
1

Oracle® Enterprise Data Quality for Product Data
.NET API Interface Guide

Release 5.6.2

E48206-01

July 2013

This document provides information about the Enterprise DQ for Product (EDQP)
.NET application programming interface (API). The EDQP .NET API provides a
communication interface to the Oracle DataLens Servers and includes the following:

■ Section 1, "Introducing the EDQP .NET API"

■ Section 2, "Installing the EDQP .NET API"

■ Section 3, "EDQP .NET API Objects"

■ Section 4, "Developing with the EDQP .NET API"

■ Section 5, "Audience"

■ Section 6, "Related Documents"

1 Introducing the EDQP .NET API
The EDQP .NET API is developed using the Microsoft .NET Framework 2 (Microsoft
.NET Framework 4 is also supported). It is a language-neutral platform for you to use
to integrate the .NET API into your applications.

The EDQP .NET API uses only the data structures defined in the common type system
of Microsoft .NET. In addition, it conforms to the common language infrastructure,
which means that the EDQP .NET API object instances and data types may be
exchanged between any applications (or libraries) written in any Microsoft .NET
language. The EDQP .NET API can be integrated into the following:

■ Microsoft .NET and other .NET languages such as C#, C++, F#

■ Microsoft Office applications, such as Excel and Access

■ Microsoft Active Server Pages (ASP) .NET Applications

■ HTML pages and Internet Information Services (IIS) servers

This section introduces the EDQP .NET API components that work together to provide
Microsoft .NET data access to Oracle DataLens Servers and describes how they relate
to each other.

1.1 Overview
The EDQP .NET API package contains the DataLensServices.dll and that is
comprised of API classes, objects, and functions for you to use in your applications to
communicate with your Oracle DataLens Servers. It can be used on systems running
the Microsoft Windows operating system.

2

1.2 EDQP .NET API Assembly
The DataLensServices.dll assembly contains the following:

1.2.1 EDQP .NET API Component
The EDQP .NET API contains all the classes that are used to interact with the Oracle
DataLens Server to allow you to do the following:

■ authenticate with the Oracle DataLens Server

■ connect to the entire Oracle DataLens Server topology

■ obtain access to individual Oracle DataLens Servers

■ obtain Data Service Application (DSA) information

■ run DSA jobs

1.2.2 TransformInfo Component
The TransformInfo component contains metadata classes that contain the objects with
information from EDQP .NET API requests that include:

■ DSA information

■ data lens server group information

■ user information

■ metadata about transformed data records and fields from DSA jobs

1.2.3 CoreApi and Util Component
The CoreApi and Util component cannot be directly accessed because they handle the
connections to the server via HTTP SOAP requests and are the utility packages used
for network trafficking, error handling and XML DOM interaction for the various
parts of EDQP.

3

2 Installing the EDQP .NET API
This section describes installation and configuration requirements for EDQP .NET
API.

2.1 Before You Install
It is important to note the following about the EDQP .NET API:

■ It was developed and compiled with the Microsoft Visual Studio 2010 release.

■ All libraries and software necessary to this API are included as part of the
Microsoft .NET system libraries; there are no third-party libraries used by the API
so it can be used:

- to access the Oracle DataLens Server from a Microsoft ASP or .NET
application.

- to access the Oracle DataLens Server from a Web Browser using client-side
scripting such as VBScript, Jscript, or JavaScript.

- to be embedded in applications, such as Microsoft Excel and Access using
.NET integration or VBA scripting.

- from any application that supports the Microsoft .NET interface.

2.2 Installation Prerequisites
You must ensure that the Microsoft .NET Framework 2 is installed on your
Windows-based system. You can obtain the installation instructions and the download
file from the Microsoft website at

http://msdn.microsoft.com/netframework

2.3 Installing the EDQP .NET API
The EDQP .NET API is provided as part of your Oracle DataLens Server installation,
though it is not automatically loaded onto your system for you. This means that you
need to register it on your system for use by your Microsoft ASP or Office applications.

To register the appropriate dynamic link libraries (DLLs) on your Windows system:

1. Open a Windows Command Prompt (cmd.exe) in the directory you installed the
Microsoft .NET Framework 2 as an administrator user.

2. Register the .NET assembly by entering:

regasm DataLensServices.dll

A confirmation message is displayed that indicates the success of the DLL
registration.

3. Add the DataLensServices.dll to Global Assembly Cache by entering:

gacutil /i DataLensServices.dll

4. Close the Command Prompt window.

Note: If you have installed the EDQP Services for Excel application
on your Windows system, the EDQP .NET API is already installed
and no further installation is necessary.

4

2.4 Using the EDQP .NET API with Microsoft Visual Studio
If you want to use the EDQP .NET API with Microsoft Visual Studio 2008 or 2010, you
must add a reference to it in your project. In the following example,
the'DataLensServices_x86' reference added is for use with 32-bit applications:

If you want to interface with 64-bit applications, then you must add a reference to
'DataLensServices_x64' in the same manner.

Either reference sets the DataLensServices namespace so that all the objects that are
created in your source do not need to be prefixed with a DataLensServices. The
examples in this document are formatted in this manner.

3 EDQP .NET API Objects
The DSA interface and the associated job interface in the EDQP .NET API provide the
highest level of abstraction from the low-level processing, minimizing the amount of
code that must change when modifying the DSAs and data lenses.

The EDQP .NET main objects that you can use in the API are:

■ ApiError

This error object is inherited from all API objects. The status of any object can be
checked by accessing the members of this class.

■ Topology

This top level object contains information on all the server groups in the topology.
It contains a collection of TopologySession and TopologyServer objects based on
the currently active Server Group as follows:

- TopologyServer—-A particular server in the topology (from the system object)
to which job requests are made. The server has jobs.

* Job—-This is a particular DSA job. Monitors the progress of that job.
Retrieves the results of specific steps from the job. Contains a collection of
JobStep objects:

5

4 Developing with the EDQP .NET API
This section describes how to use the EDQP .NET API when developing your
applications.

4.1 Using the Topology Object
The Topology object has information on the entire EDQP Topology, which includes all
server groups (pods) and all Oracle DataLens Servers contained within each pod.
When a pod has been selected for processing within a topology, then a
TopologyServer object can be obtained from that particular pod. This server object can
be used directly to run DSA jobs.

There are three steps to activating a TopologySystem object before it is ready for
production use:

1. Log on to the Oracle DataLens Administration Server in your topology.

2. Activate the Server Group that you want to use for DSA job processing.

3. Get an active server to use for processing a job.

The following sections provide examples of how to use the Topology object.

4.1.1 TopologySession Object
The TopologySession object can be used as follows:

Public g_oTopologySession As TopologySession = New TopologySession()

The following sections describe an example method of creating a Topology Server
object.

4.1.1.1 Logging On to the Topology

Use the server name and port with a valid user name and password to log on to your
Oracle DataLens Server Topology as in the following example:

 bLoggedIn = g_oTopologySession.SessionLogon(sServerName, sServerPort,
sUsername, sPassword)
 If bLoggedIn = True Then
 ' Success!
 Else
 ' Failure
 MsgBox(g_oTopologySession.errorMsgTerse)
 End If
This example uses the error message from the TopologySession object. All the objects
in the EDQP .NET API are derived from the ApiError class and use these error status
fields.

4.1.1.2 Determining Available Server Groups

In a production environment, the server pod types can be checked and you can
automate the activation of a server group based on the type. So if you had 4 server
groups, then you would select the server group that is a production group and set that

TransformedRecord A collection of the result data from the DSA job.

TransformedField A collection of the individual fields in each record.

6

as the active pod. This avoids the need for the name of the server group to be included
in the software code in case it should change in the future. For example:

Dim oInfoPods As DataLensServices.InfoPods = g_oTopologySession.getPods()
 If oInfoPods.isDlsError Then
 MsgBox(oInfoPods.errorMsgTerse)
 Exit Sub
 End If
 Dim colPods As List(Of InfoPod) = oInfoPods.getPods()
 Dim pod As DataLensServices.InfoPod
 For Each pod In colPods
 currPodId = CStr(pod.id)
 currPodName = pod.Name
 currPodType = pod.podAreaType
 Next

4.1.1.3 Activating a Server Group

The topology may have only an Oracle DataLens Administration Server, or it may
have any combination of Production, QA or Development Server Groups. A server
group must be activated before any DSA jobs can be run. In a production environment,
the server group can be a parameter in the end-user application, rather than retrieving
a list and selecting the group of interest. For example:

 If g_oTopologySession.setActivePod(currPodId) Then
 'successfully set
 Else
 MsgBox("Error setting " + currPodName + " as current Server Group"
 End If

4.1.1.4 Checking User Permissions

Your client applications must ensure that the user you used to log in to the topology
has the correct permissions to run DSAs in a particular server group. The
TopologySession object is used to do this by beginning with an activated
TopologySession object as in the following example:

 ' Check if the user has rights to run this job.
 If g_oTopologySession.canRunDSA Then
 RichTextBox_job.AppendText("Starting User Test at " + CStr(DateTime.Now) +
vbCrLf)
 Else
 MsgBox("User " + g_oTopologySession.InfoUser.name + " Does not have
capability to run in this Server Group")
 Return
 End If

For more information about users, see Oracle Enterprise Data Quality for Product Data
Oracle DataLens Server Administration Guide.

4.1.1.5 Obtaining a Server for Processing Jobs

All the servers in the currently active server group are stored as TopologyServer
objects in the TopologySession object. If there multiple servers in the server group,
then each call to the getServer function returns a different server in the server group
using a round-robin approach. This approach helps distribute the processing load
across all the servers in a server group. These server objects are cached in the
TopologySession object so that there is no performance penalty with distributing the
processing load among all the servers in the pod.

7

Use the following standard method of the TopologySession object to get a topology
server:

 g_oTopologyServer = g_oTopologySession.getServer()
 If g_oTopologyServer.isDlsError Then
 MsgBox("Error: " & g_oTopologyServer.errorMsg & vbCrLf)
 Exit Sub
 End If

4.2 Using the TopologyServers Object to Run DSA Jobs
The TopologyServers object is used to perform DSA jobs and other actions. Use of this
object is dependent on the creation of a TopologySession object as described in
Section 4.1, "Using the Topology Object".

Public g_oTopologyServer As TopologyServer = New TopologyServer()

When a DSA job is run against a particular Oracle DataLens Server, the DSA is then
always run on that particular server. The processing of the Transform Maps and data
lenses can run on any server in the same server group that the DSA is a member of.
The server decides which server to use based on the load on each server, which
automatically provides load balancing. For information about configuring each server
to run particular types of maps or data lenses, see Oracle Enterprise Data Quality for
Product Data Oracle DataLens Server Administration Guide.

4.2.1 Running a DSA Job
When you have a topology server obtained using the TopologySession object, you can
use this in conjunction with a job object to run a DSA job. The following example
creates a job object and assigns it to the obtained server in your TopologySession
object:

 ' Create the Job object
 Dim oJob As Job = New Job
 oJob.topologyServer = g_oTopologyServer

Next, you set the basic options for the DSA job as in this example:

 ' Set all the basic job data
 Dim sPriority As String = "High"
 Dim sDescription As String = "Process Acme Product Data"
 Dim sWorkflow As String = "myDSA"
 Dim sRuntimeLocale As String = "en_US"

The input data is a collection of input lines, each with a collection of input data fields
that must be provided to the DSA job as in this example:

 Dim rec1 As System.Collections.ArrayList = New System.Collections.ArrayList
 Dim m_cInputCol As System.Collections.ArrayList = New
 System.Collections.ArrayList
 Rec1.add() = "17
 Rec1.add() = "resistor, 10 ohm, 20w, 25% 5 v"
 m_cInputCol.Add(rec1)

Once you have created the job object, set the job options, and provided the input data,
you run the job as in this example:

 'Run the Job
 Dim lJobId As Long
 ' Use the Collections Interface

8

 lJobId = oJob.start(sPriority, sDescription, sWorkflow, m_cInputCol,
sRuntimeLocale)

You must continue to check the status of the job until it has completed so that you can
retrieve the results if the job successfully runs as in this example:

 ' Synchronously get the results;
 ' The function call will not return till the data is ready
 Dim oTransformedRecords As TransformedRecords
 oTransformedRecords = oJob.getResultData(lJobId, True)
 If oTransformedRecords.isDlsError Then
 MsgBox(oTransformedRecords.errorMsgTerse)
 End If

Finally, you iterate through the collection of returned data from your DSA job as in this
example:

 'Iterate through the collection of transformed records
 ' and the collection of transformed fields
 Dim sField As String
 For Each oTransformedRecord In oTransformedRecords.Items
 Dim oTransformedField As TransformedField
 For Each oTransformedField In oTransformedRecord.Items
 sField = oTransformedField.value
 textBox.AppendText(sField + vbTab)
 Next
 textBox.AppendText(vbCrLf)
 Next

4.2.2 Manually Creating a Server Object
You can manually create a server object as a shortcut to creating a TopologyServer
object; this does not require an activated TopologySession object to create the
TopologyServer object. Additionally, this method bypasses the topology login, server
group selection, and the round-robin accessing of the topology servers.

This is useful in an environment where you want to re-instantiate these classes each
time there is a call, rather than keeping a TopologySession object in memory.

An example of this manual creation is as follows:

g_oTopologyServer = g_oTopologySession.createDataServer(serverName.Text,
 serverPort.Text,
 serverUser.Text)
If g_oTopologyServer.isDlsError Then
 'oops
End If

When manually creating a server object, there are no checks to ensure that the server
name and port are correct or that the user is a valid user in the topology.

This manually created TopologyServer object can be used to run jobs the same as a
TopologyServer object created with the TopologySession standard method.

4.2.3 Using Optional Job Parameters
You can set the following optional parameters for use when running a job:

■ Email output from a job.

■ FTP output from a job.

9

■ Filtering out control characters from the input data prior to submitting the job.

■ Changing the separator character. This is used internally between DSA job steps
during processing and is used to separate output data fields for file, email, or FTP
output. The default is the TAB character.

Examples of these settings are as follows:

If outputEmail.Checked Then
 oJob.email = outputEmail.Text
ElseIf outputFTP.Checked Then
 oJob.ftp = outputFTP.Text
End If
oJob.filterData = True
oJob.separatorChar = "|"

You can set the job priority using the following valid values:

■ "Low"

■ "Medium"

■ "High"

4.2.4 Running Jobs Using Data from a File
This is a similar call to the ojob.start() object previously described. This call,
oJob.startFile, uses 3 additional parameters as follows:

■ filePath - The path to the input text file.

■ RTOutput flag - if the results of the job need to be retrieved.

■ The final parameter ("\tmp" in the example) sets the location of where output data
files are written. This is only used if the RTOutput flag is set to True.

An example of how oJob.startFile is as follows:

lJobId = oJob.startFile(sPriority, sDescription, sWorkflow, filePath,
sRuntimeLocale, isRTOutput, "\tmp")

4.2.5 Retrieving Job Results Asynchronously
This is useful if you want to process a large amount of data with the .NET API and do
not want your program to hang while waiting for the job results to be ready.

Use the same call as in Section 4.2.1, "Running a DSA Job"
(oJob.getResultData(jobId, syncFlag)) though you set the Synchronous flag to
True.

An example of a simple way to check when the job has completed is as follows:

' Asynchronously get the results
Do
 oTransformedRecords = oJob.getResultData(lJobId, False)
 If oTransformedRecords.isDlsError Then
 If oTransformedRecords.errorCode = oJob.JOB_NOT_COMPLETED Then
 System.Threading.Thread.Sleep(5 * 1000) ' Sleep for 5 seconds
 Else
 MsgBox(oTransformedRecords.errorMsgTerse)
 Exit Sub
 End If
 End If

10

Loop While oTransformedRecords.errorCode = oJob.JOB_NOT_COMPLETED

4.2.6 Debugging Jobs
There is no client-side debugging toggle to review the actual HTTP request and
response SOAP calls. However, there is a better way to look at this data in the
development stage of a project. You turn on Server Tracing on your Oracle DataLens
Development Server, then the output of this is written into the log file. The log file will
contain the actual requests from the .NET API with the data and the DSA job
processing server response from the Oracle DataLens Server.

For information about toggling on server-side tracing, see Oracle Enterprise Data
Quality for Product Data Oracle DataLens Server Administration Guide.

4.2.7 Running DSA Jobs Using a Database
You can use a database query as input to your DSA jobs by replacing the
System.Collections.ArrayList parameter with the arrQueryParameterList
parameter.

To set the parameters on the job object prior to this call in the same manner as
described Section 4.1, "Using the Topology Object", the following example could be
used:

 Dim arrQueryParameterList
 arrQueryParameterList = Split("p1|p2|p3, "|")

 ' Create the Job object
 Dim oJob As Job = New Job
 oJob.topologyServer = g_oTopologyServer

 ' Run a job with database input and an array of Db parameters
 lJobId = oJob.startDb(sPriority, sDescription, _
 sDSAName, arrQueryParameterList, sRuntimeLocale)

You can run the job in real-time (synchronously) as in this example:

 ' Synchronously get the results;
 ' The function call will not return till the data is ready
 Dim oTransformedRecords As TransformedRecords

 oTransformedRecords = oJob.getResultData(lJobId, True)
 If oTransformedRecords.IsError Then
 MsgBox (oTransformedRecords.errorMsg)
 GoTo exception
 End If

Alternatively, you can run the job in the background (asynchronously) as in this
example:

 ' Asynchronously get the results
 Do
 oTransformedRecords = oJob.getResultData(lJobId, False)
 If oTransformedRecords.IsError Then
 If oTransformedRecords.errorCode = oJob.JOB_NOT_COMPLETED Then
 Sleep (5 * 1000)
 Else
 MsgBox (oTransformedRecords.errorMsg)
 GoTo exception
 End If

11

 End If
 Loop While oTransformedRecords.errorCode = oJob.JOB_NOT_COMPLETED

4.2.8 Retrieving Multiple DSA Output Step Results
The transformed DSA job results can be retrieved directly from the job object by using
named DSA output steps. This is useful for integrating a Transform Map process into
an application where there are multiple outputs to be used for different purposes
within the application. For example:

 ' Synchronously get the results (Note: if the flag is False, then the call is
asynchronous)
 oTransformedRecords = oJob.getResultStepData(lJobId, sStepName, True)
 If oTransformedRecords.IsError Then
 MsgBox (oTransformedRecords.errorMsg)
 GoTo exception
 End If

4.2.9 Retrieving Individual DSA Output Step Results
The transformed DSA job results can be retrieved directly from the individual DSA
output steps using JobStep. This gives you control of the job at the individual DSA
output step level. This is useful for an application where the actual names of the
output steps are not known at run-time. For example:

'Retrieve result sets for all output steps
Dim oJobStep As JobStep
Dim oTransformedRecords As TransformedRecords
For Each oJobStep In oJob.steps
 If oJobStep.isOutputStep Then
 RichTextBox.AppendText(vbCrLf + "Output Step: " + oJobStep.name + vbCrLf)
 If oJobStep.isCompleted Then
 oTransformedRecords = oJobStep.getResults(g_oTopologyServer, True)
 If oTransformedRecords.isDlsError Then
 MsgBox(oTransformedRecords.errorMsgTerse)
 Exit Sub
 End If
 Dim oTransformedRecord As TransformedRecord
 For Each oTransformedRecord In oTransformedRecords.Items
 Dim colFields As System.Collections.ArrayList =
oTransformedRecord.Items
 Dim sFields As String = ""
 Dim oField As Object
 For Each oField In oTransformedRecord.Items
 sFields = sFields + oField.Value + vbTab
 Next
 RichTextBox.AppendText(sFields + vbCrLf)
 Next
 End If
 Else
 ' No need to output the non-output step names
 'RichTextBox_jobStep.AppendText("Process Step: " + oJobStep.name + vbCrLf)
 End If
Next

4.3 Retrieving Server Information
This section describes some examples of how to retrieve information about your
Oracle DataLens Server and the DSAs on the server.

12

4.3.1 Listing Server Job Information
The following example lists all the jobs on a particular server group:

Dim oJob As Job
Dim oJobs As Jobs
Dim bListAllServers As Boolean
Dim sinceSecs As Long
' use 0 to list all the jobs. This will list all jobs in the last hour
sinceSecs = 3600
' The TopologyServer object will not refresh the job list once it has been created
for performance.
' In order to get a fresh list, we must reset the Topology Server object.
g_oTopologyServer.resetJobs()
Dim bRefresh As Boolean = False
If CheckBox_topSrv_userJobs.Checked Then
 Dim user As String = g_oTopologyServer.user
 oJobs = g_oTopologyServer.getJobsBySubmitter(user, bListAllServers, sinceSecs,
bRefresh)
Else
 oJobs = g_oTopologyServer.getJobs(bListAllServers, sinceSecs, bRefresh)
End If

If oJobs.isDlsError Then
 RichTextBox.AppendText("Error loading TransformSystem... " & oJobs.errorMsg +
vbCrLf)
 Exit Sub
End If
Dim sUserName As String = g_oTopologyServer.user
Dim sJobInfo As String = ""
For Each oJob In oJobs.Jobs
 sJobInfo = sJobInfo + displaySingleJob(oJob)
Next

You can list the individual job information as in this example:

Private Function displaySingleJob(ByVal oJob As Job) As String
 Dim m_tmpStatus As String
 m_tmpStatus = vbCrLf + "Job Id: " & CStr(oJob.jobId) + vbTab
 m_tmpStatus += CStr(oJob.priority) + vbTab
 m_tmpStatus += oJob.getStatusDesc(oJob.status) + vbTab
 m_tmpStatus += oJob.runtimeLocale + vbTab
 m_tmpStatus += oJob.createdBy + vbTab
 m_tmpStatus += oJob.description + vbTab
 m_tmpStatus += oJob.definition + vbTab
 m_tmpStatus += oJob.startTime + vbTab
 m_tmpStatus += oJob.endTime + vbTab
 m_tmpStatus += oJob.server + vbTab
 m_tmpStatus += " Completed: " + CStr(oJob.isCompleted) + vbTab
 m_tmpStatus += " Cancelled: " + CStr(oJob.isCanceled) + vbTab
 m_tmpStatus += " Results retrieved: " + CStr(oJob.isResultsRetrieved) + vbTab
 m_tmpStatus += " Error Msg: " + oJob.errorMsg + vbTab
 displaySingleJob = m_tmpStatus
End Function

4.3.2 Listing Information About All DSAs on the Server
You can list information about the DSA jobs that have been submitted to an Oracle
DataLens Server using the ProcessMaps object.

13

The following example lists all of the DSAs that are available to run in the current
server group:

 Dim oProcessMaps As Dsas = g_oTopologyServer.getDsas
 If oProcessMaps.isDlsError Then
 MsgBox(oProcessMaps.errorMsgTerse)
 Exit Sub
 End If
 Dim oProcessMap As Dsa
 For Each oProcessMap In oProcessMaps.Items
 RichTextBox.AppendText(oProcessMap.name + vbCrLf)
 Next

4.3.3 Listing Information for One DSA
You can list the information about a particular DSA on your server as in the following
example:

Dim oPMap As Dsa = g_oTopologyServer.getDsa(SvrDsa.Text)
If oPMap.isDlsError Then
 MsgBox(oPMap.errorMsgTerse)
 Exit Sub
End If
RichTextBox.AppendText("Name: " + oPMap.name + vbCrLf)
RichTextBox.AppendText("Desc: " + oPMap.description + vbCrLf)
RichTextBox.AppendText("Is Db Input: " + CStr(oPMap.hasDbDataSource) + vbCrLf)
RichTextBox.AppendText("Num Db Parms: " + CStr(oPMap.dbParameterCount) + vbCrLf)
'Input Steps
RichTextBox.AppendText("Input Steps: " + vbCrLf)
Dim cInput As System.Collections.ArrayList = oPMap.inputSteps
Dim step1 As DsaStep
' the step is a jobStep object
For Each step1 In cInput
 RichTextBox.AppendText(vbTab + step1.name + vbCrLf)
 RichTextBox.AppendText(vbTab + vbTab + "Description: " + step1.description +
vbCrLf)
 RichTextBox.AppendText(vbTab + vbTab + "Data Fields:" + vbCrLf)
 Dim cInputFields As List(Of String) = step1.inputFields
 Dim sField As Object
 For Each sField In cInputFields
 RichTextBox.AppendText(vbTab + vbTab + vbTab + sField + vbCrLf)
 Next
 Next
 'Output Steps
 RichTextBox.AppendText("Output Steps: " + vbCrLf)
 Dim cOutput As System.Collections.ArrayList = oPMap.outputSteps
' the step is a jobStep object
For Each step1 In cOutput
 RichTextBox.AppendText(vbTab + step1.name + vbCrLf)
 RichTextBox.AppendText(vbTab + vbTab + "Description: " + step1.description +
vbCrLf)
 RichTextBox.AppendText(vbTab + vbTab + "Dont Return Results: " +
 CStr(step1.dontReturnResults) +
 vbCrLf)
 RichTextBox.AppendText(vbTab + vbTab + "Data Fields:" + vbCrLf)
 Dim cOutputFields As List(Of String) = step1.outputFields
 Dim sOutField As Object
 For Each sOutField In cOutputFields
 RichTextBox.AppendText(vbTab + vbTab + vbTab + sOutField + vbCrLf)

14

 Next
Next
'Db Connections
RichTextBox.AppendText("Db Connections: " + vbCrLf)
Dim cConnections As System.Collections.ArrayList = oPMap.dbConnections
Dim connection As Object
For Each connection In cConnections
 RichTextBox.AppendText(vbTab + connection + vbCrLf)
Next

4.4 Handling Errors
You use the ApiError object to monitor error status and display any errors that occur.

The fields that are available to check the error status in all of the EDQP .NET API
objects are:

■ isDlsError—A flag that checks the error status of any .EDQP .NET API objects.

■ errorMsg—A full error message, often with SOAP fragments and stack trace.

■ errorMsgTerse—A shorter error message, suitable for display to users.

■ errorCode—An integer error code that can be use to check the fault state.

In the example in Section 4.1.1.1, "Logging On to the Topology", if an error occurs then
a standard Microsoft Windows message box would be displayed because the
following line of code was included:

MsgBox("User " + g_oTopologySession.InfoUser.name + " Does not have capability to
run in this Server Group")

4.4.1 Checking Client-Side Exceptions
All of the EDQP .NET API objects keep track of the error state. This includes the API
objects and the objects that return collections of data. You can add the following check
to retrieve the client-side exceptions:

If oDlsObject.IsError Then
' oSilverCreekObject.errorMsg
End If

4.4.2 Checking Server-Side Exceptions
Server-side errors are propagated back to the client where they can be monitored and
reported on.

4.4.3 Checking Server-Side Log Messages
All server-side error messages encountered during all processing are displayed in the
Oracle DataLens Administration page. For detailed information, see Oracle Enterprise
Data Quality for Product Data Oracle DataLens Server Administration Guide.

5 Audience
This document is intended for programmers who are developing applications to
access an Oracle DataLens Server using the EDQP .NET API.

To use this document, you must be familiar with Microsoft .NET Framework classes
and ADO.NET and have a working knowledge of application programming using
Microsoft C#, Visual Basic .NET, or another .NET language.

15

Although the examples in the documentation and the samples in the sample directory
are written in Microsoft .NET, developers can use these examples as models for
writing code in other .NET languages.

6 Related Documents
For more information, see the following documents in the EDQP documentation set:

■ The Oracle Enterprise Data Quality for Product Data Getting Started Guide provides
information about how to get started with EDQP.

■ The Oracle Enterprise Data Quality for Product Data Oracle DataLens Server
Installation Guide provides detailed Oracle DataLens Server installation
instructions.

■ The Oracle Enterprise Data Quality for Product Data Oracle DataLens Server
Administration Guide provides information about managing an Oracle DataLens
Server including users and user roles.

See the latest version of this and all documents in the Oracle Enterprise Data Quality
for Product Data Documentation Web site at

http://docs.oracle.com/cd/E35636_01/index.htm

For additional information about Microsoft .NET, see:

http://msdn.microsoft.com/netframework

7 Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Oracle Enterprise Data Quality for Product Data .NET API Interface Guide, Release 5.6.2
E48206-01

Copyright © 2012, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them
to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions
and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use
in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in
dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks

16

or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered
trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

	1 Introducing the EDQP .NET API
	1.1 Overview
	1.2 EDQP .NET API Assembly
	1.2.1 EDQP .NET API Component
	1.2.2 TransformInfo Component
	1.2.3 CoreApi and Util Component

	2 Installing the EDQP .NET API
	2.1 Before You Install
	2.2 Installation Prerequisites
	2.3 Installing the EDQP .NET API
	2.4 Using the EDQP .NET API with Microsoft Visual Studio

	3 EDQP .NET API Objects
	4 Developing with the EDQP .NET API
	4.1 Using the Topology Object
	4.1.1 TopologySession Object
	4.1.1.1 Logging On to the Topology
	4.1.1.2 Determining Available Server Groups
	4.1.1.3 Activating a Server Group
	4.1.1.4 Checking User Permissions
	4.1.1.5 Obtaining a Server for Processing Jobs

	4.2 Using the TopologyServers Object to Run DSA Jobs
	4.2.1 Running a DSA Job
	4.2.2 Manually Creating a Server Object
	4.2.3 Using Optional Job Parameters
	4.2.4 Running Jobs Using Data from a File
	4.2.5 Retrieving Job Results Asynchronously
	4.2.6 Debugging Jobs
	4.2.7 Running DSA Jobs Using a Database
	4.2.8 Retrieving Multiple DSA Output Step Results
	4.2.9 Retrieving Individual DSA Output Step Results

	4.3 Retrieving Server Information
	4.3.1 Listing Server Job Information
	4.3.2 Listing Information About All DSAs on the Server
	4.3.3 Listing Information for One DSA

	4.4 Handling Errors
	4.4.1 Checking Client-Side Exceptions
	4.4.2 Checking Server-Side Exceptions
	4.4.3 Checking Server-Side Log Messages

	5 Audience
	6 Related Documents
	7 Documentation Accessibility

