Developer's Guide
11g Release 2 (11.2) for Microsoft Windows
E17727-03
March 2011
Oracle Objects for OLE Developer's Guide, 11g Release 2 (11.2) for Microsoft Windows
E17727-03
Copyright © 1994, 2011, Oracle and/or its affiliates. All rights reserved.
Primary Authors: Janis Greenberg, Christian Shay
Contributing Authors: Riaz Ahmed, Kiminari Akiyama, Steven Caminez, Naveen Doraiswamy, Neeraj Gupta, Sinclair Hsu, Alex Keh, Chithra Ramamurthy, Ashish Shah, Martha Woo
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This document explains how to install, configure, and use Oracle Objects for OLE (OO4O). It covers features of Oracle Database that apply to Microsoft Windows operating systems.
Oracle Objects for OLE (OO4O) allows easy access to data stored in Oracle databases with any programming or scripting language that supports the Microsoft COM Automation.
Note: Oracle Database 11g Release 2 (11.2) is the last database version that supports Oracle Objects for OLE. Oracle Database versions, which are released after Oracle Database 11g Release 2 (11.2), will not support Oracle Objects for OLE. You can continue to use Oracle Objects for OLE with existing Oracle Database versions that are covered under the lifetime support policy of Oracle. |
Oracle Objects for OLE Developer's Guide is intended for programmers developing applications to access an Oracle database using Oracle Objects for OLE. This documentation is also valuable to systems analysts, project managers, and others interested in the development of database applications.
To use this document, you must have a working knowledge of application programming using Visual Basic or Microsoft C/C++ and knowledge of Component Object Model (COM) concepts.
Readers should also be familiar with the use of structured query language (SQL) to access information in relational database systems.
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/
.
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html
or visit http://www.oracle.com/accessibility/support.html
if you are hearing impaired.
For more information, see these Oracle resources:
Many of the examples in this book use the sample schemas, which are installed by default when you select the Basic Installation option with an Oracle Database installation. Refer to Oracle Database Sample Schemas for information on how these schemas were created and how you can use them yourself.
To download free release notes, installation documentation, white papers, or other collateral, please visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at
If you already have a user name and password for OTN, then you can go directly to the documentation section of the OTN Web site at
For additional information, see:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This section describes new features of Oracle Database 11g Release 2 (11.2) and provides pointers to additional information. New features information from previous releases is also retained to help those users migrating to the current release.	
The following sections describe the new features in Oracle Oracle Objects for OLE:	
There are no new features for these releases.	
There are no new features for this release.	
Documentation for Oracle Objects for OLE was improved and reorganized, although there is no additional content. The documentation was reformatted to a printable, PDF format. PDF and HTML are provided in the Documentation Library. Online Help in WinHelp format is no longer provided.	
Oracle Objects for OLE is grid-enabled, allowing developers to take advantage of Oracle database grid support without having to make changes to their application code.	
Oracle Objects for OLE provides support for the BINARY_DOUBLE	
and BINARY_FLOAT	
data types introduced in Oracle Database 10g. Instances of these types can be fetched from the database or passed as input or output variables to SQL statements and PL/SQL locks, including stored procedures and functions.	
The following constants were added in the oraconst.txt	
to bind the BINARY_DOUBLE	
and BINARY_FLOAT	
data types.	
ORATYPE_BDOUBLE	
, Oracle data type BINARY_DOUBLE	
, value 101	
ORATYPE_BFLOAT	
, Oracle data type BINARY_FLOAT	
, value 100	
Oracle Objects for OLE can be installed in multiple Oracle homes, starting with release 10.1. However, being a Component Object Model (COM) component, only one instance can be active on the computer. This means that the current (latest) installation renders the previous one inactive.	
To make multiple Oracle homes available, the use of a KEY_	
HOMENAME	
is required. Also, some of the Oracle Objects for OLE files include a version number.	
See Also:	
This chapter introduces Oracle Objects for OLE (OO4O).
Note: Oracle Database 11g Release 2 (11.2) is the last database version that supports Oracle Objects for OLE. Oracle Database versions, which are released after Oracle Database 11g Release 2 (11.2), will not support Oracle Objects for OLE. You can continue to use Oracle Objects for OLE with existing Oracle Database versions that are covered under the lifetime support policy of Oracle. |
This chapter contains these topics:
Oracle Objects for OLE (OO4O) allows you to access data stored in Oracle databases with any programming or scripting language that supports Microsoft COM Automation and ActiveX technology. This includes Visual Basic, Visual C++, Visual Basic for Applications (VBA), IIS Active Server Pages (VBScript and JavaScript), and others.
Figure 1-1 illustrates the software layers that comprise the OO4O product.
OO4O provides the following:
The OO4O In-Process Automation Server is a set of COM Automation Objects for connecting to Oracle databases, executing SQL statements and PL/SQL blocks, and accessing the results.
Figure 1-2 illustrates the object model that comprise the OO4O product.
Unlike other COM-based database connectivity APIs, such as Microsoft ActiveX Data Objects (ADO), the OO4O Automation Server was created specifically for use with Oracle databases. It provides an optimized API for accessing features that are unique to the Oracle database and are otherwise cumbersome or unavailable from ODBC or OLE DB components.
OO4O provides key features for accessing Oracle databases efficiently and easily in environments ranging from the typical two-tier client/server applications, such as those developed in Visual Basic or Excel, to application servers deployed in multitiered application server environments such as Web server applications in Microsoft Internet Information Server (IIS) or Microsoft Transaction Server (MTS).
Features include:
VARRAY
s BLOB
s, CLOB
s, NCLOB
s, and BFILE
s Oracle Data Control is an ActiveX control that is designed to simplify the exchange of data among an Oracle database and visual controls such as edit, text, list, and grid controls in Visual Basic and other development tools that support custom controls.
A data control enables you to perform most data access operations without writing any code. To create a dynaset with a data control, set the Connect
, DatabaseName
, and RecordSource
properties, and execute the Refresh
command.
A data control enables you to bind it to other controls that display a field, a record, or multiple records of the underlying dynaset. When record movement occurs, data in bound controls stay synchronized with the current record of the dynaset. If a user changes data in a control that is bound to a data control, the changes are automatically reflected in the underlying dynaset and database.
The Oracle Data Control is compatible with the Microsoft data control included with Visual Basic. If you are familiar with the Visual Basic data control, learning to use Oracle Data Control is quick and easy. Communication between data-aware controls and a Data Control is governed by a protocol specified by Microsoft.
The Oracle Objects for OLE C++ Class Library is a collection of C++ classes that provide programmatic access to the OO4O Automation server. Although the class library is implemented using OLE Automation, neither the OLE development kit nor any OLE development knowledge is necessary to use it. This library helps C++ developers avoid writing COM client code to access the OO4O interfaces.
In addition to the object classes, the class library provides a bound class, which allows controls such as text and list boxes to be linked directly to a field of a dynaset (columns of a table in the database). The bound class supports late, run-time binding, as is available in Visual Basic. The Oracle Objects for OLE C++ Class Library is supported for Microsoft Visual C++ and the Microsoft Foundation Classes for the bound class.
See Also: Oracle Objects for OLE C++ Class Library Developer's Guide available as online help |
This section discusses the required setups for using Oracle Objects for OLE.
Oracle Objects for OLE can be installed in multiple Oracle homes, starting with Oracle Database 10g. However, being a COM component, only one instance can be active on the computer. This means that the current (latest) installation renders the previous one inactive. You can switch Oracle homes by using the Oracle installer.
Note: Oracle Objects for OLE is not supported on Windows x64 operating systems. |
The following system requirements are necessary to install Oracle Objects for OLE:
Oracle supports 32-bit Oracle Objects for OLE on x86, AMD64, and Intel EM64T processors on these operating systems.
The following other requirements may be necessary:
oip
VER
.tlb
) must be referenced when an OO4O Visual Basic project is developed. To do this, select References from the Project menu (VB 5.0/6.0) and check the box next to the Oracle In-Process Server 5.0 Type Library, which should be pointing to the ORACLE_BASE\\ORACLE_HOME
\bin\oip
VER
.tlb
file. See "Using Oracle Objects for OLE Automation with Visual Basic" for detailed information.
See Also: "Oracle Objects for OLE Redistributable Files" and "Troubleshooting" for further information on Oracle Objects for OLE requirements |
As part of the OO4O installation, the following directories are created and contain the corresponding files:
ORACLE_BASE\ORACLE_HOME
\OO4O
- SQL scripts and constants file ORACLE_BASE\ORACLE_HOME
\OO4O\CPP
- Libraries, include files, DLLs, and source for the class library ORACLE_BASE\ORACLE_HOME
\OO4O\CPP\MFC
- Libraries, include files, and source for the MFC Bound Class Library ORACLE_BASE\ORACLE_HOME
\OO4O\EXCEL\SAMPLES
- Excel samples ORACLE_BASE\ORACLE_HOME
OO4O\VB\SAMPLES
- Visual Basic samples ORACLE_BASE\ORACLE_HOME
\OO4O\VB\SAMPLES\QT
- Visual Basic Quick Tour guide ORACLE_BASE\ORACLE_HOME
\OO4O\IIS\SAMPLES
- IIS samples ORACLE_BASE\ORACLE_HOME
\OO4O\codewiz
- OO4O Code Wizard samples Find the latest certification information at My Oracle Support (formerly OracleMetaLink):
You must register online before using My Oracle Support. After logging into My Oracle Support, select Product Lifecycle from the left column. From the Products Lifecycle page, click Certifications. Other Product Lifecycle options include Product Availability, Desupport Notices, and Alerts.
This section discusses files that can be redistributed or updated on a computer that belongs to an end user or a developer.
If you cannot guarantee that your end users have the current release of Oracle Objects for OLE installed on their computers, you need to redistribute specific files that are part of Oracle Objects for OLE along with your OO4O application. A typical scenario might be if OO4O is installed as a patch without use of Oracle Universal Installer.
Table 1-1 lists the Redistributable file locations with comments and further actions that are needed.
Table 1-1 Redistributable File Locations
Files | Place in Directory | Further Actions | Comments |
---|---|---|---|
|
| Execute the following from a command prompt:
| None. |
|
| None. | None. |
|
| None. | Change |
|
| Edit for the correct
| File provided to register OO4O configuration information. |
|
| None. | This message file is language-specific. |
(for Microsoft VC++) or
|
| For
| Distribute the files that correspond to the development software used in your application. |
Additionally, ensure that the system requirements described in "Overview of Oracle Objects for OLE" are met.
You must also distribute the files from the following list that correspond to the development software you used to build your application:
oraclm32.dll
(for Microsoft Visual C++) oradc.ocx
The oo4oparm.reg
file is provided to register OO4O configuration information. Review this file and edit it as necessary to reflect the correct ORACLE_HOME
location and HOME
ID
on your computer. To register oip
VER
.dll
and enter the OO4O configuration information for oo4oparm.reg
in the registry, execute the following from a command prompt:
drive
:\
path
>
regsvr32.exe oip
VER
.dll
drive
:\
path
>
oo4oparm.reg
The message file oiplang.msb
should also be provided and copied to the ORACLE_BASE\ORACLE_HOME
\oo4o\mesg
directory. The message file is specific to a language. For example, oipus.msb
is the English version and oipja.msb
is the Japanese version.
Note: Oracle Data Control (oradc.ocx) must be registered to function. The OLE Control Extension (OCX) can be registered by executing the following at the command prompt:
|
This chapter describes the use of automation clients to access Oracle data.
This chapter contains these topics:
Oracle Objects for OLE (OO4O) is designed to provide quick and efficient access to the data in an Oracle database using various programming or scripting languages.
OO4O can be easily used with Visual Basic, Excel, Active Server Pages, Internet Information Server (IIS), and other development tools.
Oracle Data Control with Visual Basic allows another method of accessing Oracle data.
Examples are provided for specific methods and properties in this developer's guide. Additionally, example programs are installed with Oracle Objects for OLE and are located in the ORACLE_BASE\\ORACLE_HOME
\oo4o\
directory under VB, EXCEL, IIS, CPP, and so on.
A Quick Tour of OO4O with Visual Basic is also provided.
The code examples included in this developer's guide and the example applications shipped with Oracle Objects for OLE are designed to work with a demonstration schema (database tables and other objects) and a demonstration user and password, scott
/tiger
. Code examples are located in the ORACLE_BASE\\ORACLE_HOME
\oo4o
directory.
You can create the OO4O demonstration schema with the demobld7.sql
script located in the ORACLE_BASE\\ORACLE_HOME
\oo4o
directory. You can drop the demonstration schema with the demodrp7.sql
script.
The demonstration schema includes the following references:
EMP
and DEPT
. scott
with password tiger
(scott
/tiger
). ExampleDb
. Refer to Oracle Net Services Administrator's Guide for assistance in setting up the network service (database) alias and the tnsnames.ora
file.
In many of the examples, you can access a local database using "
"
(a null string) for the network alias.
Occasionally other schemas are required to run examples. The introductions to the examples contain names and locations of the schemas (in the appendix).
The ORACLE_BASE\\ORACLE_HOME
\oo4o
directory contains the following items:
Subdirectories contain both C++ and Visual Basic examples.
oraexamp.sql
script, used to create stored procedures. Additional scripts, such as multicur.sql
and empcur.sql
, are provided to set up other example programs. oraconst.txt
, which contains constant values used for option flags and property values. This file is usually not needed as these constants are also included with the Oracle In-Process Server type library. This example contains code fragments that demonstrate how to create all objects required by a dynaset and then create the dynaset itself.
See Also:
|
This example uses Active Server Pages (ASP) in a Microsoft Internet Information Server (IIS) to demonstrate the connection pooling feature of Oracle Objects for OLE. The sample code executes a SQL SELECT
query and returns the result as an HTML table. The database connection used in this script is obtained from a pool that is created when the global.asa
file is executed.
To use Oracle Objects for OLE with OLE Automation and IIS, you need to install IIS 3.0 or later, including all ASP extensions. On the computer where IIS is running, an Oracle database must also be accessible.
Note: The sample code for this example is available in theORACLE_BASE\\ORACLE_HOME \oo4o\iis\samples\asp\connpool directory. |
scott
/tiger
. Create the following PL/SQL procedures:
Create or replace the ASP_demo package body as follows:
.asp
and .asa
files in that directory. oo4odemo.asp
file. Add a link in the page as follows: 'SELECT * FROM EMP'
, in the SQL SELECT Query field, and select the Submit Query button. Do not include a semicolon (;)
at the end of the query. This sample shows how to insert Oracle data into an Excel worksheet.
Note: The sample code for this example is available in theORACLE_BASE\\ORACLE_HOME \oo4o\excel\samples\ directory. |
To use OLE Automation with Microsoft Excel to insert Oracle data into a worksheet, perform the following steps:
EmpData()
and ClearData()
procedures (macros): EmpData()
and ClearData()
, to command buttons in the worksheet for easy access. When you select the buttons, you can clear and refresh the data in the worksheet. In the following screenshot, ClearData()
is assigned to the Clear button and EmpData()
is assigned to the Refresh button. For details about Oracle Objects for OLE with Visual C++, see Oracle Objects for OLE C++ Class Library Developer's Guide, available as online help.
Oracle Data Control, when refreshed, automatically creates a client (if needed), session, database, and dynaset. For a basic application, little or no code is required.
This section shows two ways to set the properties of Oracle Data Control:
The Oracle Data Control is added to your Visual Basic tool palette and looks like this:
OraDataControl
. Set up the Connect
, DatabaseName
, and RecordSource
properties as follows to access the Oracle database: RecordSource
property is displayed using Oracle Data Control. You can also use Microsoft Grid Control to display all the data in the table. You need to add the grid control with the Components option of the Project menu.
The following code fragment demonstrates how to programmatically set the properties of Oracle Data Control required to create a dynaset. These are the same properties that you can set with the Properties window in Visual Basic.
OraDataControl
. You now have a valid session, database, and dynaset that can be referenced as follows:
Object	Reference
orasession	oradatacontrol.oradatabase.orasession
oradatabase	oradatacontrol.oradatabase
oradynaset	oradatacontrol.recordset
RecordSource	
property using Visual Basic controls, such as the TextBox, as shown in the previous example. This example shows how to create a basic Win32 Application with Oracle Data Control using MS Visual C++. This example assumes that both the Oracle data and DB Grid controls were registered on the system.	
Note: If you used OO4O as the project name, it is named IDD_OO4O_DIALOG	
.	
ID	
to IDC_ ORADATACONTROL	
. Deselect the check mark for Visible so that the control is hidden when the application is run. DataSource	
property to Oracle Data Control (IDC_ORADATACONTROL	
). Accept the defaults for the other properties. These can be changed later. emp	
table as in the following illustration: This chapter describes basic features of Oracle Objects for OLE.	
This chapter contains these topics:	
Oracle Objects for OLE enables client applications to connect to Oracle databases, execute commands, and access and manipulate the results returned. While some flexibility exists in the order in which specific tasks can be performed, every application using OO4O Automation objects performs the following basic steps:	
To connect to an Oracle database with the OO4O Automation Server, you must first create an instance of the server. In Visual Basic (VB), this is usually done by calling the CreateObject	
method, although the NEW	
keyword can also be used.	
You can use the Visual Basic CreateObject	
method with either of the following two OO4O server objects. The interfaces of these objects can provide access to OO4O and enable a connection to Oracle Database.	
OraSession	
Highest level object for an application. It manages collections of OraDatabase	
, OraConnection	
, and OraDynaset	
objects.	
OraServer	
Represents a physical connection to a database instance and allows for connection multiplexing	
The CreateObject	
method uses the ID	
of the component and object as arguments.	
The following script demonstrates how to obtain an OraSession	
object in Visual Basic. OO4OSession	
is the object variable that holds an instance of the OraSession	
object.	
or	
or	
The following example demonstrates how to obtain an OraSession	
object in IIS Active Server Pages.	
OracleInProcServer.XOraSession	
is the version independent program ID	
for OO4O that the Oracle client installation program registers in the Windows registry. It is the symbolic name for a globally unique identifier (CLSID	
) that identifies the OO4O component.	
Once you have obtained an interface, you can use it to establish a user session in an Oracle database by invoking the OpenDatabase	
method.	
or	
The variable EmpDb	
represents a user session. It holds an OraDatabase	
interface and can be used to send commands to Oracle Database using ExampleDb	
for the network connection alias and scott	
/tiger	
for the user name and password.	
The OraServer	
interface allows multiple user sessions to share a physical network connection to the database. This reduces resource usage on the network and the database, and allows for better server scalability. However, execution of commands by multiple user sessions is serialized on the connection. Therefore, this feature is not recommended for use in multithreaded applications in which parallel command execution is needed for performance.	
The following code example shows how to use the OraServer	
interface to establish two user sessions:	
You can also obtain user sessions from a previously created pool of objects.	
Commands that can be sent to Oracle databases using OO4O Automation objects are divided into the following categories:	
Queries are statements that retrieve data from a database. A query can return zero, one, or many rows of data. All queries begin with the SQL keyword SELECT	
, as in the following example:	
In OO4O, SELECT	
statements such as this are used with the CreateDynaset	
method of the OraDatabase	
interface to execute queries. This method returns an OraDynaset	
object that is then used to access and manipulate the set of rows returned. An OraDynaset	
object encapsulates the functions of a client-side scrollable (forward and backward) cursor that allows browsing the set of rows returned by the query it executes.	
Note: Caching result sets on the client's local disk can be disabled if backward scrollability is not a requirement. This is strongly recommended and can provide significant performance improvements. Passing theORADYN_NOCACHE option in the CreateDynaset method disables caching. This constant is defined in the oraconst.txt file and can be found in the root directory where OO4O is installed, ORACLE_BASE\\ORACLE_HOME \OO4O .	
The following code example shows how to connect to the ExampleDb	
database, execute a query, move through the result set of rows, and displays the column values of each row in a simple message box.	
In the previous example, Employees	
("ENAME"	
) and Employees	
("EMPNO"	
) return values of the ENAME	
and the EMPNO	
columns from the current row in the result set, respectively. An alternative method of accessing the column values is to use the positions of the columns, Employees(0)	
for the ENAME	
column and Employee(1)	
for EMPNO	
. This method obtains the column value faster than referencing a column by its name.	
The Employees.MoveNext	
statement in the example sets the current row of the result set to the next row. The EOF	
property of the OraDynaset	
is set to True	
if an attempt is made to move past the last row in the result set.	
The MoveNext	
method is one navigational method in the OraDynaset	
interface. Other methods include MoveFirst	
, MoveLast	
, MoveNext	
, MovePrevious	
, MoveNextn	
, MovePreviousn	
, MoveRel	
, and MoveTo	
.	
An OraDynaset	
object also provides methods to update and delete rows retrieved from base tables or views that can be updated. In addition, it provides a way to insert new rows. See "OraDynaset Object".	
Queries can also require the program to supply data to the database using input (bind) variables, as in the following example:	
In the SQL statement, :ENAME	
is a placeholder for a value that is supplied by the application.	
In OO4O, the OraParameter	
object is used to supply data values for placeholders.	
To define a parameter, use the OraParameters	
collection object. This object is obtained by referencing the Parameters	
property of an OraDatabase	
interface. The OraParameters	
collection provides methods for adding, removing, and obtaining references to OraParameter	
objects.	
The following statement adds an input parameter, ORAPARM_INPUT	
, to the OraParameters	
collection contained in the EmpDb	
object.	
ENAME	
is the name of the parameter and must be the same as the name of the placeholder in the SQL statement, :ENAME	
in the sample code. JONES	
is provided as the initial value, and ORAPARM_INPUT	
notifies OO4O that it is used as an INPUT	
parameter.	
The following example creates an OraDynaset	
object that contains only one row for an employee whose name is 'JONES'	
.	
Data manipulation language (DML) statements can change data in the database tables. For example, DML statements are used to:	
The OraDatabase	
interface in OO4O provides two methods for executing DML statements: ExecuteSQL	
and CreateSQL	
. The following discussion describes how these methods can be used to execute various types of DML statements.	
The following example uses the ExecuteSQL	
method to execute an UPDATE	
statement.	
Another way to execute the UPDATE	
statement is to use the CreateSQL	
method:	
Both the ExecuteSQL	
and CreateSQL	
methods execute the UPDATE statement provided. The difference is that the CreateSQL	
method returns a reference to an OraSQLStmt	
interface, in addition to executing the statement. This interface can later be used to execute the same query using the Refresh	
method. Because the query has already been parsed by the database, subsequent execution of the same query results in faster execution, especially if bind parameters are used.	
For example, to increase the salary of an employee named KING	
by 1000, change the value of the placeholder, and refresh the sqlStatement	
object as follows:	
For DML statements that are frequently executed, using parameters with OraSqlStmt	
objects is more efficient than using the ExecuteSql	
statement repeatedly. When the Refresh	
method of the OraSQLStmt	
is executed, the statement no longer needs to be parsed by the database. In application servers, such as Web servers, where the same queries are frequently executed with different parameter values, this can lead to significant savings in Oracle Database processing.	
The following example uses the CreateSQL	
method to delete rows from the emp	
table.	
To delete another row from the emp	
table, the value of the parameter is changed, and the sqlStatement	
object is refreshed.	
The following example adds a new row into the table.	
Inserting Multiple Rows Using Parameter Arrays	
You can use parameter arrays to fetch, update, insert, or delete multiple rows in a table. Using parameter arrays for manipulating multiple rows is more efficient than executing multiple statements that operate on individual rows.	
The following example demonstrates how the AddTable	
method of the OraDatabase	
interface is used to create parameter arrays. The arrays are then populated with values, and used as placeholders in the execution of an INSERT	
statement that inserts two rows into the emp	
table.	
OO4O is thread-safe and can be used effectively in multithreaded applications and environments such as the Microsoft Internet Information Server (IIS). OO4O supports both the free and apartment threading models in COM/DCOM.	
Access to OO4O object attributes is serialized when used with multiple threads of execution. To achieve maximum concurrency in query execution in a multithreaded application with OO4O, avoid sharing objects in multiple threads.	
Avoid using commit and rollback operations on a session object that is shared among multiple threads because all connections associated with that session are committed or rolled back. To perform commit and rollback operations on a session object, create a unique session object for each database object used.	
The connection pool in OO4O is a pool of OraDatabase	
objects. An OO4O connection pool is a group of (possibly) already connected OraDatabase	
objects. For applications that require constant connections and disconnections to the database, such as ASP Web applications, using a connection pool results in enhanced performance.	
The connection pool is created by invoking the CreateDatabasePool	
method of the OraSession	
interface. An OraDatabase	
object represents a connection to an Oracle database and contains methods for executing SQL statements and PL/SQL blocks.	
To retrieve an OraDatabase	
object from the pool, call the GetDatabaseFromPool	
method. This function returns a reference to an OraDatabase	
object.	
The pool is implicitly destroyed if the parent session object that it belongs to is destroyed. It can also be destroyed at any time by invoking the DestroyDatabasePool	
method.	
OO4O, linked with clients from releases 8.1.6 or higher, supports detection of lost connections.	
Applications can verify the status of the database connection by invoking the ConnectionOK	
property of the OraDatabase	
object. The OraSession.GetDatabaseFromPool	
method now verifies the connection before returning the OraDatabase	
to the application.	
If the connection is lost, the GetDatabaseFromPool	
method drops the lost connection and fetches a new connection.	
PL/SQL is the Oracle procedural extension to the SQL language. PL/SQL processes complicated tasks that simple queries and SQL data manipulation language statements cannot perform. Without PL/SQL, Oracle Database would have to process SQL statements one at a time. Each SQL statement results in another call to the database and consequently higher performance overhead. In a networked environment, the overhead can be significant. Every time a SQL statement is issued, it must be sent over the network, creating more traffic. However, with PL/SQL, an entire block of statements can be sent to a database at one time. This can greatly reduce communication between an application and a database.	
PL/SQL allows a number of constructs to be grouped into a single block and executed as a unit. These include:	
IF...THEN...ELSE	
statements and loops) FOR	
loops Oracle Objects for OLE (OO4O) provides tight integration with PL/SQL stored procedures. OO4O supports PL/SQL stored procedures, PL/SQL tables, PL/SQL, cursors and so on. The PL/SQL bind variables are supported through the OraParameter	
Add	
method.	
The stored procedure block is executed either through the CreateSQL	
method or the ExecuteSQL	
method.	
Oracle Objects for OLE can return a cursor created in the stored procedure or anonymous PL/SQL block as a READONLY	
dynaset object.To do this, you must assign the cursor variable as an OraParameter	
object of type ORATYPE_CURSOR	
.	
After executing the stored procedure, the Value	
property of this OraParameter	
object returns a read-only dynaset object.	
This dynaset object can be treated the same as other dynaset objects.	
In OO4O, you can use the ExecuteSQL	
or CreateSQL	
methods of the OraDatabase	
object to execute PL/SQL blocks, as the following example shows:	
The following example executes a PL/SQL block that calls a stored procedure using the CreateSQL	
method in OO4O. The procedure takes a department number as input and returns the name and location of the department.	
This example is used for creating the stored procedure in the employee database.	
The following example executes the previously created procedure to get the name and location of the department where deptno	
is 10	
.	
PL/SQL cursor variables are mainly used for accessing one or more query result sets from PL/SQL blocks and stored procedures and functions. The OraParameter	
object in OO4O can be used to hold a PL/SQL cursor variable.	
The OraParameter	
object representing a cursor variable should be of type ORATYPE_CURSOR	
, and can only be defined as an output variable. After the PL/SQL block is executed, the Value	
property of the OraParameter	
object contains a read-only OraDynaset	
object. This OraDynaset	
object can be used to scroll through the returned rows.	
In some cases, it is better to use the CreateSQL	
method for executing PL/SQL procedures than the ExecuteSQL	
method. The Refresh	
method on the OraSQLStmt	
object can result in modified PL/SQL cursors. If the CreateSQL	
method is used, these modified cursors are automatically associated with the existing dynaset object, and no new dynaset object is created.	
You cannot set the SQL property of the dynaset object; this raises an error.	
Note: PL/SQL stored procedures that contain cursors as table parameters are not supported.	
You should call the Remove	
method on the parameter object. This helps in cleaning the dynaset object and local temporary cache files.	
The following example contains a stored procedure that gets the cursors for the emp	
and dept	
tables and a small application that executes the procedure.	
Stored Procedure	
Application	
PL/SQL tables are mainly used for accessing arrays of PL/SQL data. The OraParamArray	
object in OO4O can be used to hold a PL/SQL cursor variable.	
The OraParamArray	
object representing a table variable should be created first the using the AddTable	
method. Table values are accessed or set using the Get_Value	
and Put_Value	
methods of the OraParamArray	
object.	
The PL/SQL procedure GetEmpNamesInArray	
returns an array of ENAME	
values for array of EMPNO	
s.	
The following example executes the previous procedure to get the ename	
table.	
Data Definition Language (DDL) statements manage schema objects in the database. DDL statements create new tables, drop old tables, and establish other schema objects. They also control access to schema objects. For example:	
DDL statements also allow you to work with objects in Oracle Database, for example:	
A transaction is a logical unit of work that comprises one or more SQL statements executed by a single user. A typical example is transferring money from one bank account to another. Two operations take place:	
These operations need to be performed together. If one operation was completed but not the other (for example, if the network connection went down), the bank's books would not balance correctly.	
Normally, when you execute an update method on a dynaset, the changes are committed to the database immediately. Each operation is treated as a distinct transaction. The BeginTrans	
, CommitTrans	
, and Rollback	
transactional control methods of the OraSession	
object allow operations to be grouped into larger transactions.	
The BeginTrans	
method tells the session that you are starting a group of operations. The CommitTrans	
method makes the entire group of operations permanent. The Rollback	
method cancels the entire group. The CommitTrans	
and Rollback	
methods end the transaction, and the program returns to normal operation: one transaction for each operation. Experienced Oracle Database users should note the following differences between the operation of Oracle Objects for OLE and many Oracle Database tools:	
BeginTrans	
method was called when the tool was started. This means that updates are not committed immediately; they are held until a commit or rollback is executed. UPDATE	
or DELETE	
statement. However, in the case of OO4O, if UPDATE	
or DELETE	
methods fail on a given row in a dynaset in a global transaction (such as cases in which you issued a BeginTrans	
method), be aware that locks remain on those rows. These locks persist until you call a CommitTrans	
or Rollback	
method. If you are connected to more than one database and use the transaction methods, be aware that Oracle Objects for OLE commits each database separately. This is not the same as the two-phase commit that Oracle Database provides. If your application needs to guarantee data integrity across databases, connect to a single database and then access additional databases by way of the Oracle Database link feature. This method gives you the benefit of the Oracle Database two-phase commit. Consult your Oracle Database documentation for more information about two-phase commit, database links, and distributed transactions.	
Transactions apply only to the Data Manipulation Language (DML) portion of the SQL language (such as INSERT	
, UPDATE	
, and DELETE	
statements). Transactions do not apply to the Data Control Language (DCL) or Data Definition Language (DDL) portions (such as CREATE	
, DROP	
, and ALTER	
statements) of the SQL language. DCL and DDL commands always force a commit, which in turn commits everything done previously.	
Oracle database transactions initiated in Oracle Objects for OLE (OO4O) automatically participate in global transactions coordinated by the Microsoft Distributed Transaction Coordinator (DTC) in the Microsoft Transaction Server (MTS), if all the following conditions are true:	
OpenDatabase	
method of OraSession	
uses the ORADB_ENLIST_IN_MTS	
option. In OO4O Automation, you can execute commands using asynchronous processing. This enables you to execute SQL statements and PL/SQL blocks in nonblocking mode. Nonblocking mode is an option of the CreateSQL	
method.	
In nonblocking mode, control is returned to the application immediately even if the execution is not complete. This allows the application to execute other tasks that are not dependent on the results of the last execution.	
To enable nonblocking mode, pass in the ORASQL_NONBLK	
option to the CreateSQL	
method while creating the OraSQLStmt	
object. If this mode is not specified, the OraSQLStmt	
object executes in blocking mode (default behavior).	
An OraSQLStmt	
object created in nonblocking mode executes in nonblocking mode for the lifetime of the object.	
This section contains the following topics:	
To determine the status of an OraSQLStmt	
object executing asynchronously, applications need to poll the NonBlockingState	
property. The NonBlockingState	
property returns ORASQL_STILL_EXECUTING	
if execution is still pending or ORASQL_SUCCESS	
if execution has completed successfully.	
Any failures are thrown as exceptions.	
On successful completion, the output parameters, if any, are placed in the bound parameter buffers. The application can then access the parameters as in the blocking case.	
The following example demonstrates the usage of the NonBlockingState	
property.	
You can cancel a nonblocking operation that is underway by calling the Cancel	
method on the OraSQLStmt	
object that is executing the asynchronous call.	
Multiple queries can be executed in asynchronous mode. In this example, while the first connection is executing a non-blocking call, the second connection executes a SQL statement in blocking mode.	
The following are limitations on nonblocking mode:	
OraSQLStmt	
object, you cannot change the properties or attributes of this object, as it can affect the execution that is in progress. OraSQLStmt	
object in nonblocking mode if there are other objects that are already instantiated on the connection. In other words, creating an OraSQLStmt	
object to execute in nonblocking mode only succeeds if no other objects, such as OraDynaset	
and OraAQ	
, are currently active on the same database session. The only exceptions are OraParameter	
and OraObject	
objects. These are permitted, as they may be required for the nonblocking execution. This chapter describes advanced Oracle Objects for OLE features.This chapter contains these topics:	
Oracle Objects for OLE provides support for accessing and manipulating instances of REFs, value instances, variable-length arrays (VARRAY	
s), nested tables, and large objects (LOBs) in an Oracle database.	
Table 4-0 illustrates the containment hierarchy for instances of all types in Oracle Objects for OLE.	
Instances of these types can be fetched from the database or passed as input or output variables to SQL statements and PL/SQL blocks, including stored procedures and functions. All instances are mapped to COM Automation interfaces that provide methods for dynamic attribute access and manipulation. These interfaces can be obtained from:	
Value	
property of an OraField	
object in a dynaset. Value	
property of an OraParameter	
object used as an input or an output parameter in SQL Statements or PL/SQL blocks. REF	
instance. VARRAY	
or a nested table). Oracle Objects for OLE provides COM Automation interfaces for working with LOBs, Oracle objects, and collection types. These interfaces provide methods and properties to access data associated with LOBs, Oracle objects, and collection instances.	
Table 4-1 lists Oracle LOBs, Objects, and collection types with associated OO4O interfaces.	
Table 4-1 Oracle LOBs, Objects, and Collections	
Type	OO4O Interface
---	---
How the preceding interfaces are retrieved in OO4O depend on how they are stored in the database or accessed in a SQL statement. These are the possible scenarios:	
If a table contains LOBs, object types, and collections as columns and the dynaset SELECT	
statement is based on this table, then the Value	
property of the OraField	
object representing that column returns corresponding OO4O interfaces for that type.	
If a SQL statement or PL/SQL block has LOBs, object types, and collections as bind variables, then an OraParameter	
object should be created with a corresponding server type using the Add	
method. The Value	
property of the OraParameter	
object representing that bind variable returns the corresponding OO4O interfaces for that type.	
If an Oracle object instance has LOBs, object types, or collections as attributes, then the corresponding OO4O interface for any attribute is retrieved by using the subscript or name of the attribute from the OraObject	
or OraRef	
, or by using the Value	
property of an OraAttribute	
object.	
VARRAY	
and nested table If an Oracle VARRAY	
and nested table has object types and REF	
as its elements, then the corresponding OO4O interface is retrieved using the element index as the subscript from the OraCollection	
object.	
When OO4O interfaces for these types are retrieved as part of a dynaset, then the OO4O interfaces represent instances of LOBs, objects, and collection types for the current row of the dynaset. If the current row changes due to a move operation, then the OO4O interfaces represent instances of LOBs, objects, and collection types for the new current row. When OO4O interfaces for these types are retrieved as part of an OraParameter	
object and the OraParameter	
value changes to due to a OraSQLStmt	
Refresh	
method, then the OO4O interface represents a new instance LOB, object, and collection type for that OraParameter	
.	
Internally, OO4O maintains one OO4O interface for each OraField	
, OraParameter	
, and OraAttribute	
object. To retain the instance of LOBs, objects, and collection types independent of a dynaset move operation or an OraSQLStmt	
refresh operation, use the Clone	
method on the corresponding OO4O interface. This method makes a copy of LOBs, objects, and collection types instance and returns a corresponding OO4O interface associated with that copy.	
The large object (LOB) data types (BLOB	
, CLOB	
, NCLOB	
, and BFILE	
) can provide storage for large blocks of unstructured data, such as text, images, video clips, and sound waveforms, up to 4 gigabytes in size. They provide efficient, random, piece-wise access to the data. In Oracle Objects for OLE, instances of LOB data types are represented as interfaces.	
See Also:	
This section includes the following topics:	
Table 4-2 lists the four LOB data types and their corresponding OO4O interfaces.	
Table 4-2 LOB Data Types	
LOB Data Types	a LOB whose value is composed of
---	---
Unstructured binary (raw) data.	
Fixed-width, single-byte character data that corresponds to the database character set defined for Oracle Database.	
Fixed-width, multiple-byte character data that corresponds to the national character set defined for Oracle Database.	
A LOB whose large binary data is stored in operating system files outside of database tablespaces.	
The following example creates a table that has BLOB	
and CLOB	
columns, and inserts rows into the table using the ExecuteSQL	
method on an OraDatabase	
object.	
The EMPTY_BLOB()	
and EMPTY_CLOB()	
PL/SQL functions provide an empty LOB to insert into the LOB column.	
OraBLOB	
and OraCLOB	
interfaces in OO4O provide methods for performing operations on large objects in the database including BLOB	
, CLOB	
, and NCLOB	
, and BFILE	
data types.	
The following Visual Basic example illustrates how to read the PartImage	
from the part	
table:	
OraBlob	
, OraClob	
, and OraBFile	
objects can be retrieved using an OraDynaset	
object or a parameter object:	
If a table contains a LOB column and a dynaset query selects against that LOB column, then the Value	
property of the OraField	
object returns a OraBlob	
, OraClob	
, or a OraBFile	
object. The following example selects LOB columns from the part	
table. PartDesc	
and PartImage	
are OraBlob	
and OraClob	
objects that are retrieved from the OraField	
object.	
If a SQL statement or PL/SQL block has a bind variable of type LOB, you create a OraParameter	
object using the OraParameters	
Add	
method. The Value	
property of the OraParameter	
object for that bind variable returns an OraBlob	
, OraClob	
, or OraBFile	
object.	
The following example illustrates how to use a LOB data type as a bind variable in a PL/SQL anonymous block. This block selects a LOB column from the database.	
When reading and writing LOBs, there are several options that can optimize an application's memory usage and reduce the number of network round-trips.	
The contents of a buffer are read or written to the database in one round-trip.	
A small buffer is used for multiple calls to read or write methods. In this mode, the data is streamed, rather than requiring a complete round-trip for each read or write call. This method is quicker than doing several small single-piece operations. It has the restriction that the data must be read and written sequentially, meaning that the offset increases automatically with each read or write. The total amount must be known before it is written, and the operation cannot be aborted before completion.	
The Write	
method of the OraBlob	
and OraClob	
objects writes data from a local buffer to a LOB in the database. The CopyFromFile	
(OraLOB) method writes content of a local file to a LOB in the database.	
Any operation that changes the value of a LOB, including the Write	
method, can only occur when the row the LOB is associated with has been locked. If a LOB field is null, it must first be updated with an empty LOB before a method can write to the LOB field.	
LOB data can be written in one piece or in a series of multiple pieces., as described in the following topics:	
The entire contents of a buffer can be written in a single piece in one network round-trip. The following example writes 10 KB of data from the local file partimage.dat	
to part_image	
column at the offset of 1000	
.	
The CopyFromFile	
(OraLOB) method writes data directly to a LOB from a local file. The following code is functionally the same as the previous code:	
This mechanism is used when the size of the buffer available is smaller than the total amount of data to be written. The total amount of data to be written is set by using the PollingAmount	
(OraLOB/BFILE	
) property.	
The Offset	
(OraLOB/BFILE	
) property is used only once to set the offset for the first piece Write	
operation. After the first time, it is automatically increased by the size of the previous piece. The Status	
(OraLOB/BFILE	
) property must be checked for success of each piece Write	
operation. If the Status	
property returns ORALOB_NEED_DATA	
, the Write	
method must be called again. This must continue until the amount specified by the PollingAmount	
property has been sent.	
The piecetype	
argument of the Write	
method must be set to ORALOB_FIRST_PIECE	
for the first piece that is sent, and last piece Write	
operation ends with setting the piecetype	
argument to ORALOB_LAST_PIECE	
. At the end of multiple piece operation, the Status	
property returns ORALOB_NO_DATA	
.	
The following example writes 102 KB of data in 10 KB chunks to the part_image	
column from the local file partimage.dat	
at offset of 1000	
.	
The OraBlob	
and OraClob	
Read	
method reads data to a local buffer from a LOB in the database. The CopyFromFile	
method reads the contents of a LOB into a local file.	
LOB data can be read in one piece or in a series of multiple pieces, as described in the following topics:	
The entire contents of a buffer can be read in a single piece in one network round-trip. The following example reads 10 KB of data from the part_image	
column at an offset of 1000	
to the local file image.dat	
.	
The CopyToFile	
(OraLOB/BFILE	
) method writes data directly to a local file from a LOB. The following code is functionally the same as the previous code:	
This mechanism is used when the size of the buffer available is smaller than the total amount of data to be read. The total amount of data to be read is set by using the PollingAmount	
(OraLOB/BFILE	
) property. The Offset	
(OraLOB/BFILE	
) property is used only once to set the offset for the first piece Read	
operation. After the first time, it is automatically increased by the size of the previous piece.	
The Status	
(OraLOB/BFILE	
) property must be checked for success for each piece Read	
operation. If the Status	
property returns ORALOB_NEED_DATA	
, the Read	
method must be called again. This must continue until the amount specified by the PollingAmount	
property has been read. At the end of multiple piece operations, the Status	
property returns ORALOB_NO_DATA	
.	
The following example reads 102 KB of data in 10 KB chunks from the part_image	
column at offset of 1000	
to the local file image.dat	
.	
An object type is a user-defined composite data type created in the database. A column can represent an object type or a row can represent an object type. An instance of the Object	
type can be stored in the database. This object instance can be fetched to the client side and modified using Oracle Objects for OLE.	
There are two types of object instances.	
OraObject	
object If a column represents an object type, then an instance of this object type is referred to as an embedded instance or a value instance. In OO4O, this type is represented by an OraObject	
object. For example, an ADDRESS	
object type is stored as a column in the PERSON	
table. OraObject	
objects can be embedded within other structures. An embedded instance or a value instance can also be the attributes of another object instance.	
OraRef	
object If a row in an object table represents an object type, then the instance of this type is referred to as a referenceable object. In OO4O, this type is represented by an OraRef	
object. An internally referenceable object has a unique object identifier that is represented by the REF	
data type. A REF	
column can be thought of as a pointer to a referenceable object. OO4O applications can retrieve a REF	
data type from a referenceable object, fetch (pin) the associated referenceable object to the client side, and update (flush) the modified referenceable object to the database.	
The OraObject	
interface is a representation of an Oracle embedded object or a value instance. It contains a collection interface (OraAttributes	
) for accessing and manipulating (updating and inserting) individual attributes of a value instance.	
Individual attributes of an OraAttributes	
collection interface can be accessed by using a subscript or the name of the attribute.	
The following Visual Basic example illustrates how to access attributes of the Address	
object in the person_tab	
table:	
The following example creates an ADDRESS	
object type having street, city, state and zip as its attributes and a PERSON	
table having an ADDRESS	
object type column. It also inserts data using the ExecuteSQL	
method of the OraDatabase	
object.	
The following topics discuss manipulating the OraObject	
interface:	
An OraObject	
object can be retrieved using OO4O using a dynaset or parameter object:	
If a table contains an object type column and a dynaset query selects against that column, then the Value	
property of the OraField	
object returns an OraObject	
.	
The following code selects an ADDRESS	
column from the person	
table, and then an Address	
object is retrieved from the OraField	
object.	
If a SQL statement or a PL/SQL block has a bind variable of object type, you create an OraParameter	
object using the OraParameters	
Add	
method. The Value	
property of the OraParameter	
object for that bind variable returns an OraObject	
object.	
The following example uses an object data type as a bind variable in a PL/SQL anonymous block. This block selects an object column from the database.	
Individual attributes can be accessed by using a subscript or the name of the attribute. The following example illustrates how to access attribute values of an ADDRESS	
object instance.	
The following code accesses all of the attribute values:	
If the object instance is retrieved using a dynaset object, its attribute values can be modified between a dynaset Edit	
/Update	
pair. The following example modifies the street and city attribute values of the ADDRESS	
object instance.	
Oracle object type member methods are created during type creation. Oracle object instance member methods are executed in OO4O as PL/SQL procedures or functions. Arguments and return values to the member methods should be bound using the OraParameter	
object. The first argument to the member method should always be the object instance. This object instance can be bound with the ORAPARM_INPUT	
or ORAPARM_BOTH	
mode. If the member method modifies the attributes of an object instance and a new object instance needs to be retrieved to the OO4O application, then this object instance must be bound with the ORAPARM_BOTH	
mode.	
For example, if a bank_account	
object type has open	
, close	
, and deposit	
as member methods, then the schema for the bank_account	
object type is the following:	
In OO4O, BankObj	
is an OraObject	
object representing a valid bank object instance from the database. To execute the deposit method, the SELF	
, num	
, and amount	
arguments need to be bound using the OraParameter	
object.	
The OraRef	
interface represents an instance of a referenceable object (REF	
) in client applications. The object attributes are accessed in the same manner as attributes of an object represented by the OraObject	
interface. The OraRef	
interface is derived from an OraObject	
interface through the containment mechanism in COM. REF	
objects are updated and deleted independently of the context from which they originated, such as dynasets. The OraRef	
interface also encapsulates the functionality for navigating through graphs of objects utilizing the Complex Object Retrieval Capability (COR) in Oracle Call Interface (OCI).	
This section demonstrates the creation of an object table named PERSON_TAB	
. The object table is based on the object type PERSONOBJ	
. Each reference to the rows of this object table is stored in an aperson	
REF	
type column of the CUSTOMERS	
table. The following code creates database schemas:	
The following code creates a CUSTOMERS	
table having an aperson	
REF	
column referencing rows of the object table:	
The following topics discuss manipulating the OraRef	
Interface:	
An OraRef	
object can be retrieved using OO4O in the following ways:	
If a table contains a REF	
type column and a dynaset query selects against that column, then the Value	
property of the OraField	
object returns an OraREF	
. The following example selects an aperson	
column from the person	
table, and the aperson	
object is retrieved from the OraField	
object.	
If a SQL statement or PL/SQL block has a bind variable of REF	
type, you create an OraParameter	
object using the OraParameters	
Add	
method. The Value	
property of the OraParameter	
object for that bind variable returns an OraREF	
.	
The example illustrates using a REF	
object data type as a bind variable in a PL/SQL anonymous block. The block selects an object column from the database.	
Before accessing attributes of a referenceable instance, it should be fetched (pinned) on the client side. OO4O implicitly pins the REF	
value when attribute values are accessed from the OraRef	
object. After the pin operation, attributes of the referenceable instance are accessed in the same manner as attributes of a value instance represented by the OraObject	
object.	
The following example pins the APERSON	
REF	
value (implicitly) and accesses its name and address attributes. Note that accessing the address attribute returns an Address	
OraObject	
object.	
Because a referenceable instance is stored in a row of an object table, modifying attributes of referenceable instance requires an object lock. Therefore, rows corresponding to the object instance in an object table should be locked, which can be done by calling the Edit	
method of the OraRef	
object. The OraRef	
Update	
method releases the object lock.	
The following example modifies the age attribute of Person	
object.	
A collection is an ordered group of elements, all of the same type. Each element has a unique subscript, called an index, that determines its position in the collection.	
Note: AnOraCollection element index starts at 1 .	
A collection can be subdivided into the following types:	
Viewed as a table stored in the column of a database table. When retrieved, the rows of a nested table are given consecutive subscripts starting at 1, and individual rows are accessed using array-like access.	
VARRAY	
type Viewed as an array stored in the column of a database table. To reference an element in a VARRAY	
type, standard subscripting syntax can be used. For example, Grade(3)	
references the third element in VARRAY	
Grades	
.	
In Oracle Objects for OLE, an Oracle collection type is represented by the OraCollection	
interface. The following topics provide more information:	
The OraCollection	
interface provides methods for accessing and manipulating Oracle collection types, namely variable-length arrays (VARRAY	
s) and nested tables in OO4O. Elements contained in a collection are accessed by subscripts.	
The following Visual Basic example illustrates how to access attributes of the EnameList	
object from the department table:	
A collection type can be retrieved using OO4O in the following ways:	
If a table contains a collection type column and a dynaset query selects against that column, then the Value	
property of the OraField	
object returns an OraCollection	
object.	
The following example selects the ENAMES	
column from the department	
table, and an EnameList	
object is retrieved from the OraField	
object:	
If a SQL statement or PL/SQL block has a bind variable of collection type, then you create a OraParameter	
object using the OraParameters	
Add	
method. The Value	
property of the OraParameter	
object for that bind variable returns an OraCollection	
object.	
The following example uses a collection data type as a bind variable in a PL/SQL anonymous block and selects a collection type from the database:	
Individual element values are accessed by using a subscript. For example, the Value	
returned by the OraCollection	
object for subscript 1	
is the element value at index 1	
. The maximum value of the subscript is equal to the total number of elements in the collection including any deleted elements. The OraCollection	
subscript starts from 1.	
The following example code retrieves the Enamelist	
collection instance and accesses its elements at the first and second index.	
This code displays all the element values of the EnameList	
collection.	
If the collection instance is retrieved using a dynaset object, element values can be modified between a dynaset Edit	
and Update	
pair. The following example code modifies the second element value of an Enamelist	
collection instance.	
The example code that follows creates a VARRAY	
collection type ENAMELIST	
and a department	
table having ENAMELIST	
collection type column.	
The following script inserts some collection data into department	
table:	
A SELECT	
query can be issued against instances of the VARRAY	
and nested table collection types using SQL THE	
or TABLE	
operators and individual elements can be accessed as rows. If these collection types have object types for element types, then individual attributes of the object type represents fields of a row.	
For example, if an object type X has attributes a, b, and c, and the element type of the collection is object type X, then the SELECT	
query on this collection returns a, b, and c fields.	
In OO4O, read-only dynaset objects can be created from SELECT	
queries on the collection. Individual elements are accessed using row navigation. If the collection type has an object type as its element type, then attributes of that object type (element) are accessed using the OraField	
object.	
This discussion assumes you have a Course	
object type and a CourseList	
nested table collection type with Course	
as its element type, as described here:	
In OO4O, CourseList	
OraCollection	
represents an instance of the CourseList	
collection type.	
Assume that you have valid a CourseList	
collection instance:	
The SQL THE	
or TABLE	
operator needs collection type as a bind variable. Create a OraParameter	
object for the CourseList	
OraCollection	
as follows:	
Create a read-only dynaset based on the CourseList	
using the SQL THE	
operator:	
You can also create a read-only dynaset based on the CourseList	
using the SQL TABLE	
operator, which is available only in OO4O with libraries from release Oracle9i and on:	
Example: Creating a Dynaset from an OraCollection Object	
The following example illustrates how to create a dynaset from an OraCollection	
object. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in OraCollection Examples".	
Oracle Objects for OLE provides the OraAQ	
Automation interface with methods for enqueuing and dequeuing messages. The OraAQMsg	
object contains the message to be enqueued or dequeued. The message can be a RAW	
message or any user-defined type.	
The following examples illustrate how to enqueue RAW	
messages from the DBQ	
queue. Note that the DBQ queue	
must already be created in the database.	
The following lines enqueue a high priority message.	
The following example dequeues the RAW	
messages from Oracle Database and displays the message content.	
The OraAQ	
monitor methods (MonitorStart	
and MonitorStop	
) provide asynchronous dequeuing through notifications. This is suitable for applications that prefer to process messages in nonblocking mode. Applications can request to be notified on arrival of messages, by supplying an Automation object to the Monitor	
method. This object implements a method called NotifyMe	
to receive notifications. Messages can be monitored based on consumer name, message ID, or correlation.	
The following sample code demonstrates a simple use of this facility. It illustrates a computerized trading system that executes buy/sell limit orders.	
The sample instantiates a queue object for the STOCKS_TO_TRADE	
queue and monitors messages intended for consumer BROKER_AGENT	
. STOCKS_TO_TRADE	
queues messages of the user-defined type TRADEORDER_TYPE	
. This encapsulates all the information required to initiate a trade order. When messages addressed to the BROKER_AGENT	
are dequeued, the NotifyMe	
method of the CallbackClient	
object is invoked, and a stock trade is performed.	
Oracle Database supports detection and run-time publication of database events.	
The database event publication feature allows applications to subscribe to database events just as they subscribe to messages from other applications.	
Users can enable the publication of the following events:	
DELETE	
, INSERT	
, UPDATE	
) CREATE	
, ALTER	
, DROP	
) SERVERERROR	
, LOGON	
, LOGOFF	
, STARTUP	
, SHUTDOWN	
) The event publication subsystem is integrated with the AQ publish and subscribe engine.	
See Also: Oracle Database SQL Language Reference for a complete description of triggers for data and system events	
Oracle Objects for OLE provides functionality to enable COM users to subscribe to Oracle Database events.	
This feature supports asynchronous notification of database events to interested subscribers. Under this model, the client can subscribe to be notified of a database or system event, with each request stored as a subscription.	
When the database event of interest fires, the subscriber is notified by the database event handler. The event handler was registered at the time of the event's subscription.	
OO4O provides the OraSubscription	
object that represents the subscription to a database event and the OraSubscriptions	
collection that maintains a list of OraSubscription	
objects.	
To subscribe to a database event, you must:	
NotifyDBEvents	
method. The NotifyDBEvents	
method is invoked by OO4O when the subscribed database events are fired. Register	
method. Example: Registering an Application for Notification of Database Events	
In the following example, an application subscribes for notification of database logon events (such as all logons to the database). When a user logs on to the database, the NotifyDBEvents	
method of the DBEventsHdlr	
that was passed in at the time of subscription is invoked. The context-sensitive information and the event-specific information are passed into the NotifyDBEvents	
method.	
The DBEventsHdlr	
in this example is DBEventCls	
, which is defined later.	
The main application is as follows:	
The database event handler class that defines the NotifyDBEvents	
method is as follows:	
See Also:	
Application failover notifications can be used in the event of the failure of one database instance and failover to another instance. Because delay can occur during a failover, the application developer may want to inform the user that a failover is in progress, and request that the user stand by. Additionally, the session on the initial instance may have received some ALTER	
SESSION	
commands. These are not automatically replayed on the second instance. Therefore, the developer may want to replay these ALTER	
SESSION	
commands on the second instance.	
To address the problems described, OO4O supports application failover notifications. To receive failover notifications, a notification handler must be registered with the MonitorForFailover	
method of the OraDatabase	
object. The notification handler must be an automation object (class module in Visual Basic) that implements the OnFailover	
method. An IDispatch	
pointer to this automation object must be passed in, along with any client-specific context, at the time of registering for failover notifications.	
In the event of failover, the OnFailover	
method is invoked several times during the course of reestablishing the user's session. The first call to the OnFailover	
method of the notification handler occurs when the database first detects an instance connection loss. This is intended to allow the application to inform the user of an upcoming delay. If a failover is successful, a second call to the OnFailover	
method occurs when the connection is reestablished and usable. At this time, the client may want to replay the ALTER	
SESSION	
commands and inform the user that a failover has happened.	
If a failover is unsuccessful, then the OnFailover	
method is called to inform the application that the failover will not take place.	
An example of failover registration is included as part of the example in the next section.	
See Also:	
To enable failover notifications, the option ORADB_ENLIST_FOR_CALLBACK	
must be passed into the call to the OpenDatabase	
method.	
Example: Failover Notification	
The following sample shows a typical developer-defined OnFailover	
implementation and demonstrates how to register an application.	
Registering the Application to Receive Failover Notifications	
Oracle Objects for OLE support for XML enables you to extract data in XML format from an Oracle database.	
Data in XML markup language can be integrated with other software components that support XML. Web servers can provide XML documents along with a style sheet, thus separating the data content from its presentation, and preserving the data in its native form for easy searching.	
Using Extensible Stylesheet Language Transformations (XSLT), developers can reformat XML documents received from other businesses into their desired style.	
For more information about XML, go to	
XML Generation Example	
OO4O renders XML from the contents of any OraDynaset	
method based on a starting row number and continuing for up to a specified amount of rows. For example:	
OO4O Code	
XML Output	
The format of the XML can be customized through the OraDynaset	
and OraField	
methods:	
Output	
From Release 9.2.0.4 and later, OO4O provides four new objects that enable developers to access and manipulate the new datetime and interval data types introduced in Oracle9i. Table 4-3 describes the OO4O objects and matching data types.	
Table 4-3 Datetime and Interval Data Types	
OO4O Objects	Oracle Data Types
---	---
Instances of these types can be fetched from the database or passed as input or output variables to SQL statements and PL/SQL blocks, including stored procedures and functions.	
These new data types are not supported as elements in collections such as PL/SQL indexed tables, VARRAY	
s, or nested tables.	
OO4O datetime and interval data types can be obtained using:	
Value	
property of an OraField	
object in a dynaset. Value	
property of an OraParameter	
object as an input or an output parameter in SQL statements or PL/SQL blocks. REF	
. OraSession	
methods: CreateOraIntervalDS	
CreateOraIntervalYM	
CreateOraTimeStamp	
CreateOraTimeStampTZ	
OraTimeStamp	
object Provides methods for operations on Oracle TIMESTAMP	
or TIMESTAMP	
WITH	
LOCAL	
TIME	
ZONE	
data types. Operations include accessing the datetime values and performing datetime operations.	
OraTimeStampTZ	
object Provides methods for operations on Oracle TIMESTAMP	
WITH	
TIME	
ZONE	
data types. Operations include accessing the datetime and time zone values and performing datetime operations.	
OraIntervalDS	
object Provides methods for operations on the Oracle INTERVAL	
DAY	
TO	
SECOND	
. This data type represents a period of time in terms of days, hours, minutes, seconds, and nanoseconds.	
OraIntervalYM	
object Provides methods for operations on the Oracle INTERVAL	
YEAR	
TO	
MONTH	
. This data type represents a period of time in terms of years and months.	
The OraMetaData	
interface provides access to the schema information of database objects. It is returned by invoking the Describe	
method of the OraDatabase	
interface. The Describe	
method takes the name of a schema object, such as the emp	
table and returns an OraMetaData	
object. The OraMetaData	
object provides methods for dynamically navigating and accessing all the attributes (OraMDAttribute	
collection) of a schema object described.	
The following Visual Basic script shows a simple example of the OraMetaData	
interface. The sample retrieves and displays several attributes of the emp	
table.	
This chapter provides information about tuning, troubleshooting, and error handing in Oracle Objects for OLE (OO4O).	
This chapter contains these topics:	
The following topics are intended to help tune the performance of applications that use Oracle Objects for OLE.	
This section contains these topics:	
The early binding technique tightly typecasts OO4O objects to their native object types rather than the generic object type provided by Visual Basic. These objects are declared directly as OO4O objects, rather than as generic objects which are later reclassified as OO4O objects. Early binding improves performance by reducing frequent access to the OO4O type library. For example:	
To use early binding of OO4O objects, the Oracle In-Process Server type library must be referenced in the Visual Basic projects.	
Data access can be tuned and customized by altering the cache and fetch parameters of a dynaset. Setting the FetchLimit	
parameter to a higher value increases the number of rows that are fetched with each request, thus reducing the number of network trips to Oracle Database, and improving performance.	
The cost of increasing the size of the FetchLimit	
parameter is that it increases memory requirements on the client side, and causes more data to be swapped to and from the temporary cache file on disk. The proper FetchLimit	
value should be set according to the client computer configuration and the anticipated size of the query result.	
The FetchLimit	
value can be set in the following ways:	
CreateCustomDynaset	
method For Windows, the registry key is HKEY_LOCAL_MACHINE	
and the subkey is software\oracle\	
KEY_	
HOMENAME	
\oo4o	
, where HOMENAME	
is the appropriate Oracle home. The OO4O installation creates the following section in the registry:	
Improper coding techniques with unnecessary object references can also affect performance. During dynaset object navigation, you should reduce the number of object references to the OraFields	
collections and OraField	
objects. The following is an inefficient code block:	
The OraDynaset	
, OraFields	
collections, and OraField	
objects are referenced for each iteration. Although OO4O provides improvement in handling the field collections object, multiple references to the automation object goes though the underlying OLE/COM automation layer, which slows down the execution.	
The following example shows how to reference fields through a field object and not through the fields collection of the dynaset. Testing has determined that this small amount of extra code greatly improves performance.	
Any method or object that is referenced through more than one object is potentially inefficient, but the extra coding to avoid this is not always worth the time saved. The best place to start is with field references, because they are most likely to occur multiple times.	
OO4O provides a way of enabling and disabling parameter object binding at the time it processes the SQL statement. This can be done through the AutoBindDisable	
and AutoBindEnable	
methods of the OraParameter	
object. If the SQL statement does not contain the parameter name, it is better to disable the OraParameter	
object because it avoids an unnecessary reference to the parameter object. This is most effective when the application is written primarily using PL/SQL procedures. For example:	
Note how the job	
parameter object is not referenced while processing the PL/SQL statement.	
OO4O supports an array interface to an Oracle database through the OraParamArray	
object. The array interface enables the transfer of bulk of data in single network trip. This is especially helpful while processing a PL/SQL or SQL statement through the ExecuteSQL	
or CreateSQL	
method. For example, in order to insert 100 rows into remote database without array processing, ExecuteSQL	
or CreateSQL	
must be called 100 times, which in turn makes 100 network trips. For example:	
The following example makes use of arrays and makes only one network trip.	
If your application does not make any updates to the dynaset, then you can create a read-only dynaset with the ORADYN_READONLY	
(H4	
) option. With this option, performance improvement can be gained by eliminating the overhead of parsing SQL statements locally and reducing network trips for SQL statement execution.	
If your application does not need a scrollable dynaset, then you can create a forward-only dynaset with the ORADYN_NOCACHE	
(H8	
) option. With this option, performance improvement can be gained by eliminating the overhead of creating a local cache file and the overhead of reading/writing data from that file.	
The PL/SQL bulk collection feature enables the selecting of bulk data in a single network trip using PL/SQL anonymous blocks. The OO4O OraDynaset	
object selects arrays of data during SQL statement execution. This involves overhead such as performing more network round-trips, creating more cache files and internal objects. If you do not want to use a dynaset due to its overhead, then this feature is useful for selecting arrays of data. The data to be selected can be bound either as an OraParamArray	
object or as an OraCollection	
object.	
The following example illustrates PL/SQL bulk collection features using the OraCollection	
interface. It shows how arrays of enames	
are selected with one network round-trip and less overload.	
Oracle8i introduced the following new types described in "Using Large Objects (LOBs)":	
BLOB	
CLOB	
BFILE	
The design of these types allows OO4O to access them much faster than using LONG	
or LONG	
RAW	
types. For this reason, convert existing LONG	
RAW	
code to BLOB	
, CLOB	
, and BFILE	
, and only use LOBs and BFILEs	
for new applications. The OraLOB object should be used to access LOB and BFILE	
types, rather than these LONG	
RAW	
chunking methods, which are provided for backward compatibility only. Note that OraLOB offers maximum control.	
LOB data types differ from LONG	
and LONG	
RAW	
data types in several ways:	
LONG	
column. LONG	
column cannot be partitioned. LONG	
is 2 gigabytes. LONG	
s data types support only sequential access. NCLOB	
) can be attributes of a user-defined object type, but LONG	
data types cannot. BFILE	
types). To make migration easier, the following methods can be used with BLOB	
, CLOB	
, and BFILE	
types:	
For older applications using the LONG	
RAW	
chunking methods, migration should not require a lot of changes to the code. The primary code changes involve the requirement that null BLOB	
and CLOB	
types be updated with empty before being used.	
The connection pool in OO4O is a pool of OraDatabase	
objects. An OO4O connection pool is a group of (possibly) already connected OraDatabase	
objects. For applications that require constant connections and disconnections to the database, such as ASP Web applications, using a connection pool results in enhanced performance.	
OO4O errors are grouped in the following categories:	
The programmatic interface of the OO4O automation server is the OO4O In-Process Automation server. Errors that occur during execution of methods are frequently reported as an OLE Automation Error (ERR = 440	
, ERROR$="OLE Automation Error"	
).	
When an error occurs, check the LastServerErr	
property of the OraSession	
and OraDatabase	
objects to determine whether an Oracle database error has occurred. If the LastServerErr	
is not zero, then an error has been raised by the OO4O automation server.	
To find OO4O automation server errors, scan the string returned by the ERROR$	
function for the string "OIP-NNNN"	
where NNNN	
is an error number included in the Table 5-1.	
Note: These values are included in theoraconst.txt file in the ORACLE_BASE\\ORACLE_HOME \oo4o directory.	
See Also:	
Table 5-1 lists the Oracle OLE automation errors.	
Table 5-1 Oracle OLE Automation Errors	
Constant	Value
---	---
Internal error: Invalid advisory connection.	
An attempt was made to retrieve a field value from an empty dynaset.	
An invalid field name was specified.	
An invalid field index was specified. The range of indexes is	
A	
A	
A	
Internal error: System attempted to remove a nonexistent dynaset.	
An attempt was made to reference an invalid row. This happens when	
An error occurred while trying to create a temporary file for data caching.	
An attempt was made to create a named session that already exists, using the	
Internal error: System attempted to remove a nonexistent session.	
An attempt was made to reference a named object of a collection (other than the fields collection) that does not exist.	
Internal error: Duplicate connection name.	
Internal error: System attempted to remove a nonexistent connection.	
An invalid field index was specified. The range of indexes is	
Internal error: System attempted to move to a row but the dynaset does not support this operation.	
An attempt was made to change the data of a nonupdatable dynaset.	
An attempt was made to change the value of a field without first executing the	
An attempt was made to edit data in the local cache, but the data on Oracle Database was changed.	
Out of memory for data binding buffers.	
An invalid bookmark was specified.	
Internal error: Bind variable was not enabled.	
An attempt was made to create a named parameter using the	
An invalid offset or length parameter was passed to the	
An attempt was made to use the	
An invalid argument value was entered.	
A	
A	
A	
An invalid cache parameter was specified. Note that the maximum value for the	
An attempt was made to reference a field that requires a	
Internal Error: Out of memory.	
Element size specified in the	
Dimension specified in the	
Dimensions of array parameters used in the	
Error processing arrays. For details see the	
Internal error: Clipboard could not be opened or closed.	
No source string was provided for the	
Invalid source type was provided for	
An attempt was made to set SQL property for dynaset created from PL/SQL cursor.	
Database pool already exists for this session.	
Unable to obtain a free database object from the pool.	
Input type is not compatible with the field or parameter type.	
An attempt was made to edit a cloned object.	
An attempt was made to change the type of a parameter array or an array of extended type.	
Find	
method parser errors occur when the parser cannot evaluate the expression in the Find	
method. These errors specify the part of the expression that caused the error.	
Table 5-3 lists the Find	
method parser errors.	
Table 5-3 Find Method Parser Errors	
Constant	Value
---	---
Stack overflow.	
Syntax error.	
Misplaced parenthesis.	
Misplaced quotation marks.	
Warning: Missing closing parenthesis.	
Open parenthesis expected.	
Unknown parser error condition.	
Syntax not supported.	
Invalid column name.	
Maximum size exceeded in token.	
Unsupported data type.	
Unexpected token found.	
4508	Unexpected end of clause.
Find	
method run-time errors occur when the system cannot evaluate a find expression. Such errors are rare. When one occurs, the parser could have generated incorrect code.	
Table 5-4 lists the Find	
method run-time errors.	
Table 5-4 Find Method Run-Time Errors	
Constant	Value
---	---
Internal error: Invalid instruction.	
Internal error: Stack overflow or underflow.	
Invalid type conversion.	
Invalid data type.	
SQL function missing an argument.	
Invalid comparison.	
Invalid data type in	
Invalid use of operator.	
Table 5-5 lists the OraObject	
instance errors.	
Table 5-5 OraObject Instance Errors	
Constant	Value
---	---
Creating an	
Binding an	
Getting the attribute name of an	
Getting the attribute index of an	
Invalid input object type for the binding operation.	
Fetched	
Operation on the	
Table 5-6 lists the LOB errors.	
Table 5-6 LOB Errors	
Constant	Value
---	---
Invalid seek value is specified for the LOB read/write operation.	
Input buffer type for	
Input buffer type for	
Invalid buffer length for the LOB write operation.	
Invalid input LOB for the bind operation.	
Specified file could not be opened during a LOB operation.	
File	
Operation on	
Table 5-7 lists the Oracle Streams Advanced Queuing errors.	
Table 5-7 Oracle Streams Advanced Queuing Errors	
Constant	Value
---	---
Error creating the	
Error creating the	
Error creating the payload object.	
Maximum number of subscribers exceeded.	
Error creating the	
Table 5-8 lists the OraCollection	
errors.	
Table 5-8 OraCollection Errors	
Constant	Value
---	---
Operation on	
Element does not exist for the given index.	
Invalid collection index is specified.	
Delete operation is not supported for the	
Variant	
Table 5-9 lists the OraNumber	
errors.	
The most recent Oracle error text is available from the LastServerErr	
and LastServerErrText	
properties of the OraSession	
or OraDatabase	
objects.	
OraSession	
object The LastServerErr	
and LastServerErrText	
properties of the OraSession	
object return all errors related to connections, such as errors on the OpenDatabase	
method.	
OraDatabase object	
The LastServerErr	
and LastServerErrText	
properties of the OraDatabase	
object return all errors related to an Oracle cursor, such as errors on the CreateDynaset	
, CreateSQL	
, and ExecuteSQL	
methods.	
Oracle Data Control errors are specific to the Oracle data control. During the visual access of the data control, the OO4O automation server-specific errors are reported as OLE automation server errors with the error code of ODCERR_AUTOMATION	
. Specific Oracle Data Control error codes are retrieved from the DataErr	
parameter of the Error()	
event.	
Table 5-10 lists the Oracle Data Control errors.	
Table 5-10 Oracle Data Control Errors	
Constant	Value
---	---
Initialization of Oracle In-Process Server failed. Check the registry for the correct location of Oracle In-Process Server.	
Internal error. Querying In-Process Server interface failed.	
Oracle In-Process Server error occurred.	
Attempted to access Oracle Data Control before initialization.	
Bound controls trying to access with invalid field index.	
Bound controls tried to access with an invalid field name.	
Internal error. Failed to allocate memory for the requested bindings from the bound control.	
Oracle Data Control does not support the requested bookmark type.	
Oracle Data Control cannot convert the field value to the requested type.	
Setting the session property is not allowed.	
Setting the database property is not allowed.	
Oracle Data Control does not update picture or raw data directly from the bound control. Use	
This topic describes common errors related to the following:	
The most frequent cause of OLE initialization and automation errors is missing or incorrectly installed software. Ensure correct installation of the software specified. Then make sure that you have specified method and property names correctly and that you have declared all Oracle objects as type object.	
Table 5-11 lists the causes and solutions for OLE errors.	
Table 5-11 Causes and Solutions for OLE Errors	
Possible Cause	Solution
---	---
Your system does not contain the Microsoft OLE Automation or run-time, files or these files are out of date.	Make sure you have the latest versions of files such as the following installed.
The Oracle Objects for OLE object information was not registered in the Windows registration database.	Either reinstall Oracle Objects for OLE or run the
Your system does not contain the Oracle Required Support Files:	
Check the OO4O readme.htm file to see what version of the Oracle Database client is required and install it.	
Your system does not contain the Oracle networking product or its files are not on the PATH.	Install an Oracle networking product, or add to your PATH an environment variable that indicates the directory containing these files.
You misspelled a method or property name.	Check Oracle Objects for OLE Developer's Guide (this guide) to determine the correct spelling.
You referenced a method or property from the wrong object.	Check Oracle Objects for OLE Developer's Guide (this guide) to determine the correct object.
Your system does not contain the	Reinstall Oracle Objects for OLE or add to your Note:
The most frequent cause of Oracle network errors is incorrectly specified connection information. The connection information for Oracle Objects for OLE is specified differently than when using Open Database Connectivity (ODBC). Please verify that you specified connection information correctly, and then make sure your network connection is working properly before using Oracle Objects for OLE. The appropriate Oracle network documentation contains information about testing your connection and about any Oracle networking error that you may receive.	
Table 5-12 lists the Oracle network errors.	
Table 5-12 Oracle Networking Errors	
Possible Cause	Solution
---	---
Incorrect	See the topics on the
Incorrect	See the topics on the
Your system does not contain the Oracle networking product.	Install Oracle networking software.
The most frequent cause of access violations is installing Oracle Objects for OLE while other applications are running that require the OO4O automation server, Oracle Required Support Files, or OLE. To avoid this, install Oracle Objects for OLE immediately after starting Windows and before running any other application.	
Table 5-13 lists the access violations.	
Table 5-13 Access Violations	
Possible Cause	Solution
---	---
Duplicate Oracle Objects for OLE files exist in	Remove any duplicate files. The files oip
Duplicate Oracle Required Support Files DLLs exist in the	Remove any duplicate files. Typically, the Oracle Required Support Files DLLs are located in the
Duplicate OLE DLLs exist in the	Remove any duplicate files. The OLE DLLs (listed in the OO4O File Locations section) should only be located in
This quick tour is designed to get you started with Oracle Objects for OLE for Visual Basic. An example application, the employee database application, demonstrates how to program basic database operations, such as navigating through data and, adding, modifying, and querying records. A more advanced section demonstrates how to perform batch inserts using parameter arrays and SQL statement objects. This quick tour and example application assume that the Scott	
/Tiger	
schema is installed.	
The entire code for this example application is provided in the ORACLE_BASE\\ORACLE_HOME	
\OO4O\VB\SAMPLES\QT\	
directory.	
This quick tour covers the following topics:	
This section introduces the employee database application and the two Visual Basic forms that users interact with to use the application.	
The employee database application lets the user do the following:	
To provide these functions, this example uses the following forms:	
The Employee Form displays the fields of the database EMP	
table and has functional buttons that allow the user to browse, add, update, and query records.	
Figure 6-1 shows the Employee Form.	
See Also:	
The Batch Insert Form allows users to enter records in a batch operation.	
See Also: "Programming a Batch Form" for a detailed description of the Batch Insert Form and code for its commands	
Figure 6-2 shows the Batch Insert Form.	
Before server data can be manipulated, the application must accomplish the four steps that are described in this section. Sample code for this example is provided in "Completed Sample Form_Load Procedure".	
The Oracle In-Process Server (OIP) provides the interface between the Visual Basic application and Oracle Database. To start the Oracle In-Process Server, you must create an OraSession	
object using the Visual Basic CreateObject()	
function, as follows:	
When creating the OraSession	
object, the argument supplied to the CreateObject()	
function must always be OracleInProcServer.XOraSession	
. The left side of the argument defines the application name as registered in your system, in this case, OracleInProcServer	
. The right side identifies the type of object to create, in this case, the XOraSession	
object. Executing this command starts the Oracle In-Process Server.	
After the OIP server is running, you can connect to a local or remote Oracle database. To do so, you must create the OraDatabase	
object as follows:	
The OraSession.OpenDatabase()	
method creates the OraDatabase	
object. The method call must specify the database name, the connection string, and a bit flag that represents the database mode. The constant ORADB_DEFAULT	
represents the default database mode. When Visual Basic executes this line, a connection is created to the specified database.	
OraDynaset	
object to manipulate the data. Oracle Objects for OLE lets users browse and update data using an object called a dynaset.	
The Employee application needs a global dynaset that the rest of the program can access. The OraDatabase.CreateDynaset()	
method creates the dynaset specifying a valid SQL SELECT	
statement. In the example, the statement selects all the rows from the emp	
table and assigns the resulting dynaset to the global EmpDynaset	
variable as follows:	
The CreateDynaset()	
method returns a pointer to the result of the SQL SELECT statement.	
The ORADYN_DEFAULT	
parameter value specifies the default dynaset state. In the default state, Oracle Objects for OLE sets unset fields to NULL	
while adding records using the AddNew	
method. This behavior is preferable because the emp	
table has no column defaults defined. You can also specify other options to allow server column defaults when adding records.	
The Employee Form displays database records one row at a time. Changes to the current row, such as those caused by navigating to a different row, must be reflected on the screen. The EmpRefresh()	
subroutine updates fields with the current dynaset row. For NULL	
field values, empty strings are displayed.	
The following is an example of an EmpRefresh()	
subroutine:	
In the employee application described in the previous section, the Form_Load()	
procedure creates the OIP server, connects to the database, creates a global dynaset, and calls the EmpRefresh	
function to display the field values on the Employee Form. The following is an example of a Form_Load()	
procedure:	
The following variables must be defined globally in EMP_QT.BAS	
:	
This section describes the Employee Form in detail and then describes the functions that it uses.	
The Employee form displays the fields of the database EMP	
table and has functional buttons that allow the user to browse, add, update, and query records.	
Each field corresponds to a column in the database EMP	
table. The Employee field (ENAME	
) is the indexed column and is mandatory for each record. The field data types and sizes are defined as follows in the EMP	
table:	
The Employee Number (EMPNO	
) and Department (DEPTNO	
) columns are NOT	
NULL	
, and, therefore, always require a value when a record is added. The length of each field is enforced by setting the MaxLength	
property of each TextBox	
to the appropriate number.	
Figure 6-3 shows the Employee Form.	
The initial code for the actual Form_Load	
procedure is provided in "Completed Sample Form_Load Procedure".	
The Employee form is initialized by the Form_Load()	
procedure and includes the following features:	
Database applications typically require that the user be able to view data in the database. The Employee form has four buttons that let the user scroll through data. Table 6-1 lists the buttons, what they do, which dynaset move method enables the action of the button, and where to look for further information.	
Table 6-1 Navigational Buttons and Dynaset Move Methods	
Button	Action
---	---
Moves to the first record	
Moves to the previous record	
Moves to the next record	
Moves to the last record	
To enable navigation through the records of the Employee database, you must first create a global dynaset that selects all the records (rows). Then use the dynaset move methods to program the navigation buttons.	
To enable a move to the first row of a dynaset, use the MoveFirst	
method. Then call the EmpRefresh()	
routine to refresh the data in the Employee form.	
The following example code shows the first-click event procedure for the employee example:	
For a move to the last row, use the MoveLast	
method. Then, call the EmpRefresh()	
routine to refresh the data in the Employee form.	
The following example code shows the last-click event procedure for the employee example:	
Navigation is possible to any row of a dynaset. If a user is positioned in the middle of a dynaset (that is, the current row is not the first row), the MovePrevious	
method enables navigation to the previous row.	
However, when a user is positioned on the first row (current row is the first row) and executes the MovePrevious	
method, the beginning-of-file (BOF) condition becomes TRUE	
and the current row becomes invalid. In this case, the current row must be reset to the first row using the MoveFirst	
method.	
The following example code shows the click-event procedure for the Previous button:	
If a user is positioned in the middle of a dynaset (that is, the current row is not the last row), the MoveNext	
method enables navigation to the next row.	
However, when a user is positioned on the last row (current row is the last row) and then executes MoveNext	
, the end-of-file condition (EOF) becomes TRUE	
and the current row becomes invalid. In this case, the current row must be reset to the last row using the MoveLast	
method.	
The following example code shows the click-event procedure for the Next button:	
In the example application, the following buttons allow users to add employee records to the database:	
To add a record, the user clicks on the Add button, enters the new fields in the text boxes, and then clicks the Commit button to save the data to the database.	
The Add event procedure must perform the following steps:	
The following example code shows the Add event procedure for the Add button:	
When the AddNew_Click()	
method exits, control returns to the Employee Form where the user enters values in the fields.	
To commit an addition, you must place the dynaset in add mode using the AddNew	
method. Then, you assign the new data to the dynaset fields and update the database using the Update	
method. To make the program robust, the software validates some fields before adding them to the database.	
The Commit_Click()	
event procedure for adding records must do the following:	
Steps 1 and 2 are performed by the DoValidationChecks()	
function which is described following the Commit_Click()	
.	
AddNew	
method. Fields().Value	
property. This step is performed by the UpdateDynasetFields	
function. Update	
method. The code for the Commit	
function is broken into the following routines:	
The following is a typical Commit_Click()	
event procedure for adding records:	
To check for duplicate entries as suggested in Step 2, you must create a local dynaset with the NOCACHE	
option, using a SQL statement that counts the rows matching the entered Employee Number field. If a match is found (row count greater than 0), the entered employee number is a duplicate entry and an error is displayed. In this case, because the SQL SELECT	
statement returns only a number, creating the dynaset without a cache is a more efficient error check than the server finding a duplicate entery.	
DoValidationChecks()	
returns True	
if the entered data is valid; otherwise, it returns False	
.	
The commit event procedure calls this function after putting the dynaset in either Edit	
or AddNew	
mode. The UpdateDynasetFields()	
function sets the dynaset fields to the values entered in the text boxes. The function returns TRUE	
if successful, or returns FALSE	
if there is an error.	
To allow users to update existing records in the database, you need to include an Update button in the Employee Form. Users navigate to a particular record, click the Update button, make changes, and then click the Commit button.	
While in update mode, the application makes the following restrictions:	
To program the Update function, write an event procedure for the Update button and modify the Commit procedure so that it handles both updating and adding records.	
To code the Update button, disable the Employee Number text box to prevent changes to this field while updating records, because this is a primary key. You must also disable the other buttons to disable other functions, such as navigation, while updating records.	
Set the DoUpdate	
Boolean expression to TRUE	
, so the commit procedure recognizes the current process as an update operation, not an addition.	
The update event procedure must do the following:	
DoUpdate	
flag to True	
. The following example code shows the update event procedure:	
The update and add event procedures call the DisableNavButtons()	
subroutine to disable navigation and other functions during an add or update operation.	
The procedure for committing an update operation is similar to committing an add, except that the dynaset is set in edit mode using the Edit	
method and then the new dynaset values are assigned.	
Because the same commit button and the same commit event procedure are used to add and update, two global flags DoAdd	
and DoUpdate	
are added to distinguish between adding and updating. The Add and Update click event procedures set these flags.	
The Commit event procedure for adding and updating must do the following:	
DoValidationChecks()	
function as before. AddNew	
to add records or else use Edit	
for updates. Fields().Value	
property using UpdateDynasetFields()	
as before. Update	
. DoUpdate	
and DoAdd	
flags to False	
. The code that changes button and flag states in Steps 5 through 7 is provided in a new subroutine called SetAfterCommitFlags()	
. This replaces the lines of code that originally enabled Commit	
and AddNew	
.	
The code for this Commit function is broken into the following routines:	
Commit	
function Commit	
function The following example shows the Commit_Click	
Event Procedure.	
The following example shows the SetAfterCommitFlag()	
Subroutine.	
The SetAfterCommitFlags()	
subroutine is called at the end of the commit event procedure. The SetAfterCommitFlags()	
subroutine reenables disabled buttons and text boxes and sets the DoUpdate	
and DoAdd	
flags to False	
.	
Users can delete records by navigating to a particular record and clicking the Delete button. The application prompts the user to verify the deletion, then the application deletes the record using the Delete	
method. The program then refreshes the screen with the next record or with the previous record if the user deleted the last record in the dynaset.	
The following example shows the delete-click event procedure:	
The employee application can be configured to allow users to search for particular records in the database. For demonstration purposes, a Find button is included to allow users to query only employee names. At any time, the user can enter the query in the Employee Name field, and click the Find button. The application then displays the result or displays a message if the name cannot be found.	
To search for records, the FindFirst	
method is used. When the find operation succeeds, the record is displayed. If the find fails, a message is displayed. The current row is reset to the first row, because failures cause the dynaset to be BOF (beginning-of-file), effectively making the current row invalid.	
The Find_Click()	
event procedure must do the following:	
ENAME	
column matches the entered string. FindFirst	
method. The following example shows a typical find click event procedure:	
This section describes the Batch Insert Form and then describes the functions that it uses.	
The Batch Insert Form allows users to insert rows in a batch operation, that is, to insert more than one record into the database by using only one command. This feature is implemented using parameter arrays and SQL statements.	
Table 6-1 shows a typical Batch Insert Form:	
Users navigate to the Batch Insert Form by clicking the Batch Insert button on the Employee Form. The Batch Insert Form has a grid that displays the entered data and a row of fields where the user enters each record. To keep the example simple, users are only allowed to enter information into the Employee Number, Employee Name, and Department Number fields.	
Users enter records in the fields and click the Add to Grid button. The program displays the entered records in the grid. To insert the entire batch to the database, users click the CommitGrid button.	
The Batch Insert Form uses three procedures. The Form_Load()	
procedure initializes the grid with the column headers. The CmdAddtoGrid_click()	
procedure copies the entered data from the fields to the grid. The CommitGrid_Click()	
procedure contains the parameter array and SQL statements used to make the batch insert.	
These procedures are described as follows:	
The following examples show how the Batch Insert Form_Load()	
procedure sets the column headings for the grid:	
The CmdAddtoGrid_Click()	
procedure copies the data entered in the fields to the next empty grid row. The global variable CurrRow	
always points to the first empty row in the grid.	
The following example shows the CmdAddtoGrid_Click()	
:	
The CommitGrid_Click()	
procedure inserts the grid data into the database. To do so, this procedure creates a parameter array object for each column in the EMP	
table that corresponds to a column in the grid. The OraParameters.AddTable()	
method defines each parameter array. For example, a parameter array called EMPNO_ARR	
holds all Employee Number column elements.	
After the parameter arrays are defined, the Put_Value	
method populates them with grid column elements.	
To commit the parameter array elements to the database, this procedure uses the CreateSQL()	
method with a SQL INSERT	
statement containing the parameter arrays. Because the CreateSQL()	
method executes the SQL INSERT	
statement in addition to creating a SQL statement object, all column elements (parameter array elements) are inserted into the EMP	
table with this one statement.	
If an error occurs during a SQL INSERT	
statement that contains parameter arrays, the SQL statement object is still created with no explicitly raised error. To identify such errors, always check the OraDatabase.LastServerErr	
and OraDatabase.LastServerErrText	
properties immediately after executing the CreateSQL	
method.	
The CreateSQL	
method updates the database directly and has no effect on the dynaset. The EmpDynaset	
. Refresh	
method must used to refresh this dynaset so that it reflects the newly inserted records.	
The CommitGrid_Click()	
event procedure must do the following:	
AddTable	
method. Put_Value	
method within a nested loop. CreateSQL	
method to insert parameter array elements into the EMP	
table. LastServerErrText	
and LastServerErr	
properties to catch SQL statement execution errors. Refresh	
method. The following example shows a typical cmdCommitGrid_Click()	
procedure:	
The Oracle Objects for OLE (OO4O) Code Wizard generates OO4O code that executes Oracle PL/SQL and Java stored procedures.	
The wizard generates code into individual Microsoft Visual Basic or Active Server Page and VBScript subroutines from existing Oracle stored procedures and packages. Additionally, the wizard can generate complete implementations of COM Automation objects in the form of VB class files. The generated COM Automation object methods act as client stubs for the execution of stored procedures contained in a given package. All the OO4O code necessary for input/output parameter binding and stored procedure execution is automatically generated.	
The wizard can be used as a command-line utility or as a Visual Basic add-in. The wizard automates the entire process of accessing stored procedures using COM interfaces, thereby significantly reducing development time and the likelihood of programming errors.	
Note: The Code Wizard requires Visual Basic 6.	
This chapter contains these topics:	
The OO4O Code Wizard includes the following components:	
OO4OCodeWiz.exe	
, that converts PL/SQL and Java stored procedures to OO4O code. Both of these components allow users to convert entire stored procedure packages to OO4O code.	
The code wizard supports all data types, except for PL/SQL tables. When a PL/SQL table is used, an unsupportedType	
key word is used instead, and the generated code does not compile.	
The output code may have to be modified for handling Null	
values. For example, when a VB variable is initialized to a parameter value, an isNull()	
check may have to be added if Null	
values are expected. Null	
values are correctly handled for VB variables of type Variant	
and Object	
.	
The OO4O Code Wizard can be used as a command line utility or as a Visual Basic Add-in.	
The OO4OCodeWiz.exe	
is a command-line utility that generates a Visual Basic class, a Visual Basic file, or an Active Server Page/VB Script file from existing PL/SQL or Java stored procedures, as well as packages, within an Oracle database. Call the utility in the following manner:	
password	
@connect_string	
package	
Where	Specifies the following
---	---
username	User name to log in to the database
password	Password for the user name
connect_string	Database connection string
package	Package name
stored_procedure	Stored procedure name (optional)
Example	
Option	
Option	Description
---	---
-o	Specifies the output file name (optional)
Files Generated	
The code wizard uses the information specified on the command line to determine which type of output file to generate.	
If a file name and one of the permitted file extensions are specified, then they are used. In the preceding example, an ASP file is generated in the empfile.asp	
output. The user can specify the following extensions:	
Extension	File Type Generated
---	---
.cls	VB class file
.bas	VB file
.asp	ASP or VB script file
.vbs	ASP or VB script file
If no file extension is specified, the following rules indicate what type of file is generated, depending on other command-line specifications.	
.cls	
file. .bas	
file. Table 7-1 and Table 7-2 provide examples.	
Table 7-1 Package Name Without Stored Procedure Name	
File Specified	Command
---	---
File name with no file extension generates	
No file name or extension: generates	
File name with file extension generates	
Table 7-2 Package Name With Stored Procedure Name	
File Specified	Command
---	---
File name with no file extension generates	
No file name or extension: generates	
File name with file extension generates	
The Connect To Oracle Database dialog box appears:	
The wizard displays the Oracle packages and stored procedures available to the user in a tree.	
*.cls	
), a VB file (*.bas	
), or other. The other option generates a VB file (*.bas	
), but enables you to specify your own file extension. A dialog box appears indicating that a new OO4O file was created.	
The ORACLE_BASE\\ORACLE_HOME	
\oo4o\codewiz\samples	
directory contains sample applications incorporating code generated by the wizard. The following examples show the generated VB code output from Oracle stored procedures using the OO4O code wizard:	
This example shows a PL/SQL stored function, GetEmpSal	
, and then the Visual Basic (*.cls	
) file that the code wizard generates for it.	
The generated code for the GetEmpSal	
stored function is:	
In a VB class, OraDatabase	
appears as an attribute of the class. This attribute has to be set before any methods of the class can be invoked. For a VB file (*.bas	
), the generated code for the GetEmpSal	
stored function is the same as the VB class file, except for the function declaration:	
For an ASP file (*.asp	
), the function declaration also differs for the GetEmpSal	
stored function as follows, but the body of the code remains the same:	
The following example shows how a Visual Basic file accesses a PL/SQL stored procedure with LOBs:	
The following shows the generated Visual Basic code for the GETCHAPTER	
stored procedure:	
The following example shows how a PL/SQL stored procedure uses the Oracle collection type VARRAY	
:	
The wizard generates the following Visual Basic code for this stored procedure:	
The following example shows how a PL/SQL stored procedure uses the Oracle object type:	
The wizard generates the following Visual Basic code for this stored procedure:	
This chapter introduces commonly used OO4O Automation Objects.	
This chapter contains these topics:	
The OO4O operational hierarchy of the objects expresses has-a and belongs-to relationships.	
Figure 8-1 shows the operational hierarchy.	
The Automation objects diagram illustrates this hierarchy.	
The OraSession	
object is returned when an instance of the OO4O Automation Server is created. It mainly serves as an interface for establishing connections to Oracle databases. It also contains methods for starting, committing, and canceling transactions on the connections contained in the OraDatabase	
objects created. The following Visual Basic example creates an instance of the OO4O Automation Server.	
The OraServer	
object represents a physical connection to an Oracle database instance. It provides a method, OpenDatabase	
, for creating user sessions, which represents OraDatabase	
objects. It makes it possible to do "connection multiplexing."	
The OraDatabase	
object represents a user connection to an Oracle database instance, and provides methods to execute SQL statements and PL/SQL code. The OraDatabase	
object is returned by the OpenDatabase	
method of the OraSession	
or the OraServer	
object.	
The following example illustrates the use of the OpenDatabase	
method of the OraSession	
. OraDatabase	
objects created by this method contain a distinct physical connection to an Oracle database.	
The following example demonstrates how a physical network connection to an Oracle database can be shared by multiple user sessions. Using a single connection that is shared by multiple user sessions results in reduced resource usage in an Oracle Database and can increase scalability.	
An OraDynaset	
object represents the result set of a SQL SELECT	
query or a PL/SQL cursor variable returned from a stored procedure or function. It is essentially a client-side scrollable and updatable cursor that allows for browsing the set of rows generated by the query it executes. It is created by the CreateDynaset	
or CreateCustomDynaset	
method of an OraDatabase	
interface.	
The following Visual Basic example executes a query, loops through the result set, and displays values of columns returned.	
The OraField	
object is an abstraction of a column in an OraDynaset	
object. It contains the value as well as the metadata that describes a column of the current row in the dynaset. In the previous example for the OraDynaset	
object, the Field	
interface for empno	
can be obtained using this additional code:	
OraFields	
is a collection object representing all columns in the current row.	
OraField	
objects can represent instances of any data type supported by Oracle Database. This includes all primitive types, such as VARCHAR2	
, NUMBER	
, INT	
, and FLOAT	
, as well all the object-relational types introduced in Oracle8i.	
The OraParameters	
object is a collection container for OraParameter	
objects. An OraParameter	
object is used to supply data values for placeholders used in the SQL statements or PL/SQL blocks at run time. It can be used to provide input values as well as contain values that are returned from the database. The following sample creates two parameter objects and uses them in an update query.	
OraParameter	
objects can contain values for all the data types supported by Oracle9i including object-relational data types. They can be passed as input or output arguments to PL/SQL stored procedures and functions. The values of the OraParameter	
objects can also represent PL/SQL cursors in the form of OraDynaset	
objects.	
An OraParamArray	
object provides the mechanism for binding and fetching an array of values. It is typically used for performing bulk inserts and updates.	
The OraSQLStmt	
object is typically used for executing non-select SQL queries and PL/SQL blocks. The following line of code executes an update query and displays the number of rows affected.	
The OraSQLStmt	
object (updateStmt	
) can be used later to execute the same query with a different value for the :SALARY	
placeholder. For example:	
This chapter describes the Oracle Objects for OLE Server Objects.	
This chapter contains these topics:	
Description	
An OraAQ	
object is instantiated by invoking the CreateAQ	
method of the OraDatabase	
interface. It represents a queue that is present in the database.	
Remarks	
Oracle Objects for OLE provides interfaces for accessing Oracle Database Advanced Queuing (AQ) feature. It makes AQ accessible from popular COM-based development environments such as Visual Basic.	
The OraAQ	
Automation interface provides methods for enqueuing and dequeuing messages (encapsulated in the OraAQMsg	
object). It also provides a method for monitoring queues for message arrivals.	
Client applications provide a Dispatch	
interface to the monitor. The monitor checks the queue for messages that meet the application criteria. It then invokes the NotifyMe	
method of the Dispatch	
interface when these messages are dequeued.	
The following diagram illustrates the OO4O AQ Automation objects and their properties.	
Properties	
Methods	
Examples	
Example: Enqueuing Messages	
Enqueuing messages of type RAW	
"Enqueuing Messages of Type RAW"	
Enqueuing messages of Oracle object types	
"Enqueuing Messages of Oracle Object Types"	
Example: Dequeuing messages	
NOTE: The following code samples serve as models for dequeuing messages.	
A complete AQ sample can be found in \OO4O\VB\SAMPLES\AQ	
Dequeuing messages of the RAW type	
"Example: Dequeuing Messages of RAW Type"	
Dequeuing messages of Oracle object types	
"Example: Dequeuing Messages of Oracle Object Types"	
Example: Monitoring messages	
See "Monitoring Messages" for examples illustrating the use of the MonitorStart	
and MonitorStop	
methods.	
See Also:	
Description	
The OraAQAgent	
object represents a message recipient and is only valid for queues that allow multiple consumers.	
Remarks	
An OraAQAgent	
object can be instantiated by invoking the AQAgent	
method. For example:	
Methods	
None.	
Properties	
Example	
The following Visual Basic example illustrates a simple use of the advanced queuing feature. A message of a user-defined type, MESSAGE_TYPE	
, is enqueued into a queue, msg_queue	
, that supports multiple consumers.	
See Also:	
Description	
The OraAQMsg	
object encapsulates the message to be enqueued or dequeued. The message can be of any user-defined or raw type.	
Properties	
Methods	
See Also:	
Description	
The OraAttribute	
object represents an attribute of a Value	
or REF	
instance of an OraObject	
or an OraRef	
.	
Remarks	
The OraAttribute	
object can be accessed from the OraObject	
or OraRef	
object by creating a subscript that uses ordinal integers or by using the name attribute.	
See the Value	
(OraAttribute	
) property for a table that identifies the attribute type and the return value of the Value	
property of the OraAttribute	
object:	
Properties	
Methods	
None.	
Examples	
The following example accesses the attributes of the ADDRESS	
value instance in the server. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in the OraObject and OraRef Examples".	
Description	
The OraBFile	
interface in OO4O provides methods for performing operations on the BFILE	
LOB data type in the database.	
Remarks	
The BFILE	
types are large binary data objects stored in operating system files (external) outside of the database tablespaces.	
Properties	
Methods	
Examples	
See "Schema Objects Used in LOB Data Type Examples" for schema objects that are used in the OraLOB/BFILE	
examples.	
NOTE: To add the required tables for the following examples, run the lob.sql	
file in the \OO4O\VB\SAMPLES\LOB	
directory.	
Example: Accessing the BFILE Value	
BFILE	
data can be read using the Read	
method. The OraBFILE	
object allows piecewise read operations. Before reading the BFILE	
content, the BFILE	
file should be opened using the Open	
method.	
Example: Reading and Inserting BFILEs Using Dynasets	
To modify the directory and file names of the BFILE	
value of an OraBFILE	
object, first obtain a lock and then use the DirectoryName	
and FileName	
properties.	
To insert a new row containing a BFILE	
column, initialize the BFILE	
column with new directory and file name values using the DirectoryName	
and FileName	
properties.	
See Also:	
Description	
The OraBLOB	
and OraCLOB	
interfaces in OO4O provide methods for performing operations in a database on the large object data types BLOB	
, CLOB	
, and NCLOB	
. In this developer's guide, BLOB	
, CLOB	
, and NCLOB	
data types are also referred to as LOB data types.	
OO4O supports the creation of temporary BLOB	
or CLOB	
types that can be manipulated and then bound to SQL statements or PL/SQL blocks, or copied into permanent LOBs.	
Remarks	
LOB data is accessed using the Read	
and CopyToFile	
methods.	
LOB data is modified using the Write	
, Append	
, Erase	
, Trim	
, Copy	
, CopyFromFile	
, and CopyFromBFile	
methods. A row lock must be obtained before modifying the contents of a LOB column in a row. If the LOB column is a field of an OraDynaset	
object, then the lock is obtained by invoking the Edit	
method.	
None of the LOB operations are allowed on NULL	
LOBs. To avoid errors, use the IsNull	
property to detect NULL	
LOBs. To perform write operations on a LOB that is null, first the LOB column must be initialized with an Empty value.	
To insert a new row having a LOB column, first initialize the LOB column with an Empty value by setting the Value	
property of the OraField	
or OraParameter	
object to the keyword Empty and commit the change to the database. The newly updated Empty LOB must be selected again from the database before it can be used. This is done automatically in the case of the OraDynaset	
object: If a LOB field in an OraDynaset	
object is set to Empty and the Update	
method is called, OO4O automatically reselects the Empty LOB into the dynaset making it available for use in subsequent write operations.	
There are two modes of operation for read and write operations for LOBs.	
In this mode, the total amount of data to be read or written is more than the size of the buffer for an individual read/write operation. Rather than make a complete round-trip for each operation, the pieces are streamed. To begin the multiple piece operation, the PollingAmount	
property is first set to the total amount of data to be read or written. The Offset	
property is set at this time to specify the initial offset for the first piece read/write operation. The offset is automatically incremented after the first read/write operation, and cannot be changed again until the multiple piece operation has completed. The Status	
property must be checked for the success of each piecewise operation and the operation must continue until all the pieces are read or written (it cannot be aborted). To start another multiple-piece read/write operation on the same LOB, the PollingAmount	
property has to be reset to the desired amount. See "Example: Multiple-Piece Read of a LOB".	
In this mode, the reading and writing of data occurs in one operation. This mode is enabled when the PollingAmount	
property is set to 0	
. See "Example: Single-Piece Read of a LOB".	
The Offset	
property in both modes of operation is 1-based.	
By design, LOBs cannot span transactions started by SELECT	
..	
FOR	
UPDATE	
, INSERT	
, and UPDATE	
statements. Selecting or modifying LOB values using these SQL statements makes LOBs invalid outside the current transaction. In Oracle Objects for OLE, transactions can be started and ended in the following ways.	
Dynaset	
Edit	
/Update	
method The Edit	
method executes the SELECT	
FOR	
UPDATE	
statement to lock the row and start the transaction. The Update	
method ends the transaction. If the LOB column value is modifed between the Edit	
and Update	
pair, OO4O reselects the value of LOB column after the Update	
call. This is transparent to the user. Note that OO4O does not reselect the LOB value if the LOB is an attribute of an Oracle objects instance or element of an Oracle collection. If the transaction is started by the OraSession	
/OraDatabase	
or OraServer	
object and the LOB data is modified between the Edit	
and Update	
methods, OO4O does not reselect the LOB value from the database. LOBs are invalid after committing transactions initiated by OraSession	
/OraDatabase	
or OraServer	
objects.	
INSERT	
or UPDATE	
statement through the ExecuteSQL	
or CreateSQL	
method. An INSERT	
or UPDATE	
statement starts the transaction, and the transaction is implicitly ended by Oracle Objects for OLE (auto-commit). If a statement has a LOB output bind parameter, as in the case of the RETURNING	
..	
INTO	
clause, then it will become invalid after the ExecuteSQL	
or CreateSQL	
method is executed To avoid this, the user must execute these statement between the BeginTrans	
/CommitTrans	
pair of OraSession	
, OraServer	
or OraDatabase	
objects.	
See "Example: INSERT or UPDATE Statements with LOBs and Transactions".	
See Also:	
Properties	
Methods	
Examples	
See "Schema Objects Used in LOB Data Type Examples" for schema objects that are used in the OraLOB and BFILE	
examples.	
Example: Accessing a LOB Value	
Example: Modifying a LOB Value	
Example: Inserting LOBs Using Dynasets	
Example: Inserting LOBs Using an OraParameter Object	
Example: Dynasets Containing LOBs and Transactions	
Example: INSERT or UPDATE Statements with LOBs and Transactions	
Example: Using the CopyToFile Method	
See "Example:Using the CopyToFile Method".	
Example: Using the CopyFromFile Method	
See "Example: Using the CopyFromFile Method".	
Example: Multiple-Piece Read of a LOB	
See "Example: Multiple-Piece Read of a LOB".	
Example: Single-Piece Read of a LOB	
See "Example: Single-Piece Read of a LOB".	
Example: Multiple-Piece Write of a LOB	
See "Multiple-Piece Write of a LOB Example".	
Example: Single-Piece Write of a LOB	
See "Single-Piece Write of a LOB Example".	
Example: Passing a Temporary CLOB to a Stored Procedure	
See "Example: Passing a Temporary CLOB to a Stored Procedure".	
Description	
An OraClient	
object defines a workstation domain, and all of the OraSession	
objects of that workstation are listed in the OraSessions	
collection of the OraClient	
object.	
Remarks	
Only one OraClient	
object can exist for each workstation, and it is created automatically by the system when it is needed.	
Properties	
Methods	
Description	
The OraCollection	
interface represents Oracle collection types, such as variable-length arrays (VARRAY	
s) and nested tables.	
Remarks	
A collection is an ordered group of elements, all of the same type. For example, the students in a class or the grades for each student in a class. Each element has a unique subscript, called an index, that determines its position in the collection.	
The collection type nested table is viewed as a table stored in the column of database tables. When retrieved, rows of a nested table are given consecutive subscripts that start at 1	
. Individual rows are accessed using an array-like access.	
The collection type VARRAY	
is viewed as an array stored in the column of database tables. To reference an element in a VARRAY	
data type, standard subscripting syntax can be used. For example, Grade(3)	
references the third element in the VARRAY	
data type named Grades	
.	
The OraCollection	
provides methods for accessing and manipulating an Oracle collection. Implicitly an OraCollection	
object contains an OLE Automation collection interface for accessing and manipulating (updating and inserting) individual elements of an Oracle collection. Individual elements can be accessed by using a subscript. An OraCollection	
element index starts at 1.	
Element values are retrieved as Variant	
types. The Variant	
type of the element depends on the element type of the collection. Element values can be Null	
and can be set to Null	
. For elements of type objects and REF	
s, element values are returned as corresponding OO4O objects for that type. VARRAY	
s and nested tables do not support the elements of LOBs, VARRAY	
s, and Nested tables.	
Table 9-1 lists the element type and return value of the elements.	
Table 9-1 Element Type and Return Value of Elements	
Element Type	Element Value
---	---
Element values are converted into a Variant	
SAFEARRAY	
format using the SafeArray	
property. Only elements of primitive types are supported. A Variant	
SAFEARRAY	
index starts at 0	
.	
The CreateOraObject	
method on the OraDatabase	
object returns the OraCollection	
object. The Oracle collection associated with this OraCollection	
object is created in the client-side object cache.	
For information about creating a dynaset from a collection, see to "Creating a Dynaset from an OraCollection Object".	
Properties	
Methods	
Examples	
Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in OraCollection Examples" for schema objects that are used in the OraCollection	
examples.	
Example: Accessing Collection Elements	
The following example illustrates how to access collection elements.	
OraDynaset Example	
OraParameter Example	
Example: Modifying Collection Elements	
The following example illustrates how to modify collection elements.	
Example: Inserting in a Collection	
The following example illustrates how to insert elements into an Oracle collection.	
OraDynaset Example	
OraParameter Example	
Example: Collection with Object Type Elements	
The following example illustrates the use of an Oracle collection having elements of object type.	
Example: Creating a SAFEARRAY Variant from a Collection	
The following example illustrates how to get and set a SAFEARRAY Variant	
with an Oracle collection.	
Creating SAFEARRAY Variant from a Collection	
Setting SAFEARRAY Variant to the Collection	
Example: Creating a Dynaset from a Collection	
The following example illustrates how to create a dynaset from an Oracle collection.	
Example: Collection Iterator	
Description	
An OraConnection	
object represents a single connection to an Oracle database.	
Remarks	
An OraConnection	
object is created automatically whenever an OraDatabase	
object is instantiated within the session, and it is destroyed automatically whenever all databases using the connection are discarded.	
Currently, there is no way to create an OraConnection	
object explicitly, only by creating an OraDatabase	
object that requires a connection.	
Properties	
Methods	
Description	
An OraDatabase	
interface represents a user session to an Oracle database and provides methods for SQL and PL/SQL execution.	
Remarks	
An OraDatabase	
interface in Oracle8i and higher releases adds additional methods for controlling transactions and creating interfaces representing instances of Oracle object types. Attributes of schema objects can be retrieved using the Describe	
method of the OraDatabase	
interface.	
In previous releases, an OraDatabase	
object is created by invoking the OpenDatabase	
method of an OraSession	
interface. The network alias, user name, and password are passed as arguments to this method. In Oracle8i and higher releases, invocation of this method results in implicit creation of an OraServer	
object.	
As described in the OraServer	
interface description, an OraDatabase	
object can also be created using the OpenDatabase	
method of the OraServer	
interface.	
Transaction control methods are available at the OraDatabase	
(user session) level. These methods include:	
BeginTrans	
CommitTrans	
Rollback	
For example:	
Note: If theAutoCommit property is set to True , transactions are committed automatically, and you do not need to use the transaction control methods.	
Properties	
Methods	
Description	
An OraDynaset	
object permits browsing and updating of data created from a SQL SELECT	
statement.	
Remarks	
An OraDynaset	
object represents the result set of a SQL SELECT	
query or a PL/SQL cursor variable returned from a stored procedure or function. It is essentially a client-side scrollable and updatable cursor that allows browsing the set of rows generated by the query it executes. It is created by the CreateDynaset	
or CreateCustomDynaset	
method of an OraDatabase	
interface. An OraDynaset	
object can be used to scroll result sets that contain instances of relational and object-relational columns such as VARRAY	
s, nested tables, Object	
s, REF	
s, and LOBs and BFILE	
types.	
This object provides transparent mirroring of database operations, such as updates. When data is updated through the Update	
method, the local mirror image of the query is updated so that the data appears to have been changed without reevaluating the query. The same procedure is used automatically when records are added to the dynaset. Integrity checking is performed to ensure that the mirrored image of the data always matches the actual data present on Oracle Database. This integrity checking is performed only when necessary (such as just before updates occur).	
During create and refresh operations, the OraDynaset	
objects automatically bind all relevant enabled input parameters to the specified SQL statement, using the parameter names as placeholders in the SQL statement. This can simplify dynamic query building and increase the efficiency of multiple queries using the same SQL statement with varying WHERE	
clauses.	
When you use Oracle Objects for OLE, locks are not placed on data until an Edit	
method is executed. The Edit	
method attempts to obtain a lock using the "SELECT	
...	
FOR	
UPDATE"	
statement on the current record of the dynaset. This is done as late as possible to minimize the time that locks are placed on the records. The Edit	
method can fail for several reasons:	
OpenDatabase	
method has an option so that you can decide whether to wait on locks. Properties	
Methods	
Description	
An OraField	
object represents a single column or data item within a row of a dynaset.	
Remarks	
An OraField	
object is accessed indirectly by retrieving a field from the OraFields	
collection of an OraDynaset	
object.	
If the current row is being updated, then the OraField	
object represents the currently updated value, although the value may not yet have been committed to the database.	
Assignment to the Value	
property of a field is permitted only if a record is being edited (using the Edit	
method) or a new record is being added (using the AddNew	
method). Other attempts to assign data to the Value	
property of a field results in an error.	
Properties	
Methods	
Description	
The OraIntervalDS	
object provides methods for operations on the Oracle INTERVAL	
DAY	
TO	
SECOND	
.This data type represents a period of time in terms of days, hours, minutes, seconds, and nanoseconds.	
Remarks	
The OraIntervalDS	
object is created by the OraSession.CreateOraIntervalDS	
method or by calling the Clone	
method on an existing OraIntervalDS	
object.	
An OraIntervalDS	
object can be bound using the ServerType	
ORATYPE_INTERVALDS	
. This allows the binding of a value to a parameter associated with an Oracle INTERVAL	
DAY	
TO	
SECOND	
data type in a SQL or PL/SQL statement.	
When binding a string associated with an INTERVAL	
DAY	
TO	
SECOND	
data type, the ServerType	
must be specified to be a string type (for example, ORATYPE_VARCHAR2	
, ORATYPE_STRING	
) and the string must be in the format specified by Day HH:MI:SSxFF.	
Properties	
Methods	
Description	
The OraIntervalYM	
object provides methods for operations on the Oracle INTERVAL	
YEAR	
TO	
MONTH	
.This data type represents a period of time in terms of years and months.	
Remarks	
The OraIntervalYM	
object is created by the OraSession.CreateOraIntervalYM	
method or by calling the Clone	
method on an existing OraIntervalYM	
object.	
An OraIntervalYM	
object can be bound using ServerType	
ORATYPE_INTERVALYM	
. This allows the binding of a value to a parameter associated with an Oracle INTERVAL	
YEAR	
TO	
MONTH	
data type in a SQL or PL/SQL statement.	
When binding a string associated with an INTERVAL	
YEAR	
TO	
MONTH	
data type, the ServerType	
must be specified to be a string type (for example, ORATYPE_VARCHAR2,	
ORATYPE_STRING	
), and the string must be in the format specified by YEARS-MONTHS.	
Properties	
Methods	
Description	
Each OraMDAttribute	
object describes an individual attribute. It represents an entry to the attribute table of the OraMetaData	
object. It can be accessed by creating a subscript that uses ordinal integers or by using the name of the attribute.	
Remarks	
None.	
Properties	
Methods	
None.	
Examples	
See "Schema Objects Used in OraMetaData Examples" for OraMetaData	
Schema Definitions used in these examples.	
Example: Describing a Table	
See "Describing a Table Example".	
Example: Describing a User-Defined Type	
See "Example: Describing a User-Defined Type".	
Example: Describing Unknown Schema Objects	
See "Example: Describing Unknown Schema Objects".	
Description	
The OraMetaData	
object is returned by invoking the Describe	
method of the OraDatabase	
interface. The Describe	
method takes the name of a schema object, such as the emp	
table, and returns an OraMetaData	
object. The OraMetaData	
object provides methods for dynamically navigating and accessing all the attributes (OraMDAttribute	
collection) of a schema object described.	
An OraMetaData	
object is a collection of OraMDAttribute	
objects that represent the description information about a particular schema object in the database. The following table is an example of attributes for a OraMetaData	
object of type table (ORAMD_TABLE)	
.	
Table 9-2 list the ORAMD_TABLE	
attributes.	
Table 9-2 ORAMD_TABLE Attributes	
Attribute Name	Value Type
---	---
Object ID.	
Number of columns.	
Column list.	
Boolean	Is the table typed?
Boolean	Is the table temporary?
Duration - can be session, transaction, or null.	
Data block address of the segment header.	
Tablespace in which the table resides.	
Boolean	Is the table clustered?
Boolean	Is the table partitioned?
Boolean	Is the table index-only?
Remarks	
The OraMetaData	
object can be visualized as a table with three columns:	
Value	
is another OraMetaData	
object The OraMDAttribute	
objects contained in the OraMetaData	
object can be accessed by creating a subscript that uses ordinal integers or by using the name of the property. Referencing a subscript that is not in the collection (0	
to Count-1	
) results in the return of a NULL	
OraMDAttribute	
object.	
Properties	
Methods	
Examples	
See "Schema Objects Used in OraMetaData Examples" for OraMetaData	
schema definitions used in these examples.	
The following Visual Basic example illustrates a simple use of this facility. It retrieves and displays several attributes of the emp	
table.	
Example: Describing a User-Defined Type	
See "Example: Describing a User-Defined Type"	
Example: Describing Unknown Schema Objects	
See "Example: Describing Unknown Schema Objects"	
Description	
The OraNumber	
interface provides methods for operations on the Oracle Number	
data types. This interface exposes a set of math operations that provide greater precision than is available in some programming environments, such as Visual Basic.	
Remarks	
The OraNumber	
object can be obtained through the CreateOraNumber	
method of the OraSession	
object or by calling the Clone	
method on an existing OraNumber	
.	
All of the methods of the OraNumber	
object that take a numeric argument accept a string, another numeric type, such as a long	
in Visual Basic, or another OraNumber	
object.	
Note: If a Visual Basic numeric value (or constant) is used as an argument, it is limited to the maximum precision provided by the language.	
The OraNumber	
on which the math operation is called holds the result of the operation (overwriting any previous value). If a Format	
was specified (through the Format	
property), the value of an OraNumber	
must match this format or an error is raised when the Value	
property is accessed.	
Properties	
Methods	
Example	
A scientific calculator example program is included as part on the samples installed with Oracle Objects for OLE. See "Demonstration Schema and Code Examples".	
Description	
The OraObject	
interface is a representation of an Oracle value instance (non-referenceable object instance or embedded objects). Value instances are instances of an Oracle object type stored in the column of a table or attribute of an another Oracle object instance or element of an Oracle collection.	
Remarks	
Implicitly an OraObject	
object contains a collection interface for accessing and manipulating (updating and inserting) individual attributes of an value instance. Individual attributes can be accessed by using a subscript or the name of the attribute.	
The OraObject	
attribute index starts at 1	
. The Count	
property returns the total number of attributes. Each attribute of the underlying value instance is represented as an OraAttribute	
object.	
Attribute values are retrieved as variants. The Variant	
type of the attribute depends on the attribute type of the object. Attribute values can be null and can be set to Null	
. For object types REF	
, LOB, and collection, attribute values are returned as corresponding OO4O objects for that type.	
The CreateOraObject	
method on the OraDatabase	
object returns the OraObject	
object. The value instance associated with this OraObject	
object is created in the client-side object cache.	
For information about executing a member method of a value instance, see "Executing a Member Method of an Oracle Object Instance".	
For information about initializing an OraObject	
object representing a value instance in OO4O or executing a member method of a value instance, see "Instantiating Oracle LOBs, Objects, and Collections".	
Properties	
Methods	
Examples	
See "Schema Objects Used in the OraObject and OraRef Examples" for schema descriptions used in examples of OraObject	
/OraRef	
objects.	
Example: Accessing Attributes of an OraObject Object	
The following example accesses the attributes of the ADDRESS	
value instance in the database.	
Example: Updating Attributes of an OraObject Object	
The following examples modify the attributes of the ADDRESS	
value instance in the database.	
Dynaset Example	
Parameter Example	
Example: Inserting an OraObject Object	
The following examples insert a new field (value instance) called ADDRESS	
in the database.	
Dynaset Example	
OraParameter Example	
See Also:	
Description	
An OraParamArray	
object represents an array type bind variable in a SQL statement or PL/SQL block, as opposed to a scalar type bind variable represented by the OraParameter	
object.	
Remarks	
OraParamArray	
objects are created, accessed, and removed indirectly through the OraParameters	
collection of an OraDatabase	
object. Each parameter has an identifying name and an associated value.	
Implicitly an OraParamArray	
object contains an OLE automation collection interface for accessing and manipulating individual elements of an array. Individual elements can be accessed using a subscript or the Get_Value	
method. Individual elements can be modified by using a subscript or the Put_Value	
method.	
Element values are retrieved as Variant	
types. The Variant	
type of the element depends on the ServerType	
of the OraParamArray	
object. Element values can be null and can be set to Null	
. For elements of type objects and REF	
s, element values are returned as corresponding OO4O objects for that type.	
You can automatically bind a parameter to SQL and PL/SQL statements of other objects (as noted in the objects descriptions) by using the name of the parameter as a placeholder in the SQL or PL/SQL statement. Using parameters can simplify dynamic queries and increase program performance. Parameters are bound to SQL statements and PL/SQL blocks before execution.	
The OraParameters	
collection is part of the OraDatabase	
object so that all parameters are available to any SQL statement or PL/SQL block executed within the database (through CreateDynaset	
, ExecuteSQL	
, or CreateSQL	
methods). Before a SQL statement or PL/SQL block is executed, an attempt is made to bind all parameters of the associated OraDatabase	
object. The bindings that fail (because the parameter does not apply to that particular SQL statement or PL/SQL block) are noted and no attempt is made to bind them again if the SQL statement or PL/SQL block is reexecuted but does not change.	
Because neither SQL statements nor PL/SQL blocks are parsed locally (all parsing is done by Oracle Database), any unnecessary binding results in performance degradation. To prevent unnecessary parameter binding, use the AutoBindDisable	
and AutoBindEnable	
methods.	
Properties	
Methods	
Example	
Example: Using OraParamArrays with SQL Statements	
The following example shows how to use the OraParamArray	
object with SQL statements:	
Example: Using OraParamArrays with PL/SQL	
The following is an example using OraParamArray	
objects with PL/SQL. The Employee	
PL/SQL package can be set up with the ORAEXAMP.SQL	
script. See "Demonstration Schema and Code Examples".	
Description	
An OraParameter	
object represents a bind variable in a SQL statement or PL/SQL block.	
Remarks	
OraParameter	
objects are created, accessed, and removed indirectly through the OraParameters	
collection of an OraDatabase	
object. Each parameter has an identifying name and an associated value. You can automatically bind a parameter to SQL and PL/SQL statements of other objects (as noted in the object descriptions), by using the parameter name as a placeholder in the SQL or PL/SQL statement. Using parameters can simplify dynamic queries and increase program performance.	
Parameters are bound to SQL statements and PL/SQL blocks before execution. In the case of a SQL SELECT	
statement, binding occurs before dynaset creation.	
The OraParameters	
collection is part of the OraDatabase	
object. Therefore, all parameters are available to any SQL statement or PL/SQL block executed within the database (through the CreateDynaset	
or ExecuteSQL	
methods).	
Before a SQL statement or PL/SQL block is executed, an attempt is made to bind all parameters of the associated OraDatabase	
object. The bindings that fail (because the parameter does not apply to that particular SQL statement or PL/SQL block), are noted and no attempt is made to bind them again if the SQL statement or PL/SQL block is reexecuted but does not change.	
Because neither SQL statements nor PL/SQL blocks are parsed locally (all parsing is done by Oracle Database), any unnecessary binding results in performance degradation. To prevent unnecessary parameter binding, use the AutoBindDisable	
and AutoBindEnable	
methods.	
By default, the maximum size of the ORAPARM_OUTPUT	
variable for ServerType	
CHAR	
and VARCHAR2	
is set to 127 bytes. Use the MinimumSize	
property to change this value. The minimum size of an ORAPARM_OUTPUT	
variable for CHAR	
, VARCHAR2	
, and ORATYPE_RAW_BIN	
must always be greater than the size of the expected data from the database column.	
ServerType	
ORATYPE_RAW_BIN	
is used when binding to Oracle Raw	
columns. A byte array is used to put or get values. The maximum allowable size of ORATYPE_RAW_BIN	
bind buffers is 2000 bytes when bound to a column of a table, 32 KB when bound to a stored procedure. For example code, see the samples in the ORACLE_BASE\\ORACLE_HOME	
\OO4O\VB\Raw	
directory.	
Properties	
Methods	
Description	
The OraRef	
interface represents an Oracle REF	
(reference) as well as a referenceable object (standalone instance).	
Remarks	
An Oracle REF	
is an identifier to a referenceable object. Referenceable objects are stored in rows of an object table. By pinning a REF	
object, referenceable objects are fetched to the client side. An OraRef	
object implicitly pins the underlying REF	
when the attributes of a referenceable object are accessed for the first time. The OraRef	
also encapsulates the functionality for an object navigational operation utilizing the Complex Object Retrieval Capability (COR).	
Attributes of a referenceable object represented by the OraRef	
object are accessed in the same manner as attributes of an value instance represented by the OraObject	
interface. When pinned, OraRef	
contains an OraObject	
interface through the containment mechanism in COM. At run time, the OraRef	
interface can be typecast to the OraObject	
interface.	
OraRef	
provides methods for update and delete operations on a referenceable object, independent of the context from which they originated, such as dynasets, parameters, and so on.	
An object-level lock should be obtained before modifying the attributes of a referenceable object. This is done though the Edit	
method of the OraRef	
object.	
The CreateOraObject	
method on the OraDatabase	
object creates a new referenceable object in the database and returns information associated with the OraRef	
Object. The CreateOraObject	
and Update	
methods pair inserts a new referenceable object in the database.	
For information about initializing an OraRef	
object representing a referenceable object in OO4O or executing a member method of a referenceable object, see "Instantiating Oracle LOBs, Objects, and Collections".	
Properties	
Methods	
Examples	
Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in the OraObject and OraRef Examples" for schema descriptions used in examples of OraObject	
/OraRef	
.	
Example: Pinning Ref Values	
The following example pins the attributes of the PERSON	
referenceable object in the database.	
Example: Accessing Attribute Values	
The following example accesses the attributes of the PERSON	
referenceable object in the database.	
Example: Updating Attribute Values	
The following example updates the attributes of the PERSON	
referenceable object in the database.	
Dynaset Example	
See "Updating Attribute Values: Dynaset Example".	
Parameter Example	
See "Updating Attribute Values: Parameter Example".	
Example: Inserting Referenceable Objects	
The following example inserts the new PERSON	
referenceable object in the database.	
Description	
The OraServer	
interface represents a physical network connection to an Oracle database.	
Remarks	
The OraServer	
interface exposes the connection multiplexing feature provided in the Oracle Call Interface. After an OraServer	
object is created, multiple user sessions (OraDatabase	
) can be attached to it by invoking the OpenDatabase	
method. This feature is particularly useful for application components, such as Internet Information Server (IIS), that use Oracle Objects for OLE in n-tier distributed environments. The use of connection multiplexing when accessing Oracle databases with a large number of user sessions active can help reduce server processing and resource requirements while improving the database scalability.	
As illustrated in Figure 9-1, the OraServer	
interface contains a connection to an Oracle database and provides a method (OpenDatabase	
) for creating user sessions (OraDatabase	
objects) on the database connection it contains.	
Properties	
Methods	
Description	
An OraSession	
object manages collections of OraDatabase	
, OraConnection	
, and OraDynaset	
objects used within an application.	
Remarks	
Typically, a single OraSession	
object is created for each application, but you can create named OraSession	
objects for shared use within and between applications.	
The OraSession	
object is the highest level object for an application. OraSession	
and OraServer	
objects are the only objects created by the CreateObject	
Visual Basic or Visual Basic for Applications APIs and not by an Oracle Objects for OLE method.	
Properties	
Methods	
Examples	
The following code fragments show how to create an OraSession	
object:	
or	
or	
Description	
An OraSQLStmt	
object represents a single SQL statement. Use the CreateSQL	
method to create the OraSQLStmt	
object from an OraDatabase	
object.	
During create and refresh operations, OraSQLStmt	
objects automatically bind all relevant, enabled input parameters to the specified SQL statement, using the parameter names as placeholders in the SQL statement. This can improve the performance of SQL statement execution without parsing the SQL statement again.	
Properties	
Methods	
Description	
An OraSubscription	
object that represents the subscription to a database event.	
Remarks	
OraSubscription	
objects are created, accessed, and removed indirectly through the OraSubscriptions	
collection of an OraDatabase	
object. Each subscription has a name that associates with an Oracle database event.	
The OraSubscriptions	
collection is part of the OraDatabase	
object.	
Properties	
Methods	
Description	
The OraTimeStamp	
object represents the Oracle TIMESTAMP	
and Oracle TIMESTAMP	
WITH	
LOCAL	
TIME	
ZONE	
data types and provides methods for operations on these two Oracle data types. The OraTimeStamp	
represents a date-time value that stores the following information: year, day, hour, minute, second, and nanosecond.	
Remarks	
The OraTimeStamp	
object is created by the OraSession.OraCreateTimeStamp	
method or by calling the Clone	
method on an existing OraTimeStamp	
object.	
An OraTimeStamp	
object can be bound using ServerType	
ORATYPE_TIMESTAMP	
or ORATYPE_TIMESTAMPLTZ	
. This allows the binding of a value to a parameter associated with an Oracle TIMESTAMP	
or an Oracle TIMESTAMP	
WITH	
LOCAL	
TIME	
ZONE	
data type in a SQL or PL/SQL statement respectively.	
When binding a string associated with a TIMESTAMP	
or a TIMESTAMP	
WITH	
LOCAL	
TIME	
ZONE	
data types, the ServerType	
must be specified to be a string type (for example, ORATYPE_VARCHAR2	
, ORATYPE_STRING	
) and the string must be in the format specified by the NLS_TIMESTAMP_FORMAT	
.	
Properties	
Methods	
Description	
The OraTimeStampTZ	
object represents an Oracle TIMESTAMP	
WITH	
TIME	
ZONE	
data type and provides methods for operations on this Oracle data type. The OraTimeStampTZ	
represents a date-time value in a specific time zone that stores the following information: year, day, hour, minute, second, nanosecond, and the time zone.	
Remarks	
The OraTimeStampTZ	
object is created by the OraSession.OraCreateTimeStampTZ	
method or by calling the Clone	
method on an existing OraTimeStampTZ	
object.	
An OraTimeStampTZ	
object can be bound using ServerType	
ORATYPE_TIMESTAMPTZ	
. This allows the binding of a value to a parameter associated with an Oracle TIMESTAMP	
WITH	
TIME	
ZONE	
data type in a SQL or PL/SQL statement.	
When binding a string associated with an TIMESTAMP	
WITH	
TIME	
ZONE	
data type, the ServerType	
must be specified to be a string type (for example, ORATYPE_VARCHAR2	
, ORATYPE_STRING	
) and the string must be in the format specified by NLS_TIMESTAMP_TZ_FORMAT	
.	
Properties	
Methods	
Description	
The OraConnections	
collection maintains a list of OraConnection	
objects. The list is not modifiable; you cannot add to or remove from this collection.	
Remarks	
You can access the OraConnection	
objects in this collection by creating a subscript (using ordinal integers) or by using the name the object was given at its creation. You can obtain the number of OraConnection	
objects in the collection by using the Count	
property. Referencing a subscript that is not within the collection (0	
to Count-1	
) results in the return of a NULL	
OraConnection	
object.	
Properties	
Methods	
None.	
Description	
The OraFields	
collection maintains a list of the OraField	
objects. The list is not modifiable; you cannot add to or remove from this collection.	
Remarks	
You can access the OraField	
objects in this collection by creating a subscript (using ordinal integers) or by using the name the object was given at its creation. You can obtain the number of OraField	
objects in the collection by using the Count	
property. Referencing a subscript that is not within the collection (0	
to Count-1	
) results in the return of a null OraField	
object.	
Properties	
Methods	
Description	
The OraParameters	
collection maintains a list of OraParameter	
objects. Unlike the other collection objects, this list is modifiable; you can add to and remove from the collection.	
Remarks	
You can access the OraParameter	
objects in this collection by creating a subscript (using ordinal integers) or by using the name the object was given at its creation. You can obtain the number of OraParameter	
objects in the collection by using the Count	
property. Referencing a subscript that is not within the collection (0	
to Count-1	
) results in the return of a null OraParameter	
object.	
In addition to accessing the OraParameter	
objects of the collection, you can use the collection to create and destroy parameters by using the Add	
and Remove	
methods, respectively.	
Properties	
Methods	
Description	
The OraSessions	
collection maintains a list of OraSession	
objects. The list is not modifiable; you cannot add to or remove from this collection.	
Remarks	
You can access the OraSession	
objects in this collection by creating a subscript (using ordinal integers) or by using the name the object was given at its creation. You can obtain the number of OraSession	
objects in the collection by using the Count	
property. Referencing a subscript that is not within the collection (0	
to Count-1	
) results in the return of a null OraSession	
object.	
Properties	
Methods	
None.	
Description	
The OraSubscriptions	
collection maintains a list of OraSubscription	
objects, which represent the subscription to a database event. Unlike the other collection objects, this list is modifiable; you can add to and remove from the collection.	
Remarks	
You can access the OraSubscription	
objects in this collection by creating a subscript (using ordinal integers) or by using the name the object was given at its creation. You can obtain the number of OraSubscription	
objects in the collection by using the Count	
property. Referencing a subscript that is not within the collection (0	
to Count-1	
) results in the return of a null OraSubscription	
object.	
In addition to accessing the OraSubscription	
objects of the collection, you can use the collection to create and destroy subscriptions by using the Add	
and Remove	
methods, respectively.	
Properties	
Methods	
This chapter describes the Oracle Objects for OLE Server methods.	
For an introduction to OO4O server objects, see "Oracle Objects for OLE In-Process Automation Server" .	
This chapter contains these topics:	
Server Methods: A to B	
Server Methods: C	
Server Methods: D to H	
Server Methods: I to L	
Server Methods: M to S	
Server Methods: T to Z	
Applies To	
Description	
Adds a parameter to the OraParameters	
collection.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
Name	The name of the parameter to be added to the parameters collection. This name is issued both for parameter identification and as the placeholder in associated SQL and PL/SQL statements.
Value	A Variant specifying the initial value of the parameter. The initial value of the parameter is significant; it defines the data type of the parameter.
IOType	An integer code specifying how the parameter is to be used in SQL statements and PL/SQL blocks.
ServerType	Specifies Oracle Database type to which this parameter is to be bound. This is required when binding to BLOB , CLOB , BFILE , OBJECT , REF , NESTED TABLE , or VARRAY . For a list of possible values, see the OraParameter "ServerType Property".
ObjectName	A case-sensitive string containing the name of the Object . This is only required if ServerType is ORATYPE_OBJECT , ORATYPE_VARRAY , or ORATYPE_TABLE . ServerType is required for ORATYPE_REF when the REF is used in PL/SQL.
IOType Settings	
The IOType	
settings are:	
Settings	Values
---	---
ORAPARM_INPUT	1
ORAPARM_OUTPUT	2
ORAPARM_BOTH	3
These values can be found in the oraconst.txt	
file.	
By default, the maximum size of the ORAPARM_OUTPUT	
variable for ServerType	
VAR	
, VARCHAR2	
, and ORATYPE_RAW_BIN	
is set to 128 bytes. Use the MinimumSize	
property to change this value. The minimum size of an ORAPARM_OUTPUT	
variable for VAR	
and VARCHAR2	
must always be greater than the size of the expected data from the database column.	
Verify that this value is correct. If you set an incorrect option, such as ORAPARM_BOTH	
for the IN	
stored procedure parameter type, this can result in errors. ORAPARM_BOTH	
is for IN	
and OUT	
parameters only. It is not used against one stored procedure that has an IN	
parameter and another that has an OUT	
parameter. For this case, use two parameters. Errors caused this way are rare, if there is a parameter-related error, verify that the IOType	
is correct.	
The Value	
argument can be an Oracle Database 10g object, such as an OraBLOB	
. Note that a copy of the object is made at that point in time and the Value	
property must be accessed to obtain a new object that refers to the value of the parameter. For example, if IOType	
is ORATYPE_BOTH	
and an OraBLOB	
obtained from a dynaset is passed in as the input value, the Parameter	
Value	
property needs to be accessed one time after the SQL has been executed to obtain the newly updated output value of the parameter. The object is obtained from the parameter in the same manner as from a dynaset.	
The Value	
property always refers to the latest value of the parameter. The Visual Basic value Null	
can also be passed as a value. The Visual Basic EMPTY	
value can be used for BLOB	
and CLOB	
data types to mean an empty LOB, and the EMPTY	
value can be used for OBJECT	
, VARRAY	
, and NESTED	
TABLE	
data types to mean an object whose attributes are all Null	
.	
Remarks	
Use parameters to represent SQL bind variables (as opposed to rebuilding the SQL statement). SQL bind variables are useful because you can change a parameter value without having to parse the query again. Use SQL bind variables only as input variables.	
You can also use parameters to represent PL/SQL bind variables. You can use PL/SQL bind variables as both input and output variables.	
The ORATYPE_RAW_BIN	
ServerType	
value is used when binding to Oracle Raw	
columns. A byte array is used to Put	
or Get	
values. The maximum allowable size of an ORATYPE_RAW_BIN	
bind buffers is 2000 bytes when bound to a column of a table and 32 KB when bound to a stored procedure. For example code, see the samples in the ORACLE_BASE\\ORACLE_HOME	
\OO4O\VB\Raw	
directory.	
Examples	
This example demonstrates using the Add	
and Remove	
parameter methods, the ServerType	
parameter property, and the ExecuteSQL	
database method to call a stored procedure and function (located in ORAEXAMP.SQL	
). Copy and paste this code into the definition section of a form. Then, press F5.	
Applies To	
Description	
Adds an argument to the OraIntervalDS	
object.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] operand	A Variant of type String , a numeric value, or an OraIntervalDS object to be added.
Remarks	
The result of the operation is stored in an OraIntervalDS	
object, overwriting any previous value. There is no return value.	
If operand	
is a Variant	
of type String	
, it must be in the following format: [+/-]Day HH:MI:SSxFF.	
If operand	
is a numeric value, the value provided should represent the total number of days that the constructed OraIntervalDS	
object represents.	
Examples	
Applies To	
Description	
Adds an argument to the OraIntervalYM	
object.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] operand	A Variant of type String , a numeric value, or an OraIntervalYM object to be added.
Remarks	
The result of the operation is stored in the OraIntervalYM	
object, overwriting any previous value. There is no return value.	
If operand	
is a Variant	
of type String	
, it must be in the following format: [+/-]YEARS-MONTHS.	
If operand	
is a numeric value, the value provided should represent the total number of years that the constructed OraIntervalYM	
object represents.	
Examples	
Applies To	
Description	
Adds a numeric argument to the OraNumber	
object.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] operand	A Variant of type String , OraNumber object, or a numeric value.
Remarks	
The result of the operation is stored in an OraNumber	
object. There is no return value.	
Applies To	
Description	
Adds a subscription to the OraSubscriptions	
collection.	
Usage	
Arguments	
The arguments for the method are:	
Variants	Description
---	---
[in] Name	The database event of interest. The appropriate event trigger and AQ queue must be set up prior to this.
The	
[in] DbeventsHdl	The database event handler. An IDispatch interface implementing the NotifyDBEvents method, which is invoked when the database event of interest is fired.
[in] Ctx	Context-specific information that the application wants passed to the NotifyDbEvents method when it is invoked.
Remarks	
To register for subscription of a database event, the name identifying the subscription of interest and the name of the dbevent	
handler that handles the event must be passed in when the Add	
method is called. The queues and event triggers necessary to support the database event must be set up before the subscriptions can be fired.	
The dbevent	
handler should be an automation object that implements the NotifyDBEvents	
method.	
NotifyDBEvents Handler	
The NotifyDBEvents	
method is invoked by Oracle Objects for OLE when database events of interest are fired.	
For more detailed information about setting up the queues and triggers for Oracle Database events, see to Triggers on System Events and User Events in Oracle Database Concepts.	
The syntax of the method is:	
Variants	
The variants for the method are:	
Variants	Description
---	---
[in] Ctx	Passed into the OraSubscriptions.Add method by the application. Context-sensitive information that the application wants passed on to the dbevent handler.
[in] Payload	The payload for this notification. Database events are fired by setting up event trigger and queues.
Examples	
Example: Registering an Application for Notification of Database Events	
In the following example, an application subscribes for notification of database logon events (such as all logons to the database). When a user logs on to the database, the NotifyDBEvents	
method of the DBEventsHdlr	
that was passed in at the time of subscription is invoked. The context-sensitive information and the event-specific information are passed into the NotifyDBEvents	
method.	
The DBEventsHdlr	
in this example is DBEventCls	
, which is defined later.	
The main application:	
The database event handler class that defines the NotifyDBEvents	
method.	
See Also:	
Applies To	
Description	
Adds an interval that represents an interval from days to seconds, to the OraTimeStamp	
or OraTimeStampTZ	
object.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] operand	A Variant of type String , a numeric value, or an OraIntervalDS object that represents an interval from days to seconds to be added to the current OraTimeStamp or OraTimeStampTZ object.
Remarks	
The result of adding an interval to the current OraTimeStamp	
or OraTimeStampTZ	
object is stored in the current object, overwriting any previous value. There is no return value.	
If operand	
is a Variant	
of type String	
, it must be in the following format: [+/-] Day HH:MI:SSxFF.	
If operand	
is a numeric value, the value provided should represent the total number of days that the constructed OraIntervalDS	
object represents.	
Examples	
Using OraTimeStamp	
Using OraTimeStampTZ	
Applies To	
Description	
Adds an interval that represents an interval from years to months, to the OraTimeStamp	
or OraTimeStampTZ	
object.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] operand	A Variant of type String , a numeric value, or an OraIntervalYM object that represents an interval from years to months, to be added to the current OraTimeStamp or OraTimeStampTZ object.
Remarks	
The result of adding an interval to the current OraTimeStamp	
or OraTimeStampTZ	
object is stored in the current object, overwriting any previous value. There is no return value.	
If operand	
is a Variant	
of type String	
, it must be in following format: [+/-] YEARS-MONTHS.	
If operand	
is a numeric value, the value provided should represent the total number of years that the constructed OraIntervalYM	
object represents.	
Examples	
Example: Using the OraTimeStamp Object	
Example: Using the OraTimeStampTZ Object	
Applies To	
Description	
Clears the copy buffer and begins a record insertion operation into the specified dynaset and associated database.	
Usage	
Remarks	
When an AddNew	
operation is initiated, values of fields present within the dynaset are maintained in a copy buffer and do not reflect the actual contents of the database.	
The values of the fields are modified through the OraField	
object, and committed with an Update	
operation or when database movement occurs, which discards the new row. Field values that have not been explicitly assigned are either set to Null	
or allowed to default by way of the Oracle default mechanism, depending on the Column Defaulting mode of the options flag used when the OpenDatabase	
method was called. In either case, fields that appear in the database table but not in the dynaset are always defaulted by the Oracle default mechanism.	
Internally, records are inserted by the AddNew	
method using the "INSERT	
into	
TABLE	
(...)	
VALUES	
(...)"	
SQL statement, and are added to the end of the table.	
When adding a row that has object, collection, and REF	
columns, these column values should be set to a valid OraObject	
, OraCollection	
, or OraRef	
interface or to the Null	
value. The column values can also be set with the automation object returned by the CreateOraObject	
method. When adding a row having a BLOB	
, CLOB	
, or BFILE	
column, the column value should be set to a valid OraBLOB	
, OraCLOB	
, or OraBFILE	
interface, Null	
, or Empty	
. Setting a BLOB	
, CLOB	
, and BFILE	
column to an Empty	
value inserts an empty LOB value into the database.	
Note: A call toEdit , AddNew , or Delete methods cancels any outstanding Edit or AddNew method calls before proceeding. Any outstanding changes not saved using an Update method are lost during the cancellation.	
Examples	
This example demonstrates the use of the AddNew	
and Update	
methods to add a new record to a dynaset. Copy this code into the definition section of a form. Then, press F5.	
Applies To	
Description	
Adds an array parameter to the OraParameters	
collection.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
Name	The name of the parameter to be added to the parameters collection. This name is used both for parameter identification and as the placeholder in associated SQL and PL/SQL statements.
IOType	An integer code specifying how the parameter is to be used in SQL statements and PL/SQL blocks.
ServerType	Specifies Oracle Database type to which this array parameter is to be bound. For a list of possible values, see the OraParameter ServerType Property.
ArraySize	Defines the number of elements in the parameter array. This parameter is used to calculate the maximum buffer length.
ElementSize [optional]	Defines the size of the element. Valid for only character and string type table (array) parameters. The valid size for ElementSize depends on the VarType .
ObjectName | A case-sensitive string containing the name of the Object . This is only required if ServerType is ORATYPE_OBJECT , ORATYPE_VARRAY , or ORATYPE_TABLE . It is required for ORATYPE_REF when the REF is used in PL/SQL. |
IO Type Settings
The IOType
settings are:
Constant | Value | Description |
---|---|---|
ORAPARM_INPUT | 1 | Used for input variables only. |
ORAPARM_OUTPUT | 2 | Used for output variables only. |
ORAPARM_BOTH | 3 | Used for variables that are both input and output. |
Verify that this value is correct. If you set an incorrect option, such as ORAPARM_BOTH
for the stored procedure parameter type IN
, this can result in errors. ORAPARM_BOTH
is for IN
and OUT
parameters only. It is not used against one stored procedure that has an IN
parameter and another that has an OUT
parameter. In this case, use two parameters. Errors caused in this way are rare, but if there are parameter-related errors, verify that the IOType
is correct.
Server Type
See ServerType Property for valid types and note the following:
Note:
ORATYPE_NUMBER
allows decimal precision of 1
to 38
. 0.99999999999999999999
E
+
38
. 0.1
E
-38.
-0.99999999999999999999
E
+
38
. 0.1
E
-38
. ElementSize (Optional)
Valid for character, string, and raw types. The valid size for ElementSize
depends on the VarType
. This represents the length of each individual string or raw array element. These ranges are listed.
VarType	Size
ORATYPE_VARCHAR2	Valid range from 1 to 1999
ORATYPE_VARCHAR	Valid range from 1 to 1999
ORATYPE_STRING	Valid range from 1 to 1999
ORATYPE_CHAR	Valid range from 1 to 255
ORATYPE_CHARZ	Valid range from 1 to 255
ORATYPE_RAW_BIN	Valid range from 1 to 4000 (see remarks)
Remarks	
Use parameters to represent SQL bind variables for array insert, update, and delete operations, rather than rebuilding the SQL statement. SQL bind variables are useful because you can change a parameter value without having to parse the query again. Use SQL bind variables only as input variables.	
You can also use parameters to represent PL/SQL bind (IN	
/OUT	
) variables. You can use PL/SQL bind variables as both input and output variables.	
The ServerType	
value ORATYPE_RAW_BIN	
is used when binding to Oracle Raw	
columns. A byte array is used to Put	
or Get	
values. The maximum allowable size of ORATYPE_RAW_BIN	
bind buffers is 2000 bytes when bound to a column of a table: the maximum allowable size is 32 KB when bound to a stored procedure. No element (see ElementSize	
argument) can be greater than 4000 bytes when binding to stored procedures, 2000 bytes against columns of tables. For example code, see the samples in the ORACLE_BASE\\ORACLE_HOME	
\OO4O\VB\Raw	
directory.	
Examples	
See "Example: Using OraParamArrays with PL/SQL".	
Applies To	
Description	
Extends the size of the collection by one and appends the Variant	
value at the end of the collection.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] element	A Variant representing the value to be appended.
Remarks	
If an OraCollection	
represents a collection of Object	
types or Ref	
s, the element argument should represent a valid OraObject	
or OraRef	
.	
Examples	
The following example illustrates the Append	
method. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in OraCollection Examples".	
Example: Append Method for the OraCollection Object Example	
Applies To	
Description	
Appends the LOB content of the input OraLOB object to the internal LOB value of this instance.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] srcLOB	A valid object of type OraBLOB or OraCLOB .
Remarks	
Appends the LOB content of input LOB to the end of current LOB value. Obtain either a row-level lock or an object-level lock before calling this method.	
Applies To	
Description	
Appends data from a string to a LONG	
or LONG	
RAW	
field in the copy buffer.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
string	Data to append to the specified field.
Remarks	
The AppendChunk	
method allows the manipulation of data fields that are larger than 64 KB.	
Examples	
Note: This example cannot be run as is. It requires a defined form namedfrmChunk .	
This example demonstrates the use of the AppendChunk	
method to read a file into a LONG	
RAW	
column of a database. This example expects a valid dynaset named OraDynaset	
representing a table with a column named longraw	
. Copy this code into the definition section of a form named frmChunk	
. Call this procedure with a valid filename	
.	
Applies To	
Description	
Appends data from a byte array to a LONG	
or LONG	
RAW	
field in the copy buffer.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
Byte Array	Data to append to the specified field.
numbytes	Number of bytes to copy.
Remarks	
The AppendChunkByte	
method allows the manipulation of data fields that are larger than 64 KB.	
Examples	
Note: This is an incomplete code sample, provided for your reference. A complete Visual Basic sample calledLONGRAW that is based on this code sample, is provided in the OO4O samples directory.	
This sample code demonstrates the use of the AppendChunkByte	
method to read a file into a LONG	
RAW	
column of a database. This code expects a valid dynaset named OraDynaset	
representing a table with a column named longraw	
.	
Applies To	
Description	
Creates an instance of the OraAQAgent	
for the specified consumer and adds it to the OraAQAgent	
s list of the message.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] name	A String up to 30 bytes representing the name of the consumer of the message.
[in] [optional] Address	A 128-byte String representing the protocol specific address of a recipient, such as [schema.]queue [@dblink].
Remarks	
The OraAQAgent	
object represents a message recipient and is only valid for queues that allow multiple consumers. Queue subscribers are recipients by default. Use this object to override the default consumers.	
An OraAQAgent	
object can be instantiated by invoking the AQAgent	
method. For example:	
The maximum number of agents that a message can support is 10.	
The AQAgent	
method returns an instance of an OraAQAgent	
object.	
Note: Address is not supported in this release, but is provided for future enhancements.	
Applies To	
Description	
Creates an OraAQMsg	
for the specified options.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] msgtype	An Integer representing a RAW or user-defined type. Optional for RAW type. Possible values are:
[in] typename | A String representing the name of the type. Optional for RAW type. Default is 'RAW' . |
[in] [optional] schema | A String representing the schema where the type is defined. Default is 'SYS' . |
Remarks
The method could be used as follows:
Applies To
Description
Calculates the arc cosine of an OraNumber
object. The result is in radians.
Usage
Remarks
The result of the operation is stored in the OraNumber
object. There is no return value.
This method returns an error if the OraNumber
value is less than -1
or greater than 1
.
Applies To
Description
Calculates the arc sine of an OraNumber
object. Result is in radians.
Usage
Remarks
The result of the operation is stored in the OraNumber
object. There is no return value.
This method returns an error if the OraNumber
object is less than -1
or greater than 1
.
Applies To
Description
Calculates the arc tangent of an OraNumber
object. Result is in radians.
Usage
Remarks
The result of the operation is stored in the OraNumber
object. There is no return value.
Applies To
Description
Calculates the arc tangent of two numbers using the operand
provided. The result is in radians.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] operand | A Variant of type String , OraNumber , or a numeric value. |
Remarks
The result of the operation is stored in the OraNumber
object. There is no return value.
This method returns an error if operand
is zero.
Applies To
Description
Returns the OraMDAttribute
object at the specified index
.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] index | An Integer index between 0 and count-1 , or a String representing the name of an attribute. |
Remarks
None.
Applies To
Description
Resets the AutoBind
status of a parameter.
Usage
Remarks
If a parameter has AutoBindDisabled
status, it is not automatically bound to a SQL or PL/SQL statement.
Examples
This example demonstrates the use of the AutoBindDisable
and AutoBindEnable
methods to prevent unnecessary parameter binding while creating various dynasets that use different parameters. Copy this code into the definition section of a form. Then, press F5.
Applies To
Description
Sets the AutoBind
status of a parameter.
Usage
Remarks
If a parameter has AutoBindEnabled
status, it is automatically bound to a SQL or PL/SQL statement.
Examples
This example demonstrates the use of the AutoBindDisable
and AutoBindEnable
methods to prevent unnecessary parameter binding while creating various dynasets that use different parameters. Copy this code into the definition section of a form. Then, press F5.
Applies To
Description
Begins a database transaction within the specified session.
Usage
Remarks
After this method has been called, no database transactions are committed until a CommitTrans
is issued. Alternatively, the session can be rolled back using the Rollback
method. If a transaction has already been started, repeated use of the BeginTrans
method causes an error.
If Update
or Delete
methods fail on a given row in a dynaset in a global transaction after you issue a BeginTrans
, be aware that locks remain on those rows on which you called the Update
or Delete
method. These locks persist until you call a CommitTrans
or Rollback
method.
Note: If anOraDatabase object has been enlisted with Microsoft Transaction Server (MTS) and is part of a global MTS transaction, this method has no effect. |
Examples
This example demonstrates the use of the BeginTrans
method to group a set of dynaset edits into a single transaction and uses the Rollback
method to cancel those changes. Copy this code into the definition section of a form. Then, press F5.
Applies To
OraSQLStmt Object created with the ORASQL_NONBLK
option
Description
Cancels the currently executing SQL operation.
Usage
Return Values
ORASQL_SUCCESS(0)
- Any errors are thrown as exceptions.
Applies To
Description
Unlocks the referenceable object in the database and cancels the object update operation.
Usage
Remarks
Care should be taken before using this method; it cancels any pending transaction on the connection.
Applies To
Description
Calculates the ceiling value of an OraNumber
object.
Usage
Remarks
The result of the operation is stored in an OraNumber
object. There is no return value.
Applies To
Description
Changes the password for a given user.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] user_name | A String representing the user for whom the password is changed. |
[in] current_password | A String representing the current password for the user. |
[in] new_password | A String representing the new password for whom the user account is set. |
Remarks
The OraServer
object should be attached to an Oracle database using the Open
method before to using this method.
This method is useful when a password has expired. In that case, the OpenDatabase
method could return the following error:
Applies To
Description
Changes the password for a given user.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] database_name | A String representing the Oracle network specifier used when connecting to a database. |
[in] user_name | A String representing the user for whom the password is changed. |
[in] current_password | A String representing the current password for the user. |
[in] new_password | A String representing the new password for whom the user account is set. |
Remarks
This method is especially useful when a password has expired. In that case, the OpenDatabase
or CreateDatabasePool
method could return the following error:
Examples
Applies To
Description
Returns a duplicate dynaset of the specified dynaset.
Usage
Remarks
This method creates a duplicate dynaset of the one specified. The original and duplicate dynasets have their own current record. However, the new dynaset is not positioned on any row and has its EOF
and BOF
conditions set to True
. To change this, you must explicitly set a current row on the new duplicate with a Move
or Find
method.
Using the Clone
method has no effect on the original dynaset. You cannot add, update, or remove records from a dynaset clone.
Use the Clone
method to perform an operation on a dynaset that requires multiple current records.
A cloned dynaset does not have all the property settings of the original. The CacheBlock
, CacheSliceSize
, CacheSlicePerBlock
, and FetchLimit
properties are all set to Null
.
Bookmarks of a dynaset and its clone are interchangeable; bookmarks of dynasets created with separate CreateDynaset
methods are not interchangeable.
Applies To
Description
Returns the clone of an OraLOB or OraBFILE
object.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] OraLOB | A valid object of type OraBLOB , OraCLOB , or OraBFILE . |
Remarks
This method makes a copy of an OraBLOB
or OraCLOB
object. This copy does not change due to a dynaset move operation or OraSQLStmt
Refresh
operation. No operation that modifies the LOB content of an OraBLOB
or OraCLOB
object can be performed on a clone.
This method makes a copy of Oracle BFILE
locator and returns an OraBFILE
associated with that copy. The copy of an OraBFILE
does not change due to a dynaset move operation or a OraSQLStmt
refresh operation.
Applies To
Description
Returns the clone of an OraCollection
object.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] oraCollection1 | A valid OraCollection object |
Remarks
This method makes a copy of an Oracle collection and returns an OraCollection
object associated with that copy. This copy of an Oracle collection does not change due to a dynaset move operation or OraSQLStmt
Refresh
operation. An OraCollection
object returned by this method allows operations to access its element values of the underlying Oracle collection and prohibits any operation that modifies its element values.
Applies To
Description
Returns a copy of the OraIntervalDS
object.
Usage
Remarks
Returns a new OraIntervalDS
object with the same value as the original.
Applies To
Description
Returns a copy of the OraIntervalYM
object.
Usage
Remarks
Returns a new OraIntervalYM
object with the same value as the original.
Applies To
Description
Returns a copy of the OraNumber
object .
Usage
Remarks
Returns a new OraNumber
object with the same value as the original.
Applies To
Description
Returns the clone of an OraObject
or OraRef
object.
Usage
Remarks
This method makes a copy of a Value
instance or REF
value and returns an OraObject
or OraRef
object associated with that copy. This copy does not change due to a dynaset move operation or OraSQLStmt
refresh operation. An OraObject
object returned by this method allows an operation to access its attribute values of an underlying value instance and disallows any operation to modify its attribute values.
Examples
Before running the sample code, make sure that you have the necessary data types and tables in the database. For the following examples, see "Schema Objects Used in the OraObject and OraRef Examples"
Example: Clone Method for the OraObject Object
The following example shows the use of the Clone
method.
Example: Clone Method for the OraRef Object
The following example shows the usage of the Clone
method. Before running the sample code, make sure that you have the necessary data types and tables in the database.
Applies To
Description
Returns a copy of the OraTimeStamp
object.
Usage
Remarks
Returns a new OraTimeStamp
object with the same value as the current object.
Applies To
Description
Returns a copy of the OraTimeStampTZ
object.
Usage
Remarks
Returns a new OraTimeStampTZ
object with the same value as the current object.
Applies To
Description
Does nothing. Added for compatibility with Visual Basic.
Remarks
Neither the OraDatabase
nor the OraDynaset
object supports this method. Once an OraDatabase
or OraDynaset
object has gone out of scope and there are no references to it, the object closes automatically.
Applies To
Description
Closes an opened BFILE
data type.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] OraBfile | A valid object of type OraBFILE . |
Remarks
This method only applies to BFILE
s, not LOBs.
Applies To
Description
This method closes all open OraBFILE
objects on this connection.
Usage
Applies To
Description
Ends the current transaction and commits all pending changes to the database.
Usage
Remarks
The CommitTrans
method acts differently for these objects:
OraConnection
and OraDatabase
The CommitTrans
method commits all pending transactions for the specified connection. This method has no effect if a transaction has not started. When a sessionwide transaction is in progress, you can use this method to commit the transactions for the specified connection prematurely.
OraSession
The CommitTrans
method commits all transactions present within the session. The CommitTrans
method is valid only when a transaction has been started. If a transaction has not been started, using the CommitTrans
method causes an error.
Note: If an OraDatabase
object has been enlisted with Microsoft Transaction Server (MTS) and is part of a global MTS transaction, this method has no effect.
Examples
This example demonstrates the use of the BeginTrans
method to group a set of dynaset edits into a single transaction. The CommitTrans
method then accepts the changes. Copy this code into the definition section of a form. Then, press F5.
Applies To
Description
Compares the specified portion of the LOB value of an OraBLOB
or OraCLOB
object (or OraBFILE
object) to the LOB value of the input OraBLOB
or OraCLOB
object (or OraBFILE
object).
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] srcLOB | Input OraBLOB , OraCLOB , or OraBFILE object whose value is to be compared. |
[in] [optional] amount | An Integer specifying the number of bytes or characters to compare. The default value of amount is from the Offset to the end of each LOB. |
[in] [optional] Offset | An Integer specifying the 1 -based Offset in bytes (OraBLOB or OraBFILE) or characters (OraCLOB) in the value of this object. Default value is 1 . |
[in] [optional] srcOffset | An Integer specifying the 1 -based Offset in bytes (OraBLOB or OraBFILE) or characters (OraCLOB) in the value of the srcLob object. Default value is 1 . |
[out] IsEqual | A Boolean representing the result of a compare operation. |
Remarks
The Compare
method returns True
if comparison succeeds; otherwise, it returns False
.
If the amount to be compared causes the comparison to take place beyond the end of one LOB but not beyond the end of the other, the comparison fails. Such a comparison could succeed only if the amount of data from the Offset
to the end is the exactly the same for both LOBs.
This call is currently implemented by executing a PL/SQL block that utilizes DBMS_LOB.INSTR()
.
Applies To
Description
Returns the OraSession
object with the specified name that is associated with the OraClient
object of the specified session.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
session_name | A String specifying the name of the session. |
Remarks
This method is provided for simplicity and is equivalent to iterating through the OraSessions
collection of the OraClient
object of the current session and searching for a session named session_name
. The OraSessions
collection contains only sessions created through the current application. This means that it is not possible to share sessions across applications, only within applications.
Examples
This example demonstrates the use of the ConnectSession
and CreateNamedSession
methods to allow an application to use a session it previously created, but did not save. Copy this code into the definition section of a form. Then, press F5.
Applies To
Description
Copy the rows from the dynaset to the clipboard in text format.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
NumOfRows | Number of rows to be copied to the dynaset |
colsep [optional] | Column separator in the CHAR data type to be inserted between columns |
rowsep [optional] | Row separator in the CHAR data type to be inserted between rows |
Remarks
This method is used to help transfer data between the Oracle Object for OLE cache (dynaset) and Windows applications, such as Excel or Word. The CopyToClipboard
method copies data starting from the current position of the dynaset up to the last row.
The default column separator is TAB (ASCII 9).
The default row separator is ENTER (ASCII 13).
Examples
The following example copies data from the dynaset to the clipboard. Paste this code into the definition section of a form, then press F5.
Applies To
Description
Copies a portion of the internal LOB value of an input OraBLOB
or OraCLOB
object to internal LOB value of this instance.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] srcLOB | An OraCLob or OraBLOB object whose value is to be copied. |
[in] [optional] amount | An Integer specifying number of bytes or characters to copy. Default value is the size of the BLOB or CLOB value of the srcLOB object. |
[in] [optional] destOffset | An Integer specifying the offset in bytes or characters for the value of this object. Default value is 1 . |
[in] [optional] srcOffset | An Integer specifying the offset in bytes or characters, for the value of the srcLOB object. Default value is 1 . |
Remarks
Obtain either a row-level lock or object-level lock before calling this method.
Applies To
Description
Loads or copies a portion or all of a local file to the internal LOB value of this object.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] filename | A string specifying the absolute name and path for the file to be read. |
[in] [optional] amount | An Integer specifying the maximum number in bytes to be copied. Default value is total file size. |
[in] [optional] offset | An Integer specifying the absolute offset of the BLOB or CLOB value of this object, in bytes for OraBLOB or OraBFILE and characters for OraCLOB . Default value is 1 . |
[in] [optional] chunksize | An Integer specifying the size for each read operation, in bytes. If chunksize parameter is not set or 0 , the value of the amount argument is used, which means the entire amount is transferred in one chunk. |
Remarks
Obtain either a row-level lock or object-level lock before calling this method.
The file should be in the same format as the NLS_LANG
setting.
Note: When manipulating LOBs using LOB methods, such asWrite and CopyFromFile , the LOB object is not automatically trimmed if the length of the new data is smaller than the old data. Use the Trim (OraLOB) method to shrink the LOB object to the size of the new data. |
Examples
Example: Using the CopyFromFile Method
This example demonstrates the use of the CopyFromFile
method.
Be sure that you have the PART
table in the database with valid LOB data in it. Also, be sure that you have installed the OraLOB Schema Objects as described in "Schema Objects Used in LOB Data Type Examples" .
Applies To
Description
Copies a portion or all of the LOB value of an OraBFILE
object to the LOB value of this object.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] srcBFile | An OraBFILE object from which the data is to be copied. |
[in] [optional] amount | An Integer specifying the maximum number to be copied, in characters for OraCLOB or bytes for OraBLOB or OraBFILE . Default value is the size of BFILE value of the srcBFile object. |
[in] [optional] destOffset | An Integer specifying the absolute offset for this instance. Default is 1 . |
[in] [optional] srcOffset | An Integer specifying the absolute offset for the BFILE value of the source OraBFILE object. Default is 1 . |
Remarks
Obtain either a row-level lock or object-level lock before calling this method.
For a single-byte character set, the OraBFile
object should be of the same character set as the database.
If the database has a variable width character set, the OraBFile
object passed to the OraClob.CopyFromBFile
method must point to a file that uses the UCS2 character set.
Applies To
Description
Copies a portion or all of the internal LOB value of this object to the local file.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] filename | A String specifying the absolute name and path for which the file is to be written. |
[in] [optional] amount | An Integer specifying the maximum amount to be copied, in bytes for OraBLOB /OraBFILE and characters for OraCLOB . Default value is the size of the LOB or BFILE . |
[in] [optional] offset | An Integer specifying absolute offset of the LOB or BFILE value of this instance, in bytes for OraBLOB /OraBFILE and characters for OraCLOB . Default value is 1 . |
[in] [optional] chunksize | An Integer specifying the size, in bytes, for each write operation. If the chunksize parameter is not set or is 0 , the value of the amount argument is used which means the entire amount is transferred in one chunk. |
Remarks
The file is in the same format as the NLS_LANG
setting.
If the file exists, its contents is overwritten.
Examples
Example:Using the CopyToFile Method
This example demonstrates the use of the CopyToFile
method.
Be sure that you have the PART
table in the database with valid LOB data in it. Also, be sure that you have installed the OraLOB Schema Objects as described in "Schema Objects Used in LOB Data Type Examples" .
Applies To
Description
Calculates the cosine of an OraNumber
object given in radians.
Usage
Remarks
The result of the operation is stored in an OraNumber
object. There is no return value.
Applies To
Description
Creates an instance of the OraAQ
object.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] Qname | A String representing the name of the queue in the database. |
Remarks
None.
Applies To
Description
Creates a dynaset using custom cache and fetch parameters
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
sql_statement | Any valid Oracle SQL SELECT statement. |
slicesize | Cache slice size. |
perblock | Cache slices for each block. |
blocks | Cache maximum number of blocks. |
FetchLimit | Fetch array size. |
FetchSize | Fetch array buffer size. |
options | A bit flag indicating the status of any optional states of the dynaset. You can combine one or more options by adding their respective values. Specifying the constant ORADYN_DEFAULT or the value &H0& gives the following defaults for the dynaset:
|
SnapShotID [optional] | The ID of a Snapshot obtained from the SnapShot property of an OraDynaset . |
Constants
The following table lists constants and values for the options flag.
Constant | Value | Description |
---|---|---|
ORADYN_DEFAULT | &H0& | Accept the default behavior. |
ORADYN_NO_AUTOBIND | &H1& | Do not perform automatic binding of database parameters. |
ORADYN_NO_BLANKSTRIP | &H2& | Do not remove trailing blanks from character string data retrieved from the database. |
ORADYN_READONLY | &H4& | Force dynaset to be read-only. |
ORADYN_NOCACHE | &H8& | Do not create a local dynaset data cache. Without the local cache, previous rows within a dynaset are unavailable; however, increased performance results during retrieval of data from the database (move operations) and from the rows (field operations). Use this option in applications that make single passes through the rows of a dynaset for increased performance and decreased resource usage. |
ORADYN_ORAMODE | &H10& | Same as Oracle Mode for a database except it affects only the dynaset being created. If database was created in Oracle Mode, the dynaset inherits the property from it (for compatibility). |
ORADYN_NO_REFETCH | &H20& | Behaves same as ORADB_NO_REFETCH mode for a database except this mode affects only the dynaset being created. If the database was created in ORADB_NO_REFETCH mode, the dynaset inherits the property for compatibility. |
ORADYN_N_MOVEFIRST | &H40& | Does not force a MoveFirst when the dynaset is created. BOF and EOF are both true. |
ORADYN_DIRTY_WRITE | &H80& | Update and Delete methods do not check for read consistency. |
These values can be found in the oraconst.txt
file located in:
ORACLE_BASE\\ORACLE_HOME
\rdbms\oo4o
Remarks
The SQL statement must be a SELECT
statement or an error is returned. Features such as simple views and synonyms can be used freely. You can also use schema references, column aliases, table joins, nested select statements, and remote database references, but in each case you end up with a read-only dynaset.
If you use a complex expression or SQL function on a column, such as "sal + 100"
or "abs(sal)"
, you get an updatable dynaset, but the column associated with the complex expression is not updatable.
Object names generally are not modifed, but in certain cases, they can be changed. For example, if you use a column alias, you must use the alias to refer to the field by name. If you use spaces in a complex expression, you must refer to the column without the spaces, because the database removes spaces. Note that you can always refer to a field by number, that is, by its ordinal position in the SELECT
statement.
Executing the SQL SELECT
statement generates a commit operation to the database by default. To avoid this, use the BeginTrans
method on the session object before using the CreateDynaset
method.
The updatability of the resultant dynaset depends on the Oracle SQL rules of updatability, on the access you have been granted, and on the options flag.
Updatability Conditions
For the dynaset to be updatable, three conditions must be met:
ROWID
references to the selected rows of the query. Any SQL statement that does not meet these criteria is processed, but the results are not updatable and the Updatable
property of the dynaset returns False
.
This method automatically moves to the first row of the created dynaset.
You can use SQL bind variables in conjunction with the OraParameters
collection.
Examples
This example demonstrates the CreateCustomDynaset
method. Copy and paste this code into the definition section of a form, then press F5.
Applies To
Description
Creates a pool of OraDatabase
objects. Only one pool can be created for each OraSession
object.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
initialSize | The initial size of the pool. |
maxSize | The maximum size to which the pool can grow. |
timeoutValue | If an OraDatabase object in the pool is idle for the timeoutValue value specified, the database connection that it contains is disconnected. The connection is reopened if the pool item is used again. This value is in seconds. |
database_name | The Oracle network specifier used when connecting the data control to a database. |
connectString | The user name and password to be used when connecting to an Oracle database. |
options | A bit flag word used to set the optional modes of the database. If options = 0 , the default mode settings apply. "Constants" shows the available modes. |
Remarks
The OpenDatabase
method of the OraSession
object is used to establish a connection to an Oracle database. This method returns a reference to the OraDatabase
object which is then used for executing SQL statements and PL/SQL blocks. The connection pool in OO4O is a pool of OraDatabase
objects. The pool is created by invoking the CreateDatabasePool
method of the OraSession
interface.
Exceptions are raised by this call if:
initialSize
> maxSize
). The LastServerErr
property of the OraSession
object contains the code for the specific cause of the exception resulting from an Oracle Database error.
One possible connection error that could be returned is:
The user can change the password using the ChangePassword
method.
Applies To
Description
Creates an OraDynaset
object from the specified SQL SELECT
statement and options.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
sql_statement | A String containing any valid Oracle SQL SELECT statement. |
options | A bit flag indicating the status of any optional states of the dynaset. You can combine one or more options by adding their respective values. Specifying the constant ORADYN_DEFAULT or the value &H0& gives the following defaults for the dynaset:
|
SnapShotID [optional] | A ID of the snapshot obtained from the SnapShot property of an OraDynaset object. |
Constants
The following table lists constants and values for the options flag.
Constant | Value | Description |
---|---|---|
ORADYN_DEFAULT | &H0& | Accept the default behavior. |
ORADYN_NO_AUTOBIND | &H1& | Do not perform automatic binding of database parameters. |
ORADYN_NO_BLANKSTRIP | &H2& | Do not remove trailing blanks from character string data retrieved from the database. |
ORADYN_READONLY | &H4& | Force dynaset to be read-only. |
ORADYN_NOCACHE | &H8& | Do not create a local dynaset data cache. Without the local cache, previous rows within a dynaset are unavailable; however, increased performance results during retrieval of data from the database (move operations) and from the rows (field operations). Use this option in applications that make single passes through the rows of a dynaset for increased performance and decreased resource usage. |
ORADYN_ORAMODE | &H10& | Behave the same as Oracle Mode for a database except affect only the dynaset being created. If database was created in Oracle Mode, the dynaset inherits the property from it (for compatibility). |
ORADYN_NO_REFETCH | &H20& | Behave the same as ORADB_NO_REFETCH mode for a database except affect only the dynaset being created. If the database was created in ORADB_NO_REFETCH mode, the dynaset inherits the property for compatibility. |
ORADYN_NO_MOVEFIRST | &H40& | Does not force a MoveFirst when the dynaset is created. BOF and EOF are both true. |
ORADYN_DIRTY_WRITE | &H80& | Update and Delete methods do not check for read consistency. |
These values can be found in the oraconst.txt
file.
Remarks
Features such as simple views and synonyms can be used freely. You can also use schema references, column aliases, table joins, nested select statements and remote database references, but in each case, the dynaset is read-only.
If you use a complex expression or SQL function on a column, such as "sal + 100"
or "abs(sal)"
, you get an updatable dynaset, but the column associated with the complex expression is not updatable.
Object names generally are not modifed, but in certain cases they can be changed. For example, if you use a column alias, you must use the alias to refer to the field by name. Also, if you use spaces in a complex expression, you must refer to the column without the spaces, since the database strips spaces. Note that you can always refer to a field by number, that is, by its ordinal position in the SELECT
statement.
Executing the Update
method generates a commit operation to the database by default. To avoid this, use the BeginTrans
method on the session object before using the CreateDynaset
method.
The updatability of the resultant dynaset depends on the Oracle SQL rules of updatability, on the access you have been granted, and on the options flag. For the dynaset to be updatable, these conditions must be met:
ROWID
references to the selected rows of the query. Any SQL statement that does not meet these criteria is processed, but the results are not updatable and the Updatable
property of the dynaset returns False
. This method automatically moves to the first row of the created dynaset. You can use SQL bind variables in conjunction with the OraParameters
collection.
The SnapShotID
option causes a snapshot descriptor to be created for the SQLStmt
object created. This property can later be obtained and used in creation of other SQLStmt
or OraDynaset
objects. Execution snapshots provide the ability to ensure that multiple commands executed in the context of multiple OraDatabase
objects operate on the same consistent snapshot of the committed data in the database.
Examples
This example demonstrates CreateObject
, OpenDatabase
and CreateDynaset
methods. Copy and paste this code into the definition section of a form. Then, press F5.
Applies To
Description
Creates an iterator to scan the elements of a collection.
Usage
Remarks
This method creates an iterator for scanning the elements of an Oracle collection. Accessing collection elements using the iterator is faster than using an index on the instance of a collection.
Examples
Example: OraCollection Iterator
The following example illustrates the use of an Oracle collection iterator.
Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in OraCollection Examples" .
Applies To
Description
Creates and returns a new named OraSession
object.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
session_name | A String specifying the name of the session. |
Remarks
Using this method, you can create named sessions that can be referenced later in the same application as long as the session object referred to is in scope. Once a session has been created, the application can reference it by way of the ConnectSession
method or the OraSessions
collection of their respective OraClient
object. The OraSessions
collection only contains sessions created within the current application. Therefore, it is not possible to share sessions across applications, only within applications.
This method is provided for simplicity and is equivalent to the CreateSession
method of the OraClient
object.
Examples
This example demonstrates the use of ConnectSession
and CreateNamedSession
methods to allow an application to use a session it previously created, but did not save. Copy this code into the definition section of a form. Then, press F5.
Applies To
Description
Creates the OraIntervalDS
object. This OraIntervalDS
represents an Oracle INTERVAL
DAY
TO
SECOND
data type.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] value | A Variant of type String , a numeric value, an OraIntervalDS , or an OraNumber object. |
Return Values
Remarks
An OraSession
object must be created before an OraIntervalDS
object can be created.
If value
is a Variant
of type String
, it must be in the following format: [+/-] Day HH:MI:SSxFF.
If value
is a numeric value, the value provided should represent the total number of days that the constructed OraIntervalDS
represents.
A Variant
of type OraIntervalDS
can also be passed. A cloned OraIntervalDS
is returned.
Examples
Applies To
Description
Creates the OraIntervalYM
object. This OraIntervalYM
represents an Oracle INTERVAL
YEAR
TO
MONTH
data type.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] value | A Variant of type String , a numeric value, or an OraIntervalYM object. |
Return Values
Remarks
An OraSession
object must be created before an OraIntervalYM
object can be created.
If value
is a Variant
of type String
, it must be in the following format: [+/-] YEARS-MONTHS.
If value
is a numeric value, the value provided should represent the total number of years that the constructed OraIntervalYM
object represents.
A Variant
of type OraIntervalYM
can also be passed. A cloned OraIntervalYM
object is returned.
Examples
Applies To
Description
Creates an OraNumber
object. This OraNumber
represents an Oracle NUMBER
data type.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
initial_value | Initial value of OraNumber . A Variant of type OraNumber , string or a numeric value. |
format [optional] | Format string to be used when displaying OraNumber value. |
Return Value
Remarks
For more information about format strings, see the format property on the OraNumber
object.
Applies To
Description
Creates a value instance or referenceable object in the cache and returns the associated OO4O object.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
OraObject1 | A valid OraObject object representing a newly created value instance. |
OraRef1 | A valid OraRef object representing a newly created referenceable object. |
OraCollection | A valid OraCollection object representing a newly created collection instance. |
schema_name | A String specifying the schema name of the value instance to be created. |
table_name | A String specifying the table name of the referenceable object to be created. |
Remarks
If the table_name
argument is not specified, it creates a value instance in the client and returns an OraObject
or OraCollection
object. If the table_name
argument is specified, it creates a referenceable object in the database and returns an associated OraRef
object.
Examples
OraObject
and OraRef
object examples are provided. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in the OraObject and OraRef Examples".
Example: Creating an OraObject Object
The following example illustrates the use of the CreateOraObject
method to insert a value instance. The row containing ADDRESS
is inserted as a value instance in the database.
Dynaset Example
OraParameter Example
Example: Creating an OraRef Object
The following example illustrates the use of the CreateOraObject
method to insert referenceable objects.
In this example, a new PERSON
is inserted as a referenceable object in the database.
Applies To
Description
Creates a new OraTimeStamp
object. This OraTimeStamp
method represents an Oracle TIMESTAMP
or an Oracle TIMESTAMP
WITH
LOCAL
TIME
ZONE
data type.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] value | A Variant of type String , Date , or OraTimeStamp . |
[in] [optional] format | TimeStamp format string to be used when displaying or interpreting an OraTimeStamp object as a string. If format is not specified, the TimeStamp string is interpreted using the session TIMESTAMP format (NLS_TIMESTAMP_FORMAT format). |
Return Values
Remarks
An OraSession
object must created before an OraTimeStamp
object can be created.
If value
is a Variant
of type String
, the string format must match the datetime format specified in the format
argument. If format
is not specified, the string format must match the session TIMESTAMP
format (NLS_TIMESTAMP_FORMAT
).
If format
is specified, it is stored in the Format
property of the OraTimeStamp
; otherwise, the session TIMESTAMP
format is stored in the OraTimeStamp
Format
property.
Examples
Applies To
Description
Creates a new OraTimeStampTZ
object. This OraTimeStampTZ
object represents an Oracle TIMESTAMP
WITH
TIME
ZONE
data type.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] value | A Variant of type String , Date , or OraTimeStampTZ . |
[[in] [optional] format | TIMESTAMP WITH TIME ZONE format string to be used when displaying or interpreting an OraTimeStampTZ object as a string. If format is not specified, the TIMESTAMP WITH TIME ZONE string is interpreted using the session TIMESTAMP WITH TIME ZONE format (NLS_TIMESTAMP_TZ_FORMAT format). |
Return Values
Remarks
An OraSession
object must be created before an OraTimeStampTZ
object can be created.
If value
is a Variant
of type String
, the string format must match the datetime format specified in the format argument if format is specified; otherwise, the string format must match the session TIMESTAMP
WITH
TIME
ZONE
format (NLS_TIMESTAMP_TZ_FORMAT
).
If value
is a Variant
of type Date
, the date-time value in the Date
is interpreted as the date-time value in the time zone of the session. The TimeZone
property in the OraTimeStampTZ
object contains the time zone of the session.
If format
is specified, it is stored in the Format
property of the OraTimeStampTZ
object, otherwise the session TIMESTAMP
WITH
TIME
ZONE
format is stored in the Format
property of OraTimeStampTZ
object.
Examples
Applies To
Deprecated.
For information on how to perform these tasks, see "Returning PL/SQL Cursor Variables".
Description
Creates a dynaset from a PL/SQL cursor using custom cache and fetch parameters. The SQL statement should be a stored procedure or anonymous block. The resulting dynaset is read-only. Attempting to set the SQL property results in an error. The dynaset can be refreshed with new parameters.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
SQLStatement | Any valid Oracle PL/SQL stored procedure or anonymous block. |
CursorName | Name of the cursor created in the PL/SQL stored procedure. |
options | A bit flag indicating the status of any optional states of the dynaset. You can combine one or more options by adding their respective values. |
slicesize | Cache slice size. |
perblock | Cache slices for each block. |
blocks | Cache maximum number of blocks. |
FetchLimit | Fetch array size. |
FetchSize | Fetch array buffer size. |
Constants
The options flag values are:
Constant | Value | Description |
---|---|---|
ORADYN_DEFAULT | &H0& | Accept the default behavior. |
ORADYN_NO_AUTOBIND | &H1& | Do not perform automatic binding of database parameters. |
ORADYN_NO_BLANKSTRIP | &H2& | Do not remove trailing blanks from character string data retrieved from the database. |
ORADYN_NOCACHE | &H8& | Do not create a local dynaset data cache. Without the local cache, previous rows within a dynaset are unavailable; however, increased performance results during retrieval of data from the database (move operations) and from the rows (field operations). Use this option in applications that make single passes through the rows of a dynaset for increased performance and decreased resource use. |
ORADYN_NO_MOVEFIRST | &H40& | Do not force a MoveFirst when the dynaset is created. BOF and EOF are both true. |
These values can be found in the oraconst.txt
file.
Remarks
The SQL statement must be a PL/SQL stored procedure with BEGIN
and END
around the call, as if it were executed as an anonymous PL/SQL block; otherwise, an error is returned. The CursorName
argument should exactly match the cursor created inside the stored procedure or anonymous PL/SQL block; otherwise an error is returned. The cursor created inside the stored procedure should represent a valid SQL SELECT
statement.
You do not need to bind the PL/SQL cursor variable using the OraParameters
Add
method if the stored procedure returns a cursor as an output parameter. You can still use PL/SQL bind variables in conjunction with the OraParameters
collection.
This method automatically moves to the first row of the created dynaset.
Specifying ORADYN_READONLY
, ORADYN_ORAMODE
, ORADYN_NO_REFETCH
, ORADYN_DIRTY_WRITE
options have no effect on the dynaset creation.
Applies To
Deprecated.
For information on how to perform these tasks, see "Returning PL/SQL Cursor Variables".
Description
Creates a dynaset from a PL/SQL cursor. The SQL statement should be a stored procedure or an anonymous block. The resulting dynaset is read-only and attempting to set SQL property results in an error. Dynasets can be refreshed with new parameters similar to dynasets without cursors.
Usage
Arguments
Arguments | Description |
---|---|
SQLStatement | Any valid Oracle PL/SQL stored procedure or anonymous block. |
CursorName | Name of the cursor created in the PL/SQL stored procedure. |
options | A bit flag indicating the status of any optional states of the dynaset. You can combine one or more options by adding their respective values. |
Constants
The options flag values are:
Constant | Value | Description |
---|---|---|
ORADYN_DEFAULT | &H0& | Accept the default behavior. |
ORADYN_NO_BLANKSTRIP | &H2& | Do not remove trailing blanks from character string data retrieved from the database. |
ORADYN_NOCACHE | &H8& | Do not create a local dynaset data cache. Without the local cache, previous rows within a dynaset are unavailable; however, increased performance results during retrieval of data from the database (move operations) and from the rows (field operations). Use this option in applications that make single passes through the rows of a dynaset for increased performance and decreased resource usage. |
ORADYN_NO_MOVEFIRST | &H40& | Do not force a MoveFirst operation when the dynaset is created. BOF and EOF are both true. |
These values can be found in the oraconst.txt
file.
Remarks
The SQL statement must be a PL/SQL stored procedure with BEGIN
and END
statements around the call, as if it were executed as an anonymous PL/SQL block; otherwise an error is returned. The CursorName
argument should exactly match the cursor created inside the stored procedure or anonymous PL/SQL block; otherwise, an error is returned. Cursors created inside the stored procedure should represent a valid SQL SELECT
statement.
You do not need to bind the PL/SQL cursor variable using the OraParameters.Add method if the stored procedure returns a cursor as a output parameter. You can still use PL/SQL bind variables in conjunction with the OraParameters
collection.
This method automatically moves to the first row of the created dynaset.
Specifying the ORADYN_READONLY
, ORADYN_ORAMODE
, ORADYN_NO_REFETCH
, or ORADYN_DIRTY_WRITE
options have no effect on the dynaset creation.
Examples
This example demonstrates the use of PL/SQL cursor in the CreatePlsqlDynaset
method and Refresh
method. This example returns a PL/SQL cursor as a dynaset for the different values of the DEPTNO
parameter. Make sure that corresponding stored procedure (found in EMPCUR.SQL
) is available in the Oracle database. and paste this code into the definition section of a form. Then, press F5.
Applies To
Description
Creates a new named OraSession
object.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
session_name | A String specifying the name of the session. |
Remarks
Use this method to create named sessions that can be referenced later in the same application without having to explicitly save the OraSession
object when it is created. Once a session has been created, the application can reference it by way of the ConnectSession
method or the OraSessions
collection of their respective OraClient
object. The OraSessions
collection only contains sessions created within the current application. This means that it is not possible to share sessions across applications, only within applications.
Examples
This example demonstrates how to create a session object using the CreateSession
method of the client object. Copy and paste this code into the definition section of a form. Then, press F5.
Applies To
Description
Executes the SQL statement and creates an OraSQLStmt
object from the specified SQL statement and options.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
sql_statement | Any valid Oracle SQL statement. |
options | A bit flag indicating the status of any optional states of the OraSQLStmt object. You can combine one or more options by adding their respective values. |
Constants
The options flag values are:
Constant | Value | Description |
---|---|---|
ORASQL_NO_AUTOBIND | &H1& | Do not perform automatic binding of database parameters. |
ORASQL_FAILEXEC | &H2& | Raise error and do not create SQL statement object. |
ORASQL_NONBLK | &H4& | Execute SQL in a nonblocking state. |
These values can be found in the oraconst.txt
file.
Remarks
The SQL statement can be one continuous line with no breaks. If it is necessary to break the line, be sure to use line feeds (ASCII 10). Do not use carriage returns (ASCII 13), because the underlying Oracle Database functions treat carriage returns as null terminators.
You can use PL/SQL bind variables in conjunction with the OraParameters
collection.
Executing the SQL statement generates a commit to the database by default. To avoid this, use the BeginTrans
method on the session object before using the CreateSQL
method.
When executing PL/SQL blocks or calling stored procedures, you must include a BEGIN
and END
statement around your call as if you were executing an anonymous PL/SQL block. This is equivalent to the EXECUTE
command of SQL*Plus and SQL*DBA.
If the ORASQL_FAILEXEC
option is used, an error is raised during SQLstmt
object creation failure (on SQLstmt
object refresh). The SQLstmt
object is not created and cannot be refreshed.
Note: Use theCreateSQL method with care, because any SQL statement or PL/SQL block that is executed might cause errors afterward when you use the Edit method on open dynasets. |
Data Type
String
Examples
This example demonstrates the use of parameters, the CreateSQL
method, the Refresh
method, and the SQL property for OraSQLStmt
object. Copy and paste this code into the definition section of a form. Then, press F5.
See Also:
|
Applies To
Description
Creates a temporary LOB in the database.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
use_caching | A boolean value that specifies whether Oracle Database uses caching when accessing this LOB. The default value is False . |
Remarks
Temporary LOBs are LOBs that do not exist permanently in the database. OO4O programmers commonly use temporary LOBs to pass into stored procedures and functions that have LOB arguments.
Temporary LOBs do not require or take part in transactions. (It is not necessary to acquire a lock before write operations, and rollbacks have no effect on temporary LOBs.)
The use_caching
argument directs Oracle to use caching when accessing the temporary LOB. This is suggested when multiple accesses are expected on a single LOB. Caching is not required for the typical case, where a LOB is created, filled with data, passed to a stored procedure, and then discarded.
Temporary LOBs exist on the database until no more references to the corresponding OraBLOB
or OraCLOB
exist on the client. Note that these references include any OraParameter
or OraParamArray
that contain a temporary OraBLOB
or OraCLOB
object.
Examples
Example: Passing a Temporary CLOB to a Stored Procedure
The following example illustrates the use of the CreateTempClob
method to create a OraCLOB
. The OraCLOB
is then populated with data and passed to a stored procedure which has an argument of type CLOB
.
Applies To
Description
Deletes the current row of the specified dynaset.
Usage
Remarks
A row must be current before you can use the Delete
method; otherwise, an error occurs.
Note that after you call the Delete
method on a given row in a dynaset in a global transaction (that is, once you issue a BeginTrans
method), locks remain on the selected rows until you call a CommitTrans
or Rollback
method.
Any references to the deleted row produce an error. The deleted row, as well as the next and previous rows, remain current until database movement occurs (using the MoveFirst
, MovePrevious
, MoveNext
, or MoveLast
methods). Once movement occurs, you cannot make the deleted row current again.
You cannot restore deleted records except by using transactions.
Note: A call to anEdit , AddNew , or Delete method, cancels any outstanding Edit or AddNew calls before proceeding. Any outstanding changes not saved using an Update method are lost during the cancellation. |
Examples
This example demonstrates the use of the Delete
method to remove records from a database. Copy and paste this code into the definition section of a form. Then, press F5.
Applies To
Description
Deletes an element at given index. This method is available only in an OraCollection
of type ORATYPE_TABLE
(nested table).
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] index | An Integer specifying the index of the element to be deleted. |
Remarks
The Delete
method creates holes in the client-side nested table. This method returns an error if the element at the given index has already been deleted or if the given index is not valid for the given table.
Examples
The following example illustrates the Delete
method. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in OraCollection Examples" .
Applies To
Description
Deletes a referenceable object in the database.
Usage
Remarks
Accessing attributes on the deleted instance results in an error.
Examples
The following example illustrates the Delete
method. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in the OraObject and OraRef Examples".
Applies To
Description
Deletes a collection iterator.
Usage
Remarks
None.
Examples
See "Example: OraCollection Iterator"
Applies To
Description
Dequeues a message.
Usage
Remarks
The message attributes can be accessed with the OraAQMsg
interface contained in this object. On success, this method returns the message identifier as an array of bytes. Otherwise, it returns an empty array (null).
Examples
Note: The following code sample are models for dequeuing messages.A complete AQ sample can be found in the |
Example: Dequeuing Messages of RAW Type
Example: Dequeuing Messages of Oracle Object Types
Applies To
Description
Describes a schema object. This method returns an instance of the OraMetaData
interface.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] SchemaObjectName | A String representing the name of the schema object to be described. |
Remarks
The following schema object types can be described:
Tables
Views
Procedures
Functions
Packages
Sequences
Collections
(VARRAY
s or nested tables) Types
Describing any other schema object (for example, a column) or an invalid schema object name raises an error. You should navigate to schema objects not listed here, rather than describing them directly.
This method takes the name of a schema object, such as emp
, and returns a COM Automation object (OraMetaData
). The OraMetaData
object provides methods for dynamically navigating and accessing all the attributes (OraMDAttribute
collection) of a schema object described.
Examples
Simple Describe Example
The following Visual Basic code illustrates a how to use the Describe
method to retrieve and display several attributes of the emp
table.
Describing a Table Example
Before running the following example, make sure that you have the necessary datatypes and tables in the database. See "Schema Objects Used in OraMetaData Examples".
Example: Describing a User-Defined Type
Before running the following example, make sure that you have the necessary datatypes and tables in the database. See "Schema Objects Used in OraMetaData Examples".
Example: Describing Unknown Schema Objects
Before running the following example, make sure that you have the necessary datatypes and tables in the database. See "Schema Objects Used in OraMetaData Examples".
Applies To
Description
The pool is implicitly destroyed if its parent session object is destroyed. It can also be destroyed at any time by invoking the DestroyDatabasePool
method.
Usage
Remarks
An exception is raised by this call if the pool does not exist.
Applies To
Description
Disables buffering of LOB operations.
Usage
Remarks
This method does not automatically flush the buffers. The FlushBuffer
method should be used to flush any changes before buffering is disabled.
Applies To
Description
Divides the OraIntervalDS
object by a divisor.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] divisor | A Variant for type numeric value or an OraNumber object to be used as the divisor. |
Remarks
The result of the operation is stored in the OraIntervalDS
object, overwriting any previous value. There is no return value.
Applies To
Description
Divides the OraIntervalYM
object by a divisor.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] divisor | A Variant for type numeric value or an OraNumber object to be used as the divisor. |
Remarks
The result of the operation is stored in the OraIntervalYM
object, overwriting any previous value. There is no return value.
Applies To
Description
Divides an OraNumber
object by a numeric argument.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] operand | A Variant of type String , OraNumber object, or a numeric value. |
Remarks
The result of the operation is stored in an OraNumber
object . There is no return value.
The operand
must not be equal to zero, or a divide by zero error is raised.
Applies To
Description
Specifies the dynaset cache and fetch parameters for the dynaset created from the PL/SQL cursor.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
SliceSize | Cache slice size. |
perblock | Cache slices for each block. |
Blocks | Cache maximum number of blocks. |
FetchLimit | Fetch array size. |
FetchSize | Fetch array buffer size. |
Remarks
This method should be called before executing the PL/SQL procedure containing a cursor variable. By default, the dynaset is created with default cache and fetch parameters specified in the registry.
Applies To
Description
Begins an edit operation on the current row by copying the data to the copy buffer.
Usage
Remarks
The Edit
method causes the locally cached data to be compared to the corresponding row of an Oracle Database. An error is generated if Oracle Database data is not the same as the data currently being browsed. If this operation succeeds, the row is locked using a "SELECT
...
FOR
UPDATE"
statement until the edit is completed with an Update
method or until database movement occurs, which discards any edits in progress. The behavior of the "SELECT
...
FOR
UPDATE"
statement is affected by the Lock
Wait
mode of the options flag used when the OpenDatabase
method was called.
Note: The cached data is not compared to the database withBLOB and CLOB , Object , REF , and collection types, and the data is updated regardless (dirty writes). |
During editing, changes made to fields are kept in a shadowed copy buffer and do not yet reflect the actual contents of the database. However, all references to the row return the newly modified data as long as the edit operation is still in progress.
When data is modified within a data control attached to this dynaset, the Edit
method is invoked automatically upon the next record movement. Thus, this method is required only when modifications are made to field data within code.
Note: A call to anEdit , AddNew , or Delete method cancels any outstanding Edit or AddNew calls before proceeding. Any outstanding changes not saved using an Update operation are lost during the cancellation. |
Examples
This example demonstrates the use of the Edit
and Update
methods to update values in a database. Copy and paste this code into the definition section of a form. Then, press F5.
Applies To
Description
Locks a referenceable object in the database.
Usage
Remarks
Call this method before modifying any attributes of an underlying referenceable object of OraRef
or an error is raised. This call makes a network round-trip to lock the object in the database. An error is raised if the object is changed by another user in the database. The object can also be locked during the pin operation using the EditOption
property.
Examples
The following examples update the attributes of the "PERSON"
referenceable object in the database.
Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in the OraObject and OraRef Examples".
Dynaset Example
Parameter Example
Applies To
Description
Returns the current value of the collection element to which the iterator points.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
elem_val | A Variant representing element value of the collection. |
ElementType
For elements of type Object
and REF
, element values are returned as corresponding OO4O objects for that type. The following table shows the element type and return value of the elements:
ElementType | Element Value |
---|---|
Object | OraObject |
REF | OraRef |
Date | String |
Number | String |
CHAR ,VARCHAR2 | String |
Real | Real |
Integer | Integer |
Remarks
Calling this method when the EOC
or BOC
property returns True
raises an error. The Variant
type of the element depends on the element type of the collection.
Examples
Applies To
Description
Enables buffering of LOB operations.
Usage
Remarks
When enabled, buffering uses the LOB Buffering subsystem to minimize network round-trips by buffering changes until the FlushBuffer
method is called. This can be beneficial to applications that perform a series of repeated small reads and writes to specific areas of a LOB.
There are many caveats and restrictions for using LOB buffering. These are summarized here, but for complete information, see the Oracle Database SecureFiles and Large Objects Developer's Guide.
Restrictions
Append
Copy
Erase
Size
Trim
CopyFromBFILE
CopyFromFile
CopyToFile
INSERT
statement can cause this. OraParameter
object raises an error if it is buffer-enabled and bound to an OUT
parameter. Clone
method can raise an error for buffer enabled LOBs. CLOB
) or zero padding (for BLOB
) raises an error. Applies To
Description
Enqueues the message (OraAQMsg
) contained in this object.
Usage
Remarks
On success, this method returns the message identifier as an array of bytes. Otherwise, it returns an empty array (null).
Examples
Note: The following code samples are models for enqueuing messages, but cannot be run as is.A complete AQ sample can be found in the |
Enqueuing Messages of Type RAW
Enqueuing Messages of Oracle Object Types
Applies To
Description
Erases the specified portion of the LOB value of this object starting at the specified offset.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[in] amount | An Integer specifying the maximum number of characters or bytes to be erased. |
[in] offset [optional] | An Integer specifying absolute offset of the LOB value from which to start erasing. Default value is 1. |
Remarks
Obtain either a row-level lock or object-level lock before calling this method. The actual number of characters or bytes and the requested number differ if the end of the LOB value is reached before erasing the requested number of characters or bytes. For BLOB
types, erasing means that zero-byte fillers overwrite the existing LOB value. For CLOB
types, erasing means that spaces overwrite the existing LOB value.
Applies To
Description
Executes a single non-SELECT
SQL statement or a PL/SQL block.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
sql_statement | Any valid Oracle non-SELECT SQL statement. |
Remarks
Executes a SQL statement and returns the number of rows processed by that statement.
The sql_statement
argument can be one continuous line with no breaks. If it is necessary to break the line, be sure to use line feeds (ASCII 10). Do not use carriage returns (ASCII 13), because the underlying Oracle Database functions treat carriage returns as null terminators.
Executing the SQL statement generates a commit to the database by default. To avoid this, use the BeginTrans
method on the session object before using the ExecuteSQL
method.
You can use PL/SQL bind variables in conjunction with the OraParameters
collection.
When executing PL/SQL blocks or calling stored procedures, you must include a BEGIN
and END
statement around your call as if you were executing an anonymous PL/SQL block. This is equivalent to the EXECUTE
command of SQL*Plus and SQL*DBA.
Note: TheExecuteSQL method should be used with care because any SQL statement or PL/SQL block that is executed can adversely affect open dynasets. This is true if the OraDatabase object used for the ExecuteSQL method is the same as the one that was used to create the dynaset. Use a different OraDatabase object if you are unsure. |
Normal dynaset operations can be adversely affected, if in transactional mode, a database commit is issued. This can happen if a SQL commit statement, a Data Control Language (DCL), or Data Definition Language (DDL) command is issued. DCL and DDL SQL commands, such as CREATE
, DROP
, ALTER
, GRANT
, and REVOKE
always force a commit, which in turn commits everything done before them. See the Oracle Database SQL Language Reference for more details about DCL, DDL, and transactions.
Data Type
Long
Integer
Examples
Example: ExecuteSQL
This example uses the Add
and Remove
parameter methods, the ServerType
parameter property, and the ExecuteSQL
database method to call the stored procedure GetEmpName
and the stored function GetSal
. Before running the example, run the ORAEXAMP.SQL
file to create GetEmpName
and GetSal
as well as other necessary object types and LOBs in Oracle Database. Then, copy and paste this OO4O code example into the definition section of a form and run the program.
Applies To
Description
Returns True
if an element exists at a given index; otherwise, returns. Valid only for OraCollection
of Type ORATYPE_TABLE
.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
[out] exists | A Boolean value specifying the existence status of the element. |
[in] index | An Integer specifying the index of the element. |
Remarks
None.
Applies To
Description
Calculates e to the power of an OraNumber
object.
Usage
Remarks
The result of the operation is stored in the OraNumber
object. There is no return value.
Applies To
Description
Fetches a referenceable object into the cache and returns the associated OraRef
object.
Usage
Arguments
The arguments for the method are:
Arguments | Description |
---|---|
hex_value | A String containing the hexadecimal value of the REF . |
Remarks
The hex_value
argument can be obtained through the OraRef.HexValue
property or from an XML document generated by the OraDynaset.GetXML
method.
Applies To
Description
Returns the number of bytes stored in a LONG
or LONG
RAW
field. Not available at design time and read-only at run time.
Usage
Remarks
Returns the number of bytes stored in a LONG
or LONG
RAW
field, up to a value of around 64 KB. If the field contains more than 64 KB, then the FieldSize
method returns -1
.
Oracle Database does not return the length of columns that are greater than 64 KB; The only way to determine the length is to retrieve the column. To conserve resources, columns of lengths greater than 64 KB are not retrieved automatically.
Data Type
Long Integer
Applies To
Description
Find the indicated rows in the dynaset that matches the FindClause
. The FindClause
can be any valid WHERE
clause without the WHERE
. If the current FindClause
matches the last clause from the previous find operation, then the current FindClause
is not parsed again.
These methods move the current row directly to a matched row without calling any advisories except when the matched row is reached. If a matching row cannot be found, the NoMatch
property is set to True
, and the current row remains the same.
Usage
Remarks
The following types of expressions can be used in the FindClause
:
"deptno = 20"
"sal
+
100
>
1000"
. "UPPER(ename)
=
'SCOTT'
"
or "NVL(comm,
0)
=
0"
. "deptno
in
(select
deptno
from
dept)"
. The SQL LIKE
operator does not work in multiple byte languages. Table or synonym DUAL
is required in the user's schema. Date values are retrieved and compared in Visual Basic format, which is the format specified in the Control Panel. Therefore, date comparisons fail if any other format such as the default Oracle format, DD-MON-YYYY is used.
The SQL function TO_CHAR
(date
, fmt
) cannot be used because the first argument must be a date value in native Oracle format, and OO4O only handles 'string
dates'
.
The SQL function TO_DATE
converts a string to a date, but OO4O converts it back to a string in Visual Basic format, as previously described, and the comparison may still fail.
The FindPrevious
and FindLast
methods in a NO_CACHE
dynaset do not work; NoMatch
is set to True
.
Note: To avoid raising an error, check for EOF
or BOF
before calling a Find
method.
Examples
This example demonstrates the use of the FindFirst
, FindNext
, FindPrevious
methods. Copy and paste this code into the definition section of a form. Then, press F5.
Applies To
Description
Calculates the floor, that is, lowest value, of an OraNumber
object.
Usage
Remarks
The result of the operation is stored in an OraNumber
object. There is no return value.
Applies To
Description
Flushes, that is, empties, the content of the LOB to the database if LOB buffering has been enabled.
Usage
Applies To
Description
Returns the next available OraDatabase
object from the pool.
Usage
Arguments
The arguments for the method are:
Arguments	Description
waitTime	The number of milliseconds this call waits for an object to be available, if the pool contains the maximum number of objects and all are used.
Remarks	
To retrieve an OraDatabase	
object from the pool, the GetDatabaseFromPool	
method is called. This function returns a reference to an OraDatabase	
object. If the pool does not contain the maximum number of objects allowed, and all objects in the pool are used, then an additional OraDatabase	
object is created implicitly. In addition, if a pool item contains an OraDatabase	
object that has been timed out, then a new object is created and returned. The OraDatabase	
object obtained from the pool is then marked as in use and is returned to the pool when the object is no longer referenced by the application.	
Exceptions are raised by this call if:	
The LastServerErr	
property of the OraSession	
object contains the code for the specific cause of the exception.	
Applies To	
Description	
Returns a string containing the bytes of all or a portion of a LONG	
or LONG	
RAW	
field.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
offset	The number of bytes of the field to skip before copying data.
numbytes	The number of bytes to copy.
Remarks	
The GetChunk	
method typically retrieves the specified bytes from the local cache. If data is not found in the cache, then the GetChunk	
method requests it from the database. Data from all fields (except the LONG or LONG	
RAW	
field) in the dynaset are retrieved and compared to the cached values for consistency. If any changes have occurred since the last fetch, then the GetChunk	
method stops the operation which causes an error and returns a Null	
string.	
If a LONG	
or LONG	
RAW	
field is less than 65280 bytes, it is quicker to retrieve the data using the Value	
property than using the GetChunk	
method. You cannot use the GetChunk	
method on a LONG	
or LONG	
RAW	
field for which you have created an alias.	
See "Migration from LONG RAW to LOB or BFILE".	
Examples	
This example demonstrates the use of the GetChunk	
method to retrieve a LONG	
RAW	
column of a database and save it as a file. This example expects a valid dynaset named OraDynaset	
representing a table with a column named longraw	
. Copy and paste this code into the definition section of a form. Call this procedure with a valid file name.	
Applies To	
Description	
Reads the data from the LONG	
or LONG	
RAW	
field into byte array and returns the size of data read.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
ByteArray	The first element of the ByteArray to hold the data.
offset	The number of bytes in the field to skip before copying data.
numbytes	The number of bytes to copy.
Remarks	
When possible, the GetChunkByte	
method retrieves the specified bytes from the local cache. However, to conserve resources, some of the data might not be stored locally. In these cases, the GetChunkByte	
method requests the necessary data from the database as required. As part of this process, data from all fields (except the Long or LONG	
RAW	
field) in the dynaset are retrieved and compared with the cached values for consistency. If any changes have occurred since the fetch of the original partial data, then the GetChunkByte	
method stops the operation and an error occurs. In the case of an abort, the returned string is Null	
.	
If a LONG	
or LONG	
RAW	
field is less than 65280 bytes in size, it is quicker to retrieve the data using the Value	
property than using the GetChunkByte	
method. You cannot use the GetChunkByte	
method on a LONG	
or LONG	
RAW	
field for which you have created an alias.	
Examples	
This example demonstrates the use of the GetChunkByte	
method to retrieve a LONG	
RAW	
column of a database and save it as a file. This example expects a valid dynaset named OraDynaset	
representing a table with a column named longraw	
. Copy and paste this code into the definition section of a form. Call this procedure with a valid file name.	
Applies To	
Description	
Reads the data from a LONG	
or LONG	
RAW	
field into a Variant	
and returns the amount of data read.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
ByteArray	The name of the Variant ByteArray to hold the data.
offset	The number of bytes in the field to skip before copying data.
numbytes	The number of bytes to copy.
Remarks	
When possible, the GetChunkByteEx	
method retrieves the specified bytes from the local cache. However, to conserve resources, some of the data might not be stored locally. In these cases, the GetChunkByteEx	
method requests the necessary data from the database as required. As part of this process, data from all fields (except the LONG	
or LONG	
RAW	
field) in the dynaset are retrieved and compared to the cached values for consistency. If any changes have occurred since the fetch of the original partial data, then the GetChunkByteEx	
method aborts the operation with an error.	
Because the GetChunkByteEx	
method takes in a Variant	
as the first parameter, instead of the first element of the ByteArray	
as in the GetChunkByte	
method, only the GetChunkByteEx	
method can be used within an ASP/IIS environment.	
If a LONG	
or LONG	
RAW	
field is less than 65280 bytes in size, it is quicker to retrieve the data using the Value	
property than using the GetChunkByteEx	
method.	
See "Migration from LONG RAW to LOB or BFILE".	
Examples	
Using the GetChunkByteEx Method to Retrieve a LONG RAW Example	
This example demonstrates the use of the GetChunkByteEx	
method to retrieve a LONG	
RAW	
column of a database and save it as a file. This example expects a valid dynaset named OraDynaset	
representing a table with a column named type_longraw	
. Copy and paste this code into the definition section of a form. Call this procedure with a valid file name.	
Using the GetChunkByteEx Method with Active Server Pages (ASP) Example	
Applies to	
Description	
Generates an XML document based on the contents of the dynaset.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
startrow	The row identifier indicating from which row to start (see OraDynaset.RowPosition). The default value of this argument is zero (the first row).
maxrows	The maximum number of rows to retrieve (if the end of the record set is reached; fewer rows may be returned). If this argument is omitted, then all rows are returned.
Remarks	
This method returns a string containing the XML document.	
The formatting of the output XML can be customized through the XML properties of the OraDynaset	
and OraField	
objects.	
Applies To	
Description	
Generates an XML document and writes it to a file.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
filename	The file name that the XML is written to. Existing files by the same name are overwritten.
startrow	The row identifier indicating from which row to start (see OraDynaset.RowPosition). The default value of this argument is 0 (the first row).
maxrows	The maximum number of rows to retrieve (if the end of the record set is reached; fewer rows may be returned). If this argument is omitted, then all rows are returned.
Remarks	
There is no return value.	
The formatting of the XML output can be customized through the XML properties of the OraDynaset	
and OraField	
objects.	
Applies To	
Description	
Retrieves multiple records of a dynaset object into Variant	
safe array.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
num_rows [optional]	An Integer representing the number of records to retrieve. Default value is the total number of rows in the dynaset.
start [optional]	An Integer representing the starting position of the dynaset from which the GetRows operation begins. Default value is the current position of the dynaset.
fields [optional]	A Variant representing a single field name or field position, or an array of field names or array of field position numbers. The GetRows method returns only the data in these fields.
Remarks	
Use the GetRows	
method to copy records from a dynaset into a two-dimensional array. The first subscript identifies the field and the second identifies the row number. The Array	
variable is automatically dimensioned to the correct size when the GetRows	
method returns the data.	
Calling the GetRows	
method does not change the current row position of the dynaset object.	
Examples	
The following example retrieves data using the GetRows	
method.	
Applies To	
Description	
Returns the value of a particular element of the array at the specified index.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] array	A String representing the name of the array.
[in] index	An Integer representing the index value of the object.
Remarks	
The OraParamArray.Get_Value	
method returns the value of the field as a Variant	
. The value of data_value	
=	
oraparameter.Value	
sets the contents of the parameter.	
Note that fields of type DATE	
are returned in the default Visual Basic format as specified in the Control Panel, even though the default Oracle date format is "DD-MMM-YY".	
The Value	
argument can be an Oracle Database 10g object, such as an OraBLOB	
object. For Put_Value	
, a copy of the object is made at that point in time, and Get_Value	
must be accessed to obtain a new object that refers to that index value. For example, if iotype	
is ORATYPE_BOTH	
and an OraBLOB	
object obtained from a dynaset is passed in as the input value, Get_Value	
needs to be called after the SQL code has been executed to obtain the newly updated output value of the ParamaterArray	
object.	
Similar to a dynaset, the object obtained from the ParamaterArray	
Get_Value	
property refers to the latest value for that ParamaterArray	
index. The Visual Basic value Null	
can also be passed as a value. The Visual Basic value EMPTY	
can be used for BLOB	
and CLOB	
to indicate an empty LOB, and for Object	
, VARRAY	
, and nested table data types to indicate an object whose attributes are all Null	
.	
This method is not available at design time and is read-only at run time.	
When binding to RAW	
columns (ServerType	
ORATYPE_RAW_BIN	
), the value should be a byte array.	
Applies To	
Description	
Calculates the hyperbolic cosine of an OraNumber	
object.	
Usage	
Remarks	
The result of the operation is stored in an OraNumber	
object. There is no return value.	
Applies To	
Description	
Calculates the hyperbolic sine of an OraNumber	
object.	
Usage	
Remarks	
The result of the operation is stored in an OraNumber	
object. There is no return value.	
Applies To	
Description	
Calculates the hyperbolic tangent of an OraNumber	
object.	
Usage	
Remarks	
The result of the operation is stored in an OraNumber	
object. There is no return value.	
Applies To	
Description	
Initializes an iterator to scan a collection.	
Usage	
Remarks	
This method initializes an iterator to point to the beginning of a collection. If this method is called for same Oracle Database 10g collection instance, then this method resets the iterator to point back to the beginning of the collection. The OraCollection	
object automatically reinitializes the iterator when the underlying collection changes due to a dynaset row navigation or a parameter Refresh	
method.	
After you call the InitIterator	
method, you need to call the IterNext	
method or the first element in the collection repeats an extra time.	
Examples	
See "Example: OraCollection Iterator".	
Applies To	
Description	
Checks if the OraIntervalDS	
object is equal to an argument.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] value	A Variant of type String , a numeric value, or an OraIntervalDS object to be compared.
Remarks	
Returns a Boolean value: The value is True	
if the OraIntervalDS	
object is equal to the argument; otherwise, it is False	
.	
If value	
is a Variant	
of type String	
, it must be in the following format: [+/-] Day HH:MI:SSxFF.	
If value	
is a numeric value, the value provided should represent the total number of days that the constructed OraIntervalDS	
object represents.	
Applies To	
Description	
Checks if the OraIntervalYM	
object is equal to an argument.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] value	A Variant of type String , a numeric value, or an OraIntervalYM object to be compared.
Remarks	
Returns a Boolean value: The value is True	
if the OraIntervalYM	
object is equal to the argument; otherwise, it is False	
.	
If value	
is a Variant	
of type String	
, it must be in the following format: [+/-] YEARS-MONTHS.	
If value	
is a numeric value, the value provided should represent the total number of years that the constructed OraIntervalYM	
object represents.	
Applies To	
Description	
Checks if an OraNumber	
object is equal to an argument value.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] value	A Variant of type String , OraNumber , or a numeric value.
Remarks	
Returns a Boolean value: The value is True	
if all values are equal; otherwise, it is False	
.	
Applies To	
Description	
Checks if the OraTimeStamp	
object is equal to an argument.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] value	A Variant of type String , Date , or OraTimeStamp to be compared.
[in] [optional] format	Specifies the TIMESTAMP format string to be used to interpret value when value is of type String . If format is not specified, the value is interpreted using the Format property of the current OraTimeStamp object.
Remarks	
Returns a Boolean value: The value is True	
if the OraTimeStamp	
object is equal to the argument; otherwise, it is False	
. The IsEqual	
method compares all the date-time values stored in the OraTimeStamp	
object.	
If value	
is of type String	
, the string format must match the format specified in the format	
argument. If format	
is not specified, the string format must match the Format	
property of the current OraTimeStamp	
object.	
Applies To	
Description	
Checks if the OraTimeStampTZ	
object is equal to an argument.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] value	A Variant of type String , Date , or OraTimeStampTZ to be compared.
[in] [optional] format	Specifies the TIMESTAMP WITH TIME ZONE format string to be used to interpret value when value is type String . If format is not specified, value is interpreted using the Format property of the current OraTimeStampTZ object.
Remarks	
Returns a Boolean value: The value is True	
if the OraTimeStampTZ	
object is equal to the argument; otherwise, it is False	
. The IsEqual	
method only compares the Coordinated Universal Time (UTC) date-time values stored in the OraTimeStampTZ	
object; the time zone information is ignored.	
Note: UTC was formerly known as Greenwich Mean Time.)	
If value	
is of type String	
, the string format must match the format specified in the format	
argument. If format	
is not specified, the string format must match the Format	
property of the current session OraTimeStampTZ	
object.	
If value	
is of Date	
type, the date-time value in Date	
is interpreted as the date-time value in the time zone of the session.	
Applies To	
Description	
Checks if the OraIntervalDS	
object is greater than an argument.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] value	A Variant of type String , a numeric value, or an OraIntervalDS object to be compared.
Remarks	
Returns a Boolean value: The value is True	
if the OraIntervalDS	
object is greater than the argument; otherwise, it is False	
.	
If value	
is a Variant	
of type String	
, it must be in the following format: Day [+/-] HH:MI:SSxFF.	
If value	
is a numeric value, the value provided should represent the total number of days that the constructed OraIntervalDS	
object represents.	
Applies To	
Description	
Checks if the OraIntervalYM	
object is greater than an argument.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] value	A Variant of type String , a numeric value, or an OraIntervalYM object to be compared.
Remarks	
Returns a Boolean value: The value is True	
if the OraIntervalYM	
object is greater than the argument; otherwise, it is False	
.	
If value	
is a Variant	
of type String	
, it must be in the following format: [+/-] YEARS-MONTHS.	
If value	
is a numeric value, the value provided should represent the total number of years that the constructed OraIntervalYM	
object represents.	
Applies To	
Description	
Checks if an OraNumber	
object is greater than an argument value.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] value	A Variant of type String , OraNumber object, or a numeric value.
Remarks	
Returns a Boolean value: The value is True	
if the OraNumber	
object is greater than the argument; otherwise, it is False	
.	
Applies To	
Description	
Checks if the OraTimeStamp	
object is greater than an argument.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] value	A Variant of type String , Date , or OraTimeStamp to be compared.
[in] [optional] format	Specifies the TIMESTAMP format string to be used to interpret value when value is of type String . If format is not specified, the value is interpreted using the Format property of the current OraTimeStamp object.
Remarks	
Returns a Boolean value: The value is True	
if the OraTimeStamp	
object is greater than the argument; otherwise, it is False	
. The IsGreater	
method compares all the date-time values stored in the OraTimeStamp	
object.	
If value	
is of type String	
, the string format must match the format specified in the format	
argument. If format	
is not specified, the string format must match the Format	
property of the current OraTimeStamp	
object.	
Applies To	
Description	
Checks if the OraTimeStampTZ object	
is greater than an argument.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] value	A Variant of type String , Date , or OraTimeStampTZ object to be compared.
[in] [optional] format	Specifies the TIMESTAMP WITH TIME ZONE format string to be used to interpret a value when value is type String . If format is not specified, value is interpreted using the Format property of the current OraTimeStampTZ object.
Remarks	
Returns a Boolean value: The value is True	
if the OraTimeStampTZ	
object is greater than the argument; otherwise, it is False	
. The IsGreater	
method only compares the UTC date-time values stored in the OraTimeStampTZ	
object; the time zone information is ignored.	
If value	
is of type String	
, the string format must match the format specified in the format	
argument. If format	
is not specified, the string format must match the Format	
property of the current OraTimeStampTZ	
object.	
If value	
is of type Date	
, the date-time value in Date	
is interpreted as the date-time value in the time zone of the session.	
Applies To	
Description	
Checks if the OraIntervalDS	
object is less than an argument.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] value	A Variant of type String , a numeric value, or an OraIntervalDS object to be compared.
Remarks	
Returns a Boolean value: The value is True	
if the OraIntervalDS	
object is less than the argument; otherwise, it is False	
.	
If value	
is a Variant	
of type String	
, it must be in the following format: [+/-] Day HH:MI:SSxFF.	
If value	
is a numeric value, the value provided should represent the total number of days that the constructed OraIntervalDS object	
represents.	
Applies To	
Description	
Checks if the OraIntervalYM object	
is less than an argument.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] value	A Variant of type String , a numeric value, or an OraIntervalYM object to be compared.
Remarks	
Returns a Boolean value: The value is True	
if the OraIntervalYM	
object is less than the argument; otherwise, it is False	
.	
If value	
is a Variant	
of type String	
, it must be in the following format: [+/-] YEARS-MONTHS.	
If value	
is a numeric value, the value provided should represent the total number of years that the constructed OraIntervalYM	
object represents.	
Applies To	
Description	
Checks if an OraNumber	
object is less than an argument value.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] value	A Variant of type String , OraNumber object, or a numeric value.
Remarks	
Returns a Boolean value: The value is True	
if the OraNumber object is less than the argument; otherwise, it is False	
.	
Applies To	
Description	
Checks if the OraTimeStamp	
object is less than an argument.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] value	A Variant of type String , Date , or OraTimeStamp .
[in] [optional] format	Specifies the TIMESTAMP format string to be used to interpret value when value is of type String . If format is not specified, the value is interpreted using the Format property of the current OraTimeStamp object.
Remarks	
Returns a Boolean value: The value is True	
if the OraTimeStamp	
is less than the argument; otherwise, it is False	
. The IsLess	
method compares all the date-time values stored in the OraTimeStamp	
object.	
If value	
is of type String	
, the string format must match the format specified in the format	
argument. If format	
is not specified, the string format must match the Format	
property of the current OraTimeStamp	
object.	
Applies To	
Description	
Checks if the OraTimeSTampTZ	
object is less than an argument.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] value	A Variant of type String , Date , or OraTimeStampTZ .
[[in] [optional] format	Specifies the TIMESTAMP WITH TIME ZONE format string to be used to interpret value when value is type String . If format is not specified, value is interpreted using the Format property of the current OraTimeStampTZ object.
Remarks	
Returns a Boolean value: The value is True	
if the OraTimeStampTZ	
object is less than the argument; otherwise, it is False	
. IsLess	
only compares the UTC date-time values stored in the OraTimeStampTZ	
object; the time zone information is ignored.	
If value	
is of type String	
, the string format must match the format specified in the format	
argument. If format	
is not specified, the string format must match the Format	
property of the current OraTimeStampTZ	
object.	
If value	
is of type Date	
, the date-time value in Date	
is interpreted as the date-time value in the time zone of the session.	
Applies To	
Description	
Moves the iterator to point to the next element in the collection.	
Usage	
Remarks	
Using an iterator is faster than using an index when accessing collection elements.	
If the iterator is pointing to the last element of the collection before to executing this function, then calling this method makes the EOC	
property return True	
. Also, the iterator is not changed. Check the EOC	
property when calling this method repetitively.	
Call the IterNext	
method after the InitIterator	
method, or the first element in the collection is repeated an extra time.	
Examples	
See "Example: OraCollection Iterator" .	
Applies To	
Description	
Moves the iterator to point to the previous element in the collection.	
Usage	
Remarks	
Using an iterator is faster than using an index when accessing collection elements.	
If the iterator is pointing to the first element of the collection prior to executing this function, then calling this method makes the BOC	
property return True	
. Also, the iterator is not changed. Check the BOC	
property when calling this method repetitively.	
Examples	
See "Example: OraCollection Iterator" .	
Applies To	
Description	
Clears the LastServerErr	
property to a zero value and sets the LastServerErrText	
property to Null	
for the specified object.	
Usage	
Remarks	
This method allows user programs to better determine which program request generated the Oracle error.	
Applies To	
Description	
Calculates the natural logarithm (base e) of an OraNumber	
object.	
Usage	
Remarks	
The result of the operation is stored in the OraNumber	
object. There is no return value.	
This method raises an error if the OraNumber	
object is less than or equal to zero.	
Applies To	
Description	
Calculates the logarithm of operand	
using the OraNumber	
object as the base.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] operand	A Variant of type String , OraNumber , or a numeric value.
Remarks	
The result of the operation is stored in the OraNumber	
object. There is no return value.	
This method raises an error if the OraNumber	
object or operand	
is less than or equal to zero.	
Applies To	
Description	
Returns the position of the nth	
occurrence of the pattern starting at the offset.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] pattern	A string for CLOB , or byte array for BLOB or BFILE that is searched for in the LOB.
[in] Offset	The starting position in the LOB or BFILE for the search.
[in] nth	The occurrence number.
Remarks	
This call is currently implemented by executing a PL/SQL block that uses DBMS_LOB.INSTR()	
.	
Applies To	
Description	
Gets the modulus from the division of the OraNumber	
object by operand	
.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] operand	A Variant of type String , OraNumber , or a numeric value.
Remarks	
The result of the operation is stored in the OraNumber	
object. There is no return value.	
If operand	
is equal to zero, an error is raised.	
Applies To	
Description	
Registers the failover notification handler of the application.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] FOSink	An IDispatch interface implementing the OnFailover method which is notified in event of a failover.
[in] FOCtx	Context-specific information that the application wants passed into the OnFailover method in the event of a failover.
Remarks	
To receive failover notifications, a notification handler must be registered with the MonitorForFailover	
method. The notification handler must be an automation object (a class module in Visual Basic) that implements the OnFailover	
method.	
The syntax of the method is:	
Variants	Description
---	---
[in] Ctx	Passed into the MonitorForFailover method by the application. Context-sensitive information that the application wants passed in event of a failover.
[in] fo_type	Failover type. This is the type of failover that the client has requested. The values are:
[in]	
Failover event. This indicates the state of the failover. It has several possible values:	
[in] fo_OraDB	The OraDatabase object of the user session that is being failed over. Valid only when the fo_event variant is OO4O_FO_REAUTH .
Examples	
Failover Notification Example	
See Example: Failover Notification.	
Applies To	
Description	
Starts a monitor thread for dequeuing the messages specified.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] NotificationHandler	An IDispatch interface containing the callback method (NotifyMe) which should be notified of new messages.
[in] CallbackCtx	Context-specific information that the application wants to pass to the NotifyMe method. This is passed into the NotifyMe method whenever a new message satisfying the user criteria is dequeued.
[in] [optional] MsgFilterVal	A byte array containing a value for the message filter. Ignored if MsgFilter is ORAAQ_ANY .
[in] [optional] MsgFilter	An Integer constant specifying the selection criteria for messages. Possible values for MsgFilter are:
Remarks	
NotifyMe	
is the callback method of the notification object. The syntax of the method is:	
Variants	Description
---	---
[in] Ctx	Value passed into the MonitorStart method by the application. Context-sensitive information that the application wants to pass in when messages are dequeued.
[in] Msgid	The message ID of the newly dequeued message. The Msgid variant is null when there is an error while monitoring.
By default, the message is passed into NotifyMe	
in Remove	
mode. The default dequeue options can be overridden by setting the properties of this instance (OraAQ	
).	
The MonitorStart	
method returns ORAAQ_SUCCESS	
or ORAAQ_FAIL	
.	
Applies To	
Description	
Stops the monitor thread that was started earlier.	
Usage	
Remarks	
Does nothing if a monitor is not running.	
Applies To	
Description	
Change the cursor position to the first, last, next, or previous row within the specified dynaset. These move methods move the cursor to the next (previous, and so on) valid row, skipping rows that have been deleted.	
Usage	
Remarks	
The data control buttons map (from left to right or from top to bottom) to the MoveFirst	
, MovePrevious	
, MoveNext	
, and MoveLast	
methods. The BOF	
and EOF	
properties are never true when using the data control buttons.	
When the first or last record is current, record movement does not occur if you use the MoveFirst	
or MoveLast	
methods, respectively. You force the query to completion if you use the MoveLast	
method on a dynaset.	
If you use the MovePrevious	
method and the first record is current, there is no current record and BOF	
is true. Using the MovePrevious	
method again causes an error, although BOF	
remains True	
. If you use the MoveNext	
method and the last record is current, there is no current record and EOF	
is true. Using the MoveNext	
method again causes an error, although EOF	
remains true. Note that when the dynaset is created with the ORADYN_NO_MOVEFIRST	
option, BOF	
and EOF	
are true whether the dynaset is empty or not.	
When you open a dynaset, BOF	
is False	
and the first record is current. If a dynaset is empty, BOF	
and EOF	
are both true, and there is no current record.	
If an Edit	
or AddNew	
operation is pending and you use one of the Move	
methods indirectly by way of the data control, then the Update	
method is invoked automatically, although, it can be stopped during the Validate	
event.	
If an Edit	
or AddNew	
operation is pending and you use one of the Move	
methods directly without the data control, pending Edit	
or AddNew	
operations cause existing changes to be lost, although no error occurs.	
Data is fetched from the database, as necessary, so performing a MoveFirst	
operation followed by a MoveNext	
operation incrementally builds the mirrored (cached) local set without requiring read-ahead of additional data. However, executing a MoveLast	
operation requires that the entire query be evaluated and stored locally.	
When a dynaset is attached to a data control, these methods first notify the Validate	
event of the data control that record motion is about to occur. The Validate	
handler can deny the request for motion, in which case the request is ignored. If the record pointer is successfully moved, then all custom controls attached to the data control are notified automatically of the new record position.	
Examples	
This example demonstrates record movement within a dynaset using the MoveFirst	
, MoveNext	
, MoveLast	
, MovePrevious	
methods. Copy and paste this code into the definition section of a form. Then, press F5.	
Applies To	
Description	
Change the cursor position to the specified row within the specified dynaset.	
Usage	
MoveNextn Method	
Moves offset records forward.	
MovePreviousn Method	
Moves offset records backward.	
MoveRel Method	
Moves offset records relative to the current row. A positive value, represented by a plus (+) sign, moves the cursor down the table, and a negative value moves the cursor up the table.	
MoveTo Method	
Moves directly to row number offset.	
Remarks	
EOF	
is set when the cursor moves beyond the end of a dynaset using MoveNextn	
, MoveRel	
, or MoveTo	
methods. BOF	
is set when the cursor moves beyond the start of a dynaset using MovePreviousn	
, MoveRel	
, or MoveTo	
methods. The MoveNextn	
, MovePreviousn	
, and MoveTo	
methods accept offset as a positive integer only. The MoveRel	
methods accepts offset as either a positive or a negative integer.	
The MoveTo	
rownum	
always gets the same row unless the row has been deleted. If the requested row has been deleted, the MoveTo	
method moves to the next valid row. The MoveNextn	
, MovePreviousn	
, MoveRel	
, and MoveTo	
methods do not take into account deleted rows, so be cautious when using these methods based on relative positions of row numbers.	
Data Type	
Long	
Integer	
Examples	
This example demonstrates the use of the MovePreviousn	
, MoveNextn	
, MoveRel	
, and MoveTo	
methods. Copy and paste this code into the definition section of a form. Then, press F5.	
Applies To	
Description	
Multiplies the OraIntervalDS	
object by a multiplier.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] multiplier	A Variant for type numeric value or an OraNumber object to be used as the multiplier.
Remarks	
The result of the operation is stored in the OraIntervalDS	
object, overwriting any previous value. There is no return value.	
Applies To	
Description	
Multiplies the OraIntervalYM	
object by a multiplier.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] multiplier	A Variant for type numeric value or an OraNumber object to be used as the multiplier.
Remarks	
The result of the operation is stored in the OraIntervalYM	
object, overwriting any previous value. There is no return value.	
Applies To	
Description	
Multiplies the OraNumber	
object by operand	
.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] operand	A Variant of type String , OraNumber , or a numeric value.
Remarks	
The result of the operation is stored in the OraNumber	
object. There is no return value.	
Applies To	
Description	
Negates the OraIntervalDS	
object.	
Usage	
Remarks	
The result of the operation is stored in the OraIntervalDS	
object, overwriting any previous value. There is no return value.	
Applies To	
Description	
Negates the OraIntervalYM	
object.	
Usage	
Remarks	
The result of the operation is stored in the OraIntervalYM	
object, overwriting any previous value. There is no return value.	
Applies To	
Description	
Negates an OraNumber	
object.	
Usage	
Remarks	
The result of the operation is stored in the OraNumber	
object. There is no return value.	
Applies To	
Description	
Establishes a connection to an Oracle database.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] serverAlias	A String containing the Network alias used for connecting to the database.
Remarks	
If no arguments is supplied, this method attaches to a database that was detached previously.	
Applies To	
Description	
Opens a BFILE	
.	
Usage	
Remarks	
This method should be called before accessing the BFILE	
value.	
Applies To	
Description	
Establishes a user session to the database. It creates a new OraDatabase	
object using the given database name, connection string, and specified options.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
database_name	The Oracle Network specifier used when connecting the data control to a database.
connect_string	The user name and password to be used when connecting to an Oracle database.
options	A bit flag word used to set the optional modes of the database. If options = 0 , the default mode settings apply. The following table shows the possible modes, which can be combined by adding their respective values.
Constants	
The following table lists constants and values for the options flag.	
Constant	Value
---	---
ORADB_DEFAULT	&H0&
ORADB_ORAMODE	&H1&
ORADB_NOWAIT	&H2&
ORADB_NO_REFETCH	&H4&
ORADB_NONBLK	&H8&
ORADB_ENLIST_IN_MTS	&H10&
ORADB_ENLIST_FOR_ CALLLBACK	&H20&
These values can be found in the oraconst.txt	
file. For creating a valid database alias, see the Oracle Net Services Administrator's Guide.	
Examples of valid connect_string	
arguments include:	
"scott/tiger"	
"system/manager"	
"/"	
Remarks	
An OraConnection	
object is created automatically and appears within the OraConnections	
collection of the session. Opening a database has the effect of opening a connection but does not perform any SQL actions.	
One possible connection error that could be returned is:	
The user can change the password using the ChangePassword	
method.	
Examples	
This example demonstrates how to programmatically create a dynaset and all of the underlying objects. Copy and paste this code into the definition section of a form with text boxes named txtEmpNo	
and txtEName	
. Then, press F5.	
Applies To	
Description	
Returns the OraField	
object based on the original column name used in the SELECT	
statement in the dynaset. Not available at design time and read-only at run time.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
field_index	Field index of the original column name.
original_name	Original field name specified in the SQL statement.
Remarks	
This is property is useful when a SQL statement contains 'schema.table.col'	
as the Name	
of the field, and retrieves the field object specific to that original name.	
Examples	
The following example shows the use of the OriginalItem	
method. Copy and paste this code into the definition section of a form. Then, press F5.	
Applies To	
Description	
Returns the original column name used in the SELECT	
statement in the dynaset (as opposed to the name of the field as it appears on the server returned by the Name	
property). Not available at design time and read-only at run time.	
Usage	
Remarks	
The orafield.OriginalName	
method returns the name of the specified OraField	
object. This returns the Original	
column name specified in the SQL statement during dynaset creation. This property is useful when a SQL statement contains 'schema.table.col'	
as the Name	
of the field. It enables duplicate column names to be referenced. (Duplicate column names can be avoided by using aliases in the SQL statement.)	
Examples	
The following example shows the use of the OriginalName	
property. Copy and paste this code into the definition section of a form. Then, press F5.	
Applies To	
Description	
Raises the OraNumber	
object to the power of the operand.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] operand	A Variant of type String , OraNumber , or a numeric value.
Remarks	
The result of the operation is stored in the OraNumber	
object. There is no return value.	
Applies To	
Description	
Inserts values into the table parameter.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] value	A Variant representing the value to insert.
[in] index	An Integer representing the index value of the object.
Remarks	
This method should be used to insert a value before accessing a row in a table. A row does not contain a valid value until a row is assigned a value. Any reference to an unassigned row in the table raises an OLE	
Automation	
error	
.	
The value	
argument can be an Oracle Database 10g object, such as an OraBLOB	
. For Put_Value	
, a copy of the object is made at that point in time, and Get_Value	
must be accessed to obtain a new object that refers to that index value. For example, if iotype	
is ORATYPE_BOTH	
and an OraBLOB	
obtained from a dynaset is passed in as the input value, Get_Value	
needs to be called after the SQL has been executed to obtain the newly updated output value of the ParamaterArray	
.	
Similar to a dynaset, the object obtained from ParamaterArray	
Get_Value	
method always refers to the latest value for that ParamaterArray	
index. The Visual Basic value Null	
can also be passed as a value. The Visual Basic value EMPTY	
can be used for BLOB	
and CLOB	
to indicate an empty LOB, and for OBJECT	
, VARRAY	
and NESTED	
TABLE	
to indicate an object whose attributes are all Null	
.	
When binding to RAW	
columns (ServerType	
ORATYPE_RAW_BIN	
) value should be a byte array.	
Applies To	
Description	
Reads into a buffer a specified portion of a BLOB	
, CLOB	
, or BFILE	
value. Returns the total amount of data read.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[out] buffer	Variant of type character array for OraCLOB , Variant of type byte array for OraBLOB , or OraBFILE from which the piece is read.
[in] [optional] chunksize	An Integer specifying the amount to be read. Default value is the size of the LOB. In bytes for OraBLOB or OraBFILE ; characters for OraCLOB .
[out] amount_read	An Integer representing the total amount of data read. In bytes for OraBLOB or OraBFILE ; characters for OraCLOB .
Remarks	
Reads the LOB or BFILE	
data from the offset specified by the Offset	
property. For multiple piece read operation, the PollingAmount	
property must be set to the value of the total amount of data to be read, and the Status	
property must be checked for the success of each piece operation.	
Note: When reading a portion of a LOB, it is recommended that you set thePollingAmount property, rather than using the chunksize parameter. This avoids the possibility of raising an error if the entire LOB is not read before to executing another LOB method.	
Examples	
Be sure that you have installed the OraLOB Schema Objects as described in "Schema Objects Used in LOB Data Type Examples" .	
Example: Multiple-Piece Read of a LOB	
Example: Single-Piece Read of a LOB	
Applies To	
Description	
Returns a String	
containing the bytes of all or a portion of a LONG	
or LONG	
RAW	
field.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
offset	The number of bytes in the field to skip before copying data.
numbytes	The number of bytes to copy.
bytesread	The number of bytes read.
Remarks	
The ReadChunk	
method behaves like the GetChunk	
method, but it returns the actual number of bytes read in the bytesread	
argument.	
Applies To	
Description	
Forces an immediate update of the dynaset given the current Connect	
, DatabaseName	
, and SQL properties.	
Forces an immediate update of the dynaset by reexecuting the SQL statement in the SQL statement object.	
Usage	
Remarks	
This method cancels all edit operations (Edit	
and AddNew	
methods), executes the current contents of the SQL statement buffer, and moves to the first row of the resulting dynaset. Any dynaset objects created before issuing the Refresh	
method, including bookmarks, record counts, and field collections, are considered invalid. The OraConnection	
and OraSession	
objects associated with the previous dynaset remain unchanged.	
Performing a refresh operation with this method can be more efficient than refreshing with a data control. This method also lets you execute a modified SQL statement without creating a new dynaset or OraSQLStmt	
object.	
The preferred refresh methods when changing parameter values are oradynaset.Refresh	
or orasqlstmt.Refresh	
, because required database operations are minimized (SQL parsing, binding, and so on). This can improve performance when only parameter values have changed.	
If you call the Refresh	
method after assigning an invalid SQL statement to the SQL property of a dynaset or SQL statement object, these objects remain valid. However, a dynaset in this state does not permit any row or field operations. Bound controls also exhibit unusual behaviors similar to those that occur when the standard Visual Basic data control RecordSource	
is set to an invalid SQL statement at run time and then refreshed.	
You can regain the normal dynaset and SQL statement operations by refreshing the object with a valid SQL statement. The Refresh	
method treats Null	
or empty SQL statements as invalid.	
Examples	
Refresh Method Example (OraDynaset)	
This example demonstrates the use of parameters, the Refresh	
method, and the SQL property to restrict selected records. Copy and paste this code into the definition section of a form. Then, press F5.	
Refresh Method Example (OraSQLStmt)	
This example demonstrates the use of parameters, the Refresh	
method, and the SQL property for the . object. Copy and paste this code into the definition section of a form. Then, press F5.	
Applies To	
Description	
Refreshes the referenceable object from the most current database snapshot.	
Usage	
Applies To	
Description	
Activates the subscription.	
Usage	
Remarks	
When the specified database event is fired, the NotifyDBevents	
method of the dbevent	
handler that was passed in while creating this subscription is invoked.	
Examples	
See "Example: Registering an Application for Notification of Database Events" for a complete example.	
Applies To	
Description	
Removes a parameter from the OraParameters	
collection.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
member_name	A Variant specifying an integer subscript from 0 to Count 1 , or the parameter name.
Remarks	
Instead of repeatedly removing and adding unwanted parameters, use the AutoBindDisable	
and AutoBindEnable	
methods.	
For an OraParameter	
of type ORATYPE_CURSOR	
, this method destroys the dynaset object associated with the cursor, and clears the local cache temporary files.	
Examples	
Applies To	
Description	
Removes a subscription from the OraSubscriptions	
collection.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
member	A Variant specifying an integer subscript from 0 to Count , or the subscription name.
Remarks	
This method unregisters (removes) the subscription if it is active, and destroys the subscription associated with it.	
Applies To	
Description	
Removes the OraDatabase	
object from the pool.	
Usage	
Remarks	
This method applies only to those OraDatabase	
objects that are retrieved from the pool using the GetDatabaseFromPool	
method.	
No exceptions or errors are raised if the OraDatabase	
object is not a member the pool.	
This method is useful for removing OraDatabase	
objects from the pool whose connections are no longer valid.	
Applies To	
Description	
Unconditionally rolls back all transactions and clears the transaction mode initiated by BeginTrans	
method.	
Usage	
Remarks	
This method does not generate events or produce errors. Because the ResetTrans	
method does not generate events, you cannot cancel the ResetTrans	
method in a Validate	
event, as you can with a rollback or commit operation.	
Note: If an OraDatabase	
object has been enlisted with Microsoft Transaction Server (MTS) and is part of a global MTS transaction, this method has no effect.	
Examples	
This example demonstrates the use of the BeginTrans	
and ResetTrans	
methods to group a set of dynaset edits into a single transaction. Copy and paste this code into the definition section of a form. Then, press F5.	
Applies To	
Description	
Ends the current transaction and rolls back all pending changes to the database.	
Usage	
Remarks	
When this method is invoked, all OraDynaset	
objects that share the specified session or connection are given the opportunity to cancel the rollback request. If they do not cancel the request, they are advised when the rollback succeeds.	
This feature is useful primarily for dynasets that are created as part of an Oracle Data Control operation. For these dynasets, the Validate	
event is sent to allow them to cancel the rollback request.	
OraConnection	
and OraDatabase	
: The Rollback	
method rolls back all pending transactions within the specified connection. This method has no effect if a transaction has not begun. When a session-wide transaction is in progress, you can use this call to prematurely roll back the transactions for the specified connection.	
OraSession	
: The Rollback	
method rolls back all pending transactions within the specified session. The Rollback	
method is valid only when a transaction has been started. If a transaction has not been started, the use of the Rollback	
method results in an error.	
Note: If anOraDatabase object has been enlisted with Microsoft Transaction Server (MTS) and is part of a global MTS transaction, this method has no effect.	
Examples	
This example demonstrates the use of the BeginTrans	
and Rollback	
methods to group a set of dynaset edits into a single transaction. Copy and paste this code into the definition section of a form. Then, press F5.	
Applies To	
Description	
Rounds the OraNumber	
object to the specified decimal place.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] decplaces	An Integer specifying the number of digits to the right of the decimal point from which to round. Negative values are allowed and signify digits to the left of the decimal point.
Remarks	
The result of the operation is stored in the OraNumber	
object. There is no return value.	
Applies To	
Description	
Sets an OraNumber	
object to Pi.	
Usage	
Remarks	
The result of the operation is stored in the OraNumber	
object. There is no return value.	
Applies To	
Description	
Calculates the sine of an OraNumber	
object given in radians.	
Usage	
Remarks	
The result of the operation is stored in the OraNumber	
object. There is no return value.	
Applies To	
Description	
Calculates the square root of an OraNumber	
object.	
Usage	
Remarks	
The result of the operation is stored in the OraNumber	
object. There is no return value.	
This method returns an error if the OraNumber	
object is less than zero.	
Applies To	
Description	
Subtracts an argument from the OraIntervalDS	
object.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] operand	A Variant of type String , a numeric value, or an OraIntervalDS , object to be subtracted.
Remarks	
The result of the operation is stored in the OraIntervalDS	
object, overwriting any previous value. There is no return value.	
If operand	
is a Variant	
of type String	
, it must be in the following format: [+/-] Day HH:MI:SSxFF.	
If operand	
is a numeric value, the value provided should represent the total number of days that the constructed OraIntervalDS	
object represents.	
Applies To	
Description	
Subtracts an argument from the OraIntervalYM	
object.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] operand	A Variant of type String , a numeric value, or an OraIntervalYM object to be subtracted.
Remarks	
The result of the operation is stored in the OraIntervalYM	
object, overwriting any previous value. There is no return value.	
If operand	
is a Variant	
of type String	
, it must be in the following format: [+/-] YEARS-MONTHS.	
If operand	
is a numeric value, the value provided should represent the total number of years that the constructed OraIntervalYM	
object represents.	
Applies To	
Description	
Subtracts a numeric argument from the OraNumber	
object.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] operand	A Variant of type String , type OraNumber , or a numeric value.
Remarks	
The result of the operation is stored in the OraNumber	
object. There is no return value.	
Applies To	
Description	
Calculates the tangent of an OraNumber	
object given in radians.	
Usage	
Remarks	
The result of the operation is stored in the OraNumber	
object. There is no return value.	
Applies To	
Description	
Returns a copy of the Date	
type from an OraTimeStamp	
or OraTimeStampTZ	
object.	
Usage	
Remarks	
This method returns the datetime values in the Date	
data type. As a result, the date-time values can be adjusted if they fall outside the range allowed by a VB date.	
OraTimeStamp	
object: Returns a new Date	
object with the same date-time values as the current OraTimeStamp	
object, but the nanosecond portion is truncated.	
OraTimeStampTZ	
object: Returns a new Date	
object with the same date-time values as the current OraTimeStampTZ	
object, but the nanosecond portion and time zone portion are truncated.	
Examples	
Using the OraTimeStamp Object	
Using the OraTimeStampTZ Object	
Applies To	
Description	
Returns an OraNumber	
object containing a value that represents the total number of days that the OraIntervalDS	
object specifies.	
Usage	
Applies To	
Description	
Returns a copy of the OraTimeStamp	
object that has the date-time value in the specified time zone of the current OraTimeStampTZ	
object.	
Returns a copy of the OraTimeStamp	
object from an OraTimeStampTZ	
object.	
Usage	
Remarks	
Returns a new OraTimeStamp	
object that has the date-time values in the specified time zone of the current OraTimeStampTZ	
object.	
Examples	
Applies To	
Description	
Returns a copy of the OraTimeStamp	
object that has the date-time value normalized to the session time zone of the current OraTimeStampTZ	
object.	
Usage	
Remarks	
Returns a new OraTimeStamp	
object that has the date-time values normalized to the session time zone of the current OraTimeStampTZ	
object.	
Examples	
Applies To	
Description	
Returns a copy of the OraTimeStampTZ	
object from an OraTimeStamp	
object.	
Usage	
Remarks	
Returns a new OraTimeStampTZ	
object with the same date-time values as the current OraTimeStamp	
object. The time zone information in the returned OraTimeStampTZ	
object is set to the session time zone.	
Examples	
Applies To	
Description	
Returns a copy of the OraTimeStampTZ	
object that has the date-time value normalized to Coordinated Universal Time (UTC) of the current OraTimeStampTZ	
object.	
Usage	
Remarks	
Returns a new OraTimeStampTZ	
object that has the date-time values normalized to the UTC of the current OraTimeStampTZ	
object.	
Note: UTC was formerly known as Greenwich Mean Time.	
Examples	
Applies To	
Description	
Trims a given number of elements from the end of the collection.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] size	An Integer specifying the number of elements to trim.
Remarks	
The elements are removed from the end of the collection. An error is returned if the size is greater than the current size of the collection.	
Examples	
The following example illustrates the Trim	
method. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in OraCollection Examples" .	
Example: Trim Method for the OraCollection Object	
Applies To	
Description	
Trims or truncates the LOB value to shorter length.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] NewLen	An Integer specifying the new length of the LOB value; must be less than or equal to the current length.
Remarks	
Either a row-level lock or object-level lock should be obtained before calling this method.	
Note: When manipulating LOBs using LOB methods, such as theWrite and CopyFromFile , the LOB object is not automatically trimmed if the length of the new data is shorter than the old data. Use the Trim (OraLOB) method to shrink the LOB object to the size of the new data.	
Applies To	
Description	
Truncates an Oracle number at a specified decimal place.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
[in] decplaces	An Integer specifying the number of digits to the right of the decimal point from which to truncate. Negative values are allowed and signify digits to the left of the decimal point.
Remarks	
The result of the operation is stored in the OraNumber	
object. There is no return value.	
Applies To	
Description	
Unregisters this subscription, which turns off notifications on the specific database event.	
Usage	
Remarks	
Unregistering a subscription ensures that the user does not receive notifications related to that subscription or database event in the future. If the user wants to resume notification, then the only option is to re-register the subscription.	
Examples	
Registering an Application for Notification of Database Events Example	
See "Example: Registering an Application for Notification of Database Events".	
Applies To	
Description	
Saves the copy buffer to the specified dynaset.	
Usage	
Remarks	
The Update	
method completes an AddNew	
or Edit	
operation and immediately commits changes to the database unless a BeginTrans	
operation is pending for the session.	
Once the Update	
method is called on a given row in a dynaset in a global transaction (that is, a BeginTrans	
operation is issued), locks remain on the selected rows until a CommitTrans	
or Rollback	
method is called.	
The mirrored data image is also updated so that the query does not have to be reevaluated to continue browsing and updating data. The method used for updating the mirror image is subject to the options flag that was passed to the OpenDatabase	
method that created the OraDatabase	
object of this dynaset.	
If this dynaset is attached to a data control, then the Validate	
event of the data control code may optionally cancel the update request. If the update completes, then all bound controls associated with the dynaset are notified of the update so they can reflect the data changes automatically.	
Examples	
This example demonstrates the use of AddNew	
and Update	
methods to add a new record to a dynaset. Copy and paste this code into the definition section of a form. Then, press F5.	
Applies To	
Description	
Flushes the modified referenceable object to the database.	
Usage	
Remarks	
The Update	
method completes the Edit	
operation and commits the changes to the database unless a BeginTrans	
operation is pending for the session.	
Examples	
The following example updates the attributes of the PERSON	
referenceable object in the database. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in the OraObject and OraRef Examples".	
Updating Attribute Values: Dynaset Example	
Updating Attribute Values: Parameter Example	
Applies To	
Description	
Writes a buffer into the BLOB	
or CLOB	
value of this object and returns the total amount of the data written.	
Usage	
Arguments	
The arguments for the method are:	
Arguments	Description
---	---
in] buffer	The character array for an OraCLOB object or byte array for the OraBLOB object from which the piece is written.
[in] [optional] chunksize	An Integer specifying the length of the buffer, in characters for an OraCLOB object and bytes for an OraBLOB or OraBFILE object. Default value is the size of the buffer argument.
[in] [optional] piece	An Integer specifying which piece of the buffer is being written. Possible values include:
[out] amount_written | An Integer representing the amount written, in characters for an OraCLOB object and bytes for an OraBLOB or OraBFILE object. |
Remarks
Obtain either a row-level lock or object-level lock before calling the Write
method. This method writes the BLOB
or CLOB
data from the offset specified by the Offset
property. For a multiple-piece write operation, the PollingAmount
property can be set to the value of the total amount of data to be written, and the Status
property must be checked for the success of each piece operation. If the total amount is not known, then the PollingAmount
property can be set to 0
and polling still occurs as long as the piece type is not OraLob_piece
.
For the last piece, set the piece argument to ORALOB_LAST_PIECE
. You must write the polling amount in bytes or characters. It is not possible to terminate the Write
operation early if the PollingAmount
property is not zero.
When the OraLOB Pollingamount
= 0
but the piece type on OraLOB Write
is not ORALOB_ONE_PIECE
, polling still occurs. Polling completes when ORALOB_LAST_PIECE
is sent as an argument to a call to the Write
method. This is useful when calling the OraCLOB.Write
method in a variable-width character set, when counting the total amount of characters ahead of time may be costly.
Note: When manipulating LOBs using LOB methods, such as theWrite and CopyFromFile , the LOB object is not automatically trimmed if the length of the new data is shorter than the old data. Use the Trim (OraLOB) method to shrink the LOB object to the size of the new data. |
Examples
Be sure that you have installed the OraLOB Schema Objects as described in "Schema Objects Used in LOB Data Type Examples" .
Multiple-Piece Write of a LOB Example
Single-Piece Write of a LOB Example
This chapter describes the Oracle Objects for OLE Server properties.
For an introduction to Server Objects, see "Oracle Objects for OLE In-Process Automation Server" .
This chapter contains these topics:
Server Properties: A to F
Server Properties: E to L
Server Properties: M to O
Server Properties: P to T
Server Properties: U to Z
Applies To
Description
Returns a 128-byte string representing the protocol-specific address of the recipient. The format is: [schema.]queue[@dblink]
Usage
Data Type
String
Applies To
Description
Specifies the array size (that is, number of elements in an array) of an OraParameter
string buffer. Not available at design time and read-only at run time.
Usage
Data Type
Integer
Remarks
You specify the ArraySize
during AddTable
. See the AddTable
method for the OraParamArray
object.
Applies To
Description
Returns or sets the AutoCommit
property of the OraDatabase
object.
Usage
Data Type
Boolean
Remarks
If the AutoCommit
property is set to True
, all the data operations that modify data in the database are automatically committed after the statement is executed.
If the AutoCommit
property is set to False
, you need to use the OraDatabase
transaction methods (BeginTrans
, CommitTrans
, and Rollback
) or SQL statements to control transactions.
Examples
The following example shows how to control transactions with SQL statements after setting the AutoCommit
property to False
.
Applies To
Description
Indicates True
if the collection iterator moves before the first element of a collection.
Usage
Data Type
boolean
Examples
Applies To
Description
Returns whether the current record position in a dynaset is before the first record. Not available at design time and read-only at run time.
Usage
Data Type
Integer
(Boolean)
Remarks
Returns True
if an attempt has been made to move before the first record in the dynaset using the MovePrevious
method. Returns False
otherwise.
If a recordset is empty, both BOF
and EOF
return True
.
Examples
This example demonstrates the use of the BOF
and EOF
properties to detect the limits of a record set. Copy and paste this code into the definition section of a form. Then, press F5.
Applies To
Description
Determines the current record of a record set. Not available at design time and read/write at run time.
Usage
Data Type
The value is a string of binary data, but can be stored in a variable of String
or Variant
data type. The length of the string cannot be predicted, so do not use a fixed-length string.
Remarks
The first form returns a Bookmark
property for the current row. The second form repositions the Bookmark property
to refer to a specific record within the dynaset.
Bookmark
objects exist only for the life of the dynaset and are specific to a particular dynaset. They cannot be shared among dynasets. However, Bookmark
objects of a dynaset and their clones are interchangeable.
Before attempting to use Bookmark
objects, check the BookMarkable
property of that dynaset to see if it supports bookmarks.
Examples
This example demonstrates the use of the Bookmark
property to return to a previously known record quickly. Copy and paste this code into the definition section of a form. Then, press F5.
Applies To
Description
Indicates whether the specified dynaset can supports Bookmark
objects. Not available at design time and read-only at run time.
Usage
Data Type
Integer
(Boolean)
Remarks
This property returns True
unless the No Cache mode was set when the specified dynaset was created; otherwise, it returns False
.
Applies To
Description
Gets or set cache maximum number of blocks.
Usage
Data Type
Integer
Applies To
Description
True
if cache or fetch parameters have been changed.
Usage
Data Type
Boolean
Applies To
Description
Sets the maximum size (high watermark) for the client-side object cache as a percentage of the optimal size. The default value is 10%.
Usage
Data Type
Long
Remarks
If the memory occupied by the objects currently in the cache exceeds the high watermark (maximum object cache size), then the cache automatically begins to free unmarked objects that have a pin count of zero. The cache continues freeing those objects until memory use in the cache reaches the optimal size, or until it runs out of objects eligible for freeing.
Applies To
Description
Sets the optimal size for the client-side object cache in bytes. The default value is 200
KB.
Usage
Data Type
Long
Remarks
This parameter increases the client-side object cache size. If the memory occupied by the objects currently in the cache exceeds the high watermark (maximum object cache size), then the cache automatically begins to free unmarked objects that have a pin count of zero. The cache continues freeing those objects until memory use in the cache reaches the optimal size, or until it runs out of objects eligible for freeing. This parameter should be set to an appropriate value so that object cache can accommodate all the fetched object instance from Oracle Database 10g. This is property is useful in performance tuning for accessing an Oracle Database 10g object instance.
Applies To
Description
Gets or sets cache slice size.
Usage
Data Type
Integer
Applies To
Description
Gets or sets cache slices for each block.
Usage
Data Type
Integer
Applies To
Description
Returns the OraClient
object associated with the specified session. Not available at design time and read-only at run time.
Usage
Data Type
OLE Object (OraClient
)
Remarks
Each computer has only one client object, so this property returns the same object for all sessions on the same computer.
Applies To
Description
Returns the user name of the connection string associated with the connection. Not available at design time and read-only at run time.
Usage
Data Type
String
Remarks
OraConnection.Connect
Returns the user name of the connection string associated with the connection.
OraDatabase.Connect
Returns the user name of the connection string associated with the specified database. It is equivalent to referencing OraDatabase.Connection.Connect
.
The password associated with the user name is never returned.
Examples
This example demonstrates the use of the Connect
and DatabaseName
properties to display the user name and database name to which the user is connected. Copy and paste this code into the definition section of a form. Then, press F5.
Applies To
Description
Returns the OraConnection
object associated with the specified database, dynaset, or OraSQLStmt
object. Not available at design time and read-only at run time.
Usage
Data Type
OLE Object (OraConnection
)
Remarks
OraDatabase.Connection
Returns the connection object associated with the specified database. Each database is associated with one connection object, but many databases can share the same connection object.
OraDynaset.Connection
Returns the connection object associated with this dynaset. This is equivalent to referencing oradynaset.Database.Connection
.
OraSQLStmt
.Connection Returns the connection object associated with this OraSQLStmt
object. This is equivalent to referencing orasqlstmt.Database.Connection
.
Applies To
Description
Returns a Boolean value indicating the status of the database connection associated with the OraConnection
object. A return value of True
implies that the connection is alive in the connection object associated with the specified database. If the connection has been dropped, this property returns False
.
Not available at design time and read-only at run time.
Usage
Data Type
Boolean
Remarks
OraDatabase.ConnectionOK
Returns the connection status of the connection object associated with the specified database. Each database is associated with one connection object, but many databases can share the same connection object.
OraConnection.ConnectionOK
Returns the status of the underlying connection to the database. This is equivalent to OraDatabase.OraConnection.ConnectionOK
.
Applies To
Description
Returns the OraConnections
collection of the specified session. Not available at design time and read-only at run time.
Usage
Data Type
OLE Object (OraParameters
)
Remarks
You can access the connections in this collection by subscripting (using ordinal integer numbers). You can obtain the number of connections in the collection using the Count
property of the returned collection. Integer subscripts begin with 0
and end with Count
- 1
. Out-of-range indexes and invalid names return a Null
OraConnection
object.
Applies To
Description
Applicable only for a dequeue operation.
Usage
Data Type
String
Remarks
The value is a string representing the name of the consumer. Only those messages matching the consumer name are accessed.
Examples
Applies To
Description
Specifies the identification to look for while dequeuing messages.
Usage
Data Type
String
Remarks
Applicable only for a dequeue operation.
Applies To
Description
Specifies the identification for the message. This can then be used as a means of dequeuing specific messages.
Usage
Data Type
String
Remarks
Applicable only for a message that is being enqueued. Returns any string up to 128 bytes.
See Correlate for dequeuing using this identifier.
Applies To
Description
Returns the number of objects in the specified collection. Not available at design time and read-only at run time.
Usage
Data Type
Integer
Remarks
Use this property to determine the number of objects in the specified collection.
Examples
This example demonstrates the use of the Count
property to display the number of objects in the OraSessions
, OraConnections
, and OraFields
collections. Copy and paste this code into the definition section of a form. Then, press F5.
Applies To
Description
An integer representing the number of OraMDAttribute
objects contained in this collection.
Usage
Data Type
Integer
Applies To
Description
Returns the number of OraAttribute
objects in the collection. This is same as the total number of attributes of the underlying referenceable object of OraRef
or underlying value instance of OraObject
. Read-only at run time.
Usage
Data Type
Integer
Remarks
Individual attributes can be accessed by using a subscript or the name of the attribute. The OraObject
or OraRef
attribute index starts at 1
.
Examples
The following example shows the use of the Count
property. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in the OraObject and OraRef Examples".
Applies To
Description
Returns the OraDatabase
object associated with the specified dynaset or SQL statement object. Not available at design time and read-only at run time.
Usage
Data Type
OLE Object (OraDatabase
)
Remarks
The OraDynaset.Database
property returns the OraDatabase
object from which the specified dynaset was created.
The OraSQLStmt.Database
property returns the OraDatabase
object from which the specified SQLStmt
object was created.
Applies To
Description
Returns the name of the database associated with the specified object. Not available at design time and read-only at run time.
Usage
Data Type
String
Remarks
oraconnection.DatabaseName
Returns the name of the database, as specified in the OpenDatabase
method.
oradatabase.DatabaseName
Returns the database name associated with the connection. It is the same as the referencing oradatabase.Connection.DatabaseName
.
Examples
This example demonstrates the use of the Connect
and DatabaseName
properties to display the user name and database to which you have connected. Copy and paste this code into the definition section of a form. Then, press F5.
Applies To
Description
Returns a collection interface containing all user sessions that have been established using this object.
Usage
Data Type
OLE Object (OraCollection
)
Applies To
Description
Gets and sets the Day
attribute of an OraTimeStamp
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] day | The Day attribute of an OraTimeStamp object. |
Data Type
Integer
Applies To
Description
Returns or sets the Day
attribute of an OraTimeStampTZ
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] day | The Day attribute of an OraTimeStampTZ object. |
Data Type
Integer
Applies To
Description
Gets and sets the Days
attribute of an OraIntervalDS
object
Usage
Arguments
Arguments | Description |
---|---|
[in] days | An Integer specifying the value of the Days attribute of the OraIntervalDS object. |
Data Type
Integer
Applies To
Description
Contains the number of currently active database objects in the pool. It is a read-only property.
Usage
Data Type
Integer
Remarks
An active database object in the pool that contains a live connection to the database.
Applies To
Description
Contains the initial size of the pool. It is a read-only property.
Usage
Data Type
Integer
Applies To
Description
Contains the maximum pool size. It is a read-only property.
Usage
Data Type
Integer
Applies To
Description
Specifies the number of seconds to delay this enqueued message. Set this property to delay the immediate consumption of the message.
Usage
Data Type
Integer
Remarks
Applicable only for a message that is enqueued.
This delay represents the number of seconds after which the message is available for dequeuing.
Possible values are:
ORAAQ_MSG_NO_DELAY
Default is 0 seconds. The message is available immediately.
Applies To
Description
Specifies the locking behavior associated with the dequeue operation.
Usage
Data Type
Integer
Remarks
Possible values are:
ORAAQ_DQ_BROWSE
(1
) Does not lock the message when dequeuing.
ORAAQ_DQ_LOCKED
(2
) Reads and obtains a write lock on the message.
ORAAQ_DQ_REMOVE
(3
)(Default) Reads the message, and updates or deletes it.
Applies To
Description
Returns an array of raw bytes, specifying the message identifier of the message to be dequeued.
Usage
Data Type
String
Remarks
Applicable only for a dequeue operation.
Applies To
Description
Gets or sets the directory alias name.
Usage
Arguments
Arguments | Description |
---|---|
[in] [out] diralias | A String specifying the directory name to be retrieved or set. |
Data Type
String
Remarks
This String
is case-sensitive.
Applies To
Description
Specifies the dynaset option for a dynaset created from the PL/SQL cursor.
Usage
Remarks
This property should be called before executing a PL/SQL procedure containing a cursor variable. By default, the dynaset is created with the ORADYN_READONLY
option.
The possible values are:
Possible Values | Value | Description |
---|---|---|
ORADYN_DEFAULT | &H0& | Accepts the default behavior. |
ORADYN_NO_BLANKSTRIP | &H2& | Does not remove trailing blanks from character string data retrieved from the database. |
ORADYN_NOCACHE | &H8& | Does not create a local dynaset data cache. Without the local cache, previous rows within a dynaset are unavailable; however, increased performance results during retrieval of data from the database (move operations) and from the rows (field operations). Use this option in applications that make single passes through the rows of a dynaset for increased performance and decreased resource usage. |
ORADYN_NO_MOVEFIRST | &H40& | Does not force a MoveFirst operation when a dynaset is created. BOF and EOF are both True . |
Applies To
Description
Returns the editing state for the current row. Not available at design time and read-only at run time.
Usage
Data Type
Integer
Remarks
The EditMode
property values are:
Constant | Value | Description |
---|---|---|
ORADATA_EDITNONE | 0 | No editing in progress. |
ORADATA_EDITMODE | 1 | Editing is in progress on an existing row. |
ORADATA_EDITADD | 2 | A new record is being added and the copy buffer does not currently represent an actual row in the database. |
These values are located in the ORACLE_BASE\\ORACLE_HOME
\oo4o\oraconst.txt
file and are intended to match similar constants in the Visual Basic constant.txt
file.
This property is affected only by the Edit
, AddNew
, and Update
methods.
Applies To
Description
Specifies whether the object is to be locked during the pin operation.
Usage
Arguments
Arguments | Description |
---|---|
[in] [out] edit_option | An Integer representing the edit option. |
Data Type
Integer
Remarks
This property should be called before a pin operation on a Ref
value, before accessing an attribute for the first time on the OraRef
object. This option is useful if the object attributes are modified immediately after the pin operation. Locking the object instance during the pin operation saves the round-trip to the database during the Edit
(OraRef
) operation.
Possible values of edit_option
are:
Constant | Value | Description |
---|---|---|
ORAREF_NO_LOCK | 1 | Does not lock the object in the database (default). |
ORAREF_EXCLUSIVE_LOCK | 2 | Maintains an exclusive lock on the object in the database. |
ORAREF_NOWAIT_LOCK | 3 | Maintains an exclusive lock on the object in the database with the nowait option. |
Examples
The following example shows the usage of the EditOption
property. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in the OraObject and OraRef Examples".
Applies To
Description
An integer code representing the server type of an element. This property is read-only at run time.
Usage
Data Type
Integer
Remarks
The codes correspond to the Oracle external data types. The following Oracle element data types are supported:
Constant | Value | External Data Type |
---|---|---|
ORATYPE_VARCHAR2 | 1 | VARCHAR2 |
ORATYPE_NUMBER | 2 | NUMBER |
ORATYPE_SINT | 3 | SIGNED INTEGER |
ORATYPE_FLOAT | 4 | FLOAT |
ORATYPE_VARCHAR | 9 | VARCHAR |
ORATYPE_DATE | 12 | DATE |
ORATYPE_UINT | 68 | UNSIGNED INTEGER |
ORATYPE_CHAR | 96 | CHAR |
ORATYPE_CHARZ | 97 | Null Terminated CHAR |
ORATYPE_BFLOAT | 100 | BINARY_FLOAT |
ORATYPE_BDOUBLE | 101 | BINARY_DOUBLE |
ORATYPE_OBJECT | 108 | Object |
ORATYPE_REF | 110 | Ref |
Applies To
Description
Returns True
if the collection iterator moves past the last element of a collection.
Usage
Data Type
Boolean
Examples
Applies To
Description
Indicates whether the current record position in a dynaset is after the last record. Not available at design time and read-only at run time.
Usage
Data Type
Integer
(Boolean)
Remarks
Returns True
if an attempt has been made to move after the last record in the dynaset using the MoveNext
method. Otherwise, returns False
.
If a recordset is empty, both BOF
and EOF
return True
.
Examples
This example demonstrates the use of the BOF
and EOF
properties to detect the limits of a recordset. Copy and paste this code into the definition section of a form. Then, press F5.
Applies To
Description
Specifies the name of the queue to which message should be moved if it cannot be processed successfully.
Usage
Data Type
String
Remarks
Applicable only for a message that is being enqueued.
Possible values are:
String
containing a valid queue name Null
(Default) A message is moved to the exception queue if the number of dequeue attempts has expired or has exceeded max_retries specified in the DBMS_AQADM.CREATE_QUEUE
command.
Applies To
Description
Returns True
if the OraBFILE
points to a BFILE
that exists on the database.
Usage
Data Type
Boolean
Remarks
Read privileges on the directory where the BFILE
is located are required to use this property. The operating system-specific permissions must have been set for the directory to make sure that the user can read the directory.
Appropriate privileges must be set up in the database previously. For example, to ensure that a user (scott
) can read a directory (BfileDirectory
) through the Exists
property, the following SQL statement must be executed:
Applies To
Description
Specifies, in seconds, the time for which the message is available for dequeuing.
Usage
Data Type
Integer
Remarks
This property is an offset from the delay. It is applicable only for a message that is being enqueued.
Possible Values are:
ORAAQ_MSG_NO_XPIRE
(0) Default 0
- The message will never expire.
Applies To
Description
Gets or sets the array size of the fetch.
Usage
Data Type
Integer
Applies To
Description
Gets or sets the array buffer size of the fetch.
Usage
Data Type
Integer
Applies To
Description
Returns the index of the field indicated by the field_name
argument.
Usage
Arguments
Arguments | Description |
---|---|
[in] field_name | The name of the field as it appears in the SQL statement that the dynaset used most recently. |
Data Type
Integer
Remarks
Accessing fields of a dynaset using an index is more efficient than accessing them by name. If you need to access a particular field many times, use this method to translate its name into its index.
Applies To
Description
Returns the field name in the SELECT
statement in the dynaset.
Usage
Arguments
Arguments | Description |
---|---|
[in] index | Index of the name of the field as it appears in the SQL statement. |
Data Type
String
Applies To
Description
Gets the original field name used in the SELECT
statement in the dynaset.
Usage
Arguments
Arguments | Description |
---|---|
[in] index | An Integer specifying the field index of the original field name as it appears in the SQL statement. |
Data Type
String
Remarks
The FieldOriginalName
property returns a string containing the original column name specified in the SQL statement during dynaset creation. This property is useful when a SQL statement contains SCHEMA.TABLE.COL
as the name of the field. This enables duplicate column names to be referenced. Another way to avoid duplicate columns is to specify an alias in the SQL statement.
Applies To
Description
Returns the index of the field indicated by the original field name used in the SQL SELECT
statement.
Usage
Arguments
Arguments | Description |
---|---|
[in] name | The original name of the field as it appears in the SQL statement. |
Data Type
Integer
Remarks
Accessing fields of a dynaset by index is more efficient than accessing them by name. If you need to access a particular field many times, use this method to translate its original name into its index.
Applies To
Description
Returns the collection of fields for the current row. Not available at design time and read-only at run time.
Usage
Data Type
OLE Object (OraFields
)
Remarks
You can access the fields in this collection by subscripting (using ordinal integer numbers) or by using a string denoting the field (column) name. You can obtain the count of the number of fields using the Count
property on the returned collection. A subscript that is not within the collection (0
to Count
- 1
) results in the return of a Null
OraField
object.
Applies To
Description
Gets or sets a filename. Read and write at run time.
Usage
Arguments
Arguments | Description |
---|---|
[in] [out] filename | A String specifying the directory name to be retrieved or set. |
Data Type
String
Remarks
This string can be case-sensitive depending on the database operating system.
Remarks
The OraDynaset
object does not support this property. Refine your record selection by using a SQL WHERE
clause or by using SQL parameters.
Applies To
Description
The format string used in OraNumber
operations. For details about format strings, see Oracle Database SQL Quick Reference. Read and write at run time.
Usage
Arguments
Arguments | Description |
---|---|
[in] formatstring | A format string used in OraNumber operations. |
Data Type
String
Remarks
An error is returned if the format string is set to an invalid value. To reset the format to the default, set it to an empty string.
Applies To
Description
Returns or sets the TIMESTAMP
format used to display the OraTimeStamp
object as a string.
Usage
Arguments
Arguments | Description |
---|---|
[in] format | The format used to display an OraTimeStamp object as a string. |
Data Type
String
Remarks
If Format
is Null
, the session TIMESTAMP
format is used to display the OraTimeStamp
object as a string.
Applies To
Description
Returns or sets the TIMESTAMP
WITH
TIME
ZONE
format used to display the OraTimeStampTZ
object as a string.
Usage
Arguments
Arguments | Description |
---|---|
[in] format | The format used to display an OraTimeStampTZ object as a string. |
Data Type
String
Remarks
If Format
is Null
, the session TIMESTAMP
WITH
TIME
ZONE
format is used to display the OraTimeStampTZ
object as a string.
Applies To
Description
Returns the hexidecimal value of the REF
.
Usage
Remarks
The hexidecimal value of the REF
can be used by the OraDatabase.FetchOraRef
method.
Applies To
Description
Returns or sets the Hour
attribute of an OraTimeStamp
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] hour | The Hour attribute of an OraTimeStamp object. |
Data Type
Integer
Applies To
Description
Returns or sets the Hour
attribute of an OraTimeStampTZ
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] hour | The Hour attribute of an OraTimeStampTZ object. |
Data Type
Integer
Applies To
Description
Gets and sets the Hours
attribute of an OraIntervalDS
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] hours | An Integer specifying the value of the Hours attribute of the OraIntervalDS object. |
Data Type
Integer
Applies To
Description
Returns True
if the collection instance of the OraCollection
object is locator-based; otherwise, returns False
.
Usage
Data Type
Integer
(Boolean)
Applies To
Description
Returns True
if the Value
property is another OraMetaData
object; otherwise, the property is False
.
Usage
Data Type
Boolean
Applies To
Description
Returns True
if the collection value of the OraCollection
object is Null
.
Usage
Data Type
Integer
(Boolean)
Remarks
Accessing elements of a Null
collection results in an error. The IsNull
property should be checked before accessing elements of an underlying collection.
Applies To
Description
Returns True
if the LOB or BFILE
refers to a Null
value in the database; otherwise, returns False
. This property is read-only.
Usage
Data Type
Boolean
Remarks
Some LOB or BFILE
properties and methods are not valid when a LOB or BFILE
is Null
. This property makes it possible to check for Null
values and avoid these errors.
Applies To
Description
Returns True
if underlying value instance of the OraObject
object is Null
. Read-only at run time.
Usage
Data Type
Integer
(Boolean)
Remarks
Accessing attributes of a Null
value instance results in an error. The IsNull
property can be checked before accessing attributes of an underlying value instance.
Examples
The following example shows the use of the IsNull
property. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in the OraObject and OraRef Examples".
Applies To
Description
Returns True
if the OraBFILE
object is open.
Usage
Data Type
Boolean
Remarks
The openness of an object OraBFILE
is local to this OraBFILE
object. If two OraBFILE
objects point to the same BFILE
in the database, and one OraBFILE
object calls the Open
method and the other does not, one OraBFILE
object will return True
for the IsOpen
property. The other will return False
.
Applies To
Description
Returns True
if the underlying Ref
value of the OraRef
object is Null
.
Usage
Data Type
Integer
(Boolean)
Remarks
Accessing the attributes of a Null
Ref
value results in an error. The IsRefNull
property should be checked before accessing attributes of an underlying referenceable object. This property is read-only at run time.
Applies To
Description
Gets the last error message. Not available at design time and read-only at run time.
Usage
Data Type
String
Applies To
Description
Returns the Bookmark
object of the row that was last modified by an Edit
or an AddNew
operation. Not available at design time and read-only at run time.
Usage
Data Type
The value is a string of binary data, but can be stored in a variable of String
or Variant
data type. The length of the string cannot be predicted, so do not use a fixed-length string.
Remarks
Use this property to make the last modified record the current record.
Applies To
Description
Returns the last nonzero error code generated by an Oracle database function for the specified object. Not available at design time and read-only at run time.
Usage
Data Type
Long Integer
Remarks
This property represents the last nonzero return value from an Oracle Call Interface (OCI) database function, or zero if no error has occurred since the last LastServerErrReset
request. For efficiency, only nonzero return values are returned; therefore, a nonzero value does not necessarily indicate that the most recently called OCI database function generated the error (because zero return values are not returned by way of the LastServerErr
method).
Orasession.LastServerErr
Returns all errors related to connections, such as errors on OpenDatabase
, BeginTrans
, CommitTrans
, Rollback
, and ResetTrans
method.
Oradatabase.LastServerErr
Returns all errors related to an Oracle cursor, such as errors on dynasets and from ExecuteSQL
method.
Examples
This example demonstrates the use of the CreateDynaset
method and the LastServerErr
and LastServerErrText
properties to determine whether an Oracle error has occurred, and to display the error message, respectively. Copy and paste this code into the definition section of a form. Then, press F5.
Applies To
Description
Returns the position at which a parsing error occurred in a SQL statement. Not available at design time and read-only at run time.
Usage
Data Type
Integer
Remarks
The LastServerErrPos
property returns 0
if no SQL statements have been parsed; -1
if the last parse was successful; and >= 0
if the last parse failed. Parsing is done on SQL statements before execution (using the CreateDynaset
or ExecuteSQL
method).
Applies To
Description
Returns the textual message associated with the current LastServerErr
property of the specified object. Not available at design time and read-only at run time.
Usage
Data Type
String
Remarks
The returned value indicates one of three possible states:
Null
is returned, an Oracle Call Interface (OCI) database function has not returned an error since the most recent LastServerErrReset
property. Null
value is returned, an OCI function has returned an error code; the returned string is the associated message. Examples
This example demonstrates the use of the CreateDynaset
method and the LastServerErr
and LastServerErrText
properties to determine whether an Oracle error has occurred and to display the error message. Copy and paste this code into the definition section of a form. Then, press F5.
Applies To
Description
Returns the maximum size of the collection.
Usage
Data Type
Integer
Remarks
For an OraCollection
object of type ORATYPE_TABLE
, this property returns the current size of the collection including deleted elements. For an OraCollection
object of type ORATYPE_VARRAY
, the property returns the maximum size of the collection.
Applies To
Description
Returns the minimum size of an OraParameter
or OraParamArray
string buffer or ByteArray
(for ORATYPE_RAW_BIN
). For OraParamArray
objects, the minimum size property is read-only at run time. For OraParameter
objects, the minimum size is read/write at run time.
Usage
Data Type
Integer
Remarks
This property gets the minimum number of characters or bytes to be allocated for each element of the array. For OraParamArray
objects, the size is specified using the AddTable
method.
Examples
Note: This example needs the following to be run: a PL/SQL procedure called EmployeeLong
with a GetEmpName
procedure that uses a table with the column name ENAME_LONG
that returns a long ename
of approximately 200 characters.
Applies To
Description
Returns or sets the Minute
attribute of an OraTimeStamp
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] minute | The Minute attribute of an OraTimeStamp object. |
Data Type
Integer
Applies To
Description
Returns or sets the Minute
attribute of an OraTimeStampTZ
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] minute | The Minute attribute of an OraTimeStampTZ object. |
Data Type
Integer
Applies To
Description
Gets and sets the Minutes
attribute of an OraIntervalDS
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] minutes | An Integer specifying the value of the Minutes attribute of the OraIntervalDS object. |
Data Type
Integer
Applies To
Description
Returns or sets the Month
attribute of an OraTimeStamp
object.
Usage
month
= OraTimeStampObj.Monthmonth
Arguments
Arguments | Description |
---|---|
[in] month | The Month attribute of an OraTimeStamp object. |
Data Type
Integer
Applies To
Description
Returns or sets the Month
attribute of an OraTimeStampTZ
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] month | The Month attribute of an OraTimeStampTZ object. |
Data Type
Integer
Applies To
Description
Gets and sets the Months
attribute of an OraIntervalYM
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] month | An Integer specifying the value of the Months attribute of the OraIntervalYM object. |
Data Type
Integer
Applies To
Description
Returns the name used to identify the given object. Not available at design time and read-only at run time.
Usage
Data Type
String
Remarks
oraclient.Name
Returns the name of the specified OraClient
object. This value is always local.
orafield.Name
Returns the name of the specified OraField
object. If this is a true database field (not an alias), this use returns the name of the field as it appears in the database. If a SQL statement was executed that contains, for example, calculated select list items or column aliases, then the name is the actual text provided in the SQL SELECT
statement.
oraparameter.Name
Returns the name of the specified OraParameter
object. In addition to identifying the parameter within a parameters collection, the parameter name is also used to match placeholders within SQL and PL/SQL statements for the purposes of parameter binding.
oraparamarray.Name
Returns the name of the specified OraParamArray
object. In addition to identifying the parameter within a parameters collection, the parameter name is also used to match placeholders within SQL and PL/SQL statements for the purposes of parameter binding.
orasession.Name
Returns the name of the specified OraSession
object. For automatically created sessions, this is the name assigned by the system (usually a hexadecimal number). For user-created sessions, this is the name originally provided in the CreateSession
method. Once created, a session name cannot be changed.
oraserver.Name
Returns the name of the physical connection of the specified OraServer
object.
orasubscription.Name
Returns the name used to represent the subscription. Name
here refers to the subscription name in the form of the string 'SCHEMA.QUEUE'
if the registration is for a single consumer queue and 'SCHEMA.QUEUE:CONSUMER_NAME'
if the registration is for a multiple consumer queue.
See Also:
|
Applies To
Description
Returns a 30-byte string representing the name of agent.
Usage
Data Type
String
Applies To
Description
A String
containing the name of the attribute.
Usage
Data Type
String
Remarks
Read-only at run time.
Applies To
Description
A String
containing the name of the attribute.
Usage
Data Type
String
Applies To
Description
Returns or sets the Nanosecond
attribute of an OraTimeStamp
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] nanosecond | The Nanosecond attribute of an OraTimeStamp object. |
Data Type
Integer
Applies To
Description
Returns or sets the Nanosecond
attribute of an OraTimeStampTZ
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] nanosecond | The Nanosecond attribute of an OraTimeStampTZ object. |
Data Type
Integer
Applies To
Description
Gets and sets the Nanoseconds
attribute of an OraIntervalDS
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] nanoseconds | An Integer specifying the value of the Nanoseconds attribute of the OraIntervalDS object. |
Data Type
Integer
Applies To
Description
Specifies the position of the message that will be retrieved.
Usage
Data Type
Integer
Remarks
Possible values are:
ORAAQ_DQ_FIRST_MSG
(1
) Retrieves the first message that is available and matches the search criteria.
ORAAQ_DQ_NEXT_TRANS
(2
) Skips the remainder of the current transaction group, if any, and retrieves the first message of the next transaction group. Used only if message grouping is enabled for the queue.
ORAAQ_DQ_NEXT_MSG
(3
) (Default) Retrieves the next message that is available and matches the search criteria.
Applies To
OraDynaset Object using the Address (OraAQAgent) Property Property
Description
Returns True
if the last call to the FindFirst
, FindLast
, FindNext
, or FindPrevious
method failed.
Usage
Data Type
Boolean
Applies To
"OraSQLStmt Object" created with ORASQL_NONBLK
option.
Description
Returns the status of the currently executing SQL as follows:
ORASQL_STILL_EXECUTING
If operation is still underway.
ORASQL_SUCCESS
If operation has completed successfully.
Any failures are thrown as exceptions.
The application can access the output parameters, if any, as in the blocking case, after successful execution of the SQL statement.
Usage
Return Values
Errors are thrown as exceptions.
Applies To
Description
Gets or sets the 1-based offset into the LOB or BFILE
for the next Read
or Write
operation. This property is read/write at run time.
Usage
Data Type
Integer
Remarks
This value is expressed in bytes for OraBLOB
and OraBFILE
or characters for the OraCLOB
object. The default value is 1
. Setting this value to 0
raises an error. When the PollingAmount
property is not 0
(polling is enabled), the Offset
property can only be set before the first Read
or Write
operation, or after the current polling operation has completed.
Applies To
Description
Returns the version number of Oracle Object for OLE. Not available at design time and read-only at run time.
Usage
Data Type
String
Remarks
This property returns a unique identifier for each release of Oracle Object for OLE.
Applies To
Description
Returns the options flag originally passed to the specified object. Not available at design time and read-only at run time.
Usage
Data Type
Long
Integer
Remarks
See the OpenDatabase
method for a description of the possible values of oradatabase.Options
.
See the CreateDynaset
method for a description of the possible values of oradynaset.Options
.
See the CreateSQL
method for a description of the possible values of orasqlstmt.Options
Applies To
Description
Returns the Oracle internal data type code for the field specified. Not available at design time and read-only at run time.
Usage
Data Type
Long
Integer
Remarks
The following Oracle Internal data types are returned.
Constant | Value | Internal Data Type |
---|---|---|
ORATYPE_VARCHAR2 | 1 | VARCHAR2 |
ORATYPE_NUMBER | 2 | NUMBER |
ORATYPE_LONG | 8 | LONG |
ORATYPE_DATE | 12 | DATE |
ORATYPE_RAW | 23 | RAW |
ORATYPE_LONGRAW | 24 | LONG RAW |
ORATYPE_CHAR | 96 | CHAR |
ORATYPE_BFLOAT | 100 | BINARY_FLOAT |
ORATYPE_BDOUBLE | 101 | BINARY_DOUBLE |
ORATYPE_MLSLABEL | 105 | MLSLABEL |
ORATYPE_OBJECT | 108 | OBJECT |
ORATYPE_REF | 110 | REF |
ORATYPE_CLOB | 112 | CLOB |
ORATYPE_BLOB | 113 | BLOB |
ORATYPE_BFILE | 114 | BFILE |
ORATYPE_TIMESTAMP | 187 | TIMESTAMP |
ORATYPE_TIMESTAMPTZ | 188 | TIMESTAMP WITH TIME ZONE |
ORATYPE_INTERVALYM | 189 | INTERVAL YEAR TO MONTH |
ORATYPE_INTERVALDS | 190 | INTERVAL DAY TO SECOND |
ORATYPE_TIMESTAMPLTZ | 232 | TIMESTAMP WITH LOCAL TIME ZONE |
ORATYPE_VARRAY | 247 | VARRAY |
ORATYPE_TABLE | 248 | NESTED TABLE |
These values can be found in the ORACLE_BASE\\ORACLE_HOME
\oo4o\oraconst.txt
file.
Applies To
Description
Returns the Oracle maximum display size for the field specified. Not available at design time and read-only at run time.
Usage
Data Type
Long
Integer
Remarks
This value is meaningful only when the value is returned as a character string, especially when using functions such as SUBSTR
or TO_CHAR
to modify the representation of the column.
Applies To
Description
Returns the Oracle maximum column size as stored in the Oracle data dictionary. Not available at design time and read-only at run time.
Usage
Data Type
Long
Integer
Remarks
The return value is dependent on the Oracle internal data type. The following values will be returned:
Oracle Column Type | Value |
---|---|
CHAR , VARCHAR2 , RAW | Length of the column in the table |
NUMBER | 22 (the internal length) |
DATE | 7 (the internal length) |
LONG , LONG RAW | 0 |
ROWID | System dependent |
Functions returning internal data type 1 , such as TO_CHAR() | Same as orafield.MaxDSize |
Applies To
Description
Indicates whether or not Null
values are permitted for this column. Not available at design time and read-only at run time.
Usage
Data Type
Integer
(Boolean)
Remarks
This property returns True
if Null
values are permitted, otherwise, it returns False
.
Applies To
Description
Returns the precision of a numeric column. Not available at design time and read-only at run time.
Usage
Data Type
Long
Integer
Remarks
This value is meaningful only when the value returned is numeric. Precision is the total number of digits of a number.
Applies To
Description
Returns the scale of a numeric column. Not available at design time and read-only at run time.
Usage
Data Type
Long
Integer
Remarks
This value is meaningful only when the value returned is numeric. The SQL types REAL
, DOUBLE
PRECISION
, FLOAT
, and FLOAT
(N
) return a scale of -127
.
Applies To
Description
Returns the OraParameters
collection of the specified database. Not available at design time and read-only at run time.
Usage
Data Type
OLE Object (OraParameters
)
Remarks
You can access the parameters in this collection by subscripting (using ordinal integer numbers) or by using the name the parameter that was given at its creation. You can obtain the number of parameters in the collection using the Count
property of the returned collection. Integer subscripts begin with 0
and end with Count-1
. Out-of-range indexes and invalid names return a Null
OraParameter
object.
In addition to accessing the parameters of the collection, you can also use the collection to create and destroy parameters using the Add
and Remove
methods, respectively.
Applies To
Description
Gets and sets the Pin
option for the referenceable object during the pin operation.
Usage
Arguments
Arguments | Description |
---|---|
[in] PinOption | An Integer representing the Pin option. |
Data Type
Integer
(Boolean)
Remarks
Possible values returned by the pin_option
property are:
Constant | Value | Description |
---|---|---|
ORAREF_READ_ANY | 3 | If the object is already in the object cache, returns it, otherwise, retrieves it from the database(default). |
ORAREF_READ_RECENT | 4 | If the object is retrieved into the cache during a transaction, returns it from the cache, otherwise retrieves the object from the database. |
ORAREF_READ_LATEST | 5 | Always retrieves the latest values from the database. |
Examples
The following example shows the usage of the PinOption
property. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in the OraObject and OraRef Examples".
Applies To
Description
Gets or sets the total amount to be read or written for multiple chunk Read
and Write
operations (polling). A value of zero means that polling is not used. This property is read/write at run time.
Usage
Data Type
Integer
Remarks
This value is expressed in bytes for the OraBLOB
and OraBFILE
objects, or characters for the OraCLOB
object. It is set before beginning a multiple-chunk read or write operation. After it is set, a series of Read
or Write
operations must be issued until the LOB Status
property no longer returns ORALOB_NEED_DATA
.This occurs when the PollingAmount
bytes or characters have been read. Attempting to do other LOB operations before the end of the polling operation results in an error.
Applies To
Description
Specifies the priority of the message.
Usage
Data Type
Integer
Remarks
A smaller number indicates higher priority.
Possible Values are:
ORAAQ_NORMAL
(Default): 0
ORAAQ_HIGH
: -10
ORAAQ_LOW
: 10
This property can be set while enqueuing and can then be used for priority-based dequeuing.
Applies To
Description
Returns the database version.
Usage
Data Type
String
Applies To
Description
OraDynaset
Returns the total number of records in the dynaset.
OraSQLStmt
Returns the number of records processed in an insert, update, or delete statement, even when there is a failure executing the SQL statement.
Not available at design time and read-only at run time.
Usage
Data Type
Long
Integer
Remarks
Referencing this property requires that the entire result table be fetched immediately from an Oracle database to determine the count of records. Due to the potentially severe performance impact of this, the user should avoid using this property and instead execute an additional query using the COUNT(*)
clause, and use the SnapshotID
property to guarantee time consistency. For an example, see the SnapShot
property.
Referencing this property while using the ORADYN_NOCACHE
option of the CreateDynaset
method causes an implicit MoveLast
operation and makes the current record the last record in the dynaset.
Examples
RecordCount Example (OraDynaset)
This example demonstrates the use of the RecordCount
property to determine the number of records retrieved with a SELECT
statement and OraDynaset
. Copy and paste this code into the definition section of a form. Then, press F5.
Record Count Example (OraSQLStmt)
The following example shows the number of records inserted into the database after using an INSERT
statement with OraSQLStmt
.
Applies To
Description
Specifies that the message of this queue object is enqueued ahead of the message specified by the message ID.
Usage
Data Type
String
Remarks
This method is applicable only for an enqueue operation.
Possible values include:
ORAAQ_NULL_MSGID
(Default): No message identifier specified. Setting this property invokes enqueue with the ORAAQ_ENQ_BEFORE
option. Set this property to ORAAQ_NULL_MSGID
to place the message on top of the queue.
Applies To
Description
Returns the row number of the current row in the dynaset. Not available in design time and read-only in run time.
Usage
Data Type
Integer
Applies To
Description
Gets or sets the element values from the Variant
SAFEARRAY
.
Usage
Arguments
Arguments | Description |
---|---|
SafeArray | A Variant representing SafeArray format. |
Data Type
A Variant
representing a SafeArray
format.
Remarks
This property is only valid for simple scalar elements types, such as VARCHAR2
and NUMBER
. This property raises an error for element type LOBS, Objects, Refs, and so on.
The Variant
SAFEARRAY
index starts at 0
. When converting to SAFEARRAY
format, the OraCollection
object converts its element value to its corresponding SAFEARRAY
Variant
type. The following table explains collection element types and their corresponding SAFEARRAY
Variant
types:
Collection Element Type | SAFEARRAY of |
---|---|
Date | String |
Number | String |
CHAR , VARCHAR2 | String |
Real | Real |
Integer | Integer |
For setting a SAFEARRAY
to a collection, OraCollection
converts the SAFEARRAY
elements to its nearest collection element type.
Applies To
Description
Returns or sets the Second
attribute of an OraTimeStamp
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] second | The Second attribute of an OraTimeStamp object. |
Data Type
Integer
Applies To
Description
Returns or sets the Second
attribute of an OraTimeStampTZ
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] second | The Second attribute of an OraTimeStampTZ object. |
Data Type
Integer
Applies To
Description
Gets and sets the Seconds
attribute of an OraIntervalDS
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] seconds | An Integer specifying the value of the Seconds attribute of the OraIntervalDS object. |
Data Type
Integer
Applies To
Description
Returns the OraServer
object to which this object is attached.
Usage
Data Type
OLE Object (OraServer
)
Applies To
Description
Specifies the Oracle external type of a SQL or PL/SQL bind variable. Not available at design time and read/write at run time.
Read-only for the OraParamArray
object. Specify the ServerType
property during the AddTable
method.
Usage
Data Type
Integer
Remarks
Used to specify the external data type of SQL or PL/SQL (in/out) bind variables. This is necessary because no local parsing of the SQL statement or PL/SQL block is done to match the data types of placeholders in the SQL statement or PL/SQL block.
After an OraParameter
object has been set to ServerType
BLOB
, CLOB
, BFILE
, OBJECT
, REF
, VARRAY
, or NESTED
TABLE
, it cannot be changed to any other ServerType
property.
The following Oracle external data types are supported.
Constant | Value | Internal Data Type |
---|---|---|
ORATYPE_VARCHAR2 | 1 | VARCHAR2 |
ORATYPE_NUMBER | 2 | NUMBER |
ORATYPE_SINT | 3 | SIGNED INTEGER |
ORATYPE_FLOAT | 4 | FLOAT |
ORATYPE_STRING | 5 | Null Terminated STRING |
ORATYPE_LONG | 8 | LONG |
ORATYPE_VARCHAR | 9 | VARCHAR |
ORATYPE_DATE | 12 | DATE |
ORATYPE_RAW | 23 | RAW |
ORATYPE_LONGRAW | 24 | LONG RAW |
ORATYPE_UINT | 68 | UNSIGNED INTEGER |
ORATYPE_CHAR | 96 | CHAR |
ORATYPE_CHARZ | 97 | Null Terminated CHAR |
ORATYPE_BFLOAT | 100 | BINARY_FLOAT |
ORATYPE_BDOUBLE | 101 | BINARY_DOUBLE |
ORATYPE_CURSOR | 102 | PLSQL CURSOR |
ORATYPE_MLSLABEL | 105 | MLSLABEL |
ORATYPE_OBJECT | 108 | OBJECT |
ORATYPE_REF | 110 | REF |
ORATYPE_CLOB | 112 | CLOB |
ORATYPE_BLOB | 113 | BLOB |
ORATYPE_BFILE | 114 | BFILE |
ORATYPE_TIMESTAMP | 187 | TIMESTAMP |
ORATYPE_TIMESTAMPTZ | 188 | TIMESTAMP WITH TIMEZONE |
ORATYPE_INTERVALYM | 189 | INTERVAL YEAR TO MONTH |
ORATYPE_INTERVALDS | 190 | INTERVAL DAY TO SECOND |
ORATYPE_TIMESTAMPLTZ | 232 | TIMESTAMP WITH LOCAL TIME ZONE |
ORATYPE_VARRAY | 247 | VARRAY |
ORATYPE_TABLE | 248 | NESTED TABLE |
ORATYPE_RAW_BIN | 2000 | RAW |
These values can be found in the ORACLE_BASE\\ORACLE_HOME
\oo4o\oraconst.txt
file.
Examples
This example demonstrates the Add
and Remove
parameter methods, the ServerType
parameter property, and the ExecuteSQL
database method to call a stored procedure and function (located in ORAEXAMP.SQL
). Copy and paste this code into the definition section of a form. Then, press F5.
Applies To
Description
Returns the OraSession
object associated with the specified object. Not available at design time and read-only at run time.
Usage
Data Type
OLE Object (OraSession
)
Remarks
oraconnection.Session
Returns the OraSession
object in which this OraConnection
object resides.
oradatabase.Session
Returns the OraSession
object associated with this OraDatabase
object. Each database is a part of one session, which is, by default, the session associated with the application.
oradynaset.Session
Returns the OraSession
object associated with this OraDynaset
object.
orasqlstmt.Session
Returns the OraSession
object associated with this OraSQLStmt
object.
Applies To
Description
Returns the collection of all sessions for the specified OraClient
object. Not available at design time and read-only at run time.
Usage
Data Type
OLE Object (OraSessions
)
Remarks
You can access a session in this collection by subscripting (using ordinal numbers) or by using the name the session was given at its creation. You can obtain the total number of sessions in the collection by using the Count
property of the returned collection. Integer subscripts begin with 0
and end with Count-1
. Out-of-range indexes and invalid names return a Null
OraSession
object.
Applies To
Description
Returns the number of characters or bytes of the Variant
associated with the returned value of this field. Not available at design time and read-only at run time.
Usage
Data Type
Long
Integer
Remarks
This property returns 0
for LONG
or LONG
RAW
fields. Use the FieldSize
method to determine the length of LONG
or LONG
RAW
fields.
Applies To
Description
Returns the current size of the given collection. Read-only at run time.
Usage
Data Type
Integer
Remarks
For an OraCollection
object of type ORATYPE_TABLE
, this property returns the current size of the collection including deleted elements.
Applies To
Description
Returns the number of bytes in OraBLOB
and OraBFILE
objects or the number of characters in an OraCLOB
object. Read-only.
Usage
Applies To
Description
Returns the SnapshotID
.
Read and write at run time.
Usage
Remarks
The SnapshotID
represents the snapshot from which this dynaset was created. It can be thought of as a timestamp. It can be passed into other CreateDynaset
method calls to cause them to be created using data from the same point in time as the original dynaset.
The Snapshot
property can be set with the value of another Snapshot
. That new snapshot is used during the next Refresh
operation when the query is reexecuted. The Snapshot
property always returns the SnapshotID
on which this OraDynaset
object was based, not any other SnapshotID
set through the snapshot property.
The SnapshotID
becomes invalid after a certain amount of time; that amount of time is dependent on the amount of activity and the configuration of the database. When this happens, you get a Snapshot
too
old
error message. For more information about snapshots, see the Oracle Database Concepts.
This SnapshotID
represents the point in time when this dynaset was created. Changes to this dynaset (Edit
, Delete
, and AddNew
operations) is not reflected in additional dynasets created using this SnapshotID
because they occurred after that point in time.
SnapshotID
objects are only meaningful for SELECT
statements where the tables referenced are real database tables, as opposed to pseudo tables such as DUAL
.
One valuable use of the SnapshotID
is to calculate the number of rows in a table without using the RecordCount
property which causes every row to be fetched. See "Example: Counting Rows in a Dynaset".
Data Type
Object
Examples
Example: Using the SnapShot Property
This example shows the use of the SnapShot
property.
Example: Counting Rows in a Dynaset
This example counts the number of rows in a dynaset without using the RecordCount
property, which fetches every row. Note that the record count this returns cannot take into account any AddNew
or Delete
operations, making the information meaningful only immediately after the dynaset is created
Remarks
The OraDynaset
object does not support this property. Sort your record set by using a SQL ORDER
BY
clause.
Applies To
Description
Returns or sets the SQL statement used to create the specified dynaset or OraSQLStmt
object. Not available at design time and read/write at run time.
Usage
Data Type
String
Remarks
The first use returns the contents of the SQL statement buffer, and the second use sets the contents of the SQL statement buffer.
The SQL statement buffer initially contains the SQL statement used to create the dynaset or OraSQLStmt
object. The contents of the SQL statement buffer are executed whenever the Refresh
method is issued.
Examples
This example demonstrates the use of parameters, the Refresh
method, and the SQL property to restrict selected records. Copy and paste this code into the definition section of a form. Then, press F5.
Applies To
Description
Returns an integer indicating the status of the specified parameter. Not available at design time and read-only at run time.
Usage
Data Type
Integer
Remarks
The Status
property is interpreted as a series of bits, each providing information about the parameter. Parameters can be bound only if they are enabled, and can be enabled only if they are auto-enabled.
The parameter Status
property bit values are:
Constant | Value | Description |
---|---|---|
ORAPSTAT_INPUT | &H1& | Parameter can be used for input. |
ORAPSTAT_OUTPUT | &H2& | Parameter can be used for output. |
ORAPSTAT_AUTOENABLE | &H4& | Parameter is AutoBindEnabled. |
ORAPSTAT_ENABLE | &H8& | Parameter is Enabled. This bit is always set. |
These values are located in the ORACLE_BASE\\ORACLE_HOME
\oo4o\oraconst.txt
file.
Examples
This example demonstrates the use of parameters and the ExecuteSQL
method to call a stored procedure (located in ORAEXAMP.SQL
). After calling the stored procedure, the Status
property of each parameter is checked. Copy and paste this code into the definition section of a form. Then, press F5.
Applies To
Description
Returns the status of the current polling operation.
Read-only.
Usage
Data Type
Integer
Remarks
This value only has meaning when the PollingAmount
property is not zero, and a Read
operation has occurred. Possible return values are:
ORALOB_NEED_DATA
There is more data to be read or written.
ORALOB_NODATA
There is no data to be read or written, usually due to an error condition.
ORALOB_SUCCESS
LOB The data was read or written successfully.
Applies To
Description
Returns the OraSubscriptions
collection of the specified database. Not available at design time and read-only at run time.
Usage
Data Type
OLE Object (OraSubscriptions
)
Remarks
You can access the subscriptions in this collection by subscripting (using ordinal integer numbers). You can obtain the number of subscriptions in the collection using the Count
property of the returned collection. Integer subscripts begin with 0 and end with Count-1
. Out-of-range indexes return a Null
OraSubscription
object.
In addition to accessing the subscriptions of the collection, you can also use the collection to create and destroy subscriptions using the Add
and Remove
methods, respectively.
Examples
See "Example: Registering an Application for Notification of Database Events" for a complete example.
Applies To
Description
A String
containing the name of the object table in which the underlying referenceable object resides.
Usage
Data Type
String
Remarks
This property is read-only.
Applies To
Description
Returns the current size of the given collection. Read-only at run time.
Usage
Data Type
Integer
Remarks
For an OraCollection
object of type ORATYPE_TABLE
, it returns the current size of the collection, excluding deleted elements.
Applies To
Description
Returns or sets the time zone information of an OraTimeStampTZ
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] timezone | The time zone attribute of an OraTimeStampTZ object. |
Data Type
String
Remarks
Setting the TimeZone
property does not change the Coordinated Universal Time (UTC) datetime values stored in the OraTimeStampTZ
object. However, the local datetime values in the specified time zone can change.
The following table shows the UTC datetime values that correspond to the datetime and time zone values of the OraTimeStampTZ
object in the example.
Properties | OraTSTZ Object Values | UTC Date Time Values of the OraTSTZ Object |
---|---|---|
Year | 2003 | 2003 |
Month | 4 | 4 |
Day | 29 | 29 |
Hour | 12 | 19 |
Minute , Second , Nanosecond | 0 | 0 |
TimeZone | -07:00 | 00:00 |
Setting the TimeZone
property to -08:00
changes the datetime values in the specified time zone of the OraTimeStampTZ
object, but does not change the UTC datetime values.
Properties | New OraTSTZ Object Values | UTC Date Time Values of the New OraTSTZ Object |
---|---|---|
Year | 2003 | 2003 |
Month | 4 | 4 |
Day | 29 | 29 |
Hour | 11 | 19 |
Minute , Second , Nanosecond | 0 | 0 |
TimeZone | -08:00 | 00:00 |
Examples
Applies To
Description
Gets and sets the total number of days that this OraIntervalDS
object represents.
Usage
Arguments
Arguments | Description |
---|---|
[in] totalDays | A Variant type of any numeric value or an OraNumber object specifying the OraIntervalDS object as the total number of days. |
Data Type
Double
Examples
Applies To
Description
Gets and sets the total number of years that this OraIntervalYM
object represents.
Usage
Arguments
Arguments | Description |
---|---|
[in] totalYears | A Variant type of any numeric value specifying the OraIntervalYM object as the total number of years. |
Data Type
Double
Examples
Applies To
Description
Indicates whether or not the given dynaset can support transaction processing. Not available at design time and read-only at run time.
Usage
Data Type
Integer
(Boolean)
Remarks
This property always returns True
.
Applies To
Description
Indicates whether or not a field value was truncated when fetched. Not available at design time and read-only at run time.
Usage
Data Type
Integer
(Boolean)
Remarks
This property returns True
if truncated data is returned; otherwise, it returns False
. Truncation can only occur for LONG
or LONG
RAW
fields. Use this property to decide whether more data needs to be retrieved from an Oracle database using the GetChunk
method.
Applies To
Description
Returns the Variant
type of the specified object. Not available at design time and read-only at run time.
Usage
Data Type
Integer
Remarks
orafield.Type
Returns the Variant
data type (see Visual Basic documentation) associated with the returned value of this field.
oraparameter.Type
Returns an integer indicating the Variant
data type that is actually bound to the SQL statement. This may differ from the Variant
data type of oraparameter.Value
, because internal conversions may be necessary to obtain a data type common to both Visual Basic and Oracle Database.
Users can expect the following mapping from Oracle internal data types:
Oracle Data Type | Constant | Value | Data Type |
---|---|---|---|
BINARY_DOUBLE | ORADB_DOUBLE | 7 | Double |
BINARY_FLOAT | ORADB_SINGLE | 6 | Single |
BLOB | ORADB_OBJECT | 9 | OraBLOB |
CHAR | ORADB_TEXT | 10 | String |
CLOB | ORADB_OBJECT | 9 | OraCLOB |
DATE | ORADB_DATE | 8 | Variant |
DATE | ORADB_DATE | 8 | Date |
INTERVAL DAY TO SECOND | ORADB_OBJECT | 9 | OraIntervalDS |
INTERVAL YEAR TO MONTH | ORADB_OBJECT | 9 | OraIntervalYM |
LONG | ORADB_MEMO | 12 | String |
LONG RAW | ORADB_LONGBINARY | 11 | String |
NESTED TABLE | ORADB_OBJECT | 9 | OraBFILE |
NUMBER (1-4, 0) | ORADB_INTEGER | 3 | Integer |
NUMBER (5-9, 0) | ORADB_LONG | 4 | Long Integer |
NUMBER (10-15, 0) | ORADB_DOUBLE | 7 | Double |
NUMBER (16-38, 0) | ORADB_TEXT | 10 | String |
NUMBER (1-15, n) | ORADB_DOUBLE | 7 | Double |
NUMBER (16-38, n) | ORADB_TEXT | 10 | String |
RAW | ORADB_LONGBINARY | 11 | String |
REF | ORADB_OBJECT | 9 | OraCollection |
TIMESTAMP | ORADB_OBJECT | 9 | OraTimeStamp |
TIMESTAMP WITH LOCAL TIME ZONE | ORADB_OBJECT | 9 | OraTimeStamp |
TIMESTAMP WITH TIME ZONE | ORADB_OBJECT | 9 | OraTimeStampTZ |
VARRAY | ORADB_OBJECT | 9 | OraCollection |
VARCHAR2 | ORADB_TEXT | 10 | String |
These values are located in the ORACLE_BASE\\ORACLE_HOME
\oo4o\oraconst.txt
file and are intended to match similar constants in the Visual Basic file datacons.txt
file.
Note that fields of type DATE
are returned in the default Visual Basic format as specified in the Control Panel, even though the default Oracle date format is "DD-MMM-YY".
Note that columns defined as NUMBER
instead of NUMBER(precision
, scale)
are, by definition, floating point numbers with a precision of 38. This means that the Type
property returns a type of ORADB_TEXT
for these columns.
Applies To
Description
A integer code representing the type of this attribute.
Usage
Data Type
Integer
Remarks
These integer codes correspond to external data types in Oracle Call Interface (OCI). See Oracle data types.
Applies To
Description
Returns the type code of the collection.
Usage
Data Type
Integer
Remarks
This property returns one of the following values:
Constant | Value | Description |
---|---|---|
ORATYPE_VARRAY | 247 | Collection is VARRAY type. |
ORATYPE_TABLE | 248 | Collection is nested table type. |
Applies To
Description
Returns type of the schema object described by the OraMetaData
object.
Usage
Remarks
The possible values include the following constants:
Constants | Value |
---|---|
ORAMD_TABLE | 1 |
ORAMD_VIEW | 2 |
ORAMD_COLUMN | 3 |
ORAMD_COLUMN_LIST | 4 |
ORAMD_TYPE | 5 |
ORAMD_TYPE_ATTR | 6 |
ORAMD_TYPE_ATTR_LIST | 7 |
ORAMD_TYPE_METHOD | 8 |
ORAMD_TYPE_METHOD_LIST | 9 |
ORAMD_TYPE_ARG | 10 |
ORAMD_TYPE_RESULT | 11 |
ORAMD_PROC | 12 |
ORAMD_FUNC | 13 |
ORAMD_ARG | 14 |
ORAMD_ARG_LIST | 15 |
ORAMD_PACKAGE | 16 |
ORAMD_SUBPROG_LIST | 17 |
ORAMD_COLLECTION | 18 |
ORAMD_SYNONYM | 19 |
ORAMD_SEQENCE | 20 |
ORAMD_SCHEMA | 21 |
ORAMD_OBJECT_LIST | 22 |
ORAMD_OBJECT_LIST | 23 |
ORAMD_DATABASE | 24 |
Note: If this version of theOraMetaData object is used on Oracle Database release 8.1 or later, values higher than 24 are possible if the database is enhanced to introduce new schema types. |
Applies To
Description
Specifies a String
containing the name of the user-defined type of the object.
Usage
Data Type
String
Remarks
This property is read-only at run time.
Applies To
Description
Returns whether or not the specified dynaset is updatable. Not available at design time and read-only at run time.
Usage
Data Type
Integer
(Boolean)
Remarks
Returns True
if the rows in the specified dynaset can be updated; otherwise, it returns False
.
The updatability of the resultant dynaset depends on the Oracle SQL rules of updatability, on the access you have been granted, and on the read-only flag of the CreateDynaset
method.
To be updatable, three conditions must be met:
ROWID
references to the selected rows of the query. Any SQL statement that does not meet these criteria is processed, but the results are not updatable and this property returns False
.
Examples
This example demonstrates the use of the Updatable
method. Copy and paste this code into the definition section of a form. Then, press F5.
Applies To
Description
Returns or sets the value of the given object. Not available at design time and read/write at run time.
Usage
Data Type
Variant
Remarks
Orafield.Value
Returns the value of the field as a Variant
.
data_value
=
orafield.Value
sets the contents of the field. Fields can contain Null
values. You can test the Value
property with the Visual Basic function IsNull()
to determine whether the value is null upon return. You can also assign Null
to the Value
property whenever the current record is editable. Field values are cached locally as the data is retrieved from the database. However, in the case of a LONG
or LONG
RAW
fields, some data may not be retrieved and stored locally. In these cases, data is retrieved as required using the methods described in the GetChunk
field method. The maximum size of a LONG
or LONG
RAW
field that can be retrieved directly through the Value
property is approximately 64 KB. You must retrieve data fields larger than 64 KB indirectly, using the GetChunk
method.
OraParameter.Value
Returns the value of the parameter as a Variant
.
data_value
= oraparameter.Value
sets the contents of the parameter. Note that changing the Variant
data type of the value can have significant impact on the processing of associated SQL and PL/SQL statements.
Note that fields of type DATE
are returned in the default Visual Basic format of "MM/DD/YY" even though the default Oracle date format is "DD-MMM-YY".
The Value
argument can be an Oracle Database 10g object, such as an OraBLOB
.
Similar to a dynaset, the object obtained from parameter Value
property always refers to the latest value of the Parameter
. The Visual Basic value Null
can also be passed as a value. The Visual Basic value EMPTY
can be used for BLOB
and CLOB
to mean an empty LOB, and for OBJECT
, VARRAY
, and NESTED
TABLE
to mean an object whose attributes are all Null
.
Applies To
Description
Gets or sets the value of the attribute. This value could be an instance of an OraObject
, OraRef
, or OraCollection
object, or any of the supported scalar types, such as Integer
or Float
.
Usage
Data Type
Variant
Remarks
This is the default property for this object.
The Value
property of the OraAttribute
object returns the value of the attribute as a Variant
. The Variant
type of the attribute depends on the attribute type of the attribute. Attribute values can be Null
and can be set to Null
. For attribute of type objects, REF
, LOB and Collection, attribute values are returned as corresponding OO4O objects for that type.
The following table identifies the attribute type and the return value of the Value
property of the OraAttribute
object:
Element Type | Element Value |
---|---|
Object | OraObject |
REF | OraRef |
VARRAY , Nested Table | OraCollection |
BLOB | OraBLOB |
CLOB | OraCLOB |
BFILE | OraBFILE |
Date | String |
Number | String |
CHAR ,VARCHAR2 | String |
Real | Real |
Integer | Integer |
Applies To
Description
Returns or sets the value of the given object.
Usage
Data Type
String
Remarks
The Value
property represents the actual message for RAW
as well as user-defined types.
This property is not available at design time and read/write at run time.
Examples
Applies To
Description
When read, the Value
property provides a string representation of the value of the OraIntervalDS
object using the format [+/-]Day HH:MI:SSxFF. When set, the Value
property accepts a Variant
of type String
, a numeric value, or an OraIntervalDS
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] value | A Variant of type String , a numeric value, or an OraIntervalDS object. |
Data Type
Variant
Remarks
If the value set is a Variant
of type String
, it must be in the following format: [+/-] Day HH:MI:SSxFF.
If the value set is a numeric value, the value provided should represent the total number of days that the OraIntervalDS
object represents.
Examples
Applies To
Description
When read, the Value
property provides a string representation of the value of the OraIntervalYM
object using the format YEARS-MONTHS.
When set, the Value
property accepts a Variant
of type String
, a numeric value, or an OraIntervalYM
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] value | A Variant of type String , a numeric value, or an OraIntervalYM object. |
Data Type
String
Remarks
If the value set is a Variant
of type String
, it must be in following format: [+/-] YEARS-MONTHS.
If the value set is a numeric value, the value provided should represent the total number of years that the OraIntervalYM
object represents.
Examples
Applies To
Description
A String containing the value of the attribute.
Usage
Data Type
String
Remarks
This is the default property.
Applies To
Description
When read, the Value
property provides a string representation of the value of the OraNumber
object using the current format string. When set, the Value
property accepts a Variant
of type String
, OraNumber
, or a numeric value. Read and write at run time.
Usage
Arguments
Arguments | Description |
---|---|
[in] variantval | A Variant of type String , OraNumber , or a numeric value. |
Data Type
Variant
Remarks
If the Value
property is set to a numeric type, such as a LONG
, it is limited to the maximum precision Visual Basic provides for numerical values.
If the current format cannot be applied successfully to the value, an error is raised. An error is also raised if this property is set to a Variant
value that cannot be converted to a number, such as a string of nonnumeric characters.
Applies To
Description
When read, the Value
property provides a string representation of the value of the OraTimeStamp
object. If the Format
property is not null, the output string format is in the format specified by the Format
property; otherwise, the output string format is in the session TIMESTAMP
format (NLS_TIMESTAMP_FORMAT
). When set, the Value
property accepts a Variant
of type String
, Date
, or OraTimeStamp
.
Usage
Arguments
Arguments | Description |
---|---|
[in] value | A Variant of type String , Date , or OraTimeStamp . |
Data Type
String
Remarks
If the value is of type String
and Format
is not null, the string format must match the Format
property. If the Format
property is null, the string format must match the session TIMESTAMP
format.
Examples
Applies To
Description
When read, the Value
property provides a string representation of the value of the OraTimeStampTZ
object. If the Format
property is not null, the output string format is in the format specified by the Format
property; otherwise, the output string format is in the session TIMESTAMP
WITH
TIME
ZONE
format (NLS_TIMESTAMP_TZ_FORMAT
). When set, the Value
property accepts a Variant
of type String
, Date
, or OraTimeStampTZ
.
Usage
Arguments
Arguments | Description |
---|---|
[in] value | A Variant of type String , Date , or OraTimeStampTZ . |
Data Type
String
Remarks
If the Variant
is of type String
and the Format
property is not null, the string format must match the Format
property. If the Format
property is null, the string format must match the session TIMESTAMP
WITH
TIME
ZONE
format.
If the Variant
is of type Date
, the date-time value in Date
is interpreted as the date-time value in the session time zone. The time zone information in the OraTimeStampTZ
object contains the session time zone.
Examples
Applies To
Description
Returns a String containing user-assigned version of the type of underlying value instance.
Usage
Data Type
String
Remarks
This property is read-only at run time.
Applies To
Description
Specifies the transactional behavior of the enqueue request.
Usage
Data Type
Integer
Remarks
This property is applicable only for an enqueue operation.
Possible values are:
ORAAQ_ENQ_IMMEDIATE
(1
) The enqueue operation constitutes a transaction of its own. Set this property to make the message visible immediately after the enqueue operation.
ORAAQ_ENQ_ON_COMMIT
(2
) (Default) The enqueue is part of the current transaction, and the message is visible only after the transaction commits.
Examples
Applies To
Description
Specifies the wait time (in seconds), if there is currently no message available.
Usage
Data Type
Integer
Remarks
Applicable only for a dequeue operation.
Possible values are:
ORAAQ_DQ_WAIT_FOREVER
(-1
) (Default) Waits forever.
ORAAQ_DQ_NOWAIT
(0
) Does not wait.
Applies To
Description
Gets and sets a Boolean value that indicates whether this field name is given as an attribute. If the value is False
, the field name is given as an element. Readable and writable at run time.
Usage
Remarks
The default value for this property is False
.
Fields of type BLOB
, CLOB
, BFILE
, Object
, VARRAY
, Nested
Table
, Long
or LongRaw
cannot be XML attributes.
Applies To
Description
Gets and sets the attribute name that replaces id
(as in <TYPENAME_ITEM
id
= "1">
) in the rendering of collection items that occurs when GetXML
or GetXMLToFile
methods are called. Readable and writable at run time.
Usage
Remarks
The default value for this property is id
. If this property is set to Null
or an empty String
(""
), the collectionid
attribute is omitted. The attribute name must be valid or an error is raised. The case is preserved.
Applies To
Description
Gets or sets a string value in the encoding tag of the generated XML document.
Usage
Remarks
This property is useful when the XML document generated by OO4O is converted to a different character set encoding before it is stored or parsed. This might occur if the property is to be loaded into a database or stored in a file system.
This property only sets the encoding tag value; it does not change the actual encoding of the document. The document generated by the GetXML
method in Visual Basic is encoded in UCS2. The documents generated by the GetXMLToFile
method use the same character set as the current NLS_LANG
setting.
If this property is set to an empty String, the default encoding tags are used. To omit the tag entirely, use OraDynaset.XMLOmitEncodingTag
.
No validity checking of the chosen encoding is done.
Applies To
Description
Gets and sets a Boolean value that indicates whether a null indicator attribute is used in the case of Null
field values. If the property is False
, tags with Null
values are omitted. Readable and writable at run time.
Usage
Remarks
The default value for this property is False
.
Applies To
Description
Gets or sets a Boolean value that determines if the encoding tag should be omitted.
Usage
Remarks
The default value is False
.
If this property is set to False
, the value of the XMLEncodingTag
property is used in the encoding tag.
Applies To
Description
Gets and sets the attribute name that replaces id
(as in <ROW
id=
"1">
) in the rendering of XML that occurs when GetXML
or GetXMLToFile
methods are called. Readable and writable at run time.
Usage
Remarks
The default value for this property is id
. If this property is set to Null
or an empty string (""
), the rowid
attribute is omitted. The attribute name must be valid or an error is raised. The case is preserved.
Applies To
Description
Gets or sets the tag name that replaces the rowset tag <ROWSET>
in the rendering of XML that occurs when GetXML
or GetXMLToFile
methods are called. Readable and writable at run time.
Usage
Remarks
The default value for this property is ROWSET
. The tag name must be valid or an error is raised. The case is preserved. This tag is the root, unless schema metadata is requested with the document.
Applies To
Description
Gets and sets the tag name that replaces <ROW>
in the rendering of XML that occurs when GetXML
or GetXMLToFile
methods are called. Readable and writable at run time.
Usage
Remarks
The default value for this property is ROW
. If this property is set to Null
or an empty string (""
), the <ROW>
tag is omitted. The tag name must be valid or an error is raised. The case is preserved.
Applies To
Description
Gets and sets the tag name that is used for this field in the rendering of XML that occurs when GetXML
or GetXMLToFile
methods are called. Readable and writable at run time.
Usage
Remarks
The default value for this property is the value of the Name
property. If this property is set to Null
or an empty string (""
), this field is omitted. The name must be valid or an error is raised. The case is preserved.
Applies To
Description
Gets and sets a Boolean value that indicates whether tag and attribute names are uppercase when GetXML
or GetXMLToFile
methods are called. Readable and writable at run time.
Usage
Remarks
The default value for this property is False
. If this property is set to True
, all of the tag and attribute names are in upper case. This method should be called only after all custom tag or attribute names have been set by the user.
Applies To
Description
Returns or sets the Year
attribute of an OraTimeStamp
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] year | The Year attribute of an OraTimeStamp object. |
Data Type
Integer
Applies To
Description
Returns or sets the Year
attribute of an OraTimeStampTZ
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] year | The Year attribute of an OraTimeStampTZ object. |
Data Type
Integer
Applies To
Description
Gets and sets the Years
attribute of an OraIntervalYM
object.
Usage
Arguments
Arguments | Description |
---|---|
[in] years | An Integer specifying the value of the Years attribute of the OraIntervalYM object. |
Data Type
Integer
This chapter describes Oracle Data Control Events. For an introduction to Data Control, see "Oracle Data Control".
See Also: For more information, see the Microsoft Visual Basic help and documentation. |
This chapter contains these topics:
Applies To
Description
This event is fired whenever an interactive operation causes an error. You can perform some operations directly with the data control, such as using the data control buttons or when the data control refreshes automatically when the form loads. In these cases, the Error
event is fired instead of causing a normal run-time error.
Applies To
Description
This event is fired whenever a mouse button is pressed (MouseDown
) and the mouse pointer is over the data control, or has been captured by the data control. The mouse is captured if a mouse button has been pressed previously over the data control until all corresponding MouseUp
events have been received.
Applies To
Description
This event is fired whenever a mouse button is released (MouseUp
) and the mouse pointer is over the data control, or has been captured by the data control. The mouse is captured if a mouse button has been pressed previously over the data control until all corresponding MouseUp
events have been received.
Applies To
Description
This method is called whenever a variety of circumstances occur. It is sent when an attempt is made to move to a new record position, to delete a record, add a record, move to a bookmark, or to roll back the dynasets in the session. Validate
is always called before the operation proceeds and any action is taken.
This chapter describes Oracle Data Control methods. For an introduction to Data Control, see "Oracle Data Control".
See Also: For more information, see the Microsoft Visual Basic help and documentation. |
This chapter contains these topics:
Applies To
Description
This method recreates the OraDatabase
and OraDynaset
objects referenced within the data control and reestablishes a dynaset using the SQL statement from the RecordSource
property and the connection information from the Connect
and DatabaseName
properties.
Usage
Remarks
If an existing dynaset has been assigned to an object variable in Visual Basic, then Refresh
creates a new dynaset for the data control, but the old dynaset continues to be available for use until all references to it are removed.
Applies To
Recordset Property of the Oracle Data Control.
Description
Gets the current record from a data control's recordset and displays the appropriate data in controls bound to that data control.
Usage
Example
NOTE: This code snippet is intended to be placed in a complete application. The code snippet cancels changes made to bound controls and restores the data to the original values. To use this code snippet, copy it into the definition section of a form that has a data control named oradata1 (which has been successfully refreshed) and has the KeyPreview
property set to True
.
Remarks
Use this method to allow the user to cancel changes made to bound controls and restore the contents of those controls to their original values.
This method has the effect of making the current record current again, except that no events occur.
Note: For backward compatibility with earlier .VBX control, this method is also available as the method of data control's Recordset. |
Applies To
Recordset Property of the Oracle Data Control.
Description
Saves the current values of bound controls.
Remarks
This method enables you to save the current value of bound controls during a Validate event without generating another Validate
event.
This method has the effect of executing the Edit
method, changing a field, and executing the Update
method, except that no events occur.
Note: For backward compatibility with earlier .VBX control, this method is also available as the method of data control'sRecordset . |
This chapter describes the Oracle Data Control Properties. For an introduction to Data Control, see "Oracle Data Control".
See Also: For more information, see the Microsoft Visual Basic help and documentation. |
This chapter contains these topics:
The following properties apply to the OraDynaset
object and to the Oracle Data Control.
Applies To
Description
Determines whether the user can move to the last record using the Data Control's MoveLast
button. Read/write at design time and run time.
Usage
Remarks
By default, AllowMoveLast
is True
, in which case the user has no restriction upon record motion, even when moving to the last record may be very time consuming.
When AllowMoveLast
is False
, the Data Control's MoveLast
button is grayed out and disabled. However, once the last record has been encountered (either because the user has navigated to the end of the set, or because code has positioned the record pointer to the last record), the button is enabled. This gives the user visual feedback about whether or not the entire query has been fetched. Setting this property to False
does not prevent you from using the MoveLast
method.
Changing this property has no effect until a Refresh
method is sent to the data control.
Datatype
Integer
(Boolean)
Applies To
Description
Determines whether the automatic binding of database object parameters will occur. Read/write at design time and run time.
Usage
Remarks
By default, AutoBinding
is True
, in which case the parameters in the OraParameters
collection are bound to the SQL statement of the RecordSource
property before data control refresh (before the SQL statement is executed). Technically speaking, the parameters are rebound when the recordset is re-created.
Setting Autobinding
to False
takes effect only if the SQL statement of the RecordSource
property needs to be rebound and reexecuted. This is not the case when you simply change a parameter value and refresh the data control or simply refresh the recordset (the SQL statement only needs to be reexecuted). This is the case if you alter the RecordSource
property and change the SQL statement.
Use this property to disable all parameter binding when executing a SQL statement that does not contain any parameters (using CreateDynaset
, Refresh
, or ExecuteSQL
).
Changing this property does not take effect until a Refresh
method is sent to the data control (and the appropriate conditions apply). Changing this property has no effect when a recordset.Refresh
is executed.
Data Type
Integer
(Boolean)
Example
This example demonstrates the use of AutoBinding
to show how it affects data control and recordset refresh. Copy this code into the definition section of a new form containing the Oracle Data Control named oradata1
, Then, press F5 to run.
Applies To
Description
The username and password to be used when connecting the data control to an Oracle database. Read/write at design time and run time.
Usage
Remarks
This string is passed to the OpenDatabase
method of the OraSession
object when the control is refreshed. Changing this property does not take effect until a Refresh
method is sent to the data control.
If the data control is refreshed and the Connect
property has not been specified, the refresh will fail.
Examples of valid Connect
properties include:
Data Type
String
Applies To
Description
Returns the OraDatabase
object associated with the data control. Not available at design time and read-only at run time.
Usage
Remarks
If the data control has not been refreshed, any references to this property results in an Object
variable
not
set
runtime
error.
Changing this property has no effect until a Refresh
method is sent to the data control.
Data Type
OLE Object (OraDatabase)
Applies To
Description
The Oracle SQL*Net specifier used when connecting the data control to an Oracle database. Read/write at design time and run time.
Usage
Remarks
The Oracle SQL*Net specifier should include the Oracle SQL*Net protocol identifier, Oracle database name, and optional database instance. (SQL*Net aliases can also be used.) This string is passed to the OpenDatabase
method of the OraSession
object when the control is refreshed. Changing this property does not take effect until a Refresh
method is sent to the data control.
If the data control is refreshed and DatabaseName
has not been specified, the refresh fails.
Examples of valid DatabaseName
properties include:
Data Type
String
Applies To
Description
Determines whether or not Update
and Delete
will
or will not check for read inconsistencies.
Usage
Data Type
Integer
(Boolean)
Remarks
By default, DirtyWrite
is False
, meaning that read consistency will be maintained for Update
and Delete
operation on underlying recordset/dynaset object. Changing this property has no effect until a Refresh
method is sent to the data control.
Applies To
Description
Returns the current editing state for the current row. Not available at design time and read-only at run time.
Usage
Remarks
The possible EditMode
property values are:
Constant | Value | Description |
---|---|---|
ORADATA_EDITNONE | 0 | No editing in progress |
ORADATA_EDITMODE | 1 | Editing is in progress on an existing row |
ORADATA_EDITADD | 2 | A new record is being added and the copy buffer does not currently represent an actual row in the database. |
These values are located in the oraconst.txt
file and are intended to match similar constants in the Visual Basic oraconst.txt
file.
This property is affected only by the Edit
, AddNew
, and Update
methods.
Data Type
Integer
Applies To
Description
By default, NoRefetch
is False
, this means that default data set by Oracle Database will not be refetched to the local cache. If the ORADB_NO_REFETCH
option is True
, by default, the underlying recordset or dynaset will inherit this property.
Changing this property has no effect until a Refresh
method is sent to the data control.
Usage
Data Type
Integer
(Boolean)
Applies To
Description
Determines one or more characteristics of the database and all dynasets associated with the data control. Read/write at design time and run time.
Usage
Data Type
Long
Integer
Remarks
This property is a bit flag word used to set the optional modes of the database. If options = 0, the default settings will apply. The following modes are available:
The default mode is called VB mode. In VB mode, field (column) values not explicitly set are set to NULL
when using AddNew
or Edit
.
Optionally, you can use Oracle mode. Oracle mode indicates that changes made to fields (columns) are immediately reflected in the local mirror by retrieving the changed row from the database, thus allowing Oracle Database to set defaults for the columns and perform required calculations. Column Defaulting mode affects the behavior of the AddNew
and Edit
methods.
The default mode is called Wait mode. In Wait mode, when dynaset rows are about to be modified (using Edit
), the existing row in the database is retrieved using the SQL "SELECT
...
FOR
UPDATE"
statement to lock the row in the database. If the row about to be changed has been locked by another process (or user), the "SELECT
...
FOR
UPDATE"
statement, waits until the row is unlocked before proceeding.
Optionally, you can use NoWait mode. NoWait mode results in an immediate return of an error code, indicating that the row about to be updated is locked.
Lock Wait mode also affects any SQL statements processed using ExecuteSQL
.
In this mode NULL
s are not explicitly inserted as in the ORADB_ORAMODE
. In ORADB_NO_REFETCH
mode, performance is boosted, because data is not refetched to the local cache.
Options Property Flag Values
The Options
property flag values are:
Constant | Value | Description |
---|---|---|
ORADB_DEFAULT | &H0& | Accepts the default behavior. |
ORADB_ORAMODE | &H1& | Lets Oracle Database set default field (column) values. |
ORADB_NOWAIT | &H2& | Does not wait on row locks when executing a SQL "SELECT ... FOR UPDATE" statement. |
These values can be found in the oraconst.txt
file. Options may be combined by adding their respective values.
This property is the same as the options passed to the OpenDatabase
method. Just as with OpenDatabase
, these options affect the OraDatabase
object and all associated dynasets created from that database.
Changing this property does not take effect until a Refresh
method is sent to the data control.
Applies To
Description
Determine whether the changes made to fields (columns) are immediately reflected in the local mirror by retrieving the changed row from the database, thus allowing Oracle to set defaults for the columns and perform required calculations.
Usage
Data Type
Integer
(Boolean)
Remarks
This property value is set to True
by default, which means that fields (columns) changes are reflected in the local cache immediately. Changing this property value has no effect until the Refresh
method is invoked. If the ORADB_ORAMODE
mode is used for the database option, the underlying recordset/dynaset inherits this mode.
Applies To
Description
Determines whether the dynaset will be used for read-only operations. Read/write at design time and run time.
Usage
Data Type
Integer
(Boolean)
Remarks
By default, ReadOnly
is False
which means that an attempt will be made to create an updatable dynaset by selecting ROWID
s from the database. If ReadOnly
is set to True
, a non-updatable dynaset is created (ROWID
s are not selected from the database and cached) and operations will be somewhat faster.
If the SELECT
statement contains a LONG
or LONG
RAW
column, ROWID
s are needed whether the dynaset will be updatable or not.
Changing this property does not take effect until a Refresh
method is sent to the data control.
Applies To
Description
Returns a dynaset defined by the data control's Connect
, DatabaseName
, and RecordSource
properties. Not available at design time and read and write at run time.
Usage
Data Type
OLE Object (OraDynaset
)
Remarks
The properties and methods of this dynaset are the same as those of any other dynaset object. The Recordset
property of the Oracle Data Control (.OCX
) can be set to external dynaset, or the Recordset property of the other data control. After the setting, Oracle Data control Database, session, and options properties now set to the corresponding properties of the external dynaset. Oracle data control shares the advisories of the external dynaset. This is very useful when attaching dynaset returned from the PL/SQL cursor by CreatePlsqlDynaset
Method.
Example
This example demonstrates setting Recordset
property to external dynaset created by CreatePlsqlDynaset
method. This example returns a PL/SQL cursor as a external dynaset for the different values of DEPTNO
parameter. Make sure that corresponding stored procedure (found in EMPCUR.SQL
) is available in the Oracle Database. Copy this code into the definition section of a form containing the Oracle Data Control named oradata1
. Then, press F5.
Applies To
Description
The SQL SELECT
statement to be used to create the data control's RecordSet
. Read/write at design time and run time.
Usage
Data Type
String
Remarks
The SQL statement must be a SELECT
statement; otherwise an error is returned. Features such as views, synonyms, column aliases, schema references, table joins, nested selects, and remote database references can be used freely; object names are not modified in any way.
Whether or not the resultant dynaset can be updated depends on the Oracle SQL rules of updatability, the access you have been granted, and the ReadOnly
property. In order to be updatable, three conditions must be met:
Any SQL statement that does not meet these criteria is processed, but the results are not updatable and the dynaset's Updatable
property returns False
.
Changing this property does not take effect until a Refresh
method is sent to the data control.
You can use SQL bind variables in conjunction with the OraParameters
collection.
If this property is NULL
or empty, then an OraDynaset
object is not created, but OraSession
, OraConnection
, and OraDatabase
objects are created for the data control. This behavior enables access to these objects prior to creation of a dynaset. For example, a NULL
RecordSource
might be used to instantiate the database object to add parameters. The RecordSource
property can then be set at run time, making use of the automatic binding of database parameters.
Changing this property and calling the Refresh
method of the RecordSet
property will create a new dynaset object, but the old dynaset continues to be available for use until all references to it are removed.
Example
This example demonstrates the use of SQL bind variables (parameters) in the RecordSource
property of the data control. To run this demonstration, copy this code into the definition section of a form containing a data control named oradata1
, then, press F5.
Applies To
Description
The session object associated with the data control. Not available at design time and read-only at run time.
Usage
Data Type
OLE Object (OraSession
)
Remarks
This property is equivalent to referencing oradata1.Database.Session
. If the data control has not been refreshed, any references to this property result in an Object
variable
not
set
runtime error.
Applies To
Description
Determines whether trailing blanks should be removed from character string data retrieved from the database. Read/write at design time and run time.
Usage
Data Type
Integer
(Boolean)
Remarks
By default, TrailingBlanks
is False
. This means that trailing blanks will be removed from character string data retrieved from the database.
Changing this property has no effect until a Refresh
method is sent to the data control.
This appendix includes the following:
The following are code for Oracle data types.
Table A-1 Oracle Data Type Codes
Oracle Data Type | Codes |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
These codes are also listed in the oraconst.txt
file located in the ORACLE_BASE\\ORACLE_HOME
\oo4o
directory.
Occasionally other schemas are required to run examples. These schemas are listed in the following sections.
This section presents OraMetaData schema definitions.
The following schema objects are used in the OraLOB and BFILE
examples. Run the SQL script ORAEXAMP.SQL
on your database to set up the schema.
The following schema objects are used in the OraObject
and OraRef
examples. Data for the following tables can be inserted with the ORAEXAMP.SQL
script that is provided with the OO4O installation.
The following schema is used in examples of OraCollection
methods
BFILEs
External binary files that exist outside the database tablespaces residing in the operating system. BFILEs are referenced from the database semantics, and are also known as external LOBs.
Binary Large Object (BLOB)
A large object data type whose content consists of binary data. Additionally, this data is considered raw as its structure is not recognized by the database.
Character Large Object (CLOB)
The LOB data type whose value is composed of character data corresponding to the database character set. A CLOB
may be indexed and searched by the Oracle Text search engine.
coordinated universal time (UTC)
UTC was formerly known as Greenwich Mean Time.
Large Object (LOB)
The class of SQL data type that is further divided into internal LOBs and external LOBs. Internal LOBs include BLOB
s, CLOB
s, and NCLOB
s while external LOBs include BFILE
s.
National Character Large Object (NCLOB)
The LOB data type whose value is composed of character data corresponding to the database national character set.
PL/SQL
Oracle procedural language extension to SQL.
primary key
The column or set of columns included in the definition of a table's PRIMARY KEY constraint.
UTC
UTC (Coordinated Universal Time) was formerly known as Greenwich Mean Time.
Copyright © 1994, 2011, Oracle and/or its affiliates. All rights reserved. |