5

For SBus devices, SBus interrupt levels 1-7 are allowed. The correct choice for
your interrupt level will depend on your latency requirements. Typical usage
is: video - SBus level 5, Ethernet - SBus level 4, SCSI and DMA - SBus level 3.
SBus levels 6 and 7 should only be used with great care, otherwise significant
system performance degradation may occur.

Because of previous usage of the “intr ” property instead of the
“interrupts ” property in earlier systems, we recommend that both “intr ”
and “interrupts ” be declared in FCode for SBus cards. However, cards
which only declare “intr ” should continue to work, as current systems
automatically generate the “interrupts ” property for you as required.

To declare a single interrupt (level 5), used as:

To declare two interrupts (levels 3 and 5), used as:

See also: “intr” , intr , attribute

“intr”

This property was used in early systems, but has now been superceded by the
“interrupts ” property.

Creation of this property automatically creates an “interrupts ” property in
most systems, except in the case where an “interrupts ” property has already
been created by the FCode for this device.

See also: “interrupts” , intr , attribute

5 xdrint “ interrupts” attribute
5 0 intr

5 xdrint 3 xdrint xdr+ “ interrupts” attribute
3 sbus-intr>cpu xdrint \ Interrupt#1
0 xdrint xdr+ \ Null vector#1
5 sbus-intr>cpu xdrint xdr+ \ Interrupt#2
0 xdrint xdr+ \ Null vector#2
” intr” attribute

Properties 63

5

“local-mac-address”

This optional property, when declared in “network ” devices, indicates the
built-in Media Access Control address for this device (if any). The system may
or may not use this address in order to access this device.

Used as:

See also: mac-address, “mac-address”, attribute, and Chapter 9,
“Network Devices”.

“mac-address”

This property must be declared in “network ” devices, to indicate the Media
Access Control (MAC) address that this device is currently using. This value
may or may not be the same as the “local-mac-address ” property, if any.

Here’s how it all fits together.

1. If a plug-in device has an assigned MAC address from the factory, this
address is published as the value for “local-mac-address ”.

2. The system (based on various factors such as presence or absence of
“local-mac-address ” and/or the value of the NVRAM parameter
“local-mac-address? ”) decides which address it prefers the plug-in
device to use. The value returned by the mac-address FCode is set to this
address.

3. The plug-in device then reports the address which it is actually using, by
publishing the “mac-address ” property.

Following are code examples for three typical situations.

For a well-behaved plug-in “network ” device (which has a factory-unique
MAC address but can use another system-supplied MAC address if desired by
the system), the FCode would appear as:

“ “(08,04,fe,23,46,9e)” xdrbytes “ local-mac-address” attribute

“ “(08,04,fe,23,46,9e)” xdrbytes “ local-mac-address” attribute
mac-address xdrbytes “ mac-address” attribute
(plus code to “assign” the correct mac-address value into registers)

64 Writing FCode 2.x Programs—November 1995

5

For a plug-in “network” device that has a factory-unique MAC address and is
unable to alter its behavior to a different address, the FCode would appear as:

For a plug-in “network ” device which does not have any built-in MAC
address, the FCode would appear as:

See also: mac-address , “local-mac-address” , attribute and Chapter 9,
“Network Devices”.

“max-frame-size”

This optional property, when declared in “network ” devices, indicates the
maximum allowable size of a packet (in bytes). Used as:

See also: attribute and Chapter 9, “Network Devices”.

“model”

This optional property identifies the model name/number for a plug-in card,
for manufacturing and field-service purposes.

The “model ” property is useful to identify the specific piece of hardware (the
plug-in card), as opposed to the “name” property (since several different but
functionally-equivalent cards would have the same “name” property, thus
calling the same device driver). Although the “model ” property is good to
have in general, it generally does not have any other specific purpose.

Used as:

See also: model , attribute

“ “(08,04,fe,23,46,9e)” xdrbytes “ local-mac-address” attribute
“ “(08,04,fe,23,46,9e)” xdrbytes “ mac-address” attribute

mac-address xdrbytes “ mac-address” attribute
(plus code to “assign” the correct mac-address value into registers)

4000 xdrint “ max-frame-size” attribute

“ SUNW,501-1415” xdrstring “ model” attribute

Properties 65

5

“name”

This property is used to match a particular SunOS device driver with the
appropriate plug-in device. All device nodes must publish this property.

The contents are an arbitrary string. Any combination of printable characters is
allowed, except for “@”, “:” or “/”. Embedded spaces are not allowed. The
convention is to use a string of the form SUNW,xxxxxx .

(In place of SUNW, use your company’s over-the-counter stock symbol. If you’re
not a publicly-traded company, pick a name that isn’t being used.) This
technique greatly reduces the chance that the value for your name property
will accidentally collide with a name chosen by someone else.

Used as:

The name command may also be used to create this property.

See also: name, attribute , device-name.

“one-pending-retry”

This optional property, if present in the SBus controller node, indicates a
system restriction on the use of SBus retry cycles. A null value is used.

If this property is present, the SBus controller restricts retries from a particular
slot to use the same address until the retry cycle is completed, as opposed to
being able to interleave retries with different addresses.

Any SBus master capable of interleaving pending retries with accesses to other
addresses, must check for the absence of this property in the parent before
enabling that feature. Used as:

See also: Chapter 8, “Hierarchical Devices”.

“ SUNW,bison-printer” xdrstring “ name” attribute

0 0 “ one-pending-retry” attribute

66 Writing FCode 2.x Programs—November 1995

5

“params”

This optional property contains the information to be passed when the my-
params FCode is executed. This feature is obsolescent and should not be used.

See also: my-params , attribute.

“parity-generated”

This optional property, if present, indicates that this SBus device is currently
generating correct parity on the SBus. This means that whenever this device
presents data (or a virtual address) on the SBus data lines, the Parity signal is
also driven to correct (odd) parity. The value of the property is null.

This does not deal with the methods for enabling or disabling parity checking.
Presence of this property merely provides the necessary information to
determine that parity is being generated, so that any decision as to whether or
not to check parity can be made with adequate information.

 If the device has the capability to turn parity-generation on and off, this
property should be created and deleted accordingly. Used as:

See also: attribute.

“ranges”

The ranges property is a list of child-to-parent physical address
correspondences required for most hierarchical devices.

ranges is a property for bus devices, particularly those buses whose children
can be accessed with CPU load and store operations (as opposed to buses like
SCSI, whose children are accessed with a command protocol).

The ranges property value describes the correspondence between the part of
the physical address space of the bus node’s parent available for use by the bus
node (the parent address space), and the physical address space defined by the
bus node for its children (the child address space).

0 0 “ parity-generated” attribute

Properties 67

5

The ranges property value is a sequence of

specifications.

• child-phys is a starting address in the child physical address space defined by
the bus node

• parent-phys is a starting address in the physical address space of the parent
of the bus node

• size is the length in bytes of the address range.

The specification means that there is a one-to-one correspondence between the
child addresses and the parent addresses within that range. The parent
addresses given are always relative to the parent’s address space.

Each starting address is represented using the physical address representation
as two 32-bit numbers (one for space and one for offset). size is encoded as
an unsigned integer.

The total size of each such specification is five 32-bit numbers (two for each of
the two addresses, plus one for the size). Successive specifications are encoded
sequentially. A space with length 2**(number of bits in a machine word) is
represented with a size of 0.

The specifications should be sorted in ascending order of the child address.
The address ranges thus described need not be contiguous in either the child
space or the parent space. Also, the entire child space must be described in
terms of parent addresses, but not all of the parent address space available to
the bus device need be used for child addresses (the bus device might reserve
some addresses for its own purposes, for instance).

For example, suppose that a 4-slot 25-bit SBus is attached to a machine whose
physical address space consists of a 32-bit “memory” space (space=0) and a 32-
bit “io” space (space=1). The SBus slots appear in “io” space at address
0xf800.0000, 0xfa00.0000, 0xfc00.0000, and 0xfe00.0000. In terms of the SBus’s
parent address space, the SBus device has available for its purposes the offsets
from 0xf800.0000 through 0xffff.ffff in space 1 of its parent.

child-phys parent-phys size

68 Writing FCode 2.x Programs—November 1995

5

The SBus device defines for its children the spaces 0, 1, 2, and 3, all starting at
offset 0 and running for 0x200.0000 bytes. In this case the SBus device uses all
the address space given to it by its parent for the SBus children, and reserves
none of the addresses for itself. The ranges property for the SBus device
would contain the encoded form of the following sequence of numbers:

Here the high components of the child address represent the SBus slot
numbers, and the high component of the parent address represents “io space.”

If ranges exists but its value is of 0 length, the bus’s child address space is
identical to its parent address space.

If the ranges property for a particular bus device node is nonexistent, code
using that device should use an appropriate default interpretation. Some
examples include the following:

• SBus node: Missing ranges means that the version of OpenBoot was
created before the ranges property came into existence. Code should
supply the correct ranges based on the machine type, from the finite set of
machines that existed before ranges came into existence.

• Machine node: The machine node has no parent. Therefore the
correspondence between its child and parent address spaces is meaningless,
and there is no need for ranges .

• SCSI host adapter node: The child address space is not directly addressable,
thus ranges would be meaningless.

The distinction between reg and ranges is as follows:

• reg is supposed to represent the actual device registers in the parent
address space. For a bus adapter, this would be such as
configuration/mode/initialization registers.

• ranges represents the correspondence between a bus adapter’s child and
parent address spaces.

Table 5-2 Child-Parent Address Relationships

Child Address Parent Address Size

Space, Offset Space, Offset

 0, 0 1, f800.0000 200.0000

 1, 0 1, fa0.00000 200.0000

 2, 0 1, fc00.0000 200.0000

 3, 0 1, fe00.0000 200.0000

Properties 69

5

Most packages do not need to be concerned with ranges . These properties are
mainly to communicate with stand-alone programs. One exception could be a
bus extender or adaptor.

See also: Chapter 8, “Hierarchical Devices”.

“reg”

This property declares the location and size of onboard registers for its device.
The FCode program for every plug-in SBus device must declare this property.

The contents are one or more (phys,size) pairs. Each pair specifies an
addressable region of the device. An FCode PROM at location 0 of the device is
generally not declared, except in the case where there are no other regions to
declare.

For example, to declare two register fields at 10.0000-10.00ff and 20.0000-
20.037f, use the following:

In some cases, the reg command may also be used to create this property.

See also: reg , attribute.

“scsi-initiator-id”

This optional property is located in one of the parent nodes of the system. It
may be queried (using get-inherited-attribute) by a plug-in device. Its
value is an integer, 0-15, indicating the address of the main SCSI host adapter
of this system (if any). The value also indicates the suggested address for the
host adapter for any plug-in SCSI controller.

The SCSI controller node for a plug-in SCSI controller may also publish this
property, to indicate the current address of this host adapter. Used as:

See also: attribute.

my-address 10.0000 + my-space xdrphys \ Offset#1
100 xdrint xdr+ \ Merge size#1
my-address 20.0000 + my-space xdrphys xdr+ \ Merge offset#2
380 xdrint xdr+ \ Merge size#2
” reg” attribute

7 xdrint “ scsi-initiator-id” attribute

70 Writing FCode 2.x Programs—November 1995

5

“slave-burst-sizes”

This optional property uses a bitmask to indicate the set of SBus transfer sizes
which this device will accept. It contains a set of integer values. The number of
entries is the same as the number of (phys,size) entries in the “reg ”
property, and each entry in “slave-burst-sizes ” describes the transfer
sizes accepted by the corresponding “reg ” entry. The encoding of each
“slave-burst-sizes ” entry is the same as the encoding for the “burst-
sizes ” property.

This property may be defined for any device which is capable of acting as an
SBus slave. The value is a “hint” to the operating system, or to other devices
which may desire to access this SBus device. Used as:

See also: burst-sizes, reg, attribute

“slave-only”

This optional property, if present in the SBus controller node or other parent
nodes, uses a bitmask to indicate that certain SBus slots support slave-only
access. If bit n is 1, then slot#2^^n is slave-only. For example, a value of 8
indicates that slot#3 is slave-only.

A plug-in device should use get-inherited-attribute to query this
property.

If this property is not found (for example, if the system contains a version 1
boot PROM that was released before this property was defined), then slot#3 is
slave-only.

This affects SPARCstation1 and SPARCstation 1+ only (SPARCstation IPC only
has two slots). Used as:

See also: attribute and Chapter 8, “Hierarchical Devices”.

h# 3f xdrint h# 17 xdrint xdr+ “ slave-burst-sizes” attribute

8 xdrint “ slave-only” attribute

Properties 71

5

“slot-address-bits”

This required property in the SBus controller node specifies the number of
address lines available to each SBus card. Typical values are either 25 or 28. It
is acceptable for an SBus controller to omit this property, as long as some
parent node is assured of having the correct value. A plug-in device should use
get-inherited-attribute to query this property.

If this property is not found (for example, if the system contains a version 1
boot PROM that was released before this property was defined), then a value
of 25 should be assumed. Used as:

See also: attribute.

“status”

This optional property indicates that this device has failed an internal selftest
and is thus unavailable for use.

Absence of this property means that this device is believed to be operational.

If this property is present, the value is a string indicating the status of the
device, as follows:

d# 25 xdrint “ slot-address-bits” attribute

Table 5-3 status property values

 Status Value Meaning

“okay” The device is believed to be operational.

“disabled” The device represented by this node is not operational, but it might become operational in the
future (e.g. an external switch is turned off, or something isn’t plugged in).

“fail” The device represented by this node is not operational because a fault has been detected, and it is
unlikely that the device will become operational without repair. No additional failure details are
available.

“fail-xxx” The device represented by this node is not operational because a fault has been detected, and it is
unlikely that the device will become operational without repair. “xxx” is additional human-
readable information about the particular fault condition that was detected.

72 Writing FCode 2.x Programs—November 1995

5

Used as:

See also: attribute .

“up-burst-sizes”

This optional property, when present on an SBus controller node, indicates the
set of allowed transfer sizes up though the node to its parent bus. The value is
encoded similarly to that of “burst-sizes ”.

See also: Chapter 8, “Hierarchical Devices”.

Manipulating Properties

Property Creation and Modification

By far the most common activity done with a property is to create or modify
one. The FCode attribute is the general property publishing word. It will
create a new property or change the value of an existing property for the
current package.

There are some special property publishing FCodes, designed for use in
common situations:

• reg is used to create a “reg ” property that describes where the package’s
physical resources are located.

• intr creates “intr ” and “interrupts ” properties to describe what
interrupts and vectors are used by the physical hardware of the package.

• model can be used to create the “model ” property to differentiate among
similar packages.

• name is an FCode macro for creating the “name” property.
• device-name can also be used to create the “name” property.
• Use delete-attribute to completely remove a property.

“ disabled” xdrstring “ status” attribute

Properties 73

5

Property Values

Various kinds of information may be stored in a property value byte array by
using an external data representation (xdr) encoding/decoding method. The
encoding format is machine-independent; the representation of the property
values is independent of the byte organization and word alignment
characteristics of particular processor.

Note – This encoding is not related to xdr -type encodings described in
architecture documents for various other computer systems.

The data type of any particular property must be implicitly known by any
software that wishes to use it. In other words, property value data types are
not self-identifying. Furthermore, the presence or absence of a property with a
particular name can encode a true/false flag; such a property may have a zero-
length property value.

Property Encoding

The second most common activity in connection with properties is to encode
the value for a property in the external data representation, usually in
preparation for publishing the property using attribute . There are four
FCodes used to encode a basic piece of data, and one FCode for amalgamating
the basic pieces for a property that has multiple values.

xdrint encodes a number. xdrstring encodes a string. xdrphys encodes a
physical address (hiding all the relative addressing information). And finally,
xdrbytes encodes a sequence of bytes.

xdr+ is used to amalgamate two basic pieces of data.

Property Retrieval

Somewhat less common is for a package to retrieve the value of a property.
There are three property value retrieving words, get-my-attribute , get-
inherited-attribute , and get-package-attribute .

• Use get-inherited-attribute if the property in question is one that
exists somewhere in the chain of parent instances between the package
being defined and the root node of the machine.

74 Writing FCode 2.x Programs—November 1995

5

• Use get-my-attribute if the property desired already exists for the
package being defined.

• Use get-package-attribute if the property exists in some other support
package. In this last case, you must find the support package first to get its
phandle.

For an example, suppose a particular SBus FCode package wants to use DVMA
to transfer some data between a device and memory.

It could use get-inherited-attribute to find the value of a property
named slave-only . slave-only will be a property of one of the parent
nodes of the package being defined, if it exists.

The value of the property is a bitmask of the SBus slots that do not support
DVMA. Then the package would look at my-unit or my-space to get its slot
number. The two pieces of information will tell the package whether or not it
can use DVMA.

Property Decoding

Once a package has searched for and found the value of a property of interest,
it must decode the value to forms it can understand. Usually the value is the
representation of an integer; use xdrtoint to generate the actual number as a
binary number on the stack. Occasionally the value of interest is the
representation of a string, in which case use xdrtostring . Both of these
FCodes act as parsers — they will also return the unused portion of the value
for further decoding.

Other kinds of values can be decoded by left-parse-string or package-
specific decoders. Note that the package must know how to decode the value
of a property it wishes to use.

Properties 75

5

Property-Specific FCodes
Following is a summary of attribute-specific FCodes. Those introduced with
OpenBoot 2.0 are noted by V2. See the individual dictionary entries in
Chapter 11, “FCode Dictionary” for more information.

Table 5-4 Property-specific FCodes

Name Stack Comment Description

Property Creation

attribute (xdr-adr xdr-len name-adr name-len --) Create an property named name-adr name-len, with
the value xdr-adr xdr-len .

device-type (adr len --) Shorthand word to create the “device_type ”
property, with the value adr len.

intr (intr-level vector --) Shorthand word to create the “intr ” and
“interrupts ” properties.

model (adr len --) Shorthand word to create the “model ” property,
with the value adr len.

name (adr len --) Shorthand macro to create the “name ” property,
with the value adr len.

reg (phys space size --) Shorthand word to create the “reg ” property.

device-name (adr len --) Shorthand word to create the “name ” property,
with the value adr len. Similar to name, but uses
only one FCode instead of creating a macro. V2.

delete-attribute (name-adr name-len --) Delete the desired property. V2.

xdr Encoding

xdrint (n -- xdr-adr xdr-len) Converts an integer to xdr-format.

xdrphys (phys space -- xdr-adr xdr-len) Converts a physical unit pair to xdr-format.

xdrstring (adr len -- xdr-adr xdr-len) Converts a text string to xdr-format.

xdr+ (xdr-adr1 xdr-len1 xdr-adr2 xdr-len2 --
xdr-adr xdr-len1+2)

Merge two xdr-format structures. They must have
been created sequentially.

xdrbytes (adr len -- xdr-adr xdr-len) Converts a byte array to xdr-format. Similar to
xdrstring , except no trailing null is appended.
V2.

76 Writing FCode 2.x Programs—November 1995

5

xdr Decoding

xdrtoint (xdr-adr xdr-len -- xdr-adr2 xdr-len2 n) Converts an xdr-format string to an integer. V2.

xdrtostring (xdr-adr xdr-len -- xdr-adr2 xdr-len2
adr len)

Converts an xdr-format string to a normal string.
V2.

Attribute Retrieval

get-my-attribute (adr len -- true | xdr-adr xdr-len false) Returns the xdr-format contents for the property
adr len within the current instance, or true if not
found. V2.

get-package-
attribute

(adr len phandle -- true | xdr-adr xdr-
len false)

Returns the xdr-format contents for the property
adr len within the package phandle, or true if not
found. V2.

get-inherited-
attribute

(adr len -- true | xdr-adr xdr-len false) Returns the xdr-format contents for the property
adr len, or true if not found. The current package
instance is searched first. If not found, the parent is
searched next, then the parent’s parent, and so on.
V2.

Table 5-4 Property-specific FCodes (Continued)

Name Stack Comment Description

77

Block Devices
Block devices are nonvolatile mass storage devices whose information can be
accessed in any order. Examples of block devices include hard disks, floppy
disks, and CD-ROMs. OpenBoot firmware typically uses block devices for
booting.

This device type generally applies to disk devices, but as far as OpenBoot is
concerned, it simply means that the device “looks like a disk” at the OpenBoot
software interface level.

The block device FCode must declare the block device-type, and must
implement the methods open and close , as well as the methods described
below in “Required Methods” on page 78“.

Although packages of the block device type present a byte-oriented interface
to the rest of the system, the associated hardware devices are usually block-
oriented i.e. the device reads and writes data in “blocks” (groups of, for
example, 512 or 2048 bytes). The standard /deblocker support package
assists in the presentation of a byte-oriented interface “on top of” an
underlying block-oriented interface, implementing a layer of buffering that
“hides” the underlying “block” length.

Block devices are often subdivided into several logical “partitions”, as defined
by a disk label - a special block, usually the first one, containing information
about the device. The driver is responsible for appropriately interpreting a disk
label. The driver may use the standard disk label support package if it does not

Block and Byte Devices 6

78 Writing FCode 2.x Programs—November 1995

6

implement a specialized label. The /disk-label support package interprets a
system-dependent label format. Since the disk booting protocol usually
depends upon the label format; the standard disk label support package also
implements a load method for the corresponding boot protocol.

Byte Devices
Byte devices are sequential-access mass storage devices, for example tape
devices. OpenBoot firmware typically uses byte devices for booting.

The byte device FCode program must declare the byte device type, and must
implement the open and close methods in addition to those described in
“Required Methods".

Although packages of the byte device type present a byte-oriented interface to
the rest of the system, the associated hardware devices are usually record-
oriented; the device reads and writes data in records containing more than one
byte. The records may be fixed length or variable length. The standard
/deblocker support package assists in presenting a byte-oriented interface on
top of an underlying record-oriented interface, implementing a layer of
buffering that hides the underlying record structure.

Required Methods

block-size (-- bytes)

All data transfers to or from the device are in records of n bytes each. The most
common value for n is 512.

This method is only required if the /deblocker support package is used.

load (adr -- len)

load works a bit differently for block and byte devices:

With block devices, it loads a stand-alone program from the device into
memory at adr. len is the size in bytes of the program loaded. If the device
can contain several such programs, the instance arguments returned by my-
args can be used to select the specific program desired. open is executed
before load is invoked.

Block and Byte Devices 79

6

With byte devices, load reads a stand-alone program from the tape file
specified by the value of the argument string given by my-args . That value is
the string representation of a decimal integer. If the argument string is null,
tape file 0 is used. load places the program in memory at adr , returning the
size len of the read-in program in bytes.

max-transfer (-- bytes)

The size in bytes of the largest single transfer that the device can perform.
max-transfer is expected to be a multiple of block-size .

This method is only required if the /deblocker support package is used.

read (adr len -- actual)

Read at most len bytes from the device into memory at adr. actual is the
number of bytes actually read. If the number of bytes read is 0 or negative, the
read failed. Note that len need not be a multiple of the device’s normal block
size.

read-blocks (adr block# #blocks -- #read)

Read #blocks records of length block-size bytes each from the device,
starting at device block block# , into memory at address adr. #read is the
number of blocks actually read.

This method is only required if the /deblocker support package is used.

seek (poslow poshigh -- error?) for block
(offset file# -- error?) for byte

seek works a bit differently depending on whether it’s being used with a
block or byte device.

For block devices, seek sets the device position for the next read or write. The
position is the byte offset from the beginning of the device specified by the 64-
bit number which is the concatenation of poshigh and poslow. error? is -
1 if the seek fails, and 0 if it succeeds.

For byte devices, it seeks to the byte offset within file file# . If offset and
file# are both 0, rewind the tape. error? is -1 if seek fails, and 0 if seek
succeeds.

80 Writing FCode 2.x Programs—November 1995

6

write (adr len -- actual)

Write len bytes from memory at adr to the device. actual is the number of
bytes actually written. If actual is less than len , the write did not succeed. If
actual is -1, some other error occurred. len need not be a multiple of the
device’s normal block size.

write-blocks (adr block# #blocks -- #written)

Write #blocks records of length block-size bytes each to the device,
starting at block block# , from memory at adr. #written is the number of
blocks actually written.

This method is only required if the /deblocker support package is used.

Required Properties

 Property Name Sample Value

 name "SUNW,googly"

 reg my-address h# 12.0000 + my-space h# 20

 device_type " block" or " byte"

Block and Byte Devices 81

6

Device Driver Examples
The structure of the device tree for the sample card supported by the sample
device drivers in this chapter is as follows:

Figure 6-1 Sample Device Tree

Simple Block Device Driver

\ This is at a stage where each leaf node can be used only as a
\ non-bootable device.
\ It only creates nodes and publishes necessary properties
\ to identify the device.
fcode-version1
hex
 " SUNW,my-scsi" xdrstring " name" attribute

 3 xdrint " interrupts" attribute
 3 0 intr

 h# 20.0000 constant scsi-offset
 h# 40 constant /scsi
 my-address scsi-offset + my-space /scsi reg
 d# 25.000.000 xdrint " clock-frequency" attribute

 new-device \ missing "reg" indicates a SCSI "wild-card" node
 " sd" xdrstring " name" attribute

sbus

 sd st

SUNW,my-scsi

82 Writing FCode 2.x Programs—November 1995

6

Extended Block Device Driver

 finish-device

 new-device \ missing "reg" indicates a SCSI "wild-card" node
 " st" xdrstring " name" attribute
 finish-device
end0

\ sample driver for "my-scsi" device.
\ It is still a non-bootable device.
\ The purpose is to show how an intermediate stage of driver can
\ be used to debug board during development.
\ In addtion to publishing the properties, this sample driver
\ shows methods to access, test and control "SUNW,my-scsi" device.
\ Following main methods are provided for "SUNW,my-scsi" device.
\ open (-- success?)
\ close (--)
\ reset (--)
\ selftest (-- fail?)
fcode-version2
 hex
 headers

 h# 20.0000 constant scsi-offset
 h# 40 constant /scsi
 d# 25.000.000 constant clock-frequency
 my-address constant my-sbus-address
 my-space constant my-sbus-space

 : identify-me (--)
 " SUNW,my-scsi" xdrstring " name" attribute
 " scsi" device-type
 \ sbus interrupt level generated by card
 3 xdrint " interrupts" attribute
 3 0 intr

 my-sbus-address scsi-offset + my-sbus-space /scsi reg
 clock-frequency xdrint " clock-frequency" attribute
 ;
 identify-me

Block and Byte Devices 83

6

 \ Tokenizer 2.1 or later has the word 'instance'
 : instance (--) version h# 20001 >= if instance then ;

 h# 10.0000 constant dma-offset
 h# 10 constant /dma
 -1 instance value dma-chip

 \ methods to access/control dma registers
 : dmaaddress (-- addr) dma-chip 4 + ;
 : dmacount (-- addr) dma-chip 8 + ;
 : dmaaddr@ (-- n) dmaaddress rl@ ;
 : dmaaddr! (n --) dmaaddress rl! ;
 : dmacount@ (-- n) dmacount rl@ ;
 : dmacount! (n --) dmacount rl! ;
 : dma-chip@ (-- n) dma-chip rl@ ;
 : dma-chip! (n --) dma-chip rl! ;
 : dma-btest (mask -- flag) dma-chip@ and ;
 : dma-bset (mask --) dma-chip@ or dma-chip! ;
 : dma-breset (mask --) not dma-btest dma-chip! ;

 external

 \ methods to allocate, map, unmap, free dma buffers
 : decode-unit (adr len -- low high) decode-2int ;
 : dma-alloc (n -- vaddr) " dma-alloc" $call-parent ;
 : dma-free (vaddr n --) " dma-free" $call-parent ;
 : dma-map-in (vaddr n cache? -- devaddr) " dma-map-in" $call-parent ;
 : dma-map-out (vaddr devaddr n --) " dma-map-out" $call-parent ;
 \ Dma-sync could be dummy routine if parent device doesn't support.
 : dma-sync (virt-addr dev-addr size --)
 " dma-sync" my-parent ['] $call-method catch if
 2drop 2drop 2drop
 then
 ;
 : map-in (adr space size -- virt) " map-in" $call-parent ;
 : map-out (virt size --) " map-out" $call-parent ;

 headers
 : dma-open (--)
 my-sbus-address dma-offset + my-sbus-space /dma
 map-in is dma-chip
 ;
 : dma-close (--)

\ sample driver for "my-scsi" device.

84 Writing FCode 2.x Programs—November 1995

6

 dma-chip /dma map-out
 -1 is dma-chip
 ;

 -1 instance value scsi-init-id
 -1 instance value scsi-chip
 h# 20 constant /mbuf
 -1 instance value mbuf
 -1 instance value mbuf-dma
 d# 6 constant /sense
 -1 instance value sense-command
 -1 instance value sense-cmd-dma
 d# 8 constant #sense-bytes
 -1 instance value sense-buf
 -1 instance value sense-buf-dma
 -1 instance value mbuf0
 d# 12 constant /cmdbuf
 -1 instance value cmdbuf
 -1 instance value cmdbuf-dma
 -1 instance value scsi-statbuf

 \ mapping and allocation routines for scsi
 : map-scsi-chip (--)
 my-sbus-address scsi-offset + my-sbus-space /scsi map-in
 is scsi-chip
 ;
 : unmap-scsi-chip
 scsi-chip /scsi map-out
 -1 is scsi-chip
 ;

 \ After any changes to sense-command by cpu or any changes
 \ to sense-cmd-dma by device, synchronize changes by issuing
 \ " sense-command sense-cmd-dma /sense dma-sync "
 \ Similarly after any changes to sense-buf, sense-buf-dma,
 \ mbuf, mbuf-dma, cmdbuf or cmdbuf-dma, synchronize changes
 \ by appropriately issuing dma-sync

 \ map scsi chip and allocate buffers for "sense" command and status
 : map-scsi (--)
 map-scsi-chip
 /sense dma-alloc is sense-command

\ sample driver for "my-scsi" device.

Block and Byte Devices 85

6

 sense-command /sense false
 dma-map-in is sense-cmd-dma
 #sense-bytes dma-alloc is sense-buf
 sense-buf #sense-bytes false
 dma-map-in is sense-buf-dma
 2 alloc-mem is scsi-statbuf
 ;

 \ free buffers for "sense" command and status and unmap scsi chip
 : unmap-scsi (--)
 scsi-statbuf 2 free-mem
 sense-buf sense-buf-dma #sense-bytes dma-sync \ redundant
 sense-buf sense-buf-dma #sense-bytes dma-map-out
 sense-buf #sense-bytes dma-free
 sense-command sense-cmd-dma /sense dma-sync \ redundant
 sense-command sense-cmd-dma /sense dma-map-out
 sense-command /sense dma-free
 -1 is sense-command
 -1 is sense-cmd-dma
 -1 is sense-buf
 -1 is scsi-statbuf
 -1 is sense-buf-dma
 unmap-scsi-chip
 ;

 \ constants related to scsi commands
 h# 0 constant nop
 h# 1 constant flush-fifo
 h# 2 constant reset-chip
 h# 3 constant reset-scsi
 h# 80 constant dma-nop

 \ words to get scsi register addresses.
 \ Each chip register is one byte, aligned on a 4-byte boundary.
 : scsi+ (offset -- addr) scsi-chip + ;
 : transfer-count-lo (-- addr) h# 0 scsi+ ;
 : transfer-count-hi (-- addr) h# 4 scsi+ ;
 : fifo (-- addr) h# 8 scsi+ ;
 : command (-- addr) h# c scsi+ ;
 : configuration (-- addr) h# 20 scsi+ ;
 : scsi-test-reg (-- addr) h# 28 scsi+ ;

 \ Read only registers:
 : scsi-status (-- addr) h# 10 scsi+ ;

\ sample driver for "my-scsi" device.

86 Writing FCode 2.x Programs—November 1995

6

 : interrupt-status (-- addr) h# 14 scsi+ ;
 : sequence-step (-- addr) h# 18 scsi+ ;
 : fifo-flags (-- addr) h# 1c scsi+ ;

 \ Write only registers:
 : select/reconnect-bus-id (-- addr) h# 10 scsi+ ;
 : select/reconnect-timeout (-- addr) h# 14 scsi+ ;
 : sync-period (-- addr) h# 18 scsi+ ;
 : sync-offset (-- addr) h# 1c scsi+ ;
 : clock-conversion-factor (-- addr) h# 24 scsi+ ;

 \ words to read from/store to scsi registers.
 : cnt@ (-- w)
 transfer-count-lo rb@
 transfer-count-hi rb@
 bwjoin
 ;
 : fifo@ (-- c) fifo rb@ ;
 : cmd@ (-- c) command rb@ ;
 : stat@ (-- c) scsi-status rb@ ;
 : istat@ (-- c) interrupt-status rb@ ;
 : fifo-cnt (-- c) fifo-flags rb@ h# 1f and ;
 : data@ (-- c) begin fifo-cnt until fifo@ ;
 : seq@ (-- c) sequence-step rb@ h# 7 and ;

 : fifo! (c --) fifo rb! ;
 : cmd! (c --) command rb! ;
 : cnt! (w --)
 wbsplit
 transfer-count-hi rb! transfer-count-lo rb!
 ;
 : targ! (c --) select/reconnect-bus-id rb! ;
 : data! (c --) begin fifo-cnt d# 16 <> until fifo! ;

 \ scsi chip noop and initialization
 : scsi-nop (--) nop cmd! ;
 : init-scsi (--) reset-chip cmd! scsi-nop ;

 : wait-istat-clear (-- error?)
 d# 1000
 begin
 1 ms 1- (count)
 dup 0= (count expired?)

\ sample driver for "my-scsi" device.

Block and Byte Devices 87

6

 istat@ (count expired? istat)
 0= or (count clear?)
 until (count)
 0= if
 istat@ 0<> if
 cr ." Can't clear ESP interrupts: "
 ." Check SCSI Term. Power Fuse." cr
 true exit
 then
 then
 false
 ;

 : clk-conv-factor (-- n)
 clock-frequency d# 5.000.000 / 7 and
 ;

 \ initialize scsi chip, tune time amount,
 \ set async operation mode, and set scsi bus id
 : reset-my-scsi (-- error?)
 init-scsi
 h# 93 select/reconnect-timeout rb!
 0 sync-offset rb!
 clk-conv-factor clock-conversion-factor rb!
 h# 4 scsi-init-id 7 and or configuration rb!
 wait-istat-clear
 ;

 : reset-bus (-- error?)
 reset-scsi cmd! wait-istat-clear
 ;

 : init-n-test (-- ok?) reset-my-scsi 0= ;

 : get-buffers (--)
 h# 8000 dma-alloc is mbuf0
 /cmdbuf dma-alloc is cmdbuf
 cmdbuf /cmdbuf false dma-map-in
 is cmdbuf-dma
 ;

 : give-buffers (--)
 mbuf0 h# 8000 dma-free -1 is mbuf0
 cmdbuf cmdbuf-dma /cmdbuf dma-sync \ redundant

\ sample driver for "my-scsi" device.

88 Writing FCode 2.x Programs—November 1995

6

 cmdbuf cmdbuf-dma /cmdbuf dma-map-out
 cmdbuf /cmdbuf dma-free
 -1 is cmdbuf -1 is cmdbuf-dma
 ;

 : scsi-selftest (-- fail?) reset-my-scsi ;

 \ dma-alloc and dma-map-in mbuf-dma
 : mbuf-alloc (--)
 /mbuf dma-alloc is mbuf
 mbuf /mbuf false dma-map-in is mbuf-dma
 ;

 \ dma-map-out and dma-free mbuf-dma
 : mbuf-free (--)
 mbuf mbuf-dma /mbuf dma-sync \ redundant
 mbuf mbuf-dma /mbuf dma-map-out
 mbuf /mbuf dma-free
 -1 is mbuf
 -1 is mbuf-dma
 ;

 external
 \ If any routine was actually using buffers allocated by dma-alloc,
 \ and dma mapped by dma-map-in, it would have dma-sync those buffers
 \ after any changes to them.
 : open (-- success?)
 dma-open
 " scsi-initiator-id" get-inherited-attribute 0= if
 xdrtoint is scsi-init-id
 2drop
 map-scsi
 init-n-test (ok?)
 dup if (true)
 get-buffers (true)
 else
 unmap-scsi dma-close (false)
 then (success?)
 else
 ." Missing initiator id" cr false
 dma-close
 then (success?)
 ;

\ sample driver for "my-scsi" device.

Block and Byte Devices 89

6

 : close (--)
 give-buffers unmap-scsi dma-close
 ;

 : reset (--)
 dma-open map-scsi
 h# 80 dma-breset
 reset-my-scsi drop reset-bus drop
 unmap-scsi dma-close
 ;

 \ if scsi-selftest was actually using buffers allocated by mbuf-alloc,
 \ it would have to do dma-sync after any changes to mbuf or mbuf-dma.
 : selftest (-- fail?)
 map-scsi
 mbuf-alloc
 scsi-selftest
 mbuf-free
 unmap-scsi
 ;

 new-device \ missing "reg" indicates a SCSI "wild-card" node
 " sd" xdrstring " name" attribute
 finish-device

 new-device \ missing "reg" indicates a SCSI "wild-card" node
 " st" xdrstring " name" attribute
 finish-device
end0

\ sample driver for "my-scsi" device.

90 Writing FCode 2.x Programs—November 1995

6

Complete Block and Byte Device Driver

\ sample fcode driver for bootable devices.
\ It supports "block" and "byte" type bootable devices,
\ by using standard "deblocker" and "disk-label" packages.

fcode-version2
 hex
 headers

 : copyright (--)
 ." Copyright 1990 Sun Microsystems, Inc. All Rights Reserved" cr
 ;
 h# 20.0000 constant scsi-offset
 h# 40 constant /scsi
 d# 25.000.000 constant clock-frequency
 my-address constant my-sbus-address
 my-space constant my-sbus-space

 : identify-me (--)
 " SUNW,my-scsi" xdrstring " name" attribute
 " scsi" device-type
 3 xdrint " interrupts" attribute
 3 0 intr
 my-sbus-address scsi-offset + my-sbus-space /scsi reg
 clock-frequency xdrint " clock-frequency" attribute
 ;
 identify-me

 \ Tokenizer 2.1 or later has the word 'instance'
 : instance (--) version h# 20001 >= if instance then ;

 h# 10.0000 constant dma-offset
 h# 10 constant /dma
 -1 instance value dma-chip

 external
 : decode-unit (adr len -- low high) decode-2int ;
 : dma-alloc (n -- vaddr) " dma-alloc" $call-parent ;
 : dma-free (vaddr n --) " dma-free" $call-parent ;
 : dma-map-in (vaddr n cache? -- devaddr) " dma-map-in" $call-parent ;
 : dma-map-out (vaddr devaddr n --) " dma-map-out" $call-parent ;

Block and Byte Devices 91

6

 \ Dma-sync could be dummy routine if parent device doesn't support.
 : dma-sync (virt-addr dev-addr size --)
 " dma-sync" my-parent ['] $call-method catch if
 2drop 2drop 2drop
 then
 ;

 : map-in (adr space size -- virt) " map-in" $call-parent ;
 : map-out (virt size --) " map-out" $call-parent ;

 headers
 \ variables/values for sending commands, mapping etc.
 -1 instance value scsi-init-id
 -1 instance value scsi-chip
 -1 instance value mbuf
 -1 instance value mbuf-dma
 h# 20 constant /mbuf
 ...

 \ mapping and allocation routines for scsi
 : map-scsi-chip (--)
 my-address scsi-offset + my-space /scsi map-in
 is scsi-chip
 ;

 : unmap-scsi-chip
 scsi-chip /scsi map-out
 -1 is scsi-chip
 ;

 : map-scsi (--)
 map-scsi-chip
 \ allocate buffers etc. for "sense" command and status
 ...
 ;

 : unmap-scsi (--)
 \ free buffers etc. for "sense" command and status
 ...
 unmap-scsi-chip
 ;

 \ words related to scsi commands and register access.
 ...

\ sample fcode driver for bootable devices.

92 Writing FCode 2.x Programs—November 1995

6

 : reset-my-scsi (-- error?) ... ;
 : reset-bus (-- error?) ... ;

 : init-n-test (-- ok?) ... ;
 : get-buffers (--) ... ;
 : give-buffers (--) ... ;
 : scsi-selftest (-- fail?) ... ;

 d# 512 constant ublock
 0 instance value /block
 0 instance value /tapeblock
 instance variable fixed-len?
 ...

 external
 : set-timeout (n --) ... ;
 : send-diagnostic (-- error?)
 \ run diagnostics and return any error.
 ...
 ;

 : device-present? (lun target -- present?) ... ;
 : mode-sense (-- true | block-size false) ... ;
 : read-capacity (-- true | block-size false) ... ;

 \ Spin up a SCSI disk, coping with a possible wedged SCSI bus
 : timed-spin (target lun --) ... ;

 : disk-r/w-blocks (adr block# #blocks direction? -- #xfered)
 ... (#xfered)
 ;

 \ Execute "mode-sense" command. If failed, execute read-capacity command.
 \ If this also failed, return d# 512 as the block size.
 : disk-block-size (-- n)
 mode-sense if read-capacity if d# 512 then then
 dup is /block
 ;

 : tape-block-size (-- n) ... ;
 : fixed-or-variable (-- max-block fixed?) ... ;
 : tape-r/w-some (adr block# #blks read? -- actual# error?) ... ;

\ sample fcode driver for bootable devices.

Block and Byte Devices 93

6

 headers
 : dma-open (--)
 my-address dma-offset + my-space /dma
 map-in is dma-chip
 ;
 : dma-close (--)
 dma-chip /dma map-out
 -1 is dma-chip
 ;

 \ After any changes to mbuf by cpu or any changes
 \ to mbuf-dma by device, synchronize changes by issuing
 \ " mbuf mbuf-dma /mbuf dma-sync "
 : mbuf-alloc (--)
 /mbuf dma-alloc is mbuf
 mbuf /mbuf false dma-map-in is mbuf-dma
 ;

 \ dma-map-out and dma-free mbuf-dma
 : mbuf-free (--)
 mbuf mbuf-dma /mbuf dma-sync \ redundant
 mbuf mbuf-dma /mbuf dma-map-out
 mbuf /mbuf dma-free
 -1 is mbuf
 -1 is mbuf-dma
 ;

 external
 \ external methods for scsi bus ("SUNW,my-scsi" node)
 : open (-- success?)
 dma-open
 " scsi-initiator-id" get-inherited-attribute 0= if
 xdrtoint is scsi-init-id
 2drop
 map-scsi
 init-n-test (ok?)
 dup if (true)
 get-buffers (true)
 else
 unmap-scsi dma-close (false)
 then (success?)
 else
 ." Missing initiator id" cr false

\ sample fcode driver for bootable devices.

94 Writing FCode 2.x Programs—November 1995

6

 dma-close
 then (success?)
 ;

 : close (--) give-buffers unmap-scsi dma-close ;

 : reset (--)
 dma-open map-scsi
 ...
 reset-my-scsi drop reset-bus drop
 unmap-scsi dma-close
 ;

 : selftest (-- fail?)
 map-scsi
 mbuf-alloc
 scsi-selftest
 mbuf-free
 unmap-scsi
 ;

 headers

\ start of child block device

 new-device \ missing "reg" indicates SCSI "wild-card" node

 " sd" xdrstring " name" attribute
 " block" device-type

 0 instance value offset-low
 0 instance value offset-high
 0 instance value label-package

 \ The "disk-label" package interprets the disk label,
 \ interpreting any partition information contained in
 \ the disk label. The "load" method of "block" device
 \ uses load method provided by "disk-label"
 : init-label-package (-- okay?)
 0 is offset-high 0 is offset-low
 my-args " disk-label" $open-package is label-package
 label-package if
 0 0 " offset" label-package $call-method
 is offset-high is offset-low

\ sample fcode driver for bootable devices.

Block and Byte Devices 95

6

 true
 else
 ." Can't open disk label package" cr false
 then
 ;

 0 instance value deblocker
 : init-deblocker (-- okay?)
 " " " deblocker" $open-package is deblocker
 deblocker if
 true
 else
 ." Can't open deblocker package" cr false
 then
 ;

 : device-present? (lun target -- present?)
 " device-present?" $call-parent
 ;

 \ Following methods are needed for "block" device:
 \ open, close, selftest, reset, read, write, load, seek,
 \ block-size, max-transfer, read-blocks, write-blocks.
 \ Carefully notice the relationship between methods for
 \ "block" device and methods pre-defined for
 \ "disk-label" and "deblocker"

 external
 \ external methods for "block" device ("sd" node)

 : spin-up (--) my-unit " timed-spin" $call-parent ;

 : open (-- ok?)
 my-unit device-present? 0= if false exit then
 spin-up \ Start the disk if necessary

 init-deblocker 0= if false exit then
 init-label-package 0= if
 deblocker close-package false exit
 then
 true
 ;

 : close (--)

\ sample fcode driver for bootable devices.

96 Writing FCode 2.x Programs—November 1995

6

 label-package close-package 0 is label-package
 deblocker close-package 0 is deblocker
 ;

 : selftest (-- fail?)
 my-unit device-present? if
 " send-diagnostic" $call-parent (fail?)
 else
 true (error)
 then
 ;
 : reset (--) ... ;

 \ The "deblocker" package assists in the implementation
 \ of byte-oriented read and write methods for disks and
 \ tapes. The deblocker provides a layer of buffering to
 \ implement a high level byte-oriented interface
 \ "on top of" a low-level block-oriented interface.

 \ The "seek", "read" and "write" methods of this block
 \ device use corresponding methods provided by "deblocker"

 \ In order to be able to use "deblocker" package this
 \ device has to define following four methods, which the
 \ deblocker uses as its low-level interface to the device:
 \ 1) block-size, 2) max-transfer, 3) read-blocks and
 \ 4) write-blocks

 : block-size (-- n) " disk-block-size" $call-parent ;
 : max-transfer (-- n) block-size h# 40 * ;

 : read-blocks (adr block# #blocks -- #read)
 true " disk-r/w-blocks" $call-parent
 ;
 : write-blocks (adr block# #blocks -- #written)
 false " disk-r/w-blocks" $call-parent
 ;

 : dma-alloc (#bytes -- vadr) " dma-alloc" $call-parent ;
 : dma-free (vadr #bytes --) " dma-free" $call-parent ;
 : seek (offset.low offset.high -- okay?)
 offset-low offset-high x+ " seek" deblocker $call-method
 ;

\ sample fcode driver for bootable devices.

Block and Byte Devices 97

6

 : read (adr len -- actual-len) " read" deblocker $call-method ;
 : write (adr len -- actual-len) " write" deblocker $call-method ;
 : load (adr -- size) " load" label-package $call-method ;

 finish-device \ finishing "block" device "sd"

 headers

\ start of child byte device

 new-device \ missing "reg" indicates "wild-card" node
 " st" xdrstring " name" attribute
 " byte" device-type

 false instance value write-eof-mark?
 instance variable file-mark?
 true instance value scsi-tape-first-install

 : scsi-tape-rewind (-- [[xstatbuf] f-hw] error?) ... ;

 : write-eof (-- [[xstatbuf] f-hw] error?) ... ;

 0 instance value deblocker
 : init-deblocker (-- okay?)
 " " " deblocker" $open-package is deblocker
 deblocker if
 true
 else
 ." Can't open deblocker package" cr false
 then
 ;

 : flush-deblocker (--)
 deblocker close-package init-deblocker drop
 ;
 : fixed-or-variable (-- max-block fixed?)
 " fixed-or-variable" $call-parent
 ;

 : device-present? (lun target -- present?)
 " device-present?" $call-parent
 ;

 \ Following methods are needed for "byte" device:

\ sample fcode driver for bootable devices.

98 Writing FCode 2.x Programs—November 1995

6

 \ open, close, selftest, reset, read, write, load, seek,
 \ block-size, max-transfer, read-blocks, write-blocks.
 \ Carefully notice the relationship between methods for
 \ "byte" device and methods pre-defined for
 \ standard deblocker package.

 external
 \ external methods for "byte" device ("st" node)

 \ The "deblocker" package assists in the implementation
 \ of byte-oriented read and write methods for disks and
 \ tapes. The deblocker provides a layer of buffering to
 \ implement a high level byte-oriented interface
 \ "on top of" a low-level block-oriented interface.

 \ The "read" and "write" methods of this "byte"
 \ device use corresponding methods provided by "deblocker"

 \ In order to be able to use "deblocker" package this
 \ device has to define following four methods, which the
 \ deblocker uses as its low-level interface to the device:
 \ 1) block-size, 2) max-transfer, 3) read-blocks and
 \ 4) write-blocks
 : block-size (-- n) " tape-block-size" $call-parent ;

 : max-transfer (-- n)
 fixed-or-variable (max-block fixed?)
 if
 \ Use the largest multiple of /tapeblock that is <= h# fe00
 h# fe00 over / *
 then
 ;

 : read-blocks (adr block# #blocks -- #read)
 file-mark? @ 0= if
 true " tape-r/w-some" $call-parent file-mark? ! (#read)
 else
 3drop 0
 then
 ;

 : write-blocks (adr block# #blocks -- #written)
 false " tape-r/w-some" $call-parent file-mark? !
 ;

\ sample fcode driver for bootable devices.

Block and Byte Devices 99

6

 : dma-alloc (#bytes -- vadr) " dma-alloc" $call-parent ;
 : dma-free (vadr #bytes --) " dma-free" $call-parent ;
 : open (-- okay?) \ open for tape
 my-unit device-present? 0= if false exit then
 scsi-tape-first-install if
 scsi-tape-rewind if
 ." Can't rewind tape" cr
 0= if drop then
 false exit
 then
 false is scsi-tape-first-install
 then
 \ Set fixed-len? and /tapeblock
 fixed-or-variable 2drop
 init-deblocker 0= if false exit then
 true
 ;
 : close (--)
 deblocker close-package 0 is deblocker
 write-eof-mark? if
 write-eof if
 ." Can't write EOF Marker."
 0= if drop then
 then
 then
 ;
 : reset (--) ... ;
 : selftest (-- fail?)
 my-unit device-present? if
 " send-diagnostic" $call-parent (fail?)
 else
 true (error)
 then
 ;

 : read (adr len -- actual-len) " read" deblocker $call-method ;
 : write (adr len -- actual-len)
 true is write-eof-mark?
 " write" deblocker $call-method
 ;

\ sample fcode driver for bootable devices.

100 Writing FCode 2.x Programs—November 1995

6

 : load (adr -- size)
 \ use my-args to get tape file-no
 ... (adr file#)

 \ position at requested file
 ...
 dup begin (start-adr next-adr)
 dup max-transfer read (start-adr next-adr #read)
 dup 0> (start-adr next-adr #read got-some?)
 while (start-adr next-adr #read)
 + (start-adr next-adr')
 repeat (start-adr end-adr 0)
 drop swap - (size)
 ;

 : seek (byte# file# -- error?)
 \ position at requested file
 ... (byte#)

 flush-deblocker (byte#)
 begin dup 0> while (#remaining)
 " mbuf0" $call-parent
 over ublock min read (#remaining #read)
 dup 0= if (#remaining 0)
 2drop true
 exit (error)
 then (#remaining #read)
 - (#remaining')
 repeat (0)
 drop false (no-error)
 ;

 finish-device \ finishing "byte" device "st"
end0
\ finishing "SUNW,my-scsi"

\ sample fcode driver for bootable devices.

101

This device type applies to framebuffers and other devices that appear to be
memory to the processor with associated hardware to convert the memory
image to a visual display. Display devices can be used as console output
devices.

Required Methods
The display device FCode must declare the display device-type, and must
implement the methods open and close .

System defer words are loaded by appropriate routines. is-install , is-
remove and is-selftest are used to create the open , close and selftest
routines.

For display devices, created methods interact with OpenBoot commands in a
way that is different from that of other device types. Other device types
provide methods that are found by dictionary searches looking for specific
names.

Some FCodes are specifically designed for display devices. See Table A-35
through Table A-41 in Appendix A, “FCode Reference".

Display Devices 7

102 Writing FCode 2.x Programs—November 1995

7

Required Properties

Device Driver Examples

Simple Display Device Driver

This is a sample FCode program for a display device that does not need to be
usable as a console display device during system power-up.

Table 7-1 Required Display Device Properties

Property Name Typical Value

name SUNW,cgsix {any name chosen by the manufacturer]

device_type display {required for display devices}

reg list of registers {depends on the device}

\ Basic display device driver

\ cg6 (Lego) frame buffer driver
\ This version doesn't use the graphics accelerator because of
\ conflicts with the window system's use of same.

hex
fcode-version1
 " SUNW,cgsix" name
 " SUNW,501-xxxx" model

 h# 20.0000 constant dac-offset h# 10 constant /dac
 h# 30.0000 constant fhc-offset h# 10 constant /fhc
 h# 30.1800 constant thc-offset h# 20 constant /thc
 h# 70.0000 constant fbc-offset h# 10 constant /fbc
 h# 70.1000 constant tec-offset h# 10 constant /tec
 h# 80.0000 constant fb-offset h# 10.0000 constant /frame

 : >reg-spec (offset size -- xdrreg)
 >r my-address + my-space xdrphys r> xdrint xdr+
 ;
 dac-offset /dac >reg-spec

Display Devices 103

7

Extended Display Device Driver

This sample FCode program has added code to initialize and test the device,
but still is not usable as a console display device during system power-up.

 fhc-offset /fhc >reg-spec xdr+
 thc-offset /thc >reg-spec xdr+
 fbc-offset /fbc >reg-spec xdr+
 tec-offset /tec >reg-spec xdr+
 fb-offset /frame >reg-spec xdr+
 " reg" attribute

 5 0 intr

 5 xdrint " interrupts" attribute

end0

 \ Extended Display device driver

\ cg6 (Lego) frame buffer driver
\ This version doesn't use the graphics accelerator because of
\ conflicts with the window system's use of same.

hex
fcode-version1
 " SUNW,cgsix" name
 " SUNW,501-xxxx" model

 h# 20.0000 constant dac-offset h# 10 constant /dac
 h# 30.0000 constant fhc-offset h# 10 constant /fhc
 h# 30.1800 constant thc-offset h# 20 constant /thc
 h# 70.0000 constant fbc-offset h# 10 constant /fbc
 h# 70.1000 constant tec-offset h# 10 constant /tec
 h# 80.0000 constant fb-offset h# 10.0000 constant /frame

 : >reg-spec (offset size -- xdrreg)
 >r my-address + my-space xdrphys r> xdrint xdr+
 ;

\ Basic display device driver

104 Writing FCode 2.x Programs—November 1995

7

 dac-offset /dac >reg-spec
 fhc-offset /fhc >reg-spec xdr+
 thc-offset /thc >reg-spec xdr+
 fbc-offset /fbc >reg-spec xdr+
 tec-offset /tec >reg-spec xdr+
 fb-offset /frame >reg-spec xdr+
 " reg" attribute

 5 xdrint " interrupts" attribute

 5 0 intr

 -1 value dac-adr
 -1 value fhc-adr
 -1 value thc-adr
 -1 value fbc-adr
 -1 value tec-adr
 -1 value fb-adr

 : copyright (-- adr len) " Copyright (c) 1989 by Sun Microsystems, Inc. " ;

 : do-map-in (offset size --) swap my-address + swap map-sbus ;
 : do-map-out (vadr size --) free-virtual ;

 : dac-map (--) dac-offset /dac do-map-in is dac-adr ;
 : dac-unmap (--) dac-adr /dac do-map-out -1 is dac-adr ;

 : fhc-map (--) fhc-offset /fhc do-map-in is fhc-adr ;
 : fhc-unmap (--) fhc-adr /fhc do-map-out -1 is fhc-adr ;

 : thc-map (--) thc-offset /thc do-map-in is thc-adr ;
 : thc-unmap (--) thc-adr /thc do-map-out -1 is thc-adr ;

 : fbc-map (--) fbc-offset /fbc do-map-in is fbc-adr ;
 : fbc-unmap (--) fbc-adr /fbc do-map-out -1 is fbc-adr ;

 : tec-map (--) tec-offset /tec do-map-in is tec-adr ;
 : tec-unmap (--) tec-adr /tec do-map-out -1 is tec-adr ;

 : fb-map (--) fb-offset /frame do-map-in is fb-adr ;
 : fb-unmap (--) fb-adr /frame do-map-out -1 is fb-adr ;

 \ Extended Display device driver

Display Devices 105

7

 : map-regs (--) dac-map fhc-map thc-map fbc-map tec-map ;
 : unmap-regs (--) tec-unmap fbc-unmap thc-unmap fhc-unmap dac-unmap ;

 \ Brooktree DAC interface section

 \ The Brooktree DAC has an internal address register which helps to
 \ select the internal register which is to be accessed.
 \ First, the address is written to register 0, then the data is written
 \ to one of the other registers.
 \ Ibis has 3 separate DAC chips which appear as the three least-significant
 \ bytes of a longword. All three chips may be simultaneously updated
 \ with a single longword write.

 : dac! (data reg# --) >r dup 2dup bljoin r> dac-adr + l! ;
 : dac-ctl! (data int.adr reg# --) swap 0 dac! dac! ;

 \ color! sets an overlay color register.
 \ In order to be able to use either the Brooktree 457 or 458 dacs, we
 \ set the address once, then store the color 3 times. The chip internally
 \ cycles each time the color register is written, selecting in turn the
 \ red color, the green color, and the blue color.
 \ The chip is used in "RGB mode".

 : color! (r g b c# --)
 0 dac! (r g b)
 swap rot (b g r)
 4 dac! (b g)
 4 dac! (b)
 4 dac! ()
 ;

 : lego-init-dac (--)

 40 06 8 dac-ctl! \ Control reg: enable off, overlay off, RGB on
 0 05 8 dac-ctl! \ Blinking off
 ff 04 8 dac-ctl! \ Read mask set to all ones
 ff ff ff 0 color! \ White in overlay background color register
 0 0 0 ff color! \ Black in overlay foreground color register
 64 41 b4 1 color! \ SUN-blue for logo
 ;

 \ End of Brooktree DAC code

 \ Lego Selftest section

 \ Extended Display device driver

106 Writing FCode 2.x Programs—November 1995

7

 : fbc! (value offset --) fbc-adr + l! ;
 : fbc@ (offset -- value) fbc-adr + l@ ;
 : tec! (value offset --) tec-adr + l! ;

 : lego-selftest (-- failed?) false ;

 \ Hardware configuration register section

 : fhc! (value offset --) fhc-adr + l! ;
 : thc! (value offset --) thc-adr + l! ;

 : set-res-params (hcvd hcvs hchd hchsdvb hchs fhc-conf --)
 0 fhc! 0 thc! 4 thc! 8 thc! c thc! 10 thc!
 ;

 \ Resolution params: hcvd hcvs hchd hchsdvb hchs fhc-conf

 : r1024x768 (-- params) 2c032c 32c0005 110051 490000 510007 3bb ;
 : r1152x900 (-- params) 2403a8 10005 15005d 570000 10009 bbb ;
 : r1024x1024 (-- params) 200426 10005 180054 520000 10009 3bb ;
 : r1152x870 (-- params) 2c0392 20005 120054 540000 10009 bbb ;
 : r1600x1280 (-- params) 340534 534009 130045 3d0000 450007 1bbb ;

 0 value lego-rez-width
 0 value lego-rez-height

 0 value sense-code

 : set-resolution (sense-code --)
 case

 0 of d# 1152 d# 900 endof
 12 of d# 1024 d# 1024 endof
 13 of d# 1600 d# 1280 endof
 drop d# 1152 d# 900 0

 endcase
 is lego-rez-height is lego-rez-width
 ;

 8f value thc-misc
 : lego-video-on (--) thc-misc 400 or 18 thc! ;
 : lego-video-off (--) thc-misc 18 thc! ;

 : lego-init-hc (--)

 \ Extended Display device driver

Display Devices 107

7

 sense-code case
 0 of r1152x900 endof
 12 of r1024x1024 endof
 13 of r1600x1280 endof
 drop r1152x900 0
 endcase (resolution-params)
 set-res-params

 016b 14 thc! \ THC_HCREFRESH
 148f 18 thc! \ THC_HCMISC
 \ 48f 18 thc! \ THC_HCMISC
 lego-video-off \ Turn video on at install time
 ;

 \ End of hardware configuration register section

end0

 \ Extended Display device driver

108 Writing FCode 2.x Programs—November 1995

7

Complete Display Device Driver

This sample FCode program is for a device that would be usable as a system
console device.

 \ Complete Display device driver

\ cg6 (Lego) frame buffer driver
\ This version doesn't use the graphics accelerator because of
\ conflicts with the window system's use of same.

hex
fcode-version1
 " SUNW,cgsix" name
 " SUNW,501-xxxx" model
 " display" device-type

 h# 20.0000 constant dac-offset h# 10 constant /dac
 h# 30.0000 constant fhc-offset h# 10 constant /fhc
 h# 30.1800 constant thc-offset h# 20 constant /thc
 h# 70.0000 constant fbc-offset h# 10 constant /fbc
 h# 70.1000 constant tec-offset h# 10 constant /tec
 h# 80.0000 constant fb-offset h# 10.0000 constant /frame

 : >reg-spec (offset size -- xdrreg)
 >r my-address + my-space xdrphys r> xdrint xdr+
 ;
 dac-offset /dac >reg-spec
 fhc-offset /fhc >reg-spec xdr+
 thc-offset /thc >reg-spec xdr+
 fbc-offset /fbc >reg-spec xdr+
 tec-offset /tec >reg-spec xdr+
 fb-offset /frame >reg-spec xdr+
 " reg" attribute

 5 xdrint " interrupts" attribute

 5 0 intr

 -1 value dac-adr
 -1 value fhc-adr
 -1 value thc-adr
 -1 value fbc-adr

Display Devices 109

7

 -1 value tec-adr
 -1 value fb-adr

 : copyright (-- adr len) " Copyright (c) 1989 by Sun Microsystems, Inc. " ;

 : do-map-in (offset size --) swap my-address + swap map-sbus ;
 : do-map-out (vadr size --) free-virtual ;

 : dac-map (--) dac-offset /dac do-map-in is dac-adr ;
 : dac-unmap (--) dac-adr /dac do-map-out -1 is dac-adr ;

 : fhc-map (--) fhc-offset /fhc do-map-in is fhc-adr ;
 : fhc-unmap (--) fhc-adr /fhc do-map-out -1 is fhc-adr ;

 : thc-map (--) thc-offset /thc do-map-in is thc-adr ;
 : thc-unmap (--) thc-adr /thc do-map-out -1 is thc-adr ;

 : fbc-map (--) fbc-offset /fbc do-map-in is fbc-adr ;
 : fbc-unmap (--) fbc-adr /fbc do-map-out -1 is fbc-adr ;

 : tec-map (--) tec-offset /tec do-map-in is tec-adr ;
 : tec-unmap (--) tec-adr /tec do-map-out -1 is tec-adr ;

 : fb-map (--) fb-offset /frame do-map-in is fb-adr ;
 : fb-unmap (--) fb-adr /frame do-map-out -1 is fb-adr ;

 : map-regs (--) dac-map fhc-map thc-map fbc-map tec-map ;
 : unmap-regs (--) tec-unmap fbc-unmap thc-unmap fhc-unmap dac-unmap ;

 \ Brooktree DAC interface section

 \ The Brooktree DAC has an internal address register which helps to
 \ select the internal register which is to be accessed.
 \ First, the address is written to register 0, then the data is written
 \ to one of the other registers.
 \ Ibis has 3 separate DAC chips which appear as the three least-significant
 \ bytes of a longword. All three chips may be simultaneously updated
 \ with a single longword write.

 : dac! (data reg# --) >r dup 2dup bljoin r> dac-adr + l! ;
 : dac-ctl! (data int.adr reg# --) swap 0 dac! dac! ;

 \ Complete Display device driver

110 Writing FCode 2.x Programs—November 1995

7

 \ color! sets an overlay color register.
 \ In order to be able to use either the Brooktree 457 or 458 dacs, we
 \ set the address once, then store the color 3 times. The chip internally
 \ cycles each time the color register is written, selecting in turn the
 \ red color, the green color, and the blue color.
 \ The chip is used in "RGB mode".

 : color! (r g b c# --)
 0 dac! (r g b)
 swap rot (b g r)
 4 dac! (b g)
 4 dac! (b)
 4 dac! ()
 ;

 : lego-init-dac (--)

 40 06 8 dac-ctl! \ Control reg: enable off, overlay off, RGB on
 0 05 8 dac-ctl! \ Blinking off
 ff 04 8 dac-ctl! \ Read mask set to all ones
 ff ff ff 0 color! \ White in overlay background color register
 0 0 0 ff color! \ Black in overlay foreground color register
 64 41 b4 1 color! \ SUN-blue for logo
 ;

 \ End of Brooktree DAC code

 \ Lego Selftest section

 : fbc! (value offset --) fbc-adr + l! ;
 : fbc@ (offset -- value) fbc-adr + l@ ;
 : tec! (value offset --) tec-adr + l! ;

 : lego-selftest (-- failed?) false ;

 \ Hardware configuration register section

 : fhc! (value offset --) fhc-adr + l! ;
 : thc! (value offset --) thc-adr + l! ;

 : set-res-params (hcvd hcvs hchd hchsdvb hchs fhc-conf --)
 0 fhc! 0 thc! 4 thc! 8 thc! c thc! 10 thc!
 ;

 \ Complete Display device driver

Display Devices 111

7

 \ Resolution params: hcvd hcvs hchd hchsdvb hchs fhc-conf

 : r1024x768 (-- params) 2c032c 32c0005 110051 490000 510007 3bb ;
 : r1152x900 (-- params) 2403a8 10005 15005d 570000 10009 bbb ;
 : r1024x1024 (-- params) 200426 10005 180054 520000 10009 3bb ;
 : r1152x870 (-- params) 2c0392 20005 120054 540000 10009 bbb ;
 : r1600x1280 (-- params) 340534 534009 130045 3d0000 450007 1bbb ;

 0 value lego-rez-width
 0 value lego-rez-height

 0 value sense-code

 : set-resolution (sense-code --)
 case

 0 of d# 1152 d# 900 endof
 12 of d# 1024 d# 1024 endof
 13 of d# 1600 d# 1280 endof
 drop d# 1152 d# 900 0

 endcase
 is lego-rez-height is lego-rez-width
 ;

 8f value thc-misc
 : lego-video-on (--) thc-misc 400 or 18 thc! ;
 : lego-video-off (--) thc-misc 18 thc! ;
 : lego-blink (--) lego-video-off 20 ms lego-video-on ;
 : lego-init-hc (--)
 sense-code case

 0 of r1152x900 endof
 12 of r1024x1024 endof
 13 of r1600x1280 endof
 drop r1152x900 0

 endcase (resolution-params)
 set-res-params

 016b 14 thc! \ THC_HCREFRESH
 148f 18 thc! \ THC_HCMISC

 lego-video-off\ Turn video on at install time
 ;

 \ End of hardware configuration register section

 \ Complete Display device driver

112 Writing FCode 2.x Programs—November 1995

7

 \ Lego graphics section
 : lego-install (--)
 map-regs fb-map fb-adr is frame-buffer-adr

 default-font (param ...) set-font

 frame-buffer-adr xdrint " address" attribute

 lego-rez-width lego-rez-height over char-width / over char-height /
 fb8-install
 [’] lego-blink is blink-screen
 lego-video-on
 ;
 : lego-remove (--)
 lego-video-off
 unmap-regs
 fb-unmap -1 is frame-buffer-adr
 ;

 \ End of Lego graphics section

 : lego-probe (--)

 map-regs

 sense-code set-resolution

 lego-init-dac
 lego-init-hc

 unmap-regs

 lego-rez-width xdrint " width" attribute
 lego-rez-height xdrint " height" attribute
 d# 8 xdrint " depth" attribute
 lego-rez-width xdrint " linebytes" attribute

 ['] lego-install is-install
 ['] lego-remove is-remove
 ['] lego-selftest is-selftest
 ;

 \ Complete Display device driver

Display Devices 113

7

 lego-probe
end0

 \ Complete Display device driver

114 Writing FCode 2.x Programs—November 1995

7

115

This device type generally applies to random access or memory mapped buses,
for which the children of the bus can be mapped into the CPU address space
and accessed like memory.

Hierarchical devices include such buses as SBus and VMEbus.

Not all bus devices fall into this category. For example, SCSI is not a memory
mapped bus; SCSI targets are not accessed with load or store instructions.

Required Methods
The hierarchical device package code must implement the open , close ,
reset , and selftest methods, as well as the following:

decode-unit (adr len -- low high)

Convert adr len , a text string representation, to low high , a numerical
representation of a physical address within the address space defined by this
package.

dma-alloc (size -- virt)

Allocate a virtual address range of length size bytes that is suitable for direct
memory access by a bus master device. The memory is allocated according to
the most stringent alignment requirements for the bus. virt is an 32-bit
address that the OpenBoot-based system can use to access the memory.

Hierarchical Devices 8

116 Writing FCode 2.x Programs—November 1995

8

Note that dma-map-in must also be called to generate a suitable DMA
address.

A child of a hierachical device calls dma-alloc using

For example:

dma-free (virt size --)

Free size bytes of memory previously allocated by dma-alloc at the virtual
address virt .

A child of a hierachical device calls dma-free by using

 For example:

dma-map-in (virt size cacheable? -- devaddr)

Convert the virtual address range virt size , previously allocated by dma-
alloc , into an address devaddr suitable for DMA on the bus. dma-map-in
can also be used to map application-supplied data buffers for DMA use if the
bus allows. If cacheable? is true, the calling child desires to use any available
fast caches for the DMA buffer. If access to the buffer is required before the
buffer is mapped out, the child must call dma-sync or dma-map-out to
ensure cache coherency with memory.

 " dma-alloc" $call-parent

-1 value my-reg
: my-dma-alloc (size --)
 " dma-alloc" $call-parent is my-reg
;

 " dma-free" $call-parent

2000 value my-size
: my-dma-free (--)
 my-reg my-size " dma-free" $call-parent
 -1 is my-reg
;

Hierarchical Devices 117

8

A child of a hierachical device calls dma-map-in using

For example:

dma-map-out (virt devaddr size --)

Remove the DMA mapping previously created with dma-map-in . Flush all
caches associated with the mapping.

A child of a hierachical device calls dma-map-in by using

For example:

dma-sync (virt devaddr size --)

Synchronize (flush) any memory caches associated with the DMA mapping
previously established by dma-map-in . You must interleave calls to this
method (or dma-map-out) between DMA and CPU accesses to the memory
region, or errors may result.

 " dma-map-in" $call-parent

: my-reg-dma-map (--)
 my-reg my-size false " dma-map-in" $call-parent (devaddr)
 is my-reg-dma
;

 " dma-map-out" $call-parent

$call-parent
: my-reg-dma-free (--)
 my-reg my-reg-dma my-size " dma-map-out" $call-parent
 -1 is my-reg-dma
;

118 Writing FCode 2.x Programs—November 1995

8

For example, a child of a hierachical device calls dma-sync by using $call-
parent . This method is valid for FCode version 2.1 or later. Some early
version 2 systems do not define this method in the /sbus node. Those systems
automatically synchronize DMA and CPU access. The following example will
give correct results in all cases.

probe-self (arg-adr arg-len reg-adr reg-len fcode-adr fcode-len --)

Probe for a child of this node. fcode-adr fcode-len is a unit-address text
string that locates the FCode program for the child. reg-adr reg-len is a
unit-address text string that identifies the address of the child itself. arg-adr
arg-len is a string for any device arguments for the child. probe-self
checks whether there is indeed FCode at the indicated location, perhaps using
cpeek .

If the FCode exists, probe-self creates a new child device node and
interprets the FCode. If the interpretation of the FCode fails in some way, the
new device node may be empty, containing no properties or methods.

For example, to probe FCode for SBus slot #1:

map-in (low high size -- virt)

Create a mapping associating the range of physical addresses beginning at low
high , extending for size bytes, within the package’s physical address space,
with a processor virtual address virt .

: my-dma-sync (virt devadr size --)
 " dma-sync" ['] $call-parent catch if
 \ Parent does not have dma-sync
 \ cleanup the stack and return
 2drop 3drop
 then
;

" /sbus" select-dev
0 0 " 1,0" 2dup probe-self
unselect-dev

Hierarchical Devices 119

8

For example, a child of a hierachical device calls map-in with " map-in"
$call-parent :

map-out (virt size --)

Destroy the mapping set by map-in at virtual address virt of length size
bytes.

For example, a child of a hierachical device calls map-out with " map-out"
$call-parent :

SBus Addressing
The SBus uses geographical addressing with numbered slots.

An SBus physical address is represented numerically by the SBus slot number
as the high number and the offset from the base of that slot as the low
number. The text string representation is slot# , offset , where both slot#
and offset are the ASCII representations of hexadecimal numbers.

SBus Required Properties

: map-reg (--)
 my-address xx-offset + my-space xx-size (adr space size)
 " map-in" $call-parent (virt)
 is xx-reg ()
;

: unmap-reg (virt --)
 xx-reg xx-size (virt size)
 " map-out" $call-parent ()
 -1 is xx-reg
;

Table 8-1 Required SBus Properties

Property Name Sample Value

name "SUNW,finagle"

burst-sizes

120 Writing FCode 2.x Programs—November 1995

8

VMEBus Addressing
VMEBus has a number of distinct address spaces represented by a subset of the
64 possible values encoded by the six “address modifier” bits. The maximum
size of one of these address spaces is 32 bits. An additional bit is used to select
between 16-bit and 32-bit data.

A VMEBus physical address is represented numerically as follows. The high
number is made up of the six address modifier bits AM0-5 in bits 0-5 and the
data width bit (0 = 16-bit data, 1 = 32-bit data) in bit 6. The low number is the
offset within the selected address space. The text string representation is
as,offset, where both as and offset are ASCII representations of a hexadecimal
numbers; as encodes the data width and address modifier bits.

VMEBus Required Properties

Device Driver Examples
The following examples of a hierarchical FCode driver are based on Sun's SBus
expansion hardware called "XBox". XBox increases the number of SBus slots
available in a system by providing a bus-bridge between the platform's
onboard SBus and an SBus in the XBox hardware. XBox includes an SBus card
called the XAdaptor card which plugs into the host platform's SBus and

device-type " sbus"

ranges

slot-address-bits

Table 8-2 Required VMEbus Properties

Property Name Sample Value

name "SUNW,vizzy"

device-type " vmebus"

ranges

Table 8-1 Required SBus Properties

Property Name Sample Value

Hierarchical Devices 121

8

includes an expansion chassis called the XBox Expansion Box. Therefore XBox
is an example of a hierarchical device which, in fact, implements an SBus
interface to child plug-in devices.

The example is divided into three parts: the basic device driver, the extended
device driver, and the complete device driver. In the case of a hierarchical
device, in practice, one would only want to develop and ship a driver with the
complete functionality. Otherwise, plug-in cards which rely on a full set of
parent services generally would not be able to function. The three stage
presentation of the driver simply shows how a driver might grow through the
development cycle.

Basic Hierarchical Device Driver

The basic driver simply declares most of the important properties of the
device, particularly the addresses of the various registers. A driver in this state
might be used to support the develoment of the OS driver which would attach
to the device name and configure itself based on the device properties
published by the FCode driver.

hex
fcode-version2

" SUNW,xbox" name
" 501-1840" model

\ XBox Registers
\ XAdaptor card registers
h# 0 constant write0-offset h# 4 constant /write0
h# 2.0000 constant xac-err-offset h# c constant /xac-err
h# 10.0000 constant xac-ctl0-offset h# 4 constant /xac-ctl0
h# 11.0000 constant xac-ctl1-offset h# 4 constant /xac-ctl1
h# 12.0000 constant xac-elua-offset h# 4 constant /xac-elua
h# 13.0000 constant xac-ella-offset h# 4 constant /xac-ella
h# 14.0000 constant xac-ele-offset h# 4 constant /xac-ele

\ XBox Exapnsion box registers
h# 42.0000 constant xbc-err-offset h# c constant /xbc-err
h# 50.0000 constant xbc-ctl0-offset h# 4 constant /xbc-ctl0
h# 51.0000 constant xbc-ctl1-offset h# 4 constant /xbc-ctl1
h# 52.0000 constant xbc-elua-offset h# 4 constant /xbc-elua
h# 53.0000 constant xbc-ella-offset h# 4 constant /xbc-ella

122 Writing FCode 2.x Programs—November 1995

8

h# 54.0000 constant xbc-ele-offset h# 4 constant /xbc-ele

: >reg-spec (offset size -- xdrreg)
 >r my-address + my-space xdrphys r> xdrint xdr+
;

write0-offset /write0 >reg-spec
xac-err-offset /xac-err >reg-spec xdr+
xac-ctl0-offset /xac-ctl0 >reg-spec xdr+
xac-ctl1-offset /xac-ctl1 >reg-spec xdr+
xac-elua-offset /xac-elua >reg-spec xdr+
xac-ella-offset /xac-ella >reg-spec xdr+
xac-ele-offset /xac-ele >reg-spec xdr+
xbc-err-offset /xbc-err >reg-spec xdr+
xbc-ctl0-offset /xbc-ctl0 >reg-spec xdr+
xbc-ctl1-offset /xbc-ctl1 >reg-spec xdr+
xbc-elua-offset /xbc-elua >reg-spec xdr+
xbc-ella-offset /xbc-ella >reg-spec xdr+
xbc-ele-offset /xbc-ele >reg-spec xdr+
" reg" attribute

\ Xbox can interrupt on any SBus level

1 xdrint 2 xdrint xdr+ 3 xdrint xdr+ 4 xdrint xdr+
5 xdrint xdr+ 6 xdrint xdr+ 7 xdrint xdr+
" interrupts" attribute

1 sbus-intr>cpu xdrint 0 xdrint xdr+
2 sbus-intr>cpu xdrint xdr+ 0 xdrint xdr+
3 sbus-intr>cpu xdrint xdr+ 0 xdrint xdr+
4 sbus-intr>cpu xdrint xdr+ 0 xdrint xdr+
5 sbus-intr>cpu xdrint xdr+ 0 xdrint xdr+
6 sbus-intr>cpu xdrint xdr+ 0 xdrint xdr+
7 sbus-intr>cpu xdrint xdr+ 0 xdrint xdr+
" intr" attribute

\ XBox bus clock speed
d# 25.000.000 xdrint " clock-frequency" attribute

\ Burst sizes 64,32,16,8,4,2,1 bursts.
h# 7f xdrint " burst-sizes" attribute

\ XBox has no slave-only slots
0 xdrint " slave-only" attribute

Hierarchical Devices 123

8

\ Get the number of address bits for this SBus slot from the parent SBus
\ node without inheritance . OpenBoot 2.5 doesn't publish slot-address-bits.
\ However 2.5 is only on 4m machines, which are all 28 bits per slot.

: $= (addr1 len1 addr2 len2 -- equal?) \ string compare
 rot over - if
 drop 2drop false \ different lengths
 else comp 0=
 then
;
: 4mhack (-- n)
 " compatible" get-inherited-attribute if
 d# 25 \ no "compatible" prop; assume 4c
 else xdrtostring " sun4m" $= if
 d# 28
 else
 d# 25 \ not sun4m
 then
 nip nip
 then
;
: #bits (-- n)
 " slot-address-bits" my-parent ihandle>phandle
 get-package-attribute if
 4mhack
 else
 xdrtoint nip nip
 then
;
#bits constant host-slot-size
host-slot-size xdrint " slot-address-bits" attribute

end0

124 Writing FCode 2.x Programs—November 1995

8

Extended Hierarchical Device Driver

The extended driver adds methods allowing access to various device registers
in addtion to the functions of the basic driver. It provides methods to:

• map in the registers
• fetch from and store to the registers
• program one of the registers which control the allocation of address space

across the various SBus slots.

Such an extended driver provides methods that a developer can use to read
and write registers and verify correct hardware responses. Note that the
complete driver does not use all of the device registers; read/write access
methods were included for all of them to allow easy testing during
development.

\ extended hierarchical device driver sample

hex
fcode-version2

" SUNW,xbox" name
" 501-1840" model

\ XBox Registers

h# 0 constant write0-offset h# 4 constant /write0
h# 2.0000 constant xac-err-offset h# c constant /xac-err
h# 10.0000 constant xac-ctl0-offset h# 4 constant /xac-ctl0
h# 11.0000 constant xac-ctl1-offset h# 4 constant /xac-ctl1
h# 12.0000 constant xac-elua-offset h# 4 constant /xac-elua
h# 13.0000 constant xac-ella-offset h# 4 constant /xac-ella
h# 14.0000 constant xac-ele-offset h# 4 constant /xac-ele

h# 42.0000 constant xbc-err-offset h# c constant /xbc-err
h# 50.0000 constant xbc-ctl0-offset h# 4 constant /xbc-ctl0
h# 51.0000 constant xbc-ctl1-offset h# 4 constant /xbc-ctl1
h# 52.0000 constant xbc-elua-offset h# 4 constant /xbc-elua
h# 53.0000 constant xbc-ella-offset h# 4 constant /xbc-ella
h# 54.0000 constant xbc-ele-offset h# 4 constant /xbc-ele

: >reg-spec (offset size -- xdrreg)
 >r my-address + my-space xdrphys r> xdrint xdr+
;

Hierarchical Devices 125

8

write0-offset /write0 >reg-spec
xac-err-offset /xac-err >reg-spec xdr+
xac-ctl0-offset /xac-ctl0 >reg-spec xdr+
xac-ctl1-offset /xac-ctl1 >reg-spec xdr+
xac-elua-offset /xac-elua >reg-spec xdr+
xac-ella-offset /xac-ella >reg-spec xdr+
xac-ele-offset /xac-ele >reg-spec xdr+
xbc-err-offset /xbc-err >reg-spec xdr+
xbc-ctl0-offset /xbc-ctl0 >reg-spec xdr+
xbc-ctl1-offset /xbc-ctl1 >reg-spec xdr+
xbc-elua-offset /xbc-elua >reg-spec xdr+
xbc-ella-offset /xbc-ella >reg-spec xdr+
xbc-ele-offset /xbc-ele >reg-spec xdr+
" reg" attribute

\ Xbox can interrupt on any SBus level

1 xdrint 2 xdrint xdr+ 3 xdrint xdr+ 4 xdrint xdr+
5 xdrint xdr+ 6 xdrint xdr+ 7 xdrint xdr+
" interrupts" attribute

1 sbus-intr>cpu xdrint 0 xdrint xdr+
2 sbus-intr>cpu xdrint xdr+ 0 xdrint xdr+
3 sbus-intr>cpu xdrint xdr+ 0 xdrint xdr+
4 sbus-intr>cpu xdrint xdr+ 0 xdrint xdr+
5 sbus-intr>cpu xdrint xdr+ 0 xdrint xdr+
6 sbus-intr>cpu xdrint xdr+ 0 xdrint xdr+
7 sbus-intr>cpu xdrint xdr+ 0 xdrint xdr+
" intr" attribute

\ XBox bus clock speed
d# 25.000.000 xdrint " clock-frequency" attribute

\ Burst sizes 64,32,16,8,4,2,1 bursts.
h# 7f xdrint " burst-sizes" attribute

\ XBox has no slave-only slots
0 xdrint " slave-only" attribute

\ Get the number of address bits for this SBus slot from the parent SBus
\ node without inheritance . OpenBoot 2.5 doesn't publish slot-address-bits.
\ However 2.5 is only on 4m machines, which are all 28 bits per slot.

: $= (addr1 len1 addr2 len2 -- equal?) \ string compare

\ extended hierarchical device driver sample

126 Writing FCode 2.x Programs—November 1995

8

 rot over - if
 drop 2drop false \ different lengths
 else comp 0=
 then
;
: 4mhack (-- n)
 " compatible" get-inherited-attribute if
 d# 25 \ no "compatible" prop; assume 4c
 else xdrtostring " sun4m" $= if
 d# 28
 else
 d# 25 \ not sun4m
 then
 nip nip
 then
;
: #bits (-- n)
 " slot-address-bits" my-parent ihandle>phandle
 get-package-attribute if
 4mhack
 else
 xdrtoint nip nip
 then
;
#bits constant host-slot-size
host-slot-size xdrint " slot-address-bits" attribute

\ Utility display string
: .me (--) ." SBus " my-space .d ." XBox " ;

\ The XBox device has two modes opaque and transparent.

\ Upon reset the device is set to opaque mode. In this mode all
\ accesses to address space of the device are directed to the XBox H/W
\ (ie. XAdaptor Card or the XBox Expansion Box) itself.

\ In the transparent mode all accesses are mapped to the SBus cards
\ which are plugged into the XBox. In transparent mode the XBox H/W is
\ accessible only via the "write-0" register. To allow another bus
\ bridge to be plugged into the XBox all writes to the write-0 register
\ must contain a "key" which is programmed into the XBox H/W at boot
\ time. If the key field of a write to write-0 matches that programmed
\ at boot time the H/W intercepts the write. Otherwise the H/W passes

\ extended hierarchical device driver sample

Hierarchical Devices 127

8

\ the write along.

\ The XBox has two sets of registers. Those of the XAdaptor card and
\ and those of the XBox Expansion Box.

\ Opaque mode host adapter registers
-1 value xac-err-regs
-1 value xac-ctl0 -1 value xac-ctl1
-1 value xac-elua -1 value xac-ella
-1 value xac-ele
\ Opaque mode expansion box registers
-1 value xbc-err-regs
-1 value xbc-ctl0 -1 value xbc-ctl1
-1 value xbc-elua -1 value xbc-ella
-1 value xbc-ele
\ Transparent mode register
-1 value write0-reg

: xbox-map-in (offset space size -- virt) " map-in" $call-parent ;
: xbox-map-out (virt size --) " map-out" $call-parent ;
: map-regs (--)
 write0-offset my-address + my-space /write0 xbox-map-in is write0-reg
 xac-err-offset my-address + my-space /xac-err xbox-map-in is xac-err-regs
 xac-ctl0-offset my-address + my-space /xac-ctl0 xbox-map-in is xac-ctl0
 xac-ctl1-offset my-address + my-space /xac-ctl1 xbox-map-in is xac-ctl1
 xac-elua-offset my-address + my-space /xac-elua xbox-map-in is xac-elua
 xac-ella-offset my-address + my-space /xac-ella xbox-map-in is xac-ella
 xac-ele-offset my-address + my-space /xac-ele xbox-map-in is xac-ele
 xbc-err-offset my-address + my-space /xbc-err xbox-map-in is xbc-err-regs
 xbc-ctl0-offset my-address + my-space /xbc-ctl0 xbox-map-in is xbc-ctl0
 xbc-ctl1-offset my-address + my-space /xbc-ctl1 xbox-map-in is xbc-ctl1
 xbc-elua-offset my-address + my-space /xbc-elua xbox-map-in is xbc-elua
 xbc-ella-offset my-address + my-space /xbc-ella xbox-map-in is xbc-ella
 xbc-ele-offset my-address + my-space /xbc-ele xbox-map-in is xbc-ele
;
: unmap-regs (--)
 write0-reg /write0 xbox-map-out -1 is write0-reg
 xac-err-regs /xac-err xbox-map-out -1 is xac-err-regs
 xac-ctl0 /xac-ctl0 xbox-map-out -1 is xac-ctl0
 xac-ctl1 /xac-ctl1 xbox-map-out -1 is xac-ctl1
 xac-elua /xac-elua xbox-map-out -1 is xac-elua
 xac-ella /xac-ella xbox-map-out -1 is xac-ella
 xac-ele /xac-ele xbox-map-out -1 is xac-ele
 xbc-err-regs /xbc-err xbox-map-out -1 is xbc-err-regs

\ extended hierarchical device driver sample

128 Writing FCode 2.x Programs—November 1995

8

 xbc-ctl0 /xbc-ctl0 xbox-map-out -1 is xbc-ctl0
 xbc-ctl1 /xbc-ctl1 xbox-map-out -1 is xbc-ctl1
 xbc-elua /xbc-elua xbox-map-out -1 is xbc-elua
 xbc-ella /xbc-ella xbox-map-out -1 is xbc-ella
 xbc-ele /xbc-ele xbox-map-out -1 is xbc-ele
;

\ Opaque mode register access words

: xac-errd@ (-- l) xac-err-regs rl@ ;
: xac-erra@ (-- l) xac-err-regs 4 + rl@ ;
: xac-errs@ (-- l) xac-err-regs 8 + rl@ ;
: xac-ctl0@ (-- w) xac-ctl0 rl@ ;
: xac-ctl0! (w --) xac-ctl0 rl! ;
: xac-ctl1@ (-- w) xac-ctl1 rl@ ;
: xac-ctl1! (w --) xac-ctl1 rl! ;
: xac-elua@ (-- l) xac-elua rl@ ;
: xac-elua! (l --) xac-elua rl! ;
: xac-ella@ (-- w) xac-ella rl@ ;
: xac-ella! (w --) xac-ella rl! ;

: xbc-errd@ (-- l) xbc-err-regs rl@ ;
: xbc-erra@ (-- l) xbc-err-regs 4 + rl@ ;
: xbc-errs@ (-- l) xbc-err-regs 8 + rl@ ;
: xbc-ctl0@ (-- w) xbc-ctl0 rl@ ;
: xbc-ctl0! (w --) xbc-ctl0 rl! ;
: xbc-ctl1@ (-- w) xbc-ctl1 rl@ ;
: xbc-ctl1! (w --) xbc-ctl1 rl! ;
: xbc-elua@ (-- l) xbc-elua rl@ ;
: xbc-elua! (l --) xbc-elua rl! ;
: xbc-ella@ (-- w) xbc-ella rl@ ;
: xbc-ella! (w --) xbc-ella rl! ;

\ Transparent Mode register access words

external
: unique-key (-- n) " unique-key" $call-parent ;
headers
unique-key constant my-key
my-key xdrint " write0-key" attribute

: xbox! (w offset --) my-key h# 18 << or or write0-reg rl! ;

: write-xac-ctl0 (w --) xac-ctl0-offset xbox! ;

\ extended hierarchical device driver sample

Hierarchical Devices 129

8

: write-xac-ctl1 (w --) xac-ctl1-offset xbox! ;
: write-xbc-ctl0 (w --) xbc-ctl0-offset xbox! ;
: write-xbc-ctl1 (w --) xbc-ctl1-offset xbox! ;

\ Some functionally oriented words

: set-key (--) my-key 8 << xac-ctl0! ;
: transparent (--) 1 xac-ctl1! ;
: opaque (--) 0 write-xac-ctl1 ;
: enable-slaves (--) h# 38 write-xbc-ctl1 ;

: xbox-errors (-- xbc-err xac-err)
 opaque xbc-errd@ xac-errd@ transparent
;

: ?.errors (xbc-err xac-err --)
 dup h# 8000.0000 and if
 cr .me ." xac-error " .h cr
 else drop
 then
 dup h# 8000.0000 and if
 cr .me ." xbc-error " .h cr
 else drop
 then
;

\ The address space of the XBox in transparent mode may be dynamically
\ allocated across its plug-in slots. This is called the
\ upper-address-decode-map (uadm). Below is a table which relates the
\ slot configuration code which is programmed in hardware to the
\ allocation of address space for each slot. The number in each cell is
\ the number of address bits needed for the slot.

decimal
create slot-sizes-array
\ slot0 slot1 slot2 slot3 slot-config
 23 c, 23 c, 23 c, 23 c, \ 00
 23 c, 23 c, 23 c, 23 c, \ 01
 23 c, 23 c, 23 c, 23 c, \ 02
 23 c, 23 c, 23 c, 23 c, \ 03
 25 c, 0 c, 0 c, 0 c, \ 04
 0 c, 25 c, 0 c, 0 c, \ 05
 0 c, 0 c, 25 c, 0 c, \ 06
 0 c, 0 c, 0 c, 25 c, \ 07

\ extended hierarchical device driver sample

130 Writing FCode 2.x Programs—November 1995

8

 24 c, 24 c, 0 c, 0 c, \ 08
 24 c, 0 c, 24 c, 0 c, \ 09
 0 c, 24 c, 24 c, 0 c, \ 0a
 0 c, 0 c, 0 c, 0 c, \ 0b
 24 c, 23 c, 23 c, 0 c, \ 0c
 23 c, 24 c, 23 c, 0 c, \ 0d \ Overridden in code
 23 c, 23 c, 24 c, 0 c, \ 0e \ Overridden in code
 25 c, 0 c, 0 c, 0 c, \ 0f
 26 c, 26 c, 26 c, 26 c, \ 10
 26 c, 26 c, 26 c, 26 c, \ 11
 26 c, 26 c, 26 c, 26 c, \ 12
 26 c, 26 c, 26 c, 26 c, \ 13
 28 c, 0 c, 0 c, 0 c, \ 14
 0 c, 28 c, 0 c, 0 c, \ 15
 0 c, 0 c, 28 c, 0 c, \ 16
 0 c, 0 c, 0 c, 28 c, \ 17
 28 c, 28 c, 28 c, 28 c, \ 18
 28 c, 28 c, 28 c, 28 c, \ 19
 28 c, 28 c, 28 c, 28 c, \ 1a
 28 c, 28 c, 28 c, 28 c, \ 1b
 0 c, 0 c, 0 c, 0 c, \ 1c
 0 c, 0 c, 0 c, 0 c, \ 1d
 0 c, 0 c, 0 c, 0 c, \ 1e
 0 c, 0 c, 0 c, 0 c, \ 1f
hex

20 constant /slot-sizes-array
-1 value slot-config

: >slot-size (slot# -- size)
 slot-sizes-array slot-config la+ swap ca+ c@ 1 swap <<
 1 not and \ Could have slot size of 0.
;

\ This array is to be filled with offsets for each slot.
\ Eg. 0, 100.0000, 180.0000, 200.0000
create host-offsets 0 , 0 , 0 , 0 ,

: >host-offset (child-slot# -- adr) host-offsets swap na+ @ ;

create config-d-offsets h# 100.0000 , 0 , h# 180.0000 , 0 ,
create config-e-offsets h# 100.0000 , h# 180.0000 , 0 , 0 ,

: set-host-offsets (--)

\ extended hierarchical device driver sample

Hierarchical Devices 131

8

 slot-config case
 h# d of config-d-offsets host-offsets 4 /n* move exit endof
 h# e of config-e-offsets host-offsets 4 /n* move exit endof
 endcase
 0 (initial-offset)
 4 0 do (offset)
 dup host-offsets i na+ ! (offset)
 i >slot-size + (offset')
 loop (final-offset)
 drop
;

: set-configuration (config-code --)
 is slot-config
 set-host-offsets
 slot-config 3 << my-key 8 << or
 dup write-xac-ctl0 \ set XAC
 write-xbc-ctl0 \ set XBC
 slot-config xdrint " uadm" attribute \ publish slot configuration
;

end0

\ extended hierarchical device driver sample

132 Writing FCode 2.x Programs—November 1995

8

Complete Hierarchical Device Driver

The complete driver includes all the required device node methods. It also
includes code to initalize the hardware at system reset. In particular, it
configures the allocation of address space across slots. It does this by either
performing an autoconfiguration or by accepting a manual override via a
property in its parent. During the configuration process, the driver interprets
the FCode of any SBus card plugged into the XBox. This results in devices
being added to the device tree.

\ complete hierarchical device driver sample
hex
fcode-version2

" SUNW,xbox" name
" 501-1840" model
" sbus" device-type

\ XBox Registers

h# 0 constant write0-offset h# 4 constant /write0
h# 2.0000 constant xac-err-offset h# c constant /xac-err
h# 10.0000 constant xac-ctl0-offset h# 4 constant /xac-ctl0
h# 11.0000 constant xac-ctl1-offset h# 4 constant /xac-ctl1
h# 12.0000 constant xac-elua-offset h# 4 constant /xac-elua
h# 13.0000 constant xac-ella-offset h# 4 constant /xac-ella
h# 14.0000 constant xac-ele-offset h# 4 constant /xac-ele

h# 42.0000 constant xbc-err-offset h# c constant /xbc-err
h# 50.0000 constant xbc-ctl0-offset h# 4 constant /xbc-ctl0
h# 51.0000 constant xbc-ctl1-offset h# 4 constant /xbc-ctl1
h# 52.0000 constant xbc-elua-offset h# 4 constant /xbc-elua
h# 53.0000 constant xbc-ella-offset h# 4 constant /xbc-ella
h# 54.0000 constant xbc-ele-offset h# 4 constant /xbc-ele

: >reg-spec (offset size -- xdrreg)
 >r my-address + my-space xdrphys r> xdrint xdr+
;

write0-offset /write0 >reg-spec
xac-err-offset /xac-err >reg-spec xdr+
xac-ctl0-offset /xac-ctl0 >reg-spec xdr+
xac-ctl1-offset /xac-ctl1 >reg-spec xdr+
xac-elua-offset /xac-elua >reg-spec xdr+

Hierarchical Devices 133

8

xac-ella-offset /xac-ella >reg-spec xdr+
xac-ele-offset /xac-ele >reg-spec xdr+
xbc-err-offset /xbc-err >reg-spec xdr+
xbc-ctl0-offset /xbc-ctl0 >reg-spec xdr+
xbc-ctl1-offset /xbc-ctl1 >reg-spec xdr+
xbc-elua-offset /xbc-elua >reg-spec xdr+
xbc-ella-offset /xbc-ella >reg-spec xdr+
xbc-ele-offset /xbc-ele >reg-spec xdr+
" reg" attribute

\ Xbox can interrupt on any SBus level

1 xdrint 2 xdrint xdr+ 3 xdrint xdr+ 4 xdrint xdr+
5 xdrint xdr+ 6 xdrint xdr+ 7 xdrint xdr+
" interrupts" attribute

1 sbus-intr>cpu xdrint 0 xdrint xdr+
2 sbus-intr>cpu xdrint xdr+ 0 xdrint xdr+
3 sbus-intr>cpu xdrint xdr+ 0 xdrint xdr+
4 sbus-intr>cpu xdrint xdr+ 0 xdrint xdr+
5 sbus-intr>cpu xdrint xdr+ 0 xdrint xdr+
6 sbus-intr>cpu xdrint xdr+ 0 xdrint xdr+
7 sbus-intr>cpu xdrint xdr+ 0 xdrint xdr+
" intr" attribute

\ XBox bus clock speed
d# 25.000.000 xdrint " clock-frequency" attribute

\ Burst sizes 64,32,16,8,4,2,1 bursts.
h# 7f xdrint " burst-sizes" attribute

\ XBox has no slave-only slots
0 xdrint " slave-only" attribute

\ Get the number of address bits for this SBus slot from the parent SBus
\ node without inheritance . OpenBoot 2.5 doesn't publish slot-address-bits.
\ However 2.5 is only on 4m machines, which are all 28 bits per slot.

: $= (addr1 len1 addr2 len2 -- equal?) \ string compare
 rot over - if
 drop 2drop false \ different lengths
 else comp 0=
 then
;

\ complete hierarchical device driver sample

134 Writing FCode 2.x Programs—November 1995

8

: 4mhack (-- n)
 " compatible" get-inherited-attribute if
 d# 25 \ no "compatible" prop; assume 4c
 else xdrtostring " sun4m" $= if
 d# 28
 else
 d# 25 \ not sun4m
 then
 nip nip
 then
;
: #bits (-- n)
 " slot-address-bits" my-parent ihandle>phandle
 get-package-attribute if
 4mhack
 else
 xdrtoint nip nip
 then
;
#bits constant host-slot-size
host-slot-size xdrint " slot-address-bits" attribute

\ Utility display string
: .me (--) ." SBus " my-space .d ." XBox " ;

\ The XBox device has two modes opaque and transparent.

\ Upon reset the device is set to opaque mode. In this mode all
\ accesses to address space of the device are directed to the XBox H/W
\ (ie. XAdaptor Card or the XBox Expansion Box) itself.

\ In the transparent mode all accesses are mapped to the SBus cards
\ which are plugged into the XBox. In transparent mode the XBox H/W is
\ accessible only via the "write-0" register. To allow another bus
\ bridge to be plugged into the XBox all writes to the write-0 register
\ must contain a "key" which is programmed into the XBox H/W at boot
\ time. If the key field of a write to write-0 matches that programmed
\ at boot time the H/W intercepts the write. Otherwise the H/W passes
\ the write along.

\ The XBox has two sets of registers. Those of the XAdaptor card and
\ and those of the XBox Expansion Box.

\ complete hierarchical device driver sample

Hierarchical Devices 135

8

\ Opaque mode host adapter registers
-1 value xac-err-regs
-1 value xac-ctl0 -1 value xac-ctl1
-1 value xac-elua -1 value xac-ella
-1 value xac-ele
\ Opaque mode expansion box registers
-1 value xbc-err-regs
-1 value xbc-ctl0 -1 value xbc-ctl1
-1 value xbc-elua -1 value xbc-ella
-1 value xbc-ele
\ Transparent mode register
-1 value write0-reg

: xbox-map-in (offset space size -- virt) " map-in" $call-parent ;
: xbox-map-out (virt size --) " map-out" $call-parent ;
: map-regs (--)
 write0-offset my-address + my-space /write0 xbox-map-in is write0-reg
 xac-err-offset my-address + my-space /xac-err xbox-map-in is xac-err-regs
 xac-ctl0-offset my-address + my-space /xac-ctl0 xbox-map-in is xac-ctl0
 xac-ctl1-offset my-address + my-space /xac-ctl1 xbox-map-in is xac-ctl1
 xac-elua-offset my-address + my-space /xac-elua xbox-map-in is xac-elua
 xac-ella-offset my-address + my-space /xac-ella xbox-map-in is xac-ella
 xac-ele-offset my-address + my-space /xac-ele xbox-map-in is xac-ele
 xbc-err-offset my-address + my-space /xbc-err xbox-map-in is xbc-err-regs
 xbc-ctl0-offset my-address + my-space /xbc-ctl0 xbox-map-in is xbc-ctl0
 xbc-ctl1-offset my-address + my-space /xbc-ctl1 xbox-map-in is xbc-ctl1
 xbc-elua-offset my-address + my-space /xbc-elua xbox-map-in is xbc-elua
 xbc-ella-offset my-address + my-space /xbc-ella xbox-map-in is xbc-ella
 xbc-ele-offset my-address + my-space /xbc-ele xbox-map-in is xbc-ele
;
: unmap-regs (--)
 write0-reg /write0 xbox-map-out -1 is write0-reg
 xac-err-regs /xac-err xbox-map-out -1 is xac-err-regs
 xac-ctl0 /xac-ctl0 xbox-map-out -1 is xac-ctl0
 xac-ctl1 /xac-ctl1 xbox-map-out -1 is xac-ctl1
 xac-elua /xac-elua xbox-map-out -1 is xac-elua
 xac-ella /xac-ella xbox-map-out -1 is xac-ella
 xac-ele /xac-ele xbox-map-out -1 is xac-ele
 xbc-err-regs /xbc-err xbox-map-out -1 is xbc-err-regs
 xbc-ctl0 /xbc-ctl0 xbox-map-out -1 is xbc-ctl0
 xbc-ctl1 /xbc-ctl1 xbox-map-out -1 is xbc-ctl1
 xbc-elua /xbc-elua xbox-map-out -1 is xbc-elua
 xbc-ella /xbc-ella xbox-map-out -1 is xbc-ella
 xbc-ele /xbc-ele xbox-map-out -1 is xbc-ele

\ complete hierarchical device driver sample

136 Writing FCode 2.x Programs—November 1995

8

;

\ Opaque mode register access words

: xac-errd@ (-- l) xac-err-regs rl@ ;
: xac-erra@ (-- l) xac-err-regs 4 + rl@ ;
: xac-errs@ (-- l) xac-err-regs 8 + rl@ ;
: xac-ctl0@ (-- w) xac-ctl0 rl@ ;
: xac-ctl0! (w --) xac-ctl0 rl! ;
: xac-ctl1@ (-- w) xac-ctl1 rl@ ;
: xac-ctl1! (w --) xac-ctl1 rl! ;
: xac-elua@ (-- l) xac-elua rl@ ;
: xac-elua! (l --) xac-elua rl! ;
: xac-ella@ (-- w) xac-ella rl@ ;
: xac-ella! (w --) xac-ella rl! ;

: xbc-errd@ (-- l) xbc-err-regs rl@ ;
: xbc-erra@ (-- l) xbc-err-regs 4 + rl@ ;
: xbc-errs@ (-- l) xbc-err-regs 8 + rl@ ;
: xbc-ctl0@ (-- w) xbc-ctl0 rl@ ;
: xbc-ctl0! (w --) xbc-ctl0 rl! ;
: xbc-ctl1@ (-- w) xbc-ctl1 rl@ ;
: xbc-ctl1! (w --) xbc-ctl1 rl! ;
: xbc-elua@ (-- l) xbc-elua rl@ ;
: xbc-elua! (l --) xbc-elua rl! ;
: xbc-ella@ (-- w) xbc-ella rl@ ;
: xbc-ella! (w --) xbc-ella rl! ;

\ Transparent Mode register access words

external
: unique-key (-- n) " unique-key" $call-parent ;
headers
unique-key constant my-key
my-key xdrint " write0-key" attribute

: xbox! (w offset --) my-key h# 18 << or or write0-reg rl! ;

: write-xac-ctl0 (w --) xac-ctl0-offset xbox! ;
: write-xac-ctl1 (w --) xac-ctl1-offset xbox! ;
: write-xbc-ctl0 (w --) xbc-ctl0-offset xbox! ;
: write-xbc-ctl1 (w --) xbc-ctl1-offset xbox! ;

\ Some functionally oriented words

\ complete hierarchical device driver sample

Hierarchical Devices 137

8

: set-key (--) my-key 8 << xac-ctl0! ;
: transparent (--) 1 xac-ctl1! ;
: opaque (--) 0 write-xac-ctl1 ;
: enable-slaves (--) h# 38 write-xbc-ctl1 ;

: xbox-errors (-- xbc-err xac-err)
 opaque xbc-errd@ xac-errd@ transparent
;

: ?.errors (xbc-err xac-err --)
 dup h# 8000.0000 and if
 cr .me ." xac-error " .h cr
 else drop
 then
 dup h# 8000.0000 and if
 cr .me ." xbc-error " .h cr
 else drop
 then
;

\ The address space of the XBox in transparent mode may be dynamically
\ allocated across its plug-in slots. This is called the
\ upper-address-decode-map (uadm). Below is a table which relates the
\ slot configuration code which is programmed in hardware to the
\ allocation of address space for each slot. The number in each cell is
\ the number of address bits needed for the slot.

decimal
create slot-sizes-array
\ slot0 slot1 slot2 slot3 slot-config
 23 c, 23 c, 23 c, 23 c, \ 00
 23 c, 23 c, 23 c, 23 c, \ 01
 23 c, 23 c, 23 c, 23 c, \ 02
 23 c, 23 c, 23 c, 23 c, \ 03
 25 c, 0 c, 0 c, 0 c, \ 04
 0 c, 25 c, 0 c, 0 c, \ 05
 0 c, 0 c, 25 c, 0 c, \ 06
 0 c, 0 c, 0 c, 25 c, \ 07
 24 c, 24 c, 0 c, 0 c, \ 08
 24 c, 0 c, 24 c, 0 c, \ 09
 0 c, 24 c, 24 c, 0 c, \ 0a
 0 c, 0 c, 0 c, 0 c, \ 0b
 24 c, 23 c, 23 c, 0 c, \ 0c

\ complete hierarchical device driver sample

138 Writing FCode 2.x Programs—November 1995

8

 23 c, 24 c, 23 c, 0 c, \ 0d \ Overridden in code
 23 c, 23 c, 24 c, 0 c, \ 0e \ Overridden in code
 25 c, 0 c, 0 c, 0 c, \ 0f
 26 c, 26 c, 26 c, 26 c, \ 10
 26 c, 26 c, 26 c, 26 c, \ 11
 26 c, 26 c, 26 c, 26 c, \ 12
 26 c, 26 c, 26 c, 26 c, \ 13
 28 c, 0 c, 0 c, 0 c, \ 14
 0 c, 28 c, 0 c, 0 c, \ 15
 0 c, 0 c, 28 c, 0 c, \ 16
 0 c, 0 c, 0 c, 28 c, \ 17
 28 c, 28 c, 28 c, 28 c, \ 18
 28 c, 28 c, 28 c, 28 c, \ 19
 28 c, 28 c, 28 c, 28 c, \ 1a
 28 c, 28 c, 28 c, 28 c, \ 1b
 0 c, 0 c, 0 c, 0 c, \ 1c
 0 c, 0 c, 0 c, 0 c, \ 1d
 0 c, 0 c, 0 c, 0 c, \ 1e
 0 c, 0 c, 0 c, 0 c, \ 1f
hex

20 constant /slot-sizes-array
-1 value slot-config

: >slot-size (slot# -- size)
 slot-sizes-array slot-config la+ swap ca+ c@ 1 swap <<
 1 not and \ Could have slot size of 0.
;

\ This array is to be filled with offsets for each slot.
\ Eg. 0, 100.0000, 180.0000, 200.0000
create host-offsets 0 , 0 , 0 , 0 ,

: >host-offset (child-slot# -- adr) host-offsets swap na+ @ ;

create config-d-offsets h# 100.0000 , 0 , h# 180.0000 , 0 ,
create config-e-offsets h# 100.0000 , h# 180.0000 , 0 , 0 ,

: set-host-offsets (--)
 slot-config case
 h# d of config-d-offsets host-offsets 4 /n* move exit endof
 h# e of config-e-offsets host-offsets 4 /n* move exit endof
 endcase
 0 (initial-offset)

\ complete hierarchical device driver sample

Hierarchical Devices 139

8

 4 0 do (offset)
 dup host-offsets i na+ ! (offset)
 i >slot-size + (offset')
 loop (final-offset)
 drop
;

: set-configuration (config-code --)
 is slot-config
 set-host-offsets
 slot-config 3 << my-key 8 << or
 dup write-xac-ctl0 \ set XAC
 write-xbc-ctl0 \ set XBC
 slot-config xdrint " uadm" attribute \ publish slot configuration
;

\ Required package methods

external

: dma-alloc (#bytes --) " dma-alloc" $call-parent ;
: dma-free (#bytes --) " dma-free" $call-parent ;
: dma-map-in (vaddr #bytes cache? -- devaddr) " dma-map-in" $call-parent ;
: dma-map-out (vaddr devaddr #bytes --) " dma-map-out" $call-parent ;
: dma-sync (virt devaddr #bytes --) " dma-sync" $call-parent ;

: map-in (offset slot# size -- virtual)
 >r (offset xbox-slot#)
 >host-offset + my-space (parent-offset parent-slot#)
 r> " map-in" $call-parent (virtual)
;

: map-out (virt size --) " map-out" $call-parent ;

: decode-unit (adr len -- address space)
 decode-2int (offset slot#)
 dup 0 3 between 0= if
 ." Invalid XBox slot number " .d cr
 1 abort
 then (offset slot#)
;

\ Hack because set-args and byte-load are not FCodes
: byte-load (adr len --) " byte-load" $find drop execute ;

\ complete hierarchical device driver sample

140 Writing FCode 2.x Programs—November 1995

8

: set-args (adr len adr len --) " set-args" $find drop execute ;

: probe-self (arg-adr arg-len reg-adr reg-len fcode-adr fcode-len --)

 ['] decode-unit catch if
 2drop 2drop 2drop 2drop
 exit
 then (arg-str reg-str fcode-offs,space)

 h# 10000 map-in (arg-str reg-str fcode-vaddr)

 dup cpeek if (arg-str reg-str fcode-vaddr byte)
 dup h# f0 = swap h# fd = or if (arg-str reg-str fcode-vaddr)
 new-device (arg-str reg-str fcode-vaddr)
 >r set-args r> (fcode-vaddr)
 dup 1 byte-load (fcode-vaddr)
 finish-device
 else (arg-str reg-str fcode-vaddr)
 nip nip nip nip (fcode-vaddr)
 ." Invalid FCode start byte in " .me cr
 then (fcode-vaddr)
 else (arg-str reg-str fcode-vaddr)
 nip nip nip nip (fcode-vaddr)
 then

 h# 10000 map-out
;

: open (-- ok?) true ;
: close (--) ;

headers

\ The XBox slot configuration may be forced by the user. The mechanism
\ for doing this is a string which specifies megs/slot (eg. "16,8,8,0").

\ This string is processed into the config bits array. Then the
\ slot-sizes-array is searched for a configuration which matches or
\ exceeds the requested number for each slot. If the request is
\ unreasonable the default-slot-config is used.
\ Then the configuration is set in the XBox hardware.
\ Finally each slot is probed based on the config.

: default-slot-config (-- n)

\ complete hierarchical device driver sample

Hierarchical Devices 141

8

 host-slot-size d# 25 = if
 h# c \ 1x24 bits, 2x23 bits
 else h# 10 \ 4x26 bits
 then
;

\ This array to be filled with bit sizes for each slot.
\ Eg. 24, 23, 23, 0
create config-bits 0 c, 0 c, 0 c, 0 c,

: config-ok? (config -- ok?)
 true
 slot-sizes-array rot 4 * ca+ (ok? slot-adr)
 4 0 do
 config-bits i ca+ c@
 over i ca+ c@ (ok? slot-adr conf-bits slot-bits)
 > if
 nip false swap leave
 then
 loop
 drop
;

: fit-config (-- config)
 default-slot-config
 /slot-sizes-array 0 do
 i config-ok? if
 drop i leave
 then
 loop
;

: megs>bits (megs -- bits) \ Convert requested megs to # of address bits
 ?dup 0= if 0 exit then
 dup 9 < if drop d# 23 exit then
 dup d# 17 < if drop d# 24 exit then
 dup d# 33 < if drop d# 25 exit then
 dup d# 65 < if drop d# 26 exit then
 dup d# 129 < if drop d# 27 exit then
 d# 257 < if d# 28 exit then
 d# 29 \ d#29 is too many bits => error
;

: request-megs (adr len --) \ Fill config-bits table

\ complete hierarchical device driver sample

142 Writing FCode 2.x Programs—November 1995

8

 base @ >r decimal
 4 0 do
 ascii , left-parse-string
 $number 0= if
 megs>bits config-bits i ca+ c!
 then
 loop
 2drop
 r> base !
;

: find-config (adr len -- config)
 request-megs fit-config
;

create slot-string ascii # c, ascii , c, ascii 0 c,

: probe-slot (slot# --)
 dup >slot-size 0= if drop exit then (slot#)
 ascii 0 + slot-string c!
 " " slot-string 3 (arg-str reg-str)
 2dup (arg-str reg-str fcode-str)
 probe-self
;

: probe-children (--)
 4 0 do
 config-bits i ca+ c@ if
 i probe-slot
 then
 loop
;

: forced-configuration (adr len --)
 find-config (config-code)
 set-configuration
 probe-children
;

\ The Xbox slot configuration may be autoconfigured by the driver. The
\ autoconfiguration mechanism uses the following state transition table.
\ The table basically loops through each XBox slot with a current guess
\ at the slot config. With each slot the code then probes the slot's

\ complete hierarchical device driver sample

Hierarchical Devices 143

8

\ FCode and uses the reg property information of the slot's new device
\ node to determine the amount of address space required by the slot.
\ The slot config guess is updated and a state transition is made.

\ This is the state transition table. Each entry in the table consists
\ of 16 bits. The most significant 8 bits is the XBox configuration
\ code for the next state, and the least 8 bits is the next state.

create states
\ Empty min mid
\ Empty 23 24 for 25 bit host SBus slot
 0501 w, 0d04 w, 0803 w, \ 0 testing slot 0
 0602 w, 0a05 w, 0a0f w, \ 1 Slot 0 empty, testing slot 1
 0706 w, 000f w, 060e w, \ 2 Slots 0,1 empty, testing slot 2
 090f w, 0c0f w, 080e w, \ 3 Slot 0 is 24 bit, testing slot 1
 0e05 w, 0e05 w, 0d0f w, \ 4 Slot 0 23 bit, testing slot 1
 000f w, 000f w, 0e0e w, \ 5 Slot 0 empty and Slot1 23 bit,
 \ or Slot 0,1 are 23 bit testing slot 2
 0c0e w, 070e w, 070e w, \ 6 Slots 0,1,2 empty, testing slot 3
\ Empty notused 26 for 28 bit host SBus slot
 1508 w, 100e w, 100b w, \ 7 testing slot 0
 1609 w, 100e w, 100c w, \ 8 Slot 0 empty, testing slot 1
 170a w, 100e w, 100d w, \ 9 Slots 0,1 empty, testing slot 2
 100e w, 100e w, 170e w, \ a Slots 0,1,2 empty, testing slot 3
 100c w, 100e w, 100c w, \ b Slot 0 is 26 bit, testing slot 1
 100d w, 100e w, 100d w, \ c Slots 0,1 are 26 bit, testing slot 2
 100e w, 100e w, 100e w, \ d Slots 0,1,2 are 26 bit,testing slot 3
 \ e
 \ f
0 value slot#
0 value start-state \ for auto-config state machine
4 value start-config
h# 100.0000 value max-card \ 25 bit default
h# 080.0000 value mid-card \ 25 bit default

: configure25 (--) \ 25 bit host SBus slots
 0 is start-state
 4 is start-config
 h# 100.0000 is max-card \ 25 bits for one Xbox slot
 h# 080.0000 is mid-card \ 24 bits per XBox slot
;
: configure28 (--) \ 28 bit host SBus slots
 7 is start-state

\ complete hierarchical device driver sample

144 Writing FCode 2.x Programs—November 1995

8

 h# 14 is start-config
 h# 800.0000 is max-card \ 28 bits for one XBox slot
 h# 0 is mid-card \ 26 bits per Xbox slot
;

0 value child-node

\ Since child and peer do not appear until 2.3,
\ we include the following workarounds.
: next-peer (phandle -- phandle')
 fcode-version 2.0003 >= if
 peer
 else
 " romvec" $find drop execute 1c + @ 0 + @
 " call" $find drop execute nip
 then
;
: first-child (phandle -- phandle')
 fcode-version 2.0003 >= if
 child
 else
 " romvec" $find drop execute 1c + @ 4 + @
 " call" $find drop execute nip
 then
;

0 value extent \ 1 if card exists, but no reg prop or 0 reg

: bump-extent (n --) extent max is extent ;

: max-reg-extent (adr len --)
 begin dup while
 xdrtoint drop xdrtoint >r xdrtoint r> + (adr' len' extent)
 bump-extent
 repeat
 2drop
 extent 0= if \ reg prop is 0 -- fake it
 1 bump-extent
 then
;

: find-extent (--)
 0 is extent
 begin

\ complete hierarchical device driver sample

Hierarchical Devices 145

8

 child-node if
 child-node next-peer
 else
 my-self ihandle>phandle first-child
 then (next-child)
 ?dup while
 is child-node
 " reg" child-node get-package-attribute 0= if (adr len)
 max-reg-extent
 else \ card has no reg prop -- fake it
 1 bump-extent
 then
 repeat
;

: evaluate-size (-- size-code)
 find-extent
 extent slot# >slot-size > if
 ." The card in slot " slot# .
 ." of " .me
 ." uses too much address space." cr
 abort
 then
 extent (max-extent)
 dup max-card > if drop 3 exit then (max-extent) \ max-size card
 dup mid-card > if drop 2 exit then (max-extent) \ mid-size card?
 0 > if 1 exit then () \ 25-small card?
 0 \ null for 28
;

: test-slot (xbox-config -- size-code)
 set-configuration ()
 slot# probe-slot ()
 evaluate-size (size-code)
;

: autoconfigure (--)
 0 is child-node
 -1 is slot#

 host-slot-size d# 25 = if configure25 else configure28 then

 start-state start-config (state# xbox-config)
 begin (state# xbox-config)

\ complete hierarchical device driver sample

146 Writing FCode 2.x Programs—November 1995

8

 slot# 1+ is slot# test-slot (state# size-code)
 dup 3 = if 2drop exit then (state# size-code)
 over h# f = if 2drop exit then (state# size-code)
 states rot 3 * wa+ swap wa+ w@ wbsplit (state#' xbox-config')
 over h# e = until (state#' xbox-config')

 2drop
;

\ Initialize the XBox H/W. If the XAdaptor H/W detects that XBox
\ Expansion H/W is connected and powered-up it puts the H/W into
\ transparent mode and sets the XBox slot configuraton based on either a
\ forced configruation or the autoconfiguration algorithm.

: configuration (--)
 " xbox-slot-config" get-inherited-attribute 0= if
 xdrtostring (adr len adr len)
 find-config forced-configuration
 2drop
 else
 2drop
 autoconfigure
 then
;

: null-xdr (-- adr len)
 fcode-version 2.0001 >= if
 0 0 xdrbytes
 else
 here 0
 then
;

: make-ranges (--)
 null-xdr (adr len)
 4 0 do
 i >slot-size if (adr len)
 0 i xdrphys xdr+ (adr len)
 i >host-offset my-space xdrphys xdr+ (adr len)
 i >slot-size xdrint xdr+ (adr len)
 then
 loop
 " ranges" attribute
;

\ complete hierarchical device driver sample

Hierarchical Devices 147

8

\ Because we go transparent in the middle and therefore the fcode prom
\ disappears the following must be in a definition.

: init-pkg (--)
 map-regs
 set-key \ opaque already
 xac-errs@ h# 40 and if \ Child ready?
 transparent \ Go transparent, then enable-slaves
 enable-slaves
 configuration
 make-ranges
 xbox-errors
 ?.errors
 " true"
 else
 cr .me
 ." child not ready --" cr
 ." perhaps the cable is not plugged in" cr
 ." or the expansion box is not turned on." cr
 " false"
 then (adr len)
 xdrstring " child-present" attribute
 unmap-regs
 ['] end0 execute
;

init-pkg

end0

\ complete hierarchical device driver sample

148 Writing FCode 2.x Programs—November 1995

8

149

Network devices are packet-oriented devices capable of sending and receiving
packets addressed according to IEEE 802.2 (Ethernet). OpenBoot firmware
typically uses network devices for diskless booting. The standard obp-tftp
support package assists in the implementation of the load method for this
device type.

This chapter describes how to implement network device drivers. First, the
developer of a network driver needs to cooperate with the developers of OS
driver to agree on the structure of the device tree, based on the functionalities
of the drivers. Then they need to define all necessary properties used by OS or
OpenBoot firmware.

Normally the network device driver could have a one level tree or a two level
tree. While it is unlikely it will have more than two level tree, if necessary, the
user can create more than a two level tree by applying new-device and
finish-device .

A one level tree could have several nodes, depending on how many net
channels the SBus card can support, each node corresponds to one net channel.

For a two level tree, it could have one “control” node on the top level, one or
more nodes at the bottom level, depending on the number of net channels it
supports. The simplest driver is to support has only one net channel and will
only create one node, all properties and all methods being under this node.

This chapter shows three sample network device drivers for the Quad Ethernet
device card. The structure of the device tree for the examples is as follows:

Network Devices 9

150 Writing FCode 2.x Programs—November 1995

9

Each QED SBus card defines two levels:

• one qec device node
• four qe device nodes

Figure 9-1 QED Device Tree

The general pathname (after sbus or sbi) for a qe node is

where S is the SBus slot number, C is the network channel number.

Required Methods
The network device FCode must declare the network device-type, and must
implement the methods open and close , as well as the following methods:

load (adr -- len)

Read the default stand-alone program into memory starting at adr using the
default network booting protocol. len is the size in bytes of the program read
in.

 qec@S,20000/qe@C,0

sbus (or sbi on sun4d such as SS2000 and SC1000)

qec

qe qe qe qe

Network Devices 151

9

read (adr len -- actual)

Receive a network packet, placing at most the first len bytes in memory at
adr . Return the actual number of bytes received (not the number copied), or
0 if no packet is currently available. Packets with hardware-detected errors are
discarded as though they were not received. Do not wait for a packet (non-
blocking).

write (adr len -- actual)

Transmit the network packet of size len bytes starting at memory address adr .
Return the number of bytes actually transmitted. The packet must be complete
with all addressing information, including source hardware address.

Required Device Properties
The required properties for a network device are

Optional Device Properties
Several other properties may be declared for network devices:

Table 9-1 Required Network Device Properties

Name Typical Value

name "SUNW,my-net" {any name chosen by the manufacturer}

reg list of registers {depends on the device}

device_type "network"

mac-address 8 0 0x20 0x0c 0xea 0x41 {the currently using MAC address.}

Table 9-2 Optional Network Device Properties

Property Name Typical Property Value

max-frame-size 0x4000

address-bits 48

slave-burst-sizes 0x7f {depends on the number of entries in the reg property}

local-mac-address 8 0 0x20 0x0c 0xea 0x41 {the built-in Media Access Control addr.}

152 Writing FCode 2.x Programs—November 1995

9

Device Driver Examples
If the network device is not to be bootable, it likely needs only one level tree.
The examples below, however, show device drivers for two-level trees.

Simple Network Device Example

At minimum, a network device driver need only provide the desired tree
structure and to publish all the necessary properties to identify the devices.

\ QED identification PROM
\ qed-idprom.fth

fcode-version1

 fload board.fth
 headers
 : copyright (--)
 ." Two-level QED-IDPROM 1.1 " cr
 ." Copyright 1992-1993 Sun Microsystems, Inc. All Rights Reserved" cr
 ;

 : identify-qed (--)
 create-qec-attributes
 4 0 do
 new-device
 i create-qe-attributes
 finish-device
 loop
 ;
 identify-qed

end0

\ ---
\ board.fth
\ To define required properties for QED devices.

 headers
 my-address constant my-sbus-addr
 my-space constant my-sbus-space
 headerless

Network Devices 153

9

\ Define the address map.
\ MED Address Map PA[18:0] (totally 512KB address space).
\ h# 00.0000 constant eprom-pa
\ h# 00.8000 constant /eprom \ 32KB used, 64KB total
 h# 01.0000 constant mace-regs-offset
 h# 01.0000 constant mace0-base
 h# 01.4000 constant mace1-base
 h# 01.8000 constant mace2-base
 h# 01.c000 constant mace3-base
 h# 00.4000 constant /mace-regs \ 16KB per channel, 64KB total
 h# 02.0000 constant global-regs-offset
 h# 01.0000 constant /global-regs \ 64KB total
 h# 03.0000 constant channel-regs-offset
 h# 03.0000 constant channel0-base
 h# 03.4000 constant channel1-base
 h# 03.8000 constant channel2-base
 h# 03.c000 constant channel3-base
 h# 00.4000 constant /channel-regs \ 16KB per channel, 64KB total
 h# 04.0000 constant locmem-pa
 h# 01.0000 constant /locmem \ 64KB used, 256KB total

\ Real size of mace/qec-global/qec-channel registers.
 20 constant /qec-mace-regs
 14 constant /qec-global-regs
 34 constant /qec-channel-regs

\ Miscellaneous constant definitions.
 1 constant #channels
 h# 4000 constant max-frame-size (d# 1536 for le)
 d# 48 constant address-bits
\ Hardwired SBus interrupt level for MED.
 4 constant sbus-qe-intr

 : xdrreg (addr space size -- adr len) >r xdrphys r> xdrint xdr+ ;
 : xdrranges (offs bustype phys offset size -- adr len)
 >r >r >r xdrphys r> r> r> xdrreg xdr+
 ;
 : offset>physical-addr (offset -- paddr.lo paddr.hi)
 my-sbus-addr + my-sbus-space
 ;

headers
 : create-qec-attributes (--)

\ QED identification PROM

154 Writing FCode 2.x Programs—November 1995

9

Sample Driver With Test and Debugging Methods

This version of a network device driver is still non-bootable, but it shows how
an intermediate step of driver can be used to debug and test the device during
or after development.

The coding techniques shown in this and the following examples are:

 " qec" name
 " SUNW,595-3198" xdrstring " model" attribute \ 595-3198-01
 global-regs-offset offset>physical-addr /global-regs xdrreg
 locmem-pa offset>physical-addr /locmem xdrreg xdr+
 " reg" attribute

 0 0 channel0-base offset>physical-addr /channel-regs xdrranges
 0 1 channel1-base offset>physical-addr /channel-regs xdrranges xdr+
 0 2 channel2-base offset>physical-addr /channel-regs xdrranges xdr+
 0 3 channel3-base offset>physical-addr /channel-regs xdrranges xdr+
 0 h# 10 mace0-base offset>physical-addr /mace-regs xdrranges xdr+
 0 h# 11 mace1-base offset>physical-addr /mace-regs xdrranges xdr+
 0 h# 12 mace2-base offset>physical-addr /mace-regs xdrranges xdr+
 0 h# 13 mace3-base offset>physical-addr /mace-regs xdrranges xdr+
 " ranges" attribute

 #channels xdrint " #channels" attribute
 \ One interrupt per qec, not one interrupt per channel.
 sbus-qe-intr xdrint " interrupts" attribute
 sbus-qe-intr 0 intr \ Create intr property.
 ;
 : create-qe-attributes (chan# --)
 >r
 " qe" xdrstring " name" attribute
 r@ xdrint " channel#" attribute
 max-frame-size xdrint " max-frame-size" attribute
 address-bits xdrint " address-bits" attribute
 0 r@ /channel-regs xdrreg
 0 r@ h# 10 + /mace-regs xdrreg xdr+
 " reg" attribute
 r> drop
 ;

\ QED identification PROM

Network Devices 155

9

• Each qe node has exactly the same set of instance variables as each of the
other qe nodes.

• All the qe nodes share the same qe driver source code defined in the first qe
node (qe0).

\ QED test PROM.
\ qed-test.fth

fcode-version2
 headers
 fload board.fth
 : copyright (--)
 ." QED-TEST 1.1 " cr
 ." Copyright 1992-1993 Sun Microsystems, Inc. All Rights Reserved" cr
 ;

\
\ ***** The following is the FCode driver for version2 CPU PROMs. *****
\
 \ Tokenizer 2.1 or later has the word 'instance'
 : instance (--) version 20001 >= if instance then ;

\ Create qec device node.
 create-qec-attributes
 fload qec-test.fth \ qec test code.

\ Create qe0 device node.
 new-device
 0 create-qe-attributes
 : dma-sync (virt-addr dev-addr size --) " dma-sync" $call-parent ;

 \ ***** qe0 instance variables *****
 0 instance value mace \ virtual address of Mace registers base
 0 instance value qecc \ virtual address of Qec channel registers base
 instance variable my-channel# \ qe channel#
 my-channel# off
 fload qe-test.fth \ qe test code.

 \ ***** qe0 external methods *****
 external
 : selftest (-- fail?)
 qe0-selftest
 ;
 : open (-- okay?)
 qe0-open

156 Writing FCode 2.x Programs—November 1995

9

 ;
 : close (--)
 qe0-close
 ;
 : reset (--)
 qe0-reset
 ;
 headers
 finish-device

\ Create qe1 device node.
 new-device
 1 create-qe-attributes

 \ ***** qe1 instance variables *****
 0 instance value mace \ virtual address of Mace registers base
 0 instance value qecc \ virtual address of Qec channel registers base
 instance variable my-channel# \ qe channel#
 my-channel# off

 \ ***** qe1 external methods *****
 external
 : selftest (-- fail?)
 qe0-selftest
 ;
 : open (-- okay?)
 qe0-open
 ;
 : close (--)
 qe0-close
 ;
 : reset (--)
 qe0-reset
 ;
 headers
 finish-device

\ Create qe2 device node.
 new-device
 2 create-qe-attributes

 \ ***** qe2 instance variables *****
 0 instance value mace \ virtual address of Mace registers base
 0 instance value qecc \ virtual address of Qec channel registers base

\ QED test PROM.

Network Devices 157

9

 instance variable my-channel# \ qe channel#
 my-channel# off

 \ ***** qe2 external methods *****
 external
 : selftest (-- fail?)
 qe0-selftest
 ;
 : open (-- okay?)
 qe0-open
 ;
 : close (--)
 qe0-close
 ;
 : reset (--)
 qe0-reset
 ;
 headers
 finish-device

\ Create qe3 device node.
 new-device
 3 create-qe-attributes

 \ ***** qe3 instance variables *****
 0 instance value mace \ virtual address of Mace registers base
 0 instance value qecc \ virtual address of Qec channel registers base
 instance variable my-channel# \ qe channel#
 my-channel# off

 \ ***** qe3 external methods *****
 external
 : selftest (-- fail?)
 qe0-selftest
 ;
 : open (-- okay?)
 qe0-open
 ;
 : close (--)
 qe0-close
 ;
 : reset (--)
 qe0-reset
 ;

\ QED test PROM.

158 Writing FCode 2.x Programs—November 1995

9

 headers
 finish-device

end0

\ ---
\ qec-test.fth
\ Test code for the qec node.

/locmem #channels / value chmem
chmem 2/ value rxbufsize

\ ***** qed utility (from qed-util.fth) *****

: lwrt-rd-cmp (mask data adr -- success?)
 2dup rl! rl@ rot and =
;
: cwrt-rd-cmp (mask data adr -- success?)
 2dup rb! rb@ rot and =
;
instance defer wrt-rd-cmp
' lwrt-rd-cmp is wrt-rd-cmp
d# 32 instance value #bits

external
: wlk-test (mask adr #bits -- success?)
 dup is #bits
 d# 32 = if ['] lwrt-rd-cmp else ['] cwrt-rd-cmp then is wrt-rd-cmp
 true -rot (true mask adr)
 #bits 0
 do (flag0 mask adr)
 over 1 i << and ?dup if (flag0 mask adr data)
 >r 2dup r> swap wrt-rd-cmp false = (flag0 mask adr flag)
 if rot drop false -rot leave then
 then
 loop
 2drop
;

headers
instance variable ms-timeout

external
: set-ms-timeout (#ms --) ms-timeout ! ;

\ QED test PROM.

Network Devices 159

9

: ms-timeout? (-- flag)
 ms-timeout @ dup if
 1- ms-timeout ! 1 ms false
 else
 drop true
 then
;
headers

\ ***** qec global register (from global.h.fth) *****
\
\ QEC Global register set.
\

\ Virtual addresses of QEC global registers.
\ The actual addresses will be assigned later.
0 instance value qecg

hex
\ global control register (RW)
: qecg-control (-- vaddr) qecg ;
: qecg-control@ (-- data) qecg-control rl@ ;
: qecg-control! (data --) qecg-control rl! ;

headerless
\ For Global Control Register.
f000.0000 constant gcr-mode \ Mode mask
4000.0000 constant gcr-mace \ Mace mode
1 constant gcr-reset \ Reset bit (0), 1 to enable reset.

headers

\ ***** qec map (from qecmap.fth) *****

0 instance value locmem-base
false value dma-sync?
0 value dma-sync-adr

: find-dma-sync (--)
 " dma-sync" my-parent ihandle>phandle find-method if
 true is dma-sync?
 is dma-sync-adr
 then
;

\ QED test PROM.

160 Writing FCode 2.x Programs—November 1995

9

find-dma-sync

external
: decode-unit (adr len -- address space) decode-2int ;
: map-in (offset slot# #bytes -- virtual) " map-in" $call-parent ;
: map-out (adr len --) " map-out" $call-parent ;
: dma-map-in (vaddr n cache? -- devaddr) " dma-map-in" $call-parent ;
: dma-map-out (vaddr devaddr n --) " dma-map-out" $call-parent ;
: dma-alloc (size -- addr) " dma-alloc" $call-parent ;
: dma-free (addr size --) " dma-free" $call-parent ;

\ Dma-sync could be dummy routine if parent device doesn't support.
\ sun4c Proms may not support it.
: dma-sync (virt-adr dev-adr size --)
 dma-sync? if
 dma-sync-adr my-parent call-package
 else
 3drop
 then
;

headers

: map-qec-regs (--)
 global-regs-offset my-sbus-addr + my-sbus-space /qec-global-regs
 " map-in" $call-parent is qecg
;
: unmap-qec-regs (--)
 qecg /qec-global-regs " map-out" $call-parent
 0 is qecg
;

: map-locmem (--)
 locmem-pa my-sbus-addr + my-sbus-space /locmem
 " map-in" $call-parent is locmem-base
;
: unmap-locmem (--)
 locmem-base /locmem " map-out" $call-parent
 0 is locmem-base
;

\ ***** qec test (from qectest.fth) *****
hex

\ QED test PROM.

Network Devices 161

9

headerless
\ 18 constant /qec-global-regs
\ Define the mask bits that can be tested for each global register.
create gl-reg-masks
 0000.001e , 0000.0000 , 0000.0000 , 0001.e000 ,
 0000.f000 , 0000.f000 ,

\ Test Qec global registers.
: gl-reg-test (-- success?)
 true
 /qec-global-regs 0 do (flag0)
 gl-reg-masks i + @
 qecg i + d# 32 wlk-test (flag0 flag)
 false = if drop false leave then (flag0)
 4 +loop
;

\ Perform register test for the qec node.
: qec-reg-test (-- success?)
 diagnostic-mode? if
 ." Qec register test -- "
 then
 gl-reg-test
 diagnostic-mode? if
 dup if ." succeeded." else ." failed." then cr
 then
;

headers

\ ***** qec package *****

: reset-qec-global (-- fail?)
 gcr-reset qecg-control! \ Issue global reset.
 d# 100 set-ms-timeout
 begin
 qecg-control@ gcr-reset and
 while
 ms-timeout? if ." Global reset failed" cr true exit then
 repeat
 false
;
: identify-chip (-- okay?)

\ QED test PROM.

162 Writing FCode 2.x Programs—November 1995

9

 qecg-control@ gcr-mode and gcr-mace =
;

external
: open (-- true)
 map-qec-regs
 identify-chip dup 0= if
 unmap-qec-regs
 then
;
: close (--)
 qecg if unmap-qec-regs then
;

: selftest (-- fail?)
 qecg (qecg)
 map-qec-regs
 qec-reg-test (qecg success?)
 unmap-qec-regs
 swap is qecg (success?)
 0= (fail?)
;

: reset (--)
 qecg
 map-qec-regs
 reset-qec-global drop
 unmap-qec-regs
 is qecg
;

headers

\ ---
\ qe-test.fth
\ Test code for the qe node.

: wlk-test (mask adr #bits -- success?) " wlk-test" $call-parent ;
: set-ms-timeout (#ms --) " set-ms-timeout" $call-parent ;
: ms-timeout? (-- flag) " ms-timeout?" $call-parent ;

\ ***** qe map (from qemap.fth) *****

headers

\ QED test PROM.

Network Devices 163

9

\ instance variable my-channel# my-channel# off
: my-channel#! (channel# --) my-channel# ! ;

: my-chan# (-- channel#)
 my-channel# @
;
: mace-regs (-- devaddr space size)
 my-sbus-addr mace-regs-offset + /mace-regs my-chan# * +
 my-sbus-space /qec-mace-regs
;

: map-mace (--)
 mace-regs " map-in" my-parent $call-method is mace
;
: unmap-mace (--)
 mace /qec-mace-regs " map-out" my-parent $call-method
 0 is mace
;

: channel-regs (-- devaddr space size)
 my-sbus-addr channel-regs-offset + /channel-regs my-chan# * +
 my-sbus-space /qec-channel-regs
;

: map-channel (--)
 channel-regs " map-in" my-parent $call-method is qecc
;
: unmap-channel (--)
 qecc /qec-channel-regs " map-out" my-parent $call-method
 0 is qecc
;

: map-chips (--)
 mace 0= if \ Do mapping if it is unmapped.
 map-mace
 map-channel
 then
;
: unmap-chips (--)
 mace if \ Do unmapping if it is mapped.
 unmap-channel
 unmap-mace
 then
;

\ QED test PROM.

164 Writing FCode 2.x Programs—November 1995

9

\ ***** qe test (from qeregtst.fth) *****

hex

\ Define the mask bits that can be tested for each register.
create ch-reg-masks
 0000.0004 , 0000.0000 , ffff.f800 , ffff.f800 ,
 0000.0001 , 0000.0001 , 001f.001f , 1fc0.3fc0 ,
 0000.fffe , 0000.fffe , 0000.fffe , 0000.fffe ,
 0000.00ff ,
create mace-reg-masks
 00 c, 00 c, 89 c, 00 c, 00 c, 0d c, 00 c, 00 c,
 00 c, 67 c, 00 c, 70 c, f3 c, ef c, 04 c, 5f c,
 00 c, 00 c, 00 c, 00 c, 00 c, 00 c, 00 c, 00 c,
 00 c, 00 c, 00 c, 00 c, 00 c, 00 c, 00 c, 00 c,

\ Test Qec per channel registers.
: ch-reg-test (-- flag)
 true
 /qec-channel-regs 0 do (flag0)
 ch-reg-masks i + @
 qecc i + d# 32 wlk-test (flag0 flag)
 false = if drop false leave then (flag0)
 4 +loop
;
\ Test Mace registers.
: mace-reg-test (-- flag)
 true
 /qec-mace-regs 0 do (flag0)
 mace-reg-masks i + c@
 mace i + 8 wlk-test (flag0 flag)
 false = if drop false leave then (flag0)
 loop
;

\ Perform register test for the qe node.
: qe-reg-test (-- success?)
 diagnostic-mode? if
 ." Qe register test -- "
 then
 ch-reg-test
 mace-reg-test and
 diagnostic-mode? if

\ QED test PROM.

Network Devices 165

9

 dup if ." succeeded." else ." failed." then cr
 then
;

\ ***** qe0 package *****

headerless
\ For MACE BIU Configuration Control (R11). (RW)
01 constant m-swrst \ software reset
: mace-biucc (-- vaddr) h# 0b mace + ;
: mace-biucc@ (-- data) mace-biucc rb@ ;
: mace-biucc! (data --) mace-biucc rb! ;
\ For QEC per channel control reg. (RW)
02 constant c-rst
: qecc-control (-- vaddr) qecc ;
: qecc-control@ (-- data) qecc-control rl@ ;
: qecc-control! (data --) qecc-control rl! ;

headers
: set-my-channel# (--)
\ If don't find the channel attribute, use 0.
 " channel#" get-my-attribute if 0 else xdrtoint nip nip then
 my-channel#!
;
\ Reset (or stop) the qec channel.
\ Issue a soft reset to the desired Mace.
\ Then issue a soft reset to the desired channel in QEC.
\ Chip reset algorithm:
\ Set the reset bit then wait until the reset bit cleared.
\ Timeout in 0.1 sec if fail.
\
: channel-reset (-- fail?)
 m-swrst mace-biucc! \ Issue Mace reset.
 d# 100 set-ms-timeout
 begin
 mace-biucc@ m-swrst and
 while
 ms-timeout? if ." Cannot reset Mace" cr true exit then
 repeat
 c-rst qecc-control! \ Reset QEC channel registers.
 d# 100 set-ms-timeout
 begin
 qecc-control@ c-rst and
 while

\ QED test PROM.

166 Writing FCode 2.x Programs—November 1995

9

Bootable Network Device Driver Example

The example below shows a complete version of a bootable network driver. It
implements the selftest method callable by OpenBoot test and test-all
commands and the watch-net method callable by OpenBoot watch-net and
watch-net-all commands.

 ms-timeout? if ." Cannot reset QEC channel" cr true exit then
 repeat
 false
;

external
: qe0-selftest (-- flag) \ Flag 0 if passes test.
 set-my-channel#
 map-chips
 qe-reg-test (success?)
 unmap-chips
 0= (fail?)
;

: qe0-open (-- okay?)
 set-my-channel#
 mac-address drop 6 xdrstring " mac-address" attribute
 true
;
: qe0-close (--)
;
: qe0-reset (--)
 set-my-channel#
 map-chips channel-reset drop unmap-chips
;
headers

\ QED bootable driver
\ qed.fth

fcode-version1
 headers
 fload board.fth

\ QED test PROM.

Network Devices 167

9

 : copyright (--)
 ." QED 1.1 " cr
 ." Copyright 1992-1993 Sun Microsystems, Inc. All Rights Reserved" cr
 ;

\
\ ***** The following is the FCode driver for version2 CPU PROMs. *****
\
 \ Tokenizer 2.1 or later has the word 'instance'
 : instance (--) version 20001 >= if instance then ;

\ Create qec device node.
 create-qec-attributes
 fload qec.fth \ qec driver.

\ Create qe0 device node.
 new-device
 0 create-qe-attributes
 " network" device-type
 fload qeinstance.fth \ qe instance variables.
 : dma-sync (virt-addr dev-addr size --) " dma-sync" $call-parent ;
 fload qe.fth \ qe driver.
 fload qe-package.fth \ qe external methods.
 finish-device

\ Create qe1 device node.
 new-device
 1 create-qe-attributes
 " network" device-type
 fload qeinstance.fth \ qe instance variables.
 fload qe-package.fth \ qe external methods.
 finish-device

\ Create qe2 device node.
 new-device
 2 create-qe-attributes
 " network" device-type
 fload qeinstance.fth \ qe instance variables.
 fload qe-package.fth \ qe external methods.
 finish-device

\ Create qe3 device node.
 new-device
 3 create-qe-attributes

\ QED bootable driver

168 Writing FCode 2.x Programs—November 1995

9

 " network" device-type
 fload qeinstance.fth \ qe instance variables.
 fload qe-package.fth \ qe external methods.
 finish-device

end0

\ ---
\ qec.fth

/locmem #channels / value chmem
chmem 2/ value rxbufsize

fload qed-util.fth \ Not included, refer to example 2.
fload global.h.fth \ Not included.
fload qecmap.fth \ Not included, refer to example 2.
fload qectest.fth \ Not included, refer to example 2.

: reset-qec-global (-- fail?)
 gcr-reset qecg-control! \ Issue global reset.
 d# 100 set-ms-timeout
 begin
 qecg-control@ gcr-reset and
 while
 ms-timeout? if ." Global reset failed" cr true exit then
 repeat
 false
;
: qec-init (--)
 chmem qecg-memsize!
 rxbufsize qecg-rxsize!
 chmem rxbufsize - qecg-txsize!
 gcr-burst16 qecg-control! \ SBus parity disabled, Rx/Tx equal priority.
;
: identify-chip (-- okay?)
 qecg-control@ gcr-mode and gcr-mace =
;

external
: open (-- true)
 map-qec-regs
 identify-chip dup if
 qec-init
 else unmap-qec-regs

\ QED bootable driver

Network Devices 169

9

 then
;
: close (--)
 qecg if unmap-qec-regs then
;

: selftest (-- fail?)
 qecg (qecg)
 map-qec-regs
 qec-reg-test (qecg success?)
 unmap-qec-regs
 swap is qecg (success?)
 0= (fail?)
;

: reset (--)
 qecg
 map-qec-regs
 reset-qec-global drop
 unmap-qec-regs
 is qecg
;

headers

\ ---
\ qeinstance.fth
\ Define instance words for qe driver.

\ headerless
\ mace.h.fth:
0 instance value mace \ virtual address of Mace registers base
\ channel.h.fth:
0 instance value qecc \ virtual address of Qec channel registers base
\ qemap.fth:
instance variable my-channel# \ qe channel#
 my-channel# off
\ qecore.fth:
\ CPU base address of tmd, rmd, tbuf, rbuf rings.
0 instance value cpu-dma-base \ base address of dma memory object viewed by cpu
0 instance value tmd0 \ transmit message descriptor#0
0 instance value rmd0 \ receive message descriptor#0
0 instance value tbuf0 \ base address of transmit buffer
0 instance value rbuf0 \ base address of receive buffers

\ QED bootable driver

170 Writing FCode 2.x Programs—November 1995

9

\ IO (or dvice) base address of tmd, rmd, tbuf, rbuf rings.
0 instance value io-dma-base \ base addr of dma memory object viewed by device
0 instance value io-tmd0 \ transmit message descriptor#0
0 instance value io-rmd0 \ receive message descriptor#0
0 instance value io-tbuf0 \ base address of transmit buffer
0 instance value io-rbuf0 \ base address of receive buffers
\ Required total Dma buffer size for all rings.
0 instance value qe-dma-size \ Amount of memory mapped
\ *** Define required variables ***
instance variable status \ Accumulated channel status word.
instance variable restart? \ Restart? flag on after serious error.
instance variable nextrmd \ Point to next rmd.
instance variable nexttmd \ tmd0 nexttmd !, never changes presently
instance variable mode \ To store loopback control & promiscuous info.
6 instance buffer: this-en-addr \ Contain ethernet address
instance defer .receive-error
instance defer .error
instance defer .transmit-error
\ timed-receive.fth:
instance variable alarmtime
instance defer handle-broadcast-packet
\ qetest.fth:
instance variable qe-verbose? \ Flag for displaying diagnostic message.
 qe-verbose? off
instance variable ext-lbt? \ Flag for execution of external loopback test.
 ext-lbt? off
\ qe0-package.fth:
6 instance buffer: macbuf \ Contain mac address.
0 instance value obp-tftp \ Contain ihandle of TFTP package.
instance variable qe-nbytes \ Buffer size of higher layer receiver.
instance variable qe-buf \ Buffer address of higher layer receiver.

headers
\ ---
\ qe.fth

: wlk-test (mask adr #bits -- success?) " wlk-test" $call-parent ;
: set-ms-timeout (#ms --) " set-ms-timeout" $call-parent ;
: ms-timeout? (-- flag) " ms-timeout?" $call-parent ;

fload mace.h.fth \ Not included.
fload channel.h.fth \ Not included.
fload qemap.fth \ Not included, refer to example 2.
fload qecore.fth

\ QED bootable driver

Network Devices 171

9

fload timed-receive.fth
fload qeregtest.fth \ Not included, refer to example 2.
fload qetest.fth
fload qe0-package.fth

\ ---
\ qe0-package.fth
\ Define the required methods for the network qe driver

set-my-channel#
external
: read (buf len -- -2 | actual-len)
 qe0-read
;
: write (buf len -- actual-len)
 qe0-write
;
: selftest (-- flag) \ Flag 0 if passes test.
 qe0-selftest
;
: watch-net (--)
 qe0-watch-net
;
: load (adr -- len)
 qe0-load
;
: open (-- okay?)
 qe0-open
;
: close (--)
 qe0-close
;
: reset (--)
 qe0-reset
;
headers
\ ---
\ qecore.fth
\ Main core of QEC/MACE per channel Tx/Rx drivers.

\
\ SQEC has the following features:
\ - Supports four independent IEEE 802.3 10BASE-T twisted pair interfaces.
\ - Supports SBus parity checking.

\ QED bootable driver

172 Writing FCode 2.x Programs—November 1995

9

\ - Supports 32 bit of DVMA addressing.
\ - Automatic rejection/discard of receive/transmit packets
\ when receive/transmit suffers from errors.
\

headerless
\ *** Rx/Tx Ring Descriptor Layout ***

struct (Rx/Tx Descriptor)
4 field >flags \ OWN, SOP, EOP, size/length
4 field >addr \ buffer address
(total-length) constant /md

hex
\ Definition for >flag field.
\ Bit[10:0] - Rx for W is buffer size, Rx for R is byte count, Tx for W is byte count.
8000.0000 constant own \ For both Rx & Tx.
4000.0000 constant stp \ For Tx only.
2000.0000 constant enp \ For Tx only.
 07ff constant lenmask
\ Value to write to message descriptor to enable it for use
enp stp or own or constant ready

\ *** buffer sizes and counts ***

\ Xmit/receive buffer structure.
\ This structure is organized to meet the following requirements:
\ - starts on an QEBURSTSIZE (64) boundary.
\ - qebuf is an even multiple of QEBURSTSIZE.
\ - qebuf is large enough to contain max frame (1518) plus
\ QEBURSTSIZE for alignment adjustments.
\
\ Similar to the 7990 ethernet controller, the QEC and the Software driver
\ communicate via ring descriptors. There are separate Rx & Tx descriptor
\ rings of 256 entries. Unlike 7990 the number of descriptor entries
\ is not programmable (fixed at 256 entries).

decimal
 /md constant /rmd \ rmd size = 8
 /md constant /tmd \ tmd size = 8
1792 constant /rbuf \ 7*256 receive buffer size at least 1518+128=1636
1600 constant /tbuf \ transmit buffer size
 256 constant #rmds
 256 constant #tmds

\ QED bootable driver

Network Devices 173

9

\ 1 constant #tbufs \ Just allocate one buffer for transmiter buffer pool.
 32 constant #rbufs \ # buffers allocated for receiver buffer pool.

#rmds /rmd * value /rmds
#tmds /tmd * value /tmds

headers

: restart?-on (--) restart? on ;

\ Conversion between cpu dma address and io dma address.
: cpu>io-adr (cpu-adr -- io-adr) cpu-dma-base - io-dma-base + ;
: io>cpu-adr (io-adr -- cpu-adr) io-dma-base - cpu-dma-base + ;

\ buffer# to address calculations
: rmd#>rmdaddr (n -- addr) /rmd * rmd0 + ;
: rbuf#>rbufaddr (n -- addr) #rbufs mod /rbuf * io-rbuf0 + ;
: tmd#>tmdaddr (n -- addr) /tmd * tmd0 + ;
\ address to buffer# calculations
: rmdaddr>rmd# (addr -- n) rmd0 - /rmd / ;

\ *** Qe message descriptor ring access ***

\ Get current rx/tx message descriptor ring pointer (on CPU side).
: nextrmd@ (-- cpu-rmd-addr) nextrmd @ ;
: nexttmd@ (-- cpu-tmd-addr) nexttmd @ ;

\ get location of buffer
: addr@ (rmd/tmd-addr -- buff-addr)
 >addr rl@
;

: status@ (rmd/tmd-addr -- statusflag) >flags rl@ ;

\ gets length of incoming message, receive only
: length@ (rmdaddr -- messagelength) >flags rl@ lenmask and ;

\ Set current rx/tx message descriptor ring pointer (on CPU side).
: nextrmd! (cpu-rmd-addr --) nextrmd ! ;
: nexttmd! (cpu-tmd-addr --) nexttmd ! ;

\ Store buffer address into message descriptor
: addr! (buff-addr rmd/tmd-addr --)
 >addr rl!

\ QED bootable driver

174 Writing FCode 2.x Programs—November 1995

9

;

\ Set length of message to be sent - transmit only
: length! (length rmd/tmd-addr --) >flags rl! ;

\ *** Qe synchronization ***

\ Sync the message descriptor after cpu or device writes it.
: qesynciopb (md --)
 dup cpu>io-adr /md (cpu-addr io-addr size)
 dma-sync
;
\ Sync the transmitting/received buffer after cpu/device writes it.
: qesyncbuf (md --)
 dup addr@ dup io>cpu-adr swap (md cpu-buf-addr io-buf-addr)
 rot length@ (cpu-buf-addr io-buf-addr size)
 dma-sync
;

\ The buffer was already put back, put the descriptor in the chip's ready list
: give-buffer (rmd/tmd-addr --)
 dup >flags dup rl@ ready or swap rl! (md)
 \ Sync the descriptor so the device sees it.
 qesynciopb ()
;

\ *** Qe error handling ***

: get-qe-status (-- channel-status)
 qecc-status@ status @ or dup status !
;

\ get receive errors, receive only
: rerrors@ (-- errorsflag) get-qe-status c-rerr-mask and ;

\ gets transmit errors, transmit only
: xerrors@ (-- errorsflag) get-qe-status c-terr-mask and ;

\ Clear transmit/receive/all error flags
: clear-terrors (--) status @ c-terr-mask not and status ! ;
: clear-rerrors (--) status @ c-rerr-mask not and status ! ;
: clear-errors (--) status off restart? off ;
: clear-tint (--) status @ c-tint not and status ! ;

\ QED bootable driver

Network Devices 175

9

\ *** Basic initialization routines ***

\ words to set loopback control mode in UTR(R29) & promiscuous mode in MACCC(R13)
\ Bit<7> to control promiscuous mode, Bits<2:1> to control loopback mode,
\ Bit<0> to test the cable connection.
1 constant m-cable

: set-loop-mode (--) mode @ m-loop-mask and m-rpa or mace-utr! ;
: set-prom-mode (--) mode @ m-prom and mace-maccc! ;
: check-cable-mode? (-- flag) mode @ m-cable = ;
: external-loopback? (-- flag) mode @ m-loop-mask and m-loop-ext = ;

\ Check existence of no-tpe-test property to initialize disable-tpe-link-test bit.
\ Enable tpe-link-test if the property doesn't exist,
\ or disable tpe-link-test if the property exists.
: init-link-test (--)
 \ Disable link test for external loopback mode.
 external-loopback? if m-dlnktst mace-phycc! exit then
 " no-tpe-test" get-my-attribute if 0
 else 2drop m-dlnktst then
 mace-phycc!
;
\ Enable/disable tpe-link-test
: setup-link-test (enable-flag --)
 " no-tpe-test" " get-attribute" eval if
 \ Property doesn't exist, already enabled.
 0= if 0 0 " no-tpe-test" attribute then
 else 2drop \ Currently disabled.
 if " no-tpe-test" delete-attribute then
 then
;
\
\ After doing a port select of the twisted pair port, the
\ driver needs to give ample time for the MACE to start
\ sending pulses to the hub to mark the link state up.
\ Loop here and check of the link state has gone into a
\ pass state.
\
: link-state-fail? (-- fail?)
 d# 1000 set-ms-timeout
 begin
 mace-phycc@ m-lnkst and
 while
 ms-timeout? if

\ QED bootable driver

176 Writing FCode 2.x Programs—November 1995

9

 check-cable-mode? if
 ." failed, transceiver cable problem? or check the hub." cr
 true
 else
\ m-dlnktst mace-phycc!
 false
 then
 exit
 then
 repeat
 check-cable-mode? if ." passed." cr then
 false
;

: set-physical-address (--)
 m-addrchg mace-iac!
 begin mace-iac@ m-addrchg and 0= until
 m-phyaddr mace-iac!
 \ Store least significant byte first.
 this-en-addr 6 bounds do i c@ mace-padr! loop
 0 mace-iac!
;

: set-address (en-addr len --)
 drop this-en-addr 6 cmove ;

: set-logaddr-filter (--)
 m-addrchg mace-iac!
 begin mace-iac@ m-addrchg and 0= until
 m-logaddr mace-iac!
 8 0 do 0 mace-ladrf! loop
 0 mace-iac!
;

\ Reset (or stop) the qec channel.
\ Issue a soft reset to the desired Mace.
\ Then issue a soft reset to the desired channel in QEC.
\ Chip reset algorithm:
\ Set the reset bit then wait until the reset bit cleared.
\ Timeout in 0.1 sec if fail.
\
: channel-reset (-- fail?)
 m-swrst mace-biucc! \ Issue Mace reset.
 d# 100 set-ms-timeout

\ QED bootable driver

Network Devices 177

9

 begin
 mace-biucc@ m-swrst and
 while
 ms-timeout? if ." Cannot reset Mace" cr true exit then
 repeat
 c-rst qecc-control! \ Reset QEC channel registers.
 d# 100 set-ms-timeout
 begin
 qecc-control@ c-rst and
 while
 ms-timeout? if ." Cannot reset QEC channel" cr true exit then
 repeat
 false
;

\ Initialize a single message descriptor
: rmd-init (rbufaddr rmdaddr --)
 /rbuf over length! \ Buffer length
 addr! \ Buffer address
;

\ Set up the data structures necessary to receive a packet
: init-rxring (--)
 rmd0 nextrmd!
 #rmds 0 do i rbuf#>rbufaddr i rmd#>rmdaddr rmd-init loop
;
\
\ Initially first N=#rbufs descriptors with one-to-one association with a
\ buffer are made ready, the rest (256-N) not ready, then turn on receiver.
\ Whenver a receive buffer is processed, the information is copied out,
\ the buffer will be linked to the ((current+N)%256) entry then make the
\ entry is ready. Ie. The window of N ready descriptor/buffer pair is
\ moving around the ring.
\
: enable-rxring (--)
 #rbufs 0 do i rmd#>rmdaddr give-buffer loop
;

\ transmit buffer initialize routine
: init-txring (--)
 tmd0 nexttmd!
 #tmds 0 do io-tbuf0 i tmd#>tmdaddr addr! loop
;

\ QED bootable driver

178 Writing FCode 2.x Programs—November 1995

9

\ *** Receive packet routines ***

\ Utility words used in .rerr-text & .terr-text.
: bits (mask #right-bits -- mask' right-bits)
 >r dup d# 32 r@ - tuck << swap >> (mask bits ; RS: #bits)
 swap r> >> swap (mask' bits)
;
: 1bit (mask -- mask' rightest-bit-value)
 1 bits
;

: .rerr-text (--)
 rerrors@
 1bit if ." SBus Rx Error Ack " restart?-on then
 1bit if ." SBus Rx Parity " restart?-on then
 1bit if ." SBus Rx Late " restart?-on then
 1bit if ." Data Buffer Too Small " then
\ 1bit if ." Rx packet Dropped " then
 1bit drop \ Skip drop error, happens all the time
 1bit drop \ Skip receive interrupt bit.
 1bit if ." CRC error " then
 1bit if ." Framing error " then
 1bit if ." MACE Rx Late Collision " then
 1bit if ." MACE FIFO overflow " then
 1bit if ." MACE Missed Counter Overflow " then
 1bit if ." MACE Runt Counter Overflow " then
 1bit if ." MACE Rx Coll Counter Overflow " then
 1bit if ." Collision error " then
 drop cr
;

: (.receive-error (--)
 rerrors@ if .rerr-text then
;
' (.receive-error is .receive-error
' (.receive-error is .error

: to-next-rmd (--)
 /rmd nextrmd +!
 nextrmd@ rmd0 - /rmds >= if rmd0 nextrmd! then
;

\ *** Transmit packet routines ***

\ QED bootable driver

Network Devices 179

9

: to-next-tmd (--)
 /tmd nexttmd +!
 nexttmd@ tmd0 - /tmds >= if tmd0 nexttmd! then
;

\ Ignores the size argument, and uses the standard buffer.
: get-buffer (dummysize -- buffer)
 drop nexttmd@ addr@ (io-tbuf)
 io>cpu-adr (cpu-tbuf)
;

\ Display time domain reflectometry information
\ : .tdr (--) ;

: .terr-text (--)
 xerrors@
 d# 16 bits drop \ Skip the receiver bits.
 1bit if ." SBus Tx Error Ack " restart?-on then
 1bit if ." SBus Tx Parity " restart?-on then
 1bit if ." SBus Tx Late " restart?-on then
 1bit if ." QEC Chained Tx Descriptor Error " restart?-on then
 1bit if ." QEC Tx Retry Counter Overflow " then
 1bit drop \ Skip transmit interrupt bit
 1bit if ." MACE >1518 Babble " then
 1bit if ." MACE Jabber " then
 1bit if ." MACE FIFO Underflow " then
 1bit if ." Tx Late Collision " then
 1bit if ." Too Many Retries " then
 1bit if ." Lost Carrier (transceiver cable problem?) " then
 1bit if ." Excessive Defer " then
 drop cr
;

\ print summary of any HARD errors
: (.transmit-error (--)
 xerrors@ if .terr-text then
;
' (.transmit-error is .transmit-error

\ Set up CPU page maps
: map-qe-buffers (--)
 #rbufs /rbuf *
\ 2KB (8*256) for tmds & 2KB (8*256) for rmds & 4KB for tbuf
\ ie. one page for tmds & rmds, one page for tbuf, the rest for rbufs.

\ QED bootable driver

180 Writing FCode 2.x Programs—November 1995

9

 h# 2000 +
 is qe-dma-size

 \ Allocate and map that space
 qe-dma-size dma-alloc (dma-adr)

 \ Set the addresses of the various DMA regions used by the cpu.
 dup is cpu-dma-base
 dup is tmd0 h# 800 + (next-address)
 dup is rmd0 h# 800 + (next-address) \ Enough for 256 entries
 dup is tbuf0 h# 1000 + (next-address) \ Enough for max packet
 is rbuf0 ()
 tmd0 qe-dma-size false dma-map-in (io-dma-adr)
 \ Set the addresses of the various DMA regions used by the qec chip.
 dup is io-dma-base
 dup is io-tmd0 h# 800 + (next-address)
 dup is io-rmd0 h# 800 + (next-address) \ Enough for 256 entries
 dup is io-tbuf0 h# 1000 + (next-address) \ Enough for max packet
 is io-rbuf0 ()

;
: unmap-qe-buffers (--)
 tmd0 io-tmd0 qe-dma-size dma-map-out
 tmd0 qe-dma-size dma-free
 0 is tmd0
;

\ *** Chips initialization routines ***

\ Initializes the QEC/Mace chips.
: channel-init (-- fail?)
 \ *** Initialize QEC per channel registers.
 io-rmd0 qecc-rxring!
 io-tmd0 qecc-txring!
 c-rintmask qecc-rintmask! \ Mask RINT.
 c-tintmask qecc-tintmask! \ Mask XINT.
 my-chan# chmem * dup qecc-lmrxwrite! dup qecc-lmrxread!
 rxbufsize + dup qecc-lmtxwrite! qecc-lmtxread!
 c-qecerrmask qecc-qecerrmask!
 c-macerrmask qecc-macerrmask!
 \ *** Initialize MACE registers.
\ 0 mace-xmtfc!
 m-apadxmt mace-xmtfc! \ Set auto pad transmit for transmit frame control
 0 mace-rcvfc! \ Init. receive frame control.

\ QED bootable driver

Network Devices 181

9

 \ Init. Interrupt Mask Register to mask rcvint & cerr and unmask xmtint
 \ according QEC spec.
 m-cerrm m-rcvintm or mace-imr!
 \ Init. Bus Interface Unit Configuration Control to transmit after 64 bytes
 \ have been loaded & byte swap.
 m-xmtsp64 m-xmtspshift << m-bswp or mace-biucc!
 \ Init. FIFO Conf Control to set transmit/receive fifo watermark update
 m-xmtfw16 m-rcvfw32 or m-xmtfwu or m-rcvfwu or mace-fifocc!
 m-10base-t mace-plscc! \ Select twisted pair mode.
 init-link-test \ Init. tpe link test mode.
 set-physical-address \ Set mac address.
 set-logaddr-filter \ Set logical address filter.
 0 mace-iac!
 link-state-fail? \ Wait and check the link state marked up.
 mace-mpc@ drop \ Read to reset counter and to prevent an invalid int.
 set-loop-mode \ Set UTR
 set-prom-mode \ Set MACCC
 m-apadxmt not mace-xmtfc@ and mace-xmtfc!
 m-astrprcv not mace-rcvfc@ and mace-rcvfc!
;

\ Turn on the Mace, ready to tx/rx packets.
: enable-mace (--)
 m-enxmt m-enrcv or mace-maccc@ or mace-maccc!
;

\ *** Ethernet on/off routines ***

\ Initializes the QEC/Mace chips, allocating the necessary memory,
\ and enabling the transmitter and receiver.
: net-on (-- flag) \ true if net-on succeeds
 clear-errors
 mac-address set-address
 channel-reset 0= if
 init-txring
 init-rxring
 channel-init 0= dup if
 enable-rxring
 enable-mace
 then
 else false
 then
;

\ QED bootable driver

182 Writing FCode 2.x Programs—November 1995

9

\ Stop the activity of this net channel.
: net-off (--) channel-reset drop init-link-test ;

\ *** Main receive routines ***

\
\ Whenver a receive buffer is processed, the information is copied out,
\ the buffer will be linked to the ((current+N)%256)th entry then make the
\ entry is ready. Ie. The window of N ready descriptor/buffer pair is
\ moving around the ring.
\
\ If 256 (#rmds) is multiples of N (#rbufs=32), we don't need to link the
\ next-ready-rmd with the current processed rx buffer dynamically. They can
\ be set at the initialization time statically. For run time, we just need
\ to make the ((current+N)%256)th rmd ready.
\
: return-buffer (buf-handle --)
 rmdaddr>rmd# ([io-rbuf] rmd#)
 #rbufs + #rmds mod ([io-rbuf] next-ready-rmd#)
 rmd#>rmdaddr ([io-rbuf] next-ready-rmd)
 dup addr@ over rmd-init (next-ready-rmd ; Set length)
 give-buffer (; Make it ready)
 to-next-rmd \ Bump SW nextrmd to next one
;

: receive-ready? (-- packet-waiting?)
 restart? @ if net-on drop then
 nextrmd@ (rmd)
 \ Sync RMD before CPU looking at it.
 dup qesynciopb (rmd)
 status@ own and 0= (flag)
;

: receive (-- buf-handle buffer len) \ len non-zero if packet ok
 nextrmd@ dup addr@ (rmd io-rbuf-addr)
 io>cpu-adr (rmd cpu-rbuf-addr)
 over length@ (rmd cpu-rbuf-addr len)
 rerrors@ if
 .receive-error clear-rerrors
 then
 dup if (rmd cpu-rbuf-addr len)
 \ Sync the received buffer before CPU looking at it.
 nextrmd@ qesyncbuf (rmd cpu-rbuf-addr len)
 then

\ QED bootable driver

Network Devices 183

9

;

\ *** Main transmit routines ***

: set-timeout (interval --) get-msecs + alarmtime ! ;
: timeout? (-- flag) get-msecs alarmtime @ >= ;
: 10us-wait (--) d# 10 begin 1- dup 0= until drop ;

\ Wait until transmission completed
: send-wait (--)
\ Wait the packet to get to the local memory, ready for MACE to xmit.
 d# 2000 set-timeout \ 2 second timeout.
 begin
 get-qe-status
 c-tint and \ Transmit interrupt bit set?
 timeout? or \ Or timeout?
 until
 timeout? if
 ." TINT was not set!" cr true exit
 then
 \ Transmit completion, sync TMD before looking at it.
 nexttmd@ dup qesynciopb (tmd)
 status@ own and if (flag)
 ." Tx descriptor still owned by QEC!" cr
 then
\ Wait the packet to get to net, make sure at most one xmit packet in MACE FIFO.
 d# 1000 set-timeout \ 1 second timeout.
 begin
 10us-wait
 qecc-lmtxwrite@ qecc-lmtxread@ =
 timeout? or
 until
 timeout? if
 ." Tx packet not out to net!" cr
 then
 false
;

\ This send routine does not enforce the minimum packet length. It is
\ used by the loopback test routines.
: short-send (buffer length -- error?)
 clear-tint \ Erase tint status bit.
 \ discard buffer address, assumes using nexttmd
 nip nexttmd@ (length tmd)

\ QED bootable driver

184 Writing FCode 2.x Programs—November 1995

9

 tuck length! (tmd ; Set length)
 \ Sync the transmit buffer so the device sees it.
 dup qesyncbuf (tmd)
 give-buffer (; Give tmd to chip)
 c-tdmd qecc-control! \ Bang the chip, let chip look at it right away
 send-wait (fail?) \ wait for completion
 xerrors@ dup if (fail? error?)
 .transmit-error clear-terrors
 then or (error?)
 to-next-tmd (error?)
 restart? @ if net-on drop then (error?)
 c-hard-terr-mask and (hard-error?)
;

\ Transmit packet routine, no S/W retry on this layer.
: net-send (buffer length -- error?) \ error? is contents of chan-status
 d# 64 max \ force minimum length to be 64
 short-send (error?)
;

\ ---
\ timed-receive.fth
\ Implements a network receive that will timeout after a certain interval.

decimal

: multicast? (handle data-address length -- handle data-address length flag)
 \ Check for multicast/broadcast packets
 over (... data-address)
 c@ h# 80 and dup if \ Look at the multicast bit
 (handle data-address length multicast?)
 handle-broadcast-packet
 then
;

: receive-good-packet (-- [buffer-handle data-address length] | 0)
 begin
 begin
 timeout? if false exit then
 receive-ready?
 until
 receive dup 0=
 while
 .error 2drop return-buffer

\ QED bootable driver

Network Devices 185

9

 repeat
;
: receive-unicast-packet (-- [buffer-handle data-address length] | 0)
 begin
 receive-good-packet dup 0= if exit then
 multicast?
 while
 2drop return-buffer
 repeat
;
\ Receive a packet, filtering out broadcast packets and timing
\ out if no packet comes in within a certain time.
: timed-receive (timeout-msecs -- [buffer-handle data-address length] err?)
 set-timeout receive-unicast-packet ?dup 0=
;

\ ---
\ qetest.fth
\ Define Qec/Mace loopback-test, net-init & watch-test routines.

\ This file contains Qec/Mace selftest routines.
\ It defines the following external words:
\ loopback-test (internal/external-flag -- success?)
\ net-init (-- success?)
\ watch-test (--)
\ Also it defines the following external variable.
\ qe-verbose? - Flag to indicate if want the test messages displayed.
\ ext-lbt? - Flag to indicate if run the external loopback test.
\
\ The algorithme for the loopback test:
\ Set internal or external loopback with no promiscuous mode.
\ Turn on the Qec/Mace Ethernet port.
\ If it succeeds, send out a short packet containing walking 0/1 patterns.
\ If it succeeds, wait for a period, check if receive the loopback packet.
\ If so, verify the length of the received packet is right.
\ Also check if the data of the received packet is right.
\ Return true if everything is fine, otherwise return false.
\

hex
headerless
create loopback-prototype
 ff c, 00 c, \ Ones and zeroes
 01 c, 02 c, 04 c, 08 c, 10 c, 20 c, 40 c, 80 c, \ Walking ones

\ QED bootable driver

186 Writing FCode 2.x Programs—November 1995

9

 fe c, fd c, fb c, f7 c, ef c, 0df c, 0bf c, 7f c, \ Walking zeroes
 55 c, aa c,

: loopback-buffer (-- adr len)
 d# 32 get-buffer (adr)
 mac-address drop over 6 cmove \ Set source address
 mac-address drop over 6 + 6 cmove \ Set destination address
 loopback-prototype over d# 12 + d# 20 cmove \ Set buffer contents
 d# 32
;

: pdump (adr --)
 base @ >r hex
 dup d# 10 bounds do i c@ 3 u.r loop cr
 d# 10 + d# 10 bounds do i c@ 3 u.r loop cr
 r> base !
;

\ Print loopback control type for verbose mode.
: .loopback (--)
 mode @ m-loop-mask and
 ?dup if
 dup m-loop-ext = if ." External " drop
 else ." Internal " m-loop-intmen = if ." (including Mendec) " then
 then
 ." loopback test -- "
 then
;

\ Print loopback control type for non-verbose mode,
\ it is used after any error occurs.
: ?.loopback (--)
 qe-verbose? @ 0= if .loopback then ;

: switch-off (-- false)
 qe-verbose? off false
;

: bad-rx-data (buf-handle data-address -- false)
 ?.loopback
 ." Received packet contained incorrect data. Expected: " cr
 loopback-prototype pdump
 ." Observed:" cr
 d# 12 + pdump

\ QED bootable driver

Network Devices 187

9

 switch-off
;

\ Check the data of the received packet, return true if data is ok.
: check-data (buf-handle data-address length -- ok?)
 drop (buf-handle data-address)
 dup d# 12 + loopback-prototype d# 20 comp
 if bad-rx-data
 else drop (buf-handle)
 return-buffer
 qe-verbose? @ if ." succeeded." cr then
 mode off true
 then
;

\ Check the length & data of the received packet, return true if data & len ok.
: check-len&data (buf-handle data-address length -- ok?)
 \ The CRC is appended to the packet, thus it is 4 bytes longer than
 \ the packet we sent.
 dup d# 36 <>
 if ?.loopback
 ." Wrong packet length; expected 36, observed " .d cr
 switch-off
 else check-data
 then
;

headers
\ Run internal or external loopback test, return true if the test passes.
: loopback-test (internal/external -- pass?)
 mode !
 qe-verbose? @ if ." " .loopback then
 net-on if
 loopback-buffer short-send if
 ?.loopback ." send failed." cr
 switch-off
 else
 d# 2000 timed-receive if
 ?.loopback
 ." Did not receive expected loopback packet." cr
 switch-off
 else (buf-handle data-address length)
 check-len&data
 then

\ QED bootable driver

188 Writing FCode 2.x Programs—November 1995

9

 then
 else
 switch-off
 then
 net-off mode off
;

\ If there is a normal external loopback test, then we don't need this.
\ MACE external loopback test requires a special cable. Don't run external
\ loopback test for selftest & watch-net.
: check-cable? (-- ok?)
 m-cable mode !
 ." Link state check -- "
 net-on (success?)
 net-off mode off
;

\ Turn on the Ethernet port after pass loopback test.
\ Return true if net-init succeeds, otherwise return false if it fails.
: net-init (-- flag)
 mode @ \ Save requested mode because loopback changes it.
 m-loop-int loopback-test
 if (mode-saved ; Pass internal loopback test.)
 ext-lbt? @ \ Run external loopback test if the ext-lbt? flag is set.
 \ qe internal loopback with mendec is equivalent to external loopback of le.
 if m-loop-intmen loopback-test else true then (mode-saved)
 swap mode ! \ Restore the mode.
 if net-on \ Pass loopback test, turn on the ethernet port.
 else false
 then
 else mode ! false
 then
;

headerless
: wait-for-packet (--)
 begin key? receive-ready? or until
;

headers
\ Check for incoming Ethernet packets.
\ Use promiscuous mode to check for all incoming packets.
: watch-test (--)
 ." Looking for Ethernet packets." cr

\ QED bootable driver

Network Devices 189

9

 ." '.' is a good packet. 'X' is a bad packet." cr
 ." Type any key to stop." cr
 begin
 wait-for-packet
 receive-ready?
 if receive
 if ." ." else ." X" then
 drop return-buffer
 then
 key? dup if key drop then
 until
;

\ ---
\ qe0-package.fth
\ Implement the architectural interface for the qe driver

headerless
\
\ The network driver uses the standard "obp-tftp" support package for
\ implementation. The "obp-ftfp" package implements the Internet Trivial File
\ Transfer Protocol (TFTP) for use in network booting. The "obp-tftp" package
\ defines the following methods to be used by the network driver:
\ open (-- okay?)
\ close (--)
\ load (addr -- size)
\ The "obp-tftp" package uses the read and write methods of the network driver
\ for receiving and transmitting packets. The package assums the size of the
\ maximum transfer packet is 1518 bytes. If the network driver needs bigger
\ maximum packet size, then it requires the method "max-transfer" defined,
\ the method will be called by the obp-tftp package to define the maximum
\ transfer packet size.
\
: init-obp-tftp (-- okay?)
 " obp-tftp" find-package if (phandle)
 my-args rot open-package (ihandle)
 else 0
 then
 dup is obp-tftp (ihandle | 0)
 dup 0= if
 ." Can't open OBP standard TFTP package" cr
 then
;
: set-my-channel# (--)

\ QED bootable driver

190 Writing FCode 2.x Programs—November 1995

9

\ If don't find the channel attribute, use 0.
 " channel#" get-my-attribute if 0 else xdrtoint nip nip then
 my-channel#!
;

headers
: qe-xmit (bufaddr nbytes -- #sent)
 tuck get-buffer (nbytes bufaddr ether-buffer)
 tuck 3 pick cmove (nbytes ether-buffer)
 over net-send if drop 0 then (#sent)
;

: qe-poll (bufaddr nbytes -- #received)
 qe-nbytes ! qe-buf ! ()
 receive-ready? 0= if 0 exit then \ Bail out if no packet ready
 receive ?dup if (rmd ether-buffer length)
 dup >r (rmd ether-buffer length)
 qe-nbytes @ min (rmd ether-buffer length')
 qe-buf @ swap cmove (rmd)
 return-buffer r> (#received)
 else
 drop return-buffer 0 (0)
 then
;

: set-vectors (--)
 ['] (.receive-error is .error
 ['] (.transmit-error is .transmit-error
 ['] noop is handle-broadcast-packet
;
: map-qe (--)
 mace 0= if \ Do mapping if it is unmapped.
 map-chips
 map-qe-buffers
 then
;
: unmap-qe (--)
 mace if \ Do unmapping if it is mapped.
 unmap-qe-buffers
 unmap-chips
 then
;

: qe-loopback-test (-- flag) \ flag true if passes test

\ QED bootable driver

Network Devices 191

9

 set-vectors
 mode off qe-verbose? on
 ext-lbt? on
 net-init
 ext-lbt? off
 dup if net-off drop check-cable? then
 qe-verbose? off
;
: (watch-net) (--)
 map-qe
 set-vectors
 m-prom mode !
 qe-verbose? off
 ext-lbt? off
 net-init if watch-test net-off then
 unmap-qe
;

external
: qe0-read (buf len -- -2 | actual-len)
 qe-poll ?dup 0= if -2 then
;
: qe0-write (buf len -- actual-len) qe-xmit ;
: qe0-selftest (-- flag) \ Flag 0 if passes test.
 map-qe
 qe-reg-test (success?)
 if
 qe-loopback-test 0= \ Alternate the return flag.
 else
 true
 then (failure?)
 unmap-qe
;
: qe0-watch-net (--)
 qe0-selftest 0= if (watch-net) then
;

: qe0-load (adr -- len) " load" obp-tftp $call-method ;
: qe0-open (-- okay?)
 map-qe
 set-vectors
 mode off qe-verbose? off
 net-init 0= if unmap-qe false exit then

\ QED bootable driver

192 Writing FCode 2.x Programs—November 1995

9

 mac-address drop macbuf 6 cmove \ Update macbuf.
 macbuf 6 xdrstring " mac-address" attribute

 init-obp-tftp 0= if close false exit then
 true
;
: qe0-close (--)
 obp-tftp ?dup if close-package then
 mace if net-off then
 unmap-qe
;
: qe0-reset (--)
 mace if net-off
 else map-chips net-off unmap-chips then
;
headers

\ QED bootable driver

193

Serial devices are byte-oriented, sequentially-accessed devices such as
asynchronous communication lines (often attached to a “dumb” terminal).

Required Methods
The serial device driver must declare the serial device-type, and must
implement the methods open and close , as well as the following:

install-abort (--)

Instruct the driver to begin periodic polling for a keyboard abort sequence.
install-abort is executed when the device is selected as the console input
device.

read (adr len -- actual)

Read len bytes of data from the device into memory starting at adr . Return
the number of bytes actually read, actual , or -2 if no bytes are currently
available from the device. -1 is returned if other errors occur.

remove-abort (--)

Instruct the driver to cease periodic polling for a keyboard abort sequence.
remove-abort is executed when the console input device is changed from
this device to another.

 Serial Devices 10

194 Writing FCode 2.x Programs—November 1995

10

write (adr len -- actual)

Write len bytes of data to the device from memory starting at adr. Return the
number of bytes actually written, actual .

Required Properties
The standard properties of a serial driver are:

Device Driver Examples
The three examples that follow are serial device drivers for the Zilog 8530 SCC
(UART) chip.

• The first sample is a short driver which simply creates a device node and
declare the properties for the device.

• The second sample is a more sophisticated driver that defines methods to
control and access the device.

• The third sample shows the complete serial device driver.

Simple Serial FCode Program

Table 10-1 Serial Driver Required Properties

Property Name Value

name " SUNW,thingy"

reg { device-dependent}

device_type " serial"

fcode-version1
 hex
 " SUNW,zs" name
 my-address 10.0000 + my-space 8 reg
 7 xdrint " interrupts" attribute
 7 0 intr
end0

Serial Devices 195

10

Extended Serial FCode Program

\ Extended Serial FCode Program
\ In addition to publishing the properties, this sample driver
\ provides methods to access and control the serial ports.
\
\ The following main methods are provided:
\ - usea (--)
\ Selects serial port A. All subsequent operations will
\ be directed to port A
\ - useb (--)
\ Selects serial port B. All subsequent operations will
\ be directed to port B
\ - uemit (char --)
\ Emits a given character to the selected serial port.
\ - ukey (-- key)
\ Retrieves a character from the selected serial port.
\ - read (adr len -- #read)
\ Reads "len" number of characters from the selected port,
\ and store them at "adr".
\ - write (adr len -- #written)
\ Writes "len" number of characters from the buffer located
\ at "adr" to the selected serial port.

fcode-version2
hex

 my-address 10.0000 + constant phys-addr
 my-space constant my-sbus-space
 my-address constant my-sbus-address

 " SUNW,zs" name
 phys-addr my-sbus-space 8 reg
 7 xdrint " interrupts" attribute
 7 0 intr

 : >phys-adr (offset -- adr space)
 my-sbus-address + my-sbus-space
 ;
 : do-map-in (offset size -- va)
 >r >phys-adr r> " map-in" $call-parent
 ;
 : do-map-out (va size --) " map-out" $call-parent ;

196 Writing FCode 2.x Programs—November 1995

10

 : rc! c! ;
 : rc@ c@ ;
 : /string (adr len n -- adr+n len-n) tuck - -rot + swap ;

 1 constant RXREADY \ received character available
 4 constant TXREADY \ transmit buffer empty

 : instance (--) \ verify that "instance" is defined
 [’] instance [’] ferror < > if
 instance
 then
 ;

 0 instance value uart \ define uart as an "per-instance" value.
 0 instance value uartbase
 h# ff instance value mask-#data \ mask for #data bits
 h# 10 instance buffer: mode-buf

 \ The following line assumes that A2 selects the channel within the chip
 : usea (--) uartbase 4 + is uart ;
 : useb (--) uartbase is uart ;
 : uctl! (c --) uart rc! ;
 : uctl@ (-- c) uart rc@ ;

 \ The following line assumes that A1 chooses the command vs. data port
 : udata! (c --) uart 2 + rc! ;
 : udata@ (-- c) uart 2 + rc@ ;

 \ Test for "break" character received.
 : ubreak? (-- flag) 10 uctl! uctl@ h# 80 and 0<> ;

 \ Clear the break flag
 : clear-break (--)
 begin ubreak? 0= until \ Let break finish
 udata@ drop \ Eat the null character
 30 uctl! \ Reset errors
 ;

 : uemit? (-- flag) uctl@ TXREADY and ;
 : uemit (char --) begin uemit? until udata! ;

 : ukey? (-- flag) uctl@ RXREADY and ;
 : ukey (-- key) begin ukey? until udata@ ;

\ Extended Serial FCode Program

Serial Devices 197

10

 : uwrite (adr len -- #written)
 tuck bounds ?do (len)
 i c@ uemit (len)
 loop (len)
 ;
 : uread (adr len -- #read) \ -2 for none available right now
 ukey? 0= if 2drop -2 exit then (adr len)
 tuck (len adr len)
 begin dup 0<> ukey? 0<> and while (len adr len)
 over ukey mask-#data and swap c! (len adr len)
 1 /string (len adr' len')
 repeat (len adr' len')
 nip - (#read)
 ;

external
 : read (adr len -- #read) uread ;
 : write (adr len -- #written) uwrite ;

end0

\ Extended Serial FCode Program

198 Writing FCode 2.x Programs—November 1995

10

Complete Serial FCode Program

\ Complete Serial driver.
\ In addition to the methods defined in the above driver sample,
\ this version defines more methods to initialize, test, and access
\ the serial ports.
\ The new main methods are:
\ - inituarts (--)
\ Initializes both serial ports A and B.
\ - open (-- okay?)
\ Maps in the uart chip. Selects port A on default, then check
\ my-args, if port B was specified, then selects port B instead.
\ - close (--)
\ Unmap the uart chip.
\ - selftest (--)
\ Performs selftest on both Port A and B.
\ - install-abort (--)
\ Sets up alarm to do poll-tty every 10 miliseconds.
\ - remove-abort (--)
\ Removes the poll-tty alarm.

fcode-version2
hex

 my-address 10.0000 + constant phys-adr
 my-space constant my-sbus-space
 my-address constant my-sbus-address
 " SUNW,zs" name
 phys-addr my-sbus-space 8 reg
 7 xdrint " interrupts" attribute
 7 0 intr
 " serial" device-type

 : >phys-adr (offset -- adr space)
 my-sbus-address + my-sbus-space
 ;
 : do-map-in (offset size -- va)
 >r >phys-adr r> " map-in" $call-parent
 ;
 : do-map-out (va size --) " map-out" $call-parent ;
 : rc! c! ;
 : rc@ c@ ;
 : /string (adr len n -- adr+n len-n) tuck - -rot + swap ;

Serial Devices 199

10

 : instance (--) \ verify that "instance" is defined
 [’] instance [’] ferror < > if
 instance
 then
 ;

 fload inituarts.fth
 fload ttydriver.fth
end0

\--
\ inituarts.fth

hex
headerless
create uart-init-table
\ 9 c, c0 c, \ Master reset channel a (80), channel b (40)

 9 c, 2 c, \ Don't respond to intack cycles (02)

 4 c, 44 c, \ No parity (00), 1 stop bit (04), x16 clock (40)

 3 c, c0 c, \ receive 8 bit characters (c0)
 5 c, 60 c, \ transmit 8 bits (60)
 e c, 82 c, \ Processor clock is baud rate source (02)

 b c, 55 c, \ TRxC = xmit clk (01), enable TRxC (04), Tx clk is baud (10),
 \ Rx clk is baud (40)
 c c, e c, \ Time constant low
 d c, 0 c, \ Time constant high

 3 c, c1 c, \ receive 8 bit characters (c0), enable (01)
 5 c, 68 c, \ transmit 8 bits (60), enable (08)
 e c, 83 c, \ Processor clock is baud rate source (02), Tx enable (01)

 0 c, 10 c, \ Reset status bit latches

ff c, ff c, \ Mark end of data

\--
\ ttydriver.fth - Driver for Zilog 8530 SCC (UART) chips.

hex
0 instance value uartbase

\ Complete Serial driver.

200 Writing FCode 2.x Programs—November 1995

10

create default-mode
\ 0 1 2 3 4 5 6 7
 00 c, 00 c, 00 c, c1 c, 44 c, 68 c, 00 c, 00 c,

\ 8 9 a b c d e f
 00 c, 02 c, 00 c, 55 c, 0e c, 00 c, 83 c, 00 c,

 0 instance value uart \ define uart as an "per-instance" value.
 h# ff instance value mask-#data \ mask for #data bits
 h# 10 instance buffer: mode-buf

 create masks 1f c, 7f c, 3f c, ff c,

 \ The following line assumes that A2 selects the channel within the chip
 : usea (--) uartbase 4 + is uart ;
 : useb (--) uartbase is uart ;
 : uctl! (c --) uart rc! ;
 : uctl@ (-- c) uart rc@ ;

 \ The following line assumes that A1 chooses the command vs. data port
 : udata! (c --) uart 2 + rc! ;
 : udata@ (-- c) uart 2 + rc@ ;

 \ Write all the initialization sequence to both uarts
 : inituart (--)
 uart-init-table
 begin dup c@ ff <> while
 dup c@ uctl! dup ca1+ c@ uctl!
 /c 2* +
 repeat
 drop
 ;

 : inituarts (--) usea inituart useb inituart usea ;

 \ Test for "break" character received.
 : ubreak? (-- break?) 10 uctl! uctl@ h# 80 and 0<> ;

 \ Clear the break flag
 : clear-break (--)
 begin ubreak? 0= until \ Let break finish
 udata@ drop \ Eat the null character
 30 uctl! \ Reset errors

\ Complete Serial driver.

Serial Devices 201

10

 ;

 1 constant RXREADY \ received character available
 4 constant TXREADY \ transmit buffer empty

 : uemit? (-- emit?) uctl@ TXREADY and ;
 : uemit (char --) begin uemit? until udata! ;

 : ukey? (-- key?) uctl@ RXREADY and ;
 : ukey (-- key) begin ukey? until udata@ ;

 : uwrite (adr len -- #written)
 tuck bounds ?do (len)
 i c@ uemit (len)
 loop (len)
 ;
 : uread (adr len -- #read) \ -2 for none available right now
 ukey? 0= if 2drop -2 exit then (adr len)
 tuck (len adr len)
 begin dup 0<> ukey? 0<> and while (len adr len)
 over ukey mask-#data and swap c! (len adr len)
 1 /string (len adr' len')
 repeat (len adr' len')
 nip - (#read)
 ;

 : poll-tty (--)
 ttylock @ if exit then
 ubreak? if clear-break user-abort then
 ;

external
 : open (-- okay?)
 phys-adr 8 do-map-in is uartbase
 usea
 my-args (arg-str)
 ascii , left-parse-string if (rem adr)
 c@ ascii b = if (rem)
 2drop ()
 useb ()
 then (rem)
 else (rem adr)
 drop 2drop ()

\ Complete Serial driver.

202 Writing FCode 2.x Programs—November 1995

10

 then ()

 true
 ;
 : close (--) uartbase 8 do-map-out ;
headers
 : utest (-- 0) h# 7f bl ?do i uemit loop 0 ;
external
 : selftest (-- error?)
 open 0= if ." Can't open device" true exit then
 my-args if (adr)
 c@ case
 ascii a of usea endof
 ascii b of useb endof
 (default) ." Bad zs port letter" drop false exit
 endcase
 else \ No port letter so test both ports.
 drop
 usea utest
 useb utest
 or close exit (fail?)
 then
 utest (fail?)
 close
 ;
 : read (adr len -- #read) uread ;
 : write (adr len -- #written) uwrite ;
 : install-abort (--) ['] poll-tty d# 10 alarm ;
 : remove-abort (--) ['] poll-tty 0 alarm ;

 \ "seek" might be implemented to select a load file name
 \ Implement "load" (optional)

headers

\ Complete Serial driver.

203

FCode Dictionary 11

This dictionary describes the pre-defined FCode words that you can use as part
of FCode source code programs. Appendix A, “FCode Reference”, contains a
command summary, with words grouped by function.

The words are given alphabetically in this chapter, sorted by the first
alphabetic character in the word’s name. For example, the words mod and
*/mod are adjacent to each other. Words having no alphabetic characters in
their names are placed at the beginning of the chapter, in ASCII order.

The boot PROM and tokenizer are case-insensitive (all Forth words are
converted to lowercase internally). The only exceptions are literal text, such as
text inside " strings and text arguments to the ascii command, which are left
in the original form. In general, you may use either uppercase or lowercase.

All arithmetic uses 32-bit signed values, unless otherwise specified.

Defining words create a header by calling external-token , named-token ,
or new-token . See these words for more details.

All FCode byte values listed in this chapter are given in hexadecimal. Version 2
FCodes cannot be used OpenBoot 1 systems, they are called out in the
dictionary definitions by “Version 2”.

The rest of this chapter contains definitions of the FCodes and tokenizer
macros defined for use in the SPARCstation OpenBoot PROM.

204 Writing FCode 2.x Programs—November 1995

11

! (n adr --) code# 72

Store n at adr . For more portable code, use l! if you explicitly want a 32-bit
access. adr must be aligned as given by variable .

" (text) " (-- adr len) code# 12 len xx xx xx ...
generates: b(") len text

This word is used to compile a text string, delimited by a " . At execution time,
the address and length of the string is left on the stack. For example:

You can embed control characters and 8-bit binary numbers within strings.
This is similar in principle to the \n convention in C, but syntactically tuned
for Forth. This feature applies to the string arguments of the words “ and .”

 The escape character is ‘” ’. Here is the list of escapes:

“<whitespace> terminates the string, as usual.

“ followed by any other printable character not mentioned above is equivalent
to that character. This syntax is completely backwards compatible with old
code, since the only legal previous usage was “<whitespace>

 " SUNW,new-model" xdrstring " model" attribute

Table 11-1 Escape Sequences in Text Strings

 Syntax Function

““ quote (“)

“n newline

“r carret

“t tab

“f formfeed

“l linefeed

“b backspace

“! bell

“^x control x, where x is any printable character

“(hh hh) Sequence of bytes, one byte for each pair of hex digits hh .
Non-hex characters will be ignored

FCode Dictionary 205

11

For example:

The “(hh hh hh hh) form is useful for entering binary data.

Any non-hex characters (such as space or comma) are ignored within the data
field of “(...), and thus make useful delimiters. The “makearray” tool can be
used in conjunction with this syntax to easily incorporate large binary data
fields into any FCode program.

Note – The use of “n for line breaks is discouraged. The preferred method is
to use cr , rather than embedding the line break character inside a string. Use
of cr results in more accurate display formatting, because Forth updates its
internal line counter when cr is executed.

When “ is used outside a colon definition, current implementations permit
only two interpreted strings to be active at any given time, a third interpreted
string overwrites the first one. This limitation does not apply in colon
definitions.

(+L1 -- +L2) code# 99

The remainder of +L1 divided by the value of base is converted to an ASCII
character and appended to the output string toward lower memory addresses.
+L2 is the quotient and is maintained for further processing. Typically used
between <# and #>.

#> (L -- adr +n) code# 97

Pictured numeric output conversion is ended dropping L. adr is the address of
the resulting output array. +n is the number of characters in the output array.
adr and +n together are suitable for type . See (.) and (u.) for typical
usages.

 “ This is “(01 32 8e)abc”nA test xyzzy “!”! abcdefg””hijk”^bl”

 ^^^^^^ ^ ^ ^ ^ ^
 3 bytes newline 2 bells “ control b

206 Writing FCode 2.x Programs—November 1995

11

’ name (-- acf) code# 11 FCode(name)
generates: b(’)

Used to generate the code field address (acf) of the word immediately
following the ’ . ’ should only be used outside of definitions. See [’] for
more details.

For example:

(text) (--) code# none

Ignore subsequent text after the "(" up to a delimiting ")" . Note that a space is
required after the (. Although either (or \ may be used equally well for
documentation, by common convention we use (...) for stack comments
and \ ... for all other text comments and documentation. See also (s .

For example:

(.) (n -- adr len) code# 47 2d 96 9a 49 98 97
generates: dup abs <# #s swap sign #>

This is the numeric conversion primitive, used to implement display words
such as "." It converts a number into a string. If n is negative, the first character
in the array will be a minus (-) sign.

For example:

 defer opt-word (--) ' noop is opt-word

: 4drop (a b c d --)

 2drop (a b)

 2drop ()

;

: show-version (--)

 ." CPU bootprom version is " base @ d# 16 base ! (old-base)

 firmware-version (old-base version)

 lwsplit (.) type ascii . emit .h cr base ! ()

;

FCode Dictionary 207

11

* (n1 n2 -- n3) code# 20

n3 is the arithmetic product of n1 times n2 . If the result cannot be represented
in one stack entry, the least significant bits are kept.

*/ (n1 n2 n3 -- n4) code# 30 20 31 21
generates: >r * r> /

Calculates n1*n2/n3 . The inputs, outputs and intermediate products are all
32-bit.

+ (n1 n2 -- n3) code# 1e

n3 is the arithmetic sum of n1 plus n2 .

+! (n adr --) code# 6c

n is added to the value stored at adr . This sum replaces the original value at
adr . adr must be aligned as given by variable .

, (n --) code# d3

Compile a number into the dictionary. In current systems, the number of bytes
compiled is 4 (same as l,). See c , for limitations. The dictionary pointer must
be two-byte aligned.

For example, to create an array containing integers 40004000 23 45 6734:

- (n1 n2 -- n3) code# 1f

n3 is the result of subtracting n1 minus n2 .

-1 (-- -1) code# a4

Leave the value -1 on the stack. The only numbers that are not encoded using
b(lit) are the values -1, 0, 1, 2, or 3. Because these numbers occur so
frequently, these values are assigned individual FCodes to save space.

 create my-array 40004000 , 23 , 45 , 6734 ,

208 Writing FCode 2.x Programs—November 1995

11

. (n --) code# 9d

The absolute value of n is displayed in a free field format with a leading minus
sign if n is negative, and a trailing space.

If the base is hexadecimal, . displays the number in unsigned format, since
signed hex display is hardly ever wanted. Use s. to display signed hex
numbers. See also s. .

." text " (--) code# 12 len xx xx xx ... 90
generates: b(") len text type

This word compiles a text string, delimited by " . At execution time, the string
is displayed, for example, in ." hello world"

This word is equivalent to using " text" type

." is normally used only within a definition. The text string will be displayed
later when that definition is called. You may wish to follow it with cr to flush
out the text buffer immediately.

Use .(to print anything while the FCode PROM is being interpreted.

See tokenizer[for details about printing at tokenize time.

.(text) (--) code# none
generates: b(") len text type code# 12 len xx xx xx ... 90

Gathers a text string, delimited by) , to be immediately displayed during
probe time. For example:

This word is equivalent to: " text" type

Use this to print out text at the time the FCode PROM is being interpreted (you
may wish to follow it with a cr to flush out the text buffer immediately). This
word may be called either inside or outside of definitions; the text is
immediately displayed in either case.

.(hello world)

FCode Dictionary 209

11

Note that the string will typically be printed out of serial port A, since any
framebuffer present may not yet be activated at the time that SBus slots are
being probed. Use ." for any printing to be done when new words are later
executed.

See tokenizer[for details about printing at tokenize time.

/ (n1 n2 -- quot) code# 21

Calculates n1 divided by n2 . An error condition results if the divisor (n2) is
zero. See /mod .

0 (-- 0) code# a5

Leave the value 0 on the stack. The only numbers that are not encoded using
b(lit) are the values -1, 0, 1, 2, or 3. Because these numbers occur so
frequently, they are assigned individual FCodes to save space.

0< (n -- flag) code# 36

Flag is true if n is less than zero (negative).

0<= (n -- flag) code# 37

Flag is true if n is less than or equal to zero.

0= (n -- flag) code# 34

Flag is true if n is zero. This word will invert any flag.

0<> (n -- flag) code# 35

Flag is true if n is not zero.

0> (n -- flag) code# 38

Flag is true if n is greater than zero.

0>= (n -- flag) code# 39

Flag is true if n is greater than or equal to zero.

210 Writing FCode 2.x Programs—November 1995

11

1 (-- 1) code# a6

Leave the value 1 on the stack. The only numbers that are not encoded using
b(lit) are the values -1, 0, 1, 2, or 3. Because these numbers occur so
frequently, these values are assigned individual FCodes to save space.

1+ (n1 -- n2) code# a6 1e
generates: 1 +

n2 is the result of adding one to n1 .

1- (n1 -- n2) code# a6 1f
generates: 1 -

n2 is the result of subtracting one from n1 .

2 (-- 2) code# a7

Leaves the value 2 on the stack. The only numbers that are not encoded using
b(lit) are the values -1, 0, 1, 2, or 3. Because these numbers occur so
frequently, these values are assigned individual FCodes to save space.

2! (n1 n2 adr --) code# 77

n1 and n2 are stored in consecutive 32-bit locations starting at adr . n2 is
stored at the lower address.

2* (n1 -- n2) code# 59

n2 is the result of shifting n1 left one bit. A zero is shifted into the vacated bit
position. This is equivalent to multiplying by 2.

2+ (n1 -- n2) code# a7 1e
generates: 2 +

n2 is the result of adding 2 to n1 .

2- (n1 -- n2) code# a7 1f
generates: 2 -

FCode Dictionary 211

11

n2 is the result of subtracting 2 from n1 .

2/ (n1 -- n2) code# 57

n2 is the result of arithmetically shifting n1 right one bit. The sign is included
in the shift and remains unchanged. This is equivalent to dividing by 2.

2@(adr -- n1 n2) code# 76

n1 and n2 are two numbers stored in consecutive 32-bit locations starting at
adr . n2 is the number that was stored at the lower address.

3 (-- 3) code# a8

Leaves the value 3 on the stack. The only numbers that are not encoded using
b(lit) are the values -1, 0, 1, 2, or 3. Because these numbers occur so
frequently, these values are assigned individual FCodes to save space.

: name (--) at creation code# (header) b7
(?? -- ??) at execution

generates: new header, b(type) = b(:)

Begin a new definition, terminated by ; Used in the form:

Later usage of newname is equivalent to usage of the contents of the definition.
See named-token , new-token , and external-token for more information
on header formats.

; (--) code# c2
generates: b(;)

Ends the compilation of a colon definition. See also : .

< (n1 n2 -- flag) code# 3a

Flag is true if n1 is less than n2 . n1 and n2 are signed integers.

<# (--) code# 96

: newname ... ;

212 Writing FCode 2.x Programs—November 1995

11

Initialize pictured numeric output conversion. You can use the words:

to specify the conversion of a 32-bit number into an ASCII character string
stored in right-to-left order. See (.) and (u.) for typical usages.

<< (n1 +n -- n2) code# 27

n2 is the result of logically left shifting n1 by +n places. Zeroes are shifted into
the least-significant bits.

For example:

<= (n1 n2 -- flag) code# 43

Flag is true if n1 is less than or equal to n2 . n1 and n2 are signed integers.

<> (n1 n2 -- flag) code# 3d

Flag is true if n1 is not equal to n2 . n1 and n2 are signed integers.

= (n1 n2 -- flag) code# 3c

Flag is true if n1 is equal to n2 . n1 and n2 are signed integers.

> (n1 n2 -- flag) code# 3b

Flag is true if n1 is greater than n2 . n1 and n2 are signed integers.

>= (n1 n2 -- flag) code# 42

Flag is true if n1 is greater than or equal to n2 . n1 and n2 are signed integers.

<# # #s hold sign #>

: bljoin (byte.low byte.lowmid byte.highmid byte.high -- L)

 8 << + 8 << + 8 << +

;

FCode Dictionary 213

11

>> (n1 +n -- n2) code# 28

n2 is the result of logically right shifting n1 by +n places. Zeroes are shifted
into the most-significant bits. Use >>a for signed shifting.

For example:

? (adr --) code# 6d 9d
generates: @ .

Fetch and print the 32-bit value at the given address. An old standard Forth
word, primarily used interactively.

@(adr -- n) code# 6d

n is the value stored at adr . For more portable code, use l@ if you explicitly
want a 32-bit access. adr must be aligned as given by variable .

[‘] name (-- acf) code# 11 FCode(name)
generates: b(’)

’ or [’] are used to generate the code field address (acf) of the word
immediately following the ’ or [’] .

’ should only be used outside definitions; [’] may be used either inside or
outside definitions. Examples shown usually use [’] , since it will always
generate the intended result:

or

: wbsplit (w -- b.low b.high)

 dup h# ff and swap 8 >>

 h# ff and

;

: my-probe... [‘] my-install is-install... ;

[‘] my-install is-install

214 Writing FCode 2.x Programs—November 1995

11

In normal Forth, ’ may be used within definitions for the creation of language
extensions, but such usage is not applicable to FCode programs.

\ rest-of-line (--) code# none

Ignore the rest of the input line after the \ . It can occur anywhere on an input
line. Note that a space must be present after the \ . See (or (s for another
form for delimiting comments.

For example:

<<a (n1 +n -- n2) code# 27
generates: <<

Arithmetic left-shift (left-shift with sign-extend), to round out the existing
words <<, >>, and >>a . This word is useless, because the carry out from an
arithmetic left shift is not accessible later.

>>a (n1 +n -- n2) code# 29

n2 is the result of arithmetically right shifting n1 by +n places. The sign bit of
n1 is shifted into the most-significant bits.

For example:

shows: fffffc00 , while

 shows: 3fffc00 .

abort (--) code# 2 16
version 2

Aborts program execution. Control returns to ok prompt. Called after
encountering fatal errors.

0 value his-ihandle \ place to save someone's ihandle

 ffff.0000 6 >>a .h

 ffff.0000 6 >> .h

FCode Dictionary 215

11

For example:

abs (n -- u) code# 2d

u is the absolute value of n. If n is the maximum negative number, u is the
same value (since the maximum negative number in two’s complement
notation has no positive equivalent).

again (--) code# 13 offset
generates: bbranch -offset

Used in the form begin ... again to generate an infinite loop. Use
Stop-A from the keyboard, or abort or exit , to exit from this loop. Use this
word with caution!

For example:

alarm (acf n --) code# 2 13
version 2

Arranges to periodically execute the package method acf at intervals of n
milliseconds (to the best accuracy possible).

acf is the compilation address, as returned by [’] . Each time the method is
called, the current instance will be the same as the current instance at the time
that alarm was executed. If n is 0, stop the periodic execution of acf within
the current instance context.

A common use of alarm would be to implement a console input device’s
polling function.

: probe-loop (adr --)

 \ generate a tight probe loop until any key is pressed.

 begin dup l@ drop key? if abort then again

;

: probe-loop (adr --)

 \ generate a tight probe loop until any key is pressed.

 begin dup l@ drop key? if abort then again

;

216 Writing FCode 2.x Programs—November 1995

11

For example:

alias new-name old-name (--) code# none

alias creates a new name, with the exact behavior of some other existing
name. The new name can then be used interchangeably with the old name and
have the same effect.

The tokenizer does not generate any FCode for an alias command, but
instead simply updates its own lookup table of existing words. Any occurrence
of the new word causes the assigned FCode value of the old word to be
generated. One implication is that the new word will not appear in the
OpenBoot dictionary after the FCode program is compiled.

If the original FCode source text is downloaded and interpreted directly,
without being tokenized or detokenized, then any new alias words will show
up and be usable directly.

For example:

aligned (adr1 -- adr2) code# ae

Increase adr1 to the next machine word boundary — to the next value evenly
divisible by 4. The correct boundary could vary on other CPU
implementations.

alloc-mem (#bytes -- virtual) code# 8b

Allocate some free physical memory from Forth, and return its virtual address.
See free-mem .

For example:

: my-checker (--) test-dev-status if user-abort then ;

: install-abort (--) ['] my-checker d# 10 alarm ;

alias pkg-attr get-package-attribute

h# 100 alloc-mem (virt) constant my-buff

FCode Dictionary 217

11

and (n1 n2 -- n3) code# 23

n3 is the bit-by-bit logical and of n1 with n2 .

ascii (-- n) code# 10 00 00 00 xx
generates: b(lit) value

Interpret the next letter as an ASCII code. For example:

attribute (value-xdr-adr value-xdr-len name-adr name-len --) code# 1 10

attribute is the way to pass properties from an FCode program to a SunOS
device driver. A property consists of two strings: a name string and a value
string. The name string gives the name of the property, and the value string
gives the value associated with that name. For example, a framebuffer may
wish to declare a property named “hres ” (for horizontal resolution) with a
value of 1152.

The attribute command requires two strings on the stack — the value string
and the name string. The name string is an ordinary Forth string, such as any
string created with " . This string should be written in lower case, since the
attribute name is stored only after converting uppercase letters, if any, to lower
case. For example:

is stored as if entered

The value string, however, must be in the xdr format. See Chapter 5,
“Properties” for more information on creating xdr -format strings.

All properties created by an FCode program are stored in a "device tree" by
OpenBoot. This tree may then be queried by a SunOS device driver, using
getprop or getlongprop .

ascii C (equals hex 43)

ascii c (equals hex 63)

“ A21-b” xdrstring “ New_verSION” attribute

“ A21-b” xdrstring “ new_version” attribute

218 Writing FCode 2.x Programs—November 1995

11

The FCode program and the SunOS device driver may agree on any arbitrary
set of names and values to be passed, with virtually no restrictions. Several
names, though, have special meaning. For many of them, a shorthand
command also exists that makes the attribute declaration a bit simpler.

For example:

See also: name, reg , intr , model and Chapter 5, “Properties” for more
information.

b# number (-- n) code# 10 xx xx xx xx
generates: b(lit) value

Interpret the next number in binary (base 2), regardless of any previous
settings of hex , decimal , binary or octal . Only the immediately-following
number is affected, the current numeric base setting is unchanged. For
example:

See also d# , h# , and o# .

b(") (-- adr len) code# 12 len xx xx xx ...

An internal word, generated by words such as " or ." to leave a text string
on the stack. The FCode for b(") should always be followed by an 8-bit
length, then by the appropriate number of bytes representing the desired test
string. Never use the word b(") in source code.

b(’) (-- acf) code# 11 FCode#

An internal word, generated by ’ or [’] to leave on the stack the code field
address of the immediately following word. The FCode for b(’) should
always be followed by the FCode of the desired word. Never use the word
b(’) in source code.

" SUNW,new-model" xdrstring " model" attribute

hex

b# 100 (equals decimal 4)

100 (equals decimal 256)

FCode Dictionary 219

11

b(+loop) (n --) code# 16 -offset

An internal word, generated by +loop . The FCode for b(+loop) should
always be followed by a negative offset (either 8-bit or 16-bit, see offset16).
Never use the word b(+loop) in source code.

b(:) (--) code# b7

An internal word, generated by the defining word : . This is the type entry for
: needed by named-token or new-token . See these words for more details.
Never use the word b(:) in source code.

b(;) (--) code# c2

An internal word, generated by ; to end a colon definition. Never use the
word b(;) in source code.

b(<mark) (--) code# b1

An internal word, generated by begin . Never use the word b(<mark) in
source code.

b(>resolve) (--) code# b2

An internal word, generated by repeat , else , and then . Never use the word
b(>resolve) in source code.

b(?do) (end start --) code# 18 +offset

An internal word, generated by ?do . The FCode for b(?do) should always be
followed by a positive offset (either 8-bit or 16-bit, see offset16). Never use
the word b(?do) in source code.

b(buffer:) (n --) code# bd

An internal word, generated by the defining word buffer: . This is the type
entry for buffer: needed by external-token , named-token , or new-
token . See these words for more details. Never use the word b(buffer:) in
source code.

220 Writing FCode 2.x Programs—November 1995

11

b(case) (selector -- selector) code# c4

An internal word, generated by case . Never use the word b(case) in source
code.

b(constant) (n --) code# ba

An internal word, generated by the defining word constant . This is the type
entry for constant needed by external-token , named-token or new-
token . See these words for more details. Never use the word b(constant)
in source code.

b(create) (--) code# bb

An internal word, generated by the defining word create . This is the type
entry for create needed by external-token , named-token or new-token
. See these words for more details. Never use the word b(create) in source
code.

b(defer) (--) code# bc

An internal word, generated by the defining word defer . This is the type
entry for defer needed by external-token , named-token or new-token
. See these words for more details. Never use the word b(defer) in source
code.

b(do) (end start --) code# 17 +offset

An internal word, generated by do . The FCode for b(do) should always be
followed by a positive offset (either 8-bit or 16-bit, see offset16). Never use the
word b(do) in source code.

b(endcase) (--) code# c5

An internal word, generated by endcase . Never use the word b(endcase)
in source code.

FCode Dictionary 221

11

b(endof) (--) code# c6 +offset

An internal word, generated by endof . Never use the word b(endof) in
source code.

b(field) (offset size -- offset+size) code# be

An internal word, generated by the defining word field . This is the type
entry for field needed by external-token , named-token or new-token
. See these words for more details. Never use the word b(field) in source
code.

b(is) (n --) code# c3

An internal word, generated by is .

Never use the word b(is) in source code.

b(leave) (--) code# 1b

An internal word, generated by leave .

Never use the word b(leave) in source code.

b(lit) (-- n) code# 10 xx xx xx xx

Any input number, such as 205 or -14, will create the b(lit) FCode (code#10),
followed by 32-bits (4 bytes) with the actual binary value in two’s-complement
arithmetic. The number base (hex, decimal or any other chosen radix) is
controlled by any previous uses of the tokenizer directives hex , decimal , and
so on, or by numeric input control words such as h# , d# , ascii , and so on.
Thus,

would be encoded as the hex bytes 10 00 00 00 14

The only numbers that are not encoded using b(lit) are the values -1, 0, 1, 2,
or 3. Because these numbers occur so frequently, these values are assigned
individual FCodes to save space.

decimal ... 20

222 Writing FCode 2.x Programs—November 1995

11

Never use the word b(lit) in source code.

b(loop) (n --) code# 15 -offset

An internal word, generated by loop . The FCode for b(loop) should always
be followed by a negative offset (either 8-bit or 16-bit, see offset16).

Never use the word b(loop) in source code.

b(of) (testval --) code# 1c +offset

An internal word, generated by of . The FCode for b(of) should always be
followed by a positive offset (either 8-bit or 16-bit, see offset16). Never use
the word b(of) in source code.

b(value) (n --) code# b8

An internal word, generated by the defining word value . This is the type
entry for value needed by external-token , named-token or new-token
. See these words for more details. Never use the word b(value) in source
code.

b(variable) (n --) code# b9

An internal word, generated by the defining word variable . This is the type
entry for variable needed by external-token , named-token or new-
token . See these words for more details. Never use the word b(variable)
in source code.

b?branch (flag --) code# 14 offset

An internal word, generated by until , while , and if . The FCode for
b?branch should always be followed by an offset (either 8-bit or 16-bit, see
offset16). Never use the word b?branch in source code.

FCode Dictionary 223

11

base (-- adr) code# a0

The address of a variable containing the current numeric conversion radix to
be used when the FCode program is executing, such as 10 for decimal, 16 for
hex, 8 for octal, and so on. For example, to print the current value of base , use:

The tokenizer words binary , decimal , hex , or octal are also available for
changing the value in base as desired. However, these four words behave
differently depending whether they occur within a definition or outside of a
definition.

If any of binary , decimal , hex , or octal occur within a definition, then they
will be compiled, later causing a change to the value in base when that
definition is executed.

If any of binary , decimal , hex , or octal occur outside of a definition,
however, then they are interpreted as commands to the tokenizer program
itself, thus affecting the interpretation of all subsequent numbers in the text.

Note that changes to base affect the numeric base of the Toolkit itself, which
can create much confusion for any user (the default value for base is
hexadecimal). If you must change the base, Sun recommends that you save and
then restore the original base, as in:

In general, only numeric output will be affected by the value in base . Fixed
numbers in FCode source are interpreted by the tokenizer program. Most
numeric input is controlled by binary , decimal , hex , octal , b# , d# , h# , and
o# , but these words only affect the tokenizer input base; they but do not affect
the value in base . For example:

base @ .d

: .o (n --) \ Print n in octal

 base @ swap (oldbase n)

 octal . (oldbase)

 base !

 (assume initial value in base is 16, i.e. Toolkit is in hex)

 (no assumptions should be made about the initial tokenizer base)

fcode-version1

hex (tokenizer in base 16; later execution, using base, in base 16)

224 Writing FCode 2.x Programs—November 1995

11

If this all seems confusing, simply follow these guidelines:

Good: initially declare hex just after fcode-version1 , and make liberal use of
b# , d# , o# , h# ,.h and.d .

Bad: changing base either directly or by calling binary , decimal , hex , or
octal from within a definition.

bbranch (--) code# 13 offset

An internal word, generated by again , repeat , and else . The FCode for
bbranch should always be followed by an offset (either 8-bit or 16-bit,see
offset16). Never use the word bbranch in source code.

begin (--) code# b1
generates: b(<mark)

Marks the beginning of a conditional loop, such as begin ... until ,
begin ... while ... repeat , or begin ... again . See these other
words for more details.

bell (-- n) code# ab

n is the ASCII code for the bell character; decimal 7.

20 . (compile decimal 32, later print “20” when FCode executes)

decimal (tokenizer is in base 10, later execution is in base 16)

20 . (compile decimal 20, later print “14” since FCode executes in hex)

: TEST (--)

 octal (still compiling in decimal, later change base when TEST executes)

 20 . (compiles decimal 20, prints “24” since base was just changed)

 h# 20 .d (compiles decimal 32, prints “32”; no permanent base changes)

 20 . (compiles decimal 20, prints “24”)

;

20 . (compile decimal 20, later print “14”

TEST (prints “24 32 24”; has a side-effect of changing the base)

20 . (compile decimal 20, later print 24 since TEST changed base)

hex (tokenizer is in base 16; later execution, using base, still in base 8)

20 . (compile decimal 32, later print “40”)

FCode Dictionary 225

11

between (n min max -- flag) code# 44

flag is true if n is between min and max, inclusive of both endpoints (min <=
n <= max). See within for a different form of comparison.

binary (--) code# none
generates: 2 base ! or code# a7 a0 72

If outside of a definition, commands the tokenizer program to interpret
subsequent numbers in binary (base 2). If within a definition, change the value
in base affecting later numeric output when the FCode program is executed.
See base .

bl (-- n) code# a9

The ASCII code for the space character; decimal 32, hex 20.

blank (adr len --) code# a9 79
generates: bl fill

len bytes of memory beginning at adr are set to the ASCII character value for
space (hex 20). No action is taken if len is zero.

blink-screen (--) code# 1 5b

A defer word, called by the terminal emulator when needed to flash the
entire screen.

This word is initially empty, but must be loaded with an appropriate routine in
order for the terminal emulator to function correctly.

This may be done with is , or it may be loaded automatically with fb1-
install or fb8-install (which loads fb1-blink-screen or fb8-
blink-screen , respectively). These default routines invert the screen (twice)
by xor-ing every visible pixel. This is quite slow.

A replacement routine simply disables the video for 20 milliseconds or so, i.e.

: my-blink-screen (--) video-off 20 ms video-on ;
...
 \ load default behaviors with fbx-install, then:
 [’] my-blink-screen is blink-screen

226 Writing FCode 2.x Programs—November 1995

11

Of course, this example assumes that your display hardware is able to quickly
enable and disable the video without otherwise affecting the state.

bljoin (byte.lo byte2 byte3 byte.hi -- n) code# 7f

Merge four bytes into a single 32-bit word. Incorrect results may be generated
unless the high 24 bits of each stack item are zero.

body> (apf -- acf) code# 85

Convert the parameter field address of a word to its code field address.

>body (acf -- apf) code# 86

Convert the code field address of a word to its parameter field address.

bounds (start cnt -- start+cnt start) code# ac

Convert a starting value and count into the form required for a do or
?do loop. For example, to perform a loop 20 times, counting up from 4000 to
401f inclusive, use:

This is equivalent to:

bs (-- n) code# aa

n is the ASCII code for the backspace character; decimal 8.

buffer: name (size --)at creation code# (header)
(-- adr) at execution

generates: new header, where b(type) = b(buffer:)

Allocate some memory and create a name that, when executed, leaves on the
stack the virtual address of the desired memory. Create with:

4000 20 bounds do ... loop

4020 4000 do ... loop

200 buffer: name

FCode Dictionary 227

11

bwjoin (byte.lo byte.hi -- word) code# b0

Merge two bytes into the low 16-bits of a stack entry (the upper bits are zero).
Incorrect results may be generated unless the high 24 bits of each stack item are
zero.

4-byte-id (--) code# fe

This byte (at location 0) followed by 3 more identifier bytes, was used during
some of the early OpenBoot development as a replacement for actual FCode,
by providing a single “magic” number to identify an SBus device. It was a
temporary measure only, as it required the boot PROM to “know” the correct
magic number for a given device.

This feature is no longer supported, and should not be used under any
circumstances.

c! (n adr --) code# 75

The least significant 8 bits of n are stored in the byte at adr .

c, (n --) code# d0

Compile a byte into the dictionary. This word may be used, in conjunction with
create , to create an array-type structure, as:

Later execution of yellow leaves the address of the first byte of the array (the
address of the byte ’77’) on the stack.

c@(adr -- n) code# 71

The byte at address adr is placed into the low 8-bits of n (the upper bits are
padded with zeroes).

/c (-- n) code# 5a

n is the size in bytes of a byte, which is 1. See /w , /l , and /n .

create yellow 77 c, 23 c, ff c, ff c, 47 c, 22 c, ...

228 Writing FCode 2.x Programs—November 1995

11

/c* (n1 -- n2) code# 66

n2 is the result of multiplying n1 by the length in bytes of a byte. This is useful
for converting an index into a byte offset.

ca+ (adr1 index -- adr2) code# 5e

adr2 is the address of the index ’th character after adr1 . ca+ should be used
in preference to + when calculating addresses because it more clearly expresses
the intent of the operation and is more portable.

ca1+ (adr1 -- adr2) code# 62

adr2 is the address of the next byte after adr1 . ca1+ should be used in
preference to 1+ because it more clearly expresses the intent of the operation
and is more portable.

$call-method ([...] adr len ihandle -- [...]) code# 2 0e
version 2

Executes the device interface method adr len within the open package
instance ihandle . The ellipses (...) indicate that the contents of the stack before
and after the method is called depend upon the particular method being called.

For example:

 See open-package .

call-package ([...] acf ihandle -- [...]) code# 2 08
version 2

Executes the device interface method acf within the open package instance
ihandle . See find-method and open-package . The ellipses (...) indicate
that the contents of the stack before and after the method is called depend upon
the particular method being called.

: dma-alloc (#bytes -- vadr) " dma-alloc" my-parent $call-method ;

FCode Dictionary 229

11

For example:

$call-parent ([...] adr len -- [...]) code# 2 09
version 2

Calls the method named by adr len within the parent instance. If the called
package has no such method, an error is signaled with throw . Equivalent to:

The ellipses (...) indicate that the contents of the stack before and after the
method is called depend upon the particular method being called.

For example:

carret (-- n) code# 10 00 00 00 0d
generates: b(lit) 13(decimal)

n is the ASCII code for the carriage return character; decimal 13, hex 0d .

0 value label-ihandle \ place to save the ihandle of other package

0 value offset-method \ place to save the acf of found method

: init (--)

 my-args " disk-label" $open-package (ihandle)

 is label-ihandle

 " offset" label-ihandle

 ihandle>phandle (name-adr name-len phandle)

 find-method if

 is offset-method

 else

 ." Can't find offset method "

 then

;

init

: add-offset (d.byte# -- d.bytes#)

 offset-method label-ihandle call-package

;

my-parent $call-method

: my-dma-alloc (-- vadr) h# 2000 " dma-alloc" $call-parent ;

230 Writing FCode 2.x Programs—November 1995

11

case (selector -- selector) code# c4
generates: b(case)

A case statement is started that selects its action based on the value of
selector . Example of use:

The default clause is optional. When an of clause is executed, the selector is
not on the stack. When a default clause is executed, the selector is on the stack.
The default clause may use the selector, but must not remove it from the stack
(it will be automatically removed just before the encase). of tests the top of
the stack against the selector at run time. If they are the same, the selector is
dropped and the following Forth code is executed. If they are not the same,
execution continues at the point just following the matching endof .

case statements can only be used within colon definitions.

catch ([...] acf -- [...] error-code) code# 2 17
version 2

Creates a new error handling context and executes acf in that context.

If a throw (see below) is called during the execution of acf ,

1. the error handling context is removed

2. the stack depth is restored to the depth that existed prior to the execution of
acf (not counting the acf stack item)

3. the error code that was passed to throw is pushed onto the stack

4. catch returns

: foo (selector --)

 case

 0 of .” It was 0” endof

 5 of .” It was 5” endof

 -2 of .” It was -2” endof

 (selector) .” It was “ dup u. \ default clause

 endcase

;

FCode Dictionary 231

11

If throw is not called during the execution of acf , the error handling context
is removed and catch returns a false . The stack effect is otherwise the same
as if acf were executed using execute .

For example:

Note that, given this definition:

shows

while

may show something like:

An important thing to note is that upon a non-zero throw, only the stack depth
is guaranteed to be the same as before catch , not the data stack contents.

: add-n-check-limit (n1 n2 n3 -- n)

 + + dup h# 30 > if true throw then

;

: add-me (n1 n2 n3 -- a b c | n1+n2+n3)

 ['] add-n-check-limit catch if

 ." Sum exceeds limit " .s

 else

 ." Sum is within limit. Sum = " .s

 then cr

;

1 2 3 add-me

Sum is within limit. Sum = 6

10 20 30 add-me

Sum exceeds limit 50 9 12

232 Writing FCode 2.x Programs—November 1995

11

char-height (-- n) code# 1 6c

A value , containing the standard height (in pixels) for all characters to be
drawn. This number, when multiplied by #lines , determines the total height
(in pixels) of the active text area.

This word must be set to the appropriate value if you wish to use any fb1- or
fb8- utility routines or >font . This may be done with is , but is normally
done by calling set-font .

char-width (-- n) code# 1 6d

A value , containing the standard width (in pixels) for all characters to be
drawn. This number, when multiplied by #columns , determines the total
width (in pixels) of the active text area.

This word must be set to an appropriate value if you want to use any fb1- or
fb8- utility routines. This may be done with is , but is normally done by
calling set-font .

The fb1 and fb8 character painting support routines in current PROMs do not
support widths larger than 16 (decimal). However, it is possible to display
wider characters by splitting each character bitmap into 2 halves and calling
fbx-draw-character twice.

child (parent-phandle -- child-phandle) code# 2 3b
version 2.3

Returns the phandle of the package that is the first child of the package
parent-phandle .

child returns zero if the package parent-phandle has no children,.

You will generally use child , together with peer , to enumerate (possibly
recursively) the children of a particular device. One common use could be for
bus adapter device drivers to use the phrase my-self ihandle>phandle to
develop the parent-phandle argument.

FCode Dictionary 233

11

For example:

close-package (ihandle --) code# 2 06
version 2

Closes the instance identified by ihandle by calling that package’s close
method and then destroying the instance.

For example:

cmove (adr1 adr2 len --) code# 78
generates: move

Copy len bytes of an array starting at adr1 to adr2 . This word calls move,
which is "smart" and correctly handles overlapping arrays in either direction.

cmove and cmove> are older standard Forth words that explicitly command in
which order to copy the bytes (back-to-front, or front-to-back). In most cases,
the distinction is not important. This distinction is important if the arrays
overlap, else the source array may be overwritten prematurely, with
unexpected results.

move will also perform 16-bit, 32-bit or possibly even 64-bit operations (for
better performance) if the alignment of the operands permit. If your hardware
requires explicit 8-bit or 16-bit accesses, you will probably wish to use an
explicitly-coded do... loop instead.

: my-children (--) \ shows phandles of all children

 my-self ihandle>phandle child (first-child)

 begin ?dup while dup .h peer repeat

;

: tftp-load-avail? (-- exist?)

 0 0 " obp-tftp" $open-package (ihandle)

 dup ihandle>phandle " load" rot

 find-method if drop true else false then

 close-package

;

234 Writing FCode 2.x Programs—November 1995

11

cmove> (adr1 adr2 len --) code# 78
generates: move

Copy len bytes of an array starting at adr1 to adr2 . This word simply calls
move . See cmove for more information.

column# (-- n) code# 1 53

A value , set and controlled by the terminal emulator, that contains the current
horizontal position of the text cursor. A value of 0 represents the leftmost
cursor position (this is not the leftmost pixel of the framebuffer - see window-
left).

This word can (and should) be looked at as needed if your FCode program is
implementing its own set of framebuffer primitives.

For example:

#columns (-- n) code# 1 51

This is a value that returns the number of columns of text, i.e. the number of
characters in a line, to be displayed using the boot PROM’s terminal emulator.
It must be set to a proper value in order for the terminal emulator to function
correctly.

#columns is defined in the boot PROM with an initial value of 80 (decimal),
but it should always be actively set by the FCode program. This may be done
with is , or it may be handled automatically as one of the functions performed
by fb1-install or fb8-install . The value set by fbx-install or is the
smaller of the passed #cols parameter and the screen-#columns NVRAM
parameter.

For example:

: set-column (column# --)

 0 max #columns 1- min is column#

;

: set-column (column# --)

 0 max #columns 1- min is column#

;

FCode Dictionary 235

11

comp (adr1 adr2 len -- n) code# 7a

Compare two byte arrays starting at addresses adr1 and adr2 and continuing
for len bytes. n is 0 if the arrays are the same. n is 1 if the first differing
character in the array at adr1 is numerically greater than the corresponding
character in the array at adr2 . n is -1 if the first differing character in the array
at adr1 is numerically less than the corresponding character in the array at
adr2 .

For example:

shows 1

shows 0

shows ffffffff .

constant name (n1 --) at creation code# (header) ba
(-- n1) at execution

generates: new header, b(type) = b(constant)

Creates a named constant. The name is initially created with:

where the number before constant is the desired value for purple . Later
occurrences of purple will leave the correct value on the stack. constant
values should never be changed by the program. If you wish to change the
value of a constant by the program, you should declare it to be a value
instead.

 " this" drop " that" comp .h

 " thisismy" drop " this" comp .h

 " thin" drop " this" comp .h

456 constant purple

236 Writing FCode 2.x Programs—November 1995

11

control x (-- n) code# 10 00 00 00 xx
generates: b(lit) value

Interpret the next letter as a control-code. For example:

count (pstr -- adr len) code# 84

Convert a packed string into a byte-array format. pstr is the address of a
packed string, where the byte at address pstr is the length of the string and
the string itself starts at address pstr+1 .

Packed strings are generally not used in FCode. Virtually all string operations
are in the "adr len " format.

For example:

cpeek (adr -- false | byte true) code# 2 20
version 2

Tries to read the 8-bit byte at address adr . Returns the data and true if the
access was successful. A false return indicates that a read access error
occurred.

cpoke (byte adr -- ok?) code# 2 23
version 2

Attempts to write the 8-bit byte at address adr . Returns true if the access was
successful. A false return indicates that a write access error occurred.

Note – cpoke may be unreliable on bus adapters that buffer write accesses.

control c (equals 03)

h# 100 alloc-mem constant my-buff

" This is a string" my-buff pack (pstr) count type

FCode Dictionary 237

11

cr (--) code# 92

A defer word used to terminate the line on the display and go to the next
line. The default implementation transmits a carriage return and line feed to
the display, clears #out , and adds 1 to #line .

Use cr whenever you want to start a new line of output, or to force the display
of any previously buffered output text. This forcing is valuable for outputting
error messages, to ensure that the error message is sent before any system crash.

For example:

(cr (--) code# 91

Output only the carriage return character (carret , hex 0d). This word is not
commonly used; see cr .

create name (--) at creation code# (header) bb
(-- adr) at execution

generates: new header, b(type) = b(create)

Create a name. It returns the address of memory at run time, immediately
following the name in the dictionary. You can use this word to create an array-
type structure, as:

Later execution of green leaves the address of the first byte of the array (here,
the address of the byte ’77’) on the stack. The returned address will be two-
byte aligned.

In the current implementation, create may not be used within definitions in
an FCode program. The common Forth construct create...does> is not
supported.

: show-info (--)

 ." This is the first line of output " cr

 ." This is the second line of output " cr

;

create green 77 c, 23 c, ff c, ff c, 47 c, 22 c, ...

238 Writing FCode 2.x Programs—November 1995

11

.d (n --) code# a0 6d 49 10 00 00 00 0a a0 72 9d a0 72
generates: base @ swap d# 10 base ! . base !

n is displayed in decimal (using .). The value of base is not permanently
affected.

d# number (-- n) code# 10 value
generates: b(lit) value

Interpret the next number in decimal (base 10), regardless of any previous
settings of hex , decimal , binary , or octal . Only the immediately following
number is affected, the default numeric base setting is unchanged. For
example:

See also b# , h# , and o# .

decimal (--) code# none
generates: 10 base ! code# 10 00 00 00 0a a0 72

If outside of a definition, commands the tokenizer program to interpret
subsequent numbers in decimal (base 10). If within a definition, change the
value in base affecting later numeric output when the FCode program is
executed. See base .

decode-2int (adr len -- phys space) code# 1 1b
version 2

Converts a string into a physical address and space.

For example:

hex

d# 100 (equals decimal 100)

100 (equals decimal 256)

 " 4,ff001200" decode-2int .s

 will show: ff001200 4

 " 4" decode-2int .s

 will show: 0 4

FCode Dictionary 239

11

default-font (-- fontbase charwidth charheight fontbytes #firstchar #chars
)

code# 1 6a

This function returns all necessary information about the character font that is
built into the boot PROM. This font defines the appearance of every character
to be displayed. To load this font, simply pass these parameters to set-font ,
with:

The actual parameters returned by default-font are:

fontbase - The address of the beginning of the built-in font table

charwidth - The width of each character in pixels

charheight - The height of each character in pixels

fontbytes - The separation (in bytes) between each scan line entry

#firstchar - The ASCII value for the first character actually stored in the
font table.

#chars - The total number of characters stored in the font table.

defer name (--) at creation code# (header) bc
(??? -- ?) at execution

generates: new header, b(type) = b(defer)

Create a defer ’d executable. This is a word that has a variable behavior,
depending on the function that is later loaded into it. The name is initially
created with:

Later, after some other word foobar has been created, this behavior can then be
loaded in, with:

default-font set-font

defer blob

[‘] foobar is blob

240 Writing FCode 2.x Programs—November 1995

11

defer ’d words are useful for generating recursive routines. Here’s an
example:

defer ’d words can also be used for creating words with different behaviors
depending on your needs. For example:

If a defer word is executed before being loaded with some behavior, an error
message will be printed.

defer hold2 \ Will execute action2

: action1

 ...

 hold2 (really action2)

 ... ;

: action2

 ...

 action1

 ... ;

‘ action2 is hold2

defer .special (n --) \ Print a value, using special techniques

: print-em-all (--)

 special

 special

 special

;

(.d prints in decimal

(.h prints in hexadecimal)

(.sp prints in a custom format)

: print-all-styles

 [‘] .d is .special print-em-all

 [‘] .h is .special print-em-all

 [‘] .sp is .special print-em-all

;

FCode Dictionary 241

11

delete-attribute (adr len --) code# 2 1e
version 2

Deletes the property named by adr len in the active package, if such a
property exists.

For example:

delete-characters (n --) code# 1 5e

A defer word, called by the terminal emulator when needed to delete n
characters to the right of the cursor. The cursor position is unchanged, the
cursor character and the first n-1 characters to the right of the cursor are
deleted. All remaining characters to the right of the cursor, including the
highlighted character, are moved left by n places. The end of the line is filled
with blanks.

This word is initially empty, but must be loaded with an appropriate routine in
order for the terminal emulator to function correctly. This may be done with
is , or it may be loaded automatically with fb1-install or fb8-install
(which loads fb1-delete-characters or fb8-delete-characters ,
respectively).

delete-lines (n --) code# 1 60

A defer word, called by the terminal emulator to delete n lines starting with
the cursor line (and deletes n-1 lines below the cursor). Lines above the cursor
are unchanged. The cursor position is unchanged. All lines below the deleted
lines are scrolled upwards by n lines, and n blank lines are placed at the
bottom of the active text area.

Use this word for scrolling, by temporarily moving the cursor to the top of the
screen and then calling delete-lines .

: unmap-me (--)

 my-reg my-size " map-out" $call-parent

 " address" delete-attribute

;

242 Writing FCode 2.x Programs—November 1995

11

This word is initially empty, but must be loaded with an appropriate routine in
order for the terminal emulator to function correctly. This may be done with
is , or it may be loaded automatically with fb1-install or fb8-install
(which loads fb1-delete-lines or fb8-delete-lines , respectively).

depth (-- +n) code# 51

+n is the number of entries contained in the data stack, not counting itself.
Note that when an FCode program is called, there could be other items on the
stack from the calling program.

depth is especially useful for before/after stack depth checking, to determine
if the stack was corrupted by a particular operation.

device-name (adr len --) code# 2 01
version 2

Creates a name attribute with the given string value, for example:

This is equivalent to using the name macro or

except that device-name performs the same function with only 2 bytes of
FCode, instead of 10 bytes. This could be useful for devices with extremely
limited FCode space.

See “name” in Chapter 5, “Properties” for more information.

device-type (adr len --) code# 1 1a

This is a shorthand word for creating a "device_type " property. This
property is essential for any plug-in SBus device that will be used during
booting, as it tells the boot PROM which type of boot device it is. An example
usage would be:

" SUNW,zebra" device-name

xdrstring " name" attribute

“ display” device-type

FCode Dictionary 243

11

This is exactly equivalent to the following:

Note the spelling difference between the FCode command device-type
(hyphen) and the device_type property (underscore).

The device_type property is looked at and used by the boot PROM as well.

See also: “device_type” in Chapter 5, “Properties”.

diagnostic-mode? (-- flag) code# 1 20

Returns a true flag if the diag-switch? NVRAM parameter is set to true .
This word enables an FCode program to optionally perform some extended
selftests, based on the diag-switch? . For example:

FCode should not generate character output during probing unless
diagnostic-mode? is true , or unless an error is encountered. Error output
during probing typically goes to the system serial port.

digit (char base -- digit true | char false) code# a3

If the character char is a digit in the specified base, returns the numeric value
of that digit under true , else returns the character under false . Appropriate
characters are hex 30-39 (for digits 0-9) and hex 61-66 (for digits a-f),
depending on base.

For example:

“ display” xdrstring “ device_type” attribute

diagnostic-mode?

if do-extended-tests

else do-normal-tests

then

: probe-slot (slot# --) ... ;

: probe-slots (adr cnt --)

 bounds ?do

 i c@ d# 16 digit if probe-slot else drop then

 loop

;

244 Writing FCode 2.x Programs—November 1995

11

display-status (n --) code# 1 21

Display the results of some test. The method of display is system-dependent.
This FCode is obsolete and should not be used.

do (limit start --) code# 17 +offset
generates: b(do) +offset

Begin a counted loop in the form do ... loop or do ... +loop. The
loop index begins at start , and terminates based on limit . See loop and
+loop for details on how the loop is terminated. The loop is always executed
at least once. For example:

?do (limit start --) code# 18 +offset
generates: b(?do) +offset

Begin a counted loop in the form ?do ... loop or ?do ... +loop . The
loop index begins at start , and terminates based on limit . See loop and
+loop for details on how the loop is terminated. Unlike do , if start is equal
to limit the loop is executed zero times. For example:

?do may be used in place of do in nearly all circumstances.

dma-alloc (#bytes -- virtual) code# 1 01

Used to allocate memory for DMA usae. The allocated memory may be
returned to the system with free-virtual .

This FCode is obsolete on OpenBoot 2 PROMs. For use under OpenBoot 1, see
Appendix D, “Changes in FCode Usage for OpenBoot 1”.

8 3 do i . loop \ would print 3 4 5 6 7

9 3 do i . 2 +loop \ would print 3 5 7

8 1 ?do i . loop \ would print 1 2 3 4 5 6 7

2 1 ?do i . loop \ would print 1

1 1 ?do i . loop \ would print nothing

1 1 do i . loop \ would print 1 2 3 4 5 6 7 8 9...

...

FCode Dictionary 245

11

For version 2 OpenBoot systems, use “ dma-alloc” method of parent:

For example:

draw-character (char --) code# 1 57

A defer word, called by the boot PROM’s terminal emulator in order to
display a single character on the screen at the current cursor location.

This word is initially empty, but must be loaded with an appropriate routine in
order for the terminal emulator to function correctly. This may be done with
is , or it may be loaded automatically with fb1-install or fb8-install
(which loads fb1-draw-character or fb8-draw-character ,
respectively).

draw-logo (line# laddr lwidth lheight --) code# 1 61

A defer word, called by the system to display the power-on logo (the graphic
displayed on the left side during power-up, or by the banner Toolkit
command).

This word is initially empty, but must be loaded with an appropriate routine in
order for the terminal emulator to function correctly. This may be done with
is , or it may be loaded automatically with fb1-install or fb8-install
(which loads fb1-draw-logo or fb8-draw-logo , respectively).

It is possible to pack a custom logo into the FCode PROM and then reinitialize
draw-logo to output the custom logo instead.

draw-logo is called by the system using the following parameters:

line# - The text line number at which to draw the logo. See Appendix D,
“Changes in FCode Usage for OpenBoot 1”. For general use, also see
Appendix C, “FCode Memory Allocation”.

“ dma-alloc” $call-parent

“ dma-map-in” $call-parent

: my-dma-alloc (--)

 my-size " dma-alloc" $call-parent (vaddr)

 is my-reg

;

246 Writing FCode 2.x Programs—November 1995

11

laddr - The address of the logo template to be drawn. In practice, this will
always be either the address of the oem-logo field in NVRAM, the address
of a custom logo in the FCode PROM, or the address of a built-in Sun logo.
In either case, the logo is a bit array of 64x64 (decimal) pixels (512 bytes).
The most significant bit (msb) of the first byte represents the upper-left
pixel; msb-1 represents the next pixel to the right, and so on. A bit value of
1 means that pixel will be painted.

lwidth - The width of the passed-in logo (in pixels).

lheight - The height of the passed-in logo (in pixels).

driver (adr len --) code# 1 18

This is an obsolete word for creating a name property.

driver is no longer supported and should not be used in FCode programs.

drop (n --) code# 46

Removes one item from the stack.

2drop (n1 n2 --) code# 52

Removes two items from the stack.

3drop (n1 n2 n3 --) code# 46 52
generates: drop 2drop

Removes three items from the stack.

dup (n1 -- n1 n1) code# 47

Duplicates the top stack item.

?dup (n1 -- 0 | n1 n1) code# 50

Duplicate the top stack item unless it is zero.

FCode Dictionary 247

11

2dup (n1 n2 -- n1 n2 n1 n2) code# 53

Duplicates the top two stack items.

3dup (n1 n2 n3 -- n1 n2 n3 n1 n2 n3) code# a7 4e a7 4e a7 4e
generates: 2 pick 2 pick 2 pick

Duplicates the top three stack items.

else (--) code# 13 +offset b2
generates: bbranch +offset b(>resolve)

Begin the else clause of an if ... else ... then statement. See if for
more details.

emit (char --) code# 8f

A defer word that outputs the indicated ASCII character. For example, (hex)
41 emit outputs an “A”, 62 emit outputs a “b”, 34 emit outputs a “4”.

emit-byte (n --) code# n
generates: n

A tokenizer command used to manually output a desired byte of FCode. Use it
together with tokenizer[as follows:

emit-byte would be useful, for example, if you wished to generate a new
FCode command that the tokenizer did not understand. This command should
be used with caution or else an invalid FCode program will result.

end0 (--) code# 00

A word that marks the end of an FCode program. This word must be present
at the end of your program, or erroneous results may occur.

tokenizer[

 44 emit-byte 20 emit-byte

]tokenizer

248 Writing FCode 2.x Programs—November 1995

11

If you want to use end0 inside a colon definition, for example in a conditional
clause, use something like:

end1 (--) code# ff

An alternate word for end0 , to mark the end of an FCode program. end0 is
recommended.

endcase (selector|<null> --) code# c5
generates: b(endcase)

Marks the end of a case statement. See case for more details.

endof (--) code# c6 +offset
generates: b(endof) +offset

Marks the end of an of clause within a case statement. See case for more
details.

erase (adr len --) code# a5 79
generates: 0 fill

Sets len bytes of memory beginning at adr to zero. No action is taken if len
is zero.

erase-screen (--) code# 1 5a

A defer word, called once during the terminal emulator initialization
sequence in order to completely clear all pixels on the display. This word is
called just before reset-screen , so that the user doesn’t actually see the
framebuffer data until it has been properly scrubbed.

This word is initially empty, but must be loaded with an appropriate routine in
order for the terminal emulator to function correctly. This may be done with
is , or it may be loaded automatically with fb1-install or fb8-install
(which loads fb1-erase-screen or fb8-erase-screen , respectively).

: exit-if-version1 version h# 20000 < if ['] end0 execute then ;

FCode Dictionary 249

11

eval (??? adr len -- ?) code# cd
version 2

Executes Forth commands within a string. The overall stack effect depends on
the commands being executed. For example:

You can use eval like $find , to find and execute Forth commands that are not
FCodes.

The same cautions apply to eval as for $find , in that programs executing
Forth commands are likely to encounter portability problems when moved to
other systems.

execute (acf --) code# 1d

Executes the word definition whose compilation address is acf . An error
condition exists if acf is not a compilation address.

For example:

exit (--) code# 33

Compiled within a colon definition. When encountered, execution leaves the
current word and returns control to the calling word. May not be used within
a do loop.

For example:

" 4000 20 dump" eval

: my-word (adr len --)

 ." Given string is: " type cr

;

" great" ['] my-word execute

: probe-loop (adr --)

 \ generate a tight probe loop until any key is pressed.

 begin dup l@ drop key? if drop exit then again

;

250 Writing FCode 2.x Programs—November 1995

11

expect (adr len --) code# 8a

A defer word that receives a line of characters from the keyboard and stores
them into memory, performing line editing as the characters are typed.
Displays all characters actually received and stored into memory. The number
of received characters is stored in span .

The transfer begins at adr proceeding towards higher addresses one byte per
character until either a return is received or until len characters have been
transferred. No more than len characters will be stored. The return is not
stored into memory. No characters are received or transferred if len is zero.

For example:

external (--) code# none
version 2

After issuing external , all subsequent definitions are created so that names
are later compiled into RAM, regardless of the value of the NVRAM variable
fcode-debug? . external is used to define the package methods that may be
called from other software external to the package, and whose names must
therefore be present.

external stays in effect until headers or headerless is encountered.

For example:

h# 10 buffer: my-name-buff

: hello (--)

 ." Enter Your First name " my-name-buff h# 10 expect

 ." Sun Microsystems Welcomes " my-name-buff span @ type cr

;

external

: open (-- ok?) ... ;

FCode Dictionary 251

11

external-token (--) code# ca
version 2

A token-type, used to indicate that this word should always be compiled with
the name header present. Activated by external , all subsequent words are
created with external-token until deactivated with either headers or
headerless . See named-token for more details. This word should never be
used in source code.

false (-- 0) code# a5
generates: 0

Leave the value for the false flag (which is zero) on the stack.

fb1-blink-screen (--) code# 1 74

The built-in default routine to blink or flash the screen momentarily on a
generic 1-bit-per-pixel framebuffer. This routine is loaded into the defer word
blink-screen by calling fb1-install .

This routine is invalid unless the FCode program has called fb1-install and
has initialized frame-buffer-adr to a valid virtual address.

This word is implemented simply by calling fb1-invert-screen twice. In
practice, this can be quite slow (around one full second). It is quite common for
a framebuffer FCode program to replace fb1-blink-screen with a custom
routine that simply disables the video for 20 milliseconds or so, i.e.

fb1-delete-
characters (n --) code# 1 77

The built-in default routine to delete n characters at and to the right of the
cursor, on a generic 1-bit-per-pixel framebuffer. This routine is loaded into the
defer word delete-characters by calling fb1-install .

: my-blink-screen (--) video-off 20 ms video-on ;
...
fb1-install
...
[’] my-blink-screen is blink-screen

252 Writing FCode 2.x Programs—November 1995

11

This routine is invalid unless the FCode program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

The cursor position is unchanged, the cursor character and the next n-1
characters to the right of the cursor are deleted, and the remaining characters
to the right are moved left by n places. The end of the line is filled with blanks.

fb1-delete-lines (n --) code# 1 79

The built-in default routine to delete n lines, starting with the cursor line, on a
generic 1-bit-per-pixel framebuffer. This routine is loaded into the defer word
delete-lines by calling fb1-install .

This routine is invalid unless the FCode program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

The cursor line and n-1 lines below it are deleted. All lines above the cursor
line are unchanged. The cursor position is unchanged. All lines below the
deleted lines are scrolled upwards by n lines, and n blank lines are placed at
the bottom of the active text area.

fb1-draw-character (char --) code# 1 70

The built-in default routine for drawing a character on a generic 1-bit-per-pixel
framebuffer, at the current cursor location. This routine is loaded into the
defer word draw-character by calling fb1-install .

This routine is invalid unless the FCode program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

If inverse? is true , then characters are drawn inverted (white-on-black).
Otherwise (the normal case) they are drawn black-on-white.

fb1-draw-logo (line# logoadr lwidth lheight --) code# 1 7a

The built-in default routine to draw the logo on a generic 1-bit-per-pixel
framebuffer. This routine is loaded into the defer word draw-logo by calling
fb1-install .

This routine is invalid unless the FCode program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

See draw-logo for more information on the parameters passed.

FCode Dictionary 253

11

fb1-erase-screen (--) code# 1 73

The built-in default routine to clear (erase) every pixel in a generic 1-bit-per-
pixel framebuffer. This routine is loaded into the defer word erase-screen
by calling fb1-install .

This routine is invalid unless the FCode program has called fb1-install and
has initialized frame-buffer-adr to a valid virtual address.

All pixels are erased (not just the ones in the active text area). If inverse-
screen? is true , then all pixels are set to 1, resulting in a black screen.
Otherwise (the normal case) all pixels are set to 0, resulting in a white screen.

fb1-insert-
characters (n --) code# 1 76

The built-in default routine to insert n blank characters to the right of the
cursor, on a generic 1-bit-per-pixel framebuffer. This routine is loaded into the
defer word insert-characters by calling fb1-install .

This routine is invalid unless the FCode program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

The cursor position is unchanged, but the cursor character and all characters to
the right of the cursor are moved right by n places. An error condition exists if
an attempt is made to create a line longer than the maximum line size (the
value in #columns).

fb1-insert-lines (n --) code# 1 78

The built-in default routine to insert n blank lines below the cursor on a
generic 1-bit-per-pixel framebuffer. This routine is loaded into the defer word
insert-lines by calling fb1-install .

This routine is invalid unless the FCode program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

The cursor position on the screen is unchanged. The cursor line is pushed
down, but all lines above it are unchanged. Any lines pushed off of the bottom
of the active text area are lost.

254 Writing FCode 2.x Programs—November 1995

11

fb1-install (screen-width screen-height code# 1 7b
 #cols #lines --)

This built-in routine installs all of the built-in default routines for driving a
generic 1-bit-per-pixel framebuffer. It also initializes most necessary value s
needed for using these default routines.

set-font must be called, and frame-buffer-adr initialized, before fb1-
install is called, because the char-width and char-height values set by
set-font are needed when fb1-install is executed.

fb1-install loads the following defer routines with their corresponding
fb1- (whatever) equivalents: reset-screen , toggle-cursor , erase-
screen , blink-screen , invert-screen , insert-characters ,
delete-characters , insert-lines , delete-lines , draw-character ,
draw-logo.

The following value s are also initialized:

screen-width - set to the value of the passed-in parameter screen-
width (screen width in pixels)

screen-height - set to the value of the passed-in parameter screen-
height (screen height in pixels)

#columns - set to the smaller of the following two: the passed-in parameter
#cols , and the NVRAM parameter screen-#columns

#lines - set to the smaller of the following two: the passed-in parameter
#lines , and the NVRAM parameter screen-#rows

window-top - set to half of the difference between the total screen height
(screen-height) and the height of the active text area (#lines times
char-height)

window-left - set to half of the difference between the total screen width
(screen-width) and the width of the active text area (#columns times
charwidth), then rounded down to the nearest multiple of 32 (for
performance reasons)

Several internal value s used by various fb1- routine are also set.

FCode Dictionary 255

11

fb1-invert-screen (--) code# 1 75

The built-in default routine to invert every visible pixel on a generic 1-bit-per-
pixel framebuffer. This routine is loaded into the defer word invert-
screen by calling fb1-install .

This routine is invalid unless the FCode program has called fb1-install and
has initialized frame-buffer-adr to a valid virtual address.

All pixels are inverted (not just the ones in the active text area).

fb1-reset-screen (--) code# 1 71

The built-in default routine to enable a generic 1-bit-per-pixel framebuffer to
display data. This routine is loaded into the defer word reset-screen by
calling fb1-install . (reset-screen is called just after erase-screen
during the terminal emulator initialization sequence.)

This word is initially a NOP. Typically, an FCode program will define a
hardware-dependent routine to enable video, and then replace this generic
function with:

fb1-slide-up (n --) code# 1 7c

This is a utility routine. It behaves exactly like fb1-delete-lines , except
that it doesn’t clear the lines at the bottom of the active text area. Its only
purpose is to scroll the enable plane for framebuffers that have 1-bit overlay
and enable planes.

This routine is invalid unless the FCode program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

: my-video-enable (--) ... :
fb1-install
...
[’] my-video-enable is reset-screen

256 Writing FCode 2.x Programs—November 1995

11

fb1-toggle-cursor (--) code# 1 72

The built-in default routine to toggle the cursor location in a generic 1-bit-per-
pixel framebuffer. This routine is loaded into the defer word toggle-
cursor by calling fb1-install . The behavior is to invert every pixel in the
one-character-size space for the current position of the text cursor.

This routine is invalid unless the FCode program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

fb8-blink-screen (--) code# 1 84

The built-in default routine to blink or flash the screen momentarily on a
generic 8-bit-per-pixel framebuffer. This routine is loaded into the defer word
blink-screen by calling fb8-install .

This routine is invalid unless the FCode program has called fb8-install and
has initialized frame-buffer-adr to a valid virtual address.

This word is implemented simply by calling fb8-invert-screen twice. In
practice, this can be very slow (several seconds). It is quite common for a
framebuffer FCode program to replace fb8-blink-screen with a custom
routine that simply disables the video for 20 milliseconds or so, i.e.

fb8-delete-
characters (n --) code# 1 87

The built-in default routine to delete n characters to the right of the cursor, on a
generic 8-bit-per-pixel framebuffer. This routine is loaded into the defer word
delete-characters by calling fb8-install .

This routine is invalid unless the FCode program has called fb8-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

: my-blink-screen (--) video-off 20 ms video-on ;
...
fb8-install
...
[’] my-blink-screen is blink-screen

FCode Dictionary 257

11

The cursor position is unchanged. The cursor character and the next n-1
characters to the right of the cursor are deleted, and the remaining characters to the
right are moved left by n places. The end of the line is filled with blanks.

fb8-delete-lines (n --) code# 1 89

The built-in default routine to delete n lines, starting with the cursor line, on a
generic 8-bit-per-pixel framebuffer. This routine is loaded into the defer word
delete-lines by calling fb8-install .

This routine is invalid unless the FCode program has called fb8-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

The cursor line and n-1 lines below it are deleted. All lines above the cursor line
are unchanged. The cursor position is unchanged. All lines below the deleted lines
are scrolled upwards by n lines, and n blank lines are placed at the bottom of the
active text area.

fb8-draw-character (char --) code# 1 80

The built-in default routine for drawing a character on a generic 8-bit-per-pixel
framebuffer, at the current cursor location. This routine is loaded into the defer
word draw-character by calling fb8-install .

This routine is invalid unless the FCode program has called fb8-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

If inverse? is true , then characters are drawn inverted (white-on-black).
Otherwise (the normal case) they are drawn black-on-white.

fb8-draw-logo (line# logoadr lwidth lheight --) code# 1 8a

The built-in default routine to draw the logo on a generic 8-bit-per-pixel
framebuffer. This routine is loaded into the defer word draw-logo by calling
fb8-install .

258 Writing FCode 2.x Programs—November 1995

11

This routine is invalid unless the FCode program has called fb8-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

The logo is drawn by painting every desired pixel with the value 01 (normal
characters are painted with the value FF). Typically, color# 0xff is set to black (for
normal black characters), whereas color#01 is set to Sun-blue so that the Sun logo
is painted the proper color.

See draw-logo for more information on the parameters passed.

fb8-erase-screen (--) code# 1 83

The built-in default routine to clear (erase) every pixel in a generic 8-bit-per-pixel
framebuffer. This routine is loaded into the defer word erase-screen by
calling fb8-install .

This routine is invalid unless the FCode program has called fb8-install and
has initialized frame-buffer-adr to a valid virtual address.

All pixels are erased (not just the ones in the active text area). If inverse-
screen? is true , then all pixels are set to 0xff, resulting in a black screen.
Otherwise (the normal case) all pixels are set to 0, resulting in a white screen.

fb8-insert-
characters (n --) code# 1 86

The built-in default routine to insert n blank characters to the right of the cursor,
on a generic 8-bit-per-pixel framebuffer. This routine is loaded into the defer
word insert-characters by calling fb8-install .

This routine is invalid unless the FCode program has called fb8-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

The cursor position is unchanged, but the cursor character and all characters to the
right of the cursor are moved right by n places. An error condition exists if an
attempt is made to create a line longer than the maximum line size (the value in
#columns).

FCode Dictionary 259

11

fb8-insert-lines (n --) code# 1 88

The built-in default routine to insert n blank lines below the cursor on a generic 8-
bit-per-pixel framebuffer. This routine is loaded into the defer word insert-
lines by calling fb8-install .

This routine is invalid unless the FCode program has called fb8-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

The cursor position is unchanged. The cursor line is pushed down, but all lines
above it are unchanged. Any lines pushed off of the bottom of the active text area
are lost.

fb8-install (screen-width screen-height #cols code# 1 8b
 #lines --)

This built-in routine installs all of the built-in default routines for driving a generic
8-bit-per-pixel framebuffer. It also initializes most necessary value s needed for
using these default routines.

set-font must be called, and frame-buffer-addr initialized, before fb8-
install is called, because the char-width and char-height values set by
set-font are needed when fb8-install is executed.

fb8-install loads the following defer routines with their corresponding fb8-
(whatever) equivalents: reset-screen , toggle-cursor , erase-screen ,
blink-screen , invert-screen , insert-characters , delete-
characters , insert-lines , delete-lines , draw-character , draw-logo

The following values are also initialized:

screen-width - set to the value of the passed-in parameter screen-width
(screen width in pixels)

screen-height - set to the value of the passed-in parameter screen-
height (screen height in pixels)

#columns - set to the smaller of the following two: the passed-in parameter
#cols , and the NVRAM parameter screen-#columns

260 Writing FCode 2.x Programs—November 1995

11

#lines - set to the smaller of the following two: the passed-in parameter
#lines , and the NVRAM parameter screen-#rows

window-top - set to half of the difference between the total screen height (
screen-height) and the height of the active text area (#lines times
char-height)

window-left - set to half of the difference between the total screen width (
screen-width) and the width of the active text area (#columns times
char-width), then rounded down to the nearest multiple of 32 (for
performance reasons)

Several internal value s are also set that are used by various fb8- routines.

fb8-invert-screen (--) code# 1 85

The built-in default routine to XOR (with hex 0xff) every visible pixel on a generic
8-bit-per-pixel framebuffer. This routine is loaded into the defer word invert-
screen by calling fb8-install .

This routine is invalid unless the FCode program has called fb8-install and
has initialized frame-buffer-adr to a valid virtual address.

All pixels are inverted (not just the ones in the active text area).

fb8-reset-screen (--) code# 1 81

The built-in default routine to enable a generic 8-bit-per-pixel framebuffer to
display data. This routine is loaded into the defer word reset-screen by
calling fb8-install . (reset-screen is called just after erase-screen
during the terminal emulator initialization sequence.)

This word is initially a NOP. Typically, an FCode program will define a hardware-
dependent routine to enable video, and then replace this generic function with:

: my-video-enable (--) ... :
fb8-install
...
[’] my-video-enable is reset-screen
...

FCode Dictionary 261

11

fb8-toggle-cursor (--) code# 1 82

The built-in default routine to toggle the cursor location in a generic 8-bit-per-pixel
framebuffer. This routine is loaded into the defer word toggle-cursor by
calling fb8-install . The behavior is to XOR every pixel with 0xff in the one-
character-size space for the current position of the text cursor.

This routine is invalid unless the FCode program has called fb8-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

fcode-version (-- n) code# 2 12
version 2

This FCode is obsolete, use version instead.

fcode-version1 (--) code# fd 00 xx yy aa bb cc dd
generates: version1 (null) (reserved) (length)

This word, or fcode-version2 , must be the first command in your FCode
program (except for tokenizer directives such as hex or \ that do not generate
any FCode bytes). The command fcode-version1 creates an 8-byte header,
as:

The length field specifies the total usable length of FCode data, from
version1 to end0 inclusive. Additional end0 bytes are appended to the end
of the data, if needed, to leave a total length which is evenly divisible by 4. The
"null byte" position may be used in the future to carry a version number or
other information, but it is currently not used.

See Appendix D, “Changes in FCode Usage for OpenBoot 1”.

(fd) version1 (1 byte)

(00) null byte (1 byte)

(xxyy) reserved (2 bytes)

(aabbccdd) length (4 bytes)

262 Writing FCode 2.x Programs—November 1995

11

fcode-version2 (--) code# f1 00 xx yy aa bb cc dd
generates: start1 (null) (reserved) (length)
version 2

Starts a version2 FCode program, generating an 8-byte header similar to
fcode-version1 , except that the starting byte is start1 (f1) instead of
version1 (fd).

For example:

Caution – FCode programs created with fcode-version2 will only run on
OpenBoot 2 or later systems. They will not work on OpenBoot 1.0 systems.

Caution – In most cases, use fcode-version1 , along with an escape routine
to prevent any version 1.0 systems from trying to execute, as shown in the
following example:

See Appendix D, “Changes in FCode Usage for OpenBoot 1”.

ferror (--) code# fc
version 2.3

Displays an “Unimplemented FCode” error message and stops FCode
interpretation. All unimplemented FCode numbers resolve to ferror in all
existing OpenBoot implementations.

The intended use of ferror is to determine whether or not a particular FCode
is implemented, without checking the FCode version number.

fcode-version2

" SUNW,nvsimm" xdrstring " name" attribute

...

end0

: ?quit (--) version h# 2.0000 < if [’] end0 execute then ;

?quit

FCode Dictionary 263

11

For example:

field (offset size -- offset+size) at creation code# (header) be
(base -- base+offset) at execution
generates: new header, b(type) = b(field)

struct and field are used to create named offset pointers into some array
structure. For each field in the array structure, a name is assigned to the
location of that field (as an offset from the beginning of the array). Here’s a
code example. (The numbers in parentheses show the stack after each word is
created.) The structure being described is:

: implemented? (acf -- flag) [‘] ferror <> ;

: my-peer (prev -- next)

 [‘] peer implemented? if

 peer

 else

 .” peer is not implemented” cr

 then

:

byte#

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

size flags.. bits key fullname.................... age

 initials lastname...........

struct (0)

2 field size (2) \ equivalent to: : size 0 + ;

4 field flags (6) \ equivalent to: : flags 2 + ;

1 field bits (7) \ equivalent to: : bits 6 + ;

1 field key (8) \ equivalent to: : key 7 + ;

0 field fullname (8) \ equivalent to: : fullname 8 + ;

2 field initials (10) \ equivalent to: : initials 8 + ;

8 field lastname (18) \ equivalent to: : lastname 10 + ;

2 field age (20) \ equivalent to: : age 18 + ;

 constant /record () \ equivalent to: 20 constant /record

264 Writing FCode 2.x Programs—November 1995

11

Typical usage of these defined words would be:

Note that struct is merely a cross-compiler equivalent that puts the number
0 on the stack.

fill (adr u byte --) code# 79

Set u bytes of memory beginning at adr to byte . No action taken if u = 0.

$find (adr len -- adr len false | acf +/-1) code# cb

Takes a string from the stack, and tries to find that word in the OpenBoot
PROM. This is an escape hatch, allowing an FCode program to perform any
function that is available in the OpenBoot Forth Monitor but that is not defined
as part of the standard FCode interface.

If the word is not found, the original string is left on the stack, with a false
on top of the stack. If the word is found, the code field address of that word is
left on the stack, and either a +1 or -1 is left on top. +1 is left if the found word
is an immediate word, -1 is left otherwise.

Use $find with caution! Different CPUs or even different versions of the boot
PROM may change or delete certain words in the Toolkit. If your FCode
program depends on one of these words, you may suddenly find that your
SBus card doesn’t work properly with future releases.

Caution – If you find yourself tempted to use $find , please contact the Sun
SBus Support Group and tell them what function you need to use this way.
This will help Sun to plan for future FCode features, and will let you know the
likelihood of the needed Toolkit word being changed in the future.

/record buffer: myrecord \ Create the “myrecord” buffer

myrecord flags l@ \ get flags data

myrecord key c@ \ get key data

myrecord size w@ \ get size data

/record \ get total size of the array

FCode Dictionary 265

11

Example of use:

find-method (adr len phandle -- false | acf true) code# 2 07
version 2

Locates the method named by adr len within the package phandle . Returns
false if the package has no such method, or acf and true if the operation
succeeds. Subsequently, acf may be used with call-package .

For example:

find-package (adr len -- false | phandle true) code# 2 04
version 2

Locates a package whose name is given by the string adr len . If the package
can be located, returns its phandle and true . Otherwise returns false . The
name is interpreted relative to the /packages device node. For example, if
adr len represents the string “disk-label ”, the package in the device tree
at “/packages/disk-label ” will be located. If there are multiple packages
with the same name (within the /packages node), the phandle for the most
recently created one is returned.

“ root-info” $find (adr len false | acf +/-1)

if execute \ if found, then do the function

 \ in this example, we don’t care about

 \ immediate vs. non-immediate

else (adr len) type .” was not found!” cr

then

: tftp-load-avail? (-- exist?)

 " obp-tftp" find-package if (phandle)

 " load" rot find-method if (acf)

 drop true exit

 then

 then

 false

;

266 Writing FCode 2.x Programs—November 1995

11

For example:

finish-device (--) code# 1 27

The two words finish-device and new-device let a single FCode program
declare more than one entry into the device tree. This capability is useful when
a single SBus card contains two or more essentially independent devices, to be
controlled by two or more separate SunOS device drivers. Typical usage:

There is an implicit new-device call at the beginning of an FCode program
(at fcode-version1 or fcode-version2), and an implicit finish-device
call at the end of an FCode program (at end0). Thus, FCode programs that
only define a single device and driver will never need to call finish-device
or new-device .

: tftp-load-avail? (-- exist?)

 " obp-tftp" find-package if (phandle)

 " load" rot find-method if (acf)

 drop true exit

 then

 then

 false

;

fcode-version1

...driver#1...

finish-device \ terminate device tree entry#1

new-device \ begin a new device tree entry

...driver#2

finish-device \ terminate device tree entry#2

new-device \ begin a new device tree entry

...driver#3...

end0

FCode Dictionary 267

11

firmware-version (-- n) code# 2 11
version 2

Returns a 32-bit number identifying the version of the CPU firmware. The high
16 bits is the major version number and the low 16 bits is the minor version
number.

This is the major/minor release number that is accessed by the ROMvec
entry op_mon_id . For example, in version 2.1, firmware-version
returns 0x00020001 . This is also the same number displayed by banner or
.version .

For example:

flip (n1 -- n2) code# 80

n2 is the result of exchanging the two low-order bytes of the number n1 . The
two upper bytes of n1 must be zero, or erroneous results will occur.

fload filename (--) code# none

Tokenizer command that begins tokenizing text in the named file. When the
named file is done, tokenizing continues on the file that called filename with
fload .

For example:

fload commands may be nested; an fload ed file may include fload
commands.

fload is useful for creating large FCode programs, making it easier to break
them up into function blocks for better clarity and portability.

: show-version (--)

 ." CPU bootprom version is " base @ d# 16 base ! (old-base)

 firmware-version (old-base version)

 lwsplit (.) type ascii . emit .h cr base ! ()

;

fload my-disk-package.fth

268 Writing FCode 2.x Programs—November 1995

11

Note – fload commands won’t work when downloading text in source-code
form. You can either manually merge your text into one big file, download and
execute the various file separately, or tokenize it first and then download and
execute the FCode in binary form.

>font (char -- adr) code# 1 6e

This routine converts a character value (ASCII 0-0xff) into the address of the font
table entry for that character. For the normal, built-in font, only ASCII values 0x21-
0x7e result in a printable character, other values will be mapped to a font entry for
"blank".

This word is only of interest if you are implementing your own character-drawing
routines. Note that >font will generate invalid results unless set-font has been
called to initialize the font table to be used.

fontbytes (-- n) code# 1 6f

A value , containing the interval between successive entries in the font table. Each
entry contains the next scan line bits for the desired character. Each scan line is
normally 12 pixels wide, and is stored as one bit per pixel, thus taking 1 1/2 bytes
per scan line. The standard value for fontbytes is 2, meaning that the next scan
line entry is 2 bytes after the previous one (the last 1/2 byte is wasted space).

This word must be set to the appropriate value if you wish to use any fb1- or fb8-
utility routines or >font . This may be done with is , but is normally done by
calling set-font .

The standard value for fontbytes is one of the parameters returned by
default-font .

frame-buffer-adr (-- virt) code# 1 62

This is a value that returns the address of the beginning of framebuffer memory.
It must be set to an appropriate virtual address (using is) in order to use any of the
fb1- or fb8- utility routines. It is suggested that this same value variable be
used in any of your custom routines that require a frame

FCode Dictionary 269

11

buffer address, although of course you are free to create and use your own variable
if you wish.

Generally, you should only map in the framebuffer memory just before you are
ready to use it, and unmap it if it is no longer needed. Typically, this means you
should do your mapping in your "install" routine, and unmap it in your “remove”
routine (see is-install and is-remove). Here’s some sample code:

h# 2.0000 constant /frame \ # of bytes in frame buffer
h# 40.0000 constant foffset \ Location of frame buffer

: video-map (--)
 my-address foffset + /frame map-sbus is frame-buffer-adr
;
: video-unmap (--)
 frame-buffer-adr /frame free-virtual
 -1 is frame-buffer-adr \ Flag accidental accesses to a
 \ now-illegal address
;

: power-on-selftest (--)
 video-map
 (test video memory)
 video-unmap
;
power-on-selftest

: my-install (--)
 video-map
 ...
;
: my-remove (--)
 video-unmap
 ...
;
...
[’] my-install is-install
[’] my-remove is-remove

270 Writing FCode 2.x Programs—November 1995

11

free-mem (virtual #bytes --) code# 8c

Frees up memory allocated by alloc-mem .

For example:

free-virtual (virtual size --) code# 1 05

Undoes the MMU page map entries generated by obsolete FCodes memmap ,
dma-alloc , or map-sbus .

This FCode is obsolete for OpenBoot 2. (For use under OpenBoot 1, see
Appendix D, “Changes in FCode Usage for OpenBoot 1”.) To undo maps
created with “ map-in” $call-parent use:

and to undo maps created with “ dma-map-in” $call-parent use:

to undo maps created with “ dma-alloc” $call-parent” use::

0 value my-string \ Holds address of temporary

: .upc-string (adr len --) \ convert to uppercase and print.

 dup alloc-mem is my-string (adr len)

 tuck my-string swap cmove (len)

 my-string over bounds ?do i c@ upc i c! loop (len)

 my-string over type (len)

 my-string swap free-mem

;

“ map-out” $call-parent

“ dma-map-out” $call-parent

“ dma-free” $call-parent

FCode Dictionary 271

11

get-inherited-
attribute (name-adr name-len -- true | xdr-adr xdr-len false)

version 2 code# 2 1d

Locates, within the package associated with the current instance or any of its
parents, the property whose name is name-adr name-len . If the property
exists, returns the property value array xdr-adr xdr-len and false .
Otherwise returns true .

The order in which packages is searched is the current instance first, followed
by its immediate parent, followed by its parent’s parent, and so on. This is
useful for properties with default values established by a parent node, with the
possibility of a particular child node “overriding” the default value.

For example:

get-msecs (-- ms) code# 1 25

Returns the current value in a free-running system counter. The number
returned is a running total, expressed in milliseconds. You can use this for
measuring time intervals (by comparing the starting value with the ending
value). No assumptions should be made regarding the absolute number
returned; only relative interval comparisons are valid.

No assumptions should be made regarding the precision of the number
returned. In many systems (including the SPARCstation 1), the value is derived
from the system clock, which typically ticks once per second. Thus, the value
returned by get-msecs on the SPARCstation 1 and 1+ will be seen to increase
in jumps of 1000 (decimal), once per second. For a delay timer of millisecond
accuracy, see ms .

get-my-attribute (name-adr name-len -- true | val-adr val-len false) code# 2 1a
version 2

Locates, within the package associated with the current instance, the property
named by name-adr name-len . If the property exists, returns the property
value array val-adr val-len and false . Otherwise returns true .

: clock-frequency (-- val.adr len false | true)

 " clock-frequency" get-inherited-attribute

;

272 Writing FCode 2.x Programs—November 1995

11

For example:

get-package-
attribute (name-adr name-len phandle -- true | xdr-adr xdr-len false)

version 2 code# 2 1f

Locates, within the package phandle , the property named by name-adr
name-len . If the property exists, returns the property value array xdr-adr
xdr-len and false . Otherwise returns true .

For example:

group-code (-- adr) code# 1 23

This FCode is obsolete and should not be used.

.h (n --) code# a0 6d 49 10 00 00 00 10 a0 72 9d a0 72
generates: base @ swap d# 16 base ! . base !

Displays n in hex (using .) The value of base is not permanently affected.

: show-model-name (--)

 " model" get-my-attribute 0= if (val.adr len)

 ." model name is " type cr

 else ()

 ." model attribute is missing " cr

 then ()

;

: show-model-name (--)

 my-self ihandle>phandle (phandle)

 " model" rot get-package-attribute 0= if (val.adr len)

 ." model name is " type cr

 else ()

 ." model attribute is missing " cr

 then ()

;

FCode Dictionary 273

11

h# number (--) code# 10 xx xx xx xx
generates: b(lit) value

Interpret the next number in hex (base 16), regardless of any previous settings
of hex , decimal , binary , or octal . Only the immediately following number
is affected, the default numeric base setting is unchanged. For example:

See also b# , d# , and o# .

headerless (--) code# none

Causes all subsequent definitions to be created in FCode without the name
field (the “head”). (See named-token and new-token .) This is sometimes
done to save space in the final FCode PROM, or possibly to make it more
difficult to reverse-engineer an FCode program.

All such headerless words may be used normally within the FCode program,
but cannot be called interactively from the Toolkit for testing and development
purposes.

Unless PROM space and/or dictionary space is a major consideration, Sun
recommends not using headerless words, because they make debugging
more difficult.

headerless remains in effect until headers or external is encountered.

For example:

headers (--) code# none

Causes all subsequent definitions to be saved with the name field (the “head”)
intact. This is the initial default behavior.

decimal

h# 100 (equals decimal 256)

100 (equals decimal 100)

headerless

h# 3 constant reset-scsi

274 Writing FCode 2.x Programs—November 1995

11

Note that even normal FCode words (with heads) cannot be called
interactively from the Toolkit unless the NVRAM parameter fcode-debug?
has been set to true before a system reset.

headers remains in effect until headerless or external is encountered.

For example:

here (-- adr) code# ad

adr is the address of the next available dictionary location.

hex (--) code# none
-or-
generates: b(lit) 16 base ! code# 10 00 00 00 10 a0 72

If outside of a definition, commands the tokenizer program to interpret
subsequent numbers in hex (base 16). If within a definition, change the value in
base affecting later numeric output when the FCode program is executed.
See base .

hold (char --) code# 95

Inserts char into a pictured numeric output string. Typically used between <#
and #> .

For example:

headers

: cnt@ (-- w)

 transfer-count-lo rb@

 transfer-count-hi rb@

 bwjoin

;

: .32 (n --)

 base @ >r hex

 <# # # # # ascii . hold # # # # #> type

 r> base !

 space

;

FCode Dictionary 275

11

i (-- n) code# 19

n is a copy of the loop index. May only be used inside of a do or ?do loop.

For example:

if (flag --) code# 14 +offset
generates: b?branch +offset

Execute the following code if flag is true. Used in the form:

or

If flag is true, the words following if are executed and the words following
else are skipped. The else part is optional. If flag is false, words from if
through else , or from if through then (when no else is used), are skipped.

ihandle>phandle (ihandle -- phandle) code# 2 0b
version 2

Returns the phandle of the package from which the instance ihandle was
created. This is often used with get-package-attribute to read the
properties of the package corresponding to a given ihandle .

For example:

: simple-loop (start len --)

 bounds ?do i .h cr loop

;

flag if ... else ... then

flag if ... then

: show-parent (--)

 my-parent ihandle>phandle " name" rot

 get-package-attribute 0= if

 ." my-parent is " type cr

 then

;

276 Writing FCode 2.x Programs—November 1995

11

insert-characters (n --) code# 1 5d

A defer word, called by the terminal emulator when needed to insert n blank
characters to the right of the cursor. The cursor position is unchanged, but the
cursor character and all characters to the right of the cursor are moved right by n
places. (This command is used during command-line editing.) An error condition
exists if an attempt is made to create a line longer that the maximum line size (the
value in #columns).

This word is initially empty, but must be loaded with an appropriate routine in
order for the terminal emulator to function correctly. This may be done with is , or
it may be loaded automatically with fb1-install or fb8-install (which
loads fb1-insert-characters or fb8-insert-characters , respectively).

insert-lines (n --) code# 1 5f

A defer word, called by the terminal emulator when needed to insert n blank
lines just above the cursor. This could be used by a screen editor, for example.

The cursor’s position on the screen is unchanged. The cursor line is pushed down,
but all lines above it are unchanged. Any lines "pushed" off of the bottom of the
active text area are lost.

This word is initially empty, but must be loaded with an appropriate routine in
order for the terminal emulator to function correctly. This may be done with is , or
it may be loaded automatically with fb1-install or fb8-install (which
loads fb1-insert-lines or fb8-insert-lines , respectively).

instance (--) code# c0
version 2.1

Used to declare that new versions of data should be created for each new
instance of a package (as opposed to global data). Valid for FCode version 2.1
or later.

FCode Dictionary 277

11

instance should be called just before the data-creation defining word. Valid
uses are with value , variable , defer and buffer: . For example:

intr (sbus-intr-level vector --) code# 1 17

This is a shorthand word for declaring the “intr ” and “interrupts ”
properties.

See “intr ” and “interrupts ” in Chapter 5, “Properties”.

See also attribute .

inverse-screen? (-- flag) code# 1 55

A value , set and controlled by the terminal emulator, that tells you how to paint
the unused portions of each line, i.e. white or black? A value of true means paint
the unused portion black.

This word can (and should) be looked at as needed if your FCode program is
implementing its own set of framebuffer primitives.

inverse? (-- flag) code# 1 54

A value , set and controlled by the terminal emulator, that tells you whether to
paint characters as white-on-black or black-on-white. A value of true means
white-on-black. Unused characters on each line are not affected (see inverse-
screen?).

This word can (and should) be looked at as needed if your FCode program is
implementing its own set of framebuffer primitives.

: instance (--) \ verify if "instance" is implemented.

 ['] instance ['] ferror <> if

 instance

 then

;

-1 instance value my-chip-reg

278 Writing FCode 2.x Programs—November 1995

11

invert-screen (--) code# 1 5c

A defer word, called by the terminal emulator when needed to invert the entire
screen. This routine should XOR every visible pixel.

This word is initially empty, but must be loaded with an appropriate routine in
order for the terminal emulator to function correctly. This may be done with is , or
it may be loaded automatically with fb1-install or fb8-install (which
loads fb1-invert-screen or fb8-invert-screen , respectively).

is name (n --) code# c3 FCode
generates: b(is) FCode

Changes the contents of a value or a defer word:

is-install (acf --) code# 1 1c

Creates open , write , and draw-logo methods for display devices.

For any SBus framebuffer that is to be used by the boot PROM before or during
booting, is-install declares the FCode procedure that should be used to
install (i.e. initialize) that framebuffer. Note that this is distinct from any once-
only power-on initialization, that should be performed during the probing
process itself.

The is-install routine and is-remove routine should comprise a matched
pair, that may be performed alternately as many times as needed. Typically, the
is-install routine performs mapping functions and some initialization, and
the is-remove performs any cleanup functions and then does a
complementary unmapping.

A partial, typical code example follows:

number is name (for a value)

acf is name (for a defer word)

fcode-version1

...

: power-on (--) \ Once-only, power-on initialization

 map-register

 init-register

FCode Dictionary 279

11

is-remove (acf --) code# 1 1d

Creates a close method for display devices.

Declares the routine that will deallocate a framebuffer that is no longer going
to be used. Typical deallocation would include unmapping memory and
clearing buffers. For example:

 unmap-register

;

...

: map-devices (--) \ Map register and buffer

 map-register

 map-buffer

;

...

: install-me (--) \ Do this to start using this device

 map-devices

 initialize-devices

;

: remove-me (--) \ Do this to stop using this device

 reset-buffers

 unmap-devices

;

...

\ This routine executed during the probe of this FCode

: my-probe (--) \ First, define the routine

 power-on \ Power-on initialization

 [‘] install-me is-install \ Declare “install” routine

 [‘] remove-me is-remove \ Declare “remove” routine

 [‘] test-me is-selftest \ Declare “selftest” routine

; \ End of the defintion

my-probe \ Now execute the routine

end0

fcode-version1

...

: remove-me (--) \ Do this to stop using this device

 reset-buffers

280 Writing FCode 2.x Programs—November 1995

11

The routine loaded with is-remove should form a matched pair with the
routine loaded with is-install . See is-install for more details.

 is-selftest (acf --) code# 1 1e

Creates a selftest method for display devices.

Declares the routine that will perform a self test of the framebuffer. For
example:

 unmap-devices

;

...

\ This routine executed during the "probe" of this FCode

: my-probe (--) \ First, define the routine

 power-on \ Power-on initialization

 [’] install-me is-install \ Declare "install" routine

 [’] remove-me is-remove \ Declare "remove" routine

 [’] test-me is-selftest \ Declare "selftest" routine

; \ End of the definition

my-probe \ Now, execute this routine

end0

FCode-version1

...

: test-me (-- fail?) \ self test method

 ...

;

...

\ This routine executed during the "probe" of this FCode

: my-probe (--) \ First, define the routine

 power-on \ Power-on initialization

 [’] install-me is-install \ Declare "install" routine

 [’] remove-me is-remove \ Declare "remove" routine

 [’] test-me is-selftest \ Declare "selftest" routine

; \ End of the definition

my-probe \ Now, execute this routine

end0

FCode Dictionary 281

11

This declaration is typically performed in the same place in the code as is-
install and is-remove .

The self test routine should return a status parameter on the stack indicating
the results of the test. A zero value indicates that the test passed. Any nonzero
value indicates that the self test failed, but the actual meaning for any nonzero
value is not specified. (memory-test-suite returns a flag meeting these
specifications.)

selftest is not automatically executed.

For automatic testing, devices should perform a quick sanity check as part of
the install routine. See “selftest” on page 40.

(is-user-word) (adr len acf --) code# 2 14
version 2

Creates a Forth word (not a package method) whose name is given by adr
len , and whose behavior is given by the compilation address acf (as returned
by [’] , for example). This allows an FCode program to define new user
interface commands.

For example:

j (-- n) code# 1a

n is a copy of the index of the next outer loop. May only be used within a
nested do or ?do loop. For example:

Usually, do loops should not be nested this deeply inside a single definition.
Forth programs are generally more readable if inner loops are defined inside a
separate word.

" xyz-abort" ' my-abort (is-user-word)

do

 ...

 do ... j ... loop

 ...

loop

282 Writing FCode 2.x Programs—November 1995

11

key (-- char) code# 8e

A defer word that reads the next ASCII character from the keyboard. If no
character has been typed since key was last executed, key waits until a new
character is typed. All valid ASCII characters can be received. Control
characters are not processed by the system for any editing purpose. Characters
received by key are not displayed.

For example:

key? (-- flag) code# 8d

A defer word returning true if a character has been typed on the keyboard
since the last time that key or expect was executed. The keyboard character is
not consumed.

Use key? to make simple, interruptable infinite loops:

The contents of the loop will repeat indefinitely until any key is pressed.

l! (n adr --) code# 73

The 32-bit value n is stored at location adr (through adr+3). The highest byte
is stored at adr ; the lowest byte is stored at adr+3 . adr must be on a 32-bit
boundary; it must be evenly divisible by 4.

l, (n --) code# d2

Compile 4-bytes into the dictionary, starting with the highest byte. See c, for
limitations. The dictionary pointer must be 2-byte-aligned.

: continue? (-- continue?)

 ." Want to Continue? Enter Y/N" key dup emit

 dup ascii Y = ascii y rot = or

;

begin ... key? until

FCode Dictionary 283

11

For example:

l@ (adr -- n) code# 6e

Fetch the 32-bit number stored at adr (through adr+3). The highest byte is
stored at adr ; the lowest byte is stored at adr+3 . adr must be on a 32-bit
boundary; it must be evenly divisible by 4.

/l (-- n) code# 5c

n is the size in bytes of a 32-bit word: 4.

/l* (n1 -- n2) code# 68

n2 is the result of multiplying n1 by the length in bytes of a (32-bit) long word.
This is useful for converting an index into a byte offset. /l* is equivalent to 4
* , but should be used in preference to the less portable 4 * .

la+ (adr1 index -- adr2) code# 60

adr2 is the address of the index ’th 32-bit longword after adr1 . For byte-
addressed machines (such as this one), this is equivalent to 4 * + .

Use la+ in preference to the less portable and less clear 4 * + .

la1+ (adr1 -- adr2) code# 64

adr2 is the address of the next 32-bit word after adr1 . For byte-addressed
machines (such as this one), this is equivalent to 4 + . la1+ should be used in
preference to the less portable and clear 4 + .

lbsplit (n -- byte.lo byte byte byte.hi) code# 7e

Splits a 32-bit value into four bytes. The upper bits of each byte are all zeroes.

\ to create an array containing integers 40004000 23 45 6734

create my-array 40004000 l, 23 l, 45 l, 6734 l,

284 Writing FCode 2.x Programs—November 1995

11

lcc (char1 -- char2) code# 82

char2 is the lower case version of char1 . If char1 is not an upper case letter,
it is unchanged. See upc .

For example:

shows m .

leave (--) code# 1b
generates: b(leave)

Transfers execution to just past the next loop or +loop . The loop is
terminated and loop control parameters are discarded. May only be used
within a do or ?do loop.

leave may appear within other control structures that are nested within the
do loop structure. More than one leave may appear within a do loop.

For example:

?leave (flag --) code# 14 +offset 1b b2
generates: if leave then
generates: b?branch +offset leave b(>resume)

If flag is true (nonzero), ?leave transfers control to just beyond the next
loop or +loop . The loop is terminated and loop control parameters are
discarded. If flag is zero, no action is taken. May only be used within a do or
?do loop.

 ascii M lcc emit

: search-pat (pat adr len -- found?)

 rot false swap 2swap (false pat adr len)

 bounds ?do (flag pat)

 i @ over = if drop true swap leave then

 loop

 drop

;

FCode Dictionary 285

11

?leave may appear within other control structures that are nested within the
do loop structure. More than one ?leave may appear within a do loop.

For example:

left-parse-string (adr len char -- adrR lenR adrL lenL) code# 2 40
version 2

A tool for separating fields within a string. For example:

would leave the address and length of two strings on the stack:

“in;g ” and “test ”.

The delimiter character may be any ASCII character. Note that if the delimiter
is not found within the string, the effect is as if the delimiter was found at the
very end. For example:

would leave on the stack “ “ and “ testing” .

lflips (adr len --) code# 2 37
version 2

Swaps the order of the 16-bit words within each 32-bit longword in the
memory buffer adr len . adr must be four-byte-aligned. len must be a
multiple of four.

: show-mem (vadr --) \ display h# 10 bytes

 dup h# 9 u.r 5 spaces h# 10 bounds do i c@ 3 u.r loop

;

: .mem (vaddr size --)

 bounds ?do i show-mem key? ?leave h# 10 +loop

;

" test;in;g" ascii ; left-parse-string

" testing" ascii q left-parse-string

286 Writing FCode 2.x Programs—November 1995

11

For example:

shows 56781234 .

#line (-- adr) code# 94

A variable that increments whenever cr executes. #line @ returns the
current value of this variable . The value in this variable is used to
determine when to pause during long display output, such as dump. Its value
is reset each time the ok prompt displays.

line# (-- n) code# 1 52

A value , set and controlled by the terminal emulator, that contains the current
vertical position of the text cursor. A value of 0 represents the topmost line of
available text space (this is not the topmost pixel of the framebuffer - see window-
top).

This word can (and should) be looked at as needed if your FCode program is
implementing its own set of framebuffer primitives.

For example:

linefeed (-- n) code# 10 00 00 00 0a
generates: b(lit) 10

n is the ASCII code for the linefeed character; decimal 10, hex 0a .

#lines (-- n) code# 1 50

This is a value that returns the number of lines of text to be displayed using the
boot PROM’s terminal emulator. It must be set to a proper value in order for the
terminal emulator to function correctly.

h# 12345678 8000 l!

8000 4 lflips

8000 l@ .h

: set-line (line --) 0 max #lines 1- min is line# ;

FCode Dictionary 287

11

#lines is defined in the boot PROM with an initial value of 34 (decimal), but it
should always be actively set by the FCode program. This may be done with is ,
or it may be handled automatically as one of the functions performed by fb1-
install or fb8-install . The value set by fbx-install is the smaller of the
passed #lines parameter and the screen-#rows NVRAM parameter.

For example:

loop (--) code# 15 -offset
generates: b(loop) -offset

Terminates a do or ?do loop. Increments the loop index by one. If the index
was incremented across the boundary between limit-1 and limit , the loop
is terminated and loop control parameters are discarded. When the loop is not
terminated, execution continues to just after the corresponding do or ?do .

For example, the following do loop:

terminates when the loop index changes from 7 to 8. Thus, the loop will iterate
with loop index values from 0 to 7, inclusive.

+loop (n --) code# 16 -offset
generates: b(+loop) -offset

Terminates a do or ?do loop. Increments the loop index by n (or decrements
the index if n is negative). If the index was incremented (or decremented)
across the boundary between limit-1 and limit the loop is terminated and
loop control parameters are discarded. When the loop is not terminated,
execution continues to just after the corresponding do or ?do .

The following do loop:

terminates when the loop index crosses the boundary between 7 and 8. Thus,
the loop will iterate with loop index values of 0, 2, 4, 6.

: set-line (line --) 0 max #lines 1- min is line# ;

8 0 do ... loop

8 0 do ... 2 +loop

288 Writing FCode 2.x Programs—November 1995

11

By contrast, a do loop created as follows:

terminates when the loop index crosses the boundary between -1 and 0. Thus,
the loop will iterate with loop index values of 8, 6, 4, 2, 0.

lpeek (adr -- false | data true) code# 2 22
version 2

Tries to read the 32-bit longword at address adr . Returns the data and true if
the access was successful. A false return indicates that a read access error
occurred. adr must be 32-bit aligned.

lpoke (data adr -- ok?) code# 2 25
version 2

Tries to write the 32-bit longword at address adr . Returns the data and true if
the access was successful. A false return indicates a read access error. adr
must be 32-bit aligned.

Note – lpoke may be unreliable on bus adapters that “buffer” write accesses.

lu>x (ul -- ux) code# a5
generates: 0

Tokenizer instruction that zero-extends a 32-bit number to 64-bit.

lwsplit (n -- word.lo word.hi) code# 7c

Splits the 32-bit value n into two 16-bit words. The upper bits of the two
generated words are zeroes.

mac-address (-- adr len) code# 1 a4
version 2

Usually used only by the network device-type, this FCode returns the value
for the Media Access Control, or MAC address, that this SBus card should use
for its own address. The data is encoded as a byte array, generally 6 bytes long.

0 8 do ... -2 +loop

FCode Dictionary 289

11

The value returned by mac-address can either be supplied by the system, or
by the card itself. If the card’s FCode creates a property named local-mac-
address , and the NVRAMparameter local-mac-address? (for typical
systems) is set to true , then the value contained in the property local-mac-
address will be returned by mac-address . Otherwise, the system will assign
a value.

See also “mac-address ”, “local-mac-address” , and “network” in
Chapter 5, “Properties” and Chapter 9, “Network Devices”.

map-sbus (physoffset size -- virt) code# 1 30

This FCode is obsolete in version 2. For version 1 usage, see Appendix D,
“Changes in FCode Usage for OpenBoot 1”.

For version 2, use:

Creates a memory mapping for some SBus locations, usually within the
address space of this SBus card. The MMU page maps are updated, and the
generated virtual address is returned.

The memory mapping can (and should) be later undone with free-virtual .
Used as:

mask (-- adr) code# 1 24

This variable controls which bits out of every 32-bit longword which will be
tested with memory-test-suite . To test all 32-bits, set mask to all ones
with::

“ map-in” $call-parent

(-1 value vregs)

...

my-address 10.0000 + 100

map-sbus (virt)

is vregs

ffff.ffff mask !

290 Writing FCode 2.x Programs—November 1995

11

To test only the low-order byte out of each longword, set just the lower bits of
mask with:

Any arbitrary combination of bits may be tested or masked.

max (n1 n2 -- n3) code# 2f

n3 is the greater of n1 and n2.

memmap(physoffset space size -- virtual) code# 1 04

Creates a memory mapping for some locations. It updates MMU page maps
and returns the generated virtual address. The actual physical address is
specified by (physoffset space), that indicates the device space and the
physical offset within that space.

This fcode is obsolete in OpenBoot 2. For OpenBoot 1 usage, refer to
Appendix D, “Changes in FCode Usage for OpenBoot 1”. For version 2, use:

The memory mapping can (and should) be later undone with free-virtual .

memory-test-suite (adr len -- failed?) code# 1 22

Performs a series of tests on some memory, to verify its proper functioning. A
true flag is returned if any of the tests failed.

If diagnostic-mode? is true (diag-switch? NVRAM parameter is
true), then a message is sent out to the current output device (to ttya if
during probe time) giving the name of each test. If any test fails, a "Failed"
message will also then be displayed.

For every one of the following tests, the value stored in the variable mask
controls whether only some or all data lines are tested.

For example, to only test data bits 0-23 (skipping bits 24-31), mask would be
set with: 00ffffff mask !

0000.00ff mask !

“ map-in” $call-parent

FCode Dictionary 291

11

The actual tests performed may vary from system to system. On current
systems, the tests performed are:

• Data lines test. This test performs a walking ones and zeroes on each data
line to test for stuck at zero or stuck at one.

• Address quick test. This tests each address line for being stuck at one, stuck at
zero, shorted to another address line, or shorted to a data line.

• Data size test. Writes a constant 32-bit value to the starting location of the
memory, both byte-at-a-time and shortword-at-a-time, then reads the data
back with a 32-bit access and verifies the value. This test verifies proper 8-
bit, 16-bit and 32-bit access.

The above tests are very fast. If the diag-switch? NVRAM parameter is set
to true , then the following (slower) additional tests are also performed:

• Data bits test. Tests every bit in memory, by testing a write/read of 0 and a
write/read of ffffffff at every location.

• Address=data test. Writes each longword location with its own address,
then verifies. This checks for the uniqueness of individual locations with
RAM chips.

For example:

min (n1 n2 -- n3) code# 2e

n3 is the lesser of n1 and n2 .

mod (n1 n2 -- rem) code# 22

rem is the remainder after dividing n1 by the divisor n2 . rem has the same
sign as n2 or is zero. An error condition results if the divisor is zero.

: test-result (--)

 frame-buffer-adr my-frame-size memory-test-suite (failed?)

 xdrint " test-result" attribute

;

292 Writing FCode 2.x Programs—November 1995

11

*/mod (n1 n2 n3 -- rem quot) code# 30 20 31 2a
generates: >r * r> /mod

Calculates n1 * n2 / n3 , returns the remainder and quotient. The inputs,
outputs, and intermediate products are all 32-bit. rem has the same sign as n3
or is zero. An error condition results if the divisor is zero.

/mod (n1 n2 -- rem quot) code# 2a

rem is the remainder and quot is the quotient of n1 divided by the divisor n2 .
rem has the same sign as n2 or is zero. An error condition results if the divisor
is zero.

model (adr len --) code# 1 19

This is a shorthand word for creating a model property. By convention, model
identifies the model name/number for an SBus card, for manufacturing and
field-service purposes. A sample usage would be:

This is equivalent to:

The model property is useful to identify the specific piece of hardware (the
SBus card), as opposed to the name property (since several different but
functionally-equivalent cards would have the same name property, thus calling
the same SunOS device driver).

See also attribute , “model” in Chapter 5, “Properties”.

move (adr1 adr2 len --) code# 78

len bytes starting at adr1 (through adr1+len-1 inclusive) are moved to
address adr2 (through adr2+len-1 inclusive). If len is zero then nothing is
moved.

" SUNW,501-1415" model

" SUNW,501-1415" xdrstring " model" attribute

FCode Dictionary 293

11

The data are moved such that the len bytes left starting at address adr2 are
the same data as was originally starting at address adr1 . If adr1 > adr2 then
the first byte of adr1 is moved first, otherwise the last byte (len ’th) of adr1 is
moved first. Thus, moves between overlapping fields are properly handled.

move will perform 16-bit, 32-bit or possibly even 64-bit operations (for better
performance) if the alignment of the operands permits.

ms (ms --) code# 1 26

Delays all execution for the specified number of milliseconds, by executing an
empty delay loop for an appropriate number of iterations. The maximum
allowable delay will vary from system to system, but is guaranteed to be valid
for all values up to at least 1,000,000 (decimal). No other CPU activity takes
place during delays invoked with ms , although generally this is not a problem
for FCode drivers since there is nothing else to do in the meantime anyway. If
this word is used excessively, noticeable delays could result.

For example:

my-address (-- physoffset) code# 1 02

Returns a magic number, suitable for use with the map-in method, and with
reg , xdrphys , map-sbus and memmap. The returned number, along with my-
space , encodes the address of location 0 of this SBus device. The OpenBoot
PROM automatically sets my-address to the correct value before each SBus
slot is probed.

For example:

: probe-loop-wait (adr --)

 \ wait h# 10 ms before doing another probe at the location

 begin dup l@ drop h# 10 ms key? until drop

;

fcode-version1

 " audio" xdrstring " name" attribute

 my-address h# 130.0000 + my-space h# 8 reg

 ...

end0

294 Writing FCode 2.x Programs—November 1995

11

my-args (-- adr len) code# 2 02
version 2

Returns the argument string adr len that was passed to the current instance
when it was created, if the argument string exists. Otherwise returns with a
length of 0.

For example:

The above will display arguments passed to /obio at open time as TEST-
ARGS

my-params (-- adr len) code# 1 0f

This fcode is obsolescent and should not be used.

my-params returns a string that contains arbitrary customization information
for this device. The string comments are the contents of the params property if
present, otherwise returns a null string (adr ,len equals 0,0).

my-args may be used in some situations to perform the same function.

my-parent (-- ihandle) code# 2 0a
version 2

Returns the ihandle of the instance that opened the current instance. For
device driver packages, the relationships of parent/child instances mimic the
parent/child relationships in the device tree.

For example:

" /obio:TEST-ARGS" select-dev

my-args type

: show-parent (--)

 my-parent ihandle>phandle " name" rot

 get-package-attribute 0= if

 ." my-parent is " type cr

 then

;

FCode Dictionary 295

11

my-self (-- ihandle) code# 2 03
version 2

Returns the current instance ihandle .

For example:

my-space (-- space) code# 1 03

Returns a "magic" number, representing the device space that this SBus card is
plugged into.

For example:

See my-address for more details.

my-unit (-- low high) code# 2 0d
version 2

Returns the unit address low high of the current instance. The unit address is
set when the instance is created, as follows:

• If the node-name used to locate the instance’s package contained an explicit
unit-address, that is the instance’s unit address. This would be used for a
“wildcard” node with no associated “reg ” property.

: show-model-name (--)

 my-self ihandle>phandle (phandle)

 " model" rot get-package-attribute 0= if (val.adr,len)

 ." model name is " type cr

 else ()

 ." model attribute is missing " cr

 then ()

;

fcode-version1

 " audio" xdrstring " name" attribute

 my-address h# 130.0000 + my-space h# 8 reg

 ...

end0

296 Writing FCode 2.x Programs—November 1995

11

• Otherwise, if the device node associated with the package from which the
instance was created contains a “reg ” property, the first component of its
property value is the instance’s unit address.

• Otherwise, the instance’s unit address is 0 0.

For example. on SPARCclassic systems:

displays

/n (-- n) code# 5d

The number of bytes in a normal stack item; 4 in this implementation.

/n* (n1 -- n2) code# 69

n2 is the result of multiplying n1 by the length in bytes of a normal stack item.
This is useful for converting an index into a byte offset. This word is
equivalent to 4 * .

na+ (adr1 index -- adr2) code# 61

adr2 is the address of the index ’th "normal" sized word after adr1 . For this
implementation, this is equivalent to 4 * + .

na+ should be used in preference to wa+ or la+ when the intent is to address
items that are the same size as items on the stack.

na1+ (adr1 -- adr2) code# 65

adr2 is the address of the next "normal" sized word after adr1 . For this
implementation, this is equivalent to 4 + or la1+ .

na1+ should be used in preference to wa1+ or la1+ when the intent is to
address items that are the same size as items on the stack.

" /iommu/sbus/ledma@4,840010" select-dev my-unit .s

840010 4

FCode Dictionary 297

11

name (adr len --) code# 1 14 12 04 6e 61 6d 65 1 10
generates: xdrstring " name" attribute

A shorthand word for creating a “name” property, used to match a device node
with the appropriate SunOS driver. The “name” declaration is required for
booting with SunOS, and should be present in every FCode program. For
example:

is equivalent to:

See also attribute , device-name .

See “name” in Chapter 5, “Properties”.

named-token (--) code# b6 len xx xx xx ... 08 xx b(type)
generates: named-token string fcode# b(type)

named-token , external-token or new-token are called to create a new
dictionary entry. If headers are active, use named-token .

The new header for a word created with named-token has the following
format:

The first byte is b6, indicating a named-token format.

• Next is a string containing the name of the new created entry. The string is a
length byte and then length bytes of text.

• Next is a new FCode# assigned by the tokenizer, starting at 08,00 then
08,01 and working upwards. If 08,ff is exceeded then 09,00 and so on is
used, up to a maximum of 0b,ff .

• Finally, the b(type) byte indicates the type of word being created, such as
b(:) for colon definition, b(value) for value s, etc.

named-token should never be used directly in source code.

“ SUNW,bison” name

“ SUNW,bison” xdrstring “ name” attribute

named-token, string, new FCode#, type

298 Writing FCode 2.x Programs—November 1995

11

negate (n1 -- n2) code# 2c

n2 is the opposite sign of n1 . This is equivalent to -1 * .

new-device (--) code# 1 1f

Start a new entry in the device tree. This word is used for creating multiple
devices in a single FCode program. See finish-device .

 new-token (--) code# b5 xx xx b(type)
generates: new-token FCode# b(type)

named-token , external-token or new-token are called whenever a new
dictionary entry is to be created. If headerless is active, then use new-
token .

The format for new-token is identical to that for named-token , except that
the string field is missing (and the first byte is b5 instead of b6). See
named-token for more details.

new-token should never be used directly in source code.

newline (-- n) code# 10 00 00 00 0a
generates: b(lit) 10

n is the ASCII code for the character that terminates a line; decimal 10, hex 0a .
In this system this is the linefeed character.

newline is system-dependent, so its use is discouraged. Usually, it doesn’t
increment the line count, that results in problems with correct screen scrolling.
Use of cr instead of newline is usually appropriate.

nip (n1 n2 -- n2) code# 4d

Remove the second item on the stack.

noop (--) code# 7b

Do nothing. This can be used to waste time or as a placeholder for something
that will be patched in later.

FCode Dictionary 299

11

not (n1 -- n2) code# 26

n2 is the one’s complement of n1 , i.e. all the one bits in n1 are changed to
zero, and all the zero bits are changed to one.

For example:

See also 0=.

$number (adr len -- true | n false) code# a2
version 2

A numeric conversion primitive that converts a string to a number, according
to the current base value (usually hexadecimal). An error flag is returned if an
inconvertible character is encountered. For example, “ 123f” $number
returns 123f 0 on the stack, while “123x” returns -1 , indicating that the
conversion failed.

For example:

o# number (-- n) code# 10 xx xx xx xx
generates: b(lit) value

Interpret the next number in octal (base 8), regardless of any previous settings
of hex , decimal , binary , or octal . Only the immediately following number
is affected, the default numeric base setting is unchanged. For example:

See also b# , d# , and h# .

: clear-lastbit (--)

 my-reg rl@ 1 not and my-reg rl!

;

: number-or-0 (adr len -- true | number false)

 dup if $number else 2drop 0 false then

;

hex

o# 100 (equals decimal 64)

100 (equals decimal 256)

300 Writing FCode 2.x Programs—November 1995

11

octal (--) code# none
-or- code# 10 00 00 00 08 a0 72
generates: b(lit) 8 base !

If outside a definition, commands the tokenizer program to interpret
subsequent numbers in octal (base 8). If within a definition, changes the value
in base , affecting later numeric output when the FCode program is executed.
See base.

of (selector testval -- selector | null) code# 1c +offset
generates: b(of) +offset

Begin the next test clause in a case statement. See case for more details.

off (adr --) code# 6b

Set the 32-bit contents at adr to zero (false).

offset16 (--) code# cc

Instructs the tokenizer program, and the boot PROM, to expect all further
branch offsets to be 16-bit values. This word is automatically generated by
some current tokenizers.

on (adr --) code# 6a

Set the 32-bit contents at adr to -1 or ffff.ffff (true).

open-package (arg-adr arg-len phandle -- ihandle | 0) code# 2 05
version 2

Creates an instance of the package identified by phandle , saves in that
instance an argument string specified by arg-adr arg-len , and invokes the
package’s open method. The parent instance of the new instance is the instance
that invoked open-package .

Returns the instance handle ihandle of the new instance if it can be opened. It
returns 0 if the package could not be opened, either because that package has
no open method or because its open method returned false indicating an error.
In this case, the current instance is not changed.

FCode Dictionary 301

11

For example:

$open-package (arg-adr arg-len name-adr name-len -- ihandle | 0) code# 2 0f
version 2

Similar to using find-package open-package , except that if find-
package fails, 0 is returned immediately, without calling open-package .

For example:

or (n1 n2 -- n3) code# 24

n3 is the bit-by-bit inclusive-or of n1 with n2 .

#out (adr --) code# 93

A variable containing the current column number on the output device.
This is updated by emit and some other words that modify the cursor
position. It is used for display formatting.

For example:

over (n1 n2 -- n1 n2 n1) code# 48

The second stack item is copied to the top of the stack.

: test-tftp-open (-- ok?)

 " obp-tftp" find-package if (phandle)

 0 0 rot open-package if true else false then

 else

 false

 then

;

0 0 " obp-tftp" $open-package (ihandle)

: to-column (column --) #out @ - 1 max spaces ;

302 Writing FCode 2.x Programs—November 1995

11

2over (n1 n2 n3 n4 -- n1 n2 n3 n4 n1 n2) code# 54

Copies the third and fourth stack items to the stack top.

pack (adr len pstr -- pstr) code# 83

Convert a byte array (indicated by " adr len ") into a packed string, and store
it at the location pstr . The byte at address pstr is the length of the string and
the string itself starts at address pstr+1 .

Packed strings are generally not used in FCode. Virtually all string operations
are in the " adr len " format.

For example:

peer (phandle -- next-phandle) code# 2 3c
version 2.3

peer returns the phandle next-phandle of the package that is the next child
of the parent of the package phandle .

If phandle is the last child of its parent, peer returns zero.

If phandle is zero, peer returns phandle of the root node.

Together with child , peer lets you enumerate (possibly recursively) the
children of a particular device. A common application would be for a device
driver to use child to determine the phandle of a node’s first child, and use
peer multiple times to determine the phandles of the node’s other children.
For example:

h# 20 buffer: my-packed-string

" This is test string " my-packed-string pack

: my-children (--)
 my-self ihandle>phandle child (first-child)
 begin ?dup while dup . peer repeat
;

FCode Dictionary 303

11

>physical (virtual -- physoffset space) code# 1 06

Given a virtual address, return the mapped physical address as a (
physoffset space) pair, specifying the device space (as a “magic number”)
and the physical offset within that space.

This word has inconsistent behavior in current boot PROMs, and you should
avoid using it in FCode programs.

For example:

pick (+n -- n2) code# 4e

n2 is a copy of the +n’th stack value, not counting +n itself. +n must be
between 0 and the number of elements on the stack-1 inclusive.

For readability’s sake, the use of pick should be minimized.

probe (arg-adr arg-len reg-adr reg-len fcode-adr fcode-len --)
version 2.2 code# 2 38

This FCode is obsolete, and should not be used. Use probe-self method of a
hierarchical device node.

: in-ram? (vadr -- phys flag)

 >physical (padr space)

 \ code-to-verify if space and address refer to on-board memory

;

0 pick is equivalent to dup (n1 -- n1 n1)

1 pick is equivalent to over (n1 n2 -- n1 n2 n1)

2 pick is equivalent to (n1 n2 n3 -- n1 n2 n3 n1)

304 Writing FCode 2.x Programs—November 1995

11

probe-virtual (arg-adr arg-len reg-adr reg-len fcode-adr --) code# 2 39
version 2.2

This FCode is obsolete, and should not be used. Use “ set-args” and
“byte-load” as shown below. In case you have downloaded the FCode
PROM image of a SBus device at virtual address 4000, and the device is in
SBus slot #1 use:

processor-type (-- processor-type) code# 2 10
version 2

Returns the type of processor (instruction set architecture). Obsolete.

.r (n1 +n --) code# 9e

n1 is converted using the value of base and then displayed right aligned in a
field +n characters wide. A leading minus sign is displayed if n is negative. A
trailing space is not displayed.

If the number of characters required to display n1 is greater than +n, an error
condition exists. In this implementation, all the characters required will be
displayed, making the resulting field larger than +n.

“ /sbus” select-dev

new-device

 0 0 “ 1,0” “ set-args” $find if (arg-str reg-str acf)

 execute 4000 1 “ byte-load” $find if (adr offset acf)

 execute

 else

 .” byte-load missing “ cr 2drop 2drop

 then

 else

 .” set-args missing “ cr 2drop 2drop 2drop

 then

finish-device

unselect-dev

FCode Dictionary 305

11

For example:

r> (-- n) code# 31

Removes n from the return stack and places it on the (regular) stack. See >r
for restrictions on the use of this word.

For example:

r@ (-- n) code# 32

n is a copy of the top of the return stack.

For example:

See >r for more details.

>r (n --) code# 30

Removes n from the stack and places it on the top of the return stack.

The return stack is a second stack, occasionally useful as a place to temporarily
place numeric parameters, i.e. to “get them out of the way” for a little while.
However, since the return stack is also used by the system for transferring
control from word to word (and by do loops), improper use of >r or r> is
guaranteed to crash your program.

: formatted-output (--)

 my-length h# 8 .r ." length" cr

 my-width h# 8 .r ." width" cr

 my-depth h# 8 .r ." depth" cr

;

: copyout (buf adr len -- len) >r swap r@ move r> ;

: copyout (buf adr len -- len) >r swap r@ move r> ;

306 Writing FCode 2.x Programs—November 1995

11

For example:

Some restrictions that must be observed are:

• All values placed on the return stack within a colon definition must be
removed before the colon definition is exited by normal termination, exit
or throw , or else the program will crash.

• No values from the return stack should be removed from within a colon
definition unless they were placed there within that definition.

• Entering a do loop automatically places values onto the return stack.
Therefore,
• Values placed on the return stack before the loop was started will not be

accessible from within the loop.
• Values placed on the return stack within the loop must be removed before

loop , +loop , or leave is encountered.
• The loop indices i or j will no longer be valid when additional values

have been placed on the return stack within the loop.

rb! (n adr --) code# 2 31
version 2

Stores an 8-bit byte, preserving bit order.

For example:

rb@ (adr -- n) code# 2 30
version 2

Fetches an 8-bit byte, preserving the bit order.

For example:

: xdrintr (int-level vector --)

 >r sbus-intr>cpu xdrint r> xdrint xdr+

;

: my-stat! (byte --) my-stat rb! ;

: my-stat@ (-- byte) my-stat rb@ ;

FCode Dictionary 307

11

reg (physoffset space size --) code# 1 16

This is a shorthand word for declaring a property named “reg ” (by
convention, reg is used for declaring the location and size of device registers).
Typical usage:

This declares that the device registers are located at offset 40.0000 through
40.001f in this slot. The following code would accomplish the same thing::

Note that if you need to declare more than one block of register addresses, you
must use the longer, more explicit method in order to build the structure to be
passed into the reg property.

For example, to declare two register fields at 10.0000-10.00ff and 20.0000-
20.037f, use the following:

See also attribute . See also “reg ” in Chapter 5, “Properties”.

repeat (--) code# 13 -offset b2
generates: bbranch, -offset, b(>resolve)

Terminates a begin ... while ... repeat conditional loop.
See while for more details.

reset-screen (--) code# 1 58

A defer word, called by the boot PROM’s terminal emulator (just after erase-
screen). This word is called only once, during the terminal emulator

my-address 40.0000 + my-space 20 reg

my-address 40.0000 + my-space xdrphys
20 xdrint xdr+

" reg" attribute

my-address 10.0000 + my-space xdrphys \ Offset#1

100 xdrint xdr+ \ Merge size#1

my-address 20.0000 + my-space xdrphys xdr+ \ Merge offset#2

380 xdrint xdr+ \ Merge size#2

" reg" attribute

308 Writing FCode 2.x Programs—November 1995

11

initialization sequence, in order to enable the framebuffer to display information.
A typical use for this function is to "enable video".

This word is initially empty, but must be loaded with an appropriate routine in
order for the terminal emulator to function correctly. This may be done with is , or
it may be loaded automatically with fb1-install or fb8-install (which
loads fb1-reset-screen or fb8-reset-screen , respectively). These words
are NOPs, so it is very common to first call fbx-install and then to override the
default setting for reset-screen with:

 rl! (n adr --) code# 2 35
version 2

Stores a 32-bit longword, preserving bit order. adr must be 32-bit aligned.

For example:

rl@ (adr -- n) code# 2 34
version 2

Fetches a 32-bit longword, preserving bit order. adr must be 32-bit aligned.

For example:

roll (+n --) code# 4f

The +n’th stack value, not counting +n itself, is first removed and then
transferred to the top of the stack, moving the remaining values into the
vacated position. +n must be between 0 and the number of elements on the
stack-1, inclusive.

 [’] my-video-on is reset-screen

: my-reg! (n --) my-reg rl! ;

: my-reg@ (-- n) my-reg rl@ ;

0 roll is a null operation

1 roll is equivalent to swap (n1 n2 -- n2 n1)

2 roll is equivalent to rot (n1 n2 n3 -- n2 n3 n1)

3 roll is equivalent to (n1 n2 n3 n4 -- n2 n3 n4 n1)

FCode Dictionary 309

11

For readability’s sake, minimize your use of roll . It is also relatively slow.

rot (n1 n2 n3 -- n2 n3 n1) code# 4a

Rotates the top three stack entries, bringing the deepest to the top.

-rot (n1 n2 n3 -- n3 n1 n2) code# 4b

Rotates the top three stack entries in the direction opposite from rot , putting
the top number underneath the other two.

2rot (n1 n2 n3 n4 n5 n6 -- n3 n4 n5 n6 n1 n2) code# 56

Rotates the top three pairs of numbers, bringing the third pair to the top of the
stack.

rw! (n adr --) code# 2 33
version 2

Stores a 16-bit word, preserving bit order. adr must be 16-bit aligned.

For example:

rw@(adr -- n) code# 2 32
version 2

Fetches a 16-bit word, preserving bit order. adr must be 16-bit aligned.

For example:

s. (n --) code# 47 2d 96 9a 49 98 97 90 a9 8f
generates: (.) type bl emit
generates: dup abs <# #s swap sign #> type bl emit

Displays the absolute value of n in a free-field format with a leading minus
sign if n is negative. A trailing space is also displayed. Even if the base is
hexadecimal, the number will be printed in signed format (see .).

: my-count! (w --) my-count rw! ;

: my-count@ (-- w) my-count rw@ ;

310 Writing FCode 2.x Programs—November 1995

11

#s (+l -- 0) code# 9a

+l is converted, appending each resultant character into the pictured numeric
output string until the quotient is zero (see: #). A single zero is added to the
output string if the number was initially zero. Typically used between <# and
#> . See (.) and (u.) for typical usages.

This word is equivalent to calling # repeatedly until the number remaining is
zero.

(s text) (--) code# none

Ignore subsequent text after the (s up to a delimiting) . The same behavior
occurs for (.

Although either (or \ works equally well for documentation, by common
convention we use (...) or (s ...) for stack comments and \ ... for
all other text comments and documentation.

Use (s to distinguish a definition’s "interface" stack comment from stack
comments within a definition (which clarify the current stack state). (This
distinction could be of use for implementing automatic stack-checkers.) For
example:

\ map in registers
: map-regs (s size -- virt)

 reg-addr swap (addr size)

 map-sbus (virt)

;

FCode Dictionary 311

11

.s (--) code# 9f

Displays the contents of the data stack (using .) in the current base. The top of
the stack appears on the right. The contents of the stack are unchanged.

For example:

sbus-intr>cpu (sbus-intr# -- cpu-intr#) code# 1 31

Convert the SBus interrupt level (1-7) to the CPU interrupt level. The mapping
performed will be system-dependent.

This word is called by the intr command.

For example:

See “intr ” in Chapter 5, “Properties”.

screen-height (-- n) code# 1 63

A value , containing the height of the display (in pixels). It may also be interpreted
as the number of "lines" of memory.

This word is initially set to 900 (decimal), but should always be set explicitly to the
appropriate value if you wish to use the fb1- or fb8- utility routines. This may
be done with is , or it may be loaded as one of the parameters to fb1-install or
fb8-install .

In particular, this value is used in fbx-invert , fbx-erase-screen , fbx-
blink-screen and in calculating window-top .

: debug-abtest (??? -- ???)

 debug-on? if ." input params: " .s cr then

 abtest

 debug-on? if ." output params: " .s cr then

;

 3 sbus-intr>cpu xdrint 0 xdrint xdr+ " intr" attribute

312 Writing FCode 2.x Programs—November 1995

11

Typical code might create a constant called vres . This would be used as the
height parameter for fbx-install , and might also be passed as an attribute to
SunOS if needed.

screen-width (-- n) code# 1 64

A value , containing the width of the display (in pixels). It may also be interpreted
as the number of pixels (in memory) between one screen location and the next
location immediately below it. The latter definition takes precedence if there is a
conflict (e.g. there are unused/invisible memory locations at the end of each line).

Typical code might create a constant called hres . This would be used as the
width parameter for fbx-install , and might also be passed as an attribute to
SunOS if needed.

set-font (fontbase charwidth charheight fontbytes #firstchar #chars --)
code# 1 6b

This routine declares the font table to be used for printing characters on the screen.
This routine must be called if you wish to use any of the fb1- or fb8- utility
routines or >font .

Normally, set-font is called just after default-font . default-font leaves
on the stack the exact set of parameters needed by set-font . This approach
allows your FCode program to inspect and/or alter the default parameters if
desired. See default-font for more information on these parameters.

sign (n --) code# 98

If n is negative, appends an ASCII "-" (minus sign) to the pictured numeric
output string. Typically used between <# and #> . See (.) for a typical usage.

space (--) code# a9 8f
generates: bl emit

Display a single space character.

FCode Dictionary 313

11

spaces (+n --) code# a5 2f a5 18 +offset a9 8f 15 -offset
generates: 0 max 0 ?do space loop
generates: 0 max 0 b(?do) +offset bl emit b(loop) -offset

Display +n space characters. Nothing is displayed if +n is zero.

span (-- adr) code# 88

A variable containing the count of characters actually received and stored by
the last execution of expect .

For example:

start n (--) code# f0 (start0) f1 (start1) f2 (start2) f3 (start4)
version 2

Four version 2.0 FCodes whose function is similar to version1 , but for use
with version 2.0 FCode programs. Their use is as follows:

• start0 . Like version1 , but for version 2 FCodes. Uses 16-bit branches.
Fetches successive tokens from same address.

• start1 . Like version1 , but for version 2 FCodes. Uses 16-bit branches.
Fetches successive tokens from consecutive addresses. Compiled by fcode-
version2.

• start2 . Like version1 , but for version 2 FCodes. Uses 16-bit branches.
Fetches successive tokens from consecutive 16-bit addresses.

• start4 . Like version1 , but for version 2 FCodes. Uses 16-bit branches.
Fetches successive tokens from consecutive 32-bit addresses.

struct (-- 0) code# a5
generates: 0

Initializes a struct ... field structure. See field for details.

h# 10 buffer: my-name-buff

: hello (--)

 ." Enter Your First name " my-name-buff h# 10 expect

 ." Sun Microsystems Welcomes " my-name-buff span @ type cr

;

314 Writing FCode 2.x Programs—November 1995

11

suspend-fcode (--) code# 2 15
version 2

Tells the FCode interpreter that the device identification properties for the
active package have been declared, and that the interpreter may postpone
interpreting the remainder of the package if it so chooses.

If the FCode interpreter postpones (suspends) interpretation, it saves the state
of the interpretation process so that interpretation may continue later.
Attempts to open a suspended package cause the FCode interpreter to resume
and complete the interpretation of that package before executing the package’s
open method.

For example:

This feature is intended to save memory space and reduce the system startup
time by preventing the compilation of FCode drivers that are not actually used.

swap (n1 n2 -- n2 n1) code# 49

Exchanges the top two stack items.

2swap (n1 n2 n3 n4 -- n3 n4 n1 n2) code# 55

Exchanges the top two pairs of stack items.

then (--) code# b2
generates: b(>resolve)

Terminate an if ... then or an if ... else ... then conditional
structure. See if for more details.

fcode-version1

 " SUNW,my-name" name

 " SUNW,my-model" xdrstring " model" attribute

 suspend-fcode

 ...

end0

FCode Dictionary 315

11

throw (error-code --) code# 2 18
version 2

Transfers control to the most recent dynamically enclosing error handling
context, passing the indicated error code to that handler. Error code must be
nonzero. If the value of error-code is zero, the zero is removed from the
stack, but no other action is taken.

See catch for an example of use.

toggle-cursor (--) code# 1 59

A defer word, called by the boot PROM’s terminal emulator before and after any
character or string is printed. (It is also called once during the terminal emulator
initialization sequence.) The normal behavior of this word is to XOR the pixels at
the current cursor position to leave a colored rectangle marking the next character
to be output.

toggle-cursor is initially empty, but must be loaded with an appropriate
routine in order for the terminal emulator to function correctly. This may be done
with is , or it may be loaded automatically with fb1-install or fb8-install
(which load fb1-toggle-cursor or fb8-toggle-cursor , respectively).

This is a good place to perform any necessary "cleanup" of display hardware state,
such as resetting color maps or selecting the proper modes. For example, a
window system may have set a color lookup table so that the color used for
displaying text does not contrast with the background. If the PROM terminal
emulator is then asked to display some system messages on the screen, the
messages would be unreadable. Consequently, it would be a good idea to restore
the text entries in the color lookup table in the toggle-cursor routine.

tokenizer[(--) code# none

This is a tokenizer command, used to end FCode byte generation and interpret
following text as tokenizer commands (up to the closing]tokenizer). A
tokenizer[...]tokenizer sequence may be used anywhere in an
FCode program, either within any definition or outside of definitions.

316 Writing FCode 2.x Programs—November 1995

11

One plausible use for tokenizer[would be to generate debugging text
during the tokenizing process. (A cr flushes the text from the output buffer
immediately, which is useful if the tokenizer crashes.) For example:

Another use for tokenizer[is together with emit-byte , to manually
output a desired byte of FCode. This would be useful, for example, if you
wished to generate a new FCode command that the tokenizer did not
understand. For example:

]tokenizer (--) code# none

Ends a tokenizer-only command sequence. See tokenizer[.

true (-- flag) code# a4
generates: -1

Leave the value for the true flag (which is -1) on the stack.

tuck (n1 n2 -- n2 n1 n2) code# 4c

Copy the top stack item underneath the second item.

type (adr len --) code# 90

A defer word that transfers len characters to the output, beginning with the
character at address adr , continuing through len consecutive addresses. No
action is taken if len is zero.

...

tokenizer[.(step a) cr]tokenizer

...

tokenizer[.(step b) cr]tokenizer

...

...

tokenizer[1 emit-byte 27 emit-byte]tokenizer

\ manually output finish-device fcode

...

FCode Dictionary 317

11

For example:

The output may go either to a framebuffer or to a serial port, depending on
which is enabled.

u. (n --) code# 9b

Display n as an unsigned number in a free-field format, using the current value
for base . A trailing space is also displayed.

For example:

shows

(u.) (n -- adr len) code# 96 9a 97
generates: <# #s #>

This is a numeric conversion primitive, used to implement display words such
as u. . It converts an unsigned number into a string.

For example:

shows:

h# 10 buffer: my-name-buff

: hello (--)

 ." Enter Your First name " my-name-buff h# 10 expect

 ." Sun Microsystems Welcomes " my-name-buff span @ type cr

;

hex -1 u.

ffff.ffff

hex

d# -12 (u.) type

fffffff4

318 Writing FCode 2.x Programs—November 1995

11

u.r (n1 +n --) code# 9c

n1 is converted using the value of base and then displayed as an unsigned
number right-aligned in a field +n characters wide. A trailing space is not
displayed.

If the number of characters required to display n1 is greater than +n, an error
condition exists. In this implementation, all the characters required will be
displayed, making the resulting field larger than +n.

For example:

u/mod (n1 n2 -- rem quot) code# 2b

rem is the remainder and quot is the quotient after dividing n1 by n2 . All
values and arithmetic are unsigned. All values are 32-bit.

For example:

shows

u2/ (n1 -- n2) code# 58

n2 is the result of n1 logically shifted right one bit. A zero is shifted into the
vacated sign bit.

For example:

: formatted-output (--)

 my-base h# 8 u.r ." base" cr

 my-offset h# 8 u.r ." offset" cr

;

-1 5 u/mod .s

0 3333.3333

-2 u2/ .s

FCode Dictionary 319

11

shows

u< (n1 n2 -- flag) code# 40

flag is true if n1 is less than n2 where n1 and n2 are treated as unsigned
integers.

u<= (n1 n2 -- flag) code# 3f

flag is true if n1 is less than or equal to n2 where n1 and n2 are treated as
unsigned integers.

u> (n1 n2 -- flag) code# 3e

flag is true if n1 is greater than n2 where n1 and n2 are treated as unsigned
integers.

u>= (n1 n2 -- flag) code# 41

flag is true if n1 is greater than or equal to n2 where n1 and n2 are treated as
unsigned integers.

until (flag --) code# 14 -offset
generates: b?branch -offset

Marks the end of a begin ... (flag) until conditional loop. When
until is encountered, a flag is removed and tested. If the flag is true , the
loop is terminated and execution continues just after the until . If the flag is
false, execution jumps back to just after the corresponding begin .

For example:

7fff.ffff

: probe-loop (adr --)

 \ generate tight probe-loop until a key is pressed.

 begin dup l@ drop key? until drop

;

320 Writing FCode 2.x Programs—November 1995

11

upc (char1 -- char2) code# 81

char2 is the upper case version of char1 . If char1 is not a lower case letter,
it is left unchanged. See lcc .

For example:

user-abort (--) code# 2 19
version 2.1

Used within an alarm routine to signify that the user has typed an abort
sequence. When alarm finishes, instead of returning to the program that was
interrupted by the execution of alarm , it enters the OpenBoot command
interpreter. Valid for FCode version 2.1 or later.

For example:

u*x (u1[32] u2[32] -- product[64]) code# d4
version 2

Multiplies two unsigned 32-bit numbers, yielding an unsigned 64-bit product.

For example:

gives

: continue? (-- continue?)

 ." Want to Continue? Enter Y/N" key dup emit

 upc ascii Y =

;

: test-dev-status (-- error?) ... ;

: my-checker (--) test-dev-status if user-abort then ;

: install-abort (--) ['] my-checker d# 10 alarm ;

hex

3 3 u*x .s

 9 0

FCode Dictionary 321

11

while

gives

value name (n1 --) at creation code# (header) b8
(-- n1) at execution

generates: new header, b(type) = b(value)

Creates a named, value -type variable. The name is initially created with:

where the number before value is the initial value for black . Later
occurrences of black will leave the correct value on the stack.

You can change the numeric contents of a value variable with is , as follows:

value -type variables are widely used in this system.We encourage the use of
value s instead of variable s. value s act similarly to constant s or colon
definitions, in that execution of the word leaves the desired number on the
stack. (With a variable , you always have to do a @ .)

variable name (--) at creation code# (header) b9
(-- adr) at execution

generates: new header, b(type) = b(value)

Create a named, variable -type variable. The name is initially created with:

Later occurrences of red leave an address on the stack.

4 ffff.ffff u*x .s

ffff.fffc 3

456 value black

123 is black

variable red

322 Writing FCode 2.x Programs—November 1995

11

The alignment of the returned address is system-dependent.The address holds
a 32-bit value. To retrieve the value in a variable and leave it on the stack for
subsequent use, enter:

To change the value in a variable , enter:

Sun encourages the use of value s instead of variable s. value s act like
constant s or colon definitions, in that execution of the word leaves the
desired number on the stack. (With a variable , you always have to do a @ .)
This similarity between value s and other words makes the FCode easier to
read, write and maintain.

version (-- n) code# 87

Returns a 32-bit number identifying the version of the FCode interface
supported by the CPU firmware. The high 16 bits is the major version number
and the low 16 bits is the minor version number.

For example:

This is not the same as the OpenBoot PROM version (see firmware-
version). For example, the CPU PROM might be version 3.7, but the FCode
version might still be 2.0 (= 0x00020000).

The value returned is less consistent on version 1 systems, but it is guaranteed
to less than 0x0002.0000.

version1 (--) code# fd

This byte is automatically generated by the fcode-version1 command.

Never use the word version1 in FCode source code.

red @

123 red !

: exit-if-version1 (--)

 version h# 20000 < if ['] end0 execute then

;

FCode Dictionary 323

11

version x? (-- flag) code# ??

A group of tokenizer macros to determine the FCode version of the system
running the FCode interpreter. They include:

Each returns true if the named version matches the system running the FCode
interpreter.

w! (n adr --) code# 74

The low-order 16-bits of n are stored at location adr (through adr+1). The
higher byte is stored at adr ; the lower byte is stored at adr+1 . adr must be
on a 16-bit boundary; it must be evenly divisible by 2.

w, (n --) code# d1

Compile two bytes into the dictionary. The dictionary pointer must be two-
byte-aligned.

See c, for limitations.

w@(adr -- n) code# 6f

Fetch the 16-bit number stored at adr (through adr+1). The higher byte is at
adr ; the lower byte is at adr+1 . The remaining high bytes of n are set to zero.
adr must be on a 16-bit boundary; it must be evenly divisible by 2.

/w (-- n) code# 5b

n is the size in bytes of a 16-bit word: 2.

Word Generates

version1? version b(lit) 2000.0000 <

version2? version b(lit) 2000.0000 >=
version b(lit) 3000.0000 <

version2.0? version b(lit) 2000.0000 =

version2.1? version b(lit) 2000.0001 =

version2.2? version b(lit) 2000.0002 =

version2.3? version b(lit) 2000.0003 =

324 Writing FCode 2.x Programs—November 1995

11

/w* (n1 -- n2) code# 67

n2 is the result of multiplying n1 by the length in bytes of a (16-bit) word. This
is useful for converting an index into a byte offset. /w* is equivalent to 2* ,
but should be used in preference to 2* as it is more portable.

<w@(adr -- n) code# 70

Fetches the 16-bit number stored at adr (through adr+1). The higher byte is
stored at adr ; the lower byte is stored at adr+1 . The remaining high bytes of
n are set by sign-extending the upper bit in the higher byte. adr must be two-
byte-aligned.

For example:

shows: ffff9123, while

shows: 9123 .

wa+ (adr1 index -- adr2) code# 5f

adr2 is the address of the index ’th 16-bit word after adr1 . For byte-
addressed machines (such as this one), this is equivalent to 2* + .

Use wa+ in preference to 2* + because it more clearly expresses the intent of
the operation and is more portable.

wa1+ (adr1 -- adr2) code# 63

adr2 is the address of the next 16-bit word after adr1 . For byte-addressed
machines (such as this one), this is equivalent to 2+ . wa1+ should be used in
preference to 2+ because it more clearly expresses the intent of the operation
and is more portable.

9123 8000 w!

8000 <w@ .h

8000 w@ .h

FCode Dictionary 325

11

wbsplit (w -- byte.lo byte.next) code# af

Split the two lower bytes of w into two separate bytes (stored as the lower byte
of each resulting item on the stack). The upper bytes of w must be zero.

wflip (n1 -- n2) code# 7c 49 7d
generates: lwsplit swap wljoin

Swap the two 16-bit halves of a 32-bit number.

wflips (adr len --) code# 2 36
version 2

Swaps the order of the bytes within each 16-bit word in the memory buffer adr
len .

adr must be two-byte-aligned. len must be a multiple of two.

while (flag --) code# 14 +offset
generates: b?branch +offset

Test the exit condition for a begin ... (flag) while ... repeat
conditional loop. When the while is encountered, a flag is removed from the
stack and tested. If the flag is true , execution continues from just after the
while through to the repeat which then jumps back to just after the begin .
If the flag is false , the loop is exited by causing execution to jump ahead to
just after the repeat .

For example:

window-left (-- n) code# 1 66

A value , containing the offset (in pixels) of the left edge of the active text area
from the left edge of the visible display. The "active text area" is where characters
are actually printed. (There is generally a border of unused blank area surrounding

: probe-loop (adr --)

 \ generate tight probe-loop until a key is pressed.

 begin key? 0= while dup l@ drop repeat drop

;

326 Writing FCode 2.x Programs—November 1995

11

it on all sides.) window-left contains the size of the left portion of the unused
border.

The size of the right portion of the unused border is determined by the difference
between screen-width and the sum of window-left plus the width of the
active text area (#columns times char-width).

This word is initially set to 0, but should always be set explicitly to the appropriate
value if you wish to use any fb1- or fb8- utility routines. This may be done with
is , or it may be set automatically by calling fb1-install or fb8-install .

When set with fbx-install , a calculation is done to set window-left so that
the available unused border area is evenly split between the left border and the
right border. (The calculated value for window-left is rounded down to the
nearest multiple of 32, though. This allows all pixel-drawing to proceed more
efficiently.) If you wish to use fbx-install but desire a different value for
window-top , simply change it with is after calling fbx-install .

 window-top (-- n) code# 1 65

A value , containing the offset (in pixels) of the top of the active text area from the
top of the visible display. The "active text area" is where characters are actually
printed. (There is generally a border of unused blank area surrounding it on all
sides.) window-top contains the size of the top portion of the unused border.

The size of the bottom portion of the unused border is determined by the
difference between screen-height and the sum of window-top plus the height
of the active text area (#lines times char-height).

This word is initially set to 0, but should always be set explicitly to the appropriate
value if you wish to use any fb1- or fb8- utility routines. This may be done with
is , or it may be set automatically by calling fb1-install or fb8-install .
When set with fbx-install , a calculation is done to set window-top so that the
available unused border area is evenly split between the top border and the bottom
border. If you wish to use fbx-install but desire a different value for window-
top , simply change it with is after calling fb x-install .

FCode Dictionary 327

11

within (n min max -- flag) code# 45

flag is true if n is between min and max , inclusive of min and exclusive of
max . (min <= n < max.) See between for another version.

wljoin (word.lo word.hi -- n) code# 7d

Merge two 16-bit numbers into a 32-bit number. The high bits of each 16-bit
number must be zero.

wpeek (adr -- false | data true) code# 2 21
version 2

Tries to read the 16-bit half-word at address adr . Returns the data and true if
the access was successful. A false return indicates that a read access error
occurred. adr must be 16-bit aligned.

wpoke (data adr -- ok?) code# 2 24
version 2

Tries to write the 16-bit half-word at address adr . Returns true if the access
was successful. A false return indicates that a write access error occurred.
adr must be 16-bit aligned.

Note: wpoke may be unreliable on bus adapters that buffer write accesses.

x+ (x1 x2 -- x3) code# d8
version 2

Adds two 64-bit numbers, leaving 64-bit sum.

For example:

shows

1234.0000 0056.7800 9abc 3400.009a x+ .s

1234.9abc 3456.789a

328 Writing FCode 2.x Programs—November 1995

11

x- (x1 x2 -- x3) code# d9
version 2

Subtracts two 64-bit numbers, leaving 64-bit result.

For example:

shows

and

shows

xdr+ (xdr-adr1 xdr-len1 xdr-adr2 xdr-len2 -- xdr-adr1 len1+2)
code# 1 12

Merge two xdr -format strings into a single xdr -format string. The two input
strings must have been created sequentially with no intervening dictionary
allocation or other xdr-format strings having been created. This can be called
repeatedly, to create complex, multi-valued xdr -format strings for passing to
attribute .

For example, suppose you wished to create a property named myprop with the
following information packed sequentially:

This could be written in FCode as follows:

0 6 1 0 x- .s

ffff.ffff 5

4444.8888 aaaa.bbbb 2222.1111 5555.2222 x- .s

2222.7777 5555.9999

“size” 2000 “vals” 3 128 40 22

: xdrstring,num (adr len number --)

 >r xdrstring

 r> xdrint xdr+

FCode Dictionary 329

11

xdrbytes (adr len -- xdr-adr xdr-len) code# 1 15
version 2.1

Encodes a byte array into a property value array. The external representation of
a byte array is the sequence of bytes itself, with no appended null byte.

For example:

xdrint (n1 -- xdr-adr xdr-len) code# 1 11

Convert an integer into an xdr -format string, suitable for passing as a "value"
to attribute . For example:

xdrphys (physoffset space -- xdr-adr xdr-len) code# 1 13

Convert a physical address (as a device space and a physical offset) into an
xdr -format string suitable for attribute . For example:

xdrstring (adr len -- xdr-adr xdr-len) code# 1 14

Converts an ordinary string, such as created by " , into an xdr -format string
suitable for attribute . For example:

;

" size" 2000 xdrstring,num

“ vals” 3 xdrstring,num xdr+

128 xdrint xdr+

40 xdrint xdr+

22 xdrint xdr+

" myprop" attribute

my-idprom h# 20 xdrbytes " idprom" attribute

1152 xdrint " hres" attribute

my-address 20.0000 + my-space xdrphys

" resetloc" attribute

“ MJS,SEH” xdrstring “ authors” attribute

330 Writing FCode 2.x Programs—November 1995

11

xdrtoint (xdr1-adr xdr1-len -- xdr2-adr xdr2-len n) code# 2 1b
version 2

Decodes a number from the beginning of the property value array xdr1-adr
xdr1-len , and returns the remainder of the property value array xdr2-adr
xdr2-len and the number n.

For example:

xdrtostring (xdr1-adr xdr1-len -- xdr2-adr xdr2-len adr len) code# 2 1c
version 2

Decodes a string from the beginning of the property value array xdr1-adr
xdr1-len , and returns the remainder of the property value array xdr2-adr
xdr2-len and the string adr3 len3 .

For example:

xor (n1 n2 -- n3) code# 25

n3 is the bit-by-bit exclusive-or of n1 with n2 .

xu>l (ux -- ul) code# 46
generates: drop

Tokenizer instruction that truncates a 64-bit number to 32-bit .

: show-clock-frequency (--)

 " clock-frequency" get-inherited-attribute 0= if

 ." Clock frequency: " xdrtoint .h cr 2drop

 then

;

: show-model (--)

 " model" get-my-attribute 0= if xdrtostring type 2drop then

;

FCode Dictionary 331

11

xu/mod (u1[64] u2[32] -- remainder[32] quot[32]) code# d5
version 2

Divides an unsigned 64-bit number by an unsigned 32-bit number, yields a 32-
bit remainder and quotient

332 Writing FCode 2.x Programs—November 1995

11

333

FCode Reference A

FCode Primitives
This appendix contains four lists:

• FCodes sorted according to functional group
• FCodes sorted by byte value
• FCodes sorted alphabetically by name
• Version 2 FCodes listed alphabetically

334 Writing FCode 2.x Programs—November 1995

A

FCodes by Function
The following tables describe FCodes currently supported by the OpenBoot
PROM. New 2.0 FCodes are indicated by V2. Both the FCode token values
and Forth names are included. A token value entry of CR indicates a cross-
compiler-generated sequence, while - indicates that no FCode is generated.

Table A-1 Stack Manipulation

Value Function Stack Description

51 depth (-- +n) How many items on stack?

46 drop (n --) Removes n from the stack

52 2drop (n1 n2 --) Removes 2 items from stack

47 dup (n -- n n) Duplicates n

53 2dup (n1 n2 -- n1 n2 n1 n2) Duplicates 2 stack items

50 ?dup (n -- n n | 0) Duplicates n if it is non-zero

CR 3dup (n1 n2 n3 -- n1 n2 n3 n1 n2 n3) Copies top 3 stack items

4d nip (n1 n2 -- n2) Discards the second stack item

48 over (n1 n2 -- n1 n2 n1) Copies second stack item to top of stack

54 2over (n1 n2 n3 n4 -- n1 n2 n3 n4 n1 n2) Copies 2 stack items

4e pick (+n -- n2) Copies +n-th stack item

30 >r (n --) (rs: -- n) Moves a stack item to the return stack*

31 r> (-- n) (rs: n --) Moves item from return stack to data stack*

32 r@ (-- n) (rs: --) Copies the top of the return stack to the data stack

4f roll (+n --) Rotates +n stack items

4a rot (n1 n2 n3 -- n2 n3 n1) Rotates 3 stack items

4b -rot (n1 n2 n3 -- n3 n1 n2) Shuffles top 3 stack items

56 2rot (n1 n2 n3 n4 n5 n6 -- n3 n4 n5 n6 n1 n2) Rotates 3 pairs of stack items

49 swap (n1 n2 -- n2 n1) Exchanges the top 2 stack items

55 2swap (n1 n2 n3 n4 -- n3 n4 n1 n2) Exchanges 2 pairs of stack items

4c tuck (n1 n2 -- n2 n1 n2) Copies the top stack item below the second item

* Use these FCodes cautiously.

FCode Reference 335

A

Table A-2 Arithmetic Operations

Value Function Stack Description

20 * (n1 n2 -- n3) Multiplies n1 times n2

1e + (n1 n2 -- n3) Adds n1+n2

1f - (n1 n2 -- n3) Subtracts n1-n2

21 / (n1 n2 -- quot) Divides n1/n2

CR 1+ (n1 -- n2) Adds one

CR 1- (n1 -- n2) Subtracts one

59 2* (n1 -- n2) Multiplies by 2

57 2/ (n1 -- n2) Divides by 2

27 << (n1 +n -- n2) Left shifts n1 by +n places

28 >> (n1 +n -- n2) Right shifts n1 by +n places

CR <<a (n1 +n -- n2) Arithmetic left shifts (same as <<)

29 >>a (n1 +n -- n2) Arithmetic right shifts n1 by +n places

2d abs (n -- u) Absolute value

ae aligned (adr1 -- adr2) Adjusts an address to a machine word boundary

23 and (n1 n2 -- n3) Logical and

ac bounds (startadr len -- endadr startadr) Converts start,len to end,start for do loop

2f max (n1 n2 -- n3) n3 is maximum of n1 and n2

2e min (n1 n2 -- n3) n3 is minimum of n1 and n2

22 mod (n1 n2 -- rem) Remainder of n1/n2

CR */mod (n1 n2 n3 -- rem quot) Remainder, quotient of n1*n2/n3

2a /mod (n1 n2 -- rem quot) Remainder, quotient of n1/n2

2c negate (n1 -- n2) Changes the sign of n1

26 not (n1 -- n2) One’s complement

24 or (n1 n2 -- n3) Logical or

2b u/mod (ul un -- un.rem un.quot) Unsigned 32-bit divide of ul/un

58 u2/ (u1 -- u2) Logical right shifts 1 bit

25 xor (n1 n2 -- n3) Exclusive or

d4 u*x (u1[32] u2[32] -- product[64]) Multiplies two unsigned 32-bit numbers, yields an unsigned 64-
bit product. V2

d5 xu/mod (u1[64] u2[32] -- remainder[32]
quot[32])

Divides an unsigned 64-bit number by an unsigned 32-bit
number, yields a 32-bit remainder and quotient V2

d8 x+ (x1 x2 -- x3) Adds two 64-bit numbers V2

d9 x- (x1 x2 -- x3) Subtracts two 64-bit numbers V2

336 Writing FCode 2.x Programs—November 1995

A

Table A-3 Memory Operations

Table A-4 Atomic Access

Value Function Stack Description

72 ! (n adr --) Stores a 32-bit number into the variable at adr

6c +! (n adr --) Adds n to the 32-bit number stored in the variable at adr

77 2! (n1 n2 adr --) Stores 2 numbers at adr; n2 at lower address

76 2@ (adr -- n1 n2) Fetches 2 numbers from adr; n2 from lower address

6d @ (adr -- n) Fetches a number from the variable at adr

CR ? (adr --) Displays the 32-bit number at adr

75 c! (n adr --) Stores low byte of n at adr

71 c@ (adr -- byte) Fetches a byte from adr

CR blank (adr len --) Sets len bytes of memory to ASCII space, starting at adr

CR cmove (adr1 adr2 u --) Same as move

CR cmove> (adr1 adr2 u --) Same as move

7a comp (adr1 adr2 len -- n) Compares two byte arrays including case. n=0 if same

CR erase (adr len --) Sets len bytes of memory to zero, starting at adr

79 fill (adr u byte --) Sets u bytes of memory to byte

0237 lflips (adr len --) Exchanges 16-bit words within 32-bit longwords in adr len V2

73 l! (l adr --) Stores the 32-bit number at adr, must be 32-bit aligned

6e l@ (adr -- l) Fetches the 32-bit longword at adr, must be 32-bit aligned

78 move (adr1 adr2 u --) Copies u bytes from adr1 to adr2, handles overlap correctly.

6b off (adr --) Stores false (32-bit 0) at adr

6a on (adr --) Stores true (32-bit -1) at adr

0236 wflips (adr len --) Exchanges bytes within 16-bit words in the specified region V2

74 w! (w adr --) Stores a 16-bit word at adr, must be 16-bit aligned

6f w@ (adr -- w) Fetches the unsigned 16-bit word at adr, must be 16-bit aligned

70 <w@ (adr -- n) Fetches the signed 16-bit word at adr, must be 16-bit aligned

Value Function Stack Description

0230 rb@ (adr -- byte) Reads the 8-bit value at the given address, atomically V2

0231 rb! (byte adr --) Writes the 8-bit value at the given address, atomically V2

0232 rw@ (adr -- word) Reads the 16-bit value at the given address, atomically V2

0233 rw! (word adr --) Writes the 16-bit value at the given address, atomically V2

0234 rl@ (adr -- long) Reads the 32-bit value at the given address, atomically V2

0235 rl! (long adr --) Writes the 32-bit value at the given address, atomically V2

FCode Reference 337

A

Table A-5 Data Exception Tests

Table A-6 Comparison Operations

Value Function Stack Description

0220 cpeek (adr -- false | byte true) Reads the 8-bit value at the given address, returns false if unsuccessful
V2

0221 wpeek (adr -- false | word true) Reads the 16-bit value at the given address, returns false if
unsuccessful V2

0222 lpeek (adr -- false | long true) Reads the 32-bit value at the given address, returns false if
unsuccessful V2

0223 cpoke (byte adr -- ok?) Writes the 8-bit value at the given address, returns false if unsuccessful
V2

0224 wpoke (word adr -- ok?) Writes the 16-bit value at the given address, returns false if
unsuccessful V2

0225 lpoke (long adr -- ok?) Writes the 32-bit value at the given address, returns false if
unsuccessful V2

Value Function Stack Description

36 0< (n -- flag) True if n < 0

37 0<= (n -- flag) True if n <= 0

35 0<> (n -- flag) True if n <> 0

34 0= (n -- flag) True if n = 0, also inverts any flag

38 0> (n -- flag) True if n > 0

39 0>= (n -- flag) True if n >= 0

3a < (n1 n2 -- flag) True if n1 < n2

43 <= (n1 n2 -- flag) True if n1 <= n2

3d <> (n1 n2 -- flag) True if n1 <> n2

3c = (n1 n2 -- flag) True if n1 = n2

3b > (n1 n2 -- flag) True if n1 > n2

42 >= (n1 n2 -- flag) True if n1 >= n2

44 between (n min max -- flag) True if min <= n <= max

CR false (-- 0) The value false

CR true (-- -1) The value true

40 u< (u1 u2 -- flag) True if u1 < u2, unsigned

3f u<= (u1 n2 -- flag) True if u1 <= u2, unsigned

338 Writing FCode 2.x Programs—November 1995

A

Table A-7 Text Input

Table A-8 ASCII Constants

Table A-9 Numeric Input

3e u> (u1 n2 -- flag) True if u1 > u2, unsigned

41 u>= (u1 n2 -- flag) True if u1 >= u2, unsigned

45 within (n min max -- flag) True if min <= n < max

Value Function Stack Description

- (text) (--) Begins a comment (ignored)

- \ (--) Ignore rest of line (comment)

CR ascii x (-- char) ASCII value of next character

CR control x (-- char) Interprets next character as ASCII control character

8e key (-- char) Reads a character from the keyboard

8d key? (-- flag) True if a key has been typed on the keyboard

8a expect (adr +n --) Gets a line of edited input from the keyboard; store at adr

88 span (-- adr) Variable containing the number of characters read by expect

- (s text) (--) Begins a comment (ignored)

Value Function Stack Description

ab bell (-- n) The ASCII code for the bell character; decimal 7

a9 bl (-- n) The ASCII code for the space character; decimal 32

aa bs (-- n) The ASCII code for the backspace character; decimal 8

CR carret (-- n) The ASCII code for the carriage return character; decimal 13

CR linefeed (-- n) The ASCII code for the linefeed character; decimal 10

CR newline (-- n) The ASCII code for the newline character; decimal 10

Value Function Stack Description

a4 -1 (-- -1) Constant -1

a5 0 (-- 0) Constant 0

a6 1 (-- 1) Constant 1

a7 2 (-- 2) Constant 2

a8 3 (-- 3) Constant 3

CR b# number (-- n) Interprets next number in binary

Value Function Stack Description

FCode Reference 339

A

Table A-10 Numeric Primitives

Table A-11 Numeric Output

- binary (--) If outside definition, input text in binary

CR d# number (-- n) Interprets next number in decimal

- decimal (--) If outside definition, input text in decimal

CR h# number (-- n) Interprets next number in hexadecimal

- hex (--) If outside definition, input text in hexadecimal

CR o# number (-- n) Interprets next number in octal

- octal (--) If outside definition, input text in octal

Value Function Stack Description

99 # (+l1 -- +l2) Converts a digit in pictured numeric output

97 #> (l -- adr +n) Ends pictured numeric output

96 <# (--) Initializes pictured numeric output

a0 base (-- adr) Variable containing number base

a3 digit (char base -- digit true | char false) Converts a character to a digit

95 hold (char --) Inserts the char in the pictured numeric output string

9a #s (+l -- 0) Converts the rest of the digits in pictured numeric output

98 sign (n --) Sets sign of pictured output

a2 $number (adr len -- true | n false) Converts a string to a number V2

Value Function Stack Description

9d . (n --) Displays a number

CR .d (n --) Displays number in decimal

CR binary (--) If inside definition, output in binary

CR decimal (--) If inside definition, output in decimal

CR .h (n --) Displays number in hexadecimal

CR hex (--) If inside definition, output in hexadecimal

CR octal (--) If inside definition, output in octal

9e .r (n +n --) Displays a number in a fixed width field

9f .s (--) Displays the contents of the data stack

CR s. (n --) Displays n as a signed number

9b u. (u --) Displays an unsigned number

9c u.r (u +n --) Prints an unsigned number in a fixed width field

Value Function Stack Description

340 Writing FCode 2.x Programs—November 1995

A

Table A-12 General-purpose Output

Table A-13 Formatted Output

Table A-14 begin Loops

Table A-15 Conditionals

Value Function Stack Description

CR ." text" (--) Compiles string for later output

CR .(text) (--) Displays a string now

91 (cr (--) Outputs ASCII CR character; decimal 13

92 cr (--) Starts a new line of display output

8f emit (char --) Displays the character

CR space (--) Outputs a single space character

CR spaces (+n --) Outputs +n spaces

90 type (adr +n --) Displays n characters

Value Function Stack Description

94 #line (-- adr) Variable holding the line number on the output device

93 #out (-- adr) Variable holding the column number on the output device

Value Function Stack Description

CR again (--) Ends begin..again (infinite) loop

CR begin (--) Starts conditional loop

CR repeat (--) Returns to loop start

CR until (flag --) If true, exits begin..until loop

CR while (flag --) If true, continues begin..while..repeat loop, else exits loop

Value Function Stack Description

CR if (flag --) If true, executes next FCode(s)

CR else (--) (optional) Executes next FCode(s) if if failed

CR then (--) Terminates if..else..then

FCode Reference 341

A

Table A-16 do Loops

Table A-17 Control Words

Table A-18 Strings

Value Function Stack Description

CR do (end start --) Loops, index start to end-1 inclusive

CR ?do (end start --) Like do, but skips loop if end = start

19 i (-- n) Returns current loop index value

1a j (-- n) Returns value of next outer loop index

CR leave (--) Exits do loop immediately

CR ?leave (flag --) If flag is true, exits do loop

CR loop (--) Increments index, returns to do

CR +loop (n --) Increments by n, returns to do. If n<0, index start to end

Value Function Stack Description

1d execute (acf --) Executes the word whose
compilation address is on the stack

33 exit (--) Returns from the current word

0238 probe (arg-adr arg-len reg-adr reg-len fcode-adr fcode-len --) V2.2

0239 probe-virtual (arg-adr arg-len reg-adr reg-len fcode-adr --) V2.2

Value Function Stack Description

CR " text" (-- adr len) Collects a string

84 count (pstr -- adr +n) Unpacks a packed string

82 lcc (char -- lower-case-char) Converts char to lower case

83 pack (adr len pstr -- pstr) Makes a packed string from adr len, placing it at pstr

81 upc (char -- upper-case-char) Converts char to upper case

0240 left-parse-
string

(adr len char -- adrR lenR adrL lenL) Splits a string at the given delimiter (which is discarded)
V2

011b decode-2int (adr len -- phys space) Converts a string into a physical address and space V2

342 Writing FCode 2.x Programs—November 1995

A

Table A-19 Defining Words

Table A-20 Dictionary Compilation

Table A-21 Dictionary Search

Value Function Stack Description

CR : (colon) name (--) Begins colon definition

CR ; (semicolon) (--) Ends colon definition

- alias newnameoldname (--) Creates newname with behavior of oldname

CR buffer: name (size --) Creates data array of size bytes

CR constant name (n --) Creates a constant

CR create name (--) Generic defining word

CR defer name (--) Execution vector (change with is)

CR field name (offset size -- offset+size) Creates a named offset pointer

c0 instance (--) Declare a data type to be local V2.1

CR struct (-- 0) Initializes for field creation

CR variable name (--) Creates a data variable

CR value name (n --) Creates named value-type variable (change with is)

Value Function Stack Description

d3 , (n --) Places a number in the dictionary

d0 c, (n --) Places a byte in the dictionary

ad here (-- adr) Address of top of dictionary

d2 l, (l --) Places a 32-bit longword in the dictionary

d1 w, (w --) Places a 16-bit word in the dictionary

CR is name (n --) Changes value in a defer word or a value

Value Function Stack Description

CR ’ name (-- acf) Finds the word (while executing)

CR [’] name (-- acf) Finds word (while compiling)

cb $find (adr len -- adr len false | acf +-1) Finds a name in the OpenBoot PROM

cd eval (??? adr len -- ?) Executes Forth commands within a string V2

FCode Reference 343

A

Table A-22 Conversions Operators

Table A-23 Memory Buffers Allocation

Value Function Stack Description

7f bljoin (b.low b2 b3 b.hi -- l) Joins four bytes to form a longword

b0 bwjoin (b.low b.hi -- w) Joins two bytes to form a 16-bit word

5a /c (-- n) Address increment for a byte; 1

66 /c* (n1 -- n2) Multiplies by /c

5e ca+ (adr1 index -- adr2) Increments adr1 by index times /c

62 ca1+ (adr1 -- adr2) Increments adr1 by /c

80 flip (w1 -- w2) Swaps the bytes within a 16-bit word

5c /l (-- n) Address increment for a 32-bit longword; 4

68 /l* (n1 -- n2) Multiplies by /l

60 la+ (adr1 index -- adr2) Increments adr1 by index times /l

64 la1+ (adr1 -- adr2) Increments adr1 by /l

7e lbsplit (l -- b.low b2 b3 b.high) Splits a longword into four bytes

7c lwsplit (l -- w.low w.high) Splits a longword into two words

5d /n (-- n) Address increment for a normal; 4

69 /n* (n1 -- n2) Multiplies by /n

61 na+ (adr1 index -- adr2) Increments adr1 by index times /n

65 na1+ (adr1 -- adr2) Increments adr1 by /n

5b /w (-- n) Address increment for a 16-bit word; 2

67 /w* (n1 -- n2) Multiplies by /w

5f wa+ (adr1 index -- adr2) Increments adr1 by index times /w

63 wa1+ (adr1 -- adr2) Increments adr1 by /w

af wbsplit (w -- b.low b.high) Splits a 16-bit word into two bytes

CR wflip (l1 -- l2) Swaps halves of 32-bit longword

7d wljoin (w.low w.high -- l) Joins two words to form a longword

Value Function Stack Description

8b alloc-mem (nbytes -- adr) Allocates nbytes of memory and returns its address

8c free-mem (adr nbytes --) Frees memory allocated by alloc-mem

344 Writing FCode 2.x Programs—November 1995

A

Table A-24 Miscellaneous Operators

Table A-25 Internal Operators, (invalid for program text)

Value Function Stack Description

86 >body (acf -- apf) Finds parameter field address from compilation address

85 body> (apf -- acf) Finds compilation address from parameter field address

CR emit-byte (n --) Outputs FCode byte (use with tokenizer[)

00 end0 (--) Marks the end of FCode

ff end1 (--) Alternates form for end0 (not recommended)

CR fcode-version1 (--) Begins FCode program

- fload filename (--) Begins tokenizing filename

- headerless (--) Creates new names with new-token (no name fields)

- headers (--) Creates new names with named-token (default)

7b noop (--) Does nothing

cc offset16 (--) All further branches use 16-bit offsets (instead of 8-bit)

- tokenizer[(--) Begins tokenizer program commands

-]tokenizer (--) Ends tokenizer program commands

CR fcode-version2 (--) Begins 2.0 FCode program, compiles start1 V2

- external (--) Creates new names with external-token V2

Value Function Stack Description

1-f { table#1-15 } Reserved byte codes, used for 2-byte entries

10 b(lit) (-- n) Followed by 32-bit#. Compiled by numeric data

11 b(’) (-- acf) Followed by a token (1 or 2-byte code) . Compiled by [’] or ’

12 b(") (-- adr len) Followed by count byte, text. Compiled by " or ."

c3 b(is) (n --) Compiled by is

fd version1 (--) Followed by reserved byte, checksum (2 bytes) , length (4 bytes). Compiled
by fcode-version1, as the first FCode bytes

fe 4-byte-id (--) Followed by 3 identifier bytes. First FCode byte. Not supported.

13 bbranch (--) Followed by offset. Compiled by else or again

14 b?branch (--) Followed by offset. Compiled by if or until

15 b(loop) (--) Followed by offset. Compiled by loop

16 b(+loop) (n --) Followed by offset. Compiled by +loop

17 b(do) (end start --) Followed by offset. Compiled by do

18 b(?do) (end start --) Followed by offset. Compiled by ?do

1b b(leave) (--) Compiled by leave or ?leave

FCode Reference 345

A

b1 b(<mark) (--) Compiled by begin

b2 b(>resolve) (--) Compiled by else or then

c4 b(case) (--) Compiled by case

c5 b(endcase) (--) Compiled by endcase

c6 b(endof) (--) Compiled by endof

1c b(of) (sel testval --
sel | none)

Followed by offset. Compiled by of

b5 new-token (--) Followed by table#, code#, token-type. Compiled by any defining word.
Headerless, not used normally.

b6 named-token (--) Followed by packed string (count,text), table#, code#, token-type. Compiled
by any defining word (: value constant etc.)

b7 b(:) Token-type compiled by :

b8 b(value) Token-type compiled by value

b9 b(variable) Token-type compiled by variable

ba b(constant) Token-type compiled by constant

bb b(create) Token-type compiled by create

bc b(defer) Token-type compiled by defer

bd b(buffer:) Token-type compiled by buffer:

be b(field) Token-type compiled by field

c2 b(;) (--) End a colon definition. Compiled by ;

ca external-token (--) Like named-token, but name header is always created at probe time V2

f0 start0 (--) Like version1, but for version 2.0 FCodes. Uses 16-bit branches. Fetches
successive tokens from same address V2

f1 start1 (--) Like version1, but for version 2.0 FCodes. Uses 16-bit branches. Fetches
successive tokens from consecutive addresses. Compiled by fcode-version2
V2

f2 start2 (--) Like version1, but for version 2.0 FCodes. Uses 16-bit branches. Fetches
successive tokens from consecutive 16-bit addresses V2

f3 start4 (--) Like version1, but for version 2.0 FCodes. Uses 16-bit branches. Fetches
successive tokens from consecutive 32-bit addresses V2

Value Function Stack Description

346 Writing FCode 2.x Programs—November 1995

A

Table A-26 Memory Allocation

Table A-27 Non-volatile Parameters

Table A-28 Properties

Value Function Stack Description

0101 dma-alloc (nbytes -- virt) Maps in nbytes of DMA space, return virtual adr

0104 memmap (phys space nbytes -- virt) Maps in a region, return virtual address

0105 free-virtual (virt nbytes --) Frees virtual memory from memmap, dma-alloc,or map-sbus

0106 >physical (virt -- phys space) Returns physical adr and space for virtual adr

Value Function Stack Description

010f my-params (-- adr len) Returns a data array for this plug-in device. The data format is defined
specifically for each plug-in device, in order to customize the device. Params for
each device, as needed, will be stored in the system NVRAM

Value Function Stack Description

0110 attribute (xdr-adr xdr-len name-adr
 name-len --)

Declares a property with the given value structure, for
the given name string.

0111 xdrint (n -- xdr-adr xdr-len) Converts a number into an xdr-format string

0112 xdr+ (xdr-adr1 xdr-len1 xdr-adr2
 xdr-len2 -- xdr-adr xdr-len1+2)

Merges two xdr-format strings. They must have been
created sequentially

0113 xdrphys (phys space -- xdr-adr xdr-len) Converts physical address and space into an xdr-
format string

0114 xdrstring (adr len -- xdr-adr xdr-len) Converts a string into an xdr-format string

0115 xdrbytes (adr len -- xdr-adr xdr-len) Converts a byte array into an xdr-format string V2.1

021a get-my-attribute (nam-adr nam-len -- true |
 xdr-adr xdr-len false)

Returns the xdr-format string for the given property
name V2

021b xdrtoint (xdr-adr xdr-len -- xdr2-adr
 xdr2-len n)

Converts the beginning of an xdr-format string to an
integer V2

021c xdrtostring (xdr-adr xdr-len -- xdr2-adr
 xdr2-len adr len)

Converts the beginning of an xdr-format string to a
normal string V2

021d get-inherited-
attribute

(nam-adr nam-len -- true | xdr-adr
xdr-len false)

Returns the value string for the given property,
searches parents’ properties if not found V2

021e delete-attribute (nam-adr nam-len --) Deletes the property with the given name V2

021f get-package-
attribute

(adr len phandle -- true | xdr-adr
xdr-len false)

Returns the xdr-format string for the given property
name in the package "phandle" V2

FCode Reference 347

A

Table A-29 Commmonly-used Properties

Table A-30 System Version Information

Table A-31 Device Activation Vector Setup

Table A-32 Self-test utility Routines

Value Function Stack Description

0116 reg (phys space size --) Declares location and size of device registers

0117 intr (intr-level vector --) Declares interrupt level and vector for this device

0118 driver (adr len --) Not supported

0119 model (adr len --) Declares model# for this device, such as " SUNW,501-1415-01"

011a device-type (adr len --) Declares type of device, e.g. " display", " block", " network", or " byte"

CR name (adr len --) Declares SunOS driver name, as in " SUNW,zebra"

0201 device-
name

(adr len --) Creates the "name" attribute with the given value V2

Value Function Stack Description

0210 processor-
type

(-- processor-
type)

Obsolete V2

0211 firmware-
version

(-- n) Returns major/minor CPU firmware version V2

0212 fcode-
version

(-- n) Obsolete V2

87 version (-- n) Returns major/minor FCode interface version

Value Function Stack Description

011c is-install (acf --) Identifies "install" routine to allocate a framebuffer

011d is-remove (acf --) Identifies "remove" routine, to deallocate a framebuffer

011e is-selftest (acf --) Identifies "selftest" routine for this framebuffer

011f new-device (--) Opens an additional device, using this driver package

0127 finish-device (--) Closes out current device, ready for new-device

Value Function Stack Description

0120 diagnostic-mode? (-- flag) Returns "true" if extended diagnostics are desired

0121 display-status (n --) Obsolete

348 Writing FCode 2.x Programs—November 1995

A

Table A-33 Time Utilities

Table A-34 Machine-specific Support

Note – Table A-35 through Table A-41 apply only to display device-types.

0122 memory-test-suite (adr len -- status) Calls memory tester for given region

0123 group-code (-- adr) Obsolete

0124 mask (-- adr) Variable, holds "mask" used by memory-test-suite

Value Function Stack Description

0125 get-msecs (-- ms) Returns the current time, in milliseconds, approx.

0126 ms (n --) Delays for n milliseconds. Resolution is 1 millisecond

0213 alarm (acf n --) Periodically execute acf. If n=0, stop. V2

Value Function Stack Description

0130 map-sbus (phys size -- virt) Maps a region of memory in ’sbus’ address space

0131 sbus-intr>cpu (sbus-intr# -- cpu-intr#) Translates SBus interrupt# into CPU interrupt#

Value Function Stack Description

FCode Reference 349

A

Table A-35 User-set terminal Emulation Values

Table A-36 Terminal Emulator-set Terminal Emulation Values

Table A-37 Terminal Emulation Routines*

Value Function Stack Description

0150 #lines (-- n) Number of lines of text being used for display. This word must be initialized (using
is). fbx-install does this automatically, and also properly incorporates the NVRAM
parameter "screen-#rows"

0151 #columns (-- n) Number of columns (chars/line) used for display. This word must be initialized
(using is). fbx-install does this automatically, and also properly incorporates the
NVRAM parameter "screen-#columns"

Value Function Stack Description

0152 line# (-- n) Current cursor position (line#). 0 is top line

0153 column# (-- n) Current cursor position (column#). 0 is left char.

0154 inverse? (-- flag) True if output is inverted (white-on-black)

0155 inverse-screen? (-- flag) True if screen has been inverted (black background)

Value Function Stack Description

0157 draw-character (char --) Paints the given character and advance the
cursor

0158 reset-screen (--) Initializes the display device

0159 toggle-cursor (--) Draws or erase the cursor

015a erase-screen (--) Clears all pixels on the display

015b blink-screen (--) Flashes the display momentarily

015c invert-screen (--) Changes all pixels to the opposite color

015d insert-characters (n --) Inserts n blanks just before the cursor

015e delete-characters (n --) Deletes n characters starting at with cursor
character, rightward. Remaining chars slide
left

015f insert-lines (n --) Inserts n blank lines just before the current
line, lower lines are scrolled downward

0160 delete-lines (n --) Deletes n lines starting with the current line,
lower lines are scrolled upward

0161 draw-logo (line# logoaddr logowidth logoheight --) Draws the logo

*defer-type loadable routines.

350 Writing FCode 2.x Programs—November 1995

A

Table A-38 Frame Buffer Parameter Values*

Table A-39 Font Operators

Table A-40 One-bit Framebuffer Utilities

Value Function Stack Description

016c char-height (-- n) Height (in pixels) of a character (usually 22)

016d char-width (-- n) Width (in pixels) of a character (usually 12)

016f fontbytes (-- n) Number of bytes/scan line for font entries (usually 2)

0162 frame-buffer-adr (-- adr) Address of frame buffer memory

0163 screen-height (-- n) Total height of the display (in pixels)

0164 screen-width (-- n) Total width of the display (in pixels)

0165 window-top (-- n) Distance (in pixels) between display top and text window

0166 window-left (-- n) Distance (in pixels) between display left edge and text window left edge

*These must all be initialized before using any fbx- routines.

Value Function Stack Description

016a default-font (-- fontbase charwidth charheight
 fontbytes #firstchar #chars)

Returns default font values, plugs directly into
set-font

016b set-font (fontbase charwidth charheight
 fontbytes #firstchar #chars --)

Sets the character font for text output

016e >font (char -- adr) Returns font address for given ASCII character

Value Function Stack Description

0170 fb1-draw-character (char --) Paints the character and advance the cursor

0171 fb1-reset-screen (--) Initializes the display device (noop)

0172 fb1-toggle-cursor (--) Draws or erases the cursor

0173 fb1-erase-screen (--) Clears all pixels on the display

0174 fb1-blink-screen (--) Inverts the screen, twice (slow)

0175 fb1-invert-screen (--) Changes all pixels to the opposite color

0176 fb1-insert-characters (n --) Inserts n blanks just before the cursor

0177 fb1-delete-characters (n --) Deletes n characters, starting at with cursor
character, rightward. Remaining chars slide left

0178 fb1-insert-lines (n --) Inserts n blank lines just before the current line,
lower lines are scrolled downward

0179 fb1-delete-lines (n --) Deletes n lines starting with the current line,lower
lines are scrolled upward

FCode Reference 351

A

Table A-41 Eight-bit Framebuffer Utilities

Table A-42 Package Support

017a fb1-draw-logo (line# logoaddr logowidth
 logoheight --)

Draws the logo

017b fb1-install (width height #columns #lines --) Installs the one-bit built-in routines

017c fb1-slide-up (n --) Like fb1-delete-lines, but doesn’t clear lines at
bottom

Value Function Stack Description

0180 fb8-draw-character (char --) Paints the character and advance the cursor

0181 fb8-reset-screen (--) Initializes the display device (noop)

0182 fb8-toggle-cursor (--) Draws or erases the cursor

0183 fb8-erase-screen (--) Clears all pixels on the display

0184 fb8-blink-screen (--) Inverts the screen, twice (slow)

0185 fb8-invert-screen (--) Changes all pixels to the opposite color

0186 fb8-insert-characters (n --) Inserts n blanks just before the cursor

0187 fb8-delete-characters (n --) Deletes n characters starting at with cursor character,
rightward. Remaining chars slide left

0188 fb8-insert-lines (n --) Inserts n blank lines just before the current line, lower
lines are scrolled downward

0189 fb8-delete-lines (n --) Deletes n lines starting with the current line, lower
lines are scrolled upward

018a fb8-draw-logo (line# logoaddr logowidth
 logoheight --)

Draws the logo

018b fb8-install (width height #columns
 #lines --)

Installs the eight-bit built-in routines

Value Function Stack Description

023c peer (phandle --
 next-phandle)

Returns phandle of package that is the next child of the the
parent of the package V2.3

023b child (parent-phandle --
 child-phandle)

Returns phandle of the package that is the first child of the
package parent-phandle V2.3

0204 find-package (adr len -- false |
 phandle true)

Finds a package named "adr len" V2

0205 open-package (adr len phandle --
 ihandle | 0)

Opens an instance of the package "phandle," passes arguments
"adr len" V2

Value Function Stack Description

352 Writing FCode 2.x Programs—November 1995

A

Table A-43 Asynchronous Support

Table A-44 Miscellaneous Operations

020f $open-package (arg-adr arg-len adr len --
 ihandle | 0)

Finds a package "adr len," then opens it with arguments "arg-
adr arg-len" V2

020a my-parent (-- ihandle) Returns the ihandle of the parent of the current package
instance V2

0203 my-self (-- ihandle) Returns the instance handle of currently-executing package
instance V2

020b ihandle>phandle (ihandle -- phandle) Converts an ihandle to a phandle V2

0206 close-package (ihandle --) Closes an instance of a package V2

0207 find-method (adr len phandle -- false |
acf true)

Finds the method (command) named "adr len" within the
package "phandle" V2

0208 call-package ([...] acf ihandle -- [...]) Executes the method "acf" within the instance "ihandle" V2

020e $call-method ([...]adr len ihandle --
 [...])

Executes the method named "adr len" within the instance
"ihandle" V2

0209 $call-parent ([...] adr len -- [...]) Executes the method "adr len" within the parent’s package V2

0202 my-args (-- adr len) Returns the argument string "adr len" passed when this package
was opened V2

020d my-unit (-- low high) Returns the physical unit number pair for this package V2

0102 my-address (-- phys) Returns the physical adr of this plug-in device. "phys" is a
"magic" number, usable by other routines V2

0103 my-space (-- space) Returns address space of plug-in device. "space" is a "magic"
number, usable by other routines V2

Value Function Stack Description

0213 alarm (acf n --) Executes the method (command) indicated by "acf" every "n" milliseconds V2

0219 user-abort (--) Abort after alarm routine finishes execution

Value Function Stack Description

0214 (is-user-word) (adr len acf --) Creates a new word called "adr len" which executes "acf" V2

01a4 mac-address (-- adr len) Returns the MAC address V2

Value Function Stack Description

FCode Reference 353

A

Table A-45 Interpretation

Table A-46 Error Handling

Value Function Stack Description

0215 suspend-fcode (--) Suspends execution of FCode, resumes later if an undefined command is required
V2

Value Function Stack Description

0216 abort (--) Aborts FCode execution, returns to the "ok" prompt V2

0217 catch ([...] acf -- [...] error-code) Executes "acf," returns throw error code or 0 if throw not
encountered V2

0218 throw (error-code --) Returns given error code to catch V2

fc ferror (--) Displays “Unimplemented FCode” and stops FCode interpretation

354 Writing FCode 2.x Programs—November 1995

A

FCodes by Byte Value
The following table lists, in hexadecimal order, currently-assigned FCode byte
values.

Table A-47 FCodes by Byte Value

Value Function Stack Version 2?

00 end0 (--)

10 b(lit) (-- n)

11 b(') (-- acf)

12 b(") (-- adr len)

13 bbranch (--)

14 b?branch (--)

15 b(loop) (--)

16 b(+loop) (n --)

17 b(do) (end start --)

18 b(?do) (end start --)

19 i (-- n)

1a j (-- n)

1b b(leave) (--)

1c b(of) (sel testval -- sel | none)

1d execute (acf --)

1e + (n1 n2 -- n3)

1f - (n1 n2 -- n3)

20 * (n1 n2 -- n3)

21 / (n1 n2 -- quot)

22 mod (n1 n2 -- rem)

23 and (n1 n2 -- n3)

24 or (n1 n2 -- n3)

25 xor (n1 n2 -- n3)

26 not (n1 -- n2)

27 << (n1 +n -- n2)

28 >> (n1 +n -- n2)

29 >>a (n1 +n -- n2)

2a /mod (n1 n2 -- rem quot)

2b u/mod (ul un -- un.rem un.quot)

FCode Reference 355

A

2c negate (n1 -- n2)

2d abs (n -- u)

2e min (n1 n2 -- n3)

2f max (n1 n2 -- n3)

30 >r (n --) (rs: -- n)

31 r> (-- n) (rs: n --)

32 r@ (-- n) (rs: --)

33 exit (--)

34 0= (n -- flag)

35 0<> (n -- flag)

36 0< (n -- flag)

37 0<= (n -- flag)

38 0> (n -- flag)

39 0>= (n -- flag)

3a < (n1 n2 -- flag)

3b > (n1 n2 -- flag)

3c = (n1 n2 -- flag)

3d <> (n1 n2 -- flag)

3e u> (u1 n2 -- flag)

3f u<= (u1 n2 -- flag)

40 u< (u1 u2 -- flag)

41 u>= (u1 n2 -- flag)

42 >= (n1 n2 -- flag)

43 <= (n1 n2 -- flag)

44 between (n min max -- flag)

45 within (n min max -- flag)

46 drop (n --)

47 dup (n -- n n)

48 over (n1 n2 -- n1 n2 n1)

49 swap (n1 n2 -- n2 n1)

4a rot (n1 n2 n3 -- n2 n3 n1)

4b -rot (n1 n2 n3 -- n3 n1 n2)

4c tuck (n1 n2 -- n2 n1 n2)

4d nip (n1 n2 -- n2)

4e pick (+n -- n2)

Value Function Stack Version 2?

356 Writing FCode 2.x Programs—November 1995

A

4f roll (+n --)

50 ?dup (n -- n n | 0)

51 depth (-- +n)

52 2drop (n1 n2 --)

53 2dup (n1 n2 -- n1 n2 n1 n2)

54 2over (n1 n2 n3 n4 -- n1 n2 n3 n4 n1 n2)

55 2swap (n1 n2 n3 n4 -- n3 n4 n1 n2)

56 2rot (n1 n2 n3 n4 n5 n6 -- n3 n4 n5 n6 n1 n2)

57 2/ (n1 -- n2)

58 u2/ (u1 -- u2)

59 2* (n1 -- n2)

5a /c (-- n)

5b /w (-- n)

5c /l (-- n)

5d /n (-- n)

5e ca+ (adr1 index -- adr2)

5f wa+ (adr1 index -- adr2)

60 la+ (adr1 index -- adr2)

61 na+ (adr1 index -- adr2)

62 ca1+ (adr1 -- adr2)

63 wa1+ (adr1 -- adr2)

64 la1+ (adr1 -- adr2)

65 na1+ (adr1 -- adr2)

66 /c* (n1 -- n2)

67 /w* (n1 -- n2)

68 /l* (n1 -- n2)

69 /n* (n1 -- n2)

6a on (adr --)

6b off (adr --)

6c +! (n adr --)

6d @ (adr -- n)

6e l@ (adr -- l)

6f w@ (adr -- w)

70 <w@ (adr -- n)

71 c@ (adr -- byte)

Value Function Stack Version 2?

FCode Reference 357

A

72 ! (n adr --)

73 l! (l adr --)

74 w! (w adr --)

75 c! (n adr --)

76 2@ (adr -- n1 n2)

77 2! (n1 n2 adr --)

78 move (adr1 adr2 u --)

79 fill (adr u byte --)

7a comp (adr1 adr2 len -- n)

7b noop (--)

7c lwsplit (l -- w.low w.high)

7d wljoin (w.low w.high -- l)

7e lbsplit (l -- b.low b2 b3 b.high)

7f bljoin (b.low b2 b3 b.hi -- l)

80 flip (w1 -- w2)

81 upc (char -- upper-case-char)

82 lcc (char -- lower-case-char)

83 pack (adr len pstr -- pstr)

84 count (pstr -- adr +n)

85 body> (apf -- acf)

86 >body (acf -- apf)

87 version (-- n)

88 span (-- adr)

8a expect (adr +n --)

8b alloc-mem (nbytes -- adr)

8c free-mem (adr nbytes --)

8d key? (-- flag)

8e key (-- char)

8f emit (char --)

90 type (adr +n --)

91 (cr (--)

92 cr (--)

93 #out (-- adr)

94 #line (-- adr)

95 hold (char --)

Value Function Stack Version 2?

358 Writing FCode 2.x Programs—November 1995

A

96 <# (--)

97 #> (l -- adr +n)

98 sign (n --)

99 # (+l1 -- +l2)

9a #s (+l -- 0)

9b u. (u --)

9c u.r (u +n --)

9d . (n --)

9e .r (n +n --)

9f .s (--)

a0 base (-- adr)

a2 $number (adr len -- true | n false) V2

a3 digit (char base -- digit true | char false)

a4 -1 (-- -1)

a5 0 (-- 0)

a6 1 (-- 1)

a7 2 (-- 2)

a8 3 (-- 3)

a9 bl (-- n)

aa bs (-- n)

ab bell (-- n)

ac bounds (startadr len -- endadr startadr)

ad here (-- adr)

ae aligned (adr1 -- adr2)

af wbsplit (w -- b.low b.high)

b0 bwjoin (b.low b.hi -- w)

b1 b(<mark) (--)

b2 b(>resolve) (--)

b5 new-token (--)

b6 named-token (--)

b7 b(:)

b8 b(value)

b9 b(variable)

ba b(constant)

bb b(create)

Value Function Stack Version 2?

FCode Reference 359

A

bc b(defer)

bd b(buffer:)

be b(field)

c0 instance (--) V2.1

c2 b(;) (--)

c3 b(is) (n --)

c4 b(case) (--)

c5 b(endcase) (--)

c6 b(endof) (--)

ca external-token (--) V2

cb $find (adr len -- adr len false | acf +-1)

cc offset16 (--)

cd eval (??? adr len -- ?) V2

d0 c, (n --)

d1 w, (w --)

d2 l, (l --)

d3 , (n --)

d4 u*x (u1[32] u2[32] -- product[64]) V2

d5 xu/mod (u1[64] u2[32] -- remainder[32] quot[32]) V2

d8 x+ (x1 x2 -- x3) V2

d9 x- (x1 x2 -- x3) V2

f0 start0 (--) V2

f1 start1 (--) V2

f2 start2 (--) V2

f3 start4 (--) V2

fc ferror (--) V2.3

fd version1 (--)

fe 4-byte-id (--)

ff end1 (--)

0101 dma-alloc (nbytes -- virt)

0102 my-address (-- phys) V2

0103 my-space (-- space) V2

0104 memmap (physoffset space size -- virtual)

0105 free-virtual (virt nbytes --)

0106 >physical (virt -- phys space)

Value Function Stack Version 2?

360 Writing FCode 2.x Programs—November 1995

A

010f my-params (-- adr len)

0110 attribute (xdr-adr xdr-len name-adr name-len --)

0111 xdrint (n -- xdr-adr xdr-len)

0112 xdr+ (xdr-adr1 xdr-len1 xdr-adr2 xdr-len2 -- xdr-adr xdr-len1+2)

0113 xdrphys (phys space -- xdr-adr xdr-len)

0114 xdrstring (adr len -- xdr-adr xdr-len)

0115 xdrbytes (adr len -- xdr-adr xdr-len) V2.1

0116 reg (phys space size --)

0117 intr (intr-level vector --)

0118 driver (adr len --)

0119 model (adr len --)

011a device-type (adr len --)

011b decode-2int (xdr-adr xdr-len -- phys space) V2

011c is-install (acf --)

011d is-remove (acf --)

011e is-selftest (acf --)

011f new-device (--)

0120 diagnostic-mode? (-- flag)

0121 display-status (n --)

0122 memory-test-suite (adr len -- status)

0123 group-code (-- adr)

0124 mask (-- adr)

0125 get-msecs (-- ms)

0126 ms (n --)

0127 finish-device (--)

0130 map-sbus (phys size -- virt)

0131 sbus-intr>cpu (sbus-intr# -- cpu-intr#)

0150 #lines (-- n)

0151 #columns (-- n)

0152 line# (-- n)

0153 column# (-- n)

0154 inverse? (-- flag)

0155 inverse-screen? (-- flag)

0157 draw-character (char --)

0158 reset-screen (--)

Value Function Stack Version 2?

FCode Reference 361

A

0159 toggle-cursor (--)

015a erase-screen (--)

015b blink-screen (--)

015c invert-screen (--)

015d insert-characters (n --)

015e delete-characters (n --)

015f insert-lines (n --)

0160 delete-lines (n --)

0161 draw-logo (line# logoaddr logowidth logoheight --)

0162 frame-buffer-adr (-- adr)

0163 screen-height (-- n)

0164 screen-width (-- n)

0165 window-top (-- n)

0166 window-left (-- n)

016a default-font (-- fontbase charwidth charheight fontbytes #firstchar #chars)

016b set-font (fontbase charwidth charheight fontbytes #firstchar #chars --)

016c char-height (-- n)

016d char-width (-- n)

016e >font (char -- adr)

016f fontbytes (-- n)

0170 fb1-draw-character (char --)

0171 fb1-reset-screen (--)

0172 fb1-toggle-cursor (--)

0173 fb1-erase-screen (--)

0174 fb1-blink-screen (--)

0175 fb1-invert-screen (--)

0176 fb1-insert-characters (n --)

0177 fb1-delete-characters (n --)

0178 fb1-insert-lines (n --)

0179 fb1-delete-lines (n --)

017a fb1-draw-logo (line# logoaddr logowidth logoheight --)

017b fb1-install (width height #columns #lines --)

017c fb1-slide-up (n --)

0180 fb8-draw-character (char --)

0181 fb8-reset-screen (--)

Value Function Stack Version 2?

362 Writing FCode 2.x Programs—November 1995

A

0182 fb8-toggle-cursor (--)

0183 fb8-erase-screen (--)

0184 fb8-blink-screen (--)

0185 fb8-invert-screen (--)

0186 fb8-insert-characters (n --)

0187 fb8-delete-characters (n --)

0188 fb8-insert-lines (n --)

0189 fb8-delete-lines (n --)

018a fb8-draw-logo (line# logoaddr logowidth logoheight --)

018b fb8-install (width height #columns #lines --)

01a4 mac-address (-- adr len) V2

0201 device-name (adr len --) V2

0202 my-args (-- adr len) V2

0203 my-self (-- ihandle) V2

0204 find-package (adr len -- false | phandle true) V2

0205 open-package (adr len phandle -- ihandle | 0) V2

0206 close-package (ihandle --) V2

0207 find-method (adr len phandle -- false | acf true) V2

0208 call-package ([...] acf ihandle -- [...]) V2

0209 $call-parent ([...] adr len -- [...]) V2

020a my-parent (-- ihandle) V2

020b ihandle>phandle (ihandle -- phandle) V2

020d my-unit (-- low high) V2

020e $call-method ([...]adr len ihandle -- [...]) V2

020f $open-package (arg-adr arg-len adr len -- ihandle | 0) V2

0210 processor-type (-- processor-type) V2

0211 firmware-version (-- n) V2

0212 fcode-version (-- n) V2

0213 alarm (acf n --) V2

0214 (is-user-word) (adr len acf --) V2

0215 suspend-fcode (--) V2

0216 abort (--) V2

0217 catch ([...] acf -- [...] error-code) V2

0218 throw (error-code --) V2

0219 user-abort (--) V2.1

Value Function Stack Version 2?

FCode Reference 363

A

021a get-my-attribute (nam-adr nam-len -- true | xdr-adr xdr-len false) V2

021b xdrtoint (xdr-adr xdr-len -- xdr2-adr xdr2-len n) V2

021c xdrtostring (xdr-adr xdr-len -- xdr2-adr xdr2-len adr len) V2

021d get-inherited-attribute (nam-adr nam-len -- true | xdr-adr xdr-len false) V2

021e delete-attribute (nam-adr nam-len --) V2

021f get-package-attribute (adr len phandle -- true | xdr-adr xdr-len false) V2

0220 cpeek (adr -- false | byte true) V2

0221 wpeek (adr -- false | word true) V2

0222 lpeek (adr -- false | long true) V2

0223 cpoke (byte adr -- ok?) V2

0224 wpoke (word adr -- ok?) V2

0225 lpoke (long adr -- ok?) V2

0230 rb@ (adr -- byte) V2

0231 rb! (byte adr --) V2

0232 rw@ (adr -- word) V2

0233 rw! (word adr --) V2

0234 rl@ (adr -- long) V2

0235 rl! (long adr --) V2

0236 wflips (adr len --) V2

0237 lflips (adr len --) V2

0238 probe (arg-adr arg-len reg-adr reg-len fcode-adr fcode-len --) V2.2

0239 probe-virtual (arg-adr arg-len reg-adr reg-len fcode-adr --) V2.2

023b child (phandle -- child-phandle) V2.3

023c peer (phandle -- peer-phandle) V2.3

0240 left-parse-string (adr len char -- adrR lenR adrL lenL) V2.2

- (text) (--)

- (s text) (--)

-]tokenizer (--)

- \ (--)

- alias (--)

- binary (--)

- decimal (--)

- external (--) V2

- fload filename (--)

- headerless (--)

Value Function Stack Version 2?

364 Writing FCode 2.x Programs—November 1995

A

- headers (--)

- hex (--)

- octal (--)

- tokenizer[(--)

CR " text" (-- adr len)

CR ' name (-- acf)

CR */mod (n1 n2 n3 -- rem quot)

CR +loop (n --)

CR ." text" (--)

CR .(text) (--)

CR .d (n --)

CR .h (n --)

CR 1+ (n1 -- n2)

CR 1- (n1 -- n2)

CR 3dup (n1 n2 n3 -- n1 n2 n3 n1 n2 n3)

CR : (colon) name (--)

CR ; (semicolon) (--)

CR <<a (n1 +n -- n2)

CR ? (adr --)

CR ?do (end start --)

CR ?leave (flag --)

CR ['] name (-- acf)

CR again (--)

CR ascii x (-- char)

CR b# number (-- n)

CR begin (--)

CR blank (adr len --)

CR buffer: name (size --)

CR carret (-- n)

CR cmove (adr1 adr2 u --)

CR cmove> (adr1 adr2 u --)

CR constant name (n --)

CR control x (-- char)

CR create name (--)

CR d# number (-- n)

Value Function Stack Version 2?

FCode Reference 365

A

CR decimal (--)

CR defer name (--)

CR do (end start --)

CR else (--)

CR emit-byte (n --)

CR erase (adr len --)

CR false (-- 0)

CR fcode-version1 (--)

CR fcode-version2 (--) V2

CR field name (offset size -- offset+size)

CR h# number (-- n)

CR hex (--)

CR if (flag --)

CR is name (n --)

CR leave (--)

CR linefeed (-- n)

CR loop (--)

CR name (adr len --)

CR newline (-- n)

CR o# number (-- n)

CR repeat (--)

CR s. (n --)

CR space (--)

CR spaces (+n --)

CR struct (-- 0)

CR then (--)

CR true (-- -1)

CR until (flag --)

CR value name (n --)

CR variable name (--)

CR wflip (l1 -- l2)

CR while (flag --)

Value Function Stack Version 2?

366 Writing FCode 2.x Programs—November 1995

A

FCodes by Name
The following table lists, in alphabetic order, currently-assigned FCodes.

Table A-48 FCodes by Name

Value Function Stack Version 2?

a5 0 (-- 0)

36 0< (n -- flag)

37 0<= (n -- flag)

35 0<> (n -- flag)

34 0= (n -- flag)

38 0> (n -- flag)

39 0>= (n -- flag)

a6 1 (-- 1)

CR 1+ (n1 -- n2)

CR 1- (n1 -- n2)

a7 2 (-- 2)

77 2! (n1 n2 adr --)

59 2* (n1 -- n2)

57 2/ (n1 -- n2)

76 2@ (adr -- n1 n2)

52 2drop (n1 n2 --)

53 2dup (n1 n2 -- n1 n2 n1 n2)

54 2over (n1 n2 n3 n4 -- n1 n2 n3 n4 n1 n2)

56 2rot (n1 n2 n3 n4 n5 n6 -- n3 n4 n5 n6 n1 n2)

55 2swap (n1 n2 n3 n4 -- n3 n4 n1 n2)

a8 3 (-- 3)

CR 3dup (n1 n2 n3 -- n1 n2 n3 n1 n2 n3)

fe 4-byte-id (--)

0216 abort (--) V2

2d abs (n -- u)

CR again (--)

0213 alarm (acf n --) V2

- alias (--)

ae aligned (adr1 -- adr2)

8b alloc-mem (nbytes -- adr)

FCode Reference 367

A

23 and (n1 n2 -- n3)

CR ascii x (-- char)

0110 attribute (xdr-adr xdr-len name-adr name-len --)

CR b# number (-- n)

12 b(") (-- adr len)

11 b(') (-- acf)

16 b(+loop) (n --)

b7 b(:)

c2 b(;) (--)

b1 b(<mark) (--)

b2 b(>resolve) (--)

18 b(?do) (end start --)

bd b(buffer:)

c4 b(case) (selector -- selector)

ba b(constant)

bb b(create)

bc b(defer)

17 b(do) (end start --)

c5 b(endcase) (--)

c6 b(endof) (--)

be b(field)

c3 b(is) (n --)

1b b(leave) (--)

10 b(lit) (-- n)

15 b(loop) (--)

1c b(of) (sel testval -- sel | none)

b8 b(value)

b9 b(variable)

14 b?branch (--)

a0 base (-- adr)

13 bbranch (--)

CR begin (--)

ab bell (-- n)

44 between (n min max -- flag)

- binary (--)

Value Function Stack Version 2?

368 Writing FCode 2.x Programs—November 1995

A

a9 bl (-- n)

CR blank (adr len --)

015b blink-screen (--)

7f bljoin (b.low b2 b3 b.hi -- l)

85 body> (apf -- acf)

ac bounds (startadr len -- endadr startadr)

aa bs (-- n)

CR buffer: name (size --)

b0 bwjoin (b.low b.hi -- w)

75 c! (n adr --)

d0 c, (n --)

71 c@ (adr -- byte)

5e ca+ (adr1 index -- adr2)

62 ca1+ (adr1 -- adr2)

0208 call-package ([...] acf ihandle -- [...]) V2

CR carret (-- n)

0217 catch ([...] acf -- [...] error-code) V2

016c char-height (-- n)

016d char-width (-- n)

0236 child (phandle -- child-phandle) V2.3

0206 close-package (ihandle --) V2

CR cmove (adr1 adr2 u --)

CR cmove> (adr1 adr2 u --)

0153 column# (-- n)

7a comp (adr1 adr2 len -- n)

CR constant name (n --)

CR control x (-- char)

84 count (pstr -- adr +n)

0220 cpeek (adr -- false | byte true) V2

0223 cpoke (byte adr -- ok?) V2

92 cr (--)

CR create name (--)

CR d# number (-- n)

- decimal (--)

CR decimal (--)

Value Function Stack Version 2?

FCode Reference 369

A

011b decode-2int (xdr-adr xdr-len -- phys space) V2

016a default-font (-- fontbase charwidth charheight fontbytes #firstchar #chars)

CR defer name (--)

021e delete-attribute (nam-adr nam-len --) V2

015e delete-characters (n --)

0160 delete-lines (n --)

51 depth (-- +n)

0201 device-name (adr len --) V2

011a device-type (adr len --)

0120 diagnostic-mode? (-- flag)

a3 digit (char base -- digit true | char false)

0121 display-status (n --)

0101 dma-alloc (nbytes -- virt)

CR do (end start --)

0157 draw-character (char --)

0161 draw-logo (line# logoaddr logowidth logoheight --)

0118 driver (adr len --)

46 drop (n --)

47 dup (n -- n n)

CR else (--)

8f emit (char --)

CR emit-byte (n --)

00 end0 (--)

ff end1 (--)

CR erase (adr len --)

015a erase-screen (--)

cd eval (??? adr len -- ?) V2

1d execute (acf --)

33 exit (--)

8a expect (adr +n --)

- external (--) V2

ca external-token (--) V2

CR false (-- 0)

0174 fb1-blink-screen (--)

0177 fb1-delete-characters (n --)

Value Function Stack Version 2?

370 Writing FCode 2.x Programs—November 1995

A

0179 fb1-delete-lines (n --)

0170 fb1-draw-character (char --)

017a fb1-draw-logo (line# logoaddr logowidth logoheight --)

0173 fb1-erase-screen (--)

0176 fb1-insert-characters (n --)

0178 fb1-insert-lines (n --)

017b fb1-install (width height #columns #lines --)

0175 fb1-invert-screen (--)

0171 fb1-reset-screen (--)

017c fb1-slide-up (n --)

0172 fb1-toggle-cursor (--)

0184 fb8-blink-screen (--)

0187 fb8-delete-characters (n --)

0189 fb8-delete-lines (n --)

0180 fb8-draw-character (char --)

018a fb8-draw-logo (line# logoaddr logowidth logoheight --)

0183 fb8-erase-screen (--)

0186 fb8-insert-characters (n --)

0188 fb8-insert-lines (n --)

018b fb8-install (width height #columns #lines --)

0185 fb8-invert-screen (--)

0181 fb8-reset-screen (--)

0182 fb8-toggle-cursor (--)

0212 fcode-version (-- n) V2

CR fcode-version1 (--)

CR fcode-version2 (--) V2

fc ferror (--) V2.3

CR field name (offset size -- offset+size)

79 fill (adr u byte --)

0207 find-method (adr len phandle -- false | acf true) V2

0204 find-package (adr len -- false | phandle true) V2

0127 finish-device (--)

0211 firmware-version (-- n) V2

80 flip (w1 -- w2)

- fload filename (--)

Value Function Stack Version 2?

FCode Reference 371

A

016f fontbytes (-- n)

0162 frame-buffer-adr (-- adr)

8c free-mem (adr nbytes --)

0105 free-virtual (virt nbytes --)

021d get-inherited-attribute (nam-adr nam-len -- true | xdr-adr xdr-len false) V2

0125 get-msecs (-- ms)

021a get-my-attribute (nam-adr nam-len -- true | xdr-adr xdr-len false) V2

021f get-package-attribute (adr len phandle -- true | xdr-adr xdr-len false) V2

0123 group-code (-- adr)

CR h# number (-- n)

- headerless (--)

- headers (--)

ad here (-- adr)

- hex (--)

CR hex (--)

95 hold (char --)

19 i (-- n)

CR if (flag --)

020b ihandle>phandle (ihandle -- phandle) V2

015d insert-characters (n --)

015f insert-lines (n --)

c0 instance (--) V2.1

0117 intr (intr-level vector --)

0155 inverse-screen? (-- flag)

0154 inverse? (-- flag)

015c invert-screen (--)

CR is name (n --)

011c is-install (acf --)

011d is-remove (acf --)

011e is-selftest (acf --)

1a j (-- n)

8e key (-- char)

8d key? (-- flag)

73 l! (l adr --)

d2 l, (l --)

Value Function Stack Version 2?

372 Writing FCode 2.x Programs—November 1995

A

6e l@ (adr -- l)

60 la+ (adr1 index -- adr2)

64 la1+ (adr1 -- adr2)

7e lbsplit (l -- b.low b2 b3 b.high)

82 lcc (char -- lower-case-char)

CR leave (--)

0240 left-parse-string (adr len char -- adrR lenR adrL lenL) V2

0237 lflips (adr len --) V2

0152 line# (-- n)

CR linefeed (-- n)

CR loop (--)

0222 lpeek (adr -- false | long true) V2

0225 lpoke (long adr -- ok?) V2

7c lwsplit (l -- w.low w.high)

01a4 mac-address (-- adr len) V2

0130 map-sbus (phys size -- virt)

0124 mask (-- adr)

2f max (n1 n2 -- n3)

0122 memory-test-suite (adr len -- status)

0104 memmap (physoffset space size -- virtual)

2e min (n1 n2 -- n3)

22 mod (n1 n2 -- rem)

0119 model (adr len --)

78 move (adr1 adr2 u --)

0126 ms (n --)

0102 my-address (-- phys) V2

0202 my-args (-- adr len) V2

010f my-params (-- adr len)

020a my-parent (-- ihandle) V2

0203 my-self (-- ihandle) V2

0103 my-space (-- space) V2

020d my-unit (-- low high) V2

61 na+ (adr1 index -- adr2)

65 na1+ (adr1 -- adr2)

CR name (adr len --)

Value Function Stack Version 2?

FCode Reference 373

A

b6 named-token (--)

2c negate (n1 -- n2)

011f new-device (--)

b5 new-token (--)

CR newline (-- n)

4d nip (n1 n2 -- n2)

7b noop (--)

26 not (n1 -- n2)

CR o# number (-- n)

- octal (--)

6b off (adr --)

cc offset16 (--)

6a on (adr --)

0205 open-package (adr len phandle -- ihandle | 0) V2

24 or (n1 n2 -- n3)

48 over (n1 n2 -- n1 n2 n1)

83 pack (adr len pstr -- pstr)

023c peer (phandle -- peerhandle) V2.3

4e pick (+n -- n2)

0238 probe (arg-adr arg-len reg-adr reg-len fcode-adr fcode-len --) V2.2

0239 probe-virtual (arg-adr arg-len reg-adr reg-len fcode-adr --) V2.2

0210 processor-type (-- processor-type) V2

31 r> (-- n) (rs: n --)

32 r@ (-- n) (rs: --)

0231 rb! (byte adr --) V2

0230 rb@ (adr -- byte) V2

0116 reg (phys space size --)

CR repeat (--)

0158 reset-screen (--)

0235 rl! (long adr --) V2

0234 rl@ (adr -- long) V2

4f roll (+n --)

4a rot (n1 n2 n3 -- n2 n3 n1)

0233 rw! (word adr --) V2

0232 rw@ (adr -- word) V2

Value Function Stack Version 2?

374 Writing FCode 2.x Programs—November 1995

A

CR s. (n --)

0131 sbus-intr>cpu (sbus-intr# -- cpu-intr#)

0163 screen-height (-- n)

0164 screen-width (-- n)

016b set-font (fontbase charwidth charheight fontbytes #firstchar #chars --)

98 sign (n --)

CR space (--)

CR spaces (+n --)

88 span (-- adr)

f0 start0 (--) V2

f1 start1 (--) V2

f2 start2 (--) V2

f3 start4 (--) V2

CR struct (-- 0)

0215 suspend-fcode (--) V2

49 swap (n1 n2 -- n2 n1)

CR then (--)

0218 throw (error-code --) V2

0159 toggle-cursor (--)

- tokenizer[(--)

CR true (-- -1)

4c tuck (n1 n2 -- n2 n1 n2)

90 type (adr +n --)

d4 u*x (u1[32] u2[32] -- product[64]) V2

9b u. (u --)

9c u.r (u +n --)

2b u/mod (ul un -- un.rem un.quot)

58 u2/ (u1 -- u2)

40 u< (u1 u2 -- flag)

3f u<= (u1 u2 -- flag)

3e u> (u1 u2 -- flag)

41 u>= (u1 u2 -- flag)

CR (u.) (n -- adr len)

CR until (flag --)

81 upc (char -- upper-case-char)

Value Function Stack Version 2?

FCode Reference 375

A

0219 user-abort (--) V2.1

CR value name (n --)

CR variable name (--)

87 version (-- n)

fd version1 (--)

74 w! (w adr --)

d1 w, (w --)

6f w@ (adr -- w)

5f wa+ (adr1 index -- adr2)

63 wa1+ (adr1 -- adr2)

af wbsplit (w -- b.low b.high)

CR wflip (l1 -- l2)

0236 wflips (adr len --) V2

CR while (flag --)

0166 window-left (-- n)

0165 window-top (-- n)

45 within (n min max -- flag)

7d wljoin (w.low w.high -- l)

0221 wpeek (adr -- false | word true) V2

0224 wpoke (word adr -- ok?) V2

d8 x+ (x1 x2 -- x3) V2

d9 x- (x1 x2 -- x3) V2

0112 xdr+ (xdr-adr1 xdr-len1 xdr-adr2 xdr-len2 -- xdr-adr xdr-len1+2)

0115 xdrbytes (adr len -- xdr-adr xdr-len) V2.1

0111 xdrint (n -- xdr-adr xdr-len)

0113 xdrphys (phys space -- xdr-adr xdr-len)

0114 xdrstring (adr len -- xdr-adr xdr-len)

021b xdrtoint (xdr-adr xdr-len -- xdr2-adr xdr2-len n) V2

021c xdrtostring (xdr-adr xdr-len -- xdr2-adr xdr2-len adr len) V2

25 xor (n1 n2 -- n3)

d5 xu/mod (u1[64] u2[32] -- remainder[32] quot[32]) V2

CR : (colon) name (--)

CR ; (semicolon) (--)

3a < (n1 n2 -- flag)

96 <# (--)

Value Function Stack Version 2?

376 Writing FCode 2.x Programs—November 1995

A

27 << (n1 +n -- n2)

CR <<a (n1 +n -- n2)

43 <= (n1 n2 -- flag)

3d <> (n1 n2 -- flag)

70 <w@ (adr -- n)

3c = (n1 n2 -- flag)

3b > (n1 n2 -- flag)

42 >= (n1 n2 -- flag)

28 >> (n1 +n -- n2)

29 >>a (n1 +n -- n2)

86 >body (acf -- apf)

016e >font (char -- adr)

0106 >physical (virt -- phys space)

30 >r (n --) (rs: -- n)

CR ? (adr --)

CR ?do (end start --)

50 ?dup (n -- n n | 0)

CR ?leave (flag --)

6d @ (adr -- n)

CR ['] name (-- acf)

- \ (--)

-]tokenizer (--)

72 ! (n adr --)

CR " text" (-- adr len)

99 # (+l1 -- +l2)

97 #> (l -- adr +n)

0151 #columns (-- n)

94 #line (-- adr)

0150 #lines (-- n)

93 #out (-- adr)

9a #s (+l -- 0)

020e $call-method ([...]adr len ihandle -- [...]) V2

0209 $call-parent ([...] adr len -- [...]) V2

cb $find (adr len -- adr len false | acf +-1)

a2 $number (adr len -- true | n false) V2

Value Function Stack Version 2?

FCode Reference 377

A

020f $open-package (arg-adr arg-len adr len -- ihandle | 0) V2

CR ' name (-- acf)

- (text) (--)

91 (cr (--)

CR (.) (n -- adr len)

0214 (is-user-word) (adr len acf --) V2

- (s text) (--)

20 * (n1 n2 -- n3)

CR */mod (n1 n2 n3 -- rem quot)

1e + (n1 n2 -- n3)

6c +! (n adr --)

CR +loop (n --)

d3 , (n --)

1f - (n1 n2 -- n3)

a4 -1 (-- -1)

4b -rot (n1 n2 n3 -- n3 n1 n2)

9d . (n --)

CR ." text" (--)

CR .(text) (--)

CR .d (n --)

CR .h (n --)

9e .r (n +n --)

9f .s (--)

21 / (n1 n2 -- quot)

5a /c (-- n)

66 /c* (n1 -- n2)

5c /l (-- n)

68 /l* (n1 -- n2)

2a /mod (n1 n2 -- rem quot)

5d /n (-- n)

69 /n* (n1 -- n2)

5b /w (-- n)

67 /w* (n1 -- n2)

Value Function Stack Version 2?

378 Writing FCode 2.x Programs—November 1995

A

Version 2 FCodes
The following table lists, in alphabetic order, Version 2 FCodes.
Table A-49 Version 2 FCodes

Value Function Stack Version

0216 abort (--) V2

0213 alarm (acf n --) V2

0208 call-package ([...] acf ihandle -- [...]) V2

0217 catch ([...] acf -- [...] error-code) V2

0236 child (phandle -- child-phandle) V2.3

0206 close-package (ihandle --) V2

0220 cpeek (adr -- false | byte true) V2

0223 cpoke (byte adr -- ok?) V2

011b decode-2int (xdr-adr xdr-len -- phys space) V2

021e delete-attribute (nam-adr nam-len --) V2

0201 device-name (adr len --) V2

cd eval (??? adr len -- ?) V2

- external (--) V2

ca external-token (--) V2

0212 fcode-version (-- n) V2

CR fcode-version2 (--) V2

fc ferror (--) V2.3

0207 find-method (adr len phandle -- false | acf true) V2

0204 find-package (adr len -- false | phandle true) V2

0211 firmware-version (-- n) V2

021d get-inherited-attribute (nam-adr nam-len -- true | xdr-adr xdr-len false) V2

021a get-my-attribute (nam-adr nam-len -- true | xdr-adr xdr-len false) V2

021f get-package-attribute (adr len phandle -- true | xdr-adr xdr-len false) V2

020b ihandle>phandle (ihandle -- phandle) V2

c0 instance (--) V2.1

0240 left-parse-string (adr len char -- adrR lenR adrL lenL) V2

0237 lflips (adr len --) V2

0222 lpeek (adr -- false | long true) V2

0225 lpoke (long adr -- ok?) V2

01a4 mac-address (-- adr len) V2

FCode Reference 379

A

0102 my-address (-- phys) V2

0202 my-args (-- adr len) V2

020a my-parent (-- ihandle) V2

0203 my-self (-- ihandle) V2

0103 my-space (-- space) V2

020d my-unit (-- low high) V2

0205 open-package (adr len phandle -- ihandle | 0) V2

023c peer (phandle -- peerhandle) V2.3

0238 probe (arg-adr arg-len reg-adr reg-len fcode-adr fcode-len --) V2.2

0239 probe-virtual (arg-adr arg-len reg-adr reg-len fcode-adr --) V2.2

0210 processor-type (-- processor-type) V2

0231 rb! (byte adr --) V2

0230 rb@ (adr -- byte) V2

0235 rl! (long adr --) V2

0234 rl@ (adr -- long) V2

0233 rw! (word adr --) V2

0232 rw@ (adr -- word) V2

f0 start0 (--) V2

f1 start1 (--) V2

f2 start2 (--) V2

f3 start4 (--) V2

0215 suspend-fcode (--) V2

0218 throw (error-code --) V2

d4 u*x (u1[32] u2[32] -- product[64]) V2

0219 user-abort (--) V2.1

0236 wflips (adr len --) V2

0221 wpeek (adr -- false | word true) V2

0224 wpoke (word adr -- ok?) V2

d8 x+ (x1 x2 -- x3) V2

d9 x- (x1 x2 -- x3) V2

0115 xdrbytes (adr len -- xdr-adr xdr-len) V2.1

021b xdrtoint (xdr-adr xdr-len -- xdr2-adr xdr2-len n) V2

021c xdrtostring (xdr-adr xdr-len -- xdr2-adr xdr2-len adr len) V2

d5 xu/mod (u1[64] u2[32] -- remainder[32] quot[32]) V2

020e $call-method ([...]adr len ihandle -- [...]) V2

Value Function Stack Version

380 Writing FCode 2.x Programs—November 1995

A

0209 $call-parent ([...] adr len -- [...]) V2

a2 $number (adr len -- true | n false) V2

020f $open-package (arg-adr arg-len adr len -- ihandle | 0) V2

0214 (is-user-word) (adr len acf --) V2

Value Function Stack Version

381

An important, and not always obvious, part of programming peripheral
devices is dealing with interrupts. Table B-1 describes Open Boot 2.0 words for
testing interrupts from the Forth Monitor. Note that these cannot be used in
FCode programs because of their highly system-dependent nature.

Table B-1 Interrrupt-handling words

Word Stack Diagram Descriptions

catch-interrupt (level --) Establishes a handler for interrupt "level" (1-15). If an interrupt occurs
on that level, the handler sets the value of the interrupt-occurred?
variable to -1 and sets the value of the vector-used variable to the
interrupt level.

interrupt-occurred? (-- adr) Returns the address of a variable whose value will be set to "-1" when
an interrupt occurs.

vector-used (-- adr) Returns the address of a variable whose value will be set to the
interrupt level when an interrupt occurs on a level guarded by catch-
interrupt .

pil@
pil!

(-- level)
(level --)

Gets (pil@) and sets (pil!) the current processor interrupt level.
The system will only respond to interrupts above the current setting
of the PIL. After the first interrupt is handled, the PIL is automatically
raised to the level of the interrupt (thus disabling further interrupts at
the same level). Re-lower the PIL if you wish to process additional
interrupts.

OpenBoot Interrupt Testing B

382 Writing FCode 2.x Programs—November 1995

B

Assume a device which interrupts on level 3. Here is a sample Forth program
for testing the device’s ability to interrupt.

Note – If you want to test interrupts on CPU levels 14, 10 or 8, you will also
need to set the interrupt-enable register to the appropriate value as well.
(SBus level 6 is equivalent to CPU level 8 on most current systems.) See
comments at end for more details.

Caution – There is a bug in Open Boot PROMs 1.1 thru 2.1 in the interrupt-
occurred? flag, causing it to return a 0 even after an interrupt has occurred.

For example:

: test-interrupt (--)

 pil@ >r \ Remember old priority level

 interrupt-occurred? off

 3 catch-interrupt

 2 pil! \ Allow level 3 interrupts

 <do whatever is necessary to make the device interrupt>

 1000 0 do loop \ Wait awhile; may not be necessary

 interrupt-occurred? @ if

 <do whatever is necessary to turn off the device’s interrupt request>

 ." Interrupt on level " vector-used @ . cr

 else

 ." No interrupt." cr

 then

 r> pil!

;

interrupt-occurred? off \ Clear flag

6 catch-interrupt \ Establish handler

5 pil! \ Lower CPU priority to allow level 6 interrupts

89 interrupt-enable! \ Cause a level 6 "software interrupt"

interrupt-occurred? ? \ Examine flag; it should be ffffffff but it’s 0 (bug)

OpenBoot Interrupt Testing 383

B

Here is a workaround patch for this bug.

Note the number shown in parentheses (ffeac10c in this example). In the
following step, substitute that number in place of the example number
ffeac10c .

A way to determine this magic value from a program would be (for any Open
Boot 2.0-based system) as follows:

An interrupt can be generated just by writing the proper value to the interrupt
register. Here is the format of this register:

Writing a zero to bits A, C, or D only masks that interrupt, it does not clear the
source.

ok see catch-interrupt

: catch-interrupt

 10 + (ffeac10c) swap vector!

;

ok ramforth

ok 8000.0000 ffeac10c execute 4 + !

ok

[’] catch-interrupt (addr of catch-interrupt)

h# 0a + w@ (offset pointer for ffxxxxxx routine)

4 * origin + (ffeac10c)

Table B-2 Interrupt register format

Bit # Bit Name Function

7 A Enable level 14 interrupts.

6 B None (always 0).

5 C Enable level 10 interrupts.

4 D Enable level 8 interrupts.

3 E Software interrupt level 6.

2 F Software interrupt level 4.

1 G Software interrupt level 1.

0 H Enable all interrupts.

384 Writing FCode 2.x Programs—November 1995

B

Writing a one to a software interrupt bit requests an interrupt on that level; the
bit must be cleared to clear the request.

Merely writing a one to register bit H will not enable interrupts on levels 14, 10
and 8, since these also have a separate mask.

To enable level 8, for example, You need to write a one to both bits D and H.
After power-up or after any Forth traps, the Open Boot writes this interrupt
register to "81".

Note – Writing a zero to bit H will clear the Asynchronous Memory (level 15)
Interrupt, as well as masking all interrupts. Interrupts should be immediately
re-enabled by writing a one to bit 0.

On reset, all bits are cleared and all interrupts are reset.

Finally, here is a complete test example. All known bugs are accounted for.

\ Interrupt-testing program
hex
: patch-bugs (--)
 ramforth
 8000.0000
 [’] catch-interrupt 0a + w@ 2* (8000.0000 token)

\ If "firmware-version" found and >=2.0 (2.0000), then 2* again
\ 2.0 boot PROMS use a 4* multiplier, to expand the available dictionary
 p" firmware-version" find (acf n | pstr 0)
 if execute (version) 2.0000 >= if 2* then
 else drop then (8000.0000 token’)

 origin + (8000.0000 acf)
 execute 4 + !
;

: catch-level (level --)
 interrupt-occurred? off

 dup d# 8 = if 91 interrupt-enable! then
 dup d# 10 = if a1 interrupt-enable! then
\ Or, just always do "b1 interrupt-enable!" to enable all masks...

 dup catch-interrupt (level)
 1- pil! \ Set priority level to allow this interrupt

OpenBoot Interrupt Testing 385

B

;

: check-interrupt (--)
 <do whatever is necessary to make the device interrupt>
 20 ms \ Wait awhile; may not be necessary
 interrupt-occurred? @ (flag)
 if
 <do whatever is necessary to turn off the device’s interrupt request>
 ." Interrupt on level " vector-used @ . cr
 else ." No interrupt." cr
 then
;

7 value my-level \ My device’s interrupt level

\ Alternatively...
\ 5 value my-sbus-level
\ : my-level (-- int-level) my-sbus-level sbus-intr>cpu ;

0 value old-pil \ Holder for system interrupt level
: test-interrupt (--)
 patch-bugs \ Overkill, only needs to be called once per session
 pil@ is old-pil \ Save old interrupt level
 my-level catch-level \ Setup handler
 check-interrupt \ Do the test
 old-pil pil! \ Restore old interrupt level
;

\ Interrupt-testing program

386 Writing FCode 2.x Programs—November 1995

B

387

For OpenBoot 2
To get general-purpose memory, use buffer: or alloc-mem . Use free-mem
to deallocate memory obtained with alloc-mem .

To map in portions of your device for ordinary access, use " map-in"
$call-parent (adr space size -- virt) , as in:

To later map out those portions of your device, use " map-out" $call-
parent (virt size --) , as in:

To use a region of system memory for DMA (for example, for both direct CPU
access and DMA access from a device), first define the following mapping and
allocation routines, then follow the steps below to ensure data coherency.

my-address offset + my-space size " map-in" $call-parent (virt)

(virt) size " map-out" $call-parent

: dma-alloc (n -- virt) " dma-alloc" $call-parent ;

: dma-free (virt n --) " dma-free" $call-parent ;

: dma-map-in (virt n cache? -- devaddr) " dma-map-in" $call-parent ;

: dma-map-out (virt devaddr n --) " dma-map-out" $call-parent ;

: dma-sync (virt devaddr size --) \ Correct even if "dma-sync" missing

 " dma-sync" ['] $call-parent catch if

FCode Memory Allocation C

388 Writing FCode 2.x Programs—November 1995

C

1. Allocate the DMA region with:
• dma-alloc
• dma-map-in

2. CPU accesses the region using virt from dma-alloc , then perform:
• dma-sync

3. Start DMA operation, using devaddr from dma-map-in .
• Wait for DMA complete status.
• Repeat DMA as needed, then perform dma-sync

4. Repeat steps 2 and 3 as needed

5. 5) Deallocate the region when completed, with:
• dma-map-out
• dma-free

For OpenBoot 1
To obtain general-purpose memory, use buffer: or alloc-mem for small
amounts (less than several hundred bytes). Use dma-alloc for larger
amounts.

Use free-mem to deallocate memory allocated with alloc-mem . Use free-
virtual to deallocate memory allocated with dma-alloc .

To map in portions of your device for ordinary access, use map-sbus .

To map out portions of your device, use free-virtual .

To use a region of system memory for DMA (for example, both direct CPU
access and DMA access from a device), map it in with dma-alloc . CPU
accesses and DMA accesses may be performed interchangeably.

When the memory is no longer needed, unmap it with free-virtual .

When unmapping multiple regions using free-virtual , you must perform
the unmapping in the reverse order that the memory was originally mapped
in.

 2drop 3drop

 then

;

389

FCode For OpenBoot 1 Systems
There are two groups of FCode functions - OpenBoot 1 and OpenBoot 2. You
will need to keep the differences in mind while writing your FCode program
(depending on your intended system market).

The first SBus systems shipped by Sun used only OpenBoot 1 FCodes. Such
systems, including SPARCstation1, 1+, 1E, original IPC, have a Open Boot
PROM with a version number of 1.x. All later SPARC systems from Sun have
an Open Boot PROM with a version number of 2.x. These systems recognize
both Open Boot 1 and OpenBoot 2 FCodes. (2.x upgrade PROMs are available
for SPARCstation 1, 1+ and IPC.)

Most basic FCode functions are OpenBoot 1. Framebuffer support FCodes are
also OpenBoot 1. OpenBoot 2 FCodes support package access, bootable
devices, and several other miscellaneous functions. The individual FCode
descriptions state whether that FCode is version 2 or not. (See Appendix A,
“FCode Reference" for a list of all OpenBoot 2 FCodes.)

Any OpenBoot 2 FCode encountered by a OpenBoot 1 system will not be
recognized, causing the FCode program to fail. To deal with this possibility,
write your FCode to conform to one of the several styles shown here. The
correct choice of style will depend on your FCode requirements, and the
intended system targets.

Changes in FCode Usage for
OpenBoot 1 D

390 Writing FCode 2.x Programs—November 1995

D

FCode Programming Style 1

This style will operate correctly on either OpenBoot 1 or OpenBoot 2 systems.

FCode Programming Style 2

This style operates correctly only on OpenBoot 2 systems. Any such FCode
will abort immediately if encountered on a OpenBoot 1 system, as the fcode-
version2 header will be rejected. This style is suitable for any device is not
intended for operation on any OpenBoot 1 system.

fcode-version1

 ...

 (version 1 FCodes only)

 ...

end0

fcode-version2

 ...

 (version 1 plus version 2 FCodes)

 ...

end0

Changes in FCode Usage for OpenBoot 1 391

D

FCode Programming Style 3

This style will operate correctly on either OpenBoot 1 or OpenBoot 2 systems.
It is used when OpenBoot 2 functionality is needed, but where a limited
OpenBoot 1 functionality is also acceptable on OpenBoot 1 systems. It works
by initially restricting usage to OpenBoot 1 FCodes only, and then ending
FCode execution on a OpenBoot 1 system. On a OpenBoot 2 system, execution
continues with subsequent OpenBoot 1 plus OpenBoot 2 FCodes.

Style 1 is suitable for framebuffers, and for other devices with simple non-boot
FCode requirements.

Style 2 or 3 is appropriate for bootable devices, depending on whether an
abbreviated non-boot functionality on OpenBoot 1 systems is appropriate or
desired.

Other OpenBoot 1 Restrictions
FCode that will operate on OpenBoot 1 systems must also take into account the
following restrictions and limitations:

Total FCode Program Size

OpenBoot 1 systems only have about 13K of dictionary space to accomodate
all plug-in SBus cards. Combinations of cards each containing FCode
exceeding 5K or so in size may fail. (The actual size of the FCode binary can be

fcode-version1

 ...

 (version 1 FCodes only)

 ...

: v1-exit (--) version h# 2.0000 < if ['] end0 execute then ;

v1-exit

 ...

 (version 1 plus version 2 FCodes)

 ...

end0

392 Writing FCode 2.x Programs—November 1995

D

used as a first estimate of the consumed dictionary space in many instances.
For a more precise measure, look at the value in here at the start and end of
FCode compilation.)

OpenBoot 2 systems have substantially more available dictionary space.

Old-style Memory Mapping And Unmapping

On OpenBoot 2 systems, the standard technique for device-dependent
memory mapping/unmapping is with " xxxx " $call-parent (where "
xxxx" could be " map-in" , " map-out" , " dma-alloc" , " dma-free" , "
dma-map-in" , " dma-map-out").

Since $call-parent is not defined on OpenBoot 1 systems, you must use the
obsolescent FCode functions dma-alloc , map-sbus , memmap and free-
virtual in FCode programs that will run on OpenBoot 1 systems.

Memory Mapping Size Limits

On OpenBoot 1 systems, the total available mapping (for all devices) is hex
12.4000, divided into two regions: 10.0000 and 2.4000. The 10.0000 region is
typically used up by the active framebuffer.

To ensure correct behavior with multiple devices, Sun recommends:

• limit large mappings to only 1.0000 (64K)
• have only one such mapping active at any time
• return the mapping when done.

It is also best to perform a single larger mapping in preference to several
smaller mappings, where possible.

Large General-purpose Mappings

On OpenBoot 1 systems, memory allocated with alloc-mem or buffer: uses
up limited dictionary space. For general-purpose memory allocations larger
than several hundred bytes or so, dma-alloc should be used instead to avoid
this limitation. (OpenBoot 2 systems do not have this limitation, so alloc-
mem and buffer: may be freely used.)

Changes in FCode Usage for OpenBoot 1 393

D

Memory De-allocation

Memory allocated with alloc-mem , memmap, dma-alloc or map-sbus must
be deallocated in a specific sequence on OpenBoot 1 systems. When de-
allocating memory on OpenBoot 1 systems, you should de-allocate in the
reverse order that the memory was allocated. (OpenBoot 2 systems do not
have this restriction.)

Total Properties

On OpenBoot 1 systems, each device is limited to 16 properties total.
(OpenBoot 2 systems do not have this restriction.)

Interpretation of my-address and my-space

The interpretation of these numbers differs between OpenBoot 1 and
OpenBoot 2.

In OpenBoot 1, my-address is a slot offset (200.0000, 400.0000, etc.) and my-
space is a magic number representing the SBus address space. In OpenBoot 2,
my-address is typically 0 and my-space is typically the SBus slot number.
Properly-written FCode programs will operate correctly in both versions.

To do this, make sure that my-address and my-space are not interpreted
directly, but are only used as input parameters to mapping functions (map-
sbus , memmap, " map-in" $call-parent) or property declarations (reg ,
xdrphys).

my-address Volatility

On OpenBoot 1 systems, my-address will change when other slots are
probed, so later execution of your routines which use my-address could
generate illegal results. The best workaround is to save my-address into a
constant or value during the initial probe, and then always use that saved
value instead. (This precaution is not necessary on OpenBoot 2 systems.)

free-virtual and Properties

Execution of free-virtual on any OpenBoot 2 system will automatically
delete an address property with the same virtual address contents.

394 Writing FCode 2.x Programs—November 1995

D

Changes in new-device and finish-device Usage

Nested new-device FCodes will create “children-of-children” on FCode 2.0
systems. This feature is not supported on OpenBoot 1 systems: they will create
only sibling children (children of the parent of the nested new-device
operations).

finish-device is not implemented on SPARCstation 1 PROM versions 1.0
and 1.1. It is implemented as a NOP in other OpenBoot 1 systems.

OpenBoot 1 systems are limited to a maximum of eight plug-in device nodes
per system. Each plug-in device occupies a node, and each new-device call
uses up an additional node.

395

Index

Symbols
+n, 10
:, 6
;, 7
?, 9
|, 9

A
accessing

method, 48
packages, 42

acf, 9
addressing

package, 46
SBus, 119
VMEbus, 120

adr, 9
attribute , 72

B
binary executable programs, 21
binary format

FCode, 5
block device, 77
byte, 9

C
catch-interrupt, 382
cd, 26
char, 10
close, 39
cnt, 10
:, 6
colon definition, 6 to 7

and stack comment, 7
commands

forth monitor, 46
compile state, 6
configuration

operating system, 55
current node, 314

396 Writing FCode 2.x Programs—November 1995

D
data

packages, 38
data definition

package, 41
deblocker support, 52
debugging

packages, 49
defining

FCode, 6
Forth words, 6

device
drivers, plug-in, 38
identification, 2
interrupt vectors, 55
interrupts, 55
node, 3
tree, 3, 265, 294

device addressing
SBus, 119
VMEbus, 120

device methods
block-size, 78
decode-unit, 115
dma-alloc, 115
dma-free, 116
dma-map-in, 116
dma-map-out, 117
dma-sync, 117
install-abort, 193
load, 78, 150
map-in, 118
map-out, 119
max-transfer, 79
probe-self, 118
read, 79, 151, 193
read-blocks, 79

remove-abort, 193
seek, 79
write, 80, 151, 194
write-blocks, 80

device node
and package, 38

device-end, 27
devices

block, 77
display, 101
hierarchical, 115
network, 149
serial, 193

display device, 101
driver

and boot PROM, 1
function, 1
SunOS, 1

E
end0, 2
end1, 2
execute

method, 47

F
FCode

#columns , 234
#line , 286
#lines , 286
#out , 301
#s , 310
$call-method , 228
$call-parent , 229
$find , 264
$number , 299, 300
$open-package , 46, 301
(cr , 237

Index 397

(is-user-word) , 281
*/mod , 292
+loop , 287
.d , 238
.h , 272
/c , 227
/c* , 228
/l , 283
/l* , 283
/mod , 292
/n , 296
/n* , 296
/w , 323
/w* , 324
<<a, 214
<w@, 324
>>a, 214
>body , 226
>font , 268
>physical , 303
>r , 305
?do , 244
?dup , 246
?leave , 284
\, 214
]tokenizer , 316
‹s , 310
‹u˙› , 317
˙r , 304
˙s , 311
2drop , 246
2dup , 247
2over , 302
2rot , 309
2swap , 314
3drop , 246
3dup , 247
4-byte-id , 227
abort , 214
abs , 215
again , 215
alarm , 215
alias , 216
aligned , 216
alloc-mem , 216
and , 217

and Forth-83, 5
ascii , 217
attribute , 72, 217
b# , 218
base , 223
begin , 224
begin-package , 23, 45
bell , 224
between , 225
binary , 225
binary format, 5
bl , 225
blank , 225
blink-screen , 225
bljoin , 226
body> , 226
bounds , 226
bs , 226
buffer: , 226
bwjoin , 227
byte-load , 24, 25
c! , 227
c, , 227
c@, 227
ca+ , 228
ca1+ , 228
call-package , 228
carret , 229
case , 230
catch , 230
char-height , 232
char-width , 232
child , 232
close-package , 233
cmove, 233
cmove> , 234
column# , 234
comp, 235
compile state, 6
constant , 235
control , 236
count , 236
cpeek , 236
cpoke , 236
cr , 237

398 Writing FCode 2.x Programs—November 1995

create , 237
d# , 238
decimal , 238
decode-2int , 238
default-font , 239
defer , 240
defining words, 6
delete-attribute , 239
delete-characters , 240
delete-lines , 240
depth , 242
device identification, 2
device-name , 242
device-type , 242
diagnostic-mode? , 243
digit , 243
display-status , 244
dma-alloc , 244
do , 244
draw-character , 245
draw-logo , 245
drop , 246
dup , 246
else , 247
emit , 247
emit-byte , 247
end0 , 247
end1 , 248
endcase , 248
endof , 248
erase , 248
erase-screen , 248
eval , 24, 249
execute , 249
executing, 22
exit , 249
expect , 250
external , 250
external-token , 251
false , 251
fb1-blink-screen , 251
fb1-delete-characters , 251
fb1-delete-lines , 252
fb1-draw-character , 252
fb1-draw-logo , 252

fb1-erase-screen , 253
fb1-insert-characters , 253
fb1-install , 254
fb1-invert-lines , 253
fb1-invert-screen , 255
fb1-reset-screen , 255
fb1-slide-up , 255
fb1-toggle-cursor , 256
fb8-blink-screen , 256
fb8-delete-characters , 256
fb8-delete-lines , 257
fb8-draw-character , 257
fb8-draw-logo , 257
fb8-erase-screen , 258
fb8-insert-characters , 258
fb8-insert-lines , 259
fb8-install , 259
fb8-invert-screen , 260
fb8-reset-screen , 260
fb8-toggle-cursor , 261
fcode-version , 261
fcode-version1 , 261
fcode-version2 , 262
ferror , 262
field , 263
fill , 264
find-method , 47, 265
find-package , 265
finish-device , 266
firmware-version , 267
flip , 267
fload , 267
fontbytes , 268
frame-buffer-adr , 268
free-mem , 270
free-virtual , 270
get-inherited-attribute , 271
get-msecs , 271
get-my-attribute , 271
get-package-attribute , 272
group-code , 272
h# , 273
headerless , 273
headers , 273
here , 274
hex , 274

Index 399

hold , 274
i , 275
if , 275
ihandle>phandle , 275
in PROM, 1
insert-characters , 276
insert-lines , 276
instance , 276
interpret state, 6
interpretation, 2
intr , 277
inverse? , 277
inverse-screen? , 277
invert-screen , 278
is , 278
is-install , 278
is-remove , 279
is-selftest , 280
j , 281
key , 282
key? , 282
l! , 282
l, , 282
l@, 283
la+ , 283
la1+ , 283
lbsplit , 283
lcc , 284
leave , 284
left-parse-string , 45, 285
lflips , 285
line# , 286
linefeed , 286
loop , 287
lpeek , 288
lpoke , 288
lu>x , 288
lwsplit , 288
mac-address , 288
map-sbus , 289
mask, 289
max, 290
memmap, 290
min , 291
mod, 291

model , 72, 292
move, 292
ms, 293
my-address , 293
my-args , 45, 294
my-params , 294
my-parent , 294
my-self , 295
my-space , 295
my-unit , 295
na+ , 296
na1+ , 296
name, 72, 297
named-token , 297
negate , 298
new-device , 298
newline , 298
new-token , 298
nip , 298
noop , 298
not , 299
o# , 299
octal , 300
off , 300
offset16 , 300
on , 300
open-package , 46, 300
or , 301
over , 301
pack , 302
peer , 302
pick , 303
primitives, 11
probe , 303
probe-virtual , 304
processor-type , 304
programming style, 8 to 9
r> , 305
r@, 305
rb! , 306
rb@, 306
reg , 307
repeat , 307
reset-screen , 307
rl! , 308

400 Writing FCode 2.x Programs—November 1995

rl@ , 308
roll , 308
rot , 309
rot , 309
rw! , 309
rw@, 309
s˙ , 310
sbus-intr>cpu , 311
screen-height , 311
screen-width , 312
select-dev , 29
set-args , 45
set-font , 312
sign , 312
soace , 312
source format, 5
spaces , 313
span , 313
stack, 6
start n, 313
struct , 313
suspend-fcode , 314
swap , 314
testing, 29, 30
then , 314
throw , 315
toggle-cursor , 315
tokenizer[, 315
true , 316
tuck , 316
type , 316
u*x , 320
u.r , 318
u/mod , 318
u<, 319
u<= , 319
u>, 319
u>= , 319
u˙ , 317
u2/ , 318
unselect-dev , 31
until , 319
upc , 320
user-abort , 320

valid program, 2
value , 321
variable , 321
version , 322
version1 , 322
version x?, 323
w! , 323
w, , 323
w@, 323
wa+, 324
wa1+, 324
wbsplit , 325
wflip , 325
wflips , 325
while , 325
window-left , 325
window-top , 326
within , 327
wljoin , 327
words, 5
wpeek , 327
wpoke , 327
x- , 328
x+ , 327
xdr+ , 328
xdrbytes , 329
xdrint , 329
xdrphys , 329
xdrstring , 329
xdrtoint , 330
xdrtostring , 330
xor , 330
xu/mod , 331
xu>l , 330

FCode programs, 21
FCode PROM

body, 2
end token, 2
header, 2
magic number, 2
organization, 2
size, 2

Index 401

FCodes
and properties, 75
interface, 11, 13
local, 11, 13
one-byte, 11
system, 11
two-byte, 11

flag, 10
Forth

compile state, 6
interpret state, 6
stack, 6
words, 5

forth monitor
commands, 46

Forth-83
and FCode, 5

H
hierarchical device, 115

I
ihandle, 43, 275
instance

arguments, 45
package, 38, 38

parameters, 45
interpret, 37
interpret state, 6
interpreting FCode, 2
interrupt

device, 55
vectors, 55

interrupt-enable!, 382
interrupt-occurred?, 382

L
len, 10
long L, 10
ls, 27

M
mapping

packages, 49
method

accessing, 48
execute, 47

methods, 250
package, 38

model , 72

N
n, 10
name, 72

network device, 149
node

machine, 68
SBus, 68
scsi, 68

NVRAM parameters
setting, 18

nvramrc , 49

O
open, 39
operating system

configuring, 55

P
package, 37

accessing, 42, 43
addressing, 46

402 Writing FCode 2.x Programs—November 1995

and device node, 38
and methods, 39
data definition, 41
deblocker, 52
debugging, 49
instances, 38
mapping, 49
standard, 50
TFTP, 51

package method
close, 39
open, 39
reset, 40
selftest, 40

packages
and linking, 37
data, 38
instance, 38
interface, 38
methods, 38
plug-in, 37
properties, 38

phandle, 43, 272, 275
phys, 10
pil!, 382
pil@, 382
plug-in device drivers, 38
plug-in package, 37
probe, 37
programming style

FCode, 8 to 9
PROM

contents, 1
properties

packages, 38
property

create, 72
creation, 55
decoding of, 74
encoding of, 73
list, 3
modify, 72
name, 3, 56
ranges, 68
reg, 296
reg , 68
retrieval of, 73
value, 3, 56
value of, 73

pstr, 10
pwd, 27

R
ranges

property, 68
rb! , 306
rb@, 306
reg

property, 68, 296
reset, 40

restricting system use, 15
reverse polish notation, 6
rl! , 308
rl@ , 308
ROMvec

op_mon_id , 267
rw! , 309
rw@, 309

S
SBus

node, 68
SBus addressing, 119

Index 403

sbus-probe-list, 19
scsi

node, 68
selftest, 40

;, 7
serial device, 193
show-devs, 27
size, 10

FCode PROM, 2
source format

Fcode, 5
stack, 6

operation, 7
stack comment, 7

and colon definition, 7
standard packages, 50

T
testing

FCode, 30
TFTP

support, 51
Tokenizer, 22
tokenizer, 5
tools

tokenizer, 5

U
unit-address, 295

V
value

property, 3
virt, 10

W
word, 10
words, 27

Fcode, 5
Forth, 5

404 Writing FCode 2.x Programs—November 1995

Reader Comment Card

Your comments and suggestions are important to us. Please let us know what
you think about the Writing FCode 2.x Programs, part number 802-1941.

1. Were the procedures well documented? Yes ❑ No ❑

Please explain:

2. Were the tasks easy to follow? Yes ❑ No ❑

Please explain:

3. Were the illustrations clear? Yes ❑ No ❑

Please explain:

4. Was the information complete and easy to find? Yes ❑ No ❑

Please explain:

5. Do you have additional comments about the Writing FCode 2.x Programs?
You can send detailed comments via email to smcc-docs@sun.com , or send
a fax to SMCC Doc Feedback at (415) 786-6443.

Your Name:

Title:

Company Name:

Address:

City: State/Province:

Country: Zip/Postal Code:

Email Address:

Telephone:

Part No.: 802-1941
Revision A, November 1995 Thank you.

Copyright 1995 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 U.S.A.

Tous droits réservés. Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
l’utilisation, la copie et la décompilation. Aucune partie de ce produit ou de sa documentation associée ne peut être reproduits
sous aucune forme, par quelque moyen que ce soit sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y
en a.

Des parties de ce produit pourront être derivées du système UNIX® et du système Berkeley 4.3 BSD licencié par l’Université de
Californie. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays, et licenciée exclusivement par X/Open
Company Ltd. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par
un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, et Solaris sont des marques deposées ou enregistrées par Sun Microsystems, Inc. aux Etats-
Unis et dans certains d’autres pays. Toutes les marques SPARC, utilisées sous license, sont des marques déposées ou enregistrées
de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox
sur l’interface d’utilisation graphique, cette licence couvrant aussi les licenciés de Sun qui mettent en place OPEN LOOK GUIs et
qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE, Y
COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS NE
SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

