

Oracle AutoVue 20.1

AutoVue API Programmer’s Guide

P a g e | 2

 February 28, 2011

Copyright © 1999, 2011, Oracle and/or its affiliates. All rights reserved.

Portions of this software Copyright 1996-2007 Glyph & Cog, LLC.

Portions of this software Copyright Unisearch Ltd, Australia.

Portions of this software are owned by Siemens PLM © 1986-2008. All rights reserved.

This software uses ACIS® software by Spatial Technology Inc. ACIS® Copyright © 1994-1999 Spatial Technology

Inc. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their

respective owners.

This software and related documentation are provided under a license agreement containing restrictions on use and

disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or

allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,

perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or

decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find

any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the

U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government

customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal

Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure,

modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable

Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set

forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle

Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or

intended for use in any inherently dangerous applications, including applications which may create a risk of personal

injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,

backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates

disclaim any liability for any damages caused by use of this software in dangerous applications.

This software and documentation may provide access to or information on content, products and services from third

parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind

with respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible

for any loss, costs, or damages incurred due to your access to or use of third party content, products or services.

P a g e | 3

 February 28, 2011

Contents

1. Preface .. 6

Audience ... 6

Documentation Accessibility ... 6

Accessibility of Code Examples in Documentation ... 6

Accessibility of Links to Extern Web Sites in Documentation ... 6

Deaf/Hard of Hearing Access to Oracle Support Services .. 7

Related Documents ... 7

2. Introduction .. 8

3. System Requirements ... 9

4. Architecture of an AutoVue API Solution.. 9

AutoVue API Design Options ... 10

5. AutoVue API Packages .. 12

VueBean Package .. 12

Event Package ... 13

Markup .. 18

MarkupLayer ... 18

MarkupEntity .. 18

Server Control ... 19

VueAction Package.. 20

AbstractVueAction .. 20

VueAction .. 20

6. Use Cases .. 23

Building an AutoVue API Application .. 23

P a g e | 4

 February 28, 2011

Implementing Functions from AutoVue in a Second Applet .. 29

Custom VueAction .. 30

Action that Performs a Single Function .. 30

Action that Performs Multiple Functions.. 33

Directly Invoking VueActions .. 36

Markups .. 36

Entering Markup Mode ... 36

Checking Whether Markup Mode is Enabled ... 36

Exiting Markup Mode .. 36

Adding an Entity to an Active Markup/Layer .. 37

Enumerating Entities ... 37

Getting Entity Specification of a Given Entity ... 37

Changing Specification of an Existing Entity Programmatically .. 37

Adding a Text Box Entity ... 38

Open Existing Markup ... 39

Saving Markups to a DMS/PLM .. 39

Adding a Markup Listener to Your Application ... 41

Converting Files ... 41

Calling to Convert .. 41

Converting to JPEG (Custom Conversion) ... 42

Converting to PDF ... 43

Printing a File to 11x17 Paper ... 44

Monitoring Event Notifications ... 44

Retrieving the Dimension and Units of a File.. 45

7. Cleanup Problems ... 45

P a g e | 5

 February 28, 2011

Session Close ... 45

8. FAQ .. 46

MarkupBean .. 46

Printing .. 46

General .. 47

9. Feedback ... 48

P a g e | 6

 February 28, 2011

1. Preface

The AutoVue API Programmer’s Guide provides an overview of the concepts of the AutoVue API and its

fundamental packages and classes.

For the most up-to-date version of this document, go to the AutoVue Documentation Web site on the

Oracle Technology Network at http://www.oracle.com/technetwork/documentation/autovue-

091442.html.

Audience

This document is intended for Oracle partners and third-party developers (such as integrators) who

want to implement their own integration with AutoVue. This guide serves as a good starting point for

developers and professional services to become more familiar with the AutoVue API.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible to all users,

including users that are disabled. To that end, our documentation includes features that make

information available to users of assistive technology. Accessibility standards will continue to evolve

over time, and Oracle is actively engaged with other market-leading technology vendors to address

technical obstacles so that our documentation can be accessible to all of our customers. For more

information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for

writing code require that closing braces should appear on an otherwise empty line; however, some

screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to Extern Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle

does not own or control. Oracle neither evaluates nor makes any representations regarding the

accessibility of these Web sites.

P a g e | 7

 February 28, 2011

Deaf/Hard of Hearing Access to Oracle Support Services

To reach Oracle Support Services, use a telecommunications relay service (TRS) to call Oracle Support at

1.800.223.1711. An Oracle Support Services engineer will handle technical issues and provide customer

support according to the Oracle service request process. Information about TRS is available at

http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone numbers is available at

http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documents

For more information, see the following documents:

• VueBean Javadocs

• Oracle AutoVue Installation and Configuration Guide

• AutoVue Planning Guide

• AutoVue Integration SDK Overview

• Oracle AutoVue Web Services Overview

P a g e | 8

 February 28, 2011

2. Introduction

The AutoVue Application Programming Interface (API)
1
 is a Java-based toolset that provides tools to

modify the functionality of Oracle’s AutoVue client
2
, and allows you to create your own customized Java

applets/applications based on AutoVue API components.

Prior to developing your API integration, you should review the documentation for AutoVue API,

AutoVue Web Services and AutoVue Integration SDK to find the integration tool that best fits your

needs.

AutoVue API This is the API described in this document.

AutoVue Web Services You can integrate AutoVue’s capabilities into your

application regardless of platforms or

programming languages. For more information,

refer to the AutoVue Web Services Overview.

AutoVue Integration SDK The AutoVue Integration SDK is a Java-based

implementation of the Document Management

Application Programming Interface (DMAPI)

specifications published by Oracle. For more

information, refer to the AutoVue Integration SDK

Overview.

This document provides an overview of the concepts of the AutoVue API and its fundamental packages

and classes. Additionally, basic and advanced applications of the AutoVue API are provided along with

their source code. For detailed information on the packages and classes included in the AutoVue API,

refer to the VueBean Javadocs.

1
 In previous releases of AutoVue, this API was referred to as the VueBean API.

2
 Throughout this document, the term “AutoVue client” is used interchangeably with term “JVue”.

P a g e | 9

 February 28, 2011

3. System Requirements

For a complete list of system requirements specific to your platform, refer the Oracle AutoVue

Installation and Configuration Guide.

4. Architecture of an AutoVue API Solution

The AutoVue API is an umbrella term for the APIs that the AutoVue client is built upon, with the

VueBean API being the core component of the architecture. The client can be a Java application, a Java

applet, or a Java servlet. The AutoVue client that ships with AutoVue Client/Server Deployment is an

example of an applet-based AutoVue client. As seen in the following diagram, the AutoVue client is

layered on top of the VueBean.

Note: It is possible to build a solution based on the JVue class (com.cimmetry.jvue) or based directly

on the VueBean class (com.cimmetry.vuebean). If you build a solution based on the JVue class, then

you are building from a class that already extends Applet, and you can take advantage of the

functionality and the graphical user-interface (GUI) that Oracle has built into the JVue layer. If you build

a solution based on the VueBean class, then you must implement your own GUI.

 There are a number of packages included in the AutoVue API. The following figure shows the most

commonly used components.

P a g e | 10

 February 28, 2011

VueAction: This component can add graphical user interface (GUI) elements to different contexts (such

as menu bar, toolbar, status bar, and so on). For example, when a menu option is selected in the GUI, a

VueAction is triggered. For more information, refer to VueAction Package.

VueBean: This component manages the representation of a file including the resources upon which the

file depends. For more information, refer to VueBean Package.

MarkupBean: This component handles markup functionality. For more information, refer to

MarkupBean Package.

Server Control: This component handles the communication with the AutoVue server and the session

book keeping. For more information, refer to Server Control.

AutoVue API Design Options
With the AutoVue API you have three design options: modify the functionality of the client that is

shipped with Oracle AutoVue, build your own customized application/applet, or implement pre-existing

code from Oracle’s AutoVue client to build your own customized client. It is recommended to review

each option prior to developing your project.

P a g e | 11

 February 28, 2011

Design Option Description

Adding Custom Actions to Oracle’s AutoVue Client This option is used to customize the existing

AutoVue client’s menus and toolbars. For an

example, refer to Adding Customized Menu Items

to the AutoVue Client.

Building a Custom Application/Applet This option allows you to build an

application/applet that makes calls to the VueBean

package. You can leverage our viewing and

markup technology while maintaining complete

control of the behavior of the application/applet.

For an example, refer to Building an AutoVue API

Application.

Modifying the Behavior of Oracle’s AutoVue Client

Through JavaScript

This option is used to build additional menu and

toolbars outside of the AutoVue client’s interface.

You can design a standalone application or a Java

applet in a Web page. For an example, refer to

Implementing Functions from AutoVue in a Second

Applet.

P a g e | 12

 February 28, 2011

5. AutoVue API Packages

The following sections provide an overview of common classes and interfaces that are used to create a

solution based on the AutoVue API. For more information on classes/packages, refer to the VueBean

Javadocs.

VueBean Package
The VueBean component is central to the AutoVue client architecture. An application can embed the

VueBean component and use its API to provide comprehensive support for file viewing, markup, real-

time collaboration, and so on. The following diagram provides a graphical overview of how the VueBean

can be used when developing your own application/applet.

Note: It is possible to have multiple instances of the VueBean class. For example, when AutoVue is in

Compare mode there are three instances of the VueBean class.

A typical VueBean usage scenario is as follows:

1. Create a VueBean Object.

2. Create a server control or use the default one obtained from the VueBean.

3. Use the server control to connect to the server and open a session on it.

4. View a file by invoking the VueBean.setFile(DocID) method.

P a g e | 13

 February 28, 2011

 The following file types are supported by the VueBean:

• Vector files (2D and 3D)

• Raster files

• Document files (MS Word, and so on)

• Spreadsheet files

• Archive files

The file type can be queried through the VueBean.getFileType()method and file information can be

retrieved through the VueBean.getFileInfo() method.

You may have to convert a file to another file type. To do so, use the Vuebean.convert() method.

In its various modes, such as viewing and markup, the VueBean manages the representation of a file

including the management of overlays, layers, and external references to other files or resources upon

which the file depends. Use the VueBean.getResourceInfoState() method to query for resources

that are attached to a file.

To search for a particular string in the file use the VueBean.search(PAN_CtlSearchInfo) method.

The following is an example of how to build the PAN_CtlSearchInfo object.

// Construct the search object with arguments (Search String, Search Multiple
// Occurrences, Search Downwards, Wrapped Search, Match Case, Whole Word),
// in this example we search for the word “line”.
PAN_CtlSearchInfo searchInfo = new PAN_CtlSearchInfo("line", true, true,
 true, false, true);

Note: Since the VueBean is only a client-side component, the connection to the AutoVue server must be

established before any operation can be performed on the VueBean. Refer to Server Control for more

information.

Event Package
com.cimmetry.vuebean.event

For VueBean-specific events, the event delegation model of the VueBean is slightly different from the

standard Java one. Listeners such as VueViewListener, VueFileListener, VueMarkupListener,

or VueStateListener should register to the VueBean's VueEventBroadcaster object instead of to

the VueBean itself.

For example: vueBean.getVueEventBroadcaster().addFileListener(listener).

P a g e | 14

 February 28, 2011

This package provides interfaces and classes for VueBean event broadcasting. Every VueBean object has

an event broadcaster. Depending on the operation type, the broadcaster notifies listeners using an

instance of VueEvent or VueModelEvent. The following types of events are supported:

• File events

• View events

• Markup events

• State events

• Model events

Every event type has a corresponding event listener interface which is registered to the broadcaster.

Objects that are responsible for handling of events should implement one or more of the listener

interfaces.

The following code sample defines and registers an event handler:

import com.cimmetry.vuebean.*;
import com.cimmetry.vuebean.event.*;
.
.
.
final VueBean vueBean = getVueBean();// Get the valid active VueBean
if (vueBean != null) {
 VueFileListener eventHandler = new VueFileListener() {
 public void onFileEvent(VueEvent ev) {
 switch (ev.getType()) {
 case VueEvent.ONSETFILE:
 System.out.println("Set file: " + vueBean.getFile());
 break;
 case VueEvent.ONSETPAGE:
 System.out.println("Set page: " + vueBean.getPage());
 break;
 }
 }
 };
 vueBean.getVueEventBroadcaster().addFileListener(eventHandler);
}
.
.
.

P a g e | 15

 February 28, 2011

VueEvent

com.cimmetry.vuebean.event.VueEvent

VueEvent object encapsulates information for all notifications sent by VueBean and is generated for

the VueFileListener, VueViewListener, VueMarkupListener and VueStateListener

interfaces. The event type is used to differentiate between a view event, file event, markup event or

state event.

VueModelEvent

com.cimmetry.vuebean.event.VueModelEvent

The VueModelEvent class handles all notifications for model-related events such as entity attributes,

3D transformation, and so on. It is generated for objects implementing VueModelListener interface.

VueEventBroadcaster

com.cimmetry.vuebean.event.VueEventBroadcaster

VueEventBroadcaster is used to manage event delegation model for the VueBean. Each listener has

to register to a VueEventBroadcaster to be notified of events in the VueBean. By design, each VueBean

owns its own VueEventBroadcaster. However, you may find it useful to use only one

VueEventBroadcaster for all beans by using the VueBean.setVueEventBroadcaster method.

VueFileListener

com.cimmetry.vuebean.event.VueFileListener

Objects implementing this interface listen for file event notifications (such as setting file, setting page,

and so on).

VueMarkupListener

com.cimmetry.vuebean.event.VueMarkupListener

Objects implementing this interface listen for markup event notifications (such as entering or exiting

markup mode).

VueViewListener

com.cimmetry.vuebean.event.VueViewListener

Objects implementing this interface listen for view event notifications (such as zoom, begin and end

paint, and so on).

VueStateListener

com.cimmetry.vuebean.event.VueStateListener

Objects implementing this interface listen for state event notifications (such as server error, file error,

and so on).

P a g e | 16

 February 28, 2011

VueModelListener

com.cimmetry.vuebean.event.VueModelListener

Objects implementing this interface listen for model event notifications (such as model attribute,

selection, transformation changes, and so on).

P a g e | 17

 February 28, 2011

MarkupBean Package

com.cimmetry.markupbean

The top–level class for the com.cimmetry.markupbean package is the MarkupBean class.

MarkupBean represents the Markup functionality in the VueBean API. Each VueBean instance can

contain one and only one MarkupBean instance, represented by a private member variable. Through the

MarkupBean class, you can add/modify/remove Markup Files, Markup Layers, and Markup Entities, as

well as open and save Markup Files.

The following diagram displays how the architecture of a Markup is structured into four separate levels:

Markups, Markup Layers, Markup Entities, and Markup Entity Specification.

P a g e | 18

 February 28, 2011

Markup
com.cimmetry.markupbean.Markup

This interface represents an individual Markup file. The key functionalities are as follows:

• Get/set information regarding the Markup files, such as:

o Name

o Visibility

o Whether Markup is modified

o Whether Markup is read-only

• Get information regarding the base file

• Get the layers in the Markup

MarkupLayer
com.cimmetry.markupbean.MarkupLayer

This interface represents an individual Markup layer. The key functionalities are as follows:

• Get/set information regarding the specific layer, such as:

o Name

o Color

o Visibility

o Default line type and width

• Get the entities in the Markup layer

MarkupEntity
com.cimmetry.markupbean.MarkupEntity

This interface represents an individual Markup entity. The key functionalities are as follows:

• Name

• Author

• Date modified

• Color

P a g e | 19

 February 28, 2011

• Line type and width

• Tooltip text

• Visibility

• Selection state

• Get children entities of the specific entity

• Perform actions when user double-clicks on entity

MarkupEntitySpec

com.cimmetry.markupbean.MarkupEntitySpec

This class represents an entity’s specification. Each entity has its own specification class that is derived

from this class defines the attributes specific to that entity’s context.

For example, the specification for a rectangle entity includes attributes for the XY coordinates of all four

corners, while the specification for a text entity includes attributes for the contained text as well as its

alignment.

Server Control
com.cimmetry.vueconnection.ServerControl

The ServerControl class handles the server connection object and the user session. Prior to using the

VueBean, you must first set its ServerControl properties, connect to the server via the connect()

method, and then open a session via the sessionOpen() method.

For example:

import com.cimmetry.vuebean.*;
import com.cimmetry.vueconnection.ServerControl;
…
VueBean bean = new VueBean();
ServerControl control = bean.getServerControl();
try {
 control.setHost(<SERVER URL>);
 control.connect();
 control.setUser("scarlati");
 control.sessionOpen();
} catch (Exception e) {
 System.out.println("Failed to connect to JVueServer.");

 }
…

Note: Set the server URL to the VueServlet URL.

P a g e | 20

 February 28, 2011

For example, http://<HostName>:5098/servlet/vueservlet

VueAction Package
com.cimmetry.vueaction

This package provides a hierarchy of classes implementing the AutoVue action API. It can be used to add

graphical user interface (GUI) elements to different contexts (such as menu bar, toolbar, status bar, and

so on). For example, when a menu option is selected in the GUI, a VueAction is triggered.

To add a new action to the AutoVue client, create a new action class by extending VueAction.

Use the methods in this package to:

• Specify resources for an action. For example, menu item text, an icon, tooltip text, and so on.

• Specify which resource bundle (a properties file with resource mappings) to search in for the

action’s resources.

• Specify sub-actions (for example, Zoom In, Zoom Out, Zoom Previous, and so on) for the action if

it can perform more than one function.

• Receive a message signifying that the action should be performed. If the action has sub-actions,

the sub-action to perform is specified.

• Specify properties of the views of the action or its sub-actions that appear in the GUI in the

menu bars, toolbars, and popup menus. For example, whether the view can be selected

(behaves as a checkbox) and/or whether it is enabled.

• Specify groups of sub-actions (if the action includes sub-actions) in which selection is exclusive

(that is, in which only one sub-action can be selected at a time).

AbstractVueAction
com.cimmetry.vueaction.AbstractVueAction

The abstract class AbstractVueAction is the super class of all action classes. All actions performed on

the session must be derived from this class or a descendent of this class.

VueAction
com.cimmetry.vueaction.VueAction

VueAction is an abstract class that extends VueActionMultiMenu. It provides a simple yet powerful

interface for creating actions.

To create a new action class, you must extend this class. There are two ways to do this depending on

whether your action performs a single function or multiple functions. The following sections describe

both scenarios.

P a g e | 21

 February 28, 2011

Create an action that performs a single function

1. Make sure your class extends VueAction.

2. In the constructor of your class, call the appropriate super constructor.

Note: Since your action performs only one function, the super constructor takes the two String

arguments: resource key and resource bundle. The resource bundle identifies the set of text files

(one for each locale your action supports) containing the resources identified by the resource

key for your action.

3. Implement a perform() method to override the one in VueAction.

Note: This method is called when your action has been fired. In this method, enter your action’s

code.

4. Implement event handlers onFileEvent and onViewEvent to ensure that your action is

enabled or disabled when appropriate.

For example, if no base file has been loaded yet, your action will be disabled. However, once a

file has been reloaded, your action must be enabled.

5. Create one or more resource files (one resource file per language your action supports)

containing the resource keys and their values needed by your action. Together with any icon

files used by your action, these files are referred to as a resource bundle.

For an example of a resource file, refer to VueFrame_en.properties file.

6. Create a copy of AutoVue’s .gui file and insert the name of your new action in the appropriate

location.

To view an example of implementing an action that performs a single function, refer to Action that

Performs a Single Function.

Create an action that performs multiple functions

1. Make sure your class extends VueAction.

2. In the constructor of your class, call the appropriate super constructor.

Note: Since your action performs multiple functions, the super constructor takes one String

argument: the resource bundle name. The resource bundle name indentifies the set of text files

(one for each language your action supports) containing the resources for your action.

3. After you call the super constructor, call defineSubAction() to define each sub-action your

action can perform.

Note: In each case, specify the name by which you want to refer to the sub-action and its

resource key. The resource key identifies where to find the resources for your action (for

example, menu item text, icon, tooltip text and so on) in your resource bundle. Optionally, you

can call defineExclusiveGroup() to define a subset of your sub-actions that form an

P a g e | 22

 February 28, 2011

exclusive group. That is, sub-actions that are selectable where only one can be selected at a

time.

4. Implement a performSubAction(String) method to override the one in VueAction.

Note: This method is called when your action’s sub-action has been fired. The method is passed

the name of the sub-action fired, so that you will know which one to perform. In this method,

enter your sub-action’s code.

5. Implement event handlers onFileEvent and onViewEvent to ensure that your sub-actions

are enabled or disabled when appropriate.

For example, if no base file has been loaded, your sub-action will be disabled. However, once a

file has been reloaded, your sub-actions must be enabled.

6. Create one or more resource files (one resource file per language that your action supports)

containing the keys and values needed by your action.

Note: Together with any icon files used by your action, these files are referred to as a resource

bundle.

7. Create a copy of AutoVue’s .gui file and insert the name of your new action in the appropriate

location. You must also specify the appropriate sub-actions.

To view an example of implementing an action that performs multiple functions, refer to Action that

Performs Multiple Functions.

P a g e | 23

 February 28, 2011

6. Use Cases

The following sections provide information on typical use cases you may come upon when creating an

AutoVue API applet/application or adding enhanced functionality to the AutoVue client. Refer to the

VueBean JavaDocs for more information.

Note: Throughout this document, m_vueBean is used as a valid active VueBean object and m_JVue as a

valid JVue applet object. This is done assuming that the methods or segments of code that use objects

have access to a class which owns them.

Building an AutoVue API Application
A good starting point with the AutoVue API is to create an application that opens and displays a file. This

section provides detailed steps for creating a file open application using the AutoVue API.

Note: The following are segments of the ApplicationSample class source code that are used to illustrate

key aspects of an AutoVue API application. To view the complete unedited code, refer to

ApplicationSample.java.

1. Import required packages.

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;

import com.cimmetry.core.*;
import com.cimmetry.util.Messages;
import com.cimmetry.vuebean.*;
import com.cimmetry.vueconnection.ServerControl;

Note: To ensure the successful import of AutoVue API packages, you must add vuebean.jar as a

library to the build/class path of your Java application project.

2. Create a Java class, ApplicationSample, that can be run as a stand-alone application, and

declare all external parameters and internal data members.

public class ApplicationSample {
 private String m_host = "socket://localhost:5099";
 private String m_user = "guest";
 private String m_fileName = null;
 private String m_verbose = null;
 private String m_format = "AUTO";

 // Internal data members
 private VueBean m_vueBean = null;
 private ServerControl m_control = null;
 private static JFrame m_frame = null;

 private JMenu m_fileMenu = null;

P a g e | 24

 February 28, 2011

3. Create stand-alone application support.

 public static void main(final String args[]) {
 ApplicationSample app = new ApplicationSample();
 app.init(args);

}
 public void init(final String[] args) {
 switch (args.length) {
 case 4:
 m_verbose = args[3];
 case 3:
 m_fileName = args[2];
 case 2:
 m_user = args[1];
 case 1:
 m_host = args[0];
 default:
 break;
 }
 init();
 }

4. Initialize the application.

public void init() {
 // Setup verbosity
 if (m_verbose != null && m_verbose.length() > 0) {
 Messages.setVerbosity(m_verbose);
 }
…

Note: The init() method continues until step 13.

P a g e | 25

 February 28, 2011

5. Establish a connection with the server.

m_control = new ServerControl();
try {
 m_control.setHost(m_host);
 m_control.connect();
} catch (Exception e) {
 System.out.println("Unable to connect to:"+m_host);
 e.printStackTrace();
 return;
}

6. Open the session.

try {
m_control.setUser(m_user);

 m_control.sessionOpen();
} catch (Exception e) {
 System.out.println("Unable to open session for " + m_user);
 e.printStackTrace();
 return;
}

7. Initialize the frame.

m_frame = new JFrame("VueBean Sample");
m_frame.setBounds(100, 100, 640, 480);
m_frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 destroy();

}
});

8. Set the menus and actions.

setMenuBar();

P a g e | 26

 February 28, 2011

9. Create the bean.

m_vueBean = new VueBean(m_format);
m_vueBean.setServerControl(m_control);
m_vueBean.setBackground(Color.lightGray);

10. Set up the viewer as a model event listener.

m_vueBean.setVueEventBroadcaster(m_vueBean.getVueEventBroadcaster());

11. Add the VueBean to the frame.

m_frame.getContentPane().add(m_vueBean);

12. Display the frame.

m_frame.setVisible(true);

13. Show the file.

 updateFile();

}// Closing bracket for init() method

Note: This step marks the end of the init() method.

14. Close the session.

public void destroy() {
 try {
 m_control.sessionClose();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 m_frame.setVisible(false);
 m_frame.dispose();
 System.exit(0);

}

15. Get the attached VueBean.

P a g e | 27

 February 28, 2011

public VueBean getVueBean() {
 return m_vueBean;
}

16. Get the attached frame.

public JFrame getFrame() {
 return m_frame;
}

17. Get the file menu.

protected JMenu getFileMenu() {
 return m_fileMenu;
}

18. Get the frame. The following method sets the applet’s menubar to File Open, Print, and Exit.

public void setMenuBar() {
 m_fileMenu = new JMenu("File");
 JMenuItem menuItem;

 // File open menu item
 menuItem = m_fileMenu.add(new JMenuItem("Open"));
 menuItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 showFile();
 }
 });

 // set the Applet's menu bar
 JMenuBar menu_bar = new JMenuBar();
 m_frame.setJMenuBar(menu_bar);
 menu_bar.add(m_fileMenu);
}

19. Load the file.

public void updateFile() {
 // Set the vuebean's file
 if (m_fileName != null && !m_fileName.equals("")) {
 m_vueBean.setFile(new DocID(m_fileName));
 m_vueBean.setBackground(Color.lightGray);
 initMouseListeners();

 javax.swing.SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 m_vueBean.getController().zoomFit();
 }
 });
 }
}

P a g e | 28

 February 28, 2011

20. This method initializes listeners for mouse actions and sets the right mouse button to zoom out.

private void initMouseListeners() {
 MouseListener mouseSet = new MouseAdapter() {
 public void mouseClicked(MouseEvent me) {
 if ((me.getModifiers() & MouseEvent.BUTTON3_MASK) != 0)
{
 if (m_vueBean.getFileInfo() != null) {
 m_vueBean.getController().zoomFit();
 me.consume();
 }
 }
 }
 };
 VueMouseToolManager mtm = m_vueBean.getMouseToolManager();
 mtm.setMouseListener(VueMouseToolManager.TOP_LAYER,
mouseSet);
}

21. Display the client-side (upload) File Open dialog and set the selected file in the bean.

public void showFile() {
 FileDialog openDlg = new FileDialog(m_frame, "File Open",

FileDialog.LOAD);
 openDlg.setVisible(true);
 m_fileName = "upload://"+openDlg.getDirectory() +

 openDlg.getFile();
 openDlg.dispose();

 updateFile();
 }
}

Note: End of class ApplicationSample. In order to run the application properly, an AutoVue

server needs to be running on either a local or remote host that is specified through command

line arguments. Refer to step 3 for the definition of each argument.

P a g e | 29

 February 28, 2011

Implementing Functions from AutoVue in a Second Applet
When creating your own customized Java applets/applications based on AutoVue API components, it is

sometimes easier to implement pre-existing code from AutoVue. Many AutoVue and VueBean methods

can be easily called through JavaScript in your HTML page by first getting a handle to the AutoVue object

with the following JavaScript call:

However, some functionality may be difficult to implement directly through JavaScript and must be

written in Java. An efficient way to do this is through a separate Applet that references the AutoVue

applet. The steps are as follows:

1. Create your own Java class (for example, App2.java) that extends Applet.

2. Import the appropriate packages and classes (such as java.applet.Applet,

com.cimmetry.vuebean.VueBean, com.cimmetry.jvue.JVue, and so on).

3. Add the following two variables to your class:

4. Define an attach() method for your class and add the following two lines of code to obtain a

handle to the AutoVue (JVue) applet instance:

You can now call AutoVue methods on the m_jv variable, and can also obtain a handle to the

VueBean instance with m_jv.getActiveVueBean().

Note: For more information regarding the getAppletContext() method, refer Java

documentation for the AppletStub interface in the java.applet.package.

5. Compile your class (make sure to include jvue.jar in the classpath) and place your Java class file

in your CODEBASE location.

Note: If your custom applet has inner classes and generates additional class files upon

compilation, you should combine those classes in a JAR file and set the JAR files as your second

applet’s archive parameter.

document.applets[“JVue”]

private Applet m_applet;

private JVue m_jv;

m_applet = getAppletContext().getApplet("JVue");

m_jv = (JVue)m_applet;

P a g e | 30

 February 28, 2011

6. In your HTML page, declare your Applet as follows:

 <APPLET
 NAME="App2"
 CODE="App2.class"
 ARCHIVE="jvue.jar,jogl.jar,gluegen-rt.jar"
 CODEBASE="http://<SERVERNAME>/jVue"
 HEIGHT="0%" WIDTH="0%"
 MAYSCRIPT>
 </APPLET>

You can either modify frmApplet.html in the AutoVue root directory or use it as a template to

create your own HTML page.

Note: Make sure to set the CODEBASE and parameter appropriately based on your Web server

or application server hosting the Applet.

For example: CODEBASE="http://localhost:80/jVue"

7. In your HTML page, initialize your new Applet in the onAppletInit() method for the AutoVue

Applet by adding the following line:

document.applets[“App2”].attach();

This is the easiest way to initialize the second Applet in this particular example, since the

frmApplet.html page already contains the onAppletInit method.

Custom VueAction

Action that Performs a Single Function

The following example shows how to implement a custom action for AutoVue that displays a dialog that

lists all components of a drawing that are represented by hotspots and that were double-clicked by the

user.

Note: The following are segments of the source code of the VueAction example to illustrate the

essential steps of creating a custom action, it may not compile if you just copy and paste the code here.

For the complete source code, refer to PartListAction.java.

1. Import all required packages.

import java.awt.*;
import java.awt.event.*;
import java.util.Vector;

import com.cimmetry.vuebean.*;
import com.cimmetry.vuebean.event.*;

P a g e | 31

 February 28, 2011

import com.cimmetry.vueframe.*;
import com.cimmetry.vueframe.hotspot.*;
import com.cimmetry.core.*;
import com.cimmetry.dialogs.VueBasicDialog;
import com.cimmetry.vueaction.VueAction;
import com.cimmetry.gui.*;

2. Make your class extend VueAction.

public class PartListAction extends VueAction { …}

3. In the constructor of your class, call the appropriate super constructor. Since this action only

performs a single function, a call to the super-constructor of VueAction takes this action’s

resource key as well as its resource bundle name.

public PartListAction() {
 super(“LIST_PARTS”,RESOURCE_BUNDLE_NAME);

setViewListener(true);
}

Note: The resource bundle name here is the common part of resource bundle files for different

languages. The actual name of a resource bundle file should include the language suffix and file

extension. For example, PartListAction_en.properties is the resource bundle file for

English.

4. Implement a perform method for this action.

public void perform() {
 PartInfo[] parts = new PartInfo[m_cart.size()];

m_cart.copyInto(parts);
PartListDialog dialog = new PartListDialog(getFrame(), parts);
dialog.show();

5. Implement the event handlers onFileEvent and onViewEvent to notify when a file has

changed and to update the user-interface.

public void onFileEvent(VueEvent e) {
 switch (e.getEvent()) {
 case VueEvent.ONPAGELOADED:
 setEnabledByCurrentState();

P a g e | 32

 February 28, 2011

 break;
 }
 }
public void onViewEvent(VueEvent e) {
 switch(e.getEvent()) {
 case VueEvent.ONLINKCLICKED:

Object[] params = (Object[]) e.getParameter();
 MouseEvent me = (MouseEvent) params[0];
 if (me.getClickCount() == 2) {

Object link = params[1];
if (link instanceof HotSpot) {

HotSpot hotspot = (HotSpot) link;
 PartInfo part = getPartInfo(hotspot);
 m_cart.addElement(part);
 }
 }
 break;
 default:
 super.onViewEvent(e);
 break;
 }
}

6. The dialog that lists all components of a drawing extends VueBasicDialog. You must

implement your own constructor that calls the super-constructor and over-rides buildDialog()

and buttonAction(int).

public static class PartListDialog
extends
 VueBasicDialog
implements
 ActionListener (…)

protected void buildDialog() {
 super.buildDialog();
…
}

protected void buttonAction(int index){…}

7. You must define a model for the table that represents the displayed product parts list.

public static class PartListModel implements CTableModel { …}

8. Close the PartListDialog method.

9. Get a PartInfo associated with a given hotspot.

private PartInfo getPartInfo (HotSpot hotspot) {
 return new PartInfo(hotspot.getDefinitionKey(),

P a g e | 33

 February 28, 2011

 hotspot.getHotSpotKey(),
 hotspot.getProperty(HotSpot.PROPERTY_DESCRIPTION));
)

Action that Performs Multiple Functions

The following example shows how to implement a custom action for AutoVue that performs multiple

tasks. The custom action consists of several related sub-actions that access information about parts of a

model. One sub-action permits the user to order a part, another permits the user to display part

information, and another sub-action displays a list of all the model’s parts.

Note: The following are segments of the source code of the VueAction example to illustrate the

essential steps of creating a custom action, it may not compile if you just copy and paste the code here.

For the complete source code, refer to PartCatalogueAction.java.

1. Make your class extend VueAction.

public class PartCatalogueAction extends VueAction {
private static final String RESOURCE_BUNDLE_NAME =

 "/PartCatalogueAction";

 // Names of the sub-actions used in *.gui file
 private static final String ORDER_SUBACTION = "Order";
 private static final String LIST_PARTS_SUBACTION = "ListParts";

private static final String SHOW_INFO_SUBACTION = "ShowInfo";
…

}

2. In the constructor of your class, call the appropriate super constructor.

public PartCatalogueAction() {
 super(RESOURCE_BUNDLE_NAME);

Note: The resource bundle name here is the common part of resource bundle files for different

languages. The actual name of a resource bundle file should include the language suffix and file

extension. For example, PartCatalogueAction_en.properties is the resource bundle file

for English.

3. Call defineSubAction to define each sub-action your action can perform.

 defineSubAction(ORDER_SUBACTION,"ORDER_PART");
 defineSubAction(LIST_PARTS_SUBACTION,"LIST_PARTS");
 defineSubAction(SHOW_INFO_SUBACTION,"SHOW_PART_INFO");
}

P a g e | 34

 February 28, 2011

4. Implement a performSubAction(String) method to override the one in VueAction.

public void performSubAction(String subActionName) {
 if (subActionName.equals(ORDER_SUBACTION)) {

 //Code for performing the “Order” subaction
 …
 } else if (subActionName.equals(LIST_PARTS_SUBACTION)) {

 //Code for performing the “List Parts” subaction
 …
 }
…
}

5. Implement the event handlers onFileEvent and onViewEvent to ensure that your sub-

actions are enabled or disabled when appropriate.

public void onFileEvent(VueEvent e) {
 switch (e.getEvent()) {
 case VueEvent.ONSETFILE:
 //Code for handling ONSETFILE event
 …
 case VueEvent.ONPAGELOADED:
 //Code for handling ONPAGELOADED event
 setEnabledByCurrentState();
 …
 break;
 }
 }
public void onViewEvent(VueEvent e) {
 switch(e.getEvent()) {
 case VueEvent.ONVIEWCHANGED:
 //Code for handling ONVIEWCHANGED event
 setEnabledByCurrentState();
 …
 break;
 case VueEvent.ONOPTIONSCHANGED:
 //Code for handling ONOPTIONSCHANGED event
 …
 break;
 }
 }

6. Create one or more resource files, one per language your action supports, containing the keys

and values needed by your action. For example:

P a g e | 35

 February 28, 2011

…
FILE_MARKUP_NEW_MARKUP=&New Markup, 32_new_markup_red.png, New Markup
FILE_MARKUP_OPEN=&Open..., 57_markup_red.png, Open Markup(s)
FILE_MARKUP_SMALL= &Markup, 57_markup_red_small.png, Markup
FILE_MOCKUP=&Import File for Mockup..., 115_dmu.png, Import File for
Mockup
FILE_MRU=Recent Files
FILE_NOTFOUND=File not found.
FILE_NOTSUPPORTED=This file format is not supported by your server.
FILE_NOTUPLOADED=Failed to upload file.
FILE_OPEN=&Open...\\tCTrL+O, 59_open.png, Open File
FILE_OPEN_SERVER=Open from &Server..., , Open a file from the server
…

Similarly, in our resource bundle file for English language

PartCatalogueAction_en.properties, it should contain the resource keys for the

PartCatalogueAction shown in the following:

…
ORDER_PART = &Order Part, order_part.png, Order a part
LIST_PARTS = &List Parts, list_parts.png, List product parts
SHOW_INFO_SUBACTION = &Show Part Info, show_info.png, Show part
information
…

Note: Each resource key has three entries separated by a comma “,”. The first entry (for

example, &Order Part) is the text displayed on the GUI item (such as a menu item or toolbar

button) and the ampersand “&” defines a shortcut key. The second entry (for example,

order_part.png) is the file of the icon displayed on its GUI item. The third entry is the tooltip

text for the GUI item. The second and third entries are optional. You should get the icon files

ready if needed and add them to the JAR file for your custom action.

7. Make a copy of AutoVue’s default.gui file located in the <AutoVue Installation Root>\bin

directory, and insert the name of your new action in the appropriate locations of your GUI file.

Note that for an action that performs multiple tasks, you must also specify the appropriate sub-

actions.

Note: For information on how PartCatalogueAction sub-actions are inserted into a

menubar, toolbar, and custom pop-up menu, refer to default.gui and the custom.gui file

located in the “<AutoVue Installation Root>\examples\VueActionSample\ directory.

8. To allow the custom action to take effect, you may need to create a JAR file with your custom

VueAction classes and all resource files they depend on.

For example, for the resource bundle files for different languages and icon files, if any, place

your JAR file under AutoVue’s bin directory or its web root directory and include your JAR file in

the classpath of the stand-alone JVue application or ARCHIVE list of the JVue applet.

P a g e | 36

 February 28, 2011

9. You must specify the name of the modified GUI file through Applet or Command line

parameters.

For more information, refer to the “Customizing the GUI” section of the Installation and

Configuration Guide.

Directly Invoking VueActions
It is possible to develop your own customized user interface in an HTML page that incorporates AutoVue

functionality. To do so, you must call invokeAction() of the com.cimmetry.jvue.JVue applet

from the HTML page. This call to the action can be done purely through JavaScript.

Markups
The following show some ways to execute common Markup actions.

Note: Various MarkupBean functionalities (and various functionalities throughout the AutoVue API)

require the use of the Property class. This class is used to define various property hierarchies for other

classes in the API.

Entering Markup Mode
VueBean.setMarkupModeEnable(true)

Checks whether the MarkupBean member is null, and if so:

• Instantiates a new MarkupBean object

• Gets the markup settings from the user’s profile

• Sets the markup-specific mouse listeners

• Points the VueBean’s MarkupBean member to the new instance

• Broadcasts VueEvent.ONENTERMARKUPMODE

Checking Whether Markup Mode is Enabled
VueBean.isMarkupModeEnabled()

Checks whether the MarkupBean member is null.

Exiting Markup Mode
VueBean.setMarkupModeEnabled(false)

Checks whether the MarkupBean member is null, and if not:

• Sets the MarkupBean member to null

• Removes markup-specific mouse listeners

P a g e | 37

 February 28, 2011

• Saves markup settings into the user’s profile

• Broadcasts VueEvent.ONEXITMARKUPMODE

Adding an Entity to an Active Markup/Layer
MarkupBean.setMarkupEntityClass(<class name of desired markup entity>)
MarkupBean.setActionMode(MarkupBean.ACTION_MODE_ADD)

Adds a new markup entity to the active layer in an active Markup (based on the class name provided)

through user input from the GUI. To programmatically add a markup entity, you must call:

MarkupBean.addMarkupEntity(MarkupEntitySpec spec)

Enumerating Entities
MarkupLayer.getEntities()

or

MarkupBean.getMarkupEntities(MarkupLayer layer)

Returns an array of MarkupEntity objects in a markup layer.

Getting Entity Specification of a Given Entity
MarkupBean.getMarkupEntityFullSpec(MarkupEntity ent)

You must pass in the specific entity for MarkupBean to return its specification.

Changing Specification of an Existing Entity Programmatically
MarkupBean.exchangeMarkupEntity(MarkupEntity a, MarkupEntity b)

Allows you to dynamically change the properties of an existing entity. That is, it replaces markup entity a

with markup entity b. Some properties can be directly changed via the following set methods of

MarkupEntitySpec inherited from the MarkupGraphicSpec parent class:

• setColor

• setFillColor

• setFilled

• setFilltype

• setFont

• setLineType

• setLineWidth

For other properties, such as the entity position, entity size, entity text content, and so on, there are no

set methods directly on the specification. As a result, you must do the following:

P a g e | 38

 February 28, 2011

1. Create a new specification instance (with the new properties).

2. Create a new entity instance (with the new specification).

3. Use exchangeMarkupEntity to replace the existing entity.

4. Make a call to MarkupBean.repaint().

Adding a Text Box Entity

The following code shows how to add a text box entity programmatically.

import com.cimmetry.markupbean.*;
import com.cimmetry.gui.*;
.
.
.
public void addTextBox(String text){

 m_vueBean.setMarkupModeEnabled(true);

 CTextPane textPane = GUIFactory.createTextPane();
 textPane.setText(text);
 byte[] textRTF = textPane.getRTF();
 PAN_CtlRange rect = new PAN_CtlRange(m_vueBean.getViewExtents());
 rect.scale(0.2);

TextBoxSpec spec = new
TextBoxSpec(m_vueBean.getMarkupBean().getMarkupEntitySpec(),

 rect.min, textRTF,
rect.max,TextBoxSpec.MRK_ALIGN_BOTTOMCENTER);

 m_vueBean.getMarkupBean().setMarkupEntityClass(spec.getEntityClassName());
 m_vueBean.getMarkupBean().addMarkupEntity(spec);
}

P a g e | 39

 February 28, 2011

Open Existing Markup
MarkupBean.readMarkup(InputStream is)

InputStream can be relative to the client (for example, a locally-saved Markup), relative to the

AutoVue server (for example, managed by AutoVue’s markups.map file) or from a DMS/PLM/ERP.

To read a Markup from the AutoVue server, you first must get the InputStream by reading the Markup

Property from the VueBean, and then choose a child property (that represents a Markup file) you want

to read into the stream. The following code illustrates how to create a markup, save it, and then read it

into the MarkupBean.

import com.cimmetry.markupbean.*;
.
.
.
Property[] name = {new Property(Property.PROP_DOC_NAME, <your Markup name>)};
Property prop = new Property(Property.PROP_MARKUP, name);
ByteArrayOutputStream os = new ByteArrayOutputStream();
m_markupBean.writeMarkup(os);
m_vueBean.writeMarkup(prop, os);
Property masterMarkup = m_vueBean.getMarkupProperty();
Property[] listMarkups =
masterMarkup.getChildrenWithName(Property.PROP_MARKUP);
Property aMarkup = listMarkup[0];
InputStream is = m_vueBean.readMarkup(aMarkup);
m_markupBean.readMarkup(is);
…

Saving Markups to a DMS/PLM

Note: This example is not applicable if you are building an ISDK-based application.

The following example uses the same concept as saving a Markup back to the AutoVue server; you must

set the appropriate Property and build the OutPutStream. In order to build the Markup property, you

need to first read the CSI_Markups property so that you can retrieve the values that the user sets in

the Markup Save dialog.

private void saveMarkupToDMS() {
 // Gets the master markup property for the current file, that is,
 // the property containing the GUI and the markup list
 Property propMaster = m_vueBean.getMarkupProperty();

 // If none, we have a problem
 if (propMaster == null) {
 System.out.println("Could not get master markup property!");
 return;
 } else {
 // Get the GUI child property under master markup property

P a g e | 40

 February 28, 2011

 Property[] listGuiProp
=propMaster.getChildrenWithName(Property.PROP_GUI);
 if (listGuiProp == null || listGuiProp.length != 1) {
 System.out.println("No valid GUI property!");
 return;
 }

 Property propGui = listGuiProp[0];

 // Get the user field (Edit) child property under GUI property
 Property[] listEditProp
=propGui.getChildrenWithName(Property.PROP_GUI_EDIT);
 if (listEditProp == null || listEditProp.length != 1) {
 System.out.println("No valid GUI edit property!");
 return;
 }

 Property propGuiEdit = listEditProp[0];

 // Get the list of user fields from save dialog
 // all children items under GUI edit property
 Property [] itemsEdit = propGuiEdit.getChildren();

 // ToDo: Use the list of edit items (GUI element) to construct a
 // save dialog to get user input for properties under PROP_GUI_EDIT.
 // Assume the input for attribute "CSI_DocName" we got from the dialog
 // is "myMarkup" and the input for attribute "CSI_MarkupType" is
 // "Normal", now the following code using the inputs to construct
 // the markup property contains these two attributes. In reality
 // there can be more than two attributes.

 Property [] listProp = {
 new Property("CSI_DocName", "myMarkup"),
 new Property("CSI_MarkupType", "Normal")
 };

 // Create a Markup property with the specified name & type properties
 Property propMarkup = new Property(Property.PROP_MARKUP, listProp);

 // Save the Markup
 try {
 ByteArrayOutputStream os = new ByteArrayOutputStream();
 m_vueBean.getMarkupBean().writeMarkup(os);
 m_vueBean.writeMarkup(propMarkup, os);
 } catch (MarkupIOException e) {
 System.out.println("Markup IO Exception!");
 }
 }
}

P a g e | 41

 February 28, 2011

Adding a Markup Listener to Your Application
MarkupBean.getMarkupBroadcaster().addMarkupEventListener(MarkupEventListener
mel);

A Markup listener listens for Markup events related to creating/saving/deleting Markups, Markup

entities, Markup file information, fonts, Markup status, and so on. Note that you must implement the

com.cimmetry.MarkupBean.event.MarkupEventListener interface (thereby implementing the

onMarkupEvent method).

Converting Files
The following sections discuss how to execute common Conversion actions such as making a call to

convert, converting an image to a JPEG using a custom conversion, and converting a vector file to a PDF.

In some cases, there are additional methods to achieve the same functionality. Refer to the VueBean

Javadocs for more information.

The class hierarchy for conversion is as follows:

Note that the classes represent the format which you are converting a file to. For example, if you are

converting to a vector format, you should define a VectorConvertOptions and pass it into the

conversion method.

Calling to Convert
com.cimmetry.vuebean.VueBean.convert(ConvertOptions opts)

 or

com.cimmetry.jvue.JVue.convertFile(ConvertOptions opts)

Once the convert options are defined, you must call one of the methods to convert.

Note: When making a call from the VueBean you must call VueBean.convert. When making a call

from the AutoVue applet layer, you must call JVue.convertFile.

com.cimmetry.core.

ConvertOptions

com.cimmetry.core.

ConvertOptions2D

com.cimmetry.core.

ConvertOptions3D

com.cimmetry.core.

RasterConvertOptions

com.cimmetry.core.

VectorConvertOptions

P a g e | 42

 February 28, 2011

Converting to JPEG (Custom Conversion)

To convert an image to a JPEG, you must use the encode() method that Java provides as part of the

com.sun.image.coded.jpeg.JPEGImageEncoder interface. This method encodes buffers of the

image data in JPEG data streams. To use this interface, you must provide the image data in raster

format or a BufferedImage. The following example illustrates how to use this interface with the

AutoVue API:

import java.io.*;
import java.awt.*;
import java.awt.image.*
import com.cimmetry.core.*;
import com.sun.image.codec.jpeg.*;
…

double scaling=0.5;
BufferedImage bi = new BufferedImage((int)(m_vueBean.getWidth()*scaling),
(int)(m_vueBean.getHeight()*scaling), BufferedImage.TYPE_INT_RGB);

//Create or get Graphics and RenderOptions object here
Graphics2D g = bi.createGraphics();
RenderOptions optsRender = new RenderOptions();

// TODO: Initialize the Graphics object and RenderOptions object properly
such // as setting the source and destination.

try {
 m_vueBean.renderOntoGraphics(g,optsRender);

 FileOutputStream out = new FileOutputStream("c:\\temp\\my.jpeg");
 JPEGImageEncoder encoder = JPEGCodec.createJPEGEncoder(out);
 JPEGEncodeParam param = encoder.getDefaultJPEGEncodeParam(bi);

 // TODO: Use the JPEGEncodeParam Interface to set the encoder parameters.

 encoder.encode(bi, param);
 out.flush();
 out.close();
} catch (Exception e) {
 System.out.println("Exception while converting to JPEG ");
 return;
}
…

P a g e | 43

 February 28, 2011

Converting to PDF

To convert a vector file to a PDF you must perform the following steps:

• Create new VectorConvertOptions() object

• Set all appropriate convert options

• Call VueBean.convert and pass in the convert options

The following convertToPDF() method converts a vector file to a PDF.

public void convertToPDF() {

 VectorConvertOptions opts = new VectorConvertOptions();

 opts.setStepsPerInch(1);
 PAN_CtlFileInfo fi = m_vueBean.getFileInfo();
 PAN_CtlRange ps = m_vueBean.getPageSizeEx();

 if (fi.getType() == fi.PAN_DocumentFile) {
 ps = fi.getPageSize();
 }

 opts.setInputRange(ps);
 opts.setArea(ConvertOptions2D.AREA_EXTENTS);
 opts.setScaleFactor(100);
 opts.setScaleType(ConvertOptions2D.TYPE_SCALE);
 opts.setWidth(Math.abs(ps.width()));
 opts.setHeight(Math.abs(ps.height()));
 opts.setUnits(Constants.UNITS_INCH);
 opts.setPages(ConvertOptions2D.PAGES_ALL);
 opts.setFromPage(1);
 opts.setToPage(fi.getPagesNumber());
 opts.setFormat("PCVC_PDF");
 opts.setSubFormatID(0);
 opts.setFileName("c:\\output.pdf");

 Property[] p = m_ vueBean.uploadMarkups();
 //Uploads all currently loaded markups to the AutoVue server

 opts.setProperties(p);
 m_ vueBean.convert(opts);
}

P a g e | 44

 February 28, 2011

Printing a File to 11x17 Paper
The following code prints a file to 11x17 paper size using the

com.cimmerty.common.PrintProperties and com.cimmetry.commonPrintOptions classes.

import com.cimmetry.common.PrintProperties;

import com.cimmetry.common.PrintOptions;

public void printFile()

 {

 PrintProperties paramPrintProperties = new PrintProperties();

 PrintOptions po = new PrintOptions();

 po.setPrinter("AutoVue Document Converter");

 po.setPaperSize(po.PAPER_11X17);

 paramPrintProperties.setOptions(po);

 // The second parameter will enable the bypass of the Windows dialog

 m_JVue.printFile(paramPrintProperties, true);

 }

Monitoring Event Notifications
com.cimmetry.vuebean.event

If you have a requirement to programmatically execute specific file actions (such as rotation, zooming,

and so on) as soon as a file has finished loading, you must monitor for the appropriate event

notifications. If you do not check for file load completion, you might call a file action too early which may

lead to errors.

The VueBean includes a set of notifications known as VueEvents. You can set up a listener to catch

VueEvents, and catch the specific events that represent the completion of a file loading. In order to

catch file loading completion, you must use a file listener, with the VueFileListener interface.

 The steps are as follows:

1. Implement your own VueFileListener (for example, in a second applet).

2. In the onFileEvent method, check for occurrence of the Vue.Event.ONSHOWINGFILE event

directly followed by the VueEvent.ONACTIVEVIEW event.

Note: These two events in this particular order indicate that VueBean has finished loading a file.

3. Implement your code to be executed when these two events are detected in order.

4. Add your file listener to the VueBean.

5. Add this to your second applet. See Implementing Functions from AutoVue in a Second Applet.

P a g e | 45

 February 28, 2011

Retrieving the Dimension and Units of a File
The following sample code shows how to get the dimensions and units of a file.

 PAN_CtlDimensions pctlDim = m_vueBean.getFileInfo().getDimensions();
 double width = pctlDim.getWidth();
 double height = pctlDim.getHeight();
 double depth = pctlDim.getDepth();
 int units = m_vueBean.getFileInfo().getInsertion().units;

7. Cleanup Problems

Session Close
The following code is for a session close when using the VueBean. Note that when closing the session

you do not need to close the document as it is done automatically by the session close call.

Note: This code is not required when using the AutoVue applet as it is done automatically by the

applet’s destroy() method.

//Disable restoration to speedup the shutdown
getServerControl().setRestorable(false);
if (getServerControl().isSessionClosed()) {

// Already closed
return;

try {

//Close session on the server
getServerControl().sessionClose();

} catch (VueRemoteException ex) {
//Failed to close session

}

//Close connection to the server
getServerControl().disconnect();

//Stop all the active worker threads (threadpool)
JobGroup.killRootJobGroup(VueFrame.this);

P a g e | 46

 February 28, 2011

8. FAQ

MarkupBean
Q: How do you determine the layer that a given entity is in?

A: Get the entity's spec and then get the layer from the spec.

Q: Do I have to implement the entire text editing dialog for the Text/Leader/Note entity?

A: No. The text editing dialog is inherent to these entities.

Q: An entity spec is tied to a given entity. Why was it decided to have an entity spec tied to the

MarkupBean?

A: The entity spec on the MarkupBean was designed to be a reference to the most recent spec settings.

When you create a new Markup entity, it defaults much of its spec attributes to the current spec in the

MarkupBean. To retrieve the most recent spec settings, you can call
MarkupBean.getMarkupEntitySpec().

Note: The other two methods MarkupBean.getMarkupEntitySpec(MarkupEntity ent) and

MarkupBean.getMarkupEntityFullSpec(MarkupEntity ent) are for when you need to get the

spec of a specific entity.

Q: What is the difference between MarkupGraphicSpec and MarkupEntitySpec? Why are the specs

such as ArcSpec subclass not derived directly from MarkupGraphicSpec?

A: The MarkupGraphicSpec is a top-level specification that manages visual attributes such as color, fill

type, and so on. The MarkupEntitySpec is a top-level spec that has access to the overall structure

such as the MarkupBean, Markups, layers, pages, and so on.

Q: Can you work with MarkupBean independent of VueBean?

A: In theory it is possible to instantiate and work with MarkupBean without having a VueBean. However,

there are not many use cases or practical reasons where this would be valuable.

Q: Are the Markup tree and Markup toolbars from the AutoVue Applet accessible if I am building a

custom application from VueBean/MarkupBean?

A: No. The UI such as toolbars and Markup tree are part of the "JVue" class. If you build your solution

using the JVue class you can use or customize this UI. However, if you build your solution directly from

VueBean you need to implement your own UI.

Q: Is it possible to add AutoVue markup capabilities to a third-party application?

A: Yes. There are two primary ways to add markup entities using MarkupBean:

1. With user input, using MarkupBean.setActionMode(MarkupBean.ACTION_MODE_ADD)

2. Programmatically, using MarkupBean.addMarkupEntity(MarkupEntitySpec spec)

Printing
Q: What is the purpose of com.cimmetry.core.PrintInfo class?

A: It is used to pass information between the client and server.

P a g e | 47

 February 28, 2011

General
Q: Can I perform file type-dependent operations?

A: Yes. You can do so by using the getFileInfo() method. The PAN_CtlFileInfo object that is

returned can be queried to determine file format (such as vector, raster, spreadsheet, document,

archive, or a database file).

Q: Can I delete server-side Markups when using the VueBean API?

A: No. It is not currently possible to programmatically delete server-managed Markups (referenced in

the markups.map file on the server) using the VueBean API.

P a g e | 48

 February 28, 2011

9. Feedback

We appreciate your feedback, comments or suggestions. Contact us by e-mail or telephone. Let us know

what you think.

For any questions regarding a particular class or method, please contact Oracle Customer Support or

post your question to the My Oracle Support AutoVue Community Web site. Customer Support can

answer all questions related to specific topics documented in the VueBean Javadocs.

General Inquiries:
Telephone: +1.514.905.8400 or +1.800.363.5805

E-mail: autovuesales_ww@oracle.com

Web Site: http://www.oracle.com/us/products/applications/autoVue/index.html

Sales Inquiries:
Telephone: +1.514.905. 8400 or +1.800.363.5805

E-mail: autovuesales_ww@oracle.com

Oracle Customer Support:
Web Site: http://www.oracle.com/support/index.html

My Oracle Support AutoVue Community:
Web Site: https://communities.oracle.com/portal/server.pt

