The script content on this page is for navigation purposes only and does not alter the content in any way.
The script content on this page is for navigation purposes only and does not alter the content in any way.
The script content on this page is for navigation purposes only and does not alter the content in any way.
The script content on this page is for navigation purposes only and does not alter the content in any way.
XBRL Extension Developer's Guide
11g Release 2 (11.2)
E17070-04
February 2012
This manual describes XBRL Extension to Oracle XML DB.
Oracle Database XBRL Extension Developer's Guide, 11g Release 2 (11.2)
E17070-04
Copyright © 2010, 2012, Oracle and/or its affiliates. All rights reserved.
Primary Author: Drew Adams
Contributor: Sriram Krishnamurthy, Ying Lu, Qin Yu
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This manual describes XBRL Extension to Oracle XML DB.
This manual is intended for developers building XBRL applications.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following Oracle resources:
To download free release notes, installation documentation, white papers, or other collateral material, visit Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at
If you have a username and password for OTN, then you can go directly to the documentation section of the OTN Web site at
For additional information, see:
http://www.w3.org/TR/xml/
– XML (language) http://www.xml.com/pub/a/98/10/guide0.html
– XML introduction http://www.w3.org/XML/Schema
– XML Schema http://www.w3.org/2001/XMLSchema
– XML Schema http://www.w3.org/TR/xmlschema-0/
– XML Schema: primer http://www.w3.org/TR/xmlschema-1/
– XML Schema: structures http://www.w3.org/TR/xmlschema-2/
– XML Schema: data types http://www.oasis-open.org/cover/schemas.html
– XML Schema http://www.xml.com/pub/a/2000/11/29/schemas/part1.html
– XML Schema http://xml.coverpages.org/xmlMediaMIME.html
– media/MIME types http://www.w3.org/TR/xptr/
– XPointer http://www.w3.org/TR/xpath
– XPath 1.0 http://www.w3.org/TR/xpath20/
– XPath 2.0 http://www.zvon.org/xxl/XPathTutorial/General/examples.html
– XPath http://www.oreilly.com/catalog/xmlnut/chapter/ch09.html
http://www.w3.org/TR/2002/NOTE-unicode-xml-20020218/
– Unicode in XML http://www.w3.org/TR/xml-names/
– XML namespaces http://www.w3.org/TR/xml-infoset/
– information sets http://www.w3.org/DOM/
– Document Object Model (DOM) http://www.w3.org/TR/xslt
– XSLT http://www.w3.org/TR/xsl
– XSL http://www.oasis-open.org/cover/xsl.html
– XSL http://www.zvon.org/xxl/XSLTutorial/Books/Book1/index.html
– XSL http://www.w3.org/2002/ws/Activity.html
– Web services http://www.ietf.org/rfc/rfc959.txt
– RFC 959: FTP Protocol Specification http://java.sun.com/xml/tutorial_intro.html
– XML and Java Note: Throughout this manual, "XML Schema" refers to the XML Schema 1.0 recommendation,http://www.w3.org/XML/Schema . |
The following placeholders are used in this book, in particular in Chapter 5, "Installing XBRL Extension to Oracle XML DB" and Chapter 4, "Administering XBRL Extension to Oracle XML DB".
sys_pass
– System password. xb_sys_pass
– Password for database user XBRLSYS
, which is the user that creates and administers all XBRL repositories. xb_sys_ts
– A tablespace for user XBRLSYS
. For Oracle Database 11g Release 2 (11.2.0.2) or later, the tablespace must use automatic segment space management. xb_sys_tmp_ts
– A temporary tablespace for user XBRLSYS
. xb_rep
– Name of an XBRL repository, which is also a database user name. (See "Creating an XBRL Repository".) xb_rep_pass
– Password for database user xb_rep
. xb_rep_ts
– A tablespace for XBRL repository xb_rep
. For Oracle Database 11g Release 2 (11.2.0.2) or later, the tablespace must use automatic segment space management. xb_rep_idx_ts
– Tablespace for the XMLIndex
index storage tables for XBRL repository xb_rep
. xb_rep_tmp_ts
– A temporary tablespace for XBRL repository xb_rep
. xb_protocols
– Whether or not to use Oracle XML DB Repository to provide protocol access. TRUE
means use it; FALSE
means do not use it. If XBRL repository xb_rep
is likely to contain more than 100,000 documents, then use FALSE
for best performance. obiee_home
– Directory where Oracle Business Intelligence Suite Enterprise Edition (OBIEE) is installed. obieedata_home
– Directory where OBIEE data is stored. oracle_client
– Name of your Oracle client for OBIEE. For example, OracleClient11g_home1. oracle_client_dir
– Directory where your Oracle client for OBIEE is installed. See Also: Oracle Database Administrator's Guide for information about automatic segment space management |
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
The code examples in this book are for illustration only. In many cases, however, you can copy and paste parts of examples and run them in your environment.	
To promote readability, especially of lengthy or complex XML data, output is sometimes shown pretty-printed (formatted) in code examples.	
When examining the examples in this book, keep in mind the following:	
For example, if you create a table named my_table	
in SQL without using double-quotes, then you must refer to it in XML code as "MY_TABLE	
".	
This chapter describes the new features and functionality, enhancements, APIs, and product integration support added to XBRL Extension to Oracle XML DB.	
It also describes the deprecation of certain XBRL Extension to Oracle XML DB constructs.	
The following features are new in XBRL Extension to Oracle XML DB 11g Release 3 (11.2.0.2.2).	
XMLIndex	
index storage tables. The following features are new in XBRL Extension to Oracle XML DB 11g Release 2 (11.2.0.2.1).	
DBMS_ORAXBRLV	
are now unique across multiple invocations. DBMS_ORAXBRLV	
to retrieve the list of table (view) names of a generated star schema. DBMS_ORAXBRL	
to retrieve a discoverable taxonomy set (DTS). The following constructs are deprecated in XBRL Extension to Oracle XML DB 11g Release 2 (11.2.0.2.1). They are still supported for backward compatibility, but Oracle recommends that you do not use them in new applications. They will be desupported in a future release.	
createFactTable	
. Use createHyperCubeFactTable	
and createStarSchemaFromFact	
instead. createSuperFactTable	
. Use createHyperCubeSuperFactTable	
and createStarSchemaFromHC	
instead. This chapter introduces XBRL Extension to Oracle XML DB. It covers these topics:	
XBRL (eXtensible Business Reporting Language) is a language for the electronic communication of business and financial data. It is used as the format for business reporting around the world. XBRL Extension to Oracle XML DB extends Oracle Database to serve as a comprehensive platform for managing XBRL content.	
XBRL provides significant benefits in the preparation, analysis, and communication of business information. XBRL offers greater efficiency and improved accuracy and reliability for all those involved in supplying or using financial data. With growing adoption of XBRL, and with financial reports being generated on a regular basis, there is a growing volume of XBRL content to be stored, managed, and queried efficiently.	
XBRL Extension to Oracle XML DB helps you manage XBRL content. It lets you create multiple XBRL repositories and project XBRL data relationally or query it in various ways. It can help you improve operations on aggregated business and financial reports such as extraction, transformation, and loading (ETL); business intelligence (BI); and online analytical processing (OLAP).	
XBRL Extension to Oracle XML DB provides the following features.	
This section describes the architecture of XBRL Extension to Oracle XML DB.	
The typical lifecycle of XBRL content is depicted in Figure 1-1. XBRL lets you reuse and repurpose content across a variety of use cases. These use cases include filing organizations generating financial reports for submission, regulatory bodies validating submitted financial reports, and analysts aggregating and analyzing financial reports.	
The use cases have typically been handled by transforming the content to representations that are tailored for each use case (decomposed, relational forms; in-memory representations; and so on). XBRL Extension to Oracle XML DB helps simplify the reuse of XBRL content across a variety of XBRL use cases and applications, by providing a single repository for XBRL content that preserves the XBRL representation and semantics while also providing services to address the full breadth of the use case requirements.	
The architecture of XBRL Extension to Oracle XML DB is shown in Figure 1-2. XBRL Extension to Oracle XML DB is composed of the following:	
XBRL Extension to Oracle XML DB integrates easily with Oracle Business Intelligence Suite Enterprise Edition (OBIEE) for analytics and with interactive development environments (IDEs) and design tools for creating and editing XBRL taxonomies.	
Figure 1-2 Architecture of XBRL Extension to Oracle XML DB	
This section provides an overview of the main components of XBRL Extension to Oracle XML DB, which provide storage, querying, services, processing, integration with Oracle Business Intelligence Suite Enterprise Edition (OBIEE), and an integrated taxonomy design environment.	
XBRL Extension to Oracle XML DB provides storage for XBRL content in Oracle Database, preserving its XML and document representations so that the content can be stored with minimal transformation. XBRL content is recognized at the time of ingestion and populates metadata structures that the database uses to enforce the integrity of the XBRL content and to provide alternative representational views of it.	
XBRL Extension to Oracle XML DB leverages Oracle XML DB to provide XML-based queryability and protocol access. You can use a range of APIs and protocols to access XBRL content, including Oracle OCI, JDBC, ODP.NET, and Web services (SOAP and REST). XBRL Extension to Oracle XML DB also supports file-and-folder access to XBRL content, using WebDAV. Specialized indexing mechanisms expose live relational views of XBRL content, to support integration with relational applications and access using SQL. The traditional strengths of Oracle Database, including Oracle Real Application Clusters (Oracle RAC), Information Lifecycle Management (ILM), and partitioning, can be brought to bear on XBRL content.	
XBRL Extension to Oracle XML DB stores XBRL content in its original XML representation. It leverages Oracle XML DB to provide XML-based processing directly on the documents as submitted and stored, for example, for exchange purposes.	
XBRL Extension to Oracle XML DB provides a relational representational view of your XBRL content, by exposing a third normal form logical data model with a set of base entities. Specialized indexing mechanisms are used to speed up these database views to make them comparable to a physical relational implementation.	
The relational representation effectively provides ad-hoc queryability of your XBRL content. For example, you can query an instance document to find the 2010 total first-quarter revenue in an Oracle 10-k statement. Such a query does not reference taxonomies; it accesses only tables of instance documents.	
The XBRL repository also provides XBRL representational views over your XBRL content by exposing a set of network APIs that allow reconstruction of XBRL networks from the underlying schemas, linkbases and instance documents. The XBRL networks are generated dynamically and provide real time views over the XBRL content. You can use the XBRL networks to answer as-filed queries such as listing the concepts under the category Total Revenue for US-GAAP in an order specified in the presentation linkbase.	
Together, the XBRL content, the relational representation, and the network APIs serve as the operational store for relational applications that access the XBRL content. While much of XBRL query processing is based on querying the relational representation while referencing XBRL networks, XBRL analysis is based on derived views, such as dimensional fact tables, over the relational representation. To handle the full range of XBRL applications, XBRL Extension to Oracle XML DB provides transforming packages to define derived entities.	
XBRL Extension to Oracle XML DB provides services that facilitate scalable XBRL-based operations, including comparing and transforming XML documents. Such operations are designed to minimize loading of documents into memory.	
XBRL Extension to Oracle XML DB requires a third-party XBRL processing engine (XPE) that is deployed in either the client or the middle tier. The XPE must operate directly on XBRL content in the XBRL repository to reuse taxonomies and discover missing taxonomies.	
See Also: http://www.xbrl.org/Specification/formula/REC-2009-06-22/formula-REC-2009-06-22.html for information about XBRL Formula 1.0	
XBRL Extension to Oracle XML DB provides relational projection of XBRL data, for easy integration with Oracle Business Intelligence Suite Enterprise Edition (OBIEE). OBIEE is not included with XBRL Extension to Oracle XML DB; you must procure it separately. OBIEE is a powerful development environment that helps you perform a wide variety of analytical, charting, reporting, and publishing operations.	
This chapter explains how to use XBRL Extension to Oracle XML DB to create XBRL applications.	
This chapter covers these topics:	
See Also: Chapter 3, "APIs – XBRL Extension to Oracle XML DB" for information about the APIs referred to in this chapter	
This section provides general information about building XBRL applications.	
The following are some things to consider when defining an XBRL application architecture:	
XBRL Extension to Oracle XML DB provides a relational representation of your XBRL content. This is a third-normal form (3NF) view of the XBRL data. However, depending on the taxonomies to be supported and the typical query and analysis operations associated with these taxonomies, consider using transforming procedures to define derived views over the XBRL content.	
An XBRL repository relies on your application architecture to ensure that XBRL content has been validated by an external XBRL processing engine (XPE). Validation also ensures that the relevant discoverable taxonomy set (DTS) is loaded into the XBRL repository and that any missing files are downloaded. After XBRL content is validated, the XBRL repository can enforce the integrity of the content and its DTS. The validation itself can be done in either of these ways:	
XBRL Extension to Oracle XML DB includes one or more XBRL repositories, which are based on Oracle Database. You can use Oracle Real Application Clusters (Oracle RAC) or partitioning with a deployed XBRL repository. XBRL Extension to Oracle XML DB also requires an external XBRL processing engine that is deployed outside the database. In addition, you can optionally deploy XBRL Extension to Oracle XML DB together with Oracle Business Intelligence Suite Enterprise Edition (OBIEE) and tools that help with XBRL taxonomy design. The deployment architecture must provide sufficient processing capabilities in each tier, depending on application requirements and service-level agreements.	
The user whose name is the same as the XBRL repository, xb_rep	
, has general access to the repository. In general you do not want to give application users this much access. Typically application users are allowed only to load and delete documents.	
For security reasons Oracle recommends that you follow the enterprise user security model, as described in Oracle Database Enterprise User Security Administrator's Guide. You create a database user that is granted only the access that you want to provide application users, and then your application users share that database user to access the database.	
You restrict access for the shared database user (and hence application users) by defining a PL/SQL package under user xb_rep	
that has a restricted set of APIs, typically only APIs to load and delete XBRL repository documents.	
Example 2-1 illustrates this.	
xb_rep	
is the database user whose name is the same as the XBRL repository; xb_rep_pass	
is the corresponding password. xb_app	
is the shared database user; xb_app_pass	
is the corresponding password. xb_app_pkg	
is the package that provides the APIs you want to make available for application users. xb_rep	
grants privilege EXECUTE	
to xb_app	
for package xb_app_pkg	
. Example 2-1 Creating a PL/SQL Package for Application Users	
An application user can then connect to the database as shared database user xb_app	
and invoke procedures in the package xb_app_pkg	
, as shown in Example 2-2.	
You can bulk-load a set of XBRL documents of the same type, whether that type is schema, link-base, or instance, by invoking procedure DBMA_ORAXBRL.bulkLoadFiles	
, passing it a parameter file that lists the documents to load.	
This section explains how to create such a parameter file. See "Building and Using a Sample XBRL Application: USGAAP 2008" for a specific example of this using the taxonomy set USGAAP 2008 and an instance filing from Bank of America.	
Proceed as follows to create a bulk-load parameter file:	
Upload	
element with a files	
element child. file	
element as a child of element files	
, and a name	
element as child of element file	
. For the text node of element name	
, use the file name for the document to be loaded, relative to the base directory. httploc	
of element files	
. For the value of attribute httploc	
you can start with the value of any of these attributes:	
schemaLocation	
from an import	
element of an extension schema. xlink:href	
from a link:schemaRef	
element of an XBRL instance document or an extension linkbase file. href	
from a locator	
element of a linkbase file. Given such a value, for attribute httploc	
you use everything up to but not including the slash that precedes the path. More precisely:	
username:password@	
and :port	
are optional (and HTTPS	
can be used in place of HTTP	
): httploc	
, you use the part of the URL shown in bold, HTTP://	
username	
:	
password	
@	
domain	
:	
port	
, or more typically just HTTP://	
domain	
. For example, if you start with an href	
attribute of a locator	
element in a linkbase file, and if that attribute value is http://www.xbrl.org/2003/XLink	
, then the value of attribute httploc	
is http://www.xbrl.org	
.	
This section presents the steps to build and use a sample application for a regulatory report submission and acceptance. It uses the taxonomy set USGAAP 2008 and an instance filing from Bank of America.	
Copy files schema.xml	
and linkbase.xml	
from directory xbrl_xdb/XBRLScripts	
to a working directory, for example, gaap2008	
. See "Directory xbrl_xdb" for information about these files.	
Download USGAAP 2008 and the Bank of America filing from the following URLs:	
http://www.sec.gov/cgi-bin/goodbye.cgi?taxonomies.xbrl.us/us-gaap/1.0/doc/XBRLUSGAAPTaxonomies-2008-03-31.zip	
http://xbrl.us/us-gaap/instance/1.0/boa-20061231/boa-20061231.zip	
Copy those two zip files to your working directory and unzip them. Extract the USGAAP documents to directory gaap2008/us-gaap/1.0/	
and the Bank of America filings to directory gaap2008/boa/	
. Example 2-3 shows the expected directory structure.	
Example 2-3 Structure of Directory gaap2008	
Example 2-4 shows the format of parameter file schema.xml	
that is used to bulk-load the documents.	
Example 2-4 Format of Bulk-Load Parameter File schema.xml	
The values of the name	
elements are the names of the files to be loaded, relative to the directory where the files are located (their base directory).	
Attribute httploc	
of element files	
specifies that the files are to be loaded using HTTP. It tells XBRL Extension to Oracle XML DB to prepend the URL prefix http://xbrl.us	
to each of the file names when loading. This is required because the XBRL documents in the US-GAAP taxonomy refer to each other using HTTP-based URLs. See "Creating a Parameter File for Bulk-Loading a Set of XBRL Documents".	
Attribute commitnum	
is optional. It specifies an automatic commit frequency for bulk-loading instance documents: a COMMIT	
operation is performed after every N	
instance-document insertions, where N	
is the commitnum value. The default value is 1000. This attribute has no effect on bulk-loading other types of documents: for non-instance documents a COMMIT	
is performed after loading each document.	
Load the base taxonomy set, USGAAP 2008, using the bulkLoadXBRLFiles	
API.	
First, connect as the user whose name is the same as the XBRL repository, xb_rep	
.	
Then create a database directory that points to working_directory	
/gaap2008	
:	
Then invoke the bulkLoadXBRLFiles	
procedure which populates the system tables:	
The application can directly query the relational views, invoke the network generation API, or create views using the network generation API. See "Instance Network Functions: DBMS_ORAXBRLI" for details	
Query relational views:	
Query using network generation APIs:	
Create views using the network generation API:	
Applications accept new report submissions and invoke the XBRL repository load APIs to load the new reports. If a report overwrites an older report submission, the application invokes the XBRL repository deletion APIs to delete the old documents while maintaining the integrity of the remaining content in the XBRL repository.	
Load the Bank of America filing:	
An application can query the instance using XBRL relational views or by invoking network generation APIs. Or it can generate derived views using transforming procedures, and then use Oracle Business Intelligence Suite Enterprise Edition (OBIEE) to generate business intelligence reports.	
Query directly using XBRL relational views:	
Query using a network generation API:	
Query using a transforming procedure. This SQL statement creates fact table user_STATEMENTTABLE	
, dimension table user_ STATEMENTEQUITYCOMPONENT	
, and view boa	
.	
See Also: "Demo-BIFiles" for a sample business intelligence report for Bank of America that uses the derived views generated here	
Integrate with Oracle Business Intelligence Suite Enterprise Edition (OBIEE). There is a sample business intelligence report for Bank of America that uses the derived views generated in "Step 5: Query the Instance or Generate Derived Views".	
Drop the individual filing using the deletion APIs.	
The order of execution is important here. Invoking deleteTaxonomy	
before deleteInstance	
raises an error, because the taxonomy is still referred to by the instance.	
Drop USGAAP 2008:	
http://xbrl.us	
is used as the folder. This is because attribute httploc	
is specified in schema.xml	
and linkbase.xml	
, as described in "Step 1: Set Up USGAAP".	
This section illustrates the steps needed to build and use a sample XBRL application with tuples.	
Download the following XBRL standard schema files from http://www.xbrl.org	
, and copy them to a working directory, xb_cd	
.	
http://www.xbrl.org/2003/xlink-2003-12-31.xsd	
http://www.xbrl.org/2003/xl-2003-12-31.xsd	
http://www.xbrl.org/2003/xbrl-linkbase-2003-12-31.xsd	
http://www.xbrl.org/2003/xbrl-instance-2003-12-31.xsd	
http://www.xbrl.org/2006/ref-2006-02-27.xsd	
http://www.xbrl.org/2004/ref-2004-08-10.xsd	
http://www.xbrl.org/2005/xbrldt-2005.xsd	
http://www.xbrl.org/2006/xbrldi-2006.xsd	
Edit the downloaded schema files to update attribute schemaLocation	
of element import	
. Prefix each schemaLocation	
value with http://www.xbrl.org/200	
N	
/	
, where N	
corresponds to the downloaded schema.	
For example, for schema xl-200	
3	
-12-31.xsd	
the original schemaLocation	
value is "xlink-200	
3	
-12-31.xsd"	
. You must change it to "http://www.xbrl.org/200	
3	
/xlink-200	
3	
-12-31.xsd"	
.	
Run SQL script $ORACLE_HOME/rdbms/xbrl_xdb/XBRLScripts/xbrlregschema.sql	
to register the XBRL standard schemas.	
Set events 31098 and 31156, load the taxonomy (XML schema), and register it with Oracle XML DB. The taxonomy to be registered is oraclexbrltupledemo.xsd	
. The data table for tuple element ComplexItems	
is complexitemstab	
.	
Example 2-5 Register Sample XBRL Taxonomy for Tuple Application	
A given taxonomy can contain multiple top-level tuple elements: occurrences of element element	
that have an attribute substitutionGroup	
with value xbrli:tuple	
. For each such top-level tuple element you can create a tuple data table. Example 2-5 creates one such a tuple data table at the time of taxonomy registration.	
You can use procedure createTupleDataTable	
to create tuple data tables for additional top-level tuple elements. Alternatively you can register the taxonomy without creating any tuple data tables and then use createTupleDataTable	
to create them. In that case, you would pass NULL	
as the second argument to procedure registerTaxonomySchema	
. Example 2-6 illustrates this — it presumes that Example 2-5 was used with NULL	
as the second argument in place of the XMLType	
construction.	
Example 2-7 uses procedure loadInstance	
to load the tuple data for element ComplexItems	
from file-system file oraclexbrltupledemo-inst.xml	
into a tuple data table.	
Example 2-7 Loading an XBRL Instance with Tuple Data	
Example 2-8 shows how to query this tuple data. It queries elements ComplexItems/DescriptionContent	
and ComplexItems/AmountTotal	
, retrieving their text nodes and values of attribute contextRef	
.	
Example 2-8 Querying Tuple Data	
You deploy XBRL Extension to Oracle XML DB in a traditional three-tier architecture, with XBRL repositories in the database-tier, the XBRL processing engine and optionally Oracle BI Suite as a separate instance in the mid-tier, and a set of tools in the client-tier (desktop). This is illustrated in Figure 2-1.	
These functional pieces can be combined using an XBRL workflow suite from a third-party vendor. Alternatively, you can create a custom deployment by combining functional pieces using portals and Business Process Execution Language (BPEL)	
Figure 2-1 XBRL Extension to Oracle XML DB: Deployment	
Deployment requires the usual evaluations of application requirements and service-level agreements to determine the scale of processing needed in the database, XBRL processing engine, and Oracle BI Suite. Query- and analysis-intensive applications can require scaling up Oracle BI Suite and the database tier using Oracle Real Application Clusters (Oracle RAC) or partitioning. XBRL processing-intensive applications can require scaling up the XBRL processing capabilities.	
The script content on this page is for navigation purposes only and does not alter the content in any way.	
This chapter describes the application programming interfaces (APIs) provided by XBRL Extension to Oracle XML DB. It covers these topics:	
Several of the examples in this chapter refer to the downloadable demonstration examples. See "Installing the Sample XBRL Repository and GAAP Demo".	
Note:	
The XBRL repository storage APIs are in PL/SQL package DBMS_ORAXBRL	
. An application can use this package to load, delete, or retrieve XBRL content from an XBRL repository. (Alternatively, you can manipulate XBRL content using WebDAV files and folders.) An application can also use this package to register a taxonomy schema or investigate discoverable taxonomy set (DTS) information.	
Note: The procedures in packageDBMS_ORAXBRL that load a single document into the XBRL repository have a parameter whose value is an absolute URI that is used as the base location for any relative URIs that are found in the document to be loaded (and in any documents referenced from that document). More precisely, this base location is used to interpret relative URIs that are the values of attributes xlink:href and schemaLocation . It is your responsibility to ensure that the location parameter you use specifies the proper base location for any such relative URIs.	
Table 3-1 DBMS_ORAXBRL Repository Storage APIs	
Name	Description
---	---
Load a set of XBRL files.	
Create an object-relational	
Delete an auxiliary document from the XBRL repository.	
Forcefully (without DTS integrity check) delete all of the taxonomies under the given XBRL repository folder.	
Delete an instance document from the XBRL repository.	
Delete a linkbase document from the XBRL repository. Raise an error if the linkbase is referenced by other taxonomies or instance documents in the XBRL repository, unless the	
Delete a taxonomy, including its schema and linkbases, given the location of the taxonomy schema. Raise an error if the taxonomy is referenced by other taxonomies or instance documents in the XBRL repository, unless the	
Drop the	
Return a discoverable taxonomy set (DTS), given a starting document.	
Return the discoverable taxonomy set (DTS) for a given URI.	
Return an auxiliary document that is associated with a document in the XBRL repository.	
Return a document that is in the XBRL repository.	
Return the XBRL validity of a document in the XBRL repository.	
Load an auxiliary document into the XBRL repository.	
Load one instance document into the XBRL repository. If the document is present in the repository, replace it.	
Load one linkbase into an XBRL repository. If the document is present in the repository, replace it. DTS integrity is not checked after the call.	
Load one taxonomy schema into an XBRL repository. If the document is present in the repository, replace it. Discoverable taxonomy set (DTS) integrity is not checked after the call.	
Apply a published location (a URL) recursively to all files and folders under the specified Oracle XML DB Repository folder. Invoke this procedure after uploading XBRL documents if you use protocols to upload.	
Register one taxonomy schema with the XBRL repository. Invoke this after	
Update the validity status of a document and associate an auxiliary document with it.	
Check whether all referenced taxonomy schemas and linkbases exist in the XBRL repository. Return the list of taxonomies as an XML document, indicating which are missing. The return value reflects the state of the repository at the time the procedure is invoked.	
The detailed API information is given the following sections.	
Upload a set of files. Before invoking this procedure, create a database directory.	
Table 3-2 DBMS_ORAXBRL.BULKLOADXBRLFILES Parameters	
Parameter	Description
---	---
Type of operation to be carried out:	
Raise an error if	
Database directory where the files reside. Raise an error if	
XML document listing the file names to be loaded. Raise an error if	
Folder location in Oracle XML DB Repository where documents will be uploaded. If	
Note: If many documents are to be bulk-loaded, consider using multiple sessions so they are loaded in parallel.	
Create a tuple data table. The table has these columns:	
docid	
(RAW16	
) – An XBRL instance document identifier. tupledata	
(XMLType	
stored object-relationally) – Instance data for a tuple element of an XBRL schema. Does nothing if any of the arguments is NULL	
.	
Table 3-3 DBMS_ORAXBRL.CREATETUPLEDATATABLE Parameters	
Parameter	Description
---	---
Location in the XBRL repository of the XBRL schema on which the tuple data table will be based. This must be an absolute URI, by which other documents can refer to this taxonomy schema. Do nothing if	
Name of the	
Name of the tuple element. Do nothing if	
Delete an auxiliary document from the XBRL repository.	
Forcefully (without DTS integrity check) delete all of the taxonomies under the given XBRL repository folder.	
Table 3-5 DBMS_ORXBRL.DELETEFOLDER Parameters	
Parameter	Description
---	---
XBRL repository folder that contains the taxonomies to be deleted. Raise an error if To delete the root (top-level) folder, use	
Delete an XBRL instance document from the XBRL repository. Delete the tuple instance data from the tuple data table, if present.	
Delete a linkbase document from the XBRL repository. Raise an error if the linkbase is referenced by other taxonomies or instance documents in the XBRL repository, unless the force	
argument is 1	
or greater.	
Table 3-7 DBMS_ORAXBRL.DELETELINKBASE Parameters	
Parameter	Description
---	---
The	
Raise an error if	
Delete a taxonomy, including the taxonomy schema and linkbases, given the target namespace of the taxonomy schema. Raise an error if the taxonomy is referenced by other taxonomies or instance documents in the XBRL repository, unless argument force	
is 1	
or greater. If the taxonomy schema was registered, then delete the schema.	
Table 3-8 DBMS_ORAXBRL.DELETETAXONOMY Parameters	
Parameter	Description
---	---
Location in the XBRL repository of an XBRL taxonomy schema. This must be an absolute URI, by which other documents can refer to this taxonomy schema. Raise an error if	
Raise an error if	
Drop the tuple data for a tuple element.	
Table 3-9 DBMS_ORAXBRL.DROPTUPLEDATATABLE Parameters	
Parameter	Description
---	---
Location in the XBRL repository of an XBRL schema. This must be an absolute URI, by which other documents can refer to this taxonomy schema. Do nothing if	
Name of the tuple data table to be dropped. Do nothing if	
Name of the tuple element. Do nothing if	
If If	
Return the discoverable taxonomy set (DTS) for a given URI. The first time you invoke this procedure, it builds a cache for the DTS. Subsequent calls simply return the cached result. Also, calculations of the DTS that are implicit in other procedures and queries use the cached result instead of recomputing the DTS. Use of the cache can make network queries run faster.	
If a DTS is expected to be large for a given entry URI, then invoke this procedure after loading all documents and before network generation. As a guideline, if a DTS lists more than 100 documents, then it will take at least a second to compute the DTS. For example, for entry URI 'http://xbrl.us/us-gaap-entryPoint-std/2008-03-31'	
, the DTS contains 600 entries, so it takes several seconds to compute the list.	
Return the discoverable taxonomy set (DTS) for a given URI. This function behaves similarly to procedure DTS_files	
, but:	
NULL	
instead of raising an error if the argument is NULL	
. Return the auxiliary document that is associated with the document that is at a specified XBRL repository location.	
Return the document that is at a specified XBRL repository location.	
Return the XBRL validity of a document in the XBRL repository. 1	
means the document is valid; 0	
means it is invalid.	
Load an auxiliary document into the XBRL repository at a specified location.	
Load one instance document into the XBRL repository. For a top-level tuple element whose taxonomy schema is registered and whose tuple data table has been created, insert the instance tuple data into the tuple data table.	
Table 3-16 DBMS_ORAXBRL.LOADINSTANCE Parameters	
Parameter	Description
---	---
Location in the XBRL repository of instance document Any relative URIs used as the value of attribute	
XBRL instance document. Raise an error if	
Validity of document	
XBRL repository location of an XBRL auxiliary document that is mapped to	
Load one XBRL linkbase into the XBRL repository. DTS integrity is not checked after the call.	
Table 3-17 DBMS_ORAXBRL.LOADLINKBASE Parameters	
Parameter	Description
---	---
Location in the XBRL repository of linkbase document Any relative URIs used as the value of attribute	
XBRL linkbase document. Raise an error if	
Validity of document	
XBRL repository location of an XBRL auxiliary document that is mapped to	
Load one taxonomy schema into an XBRL repository. DTS integrity is not checked after the call.	
Table 3-18 DBMS_ORAXBRL.LOADSCHEMA Parameters	
Parameter	Description
---	---
Location in the XBRL repository of schema document Any relative URIs used as the values of attributes	
XBRL schema document. Raise an error if	
Validity of document	
XBRL repository location of an XBRL auxiliary document that is mapped to	
Map an Oracle XML DB Repository path to an HTTP URL. This applies a published location (a URL) recursively to all files and folders under the specified Oracle XML DB Repository folder.	
Each repository path starts with /XBRL/	
followed by a user name. These top two levels of the path are, in effect, replaced by the URL that you provide as the published location.	
For example, if a document is loaded into the XBRL repository at path /XBRL/some-user/us-gaap/1.0/elts/us-gaap-std-2008-03-31.xsd	
, and you invoke mapPublishedLocation('/XBRL/some-user/us-gaap', 'http://xbrl.us'	
) , then the file is published at http://xbrl.us/ us-gaap/1.0/elts/us-gaap-std-2008-03-31.xsd	
.	
You can optionally exclude all repository documents below a given level from being published. They are then ignored for XBRL purposes; in particular, they are not available for discovery. You do this be specifying the optional parameter levels	
. Documents at a depth greater than levels	
below folderpath are ignored.	
Invoke this procedure after you use protocols to upload XBRL documents.	
Table 3-19 DBMS_ORAXBRL.MAPPUBLISHEDLOCATION Parameters	
Parameter	Description
---	---
XBRL repository folder to be mapped to	
URL to be mapped to	
Number of levels below	
Register one taxonomy schema with the XBRL repository. Invoke this after calling loadSchema	
. Needed for any schema that has tuple elements.	
Note: Before invokingregisterTaxonomySchema for the first time, you must run the script xbrlregschema.sql to register the standard XBRL schemas. See "XBRLScripts".	
Table 3-20 DBMS_ORAXBRL.REGISTERTAXONOMYSCHEMA Parameters	
Parameter	Description
---	---
Location in the XBRL repository of the XBRL schema to be registered. This must be an absolute URI, by which other documents can refer to this taxonomy schema. Raise an error if	
List of XBRL tuple elements, with their names and default table names. During registration, create the table with the specified default name for storing the XBRL tuple data. Do not create the table if	
Example 3-1 shows the XML format for parameter annotation	
.	
Update the validity status of a document and associate an auxiliary document with it. Use this procedure after validation. (To update the auxiliary document, use procedure loadAuxDocument	
.)	
Table 3-21 DBMS_ORAXBRL.UPDATEDOCVALIDITY Parameters	
Parameter	Description
---	---
Location in the XBRL repository of the document whose validity is being updated.	
New validation status of the document at location	
Location in the XBRL repository of the auxiliary document to associate with the document at location	
Check whether all referenced taxonomy schemas and linkbases exist in the XBRL repository. Return the list of taxonomies as an XML document, indicating which taxonomies are missing. Reflects the state the XBRL repository at the time the procedure is invoked.	
Table 3-22 DBMS_ORAXBRL.VALIDATEDTSINTEGRITY Parameters	
Parameter	Description
---	---
The entry URI into a taxonomy. Raise an error if	
Return an XML document that contains the locations of the documents in the discoverable taxonomy set (DTS) and an indication of whether that XML document is in XBRL repository. Example 3-2 illustrates this.	
Example 3-2 validateDTSIntegrity	
You can query the XBRL content in an XBRL repository directly, using the XQuery language. XBRL Extension to Oracle XML DB also provides the following:	
XBRL Extension to Oracle XML DB provides relational views of your XBRL content. This XBRL relational representation is a third normal form data model. It gives you simple access to attributes of schemas, linkbases, targets of linkbases, and items in an instance document. You can query these views directly, or you can create derived views over them to extract a particular representation (see steps 3 and 5, "Building and Using a Sample XBRL Application: USGAAP 2008").	
Table 3-23 Relational Views of XBRL Content	
Type	Name
---	---
Schema	Target namespace used in an XBRL schema document.
Namespaces referenced by an XBRL schema document.	
Schemas imported by an XBRL schema document.	
Linkbases referenced by an XBRL schema document	
Elements used in an XBRL taxonomy.	
Element groups used in and XBRL taxonomy.	
Complex types defined in an XBRL taxonomy.	
Linkbase	Presentation arcs defined in an XBRL taxonomy.
Calculation arcs defined in an XBRL taxonomy.	
Definition arcs defined in an XBRL taxonomy.	
Label arcs defined in an XBRL taxonomy.	
Reference arcs defined in an XBRL taxonomy.	
Instance	XBRL schemas referenced by an XBRL instance document.
Linkbases referenced by anXBRL instance document.	
Role references from an XBRL instance document.	
Namespaces used in an XBRL instance document.	
Unit definitions in an XBRL instance document.	
Context definitions in an XBRL instance document.	
Footnotes defined in an XBRL instance document.	
Explicit dimensional attributes defined in the segment part of an XBRL instance document.	
Explicit dimensional attributes defined in the scenario part of an XBRL instance document.	
Typed dimensional attributes defined in the segment part of an XBRL instance document.	
Typed dimensional attributes defined in the scenario part of an XBRL instance document.	
Fact values reported in an XBRL instance document.	
The instance network functions are part of PL/SQL package DBMS_ORAXBRLI	
. You can use these functions to generate XBRL reports that combine taxonomy and instance data.	
There are essentially two versions of each function. The version whose name ends in "2" returns an instance of data type ORAXBRL_CONCEPTLIST	
(or ORAXBRL_ITEMLIST	
, in the case of multiple_instance_network2	
). The version whose name has no "2" appended to it returns an XMLType	
instance.	
Table 3-24 Instance Network Functions: DBMS_ORAXBRLI	
Function	Description
---	---
Return reported data, organized by a base set of concept-concept relationships, such as a presentation tree.	
Return reported data across multiple instance documents, organized by a base set of concept-concept relationships, such as a presentation tree.	
Return reported data, organized by a base set of concept-concept relationships, such as a presentation tree.	
Table 3-25 DBMS_ORAXBRLI.INSTANCENETWORK Parameters	
Parameter	Description
---	---
Entry URI into the taxonomy. Raise an error if	
Entity identifier. Raise an error if	
Starting period. Raise an error if	
Ending period. Raise an error if	
Base set extended link role (Default (
Base set namespace URI. Default (
Base set local name. Default (
Base set resource arc role (Default (
Label extended link role (Default (
Label resource arc role (Default (
Label role (Default (
Language (Default (
Ignored.	
Return reported data across multiple instance documents, organized by a base set of concept-concept relationships, such as a presentation tree.	
Table 3-26 DBMS_ORAXBRI.MULTIPLE_INSTANCE_NETWORK Parameters	
Parameter	Description
---	---
Entry URI into the taxonomy. Raise an error if	
A comma-delimited list of entities:	
The starting period. Raise an error if	
The ending period. Raise an error if	
Base set extended link role (Default (
Base set namespace URI. Default (
Base set local name. Default (
Base set resource arc role (Default (
Label extended link role (Default (
Label resource arc role (Default (
Label role (Default (
Language (Default (
Ignored.	
The concept network functions are part of PL/SQL package DBMS_ORAXBRLT	
. They generate XBRL taxonomy hierarchies. There are essentially two versions of each function. The version whose name ends in "2" returns an instance of data type ORAXBRL_CONCEPTLIST	
. The version whose name has no "2" appended to it returns an XMLType	
instance.	
Table 3-27 Concept Network Functions: DBMS_ORAXBRLT	
Function	Description
---	---
Return the root nodes that correspond to a given DTS, entry URI, and XLink role.	
Return the concepts that are the descendents of a particular node in a base set tree, with labels. If no entry URI is specified, then return all concepts with the specified XLink role.	
Return a view of a base set of concept-concept relationships, such as a presentation tree.	
Return a view of a base set of concept-concept relationships, such as a presentation tree.	
Table 3-28 DBMS_ORAXBRLT.CONCEPTS_NETWORK Parameters	
Parameter	Description
---	---
Entry URI into a taxonomy. Raise an error if	
Base set extended link role (Default (
Base set namespace URI. Default (
Base set local name. Default (
Base set resource arc role (Default (
Label extended link role (Default (
Label resource arc role (Default (
Label role (Default (
Language (Default (
Ignored.	
Return the root nodes that correspond to a given DTS, entry URI, and XLink role.	
Table 3-29 DBMS_ORAXBRLT.CONCEPT_ROOTS Parameters	
Parameter	Description
---	---
Entry URI for a taxonomy. Raise an error if	
Base set extended link role (Default (
Base set namespace URI. Default (
Base set local name. Default (
Base set resource arc role (Default (
Label extended link role (Default (
Label resource arc role (Default (
Label role (Default (
Language (Default (
Ignored.	
Return the concepts that are descendents of a particular node in a base set tree, with labels. If no entry URI is specified, then return all concepts.	
Table 3-30 ORAXBRLT.CONCEPTS_IN_TREE Parameters	
Parameter	Description
---	---
Entry into a taxonomy. Raise an error if	
Concept namespace URI. Raise an error if	
Concept name. Raise an error if	
Base set extended link role (Default (
Base set namespace URI. Default (
Base set local name. Default (
Base set resource arc role (Default (
Label extended link role (Default (
Label resource arc role (Default (
Label role (Default (
Language (Default (
Ignored.	
Transforming procedures are used to generate derived views that are based on one of the following:	
The transforming procedures are in PL/SQL package DBMS_ORAXBRLV	
.	
Table 3-31 Transforming Procedures	
Procedure	Description
---	---
Create a fact table as a view.	
Search the hypercube network of the given primary item to find valid dimensions. Create a star schema, which is a fact table plus dimension tables. Optionally create a join view between the fact table and the dimension tables.	
Search for primary items that include the given hypercube. Create a super fact table and dimension tables. Optionally create a join view between the super fact table and the dimension tables.	
Search the hypercube network of the given primary item to find valid dimensions. Create a star schema, which is a fact table plus dimension tables. Optionally create a join view between the fact table and the dimension tables. Optionally cache the names of the created tables.	
Search for primary items that include the given hypercube. Create a super fact table and dimension tables. Optionally create a join view between the super fact table and the dimension tables. Optionally cache the names of the created tables.	
Create a super fact table as a view.	
Create a relational view for PL/SQL function	
Create a relational view for PL/SQL functions	
Create a relational view for PL/SQL functions	
Drop a star schema: the fact table or super fact table, dimension tables, and join view (if any) that are identified by a given	
Create a fact table as a view.	
Note: ProcedurecreateFactTable is deprecated as of XBRL Extension to Oracle XML DB 11g Release 2 (11.2.0.2.1).	
Table 3-32 DBMS_ORAXBRLV.CREATEFACTTABLE Parameters	
Parameter	Description
---	---
Name of the fact-table view. Raise an error if	
Entity identifier. Raise an error if	
Entry URI into the taxonomy. Raise an error if It must be the target namespace of the schema specified in element	
URI for the concept namespace. Raise an error if	
Local name of the concept. Raise an error if	
Example 3-3 createFactTable	
This creates the fact-table view SALES	
. See Example 3-5.	
Search the hypercube network of a given primary item to find valid dimensions. Create a star schema, which is a fact table plus dimension tables. If argument tableName	
is not NULL	
then also create a join view between the fact table and the dimension tables. The pair (entity	
, entryURI	
) uniquely identifies an XBRL instance document.	
For a factFoot 6 name to be usable as parameter conceptLocalName	
, the fact should have associated dimension information. Search instance documents for occurrences of a fact you are interested in. If you find that the fact is associated with dimension information then it is a candidate for use with procedure createHyperCubeFactTable	
.	
Table 3-33 DBMS_ORAXBRLV.CREATEHYPERCUBEFACTTABLE Parameters	
Parameter	Description
---	---
If Otherwise, create a fact table, dimension tables, and a join (as a view named	
Entity identifier. Raise an error if	
Entry URI into a taxonomy. The target namespace of the schema that is specified in element	
Concept namespace URI. Raise an error if	
Concept local name. Raise an error if	
Extended link role (
createHyperCubeFactTable(t, e, u, cnu, cln, xr)	
is equivalent to createStarSchemaFromFact(t, e, u, cnu, cln, xr,	
1	
, 0)	
, if t	
is not NULL	
.	
createHyperCubeFactTable(NULL, e, u, cnu, cln, xr)	
is equivalent to createStarSchemaFromFact(
'DUMMY'	
, e, u, cnu, cln, xr,	
0	
, 0)	
.	
Example 3-4 createHyperCubeFactTable	
This creates fact table user	
_SALES	
, dimension tables user	
_BYPRODUCTPLACEHOLDER	
and user	
_BYREGIONPLACEHOLDER	
, and view SALES_DIM	
, where user	
is the database user logged in when createHyperCubeFactTable	
is invoked. These tables are shown in Example 3-5, Example 3-6, and Example 3-7.	
Example 3-5 Fact Table user_SALES	
Example 3-6 Dimension Tables user_BYPRODUCTPLACEHOLDER and user_BYREGIONPLACEHOLDER	
Column CONTEXT_ID	
is the primary key for the dimension table, and column DOMAIN_VALUE	
contains the value of the dimension domain members.	
Search for primary items that include the given hypercube. Create a super fact table and dimension tables. If argument tableName	
is not NULL	
then also create a join view between the super fact table and the dimension tables.	
A super fact table can contain more than one kind of fact. It acts like a collection of fact tables that each contain one kind of fact. It contains all of the primary items associated with a given hyper cube.	
Table 3-34 DBMS_ORAXBRLV.CREATEHYPERCUBESUPERFACTTABLE Parameters	
Parameter	Description
---	---
If Otherwise, create a fact table, dimension tables, and a join (as a view named	
Entity identifier. Raise an error if	
Entry URI into the taxonomy. Raise an error if It must be the target namespace of the schema specified in element	
Namespace URI of the hypercube. Raise an error if	
Local name of the hypercube. Raise an error if	
XLink role (
Value of attribute	
Value of attribute	
createHyperCubeSuperFactTable(t, e, u, nu, ln, xr, ce, tr)	
is equivalent to createStarSchemaFromHC(t, e, u, nu, ln, xr, ce, tr,	
1	
, 0)	
, if t	
is not NULL	
.	
createHyperCubeSuperFactTable(NULL, e, u, nu, ln, xr, ce tr)	
is equivalent to createStarSchemaFromHC(
'DUMMY'	
, e, u, nu, ln, xr, ce, tr,	
0	
, 0)	
.	
Example 3-8 createHyperCubeSuperFactTable	
This creates fact table user	
_STATEMENTTABLE	
, dimension table user	
_EQUITYCOMPONENTSAXIS	
, and join view BOA_STATEMENT	
, where user	
is the database user logged in when createHyperCubeSuperFactTable	
is invoked. These tables and view are shown in Example 3-9, Example 3-10, and Example 3-11.	
Example 3-9 Fact Table user_STATEMENTTABLE	
Search the hypercube network of the primary item to find valid dimensions. Create a star schema, which is a fact table plus dimension tables. Optionally create a join view between the fact table and the dimension tables. Optionally cache the names of the created tables. Return a list of the names of the created tables.	
Together, entity	
plus entryURI	
uniquely identify an XBRL instance document.	
Table 3-35 DBMS_ORAXBRLV.CREATESTARSCHEMAFROMFACT Parameters	
Parameter	Description
---	---
Unique identifier for the set comprising the created fact table and dimension tables. If If If If neither	
Entity identifier. Raise an error if	
Entry URI into a taxonomy. The target namespace of the schema that is specified in element	
Concept namespace URI. Raise an error if	
Concept local name. Raise an error if	
Extended link role (
If and only if	
If and only if	
The fact table created is named F_
entity
_
conceptLocalName
_
####
, where entity
and conceptLocalName
are the entity and concept local name inputs, and ####
is a four-digit (decimal) number guaranteed to make the name unique.
The dimension tables created are named D_
entity
_
dimensionLocalName
_
####
, where entity
is the entity input, dimensionLocalName
is the local name of the valid dimension found in the hypercube network given the primary item, and ####
is a four-digit (decimal) number guaranteed to make the name unique.
Database table names are limited to a maximum of 30 characters. The concept and dimension local names are truncated as needed to ensure this.
Search for primary items that include the given hypercube. Create a super fact table and dimension tables. Optionally create a join view between the super fact table and the dimension tables. Optionally cache the names of the created tables. Return a list of the names of the created tables.
Together, entity
plus entryURI
uniquely identify an XBRL instance document.
Table 3-36 DBMS_ORAXBRLV.CREATESTARSCHEMAFROMHC Parameters
Parameter	Description
Unique identifier for the set comprising the created super fact table and dimension tables. If If If If neither	
Entity identifier. Raise an error if	
Entry URI into a taxonomy. The target namespace of the schema that is specified in element	
Namespace URI of the hypercube. Raise an error if	
Local name of the hypercube. Raise an error if	
XLink role (
Value of attribute	
Value of attribute	
If and only if	
If and only if	
The created fact table and dimension tables are named using the same convention as for createStarSchemaFromFact.	
Create a super fact table as a view. It contains all of the primary items of the specified hypercube.	
Note: ProcedurecreateSuperFactTable is deprecated as of XBRL Extension to Oracle XML DB 11g Release 2 (11.2.0.2.1).	
Table 3-37 DBMS_ORAXBRLV.CREATESUPERFACTTABLE Parameters	
Parameter	Description
---	---
Name of the super fact-table view. Raise an error if	
Entity identifier. Raise an error if	
Entry URI into the taxonomy. Raise an error if It must be the target namespace of the schema specified in element	
URI for the hypercube namespace. Raise an error if	
Local name of the hypercube. Raise an error if	
Extended link role (
Value of attribute	
Value of attribute	
Example 3-12 createSuperFactTable	
This creates super fact-table view STATEMENT	
. See Example 3-9.	
Create a relational view for PL/SQL function concept_roots	
.	
Table 3-38 DBMS_ORAXBRLV.CREATEVIEWFORCONCEPTROOTS Parameters	
Parameter	Description
---	---
Name of the view. Raise an error if	
Entry into a taxonomy. Raise an error if	
Base set extended link role (Default (
Base set namespace URI. Default (
Base set local name. Default (
Base set resource arc role (Default (
Label extended link role (Default (
Label resource arc role (Default (
Label role (Default (
Language (Default (
Create a relational view for PL/SQL functions concepts_network	
and concepts_in_tree	
.	
Table 3-39 DBMS_ORAXBRLV.CREATEVIEWFORCONCEPTTREE Parameters	
Parameter	Description
---	---
Name of the view. Raise an error if	
Entry into a taxonomy. Raise an error if	
Concept namespace URI. Raise an error if	
Concept name. By default (
Base set extended link role (Default (
Base set namespace URI. Default (
Base set local name. Default (
Base set resource arc role (Default (
Label extended link role (Default (
Label resource arc role (Default (
Label Role (Default (
Language (Default (
If	
Example 3-14 createViewForConceptTree	
This creates view my_network	
:	
Create a relational view for PL/SQL functions instance_network	
and multiple_instance_network	
.	
Table 3-40 DBMS_ORAXBRLV.CREATEVIEWFORINSTANCENETWORK Parameters	
Parameter	Description
---	---
Name of the view. Raise an error if	
Entry URI to the taxonomy. Raise an error if	
A comma-delimited list of entities: If there is only one entity, it is equivalent to function	
Starting period. Raise an error if	
Ending period. Raise an error if	
Base set extended link role (Default (
Base set namespace URI. Default (
Base set local name. Default (
Base set resource arc role (Default (
Label extended link role (Default (
Label resource arc role (Default (
Label role (Default (
Language (Default (
Example 3-15 createViewForInstanceNetwork	
This creates view my_instance_network	
:	
Drop a star schema: the fact table or super fact table, dimension tables, and join view (if any) that are collectively identified by the given tableName	
, provided such information is cached in a system table. (Do nothing if the information is not cached.)	
This section describes data types specific to XBRL Extension to Oracle XML DB. They are all in PL/SQL package XBRLSYS	
.	
Data type ORAXBRL_CONCEPTLIST	
is a varray of ORAXBRL_CONCEPT	
, which is an object type with the following attributes that pertain to a concept:	
Table 3-42 ORAXBRL_CONCEPT Object Type Attributes	
Attribute	Type
---	---
Namespace URI of the XML schema that defines the concept.	
Preferred prefix for the namespace specified by	
Local name of the concept.	
Unique identifier of the concept.	
The credit/debit balance associated with the concept.	
Type of the reporting period associated with the concept. Possible values:	
True means that the concept can be used only in a hierarchy, to group related concepts. Possible values:	
True means that facts for the concept can be empty. Possible values:	
Namespace URI of the schema type of the concept.	
Local name of the schema type of the concept.	
Namespace URI of the substitution group for the concept.	
Local name of the substitution group for the concept.	
Absolute path of the concept in the taxonomy schema.	
Human-readable name for the concept, unique across the taxonomy.	
The preferred label derived from the	
Data type ORAXBRL_ITEMLIST	
is a varray of ORAXBRL_ITEM	
, which is an object type with the following attributes that pertain to a fact:	
Table 3-43 ORAXBRL_ITEM Object Type Attributes	
Attribute	Type
---	---
Namespace URI of the XML schema that defines the fact.	
Prefix for the namespace specified by	
Local name of the fact.	
Human-readable name for the fact, unique across the taxonomy.	
Same as	
Unique identifier of the fact.	
Namespace of the entity identification scheme for the fact.	
Value of the entity identifier for the fact.	
Start date for the fact, if the period type is	
End date for the fact, if the period type is	
A reference to the context associated with the fact.	
A reference to the unit associated with the fact.	
Number of decimal places to which numbers have been rounded.	
Value of the fact.	
Data type ORAXBRL_LOCLIST	
is a varray of VARCHAR2(4000)	
. Data type ORAXBRL_STARSCHEMA	
is an object type with the following attributes that pertain to a star schema:	
Data type ORAXBRL_DTSURLLIST	
is a varray of ORAXBRL_DTSURL_T	
, which is an object type with the following attributes that pertain to a file in the XBRL repository.	
Table 3-45 ORAXBRL_DTSURL_T Object Type Attributes	
Attribute	Type
---	---
Name of the file.	
Type of the file:	
Location of the file in the XBRL repository.	
Location of the file in the Oracle XML DB Repository.	
Document or file object ID.	
Footnote Legend	
Footnote 1: Functioninstance_network2	
has the same signature, except it returns an instance of data type ORAXBRL_CONCEPTLIST	
.multiple_instance_network2	
has the same signature, except it returns an instance of data type ORAXBRL_ITEMLIST	
.concepts_network2	
has the same signature, except it returns an instance of data type ORAXBRL_CONCEPTLIST	
.concept_roots2	
has the same signature, except it returns an instance of data type ORAXBRL_CONCEPTLIST	
.concepts_in_tree2	
has the same signature, except it returns an instance of data type ORAXBRL_CONCEPTLIST	
.This chapter covers database administration of XBRL Extension to Oracle XML DB. It includes these topics:	
Note: Refer to "Placeholders in Oracle Database XBRL Extension Developer's Guide" for explanations of the placeholders used here.	
An XBRL repository uses a set of base tables and a set of automatically generated XMLIndex	
indexes.	
The base tables include the following XMLType	
tables with binary XML storage, which store all of your XBRL-related documents. See also Example 4-5.	
ORA$XBRLSCHEMA	
– taxonomy schema documents ORA$XBRLINSTANCE	
– instance documents ORA$XBRLLINKBASE	
– linkbase documents There are also other, non-XMLType	
base tables, including these:	
ORA$XBRLPATH	
– has these columns: doctype	
: XBRL document type (SCHEMA	
, LINKBASE	
, or INSTANCE	
) docpath	
: location of the document in the XBRL repository uploaddate	
: time when the document was loaded into the XBRL repository ORA$XBRLNWKCACHE	
– a cache for information used during concept generation XMLIndex	
indexes (with structured components) are created automatically for base tables ORA$XBRLSCHEMA	
and ORA$XBRLINSTANCE	
. These indexes project the values of the structured parts of an XBRL document. They improve performance for queries and analysis of XBRL documents. These indexes have their own storage tables.	
The script that creates an XBRL repository, xbrlcrt.sql	
, takes two parameters that specify the tablespaces to use for the base tables, on the one hand, and the index storage tables, on the other hand. These parameters are xb_rep_ts	
and xb_rep_idx_ts	
, respectively. You can of course use the same value for both parameters if you wish. In that case, the base tables and the index storage tables share the same tablespace.	
For an existing XBRL repository, you can use script xbrlrecidxdrv.sql	
to change the tablespace used by the index storage tables. Again, you use parameter xb_rep_idx_ts	
to specify the tablespace to use for this:	
For a given XBRL repository, you can partition base table ORA$XBRLINSTANCE	
, which stores your XBRL instance documents. If you do this then the automatically created XMLIndex	
index on that table, XBRL$INSTANCEIDX	
, together with all of its index storage tables, are automatically equipartitioned. Equipartitioning means that there is a corresponding index-table partition for each partition of the base table.	
If you want to partition base table ORA$XBRLINSTANCE	
for a given repository then you must edit script xbrlddl.sql	
before you use script xbrlcrt.sql	
to create that repository. In script xbrlddl.sql	
, change the default CREATE TABLE	
statement for table ORA$XBRLINSTANCE	
to one that partitions the table.	
Example 4-1 illustrates this. It partitions XMLType	
table ORA$XBRLINSTANCE	
using virtual column entity_identifier_text	
, targeting XML element identifier	
(a child of element entity	
and a grandchild of the first context	
element in an XBRL document).	
Example 4-1 Edited CREATE TABLE Statement with Partitioning	
You can define such partitioning when you create your XBRL repository after installing XBRL Extension to Oracle XML DB. If you already have an existing repository that you want to partition (or partition differently), you must create a new repository partitioned as needed, and then load it using the data from the previously existing repository. In other words, there is no way to partition an existing repository; you must create a new, partitioned one to replace the existing one.	
See Also:	
When you create an XBRL repository, any partitions of base table ORA$XBRLINSTANCE	
are in the same tablespace, xb_rep_ts	
, and the index storage table partitions are all in the same tablespace, xb_rep_idx_ts	
. (See "Creating a Tablespace for the XBRL Repository Indexes".)	
You can use different tablespaces for different partitions by altering the base table (ORA$XBRLINSTANCE	
) for XBRL instance documents and for the storage tables of the corresponding XMLIndex	
index (XBRL$INSTANCEIDX	
). Example 4-2 and Example 4-3 illustrate this, respectively.	
This section provides some queries you can use to obtain information about your XBRL data or about the product, XBRL Extension to Oracle XML DB.	
Example 4-4 shows how to obtain the version number of the product.	
Example 4-4 Version Number for XBRL Extension to Oracle XML DB	
Example 4-5 just lists the XMLType	
tables for the current XBRL repository, that is, ORA$XBRLSCHEMA	
, ORA$XBRLLINKBASE	
, and ORA$XBRLINSTANCE	
.	
Example 4-6 lists the repository XMLType	
tables and their XMLIndex	
indexes.	
Example 4-6 XMLType Tables and Their XMLIndex Indexes	
Example 4-7 lists all of the repository XMLIndex	
indexes, together with their corresponding index storage tables.	
Example 4-7 XMLIndex Indexes and Their Index Storage Tables	
Example 4-8 lists the table and tablespace names of the nonpartitioned XMLType	
tables.	
Example 4-8 Nonpartitioned XMLType Tables and Their Tablespaces	
Example 4-9 lists the names of all nonpartitioned index storage tables and their tablespaces, for a given XMLIndex	
index — in this case, index XBRL$INSTANCEIX	
.	
Example 4-9 Nonpartitioned XMLIndex Index Storage Tables and Their Tablespaces	
Example 4-10 obtains the tablespace name for a given nonpartitioned index storage table — in this case, table ORAXBRL_INSTANCE_ITEM	
.	
Example 4-10 Tablespace of a Given Nonpartitioned Index Storage Table	
Example 4-11 lists the table names, the index names, and the tablespace name for the nonpartitioned secondary indexes on the index storage tables for a given XMLIndex	
index — in this case, index XBRL$INSTANCEIX	
.	
Example 4-11 Tables and Tablespace of Secondary Indexes on Index Storage Tables	
Example 4-12 lists the partitions and their tablespaces for partitioned XMLType	
table ORA$XBRLINSTANCE	
.	
Example 4-12 Partitions and Tablespaces for XMLType Table ORA$XBRLINSTANCE	
Example 4-13 lists the partitions and tablespaces for the index storage tables of partitioned XMLIndex	
index XBRL$INSTANCEIX	
.	
Example 4-13 Partitions and Tablespaces for Storage Tables of XBRL$INSTANCEIX	
Example 4-14 lists the partitions and their tablespaces for a given partitioned index storage table — in this case, ORAXBRL_INSTANCE_ITEM	
.	
Example 4-14 Partitions and Tablespaces of a Given Partitioned Index Storage Table	
Example 4-15 lists the index storage tables for partitioned XMLIndex	
index XBRL$INSTANCEIX	
, along with their secondary indexes, their partitions, and their tablespaces.	
Example 4-15 Detailed Information About Partitioned Index XBRL$INSTANCEIX	
The script content on this page is for navigation purposes only and does not alter the content in any way.	
This chapter explains how to install XBRL Extension to Oracle XML DB.	
It covers these topics:	
Note: Refer to "Placeholders in Oracle Database XBRL Extension Developer's Guide" for explanations of the placeholders used here.	
This section describes the minimal hardware and software requirements for installation and use of XBRL Extension to Oracle XML DB.	
There are no extra hardware requirements for XBRL Extension to Oracle XML DB, beyond those for Oracle Database.	
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html	
README.txt	
file. See "Preparing to Install XBRL Extension to Oracle XML DB". This section describes how to install and uninstall XBRL Extension to Oracle XML DB, create, drop, and purge an XBRL repository, and install the sample XBRL repository and GAAP demo.	
This section outlines preparatory instructions for installing XBRL Extension to Oracle XML DB and related software.	
http://support.oracle.com	
. To find the file name of this zip archive, please visit the Oracle Technology Network XBRL site, http://www.oracle.com/technetwork/database/features/xmldb/index-087631.html	
. patch_top	
. patch_top	
/XBRLReleaseN/README.txt	
to create directory ORACLE_HOME	
/rdbms/xbrl_xdb	
. Installing XBRL Extension to Oracle XML DB creates database user (schema) XBRLSYS	
, and it creates Oracle XML DB Repository folder /xbrl	
as a child of the repository root.	
Create an Oracle Database with character set AL32UTF8.	
COMPATIBLE	
parameter to at least 11.2.0.1.0. SHARED_POOL_SIZE	
to 1G. xbrl_xdb/XBRLScripts	
. XBRLSYS	
. Run script xbrlinstall.sql	
to install XBRL Extension to Oracle XML DB.	
Check the results of following SQL statements, to verify that XBRL Extension to Oracle XML DB has been successfully installed. The expected results are shown here.	
xbrlinstall.log	
, or if the result returned by any of the SQL queries in step 8 is not as expected, then check parameter COMPATIBLE	
and run uninstall — see "UnInstalling XBRL Extension to Oracle XML DB". Resolve the error, then try installing again (repeat steps 7 and 8). Use the following query to determine the current version of XBRL Extension to Oracle XML DB.	
Perform the following steps to uninstall XBRL Extension to Oracle XML DB. This drops all procedures and system objects created under database user XBRLSYS	
, and it deletes folder /xbrl	
from Oracle XML DB Repository.	
xbrluninstall.sql	
. Perform the following steps to create an XBRL repository. This also creates a database user (schema) with the same name as the repository. You can create any number of XBRL repositories. The repositories are independent of each other.	
Create a tablespace and a temporary tablespace for the XBRL repository. Use a redundancy factor of about 3.5 when calculating tablespace size, to account for indexed storage.	
CREATE TABLE	
statement for table ORA$XBRLINSTANCE	
in script xbrlddl.sql	
to add a virtual-column partition. See "Partitioning XBRL Repositories". Run SQL script, xbrlcrt.sql	
, to create the XBRL repository.	
This creates all of the tables and indexes that are needed for XBRL document storage. It also creates an Oracle XML DB Repository folder, under folder /xbrl	
, that has the same name as the XBRL repository, xb_rep	
.	
Check the results of the following SQL statements, to verify that the repository creation was successful. The expected results are shown here.	
xb_rep	
';xb_rep	
Check for any error messages in log file xbrlcft.log	
.	
If there are any error messages in log file xbrlcft.log	
, or if the result returned by any of the SQL queries in step 4 is not as expected, then run script xbrldrop.sql	
to drop the newly created repository — see "Dropping an XBRL Repository". Resolve the error, then create the repository again (repeat steps 3 and 4).	
Perform the following steps to drop (delete) an XBRL repository.	
xbrldrop.sql	
. In case the database schema corresponding to an XBRL repository is dropped, you can perform the following steps to purge an XBRL repository, deleting all dependent objects that were created in Oracle XML DB Repository.	
xbrludpurge.sql	
. Perform the following steps to install the sample XBRL repository and GAAP demo.	
InstallXBRLDemo.sql	
from directory xbrl_xdb/XBRLScripts	
. This creates a sample XBRL repository named oraxbrl	
. xbrl_xdb/XBRLScripts	
, to become familiar with the APIs of XBRL Extension to Oracle XML DB. This section describes the contents of the xbrl_xdb	
directory.	
Directory XBRLScripts	
contains the following SQL script files.	
SQL Script Name	Description
---	---
xbrlinstall.sql	Create database user XBRLSYS and install packages that contain XBRL- specific APIs. If Oracle XML DB Repository is used, then a root directory /xbrl is created, with owner XBRLSYS .
xbrlcrt.sql	Create an XBRL repository and a database schema with the same name. Create all necessary tables, indexes, and procedures.
xbrlddl.sql	Create tables and indexes. This script is run automatically by script xbrlcrt.sql . If you want to partition the base table for the XBRL instance documents of a given repository, then edit script
xbrldrop.sql	Drop a given XBRL repository, including the corresponding database schema, tables, indexes, and procedures.
xbrluninstall.sql	Finish uninstalling. Invoke this after dropping all XBRL repositories.
xbrludpurge.sql	Remove other system objects associated with an XBRL repository. Use this if a database schema corresponding to an XBRL repository is dropped accidentally.
xbrlpurgefile.sql	Delete resources from Oracle XML DB Repository that are associated with an XBRL repository. Use this if you use Oracle XML DB Repository and you mistakenly delete a document from the XBRL repository.
xbrlrecidxdrv.sql	Drop the XMLIndex indexes used for an XBRL repository, then recreate them, so you can move the index storage tables to a different tablespace.
xbrlregschema.sql	Register standard XBRL schemas. Must be run before using the tuple APIs.
xbrlerrmsg.sql	Load error messages in different languages for XBRL Extension to Oracle XML DB.
InstallXBRLDemo.sql	Install XBRL Extension to Oracle XML DB and create an XBRL repository.
Directory XBRLDemoScripts	
contains the following files.	
demo.sql	
– Script that loads and queries Bank of America and USGAAP 2008 files. demo2.sql	
– Script that loads and queries a tuple demo (files oraclexbrltupledemo.xsd	
, oraclexbrltupledemo-inst.xml	
). schema.xml	
and linkbase.xml	
, which are used by the USGAAP 2008 demo. These files list the XBRL schema and linkbase files in USGAAP 2008. See "Building and Using a Sample XBRL Application: USGAAP 2008". You must install an Oracle-certified third-party XBRL processing engine, outside the database. For information about this, consult Oracle XBRL support:	
http://www.oracle.com/technetwork/database/features/xmldb/index-087631.html	
Oracle Business Intelligence Suite Enterprise Edition (OBIEE) is not included as part of XBRL Extension to Oracle XML DB. You must procure it separately and install it according to the OBIEE instructions. You can install it in any tier. You must install an Oracle client for OBIEE to work properly with XBRL Extension to Oracle XML DB.	
XBRL Extension to Oracle XML DB provides a demo package to demonstrate integration with OBIEE. Included in directory xbrl_xdb	
is a directory Demo-BIFiles	
, which contains the OBIEE repository file xbrl.rpd	
and folders and files for a sample dashboard, in zip archive xbrl.zip	
.	
See Also:	
Perform the following steps to configure OBIEE with the demo package:
DEMO
to file oracle_client_dir
\network\admin\tnsnames.ora
. In the following, change hostname.domain
, port
, and sid
to the correct values for your database instance: oracle_client
, then Configuration and Migration Tools, then Microsoft ODBC Administrator. oracle_client
as the driver. Click Finish. x02
as the Data Source Name, demo
as the TNS Service Name, and oraxbrl
as the User ID. Click OK. xbrl.rpd
from xbrl_xdb\Demo-BIFiles
to obiee_home
\server\Repository
. xbrl.zip
to directory obieedata_home
\web\catalog
. obiee_home
\server\Config\NQSConfig.INI
in a text editor, and change the text that follows Star =
to make it xbrl.rpd
: obieedata_home
\web\config\instanceconfig.xml
in a text editor, and change the final directory component of the catalog path to make it xbrl
: services.msc
. Footnote Legend
Footnote 1: Shell examples are indicated here using the promptshell>
.SQL+>
, and the continuation prompt is shown as >
. Hyphen (-
) is the SQL*Plus line continuation character.The script content on this page is for navigation purposes only and does not alter the content in any way.
 Copyright © 2010, 2012, Oracle and/or its affiliates. All rights reserved. |