
Oracle® GoldenGate
Windows and UNIX Administrator’s Guide
11g Release 1 Patch Set 1 (11.1.1.1)

E21513-01

April 2011

Oracle GoldenGate Windows and UNIX Administrator’s Guide 11g Release 1 Patch Set 1 (11.1.1.1)

E21513-01

Copyright © 1995, 2011 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this
software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred
due to your access to or use of third-party content, products, or services.

1Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Contents
.

Preface About the Oracle GoldenGate guides. 7

Typographic conventions used in this manual . 8

Getting more help with Oracle GoldenGate . 8

Chapter 1 Introduction to Oracle GoldenGate . 10

Oracle GoldenGate supported processing methods and databases. 10

Overview of the Oracle GoldenGate architecture . 11

Overview of processing methods . 18

Overview of groups . 18

Overview of the Commit Sequence Number (CSN). 19

Chapter 2 Configuring the Manager process . 23

Overview of the Manager process. 23

Configuring Manager. 23

Recommended parameters . 24

Starting Manager. 24

Stopping Manager . 25

Chapter 3 Getting started with Oracle GoldenGate . 26

Running the user interfaces. 26

Using Oracle GoldenGate parameter files. 28

Chapter 4 Using Oracle GoldenGate for live reporting . 35

Overview of the reporting configuration . 35

Considerations when choosing a reporting configuration. 36

Creating a standard reporting configuration . 37

Creating a reporting configuration with a data pump on the source system 39

Creating a reporting configuration with a data pump on an intermediary system 42

Creating a cascading reporting configuration . 46

Chapter 5 Using Oracle GoldenGate for real-time data distribution. 53

Overview of the data-distribution configuration . 53

Considerations for a data-distribution configuration . 53

Creating a data distribution configuration. 55

Contents

2Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Chapter 6 Configuring Oracle GoldenGate for real-time data warehousing 59

Overview of the data-warehousing configuration . 59

Considerations for a data warehousing configuration. 59

Creating a data warehousing configuration . 61

Chapter 7 Using Oracle GoldenGate to maintain a live standby database . 65

Overview of a live standby configuration. 65

Considerations for a live standby configuration . 66

Creating a live standby configuration . 68

Moving user activity in a planned switchover . 72

Moving user activity in an unplanned failover . 75

Chapter 8 Using Oracle GoldenGate for active-active high availability . 79

Overview of an active-active configuration. 79

Considerations for an active-active configuration. 79

Preventing data looping. 82

Creating an active-active configuration . 85

Managing conflicts . 91

Conflict detection and resolution examples . 96

Chapter 9 Configuring Oracle GoldenGate security . 99

Overview of security options . 99

Using encryption. 99

Generating encryption keys . 102

Using command security . 104

Using target system connection initiation . 106

Chapter 10 Handling Oracle GoldenGate processing errors . 110

Overview of Oracle GoldenGate error handling. 110

Handling Extract errors . 110

Handling Replicat errors during DML operations . 110

Handling Replicat errors during DDL operations. 113

Handling TCP/IP errors . 113

Maintaining updated error messages . 114

Resolving Oracle GoldenGate errors . 114

Chapter 11 Creating a data-definitions file . 115

Overview of the data-definitions file . 115

When to use a data-definitions file . 115

Types of definitions files . 116

When to use a definitions template . 116

Configuring a data-definitions file . 117

Contents

3Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Chapter 12 Configuring online change synchronization . 120

Overview of online change synchronization. 120

Naming conventions for groups . 121

Creating a checkpoint table . 121

Creating an online Extract group . 123

Creating a trail . 125

Creating a parameter file for online extraction. 127

Creating an online Replicat group . 129

Creating a parameter file for online replication . 130

Controlling online processes. 132

Deleting a process group . 133

Chapter 13 Configuring change synchronization as a batch run . 135

Overview of batch change synchronization . 135

Creating a parameter file for batch extraction . 135

Creating a parameter file for batch replication. 137

Starting processes from the command shell of the operating system. 139

Chapter 14 Configuring DDL synchronization for an Oracle database . 141

Overview of DDL synchronization . 141

Limitations of Oracle GoldenGate DDL support . 141

Special DDL cases and their treatment . 143

Configuration guidelines for DDL support. 146

Understanding DDL scopes. 147

Correctly identifying unqualified object names in DDL . 150

Enabling DDL support. 151

Filtering DDL replication. 151

Special filter cases . 158

How Oracle GoldenGate handles derived object names . 159

Using DDL string substitution . 163

Controlling the propagation of DDL that is executed by Replicat 168

Adding supplemental log groups automatically . 170

Removing comments from replicated DDL . 170

Controlling whether renames enter the DDL configuration . 170

Replicating an IDENTIFIED BY password. 171

How DDL is evaluated for processing . 171

Handling Extract DDL processing errors . 173

Handling Replicat DDL processing errors. 174

Handling DDL trigger errors . 179

Viewing DDL report information . 179

Contents

4Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Viewing metadata in the DDL history table. 182

Tracing DDL processing . 183

Tracing the DDL trigger . 184

Chapter 15 Configuring DDL synchronization for a Teradata database . 185

About this documentation . 185

Overview of DDL synchronization . 185

Limitations of Oracle GoldenGate DDL support . 186

Configuration guidelines for DDL support. 188

Understanding DDL scopes. 189

Enabling DDL support. 191

Filtering DDL replication. 191

How Oracle GoldenGate handles derived object names . 196

Using DDL string substitution . 200

Controlling whether renames enter the DDL configuration . 204

How DDL is evaluated for processing . 204

Handling Extract DDL processing errors . 206

Handling Replicat DDL processing errors. 206

Viewing DDL report information . 211

Tracing DDL processing . 213

Chapter 16 Running an initial data load . 214

Overview of initial data load methods . 214

Using parallel processing in an initial load. 215

Prerequisites for initial load . 215

Loading data with a database utility . 217

Loading data from file to Replicat . 218

Loading data from file to database utility . 223

Loading data with an Oracle GoldenGate direct load . 228

Loading data with a direct bulk load to SQL*Loader . 232

Loading data with Teradata load utilities . 236

Chapter 17 Mapping and manipulating data . 238

Overview of data mapping and manipulation . 238

Deciding where data mapping and conversion will take place . 238

Handling anomalies in data from NonStop systems. 239

Selecting rows . 239

Selecting columns . 244

Selecting and converting SQL operations . 245

Mapping columns. 245

Using transaction history . 252

Contents

5Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Testing and transforming data . 253

Using tokens . 258

Mapping and transforming Unicode and native characters . 260

Chapter 18 Customizing Oracle GoldenGate processing . 262

Overview of custom processing . 262

Executing commands, stored procedures, and queries with SQLEXEC 262

Using Oracle GoldenGate macros to simplify and automate work 269

Using user exits to extend Oracle GoldenGate capabilities . 275

Using the Oracle GoldenGate event marker system to raise database events 278

Chapter 19 Monitoring Oracle GoldenGate processing. 289

Overview of the Oracle GoldenGate monitoring tools . 289

Using the information commands in GGSCI . 289

Monitoring an Extract recovery . 290

Monitoring lag . 291

Monitoring processing volume . 292

Using the error log . 294

Using the process report . 295

Using the discard file . 298

Using the system logs . 300

Reconciling time differences . 301

Sending event messages to a NonStop system . 301

Getting more help with monitoring and tuning . 302

Chapter 20 Performing administrative operations . 303

Overview of administrative operations . 303

Performing application patches . 303

Adding process groups. 304

Initializing the transaction logs . 311

Shutting down the system. 312

Changing database attributes . 312

Changing the size of trail files. 317

Chapter 21 Undoing data changes with the Reverse utility . 318

Overview of the Reverse utility . 318

Reverse utility restrictions . 319

Configuring the Reverse utility. 319

Creating online process groups and trails for reverse processing 324

Running the Reverse utility . 326

Undoing the changes made by the Reverse utility . 327

Contents

6Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Appendix 1 Oracle GoldenGate record format . 328

Example of an Oracle GoldenGate record . 328

Record header area . 330

Record data area . 332

Tokens area . 334

Oracle GoldenGate operation types. 334

Oracle GoldenGate trail header record . 338

Glossary . 339

Index . 352

7Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

PREFACE

About the Oracle GoldenGate guides
.

The complete Oracle GoldenGate documentation set contains the following components:

HP NonStop platforms

● Oracle GoldenGate HP NonStop Administrator’s Guide: Explains how to plan for,
configure, and implement the Oracle GoldenGate replication solution on the NonStop
platform.

● Oracle GoldenGate HP NonStop Reference Guide: Contains detailed information about
Oracle GoldenGate parameters, commands, and functions for the NonStop platform.

Windows, UNIX, Linux platforms

● Installation and Setup guides: There is one such guide for each database that is
supported by Oracle GoldenGate. It contains system requirements, pre-installation
and post-installation procedures, installation instructions, and other system-specific
information for installing the Oracle GoldenGate replication solution.

● Oracle GoldenGate Windows and UNIX Administrator’s Guide: Explains how to plan
for, configure, and implement the Oracle GoldenGate replication solution on the
Windows and UNIX platforms.

● Oracle GoldenGate Windows and UNIX Reference Guide: Contains detailed
information about Oracle GoldenGate parameters, commands, and functions for the
Windows and UNIX platforms.

● Oracle GoldenGate Windows and UNIX Troubleshooting and Tuning Guide: Contains
suggestions for improving the performance of the Oracle GoldenGate replication
solution and provides solutions to common problems.

Other Oracle GoldenGate products

● Oracle GoldenGate Director Administrator’s Guide: Expains how to install, run, and
administer Oracle GoldenGate Director for configuring, managing, monitoring, and
reporting on the Oracle GoldenGate replication components.

● Oracle GoldenGate Veridata Administrator’s Guide: Explains how to install, run, and
administer the Oracle GoldenGate Veridata data comparison solution.

● Oracle GoldenGate for Java Administrator’s Guide: Explains how to install, configure,
and run Oracle GoldenGate for Java to capture JMS messages to Oracle GoldenGate
trails or deliver captured data to messaging systems or custom APIs.

● Oracle GoldenGate for Flat File Administrator’s Guide: Explains how to install,
configure, and run Oracle GoldenGate for Flat File to format data captured by Oracle
GoldenGate as batch input to ETL, proprietary or legacy applications.

About the Oracle GoldenGate guides
Typographic conventions used in this manual

8Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Typographic conventions used in this manual

This manual uses the following style conventions.

● Parameter and command arguments are shown in upper case, for example:
CHECKPARAMS

● File names, table names, and other names are shown in lower case unless they are
case-sensitive to the operating system or software application they are associated with,
for example:
account_tab

GLOBALS

● Variables are shown within < > characters, for example:
<group name>

● When one of multiple mutually-exclusive arguments must be selected, the selection is
enclosed within braces and separated with pipe characters, for example:
VIEW PARAMS {MGR | <group> | <file name>}

● Optional arguments are enclosed within brackets, for example:
CLEANUP EXTRACT <group name> [, SAVE <count>]

● When there are numerous multiple optional arguments, a placeholder such as
[<option>] may be used, and the options are listed and described separately, for
example:
TRANLOGOPTIONS [<option>]

● When an argument is accepted more than once, an ellipsis character (...) is used, for
example:
PARAMS ([<requirement rule>] <param spec> [, <param spec>] [, ...])

● The ampersand (&) is used as a continuation character in Oracle GoldenGate
parameter files. It is required to be placed at the end of each line of a parameter
statement that spans multiple lines. Most examples in this documentation show the
ampersand in its proper place; however, some examples of multi-line statements may
omit it to allow for space constraints of the publication format.

Getting more help with Oracle GoldenGate

In addition to the Oracle GoldenGate documentation, you can get help for Oracle
GoldenGate in the following ways.

Getting help with the Oracle GoldenGate interface

Both GGSCI and the Oracle GoldenGate Director applications provide online help.

GGSCI commands

To get help for an Oracle GoldenGate command, use the HELP command in GGSCI. To get
a summary of command categories, issue the HELP command without options. To get help

About the Oracle GoldenGate guides
Getting more help with Oracle GoldenGate

9Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

for a specific command, issue the HELP command with the command name as input.

HELP <command name>

Example:

HELP ADD EXTRACT

The help file displays the syntax and description of the command.

Oracle GoldenGate Director

To get help for either Oracle GoldenGate Director Client or Oracle GoldenGate Director
Web, use the Help menu within the application.

Getting help with questions and problems

For troubleshooting assistance, see Oracle GoldenGate Windows and UNIX
Troubleshooting and Tuning Guide. Additional information can be obtained from the
Knowledge Base on http://support.oracle.com. If you cannot find an answer, you can open
a service request from the support site.

http://support.oracle.com
http://support.oracle.com

10Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHAPTER 1

Introduction to Oracle GoldenGate
.

Oracle GoldenGate supported processing methods and databases

Oracle GoldenGate enables the exchange and manipulation of data at the transaction level
among multiple, heterogeneous platforms across the enterprise1. Its modular architecture
gives you the flexibility to extract and replicate selected data records, transactional
changes, and changes to DDL (data definition language2) across a variety of topologies.

With this flexibility, and the filtering, transformation, and custom processing features of
Oracle GoldenGate, you can support numerous business requirements:

● Business continuance and high availability.

● Initial load and database migration.

● Data integration.

● Decision support and data warehousing.

1. Support for replication across different database types and topologies varies by database type. See the Oracle GoldenGate Installation and
Setup Guide for your database for detailed information about supported configurations.

2. DDL is not supported for all databases

Figure 1 Oracle GoldenGate supported topologies

Introduction to Oracle GoldenGate
Overview of the Oracle GoldenGate architecture

11Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

*Supported only as a target database. Cannot be a source database for Oracle GoldenGate extraction.

** Uses a capture module that communicates with the Oracle GoldenGate API to send change data to Oracle GoldenGate.

*** Only like-to-like configuration is supported. Data manipulation, filtering, column mapping not supported.

Overview of the Oracle GoldenGate architecture

Oracle GoldenGate is composed of the following components:

● Extract

● Data pump

● Replicat

● Trails or extract files

● Checkpoints

● Manager

● Collector

Table 1 Supported processing methods1

1 For full information about processing methodology, supported topologies and functionality, and configuration requirements, see
the Oracle GoldenGate Installation and Setup Guide for your database.

Database
Log-Based
Extraction
(capture)

Non-Log-Based
Extraction**
(capture)

Replication
(delivery)

c-tree*** X X

DB2 for i* X

DB2 for Linux, UNIX,
Windows

X X

DB2 for z/OS X X

Oracle X X

MySQL X X

SQL/MX X X

SQL Server X X

Sybase X X

Teradata X X

TimesTen* X

Generic ODBC* X

Introduction to Oracle GoldenGate
Overview of the Oracle GoldenGate architecture

12Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Figure 2 illustrates the logical architecture of Oracle GoldenGate for initial data loads and
for the replication of ongoing database changes. This is the basic configuration. Variations
of this model are recommended depending on business needs.

Overview of Extract

The Extract process runs on the source system and is the extraction (capture) mechanism
of Oracle GoldenGate. You can configure Extract in one of the following ways:

● Initial loads: For initial data loads, Extract extracts a current set of data directly from
their source objects.

● Change synchronization: To keep source data synchronized with another set of data,
Extract captures changes made to data (typically transactional inserts, updates, and
deletes) after the initial synchronization has taken place. DDL changes and sequences
are also extracted, if supported for the type of database that is being used.

When processing data changes, Extract obtains the data from a data source that can be one
of the following.

● The database recovery logs or transaction logs (such as the Oracle redo logs or SQL/MX
audit trails). The actual method of obtaining the data from the logs varies depending
on the databast type.

● A third-party capture module. This method provides a communication layer that
passes data changes and metadata from an external API to the Extract API. The
database vendor or a third-party vendor provides the components that extract the data
changes and pass it to Extract.

Extract captures all of the changes that are made to objects that you configure for
synchronization. Extract stores the changes until it receives commit records or rollbacks
for the transactions that contain them. When a rollback is received, Extract discards the
data for that transaction. When a commit is received, Extract sends the data for that
transaction to the trail for propagation to the target system. All of the log records for a
transaction are written to the trail as a sequentially organized transaction unit. This
design ensures both speed and data integrity.

Figure 2 Oracle GoldenGate logical architecture

Introduction to Oracle GoldenGate
Overview of the Oracle GoldenGate architecture

13Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

NOTE Extract ignores operations on objects that are not in the Extract configuration, even
though the same transaction may also include operations on objects that are in the
Extract configuration.

Multiple Extract processes can operate on different objects at the same time. For example,
one process could continuously extract transactional data changes and stream them to a
decision-support database, while another process performs batch extracts for periodic
reporting. Or, two Extract processes could extract and transmit in parallel to two Replicat
processes (with two trails) to minimize target latency when the databases are large. To
differentiate among different processes, you assign each one a group name (see “Overview
of groups” on page 18).

Overview of data pumps

A data pump is a secondary Extract group within the source Oracle GoldenGate
configuration. If a data pump is not used, Extract must send data to a remote trail on the
target. In a typical configuration that includes a data pump, however, the primary Extract
group writes to a trail on the source system. The data pump reads this trail and sends the
data over the network to a remote trail on the target. The data pump adds storage
flexibility and also serves to isolate the primary Extract process from TCP/IP activity.

Like a primary Extract group, a data pump can be configured for either online or batch
processing. It can perform data filtering, mapping, and conversion, or it can be configured
in pass-through mode, where data is passively transferred as-is, without manipulation.
Pass-through mode increases the throughput of the data pump, because all of the
functionality that looks up object definitions is bypassed.

In most business cases, you should use a data pump. Some reasons for using a data pump
include the following:

● Protection against network and target failures: In a basic Oracle GoldenGate
configuration, with only a trail on the target system, there is nowhere on the source
system to store data that Extract continuously extracts into memory. If the network or
the target system becomes unavailable, that Extract could run out of memory and
abend. However, with a trail and data pump on the source system, captured data can
be moved to disk, preventing the abend of the primary Extract. When connectivity is
restored, the data pump captures the data from the source trail and sends it to the
target system(s).

● You are implementing several phases of data filtering or transformation. When using
complex filtering or data transformation configurations, you can configure a data pump
to perform the first transformation either on the source system or on the target system,
or even on an intermediary system, and then use another data pump or the Replicat
group to perform the second transformation.

● Consolidating data from many sources to a central target. When synchronizing multiple
source databases with a central target database, you can store extracted data on each
source system and use data pumps on each of those systems to send the data to a trail
on the target system. Dividing the storage load between the source and target systems
reduces the need for massive amounts of space on the target system to accommodate
data arriving from multiple sources.

● Synchronizing one source with multiple targets. When sending data to multiple target
systems, you can configure data pumps on the source system for each target. If network
connectivity to any of the targets fails, data can still be sent to the other targets.

Introduction to Oracle GoldenGate
Overview of the Oracle GoldenGate architecture

14Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

If your requirements preclude the use of a data pump, you can still configure Oracle
GoldenGate without one. Oracle GoldenGate supports many different configurations. See
the configuration chapters in this guide to find the one that is best suited to your
environment.

Overview of Replicat

The Replicat process runs on the target system. Replicat reads extracted data changes and
DDL changes (if supported) that are specified in the Replicat configuration, and then it
replicates them to the target database. You can configure Replicat in one of the following
ways:

● Initial loads: For initial data loads, Replicat can apply data to target objects or route
them to a high-speed bulk-load utility.

● Change synchronization: To maintain synchronization, Replicat applies extracted data
changes to target objects using a native database interface or ODBC, depending on the
database type. Replicated DDL and sequences are also applied, if supported for the
type of database that is being used. To preserve data integrity, Replicat applies the
replicated changes in the same order as they were committed to the source database.

You can use multiple Replicat processes with multiple Extract processes in parallel to
increase throughput. Each set of processes handles different objects. To differentiate
among processes, you assign each one a group name (see “Overview of groups” on page 18).

You can delay Replicat so that it waits a specific amount of time before applying data to
the target database. A delay may be desirable, for example, to prevent the propagation of
errant SQL, to control data arrival across different time zones, or to allow time for other
planned events to occur. The length of the delay is controlled by the DEFERAPPLYINTERVAL
parameter.

Overview of trails

To support the continuous extraction and replication of database changes, Oracle
GoldenGate stores the captured changes temporarily on disk in a series of files called a
trail. A trail can exist on the source or target system, or on an intermediary system,
depending on how you configure Oracle GoldenGate. On the local system it is known as an
extract trail (or local trail). On a remote system it is known as a remote trail.

By using a trail for storage, Oracle GoldenGate supports data accuracy and fault tolerance
(see “Overview of checkpoints” on page 16). The use of a trail also allows extraction and
replication activities to occur independently of each other. With these processes separated,
you have more choices for how data is delivered. For example, instead of extracting and
replicating changes continuously, you could extract changes continuously but store them
in the trail for replication to the target later, whenever the target application needs them.

Processes that write to, and read, a trail

The primary Extract process writes to a trail. Only one Extract process can write to a trail.

Processes that read the trail are:

● Data-pump Extract: Extracts data from a local trail for further processing, if needed,
and transfers it to the target system or to the next Oracle GoldenGate process
downstream in the Oracle GoldenGate configuration.

● Replicat: Reads a trail to apply change data to the target database.

Introduction to Oracle GoldenGate
Overview of the Oracle GoldenGate architecture

15Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Trail maintenance

Trail files are created as needed during processing, and they are aged automatically to
allow processing to continue without interruption for file maintenance. By default, trails
are stored in the dirdat sub-directory of the Oracle GoldenGate directory.

By default, each file in a trail is 10 MB in size. All file names in a trail begin with the same
two characters, which you assign when you create the trail. As files are created, each name
is appended with a unique, six-digit serial (sequence) number from 000000 through
999999, for example c:\ggs\dirdat\tr000001. When the trail sequence number reaches 999999,
the numbering starts over at 000000.

You can create more than one trail to separate the data from different objects or
applications. You link the objects that are specified in a TABLE or SEQUENCE parameter to a
trail that is specified with an EXTTRAIL or RMTTRAIL parameter in the Extract parameter file.
Aged trail files can be purged by using the Manager parameter PURGEOLDEXTRACTS.

How processes write to a trail

To maximize throughput, and to minimize I/O load on the system, extracted data is sent
into and out of a trail in large blocks. Transactional order is preserved. By default, Oracle
GoldenGate writes data to the trail in canonical format, a proprietary format which allows
it to be exchanged rapidly and accurately among heterogeneous databases. However, data
can be written in other formats that are compatible with different applications.

By default, Extract operates in append mode, where if there is a process failure, a recovery
marker is written to the trail and Extract appends recovery data to the file so that a history
of all prior data is retained for recovery purposes.

In append mode, the Extract initialization determines the identity of the last complete
transaction that was written to the trail at startup time. With that information, Extract
ends recovery when the commit record for that transaction is encountered in the data
source; then it begins new data capture with the next committed transaction that qualifies
for extraction and begins appending the new data to the trail. A data pump or Replicat
starts reading again from that recovery point.

Overwrite mode is another version of Extract recovery that was used in versions of Oracle
GoldenGate prior to version 10.0. In these versions, Extract overwrites the existing
transaction data in the trail after the last write-checkpoint position, instead of appending
the new data. The first transaction that is written is the first one that qualifies for
extraction after the last read checkpoint position in the data source.

If the version of Oracle GoldenGate on the target is older than version 10, Extract will
automatically revert to overwrite mode to support backward compatibility. This behavior
can be controlled manually with the RECOVERYOPTIONS parameter.

Trail format

As of Oracle GoldenGate version 10.0, each file of a trail contains a file header record that
is stored at the beginning of the file. The file header contains information about the trail
file itself. Previous versions of Oracle GoldenGate do not contain this header.

Each data record in a trail file also contains a header area, as well as a data area. The
record header contains information about the transaction environment, and the data area
contains the actual data values that were extracted. For more information about the trail
record format, see Appendix 1.

Introduction to Oracle GoldenGate
Overview of the Oracle GoldenGate architecture

16Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

File versioning

Because all of the Oracle GoldenGate processes are decoupled and thus can be of different
Oracle GoldenGate versions, each trail file or extract file has a version that is stored in the
file header. By default, the version of a trail is the current version of the process that
created the file. To set the version of a trail, use the FORMAT option of the EXTTRAIL, EXTFILE,
RMTTRAIL, or RMTFILE parameter.

To ensure forward and backward compatibility of files among different Oracle GoldenGate
process versions, the file header fields are written in a standardized token format. New
tokens that are created by new versions of a process can be ignored by older versions, so
that backward compatibility is maintained. Likewise, newer Oracle GoldenGate versions
support older tokens. Additionally, if a token is deprecated by a new process version, a
default value is assigned to the token so that older versions can still function properly. The
token that specifies the file version is COMPATIBILITY and can be viewed in the Logdump
utility and also by retrieving it with the GGFILEHEADER option of the @GETENV function.

A trail or extract file must have a version that is equal to, or lower than, that of the process
that reads it. Otherwise the process will abend. Additionally, Oracle GoldenGate forces the
output trail or file of a data pump to be the same version as that of its input trail or file.
Upon restart, Extract rolls a trail to a new file to ensure that each file is of only one version
(unless the file is empty).

Overview of extract files

When processing a one-time run, such as an initial load or a batch run that synchronizes
transactional changes (see page 18), Oracle GoldenGate stores the extracted changes in an
extract file instead of a trail. The extract file typically is a single file but can be configured
to roll over into multiple files in anticipation of limitations on file size that are imposed by
the operating system. In this sense, it is similar to a trail, except that checkpoints are not
recorded. The file or files are created automatically during the run. The same versioning
features that apply to trails also apply to extract files.

Overview of checkpoints

Checkpoints store the current read and write positions of a process to disk for recovery
purposes. These checkpoints ensure that data changes that are marked for
synchronization actually are extracted by Extract and replicated by Replicat, and they
prevent redundant processing. They provide fault tolerance by preventing the loss of data
should the system, the network, or an Oracle GoldenGate process need to be restarted. For
complex synchronization configurations, checkpoints enable multiple Extract or Replicat
processes to read from the same set of trails.

Checkpoints work with inter-process acknowledgments to prevent messages from being
lost in the network. Oracle GoldenGate has a proprietary guaranteed-message delivery
technology.

Extract creates checkpoints for its positions in the data source and in the trail. Replicat
creates checkpoints for its position in the trail.

A checkpoint system is used by Extract and Replicat processes that operate continuously,
but it is not required by Extract and Replicat processes that run in batch mode (see page
18). A batch process can be re-run from its start point, whereas continuous processing

Introduction to Oracle GoldenGate
Overview of the Oracle GoldenGate architecture

17Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

requires the support for planned or unplanned interruptions that is provided by
checkpoints.

Replicat stores its checkpoints in a checkpoint table in the target database to couple the
commit of its transaction with its position in the trail file. This ensures that a transaction
will only be applied once, even if there is a failure of the Replicat process or the database
process. For reporting purposes, Replicat also has a checkpoint file on disk in the dirchk sub-
directory of the Oracle GoldenGate directory. You can optionally configure Replicat to use
this file as its sole checkpoint store, and not use a checkpoint table at all. In this mode,
however, there can be cases where the checkpoint in the file is not consistent with what
was applied after a database recovery, if the failure either rolled back or rolled forward a
transaction that was considered applied by Replicat. The checkpoint table guarantees
consistency after recovery.

Overview of Manager

Manager is the control process of Oracle GoldenGate. Manager must be running on each
system in the Oracle GoldenGate configuration before Extract or Replicat can be started,
and Manager must remain running while those processes are running so that resource
management functions are performed. Manager performs the following functions:

● Monitor and restart Oracle GoldenGate processes.

● Issue threshold reports, for example when throughput slows down or when
synchronization latency increases.

● Maintain trail files and logs.

● Allocate data storage space.

● Report errors and events.

● Receive and route requests from the user interface.

One Manager process can control many Extract or Replicat processes. On Windows
systems, Manager can run as a service. For more information about the Manager process,
see Chapter 2.

Overview of Collector

Collector is a process that runs in the background on the target system. Collector receives
extracted database changes that are sent across the TCP/IP network, and it writes them to
a trail or extract file. Typically, Manager starts Collector automatically when a network
connection is required. When Manager starts Collector, the process is known as a dynamic
Collector, and Oracle GoldenGate users generally do not interact with it. However, you can
run Collector manually. This is known as a static Collector. Not all Oracle GoldenGate
configurations use a Collector process.

When a dynamic Collector is used, it can receive information from only one Extract process,
so there must be a dynamic Collector for each Extract that you use. When a static Collector
is used, several Extract processes can share one Collector. However, a one-to-one ratio is
optimal. The Collector process terminates when the associated Extract process terminates.

By default, Extract initiates TCP/IP connections from the source system to Collector on the
target, but Oracle GoldenGate can be configured so that Collector initiates connections
from the target. Initiating connections from the target might be required if, for example,
the target is in a trusted network zone, but the source is in a less trusted zone.

Introduction to Oracle GoldenGate
Overview of processing methods

18Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Overview of processing methods

Oracle GoldenGate can be configured for the following purposes:

● A static extraction of selected data records from one database and the loading of those
records to another database.

● Online or batch extraction and replication of selected transactional data changes and
DDL changes (for supported databases) to keep source and target data consistent.

● Extraction from a database and replication to a file outside the database.

For these purposes, Oracle GoldenGate supports the following processing modes.

● An online process runs until stopped by a user. Online processes maintain recovery
checkpoints in the trail so that processing can resume after interruptions. You can use
online processes to continuously extract and replicate transactional changes and DDL
changes (where supported).

● A batch run, or special run, process extracts or replicates database changes that were
generated within known begin and end points. For special runs, Oracle GoldenGate
does not maintain checkpoints. Should a process fail, the job can be started over, using
the same begin and end points. You can use a special run to process a batch of database
changes (such as to synchronize source and target objects once a day rather than
continuously) or for an initial data load.

● A task is a special type of batch run process and is used for certain initial load methods.
A task is a configuration in which Extract communicates directly with Replicat over
TCP/IP. Neither a Collector process nor temporary disk storage in a trail or file is used.

Overview of groups

To differentiate among multiple Extract or Replicat processes on a system, you define
processing groups. For example, to replicate different sets of data in parallel, you would
create two Replicat groups.

A processing group consists of a process (either Extract or Replicat), its parameter file, its
checkpoint file, and any other files associated with the process. For Replicat, a group also
includes the associated checkpoint table.

You define groups by using the ADD EXTRACT and ADD REPLICAT commands in the Oracle
GoldenGate command interface, GGSCI. A group name can be as follows:

Introduction to Oracle GoldenGate
Overview of the Commit Sequence Number (CSN)

19Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

All files and checkpoints relating to a group share the name that is assigned to the group
itself. Any time that you issue a command to control or view processing, you supply a group
name or multiple group names by means of a wildcard.

Overview of the Commit Sequence Number (CSN)

When working with Oracle GoldenGate, you might need to refer to a Commit Sequence
Number, or CSN. The CSN can be required to position Extract in the transaction log, to
reposition Replicat in the trail, or for other purposes. It is returned by some conversion
functions and is included in reports and certain GGSCI output.

A CSN is an identifier that Oracle GoldenGate constructs to identify a transaction for the
purpose of maintaining transactional consistency and data integrity. It uniquely identifies
a particular point in time in which a transaction commits to the database.

Each kind of database management system generates some kind of unique serial number
of its own at the completion of each transaction, which uniquely identifies that transaction.
A CSN captures this same identifying information and represents it internally as a series
of bytes, but the CSN is processed in a platform-independent manner. A comparison of any
two CSN numbers, each of which is bound to a transaction-commit record in the same log
stream, reliably indicates the order in which the two transactions completed.

The CSN value is stored as a token in any trail record that identifies the beginning of a
transaction. This value can be retrieved with the @GETENV column conversion function and
viewed with the Logdump utility.

Table 2 Permissible group names

◆ You can use up to eight ASCII characters, including non-alphanumeric characters such
as the underscore (_). Any ASCII character can be used, so long as the operating system
allows that character to be in a filename. This is because a group is identified by its
associated checkpoint file.

◆ The following ASCII characters are not allowed in a file name:
{ \ / : * ? " < > | }

◆ On HP UX, Linux, and Solaris, it is possible to create a file name with a colon (:) or an
asterisk (*), although it is not recommended.

◆ In general, group names are not case-sensitive within Oracle GoldenGate. For example,
finance, Finance, and FINANCE are all considered to be the same. However, on Linux, the
group name (and its parameter file name if explicitly defined in the ADD command) must
be all uppercase or all lowercase. Mixed case group names and parameter file names will
result in errors when starting the process.

◆ Use only one word.

◆ Do not use the word “port” as a group name. However, you can use the string “port” as
part of the group name.

◆ Do not place a numeric value at the end of a group name, such as fin1, fin10, and so forth.
You can place a numeric value at the beginning of a group name, such as 1_fin, 1fin, and
so forth.

Introduction to Oracle GoldenGate
Overview of the Commit Sequence Number (CSN)

20Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Extract writes a normalized form of the CSN to external storage such as the trail files and
the checkpoint file. There, the CSN is represented as a hex string of bytes. In normalized
form, the first two bytes represent the database platform, and the remainder of the string
represents the actual unique identifier.

The CSN is also included in report output, error messages, and command input and output
(as appropriate) in human-readable, display form that uses native character encoding. In
this form, the database type is not included, but it can be supplied separately from the
identifier.

Table 3 Oracle GoldenGate CSN values per database1

Database CSN Value

c-tree <log number>.<byte offset>

Where:

◆ <log number> is the 10-digit decimal number of the c-tree log file padded with
leading zeroes.

◆ <byte offset> is the 10-digit decimal relative byte position from the beginning of
the file (0 based) padded with leading zeroes.

Example:

0000000068.0000004682

DB2 for i There is no CSN for DB2 for i, because extraction (capture) is not supported by
Oracle GoldenGate for this database.

DB2 LUW <LSN>

Where:

◆ <LSN> is the variable-length, decimal-based DB2 log sequence number.
Example:

1234567890

DB2 z/OS <RBA>

Where:

◆ <RBA> is the 6-byte relative byte address of the commit record within the
transaction log.

Example:

1274565892

MySQL <LogNum>:<LogPosition>

Where:

◆ <LogNum> is the the name of the log file that contains the START TRANSACTION
record for the transaction that is being identified.

◆ <LogPosition> is the event offset value of that record. Event offset values are
stored in the record header section of a log record.

For example, if the log number is 12 and the log position is 121, the CSN is:
000012:000000000000121

Introduction to Oracle GoldenGate
Overview of the Commit Sequence Number (CSN)

21Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Oracle <system change number>

Where:

◆ <system change number> is the Oracle SCN value.
Example:

6488359

SQL/MX <sequence number>.<RBA>

Where:

◆ <sequence number> is the 6-digit decimal NonStop TMF audit trail sequence
number padded with leading zeroes.

◆ <RBA> is the 10-digit decimal relative byte address within that file, padded with
leading zeroes.

Together these specify the location in the TMF Master Audit Trail (MAT).
Example:

000042.0000068242

SQL Server Can be any of these, depending on how the database returns it:

◆ Colon separated hex string (8:8:4) padded with leading zeroes and 0X prefix

◆ Colon separated decimal string (10:10:5) padded with leading zeroes

◆ Colon separated hex string with 0X prefix and without leading zeroes

◆ Colon separated decimal string without leading zeroes

◆ Decimal string
Where:

◆ The first value is the virtual log file number, the second is the segment number
within the virtual log, and the third is the entry number.

Examples:

0X00000d7e:0000036b:01bd
0000003454:0000000875:00445
0Xd7e:36b:1bd
3454:875:445
3454000000087500445

Table 3 Oracle GoldenGate CSN values per database1 (continued)

Database CSN Value

Introduction to Oracle GoldenGate
Overview of the Commit Sequence Number (CSN)

22Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Sybase <time_high>.<time_low>.<page>.<row>

Where:

◆ <time_high> and <time_low> represent an instance ID for the log page. It is stored
in the header of each database log page. <time_high> is 2-bytes and <time_low> is
4-bytes, each padded with leading zeroes.

◆ <page> is the database logical page number, padded with zeroes.

◆ <row> is the row number, padded with zeroes.

Taken together, these components represent a unique location in the log stream.
The valid range of a 2-byte integer for a timestamp-high is 0 - 65535. For a 4-byte
integer for a timestamp-low, it is: 0 - 4294967295.
Example:

00001.0000067330.0000013478.00026

Teradata <sequence ID>

Where:

◆ <sequence ID> is a generic fixed-length printable sequence ID.
Example:

0x0800000000000000D700000021

TimesTen There is no CSN for TimesTen, because extraction (capture) is not supported by
Oracle GoldenGate for this database.

1 All database platforms except Oracle, DB2 LUW, and DB2 z/OS have fixed-length CSNs, which are padded with leading zeroes
as required to fill the fixed length. CSNs that contain multiple fields can be padded within each field, such as the Sybase CSN.

Table 3 Oracle GoldenGate CSN values per database1 (continued)

Database CSN Value

23Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHAPTER 2

Configuring the Manager process
.

Overview of the Manager process

To configure and run Oracle GoldenGate, a Manager process must be running on the source
and target systems. The Manager process performs the following functions:

● Start Oracle GoldenGate processes

● Start dynamic processes

● Perform trail management

● Create event, error, and threshold reports

There is one Manager for each Oracle GoldenGate installation. One Manager can support
multiple Oracle GoldenGate extraction and replication processes.

Configuring Manager

To configure Manager, create a parameter file by following these steps. If you installed
Oracle GoldenGate on a UNIX cluster, configure the Oracle GoldenGate Manager process
within the cluster application as directed by the vendor’s documentation, so that Oracle
GoldenGate will fail over properly with the other applications.

To configure Manager

1. From the Oracle GoldenGate directory, run the ggsci program to open the Oracle
GoldenGate Software Command Interface, commonly known as GGSCI.

2. In GGSCI, issue the following command to edit the Manager parameter file.

EDIT PARAMS MGR

3. Add the following parameter to specify the Manager port number.

PORT <port_number>

PORT defines the port number on which Manager runs on the local system. Observe these
guidelines:

● The default port number is 7809.

● You must specify either the default port number or a different one.

● Each Manager instance on a system must use a different port number.

● The port must be unreserved and unrestricted. GGSCI uses this port to request
Manager to start processes. The Extract process uses this port to request Manager to
start a remote Collector process or an initial-load Replicat process.

Configuring the Manager process
Recommended parameters

24Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

● PORT is the only required Manager parameter.

NOTE The port number also must be specified with the MGRPORT argument of the Extract
parameter RMTHOST.

4. Enter any of the optional Manager parameters documented in the Oracle GoldenGate
Windows and UNIX Reference Guide, then save and close the file.

Recommended parameters

The following parameters are optional, but recommended for the Manager process. For
more information and syntax, see the Windows and UNIX Reference Guide.

● USERID: Required if using Oracle GoldenGate DDL support, specify the Manager user
and password with the .

● DYNAMICPORTLIST: Use to specify up to 256 unreserved, unrestricted ports for dynamic
TCP/IP communications between the source and target systems. The Collector,
Replicat, and GGSCI processes will use these ports. In the absence of DYNAMICPORTLIST,
Manager tries to start Collector on port 7840. If 7840 is not available, Manager
increments by one until it finds an available port.

● DYNAMICPORTREASSIGNDELAY: Controls how long Manager waits to assign a port that was
assigned before.

● AUTOSTART: Starts Extract and Replicat processes when Manager starts. This can be
useful, for example, if you want Oracle GoldenGate activities to begin immediately
when you start the system, assuming Manager is part of the startup routine. You can
use multiple AUTOSTART statements in the same parameter file.

● AUTORESTART: Starts Extract and Replicat processes again after abnormal termination.

● PURGEOLDEXTRACTS: Purges trail files when Oracle GoldenGate has finished processing
them. Without using PURGEOLDEXTRACTS, no purging is performed, and trail files can
consume significant disk space.Using PURGEOLDEXTRACTS as a Manager parameter is
preferred over using the Extract or Replicat version of PURGEOLDEXTRACTS.

NOTE When using PURGEOLDEXTRACTS, do not permit trail files to be deleted by any user
or program other than Oracle GoldenGate. It will cause PURGEOLDEXTRACTS to
function improperly.

Starting Manager

Manager must be running before you start other Oracle GoldenGate processes. You can
start Manager from:

● The command line of any supported operating system

● GGSCI

● The Services applet on a Windows system if Manager is installed as a service. See the
Windows documentation or your system administrator.

● The Cluster Administrator tool if the system is part of a Windows cluster. This is the
recommended way to bring the Manager resource online. See the cluster
documentation or your system administrator.

Configuring the Manager process
Stopping Manager

25Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

● The cluster software of a UNIX or Linux cluster. Refer to the documentation provided
by the cluster vendor to determine whether to start Manager from the cluster or by
using GGSCI or the command line of the operating system.

To start Manager from the command line

To run Manager from the command shell of the operating system, use the following syntax.

mgr paramfile <param file> [reportfile <report file>]

The reportfile argument is optional and can be used to store the Manager process report in
a location other than the default of the dirrpt directory in the Oracle GoldenGate installation
location.

To start Manager from GGSCI

1. From the Oracle GoldenGate directory, run GGSCI.

2. In GGSCI, issue the following command.

START MANAGER

On Windows systems, you can use the BOOTDELAYMINUTES parameter to specify how long
after system boot time Manager delays until it starts its processing activities.

NOTE When starting Manager from the command line or GGSCI on Windows Server
2008 with User Account Control enabled, you will receive a UAC prompt requesting
you to allow or deny the program to run.

Stopping Manager

Manager runs indefinitely or until stopped by a user. In general, Manager should remain
running when there are synchronization activities being performed. Manager performs
important monitoring and maintenance functions, and processes cannot be started unless
Manager is running.

To stop Manager

● On UNIX, Linux, and z/OS using USS, Manager must be stopped by using the STOP
MANAGER command in GGSCI.
STOP MANAGER [!]

Where: ! stops Manager without user confirmation.

● On Windows, if Manager is installed as a service, you can stop it from the Services
applet. See the Windows documentation or your system administrator.

● In a Windows cluster, Manager must only be stopped by taking the Manager resource
offline by using the Cluster Administrator. If you attempt to stop the Manager service
from the GGSCI interface, the cluster monitor interprets it as a resource failure and
will attempt to bring the resource online again. If a stop request is repeatedly
submitted from the GGSCI interface, and the restart threshold of the Manager cluster
resource is exceeded, the cluster monitor marks the Manager resource as failed.

● In a UNIX or Linux cluster, refer to the documentation provided by the cluster vendor
to determine whether Manager should be stopped from the cluster or by using GGSCI.

26Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHAPTER 3

Getting started with Oracle GoldenGate
.

Running the user interfaces

Use any of the following methods to control and monitor processing:

● GGSCI (Oracle GoldenGate Software Command Interface)

● Oracle GoldenGate Director

● Batch and shell scripts

Using the GGSCI command-line interface

GGSCI is the Oracle GoldenGate command-line interface. You can use GGSCI to issue the
complete range of commands that configure, control, and monitor Oracle GoldenGate.

To start GGSCI

1. Change directories to the one where Oracle GoldenGate is installed.

2. Run the ggsci executable file.

For more information about Oracle GoldenGate commands, see the Oracle GoldenGate
Windows and UNIX Reference Guide.

Using wildcards in command arguments

You can use wildcards with certain Oracle GoldenGate commands to control multiple
Extract and Replicat groups as a unit. The wildcard symbol that is supported by Oracle
GoldenGate is the asterisk (*). An asterisk represents any number of characters. For
example, to start all Extract groups whose names contain the letter X, issue the following
command.

START EXTRACT *X*

Using command history

The execution of multiple commands is made easier with the following tools:

● Use the HISTORY command to display a list of previously executed commands.

● Use the ! command to execute a previous command again without editing it.

● Use the FC command to edit a previous command and then execute it again.

Getting started with Oracle GoldenGate
Running the user interfaces

27Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Storing frequently used command sequences

You can automate a frequently-used series of commands by using an OBEY file and the OBEY
command.

To use OBEY

1. Create and save a text file that contains the commands, one command per line. This is
your OBEY file. Name it what you want. You can nest other OBEY files within an OBEY file.

2. Run GGSCI.

3. (Optional) If using an OBEY file that contains nested OBEY files, issue the following
command. This command enables the use of nested OBEY files for the current session of
GGSCI and is required whenever using nested OBEY files.

ALLOWNESTED

4. In GGSCI, call the OBEY file by using the following syntax.

OBEY <file name>

Where: <file name> is the relative or fully qualified name of the OBEY file.

Figure 3 illustrates an OBEY command file for use with the OBEY command. It creates and
starts Extract and Replicat groups and retrieves processing information.

Figure 3 OBEY command file

ADD EXTRACT myext, TRANLOG, BEGIN now

START EXTRACT myext

ADD REPLICAT myrep, EXTTRAIL /ggs/dirdat/aa

START REPLICAT myrep

INFO EXTRACT myext, DETAIL

INFO REPLICAT myrep, DETAIL

Using UNIX batch and shell scripts

On a UNIX system, you can issue Oracle GoldenGate commands from a script such as a
startup script, shutdown script, or failover script by running GGSCI and calling an input
file. Use the following syntax:

ggsci < <input_file>

Where: <input_file> is a text file containing the commands that you want to issue, in the
order they are to be issued, and the < character pipes the file into the GGSCI
program.

NOTE To stop the Manager process from a batch file, make certain to add the ! argument
to the end of the STOP MANAGER command. Otherwise, GGSCI issues a prompt
that requires a response and causes the processing to enter into a loop.

Getting started with Oracle GoldenGate
Using Oracle GoldenGate parameter files

28Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Using Oracle GoldenGate parameter files

Most Oracle GoldenGate functionality is controlled by means of parameters specified in
parameter files. A parameter file is an ASCII file that is read by an associated process.
Oracle GoldenGate uses two types of parameter files: a GLOBALS file and runtime parameter
files.

Overview of the GLOBALS file

The GLOBALS file stores parameters that relate to the Oracle GoldenGate instance as a
whole. This is in contrast to runtime parameters, which are coupled with a specific process
such as Extract. The parameters in the GLOBALS file apply to all processes in the Oracle
GoldenGate instance, but can be overridden by specific process parameters. Once set,
GLOBALS parameters are rarely changed, and there are far fewer of them than runtime
parameters.

A GLOBALS parameter file is required only in certain circumstances and, when used, must
be created from the command shell before starting any Oracle GoldenGate processes,
including GGSCI. The GGSCI program reads the GLOBALS file and passes the parameters
to processes that need them.

To create a GLOBALS file

1. From the Oracle GoldenGate installation location, run GGSCI and enter the following
command, or open a file in an ASCII text editor.

EDIT PARAMS ./GLOBALS

NOTE The ./ portion of this command must be used, because the GLOBALS file must
reside at the root of the Oracle GoldenGate installation file.

2. In the file, enter the GLOBALS parameters, one per line.

3. Save the file. If you used a text editor, save the file as GLOBALS (uppercase, without a
file extension) at the root of the Oracle GoldenGate installation directory. If you
created the file correctly in GGSCI, the file is saved that way automatically. Do not
move this file.

4. Exit GGSCI. You must start from a new GGSCI session before issuing commands or
starting processes that reference the GLOBALS file.

Overview of runtime parameters

Runtime parameters give you control over the various aspects of Oracle GoldenGate
synchronization, such as:

● Data selection, mapping, transformation, and replication

● DDL and sequence selection, mapping, and replication (where supported)

● Error resolution

● Logging

● Status and error reporting

● System resource usage

● Startup and runtime behavior

Getting started with Oracle GoldenGate
Using Oracle GoldenGate parameter files

29Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

There can be only one active parameter file for the Manager process or an Extract or
Replicat group; however, you can use parameters in other files by using the OBEY
parameter. See “Simplifying the creation of parameter files” on page 33.

There are two types of parameters: global (not to be confused with GLOBALS parameters) and
object-specific:

● Global parameters apply to all database objects that are specified in a parameter file.
Some global parameters affect process behavior, while others affect such things as
memory utilization and so forth. USERID in Figure 4 and Figure 5 is an example of a
global parameter. In most cases, a global parameter can appear anywhere in the file
before the parameters that specify database objects, such as the TABLE and MAP
statements in Figure 4 and Figure 5. A global parameter should be listed only once in
the file. When listed more than once, only the last instance is active, and all other
instances are ignored.

● Object-specific parameters enable you to apply different processing rules for different
sets of database objects. GETINSERTS and IGNOREINSERTS in Figure 5 are examples of object-
specific parameters. Each precedes a MAP statement that specifies the objects to be
affected. Object-specific parameters take effect in the order that each one is listed in
the file.

The following are examples of basic parameter files for Extract and Replicat.

Figure 4 Sample Extract parameter file

EXTRACT capt

USERID ggs, PASSWORD *********

DISCARDFILE /ggs/capt.dsc, PURGE

RMTHOST sysb, MGRPORT 7809

RMTTRAIL /ggs/dirdat/aa

TABLE fin.*;

TABLE sales.*;

Figure 5 Sample Replicat parameter file

REPLICAT deliv

USERID ggs, PASSWORD ****
SOURCEDEFS /ggs/dirdef/defs

DISCARDFILE /ggs/deliv.dsc, PURGE

GETINSERTS

MAP fin.account, TARGET fin.acctab,

COLMAP (account = acct,

balance = bal,

branch = branch);

MAP fin.teller, TARGET fin.telltab,

WHERE (branch = “NY”);

IGNOREINSERTS

MAP fin.teller, TARGET fin.telltab,

WHERE (branch = “LA”);

Getting started with Oracle GoldenGate
Using Oracle GoldenGate parameter files

30Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Creating a parameter file

To create a parameter file, use the EDIT PARAMS command within the GGSCI user interface
(recommended) or use a text editor directly. When you use GGSCI, you are using a
standard text editor, but your parameter file is saved automatically with the correct file
name and in the correct directory.

The EDIT PARAMS command launches the following text editors within the GGSCI interface:

● Notepad on Microsoft Windows systems

● The vi editor on UNIX and Linux systems

NOTE You can change the default editor through the GGSCI interface by using the SET
EDITOR command.

To create a parameter file in GGSCI

1. From the directory where Oracle GoldenGate is installed, run GGSCI.

2. In GGSCI, issue the following command to open the default text editor.

EDIT PARAMS <group name>

Where: <group name> is either mgr (for the Manager process) or the name of the Extract
or Replicat group for which the file is being created. The name of an Extract or
Replicat parameter file must match that of the process group.

The following creates or edits the parameter file for an Extract group named extora.

EDIT PARAMS extora

The following creates or edits the parameter file for the Manager process.

EDIT PARAMS MGR

NOTE On Linux, the group and parameter file names must be all uppercase or all
lowercase. Usage of mixed case file names result in errors when starting the
process.

3. Using the editing functions of the editor, enter as many comment lines as you want to
describe this file, making certain that each comment line is preceded with two hyphens
(--).

4. On non-commented lines, enter the Oracle GoldenGate parameters, starting a new line
for each parameter statement.

Oracle GoldenGate parameters have the following syntax:

<PARAMETER> <argument> [, <option>] [&]

Where:

❍ <PARAMETER> is the name of the parameter.

Getting started with Oracle GoldenGate
Using Oracle GoldenGate parameter files

31Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

❍ <argument> is a required argument for the parameter. Some parameters take
arguments, but others do not. Separate all arguments with commas, as in the
following example:
USERID ggs, PASSWORD AACAAAAAAAAAAAIALCKDZIRHOJBHOJUH, &

ENCRYPTKEY superx128

RMTHOST sysb, MGRPORT 8040

RMTTRAIL /home/ggs/dirdat/c1, PURGE

❍ [, <option>] is an optional argument.

❍ [&] is required at the end of each line in a multi-line parameter statement, as in the
USERID parameter statement in the previous example.

5. Save and close the file.

To create a parameter file with a text editor

1. Create a new file in the text editor.

2. Using the editing functions of the editor, enter as many comment lines as you want to
describe this file, making certain that each comment line is preceded with two hyphens
(--).

3. On non-commented lines, enter the Oracle GoldenGate parameters, starting a new line
for each parameter statement.

Oracle GoldenGate parameters have the following syntax:

<PARAMETER> <argument> [, <option>] [&]

Where:

❍ <PARAMETER> is the name of the parameter.

❍ <argument> is a required argument for the parameter. Some parameters take
arguments, but others do not. Separate all arguments with commas, as in the
following example:
USERID ggs, PASSWORD AACAAAAAAAAAAAIALCKDZIRHOJBHOJUH, &

ENCRYPTKEY superx128

RMTHOST sysb, MGRPORT 8040

RMTTRAIL /home/ggs/dirdat/c1, PURGE

❍ [, <option>] is an optional argument.

❍ [&] is required at the end of each line in a multi-line parameter statement, as in the
USERID parameter statement in the previous example.

4. Save and close the file. When creating a parameter file outside GGSCI, make certain
to:

❍ Save the parameter file with the name of the Extract or Replicat group that owns
it, or save it with the name “mgr” if the Manager process owns it.

❍ Save the parameter file in the dirprm directory of the Oracle GoldenGate
installation directory.

Getting started with Oracle GoldenGate
Using Oracle GoldenGate parameter files

32Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Storing parameter files

When you create a parameter file with EDIT PARAMS in GGSCI, it is saved to the dirprm sub-
directory of the Oracle GoldenGate directory. You can create a parameter file in a directory
other than dirprm by specifying the full path name, but you also must specify the full path
name with the PARAMS option of the ADD EXTRACT or ADD REPLICAT command when you create
the process group.

Once paired with an Extract or Replicat group, a parameter file must remain in its original
location for Oracle GoldenGate to operate properly once processing has started.

Verifying a parameter file

You can check the syntax of parameters in an Extract or Replicat parameter file for
accuracy. This feature is not available for other Oracle GoldenGate processes.

To verify parameter syntax

1. Include the CHECKPARAMS parameter in the parameter file.

2. Start the associated process by issuing the START EXTRACT or START REPLICAT command in
GGSCI.

START {EXTRACT | REPLICAT} <group name>

Oracle GoldenGate audits the syntax and writes the results to the report file or to the
screen. Then the process stops. For more information about the report file, see Chapter
19.

3. Do either of the following:

❍ If the syntax is correct, remove the CHECKPARAMS parameter before starting the
process to process data.

❍ If the syntax is wrong, correct it based on the findings in the report. You can run
another test to verify the changes, if desired. Remove CHECKPARAMS before starting
the process to process data.

Viewing a parameter file

You can view a parameter file directly from the command shell of the operating system, or
you can view it from the GGSCI user interface. To view the file from GGSCI, use the VIEW
PARAMS command.

VIEW PARAMS <group name>

Where: <group name> is either mgr (for Manager) or the name of the Extract or Replicat
group that is associated with the parameter file.

If the parameter file was created in a location other than the dirprm sub-directory of the
Oracle GoldenGate directory, specify the full path name as shown in the following example.

VIEW PARAMS c:\lpparms\replp.prm

Changing a parameter file

An Oracle GoldenGate process must be stopped before editing the parameter file, and then

Getting started with Oracle GoldenGate
Using Oracle GoldenGate parameter files

33Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

started again after saving the parameter file. Changing parameter settings while a process
is running can have unpredictable and adverse consequences, especially if you are adding
tables or changing mapping or filtering rules.

To change parameters

1. Stop the process by using the following command in GGSCI, unless you want to stop
Manager in a Windows cluster; in that case, Manager must be stopped by using the
Cluster Administrator.

STOP {EXTRACT | REPLICAT | MANAGER} <group name>

2. Open the parameter file by using a text editor or the EDIT PARAMS command in GGSCI.

EDIT PARAMS mgr

3. Make the edits, and then save the file.

4. Start the process (use the Cluster Administrator if starting Manager in a Windows
cluster).

START {EXTRACT | REPLICAT | MANAGER} <group name>

Simplifying the creation of parameter files

Oracle GoldenGate provides tools that reduce the number of times that a parameter must
be specified.

● Wildcards

● The OBEY parameter

● Macros

● Parameter substitution

Using wildcards

For parameters that accept object names, you can use an asterisk (*) wildcard to match any
number of characters. Owner names, if used, cannot be specified with wildcards. The use
of wildcards reduces the work of specifying numerous object names or all objects within a
given schema.

Using OBEY

You can create a library of text files that contain frequently used parameter settings, and
then you can call any of those files from the active parameter file by means of the OBEY
parameter. The syntax for OBEY is:

OBEY <file name>

Where: <file name> is the relative or full path name of the file.

Upon encountering an OBEY parameter in the active parameter file, Oracle GoldenGate
processes the parameters from the referenced file and then returns to the active file to
process any remaining parameters.

Using macros

You can use macros to automate multiple uses of a parameter statement. For more

Getting started with Oracle GoldenGate
Using Oracle GoldenGate parameter files

34Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

information, see “Using Oracle GoldenGate macros to simplify and automate work” on
page 269.

Using parameter substitution

You can use parameter substitution to assign values to Oracle GoldenGate parameters
automatically at run time, instead of assigning static values when you create the
parameter file. That way, if values change from run to run, you can avoid having to edit
the parameter file or maintain multiple files with different settings. You can simply export
the required value at runtime. Parameter substitution can be used for any Oracle
GoldenGate process.

To use parameter substitution

1. For each parameter for which substitution is to occur, declare a runtime parameter
instead of a value, preceding the runtime parameter name with a question mark (?) as
shown in the following example.

SOURCEISFILE

EXTFILE ?EXTFILE

MAP ?TABNAME, TARGET account_targ;

2. Before starting the Oracle GoldenGate process, use the shell of the operating system to
pass the runtime values by means of an environment variable, as shown in Figure 6
and Figure 7.

Figure 6 Parameter substitution on Windows

C:\GGS> set EXTFILE=C:\ggs\extfile

C:\GGS> set TABNAME=prod.accounts

C:\GGS> replicat paramfile c:\ggs\dirprm\parmfl

Figure 7 Parameter substitution on UNIX (Korn shell)

$ EXTFILE=/ggs/extfile

$ export EXTFILE

$ TABNAME=prod.accounts

$ export TABNAME

$ replicat paramfile c:\ggs\dirprm\parmfl

UNIX is case-sensitive, so the parameter declaration in the parameter file must be the
same case as the shell variable assignments.

Getting information about Oracle GoldenGate parameters

For more information about Oracle GoldenGate parameters, see the Oracle GoldenGate
Windows and UNIX Reference Guide.

35Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHAPTER 4

Using Oracle GoldenGate for live reporting
.

Overview of the reporting configuration

The most basic Oracle GoldenGate configuration is a one-to-one configuration that replicates
in one direction: from a source database to a target database that is used only for data
retrieval purposes such as reporting and analysis. Oracle GoldenGate supports like-to-like
or heterogeneous transfer of data, with capabilities for filtering and conversion on either
system in the configuration (support varies by database platform).

Reporting topologies

Oracle GoldenGate supports a number of topologies for reporting that enable you to
custom-configure the modules based on your requirements for scalability, availability, and
performance.

Single target

● “Creating a standard reporting configuration” on page 37

● “Creating a reporting configuration with a data pump on the source system” on page 39

● “Creating a reporting configuration with a data pump on an intermediary system” on
page 42

● “Creating a cascading reporting configuration” on page 46

Multiple targets

You can send data to multiple reporting targets. See “Using Oracle GoldenGate for real-
time data distribution” on page 53.

Using Oracle GoldenGate for live reporting
Considerations when choosing a reporting configuration

36Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Considerations when choosing a reporting configuration

Data volume

The standard configuration is sufficient if:

● The transaction load is consistent and of moderate volume that is spread out more or
less evenly among all of the objects to be replicated.

and...

● There are none of the following: tables that are subject to long-running transactions,
tables that have a very large number of columns that change, or tables that contain
columns for which Oracle GoldenGate must fetch from the database (generally
columns with LOBs, columns that are affected by SQL procedures executed by Oracle
GoldenGate, and columns that are not logged to the transaction log).

If your environment does not satisfy those conditions, consider adding one or more sets of
parallel processes. For more information, see the Oracle GoldenGate Windows and UNIX
Troubleshooting and Tuning Guide.

Filtering and conversion

Data filtering and data conversion both add overhead, and these activities are sometimes
prone to configuration errors. If Oracle GoldenGate must perform a large amount of
filtering and conversion, consider using one or more data pumps to handle this work. You
can use Replicat for this purpose, but you would be sending more data across the network
that way, as it will be unfiltered. You can split filtering and conversion between the two
systems by dividing it between the data pump and Replicat.

To filter data, you can use:

● A FILTER or WHERE clause in a TABLE statement (Extract) or in a MAP statement (Replicat).

● A SQL query or procedure

● User exits

To transform data, you can use:

● Native Oracle GoldenGate conversion functions

● A user exit from the Extract or Replicat process that applies rules from an external
transformation solution, then returns the manipulated data to Oracle GoldenGate.

● Replicat to deliver data directly to an ETL solution or other transformation engine.

For more information about Oracle GoldenGate’s filtering and conversion support, see:

● “Mapping and manipulating data” on page 238

● “Customizing Oracle GoldenGate processing” on page 262

Read-only vs. high availability

The Oracle GoldenGate live reporting configuration supports a read-only target. If the
target in this configuration will also be used for transactional activity in support of high
availability, see “Using Oracle GoldenGate for active-active high availability” on page 79.

Using Oracle GoldenGate for live reporting
Creating a standard reporting configuration

37Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Additional information

● For additional system and database configuration requirements, see the Oracle
GoldenGate Installation and Setup Guide for your database type.

● For information about additional requirements for Teradata Extract configurations,
see the Oracle GoldenGate Teradata Installation and Setup Guide.

● For detailed instructions on configuring Oracle GoldenGate change capture and
delivery groups, see “Configuring online change synchronization” on page 120.

● For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see the Oracle GoldenGate Windows and UNIX Reference Guide.

● For more information about tuning this configuration, see the Oracle GoldenGate
Windows and UNIX Troubleshooting and Tuning Guide.

Creating a standard reporting configuration

In the standard Oracle GoldenGate configuration, one Extract group sends captured data
over TCP/IP to a trail on the target system, where it is stored until processed by one
Replicat group.

Refer to Figure 8 for a visual representation of the objects you will be creating.

Source system

To configure the Manager process

1. On the source, configure the Manager process according to the instructions in Chapter
2.

To configure the Extract group

2. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext.

ADD EXTRACT <ext>, TRANLOG, BEGIN <time> [, THREADS <n>]

❍ Use TRANLOG as the data source option. For DB2 on Z/OS, specify the bootstrap data
set (BSDS) name following TRANLOG.

Figure 8 Configuration elements for replication to one target

Using Oracle GoldenGate for live reporting
Creating a standard reporting configuration

38Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

3. On the source, use the ADD RMTTRAIL command to specify a remote trail to be created on
the target system.

ADD RMTTRAIL <remote_trail>, EXTRACT <ext>

❍ Use the EXTRACT argument to link this trail to the Extract group.

4. On the source, use the EDIT PARAMS command to create a parameter file for the Extract
group. Include the following parameters plus any others that apply to your database
environment.

-- Identify the Extract group:

EXTRACT <ext>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_1>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the name or IP address of the target system:

RMTHOST <target>, MGRPORT <portnumber>

-- Specify the remote trail on the target system:

RMTTRAIL <remote_trail>

-- Specify tables to be captured:

TABLE <owner>.<table>;

Target system

To configure the Manager process

5. On the target, configure the Manager process according to the instructions in Chapter
2.

6. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the local trail.

To configure the Replicat group

7. On the target, create a Replicat checkpoint table. For instructions, see “Creating a
checkpoint table” on page 121. All Replicat groups can use the same checkpoint table.

8. On the target, use the ADD REPLICAT command to create a Replicat group. For
documentation purposes, this group is called rep.

ADD REPLICAT <rep>, EXTTRAIL <remote_trail>, BEGIN <time>

❍ Use the EXTTRAIL argument to link the Replicat group to the remote trail.

Using Oracle GoldenGate for live reporting
Creating a reporting configuration with a data pump on the source system

39Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

9. On the target, use the EDIT PARAMS command to create a parameter file for the Replicat
group. Include the following parameters plus any others that apply to your database
environment.

-- Identify the Replicat group:

REPLICAT <rep>

-- State whether or not source and target definitions are identical:

SOURCEDEFS <full_pathname> | ASSUMETARGETDEFS

-- Specify database login information as needed for the database:

[TARGETDB <dsn_2>,] [USERID <user id>[, PASSWORD <pw>]]

-- Specify error handling rules:

REPERROR (<error>, <response>)

-- Specify tables for delivery:

MAP <owner>.<table>, TARGET <owner>.<table>[, DEF <template name>];

Creating a reporting configuration with a data pump on the source system

You can add a data pump on the source system to isolate the primary Extract from TCP/IP
functions, to add storage flexibility, and to offload the overhead of filtering and conversion
processing from the primary Extract.

In this configuration, the primary Extract writes to a local trail on the source system. A
local data pump reads that trail and moves the data to a remote trail on the target system,
which is read by Replicat.

You can, but are not required to, use a data pump to improve the performance and fault
tolerance of Oracle GoldenGate.

Refer to Figure 9 for a visual representation of the objects you will be creating.

Source system

To configure the Manager process

1. On the source, configure the Manager process according to the instructions in Chapter
2.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the local trail.

Figure 9 Configuration elements for replicating to one target with a data pump

Using Oracle GoldenGate for live reporting
Creating a reporting configuration with a data pump on the source system

40Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

To configure the primary Extract group

3. On the source, use the ADD EXTRACT command to create a primary Extract group. For
documentation purposes, this group is called ext.

ADD EXTRACT <ext>, TRANLOG, BEGIN <time> [, THREADS <n>]

❍ Use TRANLOG as the data source option. For DB2 on Z/OS, specify the bootstrap data
set (BSDS) name following TRANLOG.

4. On the source, use the ADD EXTTRAIL command to create a local trail. The primary
Extract writes to this trail, and the data-pump Extract reads it.

ADD EXTTRAIL <local_trail>, EXTRACT <ext>

❍ Use the EXTRACT argument to link this trail to the primary Extract group. The
primary Extract group writes to this trail, and the data pump group reads it.

5. On the source, use the EDIT PARAMS command to create a parameter file for the primary
Extract group. Include the following parameters plus any others that apply to your
database environment.

-- Identify the Extract group:

EXTRACT <ext>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_1>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the local trail that this Extract writes to:

EXTTRAIL <local_trail>

-- Specify tables to be captured:

TABLE <owner>.<table>;

To configure the data pump Extract group

6. On the source, use the ADD EXTRACT command to create a data pump group. For
documentation purposes, this group is called pump.

ADD EXTRACT <pump>, EXTTRAILSOURCE <local_trail>, BEGIN <time>

❍ Use EXTTRAILSOURCE as the data source option, and specify the name of the local
trail.

7. On the source, use the ADD RMTTRAIL command to specify a remote trail that will be
created on the target system.

ADD RMTTRAIL <remote_trail>, EXTRACT <pump>

❍ Use the EXTRACT argument to link the remote trail to the data pump group. The
linked data pump writes to this trail.

Using Oracle GoldenGate for live reporting
Creating a reporting configuration with a data pump on the source system

41Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

8. On the source, use the EDIT PARAMS command to create a parameter file for the data
pump. Include the following parameters plus any others that apply to your database
environment.

-- Identify the data pump group:

EXTRACT <pump>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_1>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the name or IP address of the target system:

RMTHOST <target>, MGRPORT <portnumber>

-- Specify the remote trail on the target system:

RMTTRAIL <remote_trail>

-- Allow mapping, filtering, conversion or pass data through as-is:

[PASSTHRU | NOPASSTHRU]

-- Specify tables to be captured:

TABLE <owner>.<table>;

NOTE To use PASSTHRU mode, the names of the source and target objects must be
identical. No column mapping, filtering, SQLEXEC functions, transformation, or other
functions that require data manipulation can be specified in the parameter file. You
can combine normal processing with pass-through processing by pairing PASSTHRU
and NOPASSTHRU with different TABLE statements.

Target system

To configure the Manager process

9. On the target, configure the Manager process according to the instructions in Chapter
2.

10. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the local trail.

To configure the Replicat group

11. On the target, create a Replicat checkpoint table. For instructions, see “Creating a
checkpoint table” on page 121.

12. On the target, use the ADD REPLICAT command to create a Replicat group. For
documentation purposes, this group is called rep.

ADD REPLICAT <rep>, EXTTRAIL <remote_trail>, BEGIN <time>

❍ Use the EXTTRAIL argument to link the Replicat group to the remote trail.

Using Oracle GoldenGate for live reporting
Creating a reporting configuration with a data pump on an intermediary system

42Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

13. On the target, use the EDIT PARAMS command to create a parameter file for the Replicat
group. Include the following parameters plus any others that apply to your database
environment.

-- Identify the Replicat group:

REPLICAT <rep>

-- State whether or not source and target definitions are identical:

SOURCEDEFS <full_pathname> | ASSUMETARGETDEFS

-- Specify database login information as needed for the database:

[TARGETDB <dsn_2>,] [USERID <user id>[, PASSWORD <pw>]]

-- Specify error handling rules:

REPERROR (<error>, <response>)

-- Specify tables for delivery:

MAP <owner>.<table>, TARGET <owner>.<table>[, DEF <template name>];

Creating a reporting configuration with a data pump on an intermediary system

You can add a data pump on an intermediary system to add storage flexibility and to
offload the overhead of filtering and conversion processing from the source system. You
also can use this configuration if the source and target systems are in different networks
and there is no direct connection between them. You can transfer the data through an
intermediary system that can connect to both systems. There is no need to have a database
on the intermediary system.

In this configuration, the primary Extract writes to a local data pump and trail, and then
the data pump sends the data to a remote trail on the intermediary system. A data pump
on the intermediary system reads the trail and moves the data to a remote trail on the
target, which is read by a Replicat group.

NOTE The data pump on the source system is optional, but will help to protect against
data loss in the event of a network outage.

This is a form of cascaded replication. However, in this configuration, data is not applied
to a database on the intermediary system. To include a database on the intermediary
system in the Oracle GoldenGate configuration, see “Creating a cascading reporting
configuration” on page 58.

If you want to use the data pump on the intermediary system to perform conversion and
transformation, you must create a source definitions file and a target definitions file with
the DEFGEN utility and then transfer both files to the intermediary system. For more
information about this topic, see Chapter 11.

Refer to Figure 10 for a visual representation of the objects you will be creating.

Using Oracle GoldenGate for live reporting
Creating a reporting configuration with a data pump on an intermediary system

43Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Source system

To configure the Manager process

1. On the source, configure the Manager process according to the instructions in Chapter
2.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To configure the primary Extract group on the source

3. On the source, use the ADD EXTRACT command to create a primary Extract group. For
documentation purposes, this group is called ext.

ADD EXTRACT <ext>, TRANLOG, BEGIN <time> [, THREADS <n>]

❍ Use TRANLOG as the data source option. For DB2 on Z/OS, specify the bootstrap data
set (BSDS) name following TRANLOG.

4. On the source, use the ADD EXTTRAIL command to create a local trail. The primary
Extract writes to this trail, and the data-pump Extract reads it.

ADD EXTTRAIL <local_trail>, EXTRACT <ext>

❍ Use the EXTRACT argument to link this trail to the primary Extract group. The
primary Extract group writes to this trail, and the data pump group reads it.

Figure 10 Configuration elements for replication through an intermediary system

Using Oracle GoldenGate for live reporting
Creating a reporting configuration with a data pump on an intermediary system

44Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

5. On the source, use the EDIT PARAMS command to create a parameter file for the primary
Extract group. Include the following parameters plus any others that apply to your
database environment.

-- Identify the Extract group:

EXTRACT <ext>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_1>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the local trail that this Extract writes to:

EXTTRAIL <local_trail>

-- Specify tables to be captured:

TABLE <owner>.<table>;

To configure the data pump on the source

6. On the source, use the ADD EXTRACT command to create a data pump group. For
documentation purposes, this group is called pump_1.

ADD EXTRACT <pump_1>, EXTTRAILSOURCE <local_trail>, BEGIN <time>

❍ Use EXTTRAILSOURCE as the data source option, and specify the name of the local
trail.

7. On the source, use the ADD RMTTRAIL command to specify a remote trail that will be
created on the intermediary system.

ADD RMTTRAIL <remote_trail_1>, EXTRACT <pump_1>

❍ Use the EXTRACT argument to link the remote trail to the pump_1 data pump group.
The linked data pump writes to this trail.

8. On the source, use the EDIT PARAMS command to create a parameter file for the pump_1
data pump. Include the following parameters plus any others that apply to your
database environment.

-- Identify the data pump group:

EXTRACT <pump_1>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_1>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the name or IP address of the intermediary system:

RMTHOST <target_1>, MGRPORT <portnumber>

-- Specify the remote trail on the intermediary system:

RMTTRAIL <remote_trail_1>

-- Allow mapping, filtering, conversion or pass data through as-is:

[PASSTHRU | NOPASSTHRU]

-- Specify tables to be captured:

TABLE <owner>.<table>;

NOTE To use PASSTHRU mode, the names of the source and target objects must be
identical. No column mapping, filtering, SQLEXEC functions, transformation, or other
functions that require data manipulation can be specified in the parameter file. You
can combine normal processing with pass-through processing by pairing PASSTHRU
and NOPASSTHRU with different TABLE statements.

Using Oracle GoldenGate for live reporting
Creating a reporting configuration with a data pump on an intermediary system

45Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Intermediary system

To configure the Manager process on the intermediary system

9. On the intermediary system, configure the Manager process according to the
instructions in Chapter 2.

10. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To configure the data pump on the intermediary system

11. On the intermediary system, use the ADD EXTRACT command to create a data-pump
group. For documentation purposes, this group is called pump_2.

ADD EXTRACT <pump_2>, EXTTRAILSOURCE <local_trail_1>, BEGIN <time>

❍ Use EXTTRAILSOURCE as the data source option, and specify the name of the trail that
you created on this system.

12. On the intermediary system, use the ADD RMTTRAIL command to specify a remote trail
on the target system.

ADD RMTTRAIL <remote_trail_2>, EXTRACT <pump_2>

❍ Use the EXTRACT argument to link the remote trail to the pump_2 data pump. The
linked data pump writes to this trail.

13. On the intermediary system, use the EDIT PARAMS command to create a parameter file
for the pump_2 data pump. Include the following parameters plus any others that
apply to your database environment.

-- Identify the data pump group:

EXTRACT <pump_2>

-- State whether or not source and target definitions are identical:

SOURCEDEFS <full_pathname> | ASSUMETARGETDEFS

-- Specify the target definitions file if SOURCEDEFS was used:

TARGETDEFS <full_pathname>

-- Specify the name or IP address of the target system:

RMTHOST <target_2>, MGRPORT <portnumber>

-- Specify the remote trail on the target system:

RMTTRAIL <remote_trail_2>

-- Allow mapping, filtering, conversion or pass data through as-is:

[PASSTHRU | NOPASSTHRU]

-- Specify tables to be captured:

TABLE <owner>.<table>;

❍ Use SOURCEDEFS and TARGETDEFS to specify the definitions files if the data pump will
perform conversion and transformation.

❍ Use NOPASSTHRU (the default) if the data pump will perform conversion and
transformation. Otherwise, use PASSTHRU.

Using Oracle GoldenGate for live reporting
Creating a cascading reporting configuration

46Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Target system

To configure the Manager process on the target

14. On the target system, configure the Manager process according to the instructions in
Chapter 2.

15. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To configure the Replicat group on the target

16. On the target, create a Replicat checkpoint table. For instructions, see “Creating a
checkpoint table” on page 121.

17. On the target, use the ADD REPLICAT command to create a Replicat group. For
documentation purposes, this group is called rep.

ADD REPLICAT <rep>, EXTTRAIL <remote_trail_2>, BEGIN <time>

❍ Use the EXTTRAIL argument to link the Replicat group to the trail on this system.

18. On the target, use the EDIT PARAMS command to create a parameter file for the Replicat
group. Include the following parameters plus any others that apply to your database
environment.

-- Identify the Replicat group:

REPLICAT <rep>

-- State whether or not source and target definitions are identical:

SOURCEDEFS <full_pathname> | ASSUMETARGETDEFS

-- Specify database login information as needed for the database:

[TARGETDB <dsn_2>,] [USERID <user id>[, PASSWORD <pw>]]

-- Specify error handling rules:

REPERROR (<error>, <response>)

-- Specify tables for delivery:

MAP <owner>.<table>, TARGET <owner>.<table>[, DEF <template name>];

Creating a cascading reporting configuration

Oracle GoldenGate supports cascading synchronization, where Oracle GoldenGate
propagates data changes from the source database to a second database, and then on to a
third database. Use this configuration if:

● One or more of the target systems does not have a direct connection to the source, but
the intermediary system can connect in both directions.

● You want to limit network activity from the source system.

● You are sending data to two or more servers that are very far apart geographically,
such as from Chicago to Los Angeles and then from Los Angeles to servers throughout
China.

In this configuration:

● A primary Extract on the source writes captured data to a local trail, and a data pump
sends the data to a remote trail on the second system in the cascade.

Using Oracle GoldenGate for live reporting
Creating a cascading reporting configuration

47Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

● On the second system, Replicat applies the data to the local database.

● Another primary Extract on that same system captures the data from the local
database and writes it to a local trail. You configure this Extract group to capture
Replicat activity and to ignore local business application activity. The Extract
parameters that control this behavior are IGNOREAPPLOPS and GETREPLICATES.

● A data pump sends the data to a remote trail on the third system in the cascade, where
it is applied to the local database by another Replicat.

NOTE If you do not need to apply the replicated changes to a database on the secondary
system, see “Creating a reporting configuration with a data pump on an
intermediary system” on page 42.

Refer to Figure 11 for a visual representation of the objects you will be creating.

Source system

To configure the Manager process on the source

1. On the source, configure the Manager process according to the instructions in Chapter
2.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

Figure 11 Cascading configuration

Using Oracle GoldenGate for live reporting
Creating a cascading reporting configuration

48Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

To configure the primary Extract group on the source

3. On the source, use the ADD EXTRACT command to create the source Extract group. For
documentation purposes, this group is called ext_1.

ADD EXTRACT <ext_1>, TRANLOG, BEGIN <time> [, THREADS <n>]

❍ Use TRANLOG as the data source option. For DB2 on Z/OS, specify the bootstrap data
set (BSDS) name following TRANLOG.

4. On the source, use the ADD EXTTRAIL command to create a local trail.

ADD EXTTRAIL <local_trail_1>, EXTRACT <ext>

❍ Use the EXTRACT argument to link this trail to the ext_1 Extract group.

5. On the source, use the EDIT PARAMS command to create a parameter file for the ext_1
Extract group. Include the following parameters plus any others that apply to your
database environment.

-- Identify the Extract group:

EXTRACT <ext_1>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_1>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the local trail that this Extract writes to:

EXTTRAIL <local_trail_1>

-- Specify tables to be captured:

TABLE <owner>.<table>;

To configure the data pump on the source

6. On the source, use the ADD EXTRACT command to create a data pump group. For
documentation purposes, this group is called pump_1.

ADD EXTRACT <pump_1>, EXTTRAILSOURCE <local_trail_1>, BEGIN <time>

❍ Use EXTTRAILSOURCE as the data source option, and specify the name of the local
trail.

7. On the source, use the ADD RMTTRAIL command to specify a remote trail that will be
created on the second system in the cascade.

ADD RMTTRAIL <remote_trail_1>, EXTRACT <pump_1>

❍ Use the EXTRACT argument to link the remote trail to the pump_1 data pump group.
The linked data pump writes to this trail.

Using Oracle GoldenGate for live reporting
Creating a cascading reporting configuration

49Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

8. On the source, use the EDIT PARAMS command to create a parameter file for the pump_1
data pump. Include the following parameters plus any others that apply to your
database environment.

-- Identify the data pump group:

EXTRACT <pump_1>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_1>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the name or IP address of second system in cascade:

RMTHOST <target_1>, MGRPORT <portnumber>

-- Specify the remote trail on the second system:

RMTTRAIL <remote_trail_1>

-- Allow mapping, filtering, conversion or pass data through as-is:

[PASSTHRU | NOPASSTHRU]

-- Specify tables to be captured:

TABLE <owner>.<table>;

NOTE To use PASSTHRU mode, the names of the source and target objects must be
identical. No column mapping, filtering, SQLEXEC functions, transformation, or other
functions that require data manipulation can be specified in the parameter file. You
can combine normal processing with pass-through processing by pairing PASSTHRU
and NOPASSTHRU with different TABLE statements.

Second system in the cascade

To configure the Manager process on the second system

9. On the second system, configure the Manager process according to the instructions in
Chapter 2.

10. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To configure the Replicat group on the second system

11. Create a Replicat checkpoint table. For instructions, see “Creating a checkpoint table”
on page 121.

12. On the second system, use the ADD REPLICAT command to create a Replicat group. For
documentation purposes, this group is called rep_1.

ADD REPLICAT <rep_1>, EXTTRAIL <remote_trail_1>, BEGIN <time>

❍ Use the EXTTRAIL option to link the rep_1 group to the remote trail remote_trail_1
that is on the local system.

Using Oracle GoldenGate for live reporting
Creating a cascading reporting configuration

50Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

13. On the second system, use the EDIT PARAMS command to create a parameter file for the
Replicat group. Include the following parameters plus any others that apply to your
database environment.

-- Identify the Replicat group:

REPLICAT <rep_1>

-- State whether or not source and target definitions are identical:

SOURCEDEFS <full_pathname> | ASSUMETARGETDEFS

-- Specify database login information as needed for the database:

[TARGETDB <dsn_2>,] [USERID <user id>[, PASSWORD <pw>]]

-- Specify error handling rules:

REPERROR (<error>, <response>)

-- Specify tables for delivery:

MAP <owner>.<table>, TARGET <owner>.<table> [, DEF <template name>];

To configure an Extract group on the second system

14. On the second system, use the ADD EXTRACT command to create a local Extract group.
For documentation purposes, this group is called ext_2.

ADD EXTRACT <ext_2>, TRANLOG, BEGIN <time> [, THREADS <n>]

❍ Use TRANLOG as the data source option. For DB2 on Z/OS, specify the bootstrap data
set (BSDS) name following TRANLOG.

15. On the second system, use the ADD RMTTRAIL command to specify a remote trail that will
be created on the third system.

ADD EXTTRAIL <local_trail_2>, EXTRACT <ext_2>

❍ Use the EXTRACT argument to link this local trail to the ext_2 Extract group.

16. On the second system, use the EDIT PARAMS command to create a parameter file for the
ext_2 Extract group. Include the following parameters plus any others that apply to
your database environment.

-- Identify the Extract group:

EXTRACT <ext_2>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_2>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the local trail that this Extract writes to:

EXTTRAIL <local_trail_2>

-- Ignore local DML, capture Replicat DML:

IGNOREAPPLOPS, GETREPLICATES

-- Specify tables to be captured:

TABLE <owner>.<table>;

NOTE If replicating DDL operations, IGNOREAPPLOPS, GETREPLICATES functionality is
controlled by the DDLOPTIONS parameter.

Using Oracle GoldenGate for live reporting
Creating a cascading reporting configuration

51Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

To configure the data pump on the second system

17. On the second system, use the ADD EXTRACT command to create a data pump group. For
documentation purposes, this group is called pump_2.

ADD EXTRACT <pump_2>, EXTTRAILSOURCE <local_trail_2>, BEGIN <time>

❍ Use EXTTRAILSOURCE as the data source option, and specify the name of the local
trail.

18. On the second system, use the ADD RMTTRAIL command to specify a remote trail that will
be created on the third system in the cascade.

ADD RMTTRAIL <remote_trail_2>, EXTRACT <pump_2>

❍ Use the EXTRACT argument to link the remote trail to the pump_2 data pump group.
The linked data pump writes to this trail.

19. On the second system, use the EDIT PARAMS command to create a parameter file for the
pump_2 data pump. Include the following parameters plus any others that apply to
your database environment.

-- Identify the data pump group:

EXTRACT <pump_2>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_2>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the name or IP address of third system in cascade:

RMTHOST <target_2>, MGRPORT <portnumber>

-- Specify the remote trail on the third system:

RMTTRAIL <remote_trail_2>

-- Allow mapping, filtering, conversion or pass data through as-is:

[PASSTHRU | NOPASSTHRU]

-- Specify tables to be captured:

TABLE <owner>.<table>;

NOTE To use PASSTHRU mode, the names of the source and target objects must be
identical. No column mapping, filtering, SQLEXEC functions, transformation, or other
functions that require data manipulation can be specified in the parameter file. You
can combine normal processing with pass-through processing by pairing PASSTHRU
and NOPASSTHRU with different TABLE statements.

Third system in the cascade

To configure the Manager process

20. On the third system, configure the Manager process according to the instructions in
Chapter 2.

21. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

Using Oracle GoldenGate for live reporting
Creating a cascading reporting configuration

52Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

To configure the Replicat group

22. On the third system, create a Replicat checkpoint table. For instructions, see “Creating
a checkpoint table” on page 121.

23. On the third system, use the ADD REPLICAT command to create a Replicat group. For
documentation purposes, this group is called rep_2.

ADD REPLICAT <rep_2>, EXTTRAIL <remote_trail_2>, BEGIN <time>

❍ Use the EXTTRAIL option to link the rep_2 group to the remote_trail_2 trail.

24. On the third system, use the EDIT PARAMS command to create a parameter file for the
Replicat group. Include the following parameters plus any others that apply to your
database environment.

-- Identify the Replicat group:

REPLICAT <rep_2>

-- State whether or not source and target definitions are identical:

SOURCEDEFS <full_pathname> | ASSUMETARGETDEFS

-- Specify database login information as needed for the database:

[TARGETDB <dsn_3>,] [USERID <user id>[, PASSWORD <pw>]]

-- Specify error handling rules:

REPERROR (<error>, <response>)

-- Specify tables for delivery:

MAP <owner>.<table>, TARGET <owner>.<table>[, DEF <template name>];

53Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHAPTER 5

Using Oracle GoldenGate for real-time data
distribution
.

Overview of the data-distribution configuration

A data distribution configuration is a one-to-many configuration. Oracle GoldenGate supports
synchronization of a source database to any number of target systems. Oracle GoldenGate
supports like-to-like or heterogeneous transfer of data, with capabilities for filtering and
conversion on any system in the configuration (support varies by database platform).

Considerations for a data-distribution configuration

Fault tolerance

For a data distribution configuration, the use of data pumps ensures that if network
connectivity to any of the targets fails, the captured data still can be sent to the other
targets. Use a primary Extract group and a data-pump Extract group in the source
configuration, one for each target.

Filtering and conversion

You can use any process to perform filtering and conversion. However, using the data
pumps to perform filtering operations removes that processing overhead from the primary
Extract group, and it reduces the amount of data that is sent across the network.

To filter data, you can use:

● A FILTER or WHERE clause in a TABLE statement (Extract) or in a MAP statement (Replicat).

● A SQL query or procedure

● User exits

Using Oracle GoldenGate for real-time data distribution
Considerations for a data-distribution configuration

54Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

To transform data, you can use:

● Native Oracle GoldenGate conversion functions

● A user exit from the Extract or Replicat process that applies rules from an external
transformation solution, then returns the manipulated data to Oracle GoldenGate.

● Replicat to deliver data directly to an ETL solution or other transformation engine.

Data volume

The standard configuration is sufficient if:

● The transaction load is consistent and of moderate volume that is spread out more or
less evenly among all of the objects to be replicated.

and...

● There are none of the following: tables that are subject to long-running transactions,
tables that have a very large number of columns that change, or tables that contain
columns for which Oracle GoldenGate must fetch from the database (generally
columns with LOBs, columns that are affected by SQL procedures executed by Oracle
GoldenGate, and columns that are not logged to the transaction log).

If your environment does not satisfy those conditions, consider adding one or more sets of
parallel processes. For more information, see the Oracle GoldenGate Windows and UNIX
Troubleshooting and Tuning Guide.

Read-only vs. high availability

This configuration supports read-only targets. If any target in this configuration will also
be used for transactional activity in support of high availability, see “Using Oracle
GoldenGate for active-active high availability” on page 79.

Additional information

● For additional system and database configuration requirements, see the Oracle
GoldenGate Installation and Setup Guide for your database type.

● For information about additional requirements for Teradata Extract configurations,
see the Oracle GoldenGate Teradata Installation and Setup Guide.

● For detailed instructions on configuring Oracle GoldenGate change capture and
delivery groups, see “Configuring online change synchronization” on page 120.

● For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see the Oracle GoldenGate Windows and UNIX Reference Guide.

● For more information about tuning this configuration, see the Oracle GoldenGate
Windows and UNIX Troubleshooting and Tuning Guide.

Using Oracle GoldenGate for real-time data distribution
Creating a data distribution configuration

55Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Creating a data distribution configuration

Refer to Figure 12 for a visual representation of the objects you will be creating.

Source system

To configure the Manager process

1. On the source, configure the Manager process according to the instructions in Chapter
2.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the local trail.

To configure the primary Extract

3. On the source, use the ADD EXTRACT command to create a primary Extract group. For
documentation purposes, this group is called ext.

ADD EXTRACT <ext>, TRANLOG, BEGIN <time>, [, THREADS]

❍ Use TRANLOG as the data source option. For DB2 on Z/OS, specify the bootstrap data
set (BSDS) name following TRANLOG.

4. On the source, use the ADD EXTTRAIL command to create a local trail.

ADD EXTTRAIL <local_trail>, EXTRACT <ext>

❍ Use the EXTRACT argument to link this trail to the primary Extract group. The
primary Extract group writes to this trail, and the data pump groups read it.

Figure 12 Oracle GoldenGate configuration elements for data distribution

Using Oracle GoldenGate for real-time data distribution
Creating a data distribution configuration

56Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

5. On the source, use the EDIT PARAMS command to create a parameter file for the primary
Extract group. Include the following parameters plus any others that apply to your
database environment.

-- Identify the Extract group:

EXTRACT <ext>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_1>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the local trail that this Extract writes to:

EXTTRAIL <local_trail>

-- Specify tables to be captured:

TABLE <owner>.<table>;

❍ Use EXTTRAIL to specify the local trail.

To configure the data pump Extract groups

6. On the source, use the ADD EXTRACT command to create a data pump for each target
system. For documentation purposes, these groups are called pump_1 and pump_2.

ADD EXTRACT <pump_1>, EXTTRAILSOURCE <local_trail>, BEGIN <time>

ADD EXTRACT <pump_2>, EXTTRAILSOURCE <local_trail>, BEGIN <time>

❍ Use EXTTRAILSOURCE as the data source option, and supply the name of the local trail.

7. On the source, use the ADD RMTTRAIL command to specify a remote trail that will be
created on each of the target systems.

ADD RMTTRAIL <remote_trail_1>, EXTRACT <pump_1>

ADD RMTTRAIL <remote_trail_2>, EXTRACT <pump_2>

❍ Use the EXTRACT argument to link each remote trail to a different data pump group.
The linked data pump writes to this trail.

8. On the source, use the EDIT PARAMS command to create a parameter file for each of the
data pumps. Include the following parameters plus any others that apply to your
database environment.

Data pump_1

-- Identify the data pump group:

EXTRACT <pump_1>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_1>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the name or IP address of the first target system:

RMTHOST <target_1>, MGRPORT <portnumber>

-- Specify the remote trail on the first target system:

RMTTRAIL <remote_trail_1>

-- Allow mapping, filtering, conversion or pass data through as-is:

[PASSTHRU | NOPASSTHRU]

-- Specify tables to be captured:

TABLE <owner>.<table>;

Using Oracle GoldenGate for real-time data distribution
Creating a data distribution configuration

57Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Data pump_2

-- Identify the data pump group:

EXTRACT <pump_2>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_1>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the name or IP address of the second target system:

RMTHOST <target_2>, MGRPORT <portnumber>

-- Specify the remote trail on the second target system:

RMTTRAIL <remote_trail_2>

-- Allow mapping, filtering, conversion or pass data through as-is:

[PASSTHRU | NOPASSTHRU]

-- Specify tables to be captured:

TABLE <owner>.<table>;

NOTE To use PASSTHRU mode, the names of the source and target objects must be
identical. No column mapping, filtering, SQLEXEC functions, transformation, or other
functions that require data manipulation can be specified in the parameter file. You
can combine normal processing with pass-through processing by pairing PASSTHRU
and NOPASSTHRU with different TABLE statements.

Target systems

To configure the Manager process

9. On each target, configure the Manager process according to the instructions in Chapter
2.

10. In each Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To configure the Replicat groups

11. On each target, create a Replicat checkpoint table. For instructions, see “Creating a
checkpoint table” on page 121.

12. On each target, use the ADD REPLICAT command to create a Replicat group for the remote
trail on that system. For documentation purposes, these groups are called rep_1 and
rep_2.

Target_1

ADD REPLICAT <rep_1>, EXTTRAIL <remote_trail_1>, BEGIN <time>

Target_2

ADD REPLICAT <rep_2>, EXTTRAIL <remote_trail_2>, BEGIN <time>

❍ Use the EXTTRAIL argument to link the Replicat group to the correct trail.

13. On each target, use the EDIT PARAMS command to create a parameter file for the Replicat
group. Use the following parameters plus any others that apply to your database
environment.

Using Oracle GoldenGate for real-time data distribution
Creating a data distribution configuration

58Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Target_1

-- Identify the Replicat group:

REPLICAT <rep_1>

-- State whether or not source and target definitions are identical:

SOURCEDEFS <full_pathname> | ASSUMETARGETDEFS

-- Specify database login information as needed for the database:

[TARGETDB <dsn_2>,] [USERID <user id>[, PASSWORD <pw>]]

-- Specify error handling rules:

REPERROR (<error>, <response>)

-- Specify tables for delivery:

MAP <owner>.<table>, TARGET <owner>.<table>[, DEF <template name>];

Target_2

-- Identify the Replicat group:

REPLICAT <rep_2>

-- State whether or not source and target definitions are identical:

SOURCEDEFS <full_pathname> | ASSUMETARGETDEFS

-- Specify database login information as needed for the database:

[TARGETDB <dsn_3>,] [USERID <user id>[, PASSWORD <pw>]]

-- Specify error handling rules:

REPERROR (<error>, <response>)

-- Specify tables for delivery:

MAP <owner>.<table>, TARGET <owner>.<table>[, DEF <template name>];

❍ You can use any number of MAP statements for any given Replicat group. All MAP
statements for a given Replicat group must specify the same objects that are
contained in the trail that is linked to the group.

59Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHAPTER 6

Configuring Oracle GoldenGate for real-time
data warehousing
.

Overview of the data-warehousing configuration

A data warehousing configuration is a many-to-one configuration. Multiple source databases
send data to one target warehouse database. Oracle GoldenGate supports like-to-like or
heterogeneous transfer of data, with capabilities for filtering and conversion on any system
in the configuration (support varies by database platform).

Considerations for a data warehousing configuration

Isolation of data records

This configuration assumes that each source database contributes different records to the
target system. If the same record exists in the same table on two or more source systems
and can be changed on any of those systems, conflict resolution routines are needed to
resolve conflicts when changes to that record are made on both sources at the same time
and replicated to the target table. For more information about resolving conflicts, see
“Using Oracle GoldenGate for active-active high availability” on page 79.

Data storage

You can divide the data storage between the source systems and the target system to
reduce the need for massive amounts of disk space on the target system. This is
accomplished by using a data pump on each source, rather than sending data directly from
each Extract across the network to the target.

● A primary Extract writes to a local trail on each source.

● A data-pump Extract on each source reads the local trail and sends it across TCP/IP to
a dedicated Replicat group.

Configuring Oracle GoldenGate for real-time data warehousing
Considerations for a data warehousing configuration

60Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Filtering and conversion

If not all of the data from a source system will be sent to the data warehouse, you can use
the data pump to perform the filtering. This removes that processing overhead from the
primary Extract group, and it reduces the amount of data that is sent across the network.

To filter data, you can use:

● A FILTER or WHERE clause in a TABLE statement (Extract) or in a MAP statement (Replicat).

● A SQL query or procedure

● User exits

To transform data, you can use:

● Native Oracle GoldenGate conversion functions

● A user exit from the Extract or Replicat process that applies rules from an external
transformation solution, then returns the manipulated data to Oracle GoldenGate.

● Replicat to deliver data directly to an ETL solution or other transformation engine.

Data volume

The standard configuration is sufficient if:

● The transaction load is consistent and of moderate volume that is spread out more or
less evenly among all of the objects to be replicated.

and...

● There are none of the following: tables that are subject to long-running transactions,
tables that have a very large number of columns that change, or tables that contain
columns for which Oracle GoldenGate must fetch from the database (generally
columns with LOBs, columns that are affected by SQL procedures executed by Oracle
GoldenGate, and columns that are not logged to the transaction log).

If your environment does not satisfy those conditions, consider adding one or more sets of
parallel processes. For more information, see the Oracle GoldenGate Windows and UNIX
Troubleshooting and Tuning Guide.

Additional information

● For additional system and database configuration requirements, see the Oracle
GoldenGate Installation and Setup Guide for your database type.

● For additional information about additional requirements for Teradata Extract
configurations, see the Oracle GoldenGate Teradata Installation and Setup Guide.

● For detailed instructions on configuring Oracle GoldenGate change capture and
delivery groups, see “Configuring online change synchronization” on page 120.

● For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see the Oracle GoldenGate Windows and UNIX Reference Guide.

● For more information about tuning this configuration, see the Oracle GoldenGate
Windows and UNIX Troubleshooting and Tuning Guide.

Configuring Oracle GoldenGate for real-time data warehousing
Creating a data warehousing configuration

61Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Creating a data warehousing configuration

Refer to Figure 13 for a visual representation of the objects you will be creating.

Source systems

To configure the Manager process

1. On each source, configure the Manager process according to the instructions in
Chapter 2.

2. In each Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail on the local system.

To configure the primary Extract groups

3. On each source, use the ADD EXTRACT command to create a primary Extract group. For
documentation purposes, these groups are called ext_1 and ext_2.

Extract_1

ADD EXTRACT <ext_1>, TRANLOG, BEGIN <time> [, THREADS <n>]

Extract_2

ADD EXTRACT <ext_2>, TRANLOG, BEGIN <time> [, THREADS <n>]

❍ Use TRANLOG as the data source option. For DB2 on Z/OS, specify the bootstrap data
set (BSDS) name following TRANLOG.

4. On each source, use the ADD EXTTRAIL command to create a local trail.

Extract_1

ADD EXTTRAIL <local_trail_1>, EXTRACT <ext_1>

Figure 13 Configuration for data warehousing

Configuring Oracle GoldenGate for real-time data warehousing
Creating a data warehousing configuration

62Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Extract_2

ADD EXTTRAIL <local_trail_2>, EXTRACT <ext_2>

❍ Use the EXTRACT argument to link each Extract group to the local trail on the same
system. The primary Extract writes to this trail, and the data-pump reads it.

5. On each source, use the EDIT PARAMS command to create a parameter file for the primary
Extract. Include the following parameters plus any others that apply to your database
environment.

Extract_1

-- Identify the Extract group:

EXTRACT <ext_1>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_1>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the local trail that this Extract writes to:

EXTTRAIL <local_trail_1>

-- Specify tables to be captured:

TABLE <owner>.<table>;

Extract_2

-- Identify the Extract group:

EXTRACT <ext_2>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_2>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the local trail that this Extract writes to:

EXTTRAIL <local_trail_2>

-- Specify tables to be captured:

TABLE <owner>.<table>;

To configure the data pumps

6. On each source, use the ADD EXTRACT command to create a data pump Extract group. For
documentation purposes, these pumps are called pump_1 and pump_2.

Data pump_1

ADD EXTRACT <pump_1>, EXTTRAILSOURCE <local_trail_1>, BEGIN <time>

Data pump_2

ADD EXTRACT <pump_2>, EXTTRAILSOURCE <local_trail_2>, BEGIN <time>

❍ Use EXTTRAILSOURCE as the data source option, and specify the name of the trail on
the local system.

7. On each source, use the ADD RMTTRAIL command to create a remote trail on the target.

Source_1

ADD RMTTRAIL <remote_trail_1>, EXTRACT <pump_1>

Configuring Oracle GoldenGate for real-time data warehousing
Creating a data warehousing configuration

63Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Source_2

ADD RMTTRAIL <remote_trail_2>, EXTRACT <pump_2>

❍ Use the EXTRACT argument to link each remote trail to a different data pump. The
data pump writes to this trail over TCP/IP, and a Replicat reads from it.

8. On each source, use the EDIT PARAMS command to create a parameter file for the data
pump group. Include the following parameters plus any others that apply to your
database environment.

Data pump_1

-- Identify the data pump group:

EXTRACT <pump_1>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_1>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the name or IP address of the target system:

RMTHOST <target>, MGRPORT <portnumber>

-- Specify the remote trail on the target system:

RMTTRAIL <remote_trail_1>

-- Allow mapping, filtering, conversion or pass data through as-is:

[PASSTHRU | NOPASSTHRU]

-- Specify tables to be captured:

TABLE <owner>.<table>;

Data pump_2

-- Identify the data pump group:

EXTRACT <pump_2>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_2>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the name or IP address of the target system:

RMTHOST <target>, MGRPORT <portnumber>

-- Specify the remote trail on the target system:

RMTTRAIL <remote_trail_2>

-- Allow mapping, filtering, conversion or pass data through as-is:

[PASSTHRU | NOPASSTHRU]

-- Specify tables to be captured:

TABLE <owner>.<table>;

❍ Use NOPASSTHRU if the data pump will be filtering or converting data, and also use
the SOURCEDB and USERID parameters as appropriate for the database, to enable
definitions lookups. If the data pump will not be filtering or converting data, use
PASSTHRU to bypass the lookups.

NOTE To use PASSTHRU mode, the names of the source and target objects must be
identical. No column mapping, filtering, SQLEXEC functions, transformation, or other
functions that require data manipulation can be specified in the parameter file. You
can combine normal processing with pass-through processing by pairing PASSTHRU
and NOPASSTHRU with different TABLE statements.

Configuring Oracle GoldenGate for real-time data warehousing
Creating a data warehousing configuration

64Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Target system

To configure the Manager process

9. Configure the Manager process according to the instructions in Chapter 2.

10. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To configure the Replicat groups

11. On the target, use the ADD REPLICAT command to create a Replicat group for each remote
trail that you created. For documentation purposes, these groups are called rep_1 and
rep_2.

Replicat_1

ADD REPLICAT <rep_1>, EXTTRAIL <remote_trail_1>, BEGIN <time>

Replicat_2

ADD REPLICAT <rep_2>, EXTTRAIL <remote_trail_2>, BEGIN <time>

❍ Use the EXTTRAIL argument to link the Replicat group to the trail.

12. On the target, use the EDIT PARAMS command to create a parameter file for each Replicat
group. Include the following parameters plus any others that apply to your database
environment.

Replicat_1

-- Identify the Replicat group:

REPLICAT <rep_1>

-- State whether or not source and target definitions are identical:

SOURCEDEFS <full_pathname> | ASSUMETARGETDEFS

-- Specify database login information as needed for the database:

[TARGETDB <dsn_3>,] [USERID <user id>[, PASSWORD <pw>]]

-- Specify error handling rules:

REPERROR (<error>, <response>)

-- Specify tables for delivery:

MAP <owner>.<table>, TARGET <owner>.<table>[, DEF <template name>];

Replicat_2

-- Identify the Replicat group:

REPLICAT <rep_2>

-- State whether or not source and target definitions are identical:

SOURCEDEFS <full_pathname> | ASSUMETARGETDEFS

-- Specify database login information as needed for the database:

[TARGETDB <dsn_3>,] [USERID <user id>[, PASSWORD <pw>]]

-- Specify error handling rules:

REPERROR (<error>, <response>)

-- Specify tables for delivery:

MAP <owner>.<table>, TARGET <owner>.<table>[, DEF <template name>];

❍ You can use any number of MAP statements for any given Replicat group. All MAP
statements for a given Replicat group must specify the same objects that are
contained in the trail that is linked to the group.

65Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHAPTER 7

Using Oracle GoldenGate to maintain a live
standby database
.

Overview of a live standby configuration

Oracle GoldenGate supports an active-passive bi-directional configuration, where Oracle
GoldenGate replicates data from an active primary database to a full replica database on
a live standby system that is ready for failover during planned and unplanned outages.

In this configuration, there is an inactive Oracle GoldenGate Extract group and an inactive
data pump on the live standby system. Both of those groups remain stopped until just
before user applications are switched to the live standby system in a switchover or failover.
When user activity moves to the standby, those groups begin capturing transactions to a
local trail, where the data is stored on disk until the primary database can be used again.

In the case of a failure of the primary system, the Oracle GoldenGate Manager and Replicat
processes work in conjunction with a database instantiation taken from the standby to
restore parity between the two systems after the primary system is recovered. At the
appropriate time, users are moved back to the primary system, and Oracle GoldenGate is
configured in ready mode again, in preparation for future failovers.

Using Oracle GoldenGate to maintain a live standby database
Considerations for a live standby configuration

66Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Considerations for a live standby configuration

Trusted source

The primary database is the trusted source. This is the database that is the active source
during normal operating mode, and it is the one from which the other database is derived
in the initial synchronization phase and in any subsequent resynchronizations. Maintain
frequent backups of the trusted source data.

Duplicate standby

In most implementations of a live standby, the source and target databases are identical
in content and structure. Data mapping, conversion, and filtering typically are not
appropriate practices in this kind of configuration, but Oracle GoldenGate does support
such functionality if required by your business model. To support these functions, use the
options of the TABLE and MAP parameters.

DML on the standby system

If your applications permit, you can use the live standby system for reporting and queries,
but not DML. If there will be active transactional applications on the live standby system
that affect objects in the Oracle GoldenGate configuration, you should configure this as an
active-active configuration. See Chapter 8 on page 79.

Oracle GoldenGate processes

During normal operating mode, leave the primary Extract and the data pump on the live
standby system stopped, and leave the Replicat on the active source stopped. This prevents
any DML that occurs accidentally on the standby system from being propagated to the
active source. Only the Extract, data pump, and Replicat that move data from the active
source to the standby system can be active.

Backup files

Make regular backups of the Oracle GoldenGate working directories on the primary and
standby systems. This backup must include all of the files that are installed at the root
level of the Oracle GoldenGate installation directory and all of the sub-directories within
that directory. Having a backup of the Oracle GoldenGate environment means that you
will not have to recreate your process groups and parameter files.

Failover preparedness

Make certain that the primary and live standby systems are ready for immediate user
access in the event of a planned switchover or an unplanned source failure. The following
components of a high-availability plan should be made easily available for use on each
system:

● Scripts that grant insert, update, and delete privileges.

● Scripts that enable triggers and cascaded delete constraints on the live standby
system. (These were disabled during the setup procedures that were outlined in the
Oracle GoldenGate Installation and Setup Guide for your database type.)

● Scripts that switch over the application server, start applications, and copy essential
files that are not part of the replication environment.

● A failover procedure for moving users to the live standby if the source system fails.

Using Oracle GoldenGate to maintain a live standby database
Considerations for a live standby configuration

67Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Sequential values that are generated by the database

If database-generated values are used as part of a key, the range of values must be
different on each system, with no chance of overlap. If the application permits, you can add
a location identifier to the value to enforce uniqueness.

For Oracle databases, Oracle GoldenGate can be configured to replicate sequences in a
manner that ensures uniqueness on each database. To replicate sequences, use the
SEQUENCE and MAP parameters. For more information, see the Oracle GoldenGate Windows
and UNIX Reference Guide.

Data volume

The standard configuration is sufficient if:

● The transaction load is consistent and of moderate volume that is spread out more or
less evenly among all of the objects to be replicated.

and...

● There are none of the following: tables that are subject to long-running transactions,
tables that have a very large number of columns that change, or tables that contain
columns for which Oracle GoldenGate must fetch from the database (generally
columns with LOBs, columns that are affected by SQL procedures executed by Oracle
GoldenGate, and columns that are not logged to the transaction log).

If your environment does not satisfy those conditions, consider adding one or more sets of
parallel processes. For more information, see the Oracle GoldenGate Windows and UNIX
Troubleshooting and Tuning Guide.

Additional information

● For additional system and database configuration requirements, see the Oracle
GoldenGate Installation and Setup Guide for your database type.

● For additional information about additional requirements for Teradata Extract
configurations, see the Oracle GoldenGate Teradata Installation and Setup Guide.

● For detailed instructions on configuring Oracle GoldenGate change capture and
delivery groups, see “Configuring online change synchronization” on page 120.

● For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see the Oracle GoldenGate Windows and UNIX Reference Guide.

● For more information about tuning this configuration, see the Oracle GoldenGate
Windows and UNIX Troubleshooting and Tuning Guide.

Using Oracle GoldenGate to maintain a live standby database
Creating a live standby configuration

68Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Creating a live standby configuration

Refer to Figure 14 for a visual representation of the objects you will be creating.

Figure 14 Oracle GoldenGate configuration elements for live standby

Prerequisites on both systems

1. Create a Replicat checkpoint table. For instructions, see “Creating a checkpoint table”
on page 121.

2. Configure the Manager process according to the instructions in Chapter 2.

Configuration from active source to standby

To configure the primary Extract group

Perform these steps on the active source.

1. Use the ADD EXTRACT command to create a primary Extract group. For documentation
purposes, this group is called ext_1.

ADD EXTRACT <ext_1>, TRANLOG, BEGIN <time> [, THREADS <n>]

❍ Use TRANLOG as the data source.

❍ For DB2 on Z/OS, specify the bootstrap data set (BSDS) name after TRANLOG.

2. Use the ADD EXTTRAIL command to add a local trail. For documentation purposes, this
trail is called local_trail_1.

ADD EXTTRAIL <local_trail_1>, EXTRACT <ext_1>

❍ For EXTRACT, specify the ext_1 group to write to this trail.

3. Use the EDIT PARAMS command to create a parameter file for the ext_1 group. Include the
following parameters plus any others that apply to your database environment.

Using Oracle GoldenGate to maintain a live standby database
Creating a live standby configuration

69Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

-- Identify the Extract group:

EXTRACT <ext_1>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_1>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the local trail that this Extract writes to:

EXTTRAIL <local_trail_1>

-- Specify sequences to be captured:

SEQUENCE <owner.sequence>;

-- Specify tables to be captured:

TABLE <owner>.*;

-- Exclude specific tables from capture if needed:

TABLEEXCLUDE <owner.table>

To configure the data pump

Perform these steps on the active source.

1. Use the ADD EXTRACT command to create a data pump group. For documentation
purposes, this group is called pump_1.

ADD EXTRACT <pump_1>, EXTTRAILSOURCE <local_trail_1>, BEGIN <time>

❍ For EXTTRAILSOURCE, specify local_trail_1 as the data source.

2. Use the ADD RMTTRAIL command to specify a remote trail that will be created on the
standby system.

ADD RMTTRAIL <remote_trail_1>, EXTRACT <pump_1>

❍ For EXTRACT, specify the pump_1 data pump to write to this trail.

3. Use the EDIT PARAMS command to create a parameter file for the pump_1 group. Include
the following parameters plus any others that apply to your database environment.

-- Identify the data pump group:

EXTRACT <pump_1>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_1>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the name or IP address of the standby system:

RMTHOST <system_2>, MGRPORT <portnumber>

-- Specify the remote trail on the standby system:

RMTTRAIL <remote_trail_1>

-- Pass data through without mapping, filtering, conversion:

PASSTHRU

-- Specify sequences to be captured:

SEQUENCE <owner.sequence>;

-- Specify tables to be captured:

TABLE <owner>.*;

-- Exclude specific tables from capture if needed:

TABLEEXCLUDE <owner.table>

NOTE PASSTHRU mode is assumed because source and target data structures are usually
identical in a live standby configuration. In this mode, no column mapping, filtering,
SQLEXEC functions, transformation, or other data manipulation can be performed.

Using Oracle GoldenGate to maintain a live standby database
Creating a live standby configuration

70Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

To configure the Replicat group

Perform these steps on the live standby system.

1. Create a Replicat checkpoint table. For instructions, see “Creating a checkpoint table”
on page 121.

2. Use the ADD REPLICAT command to create a Replicat group. For documentation purposes,
this group is called rep_1.

ADD REPLICAT <rep_1>, EXTTRAIL <remote_trail_1>, BEGIN <time>

❍ For EXTTRAIL, specify remote_trail_1 as the trail that this Replicat reads.

3. Use the EDIT PARAMS command to create a parameter file for the rep_1 group. Include the
following parameters plus any others that apply to your database environment.

-- Identify the Replicat group:

REPLICAT <rep_1>

-- State that source and target definitions are identical:

ASSUMETARGETDEFS

-- Specify database login information as needed for the database:

[TARGETDB <dsn_2>,] [USERID <user id>[, PASSWORD <pw>]]

-- Specify error handling rules:

REPERROR (<error>, <response>)

-- Specify tables for delivery:

MAP <owner>.*, TARGET <owner>.*;

-- Exclude specific tables from delivery if needed:

MAPEXCLUDE <owner.table>

Configuration from standby to active source

NOTE This is a reverse image of the configuration that you just created.

To configure the primary Extract group

Perform these steps on the live standby system.

1. Use the ADD EXTRACT command to create an Extract group. For documentation purposes,
this group is called ext_2.

ADD EXTRACT <ext_2>, TRANLOG, BEGIN <time> [, THREADS <n>]

❍ Use TRANLOG as the data source.

❍ For DB2 on Z/OS, specify the bootstrap data set (BSDS) name after TRANLOG.

2. Use the ADD EXTTRAIL command to add a local trail. For documentation purposes, this
trail is called local_trail_2.

ADD EXTTRAIL <local_trail_2>, EXTRACT <ext_2>

❍ For EXTRACT, specify the ext_2 group to write to this trail.

Using Oracle GoldenGate to maintain a live standby database
Creating a live standby configuration

71Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

3. Use the EDIT PARAMS command to create a parameter file for the ext_2 group. Include the
following parameters plus any others that apply to your database environment.

-- Identify the Extract group:

EXTRACT <ext_2>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_2>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the local trail that this Extract writes to:

EXTTRAIL <local_trail_2>

-- Specify sequences to be captured:

SEQUENCE <owner.sequence>;

-- Specify tables to be captured:

TABLE <owner>.*;

-- Exclude specific tables from capture if needed:

TABLEEXCLUDE <owner.table>

To configure the data pump

Perform these steps on the live standby system.

1. Use the ADD EXTRACT command to create a data pump group. For documentation
purposes, this group is called pump_2.

ADD EXTRACT <pump_2>, EXTTRAILSOURCE <local_trail_2>, BEGIN <time>

❍ For EXTTRAILSOURCE, specify local_trail_2 as the data source.

2. Use the ADD RMTTRAIL command to add a remote trail that will be created on the active
source system.

ADD RMTTRAIL <remote_trail_2>, EXTRACT <pump_2>

❍ For EXTRACT, specify the pump_2 data pump to write to this trail.

3. Use the EDIT PARAMS command to create a parameter file for the pump_2 group. Include
the following parameters plus any others that apply to your database environment.

-- Identify the data pump group:

EXTRACT <pump_2>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_2>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the name or IP address of the active source system:

RMTHOST <system_1>, MGRPORT <portnumber>

-- Specify the remote trail on the active source system:

RMTTRAIL <remote_trail_2>

-- Pass data through without mapping, filtering, conversion:

PASSTHRU

-- Specify sequences to be captured:

SEQUENCE <owner.sequence>;

-- Specify tables to be captured:

TABLE <owner>.*;

-- Exclude specific tables from capture if needed:

TABLEEXCLUDE <owner.table>

Using Oracle GoldenGate to maintain a live standby database
Moving user activity in a planned switchover

72Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

To configure the Replicat group

Perform these steps on the active source.

1. Use the ADD REPLICAT command to create a Replicat group. For documentation purposes,
this group is called rep_2.

ADD REPLICAT <rep_2>, EXTTRAIL <remote_trail_2>, BEGIN <time>

❍ For EXTTRAIL, specify remote_trail_2 as the trail that this Replicat reads.

2. Use the EDIT PARAMS command to create a parameter file for the rep_2 group. Include the
following parameters plus any others that apply to your database environment.

-- Identify the Replicat group:

REPLICAT <rep_2>

-- State that source and target definitions are identical:

ASSUMETARGETDEFS

-- Specify database login information as needed for the database:

[TARGETDB <dsn_1>,] [USERID <user id>[, PASSWORD <pw>]]

-- Handle collisions between failback data copy and replication:

HANDLECOLLISIONS

-- Specify error handling rules:

REPERROR (<error>, <response>)

-- Specify tables for delivery:

MAP <owner>.*, TARGET <owner>.*;

-- Exclude specific tables from delivery if needed:

MAPEXCLUDE <owner.table>

Moving user activity in a planned switchover

This procedure moves user application activity from a primary database to a live standby
system in a planned, graceful manner so that system maintenance and other procedures
that do not affect the databases can be performed on the primary system.

Moving user activity to the live standby

1. (Optional) If you need to perform system maintenance on the secondary system, you
can do so now or at the specified time later in these procedures, after moving users from
the secondary system back to the primary system. In either case, be aware of the
following risks if you must shut down the secondary system for any length of time:

❍ The local trail on the primary system could run out of disk space as data
accumulates while the standby is offline. This will cause the primary Extract to
abend.

❍ If the primary system fails while the standby is offline, the data changes will not
be available to be applied to the live standby when it is functional again, thereby
breaking the synchronized state and requiring a full re-instantiation of the live
standby.

2. On the primary system, stop the user applications, but leave the primary Extract and
the data pump on that system running so that they capture any backlogged transaction
data.

Using Oracle GoldenGate to maintain a live standby database
Moving user activity in a planned switchover

73Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

3. On the primary system, issue the following command for the primary Extract until it
returns “At EOF, no more records to process.” This indicates that all transactions are now
captured.

LAG EXTRACT <ext_1>

4. On the primary system, stop the primary Extract process

LAG EXTRACT <ext_1>

5. On the primary system, issue the following command for the data pump until it returns
“At EOF, no more records to process.” This indicates that the pump sent all of the captured
data to the live standby.

LAG EXTRACT <pump_1>

6. On the primary system, stop the data pump.

STOP EXTRACT <pump_1>

7. On the live standby system, issue the STATUS REPLICAT command until it returns “At EOF (end
of file).” This confirms that Replicat applied all of the data from the trail to the database.

STATUS REPLICAT <rep_1>

8. On the live standby system, stop Replicat.

STOP REPLICAT <rep_1>

9. On the live standby system, do the following:

❍ Run the script that grants insert, update, and delete permissions to the users of the
business applications.

❍ Run the script that enables triggers and cascade delete constraints.

❍ Run the scripts that switch over the application server, start applications, and copy
essential files that are not part of the replication environment.

10. On the live standby system, alter the primary Extract to begin capturing data based on
the current timestamp. Otherwise, Extract will spend unnecessary time looking for
operations that date back to the time that the group was created with the ADD EXTRACT
command.

ALTER EXTRACT <ext_2>, BEGIN NOW

11. On the live standby system, start the primary Extract so that it is ready to capture
transactional changes.

START EXTRACT <ext_2>

NOTE Do not start the data pump on the live standby system, and do not start the Replicat
on the primary system. Data must be stored in the local trail on the live standby
until the primary database is ready for user activity again.

12. Switch user activity to the live standby system.

13. On the primary system, perform the system maintenance.

Using Oracle GoldenGate to maintain a live standby database
Moving user activity in a planned switchover

74Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Moving user activity back to the primary system

1. On the live standby system, stop the user applications, but leave the primary Extract
running so that it captures any backlogged transaction data.

2. On the primary system, start Replicat in preparation to receive changes from the live
standby system.

START REPLICAT <rep_2>

3. On the live standby system, start the data pump to begin moving the data that is stored
in the local trail across TCP/IP to the primary system.

START EXTRACT <pump_2>

4. On the live standby system, issue the following command for the primary Extract until
it returns “At EOF, no more records to process.” This indicates that all transactions are now
captured.

LAG EXTRACT <ext_2>

5. On the live standby system, stop the primary Extract.

STOP EXTRACT <ext_2>

6. On the live standby system, issue the following command for the data pump until it
returns “At EOF, no more records to process.” This indicates that the pump sent all of the
captured data to the primary system.

LAG EXTRACT <pump_2>

7. On the live standby system, stop the data pump.

STOP EXTRACT <pump_2>

8. On the primary system, issue the STATUS REPLICAT command until it returns “At EOF (end of
file).” This confirms that Replicat applied all of the data from the trail to the database.

STATUS REPLICAT <rep_2>

9. On the primary system, stop Replicat.

STOP REPLICAT <rep_2>

10. On the primary system, do the following:

❍ Run the script that grants insert, update, and delete permissions to the users of the
business applications.

❍ Run the script that enables triggers and cascade delete constraints.

❍ Run the scripts that switch over the application server, start applications, and copy
essential files that are not part of the replication environment.

11. On the primary system, alter the primary Extract to begin capturing data based on the
current timestamp. Otherwise, Extract will spend unnecessary time looking for
operations that were already captured and replicated while users were working on the
standby system.

ALTER EXTRACT <ext_1>, BEGIN NOW

Using Oracle GoldenGate to maintain a live standby database
Moving user activity in an unplanned failover

75Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

12. On the primary system, start the primary Extract so that it is ready to capture
transactional changes.

START EXTRACT <ext_1>

13. Switch user activity to the primary system.

14. (Optional) If system maintenance must be done on the live standby system, you can do it
now, before starting the data pump on the primary system. Note that captured data
will be accumulating on the primary system while the standby is offline.

15. On the primary system, start the data pump.

START EXTRACT <pump_1>

16. On the live standby system, start Replicat.

START REPLICAT <rep_1>

Moving user activity in an unplanned failover

Moving user activity to the live standby

This procedure does the following:

● Prepares the live standby for user activity.

● Ensures that all transactions from the primary system are applied to the live standby.

● Activates Oracle GoldenGate to capture transactional changes on the live standby.

● Moves users to the live standby system.

To move users to the live standby

Perform these steps on the live standby system

1. Issue the STATUS REPLICAT command until it returns “At EOF (end of file)” to confirm that
Replicat applied all of the data from the trail to the database.

STATUS REPLICAT <rep_1>

2. Stop the Replicat process.

STOP REPLICAT <rep_1>

3. Run the script that grants insert, update, and delete permissions to the users of the
business applications.

4. Run the script that enables triggers and cascade delete constraints.

5. Run the scripts that fail over the application server, start applications, and copy
essential files that are not part of the replication environment.

6. Start the primary Extract process on the live standby.

START EXTRACT <ext_2>

7. Move the users to the standby system and let them start working.

Using Oracle GoldenGate to maintain a live standby database
Moving user activity in an unplanned failover

76Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

NOTE Do not start the data pump group on the standby. The user transactions must
accumulate there until just before user activity is moved back to the primary
system.

Moving user activity back to the primary system

This procedure does the following:

● Recovers the Oracle GoldenGate environment.

● Makes a copy of the live standby data to the restored primary system.

● Propagates user transactions that occurred while the copy was being made.

● Reconciles the results of the copy with the propagated changes.

● Moves users from the standby system to the restored primary system.

● Prepares replication to maintain the live standby again.

Perform these steps after the recovery of the primary system is complete.

To recover the source Oracle GoldenGate environment

1. On the primary system, recover the Oracle GoldenGate directory from your backups.

2. On the primary system, run GGSCI.

3. On the primary system, delete the primary Extract group.

DELETE EXTRACT <ext_1>

4. On the primary system, delete the local trail.

DELETE EXTTRAIL <local_trail_1>

5. On the primary system, add the primary Extract group again, using the same name so
that it matches the parameter file that you restored from backup. For documentation
purposes, this group is called ext_1. This step initializes the Extract checkpoint from
its state before the failure to a clean state.

ADD EXTRACT <ext_1>, TRANLOG, BEGIN <time> [, THREADS <n>]

❍ Use TRANLOG as the data source for all databases.

❍ For DB2 on Z/OS, specify the bootstrap data set (BSDS) name after TRANLOG.

6. On the primary system, add the local trail again, using the same name as before. For
documentation purposes, this trail is called local_trail_1.

ADD EXTTRAIL <local_trail_1>, EXTRACT <ext_1>

❍ For EXTRACT, specify the ext_1 group to write to this trail.

7. On the primary system, start the Manager process.

START MANAGER

To copy the database from standby to primary system

1. On the primary system, run scripts to disable triggers and cascade delete constraints.

2. On the standby system, start making a hot copy of the database.

Using Oracle GoldenGate to maintain a live standby database
Moving user activity in an unplanned failover

77Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

3. On the standby system, record the time at which the copy finishes.

4. On the standby system, stop user access to the applications. Allow all open transactions
to be completed.

To propagate data changes made during the copy

1. On the primary system, start Replicat.

START REPLICAT <rep_2>

2. On the live standby system, start the data pump. This begins transmission of the
accumulated user transactions from the standby to the trail on the primary system.

START EXTRACT <pump_2>

3. On the primary system, issue the INFO REPLICAT command until you see that it posted all
of the data changes that users generated on the standby system during the initial load.
Refer to the time that you recorded previously. For example, if the copy stopped at
12:05, make sure that change replication has posted data up to that point.

INFO REPLICAT <rep_2>

4. On the primary system, issue the following command to turn off the HANDLECOLLISIONS
parameter and disable the initial-load error handling.

SEND REPLICAT <rep_2>, NOHANDLECOLLISIONS

5. On the primary system, issue the STATUS REPLICAT command until it returns “At EOF (end of
file)” to confirm that Replicat applied all of the data from the trail to the database.

STATUS REPLICAT <rep_2>

6. On the live standby system, stop the data pump. This stops transmission of any user
transactions from the standby to the trail on the primary system.

STOP EXTRACT <pump_2>

7. On the primary system, stop the Replicat process.

STOP REPLICAT <rep_2>

At this point in time, the primary and standby databases should be in a state of
synchronization again.

(Optional) To verify synchronization

1. Use a compare tool, such as Oracle GoldenGate Veridata, to compare the source and
standby databases for parity.

2. Use a repair tool, such as Oracle GoldenGate Veridata, to repair any out-of-sync
conditions.

To switch users to the primary system

1. On the primary system, run the script that grants insert, update, and delete permissions
to the users of the business applications.

2. On the primary system, run the script that enables triggers and cascade delete
constraints.

Using Oracle GoldenGate to maintain a live standby database
Moving user activity in an unplanned failover

78Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

3. On the primary system, run the scripts that fail over the application server, start
applications, and copy essential files that are not part of the replication environment.

4. On the primary system, start the primary Extract process.

START EXTRACT <ext_1>

5. On the primary system, allow users to access the applications.

79Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHAPTER 8

Using Oracle GoldenGate for active-active high
availability
.

Overview of an active-active configuration

Oracle GoldenGate supports an active-active bi-directional configuration, where there are two
systems with identical sets of data that can be changed by application users on either
system. Oracle GoldenGate replicates transactional data changes from each database to
the other to keep both sets of data current.

In a bi-directional configuration, there is a complete set of active Oracle GoldenGate
processes on each system. Data captured by an Extract process on one system is propagated
to the other system, where it is applied by a local Replicat process.

This configuration supports load sharing. It can be used for disaster tolerance if the
business applications are identical on any two peers. Bidirectional synchronization is
supported for all database types that are supported by Oracle GoldenGate.

Considerations for an active-active configuration

Supported databases

Oracle GoldenGate supports active-active configurations for:

● c-tree

● DB2 on z/OS and LUW

● MySQL

● Oracle

● SQL/MX

● SQL Server

● Sybase

● Teradata

Using Oracle GoldenGate for active-active high availability
Considerations for an active-active configuration

80Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Database-specific exclusions

Review the Oracle GoldenGate installation guide for your type of database to see if there
are any limitations of support for a bi-directional configuration.

TRUNCATES

Bi-directional replication of TRUNCATES is not supported, but you can configure these
operations to be replicated in one direction, while data is replicated in both directions. To
replicate TRUNCATES (if supported by Oracle GoldenGate for the database) in an active-active
configuration, the TRUNCATES must originate only from one database, and only from the
same database each time.

Configure the environment as follows:

● Configure all database roles so that they cannot execute TRUNCATE from any database
other than the one that is designated for this purpose.

● On the system where TRUNCATE will be permitted, configure the Extract and Replicat
parameter files to contain the GETTRUNCATES parameter.

● On the other system, configure the Extract and Replicat parameter files to contain the
IGNORETRUNCATES parameter. No TRUNCATES should be performed on this system by
applications that are part of the Oracle GoldenGate configuration.

DDL

Oracle GoldenGate supports DDL replication in an Oracle active-active configuration. See
Chapter 14 on page 141 for configuration information.

Number of databases

The most common peer-to-peer solution to improve scalability and disaster tolerance uses
two identical databases. Any more than that, and resynchronization without downtime
becomes extremely complex, and it makes the conflict-resolution routines more complex to
design and manage.

Database configuration

One of the databases must be designated as the trusted source. This is the primary
database and its host system from which the other database is derived in the initial
synchronization phase and in any subsequent resynchronizations that become necessary.
Maintain frequent backups of the trusted source data.

Application design

Active-active replication is not recommended for use with commercially available packaged
business applications, unless the application is designed to support it. Among the obstacles
that these applications present are:

● Packaged applications might contain objects and data types that are not supported by
Oracle GoldenGate.

● They might perform automatic DML operations that you cannot control, but which will
be replicated by Oracle GoldenGate and cause conflicts when applied by Replicat.

● You probably cannot control the data structures to make modifications that are
required for active-active replication.

Using Oracle GoldenGate for active-active high availability
Considerations for an active-active configuration

81Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Keys

For accurate detection of conflicts, all records must have a unique, not-null identifier. If
possible, create a primary key. If that is not possible, use a unique key or create a
substitute key with a KEYCOLS option of the MAP and TABLE parameters. In the absence of a
unique identifier, Oracle GoldenGate uses all of the columns that are valid in a WHERE
clause, but this will degrade performance if the table contains numerous columns. For
more information about keys, see the Oracle GoldenGate installation guide for your
database.

To maintain data integrity and prevent errors, the key that you use for any given table
must;

● contain the same columns in all of the databases where that table resides.

● contain the same values in each set of corresponding rows across the databases.

Triggers and cascaded deletes

Triggers and ON DELETE CASCADE constraints generate DML operations that can be replicated
by Oracle GoldenGate. To prevent the local DML from conflicting with the replicated DML
from these operations, do the following:

● Modify triggers to ignore DML operations that are applied by Replicat. For certain
Oracle database versions, you can use the DBOPTIONS parameter with the
SUPPRESSTRIGGERS option to disable the triggers for the Replicat session. See the Oracle
GoldenGate Windows and UNIX Reference Guide for important details.

● Disable ON DELETE CASCADE constraints and use a trigger on the parent table to perform
the required delete(s) to the child tables. Create it as a BEFORE trigger so that the child
tables are deleted before the delete operation is performed on the parent table. This
reverses the logical order of a cascaded delete but is necessary so that the operations
are replicated in the correct order to prevent “table not found” errors on the target.

NOTE IDENTITY columns cannot be used with bidirectional configurations for Sybase. See
other IDENTITY limitations for SQL Server in the Oracle GoldenGate installation
guide for that database.

Database-generated values

Do not replicate database-generated sequential values in a bi-directional configuration.
The range of values must be different on each system, with no chance of overlap. For
example, in a two-database environment, you can have one server generate even values,
and the other odd. For an n-server environment, start each key at a different value and
increment the values by the number of servers in the environment. This method may not
be available to all types of applications or databases. If the application permits, you can
add a location identifier to the value to enforce uniqueness.

Data volume

The standard configuration is sufficient if:

● The transaction load is consistent and of moderate volume that is spread out more or
less evenly among all of the objects to be replicated.

and...

Using Oracle GoldenGate for active-active high availability
Preventing data looping

82Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

● There are none of the following: tables that are subject to long-running transactions,
tables that have a very large number of columns that change, or tables that contain
columns for which Oracle GoldenGate must fetch from the database (generally
columns with LOBs, columns that are affected by SQL procedures executed by Oracle
GoldenGate, and columns that are not logged to the transaction log).

If your environment does not satisfy those conditions, consider adding one or more sets of
parallel processes. For more information, see the Oracle GoldenGate Windows and UNIX
Troubleshooting and Tuning Guide.

Conflict resolution

Uniform conflict-resolution procedures must be in place on both systems to handle
collisions that occur when modifications are made to identical sets of data on separate
systems at (or almost at) the same time. In an active-active environment, conflicts should
be identified immediately and handled with as much automation as possible; however,
different business applications will present their own unique set of requirements in this
area. See “Managing conflicts” on page 91.

Additional information

● For detailed instructions on configuring Oracle GoldenGate change capture and
delivery groups, see “Configuring online change synchronization” on page 120.

● For additional information about additional requirements for Teradata Extract
configurations, see the Oracle GoldenGate Teradata Installation and Setup Guide.

● For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see the Oracle GoldenGate Windows and UNIX Reference Guide.

● For more information about tuning this configuration, see the Oracle GoldenGate
Windows and UNIX Troubleshooting and Tuning Guide.

Preventing data looping

In a bidirectional configuration, SQL changes that are replicated from one system to
another must be prevented from being replicated back to the first system. Otherwise, it
moves back and forth in an endless loop, as in this example:

1. A user application updates a row on system A.

2. Extract extracts the row on system A and sends it to system B.

3. Replicat updates the row on system B.

4. Extract extracts the row on system B and sends it back to system A.

5. The row is applied on system A (for the second time).

6. This loop continues endlessly.

To prevent data loopback, you may need to provide instructions that:

● prevent the capture of SQL operations that are generated by Replicat, but enable the
capture of SQL operations that are generated by business applications if they contain
objects that are specified in the Extract parameter file.

● identify local Replicat transactions, in order for the Extract process to ignore them.

Using Oracle GoldenGate for active-active high availability
Preventing data looping

83Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Preventing the capture of Replicat operations

Depending on which database you are using, you may or may not need to provide explicit
instructions to prevent the capture of Replicat operations.

Preventing capture of Replicat transactions (Teradata)

To prevent the capture of SQL that is applied by Replicat to a Teradata database, set the
Replicat session to override Teradata replication. Use the following SQLEXEC statements at
the root level of the Replicat parameter file:

SQLEXEC "SET SESSION OVERRIDE REPLICATION ON;"

SQLEXEC "COMMIT;"

These SQLEXEC statements execute a procedure that sets the Replicat session automatically
at startup.

Preventing capture of Replicat transactions (other databases)

By default, Extract ignores SQL operations that are generated by Replicat if the database
is anything other than Teradata. The parameters that control this functionality are:

● GETAPPLOPS | IGNOREAPPLOPS: Controls whether or not data operations (DML) produced by
business applications except Replicat are included in the content that Extract writes to
a specific trail or file.

● GETREPLICATES | IGNOREREPLICATES: Controls whether or not DML operations produced by
Replicat are included in the content that Extract writes to a specific trail or file.

Before starting the Extract process, make certain that these parameters are either absent
or set to GETAPPLOPS and IGNOREREPLICATES.

Identifying Replicat transactions

DB2 on z/OS and LUW

Identify the Replicat user name by using the following parameter statement in the Extract
parameter file.

TRANLOGOPTIONS EXCLUDEUSER <user name>

This parameter statement marks all data transactions that are generated by this user as
Replicat transactions. The user name is included in the transaction record that is read by
Extract.

MySQL and NonStop SQL/MX

Identify the name of the Replicat checkpoint table by using the following parameter
statement in the Extract parameter file.

TRANLOGOPTIONS FILTERTABLE <table_name>

Replicat writes a checkpoint to the checkpoint table at the end of each of its transactions
as part of its checkpoint procedure. (This is the table that is created with the ADD
CHECKPOINTTABLE command.) Because every Replicat transaction includes a write to this
table, it can be used to identify Replicat transactions in a bi-directional configuration.

Using Oracle GoldenGate for active-active high availability
Preventing data looping

84Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

FILTERTABLE identifies the name of the checkpoint table, so that Extract ignores transactions
that contain any operations on it.

NOTE PURGEDATA is not supported for NonStop SQL/MX in a bidirectional configuration.
Because PURGEDATA/TRUNCATE operations are DDL, they are implicit transactions,
so Oracle GoldenGate cannot update the checkpoint table within that transaction.

SQL Server

Identify the Replicat transaction name by using the following parameter statement in the
Extract parameter file.

TRANLOGOPTIONS EXCLUDETRANS <transaction name>

This parameter statement is only required if the Replicat transaction name is set to
something other than the default of ggs_repl.

Sybase

Do any of the following:

● Identify a Replicat transaction name by using the following parameter statement in
the Extract parameter file.
TRANLOGOPTIONS EXCLUDETRANS <transaction name>

● Identify the Replicat user name by using the following parameter statement in the
Extract parameter file.
TRANLOGOPTIONS EXCLUDEUSER <user name>

EXCLUDEUSER marks all transactions generated by this user as Replicat transactions.
The user name is included in the transaction record that is read by Extract.

● Do nothing and allow Replicat to use the default transaction name of ggs_repl.

Teradata

You do not need to identify Replicat transactions that are applied to a Teradata database.

c-tree

Extract automatically identifies Replicat transactions that are applied to a c-tree database.

Oracle

(Oracle 10g and later) Do either of the following to specify the Replicat database user.
All transactions generated by this user will be excluded from being captured. This
information is available to Extract in the transaction record.

● Identify the Replicat database user by name with the following parameter statement
in the Extract parameter file.
TRANLOGOPTIONS EXCLUDEUSER <user name>

● Identify the Replicat database user by its numeric Oracle user-id (uid) with the
following parameter statement in the Extract parameter file.
TRANLOGOPTIONS EXCLUDEUSERID <user-id>

(Oracle 9i and earlier) Create a trace table with the ADD TRACETABLE command in GGSCI.

Using Oracle GoldenGate for active-active high availability
Creating an active-active configuration

85Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

To create an Oracle trace table

Perform the following steps on each source database.

1. Run GGSCI.

2. In GGSCI, issue the following command to log into the database.

DBLOGIN USERID <user>, PASSWORD <password>

❍ <user> is the database user that is assigned to the Extract process as listed in the
USERID parameter, and <password> is that user’s password. The table must be created
in the schema that belongs to this user.

3. In GGSCI, issue the following command to create the trace table.

ADD TRACETABLE [<owner>.<table name>]

❍ <owner>.<table name> is required only if using a name other than the default of
GGS_TRACE. The owner must be the database user that is assigned to the Extract
process as listed in the USERID parameter. Whenever possible, use the default name.

To associate the Oracle trace table with Extract and Replicat processes

If you created an Oracle trace table with a name other than GGS_TRACE, include the
following parameter statement in the Extract and Replicat parameter files, preceding any
TABLE or MAP parameters.

TRACETABLE [<owner>.<table name>]

Where: <owner>.<table name> is required only if using a name other than the default
of GGS_TRACE. The owner must be the Extract user that is specified with the
USERID parameter. Whenever possible, use the default name.

What the Oracle trace table does

If used, TRACETABLE must appear in both the Extract and Replicat parameter files.

● In the Replicat parameter file, TRACETABLE causes Replicat to write an operation to the
trace table at the beginning of each transaction.

● In the Extract parameter file, TRACETABLE causes Extract to identify as a Replicat
transaction any transaction that begins with an operation on the trace table.

NOTE Although not recommended, if a trace table and EXCLUDEUSER or
EXCLUDEUSERID are both used for the same Extract configuration, they will both
function correctly. Whatever transactions are specified for each one will be
processed according to the rules of GETREPLICATES or IGNOREREPLICATES.

Creating an active-active configuration

Refer to Figure 15 for a visual representation of the objects you will be creating.

NOTE To avoid conflicts, replication latency must be kept as low as possible. If this
configuration does not provide acceptable latency levels, try adding parallel
processes to it. See “Adding process groups” on page 304 for more information.

Using Oracle GoldenGate for active-active high availability
Creating an active-active configuration

86Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Prerequisites on both systems

1. Create a Replicat checkpoint table. For instructions, see “Creating a checkpoint table”
on page 121.

2. Configure the Manager process according to the instructions in Chapter 2.

Configuration from primary system to secondary system

To configure the primary Extract group

Perform these steps on the primary system.

1. Use the ADD EXTRACT command to create a primary Extract group. For documentation
purposes, this group is called ext_1.

ADD EXTRACT <ext_1>, TRANLOG, BEGIN <time> [, THREADS <n>]

❍ Use TRANLOG as the data source.

❍ For DB2 on Z/OS, specify the bootstrap data set (BSDS) name after TRANLOG.

2. Use the ADD EXTTRAIL command to add a local trail. For documentation purposes, this
trail is called local_trail_1.

ADD EXTTRAIL <local_trail_1>, EXTRACT <ext_1>

❍ For EXTRACT, specify the ext_1 group to write to this trail.

3. Use the EDIT PARAMS command to create a parameter file for the ext_1 group. Include the
following parameters plus any others that apply to your database environment.

-- Identify the Extract group:

EXTRACT <ext_1>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_1>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the local trail that this Extract writes to:

EXTTRAIL <local_trail_1>

--

-- Exclude Replicat transactions. Uncomment ONE of the following:

-- DB2 z/OS and LUW, and Sybase:

Figure 15 Oracle GoldenGate configuration elements for active-active synchronization

Using Oracle GoldenGate for active-active high availability
Creating an active-active configuration

87Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

-- TRANLOGOPTIONS EXCLUDEUSER <Replicat_user>

-- SQL Server and Sybase:

-- TRANLOGOPTIONS EXCLUDETRANS <transaction_name>

-- SQL/MX:

-- TRANLOGOPTIONS FILTERTABLE <checkpoint_table_name>

-- Teradata:

-- SQLEXEC “SET SESSION OVERRIDE REPLICATION ON;”

-- SQLEXEC “COMMIT;”

-- Oracle:

-- TRACETABLE <trace_table_name>

--

-- Specify API commands if Teradata:

VAM <library name>, PARAMS (“<param>” [, “<param>”] [, ...])

-- Capture before images for conflict resolution:

GETUPDATEBEFORES

-- Specify tables to be captured and (optional) columns to fetch:

TABLE <owner>.* [, FETCHCOLS <cols> | FETCHCOLSEXCEPT <cols>];

-- Exclude specific tables from capture if needed:

TABLEEXCLUDE <owner.table>

To configure the data pump

Perform these steps on the primary system.

1. Use the ADD EXTRACT command to create a data pump group. For documentation
purposes, this group is called pump_1.

ADD EXTRACT <pump_1>, EXTTRAILSOURCE <local_trail_1>, BEGIN <time>

❍ For EXTTRAILSOURCE, specify local_trail_1 as the data source.

2. Use the ADD RMTTRAIL command to add a remote trail that will be created on the
secondary system. For documentation purposes, this trail is called remote_trail_1.

ADD RMTTRAIL <remote_trail_1>, EXTRACT <pump_1>

❍ For EXTRACT, specify the pump_1 data pump to write to this trail.

3. Use the EDIT PARAMS command to create a parameter file for the pump_1 group. Include
the following parameters plus any others that apply to your database environment.

-- Identify the data pump group:

EXTRACT <pump_1>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_1>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the name or IP address of the secondary system:

RMTHOST <system_2>, MGRPORT <portnumber>

-- Specify the remote trail on the secondary system:

RMTTRAIL <remote_trail_1>

-- Pass data through without mapping, filtering, conversion:

PASSTHRU

-- Specify tables to be captured:

TABLE <owner>.*;

-- Exclude specific tables from capture if needed:

TABLEEXCLUDE <owner.table>

Using Oracle GoldenGate for active-active high availability
Creating an active-active configuration

88Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

NOTE Because data structures are usually identical in a bi-directional configuration,
PASSTHRU mode improves performance.

To configure the Replicat group

Perform these steps on the secondary system.

1. Use the ADD REPLICAT command to create a Replicat group. For documentation purposes,
this group is called rep_1.

ADD REPLICAT <rep_1>, EXTTRAIL <remote_trail_1>, BEGIN <time>

❍ For EXTTRAIL, specify remote_trail_1 as the trail that this Replicat reads.

2. Use the EDIT PARAMS command to create a parameter file for the rep_1 group. Include the
following parameters plus any others that apply to your database environment.

-- Identify the Replicat group:

REPLICAT <rep_1>

-- State that source and target definitions are identical:

ASSUMETARGETDEFS

-- Specify database login information as needed for the database:

[TARGETDB <dsn_2>,] [USERID <user id>[, PASSWORD <pw>]]

-- Specify error handling rules:

REPERROR (<error>, <response>)

-- Specify tables for delivery and call conflict-resolution routines:

MAP <owner>.*, TARGET <owner>.*, SQLEXEC (<SQL specification>);

-- Exclude specific tables from delivery if needed:

MAPEXCLUDE <owner.table>

-- Specify mapping of exceptions to exceptions table:

MAP <owner>.*, TARGET <owner>.<exceptions>, EXCEPTIONSONLY;

Configuration from secondary system to primary system

NOTE This is a reverse image of the configuration that you just created.

To configure the primary Extract group

Perform these steps on the secondary system.

1. Use the ADD EXTRACT command to create a primary Extract group. For documentation
purposes, this group is called ext_2.

ADD EXTRACT <ext_2>, TRANLOG, BEGIN <time> [, THREADS <n>]

❍ Use TRANLOG as the data source.

❍ For DB2 on Z/OS, specify the bootstrap data set (BSDS) name after TRANLOG.

2. Use the ADD EXTTRAIL command to add a local trail. For documentation purposes, this
trail is called local_trail_2.

ADD EXTTRAIL <local_trail_2>, EXTRACT <ext_2>

❍ For EXTRACT, specify the ext_2 group to write to this trail.

Using Oracle GoldenGate for active-active high availability
Creating an active-active configuration

89Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

3. Use the EDIT PARAMS command to create a parameter file for the ext_2 group. Include the
following parameters plus any others that apply to your database environment.

-- Identify the Extract group:

EXTRACT <ext_2>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_2>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the local trail that this Extract writes to:

EXTTRAIL <local_trail_2>

--

-- Exclude Replicat transactions. Uncomment ONE of the following:

-- DB2 z/OS and LUW, and Sybase:

-- TRANLOGOPTIONS EXCLUDEUSER <Replicat_user>

-- SQL Server and Sybase:

-- TRANLOGOPTIONS EXCLUDETRANS <transaction_name>

-- SQL/MX:

-- TRANLOGOPTIONS FILTERTABLE <checkpoint_table_name>

-- Teradata:

-- SQLEXEC “SET SESSION OVERRIDE REPLICATION ON;”

-- SQLEXEC “COMMIT;”

-- Oracle:

-- TRACETABLE <trace_table_name>

--

-- Capture before images for conflict resolution:

GETUPDATEBEFORES

-- Specify tables to be captured and (optional) columns to fetch:

TABLE <owner>.* [, FETCHCOLS <cols> | FETCHCOLSEXCEPT <cols>];

-- Exclude specific tables from capture if needed:

TABLEEXCLUDE <owner.table>

NOTE To capture Oracle DBFS data, specify the internally generated local read-write
DBFS tables in the TABLE statement on each node. For more information on
identifying these tables and configuring DBFS for propagation by Oracle
GoldenGate, see the Oracle GoldenGate Oracle Installation and Setup Guide.

To configure the data pump

Perform these steps on the secondary system.

1. Use the ADD EXTRACT command to create a data pump group. For documentation
purposes, this group is called pump_2.

ADD EXTRACT <pump_2>, EXTTRAILSOURCE <local_trail_2>, BEGIN <time>

❍ For EXTTRAILSOURCE, specify local_trail_2 as the data source.

2. Use the ADD RMTTRAIL command to add a remote trail that will be created on the primary
system. For documentation purposes, this trail is called remote_trail_2.

ADD RMTTRAIL <remote_trail_2>, EXTRACT <pump_2>

❍ For EXTRACT, specify the pump_2 data pump to write to this trail.

Using Oracle GoldenGate for active-active high availability
Creating an active-active configuration

90Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

3. Use the EDIT PARAMS command to create a parameter file for the pump_2 group. Include
the following parameters plus any others that apply to your database environment.

-- Identify the data pump group:

EXTRACT <pump_2>

-- Specify database login information as needed for the database:

[SOURCEDB <dsn_2>,][USERID <user>[, PASSWORD <pw>]]

-- Specify the name or IP address of the primary system:

RMTHOST <system_1>, MGRPORT <portnumber>

-- Specify the remote trail on the primary system:

RMTTRAIL <remote_trail_2>

-- Pass data through without mapping, filtering, conversion:

PASSTHRU

-- Specify tables to be captured:

TABLE <owner>.*;

-- Exclude specific tables from capture if needed:

TABLEEXCLUDE <owner.table>

NOTE To propagate Oracle DBFS data, specify the internally generated local read-write
DBFS tables in the TABLE statement on each node. For more information on
configuring DBFS for propagation by Oracle GoldenGate, see the Oracle
GoldenGate Oracle Installation and Setup Guide.

To configure the Replicat group

Perform these steps on the primary system.

1. Use the ADD REPLICAT command to create a Replicat group. For documentation purposes,
this group is called rep_2.

ADD REPLICAT <rep_2>, EXTTRAIL <remote_trail_2>, BEGIN <time>

❍ For EXTTRAIL, specify remote_trail_2 as the trail that this Replicat reads.

2. Use the EDIT PARAMS command to create a parameter file for the rep_2 group. Include the
following parameters plus any others that apply to your database environment.

-- Identify the Replicat group:

REPLICAT <rep_2>

-- State that source and target definitions are identical:

ASSUMETARGETDEFS

-- Specify database login information as needed for the database:

[TARGETDB <dsn_1>,] [USERID <user id>[, PASSWORD <pw>]]

-- Specify error handling rules:

REPERROR (<error>, <response>)

-- Specify tables for delivery and call conflict-resolution routines:

MAP <owner>.*, TARGET <owner>.*, SQLEXEC (<SQL specification>);

-- Exclude specific tables from delivery if needed:

MAPEXCLUDE <owner.table>

-- Specify mapping of exceptions to exceptions table:

MAP <owner>.*, TARGET <owner>.<exceptions>, EXCEPTIONSONLY;

NOTE To map Oracle DBFS data, map the internally generated source read-write tables
to the remote read-only tables. For more information on configuring DBFS for
propagation by Oracle GoldenGate, see the Oracle GoldenGate Oracle Installation
and Setup Guide.

Using Oracle GoldenGate for active-active high availability
Managing conflicts

91Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Managing conflicts

Because Oracle GoldenGate is an asynchronous solution, conflicts can occur when
modifications are made to identical sets of data on separate systems at (or almost at) the
same time. Conflicts occur when the timing of simultaneous changes results in one of these
out-of-sync conditions:

● a replicated insert attempts to add a row that already exists in the target.

● the before image of a replicated update does not match the current row in the target.

● a replicated delete attempts to remove a row that does not exist in the target.

For example, UserA on DatabaseA updates a row, and UserB on DatabaseB updates the
same row. If UserB’s transaction occurs before UserA’s transaction is synchronized to
DatabaseB, there will be a conflict on the replicated transaction.

Minimizing the potential for conflict

Where possible, try to minimize or eliminate any chance of conflict. Some ways to do so are:

● Configure the applications to restrict which columns can be modified in each database.
For example, you could limit access based on geographical area, such as by allowing
different sales regions to modify only the records of their own customers. As another
example, you could allow a customer service application on one database to modify only
the NAME and ADDRESS columns of a customer table, while allowing a financial
application on another database to modify only the BALANCE column. In each of those
cases, there cannot be a conflict caused by concurrent updates to the same record.

● Keep synchronization latency low. If UserA on DatabaseA and UserB on DatabaseB
both update the same rows at about the same time, and UserA’s transaction gets
replicated to the target row before UserB’s transaction is completed, conflict is avoided.
See the Oracle GoldenGate Windows and UNIX Troubleshooting and Tuning Guide for
suggestions on improving the performance of the Oracle GoldenGate processes.

Resolving conflicts through Oracle GoldenGate

Because conflict-resolution routines must be customized to specific applications and
business rules, Oracle GoldenGate does not provide default procedures for handling
conflicts. Oracle GoldenGate can interact with custom conflict-resolution routines that you
write to satisfy your business rules.

To configure Oracle GoldenGate to execute and manage conflict-resolution routines

See “Conflict detection and resolution examples” on page 96 for an example of how to
combine the following configuration elements into an automated conflict-resolution
system.

1. Create the conflict-resolution routines. For Oracle GoldenGate, it works best to supply
the rules as a stored SQL procedure or query. See “Guidelines for writing successful
routines” on page 93 and “Methods for resolving conflict” on page 94.

2. Call the conflict resolution routine from the Oracle GoldenGate process by using the
SQLEXEC parameter in your MAP statements. In the same MAP statement, you can use a
FILTER clause to filter for a specific condition based on the output of the SQL, as needed.
You can use multiple MAP statements in this manner to create different rules for

Using Oracle GoldenGate for active-active high availability
Managing conflicts

92Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

different tables, and these rules can be as simple or as complex as needed. For more
information about MAP options, see the Oracle GoldenGate Windows and UNIX
Reference Guide.

3. Use the REPERROR parameter to assign error-handling rules to specific error numbers.
You can assign default rules and/or error-specific rules.

4. (Optional) If you specify a response of EXCEPTION for REPERROR, you can use the MAP
parameter with EXCEPTIONSONLY or MAPEXCEPTION to log operations that caused conflicts
to an exceptions table. Within the same transaction that triggered the conflict, you can
query the data from the exceptions table to calculate adjustments to the outcome of the
transaction, to process the conflict manually, or to use a custom program to resolve the
conflicts. For example, you can use an exceptions table to keep track of inventory items
that become unavailable due to conflicting purchase transactions, so that at the end of
the transaction that lost the conflict, the invoice can be adjusted for the item that is out
of stock. As a historical tool, an exceptions table makes it easy to find out what conflicts
occurred and how they were resolved. It also can help you with troubleshooting your
conflict resolution routines.

The flexibility of the Oracle GoldenGate configuration objects allow you to create different
rules for different tables or groups of tables. For example, you can discard a replicated
operation and keep the existing values in some target tables, but overwrite the existing
values with the replicated ones for other target tables.

For additional information about using exceptions mapping, see “Handling Replicat errors
during DML operations” on page 110.

To create an exceptions table for conflict resolution

Create an exceptions table the same way that you would create any other table in the
database. The following are suggested columns to include in an exceptions table.

● The primary key value on the exceptions table.

● The operation type.

● The name of the table for which the conflict occurred.

● The primary key value for the row that was being modified. This lets you look up the
row again to verify data when needed.

● An image of the data that was applied to the target row.

● The before-image of the source record that was replicated. This is useful for comparing
the old image against an overwritten image to determine if the conflict-resolution
routine was correct in its resolution. This is important when resolving quantitative
values such as those in inventories.

● The before-image of the data that was in the record on the target side, which was
overwritten. This is helpful for notification and for resolving discrepancies that may
not have been solved by the resolution routines.

● The time that the conflict was resolved.

● The timestamp of the record that won the conflict, if using timestamp-based resolution.

● The timestamp that was in the original target row before it was overwritten, if using
timestamp-based resolution. Ensuring that this value is newer or older than the
timestamp of the record that won (depending on your business rule) provides proof that
the timestamp-based routine was successful.

Using Oracle GoldenGate for active-active high availability
Managing conflicts

93Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

● The name of the system, database, or user that won the conflict, if using trusted-source
resolution.

● An indicator (Y/N) stating whether or not a row was discarded to the discard table, if
used.

● An indicator (Y/N) stating whether or not the user should be notified of the conflict
results.

● An indicator (Y/N) stating whether or not the user was notified of the conflict results.

Once you are confident that your routines work as expected in all situations, you can
reduce the amount of data that is logged to the exceptions table to reduce the overhead of
the resolution routines.

Guidelines for writing successful routines

Use the same conflict-resolution procedures on all databases, so that the same conflict
produces the same end result.

One conflict-resolution method might not work for every conflict that could occur. You
might need to create several routines that can be called in a logical order of priority so that
the risk of failure is minimized.

Use before images to make comparisons

Oracle GoldenGate provides a mechanism for obtaining the values of a row as it was before
a modification was made. Use the before image of each row in your conflict-resolution
routines to make comparisons for update operations.

The before image allows you to compare the existing image of one or more columns in the
target table with the before image of those columns in a modification that is being applied
by Replicat. Normally, Oracle GoldenGate does not make these comparisons, because it is
assumed that source and target data are identical before any given modification occurs.
However, you cannot assume a synchronized state when the same row can be changed on
either system. In this case, you need a before-after comparison to apply conflict resolution
rules. To see before images in use, see the conflict-resolution example on page 96.

To use before values

1. To extract before values, use the GETUPDATEBEFORES parameter.

2. To reference a before value in a conflict-resolution procedure, use the following format:

BEFORE.<column_name>

Use fetched column values

If the database only logs modified columns to the transaction log, you might need to fetch
column values from the database to use in your conflict-resolution routines, such as a
TIMESTAMP column and foreign-key columns.

To fetch column values from the database

Use the FETCHCOLS and FETCHCOLSEXCEPT options of the TABLE statement in the Extract
parameter file to fetch the values of the specified columns from the database.

(Oracle) To increase the accuracy of using before values from an Oracle database, Oracle
GoldenGate recommends issuing the ADD TRANDATA command with the COLS clause, instead

Using Oracle GoldenGate for active-active high availability
Managing conflicts

94Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

of using FETCHCOLS. The columns required for conflict resolution will be included in the
supplemental logging.

Methods for resolving conflict

The following are some methods that are typically used in conflict-resolution routines.
Different methods can be used in combination so that if one method fails, another method
is applied. If you need assistance with constructing your routines, contact Oracle Support.
For more information, go to http://support.oracle.com.

Timestamp priority

You can resolve conflicts based on a timestamp, where the record that was modified first
(or in some cases, last) always takes priority. To use timestamp priority:

● Each record must contain a timestamp column that contains the date and time that the
record was inserted or updated. You can use a database trigger or you can modify the
application code to place the timestamp in the column.

● The timestamps on all databases must be identical, and all servers must be in the same
time zone.

To detect and resolve conflicts based on a timestamp, first, try to apply the row normally.
Compare the before image of the timestamp column in the replicated row to the current
timestamp column in the database.

● If they match, there is no conflict.

● If they are different, compare the timestamp of the row in the database to the after
image of the timestamp from the replicated row.

The row with the oldest timestamp (or newest timestamp, if that is your rule) takes
priority.

Trusted source priority

You can resolve conflicts based on the source of the transaction. Data changes from the
trusted source take priority over changes from other sources. This method of resolution is
relatively easy to implement. The trusted source could be as simple as a server location or
as complex as a hierarchical structure that is based on a priority that is assigned to the
database user that executes the transaction.

Combined timestamp and trusted source priority

You can combine the use of timestamps and a trusted source to resolve conflicts when one
or the other is not sufficient. This might be necessary when a local change and a replicated
change, both to the same row, occur simultaneously so that you cannot rely on a
timestamp. A secondary conflict-resolution routine could implement trusted-source
resolution.

Delta value priority

If an application uses UPDATE statements to decrement quantities by a set amount, rules
that simply give priority to one source or timestamp over another cannot accurately resolve
conflicts in this case, because the net effect of both changes is not resolved. The data values
on both systems will not be accurate. Cases like this include inventory balances, account
balances, and sales balances. These cases must be resolved quantitatively by comparing a

http://support.oracle.com
http://support.oracle.com
http://support.oracle.com

Using Oracle GoldenGate for active-active high availability
Managing conflicts

95Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

before image to the current image and then replicating the net change value instead of the
actual values. See the example on page 97.

SQL-specific rules for replication priority

You can create rules for each type of SQL operation.

● Inserts: If the value of the key in a replicated insert matches the value of the key of an
existing record in the target table, you can replace the existing row with the replicated
one.

● Updates: If the key of a replicated update does not exist in the target table, you can
transform an update into an insert.

● Deletes: If the key of a replicated delete does not exist in the target table, you can
ignore the delete, assuming your business policies permit it. If a row is deleted from
one database, it may not matter that the row does not exist in another database,
because the record is supposed to be deleted anyway.

To keep track of the original and transformed values, use an exceptions table. See
“Resolving conflicts through Oracle GoldenGate” on page 91.

Application-specific rules

You can use SQL procedures and user exits that are executed by Oracle GoldenGate to
support built-in conflict-resolution methods that are supplied with applications that
support distributed processing. Such methods include IP persistent routers or application
privileges that prevent multiple users from modifying the same data. See Chapter 18 for
information about using SQL procedures and user exits.

Terminate processing

You can terminate Replicat processing so that the error can be resolved before any other
changes are made to the table(s). This is recommended only if the automatic conflict-
resolution routine does not work properly or encounters an exception. Stopping Replicat
increases the latency of the target data.

Handling resolution notification

When a conflict has been detected and resolved, the user of the business application might
need to be notified that his or her expected outcome has changed. For example, when two
customers reserve airline seats and both are assigned the same one, someone must be
notified that an alternate seat has to be (or was) assigned.

The easiest way to handle notifications is to create a batch job that runs periodically on an
exceptions table, issues the appropriate message, obtains the alternate results for the user,
and makes any necessary updates to the database to reflect those changes. The job should
be executed as a separate database user so that the work only affects data that has been
committed to the database.

See “Resolving conflicts through Oracle GoldenGate” on page 91 for more information
about using an exceptions table.

Using Oracle GoldenGate for active-active high availability
Conflict detection and resolution examples

96Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Conflict detection and resolution examples

Conflict resolution based on timestamp

This is an example of basic conflict detection based on a timestamp.

MAP swilkes.date_test, TARGET swilkes.date_test, &

REPERROR (21000, DISCARD), &

SQLEXEC (ID lookup, ON UPDATE, &

QUERY "select count(*) conflict from date_test where t_id = ? and &

t_timestamp > ?", &

PARAMS (p1 = t_id, p2 = t_timestamp), BEFOREFILTER, ERROR REPORT, &

TRACE ALL),&

FILTER (lookup.conflict = 0, ON UPDATE, RAISEERROR 21000);

NOTE The example does not show a complete Replicat parameter file, but shows only
those relating to conflict resolution.

In this example, the goal is to prevent Replicat from applying a replicated UPDATE record if
the existing target record is newer. The most recent change “wins.”

The conflict detection code uses a SQLEXEC query to select all records in the target table that
have the same key as, but a newer timestamp than, that of the replicated record. The
affected columns are the t_id key column and the t_timestamp timestamp column. The query
executes only on UPDATE operations, and does so before the FILTER clause so that the output
can be applied to the filter rule. The query runs under the logical name of “lookup.”

The result of the query is assigned to a variable named “conflict,” which is used as input to
the FILTER clause by using the lookup.conflict notation.

The FILTER clause states the following:

● If the result of the query is 0 (target record is older), the filter succeeds and the
replicated record is applied to the target.

● If the result of the query is 1 (target record is newer), the filter fails and a user-defined
error is raised by means of RAISEERROR. This error triggers the error handling response
that is specified with REPERROR. In this example, the replicated record is discarded.

NOTE Multiple FILTER statements could be used to apply additional rules. They would be
executed in the order that they appear in the parameter file.

This example also could be used with an exceptions MAP statement by:

● changing the REPERROR action to EXCEPTION instead of DISCARD.

● using the exceptions MAP statement to map the failed record (operation) to an
exceptions table.

Using Oracle GoldenGate for active-active high availability
Conflict detection and resolution examples

97Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

For example:

MAP swilkes.date_test, TARGET swilkes.date_test, &

REPERROR (21000, EXCEPTION), &

SQLEXEC (ID lookup, ON UPDATE, &

QUERY "select count(*) conflict from date_test where t_id = ? and &

t_timestamp > ?", &

PARAMS (p1 = t_id, p2 = t_timestamp), BEFOREFILTER, ERROR REPORT, &

TRACE ALL),&

FILTER (lookup.conflict = 0, ON UPDATE, RAISEERROR 21000);

MAP swilkes.date_test, TARGET swilkes.date_test_exc, EXCEPTIONSONLY, &

INSERTALLRECORDS, &

COLMAP (USEDEFAULTS, errtype = "UPDATE FILTER FAILED.");

The second MAP statement is the exceptions MAP statement. The EXCEPTIONSONLY option
causes the exceptions MAP statement to become active only when an error occurs for the last
record that was processed by the preceding MAP statement (which maps the same
swilkes.date_test source table). The INSERTALLRECORDS parameter causes Replicat to insert each
operation that causes an error as a new record in the swilkes.date_test_exc exceptions table.
This preserves all conflict history as point-in-time snapshots.

An exceptions table such as this one would typically contain the same columns as the
source table, plus additional columns that capture contextual information. In this example,
the extra column “errtype” is being used to reflect the cause of the error (failed filter). For
help with constructing an exceptions table, see page 92.

Conflict-resolution based on net change values

This is an example of how to maintain accurate inventory quantities on both systems when
the application uses UPDATE statements to decrement column values. Instead of replicating
actual values from the updates, it compares the before image with the after image and
replicates the delta instead.

In this example, a “Bowl” item in inventory is at a quantity of 10. Two customers, logging
into different databases, who order the same item should both have successful orders if one
purchases 3 units and the other purchases 5 units, leaving a total of 2 items in the physical
inventory.

The update to the inventory on each system is:

SystemA (3 bowls purchased):

Update inventory set quantity = 7 where item = ‘Bowl’ and quantity = 10;

SystemB (5 bowls purchased):

Update inventory set quantity = 5 where item = ‘Bowl’ and quantity = 10;

When the transaction from SystemA is applied to SystemB, it fails because the before
image of the quantity on System B is expected to be 10, but instead it is 5. Conversely, when
the transaction from SystemB is applied to SystemA, it fails because the before image is
expected to be 10, but instead it is 7.

Using Oracle GoldenGate for active-active high availability
Conflict detection and resolution examples

98Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

To resolve this conflict, calculate the net change in inventory at the source of the change
and then apply that to the target table in the replicated transaction, rather than using the
actual numbers. This is the formula:

Update inventory set quantity = (before image – after image) where item
= ‘Bowl’;

Apply to SystemA:

Update inventory set quantity = (5 – 3) where item = ‘Bowl’;

Apply to SystemB:

Update inventory set quantity = (7 – 5) where item = ‘Bowl’;

After both of those statements succeed, the quantity of bowls remaining is 2 in both
locations, the correct amount.

99Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHAPTER 9

Configuring Oracle GoldenGate security
.

Overview of security options

You can use the following security features to protect your Oracle GoldenGate environment
and the data that is being processed

Using encryption

This section contains instructions for encrypting and decrypting the following:

● The trail or extract file that holds data being processed by Oracle GoldenGate

● A database password

● The data sent across TCP/IP

How data is encrypted

The following encryption methods are used:

● To encrypt trail or extract files, Oracle GoldenGate uses 256-key byte substitution. All
records going into those files are encrypted both across any data links and within the
files themselves.

Table 4 Oracle GoldenGate security options

Security feature Description

Encryption Options are available for encrypting and decrypting:

◆ data in an extract file or trail

◆ database passwords

◆ data sent across TCP/IP

Command security Sets user-level permissions for accessing Oracle GoldenGate commands
through GGSCI.

Connection
security

Allows connections to be established from the target system instead of the
source system. For use when the target resides within a trusted network zone
behind an internal firewall.

Configuring Oracle GoldenGate security
Using encryption

100Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

● To encrypt the database password or data that is sent across TCP/IP, Oracle
GoldenGate uses Blowfish encryption. Blowfish is a symmetric block cipher that can be
used as a drop-in replacement for DES or IDEA. Oracle GoldenGate’s implementation
of Blowfish can take a variable-length key from 32 bits to 128 bits. Blowfish encryption
can be combined with Oracle GoldenGate trail encryption.

Encrypting trail or extract files

You can encrypt the data in any local or remote trail or file.

NOTE (DB2 on z/OS) This feature cannot be used when FORMATASCII is used to write data
to a file in ASCII format. The trail or file must be written in the default canonical
format.

To encrypt trail or extract files

1. In the Extract parameter file, list the following parameter before all trails or files that
you want to be encrypted. You can list multiple trails or files after one instance of this
parameter.

ENCRYPTTRAIL

2. To disable encryption for any files or trails listed in the Extract parameter file, precede
their entries with the following parameter.

NOENCRYPTTRAIL

3. In the Replicat parameter file, include the following parameter so that Replicat
decrypts the data for processing.

DECRYPTTRAIL

You also can use DECRYPTTRAIL for an Extract data pump to decrypt the data for column
mapping, filtering, transformation, and so forth. You can then leave it decrypted for
downstream trails or files, or you can use ENCRYPTTRAIL to encrypt the data again before
it is written to those files.

Encrypting the password of a database user

You can encrypt any of the following database passwords through Oracle GoldenGate:

● The database password that is used by the Extract and Replicat processes and other
processes to log into the source and target databases. (Not all database types require a
database login for Oracle GoldenGate processes.)

● The database password for an Oracle ASM user.

To encrypt a database user password

1. Run GGSCI and issue the ENCRYPT PASSWORD command to generate an encrypted
password. The command provides the following options.

❍ The default ENCRYPT PASSWORD command, without any options, generates an
encrypted password using a default key that is randomly generated by Oracle
GoldenGate.
ENCRYPT PASSWORD <password>

Configuring Oracle GoldenGate security
Using encryption

101Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

❍ ENCRYPT PASSWORD with the ENCRYPTKEY <keyname> option generates an encrypted
password using a user-defined key contained in the ENCKEYS lookup file.
ENCRYPT PASSWORD <password> ENCRYPTKEY <keyname>

For <keyname>, specify the logical name for the key you want to use, as it appears
in the local ENCKEYS file. To use this option, you must first generate a key, create an
ENCKEYS file on the local system, and create an entry in the file for the generated
key. For instructions, see “Generating encryption keys” on page 102.

The encrypted password is output to the screen when you run the ENCRYPT PASSWORD
command.

2. Copy the encrypted password and paste it into the appropriate Oracle GoldenGate
parameter statement as shown in Table 5.

Where:

❍ <user> is the database user name for the Oracle GoldenGate process or (Oracle only)
a host string. For Oracle ASM, the user must be SYS.

❍ <encrypted_password> is the encrypted password that is copied from the ENCRYPT
PASSWORD command results.

❍ ENCRYPTKEY DEFAULT is required if the password was encrypted using ENCRYPT
PASSWORD without the ENCRYPTKEY option.

❍ ENCRYPTKEY <keyname> is required if the password was encrypted using ENCRYPT
PASSWORD with the ENCRYPTKEY <keyname> option. Specify the logical name of the key
as it appears in the ENCKEYS lookup file.

Encrypting data sent across TCP/IP

You can encrypt captured data before Oracle GoldenGate sends it across the TCP/IP
network to the target system. On the target system, Oracle GoldenGate decrypts the data
before writing it to the Oracle GoldenGate trails (unless trail encryption also is specified).
By default, data sent across a network is not encrypted.

To encrypt data sent across TCP/IP

1. On the source system, generate one or more encryption keys and create an ENCKEYS file.
See “Generating encryption keys” on page 102.

Table 5 Specifying encrypted passwords in the Oracle GoldenGate parameter file

To encrypt a password for... Use this parameter...

Oracle GoldenGate database
user

USERID <user>, PASSWORD <encrypted_password>, &
ENCRYPTKEY {DEFAULT | <keyname>}

Oracle GoldenGate user in
Oracle ASM instance

TRANLOGOPTIONS ASMUSER SYS@<ASM_instance_name>, &
ASMPASSWORD <encrypted_password>, &
ENCRYPTKEY {DEFAULT | <keyname>}

Configuring Oracle GoldenGate security
Generating encryption keys

102Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

2. Copy the finished ENCKEYS file to the Oracle GoldenGate installation directory on all
target systems. The key names and values in the source ENCKEYS file must match those
of the target ENCKEYS file, or else the data exchange will fail and Extract and Collector
will abort with the following message:

GGS error 118 – TCP/IP Server with invalid data.

3. Depending on whether this is a regular Extract group or a passive Extract group (see
page 106), use the ENCRYPT option of either the RMTHOST or RMTHOSTOPTIONS parameter to
specify the type of encryption and the logical key name as shown:

ENCRYPT BLOWFISH, KEYNAME <keyname>

Where:

❍ BLOWFISH specifies Blowfish encryption.

❍ <keyname> is the logical name for the encryption key you want to use, as it appears
in the ENCKEYS file.

Examples:

RMTHOST sys1, MGRPORT 7840, ENCRYPT BLOWFISH, KEYNAME superkey

RMTHOSTOPTIONS ENCRYPT BLOWFISH, KEYNAME superkey

4. If using a static Collector and Blowfish encryption, append the following additional
parameters in the Collector startup string:

-KEYNAME <name>

-ENCRYPT BLOWFISH

Where:

❍ KEYNAME <name> specifies the name of the key.

❍ ENCRYPT BLOWFISH specifies Blowfish encryption.

Collector matches these parameters to those specified with the KEYNAME and ENCRYPT
options of RMTHOST.

Generating encryption keys

You must create at least one encryption key and two ENCKEYS lookup files, one on the source
and one on the target, if you want to:

❍ Encrypt data sent across TCP/IP

❍ Use a user-defined key to encrypt the database password

This procedure is not required if:

● you are using a default key generated by Oracle GoldenGate to encrypt the database
password

● you are encrypting a trail or extract file.

You can define your own key or run Oracle GoldenGate’s KEYGEN utility to create a key
randomly.

Configuring Oracle GoldenGate security
Generating encryption keys

103Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

To define your own key

● The key name can be a string of 1 to 24 alphanumeric characters without spaces or
quotes.

● The key value can be up to 128 bits (16 bytes) as a quoted alphanumeric string (for
example “Dailykey”) or a hex string with the prefix 0x (for example
0x420E61BE7002D63560929CCA17A4E1FB).

To use KEYGEN to generate a key

Change directories to the Oracle GoldenGate home directory on the source system, and
issue the following shell command. You can create multiple keys, if needed. The key values
are returned to your screen.

KEYGEN <key length> <n>

Where:

❍ <key length> is the encryption key length, up to 128 bits.

❍ <n> represents the number of keys to generate.

Example:

KEYGEN 128 4

To store the keys for use by Oracle GoldenGate

1. On the source system, open a new ASCII text file.

2. For each key that you generated, enter a logical name followed by the key value itself.
Place multiple key definitions on separate lines. Do not enclose a key name or value
within quotes; otherwise it will be interpreted as text. Use the following sample ENCKEYS
file as a guide.

3. Save the file as ENCKEYS without an extension in the Oracle GoldenGate installation
directory. The name must be in upper case.

4. Copy the ENCKEYS file to the target Oracle GoldenGate installation directory. The key
names and values in the source ENCKEYS file must match those of the target ENCKEYS file,
or else the data exchange will fail and Extract and Collector will abort with the
following message:

GGS error 118 – TCP/IP Server with invalid data.

Encryption keys

Key name
superkey
secretkey
superkey1
superkey2
superkey3

Key value
0x420E61BE7002D63560929CCA17A4E1FB
0x027742185BBF232D7C664A5E1A76B040
0x42DACD1B0E94539763C6699D3AE8E200
0x0343AD757A50A08E7F9A17313DBAB045
0x43AC8DCE660CED861B6DC4C6408C7E8A

Configuring Oracle GoldenGate security
Using command security

104Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Using command security

You can establish command security for Oracle GoldenGate to control which users have
access to which Oracle GoldenGate functions. For example, you can allow certain users to
issue INFO and STATUS commands, while preventing their use of START and STOP commands.
Security levels are defined by the operating system’s user groups.

To implement security for Oracle GoldenGate commands, you create a CMDSEC file in the
Oracle GoldenGate directory. Without this file, access to all Oracle GoldenGate commands
is granted to all users.

To implement command security

1. Open a new ASCII text file.

2. Referring to the following syntax and the example on page 105, create one or more
security rules for each command that you want to restrict, one rule per line. List the
rules in order from the most specific (those with no wildcards) to the least specific.
Security rules are processed from the top of the CMDSEC file downward. The first rule
satisfied is the one that determines whether or not access is allowed.

Separate each of the following components with spaces or tabs.

<command name> <command object> <OS group> <OS user> <YES | NO>

Where:

❍ <command name> is a GGSCI command name or a wildcard, for example START or STOP
or *.

❍ <command object> is any GGSCI command object or a wildcard, for example EXTRACT
or REPLICAT or MANAGER.

❍ <OS group> is the name of a Windows or UNIX user group. On a UNIX system, you
can specify a numeric group ID instead of the group name. You can use a wildcard
to specify all groups.

❍ <OS user> is the name of a Windows or UNIX user. On a UNIX system, you can
specify a numeric user ID instead of the user name. You can use a wildcard to
specify all users.

❍ <YES | NO> specifies whether access to the command is granted or prohibited.

3. Save the file as CMDSEC (using upper case letters on a UNIX system) in the Oracle
GoldenGate home directory.

Configuring Oracle GoldenGate security
Using command security

105Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

The following example illustrates the correct implementation of a CMDSEC file on a UNIX
system.

The following incorrect example illustrates what to avoid when creating a CMDSEC file.

The order of the entries in Table 7 causes a logical error. The first rule (line 1) denies all
STOP commands to all members of group dpt2. The second rule (line 2) grants all STOP
commands to user Chen. However, because Chen is a member of the dpt2 group, he has been
denied access to all STOP commands by the second rule, even though he is supposed to have
permission to issue them.

The proper way to configure this security rule is to set the user-specific rule before the more
general rule(s). Thus, to correct the error, you would reverse the order of the two STOP rules.

Table 6 Sample CMDSEC file with explanations

File Contents Explanation

#GG command security Comment line

STATUS REPLICAT * Smith NO STATUS REPLICAT is denied to user Smith.

STATUS * dpt1 * YES Except for the preceding rule, all users in dpt1 are granted all
STATUS commands.

START REPLICAT root * YES START REPLICAT is granted to all members of the root group.

START REPLICAT * * NO Except for the preceding rule, START REPLICAT is denied to all
users.

* EXTRACT 200 * NO All EXTRACT commands are denied to all groups with ID of 200.

* * root root YES Grants the root user any command.

* * * * NO Denies all commands to all users. This line covers security for
any other users that were not explicitly granted or denied
access by preceding rules. Without it, all commands would be
granted to all users except for preceding explicit grants or
denials.

Table 7 Incorrect CMDSEC entries

File Contents Description

STOP * dpt2 * NO All STOP commands are denied to everyone in group dpt2.

STOP * * Chen YES All STOP commands are granted to Chen.

Configuring Oracle GoldenGate security
Using target system connection initiation

106Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Securing the CMDSEC File

Because the CMDSEC file is a source of security, it must be secured. You can grant read
access as needed, but Oracle GoldenGate recommends denying write and delete access to
everyone but Oracle GoldenGate Administrators.

Using target system connection initiation

When a target system resides inside a trusted intranet zone, initiating connections from
the source system (the standard Oracle GoldenGate method) may violate security policies
if the source system is in a less trusted zone. It also may violate security policies if a system
in a less trusted zone contains information about the ports or IP address of a system in the
trusted zone, such as that normally found in an Oracle GoldenGate Extract parameter file.

In this kind of intranet configuration, you can use a passive-alias Extract configuration.
Connections are initiated from the target system inside the trusted zone by an alias
Extract group, which acts as an alias for a regular Extract group on the source system,
known in this case as the passive Extract. Once a connection between the two systems is
established, data is processed and transferred across the network by the passive Extract
group in the usual way.

1. An Oracle GoldenGate user starts the alias Extract on the trusted system, or an
AUTOSTART or AUTORESTART parameter causes it to start.

2. GGSCI on the trusted system sends a message to Manager on the less trusted system
to start the associated passive Extract. The host name or IP address and port number
of the Manager on the trusted system are sent to the less trusted system.

3. On the less trusted system, Manager finds an open port (according to rules in the
DYNAMICPORTLIST Manager parameter) and starts the passive Extract, which listens on
the specified port.

4. The Manager on the less trusted system returns that port to GGSCI on the trusted
system.

5. GGSCI on the trusted system sends a request to the Manager on that system to start
a Collector process on that system.

Figure 16 Connection initiation from trusted network zone

Configuring Oracle GoldenGate security
Using target system connection initiation

107Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

6. The target Manager starts the Collector process and passes it the port number where
Extract is listening on the less trusted system.

7. Collector on the trusted system opens a connection to the passive Extract on the less
trusted system.

8. Data is sent across the network from the passive Extract to the Collector on the target
and is written to the trail in the usual manner for processing by Replicat.

Configuring the passive Extract group

The passive Extract group on the less trusted source system will be one of the following,
depending on which one is responsible for sending data across the network:

● A solo Extract group that reads the transaction logs and also sends the data to the
target, or:

● A data pump Extract group that reads a local trail supplied by a primary Extract and
then sends the data to the target. In this case, there are no special configuration
requirements for the primary Extract, just the data pump.

To create an Extract group in passive mode, use the standard ADD EXTRACT command and
options, but add the PASSIVE keyword in any location relative to other command options.
Examples:

ADD EXTRACT fin, TRANLOG, BEGIN NOW, PASSIVE, DESC “passive Extract”

ADD EXTRACT fin, PASSIVE, TRANLOG, BEGIN NOW, DESC “passive Extract”

To configure parameters for the passive Extract group, create a parameter file in the
normal manner, except:

● Exclude the RMTHOST parameter, which normally would specify the host and port
information for the target Manager.

● Use the optional RMTHOSTOPTIONS parameter to specify any compression and encryption
rules.
RMTHOSTOPTIONS

[, COMPRESS]

[, COMPRESSTHRESHOLD]

[, ENCRYPT {NONE | BLOWFISH}]

[, KEYNAME <keyname>]

[, PARAMS <collector parameters>]

[, TCPBUFSIZE <bytes>]

[, TCPFLUSHBYTES <bytes>]

Instructions for using the ENCRYPT and KEYNAME options begin on page 101 of this chapter.
These options encrypt data sent across TCP/IP using Blowfish encryption. For information
about the rest of the RMTHOSTOPTIONS options, see the Oracle GoldenGate Windows and
UNIX Reference Guide.

For more information about configuring an Extract group, see Chapter 12.

Configuring the alias Extract group

The alias Extract group on the trusted target does not perform any data processing
activities. Its sole purpose is to initiate and terminate connections to the less trusted
source. In this capacity, the alias Extract group does not use a parameter file nor does it

Configuring Oracle GoldenGate security
Using target system connection initiation

108Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

write processing checkpoints. A checkpoint file is used only to determine whether the
passive Extract group is running or not and to record information required for the remote
connection.

To create an Extract group in alias mode, use the ADD EXTRACT command without any other
options except the following:

ADD EXTRACT <group>

, RMTHOST {<host name> | <IP address>}

, MGRPORT <port>

[, RMTNAME <name>]

[, DESC “<description>”]

The RMTHOST specification identifies this group as an alias Extract, and the information is
written to the checkpoint file. The <host name> and <IP address> options specify either the
name or IP address of the source system. MGRPORT specifies the port on the source system
where Manager is running.

The alias Extract name can be the same as that of the passive Extract, or it can be different.
If the names are different, use the optional RMTNAME specification to specify the name of the
passive Extract. If RMTNAME is not used, Oracle GoldenGate expects the names to be
identical and writes the name to the checkpoint file of the alias Extract for use when
establishing the connection.

Error handling for TCP/IP connections is guided by the TCPERRS file on the target system. It
is recommended that you set the response values for the errors in this file to RETRY. The
default is ABEND. This file also provides options for setting the number of retries and the
delay between attempts. For more information, see page 113.

Starting and stopping the passive and alias processes

To start or stop Oracle GoldenGate extraction in the passive-alias Extract configuration,
start or stop the alias Extract group from GGSCI on the target.

START EXTRACT <alias group name>

Or...

STOP EXTRACT <alias group name>

The command is sent to the source system to start or stop the passive Extract group. Do
not issue these commands directly against the passive Extract group. You can issue a KILL
EXTRACT command directly for the passive Extract group.

When using the Manager parameters AUTOSTART and AUTORESTART to automatically start or
restart processes, use them on the target system, not the source system. The alias Extract
is started first and then the start command is sent to the passive Extract.

Managing extraction activities

Once extraction processing has been started, you can manage and monitor it in the usual
manner by issuing commands against the passive Extract group from GGSCI on the source
system. The standard GGSCI monitoring commands, such as INFO and VIEW REPORT, can be
issued from either the source or target systems. If a monitoring command is issued for the
alias Extract group, it is forwarded to the passive Extract group. The alias Extract group

Configuring Oracle GoldenGate security
Using target system connection initiation

109Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

name is replaced in the command with the passive Extract group name. For example, INFO
EXTRACT alias becomes INFO EXTRACT passive. The results of the command are displayed on the
system where the command was issued.

Other considerations

When using a passive-alias Extract configuration, these rules apply:

● In this configuration, Extract can only write to one target system.

● This configuration can be used in an Oracle RAC installation by creating the Extract
group in the normal manner (using the THREADS option to specify the number of redo
threads).

● This configuration can be used when Extract is started from the command line for a
batch run. See Chapter 13 on page 135.

● The ALTER EXTRACT command cannot be used for the alias Extract, because that group
does not do data processing.

● To use the DELETE EXTRACT command for a passive or alias Extract group, issue the
command from the local GGSCI.

● Remote tasks, specified with RMTTASK in the Extract parameter file and used for some
initial load methods, are not supported in this configuration. A remote task requires
the connection to be initiated from the source system and uses a direct connection
between Extract and Replicat.

110Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHAPTER 10

Handling Oracle GoldenGate processing errors
.

Overview of Oracle GoldenGate error handling

Oracle GoldenGate provides error-handling options for:

● Extract

● Replicat

● TCP/IP

Handling Extract errors

There is no specific parameter to handle Extract errors when DML operations are being
extracted, but Extract does provide a number of parameters that can be used to prevent
anticipated problems. These parameters handle anomalies that can occur during the
processing of DML operations, such as what to do when a row to be fetched cannot be
located, or what to do when the transaction log is not available. The following is a partial
list of these parameters. For a complete list, see the Oracle GoldenGate Windows and
UNIX Reference Guide.

● FETCHOPTIONS

● WARNLONGTRANS

● DBOPTIONS

● TRANLOGOPTIONS

● LFMMEMORY

To handle extraction errors that relate to DDL operations, use the DDLERROR parameter. For
more information, see page 173.

Handling Replicat errors during DML operations

To control the way that Replicat responds to an error during one of its DML statements,
use the REPERROR parameter in the Replicat parameter file. You can use REPERROR as a global
parameter or as part of a MAP statement. You can handle most errors in a default fashion
(for example, to cease processing) with DEFAULT and DEFAULT2 options, and also handle other
errors in a specific manner.

All options but TRANSDISCARD and TRANSEXCEPTION affect only the individual record that
generated an error. TRANSDISCARD and TRANSEXCEPTION affect all records in a transaction in
which any record generates an error. (The ABEND option also applies to the entire
transaction, but does not apply error handling.)

Handling Oracle GoldenGate processing errors
Handling Replicat errors during DML operations

111Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

The following comprise the full range of REPERROR responses:

● ABEND: roll back the transaction and stop processing.

● DISCARD: log the error to the discard file and continue processing.

● EXCEPTION: send the error for exceptions processing (see “Handling errors as
exceptions”.

● IGNORE: ignore the error and continue processing.

● RETRYOP [MAXRETRIES <n>]: retry the operation, optionally up to a specific number of times.

● TRANSABORT [, MAXRETRIES <n>] [, DELAY[C]SECS <n>]: abort the transaction and reposition to
the beginning, optionally up to a specific number of times at specific intervals.

● RESET: remove all previous REPERROR rules and restore the default of ABEND.

● TRANSDISCARD: discard the entire replicated source transaction if any operation within
that transaction, including the commit, causes a Replicat error that is listed in the
error specification. This option is useful when integrity constraint checking is disabled
on the target.

● TRANSEXCEPTION: perform exceptions mapping for every record in the replicated source
transaction, according to its exceptions-mapping statement, if any operation within
that transaction (including the commit) causes a Replicat error that is listed in the
error specification.

Handling errors as exceptions

You can treat Replicat errors as exceptions by using the REPERROR parameter with the
EXCEPTION option or the TRANSEXCEPTION option. You can then map those exceptions to an
exceptions table, along with information about the error that can be used to resolve the
error. You can use the following options of the MAP statement to send the exceptions to the
exceptions table:

● EXCEPTIONSONLY (requires a separate exceptions MAP statement)

● MAPEXCEPTION (requires only one MAP statement)

Using EXCEPTIONSONLY

You can use the EXCEPTIONSONLY clause if the names of the source and target tables will not
be wildcarded within the MAP and TARGET clauses of the MAP statement. With this method,
you must create two MAP statements for a source table:

● The first, the regular MAP statement, maps the source table to the actual target table.

● The second, an exceptions MAP statement, maps the source table to the exceptions table
(instead of to the target table). The exceptions MAP statement executes only after an
error on the source table. The exceptions MAP statement must immediately follow the
regular MAP statement that contains that source table.

Using MAPEXCEPTION

You must use MAPEXCEPTION if the names of the source and target tables will be wildcarded
within the MAP and TARGET clauses of the MAP statement. You can include the MAPEXCEPTION
clause in the regular MAP statement, the same one in which you map the source tables to
the target tables. The MAPEXCEPTION clause captures the operations that are treated as
exceptions, based on the REPERROR statement, and maps them to the exceptions table. In this
configuration, only one MAP statement is needed instead of two.

Handling Oracle GoldenGate processing errors
Handling Replicat errors during DML operations

112Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

About the exceptions table

The exceptions table provides information about an error that you can use in any manner
you wish, such as configuring your application to handle the error or initiate conflict
resolution. An exceptions table typically is created with the same columns as the regular
target table, plus extra columns to capture additional information about the data and the
error. You can use COLMAP, Oracle GoldenGate conversion functions, and other applicable
Oracle GoldenGate options to get this information, such as getting the error number and
environment information with a function and mapping the information to the appropriate
column with COLMAP.

Example 1 EXCEPTIONSONLY

This is an example of how to use EXCEPTIONS only for exceptions mapping. It shows an
example of how to use REPERROR with EXCEPTIONSONLY and an exceptions MAP statement. This
example only shows those parameters that relate to REPERROR; others are omitted to save
space in this documentation.
REPERROR (DEFAULT, EXCEPTION)

MAP ggs.equip_account, TARGET ggs.equip_account2, &

COLMAP (USEDEFAULTS);

MAP ggs.equip_account, TARGET ggs.equip_account_exception, &

EXCEPTIONSONLY, &

INSERTALLRECORDS &

COLMAP (USEDEFAULTS, &

DML_DATE = @DATENOW(), &

OPTYPE = @GETENV("LASTERR", "OPTYPE"), &

DBERRNUM = @GETENV("LASTERR", "DBERRNUM"), &

DBERRMSG = @GETENV("LASTERR", "DBERRMSG"));

In this example, the REPERROR parameter is set for DEFAULT error handling, and the EXCEPTION
option causes the Replicat process to treat failed operations as exceptions and continue
processing.

There are two MAP statements:

● A regular MAP statement that maps the source table ggs.equip_account to its target table
equip_account2.

● An exceptions MAP statement that maps the same source table to the exceptions table
ggs.equip_account_exception.

In this case, four extra columns were created, in addition to the same columns that the
table itself contains:

DML_DATE
OPTYPE
DBERRNUM
DBERRMSG

To populate the DML_DATE column, the @DATENOW column-conversion function is used to get
the date and time of the failed operation, and the result is mapped to the column. To

Handling Oracle GoldenGate processing errors
Handling Replicat errors during DDL operations

113Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

populate the other extra columns, the @GETENV function is used to return the operation type,
database error number, and database error message.

The EXCEPTIONSONLY option of the exceptions MAP statement causes the statement to execute
only after a failed operation on the source table. It prevents every operation from being
logged to the exceptions table.

The INSERTALLRECORDS parameter causes all failed operations for the specified source table,
no matter what the operation type, to be logged to the exceptions table as inserts.

NOTE There can be no primary key or unique index restrictions on the exception table.

Example 2 MAPEXCEPTION

This is an example of how to use MAPEXCEPTION for exceptions mapping. The MAP and TARGET
clauses contain wildcarded source and target table names. Exceptions that occur when
processing any table with a name beginning with TRX will be captured to the fin.trxexceptions
table using the designated mapping.

MAP src.trx*, TARGET trg.*,

MAPEXCEPTION (TARGET fin.trxexceptions,

COLMAP (USEDEFAULTS,

ACCT_NO = ACCT_NO,

OPTYPE = @GETENV (“LASTERR”, “OPTYPE”),

DBERR = @GETENV (“LASTERR”, “DBERRNUM”),

DBERRMSG = @GETENV (“LASTERR”, “DBERRMSG”)

)

);

Handling Replicat errors during DDL operations

To control the way that Replicat responds to an error that occurs for a DDL operation on
the target, use the DDLERROR parameter in the Replicat parameter file. For more
information, see “Handling Extract DDL processing errors” on page 173.

Handling TCP/IP errors

To provide instructions for responding to TCP/IP errors, use the TCPERRS file. This file is in
the Oracle GoldenGate directory

Figure 17 TCPERRS file

TCP/IP error handling parameters

Default error response is abend

#

Error Response Delay(csecs) Max Retries

ECONNABORTED RETRY 1000 10

ECONNREFUSED RETRY 1000 12

ECONNRESET RETRY 500 10

ENETDOWN RETRY 3000 50

ENETRESET RETRY 1000 10

ENOBUFS RETRY 100 60

Handling Oracle GoldenGate processing errors
Maintaining updated error messages

114Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

ENOTCONN RETRY 100 10

EPIPE RETRY 500 10

ESHUTDOWN RETRY 1000 10

ETIMEDOUT RETRY 1000 10

NODYNPORTS RETRY 100 10

The TCPERRS file contains default responses to basic errors. To alter the instructions or add
instructions for new errors, open the file in a text editor and change any of the values in
the columns shown in Table 8:

If a response is not explicitly defined in the TCPERRS file, Oracle GoldenGate responds to
TCP/IP errors by abending.

Maintaining updated error messages

The error, information, and warning messages that Oracle GoldenGate processes generate
are stored in a data file named ggmessage.dat in the Oracle GoldenGate installation
directory. The version of this file is checked upon process startup and must be identical to
that of the process in order for the process to operate.

Resolving Oracle GoldenGate errors

For help with resolving Oracle GoldenGate errors, see the Oracle GoldenGate Windows
and UNIX Troubleshooting and Tuning Guide Guide.

Table 8 TCPERRS columns

Column Description

Error Specifies a TCP/IP error for which you are defining a response.

Response Controls whether or not Oracle GoldenGate tries to connect again after the
defined error. Valid values are either RETRY or ABEND.

Delay Controls how long Oracle GoldenGate waits before attempting to connect again.

Max Retries Controls the number of times that Oracle GoldenGate attempts to connect again
before aborting.

115Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHAPTER 11

Creating a data-definitions file
.

Overview of the data-definitions file

A data-definitions file contains information about the format of data that is being
replicated, such as the table name, column names, data types, data length, and offset. A
data-definitions file enables Oracle GoldenGate to convert data from one format to another
when moving data between different kinds of databases. To perform conversions, the
definitions of both sets of data must be known to Oracle GoldenGate. An Oracle
GoldenGate process can query the database that is local to that process, in order to get one
set of definitions, but that process must rely on a definitions file to get the set of definitions
for the remote database. For example, the Replicat process can query the target database,
but relies on a definitions file to get metadata for the source database.

When to use a data-definitions file

A data-definitions file is required whenever you are synchronizing source and target tables
that have dissimilar data definitions, for example Oracle source tables and Microsoft SQL
Server target tables. Even when the source and target database systems are identical, the
source and target tables can be dissimilar when corresponding source and target columns
do not meet the guidelines in “Rules for tables to be considered identical”.

Rules for tables to be considered identical

For source and target column structures to be identical, they must:

● have identical column names (including case, if applicable)

● have identical data types

● have identical column sizes

● have the same column length semantics for character columns (bytes versus
characters)

● appear in the same order in each table

For example, a source-definitions file is required when the semantics of a source Oracle
database are configured as bytes and the target semantics are configured as characters (or
the other way around), even though the table structures may be identical. As another
example, a source-definitions file is required for the following set of source and target
tables, which are identical except for the order of the name columns:

Creating a data-definitions file
Types of definitions files

116Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

NOTE Do not create a data-definitions file for Oracle sequences. It is not needed and
DEFGEN does not support it.

Types of definitions files

● If you are configuring Oracle GoldenGate to perform column mapping or
transformation on the target system, a source-definitions file is required. The source-
definitions file contains the definitions of the source tables. You transfer this file to the
target system. Replicat refers to those definitions, plus the queried target definitions,
to perform the conversions.

● If you are configuring Oracle GoldenGate to perform column mapping or
transformation on the source system, a target-definitions file is required. The target-
definitions file contains the definitions of the target tables. You transfer the file to the
source system. A primary Extract or a data-pump refers to those definitions, plus the
queried source definitions, to perform the conversions.

● When replicating to a NonStop Server target from any other type of database, the
mapping and conversion must be performed on the source Windows or UNIX system.
Replicat for NonStop does not convert two-part table names and data types to the
three-part names that are used on the NonStop platform, so Extract must format the
trail data with the NonStop names and target data types. Therefore, a data definitions
file from the target is always required in this situation to support the conversion.

● If you are configuring Oracle GoldenGate to perform column mapping or
transformation on an intermediary system that contains neither a source database nor
a target database, you must provide a source-definitions file and a target-definitions
file on that system.

When to use a definitions template

If you think that you will be adding tables to the Oracle GoldenGate environment after the
initial configuration and startup, use a definitions template. You can generate a definitions
template that works for multiple tables if those tables all have exactly the same structure.
For example, a template is appropriate if you have separate tables for each customer, and
all of the columns, the column order, and the data types in each one are identical.

By using templates, you eliminate the need to generate a new definitions file for each new
table, and you avoid having to stop and start Oracle GoldenGate processes to activate the
new definitions. This reduces your maintenance work when new tables are added
frequently.

Source Target

CREATE TABLE emp
(employee_id NUMBER(6)
, first_name VARCHAR2(20)
, last_name VARCHAR2(25)
, phone_number VARCHAR2(20)
, hire_date DATE DEFAULT SYSDATE

CREATE TABLE emp
(employee_id NUMBER(6)
, last_name VARCHAR2(25)
, first_name VARCHAR2(20)
, phone_number VARCHAR2(20)
, hire_date DATE DEFAULT SYSDATE

Creating a data-definitions file
Configuring a data-definitions file

117Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Templates work like this:

● You specify the definitions template when you create the master data-definitions file.

● Whenever you add a new table that has the same structure as one that is in the Oracle
GoldenGate configuration already, you can map the new table to the template with the
DEF or TARGETDEF option of the TABLE or MAP parameter.

NOTE If you do not use a template in the master definitions file, you can always generate
a definitions file for each new table that you add to the Oracle GoldenGate
configuration. You can simply copy the contents of each new definitions file and
add them to the existing master definitions file.

Configuring a data-definitions file

To configure Oracle GoldenGate to use a data-definitions file, you:

● create a parameter file for the DEFGEN utility

● run the DEFGEN utility to generate the file

● point the Oracle GoldenGate process to the definitions file

To create a parameter file for DEFGEN

To create a source-definitions file, perform these steps on the source system. To create a
target-definitions file, perform the steps on the target system.

1. From the Oracle GoldenGate directory, run GGSCI.

2. In GGSCI, issue the following command to create a DEFGEN parameter file.

EDIT PARAMS DEFGEN

3. Enter the parameters listed in Table 9 in the order shown, starting a new line for each
parameter statement.

Table 9 DEFGEN parameters

Parameter Description

DEFSFILE <full_pathname> Specifies the relative or fully qualified name of the
data-definitions file that is to be the output of
DEFGEN.

[{SOURCEDB | TARGETDB} <dsn>,]
[USERID <user>[, PASSWORD <password>]]

◆ SOURCEDB | TARGETDB specifies a data source name,
if required as part of the connection information.
Not required for Oracle.

◆ USERID and PASSWORD are required if database
authentication must be provided. A password is
not required for SQL/MX or DB2. For Oracle, you
can include a host string, for example:
USERID ggs@ora1.ora, PASSWORD ggs123

Specifies database connection information.

For more information about SOURCEDB and USERID, see
the Oracle GoldenGate Windows and UNIX
Reference Guide.

Creating a data-definitions file
Configuring a data-definitions file

118Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

4. Save and close the file.

5. Exit GGSCI.

To run DEFGEN

1. From the directory where Oracle GoldenGate is installed, run DEFGEN using the
following arguments. This example shows a UNIX file system structure.

defgen paramfile dirprm/defgen.prm [reportfile dirrpt/defgen.rpt]

Where:

❍ defgen is the name of the program.

❍ paramfile dirprm/defgen.prm is the relative or full path name of the DEFGEN parameter
file.

❍ reportfile dirrpt/defgen.rpt sends output to the screen and to the designated report file.
You can omit this argument just to print to screen.

NOTE Do not modify the definitions file.

2. Using ASCII mode, FTP the definitions file from the Oracle GoldenGate dirdef sub-
directory to the other system, saving it to the dirdef sub-directory on that system.

To point a Oracle GoldenGate process to a definitions file

Link a data-definitions file to the correct Oracle GoldenGate process in the following ways:

❍ Link a target-definitions file to an Extract group or data pump by using the
TARGETDEFS parameter in the Extract parameter file.

❍ Link a source-definitions file to the Replicat group by using the SOURCEDEFS
parameter in the Replicat parameter file.

❍ If Oracle GoldenGate is to perform mapping or conversion on an intermediary
system that contains neither the source nor target database, link a source-
definitions file and a target-definitions file to the data pump Extract by using
SOURCEDEFS and TARGETDEFS in the parameter file. For Oracle databases, the Oracle
libraries also must be present on the intermediary system.

TABLE <owner>.<table>
[, {DEF | TARGETDEF} <template name>];

Where:

◆ <owner> is the schema name.

◆ <table> is the name of a table or a group of tables
defined with wildcards.

◆ [, {DEF | TARGETDEF} <template name>] specifies that
the definitions of this table are being used to
create the specified template. This option is not
supported for initial loads.

Specifies a table or tables for which definitions will
be defined. Optionally, specifies a table on which to
base a definitions template.

Specify a source table or tables if generating a
source-definitions file for transfer to the target, or
specify a target table or tables if generating a target-
definitions file that will be transferred to a source
system.

To exclude tables from a wildcard specification, use
the TABLEEXCLUDE parameter.

Note: DEFGEN does not support UDTs.

Table 9 DEFGEN parameters (continued)

Parameter Description

Creating a data-definitions file
Configuring a data-definitions file

119Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Example The following is an example of a DEFGEN parameter file for an Oracle database. Individual
definitions by name will be created for all tables in the ord and hr schemas. In addition, a
custdef template is being created based on table acct.cust100. In the database, there are other
acct.cust* tables, each with identical definitions to acct.cust100. Those tables can be mapped
to a DEF clause in the TABLE or MAP statement that points to the custdef template.

DEFSFILE C:\ggs\dirdef\record.def

USERID ggs, PASSWORD ggs

TABLE acct.cust100, DEF custdef;

TABLE ord.*;

TABLE hr.*;

The tables would be mapped in the Replicat parameter file as follows:

REPLICAT acctrep

SOURCEDEFS c:\ggs\dirdef\record.def

USERID ggs, PASSWORD ggs

MAP acct.cust*, TARGET acct.cust*, DEF custdef;

MAP ord.prod, TARGET ord.prod;

MAP ord.parts, TARGET ord.parts;

MAP hr.emp, TARGET hr.emp;

MAP hr.salary, TARGET hr.salary;

In the previous MAP statements, definitions for all tables matching the wildcard
specification acct.cust* are obtained from the custdef template.

The same tables could be mapped for a primary Extract or a data pump, if target
definitions are required as well as source definitions. For example, if the target was an
Enscribe database, or if the mapping or conversion is being done on an intermediary
system, the configuration would look similar to the following:

EXTRACT acctext

USERID ggs, PASSWORD ggs

RMTHOST sysb, MGRPORT 7890

RMTTRAIL $data.ggsdat.rt

TABLE acct.cust*, TARGET acct.cust*, DEF custdef, TARGETDEF tcustdef;

TABLE ord.prod, TARGET ord.prod;

TABLE ord.parts, TARGET ord.parts;

TABLE hr.emp, TARGET hr.emp;

TABLE hr.salary, TARGET hr.salary;

In the previous example, a source template named custdef and a target template named
tcustdef will be used for all acc.cust* tables. Definitions for the tables from the ord and hr
schemas will be obtained from explicit definitions based on the table names.

120Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHAPTER 12

Configuring online change synchronization
.

Overview of online change synchronization

Online change synchronization extracts and replicates data changes continuously to
maintain a near real-time target database. The following summarizes the steps required to
configure online change synchronization:

● Create a checkpoint table

● Create one or more Extract groups.

● Create an Extract parameter file.

● Create a trail.

● Create a Replicat group.

● Create a Replicat parameter file.

Initial synchronization

After you configure your change-synchronization groups and trails following the directions
in this chapter, see “Running an initial data load” on page 214 to prepare the target tables
for synchronization. An initial load takes a copy of entire source tables, transforms the data
if necessary, and applies it to the target tables so that the movement of transaction data
begins from a synchronized state. The first time that you start change synchronization
should be during the initial synchronization process. Change synchronization keeps track
of ongoing transactional changes while the load is being applied.

Configuring process groups for best performance

Develop business rules that specify the acceptable amount of lag between when changes
are made within your source applications and when those changes are applied to the target
database. These rules will determine the number of parallel Extract and Replicat processes
that are required to enable Oracle GoldenGate to perform at its best.

Gather the size and activity rates for all of the tables that you intend to replicate with
Oracle GoldenGate.

● Assign one Extract group to all of the tables that have low activity rates.

● Assign a dedicated Extract group to each table that has high activity rates.

Configure these Extract groups to work with dedicated data pumps and Replicat groups.
For more information about configuring Oracle GoldenGate for best performance, see the
Oracle GoldenGate Windows and UNIX Troubleshooting and Tuning Guide.

Configuring online change synchronization
Naming conventions for groups

121Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Naming conventions for groups

When naming Oracle GoldenGate process groups, follow these rules:

Creating a checkpoint table

NOTE The checkpoint table feature is not supported for c-tree databases, because
Replicat does not have access to the target database.

Replicat maintains checkpoints that provide a known position in the trail from which to
start after an expected or unexpected shutdown. To store a record of its checkpoints,
Replicat uses a checkpoint table in the target database. This enables the Replicat
checkpoint to be included within the Replicat transaction itself, to ensure that a
transaction will only be applied once, even if there is a failure of the Replicat process or the
database process. The checkpoint table remains small because rows are deleted when no
longer needed, and it does not affect database performance.

Options for creating the checkpoint table

The checkpoint table can reside in a schema of your choice. Use one that is dedicated to
Oracle GoldenGate if possible.

More than one instance of Oracle GoldenGate (multiple installations) can use the same
checkpoint table. Oracle GoldenGate keeps track of the checkpoints, even if Replicat group
names are the same in different instances.

More than one checkpoint table can be used as needed. For example, you can use different
ones for different Replicat groups.

◆ You can use up to eight ASCII characters, including non-alphanumeric characters such
as the underscore (_). Any ASCII character can be used, so long as the operating system
allows that character to be in a filename. This is because a group is identified by its
associated checkpoint file.

◆ The following ASCII characters are not allowed in a file name:
{ \ / : * ? " < > | }

◆ On HP UX, Linux, and Solaris, it is possible to create a file name with a colon (:) or an
asterisk (*), although it is not recommended.

◆ In general, group names are not case-sensitive within Oracle GoldenGate. For example,
finance, Finance, and FINANCE are all considered to be the same. However, on Linux, the
group name (and its parameter file name if explicitly defined in the ADD command) must
be all uppercase or all lowercase. Mixed case group names and parameter file names will
result in errors when starting the process.

◆ Use only one word.

◆ Do not use the word “port” as a group name. However, you can use the string “port” as
part of the group name.

◆ Do not place a numeric value at the end of a group name, such as fin1, fin10, and so forth.
You can place a numeric value at the beginning of a group name, such as 1_fin, 1fin, and
so forth.

Configuring online change synchronization
Creating a checkpoint table

122Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

You can install your checkpoint table(s) in these ways:

● You can specify a default checkpoint table in the GLOBALS file. New Replicat groups
created with the ADD REPLICAT command will use this table automatically, without
requiring any special instructions. See “To specify a default checkpoint table in the
GLOBALS file”.

● You can provide specific checkpoint table instructions when you create any given
Replicat group:

❍ To use a specific checkpoint table for a group, use the CHECKPOINTTABLE argument in
the ADD REPLICAT command. A checkpoint table specified in ADD REPLICAT overrides
any default specification in the GLOBALS file. If using only one Replicat group, you
can use this command and skip creating the GLOBALS file altogether.

❍ To omit using a checkpoint table for a group, use the NODBCHECKPOINT argument in
the ADD REPLICAT command. If you opt not to use a checkpoint table, the checkpoints
will be maintained in a checkpoint file on disk, but you introduce the risk of data
inconsistency. For more information, see“Overview of checkpoints” on page 16.

Regardless of how you want to implement the checkpoint table, you must create it in the
target database prior to using the ADD REPLICAT command. See “To add a checkpoint table to
the target database”.

To specify a default checkpoint table in the GLOBALS file

1. Create a GLOBALS file (or edit the existing one, if applicable). The file name must be all
capital letters on UNIX or Linux systems, without a file extension, and must reside in
the root Oracle GoldenGate directory. You can use an ASCII text editor to create the
file, making certain to observe the preceding naming conventions, or you can use
GGSCI to create and save it with the correct name and location automatically. When
using GGSCI, use the following command, typing GLOBALS in upper case.

EDIT PARAMS ./GLOBALS

2. Enter the following parameter (case does not matter):

CHECKPOINTTABLE <owner>.<table>

Where: <owner>.<table> is the owner and name for the default checkpoint table. The
name can be anything supported by the database.

3. Note the name of the table, then save and close the GLOBALS file. Make certain the file
was created in the root Oracle GoldenGate directory. If there is a file extension, remove
it.

To add a checkpoint table to the target database

NOTE The following steps, which create the checkpoint table through GGSCI, can be
bypassed by running the chkpt_<db>_create.sql script instead, where <db> is an
abbreviation of the database type. By using the script, you can specify custom
storage or other attributes. Do not change the names or attributes of the columns
in this table.

1. From the Oracle GoldenGate directory, run GGSCI and issue the following command
to log into the database.

DBLOGIN [SOURCEDB <dsn>][, USERID <db_user>[, PASSWORD <pw>]]

Configuring online change synchronization
Creating an online Extract group

123Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Where:

❍ SOURCEDB <dsn> supplies a data source name, if required as part of the connection
information.

❍ USERID <db_user>, PASSWORD <pw> supplies database credentials, if required.
PASSWORD is not required for NonStop SQL/MX or DB2.

This user must have CREATE TABLE permissions.

2. In GGSCI, issue the following command to add the checkpoint table to the database.

ADD CHECKPOINTTABLE [<owner>.<table>]

Where:

<owner>.<table> is the owner and name of the table. The owner and name can be omitted
if you are using this table as the default checkpoint table and this table is specified with
CHECKPOINTTABLE in the GLOBALS file.

Creating an online Extract group

To create an online Extract group, run GGSCI on the source system and issue the ADD
EXTRACT command. Separate all command arguments with a comma.

To create a regular, passive, or data pump Extract group

ADD EXTRACT <group name>

{, <datasource>}

{, BEGIN <start point>} | {<position point>}

[, PASSIVE]

[, THREADS <n>]

[, PARAMS <pathname>]

[, REPORT <pathname>]

[, DESC “<description>”]

Where:

❍ <group name> is the name of the Extract group. A group name is required, can
contain up to eight characters, and is not case-sensitive. See page 121 for more
information.

❍ <datasource> is required to specify the source of the data to be extracted. Use one of
the following:

◗ TRANLOG [<bsds name>] specifies the transaction log as the data source. Use
for all databases except Teradata. Use the <bsds> option for DB2 running on
z/OS to specify the Bootstrap Data Set file name of the transaction log. When
using this option for Oracle Enterprise Edition version 10.2 and later, you must
issue the DBLOGIN command as the Extract database user (or a user with the
same privileges) before using ADD EXTRACT (and also before issuing DELETE
EXTRACT to remove an Extract group).

◗ VAM specifies that the Extract API known as the Vendor Access Module (VAM)
will interface with the Teradata Access Module (TAM). Use for Teradata
databases.

Configuring online change synchronization
Creating an online Extract group

124Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

◗ VAMTRAILSOURCE <VAM trail name> to specify a VAM trail. Use for Teradata
extraction in maximum protection mode to create a VAM-sort Extract group.
For more information, see the Oracle GoldenGate Teradata Installation and
Setup Guide.

◗ EXTTRAILSOURCE <trail name> to specify the relative or fully qualified name
of a local trail. Use to create a data pump. A data pump can be used with any
Oracle GoldenGate extraction method.

❍ BEGIN <start point> defines an online Extract group by establishing an initial
checkpoint and start point for processing. Transactions started before this point
are discarded. Use one of the following:

◗ NOW to begin extracting changes that are timestamped at the point when the
ADD EXTRACT command is executed to create the group. Do not use NOW for a data
pump Extract unless you want to bypass any data that was captured to the
Oracle GoldenGate trail prior to the ADD EXTRACT statement.

◗ <YYYY-MM-DD HH:MM[:SS[.CCCCCC]]> as the format for specifying an exact
timestamp as the begin point. Use a begin point that is later than the time at
which replication or logging was enabled.

NOTE Do not use the BEGIN parameter for a Teradata source.

❍ <position point> specifies a specific position within a specific transaction log file at
which to start processing. For the specific syntax to use for your database, consult
the ADD EXTRACT documentation in the Oracle GoldenGate Windows and UNIX
Reference Guide.

❍ PASSIVE indicates that the group is a passive Extract. When using PASSIVE, you must
also use an alias Extract. See page 106 for more information. This option can
appear in any order among other ADD EXTRACT options.

❍ THREADS <n> is required only for Oracle Real Application Cluster (RAC). It specifies
the number of redo log threads being used by the cluster.

❍ PARAMS <pathname> is required if the parameter file for this group will be stored in a
location other than the dirprm sub-directory of the Oracle GoldenGate directory.
Specify the fully qualified name. The default location is recommended.

❍ REPORT <pathname> is required if the process report for this group will be stored in a
location other than the dirrpt sub-directory of the Oracle GoldenGate directory.
Specify the fully qualified name. The default location is recommended.

❍ DESC “<description>” specifies a description of the group.

To create an alias Extract group

ADD EXTRACT <group name>

, RMTHOST {<host name> | <IP address>}

, {MGRPORT <port>} | {PORT <port}

[, RMTNAME <name>]

[, DESC “<description>”]

Where:

❍ RMTHOST identifies this group as an alias Extract and specifies either the DNS name
of the remote host or its IP address.

❍ MGRPORT specifies the port on the remote system where Manager is running. Use
this option when using a dynamic Collector.

Configuring online change synchronization
Creating a trail

125Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

❍ PORT specifies a static Collector port. Use instead of MGRPORT only if running a static
Collector.

❍ RMTNAME specifies the passive Extract name, if different from that of the alias
Extract.

❍ DESC “<description>” specifies a description of the group.

Example 1 Log-based extraction

This example creates an Extract group named “finance.” Extraction starts with records
generated at the time when the group was created.

ADD EXTRACT finance, TRANLOG, BEGIN NOW

Example 2 Teradata extraction, primary Extract

This example creates an Extract group named “finance” that performs in either Teradata
maximum performance or Teradata maximum protection mode. No BEGIN point is used for
Teradata sources.

ADD EXTRACT finance, VAM

Example 3 Teradata extraction, VAM-sort Extract

This example creates a VAM-sort Extract group named “finance.” The process reads from
VAM trail /ggs/dirdat/vt.

ADD EXTRACT finance, VAMTRAILSOURCE /ggs/dirdat/vt

Example 4 Data-pump Extract group

This example creates a data-pump Extract group named “finance.” It reads from the Oracle
GoldenGate trail c:\ggs\dirdat\lt.

ADD EXTRACT finance, EXTTRAILSOURCE c:\ggs\dirdat\lt

Example 5 Passive Extract group

This example creates a passive Extract group named “finance.” Extraction starts with
records generated at the time when the group was created. Because this group is marked
as passive, an alias Extract on the target will initiate connections to this Extract.

ADD EXTRACT finance, TRANLOG, BEGIN NOW, PASSIVE

Example 6 Passive data-pump Extract group

This example creates a data-pump Extract group named “finance.” This is a passive data
pump Extract that reads from the Oracle GoldenGate trail c:\ggs\dirdat\lt. Because this data
pump is marked as passive, an alias Extract on the target will initiate connections to it.

ADD EXTRACT finance, EXTTRAILSOURCE c:\ggs\dirdat\lt, PASSIVE

Example 7 Alias Extract group

This example creates an alias Extract group named “alias.”

ADD EXTRACT alias, RMTHOST sysA, MGRPORT 7800, RMTNAME finance

Creating a trail

After data has been extracted, it must be processed into one or more trails, where it is
stored for processing by another Oracle GoldenGate process. A trail is a sequence of files

Configuring online change synchronization
Creating a trail

126Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

that are created and aged as needed. Processes that read a trail are:

● VAM-sort Extract: Extracts from a local trail that is created as a VAM trail (for
Teradata source databases). For more information, see the Oracle GoldenGate
Teradata Installation and Setup Guide

● Data-pump Extract: Extracts data from a local trail for further processing, if needed,
and transfers it to the target system.

● Replicat: Reads a trail to apply change data to the target database.

You can create more than one trail to separate the data of different tables or applications.
You link tables specified with a TABLE statement to a trail specified with an EXTTRAIL or
RMTTRAIL parameter statement in the Extract parameter file. For more information about
Oracle GoldenGate trails, see page 14.

To define a trail

In GGSCI on the source system, issue the following command.

ADD {RMTTRAIL | EXTTRAIL} <pathname>, EXTRACT <group name>

[, MEGABYTES <n>]

Where:

❍ RMTTRAIL specifies a trail on a remote system.

❍ EXTTRAIL specifies a trail on the local system.

◗ EXTTRAIL cannot be used for an Extract in PASSIVE mode.

◗ EXTTRAIL must be used to specify a local trail that is read by a data pump or a
VAM trail that is linked to a primary Extract which interacts with a Teradata
Access Module (TAM). For more information about the Teradata configuration,
see the Oracle GoldenGate Teradata Installation and Setup Guide

❍ <pathname> is the relative or fully qualified name of the trail, including a two-
character name that can be any two alphanumeric characters, for example
c:\ggs\dirdat\rt. Oracle GoldenGate appends a serial number to each trail file as it is
created during processing. Typically, trails are stored in the dirdat sub-directory of
the Oracle GoldenGate directory.

❍ EXTRACT <group name> specifies the name of the Extract group that writes to this
trail. Only one Extract group can write to a trail.

❍ MEGABYTES <n> is an optional argument with which you can set the size, in
megabytes, of each trail file (default is 10).

Example This example creates a VAM trail named /ggs/dirdat/vt for Extract group “extvam.”

ADD EXTTRAIL /ggs/dirdat/vt, EXTRACT extvam

Example This example creates a local trail named /ggs/dirdat/lt for Extract group “ext.”

ADD EXTTRAIL /ggs/dirdat/lt, EXTRACT ext

Example This example creates a trail named c:\ggs\dirdat\rt for Extract group “finance,” with each file
sized at approximately 50 megabytes.

ADD RMTTRAIL c:\ggs\dirdat\rt, EXTRACT finance, MEGABYTES 50

Configuring online change synchronization
Creating a parameter file for online extraction

127Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Creating a parameter file for online extraction

Follow these instructions to create a parameter file for an online Extract group. A
parameter file is not required for an alias Extract group. For more information, see page
106.

1. In GGSCI on the source system, issue the following command.

EDIT PARAMS <name>

Where: <name> is either the name of the Extract group that you created with the ADD
EXTRACT command or the fully qualified name of the parameter file if you
defined an alternate location when you created the group.

2. Enter the parameters in Table 10 in the order shown, starting a new line for each
parameter statement. Some parameters apply only for certain configurations.

Table 10 Online change-extraction parameters

Parameter Description

EXTRACT <group name>

◆ <group name> is the name of the Extract
group that you created with the ADD EXTRACT
command.

Configures Extract as an online process with checkpoints.

[SOURCEDB <dsn>,]
[USERID <user id> [, PASSWORD <pw>]]
◆ SOURCEDB specifies a data source name, if

required in the connection information. Not
required for Oracle.

◆ USERID specifies database credentials, if
required. For Oracle, you can include a host
string, for example:
USERID ggs@ora1.ora, PASSWORD ggs123

PASSWORD is not required for NonStop SQL/MX
or DB2.

Specifies database connection information. These
parameters also allow for authentication at the operating-
system level. See the Oracle GoldenGate Windows and
UNIX Reference Guide.

This parameter can be omitted if the group is a data pump
on an intermediary system that does not have a database.
In this case, there can be no column mapping or conversion
performed.

RMTHOST <hostname>,
MGRPORT <portnumber>

Specifies the target system and port where Manager is
running. Only required when sending data over IP to a
remote system (if ADD RMTTRAIL was used to create the
trail). Not required if the trail is on the local system (if ADD
EXTTRAIL was used).

Not valid for a primary Extract group that interfaces with
a Teradata Access Module and writes to a VAM trail. For
more information, see the Oracle GoldenGate Teradata
Installation and Setup Guide

Not valid for a passive Extract group.

Configuring online change synchronization
Creating a parameter file for online extraction

128Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

RMTTRAIL <full_pathname> |
EXTTRAIL <full_pathname>

◆ Use RMTTRAIL to specify the relative or fully
qualified name of a remote trail created
with the ADD RMTTRAIL command.

◆ Use EXTTRAIL to specify the relative or fully
qualified name of a local trail created with
the ADD EXTTRAIL command (to be read by a
data pump or VAM-sort Extract).

Specifies a trail. If specifying multiple trails, follow each
designation with the appropriate TABLE statements.

EXTTRAIL is not valid for a passive Extract group.

If trails or files will be of different versions, use the FORMAT
option of RMTTRAIL or EXTTRAIL. For more information, see
the Oracle GoldenGate Windows and UNIX Reference
Guide.

DSOPTIONS {
COMMITTEDTRANLOG, RESTARTAPPEND |
CREATETRANLOG |
SORTTRANLOG
}

Valid only for Teradata extraction.

◆ Use COMMITTEDTRANLOG, RESTART APPEND to indicate that
Extract is receiving fully committed data in Teradata
maximum performance mode. RESTARTAPPEND appends
data to the end of the Oracle GoldenGate trail rather
than rewriting data from a previous run.

◆ Use CREATETRANLOG to direct Extract to create and write
to a local VAM trail in Teradata maximum protection
mode. Use for a primary Extract group that interfaces
with the Teradata Access Module.

◆ Use SORTTRANLOG to cause Extract to read from a local
VAM trail and sort the data in commit order in
maximum protection mode. Use only for a VAM-sort
Extract group.

For more information about the Teradata configuration,
see the Oracle GoldenGate Teradata Installation and
Setup Guide

VAM <library name>,
PARAMS (“<param>”
[, “<param>”] [, ...])

Valid only for an Extract group that interfaces with a
Teradata Access Module. Supplies the name of the library
and parameters that must be passed to the Oracle
GoldenGate API, such as the name of the TAM
initialization file and the program that interacts with the
library as the callback library.

Example:
VAM vam.dll, PARAMS (“inifile”, “vamerge1.ini”,
“callbacklib”, “extract.exe”)

Table 10 Online change-extraction parameters (continued)

Parameter Description

A trail or extract file must have a version that is equal to,
or lower than, that of the process that reads it. Otherwise
the process will abend. Additionally, Oracle GoldenGate
forces the output trail or file of a data pump to be the same
version as that of its input trail or file. Upon restart,
Extract rolls a trail to a new file to ensure that each file is
of only one version (unless the file is empty).

Configuring online change synchronization
Creating an online Replicat group

129Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

3. Enter any appropriate optional Extract parameters listed in the Oracle GoldenGate
Windows and UNIX Reference Guide.

4. Save and close the parameter file.

Creating an online Replicat group

To create an online Replicat group, run GGSCI on the target system and issue the ADD
REPLICAT command. Separate all command arguments with a comma.

ADD REPLICAT <group name>, EXTTRAIL <pathname>

[, BEGIN <start point> | , EXTSEQNO <seqno>, EXTRBA <rba>]

[, CHECKPOINTTABLE <owner.table>]

[, NODBCHECKPOINT]

[, PARAMS <pathname>]

[, REPORT <pathname>]

Where:

❍ <group name> is the name of the Replicat group. A group name is required, can
contain up to eight characters, and is not case-sensitive. See page 121 for more
information.

❍ EXTTRAIL <pathname> is the relative or fully qualified name of the trail that you
defined with the ADD RMTTRAIL command.

❍ BEGIN <start point> defines an online Replicat group by establishing an initial
checkpoint and start point for processing. Use one of the following:

◗ NOW to begin replicating changes timestamped at the point when the ADD
REPLICAT command is executed to create the group.

◗ <YYYY-MM-DD HH:MM[:SS[.CCCCCC]]> as the format for specifying an exact
timestamp as the begin point.

PASSTHRU | NOPASSTHU (For a data pump) Specifies whether or not subsequent
TABLE specifications will use normal or pass-through
processing.

SEQUENCE <owner>.<sequence>;

◆ <owner> is the schema name.

◆ <sequence> is the name of the sequence.

Specifies an Oracle sequence to capture.

TABLE <owner>.<table>;

◆ <owner> is the schema name.

◆ <table> is the name of the table or a group of
tables defined with wildcards.

To exclude tables from a wildcard
specification, use the TABLEEXCLUDE parameter.

Specifies a table or tables for which to extract data
changes.

Schema names cannot be wildcarded. To extract data from
tables in multiple schemas, use a separate TABLE statement
for each schema. For example:
TABLE fin.*;
TABLE hr.*;

Table 10 Online change-extraction parameters (continued)

Parameter Description

Configuring online change synchronization
Creating a parameter file for online replication

130Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

❍ EXTSEQNO <seqno>, EXTRBA <relative byte address> specifies the sequence number of the
file in a trail in which to begin reading data and the relative byte address within
that file. By default, processing begins at the beginning of a trail unless this option
is used. For the sequence number, specify the number, but not any zeroes used for
padding. For example, if the trail file is c:\ggs\dirdat\aa000026, you would specify
EXTSEQNO 26. Contact Oracle Support before using this option. For more
information, go to http://support.oracle.com.

❍ CHECKPOINTTABLE <owner.table> specifies the owner and name of a checkpoint table
other than the default specified in the GLOBALS file. To use this argument, you must
add the checkpoint table to the database with the ADD CHECKPOINTTABLE command
(see “Initial synchronization” on page 120).

❍ NODBCHECKPOINT specifies that this Replicat group will not use a checkpoint table.

❍ PARAMS <pathname> is required if the parameter file for this group will be stored in a
location other than the dirprm sub-directory of the Oracle GoldenGate directory.
Specify the fully qualified name. The default location is recommended.

❍ REPORT <pathname> is required if the process report for this group will be stored in a
location other than the dirrpt sub-directory of the Oracle GoldenGate directory.
Specify the fully qualified name. The default location is recommended.

Example The following creates an online Replicat group named “finance” and specifies a trail of
“c:\ggs\dirdat\rt.” The parameter file is stored in the alternate location of \ggs\params, and the
report file is stored in its default location.

ADD REPLICAT finance, EXTTRAIL c:\ggs\dirdat\rt, PARAMS \ggs\params

Creating a parameter file for online replication

Follow these instructions to create a parameter file for an online Replicat group.

1. In GGSCI on the target system, issue the following command.

EDIT PARAMS <name>

Where: <name> is either the name of the Replicat group that you created with the ADD
REPLICAT command or the fully qualified name of the parameter file if you
defined an alternate location when you created the group.

2. Enter the parameters listed in Table 11 in the order shown, starting a new line for each
parameter statement.

Table 11 Online change-replication parameters

Parameter Description

REPLICAT <group name>

◆ <group name> is the name of the Replicat
group that you created with the ADD REPLICAT
command.

Configures Replicat as an online process with
checkpoints.

Configuring online change synchronization
Creating a parameter file for online replication

131Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

{SOURCEDEFS <full_pathname>} |
ASSUMETARGETDEFS

◆ Use SOURCEDEFS if the source and target
tables have different definitions. Specify the
source data-definitions file generated by
DEFGEN. See Chapter 11 for more information.

◆ Use ASSUMETARGETDEFS if the source and
target tables have the same definitions.

Specifies how to interpret data definitions.

For Oracle databases that use multi-byte character sets,
you must use SOURCEDEFS (with a DEFGEN-generated
definitions file) if the source semantics setting is in bytes
and the target is in characters. This is required even
when the source and target data definitions are identical.
See page 150 for more information.

DISCARDFILE <full_pathname>
[, MEGABYTES <n>]
[, PURGE]

◆ <full pathname> is the relative or fully qualified
name of the discard file. The default location
is the dirrpt sub-directory of the Oracle
GoldenGate directory.

◆ MEGABYTES <n> specifies the maximum size of
the discard file.

◆ PURGE overwrites any existing discard files.

Specifies a file to which Replicat writes rejected record
data, for example records that generated database errors.
A discard file is optional but recommended.

[DEFERAPPLYINTERVAL <n><unit>]

◆ <n> is a numeric value for the amount of time
to delay. Minimum is set by the EOFDELAY
parameter. Maximum is seven days.

◆ <unit> can be:
S | SEC | SECS | SECOND | SECONDS | MIN | MINS | MINUTE
| MINUTES | HOUR | HOURS | DAY | DAYS

Optional. Specifies an amount of time for Replicat to wait
before applying captured transactions to the target
system.

[TARGETDB <dsn>,]
[USERID <user id>[, PASSWORD <pw>]]
◆ TARGETDB specifies a data source name, if

required in the connection information. Not
required for Oracle.

◆ USERID specifies database credentials, if
required. For Oracle, you can include a host
string, for example:
USERID ggs@ora1.ora, PASSWORD ggs123

Specifies database connection information. These
parameters also allow for authentication at the
operating-system level. See the Oracle GoldenGate
Windows and UNIX Reference Guide.

Table 11 Online change-replication parameters (continued)

Parameter Description

Configuring online change synchronization
Controlling online processes

132Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

3. [Enter any appropriate optional Replicat parameters listed in the Oracle GoldenGate
Windows and UNIX Reference Guide.

4. Save and close the file.

Controlling online processes

To start and stop online processes, use GGSCI.

NOTE On Windows Server 2008 with User Account Control enabled, you will receive a
UAC prompt when starting an Oracle GoldenGate process if Manager was not
installed as a Windows service.

To start online processes for the first time

Typically, the first time that Oracle GoldenGate processes are started in a production
setting is during the initial synchronization process, assuming source user applications
must remain active. While the target is loaded with the source data, Oracle GoldenGate
captures ongoing user changes and then reconciles them with the results of the load. For
more information, see Chapter 16 on page 214.

NOTE The first time that Extract starts in a new Oracle GoldenGate configuration, any
open transactions will be skipped. Only transactions that begin after Extract starts
are captured.

To start an online process

START {EXTRACT | REPLICAT} <group_name>

Where:

<group_name> is the name of the Extract or Replicat group or a wildcard set of groups
(for example, * or fin*).

NOTE When Extract is in PASSIVE mode, it can be started only by starting the associated
alias Extract. See page 106 for more information.

See the Oracle GoldenGate Windows and UNIX Reference Guide for additional START
REPLICAT options that can be used as needed to skip the first transaction in the trail or start
at a specific transaction.

MAP <owner>.<table>,
TARGET <owner>.<table>[, DEF <template
name>];

◆ <owner> is the schema name.

◆ <table> is the name of a table or a wildcard
definition for multiple tables.

◆ [, DEF <template name>] specifies a definitions
template. (See Chapter 11.)

Specifies a relationship between a source and target table
or tables.

Schema names cannot be wildcarded. To extract data
from tables in multiple schemas, use a separate MAP
statement for each schema. For example:
MAP fin.*, TARGET fin.*;
MAP hr.*, TARGET hr.*;

To exclude tables from a wildcard specification, use the
MAPEXCLUDE parameter.

Table 11 Online change-replication parameters (continued)

Parameter Description

Configuring online change synchronization
Deleting a process group

133Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

To auto-start a process

● Use AUTOSTART in the Manager parameter file to start one or more processes when
Manager starts.

● Use AUTORESTART in the Manager parameter file to restart a process after a failure.

Both of these parameters reduce the need to start a process manually with the START
command.

To stop an online process gracefully

STOP {EXTRACT | REPLICAT} <group_name>

Where:

<group_name> is the name of the Extract or Replicat group or a wildcard set of groups
(for example, * or fin*).

NOTE When an Extract is running in PASSIVE mode, it can only be stopped by stopping the
associated alias Extract. See page 106 for more information.

To stop Replicat forcefully

STOP REPLICAT <group name> !

The current transaction is aborted and the process stops immediately. You cannot stop
Extract forcefully.

To kill a process that STOP cannot stop

KILL {EXTRACT | REPLICAT} <group name>

Killing a process does not shut it down gracefully, and checkpoint information can be lost.

To control multiple processes at once

<command> ER <wildcard specification>

Where:

❍ <command> is: KILL, START, or STOP

❍ <wildcard specification> is a wildcard specification for the names of the process groups
that you want to affect with the command. The command affects every Extract and
Replicat group that satisfies the wildcard. Oracle GoldenGate supports up to
100,000 wildcard entries.

Deleting a process group

After stopping an online process, you can delete the group. Deleting a group preserves the
parameter file. You can create the same group again, using the same parameter file, or you
can delete the parameter file to remove the group’s configuration permanently.

To delete an Extract group

1. Run GGSCI.

Configuring online change synchronization
Deleting a process group

134Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

2. (Oracle Enterprise Edition 10.2 or later) Issue the DBLOGIN command as the Extract
database user (or a user with the same privileges).

DBLOGIN USERID <Extract_user> [, PASSWORD <password>]

3. Issue the following command.

DELETE EXTRACT <group> [!]

The ! argument deletes all Extract groups that satisfy a wildcard without prompting.

To delete a Replicat group

1. If using a checkpoint table for this group, issue the following command from GGSCI to
log into the database.

DBLOGIN [SOURCEDB <dsn>] [USERID <user>[, PASSWORD <password>]]

Where:

❍ SOURCEDB <dsn> supplies the data source name, if required as part of the connection
information.

❍ USERID <user>, PASSWORD <password> supplies database credentials, if required.

2. Issue the following command to delete the group.

DELETE REPLICAT <group>

Instead of logging into the database with DBLOGIN, you can use the ! option with DELETE
REPLICAT.

DELETE REPLICAT <group> !

DELETE REPLICAT deletes the checkpoint file, but preserves the checkpoints in the
checkpoint table. The basic DELETE REPLICAT command commits the Replicat transaction,
but the ! option prevents the commit.

135Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHAPTER 13

Configuring change synchronization as a batch
run
.

Overview of batch change synchronization

You can configure Extract and Replicat to perform an individual batch run (or special run)
to extract and replicate data changes that were generated between a specific start time and
end time. Checkpoints are not recorded during a batch run, because a recovery point is not
needed. In the event of a process failure, you can simply start the run over again using the
same start and end points.

The following summarizes the steps required to establish a batch run:

● Create a batch Extract parameter file.

● Create a batch Replicat parameter file.

● Start processes from the command shell of the operating system.

If this is the first time you are running Oracle GoldenGate to synchronize data changes,
you may need to perform an initial load to prepare the target tables for synchronization.
An initial load takes a copy of entire source tables, transforms the data if necessary, and
applies it to the target tables so that the movement of transaction data begins from a
synchronized state. See “Running an initial data load” on page 214.

Creating a parameter file for batch extraction

1. From the Oracle GoldenGate directory on the source system, run GGSCI.

2. In GGSCI, issue the following command.

EDIT PARAMS <name>

Where: <name> is a name for the Extract group, up to eight characters, not case-
sensitive.

3. Enter the parameters listed in Table 12 in the order shown, starting a new line for each
parameter statement.

Configuring change synchronization as a batch run
Creating a parameter file for batch extraction

136Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Table 12 Batch change-extraction parameters

Parameter Description

SPECIALRUN
TRANLOG [<bsds name>] |
EXTTRAILSOURCE <trail name>] |
EXTFILESOURCE <file name>}

◆ TRANLOG extracts from the transaction logs. Use
for log-based extraction. Use the <bsds> option for
DB2 on z/OS to specify the Bootstrap Data Set file
name of the transaction log.

◆ EXTTRAILSOURCE <trail name> extracts from a local
trail. Use when processing from a set of trails.

◆ EXTFILESOURCE extracts from a local extract file.
Use for a data pump.

Specify relative or full path names for both file types.

Configures Extract as a batch run for which
checkpoints are not required.

If using a data pump, you can extract either from a
trail or an extract file.

BEGIN <begin time>

◆ <begin time> is a date in the format of yyyy-mm-dd
hh:mi[:ss[.ccccccc]].

Specifies the transaction commit time at which to
start processing.

END {<end time> | RUNTIME}

◆ <end time> is a date in the format of yyyy-mm-dd
[hh:mi[:ss[.cccccc]].

◆ RUNTIME causes Extract to terminate when it
reaches process startup time. With RUNTIME, you
need not alter the parameter file to change dates
and times from run to run.

Specifies the transaction commit time at which to
stop processing.

[SOURCEDB <dsn>,]
[USERID <user id>[, PASSWORD <pw>]]
◆ SOURCEDB specifies a data source name, if required

in the connection information. Not required for
Oracle.

◆ USERID specifies database credentials, if required.
For Oracle, you can include a host string, for
example:
USERID ggs@ora1.ora, PASSWORD ggs123

PASSWORD is not required for NonStop SQL/MX or
DB2.

Specifies database connection information. These
parameters also allow for authentication at the
operating-system level. See the Oracle GoldenGate
Windows and UNIX Reference Guide.

This parameter can be omitted if the group is a data
pump on an intermediary system that does not have
a database. In this case, there can be no column
mapping or conversion performed.

RMTHOST <hostname>,
MGRPORT <portnumber>

Specifies the target system and port where Manager
is running. This option is only required when
sending data over IP to a remote system.

Configuring change synchronization as a batch run
Creating a parameter file for batch replication

137Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

4. Enter any appropriate optional Extract parameters listed in the Oracle GoldenGate
Windows and UNIX Reference Guide.

5. Save and close the parameter file.

Creating a parameter file for batch replication

1. From the Oracle GoldenGate directory on the target system, run GGSCI.

2. In GGSCI, issue the following command.

EDIT PARAMS <name>

Where: <name> is a name for the Replicat group, up to eight characters, not case-
sensitive.

3. Enter the parameters listed in Table 13 in the order shown, starting a new line for each
parameter statement.

RMTFILE <full_pathname> |
EXTFILE <full_pathname>

◆ RMTFILE specifies an extract file on the target
system.

◆ EXTFILE specifies a local extract file (for use with a
data pump).

Specify a relative or fully qualified file name.

Specifies an extract file in which data changes will
be stored temporarily. If specifying multiple files,
follow each designation with the appropriate TABLE
statements.

If files will be of different versions, use the FORMAT
option of RMTTRAIL or EXTTRAIL. For more information,
see the Oracle GoldenGate Windows and UNIX
Reference Guide.

PASSTHRU | NOPASSTHU (For a data pump) Specifies whether or not
subsequent TABLE specifications will use normal or
pass-through processing.

TABLE <owner>.<table>;

◆ <owner> is the schema name.

◆ <table> is the name of the table or a group of tables
defined with wildcards.

Specifies a table or tables for which to extract data
changes.

To exclude tables from a wildcard specification, use
the TABLEEXCLUDE parameter.

Table 12 Batch change-extraction parameters (continued)

Parameter Description

A trail or extract file must have a version that is
equal to, or lower than, that of the process that reads
it. Otherwise the process will abend. Additionally,
Oracle GoldenGate forces the output trail or file of a
data pump to be the same version as that of its input
trail or file. Upon restart, Extract rolls a trail to a
new file to ensure that each file is of only one version
(unless the file is empty).

Configuring change synchronization as a batch run
Creating a parameter file for batch replication

138Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Table 13 Batch change-replication parameters

Parameter Description

SPECIALRUN Configures Replicat as a batch run.

BEGIN <begin time>

◆ <begin time> is a date in the format of yyyy-mm-dd
hh:mi[:ss[.ccccccc]].

Specifies the transaction commit time at which to
start processing.

END {<end time> | RUNTIME}

◆ <end time> is a date in the format of yyyy-mm-dd
[hh:mi[:ss[.cccccc]].

◆ RUNTIME causes Replicat to terminate when it
reaches process startup time. With RUNTIME, you
need not alter the parameter file to change dates
and times from run to run.

Specifies the transaction commit time at which to
stop processing.

EXTFILE <file name> Specifies the relative or fully qualified name of the
extract file that was specified with RMTFILE or EXTFILE
in the Extract parameter file.

{SOURCEDEFS <file name>} |
ASSUMETARGETDEFS

◆ Use SOURCEDEFS if the source and target tables
have different definitions. Specify the relative or
full path name of the source-definitions file
generated by DEFGEN. See Chapter 11 for more
information.

◆ Use ASSUMETARGETDEFS if the source and target
tables have the same definitions.

Specifies how to interpret data definitions.

For Oracle databases that use multi-byte character
sets, you must use SOURCEDEFS (with a DEFGEN-
generated definitions file) if the source semantics
setting is in bytes and the target is in characters.
This is required even when the source and target
data definitions are identical.

DISCARDFILE <full_pathname>
[, MEGABYTES <n>]
[, PURGE]

◆ <full pathname> is the relative or fully qualified
name of the discard file. The default location is
the dirrpt sub-directory of the Oracle
GoldenGate directory.

◆ MEGABYTES <n> specifies the maximum size of the
discard file.

◆ PURGE overwrites any existing discard files.

Specifies the file to which Replicat writes rejected
record data, for example records that generated
database errors. A discard file is optional but
recommended.

Configuring change synchronization as a batch run
Starting processes from the command shell of the operating system

139Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

4. Enter any appropriate optional Replicat parameters listed in the Oracle GoldenGate
Windows and UNIX Reference Guide.

5. Save and close the file.

Starting processes from the command shell of the operating system

To start a batch change-synchronization job, run the extract and replicat programs from the
command shell of the operating system. A batch run terminates by itself according to the
END parameter.

NOTE On Windows Server 2008 with User Account Control enabled, you will receive a
UAC prompt when starting an Oracle GoldenGate process if Manager was not
installed as a Windows service.

To start processes from the command shell

1. (Valid only for a passive-alias Extract configuration) Start a static Collector process.

server –h <host> -p <port>

Where:

❍ -h <host> is the name or IP address of the source system.

❍ -p <port is the port number where Extract on that system will be listening for
Collector to open a connection.

2. From the Oracle GoldenGate directory on the source system, run GGSCI.

[TARGETDB <dsn>,]
[USERID <user id>[, PASSWORD <pw>]]
◆ TARGETDB specifies a data source name, if required

in the connection information. Not required for
Oracle.

◆ USERID specifies database credentials, if required.
For Oracle, you can include a host string, for
example:
USERID ggs@ora1.ora, PASSWORD ggs123

Specifies database connection information. These
parameters also allow for authentication at the
operating-system level. See the Oracle GoldenGate
Windows and UNIX Reference Guide.

MAP <owner>.<table>,
TARGET <owner>.<table>[, DEF <template
name>];

◆ <owner> is the schema name.

◆ <table> is the name of a table or a wildcard
definition for multiple tables.

◆ [, DEF <template name>] specifies a definitions
template. (See Chapter 11.)

Specifies a relationship between a source and target
table or tables.

To exclude tables from a wildcard specification, use
the MAPEXCLUDE parameter.

Table 13 Batch change-replication parameters (continued)

Parameter Description

Configuring change synchronization as a batch run
Starting processes from the command shell of the operating system

140Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

3. In GGSCI on the source and target systems, start Manager.

START MANAGER

NOTE In a Windows cluster, start the Manager resource from the Cluster Administrator.

4. On the source and target systems, issue one of the following sets of commands,
depending on the process you are starting. Run the programs from the Oracle
GoldenGate directory.

extract paramfile <name>.prm reportfile <name>.rpt [-p <port>]

or...

replicat paramfile <name>.prm reportfile <name>.rpt

Where:

❍ paramfile <name>.prm is the relative or fully qualified name of the parameter file. The
command name can be abbreviated to pf.

❍ reportfile <name>.rpt is the relative or fully qualified name of the report file. The
command name can be abbreviated to rf.

❍ -p <port> is the local port number where Extract will be listening for Collector to
open a connection. Use this option only to start Extract in passive mode. For more
information on the passive-alias Extract configuration, see page 106.

NOTE In batch mode, an alias Extract is not required because GGSCI is not being used
to start processes.

141Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHAPTER 14

Configuring DDL synchronization for an Oracle
database
.

Overview of DDL synchronization

Oracle GoldenGate supports the synchronization of DDL operations from one database to
another. DDL synchronization can be active when:

● business applications are actively accessing and updating the source and target objects.

● Oracle GoldenGate transactional data synchronization is active.

The components that support the replication of DDL and the replication of transactional
data changes (DML) are independent of each other. Therefore, you can synchronize:

● just DDL changes

● just DML changes

● both DDL and DML

For example, if you use batch runs to keep the target objects current, you can configure
DDL synchronization as a continuous (online) run, so that the target metadata is always
up-to-date when the batch loads are performed. The Oracle GoldenGate batch load will use
the current metadata from the source and target catalogs.

For a list of supported objects and operations for DDL support for Oracle, see the Oracle
GoldenGate Oracle Installation and Setup Guide.

Limitations of Oracle GoldenGate DDL support

DDL statement length

Oracle GoldenGate measures the length of a DDL statement in bytes, not in characters.
The supported length is approximately 2 MB, allowing for some internal overhead that can
vary in size depending on the name of the affected object and its DDL type, among other
characteristics. If the DDL is longer than the supported size, Extract will issue a warning
and ignore the DDL operation.

The ignored DDL is saved in the marker table. You can capture Oracle DDL statements
that are ignored, as well as any other Oracle DDL statement, by using the ddl_ddl2file.sql
script, which saves the DDL operation to a text file in the USER_DUMP_DEST directory of

Configuring DDL synchronization for an Oracle database
Limitations of Oracle GoldenGate DDL support

142Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Oracle. The script prompts for the following input:

● The name of the schema that contains the Oracle GoldenGate DDL objects, which is
specified in the GLOBALS file

● The Oracle GoldenGate marker sequence number, which is recorded in the Extract
report file when DDLOPTIONS with the REPORT option is used in the Extract parameter file

● A name for the output file

System configuration

● Oracle GoldenGate supports DDL replication in uni-directional configurations and also
in bi-directional configurations (active-passive and active-active) between two, and
only two, systems. For special considerations in an Oracle active-active configuration,
see “Propagating DDL in an active-active (bi-directional) configurations” on page 168.

● Oracle GoldenGate supports DDL synchronization only in a like-to-like configuration.
Oracle GoldenGate DDL support requires the following:

❍ Source and target object definitions must be identical.

❍ The ASSUMETARGETDEFS parameter must be used in the Replicat parameter file.
Replicat will abend if objects are configured for DDL support and the SOURCEDEFS
parameter is being used. For more information about ASSUMETARGETDEFS, see the
Oracle GoldenGate Windows and UNIX Reference Guide.

Filtering, mapping, and transformation

DDL

DDL operations cannot be transformed by any Oracle GoldenGate process. You can use
simple string substitution, and you can map schema and object names as follows:

● Source DDL can be mapped and filtered to a different target object by a primary
Extract or a Replicat process, but the mapping or filtering of DDL by a data-pump
Extract is not permitted. DDL is propagated through a data pump in PASSTHRU mode
(non-mapped or filtered).

● As a result, DDL that is performed on a source table of a certain name (for example
ALTER TABLE TableA...) will be processed by the data pump with the same table name (ALTER
TABLE TableA). It cannot be mapped by that process as ALTER TABLE TableB, regardless of any
TA BLE statements that specify otherwise.

DML

Because DDL is passed through unchanged and unmapped by a data pump , consider this
limitation if you intend to perform DML manipulation that maps source tables to different
target names. Perform filtering, mapping, and transformation of DML with the primary
Extract or with Replicat, and configure those tables for PASSTHRU mode in the data pump .

If a data pump must performDML manipulation that includes name mapping, then you
must also configure Replicat to perform the corresponding name mapping for replicated
DDL for those tables.

NOTE Tables that do not use DDL support can be configured in NOPASSTHRU mode to
allow data filtering, and manipulation by the data pump.

Configuring DDL synchronization for an Oracle database
Special DDL cases and their treatment

143Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

To configure a table for data pass-through

1. In the parameter file of the data pump , place the PASSTHRU parameter before all of the
TABLE statements that contain tables that use DDL support.

2. In the same parameter file, you can place the NOPASSTHRU parameter before any TABLE
statements that contain tables that do not use DDL support, if you want data filtering,
mapping, or transformation to be performed for them.

3. Do not use any of the DDL configuration parameters for a data pump: DDL, DDLOPTIONS,
DDLSUBST, PURGEDDLHISTORY, PURGEMARKERHISTORY, DDLERROR, or any of the Oracle
GoldenGate tracing parameters with DDL options.

For more information about PASSTHRU, see the Oracle GoldenGate Windows and UNIX
Reference Guide.

SQLEXEC

● All objects that are affected by a SQLEXEC stored procedure or query must exist with the
correct structures prior to the execution of the SQL. Consequently, DDL on these
objects that affects structure (such as CREATE or ALTER) must happen before the SQLEXEC
executes.

● All objects affected by a standalone SQLEXEC statement must exist before the Oracle
GoldenGate processes start. Because of this, DDL support must be disabled for those
objects; otherwise, DDL operations could change the structure or delete the object
before the SQLEXEC procedure or query executes on it.

User Exits

Use the GET_DDL_RECORD_PROPERTIES function to return a DDL operation, including
information about the object on which the DDL was performed and also the text of the DDL
statement itself. The Extract process can only get the source table layout. The Replicat
process can get source or target layouts.

This user exit only provides retrieval capability. Oracle GoldenGate does not provide a
function for manipulating DDL records.

Special DDL cases and their treatment

Truncates

TRUNCATE statements can be replicated as follows:

● As part of the Oracle GoldenGate full DDL support, which supports TRUNCATE TABLE,
ALTER TABLE TRUNCATE PARTITION, and other DDL as documented in the Oracle GoldenGate
Windows and UNIX Administrator’s Guide.

● As standalone TRUNCATE support. This support enables you to replicate TRUNCATE TABLE,
but no other DDL. The GETTRUNCATES parameter controls the standalone TRUNCATE
feature. For more information, see the Oracle GoldenGate Windows and UNIX
Reference Guide.

To avoid errors from duplicate operations, only one of these features can be active at the
same time.

Configuring DDL synchronization for an Oracle database
Special DDL cases and their treatment

144Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Renames

● RENAME operations on tables are converted to the equivalent ALTER TABLE RENAME. For
example RENAME tab1 TO tab2 would be changed to ALTER TABLE tab1 RENAME TO tab2. The
reason for this conversion is that RENAME does not support the use of a schema name,
but ALTER TABLE RENAME does. Oracle GoldenGate makes the conversion so that a schema
name can be included in the target DDL statement. The conversion is reported in the
Replicat process report file.

● An ALTER TABLE RENAME will fail if the old or new table name is longer than 18 characters
(16 for the name and two for the quotation marks). Oracle only allows 18 characters for
a rename because of the ANSI limit for identifiers.

● RENAME operations on sequences and views cannot be converted to an ALTER statement,
because there is no such statement in Oracle for sequences and views. Consequently,
sequence renames are always replicated on the target with the same owner and object
name as in the source DDL and cannot be mapped to something different.

LOB columns

It is possible for DDL to be executed on a source object between the time when a data
(DML) operation occurs on that object and the time when Extract captures that operation
from the redo log, if there is Extract lag. Because Extract processes transaction records
sequentially, and because both the DDL and DML are recorded in the log, the new
metadata usually is resolved before the DML record is encountered. However, in the case
of a LOB, Extract might need to fetch a LOB value from a Flashback Query, which can
provide metadata out of sequence.

The reason for this inconsistency is that Oracle does not provide Flashback capability for
DDL (except DROP). When a LOB is fetched, the object structure reflects current metadata,
but the LOB record in the transaction log reflects old metadata.

To resolve these differences in structure, Oracle GoldenGate compiles a common set of
columns that match in name, type and length, and then the LOB data is fetched from those
columns. The net result is:

● Fetched data could be newer than the data that is being processed by Extract or, in the
case of columns that were dropped, not present.

● The DDL could drop a column and then recreate it with the same name but a different
data type. (This is the worst-case scenario). In this case, the incompatibility between
the transaction record (old data type) and the database record (new data type) can
cause Replicat processing errors.

To prevent LOB inconsistencies

● Keep Extract lag small or perform DDL operations on tables that contain LOBs when
transactional volume is low or absent, and only after the DML in the Oracle
GoldenGate trail is processed by Replicat. You can find suggestions for reducing lag in
the Oracle GoldenGate Windows and UNIX Troubleshooting and Tuning Guide.

● If there are DML operations remaining to be processed by Replicat, do not execute DDL
on the columns that are being used by Oracle GoldenGate as row identifiers on tables
that contain LOBs. A row identifier can be the primary key columns, columns on which

Configuring DDL synchronization for an Oracle database
Special DDL cases and their treatment

145Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

a unique key is defined, or columns configured as a substitute key with a KEYCOLS clause
in a TABLE or MAP parameter. In the absence of any of those identifiers, the row
identifier will be all of the columns in the row. If DDL must be performed on identifier
columns, take the following steps.

To perform DDL on row identifiers in tables that contain LOBs

1. Pause source DML operations.

2. Wait until Replicat finishes processing all of the data in the trail. To determine when
Replicat is finished, issue the following command until you see a message that there is
no more data to process.

INFO REPLICAT <group>

3. Execute the DDL on the source.

4. Resume source DML operations.

User defined types

● DDL operations that involve user defined types generate implied DML operations on
both the source and target. To avoid SQL errors that would be caused by redundant
operations, Oracle GoldenGate does not replicate those DML operations.

● If DML is being replicated for a user defined type, Extract must process all of those
changes before DDL can be performed on the object. Because UDT data might be
fetched by Extract, the reasons for this rule are similar to those that apply to LOB
columns. (See the “LOB columns” topic.)

To perform DDL on an Oracle UDT if change data is being captured

1. Stop DML operations on the object.

2. Continue to compare the source object with the target object until they are both
identical. This proves that Extract captured the remaining data changes from the
transaction log and sent them to the target.

3. Perform the DDL.

4. Resume DML operations.

Comments in SQL

If a source DDL statement contains a comment in the middle of an object name, that
comment will appear at the end of the object name in the target DDL statement. For
example:

This does not affect the integrity of DDL synchronization. Comments in any other area of
a DDL statement remain in place when replicated.

Source Target

CREATE TABLE hr./*comment*/emp ... CREATE TABLE hr.emp /*comment*/ ...

Configuring DDL synchronization for an Oracle database
Configuration guidelines for DDL support

146Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Compilation errors

If a CREATE operation on a trigger, procedure, function, or package results in compilation
errors, Oracle GoldenGate executes the DDL operation on the target anyway. Technically,
the DDL operations themselves completed successfully and should be propogated to allow
dependencies to be executed on the target, for example in recursive procedures.

Interval partitioning

DDL replication is unaffected by interval partitioning, because the DDL is implicit.

Configuration guidelines for DDL support

Database privileges

See the Oracle GoldenGate Oracle Installation and Setup Guide for database privileges
that are required for Oracle GoldenGate to support DDL capture and replication.

Initial synchronization

● To configure DDL replication, start with a target database that is synchronized with
the source database. DDL support is compatible with the Replicat initial load method.

● Before executing an initial load, disable DDL extraction and replication. DDL
processing is controlled by the DDL parameter in the Extract and Replicat parameter
files.

● After initial synchronization of the source and target data, use all of the source
sequence values at least once with NEXTVAL before you run the source applications. You
can use a script that selects NEXTVAL from every sequence in the system. This must be
done while Extract is running.

Process topology

● If using parallel Extract and/or Replicat processes, keep related DDL and DML
together in the same process stream to ensure data integrity. Configure the processes
so that:

❍ all DDL and DML for any given object are processed by the same Extract group and
by the same Replicat group.

❍ all objects that are relational to one another are processed by the same process
group.

For example, if ReplicatA processes DML for Table1, then it should also process the DDL
for Table1. If Table2 has a foreign key to Table1, then its DML and DDL operations also
should be processed by ReplicatA.

● If an Extract group writes to multiple trails that are read by different Replicat groups,
Extract sends all of the DDL to all of the trails. Use each Replicat group to filter the
DDL by using the filter options of the DDL parameter in the Replicat parameter file.

Configuring DDL synchronization for an Oracle database
Understanding DDL scopes

147Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Object names

● Oracle GoldenGate supports object names that contain multibyte characters and
special alphanumeric characters, such as !, $, and #. Limitations apply when objects
are mapped with TABLE or MAP parameters, because those parameters do not support all
of the possible special characters. DDL on objects in MAP and TABLE statements inherit
the limitations of those parameters. For more information about these parameters, see
the documentation for MAP and TABLE in the Oracle GoldenGate Windows and UNIX
Reference Guide.

● You can use standard Oracle GoldenGate asterisk wildcards (*) to specify object names
in configuration parameters that support DDL synchronization. To process wildcards
correctly, the WILDCARDRESOLVE parameter is set to DYNAMIC by default. If
WILDCARDRESOLVE is set to anything else, the Oracle GoldenGate process that is
processing DDL operations will abend and write the error to the process report.

● You can use the asterisk (*) wildcard to specify Oracle schema names in configuration
parameters that support DDL synchronization. This feature is disabled by default. To
enable it, use the _ALLOWWILDCARDSCHEMAS parameter in the GLOBALS parameter file.
This is an unpublished parameter. Please contact Oracle Support before using this
parameter.

● Oracle GoldenGate supports the use of a space before, after, or both before and after,
the dot that separates owner and object names in a DDL statement. Only one space on
each side of the dot is supported. For example, the following are valid:
CREATE TABLE fin . customers...

CREATE TABLE fin. customers...

CREATE TABLE fin .customers...

Data continuity after CREATE or RENAME

To replicate DML operations on new Oracle tables resulting from a CREATE or RENAME
operation, the names of the new tables must be specified in TABLE and MAP statements in
the parameter files. You can use wildcards to make certain that they are included.

To create a new user with CREATE USER and then move new or renamed tables into that
schema, the new user name must be specified in TABLE and MAP statements. To create a new
user “fin2” and move new or renamed tables into that schema, the parameter statements
could look as follows, depending on whether you want the “fin2” objects mapped to the same,
or different, schema on the target:

Extract:

TABLE fin2.*;

Replicat:

MAP fin2*, TARGET <different_schema>.*;

Understanding DDL scopes

Database objects are classified into scopes. A scope is a category that defines how DDL
operations on an object are handled by Oracle GoldenGate. The scopes are:

● MAPPED

● UNMAPPED

● OTHER

Configuring DDL synchronization for an Oracle database
Understanding DDL scopes

148Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

The use of scopes enables granular control over the filtering of DDL operations, string
substitutions, and error handling.

Mapped scope

Objects that are specified in TABLE and MAP statements are of MAPPED scope. Extraction
and replication instructions in those statements apply to both data (DML) and DDL on the
specified objects, unless override rules are applied.

For objects in TABLE and MAP statements, the DDL operations listed in the following table
are supported.

For Extract, MAPPED scope marks an object for DDL capture according to the instructions
in the TABLE statement. For Replicat, MAPPED scope marks DDL for replication and maps it
to the object specified by the schema and name in the TARGET clause of the MAP statement.
To perform this mapping, Replicat issues ALTER SESSION to set the schema of the Replicat
session to the schema that is specified in the TARGET clause. If the DDL contains unqualified
objects, the schema that is assigned on the target depends on circumstances described in
“Correctly identifying unqualified object names in DDL” on page 150.

Table 14 Objects that can be mapped in MAP and TABLE statements

Operations Object1

1 TABLE and MAP do not support some special characters that could be used in an object
name affected by these operations. For a list of those characters, see the MAP and TABLE
parameter descriptions in the Oracle GoldenGate Windows and UNIX Reference Guide.
Objects with non-supported special characters are supported by the scopes of UN-
MAPPED and OTHER.

CREATE

ALTER

DROP

RENAME

COMMENT ON2

2 Applies to COMMENT ON TABLE, COMMENT ON COLUMN.

TABLE (includes AS SELECT)

INDEX

TRIGGER

SEQUENCE

MATERIALIZED VIEW

VIEW

FUNCTION

PACKAGE

PROCEDURE

SYNONYM

PUBLIC SYNONYM3

3 Table name must be qualified with schema name.

GRANT

REVOKE

TABLE

SEQUENCE

MATERIALIZED VIEW

ANALYZE TABLE

INDEX

CLUSTER

Configuring DDL synchronization for an Oracle database
Understanding DDL scopes

149Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Assume the following TABLE and MAP statements:

Also assume a source DDL statement of:

ALTER TABLE fin.expen ADD notes varchar2(100);

In this example, because the source table “fin.expen” is in a MAP statement with a TARGET
clause that maps to a different owner and table name, the target DDL statement becomes:

ALTER TABLE fin2.expen2 ADD notes varchar2(100);

Likewise, the following source and target DDL statements are possible for the second set
of TABLE and MAP statements in the example:

When objects are of MAPPED scope, you can omit their names from the DDL configuration
parameters, unless you want to refine their DDL support further. If you ever need to
change the object names in TABLE and MAP statements, the changes will apply automatically
to the DDL on those objects.

If you include an object in a TABLE statement, but not in a MAP statement, the DDL for that
object is MAPPED in scope on the source but UNMAPPED in scope on the target.

Mapping Oracle cluster tables and UDTs

An Oracle clustered table or Oracle user defined type (UDT) cannot be mapped to a
different target name, but it can be mapped to a different target owner. Because these
special kinds of objects can consist of underlying tables that, themselves, could be a mix of
both MAPPED and UNMAPPED scope, name mapping cannot be used.

Mapping ALTER INDEX

An ALTER INDEX...RENAME command cannot be mapped to a different target index name, but it
can be mapped to a different target owner.

Valid example:

ALTER INDEX src.ind RENAME TO indnew;

This DDL can be mapped with wildcards as:

MAP src.* TARGET tgt.*;

Alternatively, it can be mapped explicitly as the following, making sure to use the original
index name in the source and target specifications:

MAP src.ind TARGET tgt.ind;

Extract (source) Replicat (target)

TABLE fin.expen;
TABLE hr.tab*;

MAP fin.expen, TARGET fin2.expen2;
MAP hr.tab*, TARGET hrBackup.bak_*;

Source: CREATE TABLE hr.tabPayables ... ;

Target: CREATE TABLE hrBackup.bak_tabPayables ...;

Configuring DDL synchronization for an Oracle database
Correctly identifying unqualified object names in DDL

150Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

In either of the preceding cases, the target DDL will be:

ALTER INDEX tgt.ind RENAME TO indnew;

Invalid example:

A MAP statement such as the following is not valid:

MAP src.ind TARGET tgt.indnew;

That statement maps the old name to the new name, and the target DDL will become:

ALTER INDEX tgt.indnew RENAME TO indnew;

Unmapped scope

If a DDL operation is supported for use in a TABLE or MAP statement, but its base object name
is not included in one of those parameters, it is of UNMAPPED scope.

An object name can be of UNMAPPED scope on the source (not in an Extract TABLE statement),
but of MAPPED scope on the target (in a Replicat MAP statement), or the other way around.
When Oracle DDL is of UNMAPPED scope in the Replicat configuration, Replicat will by
default do the following:

1. Set the current owner of the Replicat session to the owner of the source DDL object.

2. Execute the DDL as that owner.

3. Restore Replicat as the current owner of the Replicat session.

See also “Correctly identifying unqualified object names in DDL” on page 150.

Other scope

DDL operations that cannot be mapped are of OTHER scope. When DDL is of OTHER scope
in the Replicat configuration, it is applied to the target with the same owner and object
name as in the source DDL.

An example of OTHER scope is a DDL operation that makes a system-specific reference, such
as DDL that operates on data file names.

Some other examples of OTHER scope:

CREATE USER joe IDENTIFIED by joe;

CREATE ROLE ggs_gguser_role IDENTIFIED GLOBALLY;

ALTER TABLESPACE gg_user TABLESPACE GROUP gg_grp_user;

See also “Correctly identifying unqualified object names in DDL” on page 150.

Correctly identifying unqualified object names in DDL

Oracle DDL can contain object names that are not qualified with schema names. For
example, in the following DDL the TAB table in the CREATE TABLE clause is unqualified:

ALTER SESION SET CURRENT_SCHEMA = SRC;

CREATE TABLE tab (X NUMBER);

CREATE TABLE SRC1.tab (X NUMBER) AS SELECT * FROM tab;

Configuring DDL synchronization for an Oracle database
Enabling DDL support

151Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

By default, any unqualified object in an Oracle DDL statement assumes the session
schema, which can be either of the following:

● The schema of the user that started the SQL session.

● The schema that is set with an ALTER SESSION SET CURRENT_SCHEMA command. In the
preceding example, SRC becomes the owner of the unqualified TAB table.

To replicate DDL that contains unqualified objects, Replicat does the following:

● If the unqualified object is of MAPPED scope (that is, its name satisfies a MAP
specification), Replicat does one of the following:

❍ If the actual schema of the unqualified object is the same as the source session
schema, Replicat sets the schema to the schema that is specified in the TARGET
clause of the MAP statement.

❍ If the actual schema of the unqualified object is different from the source session
schema, Replicat sets the schema to the source session schema.

● If the unqualified object is of UNMAPPED or OTHER scope, Replicat sets the schema to that
of the source session schema.

You can map a source session schema to a different target session schema. Session schema
mapping might be required for some DDL to succeed on the target, such as CREATE TABLE AS
SELECT. This mapping is global and will override any other mappings that involve the same
schema names. To map session schemas, use the DDLOPTIONS parameter with the
MAPSESSIONSCHEMA option. For more information, see the Oracle GoldenGate Windows and
UNIX Reference Guide.

You can prevent explicit schema mapping with the NOEXPLICITSCHEMAMAPPING option of the
DDLOPTIONS parameter. See the DDLOPTIONS parameter documentation in the Windows and
UNIX Reference Guide.

Enabling DDL support

By default, the status of DDL replication support is as follows:

● On the source, Oracle GoldenGate DDL support is disabled by default. You must
configure Extract to capture DDL by using the DDL parameter.

● On the target, DDL support is enabled by default, to maintain the integrity of
transactional data that is replicated. By default, Replicat will process all DDL
operations that the trail contains. If needed, you can use the DDL parameter to
configure Replicat to ignore or filter DDL operations.

Filtering DDL replication

For Oracle databases, you can use the following methods to filter DDL operations so that
specific (or all) DDL is applied to the target database according to your requirements.

● Filter with the DDL trigger on the source system. This method makes use of an Oracle
function that is called at run-time by the trigger when a DDL operation occurs.
Information about the DDL is passed to this function, and you can use it to compute
whether the DDL will be passed to Extract or not. (By default, all DDL is passed to

Configuring DDL synchronization for an Oracle database
Filtering DDL replication

152Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Extract.) By sending fewer DDL operations to Extract, this method can improve
capture performance and can also be used for any other purpose that requires filtering
at an early stage of processing.

● Filter with the DDL parameter on the source, the target, or both. This method is
performed within Oracle GoldenGate, and both Extract and Replicat can execute filter
criteria. Extract can perform filtering, or it can send all of the DDL to a trail, and then
Replicat can perform the filtering. Alternatively, you can filter in a combination of
different locations. The DDL parameter gives you control over where the filtering is
performed, and it also offers more filtering options than the trigger method, including
the ability to filter collectively based on the DDL scope (for example, include all MAPPED
scope).

● Combine trigger and DDL parameter filtering. Any DDL that is passed to Extract after
it is filtered by the DDL trigger can be filtered further with the DDL parameter to meet
specific needs.

Filtering at the trigger level

To filter DDL at the level of the DDL trigger, perform the following steps.

1. Copy the ddl_filter.sql file that is in the Oracle GoldenGate installation directory to a test
machine where you can test the code that you will be writing.

2. Open the file for editing. It contains a PL/SQL function named filterDDL, which you can
modify to specify filter criteria. The information that is passed to this function includes
the owner of the DDL object, the name of the object, the object type, and the operation
type. The user that executed the DDL is available in the ora_login_user variable. Write
filter code for each type of DDL that you want to be included in, or excluded from,
Extract processing.

3. (Optional) Write the code to set the variable getStatement to YES if you want to compute
the leading 30K of DDL text in the stmt variable. By default DDL text is not computed,
so as to prevent unnecessary overhead.

4. Write the code to compute the variable retVal to be either INCLUDE or EXCLUDE. This value
determines whether or not the DDL operation is passed to Extract. The default is
INCLUDE.

5. Save the code.

6. Stop DDL activity on the test system.

7. Compile the ddl_filter.sql file as follows:

@ddl_filter schema_name

Where: schema_name is the schema where the Oracle GoldenGate DDL objects are
installed. See the Oracle GoldenGate Oracle Installation and Setup Guide for
information on these objects.

8. Test in the test environment to make certain that the filtering works. It is important
to perform this testing, because any errors in the code could cause source and target
DDL to become out of synchronization.

9. After a successful test, copy the file to the Oracle GoldenGate installation directory on
the source production system.

10. Stop DDL activity on the source system.

Configuring DDL synchronization for an Oracle database
Filtering DDL replication

153Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

11. Compile the ddl_filter.sql file as you did before.

@ddl_filter schema_name

12. Resume DDL activity on the source system.

Filtering with the DDL parameter

The DDL parameter is the main Oracle GoldenGate parameter for filtering DDL within the
Extract and Replicat processes.

When used without options, the DDL parameter performs no filtering, and it causes all DDL
operations to be propagated as follows:

● As an Extract parameter, it captures all supported DDL operations that are generated
on all supported database objects and sends them to the trail.

● As a Replicat parameter, it replicates all DDL operations from the Oracle GoldenGate
trail and applies them to the target. This is the same as the default behavior without
this parameter.

When used with options, the DDL parameter acts as a filtering agent to include or exclude
DDL operations based on:

● scope

● object type

● operation type

● object name

● strings in the DDL command syntax or comments, or both

Only one DDL parameter can be used in a parameter file, but you can combine multiple
inclusion and exclusion options to filter the DDL to the required level.

● DDL filtering options are valid for a primary Extract that captures from the transaction
source, but not for a data-pump Extract.

● When combined, multiple filter option specifications are linked logically as “AND”
statements.

● All filter criteria specified with multiple options must be satisfied for a DDL statement
to be replicated.

● When using complex DDL filtering criteria, it is recommended that you test your
configuration in a test environment before using it in production.

WARNING Do not include any Oracle GoldenGate-installed DDL objects in a DDL
parameter, in a TABLE parameter, or in a MAP parameter, nor in a
TABLEEXCLUDE or MAPEXCLUDE parameter. Make certain that wildcard
specifications in those parameters do not include Oracle GoldenGate-installed
DDL objects. These objects must not be part of the Oracle GoldenGate
configuration, but the Extract process must be aware of operations on them,
and that is why you must not explicitly exclude them from the configuration
with an EXCLUDE, TABLEEXCLUDE, or MAPEXCLUDE parameter statement.

NOTE Before you create a DDL parameter statement, it might help to review “How DDL is
evaluated for processing” in this chapter.

Configuring DDL synchronization for an Oracle database
Filtering DDL replication

154Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Syntax DDL [
{INCLUDE | EXCLUDE}

[, MAPPED | UNMAPPED | OTHER | ALL]

[, OPTYPE <type>]

[, OBJTYPE ‘<type>’]

[, OBJNAME “<name>”]

[, INSTR ‘<string>’]

[, INSTRCOMMENTS ‘<comment_string>’]

]

[...]
7

Table 15 DDL inclusion and exclusion options

Option Description

INCLUDE | EXCLUDE Use INCLUDE and EXCLUDE to identify the beginning of an inclusion or
exclusion clause.

◆ An inclusion clause contains filtering criteria that identifies the
DDL that this parameter will affect.

◆ An exclusion clause contains filtering criteria that excludes
specific DDL from this parameter.

The inclusion or exclusion clause must consist of the INCLUDE or
EXCLUDE keyword followed by any valid combination of other options of
the parameter that is being applied.

If you use EXCLUDE, you must create a corresponding INCLUDE clause.
For example, the following is invalid:
DDL EXCLUDE OBJNAME “hr.*”

However, you can use either of the following:
DDL INCLUDE ALL, EXCLUDE OBJNAME “hr.*”

DDL INCLUDE OBJNAME “fin.*” EXCLUDE “fin.ss”

An EXCLUDE takes priority over any INCLUDEs that contain the same
criteria. You can use multiple inclusion and exclusion clauses.

MAPPED | UNMAPPED |
OTHER | ALL

Use MAPPED, UNMAPPED, OTHER, and ALL to apply INCLUDE or EXCLUDE
based on the DDL operation scope.

◆ MAPPED applies INCLUDE or EXCLUDE to DDL operations that are of
MAPPED scope. MAPPED filtering is performed before filtering that is
specified with other DDL parameter options.

◆ UNMAPPED applies INCLUDE or EXCLUDE to DDL operations that are of
UNMAPPED scope.

◆ OTHER applies INCLUDE or EXCLUDE to DDL operations that are of
OTHER scope.

◆ ALL applies INCLUDE or EXCLUDE to DDL operations of all scopes.

Configuring DDL synchronization for an Oracle database
Filtering DDL replication

155Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

OPTYPE <type> Use OPTYPE to apply INCLUDE or EXCLUDE to a specific type of DDL
operation, such as CREATE, ALTER, and RENAME. For <type>, use any DDL
command that is valid for the database. For example, to include ALTER
operations, the correct syntax is:
DDL INCLUDE OPTYPE ALTER

OBJTYPE ‘<type>’ Use OBJTYPE to apply INCLUDE or EXCLUDE to a specific type of database
object. For <type>, use any object type that is valid for the database,
such as TABLE, INDEX, and TRIGGER. For an Oracle materialized view and
materialized views log, the correct types are snapshot and snapshot log,
respectively. Enclose the name of the object type within single quotes.
For example:
DDL INCLUDE OBJTYPE ‘INDEX’
DDL INCLUDE OBJTYPE ‘SNAPSHOT’

For Oracle object type USER, do not use the OBJNAME option, because
OBJNAME expects “owner.object” whereas USER only has a schema.

OBJNAME “<name>” Use OBJNAME to apply INCLUDE or EXCLUDE to the fully qualified name of
an object, for example owner.table_name. This option takes a double-
quoted string as input.

You can use a wildcard only for the object name.

Example:
DDL INCLUDE OBJNAME “accounts.*”

Do not use OBJNAME for the Oracle USER object, because OBJNAME
expects “owner.object” whereas USER only has a schema.

When using OBJNAME with MAPPED in a Replicat parameter file, the
value for OBJNAME must refer to the name specified with the TARGET
clause of the MAP statement. For example, given the following MAP
statement, the correct value is OBJNAME “fin2.*”.
MAP fin.exp_*, TARGET fin2.*;

In the following example, a CREATE TABLE statement executes like this
on the source:
CREATE TABLE fin.exp_phone;

And like this on the target:
CREATE TABLE fin2.exp_phone;

If a target owner is not specified in the MAP statement, Replicat maps
it to the database user that is specified with the USERID parameter.

Table 15 DDL inclusion and exclusion options

Option Description

Configuring DDL synchronization for an Oracle database
Filtering DDL replication

156Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

For DDL that creates triggers, synonyms, and indexes, the value for
OBJNAME must be the name of the base object, not the name of the
trigger, synonym, or index.

For example, to include the following DDL statement, the correct
value is “hr.accounts,” not “hr.insert_trig.”
CREATE TRIGGER hr.insert_trig ON hr.accounts;

For RENAME operations, the value for OBJNAME must be the new table
name. For example, to include the following DDL statement, the
correct value is “hr.acct.”
ALTER TABLE hr.accounts RENAME TO acct;

INSTR ‘<string>’ Use INSTR to apply INCLUDE or EXCLUDE to DDL statements that contain
a specific character string within the command syntax itself, but not
within comments. For example, the following excludes DDL that
creates an index.
DDL INCLUDE ALL EXCLUDE INSTR ‘CREATE INDEX’

Enclose the string within single quotes. The string search is not case
sensitive.

INSTR does not support single quotation marks (‘ ’) that are within
the string, nor does it support NULL values.

INSTRCOMMENTS
‘<comment_string>’

Use INSTRCOMMENTS to apply INCLUDE or EXCLUDE to DDL statements
that contain a specific character string within a comment, but not
within the DDL command itself. By using INSTRCOMMENTS, you can use
comments as a filtering agent.

For example, the following excludes DDL statements that include
“source” in the comments.
DDL INCLUDE ALL EXCLUDE INSTRCOMMENTS ‘SOURCE ONLY’

In this example, DDL statements such as the following are not
replicated.
CREATE USER john IDENTIFIED BY john /*source only*/;

Enclose the string within single quotes. The string search is not case
sensitive. You can combine INSTR and INSTRCOMMENTS to filter on a
string in the command syntax and in the comments of the same DDL
statement.

INSTRCOMMENTS does not support single quotation marks (‘ ’) that are
within the string, nor does it support NULL values.

Table 15 DDL inclusion and exclusion options

Option Description

Configuring DDL synchronization for an Oracle database
Filtering DDL replication

157Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Combining DDL parameter options

The following is an example of how to combine DDL parameter options.

DDL &

INCLUDE UNMAPPED &

OPTYPE alter &

OBJTYPE ‘table’ &

OBJNAME “users.tab*” &

INCLUDE MAPPED OBJNAME “*” &

EXCLUDE MAPPED OBJNAME "temporary.tab*"

The combined filter criteria in this statement specify the following:

● INCLUDE all ALTER TABLE statements for tables that are not mapped with a TABLE or MAP
statement (UNMAPPED scope),

❍ only if those tables are owned by “users” and their names start with “tab,”

● and INCLUDE all DDL operation types for all tables that are mapped with a TABLE or MAP
statement (MAPPED scope).

INSTRWORDS ‘<word list>’ Use INSTRWORDS to apply INCLUDE or EXCLUDE to DDL statements that
contain the specified words.

For <word list>, supply the words in any order, within single quotes. To
include spaces, put the space (and the word, if applicable) in double
quotes. Double quotes also can be used to enclose sentences.

All specified words must be present in the DDL for INSTRWORDS to take
effect.

Example:
ALTER TABLE INCLUDE INSTRWORDS ‘ALTER CONSTRAINT “ xyz”

This example will match
ALTER TABLE ADD CONSTRAINT xyz CHECK

and
ALTER TABLE DROP CONSTRAINT xyz

INSTRWORDS does not support single quotation marks (‘ ’) that are
within the string, nor does it support NULL values.

INSTRCOMMENTSWORDS
‘<word list>’

Works the same way as INSTRWORDS, but only applies to comments
within a DDL statement, not the DDL syntax itself. By using
INSTRCOMMENTS, you can use comments as a filtering agent.

INSTRCOMMENTSWORDS does not support single quotation marks (‘ ’)
that are within the string, nor does it support NULL values.

You can combine INSTRWORDS and INSTRCOMMENTSWORDS to filter on a
string in the command syntax and in the comments of the same DDL
statement.

Table 15 DDL inclusion and exclusion options

Option Description

Configuring DDL synchronization for an Oracle database
Special filter cases

158Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

● and EXCLUDE all DDL operation types for all tables that are MAPPED in scope,

❍ only if those tables are owned by “temporary.”

❍ and only if their names begin with “tab.”

Special filter cases

The following are special cases that you should be aware of when creating your filter
conditions.

DDL EXCLUDE ALL

DDL EXCLUDE ALL is a special processing option that maintains up-to-date object metadata for
Oracle GoldenGate, while blocking the replication of the DDL operations themselves. You
can use DDL EXCLUDE ALL when using a method other than Oracle GoldenGate to apply DDL
to the target, but you want Oracle GoldenGate to replicate data changes to the target
objects. It provides the current metadata to Oracle GoldenGate as objects change, thus
preventing the need to stop and start the Oracle GoldenGate processes. The following
special conditions apply to DDL EXCLUDE ALL:

● DDL EXCLUDE ALL does not require the use of an INCLUDE clause.

● When using DDL EXCLUDE ALL, you may set the WILDCARDRESOLVE parameter to IMMEDIATE
to allow immediate DML resolution if required.

To prevent all DDL metadata and operations from being replicated, omit the DDL
parameter entirely. The DDL trigger will continue to record the DDL operations to the
history table, unless disabled manually.

Implicit DDL

User-generated DDL operations can generate implicit DDL operations. For example, the
following statement causes the Oracle DDL trigger to process two distinct DDL operations.

CREATE TABLE customers (custID number, name varchar2(50), address
varchar2(75), address2 varchar2(75), city varchar2(50), state (varchar2(2),
zip number, contact varchar2(50), areacode number(3), phone number(7), primary
key (custID));

● The first (explicit) DDL operation is the CREATE TABLE statement itself.

● The second DDL operation is an implicit CREATE UNIQUE INDEX statement that creates the
index for the primary key. This operation is generated by the database engine, not a
user application.

Guidelines for filtering implicit DDL

When the DDL parameter is used to filter DDL operations, Oracle GoldenGate filters out any
implicit DDL by default, because the explicit DDL will generate the implicit DDL on the
target. For example, the target database will create the appropriate index when the CREATE
TABLE statement in the preceding example is applied by Replicat.

However, when the DDL trigger is used to filter DDL operations, you must handle the
implicit DDL in your filter rules based on the following:

Configuring DDL synchronization for an Oracle database
How Oracle GoldenGate handles derived object names

159Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

● If your filtering rules exclude the explicit DDL from being propagated, you must also
create a rule to exclude the implicit DDL. For example, if you exclude the CREATE TABLE
statement in the preceding example, but do not exclude the CREATE UNIQUE INDEX
statement, the target database will try to create the index on a non-existent table.

● If your filtering rules permit the propagation of the explicit DDL, you do not need to
exclude the implicit DDL. It will be handled correctly by Oracle GoldenGate and the
target database.

How Oracle GoldenGate handles derived object names

DDL operations can contain a base object name and also a derived object name. A base
object is an object that contains data. A derived object is an object that inherits some
attributes of the base object to perform a function related to that object. DDL statements
that have both base and derived objects are:

● RENAME and ALTER RENAME

● CREATE and DROP on an index, synonym, or trigger

Consider the following DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.tabPayroll (payDate);

In this case, the table is the base object. Its name (hr.tabPayroll) is the base name and is
subject to mapping with TABLE or MAP under the MAPPED scope. The derived object is the
index, and its name (hr.indexPayrollDate) is the derived name.

You can map a derived name in its own TABLE or MAP statement, separately from that of the
base object. Or, you can use one MAP statement to handle both. In the case of MAP, the
conversion of derived object names on the target works as follows.

MAP exists for base object, but not derived object

If there is a MAP statement for the base object, but not for the derived object, the result is
an implicit mapping of the derived object. Assuming the DDL statement includes MAPPED,
Replicat gives the derived object the same target owner as that of the base object. The name
of the derived object stays the same as in the source statement. For example, assume the
following:

Assume the following source DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.tabPayroll (payDate);

The CREATE INDEX statement is executed by Replicat on the target as:

CREATE INDEX hrBackup.indexPayrollDate ON TABLE hrBackup.tabPayroll
(payDate);

The rule for the implicit mapping is based the typical industry practice of giving derived
objects the same owner as the base object. It ensures the correct name conversion even if

Extract (source) Replicat (target)

TABLE hr.tab*; MAP hr.tab*, TARGET hrBackup.*;

Configuring DDL synchronization for an Oracle database
How Oracle GoldenGate handles derived object names

160Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

the name of the derived object is not fully qualified in the source statement. Also, when
indexes are owned by the same target owner as the base object, an implicit mapping
eliminates the need to map derived object names explicitly.

MAP exists for base and derived objects

If there is a MAP statement for the base object and also one for the derived object, the result
is an explicit mapping. Assuming the DDL statement includes MAPPED, Replicat converts
the owner and name of each object according to its own TARGET clause. For example, assume
the following:

Assume the following source DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.tabPayroll (payDate);

The CREATE INDEX statement is executed by Replicat on the target as:

CREATE INDEX hrIndex.indexPayrollDate ON TABLE hrBackup.tabPayroll
(payDate);

Use an explicit mapping when the index on the target must be owned by a different owner
from that of the base object, or when the name on the target must be different from that of
the source.

MAP exists for derived object, but not base object

If there is a MAP statement for the derived object, but not for the base object, Replicat does
not perform any name conversion for either object. The target DDL statement is the same
as that of the source. To map a derived object, the choices are:

● Use an explicit MAP statement for the base object.

● If names permit, map both base and derived objects in the same MAP statement by
means of a wildcard.

● Create a MAP statement for each object, depending on how you want the names
converted.

New tables as derived objects

The following explains how Oracle GoldenGate handles new tables that are created from:

● RENAME and ALTER RENAME

● CREATE TABLE AS SELECT

RENAME and ALTER TABLE RENAME

In RENAME and ALTER TABLE RENAME operations, the base object is always the new table name.
In the following example, the base object name is considered to be “index_paydate.”

ALTER TABLE hr.indexPayrollDate RENAME TO index_paydate;

Extract (source) Replicat (target)

TABLE hr.tab*;
TABLE hr.index*;

MAP hr.tab*, TARGET hrBackup.*;
MAP hr.index*, TARGET hrIndex.*;

Configuring DDL synchronization for an Oracle database
How Oracle GoldenGate handles derived object names

161Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

or...

RENAME hr.indexPayrollDate TO index_paydate;

The derived object name is “hr.indexPayrollDate.”

See “Controlling whether renames enter the DDL configuration” on page 170 for additional
information on renames as they relate to DDL replication.

CREATE TABLE AS SELECT

CREATE TABLE AS SELECT statements include SELECT statements and INSERT statements that
affect any number of underlying objects. On the target, Oracle GoldenGate obtains the data
for the AS SELECT clause from the target database. The objects in the AS SELECT clause must
exist in the target database, and their names must be identical to the ones on the source.

In a MAP statement, Oracle GoldenGate only maps the name of the new table (CREATE TABLE
<name>) to the TARGET specification, but does not map the names of the underlying objects
from the AS SELECT clause. There could be dependencies on those objects that could cause
data inconsistencies if the names were converted to the TARGET specification.

The following shows an example of a CREATE TABLE AS SELECT statement on the source and how
it would be replicated to the target by Oracle GoldenGate.

CREATE TABLE a.tab1 AS SELECT * FROM a.tab2;

The MAP statement for Replicat is:

MAP a.tab*, TARGET a.x*;

The target DDL statement that is applied by Replicat is this:

CREATE TABLE a.xtab1 AS SELECT * FROM a.tab2;

not this:

CREATE TABLE a.xtab1 AS SELECT * FROM a.xtab2;

The name of the table in the AS SELECT * FROM clause remains as it was on the source: tab2.

To keep the data in the underlying objects consistent on source and target, you can
configure them for data replication by Oracle GoldenGate. In the preceding example, you
could use the following statements to accommodate this requirement:

See also “Correctly identifying unqualified object names in DDL” on page 150.

Disabling the mapping of derived objects

Use the DDLOPTIONS parameter with the NOMAPDERIVED option to prevent the conversion of
the name of a derived object according to a TARGET clause of a MAP statement that includes
it. NOMAPDERIVED overrides any explicit MAP statements that contain the name of the base

Source Target

TABLE a.tab*; MAPEXCLUDE a.tab2
MAP a.tab*, TARGET a.x*;
MAP a.tab2, TARGET a.tab2;

Configuring DDL synchronization for an Oracle database
How Oracle GoldenGate handles derived object names

162Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

or derived object. Source DDL that contains derived objects is replicated to the target with
the same owner and object names as on the source.

The following table shows the results of MAPDERIVED compared to NOMAPDERIVED, based on
whether there is a MAP statement just for the base object, just for the derived object, or for
both.

The following examples illustrate the results of MAPDERIVED as compared to NOMAPDERIVED.

In the following table, both trigger and table are owned by “rpt” on the target because both
base and derived names are converted by means of MAPDERIVED.

In the following table, the trigger is owned by “fin,” because conversion is prevented by
means of NOMAPDERIVED.

Table 16 [NO]MAPDERIVED results on target based on mapping configuration

Base Object
Derived
Object

MAP/NOMAP
DERIVED?

Derived object
converted per a
MAP?

Derived object gets
owner of base object?

mapped1

1 Mapped means included in a MAP statement.

mapped MAPDERIVED yes no

mapped not mapped MAPDERIVED no yes

not mapped mapped MAPDERIVED no no

not mapped not mapped MAPDERIVED no no

mapped mapped NOMAPDERIVED no no

mapped not mapped NOMAPDERIVED no no

not mapped mapped NOMAPDERIVED no no

not mapped not mapped NOMAPDERIVED no no

Table 17 Default mapping of derived object names (MAPDERIVED)

MAP statement Source DDL statement
captured by Extract

Target DDL statement
applied by Replicat

MAP fin.*, TARGET rpt.*; CREATE TRIGGER fin.act_trig
ON fin.acct;

CREATE TRIGGER rpt.act_trig
ON rpt.acct;

Configuring DDL synchronization for an Oracle database
Using DDL string substitution

163Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

NOTE In the case of a RENAME statement, the new table name is considered to be the
base table name, and the old table name is considered to be the derived table
name.

Using DDL string substitution

You can substitute strings within a DDL operation while it is being processed by Oracle
GoldenGate. This feature provides a convenience for changing and mapping directory
names, comments, and other things that are not directly related to data structures. For
example, you could substitute one tablespace name for another, or substitute a string
within comments. String substitution is controlled by the DDLSUBST parameter.

Guidelines for using DDLSUBST

● Do not use DDLSUBST to convert column names and data types to something different on
the target. Changing the structure of a target object in this manner will cause errors
when data is replicated to it. Likewise, do not use DDLSUBST to change owner and table
names in a target DDL statement. Always use a MAP statement to map a replicated
DDL operation to a different target object.

● DDLSUBST always executes after the DDL parameter, regardless of their relative order in
the parameter file. Because the filtering executes first, use filtering criteria that is
compatible with the criteria that you are using for string substitution. For example,
consider the following parameter statements:
DDL INCLUDE OBJNAME “fin.*”

DDLSUBST ‘cust’ WITH ‘customers’ INCLUDE OBJNAME “sales.*”

In this example, no substitution occurs because the objects in the INCLUDE and DDLSUBST
statements are different. The fin-owned objects are included in the Oracle GoldenGate
DDL configuration, but the sales-owned objects are not.

● You can use multiple DDLSUBST parameters. They execute in the order listed in the
parameter file.

● For Oracle DDL that includes comments, do not use the DDLOPTIONS parameter with the
REMOVECOMMENTS BEFORE option if you will be doing string substitution on those
comments. REMOVECOMMENTS BEFORE removes comments before string substitution
occurs. To remove comments, but allow string substitution, use the REMOVECOMMENTS
AFTER option.

● There is no maximum string size for substitutions, other than the limit that is imposed
by the database. If the string size exceeds the database limit, the Extract or Replicat
process that is executing the operation abends.

Table 18 Mapping of derived object names when using NOMAPDERIVED

MAP statement Source DDL statement
captured by Extract

Target DDL statement
applied by Replicat

MAP fin.*, TARGET rpt.*; CREATE TRIGGER fin.act_trig
ON fin.acct;

CREATE TRIGGER fin.act_trig
ON rpt.acct;

Configuring DDL synchronization for an Oracle database
Using DDL string substitution

164Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

NOTE Before you create a DDLSUBST parameter statement, it might help to review “How
DDL is evaluated for processing” in this chapter.

Syntax DDLSUBST ‘<search_string>’ WITH ‘<replace_string>’

[INCLUDE <inclusion clause> | EXCLUDE <exclusion clause>]

.

7

Argument Description

‘<search_string>’ The string in the source DDL statement that you want to
replace. Enclose the string within single quote marks. To
represent a quotation mark in a string, use a double
quotation mark.

WITH Required keyword.

‘<replace_string>’ The string that you want to use as the replacement in the
target DDL. Enclose the string within single quote marks.
To represent a quotation mark in a string, use a double
quotation mark.

INCLUDE <inclusion clause> |
EXCLUDE <exclusion clause>

Use one or more INCLUDE and EXCLUDE statements to filter the
DDL operations for which the string substitution rules are
applied. See the following table.

Table 19 DDL inclusion and exclusion options

Option Description

INCLUDE | EXCLUDE Use INCLUDE and EXCLUDE to identify the beginning of an inclusion or
exclusion clause.

◆ An inclusion clause contains filtering criteria that identifies the
DDL that this parameter will affect.

◆ An exclusion clause contains filtering criteria that excludes
specific DDL from this parameter.

The inclusion or exclusion clause must consist of the INCLUDE or
EXCLUDE keyword followed by any valid combination of other options of
the parameter that is being applied.

If you use EXCLUDE, you must create a corresponding INCLUDE clause.
For example, the following is invalid:
DDL EXCLUDE OBJNAME “hr.*”

However, you can use either of the following:
DDL INCLUDE ALL, EXCLUDE OBJNAME “hr.*”

DDL INCLUDE OBJNAME “fin.*” EXCLUDE “fin.ss”

An EXCLUDE takes priority over any INCLUDEs that contain the same
criteria. You can use multiple inclusion and exclusion clauses.

Configuring DDL synchronization for an Oracle database
Using DDL string substitution

165Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

MAPPED | UNMAPPED |
OTHER | ALL

Use MAPPED, UNMAPPED, OTHER, and ALL to apply INCLUDE or EXCLUDE
based on the DDL operation scope.

◆ MAPPED applies INCLUDE or EXCLUDE to DDL operations that are of
MAPPED scope. MAPPED filtering is performed before filtering that is
specified with other DDL parameter options.

◆ UNMAPPED applies INCLUDE or EXCLUDE to DDL operations that are of
UNMAPPED scope.

◆ OTHER applies INCLUDE or EXCLUDE to DDL operations that are of
OTHER scope.

◆ ALL applies INCLUDE or EXCLUDE to DDL operations of all scopes.

OPTYPE <type> Use OPTYPE to apply INCLUDE or EXCLUDE to a specific type of DDL
operation, such as CREATE, ALTER, and RENAME. For <type>, use any DDL
command that is valid for the database. For example, to include ALTER
operations, the correct syntax is:
DDL INCLUDE OPTYPE ALTER

OBJTYPE ‘<type>’ Use OBJTYPE to apply INCLUDE or EXCLUDE to a specific type of database
object. For <type>, use any object type that is valid for the database,
such as TABLE, INDEX, and TRIGGER. For an Oracle materialized view and
materialized views log, the correct types are snapshot and snapshot log,
respectively. Enclose the name of the object type within single quotes.
For example:
DDL INCLUDE OBJTYPE ‘INDEX’
DDL INCLUDE OBJTYPE ‘SNAPSHOT’

For Oracle object type USER, do not use the OBJNAME option, because
OBJNAME expects “owner.object” whereas USER only has a schema.

OBJNAME “<name>” Use OBJNAME to apply INCLUDE or EXCLUDE to the fully qualified name of
an object, for example owner.table_name. This option takes a double-
quoted string as input.

You can use a wildcard only for the object name.

Example:
DDL INCLUDE OBJNAME “accounts.*”

Do not use OBJNAME for the Oracle USER object, because OBJNAME
expects “owner.object” whereas USER only has a schema.

When using OBJNAME with MAPPED in a Replicat parameter file, the
value for OBJNAME must refer to the name specified with the TARGET
clause of the MAP statement. For example, given the following MAP
statement, the correct value is OBJNAME “fin2.*”.
MAP fin.exp_*, TARGET fin2.*;

Table 19 DDL inclusion and exclusion options

Option Description

Configuring DDL synchronization for an Oracle database
Using DDL string substitution

166Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

In the following example, a CREATE TABLE statement executes like this
on the source:
CREATE TABLE fin.exp_phone;

And like this on the target:
CREATE TABLE fin2.exp_phone;

If a target owner is not specified in the MAP statement, Replicat maps
it to the database user that is specified with the USERID parameter.

For DDL that creates triggers, synonyms, and indexes, the value for
OBJNAME must be the name of the base object, not the name of the
trigger, synonym, or index.

For example, to include the following DDL statement, the correct
value is “hr.accounts,” not “hr.insert_trig.”
CREATE TRIGGER hr.insert_trig ON hr.accounts;

For RENAME operations, the value for OBJNAME must be the new table
name. For example, to include the following DDL statement, the
correct value is “hr.acct.”
ALTER TABLE hr.accounts RENAME TO acct;

INSTR ‘<string>’ Use INSTR to apply INCLUDE or EXCLUDE to DDL statements that contain
a specific character string within the command syntax itself, but not
within comments. For example, the following excludes DDL that
creates an index.
DDL INCLUDE ALL EXCLUDE INSTR ‘CREATE INDEX’

Enclose the string within single quotes. The string search is not case
sensitive.

INSTR does not support single quotation marks (‘ ’) that are within
the string, nor does it support NULL values.

INSTRCOMMENTS
‘<comment_string>’

Use INSTRCOMMENTS to apply INCLUDE or EXCLUDE to DDL statements
that contain a specific character string within a comment, but not
within the DDL command itself. By using INSTRCOMMENTS, you can use
comments as a filtering agent.

For example, the following excludes DDL statements that include
“source” in the comments.
DDL INCLUDE ALL EXCLUDE INSTRCOMMENTS ‘SOURCE ONLY’

In this example, DDL statements such as the following are not
replicated.
CREATE USER john IDENTIFIED BY john /*source only*/;

Enclose the string within single quotes. The string search is not case
sensitive. You can combine INSTR and INSTRCOMMENTS to filter on a
string in the command syntax and in the comments of the same DDL
statement.

INSTRCOMMENTS does not support single quotation marks (‘ ’) that are
within the string, nor does it support NULL values.

Table 19 DDL inclusion and exclusion options

Option Description

Configuring DDL synchronization for an Oracle database
Using DDL string substitution

167Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Example In the following example, a new directory is substituted only if the DDL command includes
the word “logfile.” If the search string is found multiple times, the replacement string is
inserted multiple times.

DDLSUBST ‘/file1/location1’ WITH ‘/file2/location2’

INCLUDE INSTR‘logfile’

Example In the following example, the string ‘cust’ is replaced with the string ‘customers’ for tables
owned by “fin”.

DDLSUBST ‘cust’ WITH ‘customers’

INCLUDE ALL OBJTYPE ‘table’ OBJNAME “fin.*”

The search is not case-sensitive. To represent a quotation mark in a string, use a double
quotation mark.

INSTRWORDS ‘<word list>’ Use INSTRWORDS to apply INCLUDE or EXCLUDE to DDL statements that
contain the specified words.

For <word list>, supply the words in any order, within single quotes. To
include spaces, put the space (and the word, if applicable) in double
quotes. Double quotes also can be used to enclose sentences.

All specified words must be present in the DDL for INSTRWORDS to take
effect.

Example:
ALTER TABLE INCLUDE INSTRWORDS ‘ALTER CONSTRAINT “ xyz”

This example will match
ALTER TABLE ADD CONSTRAINT xyz CHECK

and
ALTER TABLE DROP CONSTRAINT xyz

INSTRWORDS does not support single quotation marks (‘ ’) that are
within the string, nor does it support NULL values.

INSTRCOMMENTSWORDS
‘<word list>’

Works the same way as INSTRWORDS, but only applies to comments
within a DDL statement, not the DDL syntax itself. By using
INSTRCOMMENTS, you can use comments as a filtering agent.

INSTRCOMMENTSWORDS does not support single quotation marks (‘ ’)
that are within the string, nor does it support NULL values.

You can combine INSTRWORDS and INSTRCOMMENTSWORDS to filter on a
string in the command syntax and in the comments of the same DDL
statement.

Table 19 DDL inclusion and exclusion options

Option Description

Configuring DDL synchronization for an Oracle database
Controlling the propagation of DDL that is executed by Replicat

168Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Example This example uses multiple DDLSUBST parameters. They will execute in the order listed in
the parameter file. The net effect is to substitute “a” and “b” strings with “c.”

DDLSUBST ‘a’ WITH ‘b’ INCLUDE ALL

DDLSUBST ‘b’ WITH ‘c’ INCLUDE ALL

Controlling the propagation of DDL that is executed by Replicat

Extract and Replicat both issue DDL operations.

● Extract issues ALTER TABLE statements to create log groups,

● Replicat applies replicated DDL statements to the target.

To identify Oracle GoldenGate DDL operations, the following comment is part of each
Extract and Replicat DDL statement:

/* GOLDENGATE_DDL_REPLICATION */

The DDLOPTIONS parameter controls whether or not Replicat’s DDL is propagated.

● The GETREPLICATES and IGNOREREPLICATES options control whether Replicat’s DDL
operations are captured by Extract or ignored. The default is IGNOREREPLICATES.

● The GETAPPLOPS and IGNOREAPPLOPS options control whether DDL from applications other
than Replicat (the business applications) are captured or ignored.

By default, Extract ignores DDL that is applied to the local database by a local Replicat, so
that the DDL is not sent back to its source, but Extract captures all other DDL that is
configured for replication. The following is the default DDLOPTIONS configuration.

DDLOPTIONS GETAPPLOPS, IGNOREREPLICATES

This behavior can be modified. See the following topics:

● “Propagating DDL in an active-active (bi-directional) configurations”

● “Propagating DDL in a cascading configuration”

Propagating DDL in an active-active (bi-directional) configurations

Oracle GoldenGate supports active-active DDL replication between two systems. For an
active-active bi-directional replication, the following must be configured in the Oracle
GoldenGate processes:

1. DDL that is performed by a business application on one system must be replicated to
the other system to maintain synchronization. To satisfy this requirement, include the
GETAPPLOPS option in the DDLOPTIONS statement in the Extract parameter files on both
systems.

2. DDL that is applied by Replicat on one system must be captured by the local Extract
and sent back to the other system. To satisfy this requirement, use the GETREPLICATES
option in the DDLOPTIONS statement in the Extract parameter files on both systems.

NOTE An internal Oracle GoldenGate token will cause the actual Replicat DDL statement
itself to be ignored to prevent loopback. The purpose of propagating Replicat DDL
back to the original system is so that the Replicat on that system can update its
object metadata cache, in preparation to receive incoming DML, which will have the
new metadata. See the illustration in this topic.

Configuring DDL synchronization for an Oracle database
Controlling the propagation of DDL that is executed by Replicat

169Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

3. Each Replicat must be configured to update its object metadata cache whenever the
remote Extract sends over a captured Replicat DDL statement. To satisfy this
requirement, use the UPDATEMETADATA option in the DDLOPTIONS statement in the
Replicat parameter files on both systems.

The resultant DDLOPTIONS statements should look as follows:

Extract (primary and secondary)

DDLOPTIONS GETREREPLICATES, GETAPPLOPS

Replicat (primary and secondary)

DDLOPTIONS UPDATEMETADATA

WARNING Before you allow new DDL or DML to be issued for the same object(s) as the
original DDL, allow time for the original DDL to be replicated to the remote
system and then captured again by the Extract on that system. This will ensure
that the operations arrive in correct order to the Replicat on the original
system, to prevent DML errors caused by metadata inconsistencies. See the
diagram for more information.

Propagating DDL in a cascading configuration

In a cascading configuration, use the following setting for DDLOPTIONS in the Extract
parameter file on each intermediary system. This configuration forces Extract to capture
the DDL from Replicat on an intermediary system and cascade it to the next system
downstream.

DDLOPTIONS GETREPLICATES, IGNOREAPPLOPS

Figure 18 Path of DDL in round trip to update Replicat object metadata cache

Configuring DDL synchronization for an Oracle database
Adding supplemental log groups automatically

170Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Adding supplemental log groups automatically

You can use the DDLOPTIONS parameter with the ADDTRANDATA option to:

● enable Oracle’s supplemental logging automatically for new tables created with a
CREATE TABLE.

● update Oracle’s supplemental logging for tables affected by an ALTER TABLE to add or drop
columns.

● update Oracle’s supplemental logging for tables that are renamed.

● update Oracle’s supplemental logging for tables where unique or primary keys are
added or dropped.

By default, the ALTER TABLE that adds the supplemental logging is not replicated to the target
unless the GETREPLICATES parameter is in use.

For more information about this option, see the Oracle GoldenGate Windows and UNIX
Reference Guide.

Removing comments from replicated DDL

You can use the DDLOPTIONS parameter with the REMOVECOMMENTS BEFORE and
REMOVECOMMENTS AFTER options to prevent comments that were used in the source DDL from
being included in the target DDL. By default, comments are not removed, so that they can
be used for string substitution.

For more information about this option, see the Oracle GoldenGate Windows and UNIX
Reference Guide.

Controlling whether renames enter the DDL configuration

You can use the DDLOPTIONS parameter with the NOCROSSRENAME option to enforce the rule
that objects which are excluded from the Oracle GoldenGate configuration cannot be
renamed to names that are in the configuration. This is an example of how a rename could
occur:

● TableA is excluded, but tableB is included.

● TableA gets renamed to tableB.

If an object does get renamed to one that is in the Oracle GoldenGate configuration, Extract
issues a warning, so that you can take the appropriate action (keep it in the Oracle
GoldenGate configuration or make the appropriate parameter adjustments to exclude it).
An example of how this notification is useful is to prevent errors if a renamed object has a
structure that is not supported by Oracle GoldenGate.

In an Oracle RAC environment, NOCROSSRENAME has the additional benefit of improving
performance. It eliminates the processing overhead that otherwise is required across the
nodes to keep track of excluded objects in case they are renamed to a name that is included.

NOCROSSRENAME applies globally to:

● all objects specified in TABLE and TABLEEXCLUDE statements in the parameter file

Configuring DDL synchronization for an Oracle database
Replicating an IDENTIFIED BY password

171Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

● all objects that are excluded from the Oracle GoldenGate DDL configuration, and not
specified by TABLE or TABLEEXCLUDE.

DDLOPTIONS NOCROSSRENAME provides the same results as the TABLEEXCLUDE parameter, when
used with the NORENAME option. The difference between the two parameters is that
TABLEEXCLUDE NORENAME allows more selectivity than NOCROSSRENAME, because the
functionality only affects the objects in the TABLEEXCLUDE statement.

Replicating an IDENTIFIED BY password

You can use the DDLOPTIONS parameter with the following options to control how the
password of a replicated {CREATE | ALTER} USER <name> IDENTIFIED BY <password> statement is
handled. These options must be used together.

DEFAULTUSERPASSWORD

This option is valid for Replicat. Use DEFAULTUSERPASSWORD for a replicated {CREATE | ALTER}
USER <name> IDENTIFIED BY <password> statement to specify a different password from the one
used in the source statement. By default, the source password is replicated to the target.
You can provide a clear-text password or an encrypted password. Replicat will replace the
placeholder that Extract writes to the trail with the specified password.

REPLICATEPASSWORD | NOREPLICATEPASSWORD

This option is valid for Extract. By default (REPLICATEPASSWORD), Oracle GoldenGate uses the
source password from a {CREATE | ALTER} USER <name> IDENTIFIED BY <password> in the target
CREATE or ALTER statement. To prevent the source password from being sent to the target,
use NOREPLICATEPASSWORD.

For more information about these options, see the Oracle GoldenGate Windows and UNIX
Reference Guide.

How DDL is evaluated for processing

The following explains how Oracle GoldenGate processes DDL statements on the source
and target systems. It shows the order in which different criteria in the Oracle GoldenGate
parameters are processed, and it explains the differences between how Extract and
Replicat each process the DDL.

Extract

1. Extract captures a DDL operation.

2. Extract separates comments, if any, from the main statement.

3. Extract searches for the DDL parameter. (This example assumes it exists.)

4. Extract searches for the IGNOREREPLICATES parameter. If it is present, and if Replicat
produced this DDL operation on this system, Extract ignores the DDL statement. (This
example assumes no Replicat operations on this system.)

5. Extract determines whether the statement is a RENAME. If so, the rename is flagged
internally.

6. Extract gets the base object name and, if present, the derived object name.

Configuring DDL synchronization for an Oracle database
How DDL is evaluated for processing

172Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

7. If the statement is a RENAME, Extract changes it to ALTER TABLE RENAME.

8. Extract searches for the DDLOPTIONS REMOVECOMMENTS BEFORE parameter. If it is present,
Extract removes the comments from the DDL statement, but stores them in case there
is a DDL INCLUDE or DDL EXCLUDE clause that uses INSTR or INSTRCOMMENTS.

9. Extract determines the DDL scope: MAPPED, UNMAPPED or OTHER. It is MAPPED if:

❍ the operation and object types are supported for mapping.

and...

❍ the base object name and/or derived object name (if RENAME) is in a TABLE parameter.

It is UNMAPPED if:

❍ the operation and object types are not supported for mapping.

and...

❍ the base object name and/or derived object name (if RENAME) is not in a TABLE
parameter.

Otherwise the operation is identified as OTHER.

10. Extract checks the DDL parameter for INCLUDE and EXCLUDE clauses, and it evaluates the
DDL parameter criteria in those clauses. All options must evaluate to TRUE in order for
the INCLUDE or EXCLUDE to evaluate to TRUE. The following occurs:

❍ If an EXCLUDE clause evaluates to TRUE, Extract discards the DDL operation and
evaluates another DDL operation. In this case, the processing steps start over.

❍ If an INCLUDE clause evaluates to TRUE, or if the DDL parameter does not have any
INCLUDE or EXCLUDE clauses, Extract includes the DDL operation, and the processing
logic continues.

11. Extract searches for a DDLSUBST parameter and evaluates the INCLUDE and EXCLUDE
clauses. If the criteria in those clauses add up to TRUE, Extract performs string
substitution. Extract evaluates the DDL operation against each DDLSUBST statement in
the parameter file. For all true DDLSUBST statements, Extract performs string
substitution in the order that the DDLSUBST parameters are listed in the file.

12. Now that DDLSUBT has been processed, Extract searches for the REMOVECOMMENTS AFTER
parameter. If it is present, Extract removes the comments from the DDL statement.

13. Extract searches for DDLOPTIONS ADDTRANDATA. If it is present, and if the operation is
CREATE TABLE, Extract issues the ALTER TABLE <name> ADD SUPPLEMENTAL LOG GROUP command
on the table.

14. Extract writes the DDL statement to the trail.

Replicat

1. Replicat reads the DDL operation from the trail.

2. Replicat separates comments, if any, from the main statement.

3. Replicat searches for DDLOPTIONS REMOVECOMMENTS BEFORE. If it is present, Replicat
removes the comments from the DDL statement.

4. Replicat evaluates the DDL synchronization scope to determine if the DDL qualifies for
name mapping. Anything else is of OTHER scope.

Configuring DDL synchronization for an Oracle database
Handling Extract DDL processing errors

173Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

5. Replicat evaluates the MAP statements in the parameter file. If the source base object
name for this DDL (as read from the trail) appears in any of the MAP statements, the
operation is marked as MAPPED in scope. Otherwise it is marked as UNMAPPED in scope.

6. Replicat replaces the source base object name with the base object name that is
specified in the TARGET clause of the MAP statement.

7. If there is a derived object, Replicat searches for DDLOPTIONS MAPDERIVED. If it is present,
Replicat replaces the source derived name with the target derived name from the MAP
statement.

8. Replicat checks the DDL parameter for INCLUDE and EXCLUDE clauses, and it evaluates the
DDL parameter criteria contained in them. All options must evaluate to TRUE in order
for the INCLUDE or EXCLUDE to evaluate to TRUE. The following occurs:

❍ If any EXCLUDE clause evaluates to TRUE, Replicat discards the DDL operation and
starts evaluating another DDL operation. In this case, the processing steps start
over.

❍ If any INCLUDE clause evaluates to TRUE, or if the DDL parameter does not have any
INCLUDE or EXCLUDE clauses, Replicat includes the DDL operation, and the processing
logic continues.

9. Replicat searches for the DDLSUBST parameter and evaluates the INCLUDE and EXCLUDE
clauses. If the options in those clauses add up to TRUE, Replicat performs string
substitution. Replicat evaluates the DDL operation against each DDLSUBST statement in
the parameter file. For all true DDLSUBST statements, Replicat performs string
substitution in the order that the DDLSUBST parameters are listed in the file.

10. Now that DDLSUBT has been processed, Replicat searches for the REMOVECOMMENTS AFTER
parameter. If it is present, Replicat removes the comments from the DDL statement.

11. Replicat executes the DDL operation on the target database.

12. If there are no errors, Replicat processes the next DDL statement. If there are errors,
Replicat performs the following steps.

13. Replicat analyzes the INCLUDE and EXCLUDE rules in the Replicat DDLERROR parameter
statements in the order that they appear in the parameter file. If Replicat finds a rule
for the error code, it applies the specified error handling; otherwise, it applies DEFAULT
handling.

14. If the error handling does not enable the DDL operation to succeed, Replicat does one
of the following: abends, ignores the operation, or discards it as specified in the rules.

NOTE If there are multiple targets for the same source in a MAP statement, the processing
logic executes for each one.

Handling Extract DDL processing errors

Use the Extract option of the DDLERROR parameter to handle errors on objects found by
Extract for which metadata cannot be found.

Syntax DDLERROR [RESTARTSKIP <num skips>] [SKIPTRIGGERERROR <num errors>]

Configuring DDL synchronization for an Oracle database
Handling Replicat DDL processing errors

174Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Where:

❍ RESTARTSKIP skips a number of DDL operations on startup to prevent Extract from
abending on an error. By default, Extract abends on an error so that no operations
are skipped. You can skip up to 100,000 DDL operations.

To write information about skipped operations to the Extract report file, use the DDLOPTIONS
parameter with the REPORT option.

Handling Replicat DDL processing errors

Use the Replicat options of the DDLERROR parameter to handle errors that occur when DDL
is applied to the target database. With DDLERROR options, you can handle most errors in a
default manner, for example to stop processing, and also handle other errors in a specific
manner. You can use multiple instances of DDLERROR in the same parameter file to handle
all errors that are anticipated.

Use the combination of <error>, DEFAULT, and <response> to create rules for how Replicat
responds to anticipated and unanticipated DDL errors. Make certain to specify the
appropriate inclusion and exclusion clauses to apply the rules to the intended DDL. Then,
use additional options to refine the error handling, as needed.

Syntax DDLERROR
{<error> | DEFAULT} {<response>}

{INCLUDE <inclusion clause> | EXCLUDE <exclusion clause>}

[IGNOREMISSINGOBJECTS | ABENDONMISSINGOBJECTS]

Argument Description

{<error> | DEFAULT} {<response>} ◆ <error> is a specific DDL error that you want to be
handled with this statement.

◆ DEFAULT sets a global response to all DDL errors except
those for which explicit DDLERROR statements are
specified.

◆ <response> can be one of the following:

ABEND

Rolls back the operation and terminates processing
abnormally. ABEND is the default.

DISCARD

Logs the offending operation to the discard file but continue
processing subsequent DDL. Specify a discard file with the
DISCARDFILE parameter.

Configuring DDL synchronization for an Oracle database
Handling Replicat DDL processing errors

175Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

7

IGNORE

Ignores the error.

RETRYOP MAXRETRIES <n> [RETRYDELAY <delay>]
Retries the offending operation. Use the MAXRETRIES option to
control the number of retries. Replicat abends after the
specified number of MAXRETRIES. Specify a whole integer.

Use RETRYDELAY to set the amount of time, in seconds,
between retry attempts.

{INCLUDE <inclusion clause> |
EXCLUDE <exclusion clause>}

Controls whether specific DDL is handled or not handled by
the DDLERROR statement. See the following table for
descriptions.

[IGNOREMISSINGOBJECTS |
ABENDONMISSINGOBJECTS]

Controls whether or not Extract abends when DML is issued
on objects that could not be found on the target. This
condition is typically caused by DDL that is issued directly
on the target outside of replication, or by a discrepancy
between source and target definitions.

IGNOREMISSINGOBJECTS causes Replicat to skip DML
operations on missing tables.

ABENDONMISSINGOBJECTS causes Replicat to abend on DML
operations on missing tables.

Table 20 DDL inclusion and exclusion options

Option Description

INCLUDE | EXCLUDE Use INCLUDE and EXCLUDE to identify the beginning of an inclusion or
exclusion clause.

◆ An inclusion clause contains filtering criteria that identifies the
DDL that this parameter will affect.

◆ An exclusion clause contains filtering criteria that excludes
specific DDL from this parameter.

The inclusion or exclusion clause must consist of the INCLUDE or
EXCLUDE keyword followed by any valid combination of other options of
the parameter that is being applied.

If you use EXCLUDE, you must create a corresponding INCLUDE clause.
For example, the following is invalid:
DDL EXCLUDE OBJNAME “hr.*”

However, you can use either of the following:
DDL INCLUDE ALL, EXCLUDE OBJNAME “hr.*”

DDL INCLUDE OBJNAME “fin.*” EXCLUDE “fin.ss”

An EXCLUDE takes priority over any INCLUDEs that contain the same
criteria. You can use multiple inclusion and exclusion clauses.

Argument Description

Configuring DDL synchronization for an Oracle database
Handling Replicat DDL processing errors

176Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

MAPPED | UNMAPPED |
OTHER | ALL

Use MAPPED, UNMAPPED, OTHER, and ALL to apply INCLUDE or EXCLUDE
based on the DDL operation scope.

◆ MAPPED applies INCLUDE or EXCLUDE to DDL operations that are of
MAPPED scope. MAPPED filtering is performed before filtering that is
specified with other DDL parameter options.

◆ UNMAPPED applies INCLUDE or EXCLUDE to DDL operations that are of
UNMAPPED scope.

◆ OTHER applies INCLUDE or EXCLUDE to DDL operations that are of
OTHER scope.

◆ ALL applies INCLUDE or EXCLUDE to DDL operations of all scopes.

OPTYPE <type> Use OPTYPE to apply INCLUDE or EXCLUDE to a specific type of DDL
operation, such as CREATE, ALTER, and RENAME. For <type>, use any DDL
command that is valid for the database. For example, to include ALTER
operations, the correct syntax is:
DDL INCLUDE OPTYPE ALTER

OBJTYPE ‘<type>’ Use OBJTYPE to apply INCLUDE or EXCLUDE to a specific type of database
object. For <type>, use any object type that is valid for the database,
such as TABLE, INDEX, and TRIGGER. For an Oracle materialized view and
materialized views log, the correct types are snapshot and snapshot log,
respectively. Enclose the name of the object type within single quotes.
For example:
DDL INCLUDE OBJTYPE ‘INDEX’
DDL INCLUDE OBJTYPE ‘SNAPSHOT’

For Oracle object type USER, do not use the OBJNAME option, because
OBJNAME expects “owner.object” whereas USER only has a schema.

OBJNAME “<name>” Use OBJNAME to apply INCLUDE or EXCLUDE to the fully qualified name of
an object, for example owner.table_name. This option takes a double-
quoted string as input.

You can use a wildcard only for the object name.

Example:
DDL INCLUDE OBJNAME “accounts.*”

Do not use OBJNAME for the Oracle USER object, because OBJNAME
expects “owner.object” whereas USER only has a schema.

When using OBJNAME with MAPPED in a Replicat parameter file, the
value for OBJNAME must refer to the name specified with the TARGET
clause of the MAP statement. For example, given the following MAP
statement, the correct value is OBJNAME “fin2.*”.
MAP fin.exp_*, TARGET fin2.*;

Table 20 DDL inclusion and exclusion options

Option Description

Configuring DDL synchronization for an Oracle database
Handling Replicat DDL processing errors

177Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

In the following example, a CREATE TABLE statement executes like this
on the source:
CREATE TABLE fin.exp_phone;

And like this on the target:
CREATE TABLE fin2.exp_phone;

If a target owner is not specified in the MAP statement, Replicat maps
it to the database user that is specified with the USERID parameter.

For DDL that creates triggers, synonyms, and indexes, the value for
OBJNAME must be the name of the base object, not the name of the
trigger, synonym, or index.

For example, to include the following DDL statement, the correct
value is “hr.accounts,” not “hr.insert_trig.”
CREATE TRIGGER hr.insert_trig ON hr.accounts;

For RENAME operations, the value for OBJNAME must be the new table
name. For example, to include the following DDL statement, the
correct value is “hr.acct.”
ALTER TABLE hr.accounts RENAME TO acct;

INSTR ‘<string>’ Use INSTR to apply INCLUDE or EXCLUDE to DDL statements that contain
a specific character string within the command syntax itself, but not
within comments. For example, the following excludes DDL that
creates an index.
DDL INCLUDE ALL EXCLUDE INSTR ‘CREATE INDEX’

Enclose the string within single quotes. The string search is not case
sensitive.

INSTR does not support single quotation marks (‘ ’) that are within
the string, nor does it support NULL values.

INSTRCOMMENTS
‘<comment_string>’

Use INSTRCOMMENTS to apply INCLUDE or EXCLUDE to DDL statements
that contain a specific character string within a comment, but not
within the DDL command itself. By using INSTRCOMMENTS, you can use
comments as a filtering agent.

For example, the following excludes DDL statements that include
“source” in the comments.
DDL INCLUDE ALL EXCLUDE INSTRCOMMENTS ‘SOURCE ONLY’

In this example, DDL statements such as the following are not
replicated.
CREATE USER john IDENTIFIED BY john /*source only*/;

Enclose the string within single quotes. The string search is not case
sensitive. You can combine INSTR and INSTRCOMMENTS to filter on a
string in the command syntax and in the comments of the same DDL
statement.

INSTRCOMMENTS does not support single quotation marks (‘ ’) that are
within the string, nor does it support NULL values.

Table 20 DDL inclusion and exclusion options

Option Description

Configuring DDL synchronization for an Oracle database
Handling Replicat DDL processing errors

178Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Sample DDLERROR statement

In the following example, the DDLERROR statement causes Replicat to ignore the specified
error, but not before trying the operation again three times at ten-second intervals.
Replicat applies the error handling to DDL operations executed on objects whose names
satisfy the wildcard of “tab*” (any user, any operation) except those that satisfy “tab1*.”

DDLERROR <error> IGNORE RETRYOP MAXRETRIES 3 RETRYDELAY 10 &

INCLUDE ALL OBJTYPE TABLE OBJNAME “tab*” EXCLUDE OBJNAME “tab1*”

To handle all errors except that error, the following DDLERROR statement can be added.

DDLERROR DEFAULT ABENDS

In this case, Replicat abends on DDL errors.

Using multiple DDLERROR statements

The order in which you list DDLERROR statements in the parameter file does not affect their
validity unless multiple DDLERROR statements specify the same error, without any
additional qualifiers. In that case, Replicat only uses the first one listed. For example,

INSTRWORDS ‘<word list>’ Use INSTRWORDS to apply INCLUDE or EXCLUDE to DDL statements that
contain the specified words.

For <word list>, supply the words in any order, within single quotes. To
include spaces, put the space (and the word, if applicable) in double
quotes. Double quotes also can be used to enclose sentences.

All specified words must be present in the DDL for INSTRWORDS to take
effect.

Example:
ALTER TABLE INCLUDE INSTRWORDS ‘ALTER CONSTRAINT “ xyz”

This example will match
ALTER TABLE ADD CONSTRAINT xyz CHECK

and
ALTER TABLE DROP CONSTRAINT xyz

INSTRWORDS does not support single quotation marks (‘ ’) that are
within the string, nor does it support NULL values.

INSTRCOMMENTSWORDS
‘<word list>’

Works the same way as INSTRWORDS, but only applies to comments
within a DDL statement, not the DDL syntax itself. By using
INSTRCOMMENTS, you can use comments as a filtering agent.

INSTRCOMMENTSWORDS does not support single quotation marks (‘ ’)
that are within the string, nor does it support NULL values.

You can combine INSTRWORDS and INSTRCOMMENTSWORDS to filter on a
string in the command syntax and in the comments of the same DDL
statement.

Table 20 DDL inclusion and exclusion options

Option Description

Configuring DDL synchronization for an Oracle database
Handling DDL trigger errors

179Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

given the following statements, Replicat will abend on the error.

DDLERROR <error1> ABEND

DDLERROR <error1> IGNORE

With the proper qualifiers, however, the previous configuration becomes a more useful one.
For example:

DDLERROR <error1> ABEND INCLUDE OBJNAME “tab*”

DDLERROR <error1> IGNORE

In this case, because there is an INCLUDE statement, Replicat will abend only if an object
name in an errant DDL statement matches wildcard “tab*.” Replicat will ignore errant
operations that include any other object name.

Handling DDL trigger errors

Use the following parameters in the params.sql non-executable script to handle failures of
the Oracle GoldenGate DDL trigger in relation to whether the source DDL fails or
succeeds.

● ddl_fire_error_in_trigger: If set to TRUE, failures of the Oracle GoldenGate DDL trigger are
raised with a Oracle GoldenGate error message and a database error message to the
source end-user application. The source operations fails.

If set to FALSE, no errors are raised, and a message is written to the trigger trace file in
the Oracle GoldenGate directory. The source operation succeeds, but no DDL is
replicated. The target application will eventually fail if subsequent data changes do not
match the old target object structure. The default is FALSE.

● _ddl_cause_error: If set to TRUE, tests the error response of the trigger by deliberately
causing an error. To generate the error, Oracle GoldenGate attempts to SELECT zero
rows without exception handling. Revert this flag to the default of FALSE after testing is
done.

The params.sql script is in the root Oracle GoldenGate directory.

Viewing DDL report information

By default, Oracle GoldenGate shows basic statistics about DDL operations at the end of
the Extract and Replicat reports. To enable expanded DDL reporting, use the DDLOPTIONS
parameter with the REPORT option. Expanded reporting includes the following information
about DDL processing:

● A step-by-step history of the DDL operations that were processed by Oracle
GoldenGate.

● The DDL filtering and processing parameters that are being used.

Expanded DDL report information increases the size of the report file, but it might be
useful in certain situations, such as for troubleshooting or to determine when an
ADDTRANDATA to add supplemental logging was applied.

Configuring DDL synchronization for an Oracle database
Viewing DDL report information

180Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

To view a process report

To view a report, use the VIEW REPORT command in GGSCI.

VIEW REPORT <group>

Extract DDL reporting

The Extract report lists the following:

● The entire syntax of each captured DDL operation, the start and end SCN, the Oracle
instance, the DDL sequence number (from the SEQNO column of the history table), and
the size of the operation in bytes.

● A subsequent entry that shows how processing criteria was applied to the operation,
for example string substitution or INCLUDE and EXCLUDE filtering.

● Another entry showing whether the operation was written to the trail or excluded.

The following, taken from an Extract report, shows an included operation and an excluded
operation. There is a report message for the included operation, but not for the excluded
one.

2011-01-20 15:11:41 GGS INFO 2100 DDL found, operation [create table
myTable (

myId number (10) not null,

myNumber number,

myString varchar2(100),

myDate date,

primary key (myId)

)], start SCN [1186754], commit SCN [1186772] instance [test10g (1)], DDL
seqno [4134].

2011-01-20 15:11:41 GGS INFO 2100 DDL operation included [INCLUDE OBJNAME
myTable*], optype [CREATE], objtype [TABLE], objname [QATEST1.MYTABLE].

2011-01-20 15:11:41 GGS INFO 2100 DDL operation written to extract trail
file.

2011-01-20 15:11:42 GGS INFO 2100 Successfully added TRAN DATA for table
with the key, table [QATEST1.MYTABLE], operation [ALTER TABLE
"QATEST1"."MYTABLE" ADD SUPPLEMENTAL LOG GROUP "GGS_MYTABLE_53475" (MYID)
ALWAYS /* GOLDENGATE_DDL_REPLICATION */].

2011-01-20 15:11:43 GGS INFO 2100 DDL found, operation [create table
myTableTemp (

vid varchar2(100),

someDate date,

primary key (vid)

)], start SCN [1186777], commit SCN [1186795] instance [test10g (1)], DDL
seqno [4137].

2011-01-20 15:11:43 GGS INFO 2100 DDL operation excluded [EXCLUDE OBJNAME
myTableTemp OPTYPE CREATE], optype [CREATE], objtype [TABLE], objname
[QATEST1.MYTABLETEMP].

Configuring DDL synchronization for an Oracle database
Viewing DDL report information

181Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Replicat DDL reporting

The Replicat report lists:

● The entire syntax and source Oracle GoldenGate SCN of each DDL operation that
Replicat processed from the trail. You can use the source SCN for tracking purposes,
especially when there are restores from backup and Replicat is positioned backward in
the trail.

● A subsequent entry that shows the scope of the operation (MAPPED, UNMAPPED, OTHER)
and how object names were mapped in the target DDL statement, if applicable.

● Another entry that shows how processing criteria was applied.

● Additional entries that show whether the operation succeeded or failed, and whether
or not Replicat applied error handling rules.

The following excerpt from a Replicat report illustrates a sequence of steps, including error
handling:

2011-01-20 15:11:45 GGS INFO 2104 DDL found, operation [drop table
myTableTemp], Source SCN [1186713.0].

2011-01-20 15:11:45 GGS INFO 2100 DDL is of mapped scope, after mapping
new operation [drop table "QATEST2"."MYTABLETEMP"].

2011-01-20 15:11:45 GGS INFO 2100 DDL operation included [include objname
myTable*], optype [DROP], objtype [TABLE], objname [QATEST2.MYTABLETEMP].

2011-01-20 15:11:45 GGS INFO 2100 Executing DDL operation.

2011-01-20 15:11:48 GGS INFO 2105 DDL error ignored for next retry: error
code [942], filter [include objname myTableTemp], error text [ORA-00942: table
or view does not exist], retry [1].

2011-01-20 15:11:48 GGS INFO 2100 Executing DDL operation , trying again
due to RETRYOP parameter.

2011-01-20 15:11:51 GGS INFO 2105 DDL error ignored for next retry: error
code [942], filter [include objname myTableTemp], error text [ORA-00942: table
or view does not exist], retry [2].

2011-01-20 15:11:51 GGS INFO 2100 Executing DDL operation, trying again
due to RETRYOP parameter.

2011-01-20 15:11:54 GGS INFO 2105 DDL error ignored for next retry: error
code [942], filter [include objname myTableTemp], error text [ORA-00942: table
or view does not exist], retry [3].

2011-01-20 15:11:54 GGS INFO 2100 Executing DDL operation, trying again
due to RETRYOP parameter.

2011-01-20 15:11:54 GGS INFO 2105 DDL error ignored: error code [942],
filter [include objname myTableTemp], error text [ORA-00942: table or view does
not exist].

Configuring DDL synchronization for an Oracle database
Viewing metadata in the DDL history table

182Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Statistics in the process reports

You can send current statistics for DDL processing to the Extract and Replicat reports by
using the SEND command in GGSCI.

SEND {EXTRACT | REPLICAT} <group> REPORT

The statistics show totals for:

● All DDL operations

● Operations that are MAPPED in scope

● Operations that are UNMAPPED in scope

● Operations that are OTHER in scope

● Operations that were excluded (number of operations minus included ones)

● Errors (Replicat only)

● Retried errors (Replicat only)

● Discarded errors (Replicat only)

● Ignored operations (Replicat only)

From Table QATEST1.MYTABLE:

 # inserts: 100

 # updates: 0

 # deletes: 0

 # discards: 0

DDL replication statistics:

 Operations: 18

 Mapped operations: 4

 Unmapped operations: 0

 Default operations: 0

 Excluded operations: 0

Viewing metadata in the DDL history table

Use the DUMPDDL command in GGSCI to view the information that is contained in the DDL
history table. This information is stored in proprietary format, but you can export it in
human-readable form to the screen or to a series of SQL tables that you can query. The
information in the DDL history table is the same as that used by the Extract process.

Because the history data comes from the DDL before trigger, it reflects the state of an object
before a DDL change. Consequently, there is no data for CREATE operations.

DUMPDDL dumps approximately the first 4000 bytes of each record from the DDL history
table. To filter the output, use SQL queries or search redirected standard output.

The format of the metadata is string based. It is fully escaped and supports non-standard
characters (such as =, ?, *) in object or column names.

To view DDL history with DUMPDDL

1. Run GGSCI.

Configuring DDL synchronization for an Oracle database
Tracing DDL processing

183Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

2. In GGSCI, log into the database as the owner of the history table.

DBLOGIN USERID <user>[, PASSWORD <password>]

3. Issue the DUMPDDL command.

DUMPDDL [SHOW]

Basic DUMPDDL

The basic DUMPDDL command sends metadata to the tables listed in the following table. All
of these tables are owned by the Oracle GoldenGate DDL schema that was assigned during
the installation of the DDL objects (see the Oracle GoldenGate Oracle Installation and
Setup Guide). To view the structure of these tables, use the DESC command in SQL*Plus.

The SEQNO column is the DDL sequence number that is listed in the Extract and Replicat
report files. It also can be obtained by querying the DDL history table. The default name
of the DDL history table is GGS_DDL_HIST.

DUMPDDL SHOW

DUMPDDL with the SHOW option dumps the information from the history table to the screen
in standard output format. No GGS_DDL_ output tables are produced. The command dumps
all records in the DDL history table.

Tracing DDL processing

If you open a support case with Oracle GoldenGate Technical Support, you might be asked
to turn on tracing. The following parameters control DDL tracing.

● TLTRACE controls Extract tracing

● TRACE and TRACE2 control Replicat tracing.

Table 21 DUMPDDL output tables

Table Description

GGS_DDL_OBJECTS Contains information about the objects in the DDL operations.
SEQNO is the primary key. All of the other GGS_DDL_ tables
contain a SEQNO column that is the foreign key to
GGS_DDL_OBJECTS.

GGS_DDL_COLUMNS Contains information about the columns of the objects in the
DDL operations.

GGS_DDL_LOG_GROUPS Contains information about the supplemental log groups of the
objects in the DDL operations.

GGS_DDL_PARTITIONS Contains information about the partitions of the objects in the
DDL operations.

GGS_DDL_PRIMARY_KEYS Contains information about the primary keys of the objects in
the DDL operations.

Configuring DDL synchronization for an Oracle database
Tracing the DDL trigger

184Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

These parameters have options to isolate the tracing of DDL from the tracing of DML. For
more information, see the Oracle GoldenGateWindows and UNIX Reference Guide.

Tracing the DDL trigger

To trace the activity of the Oracle GoldenGate DDL trigger, use the following tools.

● ggs_ddl_trace.log trace file: Oracle GoldenGate creates a trace file in the USER_DUMP_DEST
directory of Oracle. On RAC, each node has its own trace file that captures DDL tracing
for that node. You can query the trace file as follows:
select value from sys.v_$parameter where name = 'user_dump_dest';

● ddl_tracelevel script: Edit and run this script to set the trace level. A value of None
generates no DDL tracing, except for fatal errors and installation logging. The default
value of 0 generates minimal tracing information. A value of 1 or 2 generates a much
larger amount of information in the trace file. Do not use 1 or 2 unless requested to do
so by a Oracle GoldenGate Technical Support analyst as part of a support case.

● ddl_cleartrace script: Run this script on a regular schedule to prevent the trace file from
consuming excessive disk space as it expands. It deletes the file, but Oracle
GoldenGate will create another one. The DDL trigger stops writing to the trace file
when the Oracle directory gets low on space, and then resumes writing when space is
available again. This script is in the Oracle GoldenGate directory. Back up the trace
file before running the script.

185Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHAPTER 15

Configuring DDL synchronization for a Teradata
database
.

About this documentation

This documentation contains information that is specific to the setup of the Oracle
GoldenGate solution within a Teradata environment. It assumes that the reader has a
fundamental knowledge of the Teradata database and the Teradata Replication Solutions.
It also assumes that the following have been configured properly:

● Relay Services Gateway (RSG)

● Change Data Capture (CDC)

● Teradata Access Module (TAM)

● Replication groups

For a complete description of how to configure replication for the Teradata database, see
the Teradata Replication Solutions documentation.

Overview of DDL synchronization

Oracle GoldenGate supports the synchronization of DDL operations from one database to
another. DDL synchronization can be active when:

● business applications are actively accessing and updating the source and target objects.

● Oracle GoldenGate transactional data synchronization is active.

The components that support the replication of DDL and the replication of transactional
data changes (DML) are independent of each other. Therefore, you can synchronize:

● just DDL changes

● just DML changes

● both DDL and DML

For example, if you use batch runs to keep the target objects current, you can configure
DDL synchronization as a continuous (online) run, so that the target metadata is always
up-to-date when the batch loads are performed. The Oracle GoldenGate batch load will use
the current metadata from the source and target catalogs.

Configuring DDL synchronization for a Teradata database
Limitations of Oracle GoldenGate DDL support

186Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

For a list of supported objects and operations for DDL support for Teradata, see the Oracle
GoldenGate Teradata Installation and Setup Guide.

Limitations of Oracle GoldenGate DDL support

DDL statement length

Oracle GoldenGate measures the length of a DDL statement in bytes, not in characters.
The supported length is approximately 2 MB, allowing for some internal overhead that can
vary in size depending on the name of the affected object and its DDL type, among other
characteristics. If the DDL is longer than the supported size, Extract will issue a warning
and ignore the DDL operation.

System configuration

● Oracle GoldenGate supports DDL replication in uni-directional configurations and also
in bi-directional configurations (active-passive and active-active) between two, and
only two, systems.

● Oracle GoldenGate supports DDL synchronization only in a like-to-like configuration.
Oracle GoldenGate DDL support requires the following:

❍ Source and target object definitions must be identical.

❍ The ASSUMETARGETDEFS parameter must be used in the Replicat parameter file.
Replicat will abend if objects are configured for DDL support and the SOURCEDEFS
parameter is being used. For more information about ASSUMETARGETDEFS, see the
Oracle GoldenGate Windows and UNIX Reference Guide.

Filtering, mapping, and transformation

DDL

DDL operations cannot be transformed by any Oracle GoldenGate process. You can use
simple string substitution, and you can map schema and object names as follows:

● Source DDL can be mapped and filtered to a different target object by a primary
Extract or a Replicat process, but the mapping or filtering of DDL by a data-pump
Extract or a VAM-sort Extract is not permitted. DDL is propagated through a data
pump or VAM-sort Extract in PASSTHRU mode (non-mapped or filtered).

● As a result, DDL that is performed on a source table of a certain name (for example
ALTER TABLE TableA...) will be processed by the data pump or VAM-sort Extract with the
same table name (ALTER TABLE TableA). It cannot be mapped by that process as ALTER TABLE
TableB, regardless of any TA BLE statements that specify otherwise.

DML

Because DDL is passed through unchanged and unmapped by a data pump or VAM-sort
Extract, consider this limitation if you intend to perform DML manipulation that maps
source tables to different target names. Perform filtering, mapping, and transformation of
DML with the primary Extract or with Replicat, and configure those tables for PASSTHRU
mode in the data pump or VAM-sort Extract.

If a data pump or VAM-sort Extract must perform DML manipulation that includes name

Configuring DDL synchronization for a Teradata database
Limitations of Oracle GoldenGate DDL support

187Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

mapping, then you must also configure Replicat to perform the corresponding name
mapping for replicated DDL for those tables.

NOTE Tables that do not use DDL support can be configured in NOPASSTHRU mode to
allow data filtering, and manipulation by the data pump.

To configure a table for data pass-through

1. In the parameter file of the data pump or VAM-sort Extract, place the PASSTHRU
parameter before all of the TABLE statements that contain tables that use DDL support.

2. In the same parameter file, you can place the NOPASSTHRU parameter before any TABLE
statements that contain tables that do not use DDL support, if you want data filtering,
mapping, or transformation to be performed for them.

3. Do not use any of the DDL configuration parameters for a data pump or VAM-sort
Extract: DDL, DDLOPTIONS, DDLSUBST, DDLERROR, or any of the Oracle GoldenGate tracing
parameters with DDL options.

For more information about PASSTHRU, see the Oracle GoldenGate Windows and UNIX
Reference Guide.

SQLEXEC

● All objects that are affected by a SQLEXEC stored procedure or query must exist with the
correct structures prior to the execution of the SQL. Consequently, DDL on these
objects that affects structure (such as CREATE or ALTER) must happen before the SQLEXEC
executes.

● All objects affected by a standalone SQLEXEC statement must exist before the Oracle
GoldenGate processes start. Because of this, DDL support must be disabled for those
objects; otherwise, DDL operations could change the structure or delete the object
before the SQLEXEC procedure or query executes on it.

User Exits

Use the GET_DDL_RECORD_PROPERTIES function to return a DDL operation, including
information about the object on which the DDL was performed and also the text of the DDL
statement itself. The Extract process can only get the source table layout. The Replicat
process can get source or target layouts.

This user exit only provides retrieval capability. Oracle GoldenGate does not provide a
function for manipulating DDL records.

DDL response time

The response time for DDL statements that are captured for replication might increase
because of the inherent latency of the synchronization protocol between the Teradata
database and the replication system, including the Oracle GoldenGate component. The
response time overhead should not exceed one second under most conditions. The response
time of DDL that is not captured should not be significantly affected. The performance cost
of capturing changed data in tables with UDTs or LOBs, compared to tables without those
data types, should be comparable to other methods of exporting data.

Configuring DDL synchronization for a Teradata database
Configuration guidelines for DDL support

188Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Configuration guidelines for DDL support

Database privileges

See the Oracle GoldenGate Oracle Installation and Setup Guide for database privileges
that are required for Oracle GoldenGate to support DDL capture and replication.

Initial synchronization

● To configure DDL replication, start with a target database that is synchronized with
the source database. DDL support is compatible with the Replicat initial load method.

● DDL support is also compatible with the Teradata FastLoad initial synchronization
method. See the Teradata documentation for more information about this feature.

● Before executing an initial load, disable DDL extraction and replication. DDL
processing is controlled by the DDL parameter in the Extract and Replicat parameter
files.

Process topology

● If using parallel Extract and/or Replicat processes, keep related DDL and DML
together in the same process stream to ensure data integrity. Configure the processes
so that:

❍ all DDL and DML for any given object are processed by the same Extract group and
by the same Replicat group.

❍ all objects that are relational to one another are processed by the same process
group.

For example, if ReplicatA processes DML for Table1, then it should also process the DDL
for Table1. If Table2 has a foreign key to Table1, then its DML and DDL operations also
should be processed by ReplicatA.

● If an Extract group writes to multiple trails that are read by different Replicat groups,
Extract sends all of the DDL to all of the trails. Use each Replicat group to filter the
DDL by using the filter options of the DDL parameter in the Replicat parameter file.

Object names

● Oracle GoldenGate supports object names that contain multibyte characters and
special alphanumeric characters, such as !, $, and #. Limitations apply when objects
are mapped with TABLE or MAP parameters, because those parameters do not support all
of the possible special characters. DDL on objects in MAP and TABLE statements inherit
the limitations of those parameters. For more information about these parameters, see
the documentation for MAP and TABLE in the Oracle GoldenGate Windows and UNIX
Reference Guide.

● You can use standard Oracle GoldenGate asterisk wildcards (*) to specify object names
in configuration parameters that support DDL synchronization. To process wildcards
correctly, the WILDCARDRESOLVE parameter is set to DYNAMIC by default. If
WILDCARDRESOLVE is set to anything else, the Oracle GoldenGate process that is
processing DDL operations will abend and write the error to the process report.

Configuring DDL synchronization for a Teradata database
Understanding DDL scopes

189Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

● Oracle GoldenGate supports the use of a space before, after, or both before and after,
the dot that separates owner and object names in a DDL statement. Only one space on
each side of the dot is supported. For example, the following are valid:
CREATE TABLE fin . customers...

CREATE TABLE fin. customers...

CREATE TABLE fin .customers...

Understanding DDL scopes

Database objects are classified into scopes. A scope is a category that defines how DDL
operations on an object are handled by Oracle GoldenGate. The scopes are:

● MAPPED

● UNMAPPED

● OTHER

The use of scopes enables granular control over the filtering of DDL operations, string
substitutions, and error handling.

Mapped scope

Objects that are specified in TABLE and MAP statements are of MAPPED scope. Extraction
and replication instructions in those statements apply to both data (DML) and DDL on the
specified objects, unless override rules are applied.

For objects in TABLE and MAP statements, the DDL operations listed in the following table
are supported.

For Extract, MAPPED scope marks an object for DDL capture according to the instructions
in the TABLE statement. For Replicat, MAPPED scope marks DDL for replication and maps it
to the object specified by the owner and name in the TARGET clause of the MAP statement.

Table 22 Objects that can be mapped in MAP and TABLE statements

Operations Object1

1 TABLE and MAP do not support some special characters that could be used in an object
name affected by these operations. For a list of those characters, see the MAP and TABLE
parameter descriptions in the Oracle GoldenGate Windows and UNIX Reference Guide.
Objects with non-supported special characters are supported by the scopes of UN-
MAPPED and OTHER.

CREATE

ALTER

DROP

RENAME

COMMENT ON2

2 Applies to COMMENT ON TABLE, COMMENT ON COLUMN.

TABLE (includes AS SELECT)

INDEX3

TRIGGER

VIEW

FUNCTION

PROCEDUREMACRO

3 DDL on an index is not supported for HASH and JOIN operations.

GRANT

REVOKE

TABLE

Configuring DDL synchronization for a Teradata database
Understanding DDL scopes

190Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Assume the following TABLE and MAP statements:

Also assume a source DDL statement of:

ALTER TABLE fin.expen ADD notes varchar2(100);

In this example, because the source table “fin.expen” is in a MAP statement with a TARGET
clause that maps to a different owner and table name, the target DDL statement becomes:

ALTER TABLE fin2.expen2 ADD notes varchar2(100);

Likewise, the following source and target DDL statements are possible for the second set
of TABLE and MAP statements in the example:

When objects are of MAPPED scope, you can omit their names from the DDL configuration
parameters, unless you want to refine their DDL support further. If you ever need to
change the object names in TABLE and MAP statements, the changes will apply automatically
to the DDL on those objects.

If you include an object in a TABLE statement, but not in a MAP statement, the DDL for that
object is MAPPED in scope on the source but UNMAPPED in scope on the target.

Mapping ALTER INDEX

An ALTER INDEX...RENAME command cannot be mapped to a different target index name, but it
can be mapped to a different target owner.

Valid example:

ALTER INDEX src.ind RENAME TO indnew;

This DDL can be mapped with wildcards as:

MAP src.* TARGET tgt.*;

Alternatively, it can be mapped explicitly as the following, making sure to use the original
index name in the source and target specifications:

MAP src.ind TARGET tgt.ind;

In either of the preceding cases, the target DDL will be:

ALTER INDEX tgt.ind RENAME TO indnew;

Invalid example:

A MAP statement such as the following is not valid:

MAP src.ind TARGET tgt.indnew;

Extract (source) Replicat (target)

TABLE fin.expen;
TABLE hr.tab*;

MAP fin.expen, TARGET fin2.expen2;
MAP hr.tab*, TARGET hrBackup.bak_*;

Source: CREATE TABLE hr.tabPayables ... ;

Target: CREATE TABLE hrBackup.bak_tabPayables ...;

Configuring DDL synchronization for a Teradata database
Enabling DDL support

191Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

That statement maps the old name to the new name, and the target DDL will become:

ALTER INDEX tgt.indnew RENAME TO indnew;

Unmapped scope

If a DDL operation is supported for use in a TABLE or MAP statement, but its base object name
is not included in one of those parameters, it is of UNMAPPED scope.

An object name can be of UNMAPPED scope on the source (not in an Extract TABLE statement),
but of MAPPED scope on the target (in a Replicat MAP statement), or the other way around.
When Teradata DDL is of UNMAPPED scope in the Replicat configuration, it is applied to the
target in one of these ways:

● If the required Replicat connection parameter TARGETDB contains just a DSN (as in
tdtarg), but not a database name, it is applied to the target object with the same owner
(database name) and object name as in the source DDL.

● If a specific database name is used in TARGETDB (as in db@tdtarg), all of the DDL
operations are applied to the target with the owner from TARGETDB.

Other scope

DDL operations that cannot be mapped are of OTHER scope. When DDL is of OTHER scope
in the Replicat configuration, it is applied to the target with the same owner and object
name as in the source DDL.

An example of OTHER scope is a DDL operation that makes a system-specific reference, such
as DDL that operates on data file names.

Enabling DDL support

By default, the status of DDL replication support is as follows:

● On the source, Oracle GoldenGate DDL support is disabled by default, although the
Teradata TAM sends all of the DDL to the Oracle GoldenGate VAM. You must
configure Extract to capture DDL by using the DDL parameter.

● On the target, DDL support is enabled by default, to maintain the integrity of
transactional data that is replicated. By default, Replicat will process all DDL
operations that the trail contains. If needed, you can use the DDL parameter to
configure Replicat to ignore or filter DDL operations.

Filtering DDL replication

Use the DDL parameter to filter DDL operations so that specific (or all) DDL is applied to
the target database according to your requirements.

When used without options, the DDL parameter performs no filtering, and it causes all DDL
operations to be propagated as follows:

● As an Extract parameter, it captures all supported DDL operations that are generated
on all supported database objects and sends them to the trail.

Configuring DDL synchronization for a Teradata database
Filtering DDL replication

192Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

● As a Replicat parameter, it replicates all DDL operations from the Oracle GoldenGate
trail and applies them to the target. This is the same as the default behavior without
this parameter.

When used with options, the DDL parameter acts as a filtering agent to include or exclude
DDL operations based on:

● scope

● object type

● operation type

● object name

● strings in the DDL command syntax or comments, or both

Only one DDL parameter can be used in a parameter file, but you can combine multiple
inclusion and exclusion options to filter the DDL to the required level.

● DDL filtering options are valid for a primary Extract that captures from the transaction
source, but not for a data-pump Extract.

● When combined, multiple filter option specifications are linked logically as “AND”
statements.

● All filter criteria specified with multiple options must be satisfied for a DDL statement
to be replicated.

● When using complex DDL filtering criteria, it is recommended that you test your
configuration in a test environment before using it in production.

NOTE Before you create a DDL parameter statement, it might help to review “How DDL is
evaluated for processing” in this chapter.

Syntax DDL [
{INCLUDE | EXCLUDE}

[, MAPPED | UNMAPPED | OTHER | ALL]

[, OPTYPE <type>]

[, OBJTYPE ‘<type>’]

[, OBJNAME “<name>”]

[, INSTR ‘<string>’]

]

[...]
7

Configuring DDL synchronization for a Teradata database
Filtering DDL replication

193Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Table 23 DDL inclusion and exclusion options

Option Description

INCLUDE | EXCLUDE Use INCLUDE and EXCLUDE to identify the beginning of an inclusion or
exclusion clause.

◆ An inclusion clause contains filtering criteria that identifies the
DDL that this parameter will affect.

◆ An exclusion clause contains filtering criteria that excludes
specific DDL from this parameter.

The inclusion or exclusion clause must consist of the INCLUDE or
EXCLUDE keyword followed by any valid combination of other options of
the parameter that is being applied.

If you use EXCLUDE, you must create a corresponding INCLUDE clause.
For example, the following is invalid:
DDL EXCLUDE OBJNAME “hr.*”

However, you can use either of the following:
DDL INCLUDE ALL, EXCLUDE OBJNAME “hr.*”

DDL INCLUDE OBJNAME “fin.*” EXCLUDE “fin.ss”

An EXCLUDE takes priority over any INCLUDEs that contain the same
criteria. You can use multiple inclusion and exclusion clauses.

MAPPED | UNMAPPED |
OTHER | ALL

Use MAPPED, UNMAPPED, OTHER, and ALL to apply INCLUDE or EXCLUDE
based on the DDL operation scope.

◆ MAPPED applies INCLUDE or EXCLUDE to DDL operations that are of
MAPPED scope. MAPPED filtering is performed before filtering that is
specified with other DDL parameter options.

◆ UNMAPPED applies INCLUDE or EXCLUDE to DDL operations that are of
UNMAPPED scope.

◆ OTHER applies INCLUDE or EXCLUDE to DDL operations that are of
OTHER scope.

◆ ALL applies INCLUDE or EXCLUDE to DDL operations of all scopes.

OPTYPE <type> Use OPTYPE to apply INCLUDE or EXCLUDE to a specific type of DDL
operation, such as CREATE, ALTER, and RENAME. For <type>, use any DDL
command that is valid for the database. For example, to include ALTER
operations, the correct syntax is:
DDL INCLUDE OPTYPE ALTER

Configuring DDL synchronization for a Teradata database
Filtering DDL replication

194Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

OBJTYPE ‘<type>’ Use OBJTYPE to apply INCLUDE or EXCLUDE to a specific type of database
object. For <type>, use any object type that is valid for the database,
such as TABLE, INDEX, and TRIGGER. For an Oracle materialized view and
materialized views log, the correct types are snapshot and snapshot log,
respectively. Enclose the name of the object type within single quotes.
For example:
DDL INCLUDE OBJTYPE ‘INDEX’
DDL INCLUDE OBJTYPE ‘SNAPSHOT’

For Oracle object type USER, do not use the OBJNAME option, because
OBJNAME expects “owner.object” whereas USER only has a schema.

OBJNAME “<name>” Use OBJNAME to apply INCLUDE or EXCLUDE to the fully qualified name of
an object, for example owner.table_name. This option takes a double-
quoted string as input.

You can use a wildcard only for the object name.

Example:
DDL INCLUDE OBJNAME “accounts.*”

Do not use OBJNAME for the Oracle USER object, because OBJNAME
expects “owner.object” whereas USER only has a schema.

When using OBJNAME with MAPPED in a Replicat parameter file, the
value for OBJNAME must refer to the name specified with the TARGET
clause of the MAP statement. For example, given the following MAP
statement, the correct value is OBJNAME “fin2.*”.
MAP fin.exp_*, TARGET fin2.*;

In the following example, a CREATE TABLE statement executes like this
on the source:
CREATE TABLE fin.exp_phone;

And like this on the target:
CREATE TABLE fin2.exp_phone;

If a target owner is not specified in the MAP statement, Replicat maps
it to the database user that is specified with the USERID parameter.

For DDL that creates triggers and indexes, the value for OBJNAME
must be the name of the base object, not the name of the triggeror
index.

For example, to include the following DDL statement, the correct
value is “hr.accounts,” not “hr.insert_trig.”
CREATE TRIGGER hr.insert_trig ON hr.accounts;

For RENAME operations, the value for OBJNAME must be the new table
name. For example, to include the following DDL statement, the
correct value is “hr.acct.”
ALTER TABLE hr.accounts RENAME TO acct;

Table 23 DDL inclusion and exclusion options

Option Description

Configuring DDL synchronization for a Teradata database
Filtering DDL replication

195Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Combining DDL parameter options

The following is an example of how to combine DDL parameter options.

DDL &

INCLUDE UNMAPPED &

OPTYPE alter &

OBJTYPE ‘table’ &

OBJNAME “users.tab*” &

INCLUDE MAPPED OBJNAME “*” &

EXCLUDE MAPPED OBJNAME "temporary.tab*"

The combined filter criteria in this statement specify the following:

● INCLUDE all ALTER TABLE statements for tables that are not mapped with a TABLE or MAP
statement (UNMAPPED scope),

❍ only if those tables are owned by “users” and their names start with “tab,”

● and INCLUDE all DDL operation types for all tables that are mapped with a TABLE or MAP
statement (MAPPED scope).

INSTR ‘<string>’ Use INSTR to apply INCLUDE or EXCLUDE to DDL statements that contain
a specific character string within the command syntax. For example,
the following excludes DDL that creates an index.
DDL INCLUDE ALL EXCLUDE INSTR ‘CREATE INDEX’

Enclose the string within single quotes. The string search is not case
sensitive.

INSTR does not support single quotation marks (‘ ’) that are within
the string, nor does it support NULL values.

INSTRWORDS ‘<word list>’ Use INSTRWORDS to apply INCLUDE or EXCLUDE to DDL statements that
contain the specified words.

For <word list>, supply the words in any order, within single quotes. To
include spaces, put the space (and the word, if applicable) in double
quotes. Double quotes also can be used to enclose sentences.

All specified words must be present in the DDL for INSTRWORDS to take
effect.

Example:
ALTER TABLE INCLUDE INSTRWORDS ‘ALTER CONSTRAINT “ xyz”

This example will match
ALTER TABLE ADD CONSTRAINT xyz CHECK

and
ALTER TABLE DROP CONSTRAINT xyz

INSTRWORDS does not support single quotation marks (‘ ’) that are
within the string, nor does it support NULL values.

Table 23 DDL inclusion and exclusion options

Option Description

Configuring DDL synchronization for a Teradata database
How Oracle GoldenGate handles derived object names

196Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

● and EXCLUDE all DDL operation types for all tables that are MAPPED in scope,

❍ only if those tables are owned by “temporary.”

❍ and only if their names begin with “tab.”

DDL EXCLUDE ALL

DDL EXCLUDE ALL is a special processing option that maintains up-to-date object metadata for
Oracle GoldenGate, while blocking the replication of the DDL operations themselves. You
can use DDL EXCLUDE ALL when using a method other than Oracle GoldenGate to apply DDL
to the target, but you want Oracle GoldenGate to replicate data changes to the target
objects. It provides the current metadata to Oracle GoldenGate as objects change, thus
preventing the need to stop and start the Oracle GoldenGate processes. The following
special conditions apply to DDL EXCLUDE ALL:

● DDL EXCLUDE ALL does not require the use of an INCLUDE clause.

● When using DDL EXCLUDE ALL, you may set the WILDCARDRESOLVE parameter to IMMEDIATE
to allow immediate DML resolution if required.

To prevent all DDL metadata and operations from being replicated, omit the DDL
parameter entirely.

How Oracle GoldenGate handles derived object names

DDL operations can contain a base object name and also a derived object name. A base
object is an object that contains data. A derived object is an object that inherits some
attributes of the base object to perform a function related to that object. DDL statements
that have both base and derived objects are:

● RENAME

● CREATE and DROP on an index or trigger

Consider the following DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.tabPayroll (payDate);

In this case, the table is the base object. Its name (hr.tabPayroll) is the base name and is
subject to mapping with TABLE or MAP under the MAPPED scope. The derived object is the
index, and its name (hr.indexPayrollDate) is the derived name.

You can map a derived name in its own TABLE or MAP statement, separately from that of the
base object. Or, you can use one MAP statement to handle both. In the case of MAP, the
conversion of derived object names on the target works as follows.

MAP exists for base object, but not derived object

If there is a MAP statement for the base object, but not for the derived object, the result is
an implicit mapping of the derived object. Assuming the DDL statement includes MAPPED,
Replicat gives the derived object the same target owner as that of the base object. The name
of the derived object stays the same as in the source statement. For example, assume the
following:

Configuring DDL synchronization for a Teradata database
How Oracle GoldenGate handles derived object names

197Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Assume the following source DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.tabPayroll (payDate);

The CREATE INDEX statement is executed by Replicat on the target as:

CREATE INDEX hrBackup.indexPayrollDate ON TABLE hrBackup.tabPayroll
(payDate);

The rule for the implicit mapping is based the typical industry practice of giving derived
objects the same owner as the base object. Also, when indexes are owned by the same target
owner as the base object, an implicit mapping eliminates the need to map derived object
names explicitly.

MAP exists for base and derived objects

If there is a MAP statement for the base object and also one for the derived object, the result
is an explicit mapping. Assuming the DDL statement includes MAPPED, Replicat converts
the owner and name of each object according to its own TARGET clause. For example, assume
the following:

Assume the following source DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.tabPayroll (payDate);

The CREATE INDEX statement is executed by Replicat on the target as:

CREATE INDEX hrIndex.indexPayrollDate ON TABLE hrBackup.tabPayroll
(payDate);

Use an explicit mapping when the index on the target must be owned by a different owner
from that of the base object, or when the name on the target must be different from that of
the source.

MAP exists for derived object, but not base object

If there is a MAP statement for the derived object, but not for the base object, Replicat does
not perform any name conversion for either object. The target DDL statement is the same
as that of the source. To map a derived object, the choices are:

● Use an explicit MAP statement for the base object.

● If names permit, map both base and derived objects in the same MAP statement by
means of a wildcard.

● Create a MAP statement for each object, depending on how you want the names
converted.

Extract (source) Replicat (target)

TABLE hr.tab*; MAP hr.tab*, TARGET hrBackup.*;

Extract (source) Replicat (target)

TABLE hr.tab*;
TABLE hr.index*;

MAP hr.tab*, TARGET hrBackup.*;
MAP hr.index*, TARGET hrIndex.*;

Configuring DDL synchronization for a Teradata database
How Oracle GoldenGate handles derived object names

198Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

New tables as derived objects

The following explains how Oracle GoldenGate handles new tables that are created from:

● RENAME

● CREATE TABLE AS SELECT

RENAME

In RENAME operations, the base object is always the new table name. In the following
example, the base object name is considered to be “index_paydate.”

RENAME hr.indexPayrollDate TO index_paydate;

The derived object name is “hr.indexPayrollDate.”

See “Controlling whether renames enter the DDL configuration” on page 204 for additional
information on renames as they relate to DDL replication.

CREATE TABLE AS SELECT

CREATE TABLE AS SELECT statements include SELECT statements and INSERT statements that
affect any number of underlying objects. On the target, Oracle GoldenGate obtains the data
for the AS SELECT clause from the target database. The objects in the AS SELECT clause must
exist in the target database, and their names must be identical to the ones on the source.

In a MAP statement, Oracle GoldenGate only maps the name of the new table (CREATE TABLE
<name>) to the TARGET specification, but does not map the names of the underlying objects
from the AS SELECT clause. There could be dependencies on those objects that could cause
data inconsistencies if the names were converted to the TARGET specification.

The following shows an example of a CREATE TABLE AS SELECT statement on the source and how
it would be replicated to the target by Oracle GoldenGate.

CREATE TABLE a.tab1 AS SELECT * FROM a.tab2;

The MAP statement for Replicat is:

MAP a.tab*, TARGET a.x*;

The target DDL statement that is applied by Replicat is this:

CREATE TABLE a.xtab1 AS SELECT * FROM a.tab2;

not this:

CREATE TABLE a.xtab1 AS SELECT * FROM a.xtab2;

The name of the table in the AS SELECT * FROM clause remains as it was on the source: tab2.

To keep the data in the underlying objects consistent on source and target, you can
configure them for data replication by Oracle GoldenGate. In the preceding example, you
could use the following statements to accommodate this requirement:

Source Target

TABLE a.tab*; MAPEXCLUDE a.tab2
MAP a.tab*, TARGET a.x*;
MAP a.tab2, TARGET a.tab2;

Configuring DDL synchronization for a Teradata database
How Oracle GoldenGate handles derived object names

199Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Disabling the mapping of derived objects

Use the DDLOPTIONS parameter with the NOMAPDERIVED option to prevent the conversion of
the name of a derived object according to a TARGET clause of a MAP statement that includes
it. NOMAPDERIVED overrides any explicit MAP statements that contain the name of the base
or derived object. Source DDL that contains derived objects is replicated to the target with
the same owner and object names as on the source.

The following table shows the results of MAPDERIVED compared to NOMAPDERIVED, based on
whether there is a MAP statement just for the base object, just for the derived object, or for
both.

The following examples illustrate the results of MAPDERIVED as compared to NOMAPDERIVED.

In the following table, both trigger and table are owned by “rpt” on the target because both
base and derived names are converted by means of MAPDERIVED.

In the following table, the trigger is owned by “fin,” because conversion is prevented by
means of NOMAPDERIVED.

Table 24 [NO]MAPDERIVED results on target based on mapping configuration

Base Object
Derived
Object

MAP/NOMAP
DERIVED?

Derived object
converted per a
MAP?

Derived object gets
owner of base object?

mapped1

1 Mapped means included in a MAP statement.

mapped MAPDERIVED yes no

mapped not mapped MAPDERIVED no yes

not mapped mapped MAPDERIVED no no

not mapped not mapped MAPDERIVED no no

mapped mapped NOMAPDERIVED no no

mapped not mapped NOMAPDERIVED no no

not mapped mapped NOMAPDERIVED no no

not mapped not mapped NOMAPDERIVED no no

Table 25 Default mapping of derived object names (MAPDERIVED)

MAP statement Source DDL statement
captured by Extract

Target DDL statement
applied by Replicat

MAP fin.*, TARGET rpt.*; CREATE TRIGGER fin.act_trig
ON fin.acct;

CREATE TRIGGER rpt.act_trig
ON rpt.acct;

Configuring DDL synchronization for a Teradata database
Using DDL string substitution

200Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

NOTE In the case of a RENAME statement, the new table name is considered to be the
base table name, and the old table name is considered to be the derived table
name.

Using DDL string substitution

You can substitute strings within a DDL operation while it is being processed by Oracle
GoldenGate. This feature provides a convenience for changing and mapping directory
names and other things that are not directly related to data structures. String substitution
is controlled by the DDLSUBST parameter.

Guidelines for using DDLSUBST

● Do not use DDLSUBST to convert column names and data types to something different on
the target. Changing the structure of a target object in this manner will cause errors
when data is replicated to it. Likewise, do not use DDLSUBST to change owner and table
names in a target DDL statement. Always use a MAP statement to map a replicated
DDL operation to a different target object.

● DDLSUBST always executes after the DDL parameter, regardless of their relative order in
the parameter file. Because the filtering executes first, use filtering criteria that is
compatible with the criteria that you are using for string substitution. For example,
consider the following parameter statements:
DDL INCLUDE OBJNAME “fin.*”

DDLSUBST ‘cust’ WITH ‘customers’ INCLUDE OBJNAME “sales.*”

In this example, no substitution occurs because the objects in the INCLUDE and DDLSUBST
statements are different. The fin-owned objects are included in the Oracle GoldenGate
DDL configuration, but the sales-owned objects are not.

● You can use multiple DDLSUBST parameters. They execute in the order listed in the
parameter file.

● There is no maximum string size for substitutions, other than the limit that is imposed
by the database. If the string size exceeds the database limit, the Extract or Replicat
process that is executing the operation abends.

NOTE Before you create a DDLSUBST parameter statement, it might help to review “How
DDL is evaluated for processing” in this chapter.

Syntax DDLSUBST ‘<search_string>’ WITH ‘<replace_string>’

[INCLUDE <inclusion clause> | EXCLUDE <exclusion clause>]

Table 26 Mapping of derived object names when using NOMAPDERIVED

MAP statement Source DDL statement
captured by Extract

Target DDL statement
applied by Replicat

MAP fin.*, TARGET rpt.*; CREATE TRIGGER fin.act_trig
ON fin.acct;

CREATE TRIGGER fin.act_trig
ON rpt.acct;

Configuring DDL synchronization for a Teradata database
Using DDL string substitution

201Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

.

7

Argument Description

‘<search_string>’ The string in the source DDL statement that you want to
replace. Enclose the string within single quote marks. To
represent a quotation mark in a string, use a double
quotation mark.

WITH Required keyword.

‘<replace_string>’ The string that you want to use as the replacement in the
target DDL. Enclose the string within single quote marks.
To represent a quotation mark in a string, use a double
quotation mark.

INCLUDE <inclusion clause> |
EXCLUDE <exclusion clause>

Use one or more INCLUDE and EXCLUDE statements to filter the
DDL operations for which the string substitution rules are
applied. See the following table.

Table 27 DDL inclusion and exclusion options

Option Description

INCLUDE | EXCLUDE Use INCLUDE and EXCLUDE to identify the beginning of an inclusion or
exclusion clause.

◆ An inclusion clause contains filtering criteria that identifies the
DDL that this parameter will affect.

◆ An exclusion clause contains filtering criteria that excludes
specific DDL from this parameter.

The inclusion or exclusion clause must consist of the INCLUDE or
EXCLUDE keyword followed by any valid combination of other options of
the parameter that is being applied.

If you use EXCLUDE, you must create a corresponding INCLUDE clause.
For example, the following is invalid:
DDL EXCLUDE OBJNAME “hr.*”

However, you can use either of the following:
DDL INCLUDE ALL, EXCLUDE OBJNAME “hr.*”

DDL INCLUDE OBJNAME “fin.*” EXCLUDE “fin.ss”

An EXCLUDE takes priority over any INCLUDEs that contain the same
criteria. You can use multiple inclusion and exclusion clauses.

Configuring DDL synchronization for a Teradata database
Using DDL string substitution

202Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

MAPPED | UNMAPPED |
OTHER | ALL

Use MAPPED, UNMAPPED, OTHER, and ALL to apply INCLUDE or EXCLUDE
based on the DDL operation scope.

◆ MAPPED applies INCLUDE or EXCLUDE to DDL operations that are of
MAPPED scope. MAPPED filtering is performed before filtering that is
specified with other DDL parameter options.

◆ UNMAPPED applies INCLUDE or EXCLUDE to DDL operations that are of
UNMAPPED scope.

◆ OTHER applies INCLUDE or EXCLUDE to DDL operations that are of
OTHER scope.

◆ ALL applies INCLUDE or EXCLUDE to DDL operations of all scopes.

OPTYPE <type> Use OPTYPE to apply INCLUDE or EXCLUDE to a specific type of DDL
operation, such as CREATE, ALTER, and RENAME. For <type>, use any DDL
command that is valid for the database. For example, to include ALTER
operations, the correct syntax is:
DDL INCLUDE OPTYPE ALTER

OBJTYPE ‘<type>’ Use OBJTYPE to apply INCLUDE or EXCLUDE to a specific type of database
object. For <type>, use any object type that is valid for the database,
such as TABLE, INDEX, and TRIGGER. For an Oracle materialized view and
materialized views log, the correct types are snapshot and snapshot log,
respectively. Enclose the name of the object type within single quotes.
For example:
DDL INCLUDE OBJTYPE ‘INDEX’
DDL INCLUDE OBJTYPE ‘SNAPSHOT’

For Oracle object type USER, do not use the OBJNAME option, because
OBJNAME expects “owner.object” whereas USER only has a schema.

OBJNAME “<name>” Use OBJNAME to apply INCLUDE or EXCLUDE to the fully qualified name of
an object, for example owner.table_name. This option takes a double-
quoted string as input.

You can use a wildcard only for the object name.

Example:
DDL INCLUDE OBJNAME “accounts.*”

Do not use OBJNAME for the Oracle USER object, because OBJNAME
expects “owner.object” whereas USER only has a schema.

When using OBJNAME with MAPPED in a Replicat parameter file, the
value for OBJNAME must refer to the name specified with the TARGET
clause of the MAP statement. For example, given the following MAP
statement, the correct value is OBJNAME “fin2.*”.
MAP fin.exp_*, TARGET fin2.*;

Table 27 DDL inclusion and exclusion options

Option Description

Configuring DDL synchronization for a Teradata database
Using DDL string substitution

203Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

In the following example, a CREATE TABLE statement executes like this
on the source:
CREATE TABLE fin.exp_phone;

And like this on the target:
CREATE TABLE fin2.exp_phone;

If a target owner is not specified in the MAP statement, Replicat maps
it to the database user that is specified with the USERID parameter.

For DDL that creates triggers and indexes, the value for OBJNAME
must be the name of the base object, not the name of the triggeror
index.

For example, to include the following DDL statement, the correct
value is “hr.accounts,” not “hr.insert_trig.”
CREATE TRIGGER hr.insert_trig ON hr.accounts;

For RENAME operations, the value for OBJNAME must be the new table
name. For example, to include the following DDL statement, the
correct value is “hr.acct.”
ALTER TABLE hr.accounts RENAME TO acct;

INSTR ‘<string>’ Use INSTR to apply INCLUDE or EXCLUDE to DDL statements that contain
a specific character string within the command syntax. For example,
the following excludes DDL that creates an index.
DDL INCLUDE ALL EXCLUDE INSTR ‘CREATE INDEX’

Enclose the string within single quotes. The string search is not case
sensitive.

INSTR does not support single quotation marks (‘ ’) that are within
the string, nor does it support NULL values.

INSTRWORDS ‘<word list>’ Use INSTRWORDS to apply INCLUDE or EXCLUDE to DDL statements that
contain the specified words.

For <word list>, supply the words in any order, within single quotes. To
include spaces, put the space (and the word, if applicable) in double
quotes. Double quotes also can be used to enclose sentences.

All specified words must be present in the DDL for INSTRWORDS to take
effect.

Example:
ALTER TABLE INCLUDE INSTRWORDS ‘ALTER CONSTRAINT “ xyz”

This example will match
ALTER TABLE ADD CONSTRAINT xyz CHECK

and
ALTER TABLE DROP CONSTRAINT xyz

INSTRWORDS does not support single quotation marks (‘ ’) that are
within the string, nor does it support NULL values.

Table 27 DDL inclusion and exclusion options

Option Description

Configuring DDL synchronization for a Teradata database
Controlling whether renames enter the DDL configuration

204Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Example In the following example, the string ‘cust’ is replaced with the string ‘customers’ for tables
owned by “fin”.

DDLSUBST ‘cust’ WITH ‘customers’

INCLUDE ALL OBJTYPE ‘table’ OBJNAME “fin.*”

The search is not case-sensitive. To represent a quotation mark in a string, use a double
quotation mark.

Example This example uses multiple DDLSUBST parameters. They will execute in the order listed in
the parameter file. The net effect is to substitute “a” and “b” strings with “c.”

DDLSUBST ‘a’ WITH ‘b’ INCLUDE ALL

DDLSUBST ‘b’ WITH ‘c’ INCLUDE ALL

Controlling whether renames enter the DDL configuration

You can use the DDLOPTIONS parameter with the NOCROSSRENAME option to enforce the rule
that objects which are excluded from the Oracle GoldenGate configuration cannot be
renamed to names that are in the configuration. This is an example of how a rename could
occur:

● TableA is excluded, but tableB is included.

● TableA gets renamed to tableB.

If an object does get renamed to one that is in the Oracle GoldenGate configuration, Extract
issues a warning, so that you can take the appropriate action (keep it in the Oracle
GoldenGate configuration or make the appropriate parameter adjustments to exclude it).
An example of how this notification is useful is to prevent errors if a renamed object has a
structure that is not supported by Oracle GoldenGate.

NOCROSSRENAME applies globally to:

● all objects specified in TABLE and TABLEEXCLUDE statements in the parameter file

● all objects that are excluded from the Oracle GoldenGate DDL configuration, and not
specified by TABLE or TABLEEXCLUDE.

DDLOPTIONS NOCROSSRENAME provides the same results as the TABLEEXCLUDE parameter, when
used with the NORENAME option. The difference between the two parameters is that
TABLEEXCLUDE NORENAME allows more selectivity than NOCROSSRENAME, because the
functionality only affects the objects in the TABLEEXCLUDE statement.

How DDL is evaluated for processing

The following explains how Oracle GoldenGate processes DDL statements on the source
and target systems. It shows the order in which different criteria in the Oracle GoldenGate
parameters are processed, and it explains the differences between how Extract and
Replicat each process the DDL.

Extract

1. Extract captures a DDL operation.

Configuring DDL synchronization for a Teradata database
How DDL is evaluated for processing

205Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

2. Extract searches for the DDL parameter. (This example assumes it exists.)

3. Extract gets the base object name and, if present, the derived object name.

4. Extract determines the DDL scope: MAPPED, UNMAPPED or OTHER. It is MAPPED if:

❍ the operation and object types are supported for mapping.

and...

❍ the base object name and/or derived object name (if RENAME) is in a TABLE parameter.

It is UNMAPPED if:

❍ the operation and object types are not supported for mapping.

and...

❍ the base object name and/or derived object name (if RENAME) is not in a TABLE
parameter.

Otherwise the operation is identified as OTHER.

5. Extract checks the DDL parameter for INCLUDE and EXCLUDE clauses, and it evaluates the
DDL parameter criteria in those clauses. All options must evaluate to TRUE in order for
the INCLUDE or EXCLUDE to evaluate to TRUE. The following occurs:

❍ If an EXCLUDE clause evaluates to TRUE, Extract discards the DDL operation and
evaluates another DDL operation. In this case, the processing steps start over.

❍ If an INCLUDE clause evaluates to TRUE, or if the DDL parameter does not have any
INCLUDE or EXCLUDE clauses, Extract includes the DDL operation, and the processing
logic continues.

6. Extract searches for a DDLSUBST parameter and evaluates the INCLUDE and EXCLUDE
clauses. If the criteria in those clauses add up to TRUE, Extract performs string
substitution. Extract evaluates the DDL operation against each DDLSUBST statement in
the parameter file. For all true DDLSUBST statements, Extract performs string
substitution in the order that the DDLSUBST parameters are listed in the file.

7. Extract writes the DDL statement to the trail.

Replicat

1. Replicat reads the DDL operation from the trail.

2. Replicat evaluates the DDL synchronization scope to determine if the DDL qualifies for
name mapping. Anything else is of OTHER scope.

3. Replicat evaluates the MAP statements in the parameter file. If the source base object
name for this DDL (as read from the trail) appears in any of the MAP statements, the
operation is marked as MAPPED in scope. Otherwise it is marked as UNMAPPED in scope.

4. Replicat replaces the source base object name with the base object name that is
specified in the TARGET clause of the MAP statement.

5. If there is a derived object, Replicat searches for DDLOPTIONS MAPDERIVED. If it is present,
Replicat replaces the source derived name with the target derived name from the MAP
statement.

Configuring DDL synchronization for a Teradata database
Handling Extract DDL processing errors

206Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

6. Replicat checks the DDL parameter for INCLUDE and EXCLUDE clauses, and it evaluates the
DDL parameter criteria contained in them. All options must evaluate to TRUE in order
for the INCLUDE or EXCLUDE to evaluate to TRUE. The following occurs:

❍ If any EXCLUDE clause evaluates to TRUE, Replicat discards the DDL operation and
starts evaluating another DDL operation. In this case, the processing steps start
over.

❍ If any INCLUDE clause evaluates to TRUE, or if the DDL parameter does not have any
INCLUDE or EXCLUDE clauses, Replicat includes the DDL operation, and the processing
logic continues.

7. Replicat searches for the DDLSUBST parameter and evaluates the INCLUDE and EXCLUDE
clauses. If the options in those clauses add up to TRUE, Replicat performs string
substitution. Replicat evaluates the DDL operation against each DDLSUBST statement in
the parameter file. For all true DDLSUBST statements, Replicat performs string
substitution in the order that the DDLSUBST parameters are listed in the file.

8. Replicat executes the DDL operation on the target database.

9. If there are no errors, Replicat processes the next DDL statement. If there are errors,
Replicat performs the following steps.

10. Replicat analyzes the INCLUDE and EXCLUDE rules in the Replicat DDLERROR parameter
statements in the order that they appear in the parameter file. If Replicat finds a rule
for the error code, it applies the specified error handling; otherwise, it applies DEFAULT
handling.

11. If the error handling does not enable the DDL operation to succeed, Replicat does one
of the following: abends, ignores the operation, or discards it as specified in the rules.

NOTE If there are multiple targets for the same source in a MAP statement, the processing
logic executes for each one.

Handling Extract DDL processing errors

Use the Extract option of the DDLERROR parameter to handle errors on objects found by
Extract for which metadata cannot be found.

Syntax DDLERROR [RESTARTSKIP <num skips>] [SKIPTRIGGERERROR <num errors>]

Where:

❍ RESTARTSKIP skips a number of DDL operations on startup to prevent Extract from
abending on an error. By default, Extract abends on an error so that no operations
are skipped. You can skip up to 100,000 DDL operations.

To write information about skipped operations to the Extract report file, use the DDLOPTIONS
parameter with the REPORT option.

Handling Replicat DDL processing errors

Use the Replicat options of the DDLERROR parameter to handle errors that occur when DDL
is applied to the target database. With DDLERROR options, you can handle most errors in a
default manner, for example to stop processing, and also handle other errors in a specific

Configuring DDL synchronization for a Teradata database
Handling Replicat DDL processing errors

207Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

manner. You can use multiple instances of DDLERROR in the same parameter file to handle
all errors that are anticipated.

Use the combination of <error>, DEFAULT, and <response> to create rules for how Replicat
responds to anticipated and unanticipated DDL errors. Make certain to specify the
appropriate inclusion and exclusion clauses to apply the rules to the intended DDL. Then,
use additional options to refine the error handling, as needed.

Syntax DDLERROR
{<error> | DEFAULT} {<response>}

{INCLUDE <inclusion clause> | EXCLUDE <exclusion clause>}

[IGNOREMISSINGOBJECTS | ABENDONMISSINGOBJECTS]

Argument Description

{<error> | DEFAULT} {<response>} ◆ <error> is a specific DDL error that you want to be
handled with this statement.

◆ DEFAULT sets a global response to all DDL errors except
those for which explicit DDLERROR statements are
specified.

◆ <response> can be one of the following:

ABEND

Rolls back the operation and terminates processing
abnormally. ABEND is the default.

DISCARD

Logs the offending operation to the discard file but continue
processing subsequent DDL. Specify a discard file with the
DISCARDFILE parameter.

IGNORE

Ignores the error.

RETRYOP MAXRETRIES <n> [RETRYDELAY <delay>]
Retries the offending operation. Use the MAXRETRIES option to
control the number of retries. Replicat abends after the
specified number of MAXRETRIES. Specify a whole integer.

Use RETRYDELAY to set the amount of time, in seconds,
between retry attempts.

{INCLUDE <inclusion clause> |
EXCLUDE <exclusion clause>}

Controls whether specific DDL is handled or not handled by
the DDLERROR statement. See the following table for
descriptions.

Configuring DDL synchronization for a Teradata database
Handling Replicat DDL processing errors

208Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

7

[IGNOREMISSINGOBJECTS |
ABENDONMISSINGOBJECTS]

Controls whether or not Extract abends when DML is issued
on objects that could not be found on the target. This
condition is typically caused by DDL that is issued directly
on the target outside of replication, or by a discrepancy
between source and target definitions.

IGNOREMISSINGOBJECTS causes Replicat to skip DML
operations on missing tables.

ABENDONMISSINGOBJECTS causes Replicat to abend on DML
operations on missing tables.

Table 28 DDL inclusion and exclusion options

Option Description

INCLUDE | EXCLUDE Use INCLUDE and EXCLUDE to identify the beginning of an inclusion or
exclusion clause.

◆ An inclusion clause contains filtering criteria that identifies the
DDL that this parameter will affect.

◆ An exclusion clause contains filtering criteria that excludes
specific DDL from this parameter.

The inclusion or exclusion clause must consist of the INCLUDE or
EXCLUDE keyword followed by any valid combination of other options of
the parameter that is being applied.

If you use EXCLUDE, you must create a corresponding INCLUDE clause.
For example, the following is invalid:
DDL EXCLUDE OBJNAME “hr.*”

However, you can use either of the following:
DDL INCLUDE ALL, EXCLUDE OBJNAME “hr.*”

DDL INCLUDE OBJNAME “fin.*” EXCLUDE “fin.ss”

An EXCLUDE takes priority over any INCLUDEs that contain the same
criteria. You can use multiple inclusion and exclusion clauses.

MAPPED | UNMAPPED |
OTHER | ALL

Use MAPPED, UNMAPPED, OTHER, and ALL to apply INCLUDE or EXCLUDE
based on the DDL operation scope.

◆ MAPPED applies INCLUDE or EXCLUDE to DDL operations that are of
MAPPED scope. MAPPED filtering is performed before filtering that is
specified with other DDL parameter options.

◆ UNMAPPED applies INCLUDE or EXCLUDE to DDL operations that are of
UNMAPPED scope.

◆ OTHER applies INCLUDE or EXCLUDE to DDL operations that are of
OTHER scope.

◆ ALL applies INCLUDE or EXCLUDE to DDL operations of all scopes.

Argument Description

Configuring DDL synchronization for a Teradata database
Handling Replicat DDL processing errors

209Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

OPTYPE <type> Use OPTYPE to apply INCLUDE or EXCLUDE to a specific type of DDL
operation, such as CREATE, ALTER, and RENAME. For <type>, use any DDL
command that is valid for the database. For example, to include ALTER
operations, the correct syntax is:
DDL INCLUDE OPTYPE ALTER

OBJTYPE ‘<type>’ Use OBJTYPE to apply INCLUDE or EXCLUDE to a specific type of database
object. For <type>, use any object type that is valid for the database,
such as TABLE, INDEX, and TRIGGER. For an Oracle materialized view and
materialized views log, the correct types are snapshot and snapshot log,
respectively. Enclose the name of the object type within single quotes.
For example:
DDL INCLUDE OBJTYPE ‘INDEX’
DDL INCLUDE OBJTYPE ‘SNAPSHOT’

For Oracle object type USER, do not use the OBJNAME option, because
OBJNAME expects “owner.object” whereas USER only has a schema.

OBJNAME “<name>” Use OBJNAME to apply INCLUDE or EXCLUDE to the fully qualified name of
an object, for example owner.table_name. This option takes a double-
quoted string as input.

You can use a wildcard only for the object name.

Example:
DDL INCLUDE OBJNAME “accounts.*”

Do not use OBJNAME for the Oracle USER object, because OBJNAME
expects “owner.object” whereas USER only has a schema.

When using OBJNAME with MAPPED in a Replicat parameter file, the
value for OBJNAME must refer to the name specified with the TARGET
clause of the MAP statement. For example, given the following MAP
statement, the correct value is OBJNAME “fin2.*”.
MAP fin.exp_*, TARGET fin2.*;

In the following example, a CREATE TABLE statement executes like this
on the source:
CREATE TABLE fin.exp_phone;

And like this on the target:
CREATE TABLE fin2.exp_phone;

If a target owner is not specified in the MAP statement, Replicat maps
it to the database user that is specified with the USERID parameter.

Table 28 DDL inclusion and exclusion options

Option Description

Configuring DDL synchronization for a Teradata database
Handling Replicat DDL processing errors

210Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Sample DDLERROR statement

In the following example, the DDLERROR statement causes Replicat to ignore the specified
error, but not before trying the operation again three times at ten-second intervals.
Replicat applies the error handling to DDL operations executed on objects whose names

For DDL that creates triggers and indexes, the value for OBJNAME
must be the name of the base object, not the name of the triggeror
index.

For example, to include the following DDL statement, the correct
value is “hr.accounts,” not “hr.insert_trig.”
CREATE TRIGGER hr.insert_trig ON hr.accounts;

For RENAME operations, the value for OBJNAME must be the new table
name. For example, to include the following DDL statement, the
correct value is “hr.acct.”
ALTER TABLE hr.accounts RENAME TO acct;

INSTR ‘<string>’ Use INSTR to apply INCLUDE or EXCLUDE to DDL statements that contain
a specific character string within the command syntax. For example,
the following excludes DDL that creates an index.
DDL INCLUDE ALL EXCLUDE INSTR ‘CREATE INDEX’

Enclose the string within single quotes. The string search is not case
sensitive.

INSTR does not support single quotation marks (‘ ’) that are within
the string, nor does it support NULL values.

INSTRWORDS ‘<word list>’ Use INSTRWORDS to apply INCLUDE or EXCLUDE to DDL statements that
contain the specified words.

For <word list>, supply the words in any order, within single quotes. To
include spaces, put the space (and the word, if applicable) in double
quotes. Double quotes also can be used to enclose sentences.

All specified words must be present in the DDL for INSTRWORDS to take
effect.

Example:
ALTER TABLE INCLUDE INSTRWORDS ‘ALTER CONSTRAINT “ xyz”

This example will match
ALTER TABLE ADD CONSTRAINT xyz CHECK

and
ALTER TABLE DROP CONSTRAINT xyz

INSTRWORDS does not support single quotation marks (‘ ’) that are
within the string, nor does it support NULL values.

Table 28 DDL inclusion and exclusion options

Option Description

Configuring DDL synchronization for a Teradata database
Viewing DDL report information

211Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

satisfy the wildcard of “tab*” (any user, any operation) except those that satisfy “tab1*.”

DDLERROR <error> IGNORE RETRYOP MAXRETRIES 3 RETRYDELAY 10 &

INCLUDE ALL OBJTYPE TABLE OBJNAME “tab*” EXCLUDE OBJNAME “tab1*”

To handle all errors except that error, the following DDLERROR statement can be added.

DDLERROR DEFAULT ABENDS

In this case, Replicat abends on DDL errors.

Using multiple DDLERROR statements

The order in which you list DDLERROR statements in the parameter file does not affect their
validity unless multiple DDLERROR statements specify the same error, without any
additional qualifiers. In that case, Replicat only uses the first one listed. For example,
given the following statements, Replicat will abend on the error.

DDLERROR <error1> ABEND

DDLERROR <error1> IGNORE

With the proper qualifiers, however, the previous configuration becomes a more useful one.
For example:

DDLERROR <error1> ABEND INCLUDE OBJNAME “tab*”

DDLERROR <error1> IGNORE

In this case, because there is an INCLUDE statement, Replicat will abend only if an object
name in an errant DDL statement matches wildcard “tab*.” Replicat will ignore errant
operations that include any other object name.

Viewing DDL report information

By default, Oracle GoldenGate shows basic statistics about DDL operations at the end of
the Extract and Replicat reports. To enable expanded DDL reporting, use the DDLOPTIONS
parameter with the REPORT option. Expanded reporting includes the following information
about DDL processing:

● A step-by-step history of the DDL operations that were processed by Oracle
GoldenGate.

● The DDL filtering and processing parameters that are being used.

Expanded DDL report information increases the size of the report file, but it might be
useful in certain situations, such as for troubleshooting.

To view a process report

To view a report, use the VIEW REPORT command in GGSCI.

VIEW REPORT <group>

Configuring DDL synchronization for a Teradata database
Viewing DDL report information

212Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Extract DDL reporting

The Extract report lists the following:

● The entire syntax of each captured DDL operation, its Oracle GoldenGate CSN
number, the Teradata sequence number, and the size of the operation in bytes.

● A subsequent entry that shows how processing criteria was applied to the operation,
for example string substitution or INCLUDE and EXCLUDE filtering.

● Another entry showing whether the operation was written to the trail or excluded.

The following is an example taken from an Extract report file.

2011-01-21 18:41:40 GGS INFO 2100 DDL found, operation [DROP TABLE
"SMIJATOVDBS"."src13_tabtable_9" ; (size 59)], start CSN [2500FF3F0200363A],
DDL seqno [00000025000000000000381500000021].

2011-01-21 18:41:40 GGS INFO 2100 DDL operation included [include mapped
objname "*"], optype [DROP], objtype [TABLE], objowner [SMIJATOVDBS], objname
[SRC13_TABTABLE_9].

2011-01-21 18:41:40 GGS INFO 2100 DDL operation written to extract
trail file.

Replicat DDL reporting

The Replicat report lists:

● The entire syntax of each DDL operation that Replicat processed from the trail.

● A subsequent entry that shows the scope of the operation (MAPPED, UNMAPPED, OTHER)
and how object names were mapped in the target DDL statement, if applicable.

● Another entry that shows how processing criteria was applied.

● Additional entries that show whether the operation succeeded or failed, and whether
or not Replicat applied error handling rules.

The following is an example taken from a Replicat parameter file.

2011-01-21 18:41:44 GGS INFO 2104 DDL found, operation [DROP TABLE
"SMIJATOVDBS"."src13_tabtable_9" ; (size 59)].

2011-01-21 18:41:44 GGS INFO 2100 DDL is of mapped scope, after mapping
new operation [DROP TABLE "SMIJATOVDBT"."SRC13_TABTABLE_9" ; (size 59)].

2011-01-21 18:41:44 GGS INFO 2100 Executing DDL operation.

2011-01-21 18:41:44 GGS INFO 2105 DDL operation successful.

Statistics in the process reports

You can send current statistics for DDL processing to the Extract and Replicat reports by
using the SEND command in GGSCI.

SEND {EXTRACT | REPLICAT} <group> REPORT

Configuring DDL synchronization for a Teradata database
Tracing DDL processing

213Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

The statistics show totals for:

● All DDL operations

● Operations that are MAPPED in scope

● Operations that are UNMAPPED in scope

● Operations that are OTHER in scope

● Operations that were excluded (number of operations minus included ones)

● Errors (Replicat only)

● Retried errors (Replicat only)

● Discarded errors (Replicat only)

● Ignored operations (Replicat only)

From Table QATEST1.MYTABLE:

 # inserts: 100

 # updates: 0

 # deletes: 0

 # discards: 0

DDL replication statistics:

 Operations: 18

 Mapped operations: 4

 Unmapped operations: 0

 Default operations: 0

 Excluded operations: 0

Tracing DDL processing

If you open a support case with Oracle GoldenGate Technical Support, you might be asked
to turn on tracing. The following parameters control DDL tracing.

● TLTRACE controls Extract tracing

● TRACE and TRACE2 control Replicat tracing.

These parameters have options to isolate the tracing of DDL from the tracing of DML. For
more information, see the Oracle GoldenGateWindows and UNIX Reference Guide.

214Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHAPTER 16

Running an initial data load
.

Overview of initial data load methods

You can use Oracle GoldenGate to:

● Perform a standalone batch load to populate database tables for migration or other
purposes.

● Load data into database tables as part of an initial synchronization run in preparation
for change synchronization with Oracle GoldenGate.

The initial load can be performed from an active source database. Users and applications
can access and update data while the load is running. You can perform initial load from a
quiesced source database if you delay access to the source tables until the target load is
completed.

Supported load methods

You can use Oracle GoldenGate to load data in any of the following ways:

● “Loading data with a database utility” on page 217. The utility performs the initial
load.

● “Loading data from file to Replicat” on page 218. Extract writes records to an extract
file and Replicat applies them to the target tables. This is the slowest initial-load
method.

● “Loading data from file to database utility” on page 223. Extract writes records to
extract files in external ASCII format. The files are used as data files for input into
target tables by a bulk load utility. Replicat creates the run and control files.

● “Loading data with an Oracle GoldenGate direct load” on page 228. Extract
communicates with Replicat directly across TCP/IP without using a Collector process
or files. Replicat applies the data through the database engine.

● “Loading data with a direct bulk load to SQL*Loader” on page 232. Extract extracts
records in external ASCII format and delivers them directly to Replicat, which delivers
them to Oracle’s SQL*Loader bulk-load utility. This is the fastest method of loading
Oracle data with Oracle GoldenGate.

● “Loading data with Teradata load utilities” on page 236. This is the preferred method
for synchronizing two Teradata databases. The recommended utility is MultiLoad.

Running an initial data load
Using parallel processing in an initial load

215Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Using parallel processing in an initial load

For all initial load methods except those performed with a database utility, you can load
large databases more quickly by using parallel Oracle GoldenGate processes.

To use parallel processing

1. Follow the directions in this chapter for creating an initial-load Extract and an initial-
load Replicat for each set of parallel processes that you want to use.

2. With the TABLE and MAP parameters, specify a different set of tables for each pair of
Extract-Replicat processes, or you can use the SQLPREDICATE option of TABLE to partition
the rows of large tables among the different Extract processes.

Prerequisites for initial load

Disable DDL processing

Before executing an initial load, disable DDL extraction and replication. DDL processing
is controlled by the DDL parameter in the Extract and Replicat parameter files. See page
141 for more information about DDL support.

Prepare the target tables

The following are suggestions that can make the load go faster and help you to avoid errors.

● Data: Make certain that the target tables are empty. Otherwise, there may be
duplicate-row errors or conflicts between existing rows and rows that are being loaded.

● Constraints: Disable foreign-key constraints and check constraints. Foreign-key
constraints can cause errors, and check constraints can slow down the loading process.
Constraints can be reactivated after the load concludes successfully.

● Indexes: Remove indexes from the target tables. Indexes are not necessary for inserts.
They will slow down the loading process significantly. For each row that is inserted into
a table, the database will update every index on that table. You can add back the
indexes after the load is finished.

NOTE A primary index is required for all applications that access DB2 for z/OS target
tables. You can delete all other indexes from the target tables, except for the
primary index.

● Keys: To use the HANDLECOLLISIONS function to reconcile incremental data changes with
the load, each target table must have a primary or unique key. If you cannot create a
key through your application, use the KEYCOLS option of the TABLE and MAP parameters
to specify columns as a substitute key for Oracle GoldenGate’s purposes. A key helps
identify which row to process. If you cannot create keys, the source database must be
quiesced for the load.

Configure the Manager process

On the source and target systems, configure and start a Manager process. One Manager
can be used for the initial-load processes and the change-synchronization processes. For
more information, see “Configuring the Manager process” on page 23.

Running an initial data load
Prerequisites for initial load

216Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Create a data-definitions file

A data-definitions file is required if the source and target databases have dissimilar
definitions. Oracle GoldenGate uses this file to convert the data to the format required by
the target database. For more information, see Chapter 11.

Create change-synchronization groups

NOTE If the load is performed from a quiet source database and will not be followed by
continuous change synchronization, you can omit these groups.

To prepare for the capture and replication of transactional changes during the initial load,
create online Extract and Replicat groups. You will start these groups during the load
procedure. See the instructions in this documentation that are appropriate for the type of
replication configuration that you will be using.

Do not start the Extract or Replicat groups until instructed to do so in the initial-load
instructions. Change synchronization keeps track of transactional changes while the load
is being applied, and then the target tables are reconciled with those changes.

NOTE The first time that Extract starts in a new Oracle GoldenGate configuration, any
open transactions will be skipped. Only transactions that begin after Extract starts
are captured.

If the source database will remain active during the initial load, include the
HANDLECOLLISIONS parameter in the Replicat parameter file; otherwise do not use it.
HANDLECOLLISIONS accounts for collisions that occur during the overlap of time between the
initial load and the ongoing change replication. It reconciles insert operations for which the
row already exists, and it reconciles update and delete operations for which the row does
not exist. It can be used in these ways:

● globally for all tables in a parameter file

● as an on/off toggle for groups of tables

● within MAP statements to enable or disable the error handling for specific table pairs.

For more information about this parameter, see the Oracle GoldenGate Windows and
UNIX Reference Guide.

Sharing parameters between process groups

Some of the parameters that you use in a change-synchronization parameter file also are
required in an initial-load Extract and initial-load Replicat parameter file. You can copy
those parameters from one parameter file to another, or you can store them in a central file
and use the OBEY parameter in each parameter file to retrieve them. Alternatively, you can
create an Oracle GoldenGate macro for the shared parameters and then call the macro
from each parameter file with the MACRO parameter.

For more information about using OBEY, see page 33.

For more information about macros, see page 269.

Running an initial data load
Loading data with a database utility

217Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Loading data with a database utility

To use a database copy utility to establish the target data, you start a change-
synchronization Extract group to extract ongoing data changes while the database utility
makes and applies a static copy of the data. When the copy is finished, you start the
change-synchronization Replicat group to re-synchronize rows that were changed while
the copy was being applied. From that point forward, both Extract and Replicat continue
running to maintain data synchronization. This method does not involve any special
initial-load Extract or Replicat processes.

To load data with a database utility

1. Make certain that you have addressed the requirements in “Prerequisites for initial
load” on page 215.

2. On the source and target systems, run GGSCI and start the Manager process.

START MANAGER

NOTE In a Windows cluster, start the Manager resource from the Cluster Administrator.

3. On the source system, start change extraction.

START EXTRACT <group name>

Where: <group name> is the name of the Extract group.

4. (Oracle, if replicating sequences) Issue the DBLOGIN command as the user who has
EXECUTE privilege on update.Sequence.

GGSCI> DBLOGIN USERID DBLOGINuser, PASSWORD password

5. (Oracle, if replicating sequences) Issue the following command to update each source
sequence and generate redo. From the redo, Replicat performs initial synchronization
of the sequences on the target. You can use an asterisk wildcard for any or all
characters in the name of a sequence (but not the owner).

FLUSH SEQUENCE <owner.sequence>

6. On the source system, start making the copy.

7. Wait until the copy is finished and record the time of completion.

8. View the Replicat parameter file to make certain that the HANDLECOLLISIONS parameter
is listed. If not, add the parameter with the EDIT PARAMS command.

VIEW PARAMS <group name>

EDIT PARAMS <group name>

Running an initial data load
Loading data from file to Replicat

218Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Where: <group name> is the name of the Replicat group.

9. On the target system, start change replication.

START REPLICAT <group name>

Where: <group name> is the name of the Replicat group.

10. On the target system, issue the following command to verify the status of change
replication.

INFO REPLICAT <group name>

11. Continue to issue the INFO REPLICAT command until you have verified that change
replication has posted all of the change data that was generated during the initial load.
Reference the time of completion that you recorded. For example, if the copy stopped
at 12:05, make sure change replication has posted data up to that point.

12. On the target system, issue the following command to turn off the HANDLECOLLISIONS
parameter and disable the initial-load error handling.

SEND REPLICAT <Replicat group name>, NOHANDLECOLLISIONS

13. On the target system, edit the Replicat parameter file to remove the HANDLECOLLISIONS
parameter. This prevents HANDLECOLLISIONS from being enabled again the next time
Replicat starts.

EDIT PARAMS <Replicat group name>

14. Save and close the parameter file.

From this point forward, Oracle GoldenGate continues to synchronize data changes.

Loading data from file to Replicat

To use Replicat to establish the target data, you use an initial-load Extract to extract
source records from the source tables and write them to an extract file in canonical format.
From the file, an initial-load Replicat loads the data using the database interface. During
the load, the change-synchronization groups extract and replicate incremental changes,
which are then reconciled with the results of the load.

During the load, the records are applied to the target database one record at a time, so this
method is considerably slower than any of the other initial load methods. This method
permits data transformation to be done on either the source or target system.

Running an initial data load
Loading data from file to Replicat

219Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

To load data from file to Replicat

1. Make certain that you have addressed the requirements in “Prerequisites for initial
load” on page 215.

2. On the source and target systems, run GGSCI and start Manager.

START MANAGER

NOTE In a Windows cluster, start the Manager resource from the Cluster Administrator.

3. On the source system, issue the following command to create an initial-load Extract
parameter file.

EDIT PARAMS <initial-load Extract name>

4. Enter the parameters listed in Table 29 in the order shown, starting a new line for each
parameter statement.

Table 29 Initial-load Extract parameters for loading data from file to Replicat

Parameter Description

SOURCEISTABLE Designates Extract as an initial load process
extracting records directly from the source tables.

[SOURCEDB <dsn>,]
[USERID <user id>[, PASSWORD <pw>]]
◆ SOURCEDB specifies a data source name, if

required in the connection information. Not
required for Oracle.

◆ USERID specifies database credentials, if required.
For Oracle, you can include a host string, for
example:
USERID ggs@ora1.ora, PASSWORD ggs123

PASSWORD is not required for NonStop SQL/MX or
DB2.

Specifies database connection information. These
parameters also allow for authentication at the
operating-system level. See the Oracle GoldenGate
Windows and UNIX Reference Guide.

RMTHOST <hostname>,
MGRPORT <portnumber>

Specifies the target system and port where Manager
is running.

RMTFILE <path name>,
[MAXFILES <number>, MEGABYTES <n>]

◆ <path name> is the relative or fully qualified name
of the file.

◆ MAXFILES creates a series of files that are aged as
needed. Use if the file could exceed the operating
system’s file size limitations.

◆ MEGABYTES designates the size of each file.

Specifies the extract file to which the load data will
be written. Oracle GoldenGate creates this file
during the load. Checkpoints are not maintained
with RMTFILE.

Note: On Solaris systems, the size of an extract file
cannot exceed 2GB if it will be processed by Replicat.
Use the MAXFILES and MEGABYTES options to control
the size.

Running an initial data load
Loading data from file to Replicat

220Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

5. Enter any appropriate optional Extract parameters listed in the Oracle GoldenGate
Windows and UNIX Reference Guide.

6. Save and close the parameter file.

7. On the target system, issue the following command to create an initial-load Replicat
parameter file.

EDIT PARAMS <initial-load Replicat name>

8. Enter the parameters listed in Table 30 in the order shown, starting a new line for each
parameter statement.

TABLE <owner>.<table>;

◆ <owner> is the schema name.

◆ <table> is the name of the table or a group of tables
defined with wildcards. To exclude tables from a
wildcard specification, use the TABLEEXCLUDE
parameter.

Specifies a source table or tables for initial data
extraction.

Table 30 Initial-load Replicat parameters for loading data from file to Replicat

Parameter Description

SPECIALRUN Implements the initial-load Replicat as a one-time
run that does not use checkpoints.

END RUNTIME Directs the initial-load Replicat to terminate when
the load is finished.

[TARGETDB <dsn>,]
[USERID <user id>[, PASSWORD <pw>]]

◆ TARGETDB specifies a data source name, if required
in the connection information. Not required for
Oracle.

◆ USERID specifies database credentials, if required.
For Oracle, you can include a host string, for
example:
USERID ggs@ora1.ora, PASSWORD ggs123

Specifies database connection information. These
parameters also allow for authentication at the
operating-system level. See the Oracle GoldenGate
Windows and UNIX Reference Guide.

EXTFILE <path name> |
EXTTRAIL <path name>

◆ <path name> is the relative or fully qualified name
of the file or trail.

◆ Use EXTTRAIL only if you used the MAXFILES option
of the RMTFILE parameter in the Extract
parameter file.

Specifies the extract file specified with the Extract
parameter RMTFILE.

Table 29 Initial-load Extract parameters for loading data from file to Replicat (continued)

Parameter Description

Running an initial data load
Loading data from file to Replicat

221Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

9. Enter any appropriate optional Replicat parameters listed in the Oracle GoldenGate
Windows and UNIX Reference Guide.

10. Save and close the file.

11. On the source system, start change extraction.

START EXTRACT <Extract group name>

12. (Oracle, if replicating sequences) Issue the DBLOGIN command as the user who has
EXECUTE privilege on update.Sequence.

GGSCI> DBLOGIN USERID DBLOGINuser, PASSWORD password

13. (Oracle, if replicating sequences) Issue the following command to update each source
sequence and generate redo. From the redo, Replicat performs initial synchronization
of the sequences on the target. You can use an asterisk wildcard for any or all
characters in the name of a sequence (but not the owner).

FLUSH SEQUENCE <owner.sequence>

14. From the directory where Oracle GoldenGate is installed on the source system, start
the initial-load Extract.

UNIX and Linux:

$ /<GGS directory>/extract paramfile dirprm/<initial-load Extract
name>.prm reportfile <path name>

Windows:

C:\> <GGS directory>\extract paramfile dirprm\<initial-load Extract
name>.prm reportfile <path name>

{SOURCEDEFS <file name>} |
ASSUMETARGETDEFS

◆ Use SOURCEDEFS if the source and target tables
have different definitions. Specify the relative or
fully qualified name of the source-definitions file
generated by DEFGEN.

◆ Use ASSUMETARGETDEFS if the source and target
tables have the same definitions.

Specifies how to interpret data definitions.

For more information about data definitions files,
see Chapter 11.

MAP <owner>.<table>,
TARGET <owner>.<table>;

◆ <owner> is the schema name.

◆ <table> is the name of a table or a wildcard
definition for multiple tables. To exclude tables
from a wildcard specification, use the MAPEXCLUDE
parameter.

Specifies a relationship between a source and target
table or tables.

Table 30 Initial-load Replicat parameters for loading data from file to Replicat (continued)

Parameter Description

Running an initial data load
Loading data from file to Replicat

222Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Where: <initial-load Extract name> is the name of the initial-load Extract that you used
when creating the parameter file, and <path name> is the relative or fully
qualified name of the Extract report file.

15. Verify the progress and results of the initial extraction by viewing the Extract report
file using the operating system’s standard method for viewing files.

16. Wait until the initial extraction is finished.

17. On the target system, start the initial-load Replicat.

UNIX and Linux:

$ /<GGS directory>/replicat paramfile dirprm/<initial-load Replicat
name>.prm reportfile <path name>

Windows:

C:\> <GGS directory>\replicat paramfile dirprm\<initial-load Replicat
name>.prm reportfile <path name>

Where: <initial-load Replicat name> is the name of the initial-load Replicat that you used
when creating the parameter file, and <path name> is the relative or fully
qualified name of the Replicat report file.

18. When the initial-load Replicat is finished running, verify the results by viewing the
Replicat report file using the operating system’s standard method for viewing files.

19. On the target system, start change replication.

START REPLICAT <Replicat group name>

20. On the target system, issue the following command to verify the status of change
replication.

INFO REPLICAT <Replicat group name>

21. Continue to issue the INFO REPLICAT command until you have verified that Replicat
posted all of the change data that was generated during the initial load. For example,
if the initial-load Extract stopped at 12:05, make sure Replicat posted data up to that
point.

22. On the target system, issue the following command to turn off the HANDLECOLLISIONS
parameter and disable the initial-load error handling.

SEND REPLICAT <Replicat group name>, NOHANDLECOLLISIONS

23. On the target system, edit the Replicat parameter file to remove the HANDLECOLLISIONS
parameter. This prevents HANDLECOLLISIONS from being enabled again the next time
Replicat starts.

EDIT PARAMS <Replicat group name>

24. Save and close the parameter file.

From this point forward, Oracle GoldenGate continues to synchronize data changes.

Running an initial data load
Loading data from file to database utility

223Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Loading data from file to database utility

To use a database bulk-load utility, you use an initial-load Extract to extract source records
from the source tables and write them to an extract file in external ASCII format. The file
can be read by Oracle’s SQL*Loader, Microsoft’s BCP, DTS, or SQL Server Integration
Services (SSIS) utility, or IBM’s Load Utility (LOADUTIL). During the load, the change-
synchronization groups extract and replicate incremental changes, which are then
reconciled with the results of the load. As part of the load procedure, Oracle GoldenGate
uses the initial-load Replicat to create run and control files required by the database
utility.

Any data transformation must be performed by the initial-load Extract on the source
system because the control files are generated dynamically and cannot be pre-configured
with transformation rules.

To load data from file to database utility

1. Make certain to satisfy “Prerequisites for initial load” on page 215.

2. On the source and target systems, run GGSCI and start Manager.

START MANAGER

3. On the source system, issue the following command to create an initial-load Extract
parameter file.

EDIT PARAMS <initial-load Extract name>

4. Enter the parameters listed in Table 31 in the order shown, starting a new line for each
parameter statement.

Table 31 Initial-load Extract parameters for loading from file to database utility

Parameter Description

SOURCEISTABLE Designates Extract as an initial load process that
extracts records directly from the source tables.

Running an initial data load
Loading data from file to database utility

224Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

5. Enter any appropriate optional Extract parameters listed in the Oracle GoldenGate
Windows and UNIX Reference Guide.

6. Save and close the parameter file.

[SOURCEDB <dsn>,]
[USERID <user id>[, PASSWORD <pw>]]

◆ SOURCEDB specifies a data source name, if
required in the connection information. Not
required for Oracle.

◆ USERID specifies database credentials, if required.
For Oracle, you can include a host string, for
example:
USERID ggs@ora1.ora, PASSWORD ggs123

PASSWORD is not required for NonStop SQL/MX or
DB2.

Specifies database connection information. These
parameters also allow for authentication at the
operating-system level. See the Oracle GoldenGate
Windows and UNIX Reference Guide.

RMTHOST <hostname>,
MGRPORT <portnumber>
[, PARAMS - E -d <defs file>]

◆ -E converts ASCII to EBCDIC.

◆ -d <defs file> specifies the source definitions file.

Specifies the target system and port where Manager
is running.

The PARAMS clause is necessary when loading with
IBM’s Load Utility, because Oracle GoldenGate will
need to refer to the source definitions file.

RMTFILE <path name>,
[MAXFILES <number>, MEGABYTES <n>]

◆ <path name> is the relative or fully qualified name
of the file

◆ MAXFILES creates a series of files that are aged as
needed. Use if the file could exceed the operating
system’s file size limitations.

◆ MEGABYTES designates the size of each file.

Specifies the extract file to which the load data will
be written. Oracle GoldenGate creates this file
during the load. Checkpoints are not maintained
with RMTFILE.

FORMATASCII, {BCP | SQLLOADER}

◆ BCP is used for BCP, DTS, or SSIS.

◆ SQLLOADER is used for Oracle SQL*Loader or IBM
Load Utility.

Directs output to be formatted as ASCII text rather
than the default canonical format. For information
about limitations and options, see the Oracle
GoldenGate Windows and UNIX Reference Guide.

TABLE <owner>.<table>;

◆ <owner> is the schema name.

◆ <table> is the name of the table or a group of tables
defined with wildcards. To exclude tables from a
wildcard specification, use the TABLEEXCLUDE
parameter.

Specifies a source table or tables for initial data
extraction.

Table 31 Initial-load Extract parameters for loading from file to database utility (continued)

Parameter Description

Running an initial data load
Loading data from file to database utility

225Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

7. On the target system, issue the following command to create an initial-load Replicat
parameter file.

EDIT PARAMS <initial-load Replicat name>

8. Enter the parameters listed in Table 32 in the order shown, starting a new line for each
parameter statement.

Table 32 Initial-load Replicat parameters for loading from file to database utility

Parameter Description

GENLOADFILES <template file> Generates run and control files for the database
utility. For instructions on using this parameter, see
the Oracle GoldenGate Windows and UNIX
Reference Guide.

[TARGETDB <dsn>,]
[USERID <user id>[, PASSWORD <pw>]]

◆ TARGETDB specifies a data source name, if required
in the connection information. Not required for
Oracle.

◆ USERID specifies database credentials, if required.
For Oracle, you can include a host string, for
example:
USERID ggs@ora1.ora, PASSWORD ggs123

Specifies database connection information. These
parameters also allow for authentication at the
operating-system level. See the Oracle GoldenGate
Windows and UNIX Reference Guide.

EXTFILE <path name> |
EXTTRAIL <path name>

◆ <path name> is the relative or fully qualified name
of the file

◆ Use EXTTRAIL only if you used the MAXFILES option
of the RMTFILE parameter in the Extract
parameter file.

Specifies the extract file specified with the Extract
parameter RMTFILE.

{SOURCEDEFS <path name>} |
ASSUMETARGETDEFS

◆ Use SOURCEDEFS if the source and target tables
have different definitions. Specify the relative or
fully qualified name of the source-definitions file
generated by DEFGEN.

◆ Use ASSUMETARGETDEFS if the source and target
tables have the same definitions.

Specifies how to interpret data definitions. For more
information about data definitions files, see Chapter
11.

Running an initial data load
Loading data from file to database utility

226Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

9. Enter any appropriate optional Replicat parameters listed in the Oracle GoldenGate
Windows and UNIX Reference Guide.

10. Save and close the parameter file.

11. On the source system, start change extraction.

START EXTRACT <Extract group name>

12. (Oracle, if replicating sequences) Issue the DBLOGIN command as the user who has
EXECUTE privilege on update.Sequence.

GGSCI> DBLOGIN USERID DBLOGINuser, PASSWORD password

13. (Oracle, if replicating sequences) Issue the following command to update each source
sequence and generate redo. From the redo, Replicat performs initial synchronization
of the sequences on the target. You can use an asterisk wildcard for any or all
characters in the name of a sequence (but not the owner).

FLUSH SEQUENCE <owner.sequence>

14. From the directory where Oracle GoldenGate is installed on the source system, start
the initial-load Extract.

UNIX and Linux:

$ /<GGS directory>/extract paramfile dirprm/<initial-load Extract
name>.prm reportfile <path name>

Windows:

C:\> <GGS directory>\extract paramfile dirprm\<initial-load Extract
name>.prm reportfile <path name>

Where: <initial-load Extract name> is the name of the initial-load Extract that you used
when creating the parameter file, and <path name> is the relative or fully
qualified name of the Extract report file.

15. Verify the progress and results of the initial extraction by viewing the Extract report
file using the operating system’s standard method for viewing files.

16. Wait until the initial extraction is finished.

17. On the target system, start the initial-load Replicat.

MAP <owner>.<table>,
TARGET <owner>.<table>;

◆ <owner> is the schema name.

◆ <table> is the name of a table or a wildcard
definition for multiple tables. To exclude tables
from a wildcard specification, use the MAPEXCLUDE
parameter.

Specifies a relationship between a source and target
table or tables.

Table 32 Initial-load Replicat parameters for loading from file to database utility (continued)

Parameter Description

Running an initial data load
Loading data from file to database utility

227Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

UNIX and Linux:

$ /<GGS directory>/replicat paramfile dirprm/<initial-load Replicat
name>.prm reportfile <path name>

Windows:

C:\> <GGS directory>\replicat paramfile dirprm\<initial-load Replicat
name>.prm reportfile <path name>

Where: <initial-load Replicat name> is the name of the initial-load Replicat that you used
when creating the parameter file, and <path name> is the relative or fully
qualified name of the Replicat report file.

18. When the initial-load Replicat is finished running, verify the results by viewing the
Replicat report file using the operating system’s standard method for viewing files.

19. Using the ASCII-formatted extract files and the run and control files created by the
initial-load Replicat, load the data with the database utility.

20. Wait until the load into the target tables is complete.

21. On the target system, start change replication.

START REPLICAT <Replicat group name>

22. On the target system, issue the following command to verify the status of change
replication.

INFO REPLICAT <group name>

23. Continue to issue the INFO REPLICAT command until you have verified that Replicat
posted all of the change data that was generated during the initial load. For example,
if the initial-load Extract stopped at 12:05, make sure Replicat posted data up to that
point.

24. On the target system, issue the following command to turn off the HANDLECOLLISIONS
parameter and disable the initial-load error handling.

SEND REPLICAT <Replicat group name>, NOHANDLECOLLISIONS

25. On the target system, edit the Replicat parameter file to remove the HANDLECOLLISIONS
parameter. This prevents HANDLECOLLISIONS from being enabled again the next time
Replicat starts.

EDIT PARAMS <Replicat group name>

26. Save and close the parameter file.

From this point forward, Oracle GoldenGate continues to synchronize data changes.

Running an initial data load
Loading data with an Oracle GoldenGate direct load

228Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Loading data with an Oracle GoldenGate direct load

To use an Oracle GoldenGate direct load, you run an Oracle GoldenGate initial-load
Extract to extract the source records and send them directly to an initial-load Replicat task.
A task is started dynamically by the Manager process and does not require the use of a
Collector process or file. The initial-load Replicat task delivers the load in large blocks to
the target database. Transformation and mapping can be done by Extract, Replicat, or
both. During the load, the change-synchronization groups extract and replicate
incremental changes, which are then reconciled with the results of the load.

NOTE This method does not support extraction of LOB or LONG data. As an alternative,
see “Loading data from file to Replicat” on page 218 or “Loading data from file to
database utility” on page 223.

You can control which port is used by Replicat by specifying the DYNAMICPORTLIST parameter
in the Manager parameter file. When starting a process such as Replicat, Manager first
looks for a port defined with DYNAMICPORTLIST. If no ports are listed, Manager chooses a port
number by incrementing from its own port number until a port is available.

Oracle GoldenGate direct load does not support tables that have columns that contain
LOBs, LONGs, user-defined types (UDT), or any other large data type that is greater than
4 KB in size.

To load data with an Oracle GoldenGate direct load

1. Make certain to satisfy “Prerequisites for initial load” on page 215.

2. On the source and target systems, run GGSCI and start Manager.

START MANAGER

NOTE In a Windows cluster, start the Manager resource from the Cluster Administrator.

3. On the source, issue the following command to create the initial-load Extract.

ADD EXTRACT <initial-load Extract name>, SOURCEISTABLE

Where:

❍ <initial-load Extract name> is the name of the initial-load Extract, up to eight
characters.

❍ SOURCEISTABLE designates Extract as an initial-load process that reads complete
records directly from the source tables. Do not use any of the other ADD EXTRACT
service options or datasource arguments.

Running an initial data load
Loading data with an Oracle GoldenGate direct load

229Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

4. On the source system, issue the following command to create an initial-load Extract
parameter file.

EDIT PARAMS <initial-load Extract name>

5. Enter the parameters listed in Table 33 in the order shown, starting a new line for each
parameter statement.

6. Enter any appropriate optional Extract parameters listed in the Oracle GoldenGate
Windows and UNIX Reference Guide.

7. Save and close the file.

8. On the target system, issue the following command to create the initial-load Replicat
task.

ADD REPLICAT <initial-load Replicat name>, SPECIALRUN

Table 33 Initial-load Extract parameters for Oracle GoldenGate direct load

Parameter Description

EXTRACT <initial-load Extract name> Specifies the initial-load Extract that you created in
step 3.

[SOURCEDB <dsn>,]
[USERID <user id>[, PASSWORD <pw>]]
◆ SOURCEDB specifies a data source name, if

required in the connection information. Not
required for Oracle.

◆ USERID specifies database credentials, if required.
For Oracle, you can include a host string, for
example:
USERID ggs@ora1.ora, PASSWORD ggs123

PASSWORD is not required for NonStop SQL/MX or
DB2.

Specifies database connection information. These
parameters also allow for authentication at the
operating-system level. See the Oracle GoldenGate
Windows and UNIX Reference Guide.

RMTHOST <hostname>,
MGRPORT <portnumber>

Specifies the target system and port where Manager
is running.

RMTTASK replicat,
GROUP <initial-load Replicat name>

◆ <initial-load Replicat name> is the name of the initial-
load Replicat group

Directs Manager on the target system to
dynamically start the initial-load Replicat as a one-
time task.

TABLE <owner>.<table>;

◆ <owner> is the schema name.

◆ <table> is the name of the table or a group of tables
defined with wildcards. To exclude tables from a
wildcard specification, use the TABLEEXCLUDE
parameter.

Specifies a source table or tables for initial data
extraction.

Running an initial data load
Loading data with an Oracle GoldenGate direct load

230Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Where:

❍ <initial-load Replicat name> is the name of the initial-load Replicat task.

❍ SPECIALRUN identifies the initial-load Replicat as a one-time run, not a continuous
process.

9. On the target system, issue the following command to create an initial-load Replicat
parameter file.

EDIT PARAMS <initial-load Replicat name>

10. Enter the parameters listed in Table 34 in the order shown, starting a new line for each
parameter statement.

Table 34 Initial-load Replicat parameters for Oracle GoldenGate direct load

Parameter Description

REPLICAT <initial-load Replicat name> Specifies the initial-load Replicat task to be started
by Manager. Use the name that you specified when
you created the initial-load Replicat in step 8.

[TARGETDB <dsn>,]
[USERID <user id>[, PASSWORD <pw>]]
◆ TARGETDB specifies a data source name, if required

in the connection information. Not required for
Oracle.

◆ USERID specifies database credentials, if required.
For Oracle, you can include a host string, for
example:
USERID ggs@ora1.ora, PASSWORD ggs123

Specifies database connection information. These
parameters also allow for authentication at the
operating-system level. See the Oracle GoldenGate
Windows and UNIX Reference Guide.

{SOURCEDEFS <full_pathname>} |
ASSUMETARGETDEFS

◆ Use SOURCEDEFS if the source and target tables
have different definitions. Specify the source-
definitions file generated by DEFGEN.

◆ Use ASSUMETARGETDEFS if the source and target
tables have the same definitions.

Specifies how to interpret data definitions. For more
information about data definitions files, see Chapter
11.

MAP <owner>.<table>,
TARGET <owner>.<table>;

◆ <owner> is the schema name.

◆ <table> is the name of a table or a wildcard
definition for multiple tables. To exclude tables
from a wildcard specification, use the MAPEXCLUDE
parameter.

Specifies a relationship between a source and target
table or tables.

Running an initial data load
Loading data with an Oracle GoldenGate direct load

231Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

11. Enter any appropriate optional Replicat parameters listed in the Oracle GoldenGate
Windows and UNIX Reference Guide.

12. Save and close the parameter file.

13. On the source system, start change extraction.

START EXTRACT <Extract group name>

14. (Oracle, if replicating sequences) Issue the DBLOGIN command as the user who has
EXECUTE privilege on update.Sequence.

GGSCI> DBLOGIN USERID DBLOGINuser, PASSWORD password

15. (Oracle, if replicating sequences) Issue the following command to update each source
sequence and generate redo. From the redo, Replicat performs initial synchronization
of the sequences on the target. You can use an asterisk wildcard for any or all
characters in the name of a sequence (but not the owner).

FLUSH SEQUENCE <owner.sequence>

16. On the source system, start the initial-load Extract.

START EXTRACT <initial-load Extract name>

NOTE Do not start the initial-load Replicat. The Manager process starts it automatically
and terminates it when the load is finished.

17. On the target system, issue the following command to find out if the load is finished.
Wait until the load is finished before going to the next step.

VIEW REPORT <initial-load Extract name>

18. On the target system, start change replication.

START REPLICAT <Replicat group name>

19. On the target system, issue the following command to verify the status of change
replication.

INFO REPLICAT <Replicat group name>

20. Continue to issue the INFO REPLICAT command until you have verified that Replicat
posted all of the change data that was generated during the initial load. For example,
if the initial-load Extract stopped at 12:05, make sure Replicat posted data up to that
point.

21. On the target system, issue the following command to turn off the HANDLECOLLISIONS
parameter and disable the initial-load error handling.

SEND REPLICAT <Replicat group name>, NOHANDLECOLLISIONS

22. On the target system, edit the Replicat parameter file to remove the HANDLECOLLISIONS
parameter. This prevents HANDLECOLLISIONS from being enabled again the next time
Replicat starts.

EDIT PARAMS <Replicat group name>

23. Save and close the parameter file. From this point forward, Oracle GoldenGate
continues to synchronize data changes.

Running an initial data load
Loading data with a direct bulk load to SQL*Loader

232Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Loading data with a direct bulk load to SQL*Loader

To use Oracle’s SQL*Loader utility to establish the target data, you run an Oracle
GoldenGate initial-load Extract to extract the source records and send them directly to an
initial-load Replicat task. A task is a process that is started dynamically by the Manager
process and does not require the use of a Collector process or file. The initial-load Replicat
task interfaces with the API of SQL*Loader to load data as a direct-path bulk load. Data
mapping and transformation can be done by either the initial-load Extract or initial-load
Replicat, or both. During the load, the change-synchronization groups extract and replicate
incremental changes, which are then reconciled with the results of the load.

You can control which port is used by Replicat by specifying the DYNAMICPORTLIST parameter
in the Manager parameter file. When starting a process such as Replicat, Manager first
looks for a port defined with DYNAMICPORTLIST. If no ports are listed, Manager chooses a port
number by incrementing from its own port number until a port is available.

Limitations:

● This method only works with Oracle’s SQL*Loader. Do not use it for other databases.

● This method does not support extraction of LOB or LONG data. As an alternative, see
“Loading data from file to Replicat” on page 218 or “Loading data from file to database
utility” on page 223.

● This method does not support materialized views that contain LOBs, regardless of their
size. It also does not support data encryption.

To load data with a direct bulk load to SQL*Loader

1. Make certain that you have addressed the requirements in “Prerequisites for initial
load” on page 215.

2. (Oracle 9i and later) Grant LOCK ANY TABLE to the Replicat database user on the target
Oracle database.

3. On the source and target systems, run GGSCI and start Manager.

START MANAGER

4. On the source system, issue the following command to create the initial-load Extract.

ADD EXTRACT <initial-load Extract name>, SOURCEISTABLE

Where:

❍ <initial-load Extract name> is the name of the initial-load Extract, up to eight
characters.

❍ SOURCEISTABLE designates Extract as an initial-load process that reads complete
records directly from the source tables. Do not use any of the other ADD EXTRACT
service options or datasource arguments.

Running an initial data load
Loading data with a direct bulk load to SQL*Loader

233Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

5. On the source system, issue the following command to create an initial-load Extract
parameter file.

EDIT PARAMS <initial-load Extract name>

6. Enter the parameters listed in Table 35 in the order shown, starting a new line for each
parameter statement.

7. Enter any appropriate optional parameters.

8. Save and close the file.

Table 35 Initial-load Extract parameters for a direct bulk load to SQL*Loader

Parameter Description

EXTRACT <initial-load Extract name> Specifies the initial-load Extract that you created in
step 4.

[SOURCEDB <dsn>,]
[USERID <user id>[, PASSWORD <pw>]]
◆ SOURCEDB specifies a data source name, if

required in the connection information. Not
required for Oracle.

◆ USERID specifies database credentials, if required.
For Oracle, you can include a host string, for
example:
USERID ggs@ora1.ora, PASSWORD ggs123

PASSWORD is not required for NonStop SQL/MX or
DB2.

Specifies database connection information. These
parameters also allow for authentication at the
operating-system level. See the Oracle GoldenGate
Windows and UNIX Reference Guide.

RMTHOST <hostname>,
MGRPORT <portnumber>

Specifies the target system and port where Manager
is running.

RMTTASK replicat,
GROUP <initial-load Replicat name>

◆ <initial-load Replicat name> is the name of the initial-
load Replicat group.

Directs Manager on the target system to
dynamically start the initial-load Replicat as a one-
time task.

TABLE <owner>.<table>;

◆ <owner> is the schema name.

◆ <table> is the name of the table or a group of tables
defined with wildcards. To exclude tables from a
wildcard specification, use the TABLEEXCLUDE
parameter.

Specifies a table or tables for initial data extraction.

Running an initial data load
Loading data with a direct bulk load to SQL*Loader

234Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

9. On the target system, issue the following command to create the initial-load Replicat.

ADD REPLICAT <initial-load Replicat name>, SPECIALRUN

Where:

❍ <initial-load Replicat name> is the name of the initial-load Replicat task.

❍ SPECIALRUN identifies the initial-load Replicat as a one-time task, not a continuous
process.

10. On the target system, issue the following command to create an initial-load Replicat
parameter file.

EDIT PARAMS <initial-load Replicat name>

11. Enter the parameters listed in Table 36 in the order shown, starting a new line for each
parameter statement.

Table 36 Initial-load Replicat parameters for direct load to SQL*Loader

Parameter Description

REPLICAT <initial-load Replicat name> Specifies the initial-load Replicat task to be started by
Manager. Use the name that you specified when you
created the initial-load Replicat in step 9.

USERID <user>,
PASSWORD <password>

Specifies the user ID and password to be used by the
initial-load Replicat for connecting to the Oracle target
database. You can include a host string, for example:
USERID ggs@ora1.ora,
PASSWORD ggs123

This parameter also allows for authentication at the
operating-system level. See the Oracle GoldenGate
Windows and UNIX Reference Guide.

BULKLOAD Directs Replicat to interface directly with the Oracle
SQL*Loader interface.

{SOURCEDEFS <full_pathname>} |
ASSUMETARGETDEFS

◆ Use SOURCEDEFS if the source and target
tables have different definitions. Specify the
source-definitions file generated by DEFGEN.

◆ Use ASSUMETARGETDEFS if the source and
target tables have the same definitions.

Specifies how to interpret data definitions. For more
information about data definitions files, see Chapter 11.

Running an initial data load
Loading data with a direct bulk load to SQL*Loader

235Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

12. Enter any appropriate optional Replicat parameters listed in the Oracle GoldenGate
Windows and UNIX Reference Guide.

13. Save and close the parameter file.

14. On the source system, start change extraction.

START EXTRACT <Extract group name>

15. (Oracle, if replicating sequences) Issue the DBLOGIN command as the user who has
EXECUTE privilege on update.Sequence.

GGSCI> DBLOGIN USERID DBLOGINuser, PASSWORD password

16. (Oracle, if replicating sequences) Issue the following command to update each source
sequence and generate redo. From the redo, Replicat performs initial synchronization
of the sequences on the target. You can use an asterisk wildcard for any or all
characters in the name of a sequence (but not the owner).

FLUSH SEQUENCE <owner.sequence>

17. On the source system, start the initial-load Extract.

START EXTRACT <initial-load Extract name>

WARNING Do not start the initial-load Replicat. The Manager process starts it
automatically and terminates it when the load is finished.

18. On the target system, issue the following command to determine when the load is
finished. Wait until the load is finished before proceeding to the next step.

VIEW REPORT <initial-load Extract name>

19. On the target system, start change replication.

START REPLICAT <Replicat group name>

20. On the target system, issue the following command to verify the status of change
replication.

INFO REPLICAT <Replicat group name>

MAP <owner>.<table>,
TARGET <owner>.<table>;

◆ <owner> is the schema name.

◆ <table> is the name of a table or a wildcard
definition for multiple tables. To exclude
tables from a wildcard specification, use the
MAPEXCLUDE parameter.

Specifies a relationship between a source and target table
or tables.

Table 36 Initial-load Replicat parameters for direct load to SQL*Loader (continued)

Parameter Description

Running an initial data load
Loading data with Teradata load utilities

236Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

21. Continue to issue the INFO REPLICAT command until you have verified that Replicat
posted all of the change data that was generated during the initial load. For example,
if the initial-load Extract stopped at 12:05, make sure Replicat posted data up to that
point.

22. On the target system, issue the following command to turn off the HANDLECOLLISIONS
parameter and disable the initial-load error handling.

SEND REPLICAT <Replicat group name>, NOHANDLECOLLISIONS

23. On the target system, edit the Replicat parameter file to remove the HANDLECOLLISIONS
parameter. This prevents HANDLECOLLISIONS from being enabled again the next time
Replicat starts.

EDIT PARAMS <Replicat group name>

24. Save and close the parameter file.

From this point forward, Oracle GoldenGate continues to synchronize data changes.

Loading data with Teradata load utilities

The preferred methods for synchronizing two Teradata databases is to use any of the
Teradata data load utilities. The recommended utility is MultiLoad.

This procedure requires Extract and Replicat change-synchronization groups to be
available and properly configured for Teradata replication. For more information, see
Chapter 12.

If you are using multiple Extract and Replicat groups, perform each step for all of them as
appropriate.

To load data with a Teradata load utility

1. Create the scripts that are required by the utility.

2. Start the primary Extract group(s).

START EXTRACT <Extract group name>

3. Start the data pump(s), if used.

START EXTRACT <data pump group name>

4. Edit the Replicat parameter file(s).

EDIT PARAMS <Replicat group name>

5. Add the following parameters to the Replicat parameter file(s):

END RUNTIME

HANDLECOLLISIONS

❍ END RUNTIME directs Replicat to terminate normally when it reads an Oracle
GoldenGate trail record that has a timestamp that is the same as, or after, the time
that Replicat was started.

Running an initial data load
Loading data with Teradata load utilities

237Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

❍ HANDLECOLLISIONS directs Replicat to overwrite duplicate records and ignore missing
ones, as a means of resolving errors that occur from collisions between
transactional changes and the results of the copy.

6. Save and close the Replicat parameter file(s).

7. Start the load utility.

8. When the load completes on the target, start the Replicat process(es).

9. When each Replicat process stops, remove the HANDLECOLLISIONS and END RUNTIME
parameters from the parameter file.

10. Restart the Replicat process(es). The two databases are now synchronized, and Oracle
GoldenGate will keep them current through replication.

238Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHAPTER 17

Mapping and manipulating data
.

Overview of data mapping and manipulation

You can integrate data between different source and target tables by:

● Selecting records and columns

● Selecting and converting operations

● Mapping dissimilar columns

● Using transaction history

● Testing and transforming data

● Using tokens

All data selection, mapping, and manipulation that Oracle GoldenGate performs is
accomplished by using options of the TABLE and MAP parameters. TABLE is used in the Extract
parameter file, and MAP is used in the Replicat parameter file.

Mapping and conversion between tables that have different data structures requires either
a source-definitions file, a target-definitions file, or in some cases both. For more
information about how to create a source-definitions or target-definitions file, see Chapter
11 on page 115.

Limitations of support

● Some Oracle GoldenGate features and functionality do not support the use of data
filtering and manipulation. Where applicable, this limitation is documented.

● When the size of a large object exceeds 4K, Oracle GoldenGate stores the data in
segments within the Oracle GoldenGate trail. The first 4K is stored in the base
segment, and the rest is stored in a series of 2K segments. Oracle GoldenGate does not
support the filtering, column mapping, or manipulation of large objects of this size. Full
Oracle GoldenGate functionality can be used for objects that are 4K or smaller.

Deciding where data mapping and conversion will take place

Column mapping and conversion can be performed on the source system, on the target
system, or on an intermediary system. The exception is when the replication is from a
Windows or UNIX system to a NonStop target, which always requires those functions to be
performed on the source because Replicat for NonStop cannot convert two-part table names
and data types to the three-part names that are used on the NonStop platform. The

Mapping and manipulating data
Handling anomalies in data from NonStop systems

239Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

mapping and conversion must be performed on the source Windows or UNIX system, so
that Extract can format the trail data with NonStop names and target data types.

To prevent added overhead on the source system, most Oracle GoldenGate users choose to
perform mapping and conversion on the target system or on an intermediary system.
However, in the case where there are multiple sources and one target, it might be
preferable to perform the mapping and conversion on the source. You can use one target-
definitions file generated from the target tables, rather than having to manage an
individual source-definitions file for each source database, which needs to be copied to the
target each time the applications make layout changes.

Handling anomalies in data from NonStop systems

When moving data between a Windows or UNIX system and a NonStop Server source or
target, certain anomalies can be caused by some applications running on NonStop Server
in which transactional operations are sent out of order to the TMF audit trail, and
subsequently to Replicat. These anomalies can cause Replicat to abend with duplicate or
missing record errors and happen most frequently with IDX hospital applications and
some BASE25 bank applications. You can use the Replicat parameter FILTERDUPS to resolve
these anomalies.

Selecting rows

To designate rows for extraction or replication, use the FILTER and WHERE clauses of the
following parameters.

The FILTER clause offers you more functionality than the WHERE clause because you can
employ any of the Oracle GoldenGate column conversion functions, whereas the WHERE
clause accepts basic WHERE operators.

Selecting rows with a FILTER clause

Use a FILTER clause to select rows based on a numeric value by using basic operators or one
or more Oracle GoldenGate column-conversion functions.

NOTE To filter a column based on a string, use one of the Oracle GoldenGate string
functions or use a WHERE clause.

Syntax TABLE <table spec>,
, FILTER (

[, ON INSERT | ON UPDATE| ON DELETE]

[, IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE]

, <filter clause>);

Or...

Extract Replicat

TABLE MAP

Mapping and manipulating data
Selecting rows

240Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Syntax MAP <table spec>, TARGET <table spec>,
, FILTER (

[, ON INSERT | ON UPDATE| ON DELETE]

[, IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE]

[, RAISEERROR <error_num>]

, <filter clause>);

Valid FILTER clause elements are the following:

● An Oracle GoldenGate column-conversion function. These functions are built into
Oracle GoldenGate so that you can perform tests, manipulate data, retrieve values,
and so forth. For more information about Oracle GoldenGate conversion functions, see
“Testing and transforming data” on page 253.

● Numbers

● Columns that contain numbers

● Functions that return numbers

● Arithmetic operators:

+ (plus)
- (minus)
* (multiply)
/ (divide)
\ (remainder)

● Comparison operators:

> (greater than)
>= (greater than or equal)
< (less than)
<= (less than or equal)
= (equal)
<> (not equal)

Results derived from comparisons can be zero (indicating FALSE) or non-zero (indicating
TRUE).

● Parentheses (for grouping results in the expression)

● Conjunction operators: AND, OR

Use the following FILTER options to specify which SQL operations a filter clause affects. Any
of these options can be combined.

ON INSERT | ON UPDATE | ON DELETE

IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE

Use the RAISEERROR option of FILTER in the MAP parameter to generate a user-defined error
when the filter fails. This option is useful when you need to trigger an event in response to
the failure. For example, when a filter is part of a conflict resolution configuration,
RAISEERROR can be used to trigger a response by means of a REPERROR clause (such as to
discard the record).

Text strings within a FILTER clause must be enclosed within double quotes, as shown in the
following examples.

Mapping and manipulating data
Selecting rows

241Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Example 1 The following calls the @COMPUTE function to extract records in which the price multiplied
by the amount exceeds 10,000.

MAP sales.tcustord, TARGET sales.tord,

FILTER (@COMPUTE (product_price*product_amount) > 10000);

Example 2 The following uses the @STRFIND function to extract records containing a string “JOE.”

TABLE act.tcustord, FILTER (@STRFIND (name, "joe") > 0);

Example 3 The following selects records in which the amount column is greater than 50 and executes
the filter on updates and deletes.

TABLE act.tcustord, FILTER (ON UPDATE, ON DELETE, amount > 50);

Example 4 You can use the @RANGE function to divide the processing workload among multiple FILTER
clauses, using separate TABLE or MAP statements. For example, the following splits the
replication workload into two ranges (between two Replicat processes) based on the ID
column of the source acct table.

(Replicat group 1 parameter file)

MAP sales.acct, TARGET sales.acct, FILTER (@RANGE (1, 2, ID));

(Replicat group 2 parameter file)

MAP sales.acct, TARGET sales.acct, FILTER (@RANGE (2, 2, ID));

Example 5 You can combine several FILTER clauses in one MAP or TABLE statement, as shown in Table 37,
which shows part of a Replicat parameter file. Oracle GoldenGate executes the filters in
the order listed, until one fails or until all are passed. If one filter fails, they all fail.

Table 37 Using multiple FILTER statements

Parameter file Description

REPERROR (9999, EXCEPTION) 1. Raises an exception for the specified error.

MAP owner.srctab,
TARGET owner.targtab,

2. Starts the MAP statement.

SQLEXEC (ID check, ON UPDATE,
QUERY “ SELECT COUNT FROM targtab “
“WHERE PKCOL = :P1 ”,
PARAMS (P1 = PKCOL)),

3. Uses the SQLEXEC option to perform a query to
retrieve the present value of the count column
whenever an update is encountered.

FILTER (balance > 15000), 4. Uses a FILTER clause to select rows where the
balance is greater than 15000.

FILTER (ON UPDATE, BEFORE.COUNT =
CHECK.COUNT)

5. Uses another FILTER clause to ensure that the
value of the source count column before an
update matches the value in the target
column before applying the target update.

; 6. The semicolon concludes the MAP statement.

Mapping and manipulating data
Selecting rows

242Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Selecting rows with a WHERE clause

Use any of the elements in Table 38 in a WHERE clause to select or exclude rows (or both)
based on a conditional statement. Each WHERE clause must be enclosed within parentheses.

Arithmetic operators and floating-point data types are not supported by WHERE. To use
more complex selection conditions, use a FILTER clause or a user exit routine (see “Using user
exits to extend Oracle GoldenGate capabilities” on page 275).

Syntax TABLE <table spec>, WHERE (<WHERE clause>);

Or...

MAP <table spec>, TARGET <table spec>, WHERE (<WHERE clause>);

MAP owner.srctab,
TARGET owner.targexc,
EXCEPTIONSONLY,
COLMAP (USEDEFAULTS,
ERRTYPE = “UPDATE FILTER FAILED”);

7. Designates an exceptions MAP statement. The
REPERROR clause for error 9999 ensures that
the exceptions map to targexc will be executed.

Table 38 Permissible WHERE operators

Element Examples

Column names PRODUCT_AMT

Numeric values -123, 5500.123

Literal strings enclosed in
quotes

 "AUTO", "Ca"

Built-in column tests @NULL, @PRESENT, @ABSENT (column is null, present or absent in the
row). These tests are built into Oracle GoldenGate. See
“Considerations for selecting rows with FILTER and WHERE” on
page 243.

Comparison operators =, <>, >, <, >=, <=

Conjunctive operators AND, OR

Grouping parentheses Use open and close parentheses () for logical grouping of multiple
elements.

Table 37 Using multiple FILTER statements (continued)

Parameter file Description

Mapping and manipulating data
Selecting rows

243Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Considerations for selecting rows with FILTER and WHERE

The following suggestions can help you create a successful selection clause.

Ensuring data availability for filters

If the database uses compressed updates (where only values for changed columns appear
in the transaction log), there can be errors when the missing columns are referenced by
selection criteria. Oracle GoldenGate ignores such row operations, outputs them to the
discard file, and issues a warning.

To avoid missing-column errors, create your selection conditions as follows:

● Only use primary-key columns as selection criteria, if possible.

● Make required column values available by using the FETCHCOLS or FETCHCOLSEXCEPT
option of the TABLE parameter. These options query the database to fetch the values if
they are not present in the log. To retrieve the values before the FILTER or WHERE clause
is executed, include the FETCHBEFOREFILTER option in the TABLE statement before the FILTER
or WHERE clause. For example:
TABLE demo_src.people, FETCHBEFOREFILTER, FETCHCOLS (age), &

FILTER (age > 50);

It may be more efficient to enable supplemental logging for the required columns than
to fetch the values.

● Test for a column's presence first, then for the column's value. To test for a column's
presence, use the following syntax.
<column_name> {= | <>} {@PRESENT | @ABSENT}

The following example returns all records when the AMOUNT column is over 10,000 and
does not cause a record to be discarded when AMOUNT is absent.

WHERE (amount = @PRESENT AND amount > 10000)

Comparing column values

To ensure that elements used in a comparison match, compare:

● Character columns to literal strings.

● Numeric columns to numeric values, which can include a sign and decimal point.

● Date and time columns to literal strings, using the format in which the column is
retrieved by the application.

Retrieving before values

For update operations, it can be advantageous to check the before values of source columns
— the values before the update occurred. Reasons to use before values include the
following:

● Comparing the before value of a replicated source column to the current value of the
target column (before posting the update) ensures that the operation is being applied
to the correct version of the target record. If the values do not match, it could be that
the target table is corrupted or was changed by a user or application other than Oracle

Mapping and manipulating data
Selecting columns

244Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

GoldenGate. Instead of posting the update, you could configure such comparisons to
generate an error and log the operation to an exceptions table so that the problem can
be detected and resolved. For example:
TABLE hr.people, FETCHBEFOREFILTER, FETCHCOLS (name), &

FILTER (ON UPDATES, BEFORE.name = "Doe");

● You can use before values in delta calculations. For example, if a table has a Balance
column, you can calculate the net result of a particular transaction by subtracting the
original balance from the new balance, as in the following example:
MAP owner.src, TARGET owner.targ, &

COLMAP (PK1 = PK1, delta = balance – BEFORE.balance);

To reference the before value

1. In the selection clause, prefix the name of the column with the BEFORE keyword followed
by a dot (.), as shown below and in the preceding examples:

BEFORE.<column_name>

2. Use the GETUPDATEBEFORES parameter in the Extract parameter file to extract before
images or in the Replicat parameter file to replicate before images. To use this
parameter, all columns must be present in the transaction log. If the database uses
compressed updates, using the BEFORE prefix results in a “column missing” condition
and the column map is executed as if the column were not in the record. To ensure that
column values are available, see “Ensuring data availability for filters” on page 243.

Testing for NULL values

To evaluate columns for NULL values, use the following syntax.

<column> {= | <>} @NULL

The following returns TRUE if the column is NULL, and FALSE for all other cases (including a
column missing from the record).

WHERE (amount = @NULL)

The following returns TRUE only if the column is present in the record and not NULL.

WHERE (amount = @PRESENT AND amount <> @NULL)

Selecting columns

To control which columns of a source table are extracted by Oracle GoldenGate, use the
COLS and COLSEXCEPT options of the TABLE parameter. Use COLS to select columns for
extraction, and use COLSEXCEPT to select all columns except those designated by COLSEXCEPT.

Restricting the columns that are extracted can be useful when a target table does not
contain the same columns as the source table, or when the columns contain sensitive
information, such as a personal identification number or other proprietary business
information.

Mapping and manipulating data
Selecting and converting SQL operations

245Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Selecting and converting SQL operations

Selecting SQL statement types to replicate

By default, Oracle GoldenGate synchronizes insert, update, and delete operations. You can
use the following parameters in the Extract or Replicat parameter file to control which
kind of operations are processed, such as only inserts or only inserts and updates.

GETINSERTS | IGNOREINSERTS

GETUPDATES | IGNOREUPDATES

GETDELETES | IGNOREDELETES

Converting one operation type to another

You can convert one type of SQL operation to another in the following manner. All of the
following parameters are for use in the Replicat parameter file.

● Use INSERTUPDATES to convert source update operations to inserts into the target table.
This is useful for maintaining a transaction history on that table. The transaction log
record must contain all of the column values of the table, not just changed values. Some
databases do not log full row values to their transaction log, but only values that
changed.

● Use INSERTDELETES to convert all source delete operations to inserts into the target table.
This is useful for retaining a history of all records that were ever in the source
database.

● Use UPDATEDELETES to convert source deletes to updates on the target.

Mapping columns

Oracle GoldenGate provides for column mapping at the table level and at the global level.

Using table-level column mapping

Use the COLMAP option of the MAP and TABLE parameters to:

● explicitly map source columns to target columns that have different names.

● specify default column mapping when an explicit column mapping is not needed.

COLMAP provides instructions for selecting, mapping, translating, and moving data from a
source column into a target column. Within a COLMAP statement, you can employ any of the
Oracle GoldenGate column-conversion functions to transform data for the mapped
columns.

Specifying data definitions

When using COLMAP, you might need to create a data-definitions file. To make this
determination, you must consider whether the source and target column structures are
identical, as defined by Oracle GoldenGate.

Mapping and manipulating data
Mapping columns

246Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

For source and target column structures to be identical, they must:

● have identical column names (including case, if applicable)

● have identical data types

● have identical column sizes

● have the same column length semantics for character columns (bytes versus
characters)

● appear in the same order in each table

For example, a source-definitions file is required when the semantics of a source Oracle
database are configured as bytes and the target semantics are configured as characters (or
the other way around), even though the table structures may be identical. As another
example, a source-definitions file is required for the following set of source and target
tables, which are identical except for the order of the name columns:

When using COLMAP for source and target tables that are not identical in structure, you
must:

● generate data definitions for the source tables, the target tables, or both, depending on
the Oracle GoldenGate configuration and the databases that are being used.

● transfer the definitions file to the system where they will be used.

● use the SOURCEDEFS parameter to identify the definitions file.

See “Creating a data-definitions file” on page 115.

When using COLMAP for source and target tables that are identical in structure, and you are
only using COLMAP for other functions such as conversion, a source definitions file is not
needed. When a definitions file is not being used, you must use the ASSUMETARGETDEFS
parameter instead. See the Oracle GoldenGate Windows and UNIX Reference Guide.

COLMAP availability

The COLMAP option is available with the following parameters:

Syntax TABLE <table spec>, TARGET <table spec>, &

COLMAP ([USEDEFAULTS,] <target column> = <source expression>);

Source Target

CREATE TABLE emp
(employee_id NUMBER(6)
, first_name VARCHAR2(20)
, last_name VARCHAR2(25)
, phone_number VARCHAR2(20)
, hire_date DATE DEFAULT SYSDATE

CREATE TABLE emp
(employee_id NUMBER(6)
, last_name VARCHAR2(25)
, first_name VARCHAR2(20)
, phone_number VARCHAR2(20)
, hire_date DATE DEFAULT SYSDATE

Extract Replicat

TABLE MAP

Mapping and manipulating data
Mapping columns

247Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Or...

MAP <table spec>, TARGET <table spec>, &

COLMAP ([USEDEFAULTS,] <target column> = <source expression>);

Example The following example of a column mapping illustrates the use of both default and explicit
column mapping for a source table “ACCTBL” and a target table “ACCTTAB.” Most columns are
the same in both tables, except for the following differences:

● The source table has a CUST_NAME column, whereas the target table has a NAME column.

● A ten-digit PHONE_NO column in the source table corresponds to separate AREA_CODE,
PHONE_PREFIX, and PHONE_NUMBER columns in the target table.

● Separate YY, MM, and DD columns in the source table correspond to a single
TRANSACTION_DATE column in the target table.

Table 39 TABLE and MAP arguments

Argument Description

TARGET <table spec> The target owner and table. Always required for MAP. Required for
TABLE if COLMAP is used.

<target column> The name of the target column to which you are mapping data.

<source expression> Can be any of the following to represent the data that is to be mapped:

◆ Numeric constant, such as 123

◆ String constant enclosed within quotes, such as “ABCD”

◆ The name of a source column, such as ORD_DATE

◆ An expression using an Oracle GoldenGate column-conversion
function, such as:
@STREXT (COL1, 1, 3)

USEDEFAULTS Applies default mapping rules to map source and target columns
automatically if they have the same name. USEDEFAULTS eliminates the
need to map every target column explicitly, whether or not the source
column has the same name. Transformation of data types is automatic
based on the data-definitions file that was created with DEFGEN.

Use an explicit map or USEDEFAULTS, but not both for the same set of
columns.

For more information about default column mapping, see “Using
default column mapping” on page 250.

For more information about TABLE and MAP, see the Oracle GoldenGate
Windows and UNIX Reference Guide.

Mapping and manipulating data
Mapping columns

248Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

To address those differences, USEDEFAULTS is used to map the similar columns automatically,
while explicit mapping and conversion functions are used for dissimilar columns.

Using global column mapping

Use the COLMATCH parameter to create global rules for column mapping. With COLMATCH,
you can map between similarly structured tables that have different column names for the
same sets of data. COLMATCH provides a more convenient way to map columns of this type
than does using table-level mapping with a COLMAP clause in individual TABLE or MAP
statements.

Syntax COLMATCH
{NAMES <target column> = <source column> |

PREFIX <prefix> |

SUFFIX <suffix> |

RESET}

Table 40 Sample column mapping

Parameter statement Description

MAP sales.acctbl,
TARGET sales.accttab,

1. Maps the source table acctbl to the target table
accttab.

COLMAP (2. Begins the COLMAP statement.

USEDEFAULTS, 3. Moves source columns as-is when the target
column names are identical.

name = cust_name, 4. Maps the source column cust_name to the target
column name.

transaction_date =
@DATE (“YYYY-MM-DD”, “YY”,
YEAR, “MM”, MONTH, “DD”, DAY),

5. Converts the transaction date from the source date
columns to the target column transaction_date by
using the @DATE column conversion function.

area_code =
@STREXT (phone_no, 1, 3),
phone_prefix =
@STREXT (phone_no, 4, 6),
phone_number =
@STREXT (phone_no, 7, 10))
;

6. Converts the source column phone_no into the
separate target columns of area_code, phone_prefix,
and phone_number by using the @STREXT column
conversion function.

Table 41 COLMATCH options

Argument Description

NAMES <target column> =
<source column>

Maps based on column names.

Mapping and manipulating data
Mapping columns

249Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Example The following example illustrates when to use COLMATCH. The source and target tables are
identical except for slightly different table and column names.

To map the source columns to the target columns in this example, as well as to handle
subsequent maps for other tables, the syntax would be:

COLMATCH NAMES customer_code = cust_code

COLMATCH NAMES customer_name = cust_name

COLMATCH NAMES customer_address = cust_addr

COLMATCH PREFIX S_

MAP sales.acct, TARGET sales.account, COLMAP (USEDEFAULTS);

MAP sales.ord, TARGET sales.order, COLMAP (USEDEFAULTS);

COLMATCH RESET

MAP sales.reg, TARGET sales.reg;

MAP sales.price, TARGET sales.price;

Based on the rules in the example, the following occurs:

● Data is mapped from the cust_code columns in the source acct and ord tables to the
customer_code columns in the target account and order tables.

● The S_ prefix will be ignored.

● Columns with the same names, such as the phone and order_amt columns, are
automatically mapped by means of USEDEFAULTS without requiring explicit rules. See
“Using default column mapping”.

● The previous global column mapping is turned off for the tables reg and price. Source
and target columns in those tables are automatically mapped because all of the names
are identical.

PREFIX <prefix> Ignores the specified name prefix.

SUFFIX <suffix> Ignores the specified name suffix.

RESET Turns off previously defined COLMATCH rules for subsequent TABLE
or MAP statements.

Table 42 COLMATCH example tables

Source Database Target Database

ACCT Table ORD Table ACCOUNT Table ORDER Table

CUST_CODE
CUST_NAME
CUST_ADDR
PHONE
S_REP
S_REPCODE

CUST_CODE
CUST_NAME
ORDER_ID
ORDER_AMT
S_REP
S_REPCODE

CUSTOMER_CODE
CUSTOMER_NAME
CUSTOMER_ADDRESS
PHONE
REP
REPCODE

CUSTOMER_CODE
CUSTOMER_NAME
ORDER_ID
ORDER_AMT
REP
REPCODE

Table 41 COLMATCH options (continued)

Argument Description

Mapping and manipulating data
Mapping columns

250Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Using default column mapping

If an explicit column mapping does not exist, either by using COLMATCH or COLMAP, Oracle
GoldenGate maps source and target columns by default according to the following rules.

● Columns with the same name are mapped to each other if the data types are
compatible.

● For databases that do not support case-sensitivity for object names, column names are
changed to uppercase for name comparison. For databases that are configured for case-
sensitivity, Oracle GoldenGate considers the case when evaluating columns for default
mapping.

● If a source column is found whose name and case exactly match those of the target
column, the two are mapped. If no case match is found, then the map is created using
the first eligible source column whose name matches that of the target column,
regardless of case.

● Target columns that do not correspond to any source column take default values
determined by the database.

If the default mapping cannot be performed, the target column defaults to one of the values
shown in Table 43.

Mapping data types

The following explains how Oracle GoldenGate maps data types.

Numeric columns

Numeric columns are converted to match the type and scale of the target column. If the
scale of the target column is smaller than that of the source, the number is truncated on
the right. If the scale of the target column is larger than that of the source, the number is
padded with zeros on the right.

Alphanumeric columns

Character-based columns can accept character-based data types such as VARCHAR, GROUP,
and date and time types, as well as string literals enclosed in quotes. If the scale of the
target column is smaller than that of the source, the column is truncated on the right. If
the scale of the target column is larger than that of the source, the column is padded with
spaces on the right.

Table 43 Defaults for target columns that cannot be matched

Column Type Value

Numeric Zero (0)

Character or VARCHAR Spaces

Date or Datetime Current date and time

Columns that can take a NULL value Null

Mapping and manipulating data
Mapping columns

251Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Datetime columns

Datetime (DATE, TIME, and TIMESTAMP) columns can accept datetime and character columns,
as well as string literals. To map a character column to a datetime column, make certain
it conforms to the Oracle GoldenGate external SQL format of YYYY-MM-DD:HH:MI:SS.FFFFFF.

Required precision varies according to the data type and target platform. If the scale of the
target column is smaller than that of the source, data is truncated on the right. If the scale
of the target column is larger than that of the source, the column is extended on the right
with the values for the current date and time.

To map datetime columns to a Teradata target database that uses a Teradata-ODBC
driver version earlier than 3.02.0.02, the following Replicat parameters are available:

Handling unprintable characters

Oracle GoldenGate provides the following parameters for handling unprintable characters.

Globally replacing unprintable characters

To correct for unprintable characters globally, use the REPLACEBADCHAR and REPLACEBADNUM
parameters in the Replicat parameter file. These parameters specify a value to substitute
whenever unprintable characters or numbers are encountered during column mapping.
When used, these parameters should be placed before MAP entries in the parameter file.

Controlling spaces-to-null conversion

(Oracle only) When synchronizing source and target tables that have different definitions,
Oracle GoldenGate converts columns that contain only spaces to a NULL value in the target
table. This behavior is controlled by the SPACESTONULL parameter. To prevent this behavior,
use the NOSPACESTONULL parameter, which causes Oracle GoldenGate to write a single space
character to the target column.

Trimming trailing spaces in character columns

To control whether or not trailing spaces are truncated when mapping a CHAR column to a
VARCHAR column, use the TRIMSPACES and NOTRIMSPACES parameters. These parameters can be
used at the root level of a parameter file to turn the trim feature on or off for different TABLE
or MAP statements (or groups of statements), and they can be used within individual TABLE
or MAP statements to override the global setting. The default is to trim trailing spaces.

Controlling binary data in character columns

Oracle GoldenGate preserves binary characters that are entered into a source or target
column that is defined as a character column. A multi-byte character or any type of
unprintable binary character is preserved, such as NULL, a carriage return, or a shell
command.

USEDATEPREFIX Prefixes values for DATE data types with a DATE literal.

USETIMEPREFIX Prefixes values for TIME data types with a TIME literal.

USETIMESTAMPPREFIX Prefixes values for TIMESTAMP data types with a TIMESTAMP
literal.

Mapping and manipulating data
Using transaction history

252Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Using transaction history

Oracle GoldenGate enables you to retain a history of changes made to a target record and
to map information about the operation that caused each change. This history can be useful
for creating a transaction-based reporting system that contains a separate record for every
operation performed on a table, as opposed to containing only the most recent version of
each record.

For example, the following series of operations made to a target table named “CUSTOMER”
would leave no trace of the ID “Dave.” The last operation deletes the record, so there is no
way to find out Dave’s account history or his ending balance.

Retaining this history as a series of records can be useful in many ways. For example, you
can generate the net effect of transactions.

To implement transaction reporting

1. To prepare Extract to capture before values, use the GETUPDATEBEFORES parameter in the
Extract parameter file. A before value (or before image) is the existing value of a
column before an update is performed. Before images enable Oracle GoldenGate to
create the transaction record.

2. To prepare Replicat to post all operations as inserts, use the INSERTALLRECORDS
parameter in the Replicat parameter file. Each operation on a table becomes a new
record in that table.

3. To map the transaction history, use the return values of the GGHEADER option of the
@GETENV column conversion function. Include the conversion function as the source
expression in a COLMAP statement in the TABLE or MAP parameter.

Example Using the sample series of transactions shown in Figure 19 on page 252, the following
parameter configurations can be created to generate a more transaction-oriented view of
customers, rather than the latest state of the database.

Figure 19 Operation history for table CUSTOMER

Sequence Operation ID BALANCE

1 Insert Dave 1000

2 Update Dave 900

3 Update Dave 1250

4 Delete Dave 1250

Process Parameter statements

Extract GETUPDATEBEFORES
TABLE account.customer;

Mapping and manipulating data
Testing and transforming data

253Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

NOTE This is not representative of a complete parameter file for an Oracle GoldenGate
process.

This configuration makes possible queries such as the following, which returns the net sum
of each transaction along with the time of the transaction and the customer ID.

SELECT AFTER.ID, AFTER.TS, AFTER.BALANCE - BEFORE.BALANCE

FROM CUSTHIST AFTER, CUSTHIST BEFORE

WHERE AFTER.ID = BEFORE.ID AND AFTER.TS = BEFORE.TS AND

AFTER.BEFORE_AFTER = ‘A’ AND BEFORE.BEFORE_AFTER = ‘B’;

Testing and transforming data

Data testing and transformation can be performed by either Extract or Replicat and is
implemented by using the Oracle GoldenGate built-in column-conversion functions within
a COLMAP clause of a TABLE or MAP statement. With these conversion functions, you can:

● Transform dates.

● Test for the presence of column values.

● Perform arithmetic operations.

● Manipulate numbers and character strings.

● Handle null, invalid, and missing data.

● Perform tests.

This chapter provides an overview of some of the Oracle GoldenGate functions related to
data manipulation. For the complete reference, see the Oracle GoldenGate Windows and
UNIX Reference Guide.

If you need to use logic beyond that which is supplied by the Oracle GoldenGate functions,
you can call your own functions by implementing Oracle GoldenGate user exits. For more
information about user exits, see page 275.

Oracle GoldenGate conversion functions take the following general syntax:

Syntax @<function name> (<argument>)

Replicat INSERTALLRECORDS
MAP sales.customer, TARGET sales.custhist, &
COLMAP (TS = @GETENV (“GGHEADER”, “COMMITTIMESTAMP”), &
BEFORE_AFTER = @GETENV (“GGHEADER”, “BEFOREAFTERINDICATOR”), &
OP_TYPE = @GETENV (“GGHEADER”, “OPTYPE”), &
ID = ID, &
BALANCE = BALANCE);

Syntax element Description

@<function name> The Oracle GoldenGate function name. Function names have the prefix @,
as in @COMPUTE or @DATE.

<argument> Function arguments can contain the following:

Mapping and manipulating data
Testing and transforming data

254Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Use the appropriate function for the type of column that is being manipulated or evaluated.
For example, numeric functions can be used only to compare numeric values. To compare
character values, use one of the Oracle GoldenGate character-comparison functions.

Example This statement would fail because it uses @IF, a numerical function, to compare string
values.

@IF (SR_AREA = “Help Desk”, “TRUE”, “FALSE”)

The following statement would succeed because it compares a numeric value.

@IF (SR_AREA = 20, “TRUE”, “FALSE”)

See “Manipulating numbers and character strings” on page 255.

NOTE Errors in argument parsing sometimes are not detected until records are
processed. Verify syntax before starting processes.

Transforming dates

Use the @DATE, @DATEDIF, and @DATENOW functions to retrieve dates and times, perform
computations on them, and convert them.

Example This example computes the time that an order is filled.

ORDER_FILLED = @DATE (

"YYYY-MM-DD:HH:MI:SS",

"JTS",

@DATE ("JTS",

"YYMMDDHHMISS",

ORDER_TAKEN_TIME) +

ORDER_MINUTES * 60 * 1000000)

Argument element Example

A numeric constant 123

A string constant "ABCD" (Must be within quotes.)

The name of a source
column

 PHONE_NO

An arithmetic expression COL2 * 100

A comparison expression COL3 > 100 AND COL4 > 0

Other Oracle GoldenGate
functions

AMOUNT = @IF (@COLTEST (AMT, MISSING,
INVALID), 0, AMT)

Syntax element Description

Mapping and manipulating data
Testing and transforming data

255Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Performing arithmetic operations

To return the result of an arithmetic expression, use the @COMPUTE function. The value
returned from the function is in the form of a string. Arithmetic expressions can be
combinations of the following elements.

● Numbers

● The names of columns that contain numbers

● Functions that return numbers

● Arithmetic operators:

+ (plus)
- (minus)
* (multiply)
/ (divide)
\ (remainder)

● Comparison operators:

> (greater than)
>= (greater than or equal)
< (less than)
<= (less than or equal)
= (equal)
<> (not equal)

Results that are derived from comparisons can be zero (indicating FALSE) or non-zero
(indicating TRUE).

● Parentheses (for grouping results in the expression)

● The conjunction operators AND, OR. Oracle GoldenGate only evaluates the necessary
part of a conjunction expression. Once a statement is FALSE, the rest of the expression
is ignored. This can be valuable when evaluating fields that may be missing or null.
For example, if the value of COL1 is 25 and the value of COL2 is 10, then the following are
possible:
@COMPUTE (COL1 > 0 AND COL2 < 3) returns 0.
@COMPUTE (COL1 < 0 AND COL2 < 3) returns 0. COL2 < 3 is never evaluated.
@COMPUTE ((COL1 + COL2)/5) returns 7.

Omitting @COMPUTE

The @COMPUTE keyword is not required when an expression is passed as a function
argument.

Example @STRNUM ((AMOUNT1 + AMOUNT2), LEFT)

The following expression would return the same result as the previous one:

@STRNUM ((@COMPUTE (AMOUNT1 + AMOUNT2), LEFT)

Manipulating numbers and character strings

To convert numbers and character strings, Oracle GoldenGate supplies the following
functions:

Mapping and manipulating data
Testing and transforming data

256Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Handling null, invalid, and missing data

When column data is missing, invalid, or null, an Oracle GoldenGate conversion function
returns a corresponding value.

Example If BALANCE is 1000, but AMOUNT is NULL, the following expression returns NULL:

NEW_BALANCE = @COMPUTE (BALANCE + AMOUNT)

These exception conditions render the entire calculation invalid. To ensure a successful
conversion, use the @COLSTAT, @COLTEST and @IF functions to test for, and override, the
exception condition.

Using @COLSTAT

Use the @COLSTAT function to return an indicator to Extract or Replicat that a column is
missing, null, or invalid. The indicator can be used as part of a larger manipulation formula
that uses additional conversion functions.

Example 1 The following example returns a NULL into target column ITEM.

ITEM = @COLSTAT (NULL)

Table 44 Conversion functions for numbers and characters

Purpose Conversion Function

Convert a binary or character string to a
number.

@NUMBIN

@NUMSTR

Convert a number to a string. @STRNUM

Compare strings. @STRCMP

@STRNCMP

Concatenate strings. @STRCAT

@STRNCAT

Extract from a string. @STREXT

@STRFIND

Return the length of a string. @STRLEN

Substitute one string for another. @STRSUB

Convert a string to upper case. @STRUP

Trim leading or trailing spaces, or both. @STRLTRIM

@STRRTRIM

@STRTRIM

Mapping and manipulating data
Testing and transforming data

257Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Example 2 The following @IF calculation uses @COLSTAT to return NULL to the target column if PRICE and
QUANTITY are less than zero.

ORDER_TOTAL = PRICE * QUANTITY, @IF (PRICE < 0 AND QUANTITY < 0,
@COLSTAT(NULL))

Using @COLTEST

Use the @COLTEST function to check for the following conditions:

● PRESENT tests whether a column is present and not null.

● NULL tests whether a column is present and null.

● MISSING tests whether a column is not present.

● INVALID tests whether a column is present but contains invalid data.

Example @COLTEST (AMOUNT, NULL, INVALID)

Using @IF

Use the @IF function to return one of two values based on a condition. Use it with the
@COLSTAT and @COLTEST functions to begin a conditional argument that tests for one or more
exception conditions and then directs processing based on the results of the test.

Example NEW_BALANCE = @IF (@COLTEST (BALANCE, NULL, INVALID) OR

@COLTEST (AMOUNT, NULL, INVALID), @COLSTAT (NULL), BALANCE + AMOUNT)

This conversion returns one of the following:

● NULL when BALANCE or AMOUNT is NULL or INVALID

● MISSING when either column is missing

● The sum of the columns.

Performing tests

The @CASE, @VALONEOF, and @EVAL functions provide additional methods for performing tests
on data before manipulating or mapping it.

Using @CASE

Use @CASE to select a value depending on a series of value tests.

Example @CASE (PRODUCT_CODE, “CAR”, “A car”, “TRUCK”, “A truck”)

This example returns the following:

● “A car” if PRODUCT_CODE is “CAR”

● “A truck” if PRODUCT_CODE is “TRUCK”

● A FIELD_MISSING indication if PRODUCT_CODE fits neither of the other conditions

Using @VALONEOF

Use @VALONEOF to compare a column or string to a list of values.

Example @IF (@VALONEOF (STATE, "CA", "NY"), "COAST", "MIDDLE")

In this example, if STATE is CA or NY, the expression returns “COAST,” which is the response
returned by @IF when the value is non-zero (meaning True).

Mapping and manipulating data
Using tokens

258Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Using @EVAL

Use @EVAL to select a value based on a series of independent conditional tests.

Example @EVAL (AMOUNT > 10000, “high amount”, AMOUNT > 5000, “somewhat high”)

This example returns the following:

● “high amount” if AMOUNT is greater than 10000

● “somewhat high” if AMOUNT is greater than 5000, and less than or equal to 10000, (unless
the prior condition was satisfied)

● A FIELD_MISSING indication if neither condition is satisfied.

Using tokens

You can extract and store data within the user token area of a trail record header. Token
data can be retrieved and used in many ways to customize the way that Oracle GoldenGate
delivers information. For example, you can use token data in:

● Column maps.

● Stored procedures called by a SQLEXEC statement

● User exits

● Macros

Defining tokens

To use tokens, you define the token name and associate it with data. The data can be any
alphanumeric character data, either from values obtained from the system, database,
transaction, or record, or from values retrieved from queries, procedures, or other called
functions.

The token area in the record header permits up to 2,000 bytes of data. Token names, the
length of the data, and the data itself must fit into that space.

To define a token, use the TOKENS option of the TABLE parameter in the Extract parameter
file.

Syntax TABLE <table spec>, TOKENS (<token name> = <token data> [, ...]);

Where:

❍ <table spec> is the name of the source table. An owner name must precede the table
name.

❍ <token name> is a name of your choice for the token. It can be any number of
alphanumeric characters and is not case-sensitive.

❍ <token data> is a character string of up to 2000 bytes. The data can be either a
constant that is enclosed within double quotes or the result of an Oracle
GoldenGate column-conversion function (see the following example).

Example TABLE ora.oratest, TOKENS (
TK-OSUSER = @GETENV ("GGENVIRONMENT" , "OSUSERNAME"),

TK-GROUP = @GETENV ("GGENVIRONMENT" , "GROUPNAME")

TK-HOST = @GETENV("GGENVIRONMENT" , "HOSTNAME"));

Mapping and manipulating data
Using tokens

259Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

As shown in this example, the Oracle GoldenGate @GETENV function is an effective way to
populate token data. This function provides several options for capturing environment
information that can be mapped to tokens and then used on the target system for column
mapping. For more information about @GETENV, see the Oracle GoldenGate Windows and
UNIX Reference Guide.

Using token data in target tables

To map token data to a target table, use the @TOKEN column-conversion function in the
source expression of a COLMAP clause in a Replicat MAP statement. The @TOKEN function
provides the name of the token to map. The COLMAP syntax with @TOKEN is:

Syntax COLMAP (<target column> = @TOKEN (“<token name>”))

Example The following MAP statement maps target columns “host,” “gg_group,” and so forth to tokens
“tk-host,” “tk-group,” and so forth.

MAP ora.oratest, TARGET ora.rpt,

COLMAP (USEDEFAULTS,

host = @token ("tk-host"),

gg_group = @token ("tk-group"),

osuser= @token ("tk-osuser"),

domain = @token ("tk-domain"),

ba_ind= @token ("tk-ba_ind"),

commit_ts = @token ("tk-commit_ts"),

pos = @token ("tk-pos"),

rba = @token ("tk-rba"),

tablename = @token ("tk-table"),

optype = @token ("tk-optype"));

The tokens in this example would look similar to the following within the record header in
the trail:

User tokens:

tk-host :sysA

tk-group :extora

tk-osuser :jad

tk-domain :admin

tk-ba_ind :B

tk-commit_ts :2011-01-24 17:08:59.000000

tk-pos :3604496

tk-rba :4058

tk-table :oratest

tk-optype :insert

Mapping and manipulating data
Mapping and transforming Unicode and native characters

260Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Mapping and transforming Unicode and native characters

Oracle GoldenGate supports the use of an escape sequence to represent characters in a
string column in Unicode or in the native character encoding of the Windows, UNIX, and
Linux operating systems. An escape sequence can be used in the following elements within
a TABLE or MAP statement:

● WHERE clause

● COLMAP clause to assign a Unicode character to a Unicode column, or to assign a native-
encoded character to a column.

● Oracle GoldenGate column conversion functions within a COLMAP clause.

Oracle GoldenGate supports the following types of escape sequence:

● \uFFFF Unicode escape sequence

● \377 Octal escape sequence

● \xFF Hexadecimal escape sequence

The following limitations apply:

● This support is limited to UTF-16 code points from U+0000 to U+007F, the equivalent
of 7-bit ASCII.

● The source and target columns must both be Unicode.

● The source and target data types must be identical (for example, NCHAR to NCHAR).

To use an escape sequence

Begin each escape sequence with a reverse solidus (code point U+005C), followed by the
character code point. (A solidus is more commonly known as the backslash symbol.) Use
the escape sequence, instead of the actual character, within your input string in the
parameter statement or column-conversion function.

To use the \uFFFF Unicode escape sequence

● Must begin with a lowercase u, followed by exactly four hexadecimal digits.

● Supported ranges:

❍ 0 to 9 (U+0030 to U+0039)

❍ A to F (U+0041 to U+0046)

❍ a to f (U+0061 to U+0066)

● This is the only permissible escape sequence to use for NCHAR and NVARCHAR columns.

● Surrogate pairs are not supported.

Example \u20ac is the Unicode escape sequence for the Euro currency sign.

NOTE For reliable cross-platform support, use the Unicode escape sequence. Octal and
hexadecimal escape sequences are not standardized on different operating
systems.

Mapping and manipulating data
Mapping and transforming Unicode and native characters

261Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

To use the \377 octal escape sequence

● Must contain exactly three octal digits.

● Supported ranges:

❍ Range for first digit is 0 to 3 (U+0030 to U+0033)

❍ Range for second and third digits is 0 to 7 (U+0030 to U+0037)

Example \200 is the octal escape sequence for the Euro currency sign on Microsoft Windows

To use the \xFF hexadecimal escape sequence

● Must begin with a lowercase x followed by exactly two hexadecimal digits.

● Supported ranges:

❍ 0 to 9 (U+0030 to U+0039)

❍ A to F (U+0041 to U+0046)

❍ a to f (U+0061 to U+0066)

Example \x80 is the hexadecimal escape sequence for the Euro currency sign on Microsoft Windows.

262Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHAPTER 18

Customizing Oracle GoldenGate processing
.

Overview of custom processing

The following features can help you to customize and streamline processing:

● SQL procedures and queries

● Macros

● User exits

● Event markers

Executing commands, stored procedures, and queries with SQLEXEC

The SQLEXEC parameter of Oracle GoldenGate enables Extract and Replicat to communicate
with the database to do the following:

● Execute a database command, stored procedure, or SQL query to perform a database
function, return results (SELECT statements) or perform DML (INSERT, UPDATE, DELETE)
operations.

● Retrieve output parameters from a procedure for input to a FILTER or COLMAP clause.

Processing that can be performed with SQLEXEC

SQLEXEC extends the functionality of both Oracle GoldenGate and the database by allowing
Oracle GoldenGate to use the native SQL of the database to execute custom processing
instructions.

● Stored procedures and queries can be used to select or insert data into the database, to
aggregate data, to denormalize or normalize data, or to perform any other function that
requires database operations as input. Oracle GoldenGate supports stored procedures
that accept input and those that produce output.

● Database commands can be issued to perform database functions required to facilitate
Oracle GoldenGate processing, such as disabling triggers on target tables and then
enabling them again.

Databases and data types that are supported by SQLEXEC

The following are the databases that are supported by SQLEXEC and the data types that are
supported for input and output parameters:

Customizing Oracle GoldenGate processing
Executing commands, stored procedures, and queries with SQLEXEC

263Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

DB2 LUW and z/OS

● CHAR

● VARCHAR

● DATE

● All numeric data types

● BLOB data types

Ingres

All data types except LOB

MySQL

All data types except TEXT and BLOB

Oracle

All Oracle types are supported except the following:

● BFILE

● BLOB

● CFILE

● CLOB

● NCLOB

● NTY

SQL Server

● CHAR

● VARCHAR

● DATETIME

● All numeric data types.

● Image and text data types where the length is less than 200 bytes

● TIMESTAMP parameter types are not supported natively, but you can use other data types
as parameters and convert the values to TIMESTAMP format within the stored procedure.

Sybase

All data types except TEXT, IMAGE, and UDT.

Teradata

All Teradata data types that are supported by Oracle GoldenGate.

How you can use SQLEXEC

The SQLEXEC parameter can be used as follows:

● as a clause of a TABLE or MAP statement

● as a standalone parameter at the root level of the Extract or Replicat parameter file.

Customizing Oracle GoldenGate processing
Executing commands, stored procedures, and queries with SQLEXEC

264Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Executing SQLEXEC within a TABLE or MAP statement

When used within a TABLE or MAP statement, SQLEXEC can pass and accept parameters. It can
be used for procedures and queries, but not for database commands.

To execute a procedure within a TABLE or MAP statement

Syntax SQLEXEC (SPNAME <sp name>,
[ID <logical name,]

{PARAMS <param spec> | NOPARAMS})

To execute a query within a TABLE or MAP statement

Syntax SQLEXEC (ID <logical name>, QUERY “ <sql query> ”,

{PARAMS <param spec> | NOPARAMS})

Executing SQLEXEC as a standalone statement

When used as a standalone parameter statement in the Extract or Replicat parameter file,
SQLEXEC can execute a stored procedure, query, or database command. As such, it need not
be tied to any specific table and can be used to perform general SQL operations. For
example, if the Oracle GoldenGate database user account is configured to time-out when
idle, you could use SQLEXEC to execute a query at a defined interval, so that Oracle

Argument Description

SPNAME Required keyword that begins a clause to execute a stored
procedure.

<sp name> Specifies the name of the stored procedure to execute.

ID <logical name> Defines a logical name for the procedure. Use this option to execute
the procedure multiple times within a TABLE or MAP statement. Not
required when executing a procedure only once.

PARAMS <param spec> |
NOPARAMS

Specifies whether or not the procedure accepts parameters. One of
these options must be used (see “Using input and output
parameters” on page 265).

Argument Description

ID <logical name> Defines a logical name for the query. A logical name is required in
order to extract values from the query results. ID <logical name>
references the column values returned by the query.

QUERY “ <sql query> ” Specifies the SQL query syntax to execute against the database. It
can either return results with a SELECT statement or change the
database with an INSERT, UPDATE, or DELETE statement. The query
must be within quotes and must be contained all on one line.

PARAMS <param spec> |
NOPARAMS

Defines whether or not the query accepts parameters. One of these
options must be used (see “Using input and output parameters” on
page 265).

Customizing Oracle GoldenGate processing
Executing commands, stored procedures, and queries with SQLEXEC

265Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

GoldenGate does not appear idle. As another example, you could use SQLEXEC to issue an
essential database command, such as to disable target triggers. A standalone SQLEXEC
statement cannot accept input parameters or return output parameters.

SQLEXEC provides options to control processing behavior, memory usage, and error handling.
For more information, see the Oracle GoldenGate Windows and UNIX Reference Guide.

Using input and output parameters

Oracle GoldenGate provides options for passing input and output values to and from a
procedure or query that is executed with SQLEXEC within a TABLE or MAP statement.

To pass input values

To pass data values to input parameters within a stored procedure or query, use the PARAMS
option of SQLEXEC.

Syntax PARAMS ([OPTIONAL | REQUIRED] <param name> = {<source column> | <GG function>}

[, ...])

Where:

❍ OPTIONAL indicates that a parameter value is not required for the SQL to execute.
If a required source column is missing from the database operation, or if a column-
conversion function cannot complete successfully because a source column is
missing, the SQL executes anyway.

❍ REQUIRED indicates that a parameter value must be present. If the parameter value
is not present, the SQL will not be executed.

Syntax

Parameter syntax Purpose

SQLEXEC “exec <procedure name>()” Execute a stored procedure

SQLEXEC “<sql query>” Execute a query

SQLEXEC “<database command>” Execute a database command

Argument Description

“exec
<procedure name> ()”

Specifies the name of a stored procedure to execute. The
statement must be enclosed within double quotes.

Example:
SQLEXEC "exec prc_job_count ()"

“<sql query>” Specifies the name of a query to execute. The query must be
contained all on one line and enclosed within double quotes. For
best results, type a space after the begin quotes and before the
end quotes.

“<database command>” Specifies a database command to execute. Must be a valid
command for the database.

Customizing Oracle GoldenGate processing
Executing commands, stored procedures, and queries with SQLEXEC

266Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

❍ <param name> is one of the following:

For a stored procedure, it is the name of any parameter in the procedure that can
accept input, such as a column in a lookup table.

For an Oracle query, it is the name of any input parameter in the query excluding
the leading colon. For example, :param1 would be specified as param1 in the PARAMS
clause.

For a non-Oracle query, it is Pn, where n is the number of the parameter within
the statement, starting from 1. For example, in a query with two parameters, the
<param name> entries are P1 and P2.

❍ {<source column> | <GG function} is the column or Oracle GoldenGate conversion
function that provides input to the procedure.

To pass output values

To pass values from a stored procedure or query as input to a FILTER or COLMAP clause, use
the following syntax:

Syntax {<procedure name> | <logical name>}.<parameter>

Where:

❍ <procedure name> is the actual name of the stored procedure. Use this argument only
if executing a procedure one time during the life of the current Oracle GoldenGate
process.

❍ <logical name> is the logical name specified with the ID option of SQLEXEC. Use this
argument if executing a query or a stored procedure that will be executed multiple
times.

❍ <parameter> is either the name of the parameter or RETURN_VALUE, if extracting
returned values.

Example The following example uses SQLEXEC to run a stored procedure named LOOKUP that performs
a query to return a description based on a code. It then maps the results to a target column
named NEWACCT_VAL.

Contents of LOOKUP procedure:

CREATE OR REPLACE PROCEDURE LOOKUP

(CODE_PARAM IN VARCHAR2, DESC_PARAM OUT VARCHAR2)

BEGIN

SELECT DESC_COL

INTO DESC_PARAM

FROM LOOKUP_TABLE

WHERE CODE_COL = CODE_PARAM

END;

Contents of MAP statement:

MAP sales.account, TARGET sales.newacct, &

SQLEXEC (SPNAME lookup, PARAMS (code_param = account_code)), &

COLMAP (newacct_id = account_id, newacct_val = lookup.desc_param);

Customizing Oracle GoldenGate processing
Executing commands, stored procedures, and queries with SQLEXEC

267Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

SQLEXEC executes the LOOKUP stored procedure. Within the SQLEXEC clause, the PARAMS
(code_param = account_code) statement identifies code_param as the procedure parameter to
accept input from the account_code column in the account table.

Replicat executes the LOOKUP stored procedure prior to executing the column map, so that
the COLMAP clause can extract and map the results to the newacct_val column.

Example The following examples implement the same logic as used in the previous example, but
they execute a SQL query instead of a stored procedure and use the @GETVAL function in the
column map.

NOTE Due to the space constraints of this document, the query appears on multiple lines.
However, an actual query would have to be on one line. In addition, to break up an
Oracle GoldenGate parameter statement into multiple lines, an ampersand (&) line
terminator is required.

Oracle database:

MAP sales.account, TARGET sales.newacct, &

SQLEXEC (ID lookup, &

QUERY “select desc_col desc_param from lookup_table where code_col =
:code_param”, &

PARAMS (code_param = account_code)), &

COLMAP (newacct_id = account_id, newacct_val = &

@getval (lookup.desc_param));

Non-Oracle database:

MAP sales.account, TARGET sales.newacct, &

SQLEXEC (ID lookup, &

QUERY “select desc_col desc_param from lookup_table where code_col = ?”, &

PARAMS (p1 = account_code)), &

COLMAP (newacct_id = account_id, newacct_val = &

@getval (lookup.desc_param));

NOTE Additional SQLEXEC options are available for use when a procedure or query
includes parametes. See the full SQLEXEC documentation in the Oracle
GoldenGate Windows and UNIX Reference Guide.

Handling errors

There are two types of error conditions to consider when implementing SQLEXEC:

1. The column map requires a column that is missing from the source database operation.
This can occur for an update operation when the database uses compressed updates in
the transaction log. By default, when a required column is missing, or when an Oracle
GoldenGate column-conversion function results in a “column missing” condition, the
stored procedure does not execute. Subsequent attempts to extract an output
parameter from the stored procedure results in a “column missing condition” in the
COLMAP or FILTER clause.

Or...

2. The database generates an error.

Customizing Oracle GoldenGate processing
Executing commands, stored procedures, and queries with SQLEXEC

268Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

To handle missing column values

Use the @COLTEST function to test the results of the parameter that was passed, and then
map an alternative value for the column to compensate for missing values, if desired.
Otherwise, to ensure that column values are available, you can use the FETCHCOLS or
FETCHCOLSEXCEPT option of the TABLE parameter to fetch the values from the database if they
are not present in the log. As an alternative to fetching columns, it might be more efficient
to enable logging for those columns.

To handle database errors

Use the ERROR option in the SQLEXEC clause to direct Oracle GoldenGate to respond in one of
the following ways:

Additional SQLEXEC guidelines

● Up to 20 stored procedures or queries can be executed per TABLE or MAP entry. They
execute in the order listed in the parameter statement.

● A database login by the Oracle GoldenGate user must precede the SQLEXEC clause. Use
the SOURCEDB and/or USERID parameter in the Extract parameter file or the TARGETDB
and/or USERID parameter in the Replicat parameter file, as needed for the database type
and configured authentication method.

● The SQL is executed by the Oracle GoldenGate user. This user must have the privilege
to execute stored procedures and call RDBM-supplied procedures.

● By default, output values are truncated at 255 bytes per parameter. If longer
parameters are required, use the MAXVARCHARLEN option of SQLEXEC.

Table 45 ERROR options

Action Description

IGNORE Causes Oracle GoldenGate to ignore all errors associated with the stored procedure or
query and continue processing. Any resulting parameter extraction results in a
“column missing” condition. This is the default.

REPORT Ensures that all errors associated with the stored procedure or query are reported to
the discard file. The report is useful for tracing the cause of the error. It includes both
an error description and the value of the parameters passed to and from the procedure
or query. Oracle GoldenGate continues processing after reporting the error.

RAISE Handles errors according to rules set by a REPERROR parameter specified in the Replicat
parameter file. Oracle GoldenGate continues processing other stored procedures or
queries associated with the current TABLE or MAP statement before processing the error.

FINAL Performs in a similar way to RAISE except that when an error associated with a
procedure or query is encountered, any remaining stored procedures and queries are
bypassed. Error processing is invoked immediately after the error.

FATAL Causes Oracle GoldenGate to abend immediately upon encountering an error
associated with a procedure or query.

Customizing Oracle GoldenGate processing
Using Oracle GoldenGate macros to simplify and automate work

269Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

● When using a stored procedure or query that changes the target database, use the DBOP
option in the SQLEXEC clause. DBOP ensures that the changes are committed to the
database properly. Otherwise, they could potentially be rolled back.

● Database operations within a stored procedure or query are committed in same context
as the original transaction.

● Do not use SQLEXEC to update the value of a primary key column. If SQLEXEC is used to
update the value of a key column, then the Replicat process will not be able to perform
a subsequent update or delete operation, because the original key value will be
unavailable. If a key value must be changed, you can map the original key value to
another column and then specify that column with the KEYCOLS option of the TABLE or
MAP parameter.

● For DB2, Oracle GoldenGate uses the ODBC SQLExecDirect function to execute a SQL
statement dynamically. This means that the connected database server must be able
to prepare the statement dynamically. ODBC prepares the SQL statement every time
it is executed (at the requested interval). Typically, this does not present a problem to
Oracle GoldenGate users. See the DB2 documentation for more information.

● Do not use SQLEXEC for tables being processing by a data-pump Extract in pass-through
mode.

● All objects that are affected by a SQLEXEC stored procedure or query must exist with the
correct structures prior to the execution of the SQL. Consequently, DDL on these
objects that affects structure (such as CREATE or ALTER) must happen before the SQLEXEC
executes.

● All objects affected by a standalone SQLEXEC statement must exist before the Oracle
GoldenGate processes start. Because of this, DDL support must be disabled for those
objects; otherwise, DDL operations could change the structure or delete the object
before the SQLEXEC procedure or query executes on it.

Using Oracle GoldenGate macros to simplify and automate work

By using Oracle GoldenGate macros in parameter files you can configure and reuse
parameters, commands, and conversion functions. The following are some ways to use
macros:

● Implementing multiple uses of a parameter statement.

● Consolidating multiple commands.

● Invoking other macros.

● Storing commonly used macros in a library.

Oracle GoldenGate macros work with the following parameter files:

● Manager

● Extract

● Replicat

Do not use macros to manipulate data for tables being processed by a data-pump Extract
in pass-through mode.

Customizing Oracle GoldenGate processing
Using Oracle GoldenGate macros to simplify and automate work

270Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Defining macros

To define an Oracle GoldenGate macro, use the MACRO parameter in the parameter file.

Syntax MACRO #<macro name>
PARAMS (#<p1>, #<p2> [, ...])

BEGIN

<macro body>

END;

Macro naming conventions

Observe the following naming conventions when creating macros and parameters:

● Macro and parameter names must begin with a macro character. The default macro
character is the pound (#) character, as in #macro1 and #param1. Anything in the
parameter file that begins with the # macro character is assumed to be either a macro
or a macro parameter. Macro or parameter names within quotation marks are ignored.

You can change the macro character to something other than #. For example, you could
change it if table names include the # character. To define a different macro character,
precede the MACRO statement with the MACROCHAR <character> parameter in the
parameter file. In the following example, $ is defined as the macro character.

Table 46 Macro definition arguments

Argument Description

MACRO Required. Indicates an Oracle GoldenGate macro.

#<macro name> The name of the macro. See “Macro naming conventions” on
page 270.

PARAMS (#<p1>, #<p2>) The names of parameters. See “Macro naming conventions” on
page 270. Parameter statements are optional. When using
parameters, separate each parameter in a list with a comma, or list
each parameter on a separate line to improve readability (making
certain to use the open and close parentheses to enclose the
parameter list). See “Using input parameters” on page 272.

BEGIN Begins the macro body. Must be specified before the macro body.

<macro body> The macro body. A macro body can include any of the following types
of statements.

◆ Simple parameter statements, as in:
COL1 = COL2

◆ Complex statements, as in:
COL1 = #val2

◆ Invocations of other macros, as in:
#colmap (COL1, #sourcecol)

END Ends the macro definition.

Customizing Oracle GoldenGate processing
Using Oracle GoldenGate macros to simplify and automate work

271Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

MACROCHAR $

MACRO $mymac

PARAMS ($p1)

BEGIN

col = $p1

END;

The MACROCHAR parameter can only be used once.

● Macro and parameter names are not case-sensitive.

● Besides the leading macro character (# or user-defined), valid macro and parameter
characters are alphanumeric and can include the underscore character (_).

Invoking a macro

To invoke a macro, place an invocation statement in the parameter file wherever you want
the macro to occur.

Syntax [<target> =] <macro name> (<val1>, <val2> [, ...])

Table 47 Macro invocation arguments

Argument Description

<target> = Optional. Specifies the target to which the results of the macro processing
are assigned, typically a target column. For example, in the following, the
column DATECOL1 is the target:
DATECOL1 = #make_date (YR1, MO1, DAY1)

Without a target, the syntax would be:
#make_date (YR1, MO1, DAY1)

<macro name> The name of the macro, such as:
#assign_date

(<val1>, <val2>) The values for parameters defined with a PARAMS statement in the macro
definition, for example:
#custdate (#year, #month, #day)

If a macro does not require any parameters, then the parameter value list
is empty, but the open and close parentheses still are required, for
example:
#no_params_macro ()

Valid parameter values include plain text, quoted text, and invocations of
other macros, as shown in the following examples.
my_col_1
“your text here”
#mycalc (col2, 100)
#custdate (#year, #month, #day)
#custdate (#getyyyy (#yy), #month, #day)

Customizing Oracle GoldenGate processing
Using Oracle GoldenGate macros to simplify and automate work

272Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Using input parameters

Using input parameters in a macro is optional.

To use macros with parameters

Use the PARAMS argument of the MACRO parameter to describe input parameters to the
macro. Every parameter used in a macro must be declared in the PARAMS statement, and
when the macro is invoked, the invocation must include a value for each parameter.

Example The following example illustrates how column mapping can be improved with a macro that
uses parameters. In the following example, the macro defines the parameters #year,
#month, and #day to convert a proprietary date format.

MACRO #make_date

PARAMS (#year, #month, #day)

BEGIN

@DATE(“YYYY-MM-DD”, “CC”, @IF(#year < 50, 20, 19), “YY”, #year, “MM”,
#month, “DD”, #day)

END;

The macro is invoked as follows, with a value list in parentheses for each parameter:

MAP sales.acct_tab, TARGET sales.account,

COLMAP

(

targcol1 = sourcecol1,

datecol1 = #make_date(YR1, MO1, DAY1),

datecol2 = #make_date(YR2, MO2, DAY2)

);

The macro expands to:

MAP sales.acct_tab, TARGET sales.account,

COLMAP

(

targcol1 = sourcecol1,

datecol1 = @DATE(“YYYY-MM-DD”, “CC”, @IF(YR1 < 50, 20, 19),“YY”, YR1,
“MM”, MO1, “DD”, DAY1),

datecol2 = @DATE(“YYYY-MM-DD”, “CC”, @IF(YR2 < 50, 20, 19),“YY”, YR2,
“MM”, MO2, “DD”, DAY2)

);

To use macros without parameters

You can create macros without parameters. For example, you can create a macro for
frequently used sets of commands, as in the following example.

Example MACRO #option_defaults
BEGIN

GETINSERTS

GETUPDATES

GETDELETES

INSERTDELETES

END;

Customizing Oracle GoldenGate processing
Using Oracle GoldenGate macros to simplify and automate work

273Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

The macro is invoked as follows, without parameter values in the parentheses:

#option_defaults ()

IGNOREUPDATES

MAP owner.srctab, TARGET owner.targtab;

#option_defaults ()

MAP owner.srctab2, TARGET owner.targtab2;

The macro expands to:

GETINSERTS

GETUPDATES

GETDELETES

INSERTDELETES

IGNOREUPDATES

MAP owner.srctab, TARGET owner.targtab;

GETINSERTS

GETUPDATES

GETDELETES

INSERTDELETES

MAP owner.srctab2, TARGET owner.targtab2;

Parameter substitution

Oracle GoldenGate substitutes parameter values within the macro body according to the
following rules.

1. The macro processor reads through the macro body looking for instances of parameter
names specified in the PARAMS statement.

2. For each occurrence of the parameter name, the corresponding parameter value
specified during invocation is substituted.

3. If a parameter name does not appear in the list, the macro processor evaluates whether
or not the item is, instead, an invocation of another macro. (See “Invoking other macros
from a macro” on page 273.)

Invoking other macros from a macro

To invoke other macros from a macro, create a macro definition similar to the following:

MACRO #assign_date

PARAMS (#target_col, #year, #month, #day)

BEGIN

#target_col = #make_date (#year, #month, #day)

END;

Creating macro libraries

You can create a macro library that contains one or more macros. By using a macro library,
you can define a macro once and then use it within many parameter files.

Customizing Oracle GoldenGate processing
Using Oracle GoldenGate macros to simplify and automate work

274Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

To create a macro library

1. Open a new file in a text editor.

2. Use commented lines to describe the library, if needed.

3. Using the syntax described in “Defining macros” on page 270, enter the syntax for each
macro.

4. Save the file in the dirprm sub-directory of the Oracle GoldenGate directory as:

<filename>.mac

Where: <filename> is the name of the file. The .mac extension defines the file as a macro
library.

Example The following sample library named datelib contains two macros, #make_date and #assign_date.

-- datelib macro library

--

MACRO #make_date

PARAMS (#year, #month, #day)

BEGIN

@DATE(“YYYY-MM-DD”, “CC”, @IF(#year < 50, 20, 19), “YY”, #year, “MM”,
#month, “DD”, #day)

END;

MACRO #assign_date

PARAMS (#target_col, #year, #month, #day)

BEGIN

#target_col = #make_date (#year, #month, #day)

END;

To use a macro library in a parameter file

To use a macro library, use the INCLUDE parameter at the beginning of a parameter file, as
shown in the following sample Replicat parameter file.

Example INCLUDE /ggs/dirprm/mdatelib.mac
REPLICAT rep

ASSUMETARGETDEFS

USERID ggs, PASSWORD ggs123,

MAP fin.acct_tab, TARGET fin.account;

Suppressing report file listing

When including a long macro library in a parameter file, you can use the NOLIST parameter
to suppress the listing of each macro in the Extract or Replicat report file. Listing can be
turned on and off by placing the LIST and NOLIST parameters anywhere within the parameter
file or within the macro library file. In the following example, NOLIST suppresses the listing
of each macro in the hugelib macro library. Specifying LIST after the INCLUDE statement
restores normal listing to the report file.

Example NOLIST
INCLUDE /ggs/dirprm/hugelib.mac

LIST

INCLUDE /ggs/dirprm/mdatelib.mac

REPLICAT REP

Customizing Oracle GoldenGate processing
Using user exits to extend Oracle GoldenGate capabilities

275Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Tracing macro expansion

You can trace macro expansion with the CMDTRACE parameter. With CMDTRACE enabled,
macro expansion steps are shown in the Extract or Replicat report file.

Syntax CMDTRACE [ON | OFF | DETAIL]

Where:

❍ ON enables tracing.

❍ OFF disables tracing.

❍ DETAIL produces a verbose display of macro expansion.

In the following example, tracing is enabled before #testmac is invoked, then disabled after
the macro’s execution.

REPLICAT REP

MACRO #testmac

BEGIN

COL1 = COL2,

COL3 = COL4,

END;

...

CMDTRACE ON

MAP test.table1, TARGET test.table2,

COLMAP (#testmac);

CMDTRACE OFF

Using user exits to extend Oracle GoldenGate capabilities

User exits are custom routines that you write in C programming code and call during
processing. User exits extend and customize the functionality of the Extract and Replicat
processes with minimal complexity and risk. With user exits, you can respond to database
events when they occur, without altering production programs.

When to implement user exits
You can employ user exits as an alternative to, or in conjunction with, the column-
conversion functions that are available within Oracle GoldenGate. User exits can be a
better alternative to the built-in functions because a user exit processes data only once
(when the data is extracted) rather than twice (once when the data is extracted and once
to perform the transformation).

The following are some ways in which you can implement user exits:

● Perform arithmetic operations, date conversions, or table lookups while mapping from
one table to another.

● Implement record archival functions offline.

● Respond to unusual database events in custom ways, for example by sending an e-mail
message or a page based on an output value.

● Accumulate totals and gather statistics.

● Manipulate a record.

● Repair invalid data.

Customizing Oracle GoldenGate processing
Using user exits to extend Oracle GoldenGate capabilities

276Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

● Calculate the net difference in a record before and after an update.

● Accept or reject records for extraction or replication based on complex criteria.

● Normalize a database during conversion.

Creating user exits

The following instructions help you to create user exits on Windows and UNIX systems.
For more information about the parameters and functions that are described in these
instructions, see the Oracle GoldenGate Windows and UNIX Reference Guide.

To create user exits

1. In C code, create either a shared object (UNIX systems) or a DLL (Windows) and create
or export a routine to be called from Extract or Replicat. This routine is the
communication point between Oracle GoldenGate and your routines. Name the routine
whatever you want. The routine must accept the following Oracle GoldenGate user exit
parameters:

❍ EXIT_CALL_TYPE: Indicates when, during processing, the routine is called.

❍ EXIT_CALL_RESULT: Provides a response to the routine.

❍ EXIT_PARAMS: Supplies information to the routine.

2. In the source code, include the usrdecs.h file, which is located in the Oracle GoldenGate
installation directory. This file contains type definitions, return status values, callback
function codes, and a number of other definitions. Do not modify this file.

3. Include Oracle GoldenGate callback routines in the user exit when applicable.
Callback routines retrieve record and application context information, and they modify
the contents of data records. To implement a callback routine, use the ERCALLBACK
function in the shared object. The user callback routine behaves differently based on
the function code that is passed to the callback routine.

Syntax ERCALLBACK (<function_code>, <buffer>, <result_code>);

Where:

❍ <function_code> is the function to be executed by the callback routine.

❍ <buffer> is a void pointer to a buffer containing a predefined structure associated
with the specified function code.

❍ <result_code> is the status of the function that is executed by the callback routine.
The result code that is returned by the callback routine indicates whether or not
the callback function was successful.

On Windows systems, Extract and Replicat export the ERCALLBACK function that is to be
called from the user exit routine. The user exit must explicitly load the callback
function at run-time using the appropriate Windows API calls.

4. Include the CUSEREXIT parameter in your Extract or Replicat parameter file. This
parameter accepts the name of the shared object or DLL and the name of the exported
routine that is to be called from Extract or Replicat. You can specify the full path of the
shared object or DLL or let the operating system’s standard search strategy locate the
shared object. The parameter also accepts options to:

Customizing Oracle GoldenGate processing
Using user exits to extend Oracle GoldenGate capabilities

277Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

❍ use a user exit with a data pump that is operating in pass-through mode

❍ get before images for update operations

❍ supply a startup string, such as a startup parameter

Syntax CUSEREXIT <DLL or shared object name> <routine name>
[, PASSTHRU]

[, INCLUDEUPDATEBEFORES]

[, PARAMS "<startup string>”]

Example Example parameter file syntax, UNIX systems:

CUSEREXIT eruserexit.so MyUserExit

Example Example parameter file syntax, Windows systems:

CUSEREXIT eruserexit.dll MyUserExit

Viewing examples of how to use the user exit functions

Oracle GoldenGate installs the following sample user exit files into the UserExitExamples
directory of the Oracle GoldenGate installation directory:

● exitdemo.c shows how to initialize the user exit, issue callbacks at given exit points, and
modify data. The demo is not specific to any database type.

● exitdemo_passthru.c shows how the PASSTHRU option of the CUSEREXIT parameter can be used
in an Extract data pump.

● exitdemo_more_recs.c shows an example of how to use the same input record multiple
times to generate several target records.

● exitdemo_lob.c shows an example of how to get read access to LOB data.

● exitdemo_pk_befores.c shows how to access the before and after image portions of a
primary key update record, as well as the before images of regular updates (non-key
updates). It also shows how to get target row values with SQLEXEC in the Replicat
parameter file as a means for conflict detection. The resulting fetched values from the
target are mapped as the target record when it enters the user exit.

Each directory contains the .c file as well as makefiles and a readme.txt file.

Upgrading your user exits

The usrdecs.h file is versioned to allow backward compatibility with existing user exits when
enhancements or upgrades, such as new functions or structural changes, are added to a
new Oracle GoldenGate release. The version of the usrdecs.h file is printed in the report file
at the startup of Replicat or Extract.

To use new user exit functionality, you must recompile your routines to include the new
usrdecs file. Routines that do not use new features do not need to be recompiled.

Customizing Oracle GoldenGate processing
Using the Oracle GoldenGate event marker system to raise database events

278Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Using the Oracle GoldenGate event marker system to raise database events

Oracle GoldenGate provides an event marker system that enables the Oracle GoldenGate
processes to take a defined action based on an event record in the transaction log or in the
trail (depending on the data source of the process). The event record is a record that
satisfies a specific filter criterion for which you want an action to occur. You can use this
system to customize Oracle GoldenGate processing based on database events.

How you can use the event marker system

Examples of how to use this system would be to start or stop a process, to perform a
transformation, or to report statistics. The event marker system can be put to use for
purposes such as:

● To establish a synchronization point at which SQLEXEC or user exit functions can be
performed

● To execute a shell command that executes a data validation script

● To activate tracing when a specific account number is detected

● To capture lag history

● To establish a point at which to start batch processes or end-of-day reporting
procedures

The event marker feature is supported for the replication of data changes, but not for initial
loads.

To use the event marker system

The system requires the following input components:

1. Specify the event record that will trigger the action. You can do this by including a FILTER
or WHERE clause, or a SQLEXEC query or procedure, in one of the following parameter
statements:

❍ TABLE statement in an Extract parameter file

❍ MAP statement in a Replicat parameter file

❍ Special TABLE statement in a Replicat parameter file that enables you to perform
EVENTACTIONS actions without mapping a source table to a target table

2. In the same TABLE or MAP statement where you specified the event record, include the
EVENTACTIONS parameter with the appropriate option to specify the action that is to be
taken by the process.

For more information about these parameters, see the Oracle GoldenGate Windows
and UNIX Reference Guide.

To combine multiple actions

● Many, but not all EVENTACTIONS options, can be combined. You probably will need to
combine two or more actions to achieve your goals.

Customizing Oracle GoldenGate processing
Using the Oracle GoldenGate event marker system to raise database events

279Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

● The entire EVENTACTIONS statement is parsed first, and only then are the specified
options executed according to which one takes precedence over another. In the
following list, the actions that are listed before Process the record will occur before the
record is written to the trail or applied to the target (depending on the process). Actions
that are listed after Process the record will be executed after the record is processed.
❍ TRACE

❍ LOG

❍ CHECKPOINT BEFORE

❍ IGNORE

❍ DISCARD

❍ SHELL

❍ ROLLOVER

❍ (Process the record)
❍ REPORT

❍ ABORT

❍ CHECKPOINT AFTER

❍ FORCESTOP

❍ STOP

The following examples show how you can combine EVENTACTIONS options. For more
examples, see “Case studies in the usage of the event marker system” on page 285.

Example The following causes the process to issue a checkpoint, log an informational message, and
ignore the entire transaction (without processing any of it), plus generate a report.

EVENTACTIONS (CP BEFORE, REPORT, LOG, IGNORE TRANSACTION)

Example The following writes the event record to the discard file and ignores the entire transaction.

EVENTACTIONS (DISCARD, IGNORE TRANS)

Example The following logs an informational message and gracefully stop the process.

EVENTACTIONS (LOG INFO, STOP)

Example The following rolls over the trail file and does not write the event record to the new file.

EVENTACTIONS (ROLLOVER, IGNORE)

To control the processing of the event record itself

To prevent the event record itself from being processed in the normal manner, use the
IGNORE or DISCARD option. Because IGNORE and DISCARD are evaluated before the record itself,
they prevent the record from being processed. Without those options, Extract writes the
record to the trail, and Replicat applies the operation that is contained in the record to the
target database.

You should take into account the possibility that a transaction could contain two or more
records that trigger an event action. In such a case, there could be multiple executions of
certain EVENTACTIONS specifications. For example, encountering two qualifying records that
trigger two successive ROLLOVER actions will cause Extract to roll over the trail twice,
leaving one of the two essentially empty.

Customizing Oracle GoldenGate processing
Using the Oracle GoldenGate event marker system to raise database events

280Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Syntax EVENTACTIONS (
[STOP | ABORT | FORCESTOP]

[IGNORE [TRANSACTION [INCLUDEVENT]]

[DISCARD]

[LOG [INFO | WARNING]]

[REPORT]

[ROLLOVER]

[SHELL <command>]

[TRACE <trace file> [TRANSACTION] [PURGE | APPEND]]

[CHECKPOINT [BEFORE | AFTER | BOTH]]

[, ...]

)

Action Description

STOP Brings the process to a graceful stop when the specified event
record is encountered. The process waits for open transactions to
be completed before stopping. If the transaction is a Replicat
grouped or batched transaction, the current group of transactions
are applied before the process stops gracefully. The process
restarts at the next record after the event record, so long as that
record also signified the end of a transaction.

The process logs a message if it cannot stop immediately because
a transaction is still open. However, if the event record is
encountered within a long-running open transaction, there is no
warning message that alerts you to the uncommitted state of the
transaction. Therefore, the process may remain running for a
long time despite the STOP event.

STOP can be combined with other EVENTACTIONS options except for
ABORT and FORCESTOP.

ABORT Forces the process to exit immediately when the specified event
record is encountered, whether or not there are open
transactions. The event record is not processed. A fatal error is
written to the log, and the event record is written to the discard
file if DISCARD is also specified. The process will undergo recovery
on startup.

ABORT can be combined only with CHECKPOINT BEFORE, DISCARD, SHELL,
and REPORT.

Customizing Oracle GoldenGate processing
Using the Oracle GoldenGate event marker system to raise database events

281Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

FORCESTOP Forces the process to stop gracefully when the specified event
record is encountered, but only if the event record is the last
operation in the transaction or the only record in the transaction.
The record is written normally.

If the event record is encountered within a long-running open
transaction, the process writes a warning message to the log and
exits immediately, as in ABORT. In this case, recovery may be
required on startup. If the FORCESTOP action is triggered in the
middle of a long-running transaction, the process exits without a
warning message.

FORCESTOP can be combined with other EVENTACTIONS options except
for ABORT, STOP, CHECKPOINT AFTER, and CHECKPOINT BOTH. If used with
ROLLOVER, the rollover only occurs if the process stops gracefully.

IGNORE
[TRANSACTION [INCLUDEVENT]]

By default, forces the process to ignore the specified event record.
No warning or message is written to the log, but the Oracle
GoldenGate statistics are updated to show that the record was
ignored.

◆ Use TRANSACTION to ignore the entire transaction that contains
the record that triggered the event. If TRANSACTION is used, the
event record must be the first one in the transaction. When
ignoring a transaction, the event record is also ignored by
default. TRANSACTION can be shortened to TRANS.

◆ Use INCLUDEEVENT with TRANSACTION to propagate the event
record to the trail or to the target, but ignore the rest of the
associated transaction.

IGNORE can be combined with all other EVENTACTIONS options except
ABORT and DISCARD.

DISCARD Causes the process to:

◆ write the specified event record to the discard file.

◆ update the Oracle GoldenGate statistics to show that the
record was discarded.

The process resumes processing with the next record in the trail.
When using this option, use the DISCARDFILE parameter to specify
the name of the discard file. By default, a discard file is not
created.

DISCARD can be combined with all other EVENTACTIONS options
except IGNORE.

Action Description

Customizing Oracle GoldenGate processing
Using the Oracle GoldenGate event marker system to raise database events

282Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

LOG [INFO | WARNING] Causes the process to log the event when the specified event
record is encountered. The message is written to the report file, to
the Oracle GoldenGate error log, and to the system event log.

Use the following options to specify the severity of the message:

◆ INFO specifies a low-severity informational message. This is the
default.

◆ WARNING specifies a high-severity warning message.

LOG can be combined with all other EVENTACTIONS options except
ABORT. If using ABORT, LOG is not needed because ABORT logs a fatal
error before the process exits.

REPORT Causes the process to generate a report file when the specified
event record is encountered. This is the same as using the SEND
command with the REPORT option in GGSCI.

The REPORT message occurs after the event record is processed
(unless DISCARD, IGNORE, or ABORT are used), so the report data will
include the event record.

REPORT can be combined with all other EVENTACTIONS options.

ROLLOVER Valid only for Extract. Causes Extract to roll over the trail to a
new file when the specified event record is encountered. The
ROLLOVER action occurs before Extract writes the event record to
the trail file, which causes the record to be the first one in the new
file unless DISCARD, IGNORE or ABORT are also used.

ROLLOVER can be combined with all other EVENTACTIONS options
except ABORT.

Note:

ROLLOVER cannot be combined with ABORT because:

◆ ROLLOVER does not cause the process to write a checkpoint.

◆ ROLLOVER happens before ABORT.

Without a ROLLOVER checkpoint, ABORT causes Extract to go to its
previous checkpoint upon restart, which would be in the previous
trail file. In effect, this cancels the rollover.

Action Description

Customizing Oracle GoldenGate processing
Using the Oracle GoldenGate event marker system to raise database events

283Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

SHELL <command> Causes the process to execute the specified shell command when
the specified event record is encountered.

◆ <command> specifies the system or shell command to be issued.

◆ If the shell command is successful, the process writes an
informational message to the report file and to the event log.
Success is based upon the exit status of the command in
accordance with the UNIX shell language. In that language,
zero indicates success.

◆ If the system call is not successful, the process abends with a
fatal error. In the UNIX shell language, non-zero equals
failure.

SHELL can be combined with all other EVENTACTIONS options.

TRACE <trace file>
[TRANSACTION]
[PURGE | APPEND]

Causes process trace information to be written to a trace file when
the specified event record is encountered.

By default, tracing is enabled until the process terminates. To set
the trace level, use the Oracle GoldenGate TRACE or TRACE2
parameter.

◆ <trace file> specifies the name of the trace file and must appear
immediately after the TRACE keyword. You can specify a unique
trace file, or use the default trace file that is specified with the
standalone TRACE or TRACE2 parameter.

The same trace file can be used across different TABLE or MAP
statements in which EVENTACTIONS TRACE is used. If multiple
TABLE or MAP statements specify the same trace file name, but
the TRACE options are not used consistently, preference is given
to the options in the last resolved TABLE or MAP that contains
this trace file.

◆ Use TRANSACTION to enable tracing only until the end of the
current transaction, instead of when the process terminates.
For Replicat, transaction boundaries are based on the source
transaction, not the typical Replicat grouped or batched target
transaction. TRANSACTION can be shortened to TRANS.

◆ Use PURGE to truncate the trace file before writing additional
trace records, or use APPEND to write new trace records at the
end of the existing records. APPEND is the default.

TRACE can be combined with all other EVENTACTIONS options except
ABORT.

To disable tracing to the specified trace file, issue the GGSCI SEND
<process> command with the TRACE OFF <filename> option.

Action Description

Customizing Oracle GoldenGate processing
Using the Oracle GoldenGate event marker system to raise database events

284Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHECKPOINT
[BEFORE | AFTER | BOTH]

Causes the process to write a checkpoint when the specified event
record is encountered. Checkpoint actions provide a context
around the processing that is defined in TABLE or MAP statements.
This context has a begin point and an end point, thus providing
synchronization points for mapping the functions that are
performed with SQLEXEC and user exits.
◆ BEFORE

BEFORE for an Extract process writes a checkpoint before
Extract writes the event record to the trail.

BEFORE for a Replicat process writes a checkpoint before
Replicat applies the SQL operation that is contained in the
record to the target.

BEFORE requires the event record to be the first record in a
transaction. If it is not the first record, the process will abend.
Use BEFORE to ensure that all transactions prior to the one that
begins with the event record are committed.

CHECKPOINT BEFORE can be combined with all EVENTACTIONS
options.

◆ AFTER

AFTER for Extract writes a checkpoint after Extract writes the
event record to the trail.

AFTER for Replicat writes a checkpoint after Replicat applies
the SQL operation that is contained in the record to the target.

AFTER flags the checkpoint request as an advisory, meaning
that the process will only issue a checkpoint at the next
practical opportunity. For example, in the case where the
event record is one of a multi-record transaction, the
checkpoint will take place at the next transaction boundary, in
keeping with the Oracle GoldenGate data-integrity model.

CHECKPOINT AFTER can be combined with all EVENTACTIONS options
except ABORT.

◆ BOTH

BOTH combines BEFORE and AFTER. The Extract or Replicat
process writes a checkpoint before and after it processes the
event record.

CHECKPOINT BOTH can be combined with all EVENTACTIONS options
except ABORT.

CHECKPOINT can be shortened to CP.

Action Description

Customizing Oracle GoldenGate processing
Using the Oracle GoldenGate event marker system to raise database events

285Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Case studies in the usage of the event marker system

Trigger end-of-day processing

This example specifies the capture of operations that are performed on a special table
named event_table in the source database. This table exists solely for the purpose of
receiving inserts at a predetermined time, for example at 5:00 P.M. every day. When
Replicat receives the transaction record for this operation, it stops gracefully to allow
operators to start end-of-day processing jobs. By using the insert on the event_table table
every day, the operators know that Replicat has applied all committed transactions up to
5:00. IGNORE causes Replicat to ignore the event record itself, because it has no purpose in
the target database. LOG INFO causes Replicat to log an informational message about the
operation.

Example TABLE source.event_table, EVENTACTIONS (IGNORE, LOG INFO, STOP);

Simplify transition from initial load to change synchronization

Event actions and event tables can be used to help with the transition from an initial load
to ongoing change replication. For example, suppose an existing, populated source table
must be added to the Oracle GoldenGate configuration. This table must be created on the
target, and then the two must be synchronized by using an export/import. This example
assumes that an event table named source.event_table exists in the source database and is
specified in a Replicat TABLE statement.

To allow users to continue working with the new source table, it is added to the Extract
parameter file, but not to the Replicat parameter file. Extract begins capturing data from
this table to the trail, where it is stored.

At the point where the source and target are read-consistent after the export, an event
record is inserted into the event table on the source, which propagates to the target. When
Replicat receives the event record (marking the read-consistent point), the process stops as
directed by EVENTACTIONS STOP. This allows the new table to be added to the Replicat MAP
statement. Replicat can be positioned to start replication from the timestamp of the event
record, eliminating the need to use the HANDLECOLLISIONS parameter. Operations in the trail
from before the event record can be ignored because it is known that they were applied in
the export.

The event record itself is ignored by Replicat, but an informational message is logged.

Example TABLE source.event_table, EVENTACTIONS (IGNORE, LOG INFO, STOP);

Stop processing when data anomalies are encountered

This example uses ABORT to stop Replicat immediately with a fatal error if an anomaly is
detected in a bank record, where the customer withdraws more money than the account
contains. In this case, the source table is mapped to a target table in a Replicat MAP
statement for actual replication to the target. A TABLE statement is also used for the source
table, so that the ABORT action stops Replicat before it applies the anomaly to the target
database. ABORT takes precedence over processing the record.

Example MAP source.account, TARGET target.account;

TABLE source.account, FILTER (withdrawal > balance), EVENTACTIONS (ABORT);

Customizing Oracle GoldenGate processing
Using the Oracle GoldenGate event marker system to raise database events

286Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Use a heartbeat table and logging to analyze lag

This example shows how to configure log actions. A heartbeat table is periodically updated
with the current time in the source database. The updates to the heartbeat table are
captured and written to the trail by Extract. Using the heartbeat record as the event
record, Replicat logs messages based on lag calculations in two different MAP statements
with FILTER clauses.

In the first FILTER clause, an informational message is written if the lag exceeds 60 seconds
but is less than 120 seconds. In the second FILTER clause, a warning message is logged if the
lag exceeds 120 seconds.

In this example, the heartbeat record is also written to a heartbeat audit table in the target
database, which can be used for historical lag analysis. An alternate option would be to
IGNORE or DISCARD the heartbeat record.

NOTE ALLOWDUPTARGETMAPS is used because there are duplicate MAP statements for
the same source and target objects.

Example ALLOWDUPTARGETMAPS

MAP source.heartbeat, TARGET target.heartbeat, &

FILTER (&

@DATEDIFF ("SS", hb_timestamp, @DATENOW()) > 60 AND &

@DATEDIFF ("SS", hb_timestamp, @DATENOW()) < 120), &

EVENTACTIONS (LOG INFO);

MAP source.heartbeat, TARGET target.heartbeat, &

FILTER (@DATEDIFF ("SS", hb_timestamp, @DATENOW()) > 120), &

EVENTACTIONS (LOG WARNING);

Trace a specific order number

The following example enables Replicat tracing only for an order transaction that contains
an insert operation for a specific order number (order_no = 1). The trace information is
written to the order_1.trc trace file. The MAP parameter specifies the mapping of the source
table to the target table.

Example MAP sales.order, TARGET rpt.order;

TABLE source.order,

FILTER (@GETENV ("GGHEADER", "OPTYPE") = "INSERT" AND order_no = 1), &

EVENTACTIONS (TRACE order_1.trc TRANSACTION);

Execute a batch process

In this example, a batch process executes once a month to clear the source database of
accumulated data. At the beginning of the transaction, typically a batch transaction, a
record is written to a special job table to indicate that the batch job is starting. TRANSACTION
is used with IGNORE to specify that the entire transaction must be ignored by Extract,
because the target system does not need to reflect the deleted records. By ignoring the work
on the Extract side, unnecessary trail and network overhead is eliminated.

NOTE If a logical batch delete were to be composed of multiple smaller batches, each
smaller batch would require an insert into the job table as the first record in the
transaction.

Customizing Oracle GoldenGate processing
Using the Oracle GoldenGate event marker system to raise database events

287Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Example TABLE source.job, FILTER (@streq(job_type = "HOUSEKEEPING")=1), &

EVENTACTIONS (IGNORE TRANSACTION);

Propagate only a SQL statement without the resultant operations

This example shows how different EVENTACTIONS clauses can be used in combination on the
source and target to replicate just a SQL statement rather than the operations that result
from that statement. In this case, it is an INSERT INTO...SELECT transaction. Such a transaction
could generate millions of rows that would need to be propagated, but with this method, all
that is propagated is the initial SQL statement to reduce trail and network overhead. The
SELECTs are all performed on the target. This configuration requires perfectly synchronized
source and target tables in order to maintain data integrity.

To use this configuration, a statement table is populated with the first operation in the
transaction, that being the INSERT INTO...SELECT, which becomes the event record.

NOTE For large SQL statements, the statement can be written to multiple columns in the
table. For example, eight VARCHAR (4000) columns could be used to store SQL
statements up to 32 KB in length.

Because of the IGNORE TRANS INCLUDEEVENT, Extract ignores all of the subsequent inserts that
are associated with the SELECT portion of the statement, but writes the event record that
contains the SQL text to the trail. Using a TABLE statement, Replicat passes the event
record to a SQLEXEC statement that concatenates the SQL text columns, if necessary, and
executes the INSERT INTO...SELECT statement using the target tables as the input for the SELECT
sub-query.

Example Extract:

TABLE source.statement, EVENTACTIONS (IGNORE TRANS INCLUDEEVENT);

Replicat:

TABLE source.statement, SQLEXEC (<execute SQL statement>), &

EVENTACTIONS (INFO, IGNORE);

Committing other transactions before starting a long-running transaction

This use of EVENTACTIONS ensures that all open transactions that are being processed by
Replicat get committed to the target before the start of a long running transaction. It forces
Replicat to write a checkpoint before beginning work on the large transaction. Forcing a
checkpoint constrains any potential recovery to just the long running transaction. Because
a Replicat checkpoint implies a commit to the database, it frees any outstanding locks and
makes the pending changes visible to other sessions.

Example TABLE source.batch_table, EVENTACTIONS (CHECKPOINT BEFORE);

Execute a shell script to validate data

This example executes a shell script that runs another script that validates data after
Replicat applies the last transaction in a test run. On the source, an event record is written
to an event table named source.event. The record inserts the value “COMPARE” into the
event_type column of the event table, and this record gets replicated at the end of the other
test data. In the TABLE statement in the Replicat parameter file, the FILTER clause qualifies
the record and then triggers the shell script compare_db.sh to run as specified by SHELL in the
EVENTACTIONS clause. After that, Replicat stops immediately as specified by FORCESTOP.

Customizing Oracle GoldenGate processing
Using the Oracle GoldenGate event marker system to raise database events

288Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Example Extract:

TABLE src.*;

TABLE test.event;

Replicat:

MAP src.*, TARGET targ.*;

TABLE test.event, FILTER (@streq(event_type, "COMPARE")=1), &

EVENTACTIONS (SHELL “compare_db.sh”, FORCESTOP);

289Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHAPTER 19

Monitoring Oracle GoldenGate processing
.

Overview of the Oracle GoldenGate monitoring tools

You can monitor Oracle GoldenGate processing to view process status, statistics, and
events by using the following tools.

● GGSCI information commands

● The ggserr.log file (known as the error log)

● Process reports

● The discard file

● The Event Viewer on Windows systems or the syslog on UNIX systems to view errors
at the operating-system level.

Using the information commands in GGSCI

The primary way to view processing information is through GGSCI. For more information
about these commands, see the Oracle GoldenGate Windows and UNIX Reference Guide.

Table 48 Commands to view process information

Command What it shows

INFO {EXTRACT | REPLICAT} <group> [DETAIL] Run status, checkpoints, approximate lag, and
environmental information

INFO MANAGER Run status and port number

INFO ALL INFO output for all Oracle GoldenGate processes
on the system

STATS {EXTRACT | REPLICAT} <group> Statistics for operations processed

STATUS {EXTRACT | REPLICAT} <group> Run status (starting, running, stopped, abended)

STATUS MANAGER Run status

LAG {EXTRACT | REPLICAT} <group> Latency between last record processed and
timestamp in the data source

Monitoring Oracle GoldenGate processing
Monitoring an Extract recovery

290Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Monitoring an Extract recovery

NOTE This topic applies to all types of databases except Oracle, for which a different
recovery mechanism known as Bounded Recovery is used. For more information,
see the BR parameter in the Oracle GoldenGate Windows and UNIX Reference
Guide.

If Extract abends when a long-running transaction is open, it can seem to take a long time
to recover when it is started again. To recover its processing state, Extract must search
back through the online and archived logs (if necessary) to find the first log record for that
long-running transaction. The farther back in time that the transaction started, the longer
the recovery takes, in general, and Extract can appear to be stalled.

To confirm that Extract is recovering properly, use the SEND EXTRACT command with the
STATUS option. One of the following status notations appears, and you can follow the
progress as Extract changes its log read position over the course of the recovery.

● In recovery[1] – Extract is recovering to its checkpoint in the transaction log.

● In recovery[2] – Extract is recovering from its checkpoint to the end of the trail.

● Recovery complete – The recovery is finished, and normal processing will resume.

INFO {EXTTRAIL | RMTTRAIL} <path name> Name of associated process, position of last data
processed, maximum file size

SEND MANAGER Run status, information about child processes,
port information, trail purge settings

SEND {EXTRACT | REPLICAT} Depending on the process, returns information
about memory pool, lag, TCP statistics, long-
running transactions, process status, recovery
progress, and more.

VIEW REPORT <group> Contents of the process report

VIEW GGSEVT Contents of the Oracle GoldenGate error log

<command> ER <wildcard> Information dependent on the <command> type:
INFO
LAG
SEND
STATS
STATUS

<wildcard> is a wildcard specification for the
process groups to be affected, for example:
INFO ER ext*
STATS ER *

Table 48 Commands to view process information (continued)

Command What it shows

Monitoring Oracle GoldenGate processing
Monitoring lag

291Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Monitoring lag

Lag statistics show you how well the Oracle GoldenGate processes are keeping pace with
the amount of data that is being generated by the business applications. With this
information, you can diagnose suspected problems and tune the performance of the Oracle
GoldenGate processes to minimize the latency between the source and target databases.
For help with tuning Oracle GoldenGate to minimize lag, see the Oracle GoldenGate
Windows and UNIX Troubleshooting and Tuning Guide.

About lag

For Extract, lag is the difference, in seconds, between the time that a record was processed
by Extract (based on the system clock) and the timestamp of that record in the data source.

For Replicat, lag is the difference, in seconds, between the time that the last record was
processed by Replicat (based on the system clock) and the timestamp of the record in the
trail.

To view lag statistics

Use either the LAG or SEND command in GGSCI.

Syntax LAG {EXTRACT | REPLICAT | ER} {<group | wildcard>}

Or...

Syntax SEND {EXTRACT | REPLICAT} {<group | wildcard>}, GETLAG

NOTE The INFO command also returns a lag statistic, but this statistic is taken from the
last record that was checkpointed, not the current record that is being processed.
It is less accurate than LAG or INFO.

Figure 20 Sample lag statistics for all Extract and Replicat processes

GGSCI (sysb) 13> lag er *

Sending GETLAG request to EXTRACT ORAEXT...

Last record lag: 1 seconds.

At EOF, no more records to process.

Sending GETLAG request to REPLICAT ORAREP...

No records yet processed.

At EOF, no more records to process.

Sending GETLAG request to REPLICAT REPORA...

Last record lag: 7 seconds.

At EOF, no more records to process.

To control how lag is reported

Use the LAGREPORTMINUTES or LAGREPORTHOURS parameter to specify the interval at which
Manager checks for Extract and Replicat lag.

Use the LAGCRITICALSECONDS, LAGCRITICALMINUTES, or LAGCRITICALHOURS parameter to specify a
lag threshold that is considered critical, and to force a warning message to the error log

Monitoring Oracle GoldenGate processing
Monitoring processing volume

292Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

when the threshold is reached. This parameter affects Extract and Replicat processes on
the local system.

Use the LAGINFOSECONDS, LAGINFOMINUTES, or LAGINFOHOURS parameter to specify how often to
report lag information to the error log. If the lag is greater than the value specified with
the LAGCRITICAL parameter, Manager reports the lag as critical; otherwise, it reports the lag
as an informational message. A value of zero (0) forces a message at the frequency specified
with the LAGREPORTMINUTES or LAGREPORTHOURS parameter.

Monitoring processing volume

The volume statistics show you the amount of data that is being processed by an Oracle
GoldenGate process, and how fast it is being moved through the Oracle GoldenGate
system. With this information, you can diagnose suspected problems and tune the
performance of the Oracle GoldenGate processes.

To view volume statistics

Syntax STATS {EXTRACT | REPLICAT | ER} {<group | wildcard>}

[TABLE {<name | wildcard>}]

Figure 21 Sample basic STATS EXTRACT for one table

GGSCI (sysa) 32> stats extract oraext

Sending STATS request to EXTRACT ORAEXT...

Start of Statistics at 2011-01-08 16:46:38.

Output to c:\goldengate802\dirdat\xx:

Extracting from HR.EMPLOYEES to HR.EMPLOYEES:

*** Total statistics since 2011-01-08 16:35:05 ***

 Total inserts 704.00

 Total updates 0.00

 Total deletes 160.00

 Total discards 0.00

 Total operations 864.00

*** Daily statistics since 2011-01-08 16:35:05 ***

 Total inserts 704.00

 Total updates 0.00

 Total deletes 160.00

 Total discards 0.00

 Total operations 864.00

*** Hourly statistics since 2011-01-08 16:35:05 ***

 Total inserts 704.00

 Total updates 0.00

 Total deletes 160.00

 Total discards 0.00

 Total operations 864.00

Monitoring Oracle GoldenGate processing
Monitoring processing volume

293Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

*** Latest statistics since 2011-01-08 16:35:05 ***

 Total inserts 704.00

 Total updates 0.00

 Total deletes 160.00

 Total discards 0.00

 Total operations 864.00

To view the processing rate

Syntax STATS {EXTRACT | REPLICAT | ER} {<group | wildcard>},
REPORTRATE {HR | MIN | SEC}

Figure 22 Sample REPORTRATE output

*** Latest statistics since 2011-01-08 16:35:05 ***

 Total inserts/hour: 718.34

 Total updates/hour: 0.00

 Total deletes/hour: 0.00

 Total discards/hour: 0.00

 Total operations/hour: 718.34

To view a summary of operations processed per table since startup

Syntax STATS {EXTRACT | REPLICAT | ER} {<group | wildcard>},

TOTALSONLY <table>

Figure 23 Sample TOTALSONLY output

GGSCI (sysa) 37> stats extract oraext, totalsonly hr.departments

Sending STATS request to EXTRACT ORAEXT...

Start of Statistics at 2011-01-08 17:06:43.

Output to c:\goldengate802\dirdat\xx:

Cumulative totals for specified table(s):

*** Total statistics since 2011-01-08 16:35:05 ***

 Total inserts 352.00

 Total updates 0.00

 Total deletes 0.00

 Total discards 0.00

 Total operations 352.00

*** Daily statistics since 2011-01-08 16:35:05 ***

 Total inserts 352.00

 Total updates 0.00

 Total deletes 0.00

 Total discards 0.00

 Total operations 352.00

*** Hourly statistics since 2011-01-08 17:00:00 ***

 No database operations have been performed.

Monitoring Oracle GoldenGate processing
Using the error log

294Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

*** Latest statistics since 2011-01-08 16:35:05 ***

 Total inserts 352.00

 Total updates 0.00

 Total deletes 0.00

 Total discards 0.00

 Total operations 352.00

End of Statistics.

To limit the types of statistics that are displayed

Syntax STATS {EXTRACT | REPLICAT | ER} {<group | wildcard>},

{TOTAL | DAILY | HOURLY | LATEST}

Figure 24 Sample LATEST statistics

GGSCI (sysa) 39> stats extract oraext, latest

Sending STATS request to EXTRACT ORAEXT...

Start of Statistics at 2011-01-08 17:18:23.

Output to c:\goldengate802\dirdat\xx:

Extracting from HR.EMPLOYEES to HR.EMPLOYEES:

*** Latest statistics since 2011-01-08 16:35:05 ***

 Total inserts 704.00

 Total updates 0.00

 Total deletes 160.00

 Total discards 0.00

 Total operations 864.00

End of Statistics.

To clear all filters that were set with previous options

Syntax STATS {EXTRACT | REPLICAT | ER} {<group | wildcard>}, RESET

To send interim statistics to the report file

Syntax SEND {EXTRACT | REPLICAT | ER} {<group | wildcard>}, REPORT

Using the error log

Use the Oracle GoldenGate error log to view:

● a history of GGSCI commands

● Oracle GoldenGate processes that started and stopped

● processing that was performed

● errors that occurred

● informational and warning messages

Because the error log shows events as they occurred in sequence, it is a good tool for
detecting the cause (or causes) of an error. For example, you might discover that:

Monitoring Oracle GoldenGate processing
Using the process report

295Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

● someone stopped a process

● a process failed to make a TCP/IP or database connection

● a process could not open a file

Figure 25 The Oracle GoldenGate Error Log (ggserr.log file)

2011-01-08 11:20:56 GGS INFO 301 GoldenGate Manager for Oracle,
mgr.prm: Command received from GUI (START GGSCI).

2011-01-08 11:20:56 GGS INFO 302 GoldenGate Manager for Oracle,
mgr.prm: Manager started GGSCI process on port 7840.

2011-01-08 11:21:31 GGS INFO 301 GoldenGate Manager for Oracle,
mgr.prm: Command received from GUI (START GGSCI).

2011-01-08 11:21:31 GGS INFO 302 GoldenGate Manager for Oracle,
mgr.prm: Manager started GGSCI process on port 7841.

2011-01-08 11:24:15 GGS INFO 301 GoldenGate Manager for Oracle,
mgr.prm: Command received from GUI (START GGSCI).

2011-01-08 11:24:15 GGS INFO 302 GoldenGate Manager for Oracle,
mgr.prm: Manager started GGSCI process on port 7842.

2011-01-08 11:24:16 GGS INFO 399 GoldenGate Command Interpreter for
Oracle: GGSCI command (ggs): add extract extcust tranlog, begin now.

2011-01-08 11:30:19 GGS INFO 399 GoldenGate Command Interpreter for
Oracle: GGSCI command (ggs): add rmttrail /home/ggs, extract ggs

To view the error log

Use any of the following:

● Standard shell command to view the ggserr.log file within the root Oracle GoldenGate
directory

● Oracle GoldenGate Director

● VIEW GGSEVT command in GGSCI

Syntax VIEW GGSEVT

To filter the error log

The error log can become very large, but you can filter it based on a keyword. For example,
this filter show only errors:

$ more ggserr.log | grep ERROR

Because the error log will continue to grow as you use Oracle GoldenGate, consider
archiving and deleting the oldest entries in the file.

NOTE The Collector process might stop reporting to the log on UNIX systems after the log
has been cleaned up. To get reporting started again, restart the Collector process
after the cleanup.

Using the process report

Use the process report to view (depending on the process):

● parameters in use

● table and column mapping

Monitoring Oracle GoldenGate processing
Using the process report

296Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

● database information

● runtime messages and errors

● runtime statistics for the number of operations processed

Every Extract, Replicat, and Manager process generates a report file at the end of each run.
The report can help you diagnose problems that occurred during the run, such as invalid
mapping syntax, SQL errors, and connection errors.

Figure 26 Sample Extract process report

**

** Running with the following parameters **

**

sourceisfile

userid ggs, password ********

rmthost sys1, mgrport 8040

rmtfile /home/ggsora/dirdat/tcustord.dat, purge

table tcustord;

Processing table TCUSTORD

**

** Run Time Statistics **

**

Report at 2011-01-13 11:07:36 (activity since 2011-01-13 11:07:31)

Output to /home/ggsora/dirdat/tcustord.dat:

From Table TCUSTORD:

 # inserts: 2

 # updates:0

 # deletes:0

 # discards:0

To view a process report

Use any of the following:

● standard shell command for viewing a text file

● Oracle GoldenGate Director

● VIEW REPORT command in GGSCI

Syntax VIEW REPORT {<group> | <file name> | MGR}

Where:

❍ <group> shows an Extract or Replicat report that has the default name, which is the
name of the associated group.

❍ <file name> shows any Extract or Replicat report file that matches a given path
name. Must be used if a non-default report name was assigned with the REPORT
option of the ADD EXTRACT or ADD REPLICAT command when the group was created.

❍ MGR shows the Manager process report.

Monitoring Oracle GoldenGate processing
Using the process report

297Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Report names are in upper case if the operating system is case-sensitive. By default,
reports have a file extension of .rpt, for example EXTORA.rpt. The default location is the dirrpt
sub-directory of the Oracle GoldenGate directory.

To determine the name and location of a process report

Use the INFO command in GGSCI.

Syntax INFO <group>, DETAIL

To view information if a process abends without a report

Run the process from the command shell of the operating system (not GGSCI) to send the
information to the terminal.

Syntax <process> paramfile <path name>.prm

Where:

❍ <process> is either Extract or Replicat.

❍ paramfile <path name>.prm is the fully qualified name of the parameter file.

Example replicat paramfile /ggs/dirdat/repora.prm

Scheduling runtime statistics in the process report

By default, runtime statistics are written to the report once, at the end of each run. For
long or continuous runs, you can use optional parameters to view these statistics on a
regular basis, without waiting for the end of the run.

To set a schedule for reporting runtime statistics

Use the REPORT parameter in the Extract or Replicat parameter file to specify a day and
time to generate runtime statistics in the report.

To send runtime statistics to the report on demand

Use the SEND EXTRACT or SEND REPLICAT command with the REPORT option to view current
runtime statistics when needed.

Viewing record counts in the process report

Use the REPORTCOUNT parameter to report a count of transaction records that Extract or
Replicat processed since startup. Each transaction record represents a logical database
operation that was performed within a transaction that was captured by Oracle
GoldenGate. The record count is printed to the report file and to the screen.

Managing process reports

Once created, a report file must remain in its original location for Oracle GoldenGate to
operate properly after processing has started.

Whenever a process starts, Oracle GoldenGate creates a new report file and ages the
previous one by appending a sequence number to the name. The numbers increment from
0 (the previous one) to 9 (the oldest).

Monitoring Oracle GoldenGate processing
Using the discard file

298Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

No process ever has more than ten aged reports and one active report. After the tenth aged
report, the oldest is deleted when a new report is created. Set up an archiving schedule for
aged report files in case they are needed to resolve a service request.

Figure 27 Current Extract and Manager reports plus aged reports

To prevent an Extract or Replicat report file from becoming too large

Use the REPORTROLLOVER parameter to force report files to age on a regular schedule, instead
of when a process starts. For long or continuous runs, setting an aging schedule controls
the size of the active report file and provides a more predictable set of archives that can be
included in your archiving routine.

To prevent SQL errors from filling up the Replicat report

Use the WARNRATE parameter to set a threshold for the number of SQL errors that can be
tolerated on any target table before being reported to the process report and to the error
log. The errors are reported as a warning. If your environment can tolerate a large number
of these errors, increasing WARNRATE helps to minimize the size of those files.

Using the discard file

Use a discard file to capture information about Oracle GoldenGate operations that failed.
This information can help you to resolve data errors, such as those that involve invalid
column mapping.

The discard file reports such information as:

● The database error message

● The sequence number of the data source or trail file

● The relative byte address of the record in the data source or trail file

● The details of the discarded operation, such as column values of a DML statement or
the text of a DDL statement.

A discard file can be used for Extract or Replicat, but it is most useful for Replicat to log
operations that could not be reconstructed or applied.

-rw-rw-rw- 1 ggs ggs 1193 Oct 11 14:59 MGR.rpt

-rw-rw-rw- 1 ggs ggs 3996 Oct 5 14:02 MGR0.rpt

-rw-rw-rw- 1 ggs ggs 4384 Oct 5 14:02 TCUST.rpt

-rw-rw-rw- 1 ggs ggs 1011 Sep 27 14:10 TCUST0.rpt

-rw-rw-rw- 1 ggs ggs 3184 Sep 27 14:10 TCUST1.rpt

-rw-rw-rw- 1 ggs ggs 2655 Sep 27 14:06 TCUST2.rpt

-rw-rw-rw- 1 ggs ggs 2655 Sep 27 14:04 TCUST3.rpt

-rw-rw-rw- 1 ggs ggs 2744 Sep 27 13:56 TCUST4.rpt

-rw-rw-rw- 1 ggs ggs 3571 Aug 29 14:27 TCUST5.rpt

Monitoring Oracle GoldenGate processing
Using the discard file

299Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Figure 28 Sample discard file

ORA-20017: asta0009 6144935

ORA-06512: at "LON.STARTASTA0009_INSERT", line 31

ORA-04088: error during execution of trigger 'LON.STARTASTA0009_INSERT'

Operation failed at seqno 45 rba 12483311

Problem replicating PRODTAB.ASTA0009 to ASTA0009

Error occurred with insert record (target format)...

*

A_TIMESTAMP = 2011-01-15 13:18:32

RELA_PERSON_NR = 3618047

RELA_BEZART = 1

RELA_BEZCODE = 01

RELA_AZ_BAFL = 2819220

RELA_STEMPEL = 0

AKTION = I

OK = 1.0000

NOTOK = -1.0000

*

To use a discard file

Include the DISCARDFILE parameter in the Extract or Replicat parameter file. You must
supply a name for the file. The parameter has options that control the maximum file size,
after which the process abends, and whether new content overwrites or appends to existing
content.

Syntax DISCARDFILE <file name> [, APPEND | PURGE] [, MAXBYTES <n> | MEGABYTES <n>]

NOTE To prevent the need to perform manual maintenance of discard files, use either the
PURGE or APPEND option. Otherwise, you must specify a different discard file
name before starting each process run, because Oracle GoldenGate will not write
to an existing discard file.

To view a discard file

Use either of the following:

● Standard shell command to view the file by name

● VIEW REPORT command in GGSCI, with the discard file name as input

Syntax VIEW REPORT <file name>

To manage discard files

Use the DISCARDROLLOVER parameter to set a schedule for aging discard files. For long or
continuous runs, setting an aging schedule prevents the discard file from filling up and
causing the process to abend, and it provides a predictable set of archives that can be
included in your archiving routine.

Syntax DISCARDROLLOVER {AT <hh:mi> | ON <day of week> | AT <hh:mi> ON <day of week>}

Monitoring Oracle GoldenGate processing
Using the system logs

300Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Using the system logs

Oracle GoldenGate writes errors that are generated at the level of the operating system to
the Event Viewer on Windows or to the syslog on UNIX and Linux. Oracle GoldenGate
events are basically the same format in the UNIX, Linux, and Windows system logs. Oracle
GoldenGate errors that appear in the system logs also appear in the Oracle GoldenGate
error log.

On UNIX and Linux, Oracle GoldenGate messaging to the syslog is enabled by default. On
Windows, Oracle GoldenGate messaging to the Event Viewer must be installed by
registering the Oracle GoldenGate message DLL.

To register Oracle GoldenGate messaging on Windows

1. Run the install program with the addevents option. This enables generic messages to be
logged.

2. (Optional) To get more specific Windows messages, copy the category.dll and ggsmsg.dll
libraries from the Oracle GoldenGate directory to the SYSTEM32 directory, either before
or after running install. The detailed messages contain the Oracle GoldenGate user
name and process, the name of the parameter file, and the error text.

NOTE Windows event messaging might have been installed when Oracle GoldenGate
was installed. For more information on running install, see the Oracle GoldenGate
installation guide for your database.

To filter Oracle GoldenGate messaging on Windows and UNIX

Use the SYSLOG parameter to control the types of messages that Oracle GoldenGate sends
to the system logs on a Windows or UNIX system. You can:

● include all Oracle GoldenGate messages

● suppress all Oracle GoldenGate messages

● filter to include information, warning, or error messages, or any combination of those
types

Figure 29 Oracle GoldenGate messages as seen in the Windows Event Viewer

Monitoring Oracle GoldenGate processing
Reconciling time differences

301Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

You can use SYSLOG as a GLOBALS or Manager parameter, or both. When present in the
GLOBALS parameter file, it controls message filtering for all of the Oracle GoldenGate
processes on the system. When present in the Manager parameter file, it controls message
filtering only for the Manager process. If used in both the GLOBALS and Manager parameter
files, the Manager setting overrides the GLOBALS setting for the Manager process. This
enables you to use separate settings for Manager and all of the other Oracle GoldenGate
processes.

Reconciling time differences

To account for time differences between source and target systems, use the TCPSOURCETIMER
parameter in the Extract parameter file. This parameter adjusts the timestamps of
replicated records for reporting purposes, making it easier to interpret synchronization lag.

Sending event messages to a NonStop system

Event messages created by Collector and Replicat processes on a Windows or UNIX system
can be captured and sent to EMS on NonStop systems. This feature enables centralized
viewing of Oracle GoldenGate messages across platforms. To use this feature, there are two
procedures:

● Run the EMS client on the Windows or UNIX system

● Start a Collector process on the NonStop system

Running EMSCLNT on a Windows or UNIX system

The EMSCLNT utility captures Oracle GoldenGate event messages that originate on a
Windows or UNIX system and sends them to a TCP/IP Collector process on the NonStop
system. EMSCLNT reads a designated error log and runs indefinitely, waiting for more
messages to send.

Run emsclnt from the Oracle GoldenGate directory on the Windows or UNIX system, using
the following syntax:

emsclnt -h <hostname> | <IP address>

-p <port number>

-f <filename>

-c <Collector>

Where:

❍ -h <hostname> | <IP address> is either the name or IP address of the NonStop server to
which EMS messages will be sent.

❍ -p <port number> is the port number of the NonStop Collector process.

❍ -f <filename> is the name of the local file from which to distribute error messages.
Use the full path name if the file resides somewhere other than the Oracle
GoldenGate directory.

❍ -c <Collector> is the EMS Collector for this client.

Monitoring Oracle GoldenGate processing
Getting more help with monitoring and tuning

302Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Example The following Windows example, executed from the DOS prompt, reads the file
d:\ggs\ggserr.log for error messages. Error messages are sent to the Collector on NonStop host
ggs2 listening on port 9876. The Collector process on NonStop writes formatted messages
to EMS Collector $0.

> emsclnt –h ggs2 –p 9876 –f d:\ggs\ggserr.log –c $0

Example The following UNIX example reads the file ggserr.log for error messages. Error messages are
sent to the Collector on the NonStop server at IP address 13.232.123.89 listening on port
7850. The Collector on NonStop writes formatted messages to EMS Collector $0.

emsclnt –h 13.232.123.89 –p 7850 –f ggserr.log –c '$0'

NOTE Because the dollar sign on UNIX denotes a variable, the $0 must be within single
quotes.

Running the Collector on NonStop

The Collector on the NonStop system (called Server-Collector on that platform) collects and
distributes the EMS messages. To start the Collector, run the server program. For each
EMSCLNT process that you will be running on a Windows or UNIX system, start one server
process on the NonStop system.

For example, the following runs server and outputs messages to $DATA1.GGSERRS.SERVLOG.

> ASSIGN STDERR, $DATA1.GGSERRS.SERVLOG

> RUN SERVER /NOWAIT/ –p 7880

See the Oracle GoldenGate HP NonStop Reference Guide for details about running a
Server-Collector process on the NonStop platform.

Getting more help with monitoring and tuning

For more information about how to monitor, tune, and troubleshooting Oracle GoldenGate,
see the Oracle GoldenGate Windows and UNIX Troubleshooting and Tuning Guide.

303Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHAPTER 20

Performing administrative operations
.

Overview of administrative operations

This chapter contains instructions for making changes to applications, systems, and Oracle
GoldenGate while the replication environment is active and processing data changes. The
procedures that are covered are:

● Performing application patches

● Adding process groups

● Initializing the transaction logs

● Shutting down the system

● Changing database attributes

● Changing the size of trail files

Performing application patches

Application patches and application upgrades typically perform DDL such as adding new
objects or changing existing objects. You can use Oracle GoldenGate to replicate the DDL
that a patch or upgrade performs, or you can do those procedures manually on both source
and target.

To use Oracle GoldenGate to replicate patch DDL

When you use Oracle GoldenGate to replicate DDL to the target from a patch that is
performed on the source, you do not need to stop data replication. To use Oracle
GoldenGate for this purpose, see Chapter 14 on page 141. Plan ahead for this, because you
will first need to learn about, and configure, the Oracle GoldenGate DDL environment.
However, once you have a DDL environment in place, future patches will be much easier
to replicate.

Some considerations when using this method:

1. If the application patch or upgrade adds new objects that you want to include in data
replication, make certain that you add them to your TABLE and MAP statements. See the
procedure for this on page 312.

2. If the application patch or upgrade installs triggers or cascade delete constraints,
disable these objects on the target to prevent collisions between the DML that they
execute on the target and the same DDL that is replicated from the source trigger or
cascaded delete.

Performing administrative operations
Adding process groups

304Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

To apply a patch manually on the source and target

1. Stop access to the source database.

2. Allow Extract to finish capturing the transaction data that remains in the transaction
log. To determine when Extract is finished, issue the following command in GGSCI
until it returns “At EOF.”

SEND EXTRACT <group> GETLAG

3. Stop Extract.

STOP EXTRACT <group>

4. Start applying the patch on the source.

5. Wait until the data pump (if used) and Replicat are finished processing the data in
their respective trails. To determine when they are finished, use the following
commands until they return “At EOF.”

SEND EXTRACT <group> GETLAG

SEND REPLICAT <group> GETLAG

6. Stop the data pump and Replicat.

STOP EXTRACT <group>

STOP REPLICAT <group>

At this point, the data in the source and target should be identical, because all of the
replicated transactional changes from the source have been applied to the target.

7. Apply the patch on the target.

8. If the patches changed any definitions of the source and target tables, run the DEFGEN
utility for the affected source tables to generate updated source definitions. Replace the
old definitions for those tables with the new ones in the existing source definitions file
on the target system.

9. Start the Oracle GoldenGate processes whenever you are ready to begin capturing user
activity again.

Adding process groups

Before you start

These instructions are for adding process groups to a configuration that is already active.
The procedures should be performed by someone who has experience with Oracle
GoldenGate. They involve stopping processes for a short period of time and reconfiguring
parameter files. The person performing them must:

● Know the basic components of an Oracle GoldenGate configuration

● Understand Oracle GoldenGate parameters and commands

● Have access to GGSCI to create groups and parameter files

● Know which parameters to use in specific situations

Performing administrative operations
Adding process groups

305Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Instructions are provided for:

● Adding a parallel Extract group to an active configuration

● Adding a data pump to an active configuration

● Adding a parallel Replicat group to an active configuration

Adding a parallel Extract group to an active configuration

This procedure adds a new Extract group in parallel to an existing Extract group. It also
provides instructions for including a data pump group (if applicable) and a Replicat group
to propagate data that is captured by the new Extract group.

Steps are performed on the source and target systems.

1. Make certain the archived transaction logs are available in case the online logs recycle
before you complete this procedure.

2. Choose a name for the new Extract group.

3. Decide whether or not to use a data pump.

4. On the source system, run GGSCI.

5. Create a parameter file for the new Extract group.

EDIT PARAMS <group>

NOTE You can copy the original parameter file to use for this group, but make certain to
change the EXTRACT group name and any other relevant parameters that apply
to this new group.

6. In the parameter file, include:

❍ EXTRACT parameter that specifies the new group.

❍ Appropriate database login parameters.

❍ Other appropriate Extract parameters for your configuration.

❍ EXTTRAIL parameter that points to a local trail (if you will be adding a data pump)
or a RMTTRAIL parameter (if you are not adding a data pump).

❍ RMTHOST parameter if this Extract will write directly to a remote trail.

❍ TABLE statement(s) (and TABLEEXCLUDE, if appropriate) for the tables that are to be
processed by the new group.

7. Save and close the file.

8. Edit the original Extract parameter file(s) to remove the TABLE statements for the tables
that are being moved to the new group or, if using wildcards, add the TABLEEXCLUDE
parameter to exclude them from the wildcard specification.

Performing administrative operations
Adding process groups

306Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

9. Lock the tables that were moved to the new group, and record the timestamp for the
point when the locks were applied. For Oracle tables, you can run the following script,
which also releases the lock after it is finished.

-- temp_lock.sql

-- use this script to temporary lock a table in order to

-- get a timestamp

lock table &schema . &table_name in EXCLUSIVE mode;

SELECT TO_CHAR(sysdate,'MM/DD/YYYY HH24:MI:SS') "Date" FROM dual;

commit;

10. Unlock the table(s) if you did not use the script in the previous step.

11. Stop the old Extract group(s) and any existing data pumps.

STOP EXTRACT <group>

12. Add the new Extract group and configure it to start at the timestamp that you
recorded.

ADD EXTRACT <group>, TRANLOG, BEGIN <YYYY/MM/DD HH:MI:SS:CCCCCC>

13. Add a trail for the new Extract group.

ADD {EXTTRAIL | RMTTRAIL} <trail name>, EXTRACT <group>

Where:

❍ EXTTRAIL creates a local trail. Use this option if you will be creating a data pump for
use with the new Extract group. Specify the trail that is specified with EXTTRAIL in
the parameter file. After creating the trail, go to “To add a local data pump”.

❍ RMTTRAIL creates a remote trail. Use this option if a data pump will not be used.
Specify the trail that is specified with RMTTRAIL in the parameter file. After creating
the trail, go to “To add a remote Replicat”.

You can specify a relative or full path name. Examples:

ADD RMTTRAIL dirdat/rt, EXTRACT primary

ADD EXTTRAIL c:\ogg\dirdat\lt, EXTRACT primary

To add a local data pump

1. On the source system, add the data-pump Extract group using the EXTTRAIL trail as the
data source.

ADD EXTRACT <group>, EXTTRAILSOURCE <trail name>

For example:

ADD EXTRACT pump, EXTTRAILSOURCE dirdat\lt

2. Create a parameter file for the data pump.

EDIT PARAMS <group>

Performing administrative operations
Adding process groups

307Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

3. In the parameter file, include the appropriate Extract parameters for your
configuration, plus:

❍ RMTHOST parameter to point to the target system.

❍ RMTTRAIL parameter to point to a new remote trail (to be specified later).

❍ TABLE parameter(s) for the tables that are to be processed by this data pump.

NOTE If the data pump will be pumping data, but not performing filtering, mapping, or
conversion, then you can include the PASSTHRU parameter to bypass the overhead
of database lookups. You also can omit database authentication parameters.

4. In GGSCI on the source system, add a remote trail for the data-pump. Use the trail
name that you specified with RMTTRAIL in the parameter file.

ADD RMTTRAIL <trail name>, EXTRACT <group>

For example:

ADD RMTTRAIL dirdat/rt, EXTRACT pump

5. Follow the steps in “To add a remote Replicat”

To add a remote Replicat

1. In GGSCI on the target system, add a Replicat group to read the remote trail. For
EXTTRAIL, specify the same trail as in the RMTTRAIL Extract parameter and the ADD
RMTTRAIL command.

ADD REPLICAT <group>, EXTTRAIL <trail>

For example:

ADD REPLICAT rep, EXTTRAIL /home/ggs/dirdat/rt

2. Create a parameter file for this Replicat group. Use MAP statement(s) to specify the
same tables that you specified for the new primary Extract and the data pump (if used).

3. On the source system, start the Extract groups and data pumps.

STOP EXTRACT <group>

START EXTRACT <group>

4. On the target system, start the new Replicat group.

START REPLICAT <group>

Adding a data pump to an active configuration

This procedure adds a data-pump Extract group to an active primary Extract group on the
source system. It makes these changes:

● The primary Extract will write to a local trail.

● The data pump will write to a new remote trail after the data in the old trail is applied
to the target.

● The old Replicat group will be replaced by a new one.

Performing administrative operations
Adding process groups

308Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Steps are performed on the source and target systems.

1. On the source system, run GGSCI.

2. Add a local trail, using the name of the primary Extract group for <group>.

ADD EXTTRAIL <trail name>, EXTRACT <group>

For example:

ADD EXTTRAIL dirdat\lt, EXTRACT primary

3. Open the parameter file of the primary Extract group, and replace the RMTTRAIL
parameter with an EXTTRAIL parameter that points to the local trail that you created.

EDIT PARAMS <group>

Example EXTTRAIL parameter:

EXTTRAIL dirdat\lt

4. Remove the RMTHOST parameter.

5. Save and close the file.

6. Add a new data-pump Extract group, using the trail that you specified in step 2 as the
data source.

ADD EXTRACT <group>, EXTTRAILSOURCE <trail name>

For example:

ADD EXTRACT pump, EXTTRAILSOURCE dirdat\lt

7. Create a parameter file for the new data pump.

EDIT PARAMS <group>

8. In the parameter file, include the appropriate Extract parameters for your
configuration, plus:

❍ TABLE parameter(s) for the tables that are to be processed by this data pump.

❍ RMTHOST parameter to point to the target system.

❍ RMTTRAIL parameter to point to a new remote trail (to be created later).

NOTE If the data pump will be pumping data, but not performing filtering, mapping, or
conversion, you can include the PASSTHRU parameter to bypass the overhead of
database lookups. You also can omit database authentication parameters.

9. In GGSCI on the source system, add a remote trail for the data-pump. Use the trail
name that is specified with RMTTRAIL in the data pump’s parameter file, and specify the
group name of the data pump for EXTRACT.

ADD RMTTRAIL <trail name>, EXTRACT <group>

For example:

ADD RMTTRAIL dirdat/rt, EXTRACT pump

NOTE This command binds a trail name to an Extract group but does not actually create
the trail. A trail file is created when processing starts.

Performing administrative operations
Adding process groups

309Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

10. On the target system, run GGSCI.

11. Add a new Replicat group and link it with the remote trail.

ADD REPLICAT <group>, EXTTRAIL <trail>

For example:

ADD REPLICAT rep, EXTTRAIL dirdat/rt

12. Create a parameter file for this Replicat group. You can copy the parameter file from
the original Replicat group, but make certain to change the REPLICAT parameter to the
new group name.

13. On the source system, stop the primary Extract group, then start it again so that the
parameter changes you made take effect.

STOP EXTRACT <group>

START EXTRACT <group>

14. On the source system, start the data pump.

START EXTRACT <group>

15. On the target system, issue the LAG REPLICAT command for the old Replicat, and continue
issuing it until it reports “At EOF, no more records to process.”

 LAG REPLICAT <group>

16. Stop the old Replicat group.

STOP REPLICAT <group>

17. If using a checkpoint table for the old Replicat group, log into the database from
GGSCI.

DBLOGIN [SOURCEDB <dsn>,] [USERID <user>[, PASSWORD <password>]]

18. Delete the old Replicat group.

DELETE REPLICAT <group>

19. Start the new Replicat group.

START REPLICAT <group>

NOTE Do not delete the old remote trail, just in case it is needed later on for a support
case or some other reason. You can move it to another location, if desired.

Adding a parallel Replicat group to an active configuration

This procedure adds a new Replicat group in parallel to an existing Replicat group. The
new Replicat reads from the same trail as the original Replicat.

Steps are performed on the source and target systems.

1. Choose a name for the new group.

2. On the target system, run GGSCI.

Performing administrative operations
Adding process groups

310Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

3. Create a parameter file for the new Replicat group.

EDIT PARAMS <group>

NOTE You can copy the original parameter file to use for this group, but make certain to
change the REPLICAT group name and any other relevant parameters that apply
to this new group.

4. Add MAP statements (or edit copied ones) to specify the tables that you are moving to
this group.

5. Save and close the parameter file.

6. On the source system, run GGSCI.

7. Stop the Extract group.

STOP EXTRACT <group>

8. On the target system, edit the old Replicat parameter file to remove the MAP statements
that specified the tables that you moved to the new Replicat group. Keep only the MAP
statements that this Replicat will continue to process.

9. Save and close the file.

10. Issue the LAG REPLICAT command for the old Replicat group, and continue issuing it until
it reports “At EOF, no more records to process.”

 LAG REPLICAT <group>

11. Stop the old Replicat group.

STOP REPLICAT <group>

12. Add the new Replicat group. For EXTTRAIL, specify the trail that this Replicat group is
to read.

ADD REPLICAT <group>, EXTTRAIL <trail>

For example:

ADD REPLICAT rep, EXTTRAIL dirdat/rt

13. On the source system, start the Extract group.

START EXTRACT <group>

14. On the target system, start the old Replicat group.

START REPLICAT <group>

15. Start the new Replicat group.

START REPLICAT <group>

Performing administrative operations
Initializing the transaction logs

311Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Initializing the transaction logs

When you initialize a transaction log, you must ensure that all of the data is processed by
Oracle GoldenGate first, and then you must delete and re-add the Extract group and its
associated trail.

1. Stop the application from accessing the database. This stops more transaction data
from being logged.

2. Run GGSCI and issue the SEND EXTRACT command with the LOGEND option for the
primary Extract group. This command queries Extract to determine whether or not
Extract is finished processing the records that remain in the transaction log.

SEND EXTRACT <group name> LOGEND

3. Continue issuing the command until it returns a YES status, indicating that there are
no more records to process.

4. On the target system, run GGSCI and issue the SEND REPLICAT command with the STATUS
option. This command queries Replicat to determine whether or not it is finished
processing the data that remains in the trail.

SEND REPLICAT <group name> STATUS

5. Continue issuing the command until it shows 0 records in the current transaction, for
example:

Sending STATUS request to REPLICAT REPSTAB...

Current status:

 Seqno 0, Rba 9035

 0 records in current transaction.

6. Stop the primary Extract group, the data pump (if used), and the Replicat group.

STOP EXTRACT <group name>

STOP EXTRACT <pump name>

STOP REPLICAT <group name>

7. Delete the Extract, data pump, and Replicat groups.

DELETE EXTRACT <group name>

DELETE EXTRACT <pump name>

DELETE REPLICAT <group name>

8. Using standard operating system commands, delete the trail files.

9. Stop the database.

10. Initialize and restart the database.

11. Recreate the primary Extract group.

ADD EXTRACT <group name> TRANLOG, BEGIN NOW

12. Recreate the local trail (if used).

ADD EXTTRAIL <trail name>, EXTRACT <group name>

Performing administrative operations
Shutting down the system

312Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

13. Recreate the data pump (if used).

ADD EXTRACT <pump name>, EXTTRAILSOURCE <local trail name>

14. Recreate the remote trail.

ADD RMTTRAIL <trail name>, EXTRACT <pump name>

15. Recreate the Replicat group.

ADD REPLICAT <group name>, EXTTRAIL <trail name>

16. Start Extract, the data pump (if used), and Replicat.

START EXTRACT <group name>

START EXTRACT <pump name>

START REPLICAT <group name>

Shutting down the system

When shutting down a system for maintenance and other procedures that affect Oracle
GoldenGate, follow these steps to make certain that Extract has processed all of the
transaction log records. Otherwise, you might lose synchronization data.

1. Stop all application and database activity that generates transactions that are
processed by Oracle GoldenGate.

2. Run GGSCI.

3. In GGSCI, issue the SEND EXTRACT command with the LOGEND option. This command
queries the Extract process to determine whether or not it is finished processing the
records in the data source.

SEND EXTRACT <group name> LOGEND

4. Continue issuing the command until it returns a YES status. At that point, all
transaction log data has been processed, and you can safely shut down Oracle
GoldenGate and the system.

Changing database attributes

This section addresses administrative operations that are performed on database tables
and structures.

Adding tables to the source database

Oracle GoldenGate supports adding tables for synchronization without having to stop and
start processes or perform special procedures. The procedure varies, depending on whether
or not you used wildcards in the TABLE parameter to specify tables.

To add a table when wildcards are used

When wildcards are used with the TABLE parameter to specify tables for synchronization,
Oracle GoldenGate begins synchronizing any new tables whose names satisfy the wildcard
pattern. Follow these steps to prepare a new table for synchronization.

Performing administrative operations
Changing database attributes

313Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

1. Stop Extract.

STOP EXTRACT <group name>

2. In the Extract and Replicat parameter files, make certain the WILDCARDRESOLVE
parameter is not being used, unless it is set to the default of DYNAMIC.

3. Add the table name to the TABLE and MAP statements, if needed.

4. Add the new table to the source database and add the target table to the target
database. (Oracle GoldenGate does not replicate DDL, so the tables have to be created
on both sides.) Do not permit user access to the new table yet.

5. If supported for this database, run the ADD TRANDATA command in GGSCI for the table.

6. If the source and target tables have different definitions, run the DEFGEN utility for the
source table to generate source definitions, and then copy the new definitions to the
existing source definitions file on the target system. If the table you are adding has
definitions that match a current definitions template, you do not need to run DEFGEN;
just specify the template with the DEF option of the MAP parameter.

7. Permit user access to the table.

To add a table when wildcards are not used

To add a new table to the source database when table names are explicitly defined by their
full names (without wildcards), follow these steps.

1. Stop Extract.

STOP EXTRACT <group name>

2. Add the new table to the source database and add the target table to the target
database. (Oracle GoldenGate does not replicate DDL, so the tables have to be created
on both sides.) Do not permit user access to the new table yet.

3. If supported for this database, run the ADD TRANDATA command in GGSCI for the table.

4. If the source and target tables have different definitions, run the DEFGEN utility for the
source table to generate source definitions, and then copy the new definitions to the
existing source definitions file on the target system. If the table you are adding has
definitions that match a current definitions template, you do not need to run DEFGEN;
just specify the template with the DEF option of the MAP parameter.

5. Permit user access to the table.

Changing attributes of a source table being synchronized

NOTE See also “Performing an ALTER TABLE to add a column on DB2 z/OS tables”

To add or change columns or partitions, to change supplemental logging details (Oracle),
or to make other changes to a table that already is being synchronized, you must stop and
start the Oracle GoldenGate processes so that the new attributes can be added to the object
record.

1. Stop user and application access to the table being changed.

2. Make the change to the source table.

3. Take note of the current time.

Performing administrative operations
Changing database attributes

314Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

4. In GGSCI, issue the INFO EXTRACT command with SHOWCH until you see that the current
checkpoint of Extract has moved past the time that you noted.

INFO EXTRACT <group name>, SHOWCH

5. Stop Extract.

STOP EXTRACT <group name>

6. Issue the INFO REPLICAT command until you see that Replicat has reached the end of the
trail (EOF).

7. Make the change to the target table.

8. If the source and target tables have different definitions, run the DEFGEN utility for the
source table to generate updated source definitions, and then replace the old
definitions for that table with the new ones in the existing source definitions file on the
target system.

9. Start Extract and then start Replicat.

START EXTRACT <group name>

START REPLICAT <group name>

Performing an ALTER TABLE to add a column on DB2 z/OS tables

To add a fixed length column to a table that is in reordered row format and contains one or
more variable length columns, one of the following will be required, depending on whether
the table can be quiesced or not.

If the table can be quiesced

1. Allow Extract to finish capturing transactions that happened prior to the quiesce.

2. Alter the table to add the column.

3. Reorganize the tablespace.

4. Restart Extract.

5. Allow table activity to resume.

If the table cannot be quiesced

1. Stop Extract.

2. Remove the table from the TABLE statement in the parameter file.

3. Restart Extract.

4. Alter the table to add the column.

5. Reorganize the tablespace.

6. Stop Extract.

7. Add the table back to the TABLE statement.

8. Resynchronize the source and target tables.

9. Start Extract.

10. Allow table activity to resume.

Performing administrative operations
Changing database attributes

315Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Dropping and recreating a source table

Dropping and recreating a source table requires caution when performed while Oracle
GoldenGate is running.

1. Stop access to the table.

2. Allow Extract to process any remaining changes to that table from the transaction logs.
To determine when Extract is finished, use the INFO EXTRACT command in GGSCI.

INFO EXTRACT <group name>

3. Stop Extract.

STOP EXTRACT <group name>

4. Drop and recreate the table.

5. If supported for this database, run the ADD TRANDATA command in GGSCI for the table.

6. If the recreate action changed the source table’s definitions so that they are different
from those of the target, run the DEFGEN utility for the source table to generate source
definitions, and then replace the old definitions with the new definitions in the existing
source definitions file on the target system.

7. Permit user access to the table.

Changing the number of redo threads

Any time the number of redo threads in an Oracle RAC database cluster changes, the
Extract group must be dropped and re-added. To drop and add an Extract group, perform
the following steps:

1. On the source and target systems, run GGSCI.

2. Stop Extract and Replicat.

STOP EXTRACT <group name>

STOP REPLICAT <group name>

3. On the source system, issue the following command to delete the Extract group.

DELETE EXTRACT <group name>

4. Using standard operating system commands, remove the trail files.

5. Add the Extract group again, specifying the new number of threads.

ADD EXTRACT <group name> TRANLOG, THREADS <n>, BEGIN NOW

6. Add the trail again.

ADD RMTTRAIL <trail name>, EXTRACT <group name>

7. Open the Extract parameter file and change the RMTTRAIL parameter to point to the new
trail.

EDIT PARAMS <group name>

Performing administrative operations
Changing database attributes

316Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

8. Start Extract.

START EXTRACT <group name>

Changing the ORACLE_SID

You can change the ORACLE_SID and ORACLE_HOME without having to change environment
variables at the operating-system level. Depending on whether the change is for the source
or target database, set the following parameters in the Extract or Replicat parameter files.
Then, stop and restart Extract or Replicat for the parameters to take effect.

SETENV (ORACLE_HOME=<location>)

SETENV (ORACLE_SID="<SID>")

Purging archive logs

An Oracle archive log can be purged safely once Extract's read and write checkpoints are
past the end of that log. Extract does not write a transaction to a trail until it has been
committed, so Extract must keep track of all open transactions. To do so, Extract requires
access to the archive log where each open transaction started and all archive logs
thereafter.

Extract reads the current archive log (the read checkpoint) for new transactions and also
has a checkpoint (the recovery checkpoint) in the oldest archive log for which there is an
uncommitted transaction.

Use the following command in GGSCI to determine Extract's checkpoint positions.

INFO EXTRACT <group name>, SHOWCH

● The Input Checkpoint field shows where Extract began processing when it was started.

● The Recovery Checkpoint field shows the location of the oldest uncommitted transaction.

● The Next Checkpoint field shows the position in the redo log that Extract is reading.

● The Output Checkpoint field shows the position where Extract is writing.

You can write a shell script that purges all archive logs no longer needed by Extract by
capturing the sequence number listed under the Recovery Checkpoint field. All archive logs
prior to that one can be safely deleted.

Reorganizing a DB2 table (z/OS platform)

When using IBM’s REORG utility to reorganize a DB2 table that has compressed tablespaces,
specify the KEEPDICTIONARY option if the table is being processed by Oracle GoldenGate. This
prevents the REORG utility from recreating the compression dictionary, which would cause
log data that was written prior to the change not to be decompressed and cause Extract to
terminate abnormally. As an alternative, ensure that all of the changes for the table have
been extracted by Oracle GoldenGate before doing the reorganization, or else truncate the
table.

Performing administrative operations
Changing the size of trail files

317Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Changing the size of trail files

You can change the size of trail files with the MEGABYTES option of either the ALTER EXTTRAIL
or ALTER RMTTRAIL command, depending on whether the trail is local or remote. To change
the file size, follow this procedure.

1. Issue one of the following commands, depending on the location of the trail, to view the
path name of the trail you want to alter and the name of the associated Extract group.
Use a wildcard to view all trails.

(Remote trail)

INFO RMTTRAIL *

(Local trail)

INFO EXTTRAIL *

2. Issue one of the following commands, depending on the location of the trail, to change
the file size.

(Remote trail)

ALTER RMTTRAIL <trail name>, EXTRACT <group name>, MEGABYTES <n>

(Local trail)

ALTER EXTTRAIL <trail name>, EXTRACT <group name>, MEGABYTES <n>

3. Issue the following command to cause Extract to switch to the next file in the trail.

SEND EXTRACT <group name>, ROLLOVER

318Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

CHAPTER 21

Undoing data changes with the Reverse utility
.

Overview of the Reverse utility

The Reverse utility uses before images to undo database changes for specified tables,
records, and time periods. It enables you to perform a selective backout, unlike other
methods which require restoring the entire database.

You can use the Reverse utility for the following purposes:

● To restore a test database to its original state before the test run. Because the Reverse
utility only backs out changes, a test database can be restored in a matter of minutes,
much more efficiently than a complete database restore, which can take hours.

● To reverse errors caused by corrupt data or accidental deletions. For example, if an
UPDATE or DELETE command is issued without a WHERE clause, the Reverse utility reverses
the operation.

To use the Reverse utility, you do the following:

● Run Extract to extract the before data.

● Run the Reverse utility to perform the reversal of the transactions.

● Run Replicat to apply the restored data to the target database.

The Reverse utility reverses the forward operations by:

● Reversing the ordering of database operations in an extract file, a series of extract files,
or a trail so that they can be processed in reverse order, guaranteeing that records with
the same key are properly applied.

● Changing delete operations to inserts.

● Changing inserts to deletes.

● Changing update before images to update after images.

● Reversing the begin and end transaction indicators.

Figure 30 Reverse utility architecture

Undoing data changes with the Reverse utility
Reverse utility restrictions

319Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Reverse utility restrictions

● Commit timestamps are not changed during the reverse procedure, which causes the
time sequencing in the trail to be backwards. Because of this, you cannot position
Replicat based on a timestamp.

● Oracle GoldenGate does not store the before images of the following data types, so
these types are not supported by the Reverse utility. A before image is required to
reverse update and delete operations.

Configuring the Reverse utility

You can extract transaction data to either of the following:

● As a batch process, created and started from the command shell, that writes to one
extract file or to a series of extract files. When multiple files are used, Oracle
GoldenGate automatically reverses the file order during reverse processing so that
transaction sequencing is maintained. For example:

File IN000004 gets reversed and written to OUT000001.

File IN000003 gets reversed and written to OUT000002.

File IN000002 gets reversed and written to OUT000003.

... and so forth.

● An online process, created and started through GGSCI, that writes to a standard local
or remote trail. Oracle GoldenGate automatically reverses the file order during reverse
processing so that transaction sequencing is maintained.

To configure the Reverse utility

To configure the Reverse utility, create Extract and Replicat parameter files with the
parameters shown in Table 50 and Table 51. In addition to these parameters, include any
other optional parameters or special MAP statements that are required for your
synchronization configuration.

Table 49 Data types not supported by the Reverse utility

DB2
(all supported OS)

Oracle SQL Server Sybase Teradata

BLOB
CLOB
DBCLOB

CLOB
BLOB
NCLOB
LONG
LONG RAW
XMLType
UDT
Nested Tables
VARRAY

TEXT
IMAGE
NTEXT
VARCHAR (MAX)

VARBINARY
BINARY
TEXT
IMAGE

None supported.
This is because only
the after images of a
row are captured by
the Teradata vendor
access module.

Undoing data changes with the Reverse utility
Configuring the Reverse utility

320Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Table 50 Extract parameter file for the Reverse utility

Parameter Description

{EXTRACT <group> |
SPECIALRUN, TRANLOG}

◆ EXTRACT <group> specifies that this will be an online
Extract process. You will create this process in GGSCI.

◆ SPECIALRUN, TRANLOG specifies that this is a special batch
run and defines the transaction log as the source for
extracting the before data.

BEGIN <time> (SPECIALRUN only) The timestamp in the data source at which
to begin the reverse processing. Processing starts with the
first record that has a timestamp greater than, or equal to,
the time specified with BEGIN.

Note: To specify a begin time for an online process, you will
use the ADD EXTRACT command.

END {<time> | RUNTIME} <time> causes Extract to terminate when it reaches a record
in the data source whose timestamp exceeds the one that is
specified with this parameter.

Valid values:

◆ <date> is a date in the format of yyyy-mm-dd.

◆ <time> is the time in the format of hh:mi[:ss[.cccccc]] based
on a 24-hour clock.

RUNTIME causes Extract to terminate when it reaches a
record in the data source whose timestamp exceeds the
current date and clock time. All unprocessed records with
timestamps up to this point in time are processed. One
advantage of using RUNTIME is that you do not have to alter
the parameter file to change dates and times from run to
run. Instead, you can control the process start time within
your batch programming.

[SOURCEDB <dsn>,]
[USERID <user id> [, PASSWORD <pw>]]

◆ SOURCEDB specifies a data source name, if
required in the connection information.
Not required for Oracle.

◆ USERID specifies database credentials, if
required. For Oracle, you can include a
host string, for example:
USERID ggs@ora1.ora, PASSWORD ggs123

Specifies database connection information. These
parameters also allow for authentication at the operating-
system level. See the Oracle GoldenGate Windows and
UNIX Reference Guide.

NOCOMPRESSDELETES Causes Extract to send all column data to the output,
instead of only the primary key. Enables deletes to be
converted back to inserts.

Undoing data changes with the Reverse utility
Configuring the Reverse utility

321Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Example This example Extract parameter file uses a remote extract file.

SPECIALRUN, TRANLOG

BEGIN 2011-01-09 14:04:55

END 2011-01-09 14:12:20

USERID ggs, PASSWORD ggs

GETUPDATEBEFORES

NOCOMPRESSDELETES

RMTHOST sysb, MGRPORT 8040

RMTFILE /home/ggs/dirdat/input.dat, purge

TABLE tcustmer;

TABLE tcustord;

GETUPDATEBEFORES Directs Oracle GoldenGate to extract before images so that
updates can be rolled back.

RMTHOST <hostname> The name or IP address of the target system.

{EXTFILE <input file>|
RMTFILE <input file>}
[, MAXFILES <n>]

or...

{EXTTRAIL <input trail> |
RMTTRAIL <input trail>}

Can be one of the following to specify the input file(s) to the
Reverse utility.
If using SPECIALRUN for a batch run:

◆ Use EXTFILE to specify an extract file on the local system.

◆ Use RMTFILE to specify an extract file on a remote system.

Specify the relative or full path name of a file, for example:
EXTFILE /home/ggs/dirdat/input.dat

To create a series of files that roll over similar to an Oracle
GoldenGate trail, use the MAXFILES option. This option can be
used to accommodate file-size limits of the operating
system.
If using GGSCI to create an online Extract group:

◆ Use EXTTRAIL to specify an extract trail on the local
system.

◆ Use RMTTRAIL to specify a remote trail on a remote system.

Specify the relative or full path name of a trail, including the
two-character trail name, for example:
EXTTRAIL /home/ggs/dirdat/rt

TABLE <owner.name>; The table or tables that are to be processed, specified with
either multiple TABLE statements or a wildcard. Include any
special selection and mapping criteria.

Table 50 Extract parameter file for the Reverse utility (continued)

Parameter Description

Undoing data changes with the Reverse utility
Configuring the Reverse utility

322Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Example This example Extract parameter file uses a series of remote extract files that roll over as
needed until a maximum of 10 files is on disk.

SPECIALRUN, TRANLOG

BEGIN 2011-01-09 14:04:55

END 2011-01-09 14:12:20

USERID ggs, PASSWORD ggs

GETUPDATEBEFORES

NOCOMPRESSDELETES

RMTHOST sysb, MGRPORT 8040

RMTFILE /home/ggs/dirdat/in, MAXFILES 10

TABLE tcustmer;

TABLE tcustord;

Example This example Extract parameter file uses a remote trail.

EXTRACT ext_1

END 2011-01-09 14:12:20

USERID ggs, PASSWORD ggs

GETUPDATEBEFORES

NOCOMPRESSDELETES

RMTHOST sysb, MGRPORT 8040

RMTTRAIL /home/ggs/dirdat/in

TABLE tcustmer;

TABLE tcustord;

Table 51 Replicat parameter file for the Reverse utility

Parameter Description

{REPLICAT <group> | SPECIALRUN} ◆ REPLICAT <group> specifies that this will be an
online Replicat process to be created in GGSCI.

◆ SPECIALRUN specifies that this is a special batch
run Replicat process.

END {<time> | RUNTIME} <time> causes Replicat to terminate when it reaches
a record in the data source whose timestamp exceeds
the one that is specified with this parameter.

Valid values:

◆ <date> is a date in the format of yyyy-mm-dd.

◆ <time> is the time in the format of hh:mi[:ss[.cccccc]]
based on a 24-hour clock.

RUNTIME causes Replicat to terminate when it
reaches a record in the data source whose timestamp
exceeds the current date and clock time. All
unprocessed records with timestamps up to this
point in time are processed. One advantage of using
RUNTIME is that you do not have to alter the
parameter file to change dates and times from run to
run. Instead, you can control the process start time
within your batch programming.

Undoing data changes with the Reverse utility
Configuring the Reverse utility

323Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

EXTFILE <output file>
[, MAXFILES <n>]

Use only if using SPECIALRUN. Specifies output file(s)
for Reverse utility. Replicat reads from the output
file(s) to apply the before data to the database,
restoring it to the previous state.

This file must be different from the input file that
was specified with EXTFILE or RMTFILE. Use a unique,
relative or fully qualified name, for example:
EXTFILE /home/ggs/dirdat/output.dat

To create a series of files that rolls over similar to an
Oracle GoldenGate trail, use the MAXFILES option.
This option can be used to accommodate file-size
limits of the operating system.

[TARGETDB <dsn>,]
[USERID <user id>
[, PASSWORD <password>]]

◆ TARGETDB specifies a data source name, if required
in the connection information. Not required for
Oracle.

◆ USERID specifies database credentials, if required.
For Oracle, you can include a host string, for
example:
USERID ggs@ora1.ora, PASSWORD ggs123

Specifies database connection information. These
parameters also allow for authentication at the
operating-system level. See the Oracle GoldenGate
Windows and UNIX Reference Guide.

{SOURCEDEFS <full_pathname>} |
ASSUMETARGETDEFS

◆ Use SOURCEDEFS if the source and target tables
have different definitions. Specify the source-
definitions file generated by DEFGEN. See page 115
for more information about DEFGEN.

◆ Use ASSUMETARGETDEFS if the source and target
tables have the same definitions.

Specifies how to interpret data definitions.

MAP <owner.name>,
TARGET <owner.name>;

The table or tables (specified with either multiple
MAP statements or a wildcard) to which to post the
reversed data. When reversing data from the source
database, the source and target TABLE entries are the
same. When reversing replicated data from a target
database, the source and target of each MAP
statement are different.

Table 51 Replicat parameter file for the Reverse utility (continued)

Parameter Description

Undoing data changes with the Reverse utility
Creating online process groups and trails for reverse processing

324Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Example The following is an example Replicat parameter file using SPECIALRUN.

SPECIALRUN

END RUNTIME

EXTFILE /home/ggs/dirdat/output.dat

USERID ggs, PASSWORD ggs

ASSUMETARGETDEFS

MAP tcustmer, TARGET tcustmer;

Example The following is an example Replicat parameter file using an online Replicat group.

REPLICAT rep_1

END RUNTIME

USERID ggs, PASSWORD ggs

ASSUMETARGETDEFS

MAP tcustmer, TARGET tcustmer;

Creating online process groups and trails for reverse processing

To use online process groups to perform the backout procedure, you must create the
following:

● An online Extract group.

● A local or remote trail that is linked to the Extract group. Extract captures the data
from the database, and writes it to this trail, which serves as the input trail for the
Reverse utility.

● An online Replicat group.

● Another local or remote trail that is linked to the Replicat group. This is the output
trail that is written by the Reverse utility. Replicat reads this trail to apply the
reversed data.

To create an online Extract group for reverse processing

ADD EXTRACT <group name>, TRANLOG, BEGIN {NOW | <start point>}

Where:

❍ <group name> is the name of the Extract group. A group name can contain up to eight
characters, and is not case-sensitive.

❍ TRANLOG specifies the transaction log as the data source.

❍ BEGIN specifies a starting timestamp at which to begin processing. Use one of the
following:

◗ NOW to begin extracting changes that are timestamped at the point when the
ADD EXTRACT command is executed to create the group.

◗ <YYYY-MM-DD HH:MM[:SS[.CCCCCC]]> as the format for specifying an exact
timestamp as the begin point.

To create an input trail that is linked to the Extract group

ADD {EXTTRAIL | RMTTRAIL} <pathname>, EXTRACT <group name>

[, MEGABYTES <n>]

Undoing data changes with the Reverse utility
Creating online process groups and trails for reverse processing

325Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Where:

❍ EXTTRAIL specifies a trail on the local system. RMTTRAIL specifies a trail on a remote
system.

❍ <pathname> is the relative or fully qualified name of the input trail, including a two-
character name that can be any two alphanumeric characters, for example
c:\ggs\dirdat\rt. It must be the same name that you specified in the Extract parameter
file.

❍ EXTRACT <group name> specifies the name of the Extract group.

❍ MEGABYTES <n> is an optional argument with which you can set the size, in
megabytes, of each trail file (default is 10).

To create a Replicat group for reverse processing

ADD REPLICAT <group name>, EXTTRAIL <pathname>

[, BEGIN <start point> | , EXTSEQNO <seqno>, EXTRBA <rba>]

[, CHECKPOINTTABLE <owner.table>]

[, NODBCHECKPOINT]

Where:

❍ <group name> is the name of the Replicat group. A group name can contain up to
eight characters, and is not case-sensitive.

❍ EXTTRAIL <pathname> is the relative or fully qualified name of an output trail that you
will be creating for this Replicat with the ADD RMTTRAIL command.

❍ BEGIN <start point> defines an online Replicat group by establishing an initial
checkpoint and start point for processing. Use one of the following:

◗ NOW to begin replicating records that are timestamped at the point when the
ADD REPLICAT command is executed to create the group.

◗ <YYYY-MM-DD HH:MM[:SS[.CCCCCC]]> as the format for specifying an exact
timestamp as the begin point.

❍ EXTSEQNO <seqno> specifies the sequence number of a file in the trail in which to
start processing. EXTRBA <relative byte address> specifies a relative byte address as the
start point within that file. By default, processing begins at the beginning of a trail
unless this option is used. For the sequence number, specify the number, but not
any zeroes used for padding. For example, if a trail file is c:\ggs\dirdat\aa000026, you
would specify EXTSEQNO 26. Contact Oracle Support before using this option. For
more information, go to http://support.oracle.com.

❍ CHECKPOINTTABLE <owner.table> specifies the owner and name of a checkpoint table
other than the default specified in the GLOBALS file. To use this option, you must add
the checkpoint table to the database with the ADD CHECKPOINTTABLE command (see
“Creating a checkpoint table” on page 121).

❍ NODBCHECKPOINT specifies that this Replicat group will not use a checkpoint table.

To create an output trail that is linked to the Replicat group

ADD {EXTTRAIL | RMTTRAIL} <pathname>, REPLICAT <group name>

[, MEGABYTES <n>]

Where:

❍ EXTTRAIL specifies a trail on the local system. RMTTRAIL specifies a trail on a remote
system.

Undoing data changes with the Reverse utility
Running the Reverse utility

326Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

❍ <pathname> is the relative or fully qualified name of the output trail, including a
two-character name that can be any two alphanumeric characters, for example
c:\ggs\dirdat\rt. This must be the trail that was specified with EXTTRAIL in the ADD
REPLICAT command.

❍ REPLICAT <group name> specifies the name of the Replicat group.

❍ MEGABYTES <n> is an optional argument with which you can set the size, in
megabytes, of each trail file (default is 10).

Running the Reverse utility

To perform the reverse processing as a batch job

Follow these steps within the operating system’s command shell. When running the
programs, use the full path name of the Oracle GoldenGate directory.

1. From the command shell, run Extract with the Extract parameter file that you created.
Extract will capture the data that is specified in the Extract parameter file.

/<GoldenGate_directory>/extract paramfile irprm/<Extract_paramfile>.prm

2. When the data extraction is complete, run the Reverse utility by using the fully
qualified path name or by changing directories to the Oracle GoldenGate directory and
running reverse from there.

NOTE Using a full path name or a path relative to the Oracle GoldenGate directory is
especially important on UNIX systems, to prevent confusion with the UNIX reverse
command.

/<GoldenGate_directory>/reverse <input file>, <output file>

Where:

❍ <input file> is the input file specified with EXTFILE or RMTFILE in the Extract parameter
file. Use a wildcard to specify multiple files in a series, for example in*.

❍ <output file> is the output file specified with EXTFILE in the Replicat parameter file.
Use a wildcard to specify multiple files in a series, for example out*.

WARNING On a UNIX system, do not put a space after the file name. Otherwise, the UNIX
file system will not pass file names properly back to Oracle GoldenGate.

Example /home/ggs/reverse input.dat, output.dat

Example /home/ggs/reverse in*, out*

3. When reverse is finished running, run Replicat with the Replicat parameter file that you
created. This applies the reversed-out data to the database.

/<GoldenGate_directory>/replicat paramfile dirprm/<Replicat param
file>.prm

To perform the reverse processing as an online process

1. From GGSCI, run Extract.

START EXTRACT <group>

Undoing data changes with the Reverse utility
Undoing the changes made by the Reverse utility

327Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

2. Issue the following command until “at EOF” is returned, indicating that Extract is
finished capturing the specified records.

SEND EXTRACT <group>, STATUS

3. Run the Reverse utility by using the fully qualified path name or by changing
directories to the Oracle GoldenGate directory and running reverse from there.

NOTE Using a full path name or a path relative to the Oracle GoldenGate directory is
especially important on UNIX systems, to prevent confusion with the UNIX reverse
command.

/<GoldenGate_directory>/reverse <input file>, <output file>

Where:

❍ <input file> is the input file specified with EXTTRAIL or RMTTRAIL in the Extract
parameter file.

❍ <output file> is the output file specified with EXTTRAIL in the ADD REPLICAT command.

Example \home\ggs\reverse input.c:\ggs\dirdat\et, output.c:\ggs\dirdat\rt

4. When reverse is finished running, run Replicat to apply the reversed-out data to the
database.

START REPLICAT <group>

Undoing the changes made by the Reverse utility

If the reverse processing produces unexpected or undesired results, you can reapply the
original changes to the database. To do so, edit the Replicat parameter file and specify the
input file in place of the output file, then run Replicat again.

328Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

APPENDIX 1

Oracle GoldenGate record format
.

This appendix describes the format of Oracle GoldenGate records that are written to a trail
or extract file. Each change record written by Oracle GoldenGate to a trail or extract file
includes a header area (unless the NOHEADERS parameter was specified), a data area, and
possibly a user token area.

Oracle GoldenGate trail files are unstructured. You can view Oracle GoldenGate records
with the Logdump utility provided with the Oracle GoldenGate software. For more
information, see the Logdump documentation in the Windows and UNIX Troubleshooting
and Tuning Guide.

NOTE As enhancements are made to the Oracle GoldenGate software, the trail record
format is subject to changes that may not be reflected in this documentation. To
view the current structure, use the Logdump utility.

Example of an Oracle GoldenGate record

The following illustrates an Oracle GoldenGate record as viewed with Logdump. The first
portion (the list of fields) is the header and the second portion is the data area. The record
looks similar to this on all platforms supported by Oracle GoldenGate.

Oracle GoldenGate record format
Example of an Oracle GoldenGate record

329Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Figure 31 Sample trail record as viewed with the Logdump utility

Oracle GoldenGate record format
Record header area

330Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Record header area

The Oracle GoldenGate record header provides metadata of the data that is contained in
the record and includes the following information.

● The operation type, such as an insert, update, or delete

● The before or after indicator for updates

● Transaction information, such as the transaction group and commit timestamp

Description of header fields

The following describes the fields of the Oracle GoldenGate record header. Some fields
apply only to certain platforms.

Table 52 Oracle GoldenGate record header fields

Field Description

Hdr-Ind Should always be a value of E, indicating that the record was created
by the Extract process. Any other value indicates invalid data.

UndoFlag (NonStop) Conditionally set if Oracle GoldenGate is extracting
aborted transactions from the TMF audit trail. Normally, UndoFlag is
set to zero, but if the record is the backout of a previously successful
operation, then UndoFlag will be set to 1. An undo that is performed by
the disc process because of a constraint violation is not marked as an
undo.

RecLength The length, in bytes, of the record buffer.

IOType The type of operation represented by the record. See Table 53 on page
334 for a list of operation types.

TransInD The place of the record within the current transaction. Values are:

0 — first record in transaction

1 — neither first nor last record in transaction

2 — last record in the transaction

3 — only record in the transaction

SyskeyLen (NonStop) The length of the system key (4 or 8 bytes) if the source is
a NonStop file and has a system key. If a system key exists, the first
Syskeylen bytes of the record are the system key. Otherwise, SyskeyLen
is 0.

AuditRBA The relative byte address of the commit record. All records in a
transaction will have the same commit relative byte address. The
combination of IO Time and AuditRBA uniquely identifies data from a
given transaction.

Oracle GoldenGate record format
Record header area

331Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Continued (Windows and UNIX) Identifies whether or not the record is a
segment of a larger piece of data that is too large to fit within one
record. LOBs, CLOBS, and some VARCHARs are stored in segments.

Y — the record is a segment; indicates to Oracle GoldenGate that this
data continues to another record.

N — there is no continuation of data to another segment; could be the
last in a series or a record that is not a segment of larger data.

Partition This field is for Oracle GoldenGate internal use and may not be
meaningful for any particular database.

For Windows and UNIX records, this field will always be a value of 4
(FieldComp compressed record in internal format). For these platforms,
the term “Partition” does not indicate that the data represents any
particular logical or physical partition within the database structure.

For NonStop records, the value of this field depends on the record
type:

◆ In the case of BulkIO operations, Partition indicates the number of the
source partition on which the bulk operation was performed. It
tells Oracle GoldenGate which source partition the data was
originally written to. Replicat uses the Partition field to determine
the name of the target partition. The file name in the record
header will always be the name of the primary partition. Valid
values for BulkIO records are 0 through 15.

◆ For other non-bulk NonStop operations, the value can be either 0
or 4. A value of 4 indicates that the data is in FieldComp record
format.

BeforeAfter Identifies whether the record is a before (B) or after (A) image of an
update operation. Inserts are always after images, deletes are always
before images.

IO Time The timestamp of the commit record, in local time of the source
system, in GMT format. All records in a transaction will have the
same commit timestamp. The combination of IO Time and AuditRBA
uniquely identifies data from a given transaction.

OrigNode (NonStop) The node number of the system where the data was
extracted. Each system in a NonStop cluster has a unique node
number. Node numbers can range from 0 through 255.

For records other than NonStop in origin, OrigNode is 0.

Table 52 Oracle GoldenGate record header fields (continued)

Field Description

Oracle GoldenGate record format
Record data area

332Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Using header data

Some of the data available in the Oracle GoldenGate record header can be used for
mapping by using the GGHEADER option of the @GETENV function or by using any of the
following transaction elements as the source expression in a COLMAP statement in the TABLE
or MAP parameter.

● GGS_TRANS_TIMESTAMP

● GGS_TRANS_RBA

● GGS_OP_TYPE

● GGS_BEFORE_AFTER_IND

For more information about the @GETENV function, see the Windows and UNIX Reference
Guide.

Record data area

The data area of the Oracle GoldenGate trail record contains the following:

● The time that the change was written to the Oracle GoldenGate file

● The type of database operation

● The length of the record

● The relative byte address within the trail file

● The table name

● The data changes in hex format

The following explains the differences in record image formats used by Oracle GoldenGate
on Windows, UNIX, Linux, and NonStop systems. The terms “full” and “compressed” image
format are used in the descriptions. These terms are used in a different context here than
when they are used in other parts of the documentation in reference to how Extract writes
column data to the trail, meaning whether only the key and changed columns are written
(“compressed”) versus whether all columns are written to the trail (“uncompressed” or “full
image”).

FormatType Identifies whether the data was read from the transaction log or
fetched from the database.

F — fetched from database

R — readable in transaction log

Incomplete This field is obsolete.

AuditPos Identifies the position of the Extract process in the transaction log.

RecCount (Windows and UNIX) Used for LOB data when it must be split into
chunks to be written to the Oracle GoldenGate file. RecCount is used to
reassemble the chunks.

Table 52 Oracle GoldenGate record header fields (continued)

Field Description

Oracle GoldenGate record format
Record data area

333Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Full record image format

Full record image format is only generated in the trail when the source system is HP
NonStop, and only when the IOType specified in the record header is one of the following:

3 — Delete
5 — Insert
10 — Update

Each full record image has the same format as if retrieved from a program reading the
original file or table directly. For SQL tables, datetime fields, nulls, and other data is
written exactly as a program would select it into an application buffer. Although datetime
fields are represented internally as an eight-byte timestamp, their external form can be up
to 26 bytes expressed as a string. Enscribe records are retrieved as they exist in the original
file.

When the operation type is Insert or Update, the image contains the contents of the record
after the operation (the after image). When the operation type is Delete, the image contains
the contents of the record before the operation (the before image).

For records generated from an Enscribe database, full record images are output unless the
original file has the AUDITCOMPRESS attribute set to ON. When AUDITCOMPRESS is ON,
compressed update records are generated whenever the original file receives an update
operation. (A full image can be retrieved by the Extract process by using the FETCHCOMPS
parameter.)

Compressed record format

By default, trail records written by processes on Windows and UNIX systems are always
compressed. The format of a compressed record is as follows:

<column index><column length><column data>[...]

Where:

❍ <column index> is the ordinal index of the column within the source table (2 bytes).

❍ <column length> is the length of the data (2 bytes).

❍ <column data> is the data, including NULL or VARCHAR length indicators.

Enscribe records written from the NonStop platform may be compressed. The format of a
compressed Enscribe record is as follows:

<field offset><field length><field value>[...]

Where:

❍ <field offset> is the offset within the original record of the changed value (2 bytes).

❍ <field length> is the length of the data (2 bytes).

❍ <field data> is the data, including NULL or VARCHAR length indicators.

The first field in a compressed Enscribe record is the primary or system key.

Oracle GoldenGate record format
Tokens area

334Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Tokens area

The trail record also can contain two areas for tokens. One is for internal use and is not
documented here, and the other is the user tokens area. User tokens are environment
values that are captured and stored in the trail record for replication to target columns or
other purposes. If used, these tokens follow the data portion of the record and appear
similar to the following when viewed with Logdump:

Oracle GoldenGate operation types

The following are some of the Oracle GoldenGate operation types. Types may be added as
new functionality is added to Oracle GoldenGate. For a more updated list, use the SHOW
RECTYPE command in the Logdump utility.

TKN-HOST
TKN-GROUP
TKN-BA_IND
TKN-COMMIT_TS
TKN-POS
TKN-RBA
TKN-TABLE
TKN-OPTYPE
TKN-LENGTH
TKN-TRAN_IND

: syshq
: EXTORA
: AFTER
: 2011-01-24 17:08:59.000000
: 3604496
: 4058
: SOURCE.CUSTOMER
: INSERT
: 57
: BEGIN

Table 53 Oracle GoldenGate operation types

Type Description Platform

1-Abort A transaction aborted. NSK TMF

2-Commit A transaction committed. NSK TMF

3-Delete A record/row was deleted. A Delete record usually
contains a full record image. However, if the
COMPRESSDELETES parameter was used, then only key
columns will be present.

All

4-EndRollback A database rollback ended NSK TMF

5-Insert A record/row was inserted. An Insert record contains a
full record image.

All

6-Prepared A networked transaction has been prepared to
commit.

NSK TMF

7-TMF-Shutdown A TMF shutdown occurred. NSK TMF

8-TransBegin No longer used. NSK TMF

9-TransRelease No longer used. NSK TMF

Oracle GoldenGate record format
Oracle GoldenGate operation types

335Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

10-Update A record/row was updated. An Update record contains a
full record image. Note: If the partition indicator in
the record header is 4, then the record is in FieldComp
format (see “15-FieldComp”) and the update is
compressed.

All

11-UpdateComp A record/row in TMF AuditComp format was updated. In
this format, only the changed bytes are present. A 4-
byte descriptor in the format of <2-byte offset><2-byte
length> precedes each data fragment. The byte offset is
the ordinal index of the column within the source
table. The length is the length of the data.

NSK TMF

12-FileAlter An attribute of a database file was altered. NSK

13-FileCreate A database file was created. NSK

14-FilePurge A database file was deleted. NSK

15-FieldComp A row in a SQL table was updated. In this format, only
the changed bytes are present. Before images of
unchanged columns are not logged by the database. A
4-byte descriptor in the format of <2-byte offset><2-byte
length> precedes each data fragment. The byte offset is
the ordinal index of the column within the source
table. The length is the length of the data. A partition
indicator of 4 in the record header indicates FieldComp
format.

All

16-FileRename A file was renamed. NSK

17-AuxPointer Contains information about which AUX trails have
new data and the location at which to read.

NSK TMF

18-NetworkCommit A networked transaction committed. NSK TMF

19-NetworkAbort A networked transaction was aborted. NSK TMF

90-(GGS)SQLCol A column or columns in a SQL table were added, or an
attribute changed.

NSK

100-(GGS)Purgedata All data was removed from the file (PURGEDATA). NSK

101-(GGS)Purge(File) A file was purged. NSK non-TMF

102-(GGS)Create(File) A file was created. The Oracle GoldenGate record
contains the file attributes.

NSK non-TMF

Table 53 Oracle GoldenGate operation types (continued)

Type Description Platform

Oracle GoldenGate record format
Oracle GoldenGate operation types

336Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

103-(GGS)Alter(File) A file was altered. The Oracle GoldenGate record
contains the altered file attributes.

NSK non-TMF

104-(GGS)Rename(File) A file was renamed. The Oracle GoldenGate record
contains the original and new names.

NSK non-TMF

105-(GGS)Setmode A SETMODE operation was performed. The Oracle
GoldenGate record contains the SETMODE information.

NSK non-TMF

106-GGSChangeLabel A CHANGELABEL operation was performed. The Oracle
GoldenGate record contains the CHANGELABEL
information.

NSK non-TMF

107-(GGS)Control A CONTROL operation was performed. The Oracle
GoldenGate record contains the CONTROL information.

NSK non-TMF

115 and 117
(GGS)KeyFieldComp(32)

A primary key was updated. The Oracle GoldenGate
record contains the before image of the key and the
after image of the key and the row. The data is in
FieldComp format (compressed), meaning that before
images of unchanged columns are not logged by the
database.

Windows and
UNIX

116-LargeObject
116-LOB

Identifies a RAW, BLOB, CLOB, or LOB column. Data of this
type is stored across multiple records.

Windows and
UNIX

132-(GGS) SequenceOp Identifies an operation on a sequence. Windows and
UNIX

160 - DDL_Op Identifies a DDL operation Windows and
UNIX

161-
RecordFragment

Identifies part of a large row that must be stored
across multiple records (more than just the base
record).

Windows and
UNIX

200-GGSUnstructured Block
200-BulkIO

A BULKIO operation was performed. The Oracle
GoldenGate record contains the RAW DP2 block.

NSK non-TMF

201 through 204 These are different types of NonStop trace records.
Trace records are used by Oracle GoldenGate support
analysts. The following are descriptions.

NSK non-TMF

◆ ARTYPE_FILECLOSE_GGS 201 — the source application
closed a file that was open for unstructured I/O.
Used by Replicat.

Table 53 Oracle GoldenGate operation types (continued)

Type Description Platform

Oracle GoldenGate record format
Oracle GoldenGate operation types

337Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

◆ ARTYPE_LOGGERTS_GGS 202 — Logger heartbeat
record.

◆ ARTYPE_EXTRACTERTS_GGS 203 — unused.

◆ ARTYPE_COLLECTORTS_GGS 204 — unused.

205-GGSComment Indicates a comment record created by the Logdump
utility. Comment records are created by Logdump at
the beginning and end of data that is saved to a file
with Logdump’s SAVE command.

All

249 through 254 These are different types of NonStop trace records.
Trace records are used by Oracle GoldenGate support
analysts. The following are descriptions.

NSK non-TMF

◆ ARTYPE_LOGGER_ADDED_STATS 249 — a stats record
created by Logger when the source application
closes its open on Logger (if SENDERSTATS is enabled
and stats are written to the logtrail).

◆ ARTYPE_LIBRARY_OPEN 250 — written by BASELIB to
show that the application opened a file.

◆ ARTYPE_LIBRARY_CLOSE 251 — written by BASELIB to
show that the application closed a file.

◆ ARTYPE_LOGGER_ADDED_OPEN 252 — unused.

◆ ARTYPE_LOGGER_ADDED_CLOSE 253 — unused.

◆ ARTYPE_LOGGER_ADDED_INFO 254 — written by Logger
and contains information about the source
application that performed the I/O in the
subsequent record (if SENDERSTATS is enabled and
stats are written to the logtrail). The file name in
the trace record is the object file of the application.
The trace data has the application process name
and the name of the library (if any) that it was
running with.

Table 53 Oracle GoldenGate operation types (continued)

Type Description Platform

Oracle GoldenGate record format
Oracle GoldenGate trail header record

338Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Oracle GoldenGate trail header record

In addition to the transaction-related records that are in the Oracle GoldenGate trail, each
trail file contains a file header.

The file header is stored as a record at the beginning of a trail file preceding the data
records. The information that is stored in the trail header provides enough information
about the records to enable an Oracle GoldenGate process to determine whether the
records are in a format that the current version of Oracle GoldenGate supports.

The trail header fields are stored as tokens, where the token format remains the same
across all versions of Oracle GoldenGate. If a version of Oracle GoldenGate does not
support any given token, that token is ignored. Depracated tokens are assigned a default
value to preserve compatibility with previous versions of Oracle GoldenGate.

You can view the trail header with the FILEHEADER command in the Logdump utility. For
more information about the tokens in the file header, see the Logdump documentation in
the Oracle GoldenGate Windows and UNIX Troubleshooting and Tuning Guide.

339Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Glossary
.

The following explains terminology contained in this manual.

Term Definition

abend Abnormal end. The failure or unexpected termination of a process
running on a computer system.

after image The values of a row in a database after an insert or update is performed.

alias Extract An Extract group that operates on a target system that resides within
a more secure network zone than the source system. The purpose of the
alias Extract is to initiate TCP/IP connections from the target to the
less-trusted source. Once a connection is established, data is processed
and transferred across the network in the usual manner by a passive
Extract group that operates on the source system.

append mode The default method of writing to the trail, whereby Extract appends re-
read data to the trail file after a failure, instead of overwriting the old
data.

Archived Log Only mode
(ALO)

A mode of operation for Extract, where the process is configured to read
exclusively from the archived transaction logs on a production or
standby database system.

batch Replicat
processing mode

In batch mode, Replicat organizes similar SQL statements into arrays
and then applies them at an accelerated rate. Replicat batches the
statements within a memory queue and then applies each batch in one
database operation. The behavior of this mode is controlled by the
BATCHSQL parameter. See also normal Replicat processing mode.

audit trail A file on a NonStop Server system that stores modifications made to a
database for the purpose of replication and recovery.

batch run A one-time processing run that has a distinct beginning and an end, as
opposed to continuous processing that does not have a specific end
point, such as online change synchronization.

before image The values that exist in a row in a database before a SQL operation is
performed on that row.

Glossary
bidirectional synchronization

340Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

bidirectional
synchronization

Permits load distribution across multiple databases and servers where,
in most cases, different users can change the same sets of data and
those changes are synchronized by Oracle GoldenGate.

BLOB See LOB.

Bounded Recovery Part of the Extract recovery system. Bounded Recovery guarantees an
efficient recovery if Extract stops in an unplanned manner and then is
started again, no matter how many open transactions there were at the
time that Extract stopped, nor how old they were. It sets an upper
boundary for the maximum amount of time that it would take for
Extract to recover to the point where it stopped and then resume
normal processing.

caller The Oracle GoldenGate process that executes a user exit routine.

canonical format A data format that Oracle GoldenGate uses to store data in a trail or
extract file. This format allows data to be exchanged rapidly and
accurately among heterogeneous databases.

cascading
synchronization

An Oracle GoldenGate configuration in which data is sent from a source
system to one or more intermediary systems and, from those systems,
to one or more other systems in a synchronized state.

change synchronization The process of synchronizing data changes made to a database on one
system with a similar set of data on one or more other systems.

checkpoint file A file on disk that stores the checkpoint generated by Oracle
GoldenGate processes.

checkpoint table A table created in the target database that maintains Replicat
checkpoints, used optionally in conjunction with a standard checkpoint
file on disk.

checkpoints Internal indicators that record the current read and write position of an
Oracle GoldenGate process. Checkpoints are used by the Extract and
Replicat processes for online change synchronization to ensure data
accuracy and fault tolerance.

CLOB See LOB.

CMDSEC file An Oracle GoldenGate file that stores rules for GGSCI command
permissions.

Collector The process that receives data from the Extract process over TCP/IP
and writes it to a trail or extract file on the target system.

Term Definition

Glossary
collisions

341Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

collisions Errors that occur when data changes that are replicated by Oracle
GoldenGate are applied to a target table, but the target row is either
missing or is a duplicate.

column One among a set of attributes assigned to an entity that is described by
a database table. For example, there can be columns for the name,
address, and phone number of the entity called “employees.”

column map See map.

column-conversion
functions

Built-in Oracle GoldenGate processing functions that perform
comparisons, tests, calculations, and other processing for the purpose
of selecting and manipulating data.

commit A transaction-control statement that ends a transaction and makes
permanent the changes that are performed by the SQL statements
within that transaction.

Commit Sequence
Number

(CSN)

A CSN is an identifier that Oracle GoldenGate constructs to identify a
transaction for the purpose of maintaining transactional consistency
and data integrity. It uniquely identifies a particular point in time in
which a transaction commits to the database. The composition and
value of the CSN varies, depending on the type of database that
generated the transaction. A CSN captures the unique information that
a database uses to identify transactions and represents it internally as
a series of bytes, but Oracle GoldenGate processes the CSN in a
platform-independent manner.

compressed update A method of logging SQL update operations by which only column
values that changed as the result of the update are logged to the
transaction log.

conflict resolution Instructions used in bidirectional synchronization that provide
processing and error-handling rules in the event that the same SQL
operation is applied to the same row in two or more databases at (or
about) the same time.

consolidated
synchronization

The process of replicating different data from two or more databases to
one central database, such as in data warehousing.

conversion See transformation.

data definitions file See source definitions file and target definitions file.

data pump A secondary Extract process that reads from an extract file or trail. The
trail is populated by a primary Extract process that reads from the data
source.

Term Definition

Glossary
data source

342Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

data source The container of the data changes that are to be processed by Oracle
GoldenGate. A data source can be:

◆ the transaction log of a database

◆ a Vendor Access Module

data source name (DSN) A DSN defines an ODBC connection to a database. A DSN consists of a
database name, the database directory, the database ODBC driver
name, database authentication information, and other information
depending on the database. External applications, such as Oracle
GoldenGate, require a DSN, because a DSN enables an application to
connect to a database without having to encode the required
information within the application program.

The three types of DSN are

◆ A system DSN can be used by any entity that has access to the
machine. It is stored within the system configuration.

◆ A user DSN can only be used by a specific user. It is stored within
the system configuration.

◆ A file DSN is stored in a text file with a .dsn extension. It can be
shared among different systems where the required ODBC driver is
installed.

data type An attribute of a piece of data that identifies what kind of data it is and
what kinds of operations can be performed on it. For example, an
integer data type is a number, and a character data type contains
letters.

DDL Data Definition Language. Data that defines the structure of a
database, including rows, columns, tables, indexes, and database
specifics such as file locations, users, privileges, and storage
parameters.

DEFGEN An Oracle GoldenGate utility that generates a data definitions file.

discard file An Oracle GoldenGate file containing information about SQL
operations that failed. This file is created when a record cannot be
processed, but only if the DISCARDFILE parameter exists in the parameter
file to specify the location for the file.

DML Data Manipulation Language. Retrieves and manipulates data in a
database. In the case of SQL, the actions are “select”, “insert”, “update”,
and “delete”.

DSN See data source name (DSN).

dynamic Collector A Collector process that the Manager process starts automatically, as
opposed to a static Collector.

Term Definition

Glossary
EMSCLNT

343Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

EMSCLNT An Oracle GoldenGate utility that distributes Oracle GoldenGate
system error messages that originate on Windows and other supported
operating systems to the EMS (Event Management Subsystem) server
on the NonStop Server.

ENCKEYS file An Oracle GoldenGate lookup file that stores encryption keys.

encryption A method of encoding data into a format that is unreadable to anyone
except those who posses a password or decryption code to decipher it.

error log A file that shows processing events, messages, errors, and warnings
generated by Oracle GoldenGate. Its name is ggserr.log and it is located
in the root Oracle GoldenGate directory.

event marker system A system that customizes Oracle GoldenGate to take a specific action
during processing based on a record that qualifies for filtering criteria.
For example, you can skip the record or stop the Oracle GoldenGate
process when the record is encountered.

See also event record.

event record A record in the transaction log that satisfies specific filter criteria and
is used to trigger a specific action during processing. See also event
marker system.

exceptions map A special MAP parameter used specifically for error handling, which
executes only after an error and sends error data to an exceptions table.

exceptions table A database table to which information about failed SQL operations is
written as the result of an exceptions map. Used for error handling.

Extract The Oracle GoldenGate program that reads data either from a data
source, from source tables, or from a local trail or file. Extract processes
the data for delivery to the target system. A primary Extract reads the
data source or database tables, and a data-pump Extract reads a local
trail that is populated by a primary Extract.

extract file A file written by Oracle GoldenGate where data is stored temporarily
awaiting further processing during a batch run or initial load.

extraction The processing of reading data from database tables or from a data
source in preparation for further processing and/or transmission to a
target database.

fetch A query to the database issued by the Extract process when processing
a record from the transaction log. A fetch is required if the data values
that are needed to complete the SQL operation are not present in the
record.

Term Definition

Glossary
file header

344Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

file header See header.

filtering The use of rules to select and exclude data for extraction or replication.

function A segment of code that can be executed within an application or
routine. See also column-conversion functions.

GGSCI GoldenGate Software Command Interface. The primary interface for
issuing commands that configure, control, and monitor Oracle
GoldenGate.

GLOBALS file A text file in the root Oracle GoldenGate directory that contains
parameters which apply to the Oracle GoldenGate instance as a whole,
as opposed to runtime parameters that are specific to a process such as
Extract or Replicat.

group Also known as process group. A group consists of an Oracle GoldenGate
process (either Extract or Replicat) and the parameter file, the
checkpoint file, and any other files associated with that process.

header A header can be:

◆ A record header: an area at the beginning of a record in an Oracle
GoldenGate trail file that contains information about the
transaction environment for that record.

◆ A file header: an area at the beginning of each file in a trail, or at the
beginning of an extract file. This header contains information about
the file itself, such as the Oracle GoldenGate version.

heterogeneous A data environment where data is being exchanged among different
types of applications, different types of databases, or different
operating systems, or among a combination of those things.

homogeneous A data environment where data is being exchanged among identical
types of applications, databases, and operating systems.

initial load The duplication of source data into a target database to make the two
databases identical.

intermediary system A system on the network that serves as a transfer station between the
source and target systems. This system can be host to additional
processing activities, such as transformation.

key A column or columns in a table that are being used as a unique
identifier for the rows in that table. Oracle GoldenGate uses the key to
find the correct row in the target database and for fetches from the
source database. For Oracle GoldenGate, a key can be the primary key,
a unique key, a substitute key, or all of the columns of a table in the
absence of a defined identifier.

Term Definition

Glossary
KEYCOLS

345Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

KEYCOLS A clause in a TABLE or MAP statement that defines a column or columns
for Oracle GoldenGate to use as a unique identifier to locate any given
row in a table.

KEYGEN An Oracle GoldenGate utility that generates encryption keys.

lag Extract lag is the difference between the time that a record was
processed by Extract and the timestamp of that record in the data
source.

Replicat lag is the difference between the time that the last record in a
trail was processed by Replicat and the timestamp of the record in the
trail.

latency The difference in time between when a change is made to source data
and when that change is reflected in the target data.

LOB Large Object. A data type in a database that represents an
unstructured object that is too large to fit into a character field, such as
a Microsoft Word document or a video or sound file. Subsets of LOB are
CLOB (Character Large Object) and BLOB (Binary Large Object), which
contain character data and binary data, respectively.

log-based extraction A method of extracting data changes from the database transaction log.

logical name A name for a stored procedure that represents an instance of the
execution of the procedure, as opposed to its actual name. For example,
logical names for a procedure named “lookup” might be “lookup1,”
“lookup2,” and so forth.

LUW Linux, UNIX, Windows. An acronym that describes an application that
runs on any of these platforms, such as DB2 LUW.

macro A computer program that automates a task, such as the
implementation of parameters and commands.

Manager The control program for Oracle GoldenGate processing.

map An association between a set of source data and a set of target data. A
map can include data selection and conversion criteria. These maps are
specified in a Replicat MAP parameter.

MAP statement A Replicat parameter that specifies the relationship between a source
table and a target table and the processing rules for those tables.

marker A record that is inserted into the audit trail on a NonStop Server to
identify application-specific events in the context of Extract and
Replicat processing. See also event marker system.

Term Definition

Glossary
normal Replicat processing mode

346Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

normal Replicat
processing mode

The default processing mode for Replicat. In its normal mode, Replicat
accumulates operations from multiple source transactions, in
transaction order, and applies them as a group within one transaction
on the target to improve performance. The GROUPTRANSOPS parameter
controls the number of operations that are in this transaction, but the
boundary can be adjusted automatically by Replicat to ensure that all
operations from the last transaction in the group are included. See also
batch Replicat processing mode and source Replicat processing mode.

object For the purpose of this documentation, the term object refers to any
logical component of a database that is visible to, and can be created by,
its users for the purpose of storing data (for example, tables), defining
ownership and permissions (for example, roles), executing an action on
another object (for example, triggers), and so forth.

object record A file containing attributes of the tables and other database objects that
are configured for processing by Oracle GoldenGate, such as column
IDs and data types.

ODBC Open Database Connectivity. Acronym for a standard interface that
enables applications to connect to different types of databases in a
uniform manner. The goal of ODBC is to make the process of connecting
to a database independent of programming languages, database
systems, and operating systems.

online change
synchronization

An Oracle GoldenGate processing method in which Extract and
Replicat processes run continuously to synchronize data changes
unless they are stopped by an Oracle GoldenGate user. Online
processes maintain checkpoints in the trail.

online Extract An Extract group that is configured for online change synchronization.

online processing See online change synchronization.

online Replicat A Replicat group that is configured for online change synchronization.

operation A single unit of work. This typically refers to a SQL change made to
data or a change made to the structure of an object in the database, but
can also refer to any work done by a computer process.

Term Definition

Glossary
Oracle GoldenGate Director

347Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Oracle GoldenGate
Director

Graphical user interface software that enables Oracle GoldenGate
users to monitor and manage Oracle GoldenGate processes. The
components of Oracle GoldenGate Director are:

Oracle GoldenGate Director Administrator: A utility used by administrators
to define users and instances of Oracle GoldenGate.

Oracle GoldenGate Director Server: A software module that gathers data
about the Oracle GoldenGate processes.

Oracle GoldenGate Director Client: Software installed on a user’s system as
an interface to Oracle GoldenGate Director.

Oracle GoldenGate Director Web: A browser-based user interface to Oracle
GoldenGate Director (requires no software to be installed).

Oracle GoldenGate
Rollback

A utility that uses before images to undo changes made to a database.

overwrite mode A method of writing data to the trail that was used in Oracle
GoldenGate versions prior to version 10.0. In this mode, Extract
overwrites existing data upon recovery, instead of appending it to the
end of the trail file.

owner A logical namespace in a database to which database objects are
assigned as part of the organizational hierarchy. Because the
ownership of database objects is managed differently by different
database types, the term owner is used in this documentation to denote
whichever entity is recognized by the database as the qualifier of an
object name, typically a user or schema name. For example, in a
qualified Oracle table name of scott.emp, the owner is scott.

parameter An input or output value for a computer program, such as the code of
an application like Oracle GoldenGate, a stored procedure, a macro,
script, or other processing instructions.

parameter file A file containing parameters that control the behavior of an Oracle
GoldenGate process. The default location for parameter files is the
dirprm directory in the Oracle GoldenGate installation directory.

pass-through data pump A data pump that is configured with the PASSTHRU parameter to bypass
the need to look up data definitions. This enables faster processing and
enables a pump to be used on an intermediary system that has no
database.

pass-through Extract See pass-through data pump.

Term Definition

Glossary
passive Extract

348Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

passive Extract An Extract process that operates on the source system when an alias
Extract is being used on the target. This Oracle GoldenGate
configuration is required when security rules do not permit TCP/IP
connections to be initiated from the source system (as a typical Extract
would do) because the target is inside a more secure network zone. The
passive Extract is the data pump, when one is being used; otherwise, it
is the primary Extract.

primary Extract An Extract group that reads from the data source or directly from the
database tables. A primary Extract can write to a local trail, which is
then read by a data pump Extract, or it can send the data across TCP/IP
to the target system.

primary key An integrity constraint consisting of a column or columns that uniquely
identify all possible rows that exist in a table, current and future. There
can be only one primary key for a table. A primary key contains an
implicit NOT NULL constraint.

process report A report generated for Extract, Replicat, and Manager that provides
information about the process configuration and runtime statistics and
events. The default location for process reports is the dirrpt directory of
the Oracle GoldenGate installation directory.

record A unit of information in a transaction log or trail that contains
information about a single SQL operation performed on a row in a
database. The term record is also used to describe the information
contained in a specific row of a table.

record header See header.

remote file An extract file on a remote system.

remote trail A trail on a remote system.

Replicat The Oracle GoldenGate process that applies data to target tables or
moves it to another application or destination.

replication The process of recreating source database operations and applying
them to a target database.

report See process report.

report file See process report.

rollback The act of undoing changes to data that were performed by SQL
statement within an uncommitted transaction.

rollover The closing of one file in a sequence of files, such as a trail, and the
opening of a new file in the sequence.

Term Definition

Glossary
routine

349Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

routine A segment of code that is executed within an application such as Oracle
GoldenGate, which calls functions that retrieve and return values and
provide responses. See also user exit.

row Information about a single instance of an entity, such as an employee,
that is stored within a database table. For example, a row stores
information about “John Doe” in relation to the broader collection of
rows that stores information about John and the other employees in a
company. Also commonly known as a record.

source The location of the original data that Oracle GoldenGate will be
extracting, as in source database and source system.

source definitions file A file containing the definitions of the source tables, which is
transferred to the target system. This file is used by the Replicat
process for data conversion when the source and target tables are
dissimilar.

source Replicat
processing mode

In source processing mode, Replicat applies SQL operations within the
same transaction boundaries that were used on the source. See also
normal Replicat processing mode.

special run See batch run.

statement An elementary instruction in a computer programming language, for
example a SQL statement, parameter statement, or command
statement.

static Collector A Collector process that is started manually by an Oracle GoldenGate
user, instead of being started automatically by the Manager process.

stored procedure A group of SQL, PL/SQL, or Java statements that are stored in the
database and called on demand by a process or application to enforce
business rules, supplement application logic, or perform other work as
needed.

substitute key A unique identifier that consists of any columns in a table that can
uniquely identify the rows in that table. A substitute key is not defined
in the definition of a table; it is created by creating a KEYCOLS clause in
a TABLE or MAP statement.

synchronization The process of making or keeping two or more sets of data consistent
with one another. To be consistent, one set might be identical to the
other, or one set might be a reorganized, reformatted, or expanded
version of the other, while retaining the essence of the information
itself.

Term Definition

Glossary
table

350Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

table A logical unit of storage in a database that consists of rows and
columns, which together identify the instances of a particular entity
(for example, “employees”) and the attributes of that entity, such as
name, address, and so forth.

TABLE statement An Extract parameter that specifies a source table or tables whose data
is to be extracted from the database.

TAM (Teradata Access
Module)

An interface between the Change Data Capture (CDC) component of a
Teradata database and the Extract process. It allows Oracle
GoldenGate to communicate with the Teradata replication
components.

target The destination for the data that is processed by Oracle GoldenGate, as
in target database and target system.

target definitions file A file containing the definitions of the target tables. This file is
transferred to the source system and is used by the Extract process for
data conversion when the source and target tables are dissimilar.

task A special type of batch run in which the Extract process communicates
directly with the Replicat process over TCP/IP instead of using a
Collector process or trail.

token A user-defined piece of information that is stored in the header portion
of a record in the Oracle GoldenGate trail file. Token data can be used
to customize the way that Oracle GoldenGate delivers information.

trace table A special table created for use by Oracle GoldenGate in an Oracle
database. The table is used in conjunction with parameter settings to
prevent replicated data from being sent back to the source in a
bidirectional synchronization configuration.

trail A series of files on disk where Oracle GoldenGate stores data
temporarily in preparation for further processing. Oracle GoldenGate
records checkpoints in the trail for online change synchronization.

transaction A group of one or more SQL operations (or statements) that are
executed as a logical unit of work within a set of beginning and ending
transaction-control statements. As a unit, all of the SQL statements in
a transaction must execute successfully, or none of the statements can
execute. A transaction is part of a system of database measures that
enforce data and structural integrity.

transaction log A set of files that records all of the SQL change operations performed
on a database for the purpose of data recovery or replication.

Term Definition

Glossary
transformation

351Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

transformation Also called conversion. The process of manipulating source data to the
format required by target tables or applications, for example converting
dates or performing arithmetic calculations. You can do transformation
by means of the Oracle GoldenGate column-conversion functions.

unidirectional
synchronization

A configuration where data changes are replicated in one direction,
source-to-target. Changes cannot be made to that same data and then
sent back to the source, as is the case in a bidirectional configuration.

unique key An integrity constraint consisting of a column or columns that uniquely
identify all possible rows that exist in a table, current and future.
Differs from a primary key in that it does not have an implicit NOT NULL
constraint. There can be more than one unique key on a table.

Unit of Work A set of data operations that are executed as a logical unit in a
database, where all must succeed or none can succeed. In IBM
terminology, the term unit of work is the equivalent of the term
transaction in other types of databases.

user exit A user-created program written in C programming code that is called
during Oracle GoldenGate processing to perform custom processing
such as to convert data, to respond to database events, and to repair
invalid data.

VAM (Vendor Access
Module)

An API interface that is used by an Oracle GoldenGate process module
to communicate with certain kinds of databases.

VAM trail A series of files, similar to a transaction log, that are created
automatically and aged as needed. Data operations from concurrent
transactions are recorded in time sequence, as they occur, but not
necessarily in transaction order. Used to support the Teradata
maximum protection commit protocol.

wildcard A placeholder for an unknown or unspecified character or set of
characters. A wildcard is a means of specifying multiple names in a
parameter or command statement. Oracle GoldenGate supports the
asterisk (*) wildcard, which represents any number of unknown
characters.

Term Definition

352Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

Index
.

Symbols

_ddl_cause_error parameter 179

@ABSENT 243

@CASE function 257

@COLSTAT function 256

@COLTEST function 256, 257

@COMPUTE function 241, 255

@DATENOW function 112

@EVAL function 258

@GETENV function 113, 252, 259

@IF function 257

@NULL function 244

@NUMBIN function 256

@PRESENT 243

@STR* functions 256

@TOKEN function 259

@VALONEOF function 257

* wildcard character 33

A

ABEND option

REPERROR 111

TCP errors 108, 114

ABEND option, REPERROR 174, 207

action, triggering during processing 278

active-active configuration, creating 79

ADD EXTRACT command 123, 124, 324

ADD EXTTRAIL command 126, 324, 325

ADD REPLICAT command 129, 325

ADD RMTTRAIL command 126, 324, 325

adding

checkpoint table 121

Extract group 123, 124, 305, 324

objects to extraction 312

parameters 32

Replicat group 129, 309, 325

trail 126

see also creating

ADDTRANDATA option, DDLOPTIONS 170

alias Extract 106

ALL option, DDL 154, 165, 176, 193, 202, 208

ALLOWNESTED command, GGSCI 27

alphanumeric columns, mapping 250

ALTER EXTTRAIL command 317

ALTER RMTTRAIL command 317

append recovery mode 15

architecture, Oracle GoldenGate 11

archive logs, purging 316

arithmetic operations

during transformation 255

in user exits 275

in WHERE clause 242

with before values 244

ASSUMETARGETDEFS parameter 246

asterisk wildcard character 33

AUTOSTART parameters 133

B

balances, calculating 94, 244

base object, mapping 159, 196

batch processing

about 18

configuring 135

batch scripts 27

before values, using 93, 243, 318

BEGIN argument, ADD EXTRACT 124, 129, 325

Index
C

353Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

BEGIN macro keyword 270

BEGIN parameter 136, 138

bidirectional configuration, creating 79

binary data in character columns 251

Blowfish encryption 100, 107

BOOTDELAYMINUTES parameter 25

bulk data load 232

BULKLOAD parameter 234

C

calculations, arithmetic 244

callback routines in user exits 276

canonical format, of trail data 15

cascading synchronization, configuring 46

case sensitivity

CMDSEC name 104

ENCKEYS name 103

group name 123, 129

in column mapping 250

in macro statements 271

in parameter declaration 34

token name 258

C-code macros, using 275

centralized reporting 59

changing

data structure 253

database objects 312

macro character 270

Oracle GoldenGate process configuration 304

parameters 32

TCP/IP error handling 113

text editor 30

trail files, size of 317

character, macro 270

characters

binary, processing as 251

comparing 243

manipulating 255

native encoded 260

nonprintable, replacing 251

Unicode 260

CHECKPARAMS parameter 32

checkpoint table

specifying to Extract 83

using 121

checkpoints

about 16

initial, creating 124, 129, 325

CHECKPOINTTABLE option, ADD REPLICAT 130, 325

circular replication 82

cluster, running Manager on 24

CMDSEC file 104

CMDTRACE parameter 275

Collector, about 17

COLMAP option, TABLE or MAP 245, 248, 262

COLMATCH parameter 248

COLS and COLSEXCEPT options, TABLE 244

COLSTAT function 256

COLTEST function 256, 257

column-conversion functions 239, 245

columns

adding to table 312

availability, ensuring 243

fetching for filters 243, 268

mapping 245, 272

null or missing 256

selecting and excluding 244

testing and transforming 243, 253

Unicode 260

commands

authorization for 104

automating 27

database 262

GGSCI 26

comments in

DDL statement 145

parameter file 30, 31

Replicat DDL statement 168

Commite Sequence Number (CSN), about 19

comparing

before and after values 243

column values 243

COMPUTE function 241, 255

Index
D

354Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

configuring

active-active (bi-directional) 79

change data synchronization 120, 135

data distribution (one to many) 53

data warehousing (many to one) 59

initial data load 214

live standby 65

Manager 23

reporting, cascading 46

reporting, standard 37

reporting, with data pump on intermediary system 42

reporting, with source data pump 39

security

data 100, 101

GGSCI commands 104

password 100

source definitions 117

conflict resolution 91

connections, network, see network

consolidated synchronization, planning for 59

continuous change synchronization 120

controlling Oracle GoldenGate 26, 28, 275

conversion functions, Oracle GoldenGate 239, 257

converting data 238

copy utility, for initial load 217

CREATE TABLE AS SELECT, replicating 161, 198

creating

encryption keys 102

initial checkpoint 124, 129, 325

parameter files 30

source-definitions file 115

trail 125

user exits 276

see also adding

CSN, for supported databases 19

c-tree, supported processing methods 11

CUSEREXIT parameter 276

custom programming, using 262

D

data

encrypting 99

extracting, see extracting data

filtering 239

loading 214

mapping and manipulating 238, 262, 275

replicating, see replicating data

storing 13

synchronizing 135

data distribution configuration, creating 53

data looping, preventing 82

data pump

adding 124, 307

multi-target configuration 53

overview of 13

pass-through mode 13

data source, description 12

data types

converting 253

mapping 250

data warehousing configuration, creating 59

database

attributes, changing 312

command, executing from Oracle GoldenGate 262

password, encrypting 100

procedures and queries, using 262

types supported 11

data-definitions file, creating 117

dates

mapping 251

transforming 254

DB2

bidirectional synchronization 83

bootstrap data set, specifying 123

supported processing methods 11

DB2 for i, supported processing methods 11

DBOP option, SQLEXEC 269

DDL replication

Oracle 141

Teradata 185

ddl_cause_error parameter 179

Index
E

355Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

ddl_fire_error_in_trigger parameter 179

ddl_tracelevel script 184

DDLERROR parameter 174, 206

DDLSUBST parameter 163, 200

DECRYPTTRAIL parameter 100

DEFAULT option

ENCRYPTKEY 101

REPERROR 110

DEFAULTUSERPASSWORD option, DDLOPTIONS 171

DEFERAPPLYINTERVAL parameter 131

DEFGEN 115

definitions template, using 116

definitions, generating 115

DEFSFILE parameter 117

delaying

Manager processing 25

Replicat transactions 131

DELETE EXTRACT command 311, 315

deletes, converting

to inserts during reverse processing 318

to inserts or updates 245

derived objects, in DDL replication 159, 196

DES 100

DESC option, ADD EXTRACT 124, 125

direct bulk load to SQL*Loader 232

direct load, Oracle GoldenGate 228

discard file 298

DISCARD option

EVENTACTIONS 279

REPERROR 111

DISCARD option, REPERROR 174, 207

DISCARDFILE parameter 299

DISCARDROLLOVER parameter 299

DSOPTIONS parameter 128

DUMPDDL command 183

dynamic Collector 17

DYNAMICPORTLIST parameter 24, 228, 232

DYNAMICPORTREASSIGNDELAY parameter 24

E

EDIT PARAMS command 30

editing

CMDSEC file 104

ENCKEYS file 103

parameter file 32

see also changing

editor, changing 30

EMSCLNT 301

ENCKEYS file 103

ENCRYPT option, RMTHOST 102

ENCRYPT PASSWORD command 101

encrypting

data 99

password 100

ENCRYPTKEY option, ENCRYPT PASSWORD 101

ENCRYPTTRAIL parameter 100

END macro keyword 270

END parameter

Extract 136

Replicat 138

environment

information, capturing 258

variables in parameter file 34

ER commands 133

ERCALLBACK function 276

ERROR option, SQLEXEC 268

errors

during

bidirectional synchronization 91

stored procedures 267

handling 110

process 295

response options 110

SQL 298

TCP/IP 113

event marker system 278

event record 278

Event Viewer, Oracle GoldenGate messages in 300

EVENTACTIONS option, TABLE and MAP 278

events

handling 110

monitoring 289

triggering during processing 278

Index
F

356Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

EXCEPTION option, REPERROR 111

exceptions handling, configuringt 111

exceptions table, using 92

EXCEPTIONSONLY in MAP statement 111

EXCLUDE option

DDL 154, 164, 175, 193, 201, 208

DDLSUBST 164, 201

EXCLUDETRANS option, TRANLOGOPTIONS 84

EXCLUDEUSER option, TRANLOGOPTIONS 84

EXCLUDEUSERID option, TRANLOGOPTIONS 84

excluding

columns 244

objects from DDL replication 154, 164, 175, 193, 201, 208

Replicat transactions 82

rows 239

exclusion clause for DDL 154, 164, 175, 193, 201, 208

exit routines, using 275

EXTFILE parameter 137, 138

EXTFILESOURCE option, SPECIALRUN 136

Extract

about 12

alias 106, 107

batch configuration 135

data pump, using 13

errors, handling 110

group, adding

to active configuration 305

to new configuration 123

passive 106

running

from command shell 139

from GGSCI 132

EXTRACT argument, ADD RMTTRAIL, ADD EXTTRAIL 126, 325

extract file, about 16

EXTRACT parameter 127

extract trail, see trail

extracting data

about 12

for change synchronization 135

for initial load 214

from trail 13

EXTRBA option, ADD REPLICAT 130

EXTSEQNO option, ADD REPLICAT 130, 325

EXTTRAIL option, ADD REPLICAT 129, 325

EXTTRAILSOURCE option

ADD EXTRACT 124

SPECIALRUN 136

F

failover configuration, creating 65

FastLoad, Teradata 236

FETCHBEFOREFILTER option, TABLE 243

FETCHCOLS options, TABLE 93, 243, 268

fetching column values for filters 243, 268

FieldComp record 335

field-conversion functions 238

fields, comparing 243

file

CMDSEC 104

data definitions 115

discard 298

ENCKEYS 103

extract 16

ggserr.log 294

GLOBALS 28

header and version 15

parameter 28

trail, about 14

usrdecs.h 276

FILTER clause, TABLE or MAP 239, 262

filtering

data 239

DDL operations 151, 191

DML operation types 245

FILTERTABLE option, TRANLOGOPTIONS 83

functions

column-conversion 238

user exit 276

G

GENLOADSFILE parameter 225

GETAPPLOPS parameter 83

GETDELETES parameter 245

GETINSERTS parameter 245

GETREPLICATES parameter 83, 168

Index
H

357Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

GETTRUNCATES parameter 143

GETUPDATEBEFORES parameter 93, 244, 252

GETUPDATES parameter 245

GGFILEHEADER option, @GETENV 16

GGHEADER option, GETENV 252

ggmessage.dat file 114

GGS_BEFORE_AFTER_IND column 332

ggs_ddl_trace log 184

GGS_OP_TYPE column 332

GGS_TRACE table 85

GGS_TRANS_RBA column 332

GGSCI

security 104

using 26

global column mapping 248

global parameters 29

GLOBALS file

creating 28

using with checkpoint table 122

groups

about 18

adding 123, 304

removing 133

H

HANDLECOLLISIONS parameter 215

header, file 15

header, record

description 330

overview 15

user token area 258

HELP command 8

high availability, planning for 65, 79

hot backup, for initial load 217

I

ID option, SQLEXEC 264

IDEA 100

IF function 257

IGNORE DELETE option, FILTER clause 240

IGNORE INSERT option, FILTER clause 240

IGNORE option

EVENTACTIONS 279

REPERROR 111

SQLEXEC with ERROR 268

IGNORE option, REPERROR 175, 207

IGNORE UPDATE option, FILTER clause 240

IGNOREAPPLOPS parameter 83, 168

IGNOREDELETES parameter 245

IGNOREINSERTS parameter 245

IGNOREREPLICATES parameter 83, 168

IGNOREUPDATES parameter 245

INCLUDE option

DDL 154, 164, 175, 193, 201, 208

DDLSUBST 164, 201

INCLUDE parameter 274

inclusion clause for DDL 154, 164, 175, 193, 201, 208

INFO commands 289

initial data load

about 214

from file to database utility 223

from file to Replicat 218

using database utility 217

using direct bulk-load to SQL*Loader 232

using Oracle GoldenGate direct load 228

using Teradata load utilities 236

initializing transaction logs 311

INSERTALLRECORDS parameter 113, 252

INSERTDELETES parameter 245

inserts

creating from deletes or updates 245

into exceptions table 113

reversing to deletes 318

INSERTUPDATES parameter 245

INSTR option, DDL 156, 166, 177, 195, 203, 210

INSTRCOMMENTS option, DDL 156, 166, 177

INSTRCOMMENTSWORDS option, DDL 157, 167, 178

INSTRWORDS option, DDL 157, 167, 178, 195, 203, 210

J

jobs, batch 135

Index
K

358Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

K

key

database-generated values in 67, 81

encryption 102

primary, in conflict resolution 81

KEYCOLS option, TABLE or MAP 215

KeyFieldComp record 336

KEYGEN 102

L

lag

estimating to determine number of parallel groups 120

monitoring 291

using heartbeat table to analyze 286

LAG command 289

LAGCRITICAL parameters 291

LAGINFO parameters 291

LAGREPORT parameters 291

large objects, limitations on 238

latency

monitoring 291

viewing 289

library, macro 273

live reporting, configuring 35

live standby configuration, creating 65

loading data

from file to database utility 223

from file to Replicat 218

using database utility 217

using direct bulk load to SQL*Loader 232

using Oracle GoldenGate direct load 228

local trail, see trail

log

error 294

process 295

LOGEND option, SEND EXTRACT 312

login

Extract, specifying 127

Replicat, specifying 131

security 100, 104

looping, preventing 82

M

MACRO parameter 270

MACROCHAR parameter 270

macros

creating 270

excluding from report file 274

invoking from other macros 273

libraries 273

naming 270

running 271

tracing expansion 275

with parameters 272

Manager

about 17

autostart options 133

configuring and running 23

instances, number of 23

lag parameters 291

startup delay 25

statistics, viewing 290

MAP parameter 238, 239

MAPDERIVED option, DDLOPTIONS 161, 199

MAPEXCEPTION in MAP statement 111

MAPPED DDL scope 148, 189

MAPPED option, DDL 154, 165, 176, 193, 202, 208

mapping

columns 245

data types 250

derived objects in DDL 159, 196

rows 239

user tokens 258

with macros 272

MAPSESSIONSCHEMA option, DDLOPTIONS 151

MAXVARCHARLEN option, SQLEXEC 268

MEGABYTES option, ADD RMTTRAIL, ADD EXTTRAIL 126, 325,
326

messages, viewing 294

MGRPORT option, ADD EXTRACT 124

Microsoft SQL Server, see SQL Server

monitoring events and errors 289

MultiLoad, Teradata 236

MySQL, supported processing methods 11

Index
N

359Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

N

native encoding 260

network

data encryption 101

instability 13

trusted zone configuration 106

NOCROSSRENAME option, DDLOPTIONS 170, 204

NODBCHECKPOINT option, ADD REPLICAT 130, 325

NOENCRYPTTRAIL parameter 100

NOLIST parameter 274

NOMAPDERIVED option, DDLOPTIONS 161, 199

nonprintable characters, replacing 251

NonStop, sending messages to 301

NOPARAMS option, SQLEXEC 264

NOPASSTHRU parameter 129, 137

NORENAME option, TABLEEXCLUDE 171, 204

NOREPORT option, DDLOPTIONS 179, 211

NOSPACESTONULL parameter 251

NOTRIMSPACES option, TABLE and MAP 251

NULL function 244

null values, testing for 244, 256

numbers

comparing 243

invalid, replacing 251

mapping and transforming 250, 255

NUMBIN function 256

NUMSTR function 256

O

OBEY

command 27

parameter 29, 33

OBJNAME option, DDL 155, 165, 176, 194, 202, 209

OBJTYPE option, DDL 155, 165, 176, 194, 202, 209

ODBC database, supported processing methods 11

ON DELETE option, FILTER clause 240

ON INSERT option, FILTER clause 240

ON UPDATE option, FILTER clause 240

online help, getting 8

online processing

about 18

changing 303

configuring 120

operations, SQL

history of 252

selecting and converting 245

statistics, viewing 289, 292

see also transactions

OPTYPE option, DDL 155, 165, 176, 193, 202, 209

Oracle

DDL support 141

passwords, encrypting 100

SQL*Loader initial load 223, 232

supported processing methods 11

Oracle GoldenGate

controlling 133

conversion functions 239, 257

messages file 114

overview and supported databases 10

record format 328

user interfaces 26

ORACLE_SID, changing 316

OTHER option, DDL 154, 165, 176, 193, 202, 208

OTHER scope, DDL 150, 191

overwrite recovery mode 15

Index
P

360Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

P

parameter file

change synchronization

batch extraction 136

batch replication 138

online extraction 127

online replication 130

creating and managing 28

DEFGEN 117

GLOBALS 28

initial load

bulk load 223, 225

direct bulk load 233, 234

direct load 229, 230

Replicat load 219, 220

Manager 23

Reverse utility 320

parameters

in

macros 272

SQL procedures and queries 264

retrieving from another file 33

substitution at runtime 34

using 28

verifying syntax 32

PARAMS option

ADD EXTRACT 32, 124

ADD REPLICAT 32, 130

MACRO 270

SQLEXEC 264

VAM 128

passive Extract 106

PASSIVE option, ADD EXTRACT 107, 124

pass-through data pump 13

PASSTHRU parameter 129, 137

password

DEFGEN 117

encrypting 100

Extract 127

Manager 24

Replicat 131

patches, application 303

peer-to-peer configuration, creating 79

port number

dynamic list 24

Manager 23

PORT option, ADD EXTRACT 125

PORT parameter 23

procedures, see stored procedures

processes, Oracle GoldenGate

configurations 18

monitoring and statistics 110, 289

parallel 14, 304

Q

queries, executing through Oracle GoldenGate 262

QUERY clause, SQLEXEC 264

R

RAISEERROR option, FILTER 240

rate, processing 293

record, trail

about 15

formats 328

recovery modes, about 15

redo threads

changing 315

specifying 124

remote trail, see trail

REMOVECOMMENTS option, DDLOPTIONS 170

REPERROR parameter 110

REPLACEBADCHAR parameter 251

REPLACEBADNUM parameter 251

Replicat

about 14

batch configuration 137

errors, handling 110

group, adding 129, 309

running

from command shell 139

from GGSCI 132

transaction name 84

transaction, delaying 131

REPLICAT parameter 130

Index
S

361Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

replicating data

about 14

bidirectionally 82

for change synchronization 120, 135

for initial load 214

replicating DDL 141, 185

REPORT option

ADD EXTRACT 124

ADD REPLICAT 130

SEND commands 297

REPORT parameter 297

report, process

excluding macros 274

using 295

REPORTFILE option, ADD/SEND commands 296

reporting

CSN 20

errors during SQLEXEC processing 268

Extract processing 124

parameter file test 32

process events and errors 294, 295

Replicat processing 130

reporting configuration, creating 35

REPORTROLLOVER parameter 298

RESET option, REPERROR 111

RESTARTSKIP option, DDL 174, 206

Reverse utility 318

RMTFILE parameter 137

RMTHOST option, ADD EXTRACT 108, 124

RMTHOSTOPTIONS parameter 107

RMTNAME option, ADD EXTRACT 125

RMTTRAIL parameter 128

rows

before values, comparing 243

inserting all 252

partitioning among processes in initial load 215

selecting and excluding 239

S

schemas, changing 312

scopes, DDL 147, 189

scripts, batch and shell 27

secondary Extract process 13

security

data and passwords 99

GGSCI commands 104

sensitive data, excluding 244

selecting

columns 244

operations 245

rows 239

with stored procedures and queries 262

SEND commands 290

sensitive data, excluding 244

sequence numbering, trails 15

SERVLOG 302

SET EDITOR command 30

shell scripts, starting from 27

source database

attributes, changing 312

synchronizing

with another source database 79

with central target 13

with multiple targets 13

transaction history 245

source system

trails on 13

trusted, in conflict resolution 94

source tables

active during initial load 214

data definitions, creating 115

SOURCEDB parameter 268

source-definitions file, creating 115

SOURCEDEFS parameter 118

SOURCEISTABLE parameter 219, 223, 228, 232

spaces

converting to NULL 251

trimming 251

SPACESTONULL parameter 251

special runs 18

SPECIALRUN option, ADD REPLICAT 229, 234

Index
T

362Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

SPECIALRUN parameter

batch extraction 136

batch replication 138

Replicat load 220

Reverse utility 320, 322

SQL Server

active-active support 79

bidirectional synchronization 84

bulk initial load 223

supported processing methods 11

SQL/MX, supported processing methods 11

SQLEXEC parameter 263

static Collector 17

statistics

operations processed 289

runtime 294

viewing for processes 110, 289

STATS command 289

STATUS command 289

stored procedures, using 262

STR* functions 256

strings

comparing and converting 255

substituting in DDL statement 163, 200

substitution of parameter values 34

supplemental logging, changing attributes 313

Sybase, supported processing methods 11

synchronizing

data changes 135

DDL 141, 185

initial load 214

syntax, verifying in parameter file 32

SYSLOG parameter 300

syslogs, Oracle GoldenGate messages in 300

system maintenance, performing 312

T

table

checkpoint

creating 121

specifying to Extract 83

exceptions 113

TABLE parameter 238, 239, 246

tables

adding to source database 312

DB2, reorganizing 316

dropping and recreating 315

mapping dissimilar 238

synchronizing changes 120, 135

see also source tables and target tables

target systems

connections, initiating from 106

number of 53

target tables

inserting all records 252

populating 214

undoing changes 318

using before values 243

see also tables

TARGETDB parameter 268

target-definitions file, creating 116

task, about 18

TCP/IP

data encryption 101

error handling 113

planning for unstable network 13

use of 17

TCPSOURCETIMER parameter 301

template, definitions 116

Teradata

datetime columns, mapping 251

DDL support 185

load utility, using 236

supported processing methods 11

testing

column status 257

data 242, 257

for null values 244

for presence of a column 243

text editor, changing 30

THREADS option, ADD EXTRACT 124

threads, changing number of 315

throughput, data to target 292

Index
U

363Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

timestamps

adjusting to match other systems 301

in conflict resolution 94

mapping 251

TimesTen, supported processing methods 11

TOKENS option, TABLE 258

tokens, user 258

trace table, creating 85

trail

about 14

creating 125

encrypting 100

file size, changing 317

format 15

format and properties, returning 16

record format 328

tokens, user 258

version of 16

TRANLOG option

ADD EXTRACT 123

SPECIALRUN 136

TRANSABORT option, REPERROR 111

transaction log

as data source 123

intitializing 311

transactions

history of 245, 252

identifying from source 19

preventing extraction of 82

Replicat, identifying and ignoring 82

skipping in trail 132

transforming data

in stages 13

with Oracle GoldenGate conversion functions 253

with user exits 275

TRIMSPACES option, TABLE and MAP 251

troubleshooting, see problem-solving

TRUNCATEs, and DDL replication 143

U

Unicode columns and strings 260

UNMAPPED DDL scope 150, 191

UNMAPPED option, DDL 154, 165, 176, 193, 202, 208

UpdateComp record 335

UPDATEDELETES parameter 245

UPDATEMETADATA option, DDLOPTIONS 169

updates

compressed 243

converting to inserts 245

creating from deletes 245

missing values, fetching 243, 268

reversing to previous state 318

simultaneous 91

USEDATEPREFIX parameter 251

USEDEFAULTS option, TABLE or MAP 247

user

access to commands, controlling 104

interfaces to Oracle GoldenGate 26

user exits, using 275

USETIMEPREFIX parameter 251

USETIMESTAMPPREFIX parameter 251

usrdecs.h file 276

utilities

DEFGEN 117

KEYGEN 102

V

VALONEOF function 257

values

comparing before and after 243

converting in columns 255

invalid, null, missing 256

making available for filters 243

null, testing for 244

VAM option, ADD EXTRACT 123

VAM parameter 128

VAMTRAILSOURCE option, ADD EXTRACT 124

verifying parameter files 32

version, of trail or extract file 16

VIEW GGSEVT command 295

VIEW PARAMS command 32

Index
W

364Oracle GoldenGate Windows and UNIX Administrator’s Guide

. .

viewing

command permissions 104

encryption file 103

errors and statistics 110, 289

macro expansion 275

parameters 32

volume statistics, getting 292

W

warnings

as event action during processing 286

for missing columns during filtering 243

viewing 294

WARNRATE parameter 298

WHERE clause

for record selection 242

to specify event record 278

WILDCARDRESOLVE parameter 313

wildcards

in command security file 104

in commands 26

when adding tables 312

	Contents
	About the Oracle GoldenGate guides
	Typographic conventions used in this manual
	Getting more help with Oracle GoldenGate
	Getting help with the Oracle GoldenGate interface
	Getting help with questions and problems

	Introduction to Oracle GoldenGate
	Oracle GoldenGate supported processing methods and databases
	Overview of the Oracle GoldenGate architecture
	Overview of Extract
	Overview of data pumps
	Overview of Replicat
	Overview of trails
	Overview of extract files
	Overview of checkpoints
	Overview of Manager
	Overview of Collector

	Overview of processing methods
	Overview of groups
	Overview of the Commit Sequence Number (CSN)

	Configuring the Manager process
	Overview of the Manager process
	Configuring Manager
	Recommended parameters
	Starting Manager
	Stopping Manager

	Getting started with Oracle GoldenGate
	Running the user interfaces
	Using the GGSCI command-line interface
	Using UNIX batch and shell scripts

	Using Oracle GoldenGate parameter files
	Overview of the GLOBALS file
	Overview of runtime parameters
	Creating a parameter file
	Storing parameter files
	Verifying a parameter file
	Viewing a parameter file
	Changing a parameter file
	Simplifying the creation of parameter files
	Getting information about Oracle GoldenGate parameters

	Using Oracle GoldenGate for live reporting
	Overview of the reporting configuration
	Reporting topologies

	Considerations when choosing a reporting configuration
	Creating a standard reporting configuration
	Source system
	Target system

	Creating a reporting configuration with a data pump on the source system
	Source system
	Target system

	Creating a reporting configuration with a data pump on an intermediary system
	Source system
	Intermediary system
	Target system

	Creating a cascading reporting configuration
	Source system
	Second system in the cascade
	Third system in the cascade

	Using Oracle GoldenGate for real-time data distribution
	Overview of the data-distribution configuration
	Considerations for a data-distribution configuration
	Creating a data distribution configuration
	Source system
	Target systems

	Configuring Oracle GoldenGate for real-time data warehousing
	Overview of the data-warehousing configuration
	Considerations for a data warehousing configuration
	Creating a data warehousing configuration
	Source systems
	Target system

	Using Oracle GoldenGate to maintain a live standby database
	Overview of a live standby configuration
	Considerations for a live standby configuration
	Creating a live standby configuration
	Prerequisites on both systems
	Configuration from active source to standby
	Configuration from standby to active source

	Moving user activity in a planned switchover
	Moving user activity to the live standby
	Moving user activity back to the primary system

	Moving user activity in an unplanned failover
	Moving user activity to the live standby
	Moving user activity back to the primary system

	Using Oracle GoldenGate for active-active high availability
	Overview of an active-active configuration
	Considerations for an active-active configuration
	Preventing data looping
	Preventing the capture of Replicat operations
	Identifying Replicat transactions

	Creating an active-active configuration
	Prerequisites on both systems
	Configuration from primary system to secondary system
	Configuration from secondary system to primary system

	Managing conflicts
	Minimizing the potential for conflict
	Resolving conflicts through Oracle GoldenGate
	Guidelines for writing successful routines
	Methods for resolving conflict
	Handling resolution notification

	Conflict detection and resolution examples
	Conflict resolution based on timestamp
	Conflict-resolution based on net change values

	Configuring Oracle GoldenGate security
	Overview of security options
	Using encryption
	How data is encrypted
	Encrypting trail or extract files
	Encrypting the password of a database user
	Encrypting data sent across TCP/IP

	Generating encryption keys
	Using command security
	Using target system connection initiation
	Configuring the passive Extract group
	Configuring the alias Extract group
	Starting and stopping the passive and alias processes
	Managing extraction activities
	Other considerations

	Handling Oracle GoldenGate processing errors
	Overview of Oracle GoldenGate error handling
	Handling Extract errors
	Handling Replicat errors during DML operations
	Handling errors as exceptions

	Handling Replicat errors during DDL operations
	Handling TCP/IP errors
	Maintaining updated error messages
	Resolving Oracle GoldenGate errors

	Creating a data-definitions file
	Overview of the data-definitions file
	When to use a data-definitions file
	Types of definitions files
	When to use a definitions template
	Configuring a data-definitions file

	Configuring online change synchronization
	Overview of online change synchronization
	Initial synchronization
	Configuring process groups for best performance

	Naming conventions for groups
	Creating a checkpoint table
	Options for creating the checkpoint table

	Creating an online Extract group
	Creating a trail
	Creating a parameter file for online extraction
	Creating an online Replicat group
	Creating a parameter file for online replication
	Controlling online processes
	Deleting a process group

	Configuring change synchronization as a batch run
	Overview of batch change synchronization
	Creating a parameter file for batch extraction
	Creating a parameter file for batch replication
	Starting processes from the command shell of the operating system

	Configuring DDL synchronization for an Oracle database
	Overview of DDL synchronization
	Limitations of Oracle GoldenGate DDL support
	DDL statement length
	System configuration
	Filtering, mapping, and transformation
	SQLEXEC
	User Exits

	Special DDL cases and their treatment
	Truncates
	Renames
	LOB columns
	User defined types
	Comments in SQL
	Compilation errors
	Interval partitioning

	Configuration guidelines for DDL support
	Database privileges
	Initial synchronization
	Process topology
	Object names
	Data continuity after CREATE or RENAME

	Understanding DDL scopes
	Mapped scope
	Unmapped scope
	Other scope

	Correctly identifying unqualified object names in DDL
	Enabling DDL support
	Filtering DDL replication
	Filtering at the trigger level
	Filtering with the DDL parameter
	Combining DDL parameter options

	Special filter cases
	DDL EXCLUDE ALL
	Implicit DDL

	How Oracle GoldenGate handles derived object names
	MAP exists for base object, but not derived object
	MAP exists for base and derived objects
	MAP exists for derived object, but not base object
	New tables as derived objects

	Using DDL string substitution
	Guidelines for using DDLSUBST

	Controlling the propagation of DDL that is executed by Replicat
	Propagating DDL in an active-active (bi-directional) configurations
	Propagating DDL in a cascading configuration

	Adding supplemental log groups automatically
	Removing comments from replicated DDL
	Controlling whether renames enter the DDL configuration
	Replicating an IDENTIFIED BY password
	How DDL is evaluated for processing
	Handling Extract DDL processing errors
	Handling Replicat DDL processing errors
	Sample DDLERROR statement
	Using multiple DDLERROR statements

	Handling DDL trigger errors
	Viewing DDL report information
	Extract DDL reporting
	Replicat DDL reporting
	Statistics in the process reports

	Viewing metadata in the DDL history table
	Basic DUMPDDL
	DUMPDDL SHOW

	Tracing DDL processing
	Tracing the DDL trigger

	Configuring DDL synchronization for a Teradata database
	About this documentation
	Overview of DDL synchronization
	Limitations of Oracle GoldenGate DDL support
	DDL statement length
	System configuration
	Filtering, mapping, and transformation
	SQLEXEC
	User Exits
	DDL response time

	Configuration guidelines for DDL support
	Database privileges
	Initial synchronization
	Process topology
	Object names

	Understanding DDL scopes
	Mapped scope
	Unmapped scope
	Other scope

	Enabling DDL support
	Filtering DDL replication
	Combining DDL parameter options
	DDL EXCLUDE ALL

	How Oracle GoldenGate handles derived object names
	MAP exists for base object, but not derived object
	MAP exists for base and derived objects
	MAP exists for derived object, but not base object
	New tables as derived objects

	Using DDL string substitution
	Guidelines for using DDLSUBST

	Controlling whether renames enter the DDL configuration
	How DDL is evaluated for processing
	Handling Extract DDL processing errors
	Handling Replicat DDL processing errors
	Sample DDLERROR statement
	Using multiple DDLERROR statements

	Viewing DDL report information
	Extract DDL reporting
	Replicat DDL reporting
	Statistics in the process reports

	Tracing DDL processing

	Running an initial data load
	Overview of initial data load methods
	Using parallel processing in an initial load
	Prerequisites for initial load
	Disable DDL processing
	Prepare the target tables
	Configure the Manager process
	Create a data-definitions file
	Create change-synchronization groups
	Sharing parameters between process groups

	Loading data with a database utility
	Loading data from file to Replicat
	Loading data from file to database utility
	Loading data with an Oracle GoldenGate direct load
	Loading data with a direct bulk load to SQL*Loader
	Loading data with Teradata load utilities

	Mapping and manipulating data
	Overview of data mapping and manipulation
	Limitations of support

	Deciding where data mapping and conversion will take place
	Handling anomalies in data from NonStop systems
	Selecting rows
	Selecting rows with a FILTER clause
	Selecting rows with a WHERE clause
	Considerations for selecting rows with FILTER and WHERE

	Selecting columns
	Selecting and converting SQL operations
	Selecting SQL statement types to replicate
	Converting one operation type to another

	Mapping columns
	Using table-level column mapping
	Using global column mapping
	Using default column mapping
	Mapping data types
	Handling unprintable characters

	Using transaction history
	Testing and transforming data
	Transforming dates
	Performing arithmetic operations
	Manipulating numbers and character strings
	Handling null, invalid, and missing data
	Performing tests

	Using tokens
	Defining tokens
	Using token data in target tables

	Mapping and transforming Unicode and native characters

	Customizing Oracle GoldenGate processing
	Overview of custom processing
	Executing commands, stored procedures, and queries with SQLEXEC
	Processing that can be performed with SQLEXEC
	Databases and data types that are supported by SQLEXEC
	How you can use SQLEXEC
	Executing SQLEXEC within a TABLE or MAP statement
	Executing SQLEXEC as a standalone statement
	Using input and output parameters
	Handling errors
	Additional SQLEXEC guidelines

	Using Oracle GoldenGate macros to simplify and automate work
	Defining macros
	Invoking a macro
	Using input parameters
	Invoking other macros from a macro
	Creating macro libraries
	Suppressing report file listing
	Tracing macro expansion

	Using user exits to extend Oracle GoldenGate capabilities
	When to implement user exits
	Creating user exits
	Viewing examples of how to use the user exit functions
	Upgrading your user exits

	Using the Oracle GoldenGate event marker system to raise database events
	How you can use the event marker system
	Case studies in the usage of the event marker system

	Monitoring Oracle GoldenGate processing
	Overview of the Oracle GoldenGate monitoring tools
	Using the information commands in GGSCI
	Monitoring an Extract recovery
	Monitoring lag
	About lag

	Monitoring processing volume
	Using the error log
	Using the process report
	Scheduling runtime statistics in the process report
	Viewing record counts in the process report
	Managing process reports

	Using the discard file
	Using the system logs
	Reconciling time differences
	Sending event messages to a NonStop system
	Running EMSCLNT on a Windows or UNIX system
	Running the Collector on NonStop

	Getting more help with monitoring and tuning

	Performing administrative operations
	Overview of administrative operations
	Performing application patches
	Adding process groups
	Before you start
	Adding a parallel Extract group to an active configuration
	Adding a data pump to an active configuration
	Adding a parallel Replicat group to an active configuration

	Initializing the transaction logs
	Shutting down the system
	Changing database attributes
	Adding tables to the source database
	Changing attributes of a source table being synchronized
	Performing an ALTER TABLE to add a column on DB2 z/OS tables
	Dropping and recreating a source table
	Changing the number of redo threads
	Changing the ORACLE_SID
	Purging archive logs
	Reorganizing a DB2 table (z/OS platform)

	Changing the size of trail files

	Undoing data changes with the Reverse utility
	Overview of the Reverse utility
	Reverse utility restrictions
	Configuring the Reverse utility
	Creating online process groups and trails for reverse processing
	Running the Reverse utility
	Undoing the changes made by the Reverse utility

	Oracle GoldenGate record format
	Example of an Oracle GoldenGate record
	Record header area
	Description of header fields
	Using header data

	Record data area
	Full record image format
	Compressed record format

	Tokens area
	Oracle GoldenGate operation types
	Oracle GoldenGate trail header record

	Glossary
	abend
	after image
	alias Extract
	append mode
	Archived Log Only mode (ALO)
	batch Replicat processing mode
	audit trail
	batch run
	before image
	bidirectional synchronization
	BLOB
	Bounded Recovery
	caller
	canonical format
	cascading synchronization
	change synchronization
	checkpoint file
	checkpoint table
	checkpoints
	CLOB
	CMDSEC file
	Collector
	collisions
	column
	column map
	column-conversion functions
	commit
	Commit Sequence Number
	(CSN)
	compressed update
	conflict resolution
	consolidated synchronization
	conversion
	data definitions file
	data pump
	data source
	data source name (DSN)
	data type
	DDL
	DEFGEN
	discard file
	DML
	DSN
	dynamic Collector
	EMSCLNT
	ENCKEYS file
	encryption
	error log
	event marker system
	event record
	exceptions map
	exceptions table
	Extract
	extract file
	extraction
	fetch
	file header
	filtering
	function
	GGSCI
	GLOBALS file
	group
	header
	heterogeneous
	homogeneous
	initial load
	intermediary system
	key
	KEYCOLS
	KEYGEN
	lag
	latency
	LOB
	log-based extraction
	logical name
	LUW
	macro
	Manager
	map
	MAP statement
	marker
	normal Replicat processing mode
	object
	object record
	ODBC
	online change synchronization
	online Extract
	online processing
	online Replicat
	operation
	Oracle GoldenGate Director
	Oracle GoldenGate Rollback
	overwrite mode
	owner
	parameter
	parameter file
	pass-through data pump
	pass-through Extract
	passive Extract
	primary Extract
	primary key
	process report
	record
	record header
	remote file
	remote trail
	Replicat
	replication
	report
	report file
	rollback
	rollover
	routine
	row
	source
	source definitions file
	source Replicat processing mode
	special run
	statement
	static Collector
	stored procedure
	substitute key
	synchronization
	table
	TABLE statement
	TAM (Teradata Access Module)
	target
	target definitions file
	task
	token
	trace table
	trail
	transaction
	transaction log
	transformation
	unidirectional synchronization
	unique key
	Unit of Work
	user exit
	VAM (Vendor Access Module)
	VAM trail
	wildcard

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

