
World Wide Web

ww
Perso

ore

y

merchant system
ML

Int

server
security

ne

URL

HT

r

na
community system

Ja

Mozill

Publis

Chat

encryp

SSL
TCP/IP

nal

ISt

Prox

HT

Inte

vigator

a

hing

Server-Side JavaScript
Reference

Version 1.2
comp.sys
directory server

http://www
ernet

ws

ML

mail

electronic commerce

vaScript
Proxycertificate

Publishing

tion

secure sockets layer

Netscape Communications Corporation ("Netscape") and its licensors retain all ownership rights to the software programs
offered by Netscape (referred to herein as "Software") and related documentation. Use of the Software and related
documentation is governed by the license agreement accompanying the Software and applicable copyright law.

Your right to copy this documentation is limited by copyright law. Making unauthorized copies, adaptations, or compilation
works is prohibited and constitutes a punishable violation of the law. Netscape may revise this documentation from time to
time without notice.

THIS DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL NETSCAPE BE
LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND ARISING FROM ANY
ERROR IN THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION ANY LOSS OR INTERRUPTION OF BUSINESS,
PROFITS, USE, OR DATA.

The Software and documentation are copyright ©1994-1998 Netscape Communications Corporation. All rights reserved.

Netscape, Netscape Navigator, Netscape Certificate Server, Netscape DevEdge, Netscape FastTrack Server, Netscape ONE,
SuiteSpot and the Netscape N and Ship’s Wheel logos are registered trademarks of Netscape Communications Corporation in
the United States and other countries. Other Netscape logos, product names, and service names are also trademarks of
Netscape Communications Corporation, which may be registered in other countries. JavaScript is a trademark of Sun
Microsystems, Inc. used under license for technology invented and implemented by Netscape Communications Corporation.
Other product and brand names are trademarks of their respective owners.

The downloading, exporting, or reexporting of Netscape software or any underlying information or technology must be in
full compliance with all United States and other applicable laws and regulations. Any provision of Netscape software or
documentation to the U.S. Government is with restricted rights as described in the license agreement accompanying Netscape
software.

.

Version 1.2

©1998 Netscape Communications Corporation. All Rights Reserved

Printed in the United States of America. 00 99 98 5 4 3 2 1

Netscape Communications Corporation, 501 East Middlefield Road, Mountain View, CA 94043

Recycled and Recyclable Paper

New Features in this Release
JavaScript version 1.2 provides the following new features and enhancements:

• Changes to the Array object.

• Array objects can be created using literal notation.

• When the <SCRIPT> tag includes LANGUAGE="JavaScript1.2",
array(1) creates a new array with a[0]=1.

• When created as the result of a match between a regular expression
and a string, arrays have new properties that provide information about
the match.

• concat joins two arrays and returns a new array.

• pop removes the last element from an array and returns that element.

• push adds one or more elements to the end of an array and returns
that last element added.

• shift removes the first element from an array and returns that element

• unshift adds one or more elements to the front of an array and
returns the new length of the array.

• slice extracts a section from an array and returns a new array

• splice adds and/or removes elements from an array and returns the
removed elements.

• sort now works on all platforms. It no longer converts undefined
elements to null; instead, it sorts them to the high end of the array.
3

• Changes to the Function object.

• Nested functions. You can nest functions within functions. (That is,
JavaScript now supports lambda expressions and lexical closures.) See
Function.

• New function property arity. The arity property indicates the
number of arguments expected by a function.

• New arguments property. The arguments.callee property
provides information about the invoked function.

• New Lock class. The Lock class allows safe sharing of information with
multiple incoming requests.

• Changes to the Number object. Number now produces NaN rather than
an error if x is a string that does not contain a well-formed numeric literal.

• New RegExp object for regular expressions. Regular expressions are
patterns used to match character combinations in strings. You create a
regular expression as an object that has methods used to execute a match
against a string. You can also pass the regular expression as an argument to
the String methods match, replace, search, and split. The RegExp
object has properties most of which are set when a match is successful,
such as lastMatch which specifies the last successful match. The Array
object has new properties that provide information about a successful
match such as input which specifies the original input string against which
the match was executed. See RegExp for information.

• New SendMail class. The SendMail class lets you generate email from
JavaScript.

• New or changed String methods.

• charCodeAt returns a number specifying the ISO-Latin-1 codeset
value of the character at the specified index in a string object.

• concat combines the text of two strings and returns a new string.

• fromCharCode constructs a string from a specified sequence of
numbers that are ISO-Latin-1 codeset values.

• match executes a search for a match between a string and a regular
expression.
4 Server-Side JavaScript Reference

• replace executes a search for a match between a string and a regular
expression, and replaces the matched substring with a new substring.

• search tests for a match between a string and a regular expression.

• slice extracts a section of an string and returns a new string.

• split includes several new features and changes. It can take a regular
expression argument, as well as a fixed string, by which to split the
object string. It can take a limit count so that it won't include trailing
empty elements in the resulting array. If you specify
LANGUAGE="JavaScript1.2" in the <SCRIPT> tag,
string.split(" ") splits on any run of one or more white space
characters including spaces, tabs, line feeds, and carriage returns.

• substr returns the characters in a string collecting the specified
number of characters beginning with a specified location in the string.

• substring if you specify LANGUAGE="JavaScript1.2" in the
<SCRIPT> tag, this method no longer swaps index numbers when the
first index is greater than the second.

• New top-level functions Number and String. The Number function
converts an object to a number. The String function converts an object to
a string.

• Changes to methods of all objects.

• eval is no longer a method of individual objects; it is available only as
a top-level function.

• toString converts an object or array to a literal. For this behavior,
LANGUAGE="JavaScript1.2" must be specified in the <SCRIPT> tag.

• watch is a new method of all objects. It watches for a property to be
assigned a value and runs a function when that occurs.

• unwatch is a new method of all objects. It removes a watchpoint set
with the watch method.
5

• New or changed operators.

• The new delete operator deletes an object, an object’s property, or an
element at a specified index in an array. See “delete” on page 395.

• If the <SCRIPT> tag uses LANGUAGE=JavaScript1.2, the equality
operators == and != do not attempt to convert operands from one type
to another, and always compare identity of like-typed operands. See
“Comparison Operators” on page 385.

• New or changed statements.

• The break and continue statements can now be used with the new
labeled statement.

• do...while repeats a loop until the test condition evaluates to false.

• export allows a signed script to provide functions to other signed or
unsigned scripts.

• import allows a script to import functions from a signed script which
has exported the information.

• label allows the program to break outside nested loops or to continue
a loop outside the current loop.

• switch allows the program to test several conditions easily.

See the Server-Side JavaScript Guide for information on additional features.
6 Server-Side JavaScript Reference

Contents

New Features in this Release ...3

About this Book ..13

New Features in this Release ..13

What You Should Already Know ...13

JavaScript Versions ..14

Where to Find JavaScript Information ..15

Document Conventions ...16

Part 1 Object Reference

Chapter 1 Objects, Methods, and Properties21

Array ...22

blob ..43

Boolean ..48

client ...52

Connection ...56

Cursor ...75

database ...88

Date ..115

DbPool ...133

File ..151

Function ...173

java ...187

JavaArray ..188

JavaClass ...191

JavaObject ..192

JavaPackage ...194

Lock ..195

Math ..199
Contents vii

netscape ... 218

Number .. 219

Object .. 227

Packages .. 237

project .. 241

RegExp ... 244

request ... 265

Resultset ... 273

SendMail .. 280

server ... 287

Stproc ... 292

String .. 296

sun ... 332
viii Server-Side JavaScript Reference

Chapter 2 Top-Level Functions ... 333

addClient .. 335

addResponseHeader ... 336

blob .. 337

callC ... 338

debug ... 339

deleteResponseHeader .. 340

escape .. 340

eval ... 341

flush ... 344

getOptionValue ... 345

getOptionValueCount ... 346

isNaN .. 347

Number .. 348

parseFloat .. 349

parseInt .. 350

redirect ... 352

registerCFunction .. 353

ssjs_generateClientID .. 354

ssjs_getCGIVariable ... 354

ssjs_getClientID ... 356

String .. 358

unescape .. 359

write ... 360

Part 2 Language Elements

Chapter 3 Statements .. 363

break .. 365

comment .. 366

continue ... 367

do...while ... 368

export ... 369

for ... 370

for...in ... 371
Contents ix

function .. 372

if...else .. 373

import .. 373

label ... 374

return ... 375

switch ... 376

var .. 377

while .. 378

with .. 379

Chapter 4 Operators ... 381

Assignment Operators ... 384

Comparison Operators .. 385

Arithmetic Operators ... 387

% (Modulus) ... 387

++ (Increment) .. 388

-- (Decrement) .. 388

- (Unary Negation) ... 388

Bitwise Operators .. 389

Bitwise Logical Operators .. 390

Bitwise Shift Operators .. 390

Logical Operators .. 392

String Operators .. 394

Special Operators .. 394

?: (Conditional operator) .. 394

, (Comma operator) .. 395

delete ... 395

new ... 397

this ... 399

typeof .. 400

void ... 401
x Server-Side JavaScript Reference

Part 3 LiveConnect Class Reference
Chapter 5 Java Classes, Constructors, and Methods 405

JSException .. 406

JSObject ... 408

Part 4 Appendixes
Appendix A Reserved Words .. 415

Index .. 417
Contents xi

xii Server-Side JavaScript Reference

About this Book
JavaScript is Netscape’s cross-platform, object-based scripting language for
client and server applications. This book is a reference manual for the
JavaScript language, including both core and server-side JavaScript.

This preface contains the following sections:

• New Features in this Release

• What You Should Already Know

• JavaScript Versions

• Where to Find JavaScript Information

• Document Conventions

New Features in this Release
For a summary of JavaScript 1.2 features, see “New Features in this Release” on
page 3. Information on these features has been incorporated in this manual.

What You Should Already Know
This book assumes you have the following basic background:

• A general understanding of the Internet and the World Wide Web (WWW).

• A general understanding of client-side JavaScript. This book does not
duplicate client-side language information.

• Good working knowledge of HyperText Markup Language (HTML).
Experience with forms and the Common Gateway Interface (CGI) is also
useful.
13

JavaScript Versions
• Some programming experience in Pascal, C, Perl, Visual Basic, or a similar
language.

• Familiarity with relational databases and a working knowledge of Structured
Query Language (SQL), if you’re going to use the LiveWire Database
Service.

JavaScript Versions
Each version of Navigator supports a different version of JavaScript. To help
you write scripts that are compatible with multiple versions of Navigator, this
manual lists the JavaScript version in which each feature was implemented.

The following table lists the JavaScript version supported by different Navigator
versions. Versions of Navigator prior to 2.0 do not support JavaScript.

Each version of the Netscape Enterprise Server also supports a different version
of JavaScript. To help you write scripts that are compatible with multiple
versions of the Enterprise Server, this manual uses an abbreviation to indicate
the server version in which each feature was implemented.

Table 1 JavaScript and Navigator versions

JavaScript version Navigator version

JavaScript 1.0 Navigator 2.0

JavaScript 1.1 Navigator 3.0

JavaScript 1.2 Navigator 4.0–4.05

Table 2 JavaScript and Netscape Enterprise Server versions

Abbreviation Enterpriser Server version

NES 2.0 Netscape Enterprise Server 2.0

NES 3.0 Netscape Enterprise Server 3.0
14 Server-Side JavaScript Reference

Where to Find JavaScript Information
Where to Find JavaScript Information
The server-side JavaScript documentation includes the following books:

• The Server-Side JavaScript Guide provides information about the JavaScript
language and its objects. This book contains information for both core and
server-side JavaScript. Some core language features work differently on the
client than on the server; these differences are discussed in this book.

• The Server-Side JavaScript Reference (this book) provides reference material
for the JavaScript language, including both core and server-side JavaScript.

If you are new to JavaScript, start with the Server-Side JavaScript Guide. Once
you have a firm grasp of the fundamentals, you can use the Server-Side
JavaScript Reference to get more details on individual objects and statements.

Use the material in the server-side books to familiarize yourself with core and
server-side JavaScript. Use the Client-Side JavaScript Guide and Client-Side
JavaScript Reference for information on scripting HTML pages.

The Netscape Enterprise Server Programmer’s Bookshelf summarizes the
different programming interfaces available with the 3.x versions of Netscape
web servers. Use this guide as a roadmap or starting point for exploring the
Enterprise Server documentation for developers.

The Netscape web site contains information that can be useful when you’re
working with JavaScript. The following URLs are of particular interest:

• http://home.netscape.com/one_stop/intranet_apps/index.html

The Netscape AppFoundry Online home page is a source for starter
applications, technical information, tools, and expert forums for quickly
building and dynamically deploying open intranet applications. This site
also includes troubleshooting information in the resources section and extra
help on setting up your JavaScript environment.

• http://help.netscape.com/products/tools/livewire/

Netscape’s technical support page for information on the LiveWire Database
Service contains many useful pointers to information on using LiveWire in
JavaScript applications.
15

Document Conventions
• http://developer.netscape.com/tech/javascript/ssjs/
index.html

Netscape’s support page for server-side JavaScript contains news and
resources related to server-side JavaScript. For quick access to this URL,
click the Documentation link on the Netscape Enterprise Server Application
Manager.

• http://developer.netscape.com/viewsource/index.html

View Source Magazine, Netscape’s online technical magazine for
developers, is updated every other week and frequently contains articles of
interest to JavaScript developers.

Document Conventions
JavaScript applications run on many operating systems; the information in this
book applies to all versions. File and directory paths are given in Windows
format (with backslashes separating directory names). For Unix versions, the
directory paths are the same, except that you use slashes instead of backslashes
to separate directories.

This book uses uniform resource locators (URLs) of the following form:

http://server.domain/path/file.html

In these URLs, server represents the name of the server on which you run your
application, such as research1 or www; domain represents your Internet
domain name, such as netscape.com or uiuc.edu; path represents the
directory structure on the server; and file.html represents an individual file
name. In general, items in italics in URLs are placeholders and items in normal
monospace font are literals. If your server has Secure Sockets Layer (SSL)
enabled, you would use https instead of http in the URL.
16 Server-Side JavaScript Reference

Document Conventions
This book uses the following font conventions:

• The monospace font is used for sample code and code listings, API and
language elements (such as method names and property names), file
names, path names, directory names, HTML tags, and any text that must be
typed on the screen. (Monospace italic font is used for placeholders
embedded in code.)

• Italic type is used for book titles, emphasis, variables and placeholders, and
words used in the literal sense.

• Boldface type is used for glossary terms.
17

Document Conventions
18 Server-Side JavaScript Reference

1
Object Reference
• Objects, Methods, and
Properties

• Top-Level Functions

20 Server-Side JavaScript Reference

C h a p t e r

1
Chapter 1Objects, Methods, and Properties
This chapter documents all the JavaScript objects, along with their methods and
properties. It is an alphabetical reference for the main features of JavaScript.

The reference is organized as follows:

• Full entries for each object appear in alphabetical order; properties and
functions not associated with any object appear in Chapter 2, “Top-Level
Functions.”

Each entry provides a complete description for an object. Tables included
in the description of each object summarize the object’s methods and
properties.

• Full entries for an object’s methods and properties appear in alphabetical
order after the object’s entry.

These entries provide a complete description for each method or property,
and include cross-references to related features in the documentation.
Chapter 1, Objects, Methods, and Properties 21

Array
Array
Lets you work with arrays.

Created by The Array object constructor:

new Array(arrayLength)
new Array(element0, element1, ..., elementN)

An array literal:

[element0, element1, ..., elementN]

JavaScript 1.2 when you specify LANGUAGE="JavaScript1.2" in the
<SCRIPT> tag:

new Array(element0, element1, ..., elementN)

Parameters

Description An array is an ordered set of values associated with a single variable name.

The following example creates an Array object with an array literal; the
coffees array contains three elements and a length of three:

coffees = ["French Roast", "Columbian", "Kona"]

You can construct a dense array of two or more elements starting with index 0
if you define initial values for all elements. A dense array is one in which each
element has a value. The following code creates a dense array with three
elements:

myArray = new Array("Hello", myVar, 3.14159)

Core object

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

arrayLength The initial length of the array. You can access this value using the
length property. If the value specified is not a number, an array of
length 1 is created, with the first element having the specified value.
The maximum length allowed for an array is 4,294,967,295.

elementN A list of values for the array’s elements. When this form is specified,
the array is initialized with the specified values as its elements, and
the array’s length property is set to the number of arguments.
22 Server-Side JavaScript Reference

Array
Indexing an array. You index an array by its ordinal number. For example,
assume you define the following array:

myArray = new Array("Wind","Rain","Fire")

You then refer to the first element of the array as myArray[0] and the second
element of the array as myArray[1].

Specifying a single parameter. When you specify a single numeric parameter
with the Array constructor, you specify the initial length of the array. The
following code creates an array of five elements:

billingMethod = new Array(5)

The behavior of the Array constructor depends on whether the single
parameter is a number.

• If the value specified is a number, the constructor converts the number to
an unsigned, 32-bit integer and generates an array with the length
property (size of the array) set to the integer. The array initially contains no
elements, even though it might have a non-zero length.

• If the value specified is not a number, an array of length 1 is created, with
the first element having the specified value.

The following code creates an array of length 25, then assigns values to the first
three elements:

musicTypes = new Array(25)
musicTypes[0] = "R&B"
musicTypes[1] = "Blues"
musicTypes[2] = "Jazz"
Chapter 1, Objects, Methods, and Properties 23

Array
When you specify a single parameter with the Array constructor in
JavaScript 1.2, the behavior depends on whether you specify
LANGUAGE="JavaScript1.2" in the <SCRIPT> tag:

• If you specify LANGUAGE="JavaScript1.2" in the <SCRIPT> tag, a
single-element array is returned. For example, new Array(5) creates a
one-element array with the first element being 5. A constructor with a single
parameter acts in the same way as a multiple parameter constructor. You
cannot specify the length property of an Array using a constructor with
one parameter.

• If you do not specify LANGUAGE="JavaScript1.2" in the <SCRIPT>
tag, you specify the initial length of the array as with other JavaScript
versions.

Increasing the array length indirectly. An array’s length increases if you
assign a value to an element higher than the current length of the array. The
following code creates an array of length 0, then assigns a value to element 99.
This changes the length of the array to 100.

colors = new Array()
colors[99] = "midnightblue"

Creating an array using the result of a match. The result of a match
between a regular expression and a string can create an array. This array has
properties and elements that provide information about the match. An array is
the return value of RegExp.exec, String.match, and String.replace.
To help explain these properties and elements, look at the following example
and then refer to the table below:

<SCRIPT LANGUAGE="JavaScript1.2">
//Match one d followed by one or more b’s followed by one d
//Remember matched b’s and the following d
//Ignore case

myRe=/d(b+)(d)/i;
myArray = myRe.exec("cdbBdbsbz");

</SCRIPT>
24 Server-Side JavaScript Reference

Array
The properties and elements returned from this match are as follows:

Backward
Compatibility

JavaScript 1.1 and earlier. When you specify a single parameter with the
Array constructor, you specify the initial length of the array. The following
code creates an array of five elements:

billingMethod = new Array(5)

JavaScript 1.0. You must index an array by its ordinal number; for example
myArray[0].

Property
Summary

Property/Element Description Example

input A read-only property that reflects the
original string against which the regular
expression was matched.

cdbBdbsbz

index A read-only property that is the zero-based
index of the match in the string.

1

[0] A read-only element that specifies the last
matched characters.

dbBd

[1], ...[n] Read-only elements that specify the
parenthesized substring matches, if
included in the regular expression. The
number of possible parenthesized
substrings is unlimited.

[1]=bB
[2]=d

Property Description

constructor Specifies the function that creates an object’s prototype.

index For an array created by a regular expression match, the zero-based
index of the match in the string.

input For an array created by a regular expression match, reflects the
original string against which the regular expression was matched.

length An integer that specifies the number of elements in an array.

prototype Allows the addition of properties to all objects.
Chapter 1, Objects, Methods, and Properties 25

Array
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object.

Examples Example 1. The following example creates an array, msgArray, with a length
of 0, then assigns values to msgArray[0] and msgArray[99], changing the
length of the array to 100.

msgArray = new Array()
msgArray[0] = "Hello"
msgArray[99] = "world"
// The following statement is true,
// because defined msgArray[99] element.
if (msgArray.length == 100)

myVar="The length is 100."

Method Description

concat Joins two arrays and returns a new array.

join Joins all elements of an array into a string.

pop Removes the last element from an array and returns that element.

push Adds one or more elements to the end of an array and returns the last
element added to the array.

reverse Transposes the elements of an array: the first array element becomes
the last and the last becomes the first.

shift Removes the first element from an array and returns that element

slice Extracts a section of an array and returns a new array.

splice Adds and/or removes elements from an array.

sort Sorts the elements of an array.

toString Returns a string representing the array and its elements. Overrides the
Object.toString method.

unshift Adds one or more elements to the front of an array and returns the
new length of the array.

valueOf Returns the primitive value of the array. Overrides the
Object.valueOf method.
26 Server-Side JavaScript Reference

Array.concat
Example 2: Two-dimensional array. The following code creates a two-
dimensional array and assigns the results to myVar.

myVar="Multidimensional array test; "
a = new Array(4)
for (i=0; i < 4; i++) {

a[i] = new Array(4)
for (j=0; j < 4; j++) {

a[i][j] = "["+i+","+j+"]"
}

}
for (i=0; i < 4; i++) {

str = "Row "+i+":"
for (j=0; j < 4; j++) {

str += a[i][j]
}
myVar += str +"; "

}

This example assigns the following string to myVar (line breaks are used here
for readability):

Multidimensional array test;
Row 0:[0,0][0,1][0,2][0,3];
Row 1:[1,0][1,1][1,2][1,3];
Row 2:[2,0][2,1][2,2][2,3];
Row 3:[3,0][3,1][3,2][3,3];

concat .

Joins two arrays and returns a new array.

Syntax concat(arrayName2, arrayName3, ..., arrayNameN)

Parameters

Method of Array

Implemented in JavaScript 1.2, NES 3.0

arrayName2...
arrayNameN

Arrays to concatenate to this array.
Chapter 1, Objects, Methods, and Properties 27

Array.constructor
Description concat does not alter the original arrays, but returns a “one level deep” copy
that contains copies of the same elements combined from the original arrays.
Elements of the original arrays are copied into the new array as follows:

• Object references (and not the actual object): concat copies object
references into the new array. Both the original and new array refer to the
same object. If a referenced object changes, the changes are visible to both
the new and original arrays.

• Strings and numbers (not String and Number objects): concat copies
strings and numbers into the new array. Changes to the string or number in
one array does not affect the other arrays.

If a new element is added to either array, the other array is not affected.

The following code concatenates two arrays:

alpha=new Array("a","b","c")
numeric=new Array(1,2,3)
alphaNumeric=alpha.concat(numeric) // creates array ["a","b","c",1,2,3]

The following code concatenates three arrays:

num1=[1,2,3]
num2=[4,5,6]
num3=[7,8,9]
nums=num1.concat(num2,num3) // creates array [1,2,3,4,5,6,7,8,9]

constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor.

Property of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
28 Server-Side JavaScript Reference

Array.index
index .

For an array created by a regular expression match, the zero-based index of the
match in the string.

input .

For an array created by a regular expression match, reflects the original string
against which the regular expression was matched.

join .

Joins all elements of an array into a string.

Syntax join(separator)

Parameters

Description The string conversions of all array elements are joined into one string.

Property of Array

Static

Implemented in JavaScript 1.2, NES 3.0

Property of Array

Static

Implemented in JavaScript 1.2, NES 3.0

Method of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

separator Specifies a string to separate each element of the array. The separator is
converted to a string if necessary. If omitted, the array elements are
separated with a comma.
Chapter 1, Objects, Methods, and Properties 29

Array.length
Examples The following example creates an array, a, with three elements, then joins the
array three times: using the default separator, then a comma and a space, and
then a plus.

a = new Array("Wind","Rain","Fire")
myVar1=a.join() // assigns "Wind,Rain,Fire" to myVar1
myVar2=a.join(", ") // assigns "Wind, Rain, Fire" to myVar1
myVar3=a.join(" + ") // assigns "Wind + Rain + Fire" to myVar1

See also Array.reverse

length .

An integer that specifies the number of elements in an array.

Description You can set the length property to truncate an array at any time. When you
extend an array by changing its length property, the number of actual
elements does not increase; for example, if you set length to 3 when it is
currently 2, the array still contains only 2 elements.

Examples In the following example, the getChoice function uses the length property to
iterate over every element in the musicType array. musicType is a select
element on the musicForm form.

function getChoice() {
for (var i = 0; i < document.musicForm.musicType.length; i++) {

if (document.musicForm.musicType.options[i].selected == true) {
return document.musicForm.musicType.options[i].text

}
}

}

The following example shortens the array statesUS to a length of 50 if the
current length is greater than 50.

if (statesUS.length > 50) {
statesUS.length=50

}

Property of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
30 Server-Side JavaScript Reference

Array.pop
pop .

Removes the last element from an array and returns that element. This method
changes the length of the array.

Syntax pop()

Parameters None.

Example The following code creates the myFish array containing four elements, then
removes its last element.

myFish = ["angel", "clown", "mandarin", "surgeon"];
popped = myFish.pop();

See also push, shift, unshift

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype.

push .

Adds one or more elements to the end of an array and returns the last element
added to the array. This method changes the length of the array.

Syntax push(element1, ..., elementN)

Parameters

Method of Array

Implemented in JavaScript 1.2, NES 3.0

Property of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Method of Array

Implemented in JavaScript 1.2, NES 3.0

element1, ...,
elementN

The elements to add to the end of the array.
Chapter 1, Objects, Methods, and Properties 31

Array.reverse
Description The behavior of the push method is analogous to the push function in Perl 4.
Note that this behavior is different in Perl 5.

Example The following code creates the myFish array containing two elements, then
adds two elements to it. After the code executes, pushed contains “lion”.

myFish = ["angel", "clown"];
pushed = myFish.push("drum", "lion");

See also pop, shift, unshift

reverse .

Transposes the elements of an array: the first array element becomes the last
and the last becomes the first.

Syntax reverse()

Parameters None

Description The reverse method transposes the elements of the calling array object.

Examples The following example creates an array myArray, containing three elements,
then reverses the array.

myArray = new Array("one", "two", "three")
myArray.reverse()

This code changes myArray so that:

• myArray[0] is “three”

• myArray[1] is “two”

• myArray[2] is “one”

See also Array.join, Array.sort

Method of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
32 Server-Side JavaScript Reference

Array.shift
shift .

Removes the first element from an array and returns that element. This method
changes the length of the array.

Syntax shift()

Parameters None.

Example The following code displays the myFish array before and after removing its first
element. It also displays the removed element:

myFish = ["angel", "clown", "mandarin", "surgeon"];
document.writeln("myFish before: " + myFish);
shifted = myFish.shift();
document.writeln("myFish after: " + myFish);
document.writeln("Removed this element: " + shifted);

This example displays the following:

myFish before: ["angel", "clown", "mandarin", "surgeon"]
myFish after: ["clown", "mandarin", "surgeon"]
Removed this element: angel

See also pop, push, unshift

Method of Array

Implemented in JavaScript 1.2, NES 3.0
Chapter 1, Objects, Methods, and Properties 33

Array.slice
slice .

Extracts a section of an array and returns a new array.

Syntax slice(begin[,end])

Parameters

Description slice does not alter the original array, but returns a new “one level deep”
copy that contains copies of the elements sliced from the original array.
Elements of the original array are copied into the new array as follows:

• For object references (and not the actual object), slice copies object
references into the new array. Both the original and new array refer to the
same object. If a referenced object changes, the changes are visible to both
the new and original arrays.

• For strings and numbers (not String and Number objects), slice copies
strings and numbers into the new array. Changes to the string or number in
one array does not affect the other array.

If a new element is added to either array, the other array is not affected.

Method of Array

Implemented in JavaScript 1.2, NES 3.0

begin Zero-based index at which to begin extraction.

end Zero-based index at which to end extraction:

• slice extracts up to but not including end. slice(1,4) extracts
the second element through the fourth element (elements indexed 1,
2, and 3)

• As a negative index, end indicates an offset from the end of the
sequence. slice(2,-1) extracts the third element through the
second to last element in the sequence.

• If end is omitted, slice extracts to the end of the sequence.
34 Server-Side JavaScript Reference

Array.slice
Example In the following example, slice creates a new array, newCar, from myCar.
Both include a reference to the object myHonda. When the color of myHonda is
changed to purple, both arrays reflect the change.

<SCRIPT LANGUAGE="JavaScript1.2">

//Using slice, create newCar from myCar.
myHonda = {color:"red",wheels:4,engine:{cylinders:4,size:2.2}}
myCar = [myHonda, 2, "cherry condition", "purchased 1997"]
newCar = myCar.slice(0,2)

//Write the values of myCar, newCar, and the color of myHonda
// referenced from both arrays.
document.write("myCar = " + myCar + "
")
document.write("newCar = " + newCar + "
")
document.write("myCar[0].color = " + myCar[0].color + "
")
document.write("newCar[0].color = " + newCar[0].color + "

")

//Change the color of myHonda.
myHonda.color = "purple"
document.write("The new color of my Honda is " + myHonda.color +
"

")

//Write the color of myHonda referenced from both arrays.
document.write("myCar[0].color = " + myCar[0].color + "
")
document.write("newCar[0].color = " + newCar[0].color + "
")

</SCRIPT>

This script writes:

myCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2,
"cherry condition", "purchased 1997"]

newCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2]
myCar[0].color = red newCar[0].color = red
The new color of my Honda is purple
myCar[0].color = purple
newCar[0].color = purple
Chapter 1, Objects, Methods, and Properties 35

Array.sort
sort .

Sorts the elements of an array.

Syntax sort(compareFunction)

Parameters

Description If compareFunction is not supplied, elements are sorted by converting them to
strings and comparing strings in lexicographic (“dictionary” or “telephone
book,” not numerical) order. For example, “80” comes before “9” in
lexicographic order, but in a numeric sort 9 comes before 80.

If compareFunction is supplied, the array elements are sorted according to the
return value of the compare function. If a and b are two elements being
compared, then:

• If compareFunction(a, b) is less than 0, sort b to a lower index than a.

• If compareFunction(a, b) returns 0, leave a and b unchanged with
respect to each other, but sorted with respect to all different elements.

• If compareFunction(a, b) is greater than 0, sort b to a higher index than
a.

So, the compare function has the following form:

function compare(a, b) {
if (a is less than b by some ordering criterion)

return -1
if (a is greater than b by the ordering criterion)

return 1
// a must be equal to b
return 0

}

Method of Array

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: modified behavior.

ECMA version ECMA-262

compareFunction Specifies a function that defines the sort order. If omitted, the array
is sorted lexicographically (in dictionary order) according to the
string conversion of each element.
36 Server-Side JavaScript Reference

Array.sort
To compare numbers instead of strings, the compare function can simply
subtract b from a:

function compareNumbers(a, b) {
return a - b

}

JavaScript uses a stable sort: the index partial order of a and b does not change
if a and b are equal. If a’s index was less than b’s before sorting, it will be after
sorting, no matter how a and b move due to sorting.

The behavior of the sort method changed between JavaScript 1.1 and
JavaScript 1.2.

In JavaScript 1.1, on some platforms, the sort method does not work. This
method works on all platforms for JavaScript 1.2.

In JavaScript 1.2, this method no longer converts undefined elements to null;
instead it sorts them to the high end of the array. For example, assume you
have this script:

<SCRIPT>
a = new Array();
a[0] = "Ant";
a[5] = "Zebra";

function writeArray(x) {
for (i = 0; i < x.length; i++) {

document.write(x[i]);
if (i < x.length-1) document.write(", ");

}
}

writeArray(a);
a.sort();
document.write("

");
writeArray(a);
</SCRIPT>

In JavaScript 1.1, JavaScript prints:

ant, null, null, null, null, zebra
ant, null, null, null, null, zebra

In JavaScript 1.2, JavaScript prints:

ant, undefined, undefined, undefined, undefined, zebra
ant, zebra, undefined, undefined, undefined, undefined
Chapter 1, Objects, Methods, and Properties 37

Array.sort
Examples The following example creates four arrays and displays the original array, then
the sorted arrays. The numeric arrays are sorted without, then with, a compare
function.

<SCRIPT>
stringArray = new Array("Blue","Humpback","Beluga")
numericStringArray = new Array("80","9","700")
numberArray = new Array(40,1,5,200)
mixedNumericArray = new Array("80","9","700",40,1,5,200)

function compareNumbers(a, b) {
return a - b

}

document.write("stringArray: " + stringArray.join() +"
")
document.write("Sorted: " + stringArray.sort() +"<P>")

document.write("numberArray: " + numberArray.join() +"
")
document.write("Sorted without a compare function: " + numberArray.sort() +"
")
document.write("Sorted with compareNumbers: " + numberArray.sort(compareNumbers)
+"<P>")

document.write("numericStringArray: " + numericStringArray.join() +"
")
document.write("Sorted without a compare function: " + numericStringArray.sort()
+"
")
document.write("Sorted with compareNumbers: " +
numericStringArray.sort(compareNumbers) +"<P>")

document.write("mixedNumericArray: " + mixedNumericArray.join() +"
")
document.write("Sorted without a compare function: " + mixedNumericArray.sort()
+"
")
document.write("Sorted with compareNumbers: " +
mixedNumericArray.sort(compareNumbers) +"
")
</SCRIPT>

This example produces the following output. As the output shows, when a
compare function is used, numbers sort correctly whether they are numbers or
numeric strings.

stringArray: Blue,Humpback,Beluga
Sorted: Beluga,Blue,Humpback

numberArray: 40,1,5,200
Sorted without a compare function: 1,200,40,5
Sorted with compareNumbers: 1,5,40,200

numericStringArray: 80,9,700
Sorted without a compare function: 700,80,9
Sorted with compareNumbers: 9,80,700

mixedNumericArray: 80,9,700,40,1,5,200
Sorted without a compare function: 1,200,40,5,700,80,9
Sorted with compareNumbers: 1,5,9,40,80,200,700
38 Server-Side JavaScript Reference

Array.splice
See also Array.join, Array.reverse

splice .

Changes the content of an array, adding new elements while removing old
elements.

Syntax splice(index, howMany, [element1][, ..., elementN])

Parameters

Description If you specify a different number of elements to insert than the number you’re
removing, the array will have a different length at the end of the call.

The splice method returns the element removed, if only one element is
removed (howMany parameter is 1); otherwise, splice returns an array
containing the removed elements.

Examples The following script illustrate the use of splice:

<SCRIPT LANGUAGE="JavaScript1.2">

myFish = ["angel", "clown", "mandarin", "surgeon"];
document.writeln("myFish: " + myFish + "
");

removed = myFish.splice(2, 0, "drum");
document.writeln("After adding 1: " + myFish);
document.writeln("removed is: " + removed + "
");

removed = myFish.splice(3, 1)
document.writeln("After removing 1: " + myFish);
document.writeln("removed is: " + removed + "
");

removed = myFish.splice(2, 1, "trumpet")
document.writeln("After replacing 1: " + myFish);
document.writeln("removed is: " + removed + "
");

Method of Array

Implemented in JavaScript 1.2, NES 3.0

index Index at which to start changing the array.

howMany An integer indicating the number of old array elements to
remove. If howMany is 0, no elements are removed. In this
case, you should specify at least one new element.

element1, ...,
elementN

The elements to add to the array. If you don’t specify any
elements, splice simply removes elements from the array.
Chapter 1, Objects, Methods, and Properties 39

Array.toString
removed = myFish.splice(0, 2, "parrot", "anemone", "blue")
document.writeln("After replacing 2: " + myFish);
document.writeln("removed is: " + removed);

</SCRIPT>

This script displays:

myFish: ["angel", "clown", "mandarin", "surgeon"]

After adding 1: ["angel", "clown", "drum", "mandarin", "surgeon"]
removed is: undefined

After removing 1: ["angel", "clown", "drum", "surgeon"]
removed is: mandarin

After replacing 1: ["angel", "clown", "trumpet", "surgeon"]
removed is: drum

After replacing 2: ["parrot", "anemone", "blue", "trumpet", "surgeon"]
removed is: ["angel", "clown"]

toString .

Returns a string representing the array and its elements.

Syntax toString()

Parameters None.

Description The Array object overrides the toString method of Object. For Array
objects, the toString method joins the array and returns one string
containing each array element separated by commas. For example, the
following code creates an array and uses toString to convert the array to a
string.

var monthNames = new Array("Jan","Feb","Mar","Apr")
myVar=monthNames.toString() // assigns "Jan,Feb,Mar,Apr" to myVar

JavaScript calls the toString method automatically when an array is to be
represented as a text value or when an array is referred to in a string
concatenation.

Method of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
40 Server-Side JavaScript Reference

Array.unshift
In JavaScript 1.2 when you specify LANGUAGE="JavaScript1.2" in the
<SCRIPT> tag, toString returns a string representing the source code of the
array.

<SCRIPT LANGUAGE="JavaScript1.2">
var monthNames = new Array("Jan","Feb","Mar","Apr")
myVar=monthNames.toString() // assigns ’["Jan", "Feb", "Mar", "Apr"]’

// to myVar
</SCRIPT>

unshift .

Adds one or more elements to the beginning of an array and returns the new
length of the array.

Syntax arrayName.unshift(element1,..., elementN)

Parameters

Example The following code displays the myFish array before and after adding elements
to it.

myFish = ["angel", "clown"];
document.writeln("myFish before: " + myFish);
unshifted = myFish.unshift("drum", "lion");
document.writeln("myFish after: " + myFish);
document.writeln("New length: " + unshifted);

This example displays the following:

myFish before: ["angel", "clown"]
myFish after: ["drum", "lion", "angel", "clown"]
New length: 4

See also pop, push, shift

Method of Array

Implemented in JavaScript 1.2, NES 3.0

element1,...,
elementN

The elements to add to the front of the array.
Chapter 1, Objects, Methods, and Properties 41

Array.valueOf
valueOf .

Returns the primitive value of an array.

Syntax valueOf()

Parameters None

Description The Array object inherits the valueOf method of Object. The valueOf
method of Array returns the primitive value of an array or the primitive value
of its elements as follows:

This method is usually called internally by JavaScript and not explicitly in code.

See also Object.valueOf

Method of Array

Implemented in JavaScript 1.1

ECMA version ECMA-262

Object type of element Data type of returned value

Boolean Boolean

Number or Date number

All others string
42 Server-Side JavaScript Reference

blob
blob
Server-side object. Provides functionality for displaying and linking to BLOb
data.

Created by You do not create a separate blob object. Instead, if you know that the value of
a cursor property contains BLOb data, you use the methods to access that
data. Conversely, to store BLOb data in a database, use the blob function.

Method Summary

In addition, this object inherits the watch and unwatch methods from
Object.

Server-side object

Implemented in NES 2.0

Method Description

blobImage Displays BLOb data stored in a database.

blobLink Displays a link that references BLOb data with a link.
Chapter 1, Objects, Methods, and Properties 43

blob.blobImage
blobImage .

Displays BLOb data stored in a database.

Syntax cursorName.colName.blobImage (format [, altText] [, align]
[, widthPixels] [, heightPixels] [, borderPixels] [, ismap])

Parameters

Returns An HTML IMG tag for the specified image type.

Description Use blobImage to create an HTML image tag for a graphic image in a standard
format such as GIF or JPEG.

The blobImage method fetches a BLOb from the database, creates a temporary
file (in memory) of the specified format, and generates an HTML image tag that
refers to the temporary file. The JavaScript runtime engine removes the
temporary file after the page is generated and sent to the client.

Method of blob

Implemented in NES 2.0

format The image format. This can be GIF, JPEG, or any other MIME image
format.
The acceptable formats are specified in the type=image section of
the file $nshome\httpd-80\config\mime.types, where
$nshome is the directory in which you installed your server. The
client browser must also be able to display the image format.

altText The value of the ALT attribute of the image tag. This indicates text
to display if the client browser does not display images.

align The value of the ALIGN attribute of the image tag. This can be
"left", "right", or any other value supported by the client
browser.

widthPixels The width of the image in pixels.

heightPixels The height of the image in pixels.

borderPixels The size of the outline border in pixels if the image is a link.

ismap True if the image is a clickable map. If this parameter is true, the
image tag has an ISMAP attribute; otherwise it does not.
44 Server-Side JavaScript Reference

blob.blobImage
While creating the page, the runtime engine keeps the binary data that
blobImage fetches from the database in active memory, so requests that fetch a
large amount of data can exceed dynamic memory on the server. Generally it is
good practice to limit the number of rows retrieved at one time using
blobImage to stay within the server’s dynamic memory limits.

Examples Example 1. The following example extracts a row containing a small image
and a name. It writes HTML containing the name and a link to the image:

cursor = connobj.cursor("SELECT NAME, THUMB FROM FISHTBL WHERE ID=2")
write(cursor.name + " ")
write(cursor.thumb.blobImage("gif"))
write("
")
cursor.close()

These statements produce this HTML:

Anthia

Example 2. The following example creates a cursor from the rockStarBios
table and uses blobImage to display an image retrieved from the photos
column:

cursor = database.cursor("SELECT * FROM rockStarBios
WHERE starID = 23")

while(cursor.next()) {
write(cursor.photos.blobImage("gif", "Picture", "left",

30, 30, 0,false))
}
cursor.close()

This example displays an image as if it were created by the following HTML:

<IMG SRC="livewire_temp.gif" ALT="Picture" ALIGN=LEFT
WIDTH=30 HEIGHT=30 BORDER=0>

The livewire_temp.gif file in this example is the file in which the
rockStarBios table stores the BLOb data.
Chapter 1, Objects, Methods, and Properties 45

blob.blobLink
blobLink .

Returns a link tag that references BLOb data with a link. Creates an HTML link
to the BLOb.

Syntax cursorName.colName.blobLink (mimeType, linkText)

Parameters

Returns An HTML link tag.

Description Use blobLink if you do not want to display graphics (to reduce bandwidth
requirements) or if you want to provide a link to an audio clip or other
multimedia content not viewable inline.

The blobLink method fetches BLOb data from the database, creates a
temporary file in memory, and generates a hypertext link to the temporary file.
The JavaScript runtime engine on the server removes the temporary files that
blobLink creates after the user clicks the link or sixty seconds after the request
has been processed.

The runtime engine keeps the binary data that blobLink fetches from the
database in active memory, so requests that fetch a large amount of data can
exceed dynamic memory on the server. Generally it is good practice to limit the
number of rows retrieved at one time using blobLink to stay within the
server’s dynamic memory limits.

Method of blob

Implemented in NES 2.0

mimeType The MIME type of the binary data. This can be image/gif or any
other acceptable MIME type, as specified in the Netscape server
configuration file $nshome\httpd-80\config\mime.types, where
$nshome is the directory in which you installed your server.

linkText The text to display in the link. This can be any JavaScript string
expression.
46 Server-Side JavaScript Reference

blob.blobLink
Example Example 1. The following statements extract a row containing a large image
and a name. It writes HTML containing the name and a link to the image:

cursor = connobj.cursor("SELECT NAME, PICTURE FROM FISHTBL WHERE ID=2")
write(cursor.name + " ")
write(cursor.picture.blobLink("image/gif", "Link" + cursor.id))
write("
")
cursor.close()

These statements produce this HTML:

Anthia Link2

Example 2. The following example creates a cursor from the rockStarBios
table and uses blobLink to create links to images retrieved from the photos
column:

write("Click a link to display an image:<P>")
cursor = database.cursor("select * from rockStarBios")
while(cursor.next()) {

write(cursor.photos.blobLink("image/gif", "Image " + cursor.id))
write("
")

}
cursor.close()

This example generates the following HTML:

Click a link to display an image:<P>
Image 1

Image 2

Image 3

Image 4

The LIVEWIRE_TEMP files in this example are temporary files created in
memory by the blobLink method.
Chapter 1, Objects, Methods, and Properties 47

Boolean
Boolean
The Boolean object is an object wrapper for a boolean value.

Created by The Boolean constructor:

new Boolean(value)

Parameters

Description When a Boolean object is used as the condition in a conditional test,
JavaScript returns the value of the Boolean object. For example, a Boolean
object whose value is false is treated as the primitive value false, and a
Boolean object whose value is true is treated as the primitive value true in
conditional tests. If the Boolean object is a false object, the conditional
statement evaluates to false.

Property
Summary

Method Summary

Core object

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

value The initial value of the Boolean object. The value is converted to a
boolean value, if necessary. If value is omitted or is 0, -0, null, false, NaN,
undefined, or the empty string (""), the object has an initial value of false.
All other values, including any object or the string "false", create an
object with an initial value of true.

Property Description

constructor Specifies the function that creates an object’s prototype.

prototype Defines a property that is shared by all Boolean objects.

Method Description

toString Returns a string representing the specified object. Overrides the
Object.toString method.

valueOf Returns the primitive value of a Boolean object. Overrides the
Object.valueOf method.
48 Server-Side JavaScript Reference

Boolean.constructor
In addition, this object inherits the watch and unwatch methods from
Object.

Examples The following examples create Boolean objects with an initial value of false:

bNoParam = new Boolean()
bZero = new Boolean(0)
bNull = new Boolean(null)
bEmptyString = new Boolean("")
bfalse = new Boolean(false)

The following examples create Boolean objects with an initial value of true:

btrue = new Boolean(true)
btrueString = new Boolean("true")
bfalseString = new Boolean("false")
bSuLin = new Boolean("Su Lin")

constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor.

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype.

Property of Boolean

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Property of Boolean

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 49

Boolean.toString
toString .

Returns a string representing the specified Boolean object.

Syntax toString()

Parameters None.

Description The Boolean object overrides the toString method of the Object object; it
does not inherit Object.toString. For Boolean objects, the toString
method returns a string representation of the object.

JavaScript calls the toString method automatically when a Boolean is to be
represented as a text value or when a Boolean is referred to in a string
concatenation.

For Boolean objects and values, the built-in toString method returns the
string "true" or "false" depending on the value of the boolean object. In the
following code, flag.toString returns "true".

var flag = new Boolean(true)
var myVar=flag.toString()

See also Object.toString

valueOf .

Returns the primitive value of a Boolean object.

Syntax valueOf()

Parameters None

Method of Boolean

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Method of Boolean

Implemented in JavaScript 1.1

ECMA version ECMA-262
50 Server-Side JavaScript Reference

Boolean.valueOf
Description The valueOf method of Boolean returns the primitive value of a Boolean
object or literal Boolean as a Boolean data type.

This method is usually called internally by JavaScript and not explicitly in code.

Examples x = new Boolean();
myVar=x.valueOf() //assigns false to myVar

See also Object.valueOf
Chapter 1, Objects, Methods, and Properties 51

client
client
Contains data specific to an individual client.

Created by The JavaScript runtime engine on the server automatically creates a client
object for each client/application pair.

Description The JavaScript runtime engine on the server constructs a client object for
every client/application pair. A browser client connected to one application has
a different client object than the same browser client connected to a different
application. The runtime engine constructs a new client object each time a
user accesses an application; there can be hundreds or thousands of client
objects active at the same time.

You cannot use the client object on your application’s initial page. This page
is run when the application is started on the server. At this time, there is not a
client request, so there is no available client object.

The runtime engine constructs and destroys the client object for each client
request. However, at the end of a request, the runtime engine saves the names
and values of the client object’s properties so that when the same user returns
to the application with a subsequent request, the runtime engine can construct
a new client object with the saved data. Thus, conceptually you can think of
the client object as remaining for the duration of a client’s session with the
application. There are several different ways to maintain client property
values; for more information, see the Server-Side JavaScript Guide.

All requests by one client use the same client object, as long as those requests
occur within the lifetime of that client object. By default, a client object
persists until the associated client has been inactive for 10 minutes. You can use
the expiration method to change this default lifetime or the destroy method
to explicitly destroy the client object.

Use the client object to maintain data that is specific to an individual client.
Although many clients can access an application simultaneously, the individual
client objects keep their data separate. Each client object can track the
progress of an individual client across multiple requests to the same
application.

Server-side object

Implemented in NES 2.0
52 Server-Side JavaScript Reference

client
Property
Summary

The client object has no predefined properties. You create custom properties
to contain any client-specific data that is required by an application. The
runtime engine does not save client objects that have no property values.

You can create a property for the client object by assigning it a name and a
value. For example, you can create a client property to store a customer ID at
the beginning of an application so a user does not have to enter it with each
request.

Because of the techniques used to maintain client properties across multiple
client requests, there is one major restriction on client property values. The
JavaScript runtime engine on the server converts the values of all of the client
object’s properties to strings.

The runtime engine cannot convert an object to a string. For this reason, you
cannot assign an object as the value of a client property. If a client property
value represents another data type, such as a number, you must convert the
value from a string before using it. The core JavaScript parseInt and
parseFloat functions are useful for converting to integer and floating point
values.

Method Summary

In addition, this object inherits the watch and unwatch methods from
Object.

Examples Example 1. This example dynamically assigns a customer ID number that is
used for the lifetime of an application session. The assignId function creates
an ID based on the user’s IP address, and the customerId property saves the
ID.

<SERVER>client.customerId = assignId(request.ip)</SERVER>

See also the examples for the project object for a way to sequentially assign a
customer ID.

Method Description

destroy Destroys a client object.

expiration Specifies the duration of a client object.
Chapter 1, Objects, Methods, and Properties 53

client.destroy
Example 2. This example creates a customerId property to store a customer
ID that a user enters into a form. The form is defined as follows:

<FORM NAME="getCustomerInfo" METHOD="post">
<P>Enter your customer ID:

<INPUT TYPE="text" NAME="customerNumber">
</FORM>

The following code assigns the value entered in the customerNumber field
from the temporary request.clientNumber to the more permanent
client.customerId:

<SERVER>client.customerId=request.customerNumber</SERVER>

See also project, request, server

destroy .

Destroys a client object.

Syntax destroy()

Description The destroy method explicitly destroys the client object that issues it and
removes all properties from the client object. If you do not explicitly issue a
destroy method, the JavaScript runtime engine on the server automatically
destroys the client object when its lifetime expires. The expiration method
sets the lifetime of a client object; by default, the lifetime is 10 minutes.

If you are using client-cookies to maintain the client object, destroy
eliminates all client property values, but it does not affect what is stored in
Navigator cookie file. Use expiration with an argument of 0 seconds to
remove all client properties stored in the cookie file.

When using client URL encoding to maintain the client object, destroy
removes all client properties after the method call. However, any links in a
page before the call to destroy retain properties in their URLs. Therefore, you
should generally call destroy either at the top or bottom of the page when
using client URL maintenance.

Method of client

Implemented in NES 2.0
54 Server-Side JavaScript Reference

client.expiration
Examples The following method destroys the client object that calls it:

<server>client.destroy()</server>

See also client.expiration

expiration .

Specifies the duration of a client object.

Syntax expiration(seconds)

Parameters

Description By default, the JavaScript runtime engine on the server destroys the client
object after the client has been inactive for 10 minutes. This default lifetime lets
the runtime engine clean up client objects that are no longer necessary.

Use the expiration method to explicitly control the expiration of a client
object, making it longer or shorter than the default. You must use expiration
in each page of an application for which you want a client expiration other
than the default. Any page that does not specify an expiration will use the
default of 10 minutes.

Client expiration does not apply if using client URL encoding to maintain the
client object. In this case, client properties are stored solely in URLs on HTML
pages. The runtime engine cannot remove those properties.

Examples The following example extends the amount of client inactivity before expiration
to 1 hour. This code is issued when an application is first launched.

<SERVER>client.expiration(3600)</SERVER>

See also client.destroy

Method of client

Implemented in NES 2.0

seconds An integer representing the number of seconds of client inactivity
before the client object expires.
Chapter 1, Objects, Methods, and Properties 55

Connection
Connection
Represents a single database connection from a pool of connections.

Created by The DbPool.connection method. You do not call a connection
constructor directly. Once you have a Connection object, you use it for your
interactions with the database.

Description You can use the prototype property of the Connection class to add a
property to all Connection instances. If you do so, that addition applies to all
Connection objects running in all applications on your server, not just in the
single application that made the change. This allows you to expand the
capabilities of this object for your entire server.

Property
Summary

Method Summary

Server-side object

Implemented in NES 3.0

Property Description

prototype Allows the addition of properties to the connection object.

Method Description

beginTransaction Begins a new SQL transaction.

commitTransaction Commits the current transaction.

connected Tests whether the database pool (and hence this
connection) is connected to a database.

cursor Creates a database cursor for the specified SQL SELECT
statement.

execute Performs the specified SQL statement. Use for SQL
statements other than queries.

majorErrorCode Major error code returned by the database server or
ODBC.

majorErrorMessage Major error message returned by database server or
ODBC.

minorErrorCode Secondary error code returned by database vendor
library.
56 Server-Side JavaScript Reference

Connection.beginTransaction
In addition, this object inherits the watch and unwatch methods from
Object.

beginTransaction .

Begins a new SQL transaction.

Syntax beginTransaction()

Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description All subsequent actions that modify the database are grouped with this
transaction, known as the current transaction.

For the database object, the scope of a transaction is limited to the current
request (HTML page) in the application. If the application exits the page before
calling the commitTransaction or rollbackTransaction method, then the
transaction is automatically either committed or rolled back, based on the
setting of the commitflag parameter when the connection was established.
This parameter is provided when you make the connection by calling
database.connect.

minorErrorMessage Secondary message returned by database vendor library.

release Releases the connection back to the database pool.

rollbackTransaction Rolls back the current transaction.

SQLTable Displays query results. Creates an HTML table for results
of an SQL SELECT statement.

storedProc Creates a stored-procedure object and runs the specified
stored procedure.

toString Returns a string representing the specified object.

Method Description

Method of Connection

Implemented in NES 3.0
Chapter 1, Objects, Methods, and Properties 57

Connection.beginTransaction
For Connection objects, the scope of a transaction is limited to the lifetime of
that object. If the connection is released or the pool of connections is closed
before calling the commitTransaction or rollbackTransaction method,
then the transaction is automatically either committed or rolled back, based on
the setting of the commitflag parameter when the connection was established.
This parameter is provided when you make the connection by calling the
connect method or in the DbPool constructor.

If there is no current transaction (that is, if the application has not called
beginTransaction), calls to commitTransaction and
rollbackTransaction are ignored.

The LiveWire Database Service does not support nested transactions. If you call
beginTransaction when a transaction is already open (that is, you’ve called
beginTransaction and have yet to commit or roll back that transaction),
you’ll get an error message.

Examples This example updates the rentals table within a transaction. The values of
customerID and videoID are passed into the cursor method as properties of
the request object. When the videoReturn Cursor object opens, the next
method navigates to the only record in the answer set and updates the value in
the returnDate field.

The variable x is assigned a database status code to indicate if the updateRow
method is successful. If updateRow succeeds, the value of x is 0, and the
transaction is committed; otherwise, the transaction is rolled back.

// Begin a transaction
database.beginTransaction();

// Create a Date object with the value of today’s date
today = new Date();

// Create a Cursor with the rented video in the answer set
videoReturn = database.Cursor("SELECT * FROM rentals WHERE

customerId = " + request.customerID + " AND
videoId = " + request.videoID, true);

// Position the pointer on the first row of the Cursor
// and update the row
videoReturn.next()
videoReturn.returndate = today;
x = videoReturn.updateRow("rentals");
58 Server-Side JavaScript Reference

Connection.commitTransaction
// End the transaction by committing or rolling back
if (x == 0) {

database.commitTransaction() }
else {

database.rollbackTransaction() }

// Close the Cursor
videoReturn.close();

commitTransaction .

Commits the current transaction

Syntax commitTransaction()

Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description This method attempts to commit all actions since the last call to
beginTransaction.

For the database object, the scope of a transaction is limited to the current
request (HTML page) in the application. If the application exits the page before
calling the commitTransaction or rollbackTransaction method, then the
transaction is automatically either committed or rolled back, based on the
setting of the commitflag parameter when the connection was established.
This parameter is provided when you make the connection with the database
or DbPool object.

For Connection objects, the scope of a transaction is limited to the lifetime of
that object. If the connection is released or the pool of connections is closed
before calling the commitTransaction or rollbackTransaction method,
then the transaction is automatically either committed or rolled back, based on
the commitFlag value.

If there is no current transaction (that is, if the application has not called
beginTransaction), calls to commitTransaction and
rollbackTransaction are ignored.

Method of Connection

Implemented in NES 3.0
Chapter 1, Objects, Methods, and Properties 59

Connection.connected
The LiveWire Database Service does not support nested transactions. If you call
beginTransaction when a transaction is already open (that is, you’ve called
beginTransaction and have yet to commit or roll back that transaction),
you’ll get an error message.

connected .

Tests whether the database pool and all of its connections are connected to a
database.

Syntax connected()

Parameters None.

Returns True if the pool (and hence a particular connection in the pool) is currently
connected to a database; otherwise, false.

Description The connected method indicates whether this object is currently connected to
a database.

If this method returns false for a Connection object, you cannot use any other
methods of that object. You must reconnect to the database, using the DbPool
object, and then get a new Connection object. Similarly, if this method returns
false for the database object, you must reconnect before using other methods
of that object.

Example Example 1: The following code fragment checks to see if the connection is
currently open. If it’s not, it reconnects the pool and reassigns a new value to
the myconn variable.

if (!myconn.connected()) {
mypool.connect("INFORMIX", "myserv", "SYSTEM", "MANAGER", "mydb", 4);
myconn = mypool.connection;

}

Method of Connection

Implemented in NES 3.0
60 Server-Side JavaScript Reference

Connection.cursor
Example 2: The following example uses an if condition to determine if an
application is connected to a database server. If the application is connected,
the isConnectedRoutine function runs; if the application is not connected,
the isNotConnected routine runs.

if(database.connected()) {
isConnectedRoutine() }

else {
isNotConnectedRoutine() }

cursor .

Creates a Cursor object.

Syntax cursor(sqlStatement [,updatable])

Parameters

Returns A new Cursor object.

Description The cursor method creates a Cursor object that contains the rows returned by
a SQL SELECT statement. The SELECT statement is passed to the cursor
method as the sqlStatement argument. If the SELECT statement does not
return any rows, the resulting Cursor object has no rows. The first time you
use the next method on the object, it returns false.

You can perform the following tasks with the Cursor object:

• Modify data in a server table.

• Navigate in a server table.

• Customize the display of the virtual table returned by a database query.

• Run stored procedures.

Method of Connection

Implemented in NES 3.0

sqlStatement A JavaScript string representing a SQL SELECT statement supported
by the database server.

updatable A Boolean parameter indicating whether or not the cursor is
updatable.
Chapter 1, Objects, Methods, and Properties 61

Connection.cursor
The cursor method does not automatically display the returned data. To
display this data, you must create custom HTML code. This HTML code may
display the rows in an HTML table, as shown in Example 3. The SQLTable
method is an easier way to display the output of a database query, but you
cannot navigate, modify data, or control the format of the output.

The optional parameter updatable specifies whether you can modify the
Cursor object you create with the cursor method. To create a Cursor object
you can modify, specify updatable as true. If you do not specify a value for
the updatable parameter, it is false by default.

If you create an updatable Cursor object, the answer set returned by the
sqlStatement parameter must be updatable. For example, the SELECT
statement in the sqlStatement parameter cannot contain a GROUP BY clause;
in addition, the query usually must retrieve key values from a table. For more
information on constructing updatable queries, consult your database vendor’s
documentation.

Examples Example 1. The following example creates the updatable cursor custs and
returns the columns ID, CUST_NAME, and CITY from the customer table:

custs = database.Cursor("select id, cust_name, city from customer",
true)

Example 2. You can construct the SELECT statement with the string
concatenation operator (+) and string variables such as client or request
property values, as shown in the following example:

custs = database.Cursor("select * from customer
where customerID = " + request.customerID);

Example 3. The following example demonstrates how to format the answer set
returned by the cursor method as an HTML table. This example first creates
Cursor object named videoSet and then displays two columns of its data
(videoSet.title and videoSet.synopsis).

// Create the videoSet Cursor
<SERVER>
videoSet = database.cursor("select * from videos

where videos.numonhand > 0 order by title");
</SERVER>
62 Server-Side JavaScript Reference

Connection.execute
// Begin creating an HTML table to contain the answer set
// Specify titles for the two columns in the answer set
<TABLE BORDER>
<CAPTION> Videos on Hand </CAPTION>
<TR>

<TH>Title</TH>
<TH>Synopsis</TH>

</TR>

// Use a while loop to iterate over each row in the cursor
<SERVER>
while(videoSet.next()) {
</SERVER>

// Use write statements to display the data in both columns
<TR>

<TH>
 <SERVER>write(videoSet.title)</SERVER></TH>

<TD><SERVER>write(videoSet.synopsis)</SERVER></TD>
</TR>

// End the while loop
<SERVER>
}
</SERVER>

// End the HTML table
</TABLE>

The values in the videoSet.title column are displayed within the A tag so a
user can click them as links. When a user clicks a title, the rent.html page
opens and the column value videoSet.id is passed to it as the value of
request.videoID.

See also Connection.SQLTable, Connection.cursor

execute .

Performs the specified SQL statement. Use for SQL statements other than
queries.

Syntax execute (stmt)

Parameters

Method of Connection

Implemented in NES 3.0

stmt A string representing the SQL statement to execute.
Chapter 1, Objects, Methods, and Properties 63

Connection.execute
Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description This method enables an application to execute any data definition language
(DDL) or data manipulation language (DML) SQL statement supported by the
database server that does not return a Cursor, such as CREATE, ALTER, or DROP.

Each database supports a standard core of DDL and DML statements. In
addition, they may each also support DDL and DML statements specific to that
database vendor. You can use execute to call any of those statements.
However, each database vendor may also provide functions you can use with
the database that are not DDL or DML statements. You cannot use execute to
call those functions. For example, you cannot call the Oracle describe
function or the Informix load function from the execute method.

Although technically you can use execute to perform data modification
(INSERT, UPDATE, and DELETE statements), you should instead use Cursor
objects. This makes your application more database-independent. Cursors also
provide support for binary large object (BLOb) data.

When using the execute method, your SQL statement must strictly conform to
the syntax requirements of the database server. For example, some servers
require each SQL statement to be terminated by a semicolon. See your server
documentation for more information.

If you have not explicitly started a transaction, the single statement is
automatically committed.

Examples In the following example, the execute method is used to delete a customer
from the customer table. customer.ID represents the unique ID of a customer
that is in the ID column of the customer table. The value for customer.ID is
passed into the DELETE statement as the value of the ID property of the
request object.

if(request.ID != null) {
database.execute("delete from customer

where customer.ID = " + request.ID)
}

64 Server-Side JavaScript Reference

Connection.majorErrorCode
majorErrorCode .

Major error code returned by the database server or ODBC.

Syntax majorErrorCode()

Parameters None.

Returns The result returned by this method depends on the database server being used:

• Informix: the Informix error code.

• Oracle: the code as reported by Oracle Call-level Interface (OCI).

• Sybase: the DB-Library error number or the SQL server message number.

Description SQL statements can fail for a variety of reasons, including referential integrity
constraints, lack of user privileges, record or table locking in a multiuser
database, and so on. When an action fails, the database server returns an error
message indicating the reason for failure. The LiveWire™ Database Service
provides two ways of getting error information: from the status code returned
by various methods or from special properties containing error messages and
codes.

Status codes are integers between 0 and 27, with 0 indicating a successful
execution of the statement and other numbers indicating an error, as shown in
the following table.

Method of Connection

Implemented in NES 3.0

Table 1.1 Database status codes.

Status
code

Explanation Status
code

Explanation

0 No error 14 Null reference parameter

1 Out of memory 15 Connection object not found

2 Object never initialized 16 Required information is missing

3 Type conversion error 17 Object cannot support multiple
readers

4 Database not registered 18 Object cannot support deletions
Chapter 1, Objects, Methods, and Properties 65

Connection.majorErrorCode
Examples This example updates the rentals table within a transaction. The updateRow
method assigns a database status code to the statusCode variable to indicate
whether the method is successful.

If updateRow succeeds, the value of statusCode is 0, and the transaction is
committed. If updateRow returns a statusCode value of either five or seven,
the values of majorErrorCode, majorErrorMessage, minorErrorCode, and
minorErrorMessage are displayed. If statusCode is set to any other value,
the errorRoutine function is called.

database.beginTransaction()
statusCode = cursor.updateRow("rentals")

if (statusCode == 0) {
database.commitTransaction()
}

5 Error reported by server 19 Object cannot support insertions

6 Message from server 20 Object cannot support updates

7 Error from vendor’s library 21 Object cannot support updates

8 Lost connection 22 Object cannot support indices

9 End of fetch 23 Object cannot be dropped

10 Invalid use of object 24 Incorrect connection supplied

11 Column does not exist 25 Object cannot support privileges

12 Invalid positioning within
object (bounds error)

26 Object cannot support cursors

13 Unsupported feature 27 Unable to open

Table 1.1 Database status codes.

Status
code

Explanation Status
code

Explanation
66 Server-Side JavaScript Reference

Connection.majorErrorMessage
if (statusCode == 5 || statusCode == 7) {
write("The operation failed to complete.
"
write("Contact your system administrator with the following:<P>"
write("The value of statusCode is " + statusCode + "
")
write("The value of majorErrorCode is " +

database.majorErrorCode() + "
")
write("The value of majorErrorMessage is " +

database.majorErrorMessage() + "
")
write("The value of minorErrorCode is " +

database.minorErrorCode() + "
")
write("The value of minorErrorMessage is " +

database.minorErrorMessage() + "
")
database.rollbackTransaction()
}

else {
errorRoutine()
}

majorErrorMessage .

Major error message returned by database server or ODBC. For server errors,
this typically corresponds to the server’s SQLCODE.

Syntax majorErrorMessage()

Parameters None.

Returns A string describing that depends on the database server:

• Informix: “Vendor Library Error: string,” where string is the error text from
Informix.

• Oracle: “Server Error: string,” where string is the translation of the return
code supplied by Oracle.

• Sybase: “Vendor Library Error: string,” where string is the error text from
DB-Library or “Server Error string,” where string is text from the SQL server,
unless the severity and message number are both 0, in which case it returns
just the message text.

Method of Connection

Implemented in NES 3.0
Chapter 1, Objects, Methods, and Properties 67

Connection.minorErrorCode
Description SQL statements can fail for a variety of reasons, including referential integrity
constraints, lack of user privileges, record or table locking in a multiuser
database, and so on. When an action fails, the database server returns an error
message indicating the reason for failure. The LiveWire Database Service
provides two ways of getting error information: from the status code returned
by connection and DbPool methods or from special connection or DbPool
properties containing error messages and codes.

Examples See Connection.majorErrorCode.

minorErrorCode .

Secondary error code returned by database vendor library.

Syntax minorErrorCode()

Parameters None.

Returns The result returned by this method depends on the database server:

• Informix: the ISAM error code, or 0 if there is no ISAM error.

• Oracle: the operating system error code as reported by OCI.

• Sybase: the severity level, as reported by DB-Library or the severity level, as
reported by the SQL server.

minorErrorMessage .

Secondary message returned by database vendor library.

Syntax minorErrorMessage()

Parameters None.

Method of Connection

Implemented in NES 3.0

Method of Connection

Implemented in NES 3.0
68 Server-Side JavaScript Reference

Connection.prototype
Returns The string returned by this method depends on the database server:

• Informix: “ISAM Error: string,” where string is the text of the ISAM error
code from Informix, or an empty string if there is no ISAM error.

• Oracle: the Oracle server name.

• Sybase: the operating system error text, as reported by DB-Library or the
SQL server name.

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype.

release .

Releases the connection back to the database pool.

Syntax release()

Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description Before calling the release method, you should close all open cursors. When
you call the release method, the runtime engine waits until all cursors have
been closed and then returns the connection to the database pool. The
connection is then available to the next user.

Property of Connection

Implemented in NES 2.0

Method of Connection

Implemented in NES 3.0
Chapter 1, Objects, Methods, and Properties 69

Connection.rollbackTransaction
If you don’t call the release method, the connection remains unavailable until
the object goes out of scope. Assuming the object has been assigned to a
variable, it can go out of scope at different times:

• If the variable is a property of the project object (such as
project.engconn), then it remains in scope until the application
terminates.

• If it is a property of the server object (such as server.engconn), it does
not go out of scope until the server goes down. You rarely want to have a
connection last the lifetime of the server.

• In all other cases, the variable is a property of the client request. In this
situation, the variable goes out of scope when the JavaScript finalize
method is called; that is, when control leaves the HTML page.

You must call the release method for all connections in a database pool
before you can call the DbPool object’s disconnect method. Otherwise, the
connection is still considered in use by the runtime engine, so the disconnect
waits until all connections are released.

rollbackTransaction .

Rolls back the current transaction.

Syntax rollbackTransaction()

Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description This method will undo all modifications since the last call to
beginTransaction.

For the database object, the scope of a transaction is limited to the current
request (HTML page) in the application. If the application exits the page before
calling the commitTransaction or rollbackTransaction method, then the
transaction is automatically either committed or rolled back, based on the

Method of Connection

Implemented in NES 3.0
70 Server-Side JavaScript Reference

Connection.SQLTable
setting of the commitflag parameter when the connection was established.
This parameter is provided when you make the connection with the database
or DbPool object.

For Connection objects, the scope of a transaction is limited to the lifetime of
that object. If the connection is released or the pool of connections is closed
before calling the commitTransaction or rollbackTransaction method,
then the transaction is automatically either committed or rolled back, based on
the commitFlag value.

If there is no current transaction (that is, if the application has not called
beginTransaction), calls to commitTransaction and
rollbackTransaction are ignored.

The LiveWire Database Service does not support nested transactions. If you call
beginTransaction when a transaction is already open (that is, you’ve called
beginTransaction and have yet to commit or roll back that transaction),
you’ll get an error message.

SQLTable .

Displays query results. Creates an HTML table for results of an SQL SELECT
statement.

Syntax SQLTable (stmt)

Parameters

Returns A string representing an HTML table, with each row and column in the query as
a row and column of the table.

Description Although SQLTable does not give explicit control over how the output is
formatted, it is the easiest way to display query results. If you want to
customize the appearance of the output, use a Cursor object to create your
own display function.

Note Every Sybase table you use with a cursor must have a unique index.

Method of Connection

Implemented in NES 3.0

stmt A string representing an SQL SELECT statement.
Chapter 1, Objects, Methods, and Properties 71

Connection.SQLTable
Example If connobj is a Connection object and request.sql contains an SQL query,
then the following JavaScript statements display the result of the query in a
table:

write(request.sql)
connobj.SQLTable(request.sql)

The first line simply displays the SELECT statement, and the second line
displays the results of the query. This is the first part of the HTML generated by
these statements:

select * from videos
<TABLE BORDER>
<TR>
<TH>title</TH>
<TH>id</TH>
<TH>year</TH>
<TH>category</TH>
<TH>quantity</TH>
<TH>numonhand</TH>
<TH>synopsis</TH>
</TR>
<TR>
<TD>A Clockwork Orange</TD>
<TD>1</TD>
<TD>1975</TD>
<TD>Science Fiction</TD>
<TD>5</TD>
<TD>3</TD>
<TD> Little Alex, played by Malcolm Macdowell,
and his droogies stop by the Miloko bar for a
refreshing libation before a wild night on the town.
</TD>
</TR>
<TR>
<TD>Sleepless In Seattle</TD>
...

As this example illustrates, SQLTable generates an HTML table, with column
headings for each column in the database table and a row in the table for each
row in the database table.
72 Server-Side JavaScript Reference

Connection.storedProc
storedProc .

Creates a stored procedure object and runs the specified stored procedure.

Syntax storedProc (procName [, inarg1 [, inarg2 [, ... inargN]]])

Parameters

Returns A new Stproc object.

Description The scope of the stored procedure object is a single page of the application. In
other words, all methods to be executed for any instance of storedProc must
be invoked on the same application page as the page on which the object is
created.

When you create a stored procedure, you can specify default values for any of
the parameters. Then, if a parameter is not included when the stored procedure
is executed, the procedure uses the default value. However, when you call a
stored procedure from a server-side JavaScript application, you must indicate
that you want to use the default value by typing "/Default/" in place of the
parameter. (Remember that JavaScript is case sensitive.) For example:

spObj = connobj.storedProc ("newhire", "/Default/", 3)

toString .

Returns a string representing the specified object.

Syntax toString()

Parameters None.

Method of Connection

Implemented in NES 3.0

procName A string specifying the name of the stored procedure to run.

inarg1, ..., inargN The input parameters to be passed to the procedure, separated
by commas.

Method of Connection

Implemented in NES 3.0
Chapter 1, Objects, Methods, and Properties 73

Connection.toString
Description Every object has a toString method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation.

You can use toString within your own code to convert an object into a string,
and you can create your own function to be called in place of the default
toString method.

This method returns a string of the following format:

db "name" "userName" "dbtype" "serverName"

where

The method displays an empty string for any of attributes whose value is
unknown.

For information on defining your own toString method, see the
Object.toString method.

name The name of the database.

userName The name of the user connected to the database.

dbType One of ORACLE, SYBASE, INFORMIX, DB2, or ODBC.

serverName The name of the database server.
74 Server-Side JavaScript Reference

Cursor
Cursor
Server-side object. A Cursor object represents a database cursor for a specified
SQL SELECT statement.

Created by The cursor method of a Connection object or of the database object. You
do not call a Cursor constructor.

Description A database query is said to return a Cursor. You can think of a Cursor as a
virtual table, with rows and columns specified by the query. A cursor also has a
notion of a current row, which is essentially a pointer to a row in the virtual
table. When you perform operations with a Cursor, they usually affect the
current row.

You can perform the following tasks with the Cursor object:

• Modify data in a database table.

• Navigate in a database table.

• Customize the display of the virtual table returned by a database query.

You can use a Cursor object to customize the display of the virtual table by
specifying which columns and rows to display and how to display them. The
Cursor object does not automatically display the data returned in the virtual
table. To display this data, you must create HTML code such as that shown in
Example 4 for the cursor method.

A pointer indicates the current row in a Cursor. When you create a Cursor, the
pointer is initially positioned before the first row of the cursor. The next
method makes the following row in the cursor the current row. If the SELECT
statement used in the call to the cursor method does not return any rows, the
method still creates a Cursor object. However, since that object has no rows,
the first time you use the next method on the object, it returns false. Your
application should check for this condition.

Important A database cursor does not guarantee the order or positioning of its rows. For
example, if you have an updatable cursor and add a row to the cursor, you
have no way of knowing where that row appears in the cursor.

Server-side object

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 75

Cursor
When finished with a Cursor object, use the close method to close it and
release the memory it uses. If you release a connection that has an open cursor,
the runtime engine waits until the cursor is closed before actually releasing the
connection.

If you do not explicitly close a cursor with the close method, the JavaScript
runtime engine on the server automatically tries to close all open cursors when
the associated database or DbPool object goes out of scope. This can tie up
system resources unnecessarily. It can also lead to unpredictable results.

You can use the prototype property of the Cursor class to add a property to
all Cursor instances. If you do so, that addition applies to all Cursor instances
running in all applications on your server, not just in the single application that
made the change. This allows you to expand the capabilities of this object for
your entire server.

Note Every Sybase table you use with a cursor must have a unique index.

Properties. The properties of cursor objects vary from instance to instance.
Each Cursor object has a property for each named column in the cursor. In
other words, when you create a cursor, it acquires a property for each column
in the virtual table, as determined by the SELECT statement.

Note Unlike other properties in JavaScript, cursor properties corresponding to
column names are not case sensitive, because SQL is not case sensitive and
some databases are not case sensitive.

You can also refer to properties of a Cursor object as elements of an array.
The 0-index array element corresponds to the first column, the 1-index array
element corresponds to the second column, and so on.

SELECT statements can retrieve values that are not columns in the database,
such as aggregate values and SQL expressions. You can display these values by
using the cursor’s property array index for the value.

Property
Summary Property Description

cursorColumn An array of objects corresponding to the columns in a cursor.

prototype Allows the addition of properties to the Cursor object.
76 Server-Side JavaScript Reference

Cursor.close
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object.

close .

Closes the cursor and frees the allocated memory.

Syntax close()

Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description The close method closes a cursor or result set and releases the memory it uses.
If you do not explicitly close a cursor or result set with the close method, the
JavaScript runtime engine on the server automatically closes all open cursors
and result sets when the corresponding client object goes out of scope.

Method Description

close Closes the cursor and frees the allocated memory.

columnName the name of the column in the cursor corresponding to the
specified number.

columns Returns the number of columns in the cursor.

deleteRow Deletes the current row in the specified table.

insertRow Inserts a new row in the specified table.

next Moves the current row to the next row in the cursor.

updateRow Updates records in the current row of the specified table in the
cursor.

Method of Cursor

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 77

Cursor.columnName
Examples The following example creates the rentalSet cursor, performs certain
operations on it, and then closes it with the close method.

// Create a Cursor object
rentalSet = database.cursor("SELECT * FROM rentals")

// Perform operations on the cursor
cursorOperations()

//Close the cursor
err = rentalSet.close()

columnName .

Returns the name of the column in the cursor corresponding to the specified
number.

Syntax columnName (n)

Parameters

Returns The name of the column.

The result sets for Informix and DB2 stored procedures do not have named
columns. Do not use this method when connecting to those databases. In those
cases you should always refer to the result set columns by the index number.

If your SELECT statement uses a wildcard (*) to select all the columns in a table,
the columnName method does not guarantee the order in which it assigns
numbers to the columns. That is, suppose you have this statement:

custs = connobj.cursor ("select * from customer");

Method of Cursor

Implemented in NES 2.0

n Zero-based integer corresponding to the column in the query. The
first column in the result set is 0, the second is 1, and so on.
78 Server-Side JavaScript Reference

Cursor.columns
If the customer table has 3 columns, ID, NAME, and CITY, you cannot tell
ahead of time which of these columns corresponds to custs.columnName(0).
(Of course, you are guaranteed that successive calls to columnName have the
same result.) If the order matters to you, you can instead hard-code the column
names in the select statement, as in the following statement:

custs = connobj.cursor ("select ID, NAME, CITY from customer");

With this statement, custs.columnName(0) is ID, custs.columnName(1) is
NAME, and custs.columnName(2) is CITY.

Examples The following example assigns the name of the first column in the
customerSet cursor to the variable header:

customerSet=database.cursor(SELECT * FROM customer ORDER BY name)
header = customerSet.columnName(0)

columns .

Returns the number of columns in the cursor.

Syntax columns()

Parameters None.

Returns The number of named and unnamed columns.

Examples See Example 2 of Cursor for an example of using the columns method with
the cursorColumn array.

The following example returns the number of columns in the custs cursor:

custs.columns()

Method of Cursor

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 79

Cursor.cursorColumn
cursorColumn .

An array of objects corresponding to the columns in a cursor.

Examples Example 1: Using column titles as cursor properties. The following
example creates the customerSet Cursor object containing the id, name, and
city rows from the customer table. The next method moves the pointer to
the first row of the cursor. The id, name, and city columns become the
cursor properties customer.id, customerSet.name, and
customerSet.city. Because the pointer is in the first row of the cursor, the
write method displays the values of these properties for the first row.

// Create a Cursor object
customerSet = database.cursor("SELECT id, name, city FROM customer")

// Navigate to the first row
customerSet.next()

write(customerSet.id + "
")
write(customerSet.name + "
")
write(customerSet.city + "
")

// Close the cursor
customerSet.close()

This query might return a virtual table containing the following rows:

1 John Smith Anytown
2 Fred Flintstone Bedrock
3 George Jetson Spacely

Example 2: Iterating with the cursor properties. In this example, the
cursor property array is used in a for statement to iterate over each column in
the customerSet cursor.

// Create a Cursor object
customerSet = database.cursor("SELECT id, name, city FROM customer")

// Navigate to the first row
customerSet.next()

// Start a for loop
for (var i = 0; i < customerSet.columns(); i++) {
write(customerSet[i] + "
") }

// Close the cursor
customerSet.close()

Property of Cursor

Implemented in NES 2.0
80 Server-Side JavaScript Reference

Cursor.deleteRow
Because the next statement moves the pointer to the first row, the preceding
code displays values similar to the following:

1
John Smith
Anytown

Example 3. Using the cursor properties with an aggregate expression. In
this example, the salarySet cursor contains a column created by the
aggregate function MAX.

salarySet = database.cursor("SELECT name, MAX(salary) FROM employee")

Because the aggregate column does not have a name, you must use the refer to
it by its index number, as follows:

write(salarySet[1])

deleteRow .

Deletes the current row in the specified table.

Syntax deleteRow (table)

Parameters

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description The deleteRow method uses an updatable cursor to delete the current row
from the specified table. See Cursor for information about creating an
updatable cursor.

Examples In the following example, the deleteRow method removes a customer from the
customer database. The cursor method creates the customerSet cursor
containing a single row; the value for customer.ID is passed in as a request
object property. The next method moves the pointer to the only row in the
cursor, and the deleteRow method deletes the row.

Method of Cursor

Implemented in NES 2.0

table A string specifying the name of the table from which to delete a
row.
Chapter 1, Objects, Methods, and Properties 81

Cursor.insertRow
database.beginTransaction()
customerSet = database.cursor("select * from customer where

customer.ID = " + request.ID, true)
customerSet.next()
statusCode = customerSet.deleteRow("customer")
customerSet.close()
if (statusCode == 0) {

database.commitTransaction() }
else {

database.rollbackTransaction() }

In this example, the deleteRow method sets the value of statusCode to
indicate whether deleteRow succeeds or fails. If statusCode is 0, the method
has succeeded and the transaction is committed; otherwise, the transaction is
rolled back.

insertRow .

Inserts a new row in the specified table.

Syntax insertRow (table)

Parameters

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description The insertRow method uses an updatable cursor to insert a row in the
specified table. See the cursor method for information about creating an
updatable cursor.

The location of the inserted row depends on the database vendor library. If you
need to get at the row after calling the insertRow method, you must first close
the existing cursor and then open a new cursor.

Method of Cursor

Implemented in NES 2.0

table A string specifying the name of the table in which to insert a row.
82 Server-Side JavaScript Reference

Cursor.insertRow
You can specify values for the row you are inserting as follows:

• By explicitly assigning values to each column in the cursor and then calling
the insertRow method.

• By navigating to a row with the next method, explicitly assigning values for
some columns, and then calling the insertRow method. Columns that are
not explicitly assigned values receive values from the row to which you
navigated.

• By not navigating to another record and then calling the insertRow
method. If you do not issue a next method, columns that are not explicitly
assigned values are null.

The insertRow method inserts a null value in any table columns that do not
appear in the cursor.

The insertRow method returns a status code based on a database server
message to indicate whether the method completed successfully. If successful,
the method returns a 0; otherwise, it returns a nonzero integer to indicate the
reason it failed. See the Server-Side JavaScript Guide for an explanation of status
codes.

Examples In some applications, such as a video-rental application, a husband, wife, and
children could all share the same account number but be listed under different
names. In this example, a user has just added a name to the accounts table
and wants to add a spouse’s name to the same account.

customerSet = database.cursor("select * from customer", true)

x=true
while (x) {

x = customerSet.next() }

customerSet.name = request.theName
customerSet.insertRow("accounts")
customerSet.close()

In this example, the next method navigates to the last row in the table, which
contains the most recently added account. The value of theName is passed in
by the request object and assigned to the name column in the customerSet
cursor. The insertRow method inserts a new row at the end of the table. The
value of the name column in the new row is the value of theName. Because the
application used the next method to navigate, the value of every other column
in the new row is the same as the value in the previous row.
Chapter 1, Objects, Methods, and Properties 83

Cursor.next
next .

Moves the current row to the next row in the cursor.

Syntax next()

Parameters None.

Returns False if the current row is the last row; otherwise, true.

Description Initially, the pointer (or current row) for a cursor or result set is positioned
before the first row returned. Use the next method to move the pointer
through the records in the cursor or result set. This method moves the pointer
to the next row and returns true as long as there is another row available.
When the cursor or result set has reached the last row, the method returns
false. Note that if the cursor is empty, this method always returns false.

Examples Example 1. This example uses the next method to navigate to the last row in
a cursor. The variable x is initialized to true. When the pointer is in the last row
of the cursor, the next method returns false and terminates the while loop.

customerSet = database.cursor("select * from customer", true)

x = true
while (x) {

x = customerSet.next() }

Example 2. In the following example, the rentalSet cursor contains columns
named videoId, rentalDate, and dueDate. The next method is called in a
while loop that iterates over every row in the cursor. When the pointer is on
the last row in the cursor, the next method returns false and terminates the
while loop.

Method of Cursor

Implemented in NES 2.0
84 Server-Side JavaScript Reference

Cursor.prototype
This example displays the three columns of the cursor in an HTML table:

<SERVER>
// Create a Cursor object
rentalSet = database.cursor("SELECT videoId, rentalDate, returnDate

FROM rentals")
</SERVER>

// Create an HTML table
<TABLE BORDER>
<TR>
<TH>Video ID</TH>
<TD>Rental Date</TD>
<TD>Due Date</TD>
</TR>

<SERVER>
// Iterate through each row in the cursor
while (rentalSet.next()) {
</SERVER>

// Display the cursor values in the HTML table
<TR>
<TH><SERVER>write(rentalSet.videoId)</SERVER></TH>
<TD><SERVER>write(rentalSet.rentalDate)</SERVER></TD>
<TD><SERVER>write(rentalSet.returnDate)</SERVER></TD>
</TR>

// Terminate the while loop
<SERVER>
}
</SERVER>

// End the table
</TABLE>

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype.
Property of Cursor

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 85

Cursor.updateRow
updateRow .

Updates records in the current row of the specified table in the cursor.

Syntax updateRow (table)

Parameters

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description The updateRow method lets you use values in the current row of an updatable
cursor to modify a table. See the cursor method for information about creating
an updatable cursor. Before performing an updateRow, you must perform at
least one next with the cursor so the current row is set to a row.

Assign values to columns in the current row of the cursor, and then use the
updateRow method to update the current row of the table specified by the
table parameter. Column values that are not explicitly assigned are not
changed by the updateRow method.

The updateRow method returns a status code based on a database server
message to indicate whether the method completed successfully. If successful,
the method returns a 0; otherwise, it returns a nonzero integer to indicate the
reason it failed. See the Server-Side JavaScript Guide for an explanation of the
individual status codes.

Method of Cursor

Implemented in NES 2.0

table String specifying the name of the table to update.
86 Server-Side JavaScript Reference

Cursor.updateRow
Examples This example uses updateRow to update the returndate column of the
rentals table. The values of customerID and videoID are passed into the
cursor method as properties of the request object. When the videoReturn
Cursor object opens, the next method navigates to the only record returned
and updates the value in the returnDate field.

// Create a cursor containing the rented video
videoReturn = database.cursor("SELECT * FROM rentals WHERE

customerId = " + request.customerID + " AND
videoId = " + request.videoID, true)

// Position the pointer on the first row of the cursor
videoReturn.next()

// Assign today’s date to the returndate column
videoReturn.returndate = today

// Update the row
videoReturn.updateRow("rentals")
Chapter 1, Objects, Methods, and Properties 87

database
database
Lets an application interact with a relational database.

Created by The JavaScript runtime engine on the server automatically creates the database
object. You indicate that you want to use this object by calling its connect
method.

Description The JavaScript runtime engine on the server creates a database object when an
application connects to a database server. Each application has only one
database object. You can use the database object to interact with the
database on the server. Alternatively, you can use the DbPool and Connection
objects.

You can use the database object to connect to the database server and
perform the following tasks:

• Display the results of a query as an HTML table

• Execute SQL statements on the database server

• Manage transactions

• Run stored procedures

• Handle errors returned by the target database

The scope of a database connection created with the database object is a single
HTML page. That is, as soon as control leaves the HTML page, the runtime
engine closes the database connection. You should close all open cursors,
stored-procedure objects, and result sets before the end of the page.

If possible, your application should make the database connection on its initial
page. Doing so prevents conflicts from multiple client requests trying to
manipulate the status of the connections at once.

Internally, JavaScript creates the database object as an instance of the
DbBuiltin class. In most circumstances, this is an implementation detail you
do not need to be aware of, because you cannot create instances of this class.
However, you can use the prototype property of the DbBuiltin class to add
a property to the predefined database object. If you do so, that addition

Server-side object

Implemented in NES 2.0

NES 3.0: added storedProc and storedProcArgs methods
88 Server-Side JavaScript Reference

database
applies to the database object when used in all applications on your server,
not just in the single application that made the change. This allows you to
expand the capabilities of this object for your entire server.

Transactions. A transaction is a group of database actions that are performed
together. Either all the actions succeed together or all fail together. When you
attempt to have all of the actions make permanent changes to the database, you
are said to commit a transaction. You can also roll back a transaction that you
have not committed; this cancels all the actions.

You can use explicit transaction control for any set of actions, by using the
beginTransaction, commitTransaction, and rollbackTransaction
methods. If you do not control transactions explicitly, the runtime engine uses
the underlying database’s auto-commit feature to treat each database
modification as a separate transaction. Each statement is either committed or
rolled back immediately, based on the success or failure of the individual
statement. Explicitly managing transactions overrides this default behavior.

In some databases, such as Oracle, auto-commit is an explicit feature that
LiveWire turns on for individual statements. In others, such as Informix, it is the
default behavior when you do not create a transaction.

Note You must use explicit transaction control any time you make changes to a
database. If you do not, your database may return errors; even it does not, you
cannot be guaranteed of data integrity without using transactions. In addition,
any time you use cursors, you are encourage to use explicit transactions to
control the consistency of your data.

For the database object, the scope of a transaction is limited to the current
request (HTML page) in an application. If the application exits the page before
calling the commitTransaction or rollbackTransaction method, then the
transaction is automatically either committed or rolled back, depending on the
setting for the commitflag parameter when the connection was established.
This parameter is provided either to the pool object’s constructor or to its
connect method. For further information, see connect.

Property
Summary Property Description

prototype Allows the addition of properties to the database object.
Chapter 1, Objects, Methods, and Properties 89

database
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object.

Method Description

beginTransaction Begins an SQL transaction.

commitTransaction Commits the current SQL transaction.

connect Connects to a particular configuration of database and
user.

connected Returns true if the database pool (and hence this
connection) is connected to a database.

cursor Creates a database cursor for the specified SQL SELECT
statement.

disconnect Disconnects all connections from the database.

execute Performs the specified SQL statement.

majorErrorCode Major error code returned by the database server or
ODBC.

majorErrorMessage Major error message returned by the database server or
ODBC.

minorErrorCode Secondary error code returned by vendor library.

minorErrorMessage Secondary message returned by vendor library.

rollbackTransaction Rolls back the current SQL transaction.

SQLTable Displays query results. Creates an HTML table for results
of an SQL SELECT statement.

storedProc Creates a stored-procedure object and runs the specified
stored procedure.

storedProcArgs Creates a prototype for a Sybase stored procedure.

toString Returns a string representing the specified object.
90 Server-Side JavaScript Reference

database.beginTransaction
Examples The following example creates a database object and opens a standard
connection to the customer database on an Informix server. The name of the
server is blue, the user name is ADMIN, and the password is MANAGER.

database.connect("INFORMIX", "blue", "ADMIN", "MANAGER", "inventory")

In this example, many clients can connect to the database simultaneously, but
they all share the same connection, user name, and password.

See also Cursor, database.connect

beginTransaction .

Begins a new SQL transaction.

Syntax beginTransaction()

Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description All subsequent actions that modify the database are grouped with this
transaction, known as the current transaction.

For the database object, the scope of a transaction is limited to the current
request (HTML page) in the application. If the application exits the page before
calling the commitTransaction or rollbackTransaction method, then the
transaction is automatically either committed or rolled back, based on the
setting of the commitflag parameter when the connection was established.
This parameter is provided when you make the connection by calling
database.connect.

For Connection objects, the scope of a transaction is limited to the lifetime of
that object. If the connection is released or the pool of connections is closed
before calling the commitTransaction or rollbackTransaction method,
then the transaction is automatically either committed or rolled back, based on

Method of database

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 91

database.beginTransaction
the setting of the commitflag parameter when the connection was established.
This parameter is provided when you make the connection by calling the
connect method or in the DbPool constructor.

If there is no current transaction (that is, if the application has not called
beginTransaction), calls to commitTransaction and
rollbackTransaction are ignored.

The LiveWire Database Service does not support nested transactions. If you call
beginTransaction when a transaction is already open (that is, you’ve called
beginTransaction and have yet to commit or roll back that transaction),
you’ll get an error message.

Examples This example updates the rentals table within a transaction. The values of
customerID and videoID are passed into the cursor method as properties of
the request object. When the videoReturn Cursor object opens, the next
method navigates to the only record in the virtual table and updates the value
in the returnDate field.

The variable x is assigned a database status code to indicate if the updateRow
method is successful. If updateRow succeeds, the value of x is 0, and the
transaction is committed; otherwise, the transaction is rolled back.

// Begin a transaction
database.beginTransaction();

// Create a Date object with the value of today’s date
today = new Date();

// Create a cursor with the rented video in the virtual table
videoReturn = database.cursor("SELECT * FROM rentals WHERE

customerId = " + request.customerID + " AND
videoId = " + request.videoID, true);

// Position the pointer on the first row of the cursor
// and update the row
videoReturn.next()
videoReturn.returndate = today;
x = videoReturn.updateRow("rentals");

// End the transaction by committing or rolling back
if (x == 0) {

database.commitTransaction() }
else {

database.rollbackTransaction() }

// Close the cursor
videoReturn.close();
92 Server-Side JavaScript Reference

database.commitTransaction
commitTransaction .

Commits the current transaction.

Syntax commitTransaction()

Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description This method attempts to commit all actions since the last call to
beginTransaction.

For the database object, the scope of a transaction is limited to the current
request (HTML page) in the application. If the application exits the page before
calling the commitTransaction or rollbackTransaction method, then the
transaction is automatically either committed or rolled back, based on the
setting of the commitflag parameter when the connection was established.
This parameter is provided when you make the connection with the database
or DbPool object.

For Connection objects, the scope of a transaction is limited to the lifetime of
that object. If the connection is released or the pool of connections is closed
before calling the commitTransaction or rollbackTransaction method,
then the transaction is automatically either committed or rolled back, based on
the commitFlag value.

If there is no current transaction (that is, if the application has not called
beginTransaction), calls to commitTransaction and
rollbackTransaction are ignored.

The LiveWire Database Service does not support nested transactions. If you call
beginTransaction when a transaction is already open (that is, you’ve called
beginTransaction and have yet to commit or roll back that transaction),
you’ll get an error message.

Method of database

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 93

database.connect
connect .

Connects the pool to a particular configuration of database and user.

Syntax 1. connect (dbtype, serverName, username, password,
databaseName)

2. connect (dbtype, serverName, username, password,
databaseName [, maxConnections])

3. connect (dbtype, serverName, username, password,
databaseName [, maxConnections [, commitflag]])

Method of database

Implemented in NES 2.0
94 Server-Side JavaScript Reference

database.connect
Parameters
dbtype Database type; one of ORACLE, SYBASE, INFORMIX, DB2, or

ODBC.

serverName Name of the database server to which to connect. The server name
typically is established when the database is installed and is
different for different database types:

• DB2: Local database alias. On both NT and UNIX, this is set up
by the client or the DB2 Command Line Processor.

• Informix: Informix server. On NT, this is specified with the
setnet32 utility; on UNIX, in the sqlhosts file.

• Oracle: Service. On both NT and UNIX, this specified in the
tnsnames.ora file. On NT, you can use the SQL*Net easy
configuration to specify it. If your Oracle database server is
local, specify the empty string for this argument.

• ODBC: Data source name. On NT, this is specified in the ODBC
Administrator; on UNIX, in the .odbc.ini file. If you are using
the Web Server as a user the file .odbc.ini must be in your
home directory; if as a system, it must be in the root directory.

• Sybase: Server name (the DSQUERY parameter). On NT, this is
specified with the sqledit utility; on UNIX, with the
sybinit utility.

If in doubt, see your database or system administrator. For ODBC,
this is the name of the ODBC service as specified in Control Panel.

userName Name of the user to connect to the database. Some relational
database management systems (RDBMS) require that this be the
same as your operating system login name; others maintain their
own collections of valid user names. See your system administrator
if you are in doubt.
Chapter 1, Objects, Methods, and Properties 95

database.connect
password User’s password. If the database does not require a password, use
an empty string ("").

databaseName Name of the database to connect to for the given serverName. If
your database server supports the notion of multiple databases on a
single server, supply the name of the database to use. If it does not,
use an empty string (""). For Oracle, ODBC, and DB2, you must
always use an empty string.

• For Oracle, specify this information in the tnsnames.ora file.

• For ODBC, if you want to connect to a particular database,
specify the database name specified in the datasource
definition.

• For DB2, there is no concept of a database name; the database
name is always the server name (as specified with
serverName).

maxConnections Number of connections to be created and cached in the pool. The
runtime engine attempts to create as many connections as specified
with this parameter. If successful, it stores those connections for
later use.

If you do not supply this parameter, its value is whatever you
specify in the Application Manager when you install the application
as the value for Built-in Maximum Database Connections.

Remember that your database client license probably specifies a
maximum number of connections. Do not set this parameter to a
number higher than your license allows. For Sybase, you can have
at most 100 connections.

If your database client library is not multithreaded, it can only
support one connection at a time. In this case, your application
performs as though you specified 1 for this parameter. For a current
list of which database client libraries are multithreaded, see the
Enterprise Server 3.0 Release Notes
96 Server-Side JavaScript Reference

database.connect
Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description When you call this method, the runtime engine first closes and releases any
currently open connections. It then reconnects the pool with the new
configuration. You should be sure that all connections have been released
before calling this method.

The first version of this method creates and caches one connection. When this
connection goes out of scope, pending transactions are rolled back.

The second version of this method attempts to create as many connections as
specified by the maxConnections parameter. If successful, it stores those
connections for later use. If the runtime engine does not obtain the requested
connections, it returns an error. When this connection goes out of scope,
pending transactions are rolled back.

The third version of this method does everything the second version does. In
addition, the commitflag parameter indicates what to do with pending
transactions when this connection goes out of scope. If this parameter is false
(the default), a pending transaction is rolled back. If this parameter is true, a
pending transaction if committed.

If possible, your application should call this method on its initial page. Doing
so prevents conflicts from multiple client requests trying to connect and
disconnect.

commitFlag A Boolean value indicating whether to commit a pending
transaction when the connection is released or the object is
finalized.

(If the transaction is on a single page, the object is finalized at the
end of the page. If the transaction spans multiple pages, the object
is finalized when the connection returns to the pool.)

If this parameter is false, a pending transaction is rolled back. If this
parameter is true, a pending transaction if committed. For DbPool,
the default value is false; for database, the default value is true. If
you specify this parameter, you must also specify the
maxConnections parameter.
Chapter 1, Objects, Methods, and Properties 97

database.connected
Example The following statement creates four connections to an Informix database
named mydb on a server named myserv, with user name SYSTEM and
password MANAGER. Pending transactions are rolled back at the end of a client
request:

database.connect("INFORMIX", "myserv", "SYSTEM", "MANAGER", "mydb", 4)

connected .

Tests whether the database pool and all of its connections are connected to a
database.

Syntax connected()

Parameters None.

Returns True if the pool (and hence a particular connection in the pool) is currently
connected to a database; otherwise, false.

Description The connected method indicates whether this object is currently connected to
a database.

If this method returns false for a Connection object, you cannot use any other
methods of that object. You must reconnect to the database, using the DbPool
object, and then get a new Connection object. Similarly, if this method returns
false for the database object, you must reconnect before using other methods
of that object.

Example Example 1: The following code fragment checks to see if the connection is
currently open. If it’s not, it reconnects the pool and reassigns a new value to
the myconn variable.

if (!myconn.connected()) {
mypool.connect ("INFORMIX", "myserver", "SYSTEM", "MANAGER", "mydb",

4);
myconn = mypool.connection;

}

Method of database

Implemented in NES 2.0
98 Server-Side JavaScript Reference

database.cursor
Example 2: The following example uses an if condition to determine if an
application is connected to a database server. If the application is connected,
the isConnectedRoutine function runs; if the application is not connected,
the isNotConnected routine runs.

if(database.connected()) {
isConnectedRoutine() }

else {
isNotConnectedRoutine() }

cursor .

Creates a Cursor object.

Syntax cursor(sqlStatement[, updatable])

Parameters

Returns A new Cursor object.

Description The cursor method creates a Cursor object that contains the rows returned by
a SQL SELECT statement. The SELECT statement is passed to the cursor
method as the sqlStatement argument. If the SELECT statement does not
return any rows, the resulting Cursor object has no rows. The first time you
use the next method on the object, it returns false.

You can perform the following tasks with the Cursor object:

• Modify data in a server table.

• Navigate in a server table.

• Customize the display of the virtual table returned by a database query.

• Run stored procedures.

Method of database

Implemented in NES 2.0

sqlStatement A JavaScript string representing a SQL SELECT statement supported
by the database server.

updatable A Boolean parameter indicating whether or not the cursor is
updatable.
Chapter 1, Objects, Methods, and Properties 99

database.cursor
The cursor method does not automatically display the returned data. To
display this data, you must create custom HTML code. This HTML code may
display the rows in an HTML table, as shown in Example 3. The SQLTable
method is an easier way to display the output of a database query, but you
cannot navigate, modify data, or control the format of the output.

The optional parameter updatable specifies whether you can modify the
Cursor object you create with the cursor method. To create a Cursor object
you can modify, specify updatable as true. If you do not specify a value for
the updatable parameter, it is false by default.

If you create an updatable Cursor object, the virtual table returned by the
sqlStatement parameter must be updatable. For example, the SELECT
statement in the sqlStatement parameter cannot contain a GROUP BY clause;
in addition, the query usually must retrieve key values from a table. For more
information on constructing updatable queries, consult your database vendor’s
documentation.

Examples Example 1. The following example creates the updatable cursor custs and
returns the columns ID, CUST_NAME, and CITY from the customer table:

custs=database.cursor("select id, cust_name, city from customer", true)

Example 2. You can construct the SELECT statement with the string
concatenation operator (+) and string variables such as client or request
property values, as shown in the following example:

custs = database.cursor("select * from customer
where customerID = " + request.customerID);

Example 3. The following example demonstrates how to format the virtual
table returned by the cursor method as an HTML table. This example first
creates Cursor object named videoSet and then displays two columns of its
data (videoSet.title and videoSet.synopsis).

// Create the videoSet cursor
<SERVER>
videoSet = database.cursor("select * from videos

where videos.numonhand > 0 order by title");
</SERVER>
100 Server-Side JavaScript Reference

database.disconnect
// Begin creating an HTML table to contain the virtual table
// Specify titles for the two columns in the virtual table
<TABLE BORDER>
<CAPTION> Videos on Hand </CAPTION>
<TR>

<TH>Title</TH>
<TH>Synopsis</TH>

</TR>

// Use a while loop to iterate over each row in the cursor
<SERVER>
while(videoSet.next()) {
</SERVER>

// Use write statements to display the data in both columns
<TR>

<TH>
 <SERVER>write(videoSet.title)</SERVER></TH>

<TD><SERVER>write(videoSet.synopsis)</SERVER></TD>
</TR>

// End the while loop
<SERVER>
}
</SERVER>

// End the HTML table
</TABLE>

The values in the videoSet.title column are displayed within the A tag so a
user can click them as links. When a user clicks a title, the rent.html page
opens and the column value videoSet.id is passed to it as the value of
request.videoID.

See also database.SQLTable, database.cursor

disconnect .

Disconnects all connections in the pool from the database.

Syntax disconnect()

Parameters None.

Method of database

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 101

database.execute
Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description Before calling the disconnect method, you must first call the release method
for all connections in this database pool. Otherwise, the connection is still
considered in use by the system, so the disconnect waits until all connections
are released.

After disconnecting from a database, the only methods of this object you can
use are connect and connected.

Examples The following example uses an if condition to determine if an application is
connected to a database server. If the application is connected, the application
calls the disconnect method; if the application is not connected, the
isNotConnected routine runs.

if(database.connected()) {
database.disconnect() }

else {
isNotConnectedRoutine() }

execute .

Performs the specified SQL statement. Use for SQL statements other than
queries.

Syntax execute (stmt)

Parameters

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Method of database

Implemented in NES 2.0

stmt A string representing the SQL statement to execute.
102 Server-Side JavaScript Reference

database.majorErrorCode
Description This method enables an application to execute any data definition language
(DDL) or data manipulation language (DML) SQL statement supported by the
database server that does not return a cursor, such as CREATE, ALTER, or DROP.

Each database supports a standard core of DDL and DML statements. In
addition, they may each also support DDL and DML statements specific to that
database vendor. You can use execute to call any of those statements.
However, each database vendor may also provide functions you can use with
the database that are not DDL or DML statements. You cannot use execute to
call those functions. For example, you cannot call the Oracle describe
function or the Informix load function from the execute method.

Although technically you can use execute to perform data modification
(INSERT, UPDATE, and DELETE statements), you should instead use Cursor
objects. This makes your application more database-independent. Cursors also
provide support for binary large object (BLOb) data.

When using the execute method, your SQL statement must strictly conform to
the syntax requirements of the database server. For example, some servers
require each SQL statement to be terminated by a semicolon. See your server
documentation for more information.

If you have not explicitly started a transaction, the single statement is
automatically committed.

Examples In the following example, the execute method is used to delete a customer
from the customer table. customer.ID represents the unique ID of a customer
that is in the ID column of the customer table. The value for customer.ID is
passed into the DELETE statement as the value of the ID property of request.

if(request.ID != null) {
database.execute("delete from customer

where customer.ID = " + request.ID)
}

majorErrorCode .

Major error code returned by the database server or ODBC.

Syntax majorErrorCode()

Method of database

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 103

database.majorErrorCode
Parameters None.

Returns The result returned by this method depends on the database server being used:

• Informix: the Informix error code.

• Oracle: the code as reported by Oracle Call-level Interface (OCI).

• Sybase: the DB-Library error number or the SQL server message number.

Description SQL statements can fail for a variety of reasons, including referential integrity
constraints, lack of user privileges, record or table locking in a multiuser
database, and so on. When an action fails, the database server returns an error
message indicating the reason for failure. The LiveWire™ Database Service
provides two ways of getting error information: from the status code returned
by various methods or from special properties containing error messages and
codes.

Status codes are integers between 0 and 27, with 0 indicating a successful
execution of the statement and other numbers indicating an error, as shown in
the following table.

Table 1.2 Database status codes.

Status
code

Explanation Status
code

Explanation

0 No error 14 Null reference parameter

1 Out of memory 15 Connection object not found

2 Object never initialized 16 Required information is
missing

3 Type conversion error 17 Object cannot support multiple
readers

4 Database not registered 18 Object cannot support
deletions

5 Error reported by server 19 Object cannot support
insertions

6 Message from server 20 Object cannot support updates

7 Error from vendor’s library 21 Object cannot support updates

8 Lost connection 22 Object cannot support indices

9 End of fetch 23 Object cannot be dropped
104 Server-Side JavaScript Reference

database.majorErrorCode
Examples This example updates the rentals table within a transaction. The updateRow
method assigns a database status code to the statusCode variable to indicate
whether the method is successful.

If updateRow succeeds, the value of statusCode is 0, and the transaction is
committed. If updateRow returns a statusCode value of either five or seven,
the values of majorErrorCode, majorErrorMessage, minorErrorCode, and
minorErrorMessage are displayed. If statusCode is set to any other value,
the errorRoutine function is called.

database.beginTransaction()
statusCode = cursor.updateRow("rentals")

if (statusCode == 0) {
database.commitTransaction()
}

if (statusCode == 5 || statusCode == 7) {
write("The operation failed to complete.
"
write("Contact your system administrator with the following:<P>"
write("The value of statusCode is " + statusCode + "
")
write("The value of majorErrorCode is " +

database.majorErrorCode() + "
")
write("The value of majorErrorMessage is " +

database.majorErrorMessage() + "
")
write("The value of minorErrorCode is " +

database.minorErrorCode() + "
")
write("The value of minorErrorMessage is " +

database.minorErrorMessage() + "
")
database.rollbackTransaction()
}

10 Invalid use of object 24 Incorrect connection supplied

11 Column does not exist 25 Object cannot support
privileges

12 Invalid positioning within
object (bounds error)

26 Object cannot support cursors

13 Unsupported feature 27 Unable to open

Table 1.2 Database status codes. (Continued)

Status
code

Explanation Status
code

Explanation
Chapter 1, Objects, Methods, and Properties 105

database.majorErrorMessage
else {
errorRoutine()
}

majorErrorMessage .

Major error message returned by database server or ODBC. For server errors,
this typically corresponds to the server’s SQLCODE.

Syntax majorErrorMessage()

Parameters None.

Returns A string describing that depends on the database server:

• Informix: “Vendor Library Error: string,” where string is the error text from
Informix.

• Oracle: “Server Error: string,” where string is the translation of the return
code supplied by Oracle.

• Sybase: “Vendor Library Error: string,” where string is the error text from
DB-Library or “Server Error string,” where string is text from the SQL server,
unless the severity and message number are both 0, in which case it returns
just the message text.

Description SQL statements can fail for a variety of reasons, including referential integrity
constraints, lack of user privileges, record or table locking in a multi-user
database, and so on. When an action fails, the database server returns an error
message indicating the reason for failure. The LiveWire Database Service
provides two ways of getting error information: from the status code returned
by connection and DbPool methods or from special connection or DbPool
properties containing error messages and codes.

Examples See database.majorErrorCode.

Method of database

Implemented in NES 2.0
106 Server-Side JavaScript Reference

database.minorErrorCode
minorErrorCode .

Secondary error code returned by database vendor library.

Syntax minorErrorCode()

Parameters None.

Returns The result returned by this method depends on the database server:

• Informix: the ISAM error code, or 0 if there is no ISAM error.

• Oracle: the operating system error code as reported by OCI.

• Sybase: the severity level, as reported by DB-Library or the severity level, as
reported by the SQL server.

minorErrorMessage .

Secondary message returned by database vendor library.

Syntax minorErrorMessage()

Parameters None.

Returns The string returned by this method depends on the database server:

• Informix: “ISAM Error: string,” where string is the text of the ISAM error
code from Informix, or an empty string if there is no ISAM error.

• Oracle: the Oracle server name.

• Sybase: the operating system error text, as reported by DB-Library or the
SQL server name.

Method of database

Implemented in NES 2.0

Method of database

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 107

database.prototype
prototype .

Represents the prototype for this class. You can use the prototype of the
DbBuiltin class to add properties or methods to the database object. For
information on prototypes, see Function.prototype.

rollbackTransaction .

Rolls back the current transaction.

Syntax rollbackTransaction()

Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description This method will undo all modifications since the last call to
beginTransaction.

For the database object, the scope of a transaction is limited to the current
request (HTML page) in the application. If the application exits the page before
calling the commitTransaction or rollbackTransaction method, then the
transaction is automatically either committed or rolled back, based on the
setting of the commitflag parameter when the connection was established.
This parameter is provided when you make the connection with the database
or DbPool object.

For Connection objects, the scope of a transaction is limited to the lifetime of
that object. If the connection is released or the pool of connections is closed
before calling the commitTransaction or rollbackTransaction method,
then the transaction is automatically either committed or rolled back, based on
the commitFlag value.

Property of database

Implemented in NES 2.0

Method of database

Implemented in NES 2.0
108 Server-Side JavaScript Reference

database.SQLTable
If there is no current transaction (that is, if the application has not called
beginTransaction), calls to commitTransaction and
rollbackTransaction are ignored.

The LiveWire Database Service does not support nested transactions. If you call
beginTransaction when a transaction is already open (that is, you’ve called
beginTransaction and have yet to commit or roll back that transaction),
you’ll get an error message.

SQLTable .

Displays query results. Creates an HTML table for results of an SQL SELECT
statement.

Syntax SQLTable (stmt)

Parameters

Returns A string representing an HTML table, with each row and column in the query as
a row and column of the table.

Description Although SQLTable does not give explicit control over how the output is
formatted, it is the easiest way to display query results. If you want to
customize the appearance of the output, use a Cursor object to create your
own display function.

Note Every Sybase table you use with a cursor must have a unique index.

Example If connobj is a Connection object and request.sql contains an SQL query,
then the following JavaScript statements display the result of the query in a
table:

write(request.sql)
connobj.SQLTable(request.sql)

Method of database

Implemented in NES 2.0

stmt A string representing an SQL SELECT statement.
Chapter 1, Objects, Methods, and Properties 109

database.SQLTable
The first line simply displays the SELECT statement, and the second line
displays the results of the query. This is the first part of the HTML generated by
these statements:

select * from videos
<TABLE BORDER>
<TR>
<TH>title</TH>
<TH>id</TH>
<TH>year</TH>
<TH>category</TH>
<TH>quantity</TH>
<TH>numonhand</TH>
<TH>synopsis</TH>
</TR>
<TR>
<TD>A Clockwork Orange</TD>
<TD>1</TD>
<TD>1975</TD>
<TD>Science Fiction</TD>
<TD>5</TD>
<TD>3</TD>
<TD> Little Alex, played by Malcolm Macdowell,
and his droogies stop by the Miloko bar for a
refreshing libation before a wild night on the town.
</TD>
</TR>
<TR>
<TD>Sleepless In Seattle</TD>
...

As this example illustrates, SQLTable generates an HTML table, with column
headings for each column in the database table and a row in the table for each
row in the database table.
110 Server-Side JavaScript Reference

database.storedProc
storedProc .

Creates a stored procedure object and runs the specified stored procedure.

Syntax storedProc (procName [, inarg1 [, inarg2 [, ... inargN]]])

Parameters

Returns A new Stproc object.

Description The scope of the stored-procedure object is a single page of the application. In
other words, all methods to be executed for any instance of storedProc must
be invoked on the same application page as the page on which the object is
created.

When you create a stored procedure, you can specify default values for any of
the parameters. Then, if a parameter is not included when the stored procedure
is executed, the procedure uses the default value. However, when you call a
stored procedure from a server-side JavaScript application, you must indicate
that you want to use the default value by typing "/Default/" in place of the
parameter. (Remember that JavaScript is case sensitive.) For example:

spObj = connobj.storedProc ("newhire", "/Default/", 3)

Method of database

Implemented in NES 3.0

procName A string specifying the name of the stored procedure to run.

inarg1, ..., inargN The input parameters to be passed to the procedure, separated
by commas.
Chapter 1, Objects, Methods, and Properties 111

database.storedProcArgs
storedProcArgs .

Creates a prototype for a DB2, ODBC, or Sybase stored procedure.

Syntax storedProcArgs (procName [, type1 [, ..., typeN]])

Parameters

Returns Nothing.

Description This method is only needed for DB2, ODBC, or Sybase stored procedures. If
you call it for Oracle or Informix stored procedures, it does nothing.

This method provides the procedure name and the parameters for that stored
procedure. Stored procedures can accept parameters that are only for input
("IN"), only for output ("OUT"), or for both input and output ("INOUT").

You must create one prototype for each DB2, ODBC, or Sybase stored
procedure you use in your application. Additional prototypes for the same
stored procedure are ignored.

You can specify an INOUT parameter either as an INOUT or as an OUT
parameter. If you use an INOUT parameter of a stored procedure as an OUT
parameter, the LiveWire Database Service implicitly passes a NULL value for
that parameter.

Examples Assume the inoutdemo stored procedure takes one input parameter and one
input/output parameter, as follows:

create procedure inoutdemo (@inparam int, @inoutparam int output)
as
if (@inoutparam == null)
@inoutparam = @inparam + 1
else
@inoutparam = @inoutparam + 1

Method of database

Implemented in NES 3.0

procName The name of the procedure.

type1, ..., typeN Each type is one of: "IN", "OUT", or "INOUT" Specifies the
type of each parameter: input ("IN"), output ("OUT"), or both
input and output ("INOUT").
112 Server-Side JavaScript Reference

database.toString
Assume execute the following code and then call outParameters(0), the
result will be 101:

database.storedProcArgs("inoutdemo", "IN", "INOUT")
spobj= database.storedProc("inoutdemo", 6, 100);
answer = spobj.outParameters(0);

The value of answer is 101. On the other hand, assume you execute this code:

database.storedProcArgs("inoutdemo", "IN", "OUT")
spobj = database.storedProc("inoutdemo", 6, 100);
answer = spobj.outParameters(0);

In this case, the value of answer is 7.

toString .

Returns a string representing the specified object.

Syntax toString()

Parameters None.

Description Every object has a toString method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation.

You can use toString within your own code to convert an object into a string,
and you can create your own function to be called in place of the default
toString method.

This method returns a string of the following format:

db "name" "userName" "dbtype" "serverName"

where

Method of database

Implemented in NES 2.0

name The name of the database.

userName The name of the user connected to the database.

dbType One of ORACLE, SYBASE, INFORMIX, DB2, or ODBC.

serverName The name of the database server.
Chapter 1, Objects, Methods, and Properties 113

database.toString
The method displays an empty string for any of attributes whose value is
unknown.

For information on defining your own toString method, see the
Object.toString method.
114 Server-Side JavaScript Reference

Date
Date
Lets you work with dates and times.

Created by The Date constructor:

new Date()
new Date(milliseconds)
new Date(dateString)
new Date(yr_num, mo_num, day_num[, hr_num, min_num, sec_num])

Parameters

Description If you supply no arguments, the constructor creates a Date object for today’s
date and time according to local time. If you supply some arguments but not
others, the missing arguments are set to 0. If you supply any arguments, you
must supply at least the year, month, and day. You can omit the hours,
minutes, seconds, and milliseconds.

The date is measured in milliseconds since midnight 01 January, 1970 UTC. A
day holds 86,400,000 milliseconds. Dates prior to 1970 are not allowed.

JavaScript depends on platform-specific date facilities and behavior; the
behavior of the Date object varies from platform to platform.

Core object

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.1: added prototype property

ECMA version ECMA-262

milliseconds Integer value representing the number of milliseconds since 1
January 1970 00:00:00.

dateString String value representing a date. The string should be in a
format recognized by the Date.parse method.

yr_num, mo_num,
day_num

Integer values representing part of a date. As an integer value,
the month is represented by 0 to 11 with 0=January and
11=December.

hr_num, min_num,
sec_num, ms_num

Integer values representing part of a date.
Chapter 1, Objects, Methods, and Properties 115

Date
The Date object supports a number of UTC (universal) methods, as well as
local time methods. UTC, also known as Greenwich Mean Time (GMT), refers
to the time as set by the World Time Standard. The local time is the time known
to the computer where JavaScript is executed.

For compatibility with millennium calculations (in other words, to take into
account the year 2000), you should always specify the year in full; for example,
use 1998, not 98. To assist you in specifying the complete year, JavaScript
includes the methods getFullYear, setFullYear, getFullUTCYear, and
setFullUTCYear.

The following example returns the time elapsed between timeA and timeB in
milliseconds.

timeA = new Date();
// Statements here to take some action.
timeB = new Date();
timeDifference = timeB - timeA;

Property
Summary

Method Summary

Property Description

constructor Specifies the function that creates an object’s prototype.

prototype Allows the addition of properties to a Date object.

Method Description

getDate Returns the day of the month for the specified date
according to local time.

getDay Returns the day of the week for the specified date
according to local time.

getHours Returns the hour in the specified date according to
local time.

getMinutes Returns the minutes in the specified date according to
local time.

getMonth Returns the month in the specified date according to
local time.

getSeconds Returns the seconds in the specified date according to
local time.
116 Server-Side JavaScript Reference

Date
In addition, this object inherits the watch and unwatch methods from
Object.

getTime Returns the numeric value corresponding to the time
for the specified date according to local time.

getTimezoneOffset Returns the time-zone offset in minutes for the current
locale.

getYear Returns the year in the specified date according to
local time.

parse Returns the number of milliseconds in a date string
since January 1, 1970, 00:00:00, local time.

setDate Sets the day of the month for a specified date
according to local time.

setHours Sets the hours for a specified date according to local
time.

setMinutes Sets the minutes for a specified date according to local
time.

setMonth Sets the month for a specified date according to local
time.

setSeconds Sets the seconds for a specified date according to local
time.

setTime Sets the value of a Date object according to local time.

setYear Sets the year for a specified date according to local
time.

toGMTString Converts a date to a string, using the Internet GMT
conventions.

toLocaleString Converts a date to a string, using the current locale’s
conventions.

toString Returns a string representing the specified Date object.
Overrides the Object.toString method.

UTC Returns the number of milliseconds in a Date object
since January 1, 1970, 00:00:00, universal time.

valueOf Returns the primitive value of a Date object. Overrides
the Object.valueOf method.

Method Description
Chapter 1, Objects, Methods, and Properties 117

Date.constructor
Examples The following examples show several ways to assign dates:

today = new Date()
birthday = new Date("December 17, 1995 03:24:00")
birthday = new Date(95,11,17)
birthday = new Date(95,11,17,3,24,0)

constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor.

getDate .

Returns the day of the month for the specified date according to local time.

Syntax getDate()

Parameters None

Description The value returned by getDate is an integer between 1 and 31.

Examples The second statement below assigns the value 25 to the variable day, based on
the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
day = Xmas95.getDate()

See also Date.setDate

Property of Date

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
118 Server-Side JavaScript Reference

Date.getDay
getDay .

Returns the day of the week for the specified date according to local time.

Syntax getDay()

Parameters None

Description The value returned by getDay is an integer corresponding to the day of the
week: 0 for Sunday, 1 for Monday, 2 for Tuesday, and so on.

Examples The second statement below assigns the value 1 to weekday, based on the
value of the Date object Xmas95. December 25, 1995, is a Monday.

Xmas95 = new Date("December 25, 1995 23:15:00")
weekday = Xmas95.getDay()

See also Date.setDate

getHours .

Returns the hour for the specified date according to local time.

Syntax getHours()

Parameters None

Description The value returned by getHours is an integer between 0 and 23.

Examples The second statement below assigns the value 23 to the variable hours, based
on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
hours = Xmas95.getHours()

See also Date.setHours

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 119

Date.getMinutes
getMinutes .

Returns the minutes in the specified date according to local time.

Syntax getMinutes()

Parameters None

Description The value returned by getMinutes is an integer between 0 and 59.

Examples The second statement below assigns the value 15 to the variable minutes,
based on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
minutes = Xmas95.getMinutes()

See also Date.setMinutes

getMonth .

Returns the month in the specified date according to local time.

Syntax getMonth()

Parameters None

Description The value returned by getMonth is an integer between 0 and 11. 0 corresponds
to January, 1 to February, and so on.

Examples The second statement below assigns the value 11 to the variable month, based
on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
month = Xmas95.getMonth()

See also Date.setMonth

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
120 Server-Side JavaScript Reference

Date.getSeconds
getSeconds .

Returns the seconds in the current time according to local time.

Syntax getSeconds()

Parameters None

Description The value returned by getSeconds is an integer between 0 and 59.

Examples The second statement below assigns the value 30 to the variable secs, based
on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:30")
secs = Xmas95.getSeconds()

See also Date.setSeconds

getTime .

Returns the numeric value corresponding to the time for the specified date
according to local time.

Syntax getTime()

Parameters None

Description The value returned by the getTime method is the number of milliseconds since
1 January 1970 00:00:00. You can use this method to help assign a date and
time to another Date object.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 121

Date.getTimezoneOffset
Examples The following example assigns the date value of theBigDay to sameAsBigDay:

theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date()
sameAsBigDay.setTime(theBigDay.getTime())

See also Date.setTime

getTimezoneOffset .

Returns the time-zone offset in minutes for the current locale.

Syntax getTimezoneOffset()

Parameters None

Description The time-zone offset is the difference between local time and Greenwich Mean
Time (GMT). Daylight savings time prevents this value from being a constant.

Examples x = new Date()
currentTimeZoneOffsetInHours = x.getTimezoneOffset()/60

getYear .

Returns the year in the specified date according to local time.

Syntax getYear()

Parameters None

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
122 Server-Side JavaScript Reference

Date.parse
Description The getYear method returns either a 2-digit or 4-digit year:

• For years between and including 1900 and 1999, the value returned by
getYear is the year minus 1900. For example, if the year is 1976, the value
returned is 76.

• For years less than 1900 or greater than 1999, the value returned by
getYear is the four-digit year. For example, if the year is 1856, the value
returned is 1856. If the year is 2026, the value returned is 2026.

Examples Example 1. The second statement assigns the value 95 to the variable year.

Xmas = new Date("December 25, 1995 23:15:00")
year = Xmas.getYear() // returns 95

Example 2. The second statement assigns the value 100 to the variable year.

Xmas = new Date("December 25, 2000 23:15:00")
year = Xmas.getYear() // returns 100

Example 3. The second statement assigns the value -100 to the variable year.

Xmas = new Date("December 25, 1800 23:15:00")
year = Xmas.getYear() // returns -100

Example 4. The second statement assigns the value 95 to the variable year,
representing the year 1995.

Xmas.setYear(95)
year = Xmas.getYear() // returns 95

See also Date.setYear

parse .

Returns the number of milliseconds in a date string since January 1, 1970,
00:00:00, local time.

Syntax Date.parse(dateString)

Method of Date

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 123

Date.prototype
Parameters

Description The parse method takes a date string (such as "Dec 25, 1995") and returns
the number of milliseconds since January 1, 1970, 00:00:00 (local time). This
function is useful for setting date values based on string values, for example in
conjunction with the setTime method and the Date object.

Given a string representing a time, parse returns the time value. It accepts the
IETF standard date syntax: "Mon, 25 Dec 1995 13:30:00 GMT". It
understands the continental US time-zone abbreviations, but for general use,
use a time-zone offset, for example, "Mon, 25 Dec 1995 13:30:00
GMT+0430" (4 hours, 30 minutes west of the Greenwich meridian). If you do
not specify a time zone, the local time zone is assumed. GMT and UTC are
considered equivalent.

Because parse is a static method of Date, you always use it as Date.parse(),
rather than as a method of a Date object you created.

Examples If IPOdate is an existing Date object, then you can set it to August 9, 1995 as
follows:

IPOdate.setTime(Date.parse("Aug 9, 1995"))

See also Date.UTC

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype.

dateString A string representing a date.

Property of Date

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
124 Server-Side JavaScript Reference

Date.setDate
setDate .

Sets the day of the month for a specified date according to local time.

Syntax setDate(dayValue)

Parameters

Examples The second statement below changes the day for theBigDay to July 24 from its
original value.

theBigDay = new Date("July 27, 1962 23:30:00")
theBigDay.setDate(24)

See also Date.getDate

setHours .

Sets the hours for a specified date according to local time.

Syntax setHours(hoursValue)

Parameters

Examples theBigDay.setHours(7)

See also Date.getHours

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

dayValue An integer from 1 to 31, representing the day of the month.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

hoursValue An integer between 0 and 23, representing the hour.
Chapter 1, Objects, Methods, and Properties 125

Date.setMinutes
setMinutes .

Sets the minutes for a specified date according to local time.

Syntax setMinutes(minutesValue)

Parameters

Examples theBigDay.setMinutes(45)

See also Date.getMinutes

setMonth .

Sets the month for a specified date according to local time.

Syntax setMonth(monthValue)

Parameters

Examples theBigDay.setMonth(6)

See also Date.getMonth

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

minutesValue An integer between 0 and 59, representing the minutes.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

monthValue An integer between 0 and 11 (representing the months January
through December).
126 Server-Side JavaScript Reference

Date.setSeconds
setSeconds .

Sets the seconds for a specified date according to local time.

Syntax setSeconds(secondsValue)

Parameters

Examples theBigDay.setSeconds(30)

See also Date.getSeconds

setTime .

Sets the value of a Date object according to local time.

Syntax setTime(timevalue)

Parameters

Description Use the setTime method to help assign a date and time to another Date object.

Examples theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date()
sameAsBigDay.setTime(theBigDay.getTime())

See also Date.getTime

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

secondsValue An integer between 0 and 59.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

timevalue An integer representing the number of milliseconds since 1 January
1970 00:00:00.
Chapter 1, Objects, Methods, and Properties 127

Date.setYear
setYear .

Sets the year for a specified date according to local time.

Syntax setYear(yearValue)

Parameters

Description If yearValue is a number between 0 and 99 (inclusive), then the year for
dateObjectName is set to 1900 + yearValue. Otherwise, the year for
dateObjectName is set to yearValue.

Examples Note that there are two ways to set years in the 20th century.

Example 1. The year is set to 1996.

theBigDay.setYear(96)

Example 2. The year is set to 1996.

theBigDay.setYear(1996)

Example 3. The year is set to 2000.

theBigDay.setYear(2000)

See also Date.getYear

toGMTString .

Converts a date to a string, using the Internet GMT conventions.

Syntax toGMTString()

Parameters None

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

yearValue An integer.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
128 Server-Side JavaScript Reference

Date.toLocaleString
Description The exact format of the value returned by toGMTString varies according to the
platform.

Examples In the following example, today is a Date object:

today.toGMTString()

In this example, the toGMTString method converts the date to GMT (UTC)
using the operating system’s time-zone offset and returns a string value that is
similar to the following form. The exact format depends on the platform.

Mon, 18 Dec 1995 17:28:35 GMT

See also Date.toLocaleString

toLocaleString .

Converts a date to a string, using the current locale’s conventions.

Syntax toLocaleString()

Parameters None

Description If you pass a date using toLocaleString, be aware that different platforms
assemble the string in different ways. Methods such as getHours,
getMinutes, and getSeconds give more portable results.

The toLocaleString method relies on the underlying operating system in
formatting dates. It converts the date to a string using the formatting convention
of the operating system where the script is running. For example, in the United
States, the month appears before the date (04/15/98), whereas in Germany the
date appears before the month (15.04.98). If the operating system is not year-
2000 compliant and does not use the full year for years before 1900 or over
2000, toLocaleString returns a string that is not year-2000 compliant.
toLocaleString behaves similarly to toString when converting a year
that the operating system does not properly format.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 129

Date.toString
Examples In the following example, today is a Date object:

today = new Date(95,11,18,17,28,35) //months are represented by 0 to 11
today.toLocaleString()

In this example, toLocaleString returns a string value that is similar to the
following form. The exact format depends on the platform.

12/18/95 17:28:35

See also Date.toGMTString

toString .

Returns a string representing the specified Date object.

Syntax toString()

Parameters None.

Description The Date object overrides the toString method of the Object object; it
does not inherit Object.toString. For Date objects, the toString
method returns a string representation of the object.

JavaScript calls the toString method automatically when a date is to be
represented as a text value or when a date is referred to in a string
concatenation.

Examples The following example assigns the toString value of a Date object to myVar:

x = new Date();
myVar=x.toString(); //assigns a value to myVar similar to:

//Mon Sep 28 14:36:22 GMT-0700 (Pacific Daylight Time) 1998

See also Object.toString

Method of Date

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
130 Server-Side JavaScript Reference

Date.UTC
UTC .

Returns the number of milliseconds in a Date object since January 1, 1970,
00:00:00, universal time.

Syntax Date.UTC(year, month, day[, hrs, min, sec])

Parameters

Description UTC takes comma-delimited date parameters and returns the number of
milliseconds between January 1, 1970, 00:00:00, universal time and the time
you specified.

You should specify a full year for the year; for example, 1998. If a year between
0 and 99 is specified, the method converts the year to a year in the 20th century
(1900 + year); for example, if you specify 95, the year 1995 is used.

The UTC method differs from the Date constructor in two ways.

• Date.UTC uses universal time instead of the local time.

• Date.UTC returns a time value as a number instead of creating a Date
object.

Because UTC is a static method of Date, you always use it as Date.UTC(),
rather than as a method of a Date object you created.

Examples The following statement creates a Date object using GMT instead of local time:

gmtDate = new Date(Date.UTC(96, 11, 1, 0, 0, 0))

See also Date.parse

Method of Date

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

year A year after 1900.

month An integer between 0 and 11 representing the month.

date An integer between 1 and 31 representing the day of the month.

hrs An integer between 0 and 23 representing the hours.

min An integer between 0 and 59 representing the minutes.

sec An integer between 0 and 59 representing the seconds.
Chapter 1, Objects, Methods, and Properties 131

Date.valueOf
valueOf .

Returns the primitive value of a Date object.

Syntax valueOf()

Parameters None

Description The valueOf method of Date returns the primitive value of a Date object as a
number data type, the number of milliseconds since midnight 01 January, 1970
UTC.

This method is usually called internally by JavaScript and not explicitly in code.

Examples x = new Date(56,6,17);
myVar=x.valueOf() //assigns -424713600000 to myVar

See also Object.valueOf

Method of Date

Implemented in JavaScript 1.1

ECMA version ECMA-262
132 Server-Side JavaScript Reference

DbPool
DbPool
Represents a pool of connections to a particular database configuration.

To connect to a database, you first create a pool of database connections and
then access individual connections as needed. For more information on the
general methodology for using DbPool objects, see the Server-Side JavaScript
Guide.

Created by The DbPool constructor.

Description The lifetime of a DbPool object (its scope) varies. Assuming it has been
assigned to a variable, a DbPool object can go out of scope at different times:

• If the variable is a property of the project object (such as
project.engconn), then it remains in scope until the application
terminates or until you reassign the property to another value or to null.

• If it is a property of the server object (such as server.engconn), it
remains in scope until the server goes down or until you reassign the
property to another value or to null.

• In all other cases, the variable is a property of the request object. In this
situation, the variable goes out of scope when control leaves the HTML
page or you reassign the property to another value or to null.

It is your responsibility to release all connections and close all cursors, stored
procedures, and result sets associated with a DbPool object before that object
goes out of scope. Release connections and close the other objects as soon as
you are done with them.

If you do not release a connection, it remains bound and is unavailable to the
next user until the associated DbPool object goes out of scope. When you do
call release to give up a connection, the runtime engine waits until all
associated cursors, stored procedures, and result sets are closed before actually
releasing the connection. Therefore, you must close those objects when you are
done with them.

Server-side object

Implemented in NES 3.0
Chapter 1, Objects, Methods, and Properties 133

DbPool
You can use the prototype property of the DbPool object to add a property to
all DbPool instances. If you do so, that addition applies to all DbPool objects
running in all applications on your server, not just in the single application that
made the change. This allows you to expand the capabilities of this object for
your entire server.

Property
Summary

Method Summary

In addition, this object inherits the watch and unwatch methods from
Object.

Property Description

prototype Allows the addition of properties to a DbPool object.

Method Description

connect Connects the pool to a particular configuration of database
and user.

connected Tests whether the database pool and all of its connections
are connected to a database.

connection Retrieves an available connection from the pool.

DbPool Creates a pool of database Connection objects and
optionally connects the objects to a particular configuration
of database and user.

disconnect Disconnects all connections in the pool from the database.

majorErrorCode Major error code returned by the database server or ODBC.

majorErrorMessage Major error message returned by database server or ODBC.
For server errors, this typically corresponds to the server’s
SQLCODE.

minorErrorCode Secondary error code returned by database vendor library.

minorErrorMessage Secondary message returned by database vendor library.

storedProcArgs Creates a prototype for a Sybase stored procedure.

toString Returns a string representing the specified object.
134 Server-Side JavaScript Reference

DbPool.connect
connect .

Connects the pool to a particular configuration of database and user.

Syntax 1. connect (dbtype, serverName, username, password,
databaseName)

2. connect (dbtype, serverName, username, password,
databaseName[, maxConnections])

3. connect (dbtype, serverName, username, password,
databaseName[, maxConnections[, commitflag]])

Method of DbPool

Implemented in NES 3.0
Chapter 1, Objects, Methods, and Properties 135

DbPool.connect
Parameters
dbtype Database type; one of ORACLE, SYBASE, INFORMIX, DB2, or

ODBC.

serverName Name of the database server to which to connect. The server name
typically is established when the database is installed and is
different for different database types:

• DB2: Local database alias. On both NT and UNIX, this is set up
by the client or the DB2 Command Line Processor.

• Informix: Informix server. On NT, this is specified with the
setnet32 utility; on UNIX, in the sqlhosts file.

• Oracle: Service. On both NT and UNIX, this specified in the
tnsnames.ora file. On NT, you can use the SQL*Net easy
configuration to specify it. When your Oracle database server is
local, specify the empty string for this argument.

• ODBC: Data source name. On NT, this is specified in the ODBC
Administrator; on UNIX, in the .odbc.ini file. If you are using
the Web Server as a user the file .odbc.ini must be in your
home directory; if as a system, it must be in the root directory.

• Sybase: Server name (the DSQUERY parameter). On NT, this is
specified with the sqledit utility; on UNIX, with the
sybinit utility.

If in doubt, see your database or system administrator. For ODBC,
this is the name of the ODBC service as specified in Control Panel.

userName Name of the user to connect to the database. Some relational
database management systems (RDBMS) require that this be the
same as your operating system login name; others maintain their
own collections of valid user names. See your system administrator
if you are in doubt.
136 Server-Side JavaScript Reference

DbPool.connect
Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

password User’s password. If the database does not require a password, use
an empty string ("").

databaseName Name of the database to connect to for the given serverName. If
your database server supports the notion of multiple databases on a
single server, supply the name of the database to use. If it does not,
use an empty string (""). For Oracle, ODBC, and DB2, you must
always use an empty string.

• For Oracle, specify this information in the tnsnames.ora file.

• For ODBC, if you want to connect to a particular database,
specify the database name specified in the datasource
definition.

• For DB2, there is no concept of a database name; the database
name is always the server name (as specified with
serverName).

maxConnections Number of connections to be created and cached in the pool. The
runtime engine attempts to create as many connections as specified
with this parameter. If successful, it stores those connections for
later use. If you do not supply this parameter, its value is 1.

Remember that your database client license probably specifies a
maximum number of connections. Do not set this parameter to a
number higher than your license allows. For Sybase, you can have
at most 100 connections.

If your database client library is not multithreaded, it can only
support one connection at a time. In this case, your application
performs as though you specified 1 for this parameter. For a current
list of which database client libraries are multithreaded, see the
Enterprise Server 3.0 Release Notes.

commitFlag A Boolean value indicating whether to commit a pending
transaction when the connection goes out of scope. If this
parameter is false, a pending transaction is rolled back. If this
parameter is true, a pending transaction if committed. For DbPool,
the default value is false; for database, the default value is true. If
you specify this parameter, you must also specify the
maxConnections parameter.
Chapter 1, Objects, Methods, and Properties 137

DbPool.connected
Description When you call this method, the runtime engine first closes and releases any
currently open connections. It then reconnects the pool with the new
configuration. You should be sure that all connections have been released
before calling this method.

The first version of this method creates and caches one connection. When this
connection goes out of scope, pending transactions are rolled back.

The second version of this method attempts to create as many connections as
specified by the maxConnections parameter. If successful, it stores those
connections for later use. If the runtime engine does not obtain the requested
connections, it returns an error. When this connection goes out of scope,
pending transactions are rolled back.

The third version of this method does everything the second version does. In
addition, the commitflag parameter indicates what to do with pending
transactions when this connection goes out of scope. If this parameter is false
(the default), a pending transaction is rolled back. If this parameter is true, a
pending transaction if committed.

Example The following statement creates four connections to an Informix database
named mydb on a server named myserver, with user name SYSTEM and
password MANAGER. Pending transactions are rolled back at the end of a client
request:

pool.connect("INFORMIX", "myserver", "SYSTEM", "MANAGER", "mydb", 4)

connected .

Tests whether the database pool and all of its connections are connected to a
database.

Syntax connected()

Parameters None.

Returns True if the pool (and hence a particular connection in the pool) is currently
connected to a database; otherwise, false.

Method of DbPool

Implemented in NES 3.0
138 Server-Side JavaScript Reference

DbPool.connection
Description The connected method indicates whether this object is currently connected to
a database.

If this method returns false for a Connection object, you cannot use any other
methods of that object. You must reconnect to the database, using the DbPool
object, and then get a new Connection object. Similarly, if this method returns
false for the database object, you must reconnect before using other methods
of that object.

Example Example 1: The following code fragment checks to see if the connection is
currently open. If it’s not, it reconnects the pool and reassigns a new value to
the myconn variable.

if (!myconn.connected()) {
mypool.connect ("INFORMIX", "myserver", "SYSTEM", "MANAGER", "mydb",

4);
myconn = mypool.connection;

}

Example 2: The following example uses an if condition to determine if an
application is connected to a database server. If the application is connected,
the isConnectedRoutine function runs; if the application is not connected,
the isNotConnected routine runs.

if(database.connected()) {
isConnectedRoutine() }

else {
isNotConnectedRoutine() }

connection .

Retrieves an available connection from the pool.

Syntax connection (name, timeout)

Parameters

Returns A new Connection object.

Method of DbPool

Implemented in NES 3.0

name An arbitrary name for the connection. Primarily used for debugging.

timeout The number of seconds to wait for an available connection before
returning. The default is to wait indefinitely. If you specify this
parameter, you must also specify the name parameter.
Chapter 1, Objects, Methods, and Properties 139

DbPool.disconnect
disconnect .

Disconnects all connections in the pool from the database.

Syntax disconnect()

Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description For the DbPool object, before calling the disconnect method, you must first
call the release method for all connections in this database pool. Otherwise,
the connection is still considered in use by the system, so the disconnect waits
until all connections are released.

After disconnecting from a database, the only methods of this object you can
use are connect and connected.

Examples The following example uses an if condition to determine if an application is
connected to a database server. If the application is connected, the application
calls the disconnect method; if the application is not connected, the
isNotConnected routine runs.

if(database.connected()) {
database.disconnect() }

else {
isNotConnectedRoutine() }

DbPool

Creates a pool of database Connection objects and optionally connects the
objects to a particular configuration of database and user.

Method of DbPool

Implemented in NES 3.0

Method of DbPool

Implemented in NES 3.0
140 Server-Side JavaScript Reference

DbPool.disconnect
Syntax 1. new DbPool();

2. new DbPool (dbtype, serverName, username, password,
databaseName);

3. new DbPool (dbtype, serverName, username, password,
databaseName[, maxConnections]);

4. new DbPool (dbtype, serverName, username, password,
databaseName[, maxConnections[, commitflag]]);

Parameters
dbtype Database type. One of ORACLE, SYBASE, INFORMIX, DB2, or

ODBC.

serverName Name of the database server to which to connect. The server name
typically is established when the database is installed and is
different for different database types:

• DB2: Local database alias. On both NT and UNIX, this is set up
by the client or the DB2 Command Line Processor.

• Informix: Informix server. On NT, this is specified with the
setnet32 utility; on UNIX, in the sqlhosts file.

• Oracle: Service. On both NT and UNIX, this specified in the
tnsnames.ora file. On NT, you can use the SQL*Net easy
configuration to specify it. When your Oracle database server is
local, specify the empty string for this argument.

• ODBC: Data source name. On NT, this is specified in the ODBC
Administrator; on UNIX, in the .odbc.ini file. If you are
using the Web Server as a user the file .odbc.ini must be in
your home directory; if as a system, it must be in the root
directory.

• Sybase: Server name (the DSQUERY parameter). On NT, this is
specified with the sqledit utility; on UNIX, with the
sybinit utility.

If in doubt, see your database or system administrator. For ODBC,
this is the name of the ODBC service as specified in Control Panel.

userName Name of the user to connect to the database. Some relational
database management systems (RDBMS) require that this be the
same as your operating system login name; others maintain their
own collections of valid user names. See your system administrator
if you are in doubt.
Chapter 1, Objects, Methods, and Properties 141

DbPool.disconnect
password User’s password. If the database does not require a password,
use an empty string ("").

databaseName Name of the database to connect to for the given serverName. If
your database server supports the notion of multiple databases on a
single server, supply the name of the database to use. If it does not,
use an empty string (""). For Oracle, ODBC, and DB2, you must
always use an empty string.

• For Oracle, specify this information in the tnsnames.ora file.

• For ODBC, if you want to connect to a particular database,
specify the database name specified in the datasource
definition.

• For DB2, there is no concept of a database name; the database
name is always the server name (as specified with
serverName).

maxConnections Number of connections to be created and cached in the pool. The
runtime engine attempts to create as many connections as specified
with this parameter. If successful, it stores those connections for
later use. If you do not supply this parameter, its value is 1.

Remember that your database client license probably specifies a
maximum number of connections. Do not set this parameter to a
number higher than your license allows. For Sybase, you can have
at most 100 connections.

If your database client library is not multi-threaded, it can only
support one connection at a time. In this case, your application
performs as though you specified 1 for this parameter. For a current
list of which database client libraries are multi-threaded, see the
Enterprise Server 3.0 Release Notes.

commitFlag A Boolean value indicating whether to commit a pending
transaction when the connection is released or the object is
finalized.

(If the transaction is on a single page, the object is finalized at the
end of the page. If the transaction spans multiple pages, the object
is finalized when the connection returns to the pool.)

If this parameter is false, a pending transaction is rolled back. If this
parameter is true, a pending transaction if committed. For DbPool,
the default value is false; for database, the default value is true. If
you specify this parameter, you must also specify the
maxConnections parameter.
142 Server-Side JavaScript Reference

DbPool.majorErrorCode
Description The first version of this constructor takes no parameters. It instantiates and
allocates memory for a DbPool object. This version of the constructor creates
and caches one connection. When this connection goes out of scope, pending
transactions are rolled back.

The second version of this constructor instantiates a DbPool object and then
calls the connect method to establish a database connection. This version of
the constructor also creates and caches one connection. When this connection
goes out of scope, pending transactions are rolled back.

The third version of this constructor instantiates a DbPool object and then calls
the connect method to establish a database connection. In addition, it attempts
to create as many connections as specified by the maxConnections parameter.
If successful, it stores those connections for later use. If the runtime engine
does not obtain the requested connections, it returns an error. When this
connection goes out of scope, pending transactions are rolled back.

The fourth version of this constructor does everything the third version does. In
addition, the commitflag parameter indicates what to do with pending
transactions when the connection goes out of scope. If this parameter is false
(the default), a pending transaction is rolled back. If this parameter is true, a
pending transaction if committed.

To detect errors, you can use the majorErrorCode method.

If possible, your application should call this constructor and make the database
connection on its initial page. Doing so prevents conflicts from multiple client
requests trying to manipulate the status of the connections at once.

majorErrorCode .

Major error code returned by the database server or ODBC.

Syntax majorErrorCode()

Parameters None.

Method of DbPool

Implemented in NES 3.0
Chapter 1, Objects, Methods, and Properties 143

DbPool.majorErrorCode
Returns The result returned by this method depends on the database server being used:

• Informix: the Informix error code.

• Oracle: the code as reported by Oracle Call-level Interface (OCI).

• Sybase: the DB-Library error number or the SQL server message number.

Description SQL statements can fail for a variety of reasons, including referential integrity
constraints, lack of user privileges, record or table locking in a multi-user
database, and so on. When an action fails, the database server returns an error
message indicating the reason for failure. The LiveWire™ Database Service
provides two ways of getting error information: from the status code returned
by various methods or from special properties containing error messages and
codes.

Status codes are integers between 0 and 27, with 0 indicating a successful
execution of the statement and other numbers indicating an error, as shown in
the following table.

Table 1.3 Database status codes.

Status
code

Explanation Status
code

Explanation

0 No error 14 Null reference parameter

1 Out of memory 15 Connection object not found

2 Object never initialized 16 Required information is
missing

3 Type conversion error 17 Object cannot support multiple
readers

4 Database not registered 18 Object cannot support
deletions

5 Error reported by server 19 Object cannot support
insertions

6 Message from server 20 Object cannot support updates

7 Error from vendor’s library 21 Object cannot support updates

8 Lost connection 22 Object cannot support indices

9 End of fetch 23 Object cannot be dropped

10 Invalid use of object 24 Incorrect connection supplied
144 Server-Side JavaScript Reference

DbPool.majorErrorCode
Examples This example updates the rentals table within a transaction. The updateRow
method assigns a database status code to the statusCode variable to indicate
whether the method is successful.

If updateRow succeeds, the value of statusCode is 0, and the transaction is
committed. If updateRow returns a statusCode value of either five or seven,
the values of majorErrorCode, majorErrorMessage, minorErrorCode, and
minorErrorMessage are displayed. If statusCode is set to any other value,
the errorRoutine function is called.

database.beginTransaction()
statusCode = cursor.updateRow("rentals")

if (statusCode == 0) {
database.commitTransaction()
}

if (statusCode == 5 || statusCode == 7) {
write("The operation failed to complete.
"
write("Contact your system administrator with the following:<P>"
write("The value of statusCode is " + statusCode + "
")
write("The value of majorErrorCode is " +

database.majorErrorCode() + "
")
write("The value of majorErrorMessage is " +

database.majorErrorMessage() + "
")
write("The value of minorErrorCode is " +

database.minorErrorCode() + "
")
write("The value of minorErrorMessage is " +

database.minorErrorMessage() + "
")
database.rollbackTransaction()
}

else {
errorRoutine()
}

11 Column does not exist 25 Object cannot support
privileges

12 Invalid positioning within
object (bounds error)

26 Object cannot support cursors

13 Unsupported feature 27 Unable to open

Table 1.3 Database status codes. (Continued)

Status
code

Explanation Status
code

Explanation
Chapter 1, Objects, Methods, and Properties 145

DbPool.majorErrorMessage
majorErrorMessage .

Major error message returned by database server or ODBC. For server errors,
this typically corresponds to the server’s SQLCODE.

Syntax majorErrorMessage()

Parameters None.

Returns A string describing that depends on the database server:

• Informix: “Vendor Library Error: string,” where string is the error text from
Informix.

• Oracle: “Server Error: string,” where string is the translation of the return
code supplied by Oracle.

• Sybase: “Vendor Library Error: string,” where string is the error text from
DB-Library or “Server Error string,” where string is text from the SQL server,
unless the severity and message number are both 0, in which case it returns
just the message text.

Description SQL statements can fail for a variety of reasons, including referential integrity
constraints, lack of user privileges, record or table locking in a multi-user
database, and so on. When an action fails, the database server returns an error
message indicating the reason for failure. The LiveWire Database Service
provides two ways of getting error information: from the status code returned
by connection and DbPool methods or from special connection or DbPool
properties containing error messages and codes.

Examples See DbPool.majorErrorCode.

minorErrorCode .

Secondary error code returned by database vendor library.

Syntax minorErrorCode()

Method of DbPool

Implemented in NES 3.0

Method of DbPool

Implemented in NES 3.0
146 Server-Side JavaScript Reference

DbPool.minorErrorMessage
Parameters None.

Returns The result returned by this method depends on the database server:

• Informix: the ISAM error code, or 0 if there is no ISAM error.

• Oracle: the operating system error code as reported by OCI.

• Sybase: the severity level, as reported by DB-Library or the severity level, as
reported by the SQL server.

minorErrorMessage .

Secondary message returned by database vendor library.

Syntax minorErrorMessage()

Parameters None.

Returns The string returned by this method depends on the database server:

• Informix: “ISAM Error: string,” where string is the text of the ISAM error
code from Informix, or an empty string if there is no ISAM error.

• Oracle: the Oracle server name.

• Sybase: the operating system error text, as reported by DB-Library or the
SQL server name.

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype.

Method of DbPool

Implemented in NES 3.0

Property of DbPool

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 147

DbPool.storedProcArgs
storedProcArgs .

Creates a prototype for a DB2, ODBC, or Sybase stored procedure.

Syntax storedProcArgs (procName [, type1 [, ... typeN]])

Parameters

Returns Nothing.

Description This method is only for Sybase stored procedures.

This method provides the procedure name and the parameters for that stored
procedure. Sybase stored procedures can accept parameters that are only for
input ("IN"), only for output ("OUT"), or for both input and output ("INOUT").

You must create one prototype for each Sybase stored procedure you use in
your application. Additional prototypes for the same stored procedure are
ignored.

You can specify an INOUT parameter either as an INOUT or as an OUT
parameter. If you use an INOUT parameter of a stored procedure as an OUT
parameter, the LiveWire Database Service implicitly passes a NULL value for that
parameter.

Examples Assume the inoutdemo stored procedure takes one input parameter and one
input/output parameter, as follows:

create procedure inoutdemo (@inparam int, @inoutparam int output)
as
if (@inoutparam == null)
@inoutparam = @inparam + 1
else
@inoutparam = @inoutparam + 1

Method of DbPool

Implemented in NES 3.0

procName The name of the procedure.

type1, ...,
typeN

Each type is one of: "IN", "OUT", or "INOUT" Specifies the type
of each parameter: input ("IN"), output ("OUT"), or both input
and output ("INOUT").
148 Server-Side JavaScript Reference

DbPool.toString
Assume execute the following code and then call outParameters(0), the
result will be 101:

database.storedProcArgs("inoutdemo", "IN", "INOUT")
spobj= database.storedProc("inoutdemo", 6, 100);
answer = spobj.outParameters(0);

The value of answer is 101. On the other hand, assume you execute this code:

database.storedProcArgs("inoutdemo", "IN", "OUT")
spobj = database.storedProc("inoutdemo", 6, 100);
answer = spobj.outParameters(0);

In this case, the value of answer is 7.

toString .

Returns a string representing the specified object.

Syntax toString()

Parameters None.

Description Every object has a toString method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation.

You can use toString within your own code to convert an object into a string,
and you can create your own function to be called in place of the default
toString method.

This method returns a string of the following format:

db "name" "userName" "dbtype" "serverName"

where

Method of DbPool

Implemented in NES 3.0

name The name of the database.

userName The name of the user connected to the database.

dbType One of ORACLE, SYBASE, INFORMIX, DB2, or ODBC.

serverName The name of the database server.
Chapter 1, Objects, Methods, and Properties 149

DbPool.toString
The method displays an empty string for any of attributes whose value is
unknown.

For information on defining your own toString method, see the
Object.toString method.
150 Server-Side JavaScript Reference

File
File
Lets an application interact with a physical file on the server.

Created by The File constructor:

new File(path)

Parameters

Description You can use the File object to write to or read from a file on the server. For
security reasons, you cannot programmatically access the file system of client
machines.

You can use the File object to generate persistent HTML or data files without
using a database server. Information stored in a file is preserved when the
server goes down.

Exercise caution when using the File object. An application can read and write
files anywhere the operating system allows. If you create an application that
writes to or reads from your file system, you should ensure that users cannot
misuse this capability.

Specify the full path, including the filename, for the path parameter of the
File object you want to create. The path must be an absolute path; do not use
a relative path.

If the physical file specified in the path already exists, the JavaScript runtime
engine references it when you call methods for the object. If the physical file
does not exist, you can create it by calling the open method.

You can display the name and path of a physical file by calling the write
function and passing it the name of the related File object.

A pointer indicates the current position in a file. If you open a file in the a or a+
mode, the pointer is initially positioned at the end of the file; otherwise, it is
initially positioned at the beginning of the file. In an empty file, the beginning

Server-side object

Implemented in NES 2.0

path A string representing the path and filename in the format of the
server’s file system (not a URL path).
Chapter 1, Objects, Methods, and Properties 151

File
and end of the file are the same. Use the eof, getPosition, and setPosition
methods to specify and evaluate the position of the pointer. See the open
method for a description of the modes in which you can open a file.

You can use the prototype property of the File object to add a property to all
File instances. If you do so, that addition applies to all File objects running in
all applications on your server, not just in the single application that made the
change. This allows you to expand the capabilities of this object for your entire
server.

Property
Summary

Method Summary

Property Description

constructor Specifies the function that creates an object’s prototype.

prototype Allows the addition of properties to a File object.

Method Description

byteToString Converts a number that represents a byte into a string.

clearError Clears the current file error status.

close Closes an open file on the server.

eof Determines whether the pointer is beyond the end of an open
file.

error Returns the current error status.

exists Tests whether a file exists.

flush Writes the content of the internal buffer to a file.

getLength Returns the length of a file.

getPosition Returns the current position of the pointer in an open file.

open Opens a file on the server.

read Reads data from a file into a string.

readByte Reads the next byte from an open file and returns its numeric
value.

readln Reads the current line from an open file and returns it as a string.

setPosition Positions a pointer in an open file.
152 Server-Side JavaScript Reference

File.byteToString
In addition, this object inherits the watch and unwatch methods from
Object.

Examples Example 1. The following example creates the File object userInfo that
refers to a physical file called info.txt. The info.txt file resides in the same
directory as the application’s .web file:

userInfo = new File("info.txt")

Example 2. In the following example, the File object refers to a physical file
with an absolute path:

userInfo = new File("c:\\data\\info.txt")

Example 3. The following example displays the name of a File object
onscreen.

userInfo = new File("c:\\data\\info.txt")
write(userInfo)

byteToString .

Converts a number that represents a byte into a string.

Syntax byteToString(number)

Parameters

stringToByte Converts the first character of a string into a number that
represents a byte.

write Writes data from a string to a file on the server.

writeByte Writes a byte of data to a binary file on the server.

writeln Writes a string and a carriage return to a file on the server.

Method Description

Method of File

Static

Implemented in NES 2.0

number A number that represents a byte.
Chapter 1, Objects, Methods, and Properties 153

File.byteToString
Description Use the stringToByte and byteToString methods to convert data between
binary and ASCII formats. The byteToString method converts the number
argument into a string.

Because byteToString is a static method of File, you always use it as
File.byteToString(), rather than as a method of a File object you created.

If the argument you pass into the byteToString method is not a number, the
method returns an empty string.

Examples The following example creates a copy of a text file, one character at a time. In
this example, a while loop executes until the pointer is positioned past the end
of the file. Inside the loop, the readByte method reads the current character
from the source file, and the byteToString method converts it into a string;
the write method writes it to the target file. The last readByte method
positions the pointer past the end of the file, ending the while loop. See the
File object for a description of the pointer.

// Create the source File object
source = new File("c:\data\source.txt")

// If the source file opens successfully, create a target file
if (source.open("r")) {

target = new File("c:\data\target.txt")
target.open("w")

// Copy the source file to the target
while (!source.eof()) {

data = File.byteToString(source.readByte())
target.write(data);

}
source.close()

}
target.close()

This example is similar to the example used for the write method of File.
However, this example reads bytes from the source file and converts them to
strings, instead of reading strings from the source file.

See also File.stringToByte
154 Server-Side JavaScript Reference

File.clearError
clearError .

Clears the current file error status.

Syntax clearError()

Parameters None.

Description The clearError method clears both the file error status (the value returned by
the error method) and the value returned by the eof method.

Examples See the example for the error method.

See also File.error, File.eof

close .

Closes an open file on the server.

Syntax close()

Parameters None.

Description When your application is finished with a file, you should close the file by
calling the close method. If the file is not open, the close method fails. This
method returns true if it is successful; otherwise, it returns false.

Examples See the examples for the open method.

See also File.open, blob

Method of File

Implemented in NES 2.0

Method of File

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 155

File.constructor
constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor.

eof .

Determines whether the pointer is beyond the end of an open file.

Syntax eof()

Parameters None.

Description Use the eof method to determine whether the position of the pointer is beyond
the end of a file. See File for a description of the pointer.

A call to setPosition resulting in a location greater than
fileObjectName.getLength places the pointer beyond the end of the file.
Because all read operations also move the pointer, a read operation that reads
the last byte of data (or character) in a file positions the pointer beyond the end
of the file.

The eof method returns true if the pointer is beyond the end of the file;
otherwise, it returns false.

Property of File

Implemented in NES 2.0

Method of File

Implemented in NES 2.0
156 Server-Side JavaScript Reference

File.error
Examples In this example, a while loop executes until the pointer is positioned past the
end of the file. While the pointer is not positioned past the end of the file, the
readln method reads the current line, and the write method displays it. The
last readln method positions the pointer past the end of the file, ending the
while loop.

x = new File("c:\data\userInfo.txt")
if (x.open("r")) {

while (!x.eof()) {
line = x.readln()
write(line+"
");

}
x.close();

}

See also File.getPosition, File.setPosition

error .

Returns the current error status.

Syntax error()

Parameters None

Returns 0 if there is no error.

-1 if the file specified in fileObjectName is not open

Otherwise, the method returns a nonzero integer indicating the error status.
Specific error status codes are platform-dependent. Refer to your operating
system documentation for more information.

Method of File

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 157

File.exists
Examples The following example uses the error method in an if statement to take
different actions depending on whether a call to the open method succeeded.
After the if statement completes, the error status is reset with the clearError
method.

userInput = new File("c:\data\input.txt")
userInput.open("w")
if (userInput.error() == 0) {

fileIsOpen() }
else {

fileIsNotOpen() }
userInput.clearError()

See also File.clearError

exists .

Tests whether a file exists.

Syntax exists()

Parameters None.

Returns True if the file exists; otherwise, false.

Examples The following example uses an if statement to take different actions
depending on whether a physical file exists. If the file exists, the JavaScript
runtime engine opens it and calls the writeData function. If the file does not
exist, the runtime engine calls the noFile function.

dataFile = new File("c:\data\mytest.txt")

if (dataFile.exists() ==true) {
dataFile.open("w")
writeData()
dataFile.close()

}
else {

noFile()
}

Method of File

Implemented in NES 2.0
158 Server-Side JavaScript Reference

File.flush
flush .

Writes the content of the internal buffer to a file.

Syntax flush()

Parameters None.

Description When you write to a file with any of the File object methods (write,
writeByte, or writeln), the data is buffered internally. The flush method
writes the buffer to the physical file. The flush method returns true if it is
successful; otherwise, it returns false.

Do not confuse the flush method of the File object with the top-level
flush function. The flush function flushes a buffer of data and causes it to
display in the client browser; the flush method flushes a buffer of data to a
physical file.

Examples See the write method for an example of the flush method.

See also File.write, File.writeByte, File.writeln

getLength .

Returns the length of a file.

Syntax getLength()

Parameters None.

Description If this method is successful, it returns the number of bytes in a binary file or
characters in a text file; otherwise, it returns -1.

Method of File

Implemented in NES 2.0

Method of File

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 159

File.getPosition
Examples The following example copies a file one character at a time. This example uses
getLength as a counter in a for loop to iterate over every character in the file.

// Create the source File object
source = new File("c:\data\source.txt")

// If the source file opens successfully, create a target file
if (source.open("r")) {

target = new File("c:\data\target.txt")
target.open("a")

// Copy the source file to the target
for (var x = 0; x < source.getLength(); x++) {

source.setPosition(x)
data = source.read(1)
target.write(data)

}
source.close()

}
target.close()

getPosition .

Returns the current position of the pointer in an open file.

Syntax getPosition()

Parameters None

Returns -1 if there is an error.

Description Use the getPosition method to determine the position of the pointer in a file.
See the File object for a description of the pointer. The getPosition method
returns the current pointer position; the first byte in a file is byte 0.

Method of File

Implemented in NES 2.0
160 Server-Side JavaScript Reference

File.getPosition
Examples The following examples refer to the file info.txt, which contains the string
“Hello World.” The length of info.txt is 11 bytes.

Example 1. In the following example, the first call to getPosition shows that
the default pointer position is 0 in a file that is opened for reading. This
example also shows that a call to the read method repositions the pointer.

dataFile = new File("c:\data\info.txt")
dataFile.open("r")

write("The position is " + dataFile.getPosition() + "
")
write("The next character is " + dataFile.read(1) + "
")
write("The new position is " + dataFile.getPosition() + "
")

dataFile.close()

This example displays the following information:

The position is 0
The next character is H
The new position is 1

Example 2. This example uses setPosition to position the pointer one byte
from the end of the eleven-byte file, resulting in a pointer position of offset 10.

dataFile = new File("c:\data\info.txt")
dataFile.open("r")

dataFile.setPosition(-1,2)
write("The position is " + dataFile.getPosition() + "
")
write("The next character is " + dataFile.read(1) + "
")

dataFile.close()

This example displays the following information:

The position is 10
The next character is d

Example 3. You can position the pointer beyond the end of the file and still
evaluate getPosition successfully. However, a call to eof indicates that the
pointer is beyond the end of the file.

dataFile.setPosition(1,2)
write("The position is " + dataFile.getPosition() + "
")
write("The value of eof is " + dataFile.eof() + "<P>")

This example displays the following information:

The position is 12
The value of eof is true
Chapter 1, Objects, Methods, and Properties 161

File.open
See also File.eof, File.open, File.setPosition

open .

Opens a file on the server.

Syntax open(mode)

Parameters

Description Use the open method to open a file on the server before you read from it or
write to it. If the file is already open, the method fails and has no effect. The
open method returns true if it is successful; otherwise, it returns false.

The mode parameter is a string that specifies whether to open the file to read,
write, or append data. You can optionally use the b parameter anytime you
specify the mode. If you do so, the JavaScript runtime engine on the server
opens the file as a binary file. If you do not use the b parameter, the runtime
engine opens the file as a text file. The b parameter is available only on
Windows platforms.

The possible values for mode are as follows:

• r[b] opens a file for reading. If the file exists, the method succeeds and
returns true; otherwise, the method fails and returns false.

• w[b] opens a file for writing. If the file does not already exist, it is created;
otherwise, it is overwritten. This method always succeeds and returns true.

• a[b] opens a file for appending (writing at the end of the file). If the file
does not already exist, it is created. This method always succeeds and
returns true.

• r+[b] opens a file for reading and writing. If the file exists, the method
succeeds and returns true; otherwise, the method fails and returns false.
Reading and writing commence at the beginning of the file. When writing,
characters at the beginning of the file are overwritten.

Method of File

Implemented in NES 2.0

mode A string specifying whether to open the file to read, write, or
append, according to the list below.
162 Server-Side JavaScript Reference

File.prototype
• w+[b] opens a file for reading and writing. If the file does not already exist,
it is created; otherwise, it is overwritten. This method always succeeds and
returns true.

• a+[b] opens a file for reading and appending. If the file does not already
exist, it is created. This method always succeeds and returns true. Reading
and appending commence at the end of the file.

When your application is finished with a file, you should close the file by
calling the close method.

Examples Example 1. The following example opens the file info.txt so an application
can write information to it. If info.txt does not already exist, the open
method creates it; otherwise, the open method overwrites it. The close method
closes the file after the writeData function is completed.

userInfo = new File("c:\data\info.txt")
userInfo.open("w")
writeData()
userInfo.close()

Example 2. The following example opens a binary file so an application can
read data from it. The application uses an if statement to take different actions
depending on whether the open statement finds the specified file.

entryGraphic = new File("c:\data\splash.gif")
if (entryGraphic.open("rb") == true) {

displayProcedure()
}

else {
errorProcedure()
}

entryGraphic.close()

See also File.close

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype.
Property of File

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 163

File.read
read .

Reads data from a file into a string.

Syntax read(count)

Parameters

Description The read method reads the specified number of characters from a file, starting
from the current position of the pointer. If you attempt to read more characters
than the file contains, the method reads as many characters as possible. This
method moves the pointer the number of characters specified by the count
parameter. See the File object for a description of the pointer.

The read method returns the characters it reads as a string.

Use the read method to read information from a text file; use the readByte
method to read data from a binary file.

Examples The following example references the file info.txt, which contains the string
“Hello World.” The first read method starts from the beginning of the file and
reads the character “H.” The second read method starts from offset six and
reads the characters “World.”

dataFile = new File("c:\data\info.txt")
dataFile.open("r")

write("The next character is " + dataFile.read(1) + "
")
dataFile.setPosition(6)
write("The next five characters are " + dataFile.read(5) + "
")

dataFile.close()

This example displays the following information:

The next character is H
The next five characters are World

See also File.readByte, File.readln, File.write

Method of File

Implemented in NES 2.0

count An integer specifying the number of characters to read.
164 Server-Side JavaScript Reference

File.readByte
readByte .

Reads the next byte from an open file and returns its numeric value.

Syntax readByte()

Parameters None.

Description The readByte method reads the next byte from a file, starting from the current
position of the pointer. This method moves the pointer one byte. See the File
object for a description of the pointer.

The readByte method returns the byte it reads as a number. If the pointer is at
the end of the file when you issue readByte, the method returns -1.

Use the readByte method to read information from a binary file. You can use
the readByte method to read from a text file, but you must use the
byteToString method to convert the value to a string. Generally it is better to
use the read method to read information from a text file.

You can use the writeByte method to write data read by the readByte
method to a file.

Examples This example creates a copy of a binary file. In this example, a while loop
executes until the pointer is positioned past the end of the file. While the
pointer is not positioned past the end of the file, the readByte method reads
the current byte from the source file, and the writeByte method writes it to
the target file. The last readByte method positions the pointer past the end of
the file, ending the while loop.

// Create the source File object
source = new File("c:\data\source.gif")

// If the source file opens successfully, create a target file
if (source.open("rb")) {

target = new File("c:\data\target.gif")
target.open("wb")

Method of File

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 165

File.readln
// Copy the source file to the target
while (!source.eof()) {

data = source.readByte()
target.writeByte(data);

}
source.close();

}
target.close()

See also File.read, File.readln, File.writeByte

readln .

Reads the current line from an open file and returns it as a string.

Syntax readln()

Parameters None

Description The readln method reads the current line of characters from a file, starting
from the current position of the pointer. If you attempt to read more characters
than the file contains, the method reads as many characters as possible. This
method moves the pointer to the beginning of the next line. See the File
object for a description of the pointer.

The readln method returns the characters it reads as a string.

The line separator characters (“\r” and “\n” on Windows platforms and “\n” on
UNIX platforms) are not included in the string that the readln method returns.
The \r character is skipped; \n determines the actual end of the line.

Use the readln method to read information from a text file; use the readByte
method to read data from a binary file. You can use the writeln method to
write data read by the readln method to a file.

Examples See File.eof

See also File.read, File.readByte, File.writeln

Method of File

Implemented in NES 2.0
166 Server-Side JavaScript Reference

File.setPosition
setPosition .

Positions a pointer in an open file.

Syntax setPosition(position[, reference])

Parameters

Description Use the setPosition method to reposition the pointer in a file. See the File
object for a description of the pointer.

The position argument is a positive or negative integer that moves the pointer
the specified number of bytes relative to the reference argument. Position 0
represents the beginning of a file. The end of a file is indicated by
fileObjectName.getLength().

The optional reference argument is one of the following values, indicating the
reference point for position:

• 0: relative to beginning of file.

• 1: relative to current position.

• 2: relative to end of file.

• Other (or unspecified): relative to beginning of file.

The setPosition method returns true if it is successful; otherwise, it returns
false.

Examples The following examples refer to the file info.txt, which contains the string
“Hello World.” The length of info.txt is 11 bytes. The first example moves
the pointer from the beginning of the file, and the second example moves the
pointer to the same location by navigating relative to the end of the file. Both
examples display the following information:

The position is 10
The next character is d

Method of File

Implemented in NES 2.0

position An integer indicating where to position the pointer.

reference An integer that indicates a reference point, according to the list
below.
Chapter 1, Objects, Methods, and Properties 167

File.stringToByte
Example 1. This example moves the pointer from the beginning of the file to
offset 10. Because no value for reference is supplied, the JavaScript runtime
engine assumes it is 0.

dataFile = new File("c:\data\info.txt")
dataFile.open("r")

dataFile.setPosition(10)
write("The position is " + dataFile.getPosition() + "
")
write("The next character is " + dataFile.read(1) + "<P>")

dataFile.close()

Example 2. This example moves the pointer from the end of the file to offset
10.

dataFile = new File("c:\data\info.txt")
dataFile.open("r")

dataFile.setPosition(-1,2)
write("The position is " + dataFile.getPosition() + "
")
write("The next character is " + dataFile.read(1) + "<P>")

dataFile.close()

See also File.eof, File.getPosition, File.open

stringToByte .

Converts the first character of a string into a number that represents a byte.

Syntax stringToByte(string)

Parameters

Method of File

Static

Implemented in NES 2.0

string A JavaScript string.
168 Server-Side JavaScript Reference

File.write
Description Use the stringToByte and byteToString methods to convert data between
binary and ASCII formats. The stringToByte method converts the first
character of its string argument into a number that represents a byte.

Because stringToByte is a static method of File, you always use it as
File.stringToByte(), rather than as a method of a File object you created.

If this method succeeds, it returns the numeric value of the first character of the
input string; if it fails, it returns 0.

Examples In the following example, the stringToByte method is passed “Hello” as an
input argument. The method converts the first character, “H,” into a numeric
value representing a byte.

write("The stringToByte value of Hello = " +
File.stringToByte("Hello") + "
")

write("Returning that value to byteToString = " +
File.byteToString(File.stringToByte("Hello")) + "<P>")

The previous example displays the following information:

The stringToByte value of Hello = 72
Returning that value to byteToString = H

See also File.byteToString

write .

Writes data from a string to a file on the server.

Syntax write(string)

Parameters

Description The write method writes the string specified as string to the file specified as
fileObjectName. This method returns true if it is successful; otherwise, it
returns false.

Use the write method to write data to a text file; use the writeByte method to
write data to a binary file. You can use the read method to read data from a file
to a string for use with the write method.

Method of File

Implemented in NES 2.0

string A JavaScript string.
Chapter 1, Objects, Methods, and Properties 169

File.writeByte
Examples This example creates a copy of a text file, one character at a time. In this
example, a while loop executes until the pointer is positioned past the end of
the file. While the pointer is not positioned past the end of the file, the read
method reads the current character from the source file, and the write method
writes it to the target file. The last read method positions the pointer past the
end of the file, ending the while loop. See the File object for a description of
the pointer.

// Create the source File object
source = new File("c:\data\source.txt")

// If the source file opens successfully, create a target file
if (source.open("r")) {

target = new File("c:\data\target.txt")
target.open("w")

// Copy the source file to the target
while (!source.eof()) {

data = source.read(1)
target.write(data);

}
source.close();

}
target.flush()
target.close()

See also File.flush, File.read, File.writeByte, File.writeln

writeByte .

Writes a byte of data to a binary file on the server.

Syntax writeByte(number)

Parameters

Method of File

Implemented in NES 2.0

number A number that specifies a byte of data.
170 Server-Side JavaScript Reference

File.writeln
Description The writeByte method writes a byte that is specified as number to a file that is
specified as fileObjectName. This method returns true if it is successful;
otherwise, it returns false.

Use the writeByte method to write data to a binary file; use the write method
to write data to a text file. You can use the readByte method to read bytes of
data from a file to numeric values for use with the writeByte method.

Examples See the example for the readByte method.

See also File.flush, File.readByte, File.write, File.writeln

writeln .

Writes a string and a carriage return to a file on the server.

Syntax writeln(string)

Parameters

Description The writeln method writes the string specified as string to the file specified
as fileObjectName. Each string is followed by the carriage return/line feed
character “\n” (“\r\n” on Windows platforms). This method returns true if the
write is successful; otherwise, it returns false.

Use the writeln method to write data to a text file; use the writeByte method
to write data to a binary file. You can use the readln method to read data from
a file to a string for use with the writeln method.

Method of File

Implemented in NES 2.0

string A JavaScript string.
Chapter 1, Objects, Methods, and Properties 171

File.writeln
Examples This example creates a copy of a text file, one line at a time. In this example, a
while loop executes until the pointer is positioned past the end of the file.
While the pointer is not positioned past the end of the file, the readln method
reads the current line from the source file, and the writeln method writes it to
the target file. The last readln method positions the pointer past the end of the
file, ending the while loop. See the File object for a description of the
pointer.

// Create the source File object
source = new File("c:\data\source.txt")

// If the source file opens successfully, create a target file
if (source.open("r")) {

target = new File("c:\data\target.txt")
target.open("w")

// Copy the source file to the target
while (!source.eof()) {

data = source.readln()
target.writeln(data);

}
source.close();

}
target.close()

Note that the readln method ignores the carriage return/line feed characters
when it reads a line from a file. The writeln method appends these characters
to the string that it writes.

See also File.flush, File.readln, File.write, File.writeByte
172 Server-Side JavaScript Reference

Function
Function
Specifies a string of JavaScript code to be compiled as a function.

Created by The Function constructor:

new Function ([arg1[, arg2[, ... argN]],] functionBody)

The function statement (see “function” on page 372 for details):

function name([param[, param[, ... param]]]) {
statements

}

Parameters

Description Function objects created with the Function constructor are evaluated each
time they are used. This is less efficient than declaring a function and calling it
within your code, because declared functions are compiled.

To return a value, the function must have a return statement that specifies the
value to return.

Core object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: added arity, arguments.callee properties; added
ability to nest functions

ECMA version ECMA-262

arg1, arg2,
... argN

(Optional) Names to be used by the function as formal argument
names. Each must be a string that corresponds to a valid JavaScript
identifier; for example "x" or "theValue".

functionBody A string containing the JavaScript statements comprising the function
definition.

name The function name.

param The name of an argument to be passed to the function. A function can
have up to 255 arguments.

statements The statements comprising the body of the function.
Chapter 1, Objects, Methods, and Properties 173

Function
All parameters are passed to functions by value; the value is passed to the
function, but if the function changes the value of the parameter, this change is
not reflected globally or in the calling function. However, if you pass an object
as a parameter to a function and the function changes the object’s properties,
that change is visible outside the function, as shown in the following example:

function myFunc(theObject) {
theObject.make="Toyota"

}

mycar = {make:"Honda", model:"Accord", year:1998}
x=mycar.make // returns Honda
myFunc(mycar) // pass object mycar to the function
y=mycar.make // returns Toyota (prop was changed by the function)

The this keyword does not refer to the currently executing function, so you
must refer to Function objects by name, even within the function body.

Accessing a function’s arguments with the arguments array. You can
refer to a function’s arguments within the function by using the arguments
array. See arguments.

Specifying arguments with the Function constructor. The following code
creates a Function object that takes two arguments.

var multiply = new Function("x", "y", "return x * y")

The arguments "x" and "y" are formal argument names that are used in the
function body, "return x * y".

The preceding code assigns a function to the variable multiply. To call the
Function object, you can specify the variable name as if it were a function, as
shown in the following examples.

var theAnswer = multiply(7,6)

var myAge = 50
if (myAge >=39) {myAge=multiply (myAge,.5)}
174 Server-Side JavaScript Reference

Function
Assigning a function to a variable with the Function constructor.

Suppose you create the variable multiply using the Function constructor, as
shown in the preceding section:

var multiply = new Function("x", "y", "return x * y")

This is similar to declaring the following function:

function multiply(x,y) {
return x*y

}

Assigning a function to a variable using the Function constructor is similar to
declaring a function with the function statement, but they have differences:

• When you assign a function to a variable using var multiply = new
Function("..."), multiply is a variable for which the current value is a
reference to the function created with new Function().

• When you create a function using function multiply() {...},
multiply is not a variable, it is the name of a function.

Nesting functions. You can nest a function within a function. The nested
(inner) function is private to its containing (outer) function:

• The inner function can be accessed only from statements in the outer
function.

• The inner function can use the arguments and variables of the outer
function. The outer function cannot use the arguments and variables of the
inner function.

The following example shows nested functions:

function addSquares (a,b) {
function square(x) {

return x*x
}
return square(a) + square(b)

}
a=addSquares(2,3) // returns 13
b=addSquares(3,4) // returns 25
c=addSquares(4,5) // returns 41
Chapter 1, Objects, Methods, and Properties 175

Function
When a function contains a nested function, you can call the outer function and
specify arguments for both the outer and inner function:

function outside(x) {
function inside(y) {

return x+y
}
return inside

}
result=outside(3)(5) // returns 8

Backward
Compatibility

JavaScript 1.1 and earlier versions. You cannot nest a function statement in
another statement or in itself.

Property
Summary

Method Summary

Property Description

arguments An array corresponding to the arguments passed to a
function.

arguments.callee Specifies the function body of the currently executing
function.

arguments.caller Specifies the name of the function that invoked the currently
executing function.

arguments.length Specifies the number of arguments passed to the function.

arity Specifies the number of arguments expected by the function.

constructor Specifies the function that creates an object’s prototype.

length Specifies the number of arguments expected by the function.

prototype Allows the addition of properties to a Function object.

Method Description

toString Returns a string representing the source code of the function.
Overrides the Object.toString method.

valueOf Returns a string representing the source code of the function.
Overrides the Object.valueOf method.
176 Server-Side JavaScript Reference

Function.arguments
Examples Example 1. The following function returns a string containing the formatted
representation of a number padded with leading zeros.

// This function returns a string padded with leading zeros
function padZeros(num, totalLen) {

var numStr = num.toString() // Initialize return value
// as string

var numZeros = totalLen - numStr.length // Calculate no. of zeros
if (numZeros > 0) {

for (var i = 1; i <= numZeros; i++) {
numStr = "0" + numStr

}
}
return numStr

}

The following statements call the padZeros function.

result=padZeros(42,4) // returns "0042"
result=padZeros(42,2) // returns "42"
result=padZeros(5,4) // returns "0005"

arguments .

An array corresponding to the arguments passed to a function.

Description You can refer to a function’s arguments within the function by using the
arguments array. This array contains an entry for each argument passed to
the function. For example, if a function is passed three arguments, you can
refer to the arguments as follows:

arguments[0]
arguments[1]
arguments[2]

The arguments array can also be preceded by the function name:

myFunc.arguments[0]
myFunc.arguments[1]
myFunc.arguments[2]

Local variable of All function objects

Property of Function

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: added arguments.callee property

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 177

Function.arguments
The arguments array is available only within a function body. Attempting to
access the arguments array outside a function declaration results in an error.

You can use the arguments array if you call a function with more arguments
than it is formally declared to accept. This technique is useful for functions that
can be passed a variable number of arguments. You can use
arguments.length to determine the number of arguments passed to the
function, and then process each argument by using the arguments array. (To
determine the number of arguments declared when a function was defined, use
the Function.length property.)

Each local variable of a function is a property of the arguments array. For
example, if a function myFunc has a local variable named myLocalVar, you
can refer to the variable as arguments.myLocalVar.

Each formal argument of a function is a property of the arguments array. For
example, if a function myFunc has two arguments named arg1 and arg2, you
can refer to the arguments as arguments.arg1 and arguments.arg2.
(You can also refer to them as arguments[0] and arguments[1].)

The arguments array has the following properties:

Examples Example 1. This example defines a function that concatenates several strings.
The only formal argument for the function is a string that specifies the
characters that separate the items to concatenate. The function is defined as
follows:

function myConcat(separator) {
result="" // initialize list
// iterate through arguments
for (var i=1; i<arguments.length; i++) {

result += arguments[i] + separator
}
return result

}

Property Description

arguments.callee Specifies the function body of the currently executing
function.

arguments.caller Specifies the name of the function that invoked the
currently executing function. (Deprecated)

arguments.length Specifies the number of arguments passed to the function.
178 Server-Side JavaScript Reference

Function.arguments
You can pass any number of arguments to this function, and it creates a list
using each argument as an item in the list.

// returns "red, orange, blue, "
myConcat(", ","red","orange","blue")

// returns "elephant; giraffe; lion; cheetah;"
myConcat("; ","elephant","giraffe","lion", "cheetah")

// returns "sage. basil. oregano. pepper. parsley. "
myConcat(". ","sage","basil","oregano", "pepper", "parsley")

Example 2. This example defines a function that creates HTML lists. The only
formal argument for the function is a string that is "U" if the list is to be
unordered (bulleted), or "O" if the list is to be ordered (numbered). The
function is defined as follows:

function list(type) {
document.write("<" + type + "L>") // begin list
// iterate through arguments
for (var i=1; i<arguments.length; i++) {

document.write("" + arguments[i])
}
document.write("</" + type + "L>") // end list

}

You can pass any number of arguments to this function, and it displays each
argument as an item in the type of list indicated. For example, the following
call to the function

list("U", "One", "Two", "Three")

results in this output:

One
Two
Three

In server-side JavaScript, you can display the same output by calling the write
function instead of using document.write.
Chapter 1, Objects, Methods, and Properties 179

Function.arguments.callee
arguments.callee .

Specifies the function body of the currently executing function.

Description The callee property is available only within the body of a function.

The this keyword does not refer to the currently executing function. Use the
callee property to refer to a function within the function body.

Examples The following function returns the value of the function’s callee property.

function myFunc() {
return arguments.callee

}

The following value is returned:

function myFunc() { return arguments.callee; }

See also Function.arguments

arguments.caller .

Specifies the name of the function that invoked the currently executing
function.

Description The caller property is available only within the body of a function.

If the currently executing function was invoked by the top level of a JavaScript
program, the value of caller is null.

The this keyword does not refer to the currently executing function, so you
must refer to functions and Function objects by name, even within the
function body.

Property of arguments local variable; Function (deprecated)

Implemented in JavaScript 1.2

ECMA version ECMA-262

Property of Function

Implemented in JavaScript 1.1, NES 2.0
180 Server-Side JavaScript Reference

Function.arguments.length
The caller property is a reference to the calling function, so

• If you use it in a string context, you get the result of calling
functionName.toString. That is, the decompiled canonical source form
of the function.

• You can also call the calling function, if you know what arguments it might
want. Thus, a called function can call its caller without knowing the name
of the particular caller, provided it knows that all of its callers have the same
form and fit, and that they will not call the called function again
unconditionally (which would result in infinite recursion).

Examples The following code checks the value of a function’s caller property.

function myFunc() {
if (arguments.caller == null) {

return ("The function was called from the top!")
} else return ("This function’s caller was " + arguments.caller)

}

See also Function.arguments

arguments.length .

Specifies the number of arguments passed to the function.

Description arguments.length provides the number of arguments actually passed to a
function. By contrast, the Function.length property indicates how many
arguments a function expects.

Example The following example demonstrates the use of Function.length and
arguments.length.

function addNumbers(x,y){
if (arguments.length == addNumbers.length) {

return (x+y)
}
else return 0

}

Property of arguments local variable; Function (deprecated)

Implemented in JavaScript 1.1

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 181

Function.arity
If you pass more than two arguments to this function, the function returns 0:

result=addNumbers(3,4,5) // returns 0
result=addNumbers(3,4) // returns 7
result=addNumbers(103,104) // returns 207

See also Function.arguments

arity .

Specifies the number of arguments expected by the function.

Description arity is external to the function, and indicates how many arguments a
function expects. By contrast, arguments.length provides the number of
arguments actually passed to a function.

Example The following example demonstrates the use of arity and
arguments.length.

function addNumbers(x,y){
if (arguments.length == addNumbers.length) {

return (x+y)
}
else return 0

}

If you pass more than two arguments to this function, the function returns 0:

result=addNumbers(3,4,5) // returns 0
result=addNumbers(3,4) // returns 7
result=addNumbers(103,104) // returns 207

See also arguments.length, Function.length

Property of Function

Implemented in JavaScript 1.2, NES 3.0
182 Server-Side JavaScript Reference

Function.constructor
constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor.

length .

Specifies the number of arguments expected by the function.

Description length is external to a function, and indicates how many arguments the
function expects. By contrast, arguments.length is local to a function and
provides the number of arguments actually passed to the function.

Example See the example for arguments.length.

See also arguments.length

prototype .

A value from which instances of a particular class are created. Every object that
can be created by calling a constructor function has an associated prototype
property.

Property of Function

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Property of Function

Implemented in JavaScript 1.1

ECMA version ECMA-262

Property of Function

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 183

Function.prototype
Description You can add new properties or methods to an existing class by adding them to
the prototype associated with the constructor function for that class. The syntax
for adding a new property or method is:

fun.prototype.name = value

where

If you add a property to the prototype for an object, then all objects created
with that object’s constructor function will have that new property, even if the
objects existed before you created the new property. For example, assume you
have the following statements:

var array1 = new Array();
var array2 = new Array(3);
Array.prototype.description=null;
array1.description="Contains some stuff"
array2.description="Contains other stuff"

After you set a property for the prototype, all subsequent objects created with
Array will have the property:

anotherArray=new Array()
anotherArray.description="Currently empty"

Example The following example creates a method, str_rep, and uses the statement
String.prototype.rep = str_rep to add the method to all String objects.
All objects created with new String() then have that method, even objects
already created. The example then creates an alternate method and adds that to
one of the String objects using the statement s1.rep = fake_rep. The
str_rep method of the remaining String objects is not altered.

var s1 = new String("a")
var s2 = new String("b")
var s3 = new String("c")

// Create a repeat-string-N-times method for all String objects
function str_rep(n) {

var s = "", t = this.toString()
while (--n >= 0) s += t
return s

}

fun The name of the constructor function object you want to change.

name The name of the property or method to be created.

value The value initially assigned to the new property or method.
184 Server-Side JavaScript Reference

Function.toString
String.prototype.rep = str_rep

s1a=s1.rep(3) // returns "aaa"
s2a=s2.rep(5) // returns "bbbbb"
s3a=s3.rep(2) // returns "cc"

// Create an alternate method and assign it to only one String variable
function fake_rep(n) {

return "repeat " + this + " " + n + " times."
}

s1.rep = fake_rep
s1b=s1.rep(1) // returns "repeat a 1 times."
s2b=s2.rep(4) // returns "bbbb"
s3b=s3.rep(6) // returns "cccccc"

The function in this example also works on String objects not created with
the String constructor. The following code returns "zzz".

"z".rep(3)

toString .

Returns a string representing the source code of the function.

Syntax toString()

Parameters None.

Description The Function object overrides the toString method of the Object object;
it does not inherit Object.toString. For Function objects, the toString
method returns a string representation of the object.

JavaScript calls the toString method automatically when a Function is to be
represented as a text value or when a Function is referred to in a string
concatenation.

For Function objects, the built-in toString method decompiles the function
back into the JavaScript source that defines the function. This string includes
the function keyword, the argument list, curly braces, and function body.

Method of Function

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 185

Function.valueOf
For example, assume you have the following code that defines the Dog object
type and creates theDog, an object of type Dog:

function Dog(name,breed,color,sex) {
this.name=name
this.breed=breed
this.color=color
this.sex=sex

}

theDog = new Dog("Gabby","Lab","chocolate","girl")

Any time Dog is used in a string context, JavaScript automatically calls the
toString function, which returns the following string:

function Dog(name, breed, color, sex) { this.name = name; this.breed =
breed; this.color = color; this.sex = sex; }

See also Object.toString

valueOf .

Returns a string representing the source code of the function.

Syntax valueOf()

Parameters None

Description The valueOf method returns the following values:

• For the built-in Function object, valueOf returns the following string
indicating that the source code is not available:

function Function() {
[native code]

}

• For custom functions, toSource returns the JavaScript source that defines
the object as a string. The method is equivalent to the toString method
of the function.

This method is usually called internally by JavaScript and not explicitly in code.

See also Function.toString, Object.valueOf

Method of Function

Implemented in JavaScript 1.1

ECMA version ECMA-262
186 Server-Side JavaScript Reference

Chapter 1, Objects, Methods, and Properties 187

java

java
A top-level object used to access any Java class in the package java.*.

Created by The java object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

Description The java object is a convenience synonym for the property Packages.java.

See also Packages, Packages.java

Core object

Implemented in JavaScript 1.1, NES 2.0

JavaArray
JavaArray
A wrapped Java array accessed from within JavaScript code is a member of the
type JavaArray.

Created by Any Java method which returns an array. In addition, you can create a
JavaArray with an arbitrary data type using the newInstance method of
the Array class:

public static Object newInstance(Class componentType,
int length)
throws NegativeArraySizeException

Description The JavaArray object is an instance of a Java array that is created in or
passed to JavaScript. JavaArray is a wrapper for the instance; all references
to the array instance are made through the JavaArray.

You must specify a class object, such as one returned by
java.lang.Object.forName, for the componentType parameter of
newInstance when you use this method to create an array. You cannot use a
JavaClass object for the componentType parameter.

Use zero-based indexes to access the elements in a JavaArray object, just as
you do to access elements in an array in Java. For example:

var javaString = new java.lang.String("Hello world!");
var byteArray = javaString.getBytes();
byteArray[0] // returns 72
byteArray[1] // returns 101

Any Java data brought into JavaScript is converted to JavaScript data types.
When the JavaArray is passed back to Java, the array is unwrapped and can
be used by Java code. See the Server-Side JavaScript Guide for more
information about data type conversions.

Property
Summary

Core object

Implemented in JavaScript 1.1, NES 2.0

Property Description

length The number of elements in the Java array represented by
JavaArray.
188 Server-Side JavaScript Reference

JavaArray.length
Method Summary

Examples Example 1. Instantiating a JavaArray in JavaScript.

In this example, the JavaArray byteArray is created by the
java.lang.String.getBytes method, which returns an array.

var javaString = new java.lang.String("Hello world!");
var byteArray = javaString.getBytes();

Example 2. Instantiating a JavaArray in JavaScript with the newInstance
method.

Use a class object returned by java.lang.Class.forName as the argument
for the newInstance method, as shown in the following code:

var dataType = java.lang.Class.forName("java.lang.String")
var dogs = java.lang.reflect.Array.newInstance(dataType, 5)

length .

The number of elements in the Java array represented by the JavaArray
object.

Description Unlike Array.length, JavaArray.length is a read-only property. You
cannot change the value of the JavaArray.length property because Java
arrays have a fixed number of elements.

See also Array.length

Method Description

toString Returns a string identifying the object as a
JavaArray.

Property of JavaArray

Implemented in JavaScript 1.1, NES 2.0
Chapter 1, Objects, Methods, and Properties 189

JavaArray.toString
toString .

Returns a string representation of the JavaArray.

Parameters None

Description The toString method is inherited from the Object object and returns the
following value:

[object JavaArray]

Method of JavaArray

Implemented in JavaScript 1.1, NES 2.0
190 Server-Side JavaScript Reference

Chapter 1, Objects, Methods, and Properties 191

JavaClass

JavaClass
A JavaScript reference to a Java class.

Created by A reference to the class name used with the Packages object:

Packages.JavaClass

where JavaClass is the fully-specified name of the object’s Java class. The
LiveConnect java, sun, and netscape objects provide shortcuts for
commonly used Java packages and also create JavaClass objects.

Description A JavaClass object is a reference to one of the classes in a Java package,
such as netscape.javascript.JSObject. A JavaPackage object is a
reference to a Java package, such as netscape.javascript. In JavaScript,
the JavaPackage and JavaClass hierarchy reflect the Java package and
class hierarchy.

You must create a wrapper around an instance of java.lang.Class before
you pass it as a parameter to a Java method—JavaClass objects are not
automatically converted to instances of java.lang.Class.

Property
Summary

The properties of a JavaClass object are the static fields of the Java class.

Method Summary The methods of a JavaClass object are the static methods of the Java class.

Examples In the following example, x is a JavaClass object referring to
java.awt.Font. Because BOLD is a static field in the Font class, it is also a
property of the JavaClass object.

x = java.awt.Font
myFont = x("helv",x.BOLD,10) // creates a Font object

The previous example omits the Packages keyword and uses the java
synonym because the Font class is in the java package.

See also JavaArray, JavaObject, JavaPackage, Packages

Core object

Implemented in JavaScript 1.1, NES 2.0

JavaObject
JavaObject
The type of a wrapped Java object accessed from within JavaScript code.

Created by Any Java method which returns an object type. In addition, you can explicitly
construct a JavaObject using the object’s Java constructor with the
Packages keyword:

new Packages.JavaClass(parameterList)

where JavaClass is the fully-specified name of the object’s Java class.

Parameters

Description The JavaObject object is an instance of a Java class that is created in or
passed to JavaScript. JavaObject is a wrapper for the instance; all references
to the class instance are made through the JavaObject.

Any Java data brought into JavaScript is converted to JavaScript data types.
When the JavaObject is passed back to Java, it is unwrapped and can be
used by Java code. See the Server-Side JavaScript Guide for more information
about data type conversions.

Property
Summary

Inherits public data members from the Java class of which it is an instance as
properties. It also inherits public data members from any superclass as
properties.

Method Summary Inherits public methods from the Java class of which it is an instance. The
JavaObject also inherits methods from java.lang.Object and any other
superclass.

Core object

Implemented in JavaScript 1.1, NES 2.0

parameterList An optional list of parameters, specified by the constructor in
the Java class.
192 Server-Side JavaScript Reference

JavaObject
Examples Example 1. Instantiating a Java object in JavaScript.

The following code creates the JavaObject theString, which is an
instance of the class java.lang.String:

var theString = new Packages.java.lang.String("Hello, world")

Because the String class is in the java package, you can also use the java
synonym and omit the Packages keyword when you instantiate the class:

var theString = new java.lang.String("Hello, world")

Example 2. Accessing methods of a Java object.

Because the JavaObject theString is an instance of
java.lang.String, it inherits all the public methods of
java.lang.String. The following example uses the startsWith method
to check whether theString begins with “Hello”.

var theString = new java.lang.String("Hello, world")
theString.startsWith("Hello") // returns true

Example 3. Accessing inherited methods.

Because getClass is a method of Object, and java.lang.String
extends Object, the String class inherits the getClass method.
Consequently, getClass is also a method of the JavaObject which
instantiates String in JavaScript.

var theString = new java.lang.String("Hello, world")
theString.getClass() // returns java.lang.String

See also JavaArray, JavaClass, JavaPackage, Packages
Chapter 1, Objects, Methods, and Properties 193

JavaPackage

194 Server-Side JavaScript Reference

JavaPackage
A JavaScript reference to a Java package.

Created by A reference to the package name used with the Packages keyword:

Packages.JavaPackage

where JavaPackage is the name of the object’s Java package. If the package is
in the java, netscape, or sun packages, the Packages keyword is
optional.

Description In Java, a package is a collection of Java classes or other Java packages. For
example, the netscape package contains the package
netscape.javascript; the netscape.javascript package contains the
classes JSObject and JSException.

In JavaScript, a JavaPackage is a reference to a Java package. For example, a
reference to netscape is a JavaPackage. netscape.javascript is both
a JavaPackage and a property of the netscape JavaPackage.

A JavaClass object is a reference to one of the classes in a package, such as
netscape.javascript.JSObject. The JavaPackage and JavaClass
hierarchy reflect the Java package and class hierarchy.

Although the packages and classes contained in a JavaPackage are its
properties, you cannot use a for...in statement to enumerate them as you
can enumerate the properties of other objects.

Property
Summary

The properties of a JavaPackage are the JavaClass objects and any other
JavaPackage objects it contains.

Examples Suppose the Redwood corporation uses the Java redwood package to contain
various Java classes that it implements. The following code creates the
JavaPackage red:

var red = Packages.redwood

See also JavaArray, JavaClass, JavaObject, Packages

Core object

Implemented in JavaScript 1.1, NES 2.0

Lock
Lock
Provides a way to lock a critical section of code.

Created by The Lock constructor:

Lock();

Parameters None.

Failure to construct a new Lock object indicates an internal JavaScript error,
such as out of memory.

Property
Summary

Method Summary

In addition, this object inherits the watch and unwatch methods from
Object.

See also project.lock, project.unlock, server.lock, server.unlock

Syntax lock(timeout)

Parameters

Server-side object

Implemented in NES 3.0

Property Description

constructor Specifies the function that creates an object’s prototype.

prototype Allows the addition of properties to the object.

Method Description

isValid Verifies that this Lock object was properly constructed.

lock Obtains the lock.

unlock Releases the lock.

timeout An integer indicating the number of seconds to wait for the lock. If
0, there is no timeout; that is, the method waits indefinitely to
obtain the lock. The default value is 0, so if you do not specify a
value, the method waits indefinitely.
Chapter 1, Objects, Methods, and Properties 195

Lock.constructor
Returns True if it succeeds in obtaining the lock within the specified timeout. False if it
did not obtain the lock.

Description You can obtain a lock for an object to ensure that different clients do not access
a critical section of code simultaneously. When an application locks an object,
other client requests must wait before they can lock the object.

Note that this mechanism requires voluntary compliance by asking for the lock
in the first place.

See also Lock.unlock, Lock.isValid, project.lock, server.lock

constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor.

isValid .

Verifies that this Lock object was properly constructed.

Syntax isValid()

Parameters None.

Returns True, if this object was properly constructed; otherwise, false.

Description It is very rare that your Lock object would not be properly constructed. This
happens only if the runtime engine runs out of system resources while creating
the object.

Property of Lock

Implemented in NES 2.0

Method of Lock

Implemented in NES 3.0
196 Server-Side JavaScript Reference

Lock.lock
Examples This code creates a Lock object and verifies that nothing went wrong creating
it:

// construct a new Lock and save in project
project.ordersLock = new Lock();
if (! project.ordersLock.isValid()) {

// Unable to create a Lock. Redirect to error page
...

}

See also Lock.lock, Lock.unlock

lock .

Obtains the lock. If someone else has the lock, this method blocks until it can
get the lock, the specified timeout period has elapsed, or an error occurs.

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype.

Method of Lock

Implemented in NES 3.0

Property of Lock

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 197

Lock.unlock
unlock .

Releases the lock.

Syntax unlock()

Parameters None.

Returns False if it fails; otherwise, true. Failure indicates an internal JavaScript error or
that you attempted to unlock a lock that you don’t own.

Description If you unlock a lock that is unlocked, the resulting behavior is undefined.

See also Lock.lock, Lock.isValid, project.unlock, server.unlock

Method of Lock

Implemented in NES 3.0
198 Server-Side JavaScript Reference

Math
Math
A built-in object that has properties and methods for mathematical constants
and functions. For example, the Math object’s PI property has the value of pi.

Created by The Math object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

Description All properties and methods of Math are static. You refer to the constant PI as
Math.PI and you call the sine function as Math.sin(x), where x is the
method’s argument. Constants are defined with the full precision of real
numbers in JavaScript.

It is often convenient to use the with statement when a section of code uses
several Math constants and methods, so you don’t have to type “Math”
repeatedly. For example,

with (Math) {
a = PI * r*r
y = r*sin(theta)
x = r*cos(theta)

}

Property
Summary

Core object

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Property Description

E Euler’s constant and the base of natural logarithms, approximately
2.718.

LN10 Natural logarithm of 10, approximately 2.302.

LN2 Natural logarithm of 2, approximately 0.693.

LOG10E Base 10 logarithm of E (approximately 0.434).

LOG2E Base 2 logarithm of E (approximately 1.442).

PI Ratio of the circumference of a circle to its diameter, approximately
3.14159.

SQRT1_2 Square root of 1/2; equivalently, 1 over the square root of 2,
approximately 0.707.

SQRT2 Square root of 2, approximately 1.414.
Chapter 1, Objects, Methods, and Properties 199

Math
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object.

Method Description

abs Returns the absolute value of a number.

acos Returns the arccosine (in radians) of a number.

asin Returns the arcsine (in radians) of a number.

atan Returns the arctangent (in radians) of a number.

atan2 Returns the arctangent of the quotient of its arguments.

ceil Returns the smallest integer greater than or equal to a number.

cos Returns the cosine of a number.

exp Returns Enumber, where number is the argument, and E is Euler’s
constant, the base of the natural logarithms.

floor Returns the largest integer less than or equal to a number.

log Returns the natural logarithm (base E) of a number.

max Returns the greater of two numbers.

min Returns the lesser of two numbers.

pow Returns base to the exponent power, that is, baseexponent.

random Returns a pseudo-random number between 0 and 1.

round Returns the value of a number rounded to the nearest integer.

sin Returns the sine of a number.

sqrt Returns the square root of a number.

tan Returns the tangent of a number.
200 Server-Side JavaScript Reference

Math.abs
abs .

Returns the absolute value of a number.

Syntax abs(x)

Parameters

Examples The following function returns the absolute value of the variable x:

function getAbs(x) {
return Math.abs(x)

}

Description Because abs is a static method of Math, you always use it as Math.abs(),
rather than as a method of a Math object you created.

acos .

Returns the arccosine (in radians) of a number.

Syntax acos(x)

Parameters

Description The acos method returns a numeric value between 0 and pi radians. If the
value of number is outside this range, it returns NaN.

Because acos is a static method of Math, you always use it as Math.acos(),
rather than as a method of a Math object you created.

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
Chapter 1, Objects, Methods, and Properties 201

Math.asin
Examples The following function returns the arccosine of the variable x:

function getAcos(x) {
return Math.acos(x)

}

If you pass -1 to getAcos, it returns 3.141592653589793; if you pass 2, it returns
NaN because 2 is out of range.

See also Math.asin, Math.atan, Math.atan2, Math.cos, Math.sin, Math.tan

asin .

Returns the arcsine (in radians) of a number.

Syntax asin(x)

Parameters

Description The asin method returns a numeric value between -pi/2 and pi/2 radians. If
the value of number is outside this range, it returns NaN.

Because asin is a static method of Math, you always use it as Math.asin(),
rather than as a method of a Math object you created.

Examples The following function returns the arcsine of the variable x:

function getAsin(x) {
return Math.asin(x)

}

If you pass getAsin the value 1, it returns 1.570796326794897 (pi/2); if you
pass it the value 2, it returns NaN because 2 is out of range.

See also Math.acos, Math.atan, Math.atan2, Math.cos, Math.sin, Math.tan

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
202 Server-Side JavaScript Reference

Math.atan
atan .

Returns the arctangent (in radians) of a number.

Syntax atan(x)

Parameters

Description The atan method returns a numeric value between -pi/2 and pi/2 radians.

Because atan is a static method of Math, you always use it as Math.atan(),
rather than as a method of a Math object you created.

Examples The following function returns the arctangent of the variable x:

function getAtan(x) {
return Math.atan(x)

}

If you pass getAtan the value 1, it returns 0.7853981633974483; if you pass it
the value .5, it returns 0.4636476090008061.

See also Math.acos, Math.asin, Math.atan2, Math.cos, Math.sin, Math.tan

atan2 .

Returns the arctangent of the quotient of its arguments.

Syntax atan2(y, x)

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 203

Math.ceil
Parameters

Description The atan2 method returns a numeric value between -pi and pi representing the
angle theta of an (x,y) point. This is the counterclockwise angle, measured in
radians, between the positive X axis, and the point (x,y). Note that the
arguments to this function pass the y-coordinate first and the x-coordinate
second.

atan2 is passed separate x and y arguments, and atan is passed the ratio of
those two arguments.

Because atan2 is a static method of Math, you always use it as Math.atan2(),
rather than as a method of a Math object you created.

Examples The following function returns the angle of the polar coordinate:

function getAtan2(x,y) {
return Math.atan2(x,y)

}

If you pass getAtan2 the values (90,15), it returns 1.4056476493802699; if you
pass it the values (15,90), it returns 0.16514867741462683.

See also Math.acos, Math.asin, Math.atan, Math.cos, Math.sin, Math.tan

ceil .

Returns the smallest integer greater than or equal to a number.

Syntax ceil(x)

Parameters

Description Because ceil is a static method of Math, you always use it as Math.ceil(),
rather than as a method of a Math object you created.

y, x Number

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
204 Server-Side JavaScript Reference

Math.cos
Examples The following function returns the ceil value of the variable x:

function getCeil(x) {
return Math.ceil(x)

}

If you pass 45.95 to getCeil, it returns 46; if you pass -45.95, it returns -45.

See also Math.floor

cos .

Returns the cosine of a number.

Syntax cos(x)

Parameters

Description The cos method returns a numeric value between -1 and 1, which represents
the cosine of the angle.

Because cos is a static method of Math, you always use it as Math.cos(),
rather than as a method of a Math object you created.

Examples The following function returns the cosine of the variable x:

function getCos(x) {
return Math.cos(x)

}

If x equals 2*Math.PI, getCos returns 1; if x equals Math.PI, the getCos
method returns -1.

See also Math.acos, Math.asin, Math.atan, Math.atan2, Math.sin,
Math.tan

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
Chapter 1, Objects, Methods, and Properties 205

Math.E
E .

Euler’s constant and the base of natural logarithms, approximately 2.718.

Description Because E is a static property of Math, you always use it as Math.E, rather than
as a property of a Math object you created.

Examples The following function returns Euler’s constant:

function getEuler() {
return Math.E

}

exp .

Returns Ex, where x is the argument, and E is Euler’s constant, the base of the
natural logarithms.

Syntax exp(x)

Parameters

Description Because exp is a static method of Math, you always use it as Math.exp(),
rather than as a method of a Math object you created.

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
206 Server-Side JavaScript Reference

Math.floor
Examples The following function returns the exponential value of the variable x:

function getExp(x) {
return Math.exp(x)

}

If you pass getExp the value 1, it returns 2.718281828459045.

See also Math.E, Math.log, Math.pow

floor .

Returns the largest integer less than or equal to a number.

Syntax floor(x)

Parameters

Description Because floor is a static method of Math, you always use it as Math.floor(),
rather than as a method of a Math object you created.

Examples The following function returns the floor value of the variable x:

function getFloor(x) {
return Math.floor(x)

}

If you pass 45.95 to getFloor, it returns 45; if you pass -45.95, it returns -46.

See also Math.ceil

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
Chapter 1, Objects, Methods, and Properties 207

Math.LN10
LN10 .

The natural logarithm of 10, approximately 2.302.

Examples The following function returns the natural log of 10:

function getNatLog10() {
return Math.LN10

}

Description Because LN10 is a static property of Math, you always use it as Math.LN10,
rather than as a property of a Math object you created.

LN2 .

The natural logarithm of 2, approximately 0.693.

Examples The following function returns the natural log of 2:

function getNatLog2() {
return Math.LN2

}

Description Because LN2 is a static property of Math, you always use it as Math.LN2, rather
than as a property of a Math object you created.

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
208 Server-Side JavaScript Reference

Math.log
log .

Returns the natural logarithm (base E) of a number.

Syntax log(x)

Parameters

Description If the value of number is negative, the return value is always NaN.

Because log is a static method of Math, you always use it as Math.log(),
rather than as a method of a Math object you created.

Examples The following function returns the natural log of the variable x:

function getLog(x) {
return Math.log(x)

}

If you pass getLog the value 10, it returns 2.302585092994046; if you pass it the
value 0, it returns -Infinity; if you pass it the value -1, it returns NaN
because -1 is out of range.

See also Math.exp, Math.pow

LOG10E .

The base 10 logarithm of E (approximately 0.434).

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 209

Math.LOG2E
Examples The following function returns the base 10 logarithm of E:

function getLog10e() {
return Math.LOG10E

}

Description Because LOG10E is a static property of Math, you always use it as
Math.LOG10E, rather than as a property of a Math object you created.

LOG2E .

The base 2 logarithm of E (approximately 1.442).

Examples The following function returns the base 2 logarithm of E:

function getLog2e() {
return Math.LOG2E

}

Description Because LOG2E is a static property of Math, you always use it as Math.LOG2E,
rather than as a property of a Math object you created.

max .

Returns the larger of two numbers.

Syntax max(x,y)

Parameters

Description Because max is a static method of Math, you always use it as Math.max(),
rather than as a method of a Math object you created.

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x, y Numbers.
210 Server-Side JavaScript Reference

Math.min
Examples The following function evaluates the variables x and y:

function getMax(x,y) {
return Math.max(x,y)

}

If you pass getMax the values 10 and 20, it returns 20; if you pass it the values
-10 and -20, it returns -10.

See also Math.min

min .

Returns the smaller of two numbers.

Syntax min(x,y)

Parameters

Description Because min is a static method of Math, you always use it as Math.min(),
rather than as a method of a Math object you created.

Examples The following function evaluates the variables x and y:

function getMin(x,y) {
return Math.min(x,y)

}

If you pass getMin the values 10 and 20, it returns 10; if you pass it the values
-10 and -20, it returns -20.

See also Math.max

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x, y Numbers.
Chapter 1, Objects, Methods, and Properties 211

Math.PI
PI .

The ratio of the circumference of a circle to its diameter, approximately
3.14159.

Examples The following function returns the value of pi:

function getPi() {
return Math.PI

}

Description Because PI is a static property of Math, you always use it as Math.PI, rather
than as a property of a Math object you created.

pow .

Returns base to the exponent power, that is, baseexponent.

Syntax pow(x,y)

Parameters

Description Because pow is a static method of Math, you always use it as Math.pow(),
rather than as a method of a Math object you created.

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

base The base number

exponent The exponent to which to raise base
212 Server-Side JavaScript Reference

Math.random
Examples function raisePower(x,y) {
return Math.pow(x,y)

}

If x is 7 and y is 2, raisePower returns 49 (7 to the power of 2).

See also Math.exp, Math.log

random .

Returns a pseudo-random number between 0 and 1. The random number
generator is seeded from the current time, as in Java.

Syntax random()

Parameters None.

Description Because random is a static method of Math, you always use it as
Math.random(), rather than as a method of a Math object you created.

Examples //Returns a random number between 0 and 1
function getRandom() {

return Math.random()
}

round .

Returns the value of a number rounded to the nearest integer.

Syntax round(x)

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0: Unix only

JavaScript 1.1, NES 2.0: all platforms

ECMA version ECMA-262

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 213

Math.sin
Parameters

Description If the fractional portion of number is .5 or greater, the argument is rounded to
the next higher integer. If the fractional portion of number is less than .5, the
argument is rounded to the next lower integer.

Because round is a static method of Math, you always use it as Math.round(),
rather than as a method of a Math object you created.

Examples //Returns the value 20
x=Math.round(20.49)

//Returns the value 21
x=Math.round(20.5)

//Returns the value -20
x=Math.round(-20.5)

//Returns the value -21
x=Math.round(-20.51)

sin .

Returns the sine of a number.

Syntax sin(x)

Parameters

Description The sin method returns a numeric value between -1 and 1, which represents
the sine of the argument.

Because sin is a static method of Math, you always use it as Math.sin(),
rather than as a method of a Math object you created.

x A number

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
214 Server-Side JavaScript Reference

Math.sqrt
Examples The following function returns the sine of the variable x:

function getSine(x) {
return Math.sin(x)

}

If you pass getSine the value Math.PI/2, it returns 1.

See also Math.acos, Math.asin, Math.atan, Math.atan2, Math.cos,
Math.tan

sqrt .

Returns the square root of a number.

Syntax sqrt(x)

Parameters

Description If the value of number is negative, sqrt returns NaN.

Because sqrt is a static method of Math, you always use it as Math.sqrt(),
rather than as a method of a Math object you created.

Examples The following function returns the square root of the variable x:

function getRoot(x) {
return Math.sqrt(x)

}

If you pass getRoot the value 9, it returns 3; if you pass it the value 2, it returns
1.414213562373095.

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
Chapter 1, Objects, Methods, and Properties 215

Math.SQRT1_2
SQRT1_2 .

The square root of 1/2; equivalently, 1 over the square root of 2, approximately
0.707.

Examples The following function returns 1 over the square root of 2:

function getRoot1_2() {
return Math.SQRT1_2

}

Description Because SQRT1_2 is a static property of Math, you always use it as
Math.SQRT1_2, rather than as a property of a Math object you created.

SQRT2 .

The square root of 2, approximately 1.414.

Examples The following function returns the square root of 2:

function getRoot2() {
return Math.SQRT2

}

Description Because SQRT2 is a static property of Math, you always use it as Math.SQRT2,
rather than as a property of a Math object you created.

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
216 Server-Side JavaScript Reference

Math.tan
tan .

Returns the tangent of a number.

Syntax tan(x)

Parameters

Description The tan method returns a numeric value that represents the tangent of the
angle.

Because tan is a static method of Math, you always use it as Math.tan(),
rather than as a method of a Math object you created.

Examples The following function returns the tangent of the variable x:

function getTan(x) {
return Math.tan(x)

}

See also Math.acos, Math.asin, Math.atan, Math.atan2, Math.cos,
Math.sin

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
Chapter 1, Objects, Methods, and Properties 217

netscape

218 Server-Side JavaScript Reference

netscape
A top-level object used to access any Java class in the package netscape.*.

Created by The netscape object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

Description The netscape object is a convenience synonym for the property
Packages.netscape.

See also Packages, Packages.netscape

Core object

Implemented in JavaScript 1.1, NES 2.0

Number
Number
Lets you work with numeric values. The Number object is an object wrapper for
primitive numeric values.

Created by The Number constructor:

new Number(value)

Parameters

Description The primary uses for the Number object are:

• To access its constant properties, which represent the largest and smallest
representable numbers, positive and negative infinity, and the Not-a-
Number value.

• To create numeric objects that you can add properties to. Most likely, you
will rarely need to create a Number object.

The properties of Number are properties of the class itself, not of individual
Number objects.

JavaScript 1.2: Number(x) now produces NaN rather than an error if x is a string
that does not contain a well-formed numeric literal. For example,

x=Number("three");

document.write(x + "
");

prints NaN

You can convert any object to a number using the top-level Number function.

Core object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: modified behavior of Number constructor

ECMA version ECMA-262

value The numeric value of the object being created.
Chapter 1, Objects, Methods, and Properties 219

Number
Property
Summary

Method Summary

In addition, this object inherits the watch and unwatch methods from
Object.

Examples Example 1. The following example uses the Number object’s properties to
assign values to several numeric variables:

biggestNum = Number.MAX_VALUE
smallestNum = Number.MIN_VALUE
infiniteNum = Number.POSITIVE_INFINITY
negInfiniteNum = Number.NEGATIVE_INFINITY
notANum = Number.NaN

Example 2. The following example creates a Number object, myNum, then adds
a description property to all Number objects. Then a value is assigned to the
myNum object’s description property.

myNum = new Number(65)
Number.prototype.description=null
myNum.description="wind speed"

Property Description

constructor Specifies the function that creates an object’s prototype.

MAX_VALUE The largest representable number.

MIN_VALUE The smallest representable number.

NaN Special “not a number” value.

NEGATIVE_INFINITY Special value representing negative infinity; returned on
overflow.

POSITIVE_INFINITY Special value representing infinity; returned on overflow.

prototype Allows the addition of properties to a Number object.

Method Description

toString Returns a string representing the specified object. Overrides the
Object.toString method.

valueOf Returns the primitive value of the specified object. Overrides the
Object.valueOf method.
220 Server-Side JavaScript Reference

Number.constructor
constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor.

MAX_VALUE .

The maximum numeric value representable in JavaScript.

Description The MAX_VALUE property has a value of approximately 1.79E+308. Values larger
than MAX_VALUE are represented as "Infinity".

Because MAX_VALUE is a static property of Number, you always use it as
Number.MAX_VALUE, rather than as a property of a Number object you created.

Examples The following code multiplies two numeric values. If the result is less than or
equal to MAX_VALUE, the func1 function is called; otherwise, the func2
function is called.

if (num1 * num2 <= Number.MAX_VALUE)
func1()

else
func2()

Property of Number

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Property of Number

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 221

Number.MIN_VALUE
MIN_VALUE .

The smallest positive numeric value representable in JavaScript.

Description The MIN_VALUE property is the number closest to 0, not the most negative
number, that JavaScript can represent.

MIN_VALUE has a value of approximately 5e-324. Values smaller than
MIN_VALUE (“underflow values”) are converted to 0.

Because MIN_VALUE is a static property of Number, you always use it as
Number.MIN_VALUE, rather than as a property of a Number object you created.

Examples The following code divides two numeric values. If the result is greater than or
equal to MIN_VALUE, the func1 function is called; otherwise, the func2
function is called.

if (num1 / num2 >= Number.MIN_VALUE)
func1()

else
func2()

NaN .

A special value representing Not-A-Number. This value is represented as the
unquoted literal NaN.

Description JavaScript prints the value Number.NaN as NaN.

NaN is always unequal to any other number, including NaN itself; you cannot
check for the not-a-number value by comparing to Number.NaN. Use the
isNaN function instead.

Property of Number

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Property of Number

 Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
222 Server-Side JavaScript Reference

Number.NEGATIVE_INFINITY
You might use the NaN property to indicate an error condition for a function
that should return a valid number.

Examples In the following example, if month has a value greater than 12, it is assigned
NaN, and a message is displayed indicating valid values.

var month = 13
if (month < 1 || month > 12) {

month = Number.NaN
alert("Month must be between 1 and 12.")

}

See also isNaN, parseFloat, parseInt

NEGATIVE_INFINITY .

A special numeric value representing negative infinity. This value is represented
as the unquoted literal "-Infinity".

Description This value behaves slightly differently than mathematical infinity:

• Any positive value, including POSITIVE_INFINITY, multiplied by
NEGATIVE_INFINITY is NEGATIVE_INFINITY.

• Any negative value, including NEGATIVE_INFINITY, multiplied by
NEGATIVE_INFINITY is POSITIVE_INFINITY.

• Zero multiplied by NEGATIVE_INFINITY is NaN.

• NaN multiplied by NEGATIVE_INFINITY is NaN.

• NEGATIVE_INFINITY, divided by any negative value except
NEGATIVE_INFINITY, is POSITIVE_INFINITY.

• NEGATIVE_INFINITY, divided by any positive value except
POSITIVE_INFINITY, is NEGATIVE_INFINITY.

• NEGATIVE_INFINITY, divided by either NEGATIVE_INFINITY or
POSITIVE_INFINITY, is NaN.

• Any number divided by NEGATIVE_INFINITY is Zero.

Because NEGATIVE_INFINITY is a static property of Number, you always use it
as Number.NEGATIVE_INFINITY, rather than as a property of a Number object
you created.

Property of Number

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 223

Number.POSITIVE_INFINITY
Examples In the following example, the variable smallNumber is assigned a value that is
smaller than the minimum value. When the if statement executes,
smallNumber has the value "-Infinity", so the func1 function is called.

var smallNumber = -Number.MAX_VALUE*10
if (smallNumber == Number.NEGATIVE_INFINITY)

func1()
else

func2()

POSITIVE_INFINITY .

A special numeric value representing infinity. This value is represented as the
unquoted literal "Infinity".

Description This value behaves slightly differently than mathematical infinity:

• Any positive value, including POSITIVE_INFINITY, multiplied by
POSITIVE_INFINITY is POSITIVE_INFINITY.

• Any negative value, including NEGATIVE_INFINITY, multiplied by
POSITIVE_INFINITY is NEGATIVE_INFINITY.

• Zero multiplied by POSITIVE_INFINITY is NaN.

• NaN multiplied by POSITIVE_INFINITY is NaN.

• POSITIVE_INFINITY, divided by any negative value except
NEGATIVE_INFINITY, is NEGATIVE_INFINITY.

• POSITIVE_INFINITY, divided by any positive value except
POSITIVE_INFINITY, is POSITIVE_INFINITY.

• POSITIVE_INFINITY, divided by either NEGATIVE_INFINITY or
POSITIVE_INFINITY, is NaN.

• Any number divided by POSITIVE_INFINITY is Zero.

Because POSITIVE_INFINITY is a static property of Number, you always use it
as Number.POSITIVE_INFINITY, rather than as a property of a Number object
you created.

Property of Number

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
224 Server-Side JavaScript Reference

Number.prototype
Examples In the following example, the variable bigNumber is assigned a value that is
larger than the maximum value. When the if statement executes, bigNumber
has the value "Infinity", so the func1 function is called.

var bigNumber = Number.MAX_VALUE * 10
if (bigNumber == Number.POSITIVE_INFINITY)

func1()
else

func2()

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype.

toString .

Returns a string representing the specified Number object.

Syntax toString()
toString(radix)

Parameters

Description The Number object overrides the toString method of the Object object; it
does not inherit Object.toString. For Number objects, the toString
method returns a string representation of the object.

JavaScript calls the toString method automatically when a number is to be
represented as a text value or when a number is referred to in a string
concatenation.

Property of Number

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Method of Number

Implemented in JavaScript 1.1

ECMA version ECMA-262

radix (Optional) An integer between 2 and 36 specifying the base to use for
representing numeric values.
Chapter 1, Objects, Methods, and Properties 225

Number.valueOf
For Number objects and values, the built-in toString method returns the string
representing the value of the number.

You can use toString on numeric values, but not on numeric literals:

// The next two lines are valid
var howMany=10
alert("howMany.toString() is " + howMany.toString())

// The next line causes an error
alert("45.toString() is " + 45.toString())

valueOf .

Returns the primitive value of a Number object.

Syntax valueOf()

Parameters None

Description The valueOf method of Number returns the primitive value of a Number
object as a number data type.

This method is usually called internally by JavaScript and not explicitly in code.

Examples x = new Number();
alert(x.valueOf()) //displays 0

See also Object.valueOf

Method of Number

Implemented in JavaScript 1.1

ECMA version ECMA-262
226 Server-Side JavaScript Reference

Object
Object
Object is the primitive JavaScript object type. All JavaScript objects are
descended from Object. That is, all JavaScript objects have the methods
defined for Object.

Created by The Object constructor:

new Object()

Parameters None

Property
Summary

Method Summary

Core object

Implemented in JavaScript 1.0: toString method

JavaScript 1.1, NES 2.0: added eval and valueOf methods;
constructor property

JavaScript 1.2: deprecated eval method

ECMA version ECMA-262

Property Description

constructor Specifies the function that creates an object’s prototype.

prototype Allows the addition of properties to all objects.

Method Description

eval Deprecated. Evaluates a string of JavaScript code in the context of
the specified object.

toString Returns a string representing the specified object.

unwatch Removes a watchpoint from a property of the object.

valueOf Returns the primitive value of the specified object.

watch Adds a watchpoint to a property of the object.
Chapter 1, Objects, Methods, and Properties 227

Object.constructor
constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description All objects inherit a constructor property from their prototype:

o = new Object // or o = {} in JavaScript 1.2
o.constructor == Object
a = new Array // or a = [] in JavaScript 1.2
a.constructor == Array
n = new Number(3)
n.constructor == Number

Even though you cannot construct most HTML objects, you can do
comparisons. For example,

document.constructor == Document
document.form3.constructor == Form

Examples The following example creates a prototype, Tree, and an object of that type,
theTree. The example then displays the constructor property for the object
theTree.

function Tree(name) {
this.name=name

}
theTree = new Tree("Redwood")
document.writeln("theTree.constructor is " +

theTree.constructor + "<P>")

This example displays the following output:

theTree.constructor is function Tree(name) { this.name = name; }

Property of Object

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
228 Server-Side JavaScript Reference

Object.eval
eval .

Deprecated. Evaluates a string of JavaScript code in the context of an object.

Syntax eval(string)

Parameters

Description eval as a method of Object and every object derived from Object is
deprecated. Use the top-level eval function.

Backward
Compatibility

JavaScript 1.1. eval is a method of Object and every object derived from
Object.

See also eval

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For more information, see
Function.prototype.

Method of Object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2, NES 3.0: deprecated as method of objects; retained as
top-level function

string Any string representing a JavaScript expression, statement, or
sequence of statements. The expression can include variables and
properties of existing objects.

Property of Object

Implemented in JavaScript 1.1

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 229

Object.toString
toString .

Returns a string representing the specified object.

Syntax toString()

Description Every object has a toString method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation. For example, the following examples require theDog to be
represented as a string:

document.write(theDog)
document.write("The dog is " + theDog)

By default, the toString method is inherited by every object descended from
Object. You can override this method for custom objects that you create. If
you do not override toString in a custom object, toString returns
[object type], where type is the object type or the name of the constructor
function that created the object.

For example:

var o = new Object()
o.toString // returns [object Object]

The behavior of the toString method depends on whether you specify
LANGUAGE="JavaScript1.2" in the <SCRIPT> tag:

• If you specify LANGUAGE="JavaScript1.2" in the <SCRIPT> tag, the
toString method returns an object literal.

• If you do not specify LANGUAGE="JavaScript1.2" in the <SCRIPT>
tag, the toString method returns [object type], as with other
JavaScript versions.

Method of Object

Implemented in JavaScript 1.0

ECMA version ECMA-262
230 Server-Side JavaScript Reference

Object.toString
Built-in toString methods. Every built-in core JavaScript object overrides the
toString method of Object to return an appropriate value. JavaScript calls
this method whenever it needs to convert an object to a string.

Some built-in client-side and server-side JavaScript objects do not override the
toString method of Object. For example, for an Image object named sealife
defined as shown below, sealife.toString() returns [object Image].

Overriding the default toString method. You can create a function to be
called in place of the default toString method. The toString method takes
no arguments and should return a string. The toString method you create can
be any value you want, but it will be most useful if it carries information about
the object.

The following code defines the Dog object type and creates theDog, an object
of type Dog:

function Dog(name,breed,color,sex) {
this.name=name
this.breed=breed
this.color=color
this.sex=sex

}

theDog = new Dog("Gabby","Lab","chocolate","girl")

If you call the toString method on this custom object, it returns the default
value inherited from Object:

theDog.toString() //returns [object Object]

The following code creates dogToString, the function that will be used to
override the default toString method. This function generates a string
containing each property, of the form "property = value;".

function dogToString() {
var ret = "Dog " + this.name + " is [\n"
for (var prop in this)

ret += " " + prop + " is " + this[prop] + ";\n"
return ret + "]"

}

The following code assigns the user-defined function to the object’s toString
method:

Dog.prototype.toString = dogToString
Chapter 1, Objects, Methods, and Properties 231

Object.toString
With the preceding code in place, any time theDog is used in a string context,
JavaScript automatically calls the dogToString function, which returns the
following string:

Dog Gabby is [
name is Gabby;
breed is Lab;
color is chocolate;
sex is girl;

]

An object’s toString method is usually invoked by JavaScript, but you can
invoke it yourself as follows:

var dogString = theDog.toString()

Examples Example 1: The location object. The following example prints the string
equivalent of the current location.

document.write("location.toString() is " + location.toString() + "
")

The output is as follows:

location.toString() is file:///C|/TEMP/myprog.html

Example 2: Object with no string value. Assume you have an Image object
named sealife defined as follows:

Because the Image object itself has no special toString method,
sealife.toString() returns the following:

[object Image]

Example 3: The radix parameter. The following example prints the string
equivalents of the numbers 0 through 9 in decimal and binary.

for (x = 0; x < 10; x++) {
document.write("Decimal: ", x.toString(10), " Binary: ",

x.toString(2), "
")
}

232 Server-Side JavaScript Reference

Object.unwatch
The preceding example produces the following output:

Decimal: 0 Binary: 0
Decimal: 1 Binary: 1
Decimal: 2 Binary: 10
Decimal: 3 Binary: 11
Decimal: 4 Binary: 100
Decimal: 5 Binary: 101
Decimal: 6 Binary: 110
Decimal: 7 Binary: 111
Decimal: 8 Binary: 1000
Decimal: 9 Binary: 1001

See also Object.valueOf

unwatch .

Removes a watchpoint set with the watch method.

Syntax unwatch(prop)

Parameters

Description The JavaScript debugger has functionality similar to that provided by this
method, as well as other debugging options. For information on the debugger,
see Getting Started with Netscape JavaScript Debugger.

By default, this method is inherited by every object descended from Object.

Example See watch.

Method of Object

Implemented in JavaScript 1.2, NES 3.0

prop The name of a property of the object.
Chapter 1, Objects, Methods, and Properties 233

Object.valueOf
valueOf .

Returns the primitive value of the specified object.

Syntax valueOf()

Parameters None

Description JavaScript calls the valueOf method to convert an object to a primitive value.
You rarely need to invoke the valueOf method yourself; JavaScript
automatically invokes it when encountering an object where a primitive value is
expected.

By default, the valueOf method is inherited by every object descended from
Object. Every built-in core object overrides this method to return an
appropriate value. If an object has no primitive value, valueOf returns the
object itself, which is displayed as:

[object Object]

You can use valueOf within your own code to convert a built-in object into a
primitive value. When you create a custom object, you can override
Object.valueOf to call a custom method instead of the default Object
method.

Overriding valueOf for custom objects. You can create a function to be
called in place of the default valueOf method. Your function must take no
arguments.

Suppose you have an object type myNumberType and you want to create a
valueOf method for it. The following code assigns a user-defined function to
the object’s valueOf method:

myNumberType.prototype.valueOf = new Function(functionText)

With the preceding code in place, any time an object of type myNumberType is
used in a context where it is to be represented as a primitive value, JavaScript
automatically calls the function defined in the preceding code.

Method of Object

Implemented in JavaScript 1.1

ECMA version ECMA-262
234 Server-Side JavaScript Reference

Object.watch
An object’s valueOf method is usually invoked by JavaScript, but you can
invoke it yourself as follows:

myNumber.valueOf()

Note Objects in string contexts convert via the toString method, which is different
from String objects converting to string primitives using valueOf. All string
objects have a string conversion, if only "[object type]". But many objects
do not convert to number, boolean, or function.

See also parseInt, Object.toString

watch .

Watches for a property to be assigned a value and runs a function when that
occurs.

Syntax watch(prop, handler)

Parameters

Description Watches for assignment to a property named prop in this object, calling
handler(prop, oldval, newval) whenever prop is set and storing the
return value in that property. A watchpoint can filter (or nullify) the value
assignment, by returning a modified newval (or oldval).

If you delete a property for which a watchpoint has been set, that watchpoint
does not disappear. If you later recreate the property, the watchpoint is still in
effect.

To remove a watchpoint, use the unwatch method. By default, the watch
method is inherited by every object descended from Object.

The JavaScript debugger has functionality similar to that provided by this
method, as well as other debugging options. For information on the debugger,
see Getting Started with Netscape JavaScript Debugger.

Method of Object

Implemented in JavaScript 1.2, NES 3.0

prop The name of a property of the object.

handler A function to call.
Chapter 1, Objects, Methods, and Properties 235

Object.watch
Example <script language="JavaScript1.2">
o = {p:1}
o.watch("p",

function (id,oldval,newval) {
document.writeln("o." + id + " changed from "

+ oldval + " to " + newval)
return newval

})

o.p = 2
o.p = 3
delete o.p
o.p = 4

o.unwatch(’p’)
o.p = 5

</script>

This script displays the following:

o.p changed from 1 to 2
o.p changed from 2 to 3
o.p changed from 3 to 4
236 Server-Side JavaScript Reference

Packages
Packages
A top-level object used to access Java classes from within JavaScript code.

Created by The Packages object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

Description The Packages object lets you access the public methods and fields of an
arbitrary Java class from within JavaScript. The java, netscape, and sun
properties represent the packages java.*, netscape.*, and sun.* respectively. Use
standard Java dot notation to access the classes, methods, and fields in these
packages. For example, you can access a constructor of the Frame class as
follows:

var theFrame = new Packages.java.awt.Frame();

For convenience, JavaScript provides the top-level netscape, sun, and java
objects that are synonyms for the Packages properties with the same names.
Consequently, you can access Java classes in these packages without the
Packages keyword, as follows:

var theFrame = new java.awt.Frame();

The className property represents the fully qualified path name of any other
Java class that is available to JavaScript. You must use the Packages object to
access classes outside the netscape, sun, and java packages.

Property
Summary

Core object

Implemented in JavaScript 1.1, NES 2.0

Property Description

className The fully qualified name of a Java class in a package other than
netscape, java, or sun that is available to JavaScript.

java Any class in the Java package java.*.

netscape Any class in the Java package netscape.*.

sun Any class in the Java package sun.*.
Chapter 1, Objects, Methods, and Properties 237

Packages.className
Examples The following JavaScript function creates a Java dialog box:

function createWindow() {
var theOwner = new Packages.java.awt.Frame();
var theWindow = new Packages.java.awt.Dialog(theOwner);
theWindow.setSize(350,200);
theWindow.setTitle("Hello, World");
theWindow.setVisible(true);

}

In the previous example, the function instantiates theWindow as a new
Packages object. The setSize, setTitle, and setVisible methods are
all available to JavaScript as public methods of java.awt.Dialog.

className .

The fully qualified name of a Java class in a package other than netscape,
java, or sun that is available to JavaScript.

Syntax Packages.className

where classname is the fully qualified name of a Java class.

Description You must use the className property of the Packages object to access
classes outside the netscape, sun, and java packages.

Examples The following code accesses the constructor of the CorbaObject class in the
myCompany package from JavaScript:

var theObject = new Packages.myCompany.CorbaObject()

In the previous example, the value of the className property is
myCompany.CorbaObject, the fully qualified path name of the
CorbaObject class.

Property of Packages

Implemented in JavaScript 1.1, NES 2.0
238 Server-Side JavaScript Reference

Packages.java
java .

Any class in the Java package java.*.

Syntax Packages.java

Description Use the java property to access any class in the java package from within
JavaScript. Note that the top-level object java is a synonym for
Packages.java.

Examples The following code accesses the constructor of the java.awt.Frame class:

var theOwner = new Packages.java.awt.Frame();

You can simplify this code by using the top-level java object to access the
constructor as follows:

var theOwner = new java.awt.Frame();

netscape .

Any class in the Java package netscape.*.

Syntax Packages.netscape

Description Use the netscape property to access any class in the netscape package
from within JavaScript. Note that the top-level object netscape is a synonym
for Packages.netscape.

Examples See the example for .Packages.java

Property of Packages

Implemented in JavaScript 1.1, NES 2.0

Property of Packages

Implemented in JavaScript 1.1, NES 2.0
Chapter 1, Objects, Methods, and Properties 239

Packages.sun
sun .

Any class in the Java package sun.*.

Syntax Packages.sun

Description Use the sun property to access any class in the sun package from within
JavaScript. Note that the top-level object sun is a synonym for
Packages.sun.

Examples See the example for Packages.java

Property of Packages

Implemented in JavaScript 1.1, NES 2.0
240 Server-Side JavaScript Reference

project
project
Contains data for an entire application.

Created by The JavaScript runtime engine on the server automatically creates a project
object for each application running on the server.

Description The JavaScript runtime engine on the server creates a project object when an
application starts and destroys the project object when the application or
server stops. The typical project object lifetime is days or weeks.

Each client accessing the same application shares the same project object.
Use the project object to maintain global data for an entire application. Many
clients can access an application simultaneously, and the project object lets
these clients share information.

The runtime engine creates a set of project objects for each distinct Netscape
HTTPD process running on the server. Because several server HTTPD
processes may be running on different port numbers, the runtime engine
creates a set of project objects for each process.

You can lock the project object to ensure that different clients do not change
its properties simultaneously. When one client locks the project object, other
clients must wait before they can lock it. See Lock for more information about
locking the project object.

Property
Summary

The project object has no predefined properties. You create custom
properties to contain project-specific data that is required by an application.

You can create a property for the project object by assigning it a name and a
value. For example, you can create a project object property to keep track of
the next available Customer ID. Any client that accesses the application without
a Customer ID is sequentially assigned one, and the value of the ID is
incremented for each initial access.

Server-side object

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 241

project.lock
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object.

Examples Example 1. This example creates the lastID property and assigns a value to it
by incrementing an existing value.

project.lastID = 1 + parseInt(project.lastID, 10)

Example 2. This example increments the value of the lastID property and
uses it to assign a value to the customerID property.

project.lock()
project.lastID = 1 + parseInt(project.lastID, 10);
client.customerID = project.lastID;
project.unlock();

In the previous example, notice that the project object is locked while the
customerID property is assigned, so no other client can attempt to change the
lastID property at the same time.

See also client, request, server

lock .

Obtains the lock. If another thread has the lock, this method waits until it can
get the lock.

Syntax lock()

Parameters None.

Returns Nothing.

Method Description

lock Obtains the lock.

unlock Releases the lock.

Method of project

Implemented in NES 2.0
242 Server-Side JavaScript Reference

project.unlock
Description You can obtain a lock for an object to ensure that different clients do not access
a critical section of code simultaneously. When an application locks an object,
other client requests must wait before they can lock the object.

Note that this mechanism requires voluntary compliance by asking for the lock
in the first place.

See also Lock, project.unlock

unlock .

Releases the lock.

Syntax unlock()

Parameters None.

Returns False if it fails; otherwise, true. Failure indicates an internal JavaScript error or
that you attempted to unlock a lock that you don’t own.

Description If you unlock a lock that is unlocked, the resulting behavior is undefined.

See also Lock, project.lock

Method of project

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 243

RegExp
RegExp
A regular expression object contains the pattern of a regular expression. It has
properties and methods for using that regular expression to find and replace
matches in strings.

In addition to the properties of an individual regular expression object that you
create using the RegExp constructor function, the predefined RegExp object has
static properties that are set whenever any regular expression is used.

Created by A literal text format or the RegExp constructor function.

The literal format is used as follows:

/pattern/flags

The constructor function is used as follows:

new RegExp("pattern"[, "flags"])

Parameters

Notice that the parameters to the literal format do not use quotation marks to
indicate strings, while the parameters to the constructor function do use
quotation marks. So the following expressions create the same regular
expression:

/ab+c/i
new RegExp("ab+c", "i")

Description When using the constructor function, the normal string escape rules (preceding
special characters with \ when included in a string) are necessary. For example,
the following are equivalent:

re = new RegExp("\\w+")
re = /\w+/

Core object

Implemented in JavaScript 1.2, NES 3.0

pattern The text of the regular expression.

flags If specified, flags can have one of the following values:

• g: global match

• i: ignore case

• gi: both global match and ignore case
244 Server-Side JavaScript Reference

RegExp
The following table provides a complete list and description of the special
characters that can be used in regular expressions.

Table 1.4 Special characters in regular expressions.

Character Meaning

\ For characters that are usually treated literally, indicates that the next
character is special and not to be interpreted literally.
For example, /b/ matches the character ’b’. By placing a backslash in
front of b, that is by using /\b/, the character becomes special to
mean match a word boundary.
-or-
For characters that are usually treated specially, indicates that the next
character is not special and should be interpreted literally.
For example, * is a special character that means 0 or more occurrences
of the preceding character should be matched; for example, /a*/
means match 0 or more a’s. To match * literally, precede the it with a
backslash; for example, /a*/ matches ’a*’.

^ Matches beginning of input or line.
For example, /^A/ does not match the ’A’ in "an A," but does match it
in "An A."

$ Matches end of input or line.
For example, /t$/ does not match the ’t’ in "eater", but does match it
in "eat"

* Matches the preceding character 0 or more times.
For example, /bo*/ matches ’boooo’ in "A ghost booooed" and ’b’ in
"A bird warbled", but nothing in "A goat grunted".

+ Matches the preceding character 1 or more times. Equivalent to {1,}.
For example, /a+/ matches the ’a’ in "candy" and all the a’s in
"caaaaaaandy."

? Matches the preceding character 0 or 1 time.
For example, /e?le?/ matches the ’el’ in "angel" and the ’le’ in
"angle."

. (The decimal point) matches any single character except the newline
character.
For example, /.n/ matches ’an’ and ’on’ in "nay, an apple is on the
tree", but not ’nay’.
Chapter 1, Objects, Methods, and Properties 245

RegExp
(x) Matches ’x’ and remembers the match.
For example, /(foo)/ matches and remembers ’foo’ in "foo bar." The
matched substring can be recalled from the resulting array’s elements
[1], ..., [n], or from the predefined RegExp object’s properties $1,
..., $9.

x|y Matches either 'x' or 'y'.
For example, /green|red/ matches 'green' in "green apple" and 'red'
in "red apple."

{n} Where n is a positive integer. Matches exactly n occurrences of the
preceding character.
For example, /a{2}/ doesn't match the 'a' in "candy," but it matches
all of the a's in "caandy," and the first two a's in "caaandy."

{n,} Where n is a positive integer. Matches at least n occurrences of the
preceding character.
For example, /a{2,} doesn't match the 'a' in "candy", but matches all
of the a's in "caandy" and in "caaaaaaandy."

{n,m} Where n and m are positive integers. Matches at least n and at most m
occurrences of the preceding character.
For example, /a{1,3}/ matches nothing in "cndy", the 'a' in "candy,"
the first two a's in "caandy," and the first three a's in "caaaaaaandy"
Notice that when matching "caaaaaaandy", the match is "aaa", even
though the original string had more a’s in it.

[xyz] A character set. Matches any one of the enclosed characters. You can
specify a range of characters by using a hyphen.
For example, [abcd] is the same as [a-c]. They match the 'b' in
"brisket" and the 'c' in "ache".

[^xyz] A negated or complemented character set. That is, it matches anything
that is not enclosed in the brackets. You can specify a range of
characters by using a hyphen.
For example, [^abc] is the same as [^a-c]. They initially match 'r'
in "brisket" and 'h' in "chop."

[\b] Matches a backspace. (Not to be confused with \b.)

\b Matches a word boundary, such as a space. (Not to be confused with
[\b].)
For example, /\bn\w/ matches the 'no' in "noonday";/\wy\b/
matches the 'ly' in "possibly yesterday."

Table 1.4 Special characters in regular expressions. (Continued)

Character Meaning
246 Server-Side JavaScript Reference

RegExp
\B Matches a non-word boundary.
For example, /\w\Bn/ matches ’on’ in "noonday", and /y\B\w/
matches ’ye’ in "possibly yesterday."

\cX Where X is a control character. Matches a control character in a string.
For example, /\cM/ matches control-M in a string.

\d Matches a digit character. Equivalent to [0-9].
For example, /\d/ or /[0-9]/ matches ’2’ in "B2 is the suite
number."

\D Matches any non-digit character. Equivalent to [^0-9].
For example, /\D/ or /[^0-9]/ matches ’B’ in "B2 is the suite
number."

\f Matches a form-feed.

\n Matches a linefeed.

\r Matches a carriage return.

\s Matches a single white space character, including space, tab, form feed,
line feed. Equivalent to [\f\n\r\t\v].
for example, /\s\w*/ matches ’ bar’ in "foo bar."

\S Matches a single character other than white space. Equivalent to [^
\f\n\r\t\v].
For example, /\S/\w* matches ’foo’ in "foo bar."

\t Matches a tab

\v Matches a vertical tab.

\w Matches any alphanumeric character including the underscore.
Equivalent to [A-Za-z0-9_].
For example, /\w/ matches ’a’ in "apple," ’5’ in "$5.28," and ’3’ in "3D."

\W Matches any non-word character. Equivalent to [^A-Za-z0-9_].
For example, /\W/ or /[^$A-Za-z0-9_]/ matches ’%’ in "50%."

Table 1.4 Special characters in regular expressions. (Continued)

Character Meaning
Chapter 1, Objects, Methods, and Properties 247

RegExp
The literal notation provides compilation of the regular expression when the
expression is evaluated. Use literal notation when the regular expression will
remain constant. For example, if you use literal notation to construct a regular
expression used in a loop, the regular expression won’t be recompiled on each
iteration.

The constructor of the regular expression object, for example,
new RegExp("ab+c"), provides runtime compilation of the regular expression.
Use the constructor function when you know the regular expression pattern
will be changing, or you don’t know the pattern and are getting it from another
source, such as user input. Once you have a defined regular expression, and if
the regular expression is used throughout the script and may change, you can
use the compile method to compile a new regular expression for efficient
reuse.

A separate predefined RegExp object is available in each window; that is, each
separate thread of JavaScript execution gets its own RegExp object. Because
each script runs to completion without interruption in a thread, this assures that
different scripts do not overwrite values of the RegExp object.

The predefined RegExp object contains the static properties input,
multiline, lastMatch, lastParen, leftContext, rightContext,
and $1 through $9. The input and multiline properties can be preset. The
values for the other static properties are set after execution of the exec and
test methods of an individual regular expression object, and after execution
of the match and replace methods of String.

\n Where n is a positive integer. A back reference to the last substring
matching the n parenthetical in the regular expression (counting left
parentheses).
For example, /apple(,)\sorange\1/ matches ’apple, orange’, in
"apple, orange, cherry, peach." A more complete example follows this
table.
Note: If the number of left parentheses is less than the number
specified in \n, the \n is taken as an octal escape as described in the
next row.

\ooctal
\xhex

Where \ooctal is an octal escape value or \xhex is a hexadecimal
escape value. Allows you to embed ASCII codes into regular
expressions.

Table 1.4 Special characters in regular expressions. (Continued)

Character Meaning
248 Server-Side JavaScript Reference

RegExp
Property
Summary

Note that several of the RegExp properties have both long and short (Perl-like)
names. Both names always refer to the same value. Perl is the programming
language from which JavaScript modeled its regular expressions.

Property Description

$1, ..., $9 Parenthesized substring matches, if any.

$_ See input.

$* See multiline.

$& See lastMatch.

$+ See lastParen.

$‘ See leftContext.

$’ See rightContext.

constructor Specifies the function that creates an object’s prototype.

global Whether or not to test the regular expression against all possible
matches in a string, or only against the first.

ignoreCase Whether or not to ignore case while attempting a match in a
string.

input The string against which a regular expression is matched.

lastIndex The index at which to start the next match.

lastMatch The last matched characters.

lastParen The last parenthesized substring match, if any.

leftContext The substring preceding the most recent match.

multiline Whether or not to search in strings across multiple lines.

prototype Allows the addition of properties to all objects.

rightContext The substring following the most recent match.

source The text of the pattern.
Chapter 1, Objects, Methods, and Properties 249

RegExp
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object.

Examples Example 1. The following script uses the replace method to switch the words
in the string. For the replacement text, the script uses the values of the $1 and
$2 properties of the global RegExp object. Note that the RegExp object name is
not be prepended to the $ properties when they are passed as the second
argument to the replace method.

<SCRIPT LANGUAGE="JavaScript1.2">
re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr=str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>

This displays "Smith, John".

Example 2. In the following example, RegExp.input is set by the Change
event. In the getInfo function, the exec method uses the value of
RegExp.input as its argument. Note that RegExp is prepended to the $
properties.

<HTML>

<SCRIPT LANGUAGE="JavaScript1.2">
function getInfo() {

re = /(\w+)\s(\d+)/;
re.exec();
window.alert(RegExp.$1 + ", your age is " + RegExp.$2);

}
</SCRIPT>

Method Description

compile Compiles a regular expression object.

exec Executes a search for a match in its string parameter.

test Tests for a match in its string parameter.

toString Returns a string representing the specified object. Overrides the
Object.toString method.

valueOf Returns the primitive value of the specified object. Overrides
the Object.valueOf method.
250 Server-Side JavaScript Reference

RegExp.$1, ..., $9
Enter your first name and your age, and then press Enter.

<FORM>
<INPUT TYPE:"TEXT" NAME="NameAge" onChange="getInfo(this);">
</FORM>

</HTML>

$1, ..., $9 .

Properties that contain parenthesized substring matches, if any.

Description Because input is static, it is not a property of an individual regular expression
object. Instead, you always use it as RegExp.input.

The number of possible parenthesized substrings is unlimited, but the
predefined RegExp object can only hold the last nine. You can access all
parenthesized substrings through the returned array’s indexes.

These properties can be used in the replacement text for the
String.replace method. When used this way, do not prepend them with
RegExp. The example below illustrates this. When parentheses are not included
in the regular expression, the script interprets $n’s literally (where n is a
positive integer).

Examples The following script uses the replace method to switch the words in the
string. For the replacement text, the script uses the values of the $1 and $2
properties of the global RegExp object. Note that the RegExp object name is not
be prepended to the $ properties when they are passed as the second
argument to the replace method.

<SCRIPT LANGUAGE="JavaScript1.2">
re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr=str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>

This displays "Smith, John".

Property of RegExp

Static, Read-only

Implemented in JavaScript 1.2, NES 3.0
Chapter 1, Objects, Methods, and Properties 251

RegExp.$_
$_ .

See input.

$* .

See multiline.

$& .

See lastMatch.

$+ .

See lastParen.

$‘ .

See leftContext.

$’ .

See rightContext.

compile .

Compiles a regular expression object during execution of a script.

Syntax regexp.compile(pattern[, flags])

Method of RegExp

Implemented in JavaScript 1.2, NES 3.0
252 Server-Side JavaScript Reference

RegExp.constructor
Parameters

Description Use the compile method to compile a regular expression created with the
RegExp constructor function. This forces compilation of the regular expression
once only which means the regular expression isn’t compiled each time it is
encountered. Use the compile method when you know the regular expression
will remain constant (after getting its pattern) and will be used repeatedly
throughout the script.

You can also use the compile method to change the regular expression during
execution. For example, if the regular expression changes, you can use the
compile method to recompile the object for more efficient repeated use.

Calling this method changes the value of the regular expression’s source,
global, and ignoreCase properties.

constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor.

regexp The name of the regular expression. It can be a variable name or a
literal.

pattern A string containing the text of the regular expression.

flags If specified, flags can have one of the following values:

• "g": global match

• "i": ignore case

• "gi": both global match and ignore case

Property of RegExp

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 253

RegExp.exec
exec .

Executes the search for a match in a specified string. Returns a result array.

Syntax regexp.exec([str])
regexp([str])

Parameters

Description As shown in the syntax description, a regular expression’s exec method can be
called either directly, (with regexp.exec(str)) or indirectly (with
regexp(str)).

If you are executing a match simply to find true or false, use the test
method or the String search method.

If the match succeeds, the exec method returns an array and updates
properties of the regular expression object and the predefined regular
expression object, RegExp. If the match fails, the exec method returns null.

Consider the following example:

<SCRIPT LANGUAGE="JavaScript1.2">
//Match one d followed by one or more b’s followed by one d
//Remember matched b’s and the following d
//Ignore case
myRe=/d(b+)(d)/ig;
myArray = myRe.exec("cdbBdbsbz");
</SCRIPT>

Method of RegExp

Implemented in JavaScript 1.2, NES 3.0

regexp The name of the regular expression. It can be a variable name or a
literal.

str The string against which to match the regular expression. If
omitted, the value of RegExp.input is used.
254 Server-Side JavaScript Reference

RegExp.exec
The following table shows the results for this script:

Object Property/Index Description Example

myArray The contents of myArray ["dbBd", "bB", "d"]

index The 0-based index of the match in the
string

1

input The original string cdbBdbsbz

[0] The last matched characters dbBd

[1], ...[n] The parenthesized substring matches, if
any. The number of possible
parenthesized substrings is unlimited.

[1] = bB
[2] = d

myRe lastIndex The index at which to start the next
match.

5

ignoreCase Indicates if the "i" flag was used to
ignore case

true

global Indicates if the "g" flag was used for a
global match

true

source The text of the pattern d(b+)(d)

RegExp lastMatch
$&

The last matched characters dbBd

leftContext
$‘

The substring preceding the most recent
match

c

rightContext
$’

The substring following the most recent
match

bsbz

$1, ...$9 The parenthesized substring matches, if
any. The number of possible
parenthesized substrings is unlimited, but
RegExp can only hold the last nine.

$1 = bB
$2 = d

lastParen
$+

The last parenthesized substring match, if
any.

d

Chapter 1, Objects, Methods, and Properties 255

RegExp.exec
If your regular expression uses the "g" flag, you can use the exec method
multiple times to find successive matches in the same string. When you do so,
the search starts at the substring of str specified by the regular expression’s
lastIndex property. For example, assume you have this script:

<SCRIPT LANGUAGE="JavaScript1.2">
myRe=/ab*/g;
str = "abbcdefabh"
myArray = myRe.exec(str);
document.writeln("Found " + myArray[0] +

". Next match starts at " + myRe.lastIndex)
mySecondArray = myRe.exec(str);
document.writeln("Found " + mySecondArray[0] +

". Next match starts at " + myRe.lastIndex)
</SCRIPT>

This script displays the following text:

Found abb. Next match starts at 3
Found ab. Next match starts at 9

Examples In the following example, the user enters a name and the script executes a
match against the input. It then cycles through the array to see if other names
match the user's name.

This script assumes that first names of registered party attendees are preloaded
into the array A, perhaps by gathering them from a party database.

<HTML>

<SCRIPT LANGUAGE="JavaScript1.2">
A = ["Frank", "Emily", "Jane", "Harry", "Nick", "Beth", "Rick",

"Terrence", "Carol", "Ann", "Terry", "Frank", "Alice", "Rick",
"Bill", "Tom", "Fiona", "Jane", "William", "Joan", "Beth"]
256 Server-Side JavaScript Reference

RegExp.global
function lookup() {
firstName = /\w+/i();
if (!firstName)

window.alert (RegExp.input + " isn’t a name!");
else {

count = 0;
for (i=0; i<A.length; i++)

if (firstName[0].toLowerCase() == A[i].toLowerCase()) count++;
if (count ==1)

midstring = " other has ";
else

midstring = " others have ";
window.alert ("Thanks, " + count + midstring + "the same name!")

}
}

</SCRIPT>

Enter your first name and then press Enter.

<FORM> <INPUT TYPE:"TEXT" NAME="FirstName" onChange="lookup(this);"> </
FORM>

</HTML>

global .

Whether or not the "g" flag is used with the regular expression.

Description global is a property of an individual regular expression object.

The value of global is true if the "g" flag was used; otherwise, false. The
"g" flag indicates that the regular expression should be tested against all
possible matches in a string.

You cannot change this property directly. However, calling the compile
method changes the value of this property.

Property of RegExp

Read-only

Implemented in JavaScript 1.2, NES 3.0
Chapter 1, Objects, Methods, and Properties 257

RegExp.ignoreCase
ignoreCase .

Whether or not the "i" flag is used with the regular expression.

Description ignoreCase is a property of an individual regular expression object.

The value of ignoreCase is true if the "i" flag was used; otherwise, false.
The "i" flag indicates that case should be ignored while attempting a match in
a string.

You cannot change this property directly. However, calling the compile
method changes the value of this property.

input .

The string against which a regular expression is matched. $_ is another name
for the same property.

Description Because input is static, it is not a property of an individual regular expression
object. Instead, you always use it as RegExp.input.

If no string argument is provided to a regular expression’s exec or test
methods, and if RegExp.input has a value, its value is used as the argument to
that method.

Property of RegExp

Read-only

Implemented in JavaScript 1.2, NES 3.0

Property of RegExp

Static

Implemented in JavaScript 1.2, NES 3.0
258 Server-Side JavaScript Reference

RegExp.lastIndex
The script or the browser can preset the input property. If preset and if no
string argument is explicitly provided, the value of input is used as the string
argument to the exec or test methods of the regular expression object. input
is set by the browser in the following cases:

• When an event handler is called for a TEXT form element, input is set to
the value of the contained text.

• When an event handler is called for a TEXTAREA form element, input is set
to the value of the contained text. Note that multiline is also set to true
so that the match can be executed over the multiple lines of text.

• When an event handler is called for a SELECT form element, input is set to
the value of the selected text.

• When an event handler is called for a Link object, input is set to the value
of the text between and .

The value of the input property is cleared after the event handler completes.

lastIndex .

A read/write integer property that specifies the index at which to start the next
match.

Description lastIndex is a property of an individual regular expression object.

This property is set only if the regular expression used the "g" flag to indicate
a global search. The following rules apply:

• If lastIndex is greater than the length of the string, regexp.test and
regexp.exec fail, and lastIndex is set to 0.

• If lastIndex is equal to the length of the string and if the regular
expression matches the empty string, then the regular expression matches
input starting at lastIndex.

Property of RegExp

Implemented in JavaScript 1.2, NES 3.0
Chapter 1, Objects, Methods, and Properties 259

RegExp.lastMatch
• If lastIndex is equal to the length of the string and if the regular
expression does not match the empty string, then the regular expression
mismatches input, and lastIndex is reset to 0.

• Otherwise, lastIndex is set to the next position following the most recent
match.

For example, consider the following sequence of statements:

lastMatch .

The last matched characters. $& is another name for the same property.

Description Because lastMatch is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.lastMatch.

lastParen .

The last parenthesized substring match, if any. $+ is another name for the same
property.

Description Because lastParen is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.lastParen.

re = /(hi)?/
g

Matches the empty string.

re("hi") Returns ["hi", "hi"] with lastIndex equal to 2.

re("hi") Returns [""], an empty array whose zeroth element is the match
string. In this case, the empty string because lastIndex was 2
(and still is 2) and "hi" has length 2.

Property of RegExp

Static, Read-only

Implemented in JavaScript 1.2, NES 3.0

Property of RegExp

Static, Read-only

Implemented in JavaScript 1.2, NES 3.0
260 Server-Side JavaScript Reference

RegExp.leftContext
leftContext .

The substring preceding the most recent match. $‘ is another name for the
same property.

Description Because leftContext is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.leftContext .

multiline .

Reflects whether or not to search in strings across multiple lines. $* is another
name for the same property.

Description Because multiline is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.multiline .

The value of multiline is true if multiple lines are searched, false if
searches must stop at line breaks.

The script or the browser can preset the multiline property. When an event
handler is called for a TEXTAREA form element, the browser sets multiline to
true . multiline is cleared after the event handler completes. This means that,
if you’ve preset multiline to true , it is reset to false after the execution of any
event handler.

Property of RegExp

Static, Read-only

Implemented in JavaScript 1.2, NES 3.0

Property of RegExp

Static

Implemented in JavaScript 1.2, NES 3.0
Chapter 1, Objects, Methods, and Properties 261

RegExp.prototype
prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype.

rightContext .

The substring following the most recent match. $’ is another name for the
same property.

Description Because rightContext is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.rightContext.

source .

A read-only property that contains the text of the pattern, excluding the forward
slashes and "g" or "i" flags.

Description source is a property of an individual regular expression object.

You cannot change this property directly. However, calling the compile
method changes the value of this property.

Property of RegExp

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Property of RegExp

Static, Read-only

Implemented in JavaScript 1.2, NES 3.0

Property of RegExp

Read-only

Implemented in JavaScript 1.2, NES 3.0
262 Server-Side JavaScript Reference

RegExp.test
test .

Executes the search for a match between a regular expression and a specified
string. Returns true or false.

Syntax regexp.test([str])

Parameters

Description When you want to know whether a pattern is found in a string use the test
method (similar to the String.search method); for more information (but
slower execution) use the exec method (similar to the String.match
method).

Example The following example prints a message which depends on the success of the
test:

function testinput(re, str){
if (re.test(str))

midstring = " contains ";
else

midstring = " does not contain ";
document.write (str + midstring + re.source);

}

toString .

Returns a string representing the specified object.

Syntax toString()

Parameters None.

Method of RegExp

Implemented in JavaScript 1.2, NES 3.0

regexp The name of the regular expression. It can be a variable name or a literal.

str The string against which to match the regular expression. If omitted, the
value of RegExp.input is used.

Method of RegExp

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 263

RegExp.valueOf
Description The RegExp object overrides the toString method of the Object object; it
does not inherit Object.toString. For RegExp objects, the toString
method returns a string representation of the object.

Examples The following example displays the string value of a RegExp object:

myExp = new RegExp("a+b+c");
alert(myExp.toString()) displays "/a+b+c/"

See also Object.toString

valueOf .

Returns the primitive value of a RegExp object.

Syntax valueOf()

Parameters None

Description The valueOf method of RegExp returns the primitive value of a RegExp
object as a string data type. This value is equivalent to RegExp.toString.

This method is usually called internally by JavaScript and not explicitly in code.

Examples myExp = new RegExp("a+b+c");
alert(myExp.valueOf()) displays "/a+b+c/"

See also RegExp.toString, Object.valueOf

Method of RegExp

Implemented in JavaScript 1.1

ECMA version ECMA-262
264 Server-Side JavaScript Reference

request
request
Contains data specific to the current client request.

Created by The JavaScript runtime engine on the server automatically creates a request
object for each client request.

Description The JavaScript runtime engine on the server creates a request object each time
the client makes a request of the server. The runtime engine destroys the
request object after the server responds to the request, typically by providing
the requested page.

The properties listed below are read-only properties that are initialized
automatically when a request object is created. In addition to these predefined
properties, you can create custom properties to store application-specific data
about the current request.

Custom properties. You can create a property for the request object by
assigning it a name and a value. For example, you can create a request
property to store the date and time that a request is received so you can enter
the date into the page content.

You can also create request object properties by encoding them in a URL.
When a user navigates to the URL by clicking its link, the properties are created
and instantiated to values that you specify. The properties are valid on the
destination page.

Use the following syntax to encode a request property in a URL:

where:

• URL is the URL the page that will get the new request properties.

• propertyName is the name of the property you are creating.

• value is the initial value of the new property.

Use escape to encode non-alphanumeric values in the URL string.

You can also create custom properties for the request object.

Server-side object

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 265

request
Property
Summary

Method Summary This object inherits the watch and unwatch methods from Object.

Examples Example 1. This example displays the values of the predefined properties of
the request object. In this example, an HTML form is defined as follows:

<FORM METHOD="post" NAME="idForm" ACTION="hello.html">
<P>Last name:

<INPUT TYPE="text" NAME="lastName" SIZE="20">

First name:

<INPUT TYPE="text" NAME="firstName" SIZE="20">
</FORM>

The following code displays the values of the request object properties that
are created when the form is submitted:

agent = <SERVER>write(request.agent)</SERVER>

ip = <SERVER>write(request.ip)</SERVER>

method = <SERVER>write(request.method)</SERVER>

protocol = <SERVER>write(request.protocol)</SERVER>

lastName = <SERVER>write(request.lastName)</SERVER>

firstName = <SERVER>write(request.firstName)</SERVER>

Property Description

agent Provides name and version information about the client
software.

imageX The horizontal position of the mouse pointer when the user
clicked the mouse over an image map.

imageY The vertical position of the mouse pointer when the user clicked
the mouse over an image map.

inputName Represents an input element on an HTML form. (There is not a
property whose name is inputName. Rather, each instance of
request has properties named after each input element.)

ip Provides the IP address of the client.

method Provides the HTTP method associated with the request.

protocol Provides the HTTP protocol level supported by the client’s
software.
266 Server-Side JavaScript Reference

request.agent
When it executes, this code displays information similar to the following:

agent = "Mozilla/2.0 (WinNT;I)"
ip = "165.327.114.147"
method = "GET"
protocol = "HTTP/1.0"
lastName = "Schaefer"
firstName = "Jesse"

Example 2. The following example creates the requestDate property and
initializes it with the current date and time:

request.requestDate = new Date()

Example 3. When a user clicks the following link, the info.html page is
loaded, request.accessedFrom is created and initialized to "hello.html",
and request.formId is created and initialized to "047".

Click here for

additional information.

See also client, project, server

agent .

Provides name and version information about the client software.

Description The agent property identifies the client software. Use this information to
conditionally employ certain features in an application.

The value of the agent property is the same as the value of the userAgent
property of the client-side navigator object. The agent property specifies
client information in the following format:

codeName/releaseNumber (platform; country; platformIdentifier)

Property of request

Read-only

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 267

request.agent
The values contained in this format are the following:

• codeName is the code name of the client. For example, "Mozilla" specifies
Navigator.

• releaseNumber is the version number of the client. For example, "2.0b4"
specifies Navigator 2.0, beta 4.

• platform is the platform upon which the client is running. For example,
"Win16" specifies a 16-bit version of Windows, such as Windows 3.11.

• country is either "I" for the international release or "U" for the domestic
U.S. release. The domestic release has a stronger encryption feature than
the international release.

• platformIdentifier is an optional identifier that further specifies the
platform. For example, in Navigator 1.1, platform is "windows" and
platformIdentifier is "32bit". In Navigator 2.0, both pieces of
information are contained in the platform designation. For example, in
Navigator 2.0, the previous platform is expressed as "WinNT".

Examples The following example displays client information for Navigator 2.0 on
Windows NT:

write(request.agent)
\\Displays "Mozilla/2.0 (WinNT;I)"

The following example evaluates the request.agent property and runs the
oldBrowser procedure for clients other than Navigator 2.0. If the browser is
Navigator 2.0, the currentBrowser function executes.

<SERVER>
var agentVar=request.agent
if (agentVar.indexOf("2.0")==-1)

oldBrowser()
else

currentBrowser()
</SERVER>

See also request.ip, request.method, request.protocol
268 Server-Side JavaScript Reference

request.imageX
imageX .

The horizontal position of the mouse pointer when the user clicked the mouse
over an image map.

Description The ISMAP attribute of the IMG tag indicates a server-based image map. When
the user clicks the mouse with the pointer over an image map, the horizontal
and vertical position of the pointer are returned to the server.

The imageX property returns the horizontal position of the mouse cursor when
the user clicks on an image map.

Examples Suppose you define the following image map:

<IMG SRC="images\map.gif" WIDTH=599 WIDTH=424 BORDER=0 ISMAP
ALT="SANTA CRUZ COUNTY">

Note the ISMAP attribute that makes the image a clickable map. When the user
clicks the mouse on the image, the page mapchoice.html will have properties
request.imageX and request.imageY based on the mouse cursor position
where the user clicked.

See also request.imageY

imageY .

The vertical position of the mouse pointer when the user clicked the mouse
over an image map.

Property of request

Read-only

Implemented in NES 2.0

Property of request

Read-only

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 269

request.inputName
Description The ISMAP attribute of the IMG tag indicates a server-based image map. When
the user clicks the mouse with the pointer over an image map, the horizontal
and vertical position of the pointer are returned to the server.

The imageY property returns the vertical position of the mouse cursor when the
user clicks on an image map.

Examples See example for imageX.

See also request.imageX

inputName .

Represents an input element on an HTML form.

Description Each input element in an HTML form corresponds to a property of the request
object. The name of each of these properties is the name of the field on the
associated form. inputName is a variable that represents the value of the name
property of an input field on a submitted form. By default, the value of the
JavaScript name property is the same as the HTML NAME attribute.

Examples The following HTML source creates the request.lastName and the
request.firstName properties when idForm is submitted:

<FORM METHOD="post" NAME="idForm" ACTION="hello.html">
<P>Last name:

<INPUT TYPE="text" NAME="lastName" SIZE="20">

First name:

<INPUT TYPE="text" NAME="firstName" SIZE="20">
</FORM>

ip .

Provides the IP address of the client.

Property of request

Read-only

Implemented in NES 2.0

Property of request

Read-only

Implemented in NES 2.0
270 Server-Side JavaScript Reference

request.method
Description The IP address is a set of four numbers between 0 and 255, for example,
198.217.226.34. You can use the IP address to authorize or record access in
certain situations.

Examples In the following example, the indexOf method evaluates request.ip to
determine if it begins with the string "198.217.226". The if statement
executes a different function depending on the result of the indexOf method.

<SERVER>
var ipAddress=request.ip
if (ipAddress.indexOf("198.217.226.")==-1)

limitedAccess()
else

fullAccess()
</SERVER>

See also request.agent, request.method, request.protocol

method .

Provides the HTTP method associated with the request.

Description The value of the method property is the same as the value of the method
property of the client-side Form object. That is, method reflects the METHOD
attribute of the FORM tag. For HTTP 1.0, the method property evaluates to either
"get" or "post". Use the method property to determine the proper response
to a request.

Examples The following example executes the postResponse function if the method
property evaluates to "post". If method evaluates to anything else, it executes
the getResponse function.

<SERVER>
if (request.method=="post")

postResponse()
else

getResponse()
</SERVER>

See also request.agent, request.ip, request.protocol

Property of request

Read-only

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 271

request.protocol
protocol .

Provides the HTTP protocol level supported by the client’s software.

Description For HTTP 1.0, the protocol value is "HTTP/1.0". Use the protocol property to
determine the proper response to a request.

Examples In the following example, the currentProtocol function executes if
request.protocol evaluates to "HTTP/1.0".

<SERVER>
if (request.protocol=="HTTP/1.0"

currentProtocol()
else

unknownProtocol()
</SERVER>

See also request.agent, request.ip, request.method

Property of request

Read-only

Implemented in NES 2.0
272 Server-Side JavaScript Reference

Resultset
Resultset
Represents a virtual table created by executing a stored procedure.

Created by The resultSet method of a Stproc object. The Resultset object does not
have a constructor.

Description For Sybase, Oracle, ODBC, and DB2 stored procedures, the stored procedure
object has one result set object for each SELECT statement executed by the
stored procedure. For Informix stored procedures, the stored procedure object
always has one result set object.

A result set has a property for each column in the SELECT statement used to
generate the result set. For Sybase, Oracle, and ODBC stored procedures, you
can refer to these properties by the name of the column in the virtual table. For
Informix and DB2 stored procedures, the columns are not named. For these
databases, you must use a numeric index to refer to the column.

Result set objects are not valid indefinitely. In general, once a stored procedure
starts, no interactions are allowed between the database client and the database
server until the stored procedure has completed. In particular, there are three
circumstances that cause a result set to be invalid:

1. If you create a result set as part of a transaction, you must finish using the
result set during that transaction. Once you either commit or rollback the
transaction, you can’t get any more data from a result set, and you can’t get
any additional result sets. For example, the following code is illegal:

database.beginTransaction();
spobj = database.storedProc("getcusts");
resobj = spobj.resultSet();
database.commitTransaction();
/* Illegal! Result set no longer valid! */
col1 = resobj[0];

Server-side object

Implemented in NES 3.0
Chapter 1, Objects, Methods, and Properties 273

Resultset
2. You must retrieve result set objects before you call a stored-procedure
object’s returnValue or outParameters methods. Once you call either of
these methods, you can't get any more data from a result set, and you can't
get any additional result sets.

spobj = database.storedProc("getcusts");
resobj = spobj.resultSet();
retval = spobj.returnValue();
/* Illegal! Result set no longer valid! */
col1 = resobj[0];

3. Similarly, you must retrieve result set objects before you call the associated
Connection object’s cursor or SQLTable method. For example, the
following code is illegal:

spobj = database.storedProc("getcusts");
cursobj = database.cursor("SELECT * FROM ORDERS;");
/* Illegal! The result set is no longer available! */
resobj = spobj.resultSet();
col1 = resobj[0];

When finished with a Resultset object, use the close method to close it and
release the memory it uses. If you release a connection that has an open result
set, the runtime engine waits until the result set is closed before actually
releasing the connection.

If you do not explicitly close a result set with the close method, the JavaScript
runtime engine on the server automatically tries to close all open result sets
when the associated database or DbPool object goes out of scope. This can tie
up system resources unnecessarily. It can also lead to unpredictable results.

You can use the prototype property of the Resultset class to add a property
to all Resultset instances. If you do so, that addition applies to all Resultset
objects running in all applications on your server, not just in the single
application that made the change. This allows you to expand the capabilities of
this object for your entire server.

Property
Summary Property Description

prototype Allows the addition of properties to a Resultset object.
274 Server-Side JavaScript Reference

Resultset.close
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object.

Examples Assume you have the following Oracle stored procedure:

create or replace package timpack
as type timcurtype is ref cursor return customer%rowtype;
type timrentype is ref cursor return rentals%rowtype;
end timpack;

create or replace procedure timset4(timrows1 in out timpack.timcurtype,
timrows in out timpack.timrentype)
as begin
open timrows for select * from rentals;
open timrows1 for select * from customer;
end timset4;

Running this stored procedure creates two result sets you can access. In the
following code fragment the resobj1 result set has rows returned by the
timrows ref cursor and the resobj2 result set has the rows returned by the
timrows1 ref cursor.

spobj = database.storedProc("timset4");
resobj1 = spobj.resultSet();
resobj2 = spobj.resultSet();

close .

Closes the result set and frees the allocated memory.

Syntax close()

Parameters None.

Method Description

close Closes a result set object.

columnName Returns the name of a column in the result set.

columns Returns the number of columns in the result set.

next Moves the current row to the next row in the result set.

Method of Resultset

Implemented in NES 3.0
Chapter 1, Objects, Methods, and Properties 275

Resultset.columnName
Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description The close method closes a cursor or result set and releases the memory it uses.
If you do not explicitly close a cursor or result set with the close method, the
JavaScript runtime engine on the server automatically closes all open cursors
and result sets when the corresponding client object goes out of scope.

Examples The following example creates the rentalSet cursor, performs certain
operations on it, and then closes it with the close method.

// Create a Cursor object
rentalSet = database.cursor("SELECT * FROM rentals")

// Perform operations on the cursor
cursorOperations()

//Close the cursor
err = rentalSet.close()

See also Cursor

columnName .

Returns the name of the column in the result set corresponding to the specified
number.

Syntax columnName (n)

Parameters

Returns The name of the column. For Informix stored procedures, this method for the
Resultset object always returns the string "Expression".

If your SELECT statement uses a wildcard (*) to select all the columns in a table,
the columnName method does not guarantee the order in which it assigns
numbers to the columns. That is, suppose you have this statement:

resSet = stObj.resultSet("select * from customer");

Method of Resultset

Implemented in NES 3.0

n Zero-based integer corresponding to the column in the query. The
first column in the result set is 0, the second is 1, and so on.
276 Server-Side JavaScript Reference

Resultset.columns
If the customer table has 3 columns, ID, NAME, and CITY, you cannot tell
ahead of time which of these columns corresponds to
resSet.columnName(0). (Of course, you are guaranteed that successive calls
to columnName have the same result.) If the order matters to you, you can
instead hard-code the column names in the select statement, as in the following
statement:

resSet = stObj.resultSet("select ID, NAME, CITY from customer");

With this statement, resSet.columnName(0) is ID, resSet.columnName(1) is
NAME, and resSet.columnName(2) is CITY.

Examples The following example assigns the name of the first column in the
customerSet cursor to the variable header:

customerSet=database.cursor(SELECT * FROM customer ORDER BY name)
header = customerSet.columnName(0)

columns .

Returns the number of columns in the result set.

Syntax columns()

Parameters None.

Returns The number of named and unnamed columns.

Examples See Example 2 of Cursor for an example of using the columns method with
the cursorColumn array.

The following example returns the number of columns in the custs cursor:

custs.columns()

Method of Resultset

Implemented in NES 3.0
Chapter 1, Objects, Methods, and Properties 277

Resultset.next
next .

Moves the current row to the next row in the result set.

Syntax next()

Parameters None.

Returns False if the current row is the last row; otherwise, true.

Description Initially, the pointer (or current row) for a cursor or result set is positioned
before the first row returned. Use the next method to move the pointer
through the records in the cursor or result set. This method moves the pointer
to the next row and returns true as long as there is another row available.
When the cursor or result set has reached the last row, the method returns
false. Note that if the cursor is empty, this method always returns false.

Examples Example 1. This example uses the next method to navigate to the last row in
a cursor. The variable x is initialized to true. When the pointer is in the last row
of the cursor, the next method returns false and terminates the while loop.

customerSet = database.cursor("select * from customer", true)

x = true
while (x) {

x = customerSet.next() }

Example 2. In the following example, the rentalSet cursor contains columns
named videoId, rentalDate, and dueDate. The next method is called in a
while loop that iterates over every row in the cursor. When the pointer is on
the last row in the cursor, the next method returns false and terminates the
while loop.

Method of Resultset

Implemented in NES 3.0
278 Server-Side JavaScript Reference

Resultset.prototype
This example displays the three columns of the cursor in an HTML table:

<SERVER>
// Create a Cursor object
rentalSet = database.cursor("SELECT videoId, rentalDate, returnDate

FROM rentals")
</SERVER>

// Create an HTML table
<TABLE BORDER>
<TR>
<TH>Video ID</TH>
<TD>Rental Date</TD>
<TD>Due Date</TD>
</TR>

<SERVER>
// Iterate through each row in the cursor
while (rentalSet.next()) {
</SERVER>

// Display the cursor values in the HTML table
<TR>
<TH><SERVER>write(rentalSet.videoId)</SERVER></TH>
<TD><SERVER>write(rentalSet.rentalDate)</SERVER></TD>
<TD><SERVER>write(rentalSet.returnDate)</SERVER></TD>
</TR>

// Terminate the while loop
<SERVER>
}
</SERVER>

// End the table
</TABLE>

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype.
Property of Resultset

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 279

SendMail
SendMail
Sends an email message.

The To and From attributes are required. All other properties are optional.

Created by The SendMail constructor:

new SendMail();

Parameters None.

Description Whatever properties you specify for the SendMail object are sent in the header
of the mail message.

The SendMail object allows you to send either simple text-only mail messages
or complex MIME-compliant mail or add attachments to your message. To send
a MIME message, set the Content-Type property to the MIME type of the
message.

You can use the prototype property of the SendMail object to add a property
to all SendMail instances. If you do so, that addition applies to all SendMail
objects running in all applications on your server, not just in the single
application that made the change. This allows you to expand the capabilities of
this object for your entire server.

Property
Summary

Server-side object

Implemented in NES 3.0

Property Description

Bcc Comma-delimited list of recipients of the message whose names
should not be visible in the message.

Body Text of the message.

Cc Comma-delimited list of additional recipients of the message.

constructor Specifies the function that creates an object’s prototype.

Errorsto Address to which to send errors concerning the message.
Defaults to the sender’s address.

From User name of the person sending the message.

Organization Organization information.
280 Server-Side JavaScript Reference

SendMail
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object.

Examples Example 1: The following script sends mail to vpg and gwp, copying jaym,
with the specified subject and body for the message:

<server>
SMName = new SendMail();
SMName.To = "vpg@co1.com, gwp@co2.com"
SMName.From = "me@myco.com"
SMName.Cc = "jaym@hisco.com"
SMName.Subject = "The State of the Universe"
SMName.Body = "The universe, contrary to what you may have heard, is in
none too shabby shape. Not to worry! --me"
SMName.send()
</server>

prototype Allows the addition of properties to a SendMail object.

Replyto User name to which replies to the message should be sent.
Defaults to the sender’s address.

Smtpserver Mail (SMTP) server name. Defaults to the value specified
through the setting in the Administration server.

Subject Subject of the message.

To Comma-delimited list of primary recipients of the message.

Property Description

Method Description

errorCode Returns an integer error code associated with sending this
message.

errorMessage Returns a string associated with sending this message.

send Sends the mail message represented by this object.
Chapter 1, Objects, Methods, and Properties 281

SendMail.Bcc
Example 2: The following example sends an image in a GIF file:

sm = new SendMail();
sm.To = "satish";
sm.From = "satish@netscape.com";
sm.Smtpserver = "fen.mcom.com";
sm["Errors-to"] = "satish";
sm["Content-type"] = "image/gif";
sm["Content-Transfer-Encoding"] = "base64";
file = new File("/u/satish/LiveWire/mail/banner.gif");
openFlag = file.open("r");
if (openFlag) {

len = file.getLength();
str = file.read(len);
sm.Body = str;

}
sm.send();

Example 3: The following example sends a multipart message:

sm = new SendMail();
sm.To = "chandra@cs.uiowa.edu, satish@netscape.com";
sm.From = "satish@netscape.com";
sm.Smtpserver = "fen.mcom.com";
sm.Organization = "Netscape Comm Corp";
sm["Content-type"] = "multipart/mixed; boundary=\"------------
8B3F7BA67B67C1DDE6C25D04\"";
file = new File("/u/satish/LiveWire/mail/mime");
openFlag = file.open("r");
if (openFlag) {

len = file.getLength();
str = file.read(len);
sm.Body = str;

}
sm.send();

The file mime has HTML text and an Microsoft Word document separated by the
specified boundary. The resulting message appears as HTML text followed by
the Microsoft Word attachment.

Bcc .

Comma-delimited list of recipients of the message whose names should not be
visible in the message.
Property of SendMail

Implemented in NES 3.0
282 Server-Side JavaScript Reference

SendMail.Body
Body .

Text of the message.

Cc .

Comma-delimited list of additional recipients of the message.

constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor.

errorCode .

Returns an integer error code associated with sending this message.

Syntax public errorCode();

Property of SendMail

Implemented in NES 3.0

Property of SendMail

Implemented in NES 3.0

Property of SendMail

Implemented in NES 2.0

Method of SendMail

Implemented in NES 3.0
Chapter 1, Objects, Methods, and Properties 283

SendMail.errorMessage
Returns The possible return values and their meanings are as follows:

errorMessage .

Returns a string associated with sending this message.

Syntax public errorMessage();

Returns An error string.

Errorsto .

Address to which to send errors concerning the message. Defaults to the
sender’s address.

From .

User name of the person sending the message.

0 Successful send.

1 SMTP server not specified.

2 Specified mail server is down or doesn’t exist.

3 At least one receiver’s address must be specified to send the message.

4 Sender’s address must be specified to send the message.

5 Mail connection problem; data not sent.

Method of SendMail

Implemented in NES 3.0

Property of SendMail

Implemented in NES 3.0

Property of SendMail

Implemented in NES 3.0
284 Server-Side JavaScript Reference

SendMail.Organization
Organization .

Organization information.

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype.

Replyto .

User name to which replies to the message should be sent. Defaults to the
sender’s address.

send .

Sends the mail message represented by this object.

Syntax public send ();

Returns This method returns a Boolean value to indicate whether or not the mail was
successfully sent. If the mail was not successfully sent, you can use the
errorMessage and errorCode methods to determine the nature of the error.

This method returns a string indicating the nature of the error that occurred
sending the message.

Property of SendMail

Implemented in NES 3.0

Property of SendMail

Implemented in NES 2.0

Property of SendMail

Implemented in NES 3.0

Method of SendMail

Implemented in NES 3.0
Chapter 1, Objects, Methods, and Properties 285

SendMail.Smtpserver
Smtpserver .

Mail (SMTP) server name. Defaults to the value specified through the setting in
the Administration server.

Subject .

Subject of the message.

To .

Comma-delimited list of primary recipients of the message.

Property of SendMail

Implemented in NES 3.0

Property of SendMail

Implemented in NES 3.0

Property of SendMail

Implemented in NES 3.0
286 Server-Side JavaScript Reference

server
server
Contains global data for the entire server.

Created by The JavaScript runtime engine on the server automatically creates a single
server object to store information common to all JavaScript applications
running on the web server.

Description The JavaScript runtime engine on the server creates a server object when the
server starts and destroys it when the server stops. Every application on a
server shares the same server object. Use the server object to maintain global
data for the entire server. Many applications can run on a server
simultaneously, and the server object lets them share information.

The runtime engine creates a server object for each distinct Netscape HTTPD
process running on the server.

The properties listed below are read-only properties that are initialized
automatically when a server object is created. These properties provide
information about the server process. In addition to these predefined
properties, you can create custom properties.

You can lock the server object to ensure that different applications do not
change its properties simultaneously. When one application locks the server
object, other applications must wait before they can lock it.

Property
Summary

Server-side object

Implemented in NES 2.0

Property Description

host String specifying the server name, subdomain, and domain
name.

hostname String containing the full hostname of the server, including the
server name, subdomain, domain, and port number.

port String indicating the port number used for the server.

protocol String indicating the communication protocol used by the server.
Chapter 1, Objects, Methods, and Properties 287

server.host
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object.

Examples The following example displays the values of the predefined server object
properties:

<P>server.host = <SERVER>write(server.host);</SERVER>

server.hostname = <SERVER>write(server.hostname);</SERVER>

server.protocol = <SERVER>write(server.protocol);</SERVER>

server.port = <SERVER>write(server.port);</SERVER>

The preceding code displays information such as the following:

server.host = www.myWorld.com
server.hostname = www.myWorld.com:85
server.protocol = http:
server.port = 85

See also client, project, request

host .

A string specifying the server name, subdomain, and domain name.

Description The host property specifies a portion of a URL. The host property is a
substring of the hostname property. The hostname property is the
concatenation of the host and port properties, separated by a colon. When
the port property is 80 (the default), the host property is the same as the
hostname property.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/
rfc1738.html) for complete information about the hostname and port.

See also server.hostname, server.port, server.protocol

Method Description

lock Obtains the lock.

unlock Releases the lock.

Property of server

Read-only

Implemented in NES 2.0
288 Server-Side JavaScript Reference

server.hostname
hostname .

A string containing the full hostname of the server, including the server name,
subdomain, domain, and port number.

Description The hostname property specifies a portion of a URL. The hostname property is
the concatenation of the host and port properties, separated by a colon.
When the port property is 80 (the default), the host property is the same as
the hostname property.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/
rfc1738.html) for complete information about the hostname and port.

See also server.host, server.port, server.protocol

lock .

Obtains the lock. If another thread has the lock, this method waits until it can
get the lock.

Syntax lock()

Parameters None

Returns Nothing.

Description You can obtain a lock for an object to ensure that different clients do not access
a critical section of code simultaneously. When an application locks an object,
other client requests must wait before they can lock the object.

Note that this mechanism requires voluntary compliance by asking for the lock
in the first place.

See also Lock, server.lock

Property of server

Read-only

Implemented in NES 2.0

Method of server

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 289

server.port
port .

A string indicating the port number used for the server.

Description The port property specifies a portion of the URL. The port property is a
substring of the hostname property. The hostname property is the
concatenation of the host and port properties, separated by a colon.

The default value of the port property is 80. When the port property is set to
the default, the values of the host and hostname properties are the same.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/
rfc1738.html) for complete information about the port.

See also server.host, server.hostname, server.protocol

protocol .

A string indicating the communication protocol used by the server.

Description The protocol property specifies the beginning of the URL, up to and including
the first colon. The protocol indicates the access method of the URL. For
example, a protocol of "http:" specifies HyperText Transfer Protocol.

The protocol property represents the scheme name of the URL. See Section
2.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/
rfc1738.html) for complete information about the protocol.

See also server.host, server.hostname, server.port

Property of server

Read-only

Implemented in NES 2.0

Property of server

Read-only

Implemented in NES 2.0
290 Server-Side JavaScript Reference

server.unlock
unlock .

Releases the lock.

Syntax unlock()

Parameters None.

Returns False if it fails; otherwise, true. Failure indicates an internal JavaScript error or
that you attempted to unlock a lock that you don’t own.

Description If you unlock a lock that is unlocked, the resulting behavior is undefined.

See also Lock, server.unlock

Method of server

Implemented in NES 2.0
Chapter 1, Objects, Methods, and Properties 291

Stproc
Stproc
Represents a call to a database stored procedure.

Created by The storedProc method of the database object or of a Connection object.
You do not call a Stproc constructor.

Description When finished with a Stproc object, use the close method to close it and
release the memory it uses. If you release a connection that has an open stored
procedure, the runtime engine waits until the stored procedure is closed before
actually releasing the connection.

If you do not explicitly close a stored procedure with the close method, the
JavaScript runtime engine on the server automatically tries to close all open
stored procedures when the associated database or Connection object goes
out of scope. This can tie up system resources unnecessarily. It can also lead to
unpredictable results.

You can use the prototype property of the Stproc class to add a property to
all Stproc instances. If you do so, that addition applies to all Stproc objects
running in all applications on your server, not just in the single application that
made the change. This allows you to expand the capabilities of this object for
your entire server.

Property
Summary

Method Summary

Server-side object

Implemented in NES 3.0

Property Description

prototype Allows the addition of properties to a Stproc object.

Method Description

close Closes a stored-procedure object.

outParamCount Returns the number of output parameters returned by a stored
procedure.

outParameters Returns the value of the specified output parameter.

resultSet Returns a new result set object.

returnValue Returns the return value for the stored procedure.
292 Server-Side JavaScript Reference

Stproc.close
In addition, this object inherits the watch and unwatch methods from
Object.

close .

Closes the stored procedure and frees the allocated memory.

Syntax close()

Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description The close method closes a stored procedure and releases the memory it uses.
If you do not explicitly close a stored procedure with the close method, the
JavaScript runtime engine on the server automatically closes it when the
corresponding client object goes out of scope.

outParamCount .

Returns the number of output parameters returned by a stored procedure.

Syntax outParamCount()

Parameters None.

Returns The number of output parameters for the stored procedure. Informix stored
procedures do not have output parameters. Therefore for Informix, this method
always returns 0. You should always call this method before calling
outParameters, to ensure that the stored procedure has output parameters.

Method of Stproc

Implemented in NES 3.0

Method of Stproc

Implemented in NES 3.0
Chapter 1, Objects, Methods, and Properties 293

Stproc.outParameters
outParameters .

Returns the value of the specified output parameter.

Syntax outParameters (n)

Parameters

Returns The value of the specified output parameter. This can be a string, number,
double, or object.

Description Do not use this method for Informix stored procedures, because they do not
have output parameters.

You should always call the outParamCount method before you call this
method. If outParamCount returns 0, the stored procedure has no output
parameters. In this situation, do not call this method.

You must retrieve result set objects before you call this method. Once you call
this method, you can’t get any more data from a result set, and you can't get
any additional result sets.

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype.

Method of Stproc

Implemented in NES 3.0

n Zero-based ordinal for the output parameter to return.

Property of Stproc

Implemented in NES 2.0
294 Server-Side JavaScript Reference

Stproc.resultSet
resultSet .

Returns a new result set object.

Syntax resultSet ()

Parameters None.

Description Running a stored procedure can create 0 or more result sets. You access the
result sets in turn by repeated calls to the resultSet method. See the
description of the Resultset for restrictions on when you can use this
method access the result sets for a stored procedure.

spobj = connobj.storedProc("getcusts");

// Creates a new result set object
resobj = spobj.resultSet();

returnValue .

Returns the return value for the stored procedure.

Syntax returnValue()

Parameters None.

Returns For Sybase, this method always returns the return value of the stored
procedure.

For Oracle, this method returns null if the stored procedure did not return a
value or the return value of the stored procedure.

For Informix, DB2, and ODBC, this method always returns null.

Description You must retrieve result set objects before you call this method. Once you call
this method, you can’t get any more data from a result set, and you can’t get
any additional result sets.

Method of Stproc

Implemented in NES 3.0

Method of Stproc

Implemented in NES 3.0
Chapter 1, Objects, Methods, and Properties 295

String
String
An object representing a series of characters in a string.

Created by The String constructor:

new String(string)

Parameters

Description The String object is a wrapper around the string primitive data type. Do not
confuse a string literal with the String object. For example, the following
code creates the string literal s1 and also the String object s2:

s1 = "foo" // creates a string literal value
s2 = new String("foo") // creates a String object

You can call any of the methods of the String object on a string literal
value—JavaScript automatically converts the string literal to a temporary
String object, calls the method, then discards the temporary String object.
You can also use the String.length property with a string literal.

You should use string literals unless you specifically need to use a String
object, because String objects can have counterintuitive behavior. For
example:

s1 = "2 + 2" // creates a string literal value
s2 = new String("2 + 2") // creates a String object
eval(s1) // returns the number 4
eval(s2) // returns the string "2 + 2"

Core object

Implemented in JavaScript 1.0: Create a String object only by quoting characters.

JavaScript 1.1, NES 2.0: added String constructor; added
prototype property; added split method; added ability to pass
strings among scripts in different windows or frames (in previous
releases, you had to add an empty string to another window’s string
to refer to it)

JavaScript 1.2, NES 3.0: added concat, match, replace,
search, slice, and substr methods.

ECMA version ECMA-262

string Any string.
296 Server-Side JavaScript Reference

String
A string can be represented as a literal enclosed by single or double quotation
marks; for example, “Netscape” or ‘Netscape’.

You can convert the value of any object into a string using the top-level
String function.

Property
Summary

Method Summary

Property Description

constructor Specifies the function that creates an object’s prototype.

length Reflects the length of the string.

prototype Allows the addition of properties to a String object.

Method Description

anchor Creates an HTML anchor that is used as a hypertext target.

big Causes a string to be displayed in a big font as if it were in a
BIG tag.

blink Causes a string to blink as if it were in a BLINK tag.

bold Causes a string to be displayed as if it were in a B tag.

charAt Returns the character at the specified index.

charCodeAt Returns a number indicating the ISO-Latin-1 codeset value of
the character at the given index.

concat Combines the text of two strings and returns a new string.

fixed Causes a string to be displayed in fixed-pitch font as if it were in
a TT tag.

fontcolor Causes a string to be displayed in the specified color as if it
were in a tag.

fontsize Causes a string to be displayed in the specified font size as if it
were in a tag.

fromCharCode Returns a string created by using the specified sequence of ISO-
Latin-1 codeset values.

indexOf Returns the index within the calling String object of the first
occurrence of the specified value, or -1 if not found.

italics Causes a string to be italic, as if it were in an I tag.
Chapter 1, Objects, Methods, and Properties 297

String
In addition, this object inherits the watch and unwatch methods from
Object.

lastIndexOf Returns the index within the calling String object of the last
occurrence of the specified value, or -1 if not found.

link Creates an HTML hypertext link that requests another URL.

match Used to match a regular expression against a string.

replace Used to find a match between a regular expression and a string,
and to replace the matched substring with a new substring.

search Executes the search for a match between a regular expression
and a specified string.

slice Extracts a section of a string and returns a new string.

small Causes a string to be displayed in a small font, as if it were in a
SMALL tag.

split Splits a String object into an array of strings by separating the
string into substrings.

strike Causes a string to be displayed as struck-out text, as if it were in
a STRIKE tag.

sub Causes a string to be displayed as a subscript, as if it were in a
SUB tag.

substr Returns the characters in a string beginning at the specified
location through the specified number of characters.

substring Returns the characters in a string between two indexes into the
string.

sup Causes a string to be displayed as a superscript, as if it were in a
SUP tag.

toLowerCase Returns the calling string value converted to lowercase.

toString Returns a string representing the specified object. Overrides the
Object.toString method.

toUpperCase Returns the calling string value converted to uppercase.

valueOf Returns the primitive value of the specified object. Overrides the
Object.valueOf method.

Method Description
298 Server-Side JavaScript Reference

String
Examples Example 1: String literal. The following statement creates a string literal:

var last_name = "Schaefer"

Example 2: String literal properties. The following statements evaluate to 8,
"SCHAEFER," and "schaefer":

last_name.length
last_name.toUpperCase()
last_name.toLowerCase()

Example 3: Accessing individual characters in a string. You can think of a
string as an array of characters. In this way, you can access the individual
characters in the string by indexing that array. For example, the following code
displays “The first character in the string is H”:

var myString = "Hello"
myString[0] // returns "H"

Example 4: Pass a string among scripts in different windows or frames.
The following code creates two string variables and opens a second window:

var lastName = "Schaefer"
var firstName = "Jesse"
empWindow=window.open(’string2.html’,’window1’,’width=300,height=300’)

If the HTML source for the second window (string2.html) creates two string
variables, empLastName and empFirstName, the following code in the first
window assigns values to the second window’s variables:

empWindow.empFirstName=firstName
empWindow.empLastName=lastName

The following code in the first window displays the values of the second
window’s variables:

alert(’empFirstName in empWindow is ’ + empWindow.empFirstName)
alert(’empLastName in empWindow is ’ + empWindow.empLastName)
Chapter 1, Objects, Methods, and Properties 299

String.anchor
anchor .

Creates an HTML anchor that is used as a hypertext target.

Syntax anchor(nameAttribute)

Parameters

Description Use the anchor method with the document.write or document.writeln
methods to programmatically create and display an anchor in a document.
Create the anchor with the anchor method, and then call write or writeln
to display the anchor in a document. In server-side JavaScript, use the write
function to display the anchor.

In the syntax, the text string represents the literal text that you want the user
to see. The nameAttribute string represents the NAME attribute of the A tag.

Anchors created with the anchor method become elements in the
document.anchors array.

Examples The following example opens the msgWindow window and creates an anchor
for the table of contents:

var myString="Table of Contents"
msgWindow.document.writeln(myString.anchor("contents_anchor"))

The previous example produces the same output as the following HTML:

Table of Contents

In server-side JavaScript, you can generate this HTML by calling the write
function instead of using document.writeln.

See also String.link

Method of String

Implemented in JavaScript 1.0, NES 2.0

nameAttribute A string.
300 Server-Side JavaScript Reference

String.big
big .

Causes a string to be displayed in a big font as if it were in a BIG tag.

Syntax big()

Parameters None

Description Use the big method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Examples The following example uses string methods to change the size of a string:

var worldString="Hello, world"

document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also String.fontsize, String.small

blink .

Causes a string to blink as if it were in a BLINK tag.

Syntax blink()

Parameters None

Description Use the blink method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Method of String

Implemented in JavaScript 1.0, NES 2.0

Method of String

Implemented in JavaScript 1.0, NES 2.0
Chapter 1, Objects, Methods, and Properties 301

String.bold
Examples The following example uses string methods to change the formatting of a
string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also String.bold, String.italics, String.strike

bold .

Causes a string to be displayed as bold as if it were in a B tag.

Syntax bold()

Parameters None

Description Use the bold method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Examples The following example uses string methods to change the formatting of a
string:

var worldString="Hello, world"
document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

Method of String

Implemented in JavaScript 1.0, NES 2.0
302 Server-Side JavaScript Reference

String.charAt
The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also String.blink, String.italics, String.strike

charAt .

Returns the specified character from the string.

Syntax charAt(index)

Parameters

Description Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character in a string called stringName
is stringName.length - 1. If the index you supply is out of range, JavaScript
returns an empty string.

Examples The following example displays characters at different locations in the string
"Brave new world":

var anyString="Brave new world"

document.writeln("The character at index 0 is " + anyString.charAt(0))
document.writeln("The character at index 1 is " + anyString.charAt(1))
document.writeln("The character at index 2 is " + anyString.charAt(2))
document.writeln("The character at index 3 is " + anyString.charAt(3))
document.writeln("The character at index 4 is " + anyString.charAt(4))

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

index An integer between 0 and 1 less than the length of the string.
Chapter 1, Objects, Methods, and Properties 303

String.charCodeAt
These lines display the following:

The character at index 0 is B
The character at index 1 is r
The character at index 2 is a
The character at index 3 is v
The character at index 4 is e

In server-side JavaScript, you can display the same output by calling the write
function instead of using document.writeln.

See also String.indexOf, String.lastIndexOf, String.split

charCodeAt .

Returns a number indicating the ISO-Latin-1 codeset value of the character at
the given index.

Syntax charCodeAt([index])

Parameters

Description The ISO-Latin-1 codeset ranges from 0 to 255. The first 0 to 127 are a direct
match of the ASCII character set.

Example The following example returns 65, the ISO-Latin-1 codeset value for A.

"ABC".charCodeAt(0) // returns 65

Method of String

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262

index An integer between 0 and 1 less than the length of the string. The
default value is 0.
304 Server-Side JavaScript Reference

String.concat
concat .

Combines the text of two or more strings and returns a new string.

Syntax concat(string2, string3[, ..., stringN])

Parameters

Description concat combines the text from two strings and returns a new string. Changes
to the text in one string do not affect the other string.

Example The following example combines two strings into a new string.

s1="Oh "
s2="what a beautiful "
s3="mornin’."
s4=s1.concat(s2,s3) // returns "Oh what a beautiful mornin’."

constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor.

Method of String

Implemented in JavaScript 1.2, NES 3.0

string2...
stringN

Strings to concatenate to this string.

Property of String

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 305

String.fixed
fixed .

Causes a string to be displayed in fixed-pitch font as if it were in a TT tag.

Syntax fixed()

Parameters None

Description Use the fixed method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Examples The following example uses the fixed method to change the formatting of a
string:

var worldString="Hello, world"
document.write(worldString.fixed())

The previous example produces the same output as the following HTML:

<TT>Hello, world</TT>

fontcolor .

Causes a string to be displayed in the specified color as if it were in a <FONT
COLOR=color> tag.

Syntax fontcolor(color)

Parameters

Method of String

Implemented in JavaScript 1.0, NES 2.0

Method of String

Implemented in JavaScript 1.0, NES 2.0

color A string expressing the color as a hexadecimal RGB triplet or as a string
literal. String literals for color names are listed in the Server-Side JavaScript
Guide.
306 Server-Side JavaScript Reference

String.fontcolor
Description Use the fontcolor method with the write or writeln methods to format
and display a string in a document. In server-side JavaScript, use the write
function to display the string.

If you express color as a hexadecimal RGB triplet, you must use the format
rrggbb. For example, the hexadecimal RGB values for salmon are red=FA,
green=80, and blue=72, so the RGB triplet for salmon is "FA8072".

The fontcolor method overrides a value set in the fgColor property.

Examples The following example uses the fontcolor method to change the color of a
string:

var worldString="Hello, world"

document.write(worldString.fontcolor("maroon") +
" is maroon in this line")

document.write("<P>" + worldString.fontcolor("salmon") +
" is salmon in this line")

document.write("<P>" + worldString.fontcolor("red") +
" is red in this line")

document.write("<P>" + worldString.fontcolor("8000") +
" is maroon in hexadecimal in this line")

document.write("<P>" + worldString.fontcolor("FA8072") +
" is salmon in hexadecimal in this line")

document.write("<P>" + worldString.fontcolor("FF00") +
" is red in hexadecimal in this line")

The previous example produces the same output as the following HTML:

Hello, world is maroon in this line
<P>Hello, world is salmon in this line
<P>Hello, world is red in this line

Hello, world
is maroon in hexadecimal in this line
<P>Hello, world
is salmon in hexadecimal in this line
<P>Hello, world
is red in hexadecimal in this line
Chapter 1, Objects, Methods, and Properties 307

String.fontsize
fontsize .

Causes a string to be displayed in the specified font size as if it were in a <FONT
SIZE=size> tag.

Syntax fontsize(size)

Parameters

Description Use the fontsize method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

When you specify size as an integer, you set the size of stringName to one of
the 7 defined sizes. When you specify size as a string such as "-2", you adjust
the font size of stringName relative to the size set in the BASEFONT tag.

Examples The following example uses string methods to change the size of a string:

var worldString="Hello, world"

document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also String.big, String.small

Method of String

Implemented in JavaScript 1.0, NES 2.0

size An integer between 1 and 7, a string representing a signed integer between 1
and 7.
308 Server-Side JavaScript Reference

String.fromCharCode
fromCharCode .

Returns a string created by using the specified sequence of ISO-Latin-1 codeset
values.

Syntax fromCharCode(num1, ..., numN)

Parameters

Description This method returns a string and not a String object.

Because fromCharCode is a static method of String, you always use it as
String.fromCharCode(), rather than as a method of a String object you
created.

Examples The following example returns the string "ABC".

String.fromCharCode(65,66,67)

indexOf .

Returns the index within the calling String object of the first occurrence of the
specified value, starting the search at fromIndex, or -1 if the value is not found.

Syntax indexOf(searchValue[, fromIndex])

Parameters

Method of String

Static

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262

num1, ..., numN A sequence of numbers that are ISO-Latin-1 codeset values.

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

searchValue A string representing the value to search for.

fromIndex The location within the calling string to start the search from. It can
be any integer between 0 and the length of the string. The default
value is 0.
Chapter 1, Objects, Methods, and Properties 309

String.indexOf
Description Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character of a string called stringName
is stringName.length - 1.

"Blue Whale".indexOf("Blue") // returns 0
"Blue Whale".indexOf("Blute") // returns -1
"Blue Whale".indexOf("Whale",0) // returns 5
"Blue Whale".indexOf("Whale",5) // returns 5
"Blue Whale".indexOf("",9) // returns 9
"Blue Whale".indexOf("",10) // returns 10
"Blue Whale".indexOf("",11) // returns 10

The indexOf method is case sensitive. For example, the following expression
returns -1:

"Blue Whale".indexOf("blue")

Examples Example 1. The following example uses indexOf and lastIndexOf to locate
values in the string "Brave new world."

var anyString="Brave new world"

// Displays 8
document.write("<P>The index of the first w from the beginning is " +

anyString.indexOf("w"))
// Displays 10
document.write("<P>The index of the first w from the end is " +

anyString.lastIndexOf("w"))
// Displays 6
document.write("<P>The index of ’new’ from the beginning is " +

anyString.indexOf("new"))
// Displays 6
document.write("<P>The index of ’new’ from the end is " +

anyString.lastIndexOf("new"))

Example 2. The following example defines two string variables. The variables
contain the same string except that the second string contains uppercase letters.
The first writeln method displays 19. But because the indexOf method is
case sensitive, the string "cheddar" is not found in myCapString, so the
second writeln method displays -1.

myString="brie, pepper jack, cheddar"
myCapString="Brie, Pepper Jack, Cheddar"
document.writeln(’myString.indexOf("cheddar") is ’ +

myString.indexOf("cheddar"))
document.writeln(’<P>myCapString.indexOf("cheddar") is ’ +

myCapString.indexOf("cheddar"))
310 Server-Side JavaScript Reference

String.italics
Example 3. The following example sets count to the number of occurrences
of the letter x in the string str:

count = 0;
pos = str.indexOf("x");
while (pos != -1) {

count++;
pos = str.indexOf("x",pos+1);

}

See also String.charAt, String.lastIndexOf, String.split

italics .

Causes a string to be italic, as if it were in an <I> tag.

Syntax italics()

Parameters None

Description Use the italics method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Examples The following example uses string methods to change the formatting of a
string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also String.blink, String.bold, String.strike

Method of String

Implemented in JavaScript 1.0, NES 2.0
Chapter 1, Objects, Methods, and Properties 311

String.lastIndexOf
lastIndexOf .

Returns the index within the calling String object of the last occurrence of the
specified value, or -1 if not found. The calling string is searched backward,
starting at fromIndex.

Syntax lastIndexOf(searchValue[, fromIndex])

Parameters

Description Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character is stringName.length - 1.

"canal".lastIndexOf("a") // returns 3
"canal".lastIndexOf("a",2) // returns 1
"canal".lastIndexOf("a",0) // returns -1
"canal".lastIndexOf("x") // returns -1

The lastIndexOf method is case sensitive. For example, the following
expression returns -1:

"Blue Whale, Killer Whale".lastIndexOf("blue")

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

searchValue A string representing the value to search for.

fromIndex The location within the calling string to start the search from. It can
be any integer between 0 and the length of the string. The default
value is the length of the string.
312 Server-Side JavaScript Reference

String.length
Examples The following example uses indexOf and lastIndexOf to locate values in the
string "Brave new world."

var anyString="Brave new world"

// Displays 8
document.write("<P>The index of the first w from the beginning is " +

anyString.indexOf("w"))
// Displays 10
document.write("<P>The index of the first w from the end is " +

anyString.lastIndexOf("w"))
// Displays 6
document.write("<P>The index of ’new’ from the beginning is " +

anyString.indexOf("new"))
// Displays 6
document.write("<P>The index of ’new’ from the end is " +

anyString.lastIndexOf("new"))

In server-side JavaScript, you can display the same output by calling the write
function instead of using document.write.

See also String.charAt, String.indexOf, String.split

length .

The length of the string.

Description For a null string, length is 0.

Examples The following example displays 8 in an Alert dialog box:

var x="Netscape"
alert("The string length is " + x.length)

Property of String

Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 313

String.link
link .

Creates an HTML hypertext link that requests another URL.

Syntax link(hrefAttribute)

Parameters

Description Use the link method to programmatically create a hypertext link, and then call
write or writeln to display the link in a document. In server-side JavaScript,
use the write function to display the link.

Links created with the link method become elements in the links array of the
document object. See document.links.

Examples The following example displays the word “Netscape” as a hypertext link that
returns the user to the Netscape home page:

var hotText="Netscape"
var URL="http://home.netscape.com"

document.write("Click to return to " + hotText.link(URL))

The previous example produces the same output as the following HTML:

Click to return to Netscape

match .

Used to match a regular expression against a string.

Syntax match(regexp)

Parameters

Method of String

Implemented in JavaScript 1.0, NES 2.0

hrefAttribute Any string that specifies the HREF attribute of the A tag; it should be
a valid URL (relative or absolute).

Method of String

Implemented in JavaScript 1.2

regexp Name of the regular expression. It can be a variable name or a literal.
314 Server-Side JavaScript Reference

String.match
Description If you want to execute a global match, or a case insensitive match, include the
g (for global) and i (for ignore case) flags in the regular expression. These can
be included separately or together. The following two examples below show
how to use these flags with match.

Note If you execute a match simply to find true or false, use String.search or the
regular expression test method.

Examples Example 1. In the following example, match is used to find ’Chapter’ followed
by 1 or more numeric characters followed by a decimal point and numeric
character 0 or more times. The regular expression includes the i flag so that
case will be ignored.

<SCRIPT>
str = "For more information, see Chapter 3.4.5.1";
re = /(chapter \d+(\.\d)*)/i;
found = str.match(re);
document.write(found);
</SCRIPT>

This returns the array containing Chapter 3.4.5.1,Chapter 3.4.5.1,.1

’Chapter 3.4.5.1’ is the first match and the first value remembered from
(Chapter \d+(\.\d)*).

’.1’ is the second value remembered from (\.\d).

Example 2. The following example demonstrates the use of the global and
ignore case flags with match.

<SCRIPT>
str = "abcDdcba";
newArray = str.match(/d/gi);
document.write(newArray);
</SCRIPT>

The returned array contains D, d.
Chapter 1, Objects, Methods, and Properties 315

String.prototype
prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype.

replace .

Finds a match between a regular expression and a string, and replaces the
matched substring with a new substring.

Syntax replace(regexp, newSubStr)

Parameters

Description This method does not change the String object it is called on; it simply returns
a new string.

If you want to execute a global search and replace, or a case insensitive search,
include the g (for global) and i (for ignore case) flags in the regular expression.
These can be included separately or together. The following two examples
below show how to use these flags with replace.

Property of String

Implemented in JavaScript 1.1, NES 3.0

ECMA version ECMA-262

Method of String

Implemented in JavaScript 1.2

regexp The name of the regular expression. It can be a variable name or a literal.

newSubStr The string to put in place of the string found with regexp. This string can
include the RegExp properties $1, ..., $9, lastMatch,
lastParen, leftContext, and rightContext.
316 Server-Side JavaScript Reference

String.replace
Examples Example 1. In the following example, the regular expression includes the
global and ignore case flags which permits replace to replace each occurrence
of ’apples’ in the string with ’oranges.’

<SCRIPT>
re = /apples/gi;
str = "Apples are round, and apples are juicy.";
newstr=str.replace(re, "oranges");
document.write(newstr)
</SCRIPT>

This prints "oranges are round, and oranges are juicy."

Example 2. In the following example, the regular expression is defined in
replace and includes the ignore case flag.

<SCRIPT>
str = "Twas the night before Xmas...";
newstr=str.replace(/xmas/i, "Christmas");
document.write(newstr)
</SCRIPT>

This prints "Twas the night before Christmas..."

Example 3. The following script switches the words in the string. For the
replacement text, the script uses the values of the $1 and $2 properties.

<SCRIPT LANGUAGE="JavaScript1.2">
re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr = str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>

This prints "Smith, John".

Example 4. The following example replaces a Fahrenheit degree with its
equivalent Celsius degree. The Fahrenheit degree should be a number ending
with F. The function returns the Celsius number ending with C. For example, if
the input number is 212F, the function returns 100C. If the number is 0F, the
function returns -17.77777777777778C.
Chapter 1, Objects, Methods, and Properties 317

String.search
The regular expression test checks for any number that ends with F. The
number of Fahrenheit degree is accessible to your function through the
parameter $1. The function sets the Celsius number based on the Fahrenheit
degree passed in a string to the f2c function. f2c then returns the Celsius
number. This function approximates Perl’s s///e flag.

function f2c(x) {
var s = String(x)
var test = /(\d+(\.\d*)?)F\b/g
return s.replace

(test,
myfunction ($0,$1,$2) {

return (($1-32) * 5/9) + "C";
}

)
}

search .

Executes the search for a match between a regular expression and this String
object.

Syntax search(regexp)

Parameters

Description If successful, search returns the index of the regular expression inside the
string. Otherwise, it returns -1.

When you want to know whether a pattern is found in a string use search
(similar to the regular expression test method); for more information (but
slower execution) use match (similar to the regular expression exec method).

Method of String

Implemented in JavaScript 1.2

regexp Name of the regular expression. It can be a variable name or a literal.
318 Server-Side JavaScript Reference

String.slice
Example The following example prints a message which depends on the success of the
test.

function testinput(re, str){
if (str.search(re) != -1)

midstring = " contains ";
else

midstring = " does not contain ";
document.write (str + midstring + re.source);

}

slice .

Extracts a section of a string and returns a new string.

Syntax slice(beginslice[, endSlice])

Parameters

Description slice extracts the text from one string and returns a new string. Changes to the
text in one string do not affect the other string.

slice extracts up to but not including endSlice. string.slice(1,4)
extracts the second character through the fourth character (characters indexed
1, 2, and 3).

As a negative index, endSlice indicates an offset from the end of the string.
string.slice(2,-1) extracts the third character through the second to last
character in the string.

Method of String

Implemented in JavaScript 1.0, NES 2.0

beginSlice The zero-based index at which to begin extraction.

endSlice The zero-based index at which to end extraction. If omitted, slice
extracts to the end of the string.
Chapter 1, Objects, Methods, and Properties 319

String.small
Example The following example uses slice to create a new string.

<SCRIPT>
str1="The morning is upon us. "
str2=str1.slice(3,-5)
document.write(str2)
</SCRIPT>

This writes:

morning is upon

small .

Causes a string to be displayed in a small font, as if it were in a <SMALL> tag.

Syntax small()

Parameters None

Description Use the small method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Examples The following example uses string methods to change the size of a string:

var worldString="Hello, world"

document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also String.big, String.fontsize

Method of String

Implemented in JavaScript 1.0, NES 2.0
320 Server-Side JavaScript Reference

String.split
split .

Splits a String object into an array of strings by separating the string into
substrings.

Syntax split([separator][, limit])

Parameters

Description The split method returns the new array.

When found, separator is removed from the string and the substrings are
returned in an array. If separator is omitted, the array contains one element
consisting of the entire string.

In JavaScript 1.2, split has the following additions:

• It can take a regular expression argument, as well as a fixed string, by
which to split the object string. If separator is a regular expression, any
included parenthesis cause submatches to be included in the returned
array.

• It can take a limit count so that the resulting array does not include trailing
empty elements.

• If you specify LANGUAGE="JavaScript1.2" in the SCRIPT tag,
string.split(" ") splits on any run of 1 or more white space characters
including spaces, tabs, line feeds, and carriage returns. For this behavior,
LANGUAGE="JavaScript1.2" must be specified in the <SCRIPT> tag.

Examples Example 1. The following example defines a function that splits a string into
an array of strings using the specified separator. After splitting the string, the
function displays messages indicating the original string (before the split), the
separator used, the number of elements in the array, and the individual array
elements.

Method of String

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

separator Specifies the character to use for separating the string. The separator is
treated as a string. If separator is omitted, the array returned contains
one element consisting of the entire string.

limit Integer specifying a limit on the number of splits to be found.
Chapter 1, Objects, Methods, and Properties 321

String.split
function splitString (stringToSplit,separator) {
arrayOfStrings = stringToSplit.split(separator)
document.write (’<P>The original string is: "’ + stringToSplit + ’"’)
document.write (’
The separator is: "’ + separator + ’"’)
document.write ("
The array has " + arrayOfStrings.length + " elements: ")

for (var i=0; i < arrayOfStrings.length; i++) {
document.write (arrayOfStrings[i] + " / ")

}
}

var tempestString="Oh brave new world that has such people in it."
var monthString="Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec"

var space=" "
var comma=","

splitString(tempestString,space)
splitString(tempestString)
splitString(monthString,comma)

This example produces the following output:

The original string is: "Oh brave new world that has such people in it."
The separator is: " "
The array has 10 elements: Oh / brave / new / world / that / has / such / people / in / it.
/

The original string is: "Oh brave new world that has such people in it."
The separator is: "undefined"
The array has 1 elements: Oh brave new world that has such people in it. /

The original string is: "Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec"
The separator is: ","
The array has 12 elements: Jan / Feb / Mar / Apr / May / Jun / Jul / Aug / Sep / Oct / Nov
/ Dec /

Example 2. Consider the following script:

<SCRIPT LANGUAGE="JavaScript1.2">
str="She sells seashells \nby the\n seashore"
document.write(str + "
")
a=str.split(" ")
document.write(a)
</SCRIPT>

Using LANGUAGE="JavaScript1.2", this script produces

"She", "sells", "seashells", "by", "the", "seashore"

Without LANGUAGE="JavaScript1.2", this script splits only on single space
characters, producing

"She", "sells", , , , "seashells", "by", , , "the", "seashore"
322 Server-Side JavaScript Reference

String.strike
Example 3. In the following example, split looks for 0 or more spaces
followed by a semicolon followed by 0 or more spaces and, when found,
removes the spaces from the string. nameList is the array returned as a result
of split.

<SCRIPT>
names = "Harry Trump ;Fred Barney; Helen Rigby ; Bill Abel ;Chris Hand ";
document.write (names + "
" + "
");
re = /\s*;\s*/;
nameList = names.split (re);
document.write(nameList);
</SCRIPT>

This prints two lines; the first line prints the original string, and the second line
prints the resulting array.

Harry Trump ;Fred Barney; Helen Rigby ; Bill Abel ;Chris Hand
Harry Trump,Fred Barney,Helen Rigby,Bill Abel,Chris Hand

Example 4. In the following example, split looks for 0 or more spaces in a
string and returns the first 3 splits that it finds.

<SCRIPT LANGUAGE="JavaScript1.2">
myVar = " Hello World. How are you doing? ";
splits = myVar.split(" ", 3);
document.write(splits)
</SCRIPT>

This script displays the following:

["Hello", "World.", "How"]

See also String.charAt, String.indexOf, String.lastIndexOf

strike .

Causes a string to be displayed as struck-out text, as if it were in a <STRIKE>
tag.

Syntax strike()

Parameters None

Method of String

Implemented in JavaScript 1.0, NES 2.0
Chapter 1, Objects, Methods, and Properties 323

String.sub
Description Use the strike method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Examples The following example uses string methods to change the formatting of a
string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also String.blink, String.bold, String.italics

sub .

Causes a string to be displayed as a subscript, as if it were in a <SUB> tag.

Syntax sub()

Parameters None

Description Use the sub method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to generate the HTML.

Method of String

Implemented in JavaScript 1.0, NES 2.0
324 Server-Side JavaScript Reference

String.substr
Examples The following example uses the sub and sup methods to format a string:

var superText="superscript"
var subText="subscript"

document.write("This is what a " + superText.sup() + " looks like.")
document.write("<P>This is what a " + subText.sub() + " looks like.")

The previous example produces the same output as the following HTML:

This is what a ^{superscript} looks like.
<P>This is what a _{subscript} looks like.

See also String.sup

substr .

Returns the characters in a string beginning at the specified location through
the specified number of characters.

Syntax substr(start[, length])

Parameters

Description start is a character index. The index of the first character is 0, and the index
of the last character is 1 less than the length of the string. substr begins
extracting characters at start and collects length number of characters.

If start is positive and is the length of the string or longer, substr returns no
characters.

If start is negative, substr uses it as a character index from the end of the
string. If start is negative and abs(start) is larger than the length of the
string, substr uses 0 is the start index.

If length is 0 or negative, substr returns no characters. If length is omitted,
start extracts characters to the end of the string.

Method of String

Implemented in JavaScript 1.0, NES 2.0

start Location at which to begin extracting characters.

length The number of characters to extract
Chapter 1, Objects, Methods, and Properties 325

String.substring
Example Consider the following script:

<SCRIPT LANGUAGE="JavaScript1.2">

str = "abcdefghij"
document.writeln("(1,2): ", str.substr(1,2))
document.writeln("(-2,2): ", str.substr(-2,2))
document.writeln("(1): ", str.substr(1))
document.writeln("(-20, 2): ", str.substr(1,20))
document.writeln("(20, 2): ", str.substr(20,2))

</SCRIPT>

This script displays:

(1,2): bc
(-2,2): ij
(1): bcdefghij
(-20, 2): bcdefghij
(20, 2):

See also substring

substring .

Returns a subset of a String object.

Syntax substring(indexA, indexB)

Parameters

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

indexA An integer between 0 and 1 less than the length of the string.

indexB An integer between 0 and 1 less than the length of the string.
326 Server-Side JavaScript Reference

String.substring
Description substring extracts characters from indexA up to but not including indexB. In
particular:

• If indexA is less than 0, indexA is treated as if it were 0.

• If indexB is greater than stringName.length, indexB is treated as if it
were stringName.length.

• If indexA equals indexB, substring returns an empty string.

• If indexB is omitted, indexA extracts characters to the end of the string.

In JavaScript 1.2, using LANGUAGE="JavaScript1.2" in the SCRIPT tag,

• If indexA is greater than indexB, JavaScript produces a runtime error (out
of memory).

In JavaScript 1.2, without LANGUAGE="JavaScript1.2" in the SCRIPT tag,

• If indexA is greater than indexB, JavaScript returns a substring beginning
with indexB and ending with indexA - 1.

Examples Example 1. The following example uses substring to display characters from
the string "Netscape":

var anyString="Netscape"

// Displays "Net"
document.write(anyString.substring(0,3))
document.write(anyString.substring(3,0))
// Displays "cap"
document.write(anyString.substring(4,7))
document.write(anyString.substring(7,4))
// Displays "Netscap"
document.write(anyString.substring(0,7))
// Displays "Netscape"
document.write(anyString.substring(0,8))
document.write(anyString.substring(0,10))
Chapter 1, Objects, Methods, and Properties 327

String.sup
Example 2. The following example replaces a substring within a string. It will
replace both individual characters and substrings. The function call at the end
of the example changes the string "Brave New World" into "Brave New Web".

function replaceString(oldS,newS,fullS) {
// Replaces oldS with newS in the string fullS

for (var i=0; i<fullS.length; i++) {
if (fullS.substring(i,i+oldS.length) == oldS) {

fullS = fullS.substring(0,i)+newS+fullS.substring(i+oldS.length,fullS.length)
}

}
return fullS

}

replaceString("World","Web","Brave New World")

Example 3. In JavaScript 1.2, using LANGUAGE="JavaScript1.2", the
following script produces a runtime error (out of memory).

<SCRIPT LANGUAGE="JavaScript1.2">
str="Netscape"
document.write(str.substring(0,3);
document.write(str.substring(3,0);
</SCRIPT>

Without LANGUAGE="JavaScript1.2", the above script prints the following:

Net Net

In the second write, the index numbers are swapped.

See also substr

sup .

Causes a string to be displayed as a superscript, as if it were in a <SUP> tag.

Syntax sup()

Parameters None

Description Use the sup method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to generate the HTML.

Method of String

Implemented in JavaScript 1.0, NES 2.0
328 Server-Side JavaScript Reference

String.toLowerCase
Examples The following example uses the sub and sup methods to format a string:

var superText="superscript"
var subText="subscript"

document.write("This is what a " + superText.sup() + " looks like.")
document.write("<P>This is what a " + subText.sub() + " looks like.")

The previous example produces the same output as the following HTML:

This is what a ^{superscript} looks like.
<P>This is what a _{subscript} looks like.

See also String.sub

toLowerCase .

Returns the calling string value converted to lowercase.

Syntax toLowerCase()

Parameters None

Description The toLowerCase method returns the value of the string converted to
lowercase. toLowerCase does not affect the value of the string itself.

Examples The following example displays the lowercase string "alphabet":

var upperText="ALPHABET"
document.write(upperText.toLowerCase())

See also String.toUpperCase

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 329

String.toString
toString .

Returns a string representing the specified object.

Syntax toString()

Parameters None.

Description The String object overrides the toString method of the Object object; it
does not inherit Object.toString. For String objects, the toString
method returns a string representation of the object.

Examples The following example displays the string value of a String object:

x = new String("Hello world");
alert(x.toString()) // Displays "Hello world"

See also Object.toString

toUpperCase .

Returns the calling string value converted to uppercase.

Syntax toUpperCase()

Parameters None

Description The toUpperCase method returns the value of the string converted to
uppercase. toUpperCase does not affect the value of the string itself.

Examples The following example displays the string "ALPHABET":

var lowerText="alphabet"
document.write(lowerText.toUpperCase())

See also String.toLowerCase

Method of String

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
330 Server-Side JavaScript Reference

String.valueOf
valueOf .

Returns the primitive value of a String object.

Syntax valueOf()

Parameters None

Description The valueOf method of String returns the primitive value of a String object
as a string data type. This value is equivalent to String.toString.

This method is usually called internally by JavaScript and not explicitly in code.

Examples x = new String("Hello world");
alert(x.valueOf()) // Displays "Hello world"

See also String.toString, Object.valueOf

Method of String

Implemented in JavaScript 1.1

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 331

sun

332 Server-Side JavaScript Reference

sun
A top-level object used to access any Java class in the package sun.*.

Created by The sun object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

Description The sun object is a convenience synonym for the property Packages.sun.

See also Packages, Packages.sun

Core object

Implemented in JavaScript 1.1, NES 2.0

C h a p t e r

2
Chapter 2Top-Level Functions
This chapter contains all JavaScript functions not associated with any object. In
the ECMA specification, these functions are referred to as properties and
methods of the global object.

The following table summarizes the top-level functions.

Table 2.1 Top-level functions

Function Description

addClient Appends client information to URLs.

addResponseHeader Adds new information to the response header sent
to the client.

blob Assigns BLOb data to a column in a cursor.

callC Calls a native function.

debug Displays values of expressions in the trace window
or frame.

deleteResponseHeader Removes information from the header of the
response sent to the client.

escape Returns the hexadecimal encoding of an argument
in the ISO Latin-1 character set; used to create
strings to add to a URL.
Chapter 2, Top-Level Functions 333

eval Evaluates a string of JavaScript code without
reference to a particular object.

flush Flushes the output buffer.

getOptionValue Gets values of individual options in an HTML
SELECT form element.

getOptionValueCount Gets the number of options in an HTML SELECT
form element.

isNaN Evaluates an argument to determine if it is not a
number.

Number Converts an object to a number.

parseFloat Parses a string argument and returns a floating-point
number.

parseInt Parses a string argument and returns an integer.

redirect Redirects the client to the specified URL.

registerCFunction Registers a native function for use in server-side
JavaScript.

ssjs_generateClientID Returns an identifier you can use to uniquely specify
the client object.

ssjs_getCGIVariable Returns the value of the specified environment
variable set in the server process, including some
CGI variables.

ssjs_getClientID Returns the identifier for the client object used by
some of JavaScript’s client-maintenance techniques.

String Converts an object to a string.

unescape Returns the ASCII string for the specified
hexadecimal encoding value.

write Adds statements to the client-side HTML page being
generated.

Table 2.1 Top-level functions

Function Description
334 Server-Side JavaScript Reference

addClient
addClient
Adds client object property values to a dynamically generated URL or the URL
used with the redirect function.

Syntax addClient(URL)

Parameters

Description addClient is a top-level function and is not associated with any object.

Use addClient to preserve client object property values when you use
redirect or generate dynamic links. This is necessary if an application uses
client or server URL encoding to maintain the client object; it does no harm in
other cases. Since the client maintenance technique can be changed after the
application has been compiled, it is always safer to use addClient, even if you
do not anticipate using a URL encoding scheme.

See the Server-Side JavaScript Guide for information about using URL encoding
to maintain client properties.

Examples In the following example, addClient is used with the redirect function to
redirect a browser:

redirect(addClient("mypage.html"))

In the following example, addClient preserves client object property values
when a link is dynamically generated:

Jump to new page

See also redirect

Server-side function

Implemented in NES 2.0

URL A string representing a URL
Chapter 2, Top-Level Functions 335

addResponseHeader
addResponseHeader
Adds new information to the response header sent to the client.

Syntax addResponseHeader(field, value)

Parameters

Description addResponseHeader is a top-level function and is not associated with any
object.

You can use the addResponseHeader function to add information to the
header of the response you send to the client.

For example, if the response you send to the client uses a custom content type,
you should encode this content type in the response header. The JavaScript
runtime engine automatically adds the default content type (text/html) to the
response header. If you want a custom header, you must first remove the old
default content type from the header and then add the new one. If your
response uses royalairways-format as a custom content type, you would
specify it this way:

deleteResponseHeader("content-type");
addResponseHeader("content-type","royalairways-format");

You can use the addResponseHeader function to add any other information
you want to the response header.

Server-side function

Implemented in NES 3.0

field A field to add to the response header.

value The information to specify for that field.
336 Server-Side JavaScript Reference

blob
Remember that the header is sent with the first part of the response. Therefore,
you should call these functions early in the script on each page. In particular,
you should ensure that the response header is set before any of these happen:

• The runtime engine generates 64KB of content for the HTML page (it
automatically flushes the output buffer at this point).

• You call the flush function to clear the output buffer.

• You call the redirect function to change client requests.

See also deleteResponseHeader

blob
Assigns BLOb data to a column in a cursor.

Syntax blob (path)

Parameters

Returns A blob object.

Description blob is a top-level function and is not associated with any object.

Use this function with an updatable cursor to insert or update a row containing
BLOb data. To insert or update a row using SQL and the execute method, use
the syntax supported by your database vendor.

On DB2, blobs are limited to 32 KBytes.

Remember that back slash ("\") is the escape character in JavaScript. For this
reason, in NT filenames you must either use 2 backslashes or a forward slash.

Server-side function

Implemented in NES 2.0

path A string representing the name of a file containing BLOb data. This
string must be an absolute pathname.
Chapter 2, Top-Level Functions 337

callC
Example The following statements update BLOb data from the specified GIF files in
columns PHOTO and OFFICE of the current row of the EMPLOYEE table.

// Create a cursor
cursor = database.cursor("SELECT * FROM customer WHERE

customer.ID = " + request.customerID

// Position the pointer on the row
cursor.next()

// Assign the blob data
cursor.photo = blob("c:/customer/photos/myphoto.gif")
cursor.office = blob("c:/customer/photos/myoffice.gif")

// And update the row
cursor.updateRow("employee")

callC
Calls an external function and returns the value that the external function
returns.

Syntax callC(JSFunctionName, arg1,..., argN)

Parameters

Description callC is a top-level function and is not associated with any object.

The callC function returns the string value that the external function returns;
callC can only return string values.

Server-side function

Implemented in NES 2.0

JSFunctionName The name of the function as it is identified with
RegisterCFunction.

arg1...argN A comma-separated list of arguments to the external function. The
arguments can be any JavaScript values: strings, numbers, or
Boolean values. The number of arguments must match the number
of arguments required by the external function.
338 Server-Side JavaScript Reference

debug
Examples The following example assigns a value to the variable isRegistered according
to whether the attempt to register the external function echoCCallArguments
succeeds or fails. If isRegistered is true, the callC function executes.

var isRegistered =
registerCFunction("echoCCallArguments",

"c:/mypath/mystuff.dll",
"mystuff_EchoCCallArguments")

if (isRegistered == true) {
var returnValue =
callC("echoCCallArguments", "first arg", 42, true, "last arg")
write(returnValue)

}

See also registerCFunction

debug
Displays a JavaScript expression in the trace facility.

Syntax debug(expression)

Parameters

Description debug is a top-level function and is not associated with any object.

Use this function to display the value of an expression for debugging purposes.
The value is displayed in the trace facility of the Application Manager following
the brief description “Debug message:”.

Examples The following example displays the value of the variable data:

debug("The final value of data is " + data)

Server-side function

Implemented in NES 2.0

expression Any valid JavaScript expression.
Chapter 2, Top-Level Functions 339

deleteResponseHeader
deleteResponseHeader
Removes information from the header of the response sent to the client.

Syntax deleteResponseHeader(field)

Parameters

Description deleteResponseHeader is a top-level function and is not associated with any
object.

You can use the deleteResponseHeader function to remove information from
the header of the response you send to the client. The most frequent use of this
function is to remove the default content-type information before adding your
own content-type information with addResponseHeader.

For more information, see addResponseHeader.

escape
Returns the hexadecimal encoding of an argument in the ISO-Latin-1 character
set.

Syntax escape("string")

Parameters

Server-side function

Implemented in NES 3.0

field A field to remove from the response header.

Core function

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262 compatible, except for Unicode characters.

string A string in the ISO-Latin-1 character set.
340 Server-Side JavaScript Reference

eval
Description escape is a top-level function and is not associated with any object.

Use the escape and unescape functions to encode and decode (add property
values manually) a Uniform Resource Locator (URL), a Uniform Resource
Identifier (URI), or a URI-type string.

The escape function encodes special characters in the specified string and
returns the new string. It encodes spaces, punctuation, and any other character
that is not an ASCII alphanumeric character, with the exception of these
characters:

* @ - _ + . /

Examples Example 1. The following example returns "%26":

escape("&") // returns "%26"

Example 2. The following statement returns a string with encoded characters
for spaces, commas, and apostrophes.

// returns "The_rain.%20In%20Spain%2C%20Ma%92am"
escape("The_rain. In Spain, Ma’am")

Example 3. In the following example, the value of the variable theValue is
encoded as a hexadecimal string and passed on to the request object when a
user clicks the link:

Click Here

See also unescape

eval
Evaluates a string of JavaScript code without reference to a particular object.

Syntax eval(string)

Core function

Implemented in JavaScript 1.0

ECMA version ECMA-262
Chapter 2, Top-Level Functions 341

eval
Parameters

Description eval is a top-level function and is not associated with any object.

The argument of the eval function is a string. If the string represents an
expression, eval evaluates the expression. If the argument represents one or
more JavaScript statements, eval performs the statements. Do not call eval to
evaluate an arithmetic expression; JavaScript evaluates arithmetic expressions
automatically.

If you construct an arithmetic expression as a string, you can use eval to
evaluate it at a later time. For example, suppose you have a variable x. You can
postpone evaluation of an expression involving x by assigning the string value
of the expression, say "3 * x + 2", to a variable, and then calling eval at a
later point in your script.

If the argument of eval is not a string, eval returns the argument unchanged.
In the following example, the String constructor is specified, and eval
returns a String object rather than evaluating the string.

eval(new String("2+2”)) // returns a String object containing "2+2"
eval("2+2”) // returns 4

Backward
Compatibility

JavaScript 1.1. eval is also a method of all objects. This method is described
for the Object class.

Examples The following examples display output using document.write. In server-side
JavaScript, you can display the same output by calling the write function
instead of using document.write.

Example 1. In the following code, both of the statements containing eval
return 42. The first evaluates the string "x + y + 1"; the second evaluates the
string "42".

var x = 2
var y = 39
var z = "42"
eval("x + y + 1") // returns 42
eval(z) // returns 42

string A string representing a JavaScript expression, statement, or
sequence of statements. The expression can include variables and
properties of existing objects.
342 Server-Side JavaScript Reference

eval
Example 2. In the following example, the getFieldName(n) function returns
the name of the specified form element as a string. The first statement assigns
the string value of the third form element to the variable field. The second
statement uses eval to display the value of the form element.

var field = getFieldName(3)
document.write("The field named ", field, " has value of ",

eval(field + ".value"))

Example 3. The following example uses eval to evaluate the string str. This
string consists of JavaScript statements that open an Alert dialog box and assign
z a value of 42 if x is five, and assigns 0 to z otherwise. When the second
statement is executed, eval will cause these statements to be performed, and it
will also evaluate the set of statements and return the value that is assigned to
z.

var str = "if (x == 5) {alert(’z is 42’); z = 42;} else z = 0; "
document.write("<P>z is ", eval(str))

Example 4. In the following example, the setValue function uses eval to
assign the value of the variable newValue to the text field textObject:

function setValue (textObject, newValue) {
eval ("document.forms[0]." + textObject + ".value") = newValue

}

Example 5. The following example creates breed as a property of the object
myDog, and also as a variable. The first write statement uses eval(’breed’)
without specifying an object; the string "breed" is evaluated without regard to
any object, and the write method displays "Shepherd", which is the value of
the breed variable. The second write statement uses myDog.eval(’breed’)
which specifies the object myDog; the string "breed" is evaluated with regard
to the myDog object, and the write method displays "Lab", which is the value
of the breed property of the myDog object.

function Dog(name,breed,color) {
this.name=name
this.breed=breed
this.color=color

}
myDog = new Dog("Gabby")
myDog.breed="Lab"
var breed=’Shepherd’
document.write("<P>" + eval(’breed’))
document.write("
" + myDog.eval(’breed’))

See also Object.eval method
Chapter 2, Top-Level Functions 343

flush
flush
Sends data from the internal buffer to the client.

Syntax flush()

Parameters None.

Description flush is a top-level function and is not associated with any object.

To improve performance, JavaScript buffers the HTML page it constructs. The
flush function immediately sends data from the internal buffer to the client. If
you do not explicitly call the flush function, JavaScript sends data to the client
after each 64KB of content in the constructed HTML page.

Use the flush function to control when data is sent to the client. For example,
call the flush function before an operation that creates a delay, such as a
database query. If a database query retrieves a large number of rows, you can
flush the buffer after retrieving a small number of rows to prevent long delays
in displaying data.

Because the flush function updates the client’s cookie file as part of the HTTP
header, you should perform any changes to the client object before flushing
the buffer, if you are using client cookie to maintain the client object. For
more information, see the Server-Side JavaScript Guide.

Do not confuse the flush method of the File object with the top-level flush
function.

Examples The following example iterates through a text file and outputs each line in the
file, preceded by a line number and five spaces. The flush function then
causes the client to display the output.

while (!In.eof()) {
AscLine = In.readln();
if (!In.eof())

write(LPad(LineCount + ": ", 5), AscLine, "\n");
LineCount++;
flush();

}

See also write

Server-side function

Implemented in NES 2.0
344 Server-Side JavaScript Reference

getOptionValue
getOptionValue
Returns the text of a selected OPTION in a SELECT form element.

Syntax getOptionValue(name, index)

Parameters

Returns A string containing the text for the selected option, as specified by the
associated OPTION tag.

Description getOptionValue is a top-level function and is not associated with any object.
It corresponds to the Option.text property available to client-side
JavaScript.

The SELECT tag allows multiple values to be associated with a single form
element, with the MULTIPLE attribute. If your application requires select lists
that allow multiple selected options, you use the getOptionValue function to
get the values of selected options in server-side JavaScript.

Examples Suppose you have the following form element:

<SELECT NAME="what-to-wear" MULTIPLE SIZE=8>
<OPTION SELECTED>Jeans
<OPTION>Wool Sweater
<OPTION SELECTED>Sweatshirt
<OPTION SELECTED>Socks
<OPTION>Leather Jacket
<OPTION>Boots
<OPTION>Running Shoes
<OPTION>Cape

</SELECT>

Server-side function

Implemented in NES 2.0

name A name specified by the NAME attribute of the SELECT tag

index Zero-based ordinal index of the selected option.
Chapter 2, Top-Level Functions 345

getOptionValueCount
You could process the input from this select list in server-side JavaScript as
follows:

<SERVER>
var loopIndex = 0
var loopCount = getOptionValueCount("what-to-wear") // 3 by default
while (loopIndex < loopCount) {

var optionValue = getOptionValue("what-to-wear",loopIndex)
write("
Item #" + loopIndex + ": " + optionValue + "\n")
loopIndex++

}
</SERVER>

If the user kept the default selections, this script would return

Item #1: Jeans
Item #3: Sweatshirt
Item #4: Socks

See also getOptionValueCount

getOptionValueCount
Returns the number of options selected by the user in a SELECT form element.

Syntax getOptionValueCount(name)

Parameters

Description getOptionValueCount is a top-level function and is not associated with any
object.

Use this function with getOptionValue to process user input from SELECT
form elements that allow multiple selections.

Examples See the example for getOptionValue.

See also getOptionValue

Server-side function

Implemented in NES 2.0

name Specified by the NAME attribute of the SELECT tag.
346 Server-Side JavaScript Reference

isNaN
isNaN
Evaluates an argument to determine if it is not a number.

Syntax isNaN(testValue)

Parameters

Description isNaN is a top-level function and is not associated with any object.

On platforms that support NaN, the parseFloat and parseInt functions
return NaN when they evaluate a value that is not a number. isNaN returns true
if passed NaN, and false otherwise.

Examples The following example evaluates floatValue to determine if it is a number
and then calls a procedure accordingly:

floatValue=parseFloat(toFloat)

if (isNaN(floatValue)) {
notFloat()

} else {
isFloat()

}

See also Number.NaN, parseFloat, parseInt

Core function

Implemented in JavaScript 1.0: Unix only

JavaScript 1.1, NES 2.0: all platforms

ECMA version ECMA-262

testValue The value you want to evaluate.
Chapter 2, Top-Level Functions 347

Number
Number
Converts the specified object to a number.

Syntax Number(obj)

Parameter

Description Number is a top-level function and is not associated with any object.

When the object is a Date object, Number returns a value in milliseconds
measured from 01 January, 1970 UTC (GMT), positive after this date, negative
before.

If obj is a string that does not contain a well-formed numeric literal, Number
returns NaN.

Example The following example converts the Date object to a numerical value:

d = new Date ("December 17, 1995 03:24:00")
alert (Number(d))

This displays a dialog box containing "819199440000."

See also Number

Core function

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262

obj An object
348 Server-Side JavaScript Reference

parseFloat
parseFloat
Parses a string argument and returns a floating point number.

Syntax parseFloat(string)

Parameters

Description parseFloat is a top-level function and is not associated with any object.

parseFloat parses its argument, a string, and returns a floating point number.
If it encounters a character other than a sign (+ or -), numeral (0-9), a decimal
point, or an exponent, it returns the value up to that point and ignores that
character and all succeeding characters. Leading and trailing spaces are
allowed.

If the first character cannot be converted to a number, parseFloat returns NaN.

For arithmetic purposes, the NaN value is not a number in any radix. You can
call the isNaN function to determine if the result of parseFloat is NaN. If NaN
is passed on to arithmetic operations, the operation results will also be NaN.

Core function

Implemented in JavaScript 1.0: If the first character of the string specified in
parseFloat(string) cannot be converted to a number, returns NaN
on Solaris and Irix and 0 on all other platforms.

JavaScript 1.1, NES 2.0: Returns NaN on all platforms if the first
character of the string specified in parseFloat(string) cannot be
converted to a number.

ECMA version ECMA-262

string A string that represents the value you want to parse.
Chapter 2, Top-Level Functions 349

parseInt
Examples The following examples all return 3.14:

parseFloat("3.14")
parseFloat("314e-2")
parseFloat("0.0314E+2")
var x = "3.14"
parseFloat(x)

The following example returns NaN:

parseFloat("FF2")

See also isNaN, parseInt

parseInt
Parses a string argument and returns an integer of the specified radix or base.

Syntax parseInt(string[, radix])

Parameters

Description parseInt is a top-level function and is not associated with any object.

The parseInt function parses its first argument, a string, and attempts to return
an integer of the specified radix (base). For example, a radix of 10 indicates to
convert to a decimal number, 8 octal, 16 hexadecimal, and so on. For radixes
above 10, the letters of the alphabet indicate numerals greater than 9. For
example, for hexadecimal numbers (base 16), A through F are used.

Core function

Implemented in JavaScript 1.0: If the first character of the string specified in
parseInt(string) cannot be converted to a number, returns NaN
on Solaris and Irix and 0 on all other platforms.

JavaScript 1.1, LiveWire 2.0: Returns NaN on all platforms if the first
character of the string specified in parseInt(string) cannot be
converted to a number.

ECMA version ECMA-262

string A string that represents the value you want to parse.

radix An integer that represents the radix of the return value.
350 Server-Side JavaScript Reference

parseInt
If parseInt encounters a character that is not a numeral in the specified radix,
it ignores it and all succeeding characters and returns the integer value parsed
up to that point. parseInt truncates numbers to integer values. Leading and
trailing spaces are allowed.

If the radix is not specified or is specified as 0, JavaScript assumes the
following:

• If the input string begins with "0x", the radix is 16 (hexadecimal).

• If the input string begins with "0", the radix is eight (octal).

• If the input string begins with any other value, the radix is 10 (decimal).

If the first character cannot be converted to a number, parseInt returns NaN.

For arithmetic purposes, the NaN value is not a number in any radix. You can
call the isNaN function to determine if the result of parseInt is NaN. If NaN is
passed on to arithmetic operations, the operation results will also be NaN.

Examples The following examples all return 15:

parseInt("F", 16)
parseInt("17", 8)
parseInt("15", 10)
parseInt(15.99, 10)
parseInt("FXX123", 16)
parseInt("1111", 2)
parseInt("15*3", 10)

The following examples all return NaN:

parseInt("Hello", 8)
parseInt("0x7", 10)
parseInt("FFF", 10)

Even though the radix is specified differently, the following examples all return
17 because the input string begins with "0x".

parseInt("0x11", 16)
parseInt("0x11", 0)
parseInt("0x11")

See also isNaN, parseFloat, Object.valueOf
Chapter 2, Top-Level Functions 351

redirect
redirect
Redirects the client to the specified URL.

Syntax redirect(location)

Parameters

Description redirect is a top-level function and is not associated with any object.

The redirect function redirects the client browser to the URL specified by the
location parameter. The value of location can be relative or absolute.

When the client encounters a redirect function, it loads the specified page
immediately and discards the current page. The client does not execute or load
any HTML or script statements in the page following the redirect function.

You can use the addClient function to preserve client object property
values. See addClient for more information.

Examples The following example uses the redirect function to redirect a client browser:

redirect("http://www.royalairways.com/lw/apps/newhome.html")

The page displayed by the newhome.html link could contain content such as
the following:

<H1>New location</H1>
The URL you tried to access has been moved to:

http://www.royalairways.com/lw/apps/index.html
<P>This notice will remain until 12/31/97.

See also addClient

Server-side function

Implemented in NES 2.0

location The URL to which you want to redirect the client.
352 Server-Side JavaScript Reference

registerCFunction
registerCFunction
Registers an external function for use with a server-side JavaScript application.

Syntax registerCFunction(JSFunctionName, libraryPath,
externalFunctionName)

Parameters

Description registerCFunction is a top-level function and is not associated with any
object.

Use registerCFunction to make an external function available to a server-
side JavaScript application. The function can be written in any language, but
you must use C calling conventions.

To use an external function in a server-side JavaScript application, register the
function with registerCFunction, and then call it with the callC function.
Once an application registers a function, you can call the function any number
of times.

The registerCFunction function returns true if the external function is
registered successfully; otherwise, it returns false. For example,
registerCFunction can return false if the JavaScript runtime engine cannot
find either the library or the specified function inside the library.

To use a backslash (\) character as a directory separator in the libraryPath
parameter, you must enter a double backslash (\\). The single backslash is a
reserved character.

Examples See the example for the callC function.

See also callC

Server-side function

Implemented in NES 2.0

JSFunctionName The name of the function as it is called in JavaScript.

libraryPath The full filename and path of the library, using the conventions
of your operating system.

externalFunctionName The name of the function as it is defined in the library.
Chapter 2, Top-Level Functions 353

ssjs_generateClientID
ssjs_generateClientID
Returns a unique string you can use to uniquely specify the client object.

Syntax ssjs_generateClientID()

Parameters None.

Description ssjs_generateClientID is a top-level function and is not associated with
any object.

This function is closely related to ssjs_getClientID. See the description of
that function for information on these functions and the differences between
them.

ssjs_getCGIVariable
Returns the value of the specified environment variable set in the server
process, including some CGI variables.

Syntax ssjs_getCGIVariable(varName)

Parameters

Server-side function

Implemented in NES 3.0

Server-side function

Implemented in NES 3.0

varName A string containing the name of the environment variable to
retrieve.
354 Server-Side JavaScript Reference

ssjs_getCGIVariable
Description ssjs_getCGIVariable is a top-level function and is not associated with any
object.

ssjs_getCGIVariable lets you access the environment variables set in the
server process, including the CGI variables listed in the following table.

Table 2.2 CGI variables accessible through ssjs_getCGIVariable

Variable Description

AUTH_TYPE The authorization type, if the request is protected by any
type of authorization. Netscape web servers support HTTP
basic access authorization. Example value: basic

HTTPS If security is active on the server, the value of this variable
is ON; otherwise, it is OFF. Example value: ON

HTTPS_KEYSIZE The number of bits in the session key used to encrypt the
session, if security is on. Example value: 128

HTTPS_SECRETKEYSIZE The number of bits used to generate the server’s private
key. Example value: 128

PATH_INFO Path information, as sent by the browser. Example value:
/cgivars/cgivars.html

PATH_TRANSLATED The actual system-specific pathname of the path contained
in PATH_INFO. Example value: /usr/ns-home/
myhttpd/js/samples/cgivars/cgivars.html

QUERY_STRING Information from the requesting HTML page; if “?” is
present, the information in the URL that comes after the
“?”. Example value: x=42

REMOTE_ADDR The IP address of the host that submitted the request.
Example value: 198.93.95.47

REMOTE_HOST If DNS is turned on for the server, the name of the host
that submitted the request; otherwise, its IP address.
Example value: www.netscape.com

REMOTE_USER The name of the local HTTP user of the web browser, if
HTTP access authorization has been activated for this URL.
Note that this is not a way to determine the user name of
any person accessing your program. Example value:
ksmith

REQUEST_METHOD The HTTP method associated with the request. An
application can use this to determine the proper response
to a request. Example value: GET
Chapter 2, Top-Level Functions 355

ssjs_getClientID
If you supply an argument that isn’t one of the CGI variables listed in n, the
runtime engine looks for an environment variable by that name in the server
environment. If found, the runtime engine returns the value; otherwise, it
returns null. For example, the following code assigns the value of the standard
CLASSPATH environment variable to the JavaScript variable classpath:

classpath = ssjs_getCGIVariable("CLASSPATH");

ssjs_getClientID
Returns the identifier for the client object used by some of JavaScript’s client-
maintenance techniques.

Syntax ssjs_getClientID()

Parameters None.

SCRIPT_NAME The pathname to this page, as it appears in the URL.
Example value: cgivars.html

SERVER_NAME The hostname or IP address on which the JavaScript
application is running, as it appears in the URL. Example
value: piccolo.mcom.com

SERVER_PORT The TCP port on which the server is running. Example
value: 2020

SERVER_PROTOCOL The HTTP protocol level supported by the client’s
software. Example value: HTTP/1.0

SERVER_URL The URL that the user typed to access this server. Example
value: https://piccolo:2020

Table 2.2 CGI variables accessible through ssjs_getCGIVariable (Continued)

Variable Description

Server-side function

Implemented in NES 3.0
356 Server-Side JavaScript Reference

ssjs_getClientID
Description ssjs_getClientID is a top-level function and is not associated with any
object.

For some applications, you may want to store information specific to a client/
application pair in the project or server objects. In these situations, you
need a way to refer uniquely to the client/application pair. JavaScript provides
two functions for this purpose, ssjs_generateClientID and
ssjs_getClientID.

Each time you call ssjs_generateClientID, the runtime engine returns a
new identifier. For this reason, if you use this function and want the identifier
to last longer than a single client request, you need to store the identifier,
possibly as a property of the client object.

If you use this function and store the ID in the client object, you may need to
be careful that an intruder cannot get access to that ID and hence to sensitive
information.

An alternative approach is to use the ssjs_getClientID function. If you use
one of the server-side maintenance techniques for the client object, the
JavaScript runtime engine generates and uses a identifier to access the
information for a particular client/application pair.

When you use these maintenance techniques, ssjs_getClientID returns the
identifier used by the runtime engine. Every time you call this function from a
particular client/application pair, you get the same identifier. Therefore, you do
not need to store the identifier returned by ssjs_getClientID. However, if
you use any of the other maintenance techniques, this function returns
“undefined”; if you use those techniques you must instead use the
ssjs_generateClientID function.

If you need an identifier and you’re using a server-side maintenance technique,
you probably should use the ssjs_getClientID function. If you use this
function, you do not need to store and track the identifier yourself; the runtime
engine does it for you. However, if you use a client-side maintenance
technique, you cannot use the ssjs_getClientID function; you must use the
ssjs_generateClientID function.
Chapter 2, Top-Level Functions 357

String
String
Converts the specified object to a string.

Syntax String(obj)

Parameter

Description String is a top-level function and is not associated with any object.

The String method converts the value of any object into a string; it returns
the same value as the toString method of an individual object.

When the object is a Date object, String returns a more readable string
representation of the date. Its format is: Thu Aug 18 04:37:43 Pacific Daylight
Time 1983.

Example The following example converts the Date object to a readable string.

D = new Date (430054663215)
alert (String(D))

This displays a dialog box containing "Thu Aug 18 04:37:43 GMT-0700 (Pacific
Daylight Time) 1983."

See also String

Core function

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262

obj An object.
358 Server-Side JavaScript Reference

unescape
unescape
Returns the ASCII string for the specified hexadecimal encoding value.

Syntax unescape(string)

Parameters

Description unescape is a top-level function and is not associated with any object.

The string returned by the unescape function is a series of characters in the
ISO-Latin-1 character set.

In server-side JavaScript, use this function to decode name/value pairs in URLs.

Examples The following example returns "&":

unescape("%26")

The following example returns "!#":

unescape("%21%23")

In the following example, val1 has been passed to the request object as a
hexadecimal value. The statement assigns the decoded value of val1 to
myValue.

myValue = unescape(request.val1)

See also escape

Core function

Implemented in JavaScript 1.0, NES 1.0

ECMA version ECMA-262 compatible, except for Unicode characters.

string A string containing characters in the form "%xx", where xx is a
2-digit hexadecimal number.
Chapter 2, Top-Level Functions 359

write
write
Generates HTML based on an expression and sends it to the client.

Syntax write(expression)

Parameters

Description write is a top-level function and is not associated with any object.

The write function causes server-side JavaScript to generate HTML that is sent
to the client. The client interprets this generated HTML as it would static HTML.
The server-side write function is similar to the client-side document.write
method.

To improve performance, the JavaScript engine on the server buffers the output
to be sent to the client and sends it in large blocks of at most 64 KBytes in size.
You can control when data are sent to the client by using the flush function.

Do not confuse the write method of the File object with the write
function. The write function outputs data to the client; the write method
outputs data to a physical file on the server.

Examples In the following example, the write function is passed a string, concatenated
with a variable, concatenated with a BR tag:

write("The operation returned " + returnValue + "
")

If returnValue is 57, this example displays the following:

The operation returned 57

See also flush

Server-side function

Implemented in NES 2.0

expression A valid JavaScript expression.
360 Server-Side JavaScript Reference

2
Language Elements
• Statements

• Operators

362 Server-Side JavaScript Reference

C h a p t e r

3
Chapter 3Statements
This chapter describes all JavaScript statements. JavaScript statements consist of
keywords used with the appropriate syntax. A single statement may span
multiple lines. Multiple statements may occur on a single line if each statement
is separated by a semicolon.

Syntax conventions: All keywords in syntax statements are in bold. Words in
italics represent user-defined names or statements. Any portions enclosed in
square brackets, [], are optional. {statements} indicates a block of statements,
which can consist of a single statement or multiple statements delimited by a
curly braces { }.

The following table lists statements available in JavaScript.

Table 3.1 JavaScript statements.

break Terminates the current while or for loop and transfers program
control to the statement following the terminated loop.

comment Notations by the author to explain what a script does. Comments
are ignored by the interpreter.

continue Terminates execution of the block of statements in a while or for
loop, and continues execution of the loop with the next iteration.

do...while Executes the specified statements until the test condition evaluates
to false. Statements execute at least once.
Chapter 3, Statements 363

export Allows a signed script to provide properties, functions, and objects
to other signed or unsigned scripts.

for Creates a loop that consists of three optional expressions, enclosed
in parentheses and separated by semicolons, followed by a block
of statements executed in the loop.

for...in Iterates a specified variable over all the properties of an object. For
each distinct property, JavaScript executes the specified statements.

function Declares a function with the specified parameters. Acceptable
parameters include strings, numbers, and objects.

if...else Executes a set of statements if a specified condition is true. If the
condition is false, another set of statements can be executed.

import Allows a script to import properties, functions, and objects from a
signed script that has exported the information.

label Provides an identifier that can be used with break or continue to
indicate where the program should continue execution.

return Specifies the value to be returned by a function.

switch Allows a program to evaluate an expression and attempt to match
the expression’s value to a case label.

var Declares a variable, optionally initializing it to a value.

while Creates a loop that evaluates an expression, and if it is true,
executes a block of statements. The loop then repeats, as long as
the specified condition is true.

with Establishes the default object for a set of statements.

Table 3.1 JavaScript statements. (Continued)
364 Server-Side JavaScript Reference

break
break
Use the break statement to terminate a loop, switch, or label statement.

Terminates the current loop, switch, or label statement and transfers program
control to the statement following the terminated loop.

Syntax break [label]

Parameter

Description The break statement includes an optional label that allows the program to
break out of a labeled statement. The statements in a labeled statement can be
of any type.

Examples Example 1. The following function has a break statement that terminates the
while loop when e is 3, and then returns the value 3 * x.

function testBreak(x) {
var i = 0
while (i < 6) {

if (i == 3)
break

i++
}
return i*x

}

Example 2. In the following example, a statement labeled checkiandj
contains a statement labeled checkj. If break is encountered, the program
breaks out of the checkj statement and continues with the remainder of the
checkiandj statement. If break had a label of checkiandj, the program
would break out of the checkiandj statement and continue at the statement
following checkiandj.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

label Identifier associated with the label of the statement.
Chapter 3, Statements 365

comment
checkiandj :
if (4==i) {

document.write("You’ve entered " + i + ".
");
checkj :

if (2==j) {
document.write("You’ve entered " + j + ".
");
break checkj;
document.write("The sum is " + (i+j) + ".
");

}
document.write(i + "-" + j + "=" + (i-j) + ".
");

}

See also continue, label, switch

comment
Notations by the author to explain what a script does. Comments are ignored
by the interpreter.

Syntax // comment text
/* multiple line comment text */

Description JavaScript supports Java-style comments:

• Comments on a single line are preceded by a double-slash (//).

• Comments that span multiple lines are preceded by a /* and followed by a
*/.

Examples // This is a single-line comment.
/* This is a multiple-line comment. It can be of any length, and
you can put whatever you want here. */

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
366 Server-Side JavaScript Reference

continue
continue
Restarts a while, do-while, for, or label statement.

Syntax continue [label]

Parameter

Description In contrast to the break statement, continue does not terminate the execution
of the loop entirely: instead,

• In a while loop, it jumps back to the condition.

• In a for loop, it jumps to the update expression.

The continue statement can now include an optional label that allows the
program to terminate execution of a labeled statement and continue to the
specified labeled statement. This type of continue must be in a looping
statement identified by the label used by continue.

Examples Example 1. The following example shows a while loop that has a continue
statement that executes when the value of i is 3. Thus, n takes on the values 1,
3, 7, and 12.

i = 0
n = 0
while (i < 5) {

i++
if (i == 3)

continue
n += i

}

Example 2. In the following example, a statement labeled checkiandj
contains a statement labeled checkj. If continue is encountered, the program
continues at the top of the checkj statement. Each time continue is
encountered, checkj reiterates until its condition returns false. When false is
returned, the remainder of the checkiandj statement is completed.
checkiandj reiterates until its condition returns false. When false is returned,
the program continues at the statement following checkiandj.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

label Identifier associated with the label of the statement.
Chapter 3, Statements 367

do...while
If continue had a label of checkiandj, the program would continue at the top
of the checkiandj statement.

checkiandj :
while (i<4) {

document.write(i + "
");
i+=1;

checkj :
while (j>4) {

document.write(j + "
");
j-=1;
if ((j%2)==0)

continue checkj;
document.write(j + " is odd.
");

}
document.write("i = " + i + "
");
document.write("j = " + j + "
");

}

See also break, label

do...while
Executes the specified statements until the test condition evaluates to false.
Statements execute at least once.

Syntax do
statements

while (condition);

Parameters

Implemented in JavaScript 1.2, NES 3.0

statements Block of statements that is executed at least once and is re-executed
each time the condition evaluates to true.

condition Evaluated after each pass through the loop. If condition
evaluates to true, the statements in the preceding block are re-
executed. When condition evaluates to false, control passes to
the statement following do while.
368 Server-Side JavaScript Reference

export
Examples In the following example, the do loop iterates at least once and reiterates until i
is no longer less than 5.

do {
i+=1
document.write(i);

while (i<5);

export
Allows a signed script to provide properties, functions, and objects to other
signed or unsigned scripts.

Syntax export name1, name2, ..., nameN
export *

Parameters

Description Typically, information in a signed script is available only to scripts signed by
the same principals. By exporting properties, functions, or objects, a signed
script makes this information available to any script (signed or unsigned). The
receiving script uses the companion import statement to access the information.

See also import

Implemented in JavaScript 1.2, NES 3.0

nameN List of properties, functions, and objects to be exported.

* Exports all properties, functions, and objects from the script.
Chapter 3, Statements 369

for
for
Creates a loop that consists of three optional expressions, enclosed in
parentheses and separated by semicolons, followed by a block of statements
executed in the loop.

Syntax for ([initial-expression]; [condition]; [increment-expression])
{

statements
}

Parameters

Examples The following for statement starts by declaring the variable i and initializing it
to 0. It checks that i is less than nine, performs the two succeeding statements,
and increments i by 1 after each pass through the loop.

for (var i = 0; i < 9; i++) {
n += i
myfunc(n)

}

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

initial-expression Statement or variable declaration. Typically used to initialize a
counter variable. This expression may optionally declare new
variables with the var keyword. These variables are local to
the function, not to the loop.

condition Evaluated on each pass through the loop. If this condition
evaluates to true, the statements in statements are
performed. This conditional test is optional. If omitted, the
condition always evaluates to true.

increment-expression Generally used to update or increment the counter variable.

statements Block of statements that are executed as long as condition
evaluates to true. This can be a single statement or multiple
statements. Although not required, it is good practice to indent
these statements from the beginning of the for statement.
370 Server-Side JavaScript Reference

for...in
for...in
Iterates a specified variable over all the properties of an object. For each
distinct property, JavaScript executes the specified statements.

Syntax for (variable in object) {
statements

}

Parameters

Examples The following function takes as its argument an object and the object’s name. It
then iterates over all the object’s properties and returns a string that lists the
property names and their values.

function show_props(obj, objName) {
var result = ""
for (var i in obj) {

result += objName + "." + i + " = " + obj[i] + "\n"
}
return result

}

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

variable Variable to iterate over every property, declared with the var
keyword. This variable is local to the function, not to the loop.

object Object for which the properties are iterated.

statements Specifies the statements to execute for each property.
Chapter 3, Statements 371

function
function
Declares a function with the specified parameters. Acceptable parameters
include strings, numbers, and objects.

Syntax function name([param] [, param] [..., param]) {
statements

}

You can also define functions using the Function constructor; see “Function”
on page 173.

Parameters

Description To return a value, the function must have a return statement that specifies the
value to return.

A function created with the function statement is a Function object and
has all the properties, methods, and behavior of Function objects. See
“Function” on page 173 for detailed information on functions.

Examples The following code declares a function that returns the total dollar amount of
sales, when given the number of units sold of products a, b, and c.

function calc_sales(units_a, units_b, units_c) {
return units_a*79 + units_b*129 + units_c*699

}

See also “Function” on page 173

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

name The function name.

param The name of an argument to be passed to the function. A function
can have up to 255 arguments.

statements The statements which comprise the body of the function.
372 Server-Side JavaScript Reference

if...else
if...else
Executes a set of statements if a specified condition is true. If the condition is
false, another set of statements can be executed.

Syntax if (condition) {
statements1

}
[else {

statements2
}]

Parameters

Examples if (cipher_char == from_char) {
result = result + to_char
x++}

else
result = result + clear_char

import
Allows a script to import properties, functions, and objects from a signed script
that has exported the information.

Syntax import objectName.name1, objectName.name2, ..., objectName.nameN
import objectName.*

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

condition Can be any JavaScript expression that evaluates to true or false.
Parentheses are required around the condition. If condition
evaluates to true, the statements in statements1 are executed.

statements1,
statements2

Can be any JavaScript statements, including further nested if
statements. Multiple statements must be enclosed in braces.

Implemented in JavaScript 1.2, NES 3.0
Chapter 3, Statements 373

label
Parameters

Description The objectName parameter is the name of the object that will receive the
imported names. For example, if f and p have been exported, and if obj is an
object from the importing script, the following code makes f and p accessible
in the importing script as properties of obj.

import obj.f, obj.p

Typically, information in a signed script is available only to scripts signed by
the same principals. By exporting (using the export statement) properties,
functions, or objects, a signed script makes this information available to any
script (signed or unsigned). The receiving script uses the import statement to
access the information.

The script must load the export script into a window, frame, or layer before it
can import and use any exported properties, functions, and objects.

See also export

label
Provides a statement with an identifier that lets you refer to it elsewhere in your
program.

For example, you can use a label to identify a loop, and then use the break or
continue statements to indicate whether a program should interrupt the loop
or continue its execution.

Syntax label :
statements

objectName Name of the object that will receive the imported names.

name1,
name2,
nameN

List of properties, functions, and objects to import from the export
file.

* Imports all properties, functions, and objects from the export script.

Implemented in JavaScript 1.2, NES 3.0
374 Server-Side JavaScript Reference

return
Parameter

Examples For an example of a label statement using break, see break. For an example
of a label statement using continue, see continue.

See also break, continue

return
Specifies the value to be returned by a function.

Syntax return expression

Parameters

Examples The following function returns the square of its argument, x, where x is a
number.

function square(x) {
return x * x

}

label Any JavaScript identifier that is not a reserved word.

statements Block of statements. break can be used with any labeled
statement, and continue can be used with looping labeled
statements.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

expression The expression to return.
Chapter 3, Statements 375

switch
switch
Allows a program to evaluate an expression and attempt to match the
expression’s value to a case label.

Syntax switch (expression){
case label :
statements;
break;

case label :
statements;
break;

...
default : statements;

}

Parameters

Description If a match is found, the program executes the associated statement. If multiple
cases match the provided value, the first case that matches is selected, even if
the cases are not equal to each other.

The program first looks for a label matching the value of expression and then
executes the associated statement. If no matching label is found, the program
looks for the optional default statement, and if found, executes the associated
statement. If no default statement is found, the program continues execution at
the statement following the end of switch.

The optional break statement associated with each case label ensures that the
program breaks out of switch once the matched statement is executed and
continues execution at the statement following switch. If break is omitted, the
program continues execution at the next statement in the switch statement.

Implemented in JavaScript 1.2, NES 3.0

expression Value matched against label.

label Identifier used to match against expression.

statements Block of statements that is executed once if expression matches
label.
376 Server-Side JavaScript Reference

var
Examples In the following example, if expression evaluates to “Bananas”, the program
matches the value with case “Bananas” and executes the associated statement.
When break is encountered, the program breaks out of switch and executes
the statement following switch. If break were omitted, the statement for case
“Cherries” would also be executed.

switch (i) {
case "Oranges" :

document.write("Oranges are $0.59 a pound.
");
break;

case "Apples" :
document.write("Apples are $0.32 a pound.
");
break;

case "Bananas" :
document.write("Bananas are $0.48 a pound.
");
break;

case "Cherries" :
document.write("Cherries are $3.00 a pound.
");
break;

default :
document.write("Sorry, we are out of " + i + ".
");

}
document.write("Is there anything else you’d like?
");

var
Declares a variable, optionally initializing it to a value.

Syntax var varname [= value] [..., varname [= value]]

Parameters

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

varname Variable name. It can be any legal identifier.

value Initial value of the variable and can be any legal expression.
Chapter 3, Statements 377

while
Description The scope of a variable is the current function or, for variables declared outside
a function, the current application.

Using var outside a function is optional; you can declare a variable by simply
assigning it a value. However, it is good style to use var, and it is necessary in
functions in the following situations:

• If a global variable of the same name exists.

• If recursive or multiple functions use variables with the same name.

Examples var num_hits = 0, cust_no = 0

while
Creates a loop that evaluates an expression, and if it is true, executes a block of
statements. The loop then repeats, as long as the specified condition is true.

Syntax while (condition) {
statements

}

Parameters

Examples The following while loop iterates as long as n is less than three.

n = 0
x = 0
while(n < 3) {

n ++
x += n

}

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

condition Evaluated before each pass through the loop. If this condition
evaluates to true, the statements in the succeeding block are
performed. When condition evaluates to false, execution
continues with the statement following statements.

statements Block of statements that are executed as long as the condition
evaluates to true. Although not required, it is good practice to
indent these statements from the beginning of the statement.
378 Server-Side JavaScript Reference

with
Each iteration, the loop increments n and adds it to x. Therefore, x and n take
on the following values:

• After the first pass: n = 1 and x = 1

• After the second pass: n = 2 and x = 3

• After the third pass: n = 3 and x = 6

After completing the third pass, the condition n < 3 is no longer true, so the
loop terminates.

with
Establishes the default object for a set of statements.

Syntax with (object){
statements

}

Parameters

Description JavaScript looks up any unqualified names within the set of statements to
determine if the names are properties of the default object. If an unqualified
name matches a property, then the property is used in the statement; otherwise,
a local or global variable is used.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

object Specifies the default object to use for the statements. The
parentheses around object are required.

statements Any block of statements.
Chapter 3, Statements 379

with
Examples The following with statement specifies that the Math object is the default
object. The statements following the with statement refer to the PI property
and the cos and sin methods, without specifying an object. JavaScript
assumes the Math object for these references.

var a, x, y
var r=10
with (Math) {

a = PI * r * r
x = r * cos(PI)
y = r * sin(PI/2)

}

380 Server-Side JavaScript Reference

C h a p t e r

4
Chapter 4Operators
JavaScript has assignment, comparison, arithmetic, bitwise, logical, string, and
special operators. This chapter describes the operators and contains
information about operator precedence.

The following table summarizes the JavaScript operators.

Table 4.1 JavaScript operators.

Operator
category

Operator Description

Arithmetic
Operators

+ (Addition) Adds 2 numbers.

++ (Increment) Adds one to a variable representing a number (returning
either the new or old value of the variable)

- (Unary negation, subtraction) As a unary operator, negates the value of
its argument. As a binary operator, subtracts 2 numbers.

-- (Decrement) Subtracts one from a variable representing a number
(returning either the new or old value of the variable)

* (Multiplication) Multiplies 2 numbers.

/ (Division) Divides 2 numbers.

% (Modulus) Computes the integer remainder of dividing 2 numbers.

String
Operators

+ (String addition) Concatenates 2 strings.

+= Concatenates 2 strings and assigns the result to the first operand.
Chapter 4, Operators 381

Logical
Operators

&& (Logical AND) Returns the first operand if it can be converted to false;
otherwise, returns the second operand. Thus, when used with Boolean
values, && returns true if both operands are true; otherwise, returns false.

|| (Logical OR) Returns the first operand if it can be converted to true;
otherwise, returns the second operand. Thus, when used with Boolean
values, || returns true if either operand is true; if both are false, returns
false.

! (Logical NOT) Returns false if its single operand can be converted to true;
otherwise, returns true.

Bitwise
Operators

& (Bitwise AND) Returns a one in each bit position if bits of both operands
are ones.

^ (Bitwise XOR) Returns a one in a bit position if bits of one but not both
operands are one.

| (Bitwise OR) Returns a one in a bit if bits of either operand is one.

~ (Bitwise NOT) Flips the bits of its operand.

<< (Left shift) Shifts its first operand in binary representation the number of
bits to the left specified in the second operand, shifting in zeros from the
right.

>> (Sign-propagating right shift) Shifts the first operand in binary
representation the number of bits to the right specified in the second
operand, discarding bits shifted off.

>>> (Zero-fill right shift) Shifts the first operand in binary representation the
number of bits to the right specified in the second operand, discarding
bits shifted off, and shifting in zeros from the left.

Table 4.1 JavaScript operators. (Continued)

Operator
category

Operator Description
382 Server-Side JavaScript Reference

Assignment
Operators

= Assigns the value of the second operand to the first operand.

+= Adds 2 numbers and assigns the result to the first.

-= Subtracts 2 numbers and assigns the result to the first.

*= Multiplies 2 numbers and assigns the result to the first.

/= Divides 2 numbers and assigns the result to the first.

%= Computes the modulus of 2 numbers and assigns the result to the first.

&= Performs a bitwise AND and assigns the result to the first operand.

^= Performs a bitwise XOR and assigns the result to the first operand.

|= Performs a bitwise OR and assigns the result to the first operand.

<<= Performs a left shift and assigns the result to the first operand.

>>= Performs a sign-propagating right shift and assigns the result to the first
operand.

>>>= Performs a zero-fill right shift and assigns the result to the first operand.

Comparison
Operators

== Returns true if the operands are equal.

!= Returns true if the operands are not equal.

> Returns true if the left operand is greater than the right operand.

>= Returns true if the left operand is greater than or equal to the right
operand.

< Returns true if the left operand is less than the right operand.

<= Returns true if the left operand is less than or equal to the right operand.

Table 4.1 JavaScript operators. (Continued)

Operator
category

Operator Description
Chapter 4, Operators 383

Assignment Operators
Assignment Operators
An assignment operator assigns a value to its left operand based on the value of
its right operand.

The basic assignment operator is equal (=), which assigns the value of its right
operand to its left operand. That is, x = y assigns the value of y to x. The other
assignment operators are usually shorthand for standard operations, as shown
in the following table.

Special
Operators

?: Performs a simple "if...then...else"

, Evaluates two expressions and returns the result of the second
expression.

delete Deletes an object, an object’s property, or an element at a specified index
in an array.

new Creates an instance of a user-defined object type or of one of the built-in
object types.

this Keyword that you can use to refer to the current object.

typeof Returns a string indicating the type of the unevaluated operand.

void Specifies an expression to be evaluated without returning a value.

Table 4.1 JavaScript operators. (Continued)

Operator
category

Operator Description

Implemented in JavaScript 1.0

ECMA version ECMA-262
384 Server-Side JavaScript Reference

Comparison Operators
In unusual situations, the assignment operator is not identical to the Meaning
expression in Table 4.2. When the left operand of an assignment operator itself
contains an assignment operator, the left operand is evaluated only once. For
example:

a[i++] += 5 //i is evaluated only once
a[i++] = a[i++] + 5 //i is evaluated twice

Comparison Operators
A comparison operator compares its operands and returns a logical value based
on whether the comparison is true.

The operands can be numerical or string values. Strings are compared based on
standard lexicographical ordering.

Table 4.2 Assignment operators

Shorthand operator Meaning

x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x / y

x %= y x = x % y

x <<= y x = x << y

x >>= y x = x >> y

x >>>= y x = x >>> y

x &= y x = x & y

x ^= y x = x ^ y

x |= y x = x | y

Implemented in JavaScript 1.0

ECMA version ECMA-262
Chapter 4, Operators 385

Comparison Operators
A Boolean value is returned as the result of the comparison.

• Two strings are equal when they have the same sequence of characters,
same length, and same characters in corresponding positions.

• Two numbers are equal when they are numerically equal (have the same
number value). NaN is not equal to anything, including NaN. Positive and
negative zeros are equal.

• Two objects are equal if they refer to the same Object.

• Two Boolean operands are equal if they are both true or false.

• Null and Undefined types are equal.

The following table describes the comparison operators.

Backward
Compatibility

JavaScript 1.1 and earlier versions. The equality operators (== and !=)
perform a type conversion before the comparison is made.

Table 4.3 Comparison operators

Operator Description Examples returning truea

Equal (==) Returns true if the operands are equal. 3 == var1

Not equal (!=) Returns true if the operands are not equal. var1 != 4

Greater than (>) Returns true if the left operand is greater than the
right operand.

var2 > var1

Greater than or equal
(>=)

Returns true if the left operand is greater than or
equal to the right operand.

var2 >= var1
var1 >= 3

Less than (<) Returns true if the left operand is less than the
right operand.

var1 < var2

Less than or equal (<=) Returns true if the left operand is less than or
equal to the right operand.

var1 <= var2
var2 <= 5

a. These examples assume that var1 has been assigned the value 3 and var2 has been assigned the value 4.
386 Server-Side JavaScript Reference

Arithmetic Operators
Arithmetic Operators
Arithmetic operators take numerical values (either literals or variables) as their
operands and return a single numerical value. The standard arithmetic
operators are addition (+), subtraction (-), multiplication (*), and division (/).

These operators work as they do in most other programming languages, except
the / operator returns a floating-point division in JavaScript, not a truncated
division as it does in languages such as C or Java. For example:

1/2 //returns 0.5 in JavaScript
1/2 //returns 0 in Java

% (Modulus)

The modulus operator is used as follows:

var1 % var2

The modulus operator returns the first operand modulo the second operand,
that is, var1 modulo var2, in the preceding statement, where var1 and var2
are variables. The modulo function is the integer remainder of dividing var1 by
var2. For example, 12 % 5 returns 2.

Implemented in JavaScript 1.0

ECMA version ECMA-262
Chapter 4, Operators 387

Arithmetic Operators
++ (Increment)

The increment operator is used as follows:

var++ or ++var

This operator increments (adds one to) its operand and returns a value. If used
postfix, with operator after operand (for example, x++), then it returns the
value before incrementing. If used prefix with operator before operand (for
example, ++x), then it returns the value after incrementing.

For example, if x is three, then the statement y = x++ sets y to 3 and
increments x to 4. If x is 3, then the statement y = ++x increments x to 4 and
sets y to 4.

-- (Decrement)

The decrement operator is used as follows:

var-- or --var

This operator decrements (subtracts one from) its operand and returns a value.
If used postfix (for example, x--), then it returns the value before decrementing.
If used prefix (for example, --x), then it returns the value after decrementing.

For example, if x is three, then the statement y = x-- sets y to 3 and
decrements x to 2. If x is 3, then the statement y = --x decrements x to 2 and
sets y to 2.

- (Unary Negation)

The unary negation operator precedes its operand and negates it. For example,
y = -x negates the value of x and assigns that to y; that is, if x were 3, y
would get the value -3 and x would retain the value 3.
388 Server-Side JavaScript Reference

Bitwise Operators
Bitwise Operators
Bitwise operators treat their operands as a set of 32 bits (zeros and ones), rather
than as decimal, hexadecimal, or octal numbers. For example, the decimal
number nine has a binary representation of 1001. Bitwise operators perform
their operations on such binary representations, but they return standard
JavaScript numerical values.

The following table summarizes JavaScript’s bitwise operators:

Table 4.4 Bitwise operators

Operator Usage Description

Bitwise AND a & b Returns a one in each bit position for which
the corresponding bits of both operands are
ones.

Bitwise OR a | b Returns a one in each bit position for which
the corresponding bits of either or both
operands are ones.

Bitwise XOR a ^ b Returns a one in each bit position for which
the corresponding bits of either but not both
operands are ones.

Bitwise NOT ~ a Inverts the bits of its operand.

Left shift a << b Shifts a in binary representation b bits to
left, shifting in zeros from the right.

Sign-propagating right
shift

a >> b Shifts a in binary representation b bits to
right, discarding bits shifted off.

Zero-fill right shift a >>> b Shifts a in binary representation b bits to
the right, discarding bits shifted off, and
shifting in zeros from the left.
Chapter 4, Operators 389

Bitwise Operators
Bitwise Logical Operators

Conceptually, the bitwise logical operators work as follows:

• The operands are converted to thirty-two-bit integers and expressed by a
series of bits (zeros and ones).

• Each bit in the first operand is paired with the corresponding bit in the
second operand: first bit to first bit, second bit to second bit, and so on.

• The operator is applied to each pair of bits, and the result is constructed
bitwise.

For example, the binary representation of nine is 1001, and the binary
representation of fifteen is 1111. So, when the bitwise operators are applied to
these values, the results are as follows:

• 15 & 9 yields 9 (1111 & 1001 = 1001)

• 15 | 9 yields 15 (1111 | 1001 = 1111)

• 15 ^ 9 yields 6 (1111 ^ 1001 = 0110)

Bitwise Shift Operators

The bitwise shift operators take two operands: the first is a quantity to be
shifted, and the second specifies the number of bit positions by which the first
operand is to be shifted. The direction of the shift operation is controlled by the
operator used.

Shift operators convert their operands to thirty-two-bit integers and return a
result of the same type as the left operator.

Implemented in JavaScript 1.0

ECMA version ECMA-262

Implemented in JavaScript 1.0

ECMA version ECMA-262
390 Server-Side JavaScript Reference

Bitwise Operators
<< (Left Shift)

This operator shifts the first operand the specified number of bits to the left.
Excess bits shifted off to the left are discarded. Zero bits are shifted in from the
right.

For example, 9<<2 yields thirty-six, because 1001 shifted two bits to the left
becomes 100100, which is thirty-six.

>> (Sign-Propagating Right Shift)

This operator shifts the first operand the specified number of bits to the right.
Excess bits shifted off to the right are discarded. Copies of the leftmost bit are
shifted in from the left.

For example, 9>>2 yields two, because 1001 shifted two bits to the right
becomes 10, which is two. Likewise, -9>>2 yields -3, because the sign is
preserved.

>>> (Zero-Fill Right Shift)

This operator shifts the first operand the specified number of bits to the right.
Excess bits shifted off to the right are discarded. Zero bits are shifted in from
the left.

For example, 19>>>2 yields four, because 10011 shifted two bits to the right
becomes 100, which is four. For non-negative numbers, zero-fill right shift and
sign-propagating right shift yield the same result.
Chapter 4, Operators 391

Logical Operators
Logical Operators
Logical operators are typically used with Boolean (logical) values; when they
are, they return a Boolean value. However, the && and || operators actually
return the value of one of the specified operands, so if these operators are used
with non-Boolean values, they may return a non-Boolean value.

The logical operators are described in the following table.

Examples of expressions that can be converted to false are those that evaluate
to null, 0, the empty string (“”), or undefined.

Even though the && and || operators can be used with operands that are not
Boolean values, they can still be considered Boolean operators since their
return values can always be converted to Boolean values.

Implemented in JavaScript 1.0

ECMA version ECMA-262

Table 4.5 Logical operators

Operator Usage Description

&& expr1 && expr2 (Logical AND) Returns expr1 if it can be
converted to false; otherwise, returns expr2.
Thus, when used with Boolean values, && returns
true if both operands are true; otherwise, returns
false.

|| expr1 || expr2 (Logical OR) Returns expr1 if it can be converted
to true; otherwise, returns expr2. Thus, when
used with Boolean values, || returns true if either
operand is true; if both are false, returns false.

! !expr (Logical NOT) Returns false if its single operand
can be converted to true; otherwise, returns true.
392 Server-Side JavaScript Reference

Logical Operators
Short-Circuit Evaluation. As logical expressions are evaluated left to right,
they are tested for possible “short-circuit” evaluation using the following rules:

• false && anything is short-circuit evaluated to false.

• true || anything is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations are always correct. Note that
the anything part of the above expressions is not evaluated, so any side effects
of doing so do not take effect.

Backward
Compatibility

JavaScript 1.0 and 1.1. The && and || operators behave as follows:

Examples The following code shows examples of the && (logical AND) operator.

a1=true && true // t && t returns true
a2=true && false // t && f returns false
a3=false && true // f && t returns false
a4=false && (3 == 4) // f && f returns false
a5="Cat" && "Dog" // t && t returns Dog
a6=false && "Cat" // f && t returns false
a7="Cat" && false // t && f returns false

The following code shows examples of the || (logical OR) operator.

o1=true || true // t || t returns true
o2=false || true // f || t returns true
o3=true || false // t || f returns true
o4=false || (3 == 4) // f || f returns false
o5="Cat" || "Dog" // t || t returns Cat
o6=false || "Cat" // f || t returns Cat
o7="Cat" || false // t || f returns Cat

The following code shows examples of the ! (logical NOT) operator.

n1=!true // !t returns false
n2=!false // !f returns true
n3=!"Cat" // !t returns false

Operator Behavior

&& If the first operand (expr1) can be converted to false, the &&
operator returns false rather than the value of expr1.

|| If the first operand (expr1) can be converted to true, the ||
operator returns true rather than the value of expr1.
Chapter 4, Operators 393

String Operators
String Operators
In addition to the comparison operators, which can be used on string values,
the concatenation operator (+) concatenates two string values together,
returning another string that is the union of the two operand strings. For
example, "my " + "string" returns the string "my string".

The shorthand assignment operator += can also be used to concatenate strings.
For example, if the variable mystring has the value “alpha,” then the
expression mystring += "bet" evaluates to “alphabet” and assigns this value
to mystring.

Special Operators

?: (Conditional operator)

The conditional operator is the only JavaScript operator that takes three
operands. This operator is frequently used as a shortcut for the if statement.

Syntax condition ? expr1 : expr2

Parameters

Description If condition is true, the operator returns the value of expr1; otherwise, it
returns the value of expr2. For example, to display a different message based
on the value of the isMember variable, you could use this statement:

document.write ("The fee is " + (isMember ? "$2.00" : "$10.00"))

Implemented in JavaScript 1.0

ECMA version ECMA-262

Implemented in JavaScript 1.0

ECMA version ECMA-262

condition An expression that evaluates to true or false

expr1, expr2 Expressions with values of any type.
394 Server-Side JavaScript Reference

Special Operators
, (Comma operator)

The comma operator evaluates both of its operands and returns the value of the
second operand.

Syntax expr1, expr2

Parameters

Description You can use the comma operator when you want to include multiple
expressions in a location that requires a single expression. The most common
usage of this operator is to supply multiple parameters in a for loop.

For example, if a is a 2-dimensional array with 10 elements on a side, the
following code uses the comma operator to increment two variables at once.
The code prints the values of the diagonal elements in the array:

for (var i=0, j=9; i <= 9; i++, j--)
document.writeln("a["+i+","+j+"]= " + a[i,j])

delete

The delete operator deletes an object, an object’s property, or an element at a
specified index in an array.

Syntax delete objectName
delete objectName.property
delete objectName[index]
delete property // legal only within a with statement

Parameters

Implemented in JavaScript 1.0

ECMA version ECMA-262

expr1, expr2 Any expressions

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262

objectName The name of an object.

property The property to delete.

index An integer representing the array index to delete.
Chapter 4, Operators 395

Special Operators
Description The fourth form is legal only within a with statement, to delete a property from
an object.

You can use the delete operator to delete variables declared implicitly but not
those declared with the var statement.

If the delete operator succeeds, it sets the property or element to undefined.
The delete operator returns true if the operation is possible; it returns false if
the operation is not possible.

x=42
var y= 43
myobj=new Number()
myobj.h=4 // create property h
delete x // returns true (can delete if declared implicitly)
delete y // returns false (cannot delete if declared with var)
delete Math.PI // returns false (cannot delete predefined properties)
delete myobj.h // returns true (can delete user-defined properties)
delete myobj // returns true (can delete objects)

Deleting array elements. When you delete an array element, the array length
is not affected. For example, if you delete a[3], a[4] is still a[4] and a[3] is
undefined.

When the delete operator removes an array element, that element is no
longer in the array. In the following example, trees[3] is removed with delete.

trees=new Array("redwood","bay","cedar","oak","maple")
delete trees[3]
if (3 in trees) {

// this does not get executed
}

If you want an array element to exist but have an undefined value, use the
undefined keyword instead of the delete operator. In the following
example, trees[3] is assigned the value undefined, but the array element still
exists:

trees=new Array("redwood","bay","cedar","oak","maple")
trees[3]=undefined
if (3 in trees) {

// this gets executed
}

396 Server-Side JavaScript Reference

Special Operators
new

The new operator creates an instance of a user-defined object type or of one of
the built-in object types that has a constructor function.

Syntax objectName = new objectType (param1 [,param2] ...[,paramN])

Parameters

Description Creating a user-defined object type requires two steps:

1. Define the object type by writing a function.

2. Create an instance of the object with new.

To define an object type, create a function for the object type that specifies its
name, properties, and methods. An object can have a property that is itself
another object. See the examples below.

You can always add a property to a previously defined object. For example, the
statement car1.color = "black" adds a property color to car1, and assigns
it a value of "black". However, this does not affect any other objects. To add
the new property to all objects of the same type, you must add the property to
the definition of the car object type.

You can add a property to a previously defined object type by using the
Function.prototype property. This defines a property that is shared by all
objects created with that function, rather than by just one instance of the object
type. The following code adds a color property to all objects of type car, and
then assigns a value to the color property of the object car1. For more
information, see prototype

Car.prototype.color=null
car1.color="black"
birthday.description="The day you were born"

Implemented in JavaScript 1.0

ECMA version ECMA-262

objectName Name of the new object instance.

objectType Object type. It must be a function that defines an object type.

param1...paramN Property values for the object. These properties are parameters
defined for the objectType function.
Chapter 4, Operators 397

Special Operators
Examples Example 1: Object type and object instance. Suppose you want to create an
object type for cars. You want this type of object to be called car, and you
want it to have properties for make, model, and year. To do this, you would
write the following function:

function car(make, model, year) {
this.make = make
this.model = model
this.year = year

}

Now you can create an object called mycar as follows:

mycar = new car("Eagle", "Talon TSi", 1993)

This statement creates mycar and assigns it the specified values for its
properties. Then the value of mycar.make is the string "Eagle", mycar.year is
the integer 1993, and so on.

You can create any number of car objects by calls to new. For example,

kenscar = new car("Nissan", "300ZX", 1992)

Example 2: Object property that is itself another object. Suppose you
define an object called person as follows:

function person(name, age, sex) {
this.name = name
this.age = age
this.sex = sex

}

And then instantiate two new person objects as follows:

rand = new person("Rand McNally", 33, "M")
ken = new person("Ken Jones", 39, "M")

Then you can rewrite the definition of car to include an owner property that
takes a person object, as follows:

function car(make, model, year, owner) {
this.make = make;
this.model = model;
this.year = year;
this.owner = owner;

}

To instantiate the new objects, you then use the following:

car1 = new car("Eagle", "Talon TSi", 1993, rand);
car2 = new car("Nissan", "300ZX", 1992, ken)
398 Server-Side JavaScript Reference

Special Operators
Instead of passing a literal string or integer value when creating the new
objects, the above statements pass the objects rand and ken as the parameters
for the owners. To find out the name of the owner of car2, you can access the
following property:

car2.owner.name

this

The this keyword refers to the current object. In general, in a method this
refers to the calling object.

Syntax this[.propertyName]

Examples Suppose a function called validate validates an object’s value property, given
the object and the high and low values:

function validate(obj, lowval, hival) {
if ((obj.value < lowval) || (obj.value > hival))

alert("Invalid Value!")
}

You could call validate in each form element’s onChange event handler,
using this to pass it the form element, as in the following example:

Enter a number between 18 and 99:
<INPUT TYPE = "text" NAME = "age" SIZE = 3

onChange="validate(this, 18, 99)">

Implemented in JavaScript 1.0

ECMA version ECMA-262
Chapter 4, Operators 399

Special Operators
typeof

The typeof operator is used in either of the following ways:

1. typeof operand
2. typeof (operand)

The typeof operator returns a string indicating the type of the unevaluated
operand. operand is the string, variable, keyword, or object for which the type
is to be returned. The parentheses are optional.

Suppose you define the following variables:

var myFun = new Function("5+2")
var shape="round"
var size=1
var today=new Date()

The typeof operator returns the following results for these variables:

typeof myFun is object
typeof shape is string
typeof size is number
typeof today is object
typeof dontExist is undefined

For the keywords true and null, the typeof operator returns the following
results:

typeof true is boolean
typeof null is object

For a number or string, the typeof operator returns the following results:

typeof 62 is number
typeof ’Hello world’ is string

For property values, the typeof operator returns the type of value the property
contains:

typeof document.lastModified is string
typeof window.length is number
typeof Math.LN2 is number

Implemented in JavaScript 1.1

ECMA version ECMA-262
400 Server-Side JavaScript Reference

Special Operators
For methods and functions, the typeof operator returns results as follows:

typeof blur is function
typeof eval is function
typeof parseInt is function
typeof shape.split is function

For predefined objects, the typeof operator returns results as follows:

typeof Date is function
typeof Function is function
typeof Math is function
typeof Option is function
typeof String is function

void

The void operator is used in either of the following ways:

1. void (expression)
2. void expression

The void operator specifies an expression to be evaluated without returning a
value. expression is a JavaScript expression to evaluate. The parentheses
surrounding the expression are optional, but it is good style to use them.

You can use the void operator to specify an expression as a hypertext link.
The expression is evaluated but is not loaded in place of the current document.

The following code creates a hypertext link that does nothing when the user
clicks it. When the user clicks the link, void(0) evaluates to 0, but that has no
effect in JavaScript.

Click here to do nothing

The following code creates a hypertext link that submits a form when the user
clicks it.

Click here to submit

Implemented in JavaScript 1.1

ECMA version ECMA-262
Chapter 4, Operators 401

Special Operators
402 Server-Side JavaScript Reference

3
LiveConnect Class Reference
• Java Classes, Constructors, and
Methods

404 Server-Side JavaScript Reference

C h a p t e r

5
Chapter 5Java Classes, Constructors, and

Methods
This chapter documents the Java classes used for LiveConnect, along with their
constructors and methods. It is an alphabetical reference for the classes that
allow a Java object to access JavaScript code.

This reference is organized as follows:

• Full entries for each class appear in alphabetical order.

Tables included in the description of each class summarize the constructors
and methods of the class.

• Full entries for the constructors and methods of a class appear in
alphabetical order after the entry for the class.
Chapter 5, Java Classes, Constructors, and Methods 405

JSException.JSException
JSException
The public class JSException extends Exception.

java.lang.Object
|
+----java.lang.Throwable

|
+----java.lang.Exception

|
+----netscape.javascript.JSException

Description JSException is an exception which is thrown when JavaScript code returns an
error.

Constructor
Summary

The netscape.javascript.JSException class has the following
constructors:

The following sections show the declaration and usage of the constructors.

JSException .

Constructor. Constructs a JSException. You specify whether the JSException
has a detail message and other information.

Declaration 1. public JSException()

2. public JSException(String s)

3. public JSException(String s,
String filename,
int lineno,
String source,
int tokenIndex)

Constructor Description

JSException Constructs a JSException. You specify whether the
JSException has a detail message and other information.
406 Server-Side JavaScript Reference

JSException.JSException
Arguments

Description A detail message is a string that describes this particular exception.

Each form constructs a JSException with different information:

• Form 1 of the declaration constructs a JSException without a detail
message.

• Form 2 of the declaration constructs a JSException with a detail message.

• Form 3 of the declaration constructs a JSException with a detail message
and all the other information that usually comes with a JavaScript error.

s The detail message.

filename The URL of the file where the error occurred, if possible.

lineno The line number if the file, if possible.

source The string containing the JavaScript code being evaluated.

tokenIndex The index into the source string where the error occurred.
Chapter 5, Java Classes, Constructors, and Methods 407

JSObject
JSObject
The public final class netscape.javascript.JSObject extends Object.

java.lang.Object
|
+----netscape.javascript.JSObject

Description JavaScript objects are wrapped in an instance of the class
netscape.javascript.JSObject and passed to Java. JSObject allows
Java to manipulate JavaScript objects.

When a JavaScript object is sent to Java, the runtime engine creates a Java
wrapper of type JSObject; when a JSObject is sent from Java to JavaScript,
the runtime engine unwraps it to its original JavaScript object type. The
JSObject class provides a way to invoke JavaScript methods and examine
JavaScript properties.

Any JavaScript data brought into Java is converted to Java data types. When the
JSObject is passed back to JavaScript, the object is unwrapped and can be used
by JavaScript code. See the Server-Side JavaScript Guide for more information
about data type conversions.

Method Summary The netscape.javascript.JSObject class has the following methods:

Method Description

call Calls a JavaScript method.

equals Determines if two JSObject objects refer to the same
instance.

eval Evaluates a JavaScript expression.

getMember Retrieves the value of a property of a JavaScript object.

getSlot Retrieves the value of an array element of a JavaScript object.

removeMember Removes a property of a JavaScript object.

setMember Sets the value of a property of a JavaScript object.

setSlot Sets the value of an array element of a JavaScript object.

toString Converts a JSObject to a string.
408 Server-Side JavaScript Reference

JSObject.call
The netscape.javascript.JSObject class has the following static methods:

The following sections show the declaration and usage of these methods.

call .

Method. Calls a JavaScript method. Equivalent to
“this.methodName(args[0], args[1], ...)” in JavaScript.

Declaration public Object call(String methodName,
Object args[])

equals .

Method. Determines if two JSObject objects refer to the same instance.

Overrides: equals in class java.lang.Object

Declaration public boolean equals(Object obj)

eval .

Method. Evaluates a JavaScript expression. The expression is a string of
JavaScript source code which will be evaluated in the context given by “this”.

Declaration public Object eval(String s)

getMember .

Method. Retrieves the value of a property of a JavaScript object. Equivalent to
“this.name” in JavaScript.

Declaration public Object getMember(String name)

Method Description

getWindow Gets a JSObject for the window containing the given
applet.
Chapter 5, Java Classes, Constructors, and Methods 409

JSObject.getSlot
getSlot .

Method. Retrieves the value of an array element of a JavaScript object.
Equivalent to “this[index]” in JavaScript.

Declaration public Object getSlot(int index)

getWindow .

Static method. Returns a JSObject for the window containing the given applet.
This method is useful in client-side JavaScript only.

Declaration public static JSObject getWindow(Applet applet)

removeMember .

Method. Removes a property of a JavaScript object.

Declaration public void removeMember(String name)

setMember .

Method. Sets the value of a property of a JavaScript object. Equivalent to
“this.name = value” in JavaScript.

Declaration public void setMember(String name,
Object value)

setSlot .

Method. Sets the value of an array element of a JavaScript object. Equivalent to
“this[index] = value” in JavaScript.

Declaration public void setSlot(int index,
Object value)
410 Server-Side JavaScript Reference

JSObject.toString
toString .

Method. Converts a JSObject to a String.

Overrides: toString in class java.lang.Object

Declaration public String toString()
Chapter 5, Java Classes, Constructors, and Methods 411

JSObject.toString
412 Server-Side JavaScript Reference

4
Appendixes
• Reserved Words

414 Server-Side JavaScript Reference

Appendix

A
Appendix A Reserved Words
This appendix lists the reserved words in JavaScript.

The reserved words in this list cannot be used as JavaScript variables,
functions, methods, or object names. Some of these words are keywords used
in JavaScript; others are reserved for future use.

abstract
boolean
break
byte
case
catch
char
class
const
continue
debugger
default
delete
do
double

else
enum
export
extends
false
final
finally
float
for
function
goto
if
implements
import
in

instanceof
int
interface
long
native
new
null
package
private
protected
public
return
short
static
super

switch
synchronized
this
throw
throws
transient
true
try
typeof
var
void
volatile
while
with
Appendix A, Reserved Words 415

416 Server-Side JavaScript Reference

Index

Symbols
- (bitwise NOT) operator 389

- (unary negation) operator 388

-- (decrement) operator 388

! (logical NOT) operator 392

!= (not equal) operator 386

$& property 252

$* property 252

$+ property 252

$_ property 252

$‘ property 252

$’ property 252

$1, ..., $9 properties 251

% (modulus) operator 387

%= operator 385

&& (logical AND) operator 392

& (bitwise AND) operator 389

&= operator 385

) 409

*/ comment 366

*= operator 385

+ (string concatenation) operator 394

++ (increment) operator 388

+= (string concatenation) operator 394

+= operator 385

/* comment 366

// comment 366

/= operator 385

< (less than) operator 386

<< (left shift) operator 389, 391

<<= operator 385

<= (less than or equal) operator 386

== (equal) operator 386

-= operator 385

> (greater than) operator 386

>= (greater than or equal) operator 386

>> (sign-propagating right shift) operator 389,
391

>>= operator 385

>>> (zero-fill right shift) operator 389, 391

>>>= operator 385

?: (conditional) operator 394

^ (bitwise XOR) operator 389

^= operator 385

| (bitwise OR) operator 389

|= operator 385

|| (logical OR) operator 392

‚ (comma) operator 395

A
abs method 201

acos method 201

addClient function 335

addResponseHeader function 336

agent property 267

anchor method 300

anchors, creating 300

AND (&&) logical operator 392

AND (&) bitwise operator 389

arguments array 177
Index 417

arithmetic operators 387
% (modulus) 387
-- (decrement) 388
- (unary negation) 388
++ (increment) 388

arity property 182

Array object 22

arrays
Array object 22
creating from strings 321
deleting elements 395
dense 22
increasing length of 24
indexing 23
initial length of 23, 25
Java 188
joining 29
length of, determining 30, 313
referring to elements 23
sorting 36

asin method 202

assignment operators 384
%= 385
&= 385
*= 385
+= 385
/= 385
<<= 385
-= 385
>>= 385
>>>= 385
^= 385
|= 385

atan2 method 203

atan method 203

AUTH_TYPE CGI variable 355

B
Bcc property 282

beginTransaction method
Connection object 57
database object 91

BIG HTML tag 301

big method 301

binary data, converting to string 153

bitwise operators 389
& (AND) 389
- (NOT) 389
<< (left shift) 389, 391
>> (sign-propagating right shift) 389, 391
>>> (zero-fill right shift) 389, 391
^ (XOR) 389
| (OR) 389
logical 390
shift 390

BLINK HTML tag 301

blink method 301

blob function 337

blobImage method 44

blobLink method 46

blob object 43–47

Body property 283

BOLD HTML tag 302

bold method 302

Boolean object 48

break statement 365

bytes, converting to string 153

byteToString method 153

C
callC function 338

callee property 180

caller property 180

call method (LiveConnect) 409

Cc property 283

ceil method 204

C functions
calling 338
registering 353
418 Server-Side JavaScript Reference

CGI variables
AUTH_TYPE 355
HTTPS 355
HTTPS_KEYSIZE 355
HTTPS_SECRETKEYSIZE 355
PATH_TRANSLATED 355
QUERY_STRING 355
REMOTE_ADDR 355
REMOTE_HOST 355
REMOTE_USER 355
REQUEST_METHOD 355
SCRIPT_NAME 356
SERVER_NAME 356
SERVER_PORT 356
SERVER_PROTOCOL 356
SERVER_URL 356

charAt method 303

charCodeAt method 304

classes, accessing Java 191, 237

className property 238

clearError method 155

client, preserving properties 335

client object 52–55
getting identifier 356
maintaining 335

close method
Cursor object 77
File object 155
Resultset object 275
Stproc object 293

columnName method
Cursor object 78
Resultset object 276

columns method
Cursor object 79
Resultset object 277

comma (‚) operator 395

comments 366

comment statement 366

commitTransaction method
Connection object 59
database object 93

comparison operators 385
!= (not equal) 386
< (less than) 386
<= (less than or equal) 386
== (equal) 386
> (greater than) 386
>= (greater than or equal) 386

compile method 252

concat method
Array object 27
String object 305

conditional (?:) operator 394

connected method
Connection object 60
database object 98
DbPool object 138

connection method 139

Connection object 56–74

connect method
database object 94
DbPool object 135

constructor property
Array object 28
Boolean object 49
Date object 118
File object 156
Function object 183
Lock object 196
Number object 221
Object object 228
RegExp object 253
SendMail object 283
String object 305

containership
specifying default object 379
with statement and 379

continue statement 367
Index 419

conventions 363

cos method 205

cursorColumn property 80

cursor method
Connection object 61
database object 99

Cursor object 75–87

D
database object 88–114

Date object 115

dates
converting to string 129
Date object 115
day of week 119
defining 115
milliseconds since 1970 131
month 120

DbPool object 133–150
scope 133

debug function 339

decrement (--) operator 388

default objects, specifying 379

delete operator 395

deleteResponseHeader function 340

deleteRow method 81

deleting
array elements 395
objects 395
properties 395

dense arrays 22

destroy method 54

directories, conventions used 16

disconnect method
database object 101
DbPool object 140

DNS 355

do...while statement 368

document conventions 16

E
environment variables

accessing 355

eof method 156

E property 206

equals method (LiveConnect 409

errorCode method 283

errorMessage method 284

error method 157

errors, status 155

errors,status 152

Errorsto property 284

escape function 340

Euler’s constant 206
raised to a power 206

eval function 341

eval method
LiveConnect 409
Object object 229

exceptions, LiveConnect 406

exec method 254

execute method
Connection object 63
database object 102

exists method 158

expiration method 55

exp method 206

export statement 369

expressions that return no value 401

F
File object 151–172

files, error status 152, 155

fixed method 306

floor method 207

flush function 344

flush method 159
420 Server-Side JavaScript Reference

fontcolor method 306

fonts
big 301
blinking 301
bold 302

fontsize method 308

for...in statement 371

for loops
continuation of 367
syntax of 370
termination of 365

for statement 370

fromCharCode method 309

From property 284

Function object 173
specifying arguments for 174
as variable value 175

functions
arguments array 177
callee property 180
caller property 180
calling external 338
declaring 372
Function object 173
length property 181
list of 333
nesting 175, 176
number of arguments 313
return values of 375
top-level 333
as variable value 175

function statement 372

G
getDate method 118

getDay method 119

getHours method 119

getLength method 159

getMember method (LiveConnect) 409

getMinutes method 120

getMonth method 120

getOptionValueCount function 346

getOptionValue function 345

getPosition method 160

getSeconds method 121

getSlot method (LiveConnect) 410

getTime method 121

getTimezoneOffset method 122

getWindow method (LiveConnect) 410

getYear method 122

global object 333

global property 257

GMT time, defined, local time, defined 116

H
hostname 356

hostname property 289

host property 288

HTML, generating 360

HTML tags
BIG 301
BLINK 301
BOLD 302
IMG 44

HTTP method 355

HTTP protocol level 356

HTTPS_KEYSIZE CGI variable 355

HTTPS_SECRETKEYSIZE CGI variable 355

HTTPS CGI variable 355

HTTP user 355

I
if...else statement 373

ignoreCase property 258

imageX property 269

imageY property 269
Index 421

IMG HTML tag 44

import statement 373

increment (++) operator 388

indexOf method 309

index property 29

in keyword 371

inputName property 270

input property
Array object 29
RegExp object 258

insertRow method 82

ip property 270

isNaN function 347

isValid method 196

italics method 311

J
JavaArray object 188

JavaClass object 191

java object 187

JavaObject object 192

JavaPackage object 194

java property 239

JavaScript
background for using 13
debugging 339
reserved words 415
versions 14

join method 29

JSException class 406

JSException constructor (LiveConnect) 406

JSObject class 408

K
keywords 415

L
label statement 374

lastIndexOf method 312

lastIndex property 259

lastMatch property 260

lastParen property 260

leftContext property 261

left shift (<<) operator 389, 391

length property
arguments array 181
Array object 30
Function object 183
JavaArray object 189
String object 313

link method 314

links
anchors for 300
for BLOb data 43, 46
with no destination 401

LiveConnect
JavaArray object 188
JavaClass object 191
java object 187
JavaObject object 192
JavaPackage object 194
JSException class 406
JSObject class 408
netscape object 218
Packages object 237
sun object 332

LN10 property 208

LN2 property 208

lock method
Lock object 197
project object 242
server object 289

Lock object 195–198

LOG10E property 209

LOG2E property 210
422 Server-Side JavaScript Reference

logarithms
base of natural 206
natural logarithm of 10 208

logical operators 392
! (NOT) 392
&& (AND) 392
|| (OR) 392
short-circuit evaluation 393

log method 209

loops
continuation of 367
for 370
termination of 365
while 378

lowercase 298, 329

M
majorErrorCode method

Connection object 65
database object 103
DbPool object 143

majorErrorMessage method
Connection object 67
database object 106
DbPool object 146

match method 314

Math object 199

MAX_VALUE property 221

max method 210

method property 271

methods, top-level 333

MIN_VALUE property 222

min method 211

minorErrorCode method
Connection object 68
database object 107
DbPool object 146

minorErrorMessage method
Connection object 68
database object 107
DbPool object 147

modulo function 387

modulus (%) operator 387

multiline property 261

multimedia and blobLink 46

N
NaN property

Number object 222

natural logarithms
base of 206
e 206
e raised to a power 206
of 10 208

NEGATIVE_INFINITY property 223

nesting functions 175, 176

netscape.javascript.JSException class 406

netscape.javascript.JSObject class 408

netscape object 218

netscape property 239

new operator 397

next method
Cursor object 84
Resultset object 278

NOT (!) logical operator 392

NOT (-) bitwise operator 389

Number function 348

Number object 219

numbers
greater of two 210
identifying 347
Number object 219
obtaining integer 204
parsing from strings 349
square root 215
Index 423

O
Object object 227

objects
creating new types 397
deleting 395
establishing default 379
getting list of properties for 371
iterating properties 371
Java, accessing 192

open method 162

operators 381–401
arithmetic 387
assignment 384
bitwise 389
comparison 385
list of 381
logical 392
special 394
string 394

OR (|) bitwise operator 389

OR (||) logical operator 392

Organization property 285

outParamCount method 293

outParameters method 274, 294

output buffer, flushing 344

P
packages, accessing Java 194

Packages object 237

parseFloat function 53, 349

parseInt function 53, 350

parse method 123

PATH_INFO CGI variable 355

PATH_TRANSLATED CGI variable 355

PI property 212

pop method 31

port property 290

POSITIVE_INFINITY property 224

pow method 212

project object 241–243

properties
deleting 395
getting list of for an object 371
iterating for an object 371
preserving client values 335
top-level 333

protocol property
request object 272
server object 290

prototype property
Array object 31
Boolean object 49
connection object 69
Cursor object 85
database object 108
Date object 124
DbPool object 147
File object 163
Function object 183
Lock object 197
Number object 225
Object object 229
RegExp object 262
Resultset object 279
SendMail object 285
Stproc object 294
String object 316

push method 31

Q
QUERY_STRING CGI variable 355

R
random method 213

readByte method 165

readln method 166

read method 164

redirect function 352

RegExp object 244
424 Server-Side JavaScript Reference

registerCFunction function 353

regular expressions 244

release method 69

REMOTE_ADDR CGI variable 355

REMOTE_HOST CGI variable 355

REMOTE_USER CGI variable 355

removeMember method (LiveConnect) 410

replace method 316

Replyto property 285

request, changing 352

REQUEST_METHOD CGI variable 355

request object 265–272

reserved words 415

response headers, manipulating 336

resultSet method 295

Resultset object 273–279

return statement 375

returnValue method 274, 295

reverse method 32

rightContext property 262

rollbackTransaction method
Connection object 70
database object 108

round method 213

S
scope of DbPool object 133

SCRIPT_NAME CGI variable 356

search method 318

selection lists, number of options 313

SELECT tag 345

SendMail object 280–286

send method 285

server, global data for 287

SERVER_NAME CGI variable 356

SERVER_PORT CGI variable 356

SERVER_PROTOCOL CGI variable 356

SERVER_URL CGI variable 356

server object 287–291

session key 355

setDate method 125

setHours method 125

setMember method (LiveConnect) 410

setMinutes method 126

setMonth method 126

setPosition method 167

setSeconds method 127

setSlot method (LiveConnect) 410

setTime method 127

setYear method 128

shift method 33

short-circuit evaluation 393

sign-propagating right shift (>>) operator 389,
391

sin method 214

slice method 34, 319

small method 320

Smtpserver property 286

sort method 36

source property 262

special operators 394

splice method 39

split method 321

SQLTable method
Connection object 71
database object 109

SQRT1_2 property 216

SQRT2 property 216

sqrt method 215

square roots 215

ssjs_generateClientID function 354

ssjs_getCGIVariable function 354
Index 425

ssjs_getClientID function 356

statements 363–380
syntax conventions 363

storedProcArgs method
database object 112
DbPool object 148

storedProc method
Connection object 73
database object 111

Stproc object 292–295

strike method 323

String function 358

String object 296

string operators 394

strings
blinking 301
bold 302
character position within 297, 303, 309
concatenating 394
converting from bytes 153
converting from date 129
converting to floating point 349
creating from arrays 29
defining 296
fontsize of 301
length of 313
lowercase 298, 329
parsing 349
splitting into arrays 321
String object 296

stringToByte method 168

Subject property 286

sub method 324

substring method 326

substr method 325

sun object 332

sun property 240

sup method 328

switch statement 376

syntax conventions 363

T
tan method 217

TCP port 356

test method 263

this keyword 399

times
Date object 115
defining 115
minutes 120

toGMTString method 128

toLocaleString method 129

toLowerCase method 329

top-level properties and functions 333

To property 286

toString method
Array object 40
Boolean object 50
built-in 231
Connection object 73
database object 113
Date object 130
DbPool object 149
Function object 185
JavaArray object 190
LiveConnect 411
Number object 225
Object object 230
RegExp object 263
String object 330
user-defined 231

toUpperCase method 330

trace facility 339

transactions
committing 97, 142
overview 89
rolling back 97, 142
scope of 57, 59, 70, 89, 91, 93, 108

typeof operator 400
426 Server-Side JavaScript Reference

U
unary negation (-) operator 388

unescape function 359

unique identifier
creating for client object 356

unlock method
Lock object 198
project object 243
server object 291

unshift method 41

unwatch method 233

updateRow method 86

URLs 356
adding information to 335
conventions used 16
escaping characters in 340
redirecting to 352

UTC method 131

UTC time, defined 116

V
valueOf method

Array object 42
Boolean object 50
Date object 132
Function object 186
Number object 226
Object object 234
RegExp object 264
String object 331

variables
declaring 377
initializing 377
syntax for declaring 377

var statement 377

versions of JavaScript 14

void operator 401

W
watch method 235

while loops
continuation of 367
syntax of 378
termination of 365

while statement 378

with statement 379

writeByte method 170

write function 360
and flush 344

writeln method 171

write method 169

X
XOR (^) operator 389

Z
zero-fill right shift (>>>) operator 389, 391
Index 427

	Server-Side JavaScript Reference
	New Features in this Release
	Contents
	About this Book
	New Features in this Release
	What You Should Already Know
	JavaScript Versions
	Where to Find JavaScript Information
	Document Conventions

	I. Object Reference
	1. Objects, Methods, and Properties
	Array
	concat
	constructor
	index
	input
	join
	length
	pop
	prototype
	push
	reverse
	shift
	slice
	sort
	splice
	toString
	unshift
	valueOf

	blob
	blobImage
	blobLink

	Boolean
	constructor
	prototype
	toString
	valueOf

	client
	destroy
	expiration

	Connection
	beginTransaction
	commitTransaction
	connected
	cursor
	execute
	majorErrorCode
	majorErrorMessage
	minorErrorCode
	minorErrorMessage
	prototype
	release
	rollbackTransaction
	SQLTable
	storedProc
	toString

	Cursor
	close
	columnName
	columns
	cursorColumn
	deleteRow
	insertRow
	next
	prototype
	updateRow

	database
	beginTransaction
	commitTransaction
	connect
	connected
	cursor
	disconnect
	execute
	majorErrorCode
	majorErrorMessage
	minorErrorCode
	minorErrorMessage
	prototype
	rollbackTransaction
	SQLTable
	storedProc
	storedProcArgs
	toString

	Date
	constructor
	getDate
	getDay
	getHours
	getMinutes
	getMonth
	getSeconds
	getTime
	getTimezoneOffset
	getYear
	parse
	prototype
	setDate
	setHours
	setMinutes
	setMonth
	setSeconds
	setTime
	setYear
	toGMTString
	toLocaleString
	toString
	UTC
	valueOf

	DbPool
	connect
	connected
	connection
	disconnect
	DbPool
	majorErrorCode
	majorErrorMessage
	minorErrorCode
	minorErrorMessage
	prototype
	storedProcArgs
	toString

	File
	byteToString
	clearError
	close
	constructor
	eof
	error
	exists
	flush
	getLength
	getPosition
	open
	prototype
	read
	readByte
	readln
	setPosition
	stringToByte
	write
	writeByte
	writeln

	Function
	arguments
	arguments.callee
	arguments.caller
	arguments.length
	arity
	constructor
	length
	prototype
	toString
	valueOf

	java
	JavaArray
	length
	toString

	JavaClass
	JavaObject
	JavaPackage
	Lock
	constructor
	isValid
	lock
	prototype
	unlock

	Math
	abs
	acos
	asin
	atan
	atan2
	ceil
	cos
	E
	exp
	floor
	LN10
	LN2
	log
	LOG10E
	LOG2E
	max
	min
	PI
	pow
	random
	round
	sin
	sqrt
	SQRT1_2
	SQRT2
	tan

	netscape
	Number
	constructor
	MAX_VALUE
	MIN_VALUE
	NaN
	NEGATIVE_INFINITY
	POSITIVE_INFINITY
	prototype
	toString
	valueOf

	Object
	constructor
	eval
	prototype
	toString
	unwatch
	valueOf
	watch

	Packages
	className
	java
	netscape
	sun

	project
	lock
	unlock

	RegExp
	$1, ..., $9
	$_
	$*
	$&
	$+
	$‘
	$’
	compile
	constructor
	exec
	global
	ignoreCase
	input
	lastIndex
	lastMatch
	lastParen
	leftContext
	multiline
	prototype
	rightContext
	source
	test
	toString
	valueOf

	request
	agent
	imageX
	imageY
	inputName
	ip
	method
	protocol

	Resultset
	close
	columnName
	columns
	next
	prototype

	SendMail
	Bcc
	Body
	Cc
	constructor
	errorCode
	errorMessage
	Errorsto
	From
	Organization
	prototype
	Replyto
	send
	Smtpserver
	Subject
	To

	server
	host
	hostname
	lock
	port
	protocol
	unlock

	Stproc
	close
	outParamCount
	outParameters
	prototype
	resultSet
	returnValue

	String
	anchor
	big
	blink
	bold
	charAt
	charCodeAt
	concat
	constructor
	fixed
	fontcolor
	fontsize
	fromCharCode
	indexOf
	italics
	lastIndexOf
	length
	link
	match
	prototype
	replace
	search
	slice
	small
	split
	strike
	sub
	substr
	substring
	sup
	toLowerCase
	toString
	toUpperCase
	valueOf

	sun

	2. Top-Level Functions
	addClient
	addResponseHeader
	blob
	callC
	debug
	deleteResponseHeader
	escape
	eval
	flush
	getOptionValue
	getOptionValueCount
	isNaN
	Number
	parseFloat
	parseInt
	redirect
	registerCFunction
	ssjs_generateClientID
	ssjs_getCGIVariable
	ssjs_getClientID
	String
	unescape
	write

	II. Language Elements
	3. Statements
	break
	comment
	continue
	do...while
	export
	for
	for...in
	function
	if...else
	import
	label
	return
	switch
	var
	while
	with

	4. Operators
	Assignment Operators
	Comparison Operators
	Arithmetic Operators
	% (Modulus)
	++ (Increment)
	-- (Decrement)
	- (Unary Negation)

	Bitwise Operators
	Bitwise Logical Operators
	Bitwise Shift Operators

	Logical Operators
	String Operators
	Special Operators
	?: (Conditional operator)
	, (Comma operator)
	delete
	new
	this
	typeof
	void

	III. LiveConnect Class Reference
	5. Java Classes, Constructors, and Methods
	JSException
	JSException

	JSObject
	call
	equals
	eval
	getMember
	getSlot
	getWindow
	removeMember
	setMember
	setSlot
	toString

	IV. Appendixes
	A. Reserved Words

	Index

