JavaScript is required to for searching.
Skip Navigation Links
Exit Print View
System Administration Guide: Network Services     Oracle Solaris 11 Express 11/10
search filter icon
search icon

Document Information


Part I Network Services Topics

1.  Network Service (Overview)

2.  Managing Web Cache Servers

3.  Time-Related Services

Part II Accessing Network File Systems Topics

4.  Managing Network File Systems (Overview)

5.  Network File System Administration (Tasks)

6.  Accessing Network File Systems (Reference)

NFS Files

/etc/default/nfslogd File

/etc/nfs/nfslog.conf File

NFS Daemons

automountd Daemon

lockd Daemon

mountd Daemon

nfs4cbd Daemon

nfsd Daemon

nfslogd Daemon

nfsmapid Daemon

Configuration Files and nfsmapid

Precedence Rules

nfsmapid and DNS TXT Records

Checking for the NFS Version 4 Domain

Configuring the NFS Version 4 Default Domain

Additional Information About nfsmapid

reparsed Daemon

statd Daemon

NFS Commands

automount Command

clear_locks Command

fsstat Command

mount Command

mount Options for NFS File Systems

Using the mount Command

umount Command

mountall Command

umountall Command

sharemgr Command

create Subcommand

delete Subcommand

list Subcommand

show Subcommand

set Subcommand

unset Subcommand

add-share Subcommand

move-share Subcommand

remove-share Subcommand

set-share Subcommand

enable Subcommand

disable Subcommand

start Subcommand

stop Subcommand

share Subcommand

unshare Subcommand

-h Feature

sharectl Command

set Subcommand

get Subcommand

status Subcommand

share Command

Non-File-System-Specific share Options

NFS-Specific share Options

Setting Access Lists With the share Command

unshare Command

shareall Command

unshareall Command

showmount Command

setmnt Command

nfsref Command

Commands for Troubleshooting NFS Problems

nfsstat Command

pstack Command

rpcinfo Command

snoop Command

truss Command


How the NFS Service Works

Version Negotiation in NFS

Features in NFS Version 4

Unsharing and Resharing a File System in NFS Version 4

File-System Namespace in NFS Version 4

Volatile File Handles in NFS Version 4

Client Recovery in NFS Version 4

OPEN Share Support in NFS Version 4

Delegation in NFS Version 4

ACLs and nfsmapid in NFS Version 4

UDP and TCP Negotiation

File Transfer Size Negotiation

How File Systems Are Mounted

Effects of the -public Option and NFS URLs When Mounting

Client-Side Failover

Failover Terminology

What Is a Replicated File System?

Failover and NFS Locking

Client-Side Failover in NFS Version 4

Large Files

How NFS Server Logging Works

How the WebNFS Service Works

How WebNFS Security Negotiation Works

WebNFS Limitations With Web Browser Use

Secure NFS System

Secure RPC

DH Authentication

KERB Authentication

Using Secure RPC With NFS

How Mirrormounts Work

When to Use Mirrormounts

Mounting a File System Using Mirrormounts

Unmounting a File System Using Mirrormounts

How NFS Referrals Work

When to Use NFS Referrals?

Creating an NFS Referral

Removing an NFS Referral

Autofs Maps

Master Autofs Map

Mount Point /home

Mount Point /net

Direct Autofs Maps

Mount Point /-

Indirect Autofs Maps

How Autofs Works

How Autofs Navigates Through the Network (Maps)

How Autofs Starts the Navigation Process (Master Map)

Autofs Mount Process

Simple Autofs Mount

Hierarchical Mounting

Autofs Unmounting

How Autofs Selects the Nearest Read-Only Files for Clients (Multiple Locations)

Autofs and Weighting

Variables in a Map Entry

Maps That Refer to Other Maps

Executable Autofs Maps

Modifying How Autofs Navigates the Network (Modifying Maps)

Default Autofs Behavior With Name Services

Autofs Reference

Autofs and Metacharacters

Ampersand (&)

Asterisk (*)

Autofs and Special Characters

Part III SLP Topics

7.  SLP (Overview)

8.  Planning and Enabling SLP (Tasks)

9.  Administering SLP (Tasks)

10.  Incorporating Legacy Services

11.  SLP (Reference)

Part IV Mail Services Topics

12.  Mail Services (Overview)

13.  Mail Services (Tasks)

14.  Mail Services (Reference)

Part V Serial Networking Topics

15.  Solaris PPP 4.0 (Overview)

16.  Planning for the PPP Link (Tasks)

17.  Setting Up a Dial-up PPP Link (Tasks)

18.  Setting Up a Leased-Line PPP Link (Tasks)

19.  Setting Up PPP Authentication (Tasks)

20.  Setting Up a PPPoE Tunnel (Tasks)

21.  Fixing Common PPP Problems (Tasks)

22.  Solaris PPP 4.0 (Reference)

23.  Migrating From Asynchronous Solaris PPP to Solaris PPP 4.0 (Tasks)

24.  UUCP (Overview)

25.  Administering UUCP (Tasks)

26.  UUCP (Reference)

Part VI Working With Remote Systems Topics

27.  Working With Remote Systems (Overview)

28.  Administering the FTP Server (Tasks)

29.  Accessing Remote Systems (Tasks)

Part VII Monitoring Network Services Topics

30.  Monitoring Network Performance (Tasks)




Starting in the Oracle Solaris 11 release, the default transport for NFS is the Remote Direct Memory Access (RDMA) protocol, which is a technology for memory-to-memory transfer of data over high-speed networks. Specifically, RDMA provides remote data transfer directly to and from memory without CPU intervention. RDMA also provides direct data placement, which eliminates data copies and, therefore, further eliminates CPU intervention. Thus, RDMA relieves not only the host CPU, but also reduces contention for the host memory and I/O buses. To provide this capability, RDMA combines the interconnect I/O technology of InfiniBand on SPARC platforms with the Oracle Solaris operating system. The following figure shows the relationship of RDMA to other protocols, such as UDP and TCP.

Figure 6-1 Relationship of RDMA to Other Protocols

The context describes the graphic.

Because RDMA is the default transport protocol for NFS, no special share or mount options are required to use RDMA on a client or server. The existing automounter maps, vfstab and dfstab, work with the RDMA transport. NFS mounts over the RDMA transport occur transparently when InfiniBand connectivity exists on SPARC platforms between the client and the server. If the RDMA transport is not available on both the client and the server, the TCP transport is the initial fallback, followed by UDP if TCP is unavailable. Note, however, that if you use the proto=rdma mount option, NFS mounts are forced to use RDMA only.

To specify that TCP and UDP be used only, you can use the proto=tcp/udp mount option. This option disables RDMA on an NFS client. For more information about NFS mount options, see the mount_nfs(1M) man page and mount Command.

Note - RDMA for InfiniBand uses the IP addressing format and the IP lookup infrastructure to specify peers. However, because RDMA is a separate protocol stack, it does not fully implement all IP semantics. For example, RDMA does not use IP addressing to communicate with peers. Therefore, RDMA might bypass configurations for various security policies that are based on IP addresses. However, the NFS and RPC administrative policies, such as mount restrictions and secure RPC, are not bypassed.