

Version 10.0.2

Content Administration Programming Guide

Oracle ATG
One Main Street
Cambridge, MA 02142
USA

ATG Content Administration Programming Guide

Document Version
Doc10.0.2 PUBADMINv1 04/15/2011

Copyright
Copyright © 1997, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures
to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/support/contact.html or visit http://www.oracle.com/accessibility/support.html if you are hearing impaired.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

i i i

C o n t e n t s

μ

Contents

1 Introduction 13
Documentation Conventions 13
Product Support Information 13
Related Documentation 14

2 Getting Started 15
Running ATG Content Administration 15
Overview of the ATG Business Control Center 16
Before You Begin 16

3 Understanding the Content Development Environment 19
Terminology 19
ATG Content Administration Architecture 21

Content Development Environment 21
Production Environment 22

Repositories 24
Versioned Repositories 25
Versioned Content Repository 25
Standard Repositories 28

File Asset Storage 29
Deleting File Assets from the File System 29
Changing File Asset Storage Location 30

Processes and Projects 30
Process Object Properties 30
Project Object Properties 31

Versioning Assets 33
Versioning Terminology 33
Versioning Process 34
Versioning APIs 36

4 Setting Up an Asset Management Server 37
Create ATG Content Administration Tables 38

Table Creation Subscripts 38
Destroying ATG Content Administration Tables 39

Initialize the Database 41
Back Up the Database 42

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

i v

C o n t e n t s

μ
5 Creating a Versioned Module 43

Copy the Application Module to the Asset Management Server 44
Create the Versioned Module 44
Configure Repository Asset Support 45

Create and Configure Versioned Repositories 45
Create and Install the Versioned Database Schema 52

Register the Versioned Repositories 55
Configure JSP File Asset Support 55

Copy the Web Application Module to the Asset Management Server 57
Create the Web Application’s Versioned Module 57
Configure Targets for Deployments to the Web Application 59
WebAppRef Reference Implementation 60

Configure Support for Other File Assets 61
Extend the PublishingFileRepository Definition 61
Extend the SecuredPublishingFileRepository Definition 63
Configure a Custom VFS to Expose New Item Types 64
Set Up the VersionManagerService to Manage the Custom VFS 65
Configure TypeMapping Components for New Item Types 65
Configure a Custom VFS on Deployment Targets 67
Customize the ATG Business Control Center to Support New Item Types 67

Configure the VersionManagerService 67
Optimizing Merge, Revert, and Check-in Performance 68
Optimizing Workflow Performance 69

Import Initial Repository Assets into Versioned Repositories 70
Export Repository Data from the Production Server 70
Import Repository Data into the Asset Management Server 70

Import Initial File Assets 71
exportRepository 73
importRepository 74

6 Managing User Access and Security 79
ATG Content Administration Users 80

ATG Business Control Center Users 80
ATG Control Center Users 81

Project and Workflow Security 82
Access to Generic Activities 83
To Do List 85
PublishingRepository Security 85
VersionRepository Security 87
PublishingFileRepository Security 87

Item Descriptor Security 88
Content Item Security 88
Scenario and Personalization Assets 89
Web Assets 90

Disabling a Secured Repository 90
Checking Versioned Repostory Security 90

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

v

C o n t e n t s

μ
7 Setting Up an ATG Content Administration Cluster 91

Install Cluster Servers 91
Configure Cluster Servers 92

Identify the Workflow Editor Server 92
Configure Distributed Caching for Versioned Repositories 92

Manage Distributed File Assets 93
Configure Deployment from a Cluster 94

8 Project Workflows 97
Installed Workflows 98

Production-Only 98
Staging/Production 100

Asset Locking and Check-in 102
Creating Project Workflows 103
Workflow Action Elements 104

9 Customizing Asset Display 107
View Mapping System 107
itemView and propertyView JSP Fragments 109
View Mapping Repository 110

itemMapping 110
itemViewMapping 112
itemView 113
propertyViewMapping 114
propertyView 116
Map Modes 119
View Mapping Form Handlers 120

Overriding Default Asset Display Settings 122
Using Resource Bundles 123
getItemMapping 124
Setting Up Linked Assets 125
Troubleshooting the ViewMapping System 126

Rendered JSP Page Source 126
Asset Form Handler Log File 127
ViewMappingFactory Log File 127

Configuring the EditLive! HTML Editor 128

10 Deployment Concepts 129
Target Site Basics 129

Publishing Agent 131
Publishing Web Agent 131

Deployment Process 131
Enabling Distributed Deployments 132
Post-Deployment Tasks 132

Deployment Scope 132
Full Deployment 133

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

v i

C o n t e n t s

μ
Incremental Deployment 133

Deployment Modes 133
Online Deployment 134
Switch Deployment 134
Online versus Switch Deployments 134

Destination Repositories 135
Deploying Unique Data to Multiple Sites 136
Deploying From Multiple Asset Management Server Clusters 137
Deployment Scheduling 137

Deployment Queue 137
Fulfiller Service 138
Interrupting Deployments 138

One-Off Deployments 138

11 Setting Up Deployment 141
Plan Deployment Topology 142

Identify Deployment Target Sites 142
Identify Deployment Agents 142
Plan Deployment Agent Responsibilities 143

Set Up Deployment Agents 144
Installing the Publishing Web Agent 145
Changing the Port Used for File Asset Deployment 147
Running Deployment Agents 147

Configure Switch Deployment 148
Configure Target Repositories for Switch Deployments 148
Configure Default Target VFSs for Switch Deployments 150
Configure Custom Target VFSs for Switch Deployments 151
Configure VFSs on a New ATG Server for Switch Deployment 153
Configure Switch Deployment on the Asset Management Server 153
Selective Cache Invalidation 153
Background Deletion of File System Assets 155
Shared ConfigFileSystem for Multiple Agents 156
Adding an ATG Server 158

Configure Online Deployment 158
Configure Repositories for Online Deployments 158
Configure Custom VFSs for Online Deployments 158

Manage Asset Security on Target Sites 159
Modifying User Access Privileges in the ACC 160
Restricting Access to Personalization and Scenario Assets 160

Configure Deployment Data Sources and Destination Repositories 161
Create a Destination Repository Data Source 161
Create and Configure a Destination Repository 162
Update the Destination Repositories List 164

Define the Deployment Topology 164
Define the Target Site 165
Configure Target Site Deployment Agents 166
Editing deploymentTopology.xml 167

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

v i i

C o n t e n t s

μ
Configure Deployment from Multiple Asset Management Server Clusters 171

Set the Cluster Name 172
Define the Cluster Hosts 172
Repository Assets 173
File Assets 173
Managing Multi-Cluster Deployment Data 175

Initialize Target Sites 176
Initializing Targets on MS SQL with Clustered Primary Keys 176
Adding Agents to an Initialized Target 177

Configure Deployment Event Listeners 178
Understanding Deployment Events 178
Creating and Configuring a DeploymentEventListener 178

Schedule Deletion of Empty Folders 180
Cache Checksums for File Assets 181

Checksum Caching on the Asset Management Server 182
Checksum Caching on Production Servers or Agents 182
Checksum Verification Deployment Mode 182
Local Copy During Switch Deployment 183

12 Deploying Project Assets 185
Configuring the RecurringDeploymentService 185
Deploying from the Admin Console 187

View Deployment Details 188
Stop Deployments 189
Set Deployment Parameters 189
Manage the Deployment Queue 189
Switch a Target Site’s Datastores 190
Roll Back Deployments 190
View Deployment Agents Status 191

Troubleshooting Deployment 191
Recover from Deployment Failure 191
Release a Stalled Deployment 192

Automating Recovery from Transient Errors 193

13 Purging Asset Versions 195
General Safeguards 195

Restricted Operations 196
Protected Versions 196

Scheduled Purges 196
On-demand Purges 197
Summary Report Precision 199
Validation Checks 199

Appendix A: Database Schema 201
Core ATG Content Administration Tables 201

epub_history 201

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

v i i i

C o n t e n t s

μ
epub_his_act_parm 202
epub_taskinfo 202
epub_agent_trnprt 203
epub_agent 204
epub_target 205
epub_tr_dest 206
epub_topology 206
epub_tr_agents 207
epub_princ_asset 207
epub_includ_asset 207
epub_exclud_asset 208
epub_project 208
epub_prj_targt_ws 209
epub_pr_tg_status 210
epub_prj_tg_snsht 210
epub_pr_tg_st_ts 211
epub_pr_tg_ap_ts 211
epub_pr_history 212
epub_process 212
epub_proc_prv_prj 213
epub_proc_history 214
epub_proc_taskinfo 214
epub_deployment 215
epub_deploy_proj 216
epub_dep_err_parm 216
epub_dep_log 217
epub_process_data 218

File Repository Tables 219
epub_file_folder 219
epub_file_asset 220
epub_text_file 221
epub_binary_file 222

Media Tables 222
epub_folder 222
epub_media 223
epub_media_ext 224
epub_media_bin 225
epub_media_txt 225

Versioning Tables 226
avm_devline 226
avm_workspace 226
avm_asset_lock 227

User Profile Tables 228
epub_user 228
epub_prj_hist 228

Workflow Tables 229
epub_coll_workflow 229

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

i x

C o n t e n t s

μ
epub_ind_workflow 230
epub_workflow_strs 230
epub_workflow_bls 231
epub_workflow_lngs 231
epub_workflow_dbls 232
epub_workflow_dats 232
epub_workflow_ris 232
epub_workflow_vfs 233
epub_workflow_info 233
epub_wf_mig_info 234
epub_wf_mg_inf_seg 235
epub_wf_templ_info 235
epub_wf_coll_trans 236
epub_wf_ind_trans 237
epub_wf_deletion 238
epub_wf_del_segs 238
epub_wf_migration 239
epub_wf_mig_segs 239
epub_wf_server_id 240

View Mapping Tables 240
vmap_im 240
vmap_fh 241
vmap_mode 241
vmap_ivm 242
vmap_im2ivm_rel 242
vmap_iv 243
vmap_pv 243
vmap_ivm2pvm_rel 244
vmap_pvm 245
vmap_attrval 245
vmap_attrval_rel 246
vmap_cattrval_rel 246
vmap_iv2ivad_rel 246
vmap_ivattrdef 247
vmap_pv2pvad_rel 247
vmap_pvattrdef 248

Appendix B: Virtual File Systems 249
ContentRepositoryVFSService 250
SwitchableLocalFileSystem 250
SelectiveDeleteVFSService 253
JournalingFileSystemService 254
LocalVFSService 255

Appendix C: Form Handlers 257
AddNoteFormHandler 257

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

x

C o n t e n t s

μ
Configuration Properties 258
Submit Handler Method 258
Pre and Post Methods 258
Example 258

AssetDiffFormHandler 259
Configuration Properties 259
Navigational Property 260
Submit Handle Methods 260
Example 262

BinaryFileAssetFormHandler 262
Configuration Properties 263

CreateProcessFormHandler 263
Configuration Properties 263
Navigational Property 264
Submit Handler Method 264
Pre and Post Methods 264
Example 265

FireWorkflowOutcomeFormHandler 265
Configuration Properties 265
Submit Handler Method 266
Pre and Post Methods 266
Example 266

ProcessSearchFormHandler 267
Configuration Properties 267
Submit Handler Method 268
Example 269

ProjectFormHandler 269
Configuration Properties 270
Non-Configurable Properties 270
Submit Handle Methods 270
Pre and Post Methods 271
Example 272

RepositoryAssetFormHandler 272
Configuration Properties 273
Submit Handler Methods 273

SegmentAssetFormHandler 274
Configuration Properties 274
Submit Handler Methods 275

TaskActionFormHandler 275
Configuration Properties 275
Submit Handler Methods 275
Pre and Post Methods 276
Example 277

TextFileAssetFormHandler 278
Configuration Properties 278

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

x i

C o n t e n t s

μ
Appendix D: PWS 2.0 Tag Library 281

pws:canFireTaskOutcome 282
pws:categorize 283
pws:createVersionManagerURI 285
pws:display 286
pws:getAsset 287
pws:getAssignableUsers 287
pws:getCurrentProject 288
pws:getDependentProjects 288
pws:getDeployedProjects 289
pws:getDeployment 290
pws:getDeployments 290
pws:getItemSubTypes 292
pws:getProcess 292
pws:getProcesses 292
pws:getProject 293
pws:getProjectAssets 294
pws:getProjects 295
pws:getProjectsPendingDeployment 296
pws:getTarget 297
pws:getTargets 297
pws:getTasks 298
pws:getVersionedAssetTypes 299
pws:getWorkflowDefinitions 300
pws:getWorkflowDescriptor 301

Index 303

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

x i i

C o n t e n t s

μ

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 3

1 - I n t r o d u c t i o n

μ
1 Introduction

This guide introduces ATG Content Administration concepts and tasks for developers and system
administrators. It describes how to configure ATG Content Administration to deploy assets to target sites,
and it includes information on setting up a versioned database, using workflows, and managing
deployments.

Documentation Conventions
In this guide, the notation <ATG10dir> represents the ATG platform root directory—for example,
C:\ATG\ATG10.0.1.

Product Support Information
For detailed information on the supported environments and configurations of the entire ATG product
suite, see http://www.atg.com/en/products/requirements/. The following sections outline general
product support issues.

Versioning Support

ATG Content Administration supports the versioning of content in SQL repositories, including:

 ATG Portal content

 ATG Consumer Commerce content

 ATG Business Commerce content

 File assets, such as targeters, content groups, Microsoft Word documents, image files,
and JSPs.

Requirements

ATG servers in the production environment must run ATG 10.0.1 and the Publishing agent, which is
installed with the ATG platform.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 4

1 - I n t r o d u c t i o n

μ
Browser Support

Some administration tasks are performed through the ATG Business Control Center. You can use a variety
of Web browsers to access this tool, including Internet Explorer, Mozilla Firefox, and Safari. Cookies and
scripting should be enabled in the browser.

Earlier versions of Internet Explorer (before version 7) might cause improperly formatted form posts. You
can avoid these by reconfiguring your Windows registry. For more information on this problem and other
issues related to Internet Explorer, navigate to the following URL:

http://hostname:port/dyn/dyn/iefix/

Some assets types can be configured to use an HTML editor that is downloaded to the ATG Business
Control Center client machine as a Java applet. For more information, see the ATG Content Administration
Guide for Business Users.

General Constraints

The following constraints apply to this release:

 Nested content groups and profile groups are not supported. Because the versioning
system cannot detect dependencies between a container group and groups nested
within, it cannot enforce that they are deployed together.

 Versioning of XML and HTML file content repositories is not supported.

 When deployed to production, all repository assets are non-versioned, and all file
assets are deployed as files to the target server’s file system.

Related Documentation
Other topics that are related to ATG Content Administration can be found in the following manuals:

Topic Located in:

Assembling a Web application that includes ATG
Content Administration

ATG Programming Guide

Creating and managing assets through the ATG
Business Control Center

ATG Content Administration Guide for
Business Users

Managing and customizing project workflows ATG Personalization Programming Guide

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 5

2 - G e t t i n g S t a r t e d

μ
2 Getting Started

This chapter provides information on the following topics:

 Running ATG Content Administration

 Overview of the ATG Business Control Center

 Before You Begin

Running ATG Content Administration
To run ATG Content Administration, you assemble a Web application that includes ATG platform and ATG
Content Administration modules and deploy it to the appropriate server. The application assembly
procedures you follow vary according to the application server you are using and the particular ATG
Content Administration modules you require. They also vary according to whether you are using the
instance of the product that interacts with the versioned database (usually called the asset management
server) or an instance that represents a target site (a production or staging server, for example).

For example, you might include the following modules in your assembly command:

PubPortlet Publishing.WebAppRefVer

The PubPortlet module contains the ATG Portal pieces required for ATG Content Administration
functionality in the ATG Business Control Center. It also includes the BIZUI module, which provides the
ATG Business Control Center framework.

Note: You cannot run the Portal.paf and ATG Content Administration modules in the same ATG
instance.

The Publishing.WebAppRefVer module holds the versioned module of the WebAppRef demo
application included with ATG Content Administration.

For information on application assembly and ATG modules, see the ATG Programming Guide.

For information on running ATG Content Administration on a target server, refer to Setting Up
Deployment.

Caution: Do not use any ATG Content Administration modules or the DAF.Deployment module on a
standalone GSA lock manager server. Doing so causes the lock server to become a slave server of the

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 6

2 - G e t t i n g S t a r t e d

μ
deployment. It attempts to deploy files and the deployment deadlocks as a result. Symptoms include the
deployment cycling in a time out loop.

Overview of the ATG Business Control Center
The ATG Business Control Center is a browser-based tool that is the primary interface to most ATG
Content Administration-related tasks. Business users perform all ATG Content Administration activity with
this tool, except for some asset editing in the ATG Control Center (ACC). Administrators use ATG Business
Control Center to configure and manage deployment of assets to one or more target sites.

This guide shows how to use the ATG Business Control Center to perform deployment-related tasks.
Detailed information about using it to perform asset creation and editing is contained in the ATG Content
Administration Guide for Business Users.

To access the ATG Business Control Center, point your Web browser to the server where ATG Content
Administration is running. The URL takes the following form:

http://hostname:port-number/atg/bcc

The default port numbers are:

 IBM WebSphere: 9080

 Oracle WebLogic: 7001

 JBoss Application Server: 8080

The following case-sensitive username and password correspond to the EPub-Super-Admin role defined
in the ATG Business Control Center. The account gives you full access to all ATG Content Administration
features within the ATG Business Control Center:

 Username: publishing

 Password: publishing

Before You Begin
Before running ATG Content Administration, you must perform the following tasks:

Task Performed by: For more information:

Set up asset management server. Developer Setting Up an Asset
Management Server

Create and configure ATG Content
Administration database.

System administrator Setting Up an Asset
Management Server1

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 7

2 - G e t t i n g S t a r t e d

μ
Task Performed by: For more information:

Set up user accounts and repository
security for ATG Content Administration.

System administrator
Developer

Managing User Access and
Security

Customize the workflows if necessary for
business processes.

Developer Project Workflows

Configure ATG Content Administration for
deployment.

System administrator Setting Up Deployment

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 8

2 - G e t t i n g S t a r t e d

μ

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 9

3 - U n d e r s t a n d i n g t h e C o n t e n t D e v e l o p m e n t E n v i r o n m e n t

μ
3 Understanding the Content

Development Environment

The content development environment is where ATG Content Administration runs, and business users—
authors, editors, and other content creators—create and manage content that is deployed to production
Web sites.

ATG Content Administration itself is a set of tools that lets you automate the creation, deployment, and
maintenance of assets required to run an ATG-based Web site. ATG Content Administration can manage
assets such as JSP pages and content files, and personalization assets such as scenarios and targeters.

ATG Content Administration extends the ATG data architecture so you can track multiple versions of data.
It uses a workflow mechanism that defines routing and approval processes, and it automates ATG best
practices for deployment.

This chapter contains the following sections:

 Terminology defines essential ATG content development terms.

 ATG Content Administration Architecture illustrates the basic configuration of the
content development and production environments for a Web site that serves ATG
Content Administration-managed content.

 Repositories provides a repository-level view of the content development
environment.

 Versioning Assets describes the versioning system that is used by ATG Content
Administration.

Terminology
This section defines essential ATG content development terms.

Assets

Assets are persistent, publishable objects that are used by one or more ATG applications. ATG Content
Administration supports two kinds of assets:

 A repository asset is created and edited in the ACC or the ATG Business Control Center
and is deployed as a repository item.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 0

3 - U n d e r s t a n d i n g t h e C o n t e n t D e v e l o p m e n t E n v i r o n m e n t

μ
 A file asset is created in the ATG Business Control Center or an external application

such as Word or Excel and is deployed as a file to the target server.

If a file asset is created in an external application, you can upload the file into ATG Content
Administration. Users can edit the item either through the ATG Business Control Center or by
downloading the file, changing it and uploading the file again.

In this guide, asset refers generally to repository and file assets. The terms file asset and repository asset are
used for more specific references.

For technical information on file and repository assets, see the chapter Understanding the Content
Development Environment in this guide. For information on working with assets in the ATG Business
Control Center, see the chapter Creating and Managing Assets in the ATG Content Administration Guide for
Business Users.

Project

A project is a persistent entity that encompasses additions, changes and deletions to a set of assets. Each
project moves independently through a workflow that typically includes these tasks:

 Author or revise asset content

 Review content changes

 Approve the project for deployment

 Verify deployment

Project objects are defined by the project item-descriptor in the publishing.xml repository
definition file, located in:

<ATG10dir>/Publishing/base/config/atg/epub

Project Workflow

Project Workflows define and control the user tasks that make up a project and modify its state. Project
workflows also define actions that are triggered by state changes, such as workspace check-in, email
notification, and tagging of versions for deployment. For more information, see Project Workflows.

Process

A process is the parent object of a project workflow.

Process objects are defined by the process item-descriptor in the publishing.xml repository
definition file.

Versioning

ATG Content Administration maintains versions of all assets, to ensure that the latest changes are
deployed to target sites, and to coordinate multi-user access to the same asset. For more information, see
Versioning Assets.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 1

3 - U n d e r s t a n d i n g t h e C o n t e n t D e v e l o p m e n t E n v i r o n m e n t

μ
Task

A task is a step in a workflow, such as Author, Review, or Deploy. For more information, see the Managing
Tasks chapter in the ATG Content Administration Guide for Business Users.

Deployment

ATG Content Administration defines a deployment model that incorporates server clusters for
development, staging, and production. You can modify the workflow that is provided with ATG Content
Administration so its deployment process suits your specific requirements. For example, you can deploy
to several servers at the same time; or you can define staged deployments in a staging/production
workflow, which lets you review assets on a staging server before deploying them to production and
checking them in.

ATG Content Administration Architecture
A Web site that serves assets managed by ATG Content Administration requires:

 A content development environment—that is, an authoring and editing environment
that runs ATG Content Administration and is configured to manage multiple versions
of assets.

 A production environment that is configured to receive deployments of assets from
the content development environment.

Content Development Environment

The following diagram outlines the configuration of a content development environment:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 2

3 - U n d e r s t a n d i n g t h e C o n t e n t D e v e l o p m e n t E n v i r o n m e n t

μ

This diagram illustrates several important concepts about the content development environment:

 The content development environment uses a versioned database schema. The asset
management server’s database schema is configured to store successive versions of
assets, including version metadata.

 Because a production environment does not use a versioned database schema, it is
isolated from the content development environment.

 Versioned repository assets and file asset metadata are stored in the versioned
database. The actual versioned file assets are stored in a file system.

 To facilitate scalability, and improve performance and reliability, you can cluster
multiple asset management servers.

Production Environment

The following diagram illustrates the basic configuration of a production environment where ATG
Content Administration-managed assets are deployed:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 3

3 - U n d e r s t a n d i n g t h e C o n t e n t D e v e l o p m e n t E n v i r o n m e n t

μ

The preceding diagram illustrates several important concepts about the production environment:

 The production environment does not use a versioned schema. When you deploy a
specific version of an asset to your production environment, its version metadata is
excluded.

 The DeploymentManager moves assets from the content development environment
to the production environment. However, each target site server runs an agent that
handles deployment-related tasks on that server.

Two types of agents run on target sites:

 Publishing agents run on the ATG servers. These agents are configured to
manage deployment-related tasks for repository and file assets on the target
site.

 Publishing Web agents run on the Web servers. These agents are configured
to manage deployment-related tasks for file assets on the target Web server.

The preceding diagram shows a production environment with a single ATG cluster, where multiple ATG
instances point to the same data stores. However, a target site can include multiple ATG clusters. For

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 4

3 - U n d e r s t a n d i n g t h e C o n t e n t D e v e l o p m e n t E n v i r o n m e n t

μ
simplification, it also indicates a configuration for online deployment; however, a production
environment should always be configured to use switch deployment.

Repositories
The following diagram shows how repositories are used in a content development environment.

A content development environment has three types of repositories:

 Versioned repositories store an application’s repository assets

 A single versioned content repository (the PublishingFileRepository) stores metadata for
application file assets.

 Standard repositories store data required by ATG Content Administration.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 5

3 - U n d e r s t a n d i n g t h e C o n t e n t D e v e l o p m e n t E n v i r o n m e n t

μ
Asset Types

Project assets are of two types: repository assets or file assets. The following table briefly describes how
repository and file assets are maintained in content development and production environments:

Asset type/Examples Development environment Production environment

Repository asset

ATG Commerce assets such as
product catalogs

Stored in versioned repository,
instance of VersionRepository.

Stored in a standard
repository, instance of
GSARepository.

File asset

ATG personalization assets:
targeters, content and profile
groups, user segments,
scenarios, slots

JSPs and JSP fragments

Static text files: HTML and
readme files

Binary files: Microsoft Word
files, PDFs

Metadata stored in versioned
content repository, instance of
VersionRepository; exposed via
virtual file system
ContentRepositoryVFSService
for use in various contexts, such
as deployment.

Stored in a virtual file system.

Versioned Repositories

Versioned repositories store an application’s repository assets—that is, assets that are deployed as
repository items to a GSARepository in the production environment.

As part of the process of adding an asset management server to your configuration, you must create and
configure the versioned repositories that store the application’s repository assets. Next, you can import
the initial set of repository assets. For more information, see Configure Repository Asset Support.

Versioned Content Repository

File assets are stored and versioned in a file system on the asset management server (see File Asset
Storage). The versioned content repository /atg/epub/file/PublishingFileRepository stores all
file asset metadata. It also acts as the temporary storage layer for an application’s file assets, providing
access to persistent storage in the underlying versioned file system. A virtual file system
ContentRepositoryVFSService reads file assets from the PublishingFileRepository and exposes them for
use in various contexts, such as deployment.

A file asset’s deployment destination is determined by the virtual file system (VFS) that exposes its item
type in the content development environment. For this reason, every VFS that exposes a subset of item
types in the PublishingFileRepository requires at least one corresponding VFS at the same Nucleus

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 6

3 - U n d e r s t a n d i n g t h e C o n t e n t D e v e l o p m e n t E n v i r o n m e n t

μ
location on the target site. File assets are deployed from the asset management server-side VFS to each
target site VFS at the same Nucleus location.

The following table describes the general classes of assets that the default PublishingFileRepository
supports.

Class of assets Description

Personalization
assets

Include targeters, profile groups, content groups, user segments, slots, and
scenarios.

In the content development environment, personalization assets are exposed
as files via the /atg/epub/file/ConfigFileSystem, which is a configured
VFS that is included with ATG Content Administration.

Personalization assets are deployed as files to each VFS in the target
environment at the same Nucleus location.

The Publishing agent, which runs on target site ATG servers and handles
deployments, includes a configured ConfigFileSystem VFS. The Publishing
agent is installed with the ATG platform.

Web assets Include text file assets such as HTML and readme files, and binary file assets
such as Word documents and PDFs.

In the content development environment, Web assets are exposed as files via
the /atg/epub/file/WWWFileSystem, which is a configured VFS that is
included with ATG Content Administration.

These assets are deployed as files to each VFS in the target environment at the
same Nucleus location.

The Publishing Web agent, which runs on target site Web servers, includes a
configured WWWFileSystem VFS. You must manually install the Publishing
Web agent on a target site server.

The following sections discuss the following topics:

 Item type hierarchy of the PublishingFileRepository

 Extending the PublishingFileRepository

Item Type Hierarchy of the PublishingFileRepository

The following illustration describes the hierarchy of item types that is defined in the repository definition
file <ATG10dir>/Publishing/base/config/atg/epub/file/publishingFiles.xml:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 7

3 - U n d e r s t a n d i n g t h e C o n t e n t D e v e l o p m e n t E n v i r o n m e n t

μ

In the content development environment, a file type is determined only by its item descriptor type; its file
extension is irrelevant. Targeters that are created manually and imported into the ATG Content
Administration system provide a good reason why this is so: depending on the implementation, manually
created targeters might consist of two files with different extensions:

 .properties: a RuleSetService configuration file

 .rules: a text file that stores the actual rule set

Despite their different extensions, both files are of type targeter in the PublishingFileRepository. This
enables them to be exposed via the same VFS on the asset management server and deployed to the same
corresponding VFS on the target server.

When creating assets in the ATG Business Control Center, users can optionally enter file extensions in
order to associate third-party applications with assets on download. For example, while ATG Content
Administration identifies a JPEG image by its asset type (wwwBinaryFileAsset), entering the .jpg
extension on asset creation enables the operating system to identify this asset as an image file and open
the appropriate editor when the user downloads the file for editing.

Extending the PublishingFileRepository

If you do not need to deploy assets to a VFS other than ConfigFileSystem or WWWFileSystem, the default
/atg/epub/file/PublishingFileRepository supports file asset deployment to your Web site.
However, you might need to deploy file assets to other destinations—for example, deploy JSPs to a Web
application, or text and binary files to an FTP server.

In general, configuring the asset management server to support an additional deployment destination
requires you to extend the PublishingFileRepository to support new item types and configure the
appropriate VFSs in the content development and target environments accordingly. Depending on your
requirements, see one of the following sections:

 Configure JSP File Asset Support

 Configure Support for Other File Assets

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 8

3 - U n d e r s t a n d i n g t h e C o n t e n t D e v e l o p m e n t E n v i r o n m e n t

μ
Caution: Never create and configure a second version content repository in order to manage files in the
content development environment. The PublishingFileRepository should be the sole repository for all file
assets. Simply extend it to support the additional item types and, therefore, asset destinations in your
deployment targets.

While you can extend default item types to support additional properties, those properties are not
deployed; only a file’s contents are deployed. To support an additional property, simply extend the
repository definition file, modify the database schema accordingly, and customize the ATG Business
Control Center as needed.

Standard Repositories

The following two standard repositories store the data that ATG Content Administration requires:

 VersionManagerRepository

 PublishingRepository

VersionManagerRepository

The /atg/epub/version/VersionManagerRepository is a GSARepository that stores the
development lines (branches, workspaces, and snapshots) and asset version metadata used by the
/atg/epub/VersionManagerService, the default VersionManager provided with ATG Content
Administration.

For more information on versioning concepts and terms, see Versioning Assets.

PublishingRepository

The /atg/epub/PublishingRepository is a GSARepository that stores the items required by the ATG
Business Control Center: processes, projects, workflows, and so on.

To secure access to its items, the PublishingRepository has a secured repository configured on top. The
secured repository is located in Nucleus at /atg/epub/SecuredPublishingRepository. For
information on configuring security of the PublishingRepository, see the chapter Managing User Access
and Security.

Note the following about the PublishingRepository:

 If you export the items in the /atg/epub/PublishingRepository for any reason
before reimporting the items—for example, when rebuilding your content
development environment—you must manually remove the following items from the
data file:

 All workflow-related items. That is, all items of types defined in:

<ATG10dir>/Publishing/base/config/atg/epub/workflow.xml

 All process- and project-related items. That is, all items of type process and
project and all child items defined in:

<ATG10dir>/Publishing/base/config/atg/epub/publishing.xml

 These items should not be reimported into the PublishingRepository.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 9

3 - U n d e r s t a n d i n g t h e C o n t e n t D e v e l o p m e n t E n v i r o n m e n t

μ
 Each process item in the /atg/epub/PublishingRepository stores a set of

processTaskInfo items in its taskInfos property. These items store information about
the project’s workflow tasks—for example, the segment name for each task. After a
project completes its workflow, its processTaskInfo items are no longer needed and
should be purged. This is an important clean-up task, as performance can be affected
if the number of items exceeds its item-cache-size.

 The /atg/epub/workflow/process/TaskInfoPurger component is a service that
periodically purges the processTaskInfo items of completed projects. By default it is
scheduled to run every day at 1:00 a.m. You can change this schedule so it better
reflects how often ATG Business Control Center users create projects—for example,
every 6 hours. To do so, edit the TaskInfoPurger.schedule property.

File Asset Storage
File asset metadata is stored in the PublishingFileRepository. Actual file assets—WWWFileSystem files,
scenarios, targeters, segments, folders, and JSPs—are stored and versioned in a file system. The file
system is located by default at:

<ATG10dir>/home/Publishing/versionFileStore/PublishingFiles/fa100/

The fa100 directory contains one or more subdirectories named after integers. For example:

<ATG10dir>/home/Publishing/versionFileStore/PublishingFiles/fa100/0

By default, the 0 directory contains a maximum of 1000 file assets and 30 versions of those assets. If the
number of file assets exceeds 1000, a new directory called 1 is created, and so on.

Individual files are stored with a file asset ID that has the root fa100. The version number is appended.
For example:

_cricket_0020fan_xproperties._fa100778#2

Note the following:

 File metadata is stored in the epub_file_asset table. If you need to examine any
deployment issues with file assets, this table can help you determine which asset
might be causing a problem. (File assets are referred to by their ID in deployment
errors.)

 Folder assets are not visible in the file system.

Caution: Be sure to back up file asset directories up at the same time as the ATG Content Administration
database. Conflicts between the file store and the database can cause serious errors.

Deleting File Assets from the File System

You should only delete file assets in the context of projects that you create in the ATG Business Control
Center. For more information, refer to the ATG Content Administration Guide for Business Users.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

3 0

3 - U n d e r s t a n d i n g t h e C o n t e n t D e v e l o p m e n t E n v i r o n m e n t

μ
Warning: Never move or delete file assets directly by manipulating the file system. Doing so can fatally
compromise data integrity.

Changing File Asset Storage Location

The location of the file system used for file assets is determined by the pathPrefix attribute of the
content property for the fileAsset item descriptor in the publishingFileRepository. To change
the location, create a publishingFiles.xml file with a new pathPrefix attribute that overrides the
default, and put the file in your application’s configuration path.

For example:

<gsa-template>

 <item-descriptor name="fileAsset">

 <property name="content" xml-combine="append">

 <attribute name="pathPrefix"

 value="{atg.dynamo.server.home}/Publishing/myFiles"

 xml-combine="replace"/>

 </property>

 </item-descriptor>

</gsa-template>

The new location must be on the asset management server.

Note: The pathPrefix attribute value should be set with an environment variable, as shown in the
previous example. Do not use an explicit file system path such as c:\atg\atg2007.1\home.

Processes and Projects
ATG Content Administration defines process and project objects, which are stored in the
PublishingRepository (defined by publishing.xml):

 The process object manages the lifecycle of the subordinate project workflow object.

 The tasks that users complete through the ATG Business Control Center—for example,
Author, Content Review, and Deploy—are managed by the project workflow.

Process Object Properties

The process object has the following properties:

Property Description

workflow The workflow associated with this process

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

3 1

3 - U n d e r s t a n d i n g t h e C o n t e n t D e v e l o p m e n t E n v i r o n m e n t

μ
Property Description

id The process ID

version The GSA version

acl The access control list for the process, which defines the ACC user roles
that have security rights to this process

displayName The display name for the associated project in the ATG Business Control
Center

description The description that appears for the associated project in the ATG
Business Control Center

creator The ID of the user profile responsible for creating the process instance in
the ATG Business Control Center

project The ID of the current or last checked in project for this process

processData Associated processData from the
/atg/epub/process/ProcessDataRepository

workflowID The ID of the workflow associated with this process

autodeploy The autodeploy flag used by deployment. Set to false by default.

status Valid values are EDIT, DEPLOYED, RUNNING, COMPLETED,
EDIT_AND_RUNNING

statusDetail Additional status text

creationDate Timestamp recording when the process was created

completionDate Timestamp recording when the process was completed

history Any history items stored for this process in the epub_proc_history
table

previousProjectIds A list of previous project IDs for this process from oldest to newest

workflowInstances The individual workflow instances for this process

taskInfos The associated processtaskInfos for this process

Project Object Properties

The project object has the following properties:

Property Description

assets A set of non-hidden assets in the project

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

3 2

3 - U n d e r s t a n d i n g t h e C o n t e n t D e v e l o p m e n t E n v i r o n m e n t

μ
Property Description

checkedInAssets A set of all the checked-in assets in the project

workflow The workflow associated with this project

locked The locked flag for deployment

id The project ID

version The GSA version

acl The access control list for the process, which defines the ACC user roles that
have security rights to this project

displayName The display name for this project in the ATG Business Control Center

description The description that appears for this project in the ATG Business Control
Center

creator The ID of the user profile responsible for creating the instance of the project
in the ATG Business Control Center

workspace The workspace name associated with the project

workflowId The ID of the workflow associated with this project

checkedIn A flag indicating whether this project progressed past the workflow element
that checks in its assets

editable A flag marking the project as editable or not. The flag is set to false when the
Author task is complete.

status Valid values are ACTIVE and COMPLETED

statusDetail Additional status text

checkinDate A timestamp indicating when check-in occurred for this project (when the
appropriate workflow element is completed)

creationDate Timestamp recording when the project was created

completionDate Timestamp recording when the project was completed

history Any history items stored for this project in the epub_pr_history table and
displayed in the History tab

The project object also contains a number of properties that let it handle deployment. For more
information on these, see the deployment chapters in this guide.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

3 3

3 - U n d e r s t a n d i n g t h e C o n t e n t D e v e l o p m e n t E n v i r o n m e n t

μ
Versioning Assets

Before you begin working with ATG Content Administration, you should have a basic understanding of its
versioning system. The following sections introduce key terms and concepts:

 Versioning Terminology

 Versioning Process

 Versioning APIs

Versioning Terminology

This section defines the versioning terms that are important to understand.

Asset

A resource under the control of the version management system used by ATG Content Administration—
for example, foo.html. An asset maintains a list of its own asset versions.

Asset Version

A specific version of an asset—for example, version 2 of foo.html. Each asset version has a unique
version number. The initial version of an asset is always version 1. When a new asset version is created, it is
immediately assigned the next available version number.

Head Version

The most recent version of an asset for a particular branch.

Development Line

In other version management systems, a set of assets is often called a line of development or code line. In
ATG Content Administration, a development line is one of the following:

 Branch: A named, modifiable line of development that includes a specific set of assets.
ATG Content Administration provides an empty main branch. As part of the process of
setting up your asset management server, you import your initial set of assets into the
main branch.

Branch assets are modifiable only if they are checked out into a workspace.

 Workspace: A working, editable set of asset versions. Workspaces are always created
from branches. Asset versions are checked out into workspaces, where they can be
edited or deleted.

Every ATG Content Administration project has its own workspace that includes the
working set of asset versions for the project. When a user creates a project in the ATG
Business Control Center, the VersionManager is called to create a workspace for the
project. The user can then add one or more asset versions into the project workspace.
When the project is complete, the updated versions of the project assets are checked
into the repository, and the workspace itself is marked as checked in.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

3 4

3 - U n d e r s t a n d i n g t h e C o n t e n t D e v e l o p m e n t E n v i r o n m e n t

μ
 Snapshot: A set of assets identified by a timestamp in the database and the project

checkin_date.

VersionManager

The VersionManager service manages all development lines that are created and used in the content
development environment. It is the central factory for creating, storing, and querying all versioning
objects: development lines, assets, and asset versions. ATG Content Administration provides a default
VersionManager, which is located in Nucleus at atg/epub/version/VersionManagerService.

The development lines managed by the VersionManagerService are stored in the
/atg/epub/version/VersionManagerRepository, which is also provided with ATG Content
Administration.

Versioning Process

When you initially import assets into ATG Content Administration, the VersionManager creates version 1
of every imported asset. In the case of file assets, file names are appended with the string #1.

When a user adds an existing asset to a project, the VersionManager checks out the head version from the
main branch by copying the asset and assigning the next available version number to this copy. The
VersionManager then adds the new version to the project’s workspace. Within the project, users can
modify this asset’s workspace version, or delete it from the versioning system. When the user completes
the project, its workspace assets are checked into main, and the workspace itself is marked as checked in.

The versioning system typically deals with one of the following scenarios:

 A single user modifies an asset and checks it in.

 Multiple users modify an asset at the same time.

Single User Modifies an Asset

The following diagram shows how an asset is modified in a project and versioned.

Step 1: The user adds version 2 of foo.html to project A. The VersionManager performs these steps:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

3 5

3 - U n d e r s t a n d i n g t h e C o n t e n t D e v e l o p m e n t E n v i r o n m e n t

μ
1. Checks out version 2 by creating a copy.

2. Assigns it the next available version number: version 3.

3. Adds version 3 to the project’s workspace.

The user can now modify or delete version 3 of foo.html.

Step 2: The user completes project A. The VersionManager checks in the asset versions in project A’s
workspace and marks the workspace as checked in. Version 3 is the new head version of foo.html on the
main branch.

Multiple Users Modify an Asset

The following diagram shows what happens when two users check out the same asset and the second
user’s project completes first:

Step 1: User Angela adds version 2 of foo.html to project A. The VersionManager performs these steps:

1. Checks out version 2 by creating a copy.

2. Assigns the next available version number: version 3.

3. Adds version 3 to project A’s workspace.

Angela modifies version 3 within project A.

Step 2: User Bradley adds version 2 of foo.html to project B. The VersionManager performs these steps:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

3 6

3 - U n d e r s t a n d i n g t h e C o n t e n t D e v e l o p m e n t E n v i r o n m e n t

μ
1. Checks copies version 2 by creating a copy.

2. Assigns the next available version number: version 4.

3. Adds version 4 to project A’s workspace.

Bradley modifies version 4 within project B.

Step 3: Bradley completes project B. The VersionManager checks in version 4 of foo.html. Version 4 is
now the head version on the main branch.

Step 4: Angela completes project A. The VersionManager cannot check in out-of-date version 3, and
alerts the user about the conflict. Angela decides to merge her version into head version 4. The
VersionManager assigns version number 5 to the merged version. When Angela completes the project,
version 5 becomes the new head version of foo.html on the main branch.

For more about resolving asset conflicts, see Creating and Managing Assets in the ATG Content
Administration Guide for Business Users.

Versioning APIs

For information on versioning APIs, see the following packages in the ATG API Reference:

 atg.versionmanager

 atg.versionmanager.event

 atg.versionmanager.exceptions

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

3 7

4 - S e t t i n g U p a n A s s e t M a n a g e m e n t S e r v e r

μ
4 Setting Up an Asset Management

Server

An asset management server is an ATG instance that runs ATG Content Administration and whose SQL
repositories and database schema are configured to manage multiple versions of assets. Unlike the
development server, ATG Content Administration tables use a versioned schema, so it requires its own set
of repositories and database tables.

By default, ATG Content Administration is configured to use the SOLID database server, which is suitable
only for demonstration and evaluation purposes. Before starting serious development work, it is
important that you reconfigure ATG Content Administration to work with the database instance to be
used in your production environment. All non-SOLID database servers such as Oracle and DB2 require you
to perform the setup steps described in this chapter.

In general, it is good practice to design your databases so that ATG Content Administration and
production data are maintained separately, and transactions that pertain to one have no affect on the
other. Transactions that are initiated by ATG Content Administration can sometimes incur considerable
overhead; by separating versioned and production data, you can ensure that these transactions have no
effect on production data processing.

Note: After you import the application’s content into the versioned repositories of ATG Content
Administration, you cannot reexport the content and import it into another system.

This chapter shows how to create and import the basic data required by an asset management server, in
the following steps:

1. Create ATG Content Administration tables.

2. Initialize the database.

3. Back up the database.

CIM Usage

You can use ATG’s Configuration and Installation Manger (CIM) to perform these tasks. For more
information, see ATG Installation and Configuration Guide.

For descriptions of the ATG Content Administration database tables, see Appendix A: Database Schema.

Prerequisites

Before you set up the asset management server database tables:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

3 8

4 - S e t t i n g U p a n A s s e t M a n a g e m e n t S e r v e r

μ
 Install the latest versions of ATG Content Administration and other ATG applications

that depend on ATG Content Administration, such as ATG Commerce and ATG
Merchandising. For more information, see ATG Installation and Configuration Guide.

 Determine which database system you will use in your production environment, and
install an instance of that database on the asset management server.

 Set the following environment variables:

DYNAMO_HOME: <ATG10dir>/home

JAVA_HOME: Java installation directory—on Windows, to the JDK directory

Create ATG Content Administration Tables
This section describes how to create and configure tables for the versioned database. For descriptions of
the ATG Content Administration database tables, see Appendix A: Database Schema.

Note: If you run Microsoft SQL Server, you must be the database owner and its compatibility level must
be set to 80, before you run the scripts referenced in this section.

To install and configure database tables, run this script:

<ATG10dir>/BIZUI/sql/install/db-vendor/bizui_all_ddl.sql

where db-vendor is a vendor-specific directory such as mssql or oracle. The bizui_all_ddl.sql
script installs all tables that are required to run ATG Content Administration and ATG Business Control
Center, including tables for the ATG platform and ATG Portal. For detailed information about the tables
specifically required by these products, see “Creating Database Tables Using SQL Scripts” in the ATG
Installation and Configuration Guide

For information about table creation scripts that are specific to other ATG applications, see the relevant
product documentation.

Table Creation Subscripts

The bizui_all_ddl.sql script executes a number of subscripts:

 ATG Content Administration table creation scripts

 ATG Business Control Center table creation scripts

ATG Content Administration Table Creation Scripts

The bizui_all_ddl.sql script executes the following subscripts in order to create and configure
database tables for ATG Content Administration:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

3 9

4 - S e t t i n g U p a n A s s e t M a n a g e m e n t S e r v e r

μ
Script file name Description

internal_user_profile_ddl.sql Creates tables for the extensions to the internal user
profile specifically for ATG Content Administration.

publishing_ddl.sql Creates tables for the
/atg/epub/PublishingRepository, which stores
process, and deployment topology information.

versioned_file_repository_ddl.sql Creates the tables for the
/atg/epub/file/PublishingFileRepository,
the versioned repository that is provided for storing
file asset metadata.

versioned_process_data_ddl.sql Creates the tables for the
/atg/epub/process/ProcessDataRepository,
the versioned repository that is provided for storing
information about ATG Content Administration
processes.

versionmanager_ddl.sql Creates tables for storing versioning information.

workflow_ddl.sql Creates tables for storing workflow information in the
/atg/epub/PublishingRepository.

These scripts are located in:

<ATG10dir>/Publishing/base/sql/db_components/db-vendor

ATG Business Control Center Table Creation Script

The bizui_all_ddl.sql script executes viewmapping_ddl.sql to create and configure the database
tables required by the ATG Business Control Center. This subscript creates tables that are used by the
View Mapping framework.

This script is located in:

<ATG10dir>/BIZUI/sql/db_components/db-vendor

Destroying ATG Content Administration Tables

You can destroy all ATG Content Administration, ATG Business Control Center, ATG Portal, and ATG
platform tables with this script:

<ATG10dir>/BIZUI/sql/install/db-vendor/drop_bizui_all_ddl.sql

For information on the individual scripts used to destroy tables for the ATG platform and ATG Portal, see
“Destroying Database Tables” in the ATG Installation and Configuration Guide. For information about
destroy scripts that are specific to other ATG applications, see the relevant product documentation.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

4 0

4 - S e t t i n g U p a n A s s e t M a n a g e m e n t S e r v e r

μ
The drop_bizui_all_ddl.sql script executes a number of subscripts:

 ATG Content Administration database drop scripts

 ATG Business Control Center database drop script

ATG Content Administration Database Drop Scripts

The drop_bizui_all_ddl.sql script executes the following subscripts in order to destroy the database
tables for ATG Content Administration:

File Name Description

drop_internal_user_profile_ddl.sql Destroys the tables for the extensions to the
user profile specifically for ATG Content
Administration.

drop_publishing_ddl.sql Destroys the tables for the ATG Content
Administration repository, which holds
processes and process types.

drop_versioned_file_repository_ddl.sql Destroys the tables for the
/atg/epub/file/PublishingFileReposito

ry, the versioned repository that is provided
out-of-the-box for the following types of file
assets: ATG Scenario Personalization assets
(scenarios, targeters, slots, and so on), text file
assets, and binary file assets.

drop_versioned_process_data_ddl.sql Destroys the tables for the
/atg/epub/process/ProcessDataReposito

ry, the versioned repository that is provided
out-of-the-box for storing information about
ATG Content Administration processes.

drop_versionmanager_ddl.sql Destroys the tables for storing versioning
information.

drop_workflow_ddl.sql Destroys the tables for the workflow portion of
the ATG Content Administration repository.

These scripts are located in:

<ATG10dir>/Publishing/base/sql/uninstall/db-vendor

ATG Business Control Center Database Drop Script

The drop_bizui_all_ddl.sql script executes drop_viewmapping_ddl.sql to destroy the database
tables used by the ATG Business Control Center. This script is located in:

<ATG10dir>/BIZUI/sql/uninstall/db-vendor

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

4 1

4 - S e t t i n g U p a n A s s e t M a n a g e m e n t S e r v e r

μ
Initialize the Database

In order to populate a non-SOLID database with ATG Content Administration and ATG Business Control
Center data, you must run the ATG import scripts described in this section.

Prerequisites

Before you run the import scripts, two requirements apply:

 In <ATG10dir>/home/localconfig/atg/dynamo/service/jdbc, configure:

 FakeXADataSource.properties file that points to the versioned database.

 FakeXADataSource_production.properties file that points to the
production (unversioned) database

 Remove this directory:

<ATG10dir>/home/Publishing/versionFileStore

Import Steps

Run the import scripts in the following order:

1. <ATG10dir>/Publishing/base/install/importPublishing.{sh|bat}

Imports the roles, users, item descriptors, and items (views, actions, and so on) for ATG
Content Administration.

Note: Several ContentRootPathProvider and FileExtensionTypeMapper errors
might appear while the script is running; you can safely ignore these errors, as they
have no effect on the import process.

2. <ATG10dir>/BIZUI/install/importBizui.{sh|bat}
Imports default data for the ATG Business Control Center framework.

3. <ATG10dir>/AssetUI/install/importAssetUI.{sh|bat}
Imports view mapping data used by the AssetUI module.

4. <ATG10dir>/DPS-UI/install/importDPSUI.{sh|bat}
Imports Personalization data for the ATG Business Control Center.

5. Optionally, importPublishing-webapprefver.{sh|bat}
Located in:

<ATG10dir>/Publishing/WebAppRefVer/install/

This script Imports the items for the WebAppRef reference implementation, which
illustrates a proper configuration for a Web site that manages JSP file assets. It also
imports the items for base ATG Content Administration.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

4 2

4 - S e t t i n g U p a n A s s e t M a n a g e m e n t S e r v e r

μ
Back Up the Database

To ensure that your versioned data is safe and can be reloaded if necessary, it is highly recommended that
you regularly back up the ATG Content Administration database. Specifically, you should back up the
following tables:

 All tables used by the /atg/epub/PublishingRepository, the
/atg/epub/file/PublishingFileRepository, and the
/atg/epub/process/ProcessDataRepository. The names of these tables begin
with the prefix epub_.

 All tables used by the /atg/epub/version/VersionManagerRepository. The
names of these tables begin with the prefix avm_.

 All tables used by your custom versioned repositories.

For descriptions of the ATG Content Administration tables, see Appendix A: Database Schema.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

4 3

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
5 Creating a Versioned Module

This chapter shows how to import site content into versioned repositories and schemas, in the following
steps:

1. Copy the application module to the asset management server.

2. Create the versioned module that is to store the application’s versioning
configuration.

3. Configure repository asset support, if required.

4. Register the versioned repositories with ATG Content Administration.

5. Configure JSP file asset support, if required.

6. Configure support for other file assets, if required.

7. Configure the VersionManagerService to manage versioned repositories and virtual
file systems.

8. Import initial repository assets into versioned repositories.

9. Import initial file assets.

Note: This procedure assumes an existing Web site that is packaged as an ATG application module, with
well-defined repository definitions and database schemas.

Setup Scripts

ATG Content Administration provides two scripts that can help you import content into the versioned
repositories. These are described at the end of this chapter:

 exportRepository exports the contents of one or more standard repositories.

 importRepository imports the contents of a data file generated with
exportRepository into a standard or versioned repository.

Related Tasks

Before you set up the versioned database, you must first create and install the versioned database
schema, as described in the previous chapter.

If your environment includes ATG applications that run on top of ATG Content Administration, such as
ATG Commerce or ATG Outreach, you must install database tables that are specific to those applications
and import data into them. See the manual that describes your application for instructions.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

4 4

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
Copy the Application Module to the Asset Management
Server

Your production Web site must be packaged as an ATG application module. This module includes all the
class files, configuration files, JSPs, and HTML files that the site uses. You copy the application module
from the production (or development) server to the asset management server.

The nature and complexity of the application module determines whether you copy over the entire
module. For example, in the case of commerce applications, you can omit components for the checkout
process, because these components are not utilized by ATG Content Administration. However, it might be
simpler to copy over an entire module with complex dependencies.

The list of specific class files, configuration files, and JSPs to copy varies for each application module;
however, you must copy the following module resources to the asset management server:

 Any custom events, actions, and conditions that you added to the Scenarios module, if
you intend to create and manage scenarios with ATG Content Administration.

 Definition and configuration files for all repositories that you want to manage with
ATG Content Administration, including any configuration files on which the
repositories depend. You must copy the definition files for repositories that contain
read-only data, such as Product Catalog and Price Lists repositories. You can omit
definition files for repositories that contain read/write data that can be modified in the
production environment, such as Profile, Order, and Inventory repositories.

 If application repositories have secured repositories layered above them, you can also
copy their definition and configuration files. This lets you define access rights to the
assets for ATG Content Administration users. For more information on defining access
rights to assets, see Managing User Access and Security.

Create the Versioned Module
The versioned module stores the application’s versioning configuration, so it is maintained separately
from the application’s production configuration. When you create the versioned module, you specify the
source module and appropriate ATG Content Administration modules in the ATG-Required property of
the versioned module’s manifest.

When creating the versioned module’s manifest, list ATG Content Administration modules before the
source module:

ATG-Required: Publishing.base source-module-name

Note: Although not required, it is a good idea to differentiate the source module from the original
application module by appending ver to the source module name. For example, given source module
Catalog, you might name the versioned module CatalogVer.

For detailed information on creating an ATG application module and its manifest file, see the ATG
Programming Guide.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

4 5

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
Configure Repository Asset Support

Configuring the asset management server to support your application’s repository assets involves these
general steps:

1. Create and configure versioned repositories.

2. Create and install the versioned database schema.

Note: These steps are required for versioned repositories that store an application’s repository assets. To
configure file assets, see Configure JSP File Asset Support and Configure Support for Other File Assets.

Create and Configure Versioned Repositories

In order to create and configure a versioned repository for one of your application’s repositories, perform
these tasks:

1. Verify the versioned repository definition.

2. Modify the repository configuration.

3. Modify the repository definition if necessary, to indicate which item types should be
versioned.

4. Optionally, set the behavior of versioning caches, which control the behavior of each
versioned item’s HeadOfLine and CurrentVersionItem caches.

5. Modify the secured repository definition if applicable, to give ATG Business Control
Center users access to the items.

Verify the Versioned Repository Definition

Before creating a versioned repository, verify the original repository definition file. In general, make sure it
conforms to the original (unversioned) database schema.

Specifically, verify the following in the repository definition file:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

4 6

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
Verify... Requirements

readable/writable
attributes

Set to true in all <property> tags within a <table>, for all properties whose
values you want to maintain from one asset version to the next.

If a property is not readable and writable, its value for a given item is not
checked in and maintained in the versioning system, nor is it deployed to a staging
or production target. By default, all properties are readable and writable.

Note 1: If necessary, indicate not to deploy a readable and writable property by
setting its deployable attribute to false, as in the following example:

<property name="myProperty">

 <attribute name="deployable" value="false" data-

type="boolean"/>

</property>

You can also set the deployable attribute for item-descriptors:

<item-descriptor name="myItemDescriptor">

 <attribute name="deployable" value="false"/>

</item-descriptor>

Note 2: If two properties have a many-to-many relationship, designate one as read-
only by setting its writable attribute to false. This ensures that only one side of the
relationship is updated, which prevents duplicate copies of the same asset versions
and potential data corruption. Read-only properties can be displayed but not edited
via the ATG Business Control Center.

required attribute Set to true in <property> tags in a <table> tag for properties whose
corresponding database columns are defined as NOT NULL.

Note: If a property references an item that is defined in the database as
NOT NULL but you cannot mark the property as required, indicate this by adding
the references attribute tag and set its value to true.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

4 7

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
Verify... Requirements

references attribute Set to true in <table>-nested <property> tags, for all properties that reference
another item that is defined in the database as NOT NULL. In the case of one-to-
many relationships between item descriptors, the underlying join tables are defined
in the database as NOT NULL. Thus, the multi-table definition must set the
references attribute to true, as in the following example:

<table name="dcs_cat_chldprd" type="multi"

 id-column-name="category_id"

 multi-column-name="sequence_num" shared-table-sequence="1">

 <property category-resource="categoryProducts"

 name="fixedChildProducts" data-type="list"

 component-item-type="product" column-name="child_prd_id"

 queryable="true" display-name-resource="fixedChildProducts">

 <attribute name="propertySortPriority" value="-4"/>

 <attribute name="references" value="true"/>

 </property>

</table>

Repository ID Repository IDs in versioned repositories cannot contain special characters such as
pound/hash (#), slash (/), and colon (:).

id-column-names
attribute

In all <table> tags, specify the correct column name(s) in the database.

All reference properties Define correctly. For example, all reference properties should specify an item-type
attribute, not a data-type attribute.

display-name-resource
attribute

Specify in all <item-descriptor> tags.

For detailed information on the attributes and tags specified above, see the ATG Repository Guide.

Modify the Repository Configuration

You must modify the repository component in order to configure a VersionRepository instance. To do so,
layer on a configuration file for the component by placing it in the versioned module’s main config
directory.

The configuration file might look like this:

$class=atg.adapter.version.VersionRepository

versionManager=/atg/epub/version/VersionManagerService

versionItemsByDefault=true

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

4 8

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
The versionManager property should be set to the default VersionManager:

/atg/epub/version/VersionManagerService

The versionItemsByDefault property sets the default for versioning all item types:

 False (default): Versioning is disabled for all item types except those whose repository
definitions explicitly specify versioning.

 True: All item types are versioned except those whose repository definition explicitly
excludes them from versioning.

The next section, Modify the Repository Definition, shows how the repository definition file specifies
versioning for individual item types.

You can also set the String properties that are listed in the following table. Typically, you only need to
set one of these properties if a default table or column name used to store version metadata matches a
name in your existing, unversioned schema.

Property Name Description

assetVersionColumnName The column name of the asset-version item property.

Default: asset_version

branchColumnName The name of the column used to persist the branch of a version.

Note: ATG Content Administration only uses the versioning
system’s main branch.

Default: branch_id

checkinDateColumnName The name of the column used to persist the date that a checked-
in version of an asset was created.

Default: checkin_date

historyIdPropertyName The name of the historyId item property. This property is
dynamically created and represents the unversioned, original ID
property.

Default: historyIdProperty

isBranchHeadColumnName The name of the column used to persist the flag that determines
if a version is the head of a branch.

Default: is_head

predecessorColumnName The column name of the predecessor item property.

Default: pred_version

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

4 9

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
Property Name Description

versionDeletedColumnName The column name of the version-deleted item property.

Default: version_deleted

versionEditableColumnName The column name of the version-editable item property.

Default: version_editable

workspaceColumnName The column name of the workspace item property.

Default: workspace_id

You can also use the Component Editor of the ATG Control Center (ACC) to modify a repository
component’s properties. If using the Component Editor, be sure to save changes to the correct module.

Modify the Repository Definition

When you use ATG Content Administration with your versioned module, the definition files for all
versioned repositories are automatically extended to support asset version metadata. Thus, you should
not modify the definition files to do so.

Depending on your requirements, you might need to modify the versioned repository’s definition file in
two ways:

 Specify whether items referenced by an item property are automatically checked out
with the parent item.

By default, all required single-item references are checked out with the parent item.
This ensures that a referenced item cannot be deleted in one project while its parent
item is checked out by another project. You can turn off this safeguard by setting the
property’s auto-checkout attribute to false as follows:

<attribute name="auto-checkout" value="false"/>

 Set an item descriptor’s versionable attribute to indicate whether to enable or
disable versioning for individual item types.

The setting for the versionable attribute depends on the setting of the versioned repository’s
versionItemsByDefault property:

If versionItemsByDefault is set to: Override for an item type by setting versionable to:

true: version all repository items false: do not version items of this type

false: do not version any item types true: version items of this type.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

5 0

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
You modify the definition file for a versioned repository by layering on a definition file. Place the new
definition file in the config directory of your versioned module—for example,
/MyCatalogVer/config/myApp.

In some cases, a repository is defined using multiple definition files that are located across several
application modules. If this is true for your versioned repository and you need to change each definition
file, store the modified definition files in separate config directories in the versioned module—one for
each config directory across all source modules. For example:

Location of source repository file: Location of versioned repository file:

/Catalog/config/myApp/catalog.xml /CatalogVer/config/myApp/catalog.xml

/MyCatalog/config/myApp/catalog.xml /MyCatalogVer/config/myApp/catalog.xml

Note: If you create additional config directories in your application’s versioned module, add them to the
ATG-Config-Path variable specified in the versioned module’s manifest file. For more information on
application modules, see the ATG Programming Guide.

It’s also important to note that, while the definition files for versioned repositories are extended
automatically at startup, in a subsequent setup step you must manually create and install the
corresponding database schema (see Create and Install the Versioned Database Schema).

Set the Behavior of Versioning Caches

Versioned repositories have two caches for each item type, which maintain information about an item’s
latest version:

 HeadOfLineCache caches information that identifies the item’s head version on a given
branch.

 CurrentVersionItemCache caches CurrentVersionItem objects, which encapsulate the
most recent versions of repository items on a given branch.

Together, these caches help optimize performance of versioned repositories, by avoiding overhead
otherwise incurred through repeated queries for an item’s head version, and creation of redundant
CurrentVersionItem objects.

By default, the size of versioning cache sizes and when they time out are set by the item descriptor’s
item-cache-size and item-cache-timeout attributes, respectively. In general, you can rely on these
settings for versioning caches if they are set appropriately for the item type itself. If desired, you can
explicitly set the behavior of versioning caches independently of the item cache through the following
item descriptor attributes:

 headOfLineCacheSize

 currentItemCacheSize

 headOfLineCacheTimeOut

 currentItemCacheTimeOut

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

5 1

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
The timeout attributes are set in milliseconds. If no timeout is set for versioning caches or the item cache,
the HeadOfLineCache and CurrentVersionItemCache use the VersionRepository properties
maxHeadOfLineCacheTimeout and maxCurrentVersionItemCacheTimeout, respectively.

Modify the Secured Repository Definition

If you copy definition files for the secured repositories that sit on top of your repositories, you must
modify those files in order to provide access to their data via the ATG Business Control Center.

Specifically, you must modify the <descriptor-acl> and <creation-base-acl> attributes of the item
descriptors to include the four ATG Content Administration roles that are provided with the product:

 EPub-Super-Admin

 EPub-Admin

 EPub-Manager

 EPub-User

To give users access to secured assets within the ATG Business Control Center, modify the access control
lists (ACLs) for the item descriptors to include ATG Content Administration roles. If you also configure
item-level security, you must also modify the ACLs for the individual items to include ATG Content
Administration roles.

The following XML for the catalog item descriptor shows how access rights might be defined. The ACLs
below are similar to those defined for the item descriptors and items in the PublishingRepository.

<item-descriptor name="catalog">

 <!-- The ACL that applies to the item view/descriptor -->

 <descriptor-acl value="Profile$role$epubSuperAdmin:read,write,create,

delete;Profile$role$epubAdmin:read,write,create,delete;

Profile$role$epubManager:read,write,create,delete;

Profile$role$epubUser:read;Admin$role$administrators-

group:read,write,create,delete"/>

 <!-- The property that the ACL will be stored in -->

 <acl-property name="acl"/>

 <!-- An ACL fragment that is assigned to all new items -->

 <creation-base-acl value="Profile$role$epubSuperAdmin:read,write,

list,destroy,read_acl,write_acl;Profile$role$epubAdmin:read,write,

list,destroy,read_acl,write_acl;Profile$role$epubManager:read,write,

list,destroy;Profile$role$epubUser:read,list;

Admin$role$administrators-group:read,write,list,destroy,read_acl,

write_acl"/>

</item-descriptor>

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

5 2

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
These changes get you started with repository data. As you customize the ATG Business Control Center to
meet your needs, you are likely to further modify access rights for various item descriptors and items to
subsets of ATG Content Administration users. For more information on ATG Content Administration
security, see the chapter Managing User Access and Security. For more information on secured
repositories, see the Secured Repositories chapter in the ATG Repository Guide.

Create and Install the Versioned Database Schema

In order to store asset version metadata, the asset management server’s database schema requires
additional columns for the primary tables used by your application’s repositories, and additional tables to
store versioning information. This section describes the following tasks:

 Create the versioned schema.

 Configure a versioned repository to use shared tables.

 Install the versioned database schema.

Note: You only create the versioned schema for repositories that store application repository assets. ATG
Content Administration provides the versioned schema for the PublishingFileRepository, which stores the
metadata for application file assets.

See Appendix A: Database Schema for descriptions of the ATG Content Administration tables and
columns.

Create the Versioned Schema

To modify the asset management server’s database schema to store versioning data, follow these steps:

Note: Repeat this process for each VersionRepository for which you need to create a DDL file.

1. Copy each database DDL file that you plan to modify.

Note: Do not edit the original DDL files to be used with the production database; only
modify the copies.

2. Add the following columns to every table that represents a primary table for an item
descriptor:

asset_version INT NOT NULL

workspace_id VARCHAR(40) NOT NULL

branch_id VARCHAR(40) NOT NULL

is_head NUMERIC(1) NOT NULL

version_deleted NUMERIC(1) NOT NULL

version_editable NUMERIC(1) NOT NULL

pred_version INT NULL

checkin_date TIMESTAMP NULL

Note: If the existing schema has a column that uses one of these names, you can use a
different name for the new column. In this case you must also configure the
VersionRepository component to override the default column name and use the new
name. See Modify the Repository Configuration for more information.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

5 3

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
3. Add the following column to every table that represents an auxiliary or multi table in

an item descriptor:

asset_version INT NOT NULL

See also Configure a Versioned Repository to Use Shared Tables.

4. Change all primary keys to composite primary keys, composed of the original primary
key column(s) and the asset_version column.

5. Create an index for the workspace_id and checkin_date columns that are added to
each primary table.

6. Remove from all tables:

 All foreign key references.

 All unique constraints on columns. Also remove unique attributes from all
<property> tags. For more information, see the discussion on unique
properties in the ATG Repository Guide.

 All unique indexes on columns.

The following table describes the additional columns that are required for all primary tables:

Column Name Description

asset_version Counter that specifies the version of the asset.

branch_id ID used to persist the branch of a version. ATG Content Administration
always sets this to the ID of the main branch.

is_head Flag that determines whether a version is the head of a branch.

checkin_date Stores the check-in date of a version. Null for working versions of assets.

version_deleted Flag that indicates whether the asset version is a deleted version.

version_editable Flag that indicates whether the asset version is an editable version. That is,
the version is a working version in a workspace, where modifications to it can
be made.

pred_version The asset version upon which this version was based. For example, if you
create version 2 by checking out version 1, version 2’s predecessor version is
version 1.

workspace_id The ID of the workspace where the asset version was initially created.

For example, the original DDL for table type_x might look like this:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

5 4

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
create table type_x (

 type_x_id VARCHAR(16) NOT NULL,

 name VARCHAR(128) NULL,

 type_y_ref_id VARCHAR(16) NULL,

 FOREIGN KEY (type_y_ref_id) REFERENCES type_y (type_y_id),

 PRIMARY KEY (type_x_id)

);

The modified DDL for table type_x DDL looks like this:

create table type_x (

 type_x_id VARCHAR(16) NOT NULL,

 asset_version INT NOT NULL,

 branch_id VARCHAR(40) NOT NULL,

 is_head NUMERIC(1) NOT NULL,

 version_deleted NUMERIC(1) NOT NULL,

 version_editable NUMERIC(1) NOT NULL,

 workspace_id VARCHAR(40) NOT NULL,

 pred_version INT NULL,

 checkin_date TIMESTAMP NULL,

 name VARCHAR(128) NULL,

 type_y_ref_id VARCHAR(16) NULL,

 PRIMARY KEY (type_x_id, asset_version)

);

create index type_x_workspace_id on type_x (workspace_id);

create index type_x_workspace_id on type_x (checkin_date);

Configure a Versioned Repository to Use Shared Tables

The following constraints apply to versioned repositories with shared database tables:

 A versioned repository cannot support more than two shares of a table in a single
repository definition.

 In a one-to-many relationship using a shared table, the table whose type is not multi
cannot be a primary table. It must be an auxiliary table.

If you need to use table sharing with a versioned repository, also perform these steps:

1. To the shared table’s database schema definition, add the version column
sec_asset_version. This column must be defined as part of the primary key.

Note: This name is configurable. To change it, use the
secondAssetVersionColumnName property in the versionRepository component.

2. In the repository definition that includes the shared table, specify an additional
attribute called shared-table-sequence. Add the attribute to the <table> tag of
the shared table (along with name and multi-column-name, for example). The
shared-table-sequence attribute takes values 1, 2, 3, and so on. The side that wants

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

5 5

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
to associate the sec_asset_version column as its asset version column must have a
value of 2 for this attribute. The table tag where this attribute is set to 2 is considered
to be the owner of the sec_asset_version column, meaning that the side that
wants to associate the column as its asset version column must have a value of 2 for
this attribute. The value must not be changed after data is entered into the shared
table.

Install the Versioned Database Schema

After you configure your database for ATG Content Administration (described in the previous chapter,
Setting Up an Asset Management Server), finish installing your versioned database schema by running
the custom DDL scripts that you created earlier .

Register the Versioned Repositories
All versioned repositories must be registered with ATG Content Administration as follows:

1. In the asset management server’s localconfig layer, create this properties file:

/atg/registry/ContentRepositories.properties

2. Set its $class property as follows:

$class=atg.repository.nucleus.RepositoryRegistryService

3. Add the versioned repositories to the list property initialRepositories, in this
format:

initialRepositories+=\

 versioned-repository[,versioned-repository]...

For example:

$class=atg.repository.nucleus.RepositoryRegistryService

...

initialRepositories+=\

 /atg/myApp/MyRepositoryVer1,\

 /atg/myApp/MyRepositoryVer2

Configure JSP File Asset Support
ATG Content Administration supports versioning and management of JSPs and their deployment to Web
applications running from an exploded directory in the target environment.

Like all file assets, the JSPs for a Web application have the following characteristics:

 They are stored in the content development environment in a versioned file system.

 Their metadata is stored in the /atg/epub/file/PublishingFileRepository.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

5 6

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
 They are exposed as files in the content development environment via a

ContentRepositoryVFSService.

 They are deployed as files to a VFS at the same Nucleus location in the target
environment.

To support JSPs for Web applications, you must extend the PublishingFileRepository so it defines a
subtype of the javaServerPage item type for each Web application to manage, as shown in the figure
below:

You must also configure two virtual file systems for each subtype of javaServerPage:

 The first VFS exposes the items as files in the content development environment.

 The second VFS exposes items as files in the target environment where they are
deployed as actual files.

Deployment Requirements and Constraints

The following requirements and constraints apply to JSP deployment support:

 The ATG servers on each target site must be running the Publishing Agent, which is
installed with the ATG platform.

 The Web application in the target environment to which JSPs are deployed must be
running from an exploded directory; it cannot be run from a Web Archive (WAR) file.

 You must import and maintain all the JSPs and only the JSPs for the given Web
application in the content development environment. While other types of files might
be found in a Web application—for example, servlets—they cannot be maintained in
the content development environment, nor deployed to the Web application.

 The VFS in the target environment that contains the Web application JSPs must be
configured for online deployment.

Deployment of JSPs in switch mode is not supported because the inactive directory
where the JSPs are first deployed cannot contain files other than the JSPs that are

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

5 7

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
managed in and deployed from the content development environment. Because most
Web applications contain other resources such as servlets, an inactive directory cannot
be used.

 The deployment process only deploys the JSPs for a Web application to the target-side
VFS; it does not restart the Web application. As a result, new and updated JSPs are
compiled as each is requested.

 To recompile all JSPs for a given Web application, you must configure the server to
explicitly precompile the JSPs. You can accomplish this by configuring a
DeploymentEventListener to initiate the precompilation process after a deployment is
complete.

Note: The target site must have an internet connection during compilation; otherwise,
the page compiler cannot verify DTDs.

Configuration Steps

To configure the asset management server to manage and deploy JSPs to a Web application, follow these
steps:

1. Copy the Web application module to the asset management server.

2. Create the Web application’s versioned module.

3. Configure targets for deployments to the Web application.

4. Import Web application’s JSPs into the PublishingFileRepository. You can do so when
you import the rest of your file assets (see Import Initial File Assets later in this
chapter).

Copy the Web Application Module to the Asset Management Server

In order to configure the asset management server to support JSP file assets, you must copy the module
that contains your Web application’s Web Archive (WAR) file or exploded directory from the production
server to the asset management server.

If the module also contains repository definition files and other related resources, this step might be
already complete. If not, copy over the module now.

You do not need to copy over all of the resources contained in the module; but you must include the JSPs
that are imported into the /atg/epub/file/PublishingFileRepository. If you intend to run the
Web application on the asset management server, you should include all required resources.

Create the Web Application’s Versioned Module

Your Web application requires a versioned module that acts as an additional configuration layer for
storing all resources required to manage the Web application’s JSP file assets. The procedure for setting
up the versioned module for a Web application is basically the same as the procedure described earlier in
this chapter for non-Web applications (see Create the Versioned Module), although you structure and
configure module resources differently for JSP-based applications.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

5 8

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
To set up the versioned module for a Web application, copy the demonstration WebAppRefVer module
that is distributed with ATG Content Administration. For more information, see WebAppRef Reference
Implementation.

If you copy the generated configuration files into another versioned module, be sure to modify the
module’s manifest file accordingly so all required modules are included.

After you copy the structure and contents of the demonstration module, edit the following module
resources:

 Manifest file

 Configuration files

 lib file (I18N)

 liveconfig file

Manifest File

The manifest file for the versioned module is located in:

<ATG10dir>/versioning-module-name/META-INF/

Specify the Web application’s source module and Publishing.base as required modules. For example:

ATG-Required: Publishing.base MyWebApp

You must specify the Web application’s source module if it contains other resources, such as the original
definition and configuration files for one or more repositories. This might be necessary for other reasons
as well. For example, you might intend to run the Web application in the content development
environment, using file mirroring to copy the new head versions of each JSP file asset to the Web
application upon their check-in.

If there is no identified dependency on the Web application’s source module, you can omit it from the list
of required modules.

Configuration Files

The necessary configuration files for the versioned module are located at <ATG10dir>/versioning-
module-name/config/ or a subdirectory:

publishingFiles.xml file for the
/atg/epub/file/PublishingFileRepository

Extends the repository to support the new item
descriptor that represents the Web application’s
JSP file assets.

.properties configuration file for the
ContentRepositoryVFSService

Sits on top of the PublishingFileRepository and
exposes the Web application’s JSPs as files. Note
that the VFS name is composed of the source
module’s name plus FileSystem.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

5 9

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
Configuration file for the
/atg/epub/version/VersionManagerService

Adds the new VFS to the list of VFSs it must
manage; this list is specified in the
VersionManagerService.versionedVirtua

lFileSystems property.

Type mapping component Converts the Web application’s JSPs into
content repository items. The component name
is composed of the item descriptor name plus
TypeMapping. This component is used when
importing the JSPs into the content
development environment using the Repository
Loader.

Configuration file for the component
/atg/epub/file/typemappers/

PublishingTypeMapper

Adds the new type mapping component to the
list of available type mapping components. For
use when importing the JSPs into the content
development environment using the Repository
Loader

lib File (I18N)

A single resource configuration file that stores the resource strings for the repository definition file, used
for internationalization and localization purposes. The resource file name is composed of the item
descriptor name plus FileRepositoryResources.

The resource file is located in:

<ATG10dir>/versioning-module-name/lib/classes/atg/epub/file/

liveconfig File

A publishingFiles.xml file for the /atg/epub/file/PublishingFileRepository that sets the new
item descriptor’s cache mode to distributed in the liveconfig layer. This file is located at

<ATG10dir>/versioning-module-name/liveconfig/atg/epub/file

Configure Targets for Deployments to the Web Application

The target site requires a configuration file for the VFS SelectiveDeleteVFSService, to which the JSPs
are deployed from the content development environment. Like all VFSs in your deployment targets, this
VFS is located at the same location in Nucleus as the corresponding VFS in the content development
environment, ContentRepositoryVFSService.

For an example, see:

<ATG10dir>/Publishing/WebAppRef/config/atg/epub/file/WebAppRefFileSystem.propertie

s

To complete setup of your target server for deployment of JSPs to the Web application:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

6 0

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
1. Create the configuration files and copy them to the target server, placing them in the

config directory of the Web application’s source module.

2. If necessary, modify the localDirectory property of the VFS to point to the Web
application’s exploded directory.

WebAppRef Reference Implementation

ATG Content Administration includes a reference implementation that shows how to set up a Web
application to be managed by ATG Content Administration. The reference implementation includes two
modules:

 Publishing.WebAppRef

 Publishing.WebAppRefVer

Publishing.WebAppRef

An example of a standard module that you can expect to see on a target server. This module contains a
Web application webappref, and the configuration files required to deploy JSPs to the Web application—
that is, a SelectiveDeleteVFSService VFS that lives at the same Nucleus location as its counterpart in
the content development environment. To examine this module’s resources, browse the
<ATG10dir>/Publishing/WebAppRef directory and its subdirectories.

Note: While this module is an ATG Content Administration sub-module, this is for packaging purposes
only; it does not require ATG Content Administration in any way.

Publishing.WebAppRefVer

An example of a versioned module that you can expect to see on an asset management server. This
module illustrates the configuration of a versioned module to support a Web application. It is configured
based on the Publishing.WebAppRef source module. It contains all the resources required to support
and manage the Web application’s JSPs in the content development environment, including:

 A repository definition file that extends
/atg/epub/file/PublishingFileRepository in order to define a subtype of the
javaServerPage item type

 A ContentRepositoryVFSService VFS that exposes the JSP file assets as files for
deployment purposes

To examine this module’s resources, browse the <ATG10dir>/Publishing/WebAppRefVer directory
and its subdirectories.

Note: While the module is also an ATG Content Administration sub-module, this is for packaging
purposes only; it is only required that the versioned module specifies an ATG Content Administration
module as required in its manifest file.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

6 1

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
Configure Support for Other File Assets

By default, the /atg/epub/file/PublishingFileRepository is configured to support file assets that
are deployed to the following virtual file systems on a target site:

 /atg/epub/file/ConfigFileSystem: ATG personalization assets such as scenarios
and targeters.

 /atg/epub/file/WWWFileSystem: static Web assets such as JSPs.

You extend the /atg/epub/file/PublishingFileRepository to support additional item types only if
you require additional deployment destinations on a target site. If the asset destination is a Web
application where you wish to deploy JSPs, refer to the previous section, Configure JSP File Asset Support.
For all other asset destinations, follow the process described in this section.

You extend the PublishingFileRepository in the following steps:

1. Extend the PublishingFileRepository repository definition to support new item types.

2. Extend the SecuredPublishingFileRepository repository definition to support the new
item types.

3. Configure a custom VFS to expose new item types in the content development
environment.

4. Set up the VersionManagerService to manage the custom VFS.

5. Optionally, configure TypeMapping components for new item types to support file
imports with the Repository Loader.

6. Configure a custom VFS on deployment targets.

7. Customize the ATG Business Control Center to support new item types.

Note: The sections that follow illustrate each step with an example, where the PublishingFileRepository is
extended to support a new VFS asset destination /mycompany/FtpFileSystem, which is located on a
production machine that is running an FTP server.

Extend the PublishingFileRepository Definition

You extend the repository definition of the PublishingFileRepository in order to support new item types.
Because files are either in text or binary format, most extensions require two new item types—one that
extends textFileAsset and another that extends binaryFileAsset. You can extend either or both, as
needed. You can also create multiple item types with the same supertype, as with the personalization
item type.

Two requirements are important for custom item types:

 A custom item type for text files must extend textFileAsset

 A custom item type for binary files must extend binaryFileAsset.

Refer to the figure shown earlier in Versioned Content Repository, which shows the item type hierarchy of
the PublishingFileRepository.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

6 2

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
By default, both textFileAsset and binaryFileAsset are extensions of fileAsset. The content
property for fileAsset is defined as a transient property of a custom type,
VersionFilePropertyDescriptor:

<property name="content"

property-type="atg.epub.file.VersionFilePropertyDescriptor"

</property>

VersionFilePropertyDescriptor is an extension of FilePropertyDescriptor that returns the
content property as a java.io.File. It is required so ATG Content Administration can store the file
asset contents on a file system. Make sure that your custom items do not override the
VersionFilePropertyDescriptor property.

To extend the repository definition of the PublishingFileRepository, modify the repository’s definition file
publishingFiles.xml:

1. Define the new item descriptors.

2. Add the new item types as options to the sub-type-property definition of the
fileAsset parent item descriptor.

Modify the definition by layering on a new definition file. Place the new file in the config directory of
your versioned module at /atg/epub/file/publishingFiles.xml.

In the FTPFileSystem example, you want to manage versioned FTP assets that are ultimately deployed
as text and binary files to a target FTP server. The repository must be extended to support two new item
types:

 ftpTextFileAsset

 ftpBinaryFileAsset

The new definition file to layer on looks like this:

<item-descriptor name="ftpTextFileAsset" super-type="textFileAsset"

 content="true" sub-type-value="ftpTextFileAsset"

 display-name="FTP text file" item-cache-size="1000"

 query-cache-size="500">

</item-descriptor>

<item-descriptor name="ftpBinaryFileAsset" super-type="binaryFileAsset"

 content="true" sub-type-value="ftpBinaryFileAsset"

 display-name ="FTP binary file" item-cache-size="1000"

 query-cache-size="500">

</item-descriptor>

<item-descriptor name="fileAsset">

 <table name="epub_file_asset">

 <property name="type">

 <option value="ftpTextFileAsset" code="10001"/>

 <option value="ftpBinaryFileAsset" code="10002"/>

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

6 3

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
 </property>

 </table>

</item-descriptor>

Extend the SecuredPublishingFileRepository Definition

A default secured repository /atg/epub/file/SecuredPublishingFileRepository is configured on
top of the PublishingFileRepository, which lets you set item descriptor-level and item-level security on the
PublishingFileRepository.

You must modify the secured repository definition of the SecuredPublishingFileRepository in order
to support the new item types ftpTextFileAsset and ftpBinaryFileAsset described earlier. To do
so:

1. Modify the repository definition by layering on a new definition file.

2. Place the new file in the config directory of your versioned module at
/atg/epub/file/publishingFileSecurity.xml.

At this stage in the setup process, it is unlikely you modified publishingFileSecurity.xml. If so,
define the item descriptor-level security for the new item types as it is defined for all existing item types.
This sets up the proper access rights for the ATG Content Administration roles that are provided by
default.

In the case of the FTPFileSystem example, the new secured definition file to layer on looks like this:

<item-descriptor name="ftpTextFileAsset">

 <acl-property name="acl"/>

 <descriptor-acl value="Profile$role$epubSuperAdmin:read,write,create,

delete;Profile$role$epubAdmin:read,write,create,delete;Profile$role$epubUs

er:read;Admin$role$administrators-group:read,write,create,delete;

Admin$role$everyone-group:read"/>

</item-descriptor>

<item-descriptor name="ftpBinaryFileAsset">

 <acl-property name="acl"/>

 <descriptor-acl value="Profile$role$epubSuperAdmin:read,write,create,

delete;Profile$role$epubAdmin:read,write,create,

delete;Profile$role$epubUser:read;Admin$role$administrators-

group:read,write,create,delete;Admin$role$everyone-group:read"/>

</item-descriptor>

Later in the development process, you can create the principals—for example, roles, and organizations—
required for your content development environment, and modify the security of the
SecuredPublishingFileRepository accordingly. For more about security, see the chapter Managing User
Access and Security.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

6 4

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
Configure a Custom VFS to Expose New Item Types

After you extend the repository definition of the PublishingFileRepository to support new item types, you
must configure a custom VFS on the asset management server to expose items of those new types as files.
Later, you configure a custom VFS at the same Nucleus location on the deployment target(s). The files
exposed via the asset management server-side VFS are deployed to each VFS at that Nucleus location on
the target site.

To configure the custom VFS on the asset management server, create a configuration file for the VFS. The
VFS must be an instance of class atg.vfs.repository.ContentRepositoryVFSService, which is a VFS
implementation that enables items stored in a content repository to be accessed as if they were stored in
a file system.

The following table describes each property you should configure:

Property Description

contentRepository The content repository to expose as a file system.

Always set this property to
/atg/epub/file/SecuredPublishingFileRepository.
This restricts file asset access to users with the proper
permissions.

itemDescriptorNames A comma-separated list of item descriptor names that are
viewable and accessible through the VFS.

Note: Each item descriptor can be exposed via just one VFS.
An item descriptor specified in this property for a given VFS
cannot be specified in this property for another VFS.

mutableFolderDescriptorName The item descriptor in the repository specified in the
contentRepository property that represents a folder in the
content repository.

Always set this property to fileFolder, as this item
descriptor represents a folder in the PublishingFileRepository.

Place the configuration file for the custom VFS at a Nucleus location in the config directory of your
versioned module. (Later, you must configure a VFS at the same Nucleus location on your production
target.)

In the FTPFileSystem example, you create the actual VFS component on the asset management server,
locating it in Nucleus at /mycompany/FTPFileSystem. The configuration file for FTPFileSystem looks
like this:

$class=atg.vfs.repository.ContentRepositoryVFSService

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

6 5

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
contentRepository=/atg/epub/file/SecuredPublishingFileRepository

itemDescriptorNames=ftpTextFileAsset,ftpBinaryFileAsset

mutableFolderDescriptorName=fileFolder

Note: Because ftpTextFileAsset and ftpBinaryFileAsset are exposed via FTPFileSystem, they
must not be exposed via any other VFS in the content development environment.

Set Up the VersionManagerService to Manage the Custom VFS

As with any virtual file system that is configured on top of the PublishingFileRepository, you must add the
custom VFS to the list of VFSs that are managed by the /atg/epub/version/VersionManagerService.

In the FTPFileSystem example, this step requires you to add /mycompany/FTPFileSystem to the
VersionManagerService’s list of VFSs.

For more information on the VersionManagerService and completing this step (including a configuration
file example), see Configure the VersionManagerService in this chapter.

Configure TypeMapping Components for New Item Types

Note: This step is required only if you import file assets with the Repository Loader.

As described later in Import Initial File Assets, you use the ATG platform’s Repository Loader to import file
assets into the ATG Content Administration system. The Repository Loader uses a set of TypeMapping
components to convert files of different types into content repository items, and it uses a TypeMapper
component to determine which TypeMapping component to use for a given file.

ATG Content Administration provides a set of TypeMapping components for the default content item
descriptors in the PublishingFileRepository, as well as a PublishingTypeMapper component that defines
this array of TypeMapping components. These components are located in:

<ATG10dir>/Publishing/base/config/atg/epub/file/typemappers

However, if you intend to import file assets of the custom item types with the Repository Loader, you
need to configure additional TypeMapping components to support the custom content item descriptors:

1. Configure a TypeMapping component for each new item descriptor that you added to
the PublishingFileRepository’s definition file.

Place the configuration files for the new TypeMapping components in the config
directory of your versioned module at /atg/epub/file/typemappers/.

2. Modify the PublishingTypeMapper to support the new TypeMapping components
you created in step 1.

Modify the PublishingTypeMapper by layering on a new configuration file for the
component. Place the new configuration file in the config directory of your versioned
module at /atg/epub/file/typemappers/.

For more information on these tasks, see the Repository Loader chapter in the ATG Repository Guide.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

6 6

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
In the FTPFileSystem example, the TypeMapping component for the ftpTextFileAsset item
descriptor is named FTPTextFileAssetTypeMapping.properties and looks like this:

$class=atg.repository.loader.TypeMappingImpl

itemDescriptorName=ftpTextFileAsset

repository=/atg/epub/file/PublishingFileRepository

contentHandler=/atg/dynamo/service/loader/typemapping/Xml2RepositoryConten

tHandler

contentIsXML=false

parseContent=false

updatePropertyConfiguration=CONTENT_ITEM_DESCRIPTOR_ID_AND_PATH_PROP

applicationLogging=/atg/epub/file/VersionedLoaderEventListener

contentRootPathProvider=/atg/epub/file/VersionedLoaderEventListener

Similarly, the TypeMapping component for the ftpBinaryFileAsset item descriptor can be named
FTPTBinaryFileAssetTypeMapping.properties:

$class=atg.repository.loader.TypeMappingImpl

itemDescriptorName=ftpBinaryFileAsset

repository=/atg/epub/file/PublishingFileRepository

contentHandler=/atg/dynamo/service/loader/typemapping/Xml2RepositoryConten

tHandler

contentIsXML=false

parseContent=false

updatePropertyConfiguration=CONTENT_ITEM_DESCRIPTOR_ID_AND_PATH_PROP

applicationLogging=/atg/epub/file/VersionedLoaderEventListener

contentRootPathProvider=/atg/epub/file/VersionedLoaderEventListener

Finally, the new configuration file to layer on for the PublishingTypeMapper looks like this:

$class=atg.epub.loader.PublishingTypeMapper

typeMappings+=\

 FTPTextFileAssetTypeMapping,\

 FTPBinaryFileAssetTypeMapping

For a description of properties you can configure for TypeMapping and TypeMapper components, see the
Repository Loader chapter in the ATG Repository Guide. For more information on the
/atg/epub/file/VersionedLoaderEventListener component (referenced in the configuration file
examples above), see the ATG Repository Guide.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

6 7

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
Configure a Custom VFS on Deployment Targets

As with any VFS that is configured on top of the PublishingFileRepository, a custom VFS must have a
corresponding VFS at the same Nucleus location on the appropriate servers in each staging or production
target where you intend to deploy the files.

In the FTPFileSystem example, there might be a single production target, which includes a single FTP
server. You need to configure a VFS named /mycompany/FTPFileSystem on that FTP server.

For detailed information on configuring custom VFSs in deployment targets, see Configure Custom Target
VFSs for Switch Deployments or Configure Custom VFSs for Online Deployments in the Setting Up
Deployment chapter.

Customize the ATG Business Control Center to Support New Item Types

Finally, you need to configure the ATG Business Control Center so authors and editors can access and
view file assets of the new item types. To do so, you must set up view mappings for each of the file asset
types you added. Use the view mapping provided for the default text file asset type as a template for how
to set up a custom view mapping for a file asset type.

You can view the sample view mappings through the Publishing > View Mappings option in the ACC;
however, you might need to configure the appropriate Control Center Groups options for your ACC user
profile in order to display the View Mappings option.

For more information, refer to the chapter Customizing Asset Display.

Configure the VersionManagerService
The VersionManagerService manages development lines that are used by configured VersionRepository
components, such as the main branch and project workspaces. The VersionManagerService has the
following Nucleus path:

/atg/epub/version/VersionManagerService

The VersionManagerService has two map properties that identify versioned repositories and virtual file
systems that it manages:

 versionedRepositories

 versionedVirtualFileSystems

versionedRepositories

Stores a map of the versioned repositories to manage. The mapping is between a short name used by the
VersionManager and the fully qualified Nucleus path of a VersionRepository.

By default, this map includes two repositories:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

6 8

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
versionedRepositories+=\

 PublishingFiles=/atg/epub/file/SecuredPublishingFileRepository,\

 ProcessData=/atg/epub/process/ProcessDataRepository

Add to this map each VersionRepository that you create and configure, as described in Configure
Repository Asset Support.

If a versioned repository has a secured repository instance configured on top, specify the secured
repository and not the underlying versioned repository; otherwise, the VersionManager cannot access the
repository with the specified security settings. The name specified in the repositoryName property of
both the secured repository and the underlying VersionRepository must be identical.

For more information about secured versioned repositories, see VersionRepository Security later in this
chapter.

versionedVirtualFileSystems

Stores a map of the virtual file systems to manage. The mapping is between a short name used by the
VersionManager and the fully qualified Nucleus path of a ContentRepositoryVFSService.

By default this map includes only the /atg/epub/file/ConfigFileSystem and the
/atg/epub/file/WWWFileSystem.

If /atg/epub/file/PublishingFileRepository is extended to support additional item types (see
Configure Support for Other File Assets), add to this map any VFSs you configured to support those item
types.

For example, to add two additional repositories and a VFS, you can layer on a configuration file like this
(note use of the appending operator +=):

versionedRepositories+=\

 Catalog=/myApp/Catalog,\

 PressReleases=/myApp/PressReleases

versionedVirtualFileSystem+=\

 FTPFileSystem=/mycompany/FTPFileSystem

Optimizing Merge, Revert, and Check-in Performance

For merge, revert, and check-in operations that involve a large number of assets, ATG Content
Administration automatically uses optimization features to improve database performance. When
optimization is disabled, these operations iterate over workspace assets and issue SQL statements for
each one. When optimization is enabled, a single SQL operation is performed on all workspace assets.

By default, the threshold number of workspace assets required to trigger an optimized operation is set to
500. To change this number, set the following VersionManagerService properties to an integer value:

 mergeOptimizationThresholdCount

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

6 9

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
 revertOptimizationThresholdCount

 workspaceOptimizationThresholdAssetCount specifies the minimum number of
workspace assets required to trigger optimized check-in.

You can set these properties to the same or different values. To ensure optimization for a given operation,
set the corresponding property to 0.

Note: For Oracle, the setting for mergeOptimizationThresholdCount works only if the database does
not contain LONG datatype columns. To enable merge optimization, change the following column
datatypes: LONG or LONG VARCHAR to CLOB, and LONG RAW to BLOB.

Optimized operations require table joins and invalidation of GSA caches. Thus, optimization settings can
enhance performance for large loads but might adversely affect performance for small loads.

To disable optimized merge or revert, set two VersionManagerService properties to false:

 useOptimizedReplicationForMerge

 useOptimizedReplicationForRevert

Optimizing Workflow Performance

If projects routinely include a very large number of assets—for example, 10 thousand or more—you
should optimize asset locking by setting two VersionManagerService properties as follows:

Property Setting

useOptimizedAssetLocking true

assetLockOptimizationThresholdCount Set to the desired threshold.

A setting of 0 ensures that optimized
asset locking is always in effect.

Also, disable secure repositories by removing the applicable secured versioned repositories from the
VersionManagerService’s versionedRepositories property and specifying the corresponding unsecured
versioned repositories instead (see Disabling a Secured Repository).

The number of project assets that might require optimization can vary, depending on other site-specific
factors such as processing speed and network load.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

7 0

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
Import Initial Repository Assets into Versioned
Repositories

After you install the versioned database schema on your asset management server, you can migrate the
repository data that is to be the initial version of data on the asset management server from the
repositories on your production or staging server.

You import repository data into the ATG Content Administration system in two steps:

1. Export repository data from the production server.

2. Import repository data into the asset management server.

To perform these steps, use the exportRepository and importRepository scripts that are provided
with ATG Content Administration, and described in this chapter.

Export Repository Data from the Production Server

Caution: Before starting this process, it is strongly recommended that you back up production server
content.

You use the exportRepository script to export the contents of one or more standard repositories on
the production server to a .jar data file. After doing so, you run the importRepository script, which
imports the exported data into one or more versioned repositories on the asset management server.

The repository data that you export serves as the initial version of repository data that is managed by ATG
Content Administration. If you also plan to manage file assets with ATG Content Administration, you must
import the files from the same logical site utilized in this step. Together, the repository and file data
become the initial version of ATG Content Administration data and the earliest version that you can
deploy back to your production servers.

Run exportRepository

To run exportRepository:

1. Navigate on the production server to <ATG10dir>/home/bin

2. Enter the exportRepository command.

For example:

exportRepository –m Catalog

 –file /users/joe/CatalogExport.jar

 –r /myApp/Catalog

Import Repository Data into the Asset Management Server

The importRepository script imports the contents of the data file created by exportRepository into
the versioned repositories on the asset management server. By default, the importRepository script
performs these tasks:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

7 1

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
1. Deletes all data in the SQL repositories affected by the source data file.

2. Imports the data into the repositories and checks it in as the initial version of
repository data in the versioning system.

You can modify this behavior through various importRepository switches that apply to versioned and
non-versioned repositories.

Run importRepository

To run importRepository:

1. Copy the data file created by exportRepository to the asset management server.

2. Navigate to the <ATG10dir>/home/bin directory on the asset management server

3. Enter the importRepository command.

For example:

importRepository –m CatalogVer

 –file /users/joe/CatalogExport.jar

 –workspace initialcheckin

Import Initial File Assets
Note: Before reading this section or completing this step, review the Repository Loader chapter in the ATG
Repository Guide.

The following procedure shows how to use the Repository Loader’s RMI client RLClient to import file asset
metadata into the PublishingFileRepository, and write the file contents to the file system.

1. If you are running on Windows, set this property:

/atg/epub/file/PublishingFileRepository.pathSeparator

to backslash (\):

pathSeparator=\\

Backslash is an escape character in Java properties files. Alternatively, you can set this
property using a single backslash via the ACC.

2. If you import any manually created targeters that store their rule sets in separate
.rules files, modify each applicable RuleSetService configuration file to specify
the virtual file system that stores the .rules file.

3. On the asset management server, create a manifest file that identifies the production
server directories and files to import into the PublishingFileRepository.

Each <add> tag should include a type-mapping attribute that specifies the correct
TypeMapping component to use for the given file or folder, and its body should
specify the file or folder’s path.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

7 2

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
Because you are performing the import in manifest mode, the manifest must specify
all folders to be imported. They are not automatically imported as folder content
items.

For example, to import a directory and two HTML files into the
PublishingFileRepository, add three <add> tags to the manifest:

<manifest>

 <add type-mapping=

 "/atg/epub/file/typemappers/FileFolderTypeMapping">

 /users/joe/import/myHtmlFiles

 </add>

 <add type-mapping=

 "/atg/epub/file/typemappers/WWWTextFileAssetTypeMapping">

 /users/joe/import/myHtmlFiles/page1.html

 </add>

 <add type-mapping=

 "/atg/epub/file/typemappers/WWWTextFileAssetTypeMapping">

 /users/joe/import/myHtmlFiles/page2.html

 </add>

</manifest>

4. On the asset management server, configure the
/atg/epub/file/VersionedLoaderEventListener as appropriate for the import
operation:

 For initial import of file assets, do not specify a workspace name. Instead, let the
system generate a workspace and workspace name. Using a system-generated
workspace is appropriate for initial imports, because the workspace and files
should be checked in immediately.

 Set the property VersionedLoaderEventListener.checkinOnCompletion
to true (the default) in order to check in the initial set of file assets. This is
particularly important when using an system-generated workspace; if the files
are imported into an system-generated workspace but not checked in, there is
no way to access the assets via the ATG Business Control Center, because they
were not imported into a known workspace—that is, a workspace associated
with an existing project.

For more information about VersionedLoaderEventListener component properties,
see the Repository Loader chapter in the ATG Repository Guide.

5. Start an application that includes the Publishing.base module, or any module that
requires Publishing.base. The Publishing.base module starts the RL (Repository
Loader) module automatically.

6. Check that the DYNAMO_HOME environment variable is set on the content development
or production server; then change to the <ATG10dir>/RL/ directory and run the
Repository Loader’s RLClient. Specify the manifest file you created in step 3 as an
argument.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

7 3

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
For example:

bin/RLClient –h localhost –m /users/joe/temp/initialFileImport.xml

If the –h argument specifies a host other than localhost, the manifest file path
supplied by the -m switch should be on the remote machine.

7. Because the VersionManager requires a forward slash (/) path separator, on Windows
reset the following property to forward slash:

/atg/epub/file/PublishingFileRepository.pathSeparator

exportRepository
exportRepository exports the contents of one or more standard repositories to a .jar data file. You
typically use this tool together with importRepository, which imports the exported data into a
standard or VersionRepository.

Note: When running exportRepository on a third-party application server, you must configure the
server to use an ATG data source and transaction manager, not your native application server’s data
source and transaction manager.

Syntax

You run exportRepository from <ATG10dir>/home/bin as follows:

exportRepository [–m startup-modules] [-s server-name]

 –file output-file { -all | -r repository-list } [-batchSize size]

Command-Line Help

To obtain command-line help on syntax usage, type:

exportRepository -help

Required Arguments

Argument Description

-file output-file Specifies the target output file for the exported content. The file path can
be absolute or relative to the current directory.

-all Specifies to export the contents of all repositories registered in the
repository registry service, located in Nucleus at
/atg/registry/ContentRepositories.

You must specify this option or -r.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

7 4

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
-r repository-list Specifies the absolute Nucleus component path of one or more source

repositories, where repository-list is a list of comma-delimited
repositories.

You must specify this option or -all.

For example:

exportRepository –m Catalog –file /users/joe/CatalogExport.jar –r /myApp/Catalog

Optional Arguments

Argument Description

-m startup-module

[-m startup-module]...

Lists a module to start for the export process, which contains the
source repositories of the data to export. Supply multiple –m options
in order to start more than one module.

This argument must precede all others, including -file.

-s server-name The ATG instance on which to run this script. Use this argument
when you have multiple servers running on a machine.

If specified, this argument must precede all others except -m.

-batchSize size The number of items to query at one time. The larger the specified
number, the faster the export but the greater the amount of memory
required. The default is 1000.

Specify -1 to export all items in a single batch.

Note: If using Oracle, avoid setting -batchSize to -1 unless the total
number of items to export is less than 1000. Do not set–batchSize
to an integer greater than 999.

Print Arguments

See Print Arguments under importRepository.

importRepository
importRepository imports the contents of a data file generated by exportRepository, into a
standard or versioned repository. importRepository is especially useful for importing large numbers of
items.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

7 5

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
Note: When running importRepository on a third-party application server, you must configure the
server to use an ATG data source and transaction manager, not your native application server’s data
source and transaction manager.

Syntax

You run importRepository from <ATG10dir>/home/bin as follows:

importRepository [–m startup-module]... [-s server-name] –file source-file

 {project-spec | workspace-spec}

 [optional-arguments]

For example:

importRepository –m CatalogVer –file /users/joe/CatalogExport.jar

–project MyFirstProject

Importing to a Project or Workspace

If importing to a versioned repository, you must specify either a project or a workspace as follows:

 -project name [-workflow name] -noDeleteAll –username name

 -workspace name [-nocheckin] [-noDeleteAll]

Note: After deployment targets are initialized, use –project with importRepository instead of -
workspace. When –project is used, assets are imported into a new project with the default or specified
workflow. Users can then access this project and perform the tasks associated with its workflow.

Command-Line Help

To obtain command-line help on syntax usage, type:

importRepository -help

Versioning Arguments

The following options used to import repository data to a versioned repository. In order to use them, the
Publishing module must be running.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

7 6

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
Argument Description

-project name

 -noDeleteAll

 [-workflow name]

Specifies the name of the project to create for the import operation.
This option is available only if the Publishing module is running. You
must qualify this option with -noDeleteAll.

After running importRepository with this argument, the imported
assets must be checked in manually through the ATG Business
Control Center.

If qualified by -workflow, the project uses the specified workflow;
otherwise, it uses the default workflow:

/Common/commonWorkflow.wdl

-workspace name

 [-nocheckin]

 [-noDeleteAll]

Specifies the workspace to use during the import operation, where
name is a user-defined string with no embedded spaces and is
unique among all workspace names. Use -workspace only during
the initial import to the target repository, before you initialize any
target sites.

The workspace is the area in the VersionManager where the import
takes place. If the specified workspace does not exist, the system
creates it.

You must specify this option or -project.

If qualified by -nocheckin, the import does not check in imported
data. This allows use of the workspace for multiple import
operations, so all assets can be checked in at the same time.

If qualified by -noDeleteAll, the imported data is added to items
that already exist in the workspace. If omitted, all items in the
workspace and target repositories are deleted before the import
operation begins.

-checkinComment comment Comment to use when checking in imported data. The default is
import.

-username name Username to use when checking in imported data. The default is
importRepository.

This argument is required when the project argument is supplied,
so the user can be identified as the project creator.

-versionManager path Component path of VersionManager to use for versioned imports.
Use this argument only if the VersionManager runs in a non-
standard location.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

7 7

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
General Arguments

Argument Description

-m startup-module

[-m startup-module]...

Lists the modules to start for the export process. Specify the
modules that contain the source repositories for exported data.

To start multiple modules, you can supply multiple –m options, or
delimit multiple modules with a semi-colon (;) on Windows and a
colon (:) on UNIX.

This argument must precede all others, including -file.

-s server-name The ATG instance on which to run this script. Use this argument
when you have multiple servers running on your machine.

This argument must precede all others except -m.

–file source-file Required, specifies the file with the data to import. The path that
you specify can be absolute or relative to the current directory.

-batchSize size The number of items to commit in a transactional batch. The larger
the specified number, the faster the import. However, a large
number requires more memory and a larger transaction log in the
database. The default is 1000.

Specify -1 to import all items in a single batch.

-temp directory-name The temporary directory to use in order to expand the data file
during the import process.

Typically, this argument is not needed. By default, an appropriate
OS-specific temporary directory is used. The default directory is the
one used by
java.io.File.createTempFile(String, null, null), which
should be appropriate for most systems.

-noworkspace Specifies that the import should not use the versioning system. Use
this argument to import data into unversioned repositories.

Print Arguments

exportRepository and importRepository use a compressed, binary file format. However, both
utilities provide arguments to control message detail, and generate information about exported and
imported data.

Utility Message

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

7 8

5 - C r e a t i n g a V e r s i o n e d M o d u l e

μ
Argument Description

-v Show more detail in the message. Specify multiple times in order to increase the level
of detail.

-showTime print the current time in milliseconds with each info message

Data File

The following arguments print the data in a file:

Argument Description

-print Prints a summary of the data file and exits.

-printItems [range] Prints the IDs of data file items.

-printItemDetail [range] Prints detailed information about data file items, including item
property values.

range Constrains output to a specified range with the following
arguments:

 -printStartIndex index

where index is the zero-based starting index.

 -printEndIndex index

where index is the zero-based ending index.

Set index to -1 in order to print to the last item.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

7 9

6 - M a n a g i n g U s e r A c c e s s a n d S e c u r i t y

μ
6 Managing User Access and Security

This chapter provides technical information on managing the security of ATG Content Administration and
the assets that you manage with it. It includes the following sections:

 ATG Content Administration Users describes the ATG Content Administration users
who manage assets via the ATG Business Control Center and ATG Control Center. Also
describes the principals that are provided by default.

 Project and Workflow Security describes the default security settings for the installed
project workflows.

 Access to Generic Activities describes how to control access to the Business Control
Center Operations list.

 To Do List describes how to configure the list of projects that that are accessible to
users who are logged in to the ATG Business Control Center.

 PublishingRepository Security describes the default security of the
/atg/epub/PublishingRepository, the standard repository that stores the items
required by ATG Content Administration, such as processes and projects.

 VersionRepository Security describes how to manage the security of the versioned
repositories that store your assets.

 PublishingFileRepository Security describes the default security of the
PublishingFileRepository, the content VersionRepository that is provided out-of-the-
box for file assets.

 Disabling a Secured Repository describes a simple process for turning off security for a
secured repository. Useful if you do not require security for the out-of-the-box
repositories provided with ATG Content Administration.

Note: This chapter assumes you are familiar with the concepts discussed in the following chapters:

 Secured Repositories in the ATG Repository Guide.

 Managing Access Control in the ATG Programming Guide.

For information on managing the security of ATG Content Administration-managed assets on your
deployment targets, see Manage Asset Security on Target Sites in the chapter Setting Up Deployment.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

8 0

6 - M a n a g i n g U s e r A c c e s s a n d S e c u r i t y

μ
ATG Content Administration Users

ATG Content Administration users can be grouped into two categories according to the interface with
which they manage both application assets and ATG Content Administration itself:

 ATG Business Control Center users

 ATG Control Center users

ATG Business Control Center Users

Each ATG Content Administration user requires a profile in the ATG profile repository; the values of the
login and password profile properties are used as the username and password to log into the ATG
Business Control Center. Access to activities within the ATG Business Control Center, however, is
controlled by ACC roles (People and Organizations > Roles in the ACC).

The following table lists the preconfigured roles that ATG Content Administration provides for use in the
ATG Business Control Center. For detailed, information, see PublishingRepository Security in this chapter.

Role Intended for...

EPub-User Users who create and manage assets.

EPub-Manager Users who perform activities such as reviewing and approving content
created by an EPub-User. An EPub-Manager can also deploy assets to
production targets.

EPub-Admin Users who require administrative privileges—for example, to configure the
ATG Business Control Center or modify user access rights.

EPub-Super-Admin Users who require full access to the PublishingRepository.

The EPub-Super-Admin role is set as the role in the superAdminRole
property of the /atg/epub/Configuration component. When checking
the access rights to items in the PublishingRepository for a given user, ATG
Content Administration first checks whether the user is assigned the role
defined in Configuration.superAdminRole. If this is the case, the system
assumes that the user has full access to the PublishingRepository, and no
additional security checks are made.

It’s important to note that the role defined in
Configuration.superAdminRole is automatically granted full access to all
items in the PublishingRepository only. It is not automatically granted access
to any other items, such as those stored in versioned repositories.

To specify a different role as the Super Admin role, simply set the
/atg/epub/Configuration.superAdminRole property to a fully qualified
role name via the ATG Control Center.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

8 1

6 - M a n a g i n g U s e r A c c e s s a n d S e c u r i t y

μ
In the initial stages of development, you should assign the EPub-User, EPub-Manager, or EPub-Admin role
to any new ATG Business Control Center users that you create. However, you typically want to restrict
access to various projects and assets to subsets of users, such as merchandisers, scenario authors, system
administrators, and so on. Consequently, early in the development process, you should identify the user
types that are required for your content development environment, create the appropriate principals
(roles, organizations, and so on), and configure their access rights accordingly. You should complete this
step early in the development process in order to minimize its difficulty and avoid runtime access
problems. For more information on adding new principals, see the ATG Personalization Programming
Guide.

Note: The ATG Content Administration user profile that is provided for default access to the ATG Business
Control Center (username: publishing, password: publishing) is assigned the EPub-Super-Admin role.
This user account exists only for evaluation and initial setup, and should be deleted as soon as you
establish real user accounts. Only users who require full access to the PublishingRepository should use the
default account or the EPub-Super-Admin role.

ATG Portal Roles

In addition to one of the ATG Content Administration roles described above, users also require an ATG
Portal role that provides access to the ATG Business Control Center UI—for example 100001-member.
These roles are also assigned through the People and Organizations > Roles window in the ACC. The
appropriate roles are located in the Global Roles > Bizui folder.

ATG Control Center Users

ATG Content Administration users access the ACC to manage versioned scenario and personalization
assets, workflows, and occasionally other PublishingRepository items, such as projects. To do so, they
need to be set up as Control Center Users (People and Organizations > Control Center Users) and
assigned to specific ACC groups (People and Organizations > Control Center Groups). To manage ATG
Content Administration items, the groups need access to the following areas in the ACC:

 Scenarios task areas

 Targeting task areas

 Publishing > Workflows task area

 Publishing > Publishing task area

By default, the administrators-group that is provided with the ATG platform has access to the areas
shown above. See PublishingRepository Security in this chapter for information on the access rights of the
administrators-group to the PublishingRepository.

For more information on setting up ACC users and groups, refer to the ATG Personalization Programming
Guide.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

8 2

6 - M a n a g i n g U s e r A c c e s s a n d S e c u r i t y

μ
Project and Workflow Security

This section discusses how to configure security for projects and workflows used in ATG Content
Administration. It relies on familiarity with general workflow security, which uses the Access Control List
mechanism. Workflow security is described in Setting Up Security Access for Workflows in the ATG
Personalization Programming Guide.

User access to a project and its tasks in the ATG Business Control Center is controlled by the access
settings for the project workflow. For example, access to a project’s Author task options depends on
having Execute access rights to that task in the underlying workflow.

Workflow access rights are themselves determined by roles. For example, in any project that uses
unmodified the installed project workflow, write and execute access to the Content Review task is given
to roles EPub-Manager, EPub-Super-Admin, and managers-group. Any user who has one of these roles
can complete this task.

Write access lets a user change task attributes, such as its priority, owner, and access control list. Execute
access lets a user complete or release a task.

The following table shows the access rights required to perform project and workflow-related tasks in the
ATG Business Control Center:

Task Required access

Create a project Execute access to the project workflow

Add an asset to or remove an asset from a project Execute access to Author task, appropriate
access rights to the asset repository

Assign tasks to other users Write access to the task

Release task Execute access to the task

Complete a task—that is, change its status in the
ATG Business Control Center

Execute access to the task

Deploy project Execute access to the workflow Deploy task

Default Workflow Access Settings

The following table describes the access rights that are initially set for the staging/production workflow:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

8 3

6 - M a n a g i n g U s e r A c c e s s a n d S e c u r i t y

μ
Task Roles Access rights

Create project administrators-group
EPub-Admin
EPub-Manager
EPub-Super-Admin
EPub-User
managers-group

Execute

Author All Write/Execute

Content review EPub-Manager
EPub-Super-Admin
managers-group

Write/Execute

Approve for staging
deployment

EPub-Manager
EPub-Super-Admin
managers-group

Write/Execute

Wait for staging
deployment completion

administrators-group
EPub-Admin
EPub-Super-Admin

Write/Execute

Verify staging deployment EPub-Manager
EPub-Super-Admin
EPub-User
managers-group

Write/Execute

Approve for production
deployment

EPub-Manager
EPub-Super-Admin
managers-group

Write/Execute

Wait for production
deployment completion

administrators-group
EPub-Admin
EPub-Super-Admin

Write/Execute

Verify production
deployment

EPub-Manager
EPub-Super-Admin
EPub-User
managers-group

Write/Execute

To change access rights for a workflow or its individual tasks, open the workflow in the ACC and edit the
appropriate elements. For more information, see Setting Up Security Access for Workflows in the ATG
Personalization Programming Guide.

Access to Generic Activities
The Operations list on the Home page of the ATG Business Control Center contains links that are used to
access different functional areas within the UI. The following image shows this list with some sample data:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

8 4

6 - M a n a g i n g U s e r A c c e s s a n d S e c u r i t y

μ

The Business Control Center options are classified as generic activities, and access is controlled by the
Activity Manager’s PublishingActivities.xmlfile, which is located in the application’s configuration
path. The file contains <acl> tags for each ATG Content Administration activity, which specify user
directory roles and their access rights. The following example shows the default entry for the Admin
Console option, which provides access to deployment management:

<generic-activities>

 <activity>

 <id>adminConsole</id>

 <resource-bundle>atg.epub.activity.ActivityResources</resource-bundle>

 <display-name-resource>adminDisplayName</display-name-resource>

 <description-resource>adminDescription</description-resource>

 <destination-page>

 <url>/atg/atgadmin</url>

 <acl>Profile$role$epubAdmin:read;Profile$role$epubSuperAdmin:read</acl>

 </destination-page>

 </activity>

</generic-activities>

To see the entire contents of PublishingActivities.xml and additional configuration pieces, look in:

<ATG10dir>/Publishing/base/config/atg/bizui/activity

The roles shown correspond to the EPublishing global roles shown in the ATG Business Control Center.
Add or remove roles as needed to give or revoke access to a generic activity. (Edit a copy of
PublishingActivities.xml and add it to your localconfig layer—see XML File Combination in the
ATG Programming Guide.) For detailed information on access control lists (ACLs), refer to User Directory
Security in the ATG Personalization Programming Guide.

The PublishingActivities.xml file is checked at intervals for modifications, so you can make changes
to it without needing to restart the server. The interval is set to 5 minutes by default and is defined by the

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

8 5

6 - M a n a g i n g U s e r A c c e s s a n d S e c u r i t y

μ
genericActivityFileModificationInterval property in the
/atg/bizui/activity/PublishingActivitySource.properties component.

Note: If no items at all appear in the Operations list, the session might have expired. Start a new session
by logging out of the ATG Business Control Center and logging back in again.

To Do List
The Home page of the ATG Business Control Center displays to logged-in users a To Do List that contains
projects that they can access.

The To Do List is configurable through the /atg/bizui/Configuration component, by editing the
processDisplayStatus property list. You can set this property to one or more of the following values:

Value Description

Edit The project is open for editing. The display name that appears for this status—for
example, in the Available Projects page—is Active Project.

Completed The project is deployed and cannot be modified.

Deployed* The project is deployed to the target site.

Running* The Outreach campaign is deployed and running on the target site.

EditRunning* The Outreach campaign is deployed and running on the target site, and is open for
modification.

* Valid only for ATG Outreach

For example:

processDisplayStatus=Edit

By default, the To Do list contains projects with the following status:

 Edit

 Deployed (ATG Outreach only)

 EditRunning (ATG Outreach only)

PublishingRepository Security
The /atg/epub/PublishingRepository is the standard unversioned repository that stores all items
required by ATG Content Administration—by default, processes and projects.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

8 6

6 - M a n a g i n g U s e r A c c e s s a n d S e c u r i t y

μ
ATG Content Administration is configured to access the PublishingRepository through the component
/atg/epub/SecuredPublishingRepository, which overlays the PublishingRepository and instantiates
this class:

atg.adapter.secure.GenericSecuredMutableContentRepository

The SecuredPublishingRepository uses a custom security policy that is implemented by the component
/atg/dynamo/security/PublishingSecurityPolicy. This policy grants all users who are assigned
the role specified in /atg/epub/Configuration.superAdminRole full access to the
PublishingRepository.

The following table summarizes the security defined for the PublishingRepository item descriptors. You
can also refer to the secured repository definition file, which is located at:

 <ATG10dir>/Publishing/base/config/atg/epub/publishingSecurity.xml

Note that an item descriptor’s descriptor-acl defines the ACL for the item descriptor. Its creation-
base-acl defines the default ACL for a new item of the item descriptor type.

For an explanation of each access right specified below, see the Secured Repositories chapter in the ATG
Repository Guide.

Item descriptor descriptor-acl creation-base-
acl

process EPub-Admin: read, write, create, delete
EPub-Manager: read, write, create, delete
EPub-User: read, write, create, delete
ACC administrators-group: read, write, create, delete

undefined

project EPub-Admin role: read, write, create, delete
EPub-Manager role: read, write, create, delete
EPub-User role: read, write, create, delete
ACC administrators-group: read, write, create, delete

undefined

The publishingSecurity.xml file also defines the acl-property for the process and project item
descriptors. The name of this property is acl.

You should modify item descriptor-level security of the PublishingRepository during development
because it requires that you manually modify publishingSecurity.xml and restart the application that
includes ATG Content Administration for the changes to take effect.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

8 7

6 - M a n a g i n g U s e r A c c e s s a n d S e c u r i t y

μ
VersionRepository Security

If you configure secured repositories to sit on top of your versioned repositories, you can set item
descriptor-level and, if necessary, item-level security as described in the Secured Repositories chapter in
the ATG Repository Guide.

ATG Content Administration accesses a secured VersionRepository through the secured repository
adapter component that overlays it. This component is an instance of the class :

atg.adapter.secure.GenericSecuredMutableVersionRepository

Configuring

To configure the security of a secured versioned repository, follow these steps:

1. Define the ACLs for the item descriptors as needed by modifying the secured
repository definition file for the underlying repository. This lets you define access
rights to all assets of a given type. For more information, see the Secured Repositories
chapter in the ATG Repository Guide.

2. If necessary, also define the ACLs for individual items.

As you define the ACLs for the item descriptors and items in your versioned repositories, make sure that
you coordinate them with the ACLs that you define for the projects and workflows that might use the
items.

PublishingFileRepository Security
The versioned content repository /atg/epub/file/PublishingFileRepository stores an
application’s file asset metadata. ATG Content Administration accesses the PublishingFileRepository
through the SecuredPublishingFileRepository component that overlays it:

/atg/epub/file/SecuredPublishingFileRepository

This component is an instance of the class :

atg.adapter.secure.GenericSecuredMutableVersionContentRepository

The default SecuredPublishingFileRepository component is set as follows:

$class=atg.adapter.secure.GenericSecuredMutableVersionContentRepository

repositoryName=PublishingFiles

repository=/atg/epub/file/PublishingFileRepository

configurationFile=/atg/epub/file/publishingFileSecurity.xml

securityConfiguration=/atg/dynamo/security/PublishingFileSecurityConfiguration

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

8 8

6 - M a n a g i n g U s e r A c c e s s a n d S e c u r i t y

μ
XMLToolsFactory=/atg/dynamo/service/xml/XMLToolsFactory

transactionManager=/atg/dynamo/transaction/TransactionManager

Item Descriptor Security

By default, security for all PublishingFileRepository item descriptors is defined as follows:

Principal Access
Privileges

ATG Content Administration roles:
 EPub-Super-Admin

 EPub-Admin

 EPub-Manager

 EPub-User

ACC groups:
 administrators-group

Read
Write
Create
Delete

ACC groups:
 everyone-group

Read

You can examine the secured repository definition file at this location:

<ATG10dir>/Publishing/base/config/atg/epub/file/publishingFileSecurity.xml

You can also access this file in the ATG Dynamo Server Admin Component Browser, via the
configurationFile property of the SecuredPublishingFileRepository component.

Content Item Security

The SecuredPublishingFileRepository uses a custom security policy that determines user access to a
content item as follows

1. Checks the ACL for the given item.

2. If the item’s acl property is null or empty, checks the ACL for its parent folder:

 If set, the parent folder’s ACL is used to determine user access to the child item.

 If null or empty, the system walks up the folder hierarchy until a folder with a
defined ACL is found.

By default, ATG Content Administration defines an ACL for the repository’s root folder; the ACL is defined
as follows:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

8 9

6 - M a n a g i n g U s e r A c c e s s a n d S e c u r i t y

μ

C
o
n
f
i
g
u
r
i
n
g

t
h
e security of the PublishingFileRepository is similar to configuring security for any other VersionRepository
that stores your application’s assets. You can configure the following assets:

 Scenario and personalization assets

 Web assets

Scenario and Personalization Assets

If you manage scenario and personalization assets in the content development environment, users create
and edit them in two interfaces:

 ATG Business Control Center: Users create, modify and delete personalization assets,
and they can complete projects that contain both scenario and personalization assets.
They can also use this interface to delete scenario assets.

 ATG Control Center (ACC): Users create, modify and delete scenario assets. It is also
possible to manage Personalization assets in the ACC, but it is recommended to do so
in the ATG Business Control Center.

Users who work with these assets require user accounts for both the ATG Business Control Center and the
ACC; access privileges for the two accounts must be coordinated.

However, note the following as you configure the corresponding access privileges for the ACC:

 You can disable and enable access to the ACC Scenarios task area as needed. See the
discussion on managing access control in the ATG Programming Guide for details.

 As described in the ATG Personalization Programming Guide, the ACC has its own
default security policy and security mechanisms for the Scenarios task area. By default
the administrators-group is granted full access to all scenarios, while the
everyone-group is granted List and Read access only. This has the following
implications for ATG Content Administration-managed assets:

 If you need to restrict access to the Scenarios task areas to a subset of users, you
should assign those users as members of the administrators-group. Then create

Principal Access Privileges

ATG Content Administration roles:
 EPub-Super-Admin

 EPub-Admin

 EPub-Manager

ACC groups:
 administrators-group

List
Read
Writ
Destroy
Read_ACL
Write_ACL

ATG Content Administration roles:
 EPub-User

ACC groups:
 everyone-group

List
Read

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

9 0

6 - M a n a g i n g U s e r A c c e s s a n d S e c u r i t y

μ
one or more custom groups for users who require access to other
administrative ACC task areas.

 Carefully coordinate the security set on the scenario folders and scenarios via
the ACC security features with the security used to give access to the same
items in the ATG Business Control Center.

 For information on using the ACC’s security features for scenario folders and scenarios,
see the discussion on scenario security in the ATG Personalization Programming Guide.

Web Assets

If you intend to use the PublishingFileRepository to store Web file asset data (items of type
textFileAsset and binaryFileAsset), you can configure the security of these assets using the same
general process as for items in any other VersionRepository. Simply keep in mind the custom security
policy and folder hierarchy of the PublishingFileRepository as you do so.

Disabling a Secured Repository
This section describes a simple process for disabling a secured repository. This process is useful if you do
not require security for the out-of-the-box repositories provided with ATG Content Administration, such
as the PublishingFileRepository, but you do not want to completely remove the default configuration.

To disable a secured repository:

1. In your localconfig directory, layer on a configuration file for the secured repository
that looks like this:

$class=atg.nucleus.GenericReference

componentPath=path

where path is the Nucleus path of the underlying repository

2. Reconfigure the VersionManagerService to manage the unsecured repository, not the
secured one. See Configure the VersionManagerService for more information.

Note: You cannot layer on a configuration file to make this change; modify the
configuration file that is provided by default.

Checking Versioned Repostory Security
You can check whether a given versioned repository—
atg.adapter.secure.GenericSecuredMutableVersionRepository and
atg.adapter.secure.GenericSecuredMutableVersionContentRepository—is

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

9 1

7 - S e t t i n g U p a n A T G C o n t e n t A d m i n i s t r a t i o n C l u s t e r

μ
7 Setting Up an ATG Content

Administration Cluster

Clustering multiple asset management servers can help load-balance the use of resources for authoring
and editing. In order to set up an ATG Content Administration cluster, you perform these tasks:

 Install cluster servers.

 Configure cluster servers.

 Manage distributed file assets.

 Configure deployment from a cluster.

Install Cluster Servers
You can install multiple asset management servers that run against a single installation of ATG. All servers
run against the same ATG Content Administration database.

Caution: Never use the same ATG installation for more than one cluster.

To create a cluster of asset management servers:

1. Perform the initial installation and set up of ATG, including ATG Content
Administration. Configure the initial asset management server as described in Setting
Up an Asset Management Server.

2. Use the ATG Dynamo Server Admin to create additional instances of asset
management servers. The process is described in detail in “Installing Multiple Dynamo
Servers” in the ATG Installation and Configuration Guide. By default each additional
server inherits the settings of the initial server.

3. Make sure that all servers point to the same database.

4. Follow the remaining multiple server configuration steps in this chapter.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

9 2

7 - S e t t i n g U p a n A T G C o n t e n t A d m i n i s t r a t i o n C l u s t e r

μ

Configure Cluster Servers

The process of configuring multiple asset management servers includes the following tasks:

1. Identify the workflow editor server.

2. Configure distributed caching for versioned repositories.

Identify the Workflow Editor Server

In a cluster, you must identify the workflow editor server in the Workflow Process Manager’s XML
configuration file, workflowProcessManager.xml. By default this file is located in:

<ATG10dir>/Publishing/base/config/atg/epub/workflow/process/

To override the default server configuration, create a file with the same name in the top-level directory—
that is in the /home/localconfig directory that applies to the whole cluster:

 <ATG10dir>/home/localconfig/atg/epub/workflow/process/

The following example shows the workflow editor server setting in this file:

<?xml version="1.0" encoding="UTF-8" ?>

<process-manager-configuration>

<process-editor-server>

 <server-name>dyn1:8850</server-name>

</process-editor-server>

</process-manager-configuration>

For detailed information on determining the server name and port number, refer to Configuring the
Scenario Manager in the ATG Personalization Programming Guide.

The same server can manage scenarios and workflows. To use the same server for both, specify the same
<server-name> setting in scenarioManager.xml and workflowProcessManager.xml. For more
information, refer to Configuring the Scenario Manager in the ATG Personalization Programming Guide.

Configure Distributed Caching for Versioned Repositories

In order to maintain consistency across all versioned repositories that are distributed among cluster
servers, you should configure repository items to use distributed caching. Set the cache-mode property
for item descriptors to a distributed caching mode, one of the following:

 distributed (distributed TCP caching)

 distributedJMS (distributed JMS caching)

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

9 3

7 - S e t t i n g U p a n A T G C o n t e n t A d m i n i s t r a t i o n C l u s t e r

μ
 distributedHybrid (distributed hybrid caching)

For more information about distributed caching options, see the SQL Repository Caching chapter in the
ATG Repository Guide.

Manage Distributed File Assets
The servers that comprise an ATG Content Administration cluster can either run on the same host
machine, or be distributed across different hosts.

If all servers run on the same host, you can set the location of file asset storage for all servers to a common
location as follows:

 Create a publishingFiles.xml file with a new pathPrefix attribute that overrides
the default.

 Put the file in your application’s configuration path.

For detailed information, see Changing File Asset Storage Location.

If the cluster servers are distributed across different host machines, you must coordinate file asset storage
and access. You can do so in several ways:

 Use a storage area network (SAN) and make the location of the versionFileStore
exist on the SAN.

 Use rsync to synchronize all directories on each server.

 Use a network file system (NFS) and make the location of the versionFileStore exist on
the SAN.

 If none of the aforementioned methods are available, synchronize file assets with
ATG’s FileSynchronizationDeployServer component, as described in the next
section.

Synchronizing Distributed Files with FileSynchronizationDeployServer

If enabled, the FileSynchronizationDeployServer component synchronizes distributed files
whenever a given file is required by any server on the cluster. In order to use this component, you must
set properties on it and on /atg/epub/Configuration, as follows:

/atg/epub/file/synchronization/FileSynchronizationDeployServer:

Property Setting

enabled true

port The desired listener port number, set by reference to
/atg/dynamo/Configuration.fileSynchronizationDeploymentPort.
To change the port setting, change the referenced property.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

9 4

7 - S e t t i n g U p a n A T G C o n t e n t A d m i n i s t r a t i o n C l u s t e r

μ

/atg/epub/Configuration:

Property Setting

remoteHosts In a comma-delimited list, specify the host names of other servers in this server’s
cluster.

remoteRMIPorts In a comma-delimited list, specify the RMI port settings that are configured for
the hosts specified in remoteHosts. List the ports in the same order as the
corresponding hosts.

remotePorts In a comma-delimited list, specify the file synchronization ports that are
configured for the other servers in their FileSynchronizationDeployServer
components. List the ports in the same order as the corresponding hosts in
remoteHosts.

For example:

remoteHosts=\

 jupiter.acme-widgets.com,\

 saturn.acme-widgets.com,\

 uranus.acme-widgets.com

remoteRMIPorts=\

 8860,\

 8860,\

 8860

remotePorts=\

 8815,\

 8815,\

 8815

Configure Deployment from a Cluster
In order to set up deployment from an ATG Content Administration cluster:

 For each cluster server, complete the deployment procedures described in Setting Up
Deployment.

 For each cluster server, set its serverName and drpPort properties in
/atg/dynamo/service/ServerName.properties to values that are unique within
the cluster.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

9 5

7 - S e t t i n g U p a n A T G C o n t e n t A d m i n i s t r a t i o n C l u s t e r

μ
For example, you might set server jupiter as follows:

serverName=jupiter:8850

drpPort=8850

Then you can set server saturn as follows:

serverName=saturn:18850

drpPort=18850

 Set up a ServerLockManager and ClientLockManagers for the asset management
server cluster. A ClientLockManager must be set up on each ATG server in the cluster.
For information about configuring a ServerLockManager and ClientLockManagers,
refer to the SQL Repository Caching chapter in the ATG Repository Guide.

Note: Do not run any ATG Content Administration modules or DAF Deployment on a
standalone ServerLockManager. Doing so causes deployment deadlocks.

 In order to configure a cluster for switch deployment, set each server’s remoteHosts,
remoteRMIPorts, and remotePorts properties appropriately.

Configure a Cluster for Switch Deployment

In order to enable switch deployment from a multi-server cluster, each server must be configured with
contact data about the other servers in the cluster. For each server in a cluster, configure these properties
in /atg/epub/Configuration:

 remoteHosts: In a comma-delimited list, specify the host names of other servers in
this server’s cluster.

 remoteRMIPorts: In a comma-delimited list, specify the RMI port settings that are
configured for the hosts specified in remoteHosts. List the ports in the same order as
the corresponding hosts.

 remotePorts: Set this property only if you use the
FileSynchronizationDeployServer to synchronize distributed file system assets
(see Manage Distributed File Assets).

In a comma-delimited list, specify the file synchronization ports that are configured for
the other servers in their FileSynchronizationDeployServer components. List the
ports in the same order as the corresponding hosts in remoteHosts.

For example, server pluto.acme-widgets.com might have the following settings for other servers in the
same cluster:

remoteHosts=\

 jupiter.acme-widgets.com,\

 saturn.acme-widgets.com,\

 uranus.acme-widgets.com

remoteRMIPorts=\

 8860,\

 8860,\

 8860

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

9 6

7 - S e t t i n g U p a n A T G C o n t e n t A d m i n i s t r a t i o n C l u s t e r

μ

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

9 7

8 - P r o j e c t W o r k f l o w s

μ
8 Project Workflows

ATG Content Administration uses workflows to define the tasks that constitute a project’s lifecycle, and to
manage the project’s progress from one task to another. Workflows typically let users perform these tasks:

 Author or revise project asset content

 Review content changes

 Approve the project for deployment

 Verify deployment

You can customize workflows to suit your business requirements. For example, the default workflow
provides only one content review task; if desired, you can modify the workflow so it provides multiple
content review cycles by different reviewers.

A project’s workflow defines deployment targets; it also specifies whether assets are deployed directly to
production targets, or are initially deployed to staging targets where they can be evaluated before final
deployment to production. You decide which deployment model to use when you assemble the asset
management server’s Web application (see Installed Workflows).

Note: All project workflows must use the same deployment model: either production-only or
staging/production.

Recommended Background Reading

This chapter describes the workflows that are provided with ATG Content Administration, and explains
how you can modify them. It assumes you are familiar with the following documentation:

 Using Workflows in the ATG Personalization Guide for Business Users describes how to
create workflows with the ATG Control Center.

 Creating and Configuring Workflows in the ATG Personalization Programming Guide
explains how to configure backend support for workflows and how to extend
workflow features through the workflow API.

Chapter Contents

This chapter contains the following sections:

 Installed Workflows

 Asset Locking and Check-in

 Creating Project Workflows

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

9 8

8 - P r o j e c t W o r k f l o w s

μ
 Workflow Action Elements

Installed Workflows
The ATG installation provides two workflows, which are described in this chapter:

 Production-only (default) supports deployment to a single target.

 Staging/production supports deployment to two targets: first a staging target, then a
production target.

Only one of these is available, depending on how you assemble the asset management server application.
In order to use the staging/production workflow, the EAR file that you deploy on the asset management
server must be assembled with the -layer staging option.

Workflow Target Sites

The workflows provided by the ATG installation initially define one or two target sites with the following
identifiers:

 Production is the sole target defined in the production-only workflow.

 Staging and Production targets are defined in the staging/production workflow.

In order to use a workflow with the predefined target site identifiers, you must define the deployment
topology with site names that correspond exactly to these identifiers. For more information on defining
target sites, see Define the Deployment Topology.

Production-Only

Unmodified, the production-only workflow deploys to a single production target and contains the
following sequence of task elements:

1. Author

2. Content review

3. Approve for production deployment

4. Wait for production deployment completion

5. Verify production deployment

The following sections describe these elements and the sequence of elements associated with them, as
set up in the ATG installation. For information about individual workflow elements, see Workflow Action
Elements.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

9 9

8 - P r o j e c t W o r k f l o w s

μ
Author

Options Action

Ready for review Lock project assets from further edits; check whether the head
versions of project assets match the current head versions on
the main branch. Advance to the next task, Content Review.

Delete Project See action element Delete Project.

Content Review

Options Action

Approve Content Advance workflow to next task, Approve for production
deployment.

Reject Reopen project; return workflow to Author.

Delete Project See action element Delete Project.

Approve for Production Deployment

Options Action

Approve and Deploy to
Production

Approve and deploy project: advance workflow to next task,
Wait for production deployment completion.

Approve for Production
Deployment

Approve project, advance workflow to next task, Wait for
production deployment completion.

Reject Release asset locks; return workflow to Author task.

Wait for Production Deployment Completion

Two outcomes are possible:

 Deployment succeeds: advance workflow to next task Verify production deployment.

 Deployment fails: return workflow to previous task Approve for production
deployment.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 0 0

8 - P r o j e c t W o r k f l o w s

μ
Verify Production Deployment

Options Action

Accept Production
Deployment

Validate project deployed on target, and take the following
actions:

1. Check in project’s workspace.

2. Complete project.

3. Complete process.

Revert Assets on
Production Immediately

Revert assets Immediately on target. If revert operation is
successful: release asset locks, reopen project, and return to
Author. If revert operation fails: return to Verify production
deployment.

Staging/Production

The unmodified staging/production workflow performs these tasks:

1. Author

2. Content review

3. Approve for staging deployment

4. Wait for staging deployment completion

5. Verify staging deployment

6. Approve for production deployment

7. Wait for production deployment completion

8. Verify production deployment

The following sections describe these tasks and the sequence of actions and events that follow them, as
set up in the ATG installation. For information about individual workflow elements, see Workflow Action
Elements.

Author

Options Action

Ready for review Lock project assets from further edits; check whether the head
versions of project assets match the head versions on the main
branch. Advance to the next task element.

Delete Project See action element Delete Project.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 0 1

8 - P r o j e c t W o r k f l o w s

μ
Content Review

Options Action

Approve Content Advance workflow to next task, Approve for staging
deployment.

Reject Reopen project; return workflow to Author.

Delete Project See action element Delete Project.

Approve for Staging Deployment

Options Action

Approve and Deploy to
Staging

Approve and deploy project: advance workflow to next task,
Wait for staging deployment completion.

Approve for Staging
Deployment

Approve project, advance workflow to next task, Wait for
staging deployment completion.

Reject Release asset locks; return workflow to Author task.

Wait for Staging Deployment Completion

Two outcomes are possible:

 Deployment succeeds; advance workflow to next task Verify staging deployment.

 Deployment fails: return workflow to previous task Approve for staging deployment.

Verify Staging Deployment

Options Action

Accept Staging
Deployment

Validate project deployed on target, and advance workflow to
next task, Approve for production deployment.

Revert Assets on Staging
Immediately

Revert assets Immediately on target. If revert operation is
successful: release asset locks, reopen project, and return to
Author. If revert operation fails: return to Verify staging
deployment.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 0 2

8 - P r o j e c t W o r k f l o w s

μ
Approve for Production Deployment

Options Action

Approve and Deploy to
Production

Approve and deploy project: advance workflow to next task,
Wait for production deployment completion.

Approve for Production
Deployment

Approve project, advance workflow to next task, Wait for
production deployment completion.

Reject Release asset locks; return workflow to Author task.

Wait for Production Deployment Completion

Two outcomes are possible:

 Deployment succeeds; advance workflow to next task Verify production deployment.

 Deployment fails: return workflow to previous task Approve for production
deployment.

Verify Production Deployment

Options Action

Accept Production
Deployment

Validate project deployed on target, and take the following
actions:

1. Check in project’s workspace.

2. Complete project.

3. Complete process.

Revert Assets on
Production Immediately

Revert assets Immediately on Target. If revert operation is
successful, return to Verify staging deployment. If revert
operation fails, repeat Verify production deployment.

Asset Locking and Check-in
Workflow deployment elements trigger project asset locking as follows:

 If the project workflow includes staging and production targets, project assets are
locked when a user approves deployment to staging.

 If the project workflow includes only a production target, assets are locked when a
user approves deployment to production.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 0 3

8 - P r o j e c t W o r k f l o w s

μ
In both cases, assets remain locked until deployment to production is complete and verified. At that
point, the workflow checks in project assets and unlocks the assets. Until then, other projects cannot
deploy those assets. You can determine which assets are locked by other projects by opening the
project’s Lock Conflicts tab.

If projects routinely contain large numbers of assets, you can optimize asset locking in order to advance
the project workflow more quickly. See Optimizing Workflow Performance in the Setting Up an Asset
Management Server chapter.

Note: Project assets can be deployed to one-off targets at any stage of the project’s workflow, whether
locked or unlocked. For more on one-off targets, see One-Off Deployments in the Deployment Concepts
chapter.

Creating Project Workflows
You are likely to supplement the installed ATG project workflow to suit your special requirements. You
should create a workflow by copying the installed workflow and use that as your starting point. In general,
you should adhere as closely as possible to the original workflow, especially with respect to elements that
handle deployment. Creating project workflows from scratch is not recommended.

Before you make structural changes to an existing workflow, make sure it is not in use by open projects;
doing so invalidates those projects and make it impossible to deploy their assets. Structural changes
include adding or deleting elements. You can safely make cosmetic changes to a workflow such as
changing its display name, and changing security access rights to a workflow and its elements.

Phasing Out a Workflow

When you introduce a new workflow to replace another one, you can safely phase out the old workflow
by simply removing access rights to it. In this way, only the new workflow is accessible, and the
deprecated workflow is phased out as soon as all current projects that use it are complete.

Procedure

Edit a workflow in the following steps:

1. In the ACC, locate the project workflow to use. Currently installed workflows are
located in:

Workflow > Publishing > ATG Content Administration

2. Right-click the project workflow name and choose Duplicate Workflow Definition.

3. Set the new workflow’s location to the ATG Content Administration folder.

4. Give the duplicate workflow an appropriate name.

5. Click OK.

6. Open the new workflow for editing.

7. Assign a display name and description to the new workflow. The display name appears
as an ATG Content Administration operation on the Home page of the ATG Business

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 0 4

8 - P r o j e c t W o r k f l o w s

μ
Control Center. Users choose this operation in order to start a project that uses this
workflow.

To edit the display name and description:

 Right-click the initial Workflow element.

 Choose Edit Details.

8. Change the workflow as desired. For detailed information on editing workflows, refer
to the ATG Personalization Guide for Business Users. See also the next section, Workflow
Action Elements.

9. If desired, set appropriate access rights on the workflow and individual task elements.
Workflow access rights determine whether users can create a project with that
workflow, and the tasks that they can manage.

To set access rights for the workflow:

 Right-click the initial Workflow element.

 Choose Edit Details > Set Access Rights.

To set access rights for a task element:

 Right-click on the task element

 Choose Edit Details > Set Access Rights.

For detailed information about setting access rights to workflow and workflow
elements, see Project and Workflow Security in the Managing User Access and Security
chapter.

10. Save changes to the new workflow.

Note: A workflow can be saved only if the deployment elements have defined targets.

11. Reassemble and redeploy the Web application containing ATG Content
Administration. The next time you run the ATG Business Control Center, the new
project workflow appears under the ATG Content Administration list of project types.

Workflow Action Elements
This section lists action elements that ATG Content Administration provides, including the default set of
workflow elements. You add these elements to an ATG Content Administration workflow through the
ACC workflow editor.

Workflow actions extend class atg.epub.workflow.process.action.PublishingAction. For
general information on workflow architecture, see the ATG Personalization Programming Guide.

Approve and Deploy Project

Deploys to the specified target. This target must already be defined, as described later in this manual in
Define the Deployment Topology.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 0 5

8 - P r o j e c t W o r k f l o w s

μ
Approve Project

Marks the project as approved for deployment on the specified target; deployment is triggered either by
the RecurringDeploymentService or manually through the ATG Business Control Center Admin Console.
The target must already be defined, as described later in this manual in Define the Deployment Topology.

Check Assets Are Up to Date

Compares the head version of project assets against the current head versions of those assets on the main
branch. If these are not the same, the system generates an alert; the user must resolve version
discrepancies before the workflow can be advanced.

For more on how ATG Content Administration versions assets, see Versioning Process earlier in this guide.
For more information on asset conflict resolution, see the ATG Content Administration Guide for Business
Users.

Check In Project’s Workspace

Checks in all resources associated with the current project, thereby creating checked-in versions of assets
from the working versions in the project.

Clone Project

Valid only for ATG Outreach, used exclusively by the Edit Asset process workflow as part of the internal
procedure for managing projects: this element clones assets from the previous project associated with a
process to the current project, creating working versions of those assets. You typically do not add this
element to project workflows.

Complete Process

Used by a project workflow’s parent process to indicate that the current process is complete.

Complete Project

Indicates that the current project is complete.

Create Process Data

Valid only for ATG Outreach, specifies process data type.

Create Project

Used by the workflow’s parent process to start a project.

Delete Project

Terminates the workflow, and ends the project without checking in the workspace. Typically this action is
available only before the project reaches the deployment stage.

Release Asset Locks

Called after a deployment is reverted from all targets. Before the workflow can return to a predeployment
task such as Author, the project assets must be unlocked.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 0 6

8 - P r o j e c t W o r k f l o w s

μ
Reopen Project

After a successful revert from operation, reopens the project for further editing. Because this action
enables users to modify project assets, it should always be followed by a Go To element that redirects the
workflow to the Author task element.

Revert Assets Immediately on Target

Reverts deployment of project assets from the specified target.

Send Task Notification

Sends an email message to the recipients you specify – the owner of the current task, the permitted
actors, the owner or permitted actors, or the last actor. In this case, Actors refers to anyone who has access
rights to the task. This element is defined by the emailNotifyTaskActors entries in the file:

<ATG10dir>/Publishing/base/config/atg/epub/workflow/process/workflowProcessManager

.xml

Use the Send Notification action to send email messages outside the context of a task.

Validate Project Deployed on Target

Checks to ensure the workflow can be safely advanced to the next task. This element should be called
after a project is deployed, to prevent the workflow from advancing to the next task before deployment is
complete.

Note: ATG Content Administration does not support task priorities or dynamic routing of tasks.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 0 7

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ
9 Customizing Asset Display

The ATG Business Control Center uses the View Mapping system to display assets and asset properties.
The View Mapping system is an object-based framework of dynamically generated pages, which are
created at runtime according to the configuration in the View Mapping repository. Thus, you can
customize asset and property display without hard-coding links or parameters in the pages themselves.

Note: The system and procedures described in this chapter apply only to portions of the ATG Business
Control Center that are JSP-based. Interfaces that are Flex-based have different customization
requirements. These are ATG Merchandising (with the exception of Price Lists and Commerce Search),
Promotions, and Site Administration.

This chapter contains the following sections:

 View Mapping System

 itemView and propertyView JSP Fragments

 View Mapping Repository

 Overriding Default Asset Display Settings

 getItemMapping

 Setting Up Linked Assets

 Configuring the Edit Live! HTML Editor

View Mapping System
The View Mapping system renders assets and their properties via itemMappings. Each itemMapping
serves as a container within the View Mapping repository for the objects required to render an asset.

For example, the following graphic depicts how the View Mapping system might organize asset
properties in two separate tabs:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 0 8

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ

The View Mapping system is three-tiered:

 The asset’s itemMapping lists one or more itemViewMappings—two in this example.

 Each itemViewMapping points to an itemView, which in turn points to a JSP fragment
that is used to generate a tab. Each itemViewMapping also lists one or more
propertyViewMappings.

 Each propertyViewMapping points to a propertyView, which in turn points to a JSP
fragment that is used to render the property.

When a user chooses an asset in the ATG Business Control Center, the following events occur:

1. The getItemMapping tag in the JSP queries the View Mapping system, passing it:

 The user’s current mode—for example, edit or view

 The asset’s item descriptor type

2. The View Mapping system returns the appropriate itemMapping, which serves as a
container within the View Mapping repository for the objects needed to render an
asset in a specific mode.

3. On obtaining the itemMapping, the system finds the appropriate underlying JSP
fragments.

Note: In the context of the View Mapping system, item corresponds to asset.

View Mapping Attributes and Inheritance

View mapping objects can set attributes that are passed to the corresponding JSP fragment. These
attributes are added to the appropriate object through the ACC as key/value pairs and are stored in the
View Mapping repository. Because the attributes are stored in the repository rather than defined in each
page, you can easily adapt the appearance of assets or properties and maintain a variety of display
options that suit different users and contexts.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 0 9

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ
ATG Content Administration provides itemViews and propertyViews with predefined attributes whose
values are applied when a particular view is displayed. For example, the propertyView
WYSIWYG HTML Editor sets a number of variables that control the editor’s appearance and behavior,
such as appletHeight, appletWidth, dictionary, inputFieldMaxlength, rows, and spellCheck.

itemMapping attributes are passed to each itemViewMapping, whose attributes supersede its parent’s
settings. For example, an itemViewMapping can specify an itemView that overrides the default itemView
used for that asset type. Each itemViewMapping also contains settings that define the appearance of the
tab, such as its display name.

propertyViewMappings can provide property-level overrides. For example, if the property
assetX.prop1, which is a String, requires a property editor different from the default simple String
editor, the propertyViewMapping for assetX.prop1 can specify a propertyView that overrides the
default.

For more information on the attributes of each object, see View Mapping Repository.

itemView and propertyView JSP Fragments
The View Mapping system displays assets in the ATG Business Control Center by combining two types of
JSP fragments:

 itemView JSP fragments

 propertyView JSP fragments

The View Mapping system determines how to combine these JSPs by examining the links in the View
Mapping object hierarchy, the attribute values stored in the object hierarchy, and the item descriptor in
the View Mapping repository definition file.

itemView JSP Fragments

An itemView object in the View Mapping system contains a pointer to an itemView JSP and identifies the
itemView’s mode, such as view or edit. An itemView appears in the ATG Business Control Center as a
tabbed page.

propertyView JSP Fragments

propertyView JSP fragments control display of asset properties. Each property data type uses a different
propertyView JSP. For example, a property of type date is displayed by default with a date picker
JavaScript control; while a property of type big string is presented using the default HTML editor
propertyView WYSIWYG HTML Editor. The HTML that displays each data type is generated from the
corresponding propertyView JSP fragment.

For example, the default repository itemView for edit mode—Standard RepositoryItem Editor—
uses the JSP oneColumnEdit.jsp, in this location:

<ATG10dir>/PubPortlet/PubPortlets.ear/portlets.war/html/views/item/gsa/

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 1 0

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ
The oneColumnEdit.jsp page iterates through the properties specified in the asset’s repository
definition file. It generates a form field for each property by including the appropriate propertyView JSP
fragment.

View Mapping Repository
The View Mapping repository is defined by the ViewMapping.xml file, in:

<ATG10dir>/BIZUI/config/config.jar

The repository stores the following items, which are defined by corresponding item descriptors in the
repository definition file:

 itemMapping

 itemViewMapping

 itemView

 propertyViewMapping

 propertyView

 Map modes

 View Mapping Form Handlers

itemMapping

An itemMapping is a top-level container object where you configure the edit mode and display of an
asset type. itemMappings provide default mapping information for general classes of asset types, such as
repository items and virtual files.

Item Descriptor Definition

The itemMapping item descriptor is defined in ViewMapping.xml:

<item-descriptor name="itemMapping" id-space-names="viewmapping"

 default="true" display-property="description" query-cache-size="80">

 <table name="vmap_im" type="primary" id-column-names="id">

 <property name="id" data-type="string"/>

 <property name="name"/>

 <property name="description"/>

 <property name="itemPath" column-name="item_path"/>

 <property name="itemName" column-name="item_name"/>

 <property name="isReadOnly" column-name="is_readonly"

 data-type="boolean"/>

 <property name="formHandler" column-name="form_handler"

 item-type="formHandler"/>

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 1 1

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ
 <property name="mode" column-name="mode_id" required="true"

 item-type="mapMode"/>

 </table>

 <!-- attributes property -->

 <table name="vmap_attrval_rel" type="multi"

 id-column-name="mapper_id" multi-column-name="name">

 <property name="attributes" column-name="attribute_id"

 data-type="map" component-item-type="attributeValue"

 cascade="update,delete"/>

 </table>

 <!-- viewMappings property, maps to array of ItemViewMapping -->

 <table name="vmap_im2ivm_rel" type="multi" id-column-name="item_id"

 multi-column-name="sequence_num">

 <property name="viewMappings" data-type="list"

 column-name="view_id" component-item-type="itemViewMapping"

 cascade="update,delete"/>

 </table>

 </item-descriptor>

itemMapping Properties

itemMapping properties include the following:

Property Description

name The name of the item mapping. For all item mappings, specify the
default value, which is an asterisk (*).

Note: This property anticipates future releases of ATG Content
Administration.

description Optional description of the item mapping.

itemPath The Nucleus path of the component that represents the asset’s
repository or VFS.

For example, the itemPath for the default text file asset type is set to:

/atg/epub/file/WWWFileSystem

itemName The repository item descriptor name or the VFS file type of this asset. For
example, the itemName value for the default text file asset type is
wwwTextFileAsset.

formHandler A reference to a View Mapping formHandler item used to handle input
of asset properties.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 1 2

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ
Property Description

mode The map mode to use for this mapping. For more information, see Map
Modes.

attributes Optional key/value pairs that define an attribute of this item mapping.

viewMappings A list of itemViewMapping references. Each itemViewMapping
corresponds to a separate tab of asset information.

itemViewMapping

An itemViewMapping represents a tab in the user interface.

Item descriptor Definition

The itemViewMapping item descriptor is defined as follows in ViewMapping.xml:

<item-descriptor name="itemViewMapping" id-space-names="viewmapping"

 display-property="name" query-cache-size="40">

 <table name="vmap_ivm" type="primary" id-column-name="id">

 <property name="id" data-type="string"/>

 <property name="name"/>

 <property name="displayName" column-name="display_name"/>

 <property name="description"/>

 <property name="view" column-name="view_id" item-type="itemView"/>

 </table>

 <!-- attributeValues property -->

 <table name="vmap_attrval_rel" type="multi"

 id-column-name="mapper_id" multi-column-name="name">

 <property name="attributeValues" column-name="attribute_id"

 data-type="map" component-item-type="attributeValue"

 cascade="update,delete"/>

 </table>

 <!-- propertyViewMappings (PropertyViewMapping) property -->

 <table name="vmap_ivm2pvm_rel" type="multi" id-column-name="ivm_id"

 multi-column-name="name">

 <property name="propertyMappings" column-name="pvm_id"

 data-type="map" component-item-type="propertyViewMapping"/>

 </table>

</item-descriptor>

itemViewMapping Properties

itemViewMapping properties include the following:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 1 3

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ

Property Description

name The name for the view in the ACC. You can use the name value to
switch between different views for the same set of asset
properties; for example, you might have one view for assets
displayed and edited in English and another view in Spanish.

displayName The display name for the view in the ATG Business Control
Center—for example, the value that appears in the banner of the
asset properties tab.

description Optional description of this item.

view Optional reference to an itemView. If omitted, the
itemViewMapping uses the default itemView.

attributeValues Optional key/value pairs that define an attribute of this
itemViewMapping.

propertyMappings A map of asset properties to propertyViewMappings.

itemView

An itemView specifies a JSP fragment that renders a page of information for a particular asset type in a
given mode.

Item descriptor Definition

The itemView item descriptor is defined in ViewMapping.xml as follows:

<item-descriptor name="itemView" display-property="name" query-cache-size="10">

 <table name="vmap_iv" type="primary" id-column-name="id">

 <property name="id" data-type="string"/>

 <property name="name"/>

 <property name="description"/>

 <property name="uri"/>

 <property name="applicationName" column-name="app_name"/>

 <property name="mode" column-name="mode_id" required="true"

 item-type="mapMode"/>

 </table>

 <!-- attributes property -->

 <table name="vmap_iv2ivad_rel" type="multi" id-column-name="view_id"

 multi-column-name="name">

 <property name="attributes"

 component-item-type="itemViewAttributeDefinition"

 column-name="attr_id" data-type="map" cascade="update,delete"/>

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 1 4

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ
 </table>

</item-descriptor>

itemView Properties

itemView properties include the following:

Property Description

name The name of the itemView.

description Optional description of the itemView.

uri The URI of the JSP fragment that renders this view.

applicationName Name of the Web application where this view resides. The value is
the display name defined for the application in its web.xml file.

mode The map mode to use for this view. For more information, see Map
Modes.

attributes Optional key/value pairs that define an attribute of this itemView.

Example

The following table shows property settings for the itemView Standard RepositoryItem Editor:

Property Setting

id 2

name Standard RepositoryItem Editor

description Repository Item Edit View - 1-column layout

uri /html/views/item/gsa/oneColumnEdit.jsp

applicationName Publishing Portlets

mode edit

attributes {title=Replacement view title, textAbove=Text above the form}

propertyViewMapping

A propertyViewMapping identifies the propertyView used to render a specific property, or a component
property if the property type is a collection. A propertyViewMapping can override propertyView attributes
when the default settings are inappropriate.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 1 5

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ
Item Descriptor Definition

The propertyViewMapping item descriptor is defined as follows in ViewMapping.xml:

<item-descriptor name="propertyViewMapping" id-space-names="viewmapping"

 display-property="description" query-cache-size="300">

 <table name="vmap_pvm" type="primary" id-column-name="id">

 <property name="id" data-type="string"/>

 <property name="description"/>

 <property name="propertyView" column-name="pview_id"

 item-type="propertyView"/>

 <property name="componentPropertyView" column-name="cpview_id"

 item-type="propertyView"/>

 </table>

 <!-- attributeValues property -->

 <table name="vmap_attrval_rel" type="multi" id-column-name="mapper_id"

 multi-column-name="name">

 <property name="attributeValues" column-name="attribute_id"

 data-type="map" component-item-type="attributeValue"

 cascade="update,delete"/>

 </table>

 <!-- componentAttributeValues property -->

 <table name="vmap_cattrval_rel" type="multi"

 id-column-name="mapper_id" multi-column-name="name">

 <property name="componentAttributeValues" column-name="attribute_id"

 data-type="map" component-item-type="attributeValue"

 cascade="update,delete"/>

 </table>

 </item-descriptor>

propertyViewMapping Properties

propertyViewMapping properties include the following:

Property Description

description Display name for this item

propertyView Optional reference to a propertyView item. If omitted, the
propertyViewMapping uses the default propertyView.

componentPropertyView Optional reference to a propertyView item for component
properties, if this mapping refers to a collection type.

attributeValues Optional key/value pairs that affect the propertyView.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 1 6

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ
Property Description

componentAttributeValues Optional key/value pairs that affect the
componentPropertyView.

propertyView

A propertyView specifies the JSP fragment that renders a specific property in an itemView. It also
identifies the property’s mode and data type. For example, a propertyView can specify a JSP fragment
that is used to edit a string or view a boolean value.

A propertyView defines an attribute map of values that are used in the JSP to control how the property is
presented—for example, by specifying the number of rows and columns for displaying a text area.

Note: To find the JSP fragment that is used to render a specific property, display the page source and
search for the label of the property you are interested in. Default views surround page fragments with
comments such as the following:

<!-- Begin jsp URI /html/views/property/bigstring/htmlEdit.jsp -->

<!-- End jsp URI /html/views/property/bigstring/htmlEdit.jsp -->

Item Descriptor Definition

The propertyView item descriptor is defined as follows in ViewMapping.xml:

<item-descriptor name="propertyView" display-property="name"

query-cache-size="300">

 <table name="vmap_pv" type="primary" id-column-name="id">

 <property name="id" column-name="id" data-type="string"/>

 <property name="type" column-name="type" data-type="string"/>

 <property name="name" column-name="name" data-type="string"/>

 <property name="description" column-name="description"

 data-type="string"/>

 <property name="uri" column-name="uri" data-type="string"/>

 <property name="applicationName" column-name="app_name"

 data-type="string"/>

 <property name="isDefault" column-name="is_default"

 data-type="boolean"/>

 <property name="isReadOnly" column-name="is_readonly"

 data-type="boolean"/>

 <property name="isComponentPropertyView" column-name=

 "is_component" data-type="boolean"/>

 <property name="mode" column-name="mode_id" required="true"

 item-type="mapMode"/>

 </table>

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 1 7

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ
 <!-- attributes property -->

 <table name="vmap_pv2pvad_rel" type="multi" id-column-name="view_id"

 multi-column-name="name">

 <property name="attributes"

 component-item-type="propertyViewAttributeDefinition"

 column-name="attr_id" data-type="map" cascade="update,delete"/>

 </table>

 </item-descriptor>

propertyView Properties

propertyView properties include the following:

Property Description

type The data type to which this view applies.

name The name for the view in the ACC.

description Optional description of the propertyView.

uri The URI of the JSP that renders this view.

applicationName Name of the Web application where this view resides. The
value is the display name defined for the application in its
web.xml file.

isDefault A boolean property, where true specifies to use this view
as the default for this property, when in the specified
mode.

isReadOnly A boolean property, where true specifies to disallow
editing of this view.

isComponentPropertyView A boolean property, where true specifies this view is used
for a component property (component of a collection).

mode The map mode to use for this view. For more information,
see Map Modes.

attributes Optional key/value pairs that define an attribute of this
propertyView.

Example: Setting propertyView Properties for an HTML Editor

The following table shows the WYSIWIG HTML Editor propertyView—the default HTML editor that is
used in the ATG Business Control Center to edit big string properties:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 1 8

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ
Property Setting

type big string

name WYSIWYG HTML Editor

description WYSIWYG HTML editor for big string properties

uri /html/views/property/bigstring/htmlEdit.jsp

isDefault true

isReadOnly true

isComponentPropertyView false

applicationName Publishing Portlets

mode edit

attributes key/value pairs that define this property editor’s
attributes; see the example that follows.

The following table shows the attributes property keys that are set to control the display and behavior
of the propertyView WYSIWYG HTML Editor:

Key Value

appletHeight Height of EditLive applet, in pixels

appletWidth Width of EditLive applet, in pixels

columns Number of columns

defaultValue Default value for field

dictionary Spell check dictionary to use

inputFieldMaxLength Maximum length of the data in the field

rows Number of rows

simpleUI Switch to show the applet in simple mode

spellCheck Allow spell check on the field

textAboveField Text to display above the field

textBelowField Text to display below the field

title Replacement field title

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 1 9

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ
For more information on the WYSIWYG HTML editor, see Configuring the EditLive! HTML Editor.

Note: When specifying a property name in a propertyView item, use the property’s actual name as
specified in the repository, which can differ from its display name in the ATG Business Control Center. You
can determine a property’s name through the ATG Dynamo Server Admin: in the Component Browser,
navigate to the repository that contains the asset type you are working with.

Hiding Properties

By default, the standard views display all asset properties. To prevent display of a property in the ATG
Business Control Center, set up a propertyViewMapping for that property and map it to a Hidden
propertyView. You can also use the tag pws:categorize to restrict the properties that appear on a page,
individually or by category.

Sorting Properties

The order in which properties appear on a page is controlled by the tag pws:Categorize, which includes
attributes for sorting properties by their category value in the repository definition file.

Map Modes

Map modes provide symbolic names used to categorize itemViews and propertyViews by function. The
following map modes are supplied with ATG Content Administration:

 browse

 conflict

 diff

 edit

 pick

 view

Item Descriptor Definition

The mapMode item descriptor is defined as follows in ViewMapping.xml:

<item-descriptor name="mapMode" display-property="name" query-cache-size="10">

 <table name="vmap_mode" type="primary" id-column-name="id">

 <property name="id" data-type="string"/>

 <property name="name"/>

 <property name="description"/>

 <property name="fallbackMode"

 column-name="fallback_id" item-type="mapMode"/>

 </table>

</item-descriptor>

Map modes can include a fallback mode, which identifies the mode that should be used if a default
propertyView is not found in the primary mode. This behavior can be used to minimize the number of

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 2 0

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ
default propertyViews that an application requires. Fallback modes are searched recursively until a mode
with an empty fallback mode or a mode that has already been encountered is reached.

You can add new map modes if required. The following example assumes you have a business
requirement to display asset properties so that they fit in a limited amount of space. It shows the basic
steps for setting up a new map mode to fulfill this requirement and specify its fallback mode—in this case,
view.

1. Create the item for the new mode—in this example, condensedView –and set its
fallback mode to view.

2. In the appropriate JSP, add a getItemMapping tag with a mode parameter set to
condensedView:

<biz:getItemMapping var="imap"

 mode="condensedView" item="${item}"/>

3. Create propertyView items that truncate potentially large data values, and set their
mode to condensedView.

Note: You can also set the fallback mode within the getItemMapping tag. For example:

<biz:getItemMapping var="imap" mode="condensedView"

 fallbackMode="view"

 item="${item}"/>

View Mapping Form Handlers

An itemMapping can specify a Nucleus form handler component to handle input of asset data. The form
handler item in the View Mapping repository also provides attributes used to modify the behavior of the
form handler that the item represents.

Item Descriptor Definition

The formHandler item descriptor is defined as follows in ViewMapping.xml:

<item-descriptor name="formHandler" display-property="name"

 id-space-names="viewmapping" query-cache-size="20">

 <table name="vmap_fh" type="primary" id-column-name="id">

 <property name="id" data-type="string"/>

 <property name="name"/>

 <property name="description"/>

 <property name="path" column-name="component_path"/>

 </table>

 <!-- attributes property -->

 <table name="vmap_attrval_rel" type="multi"

 id-column-name="mapper_id" multi-column-name="name">

 <property name="attributes" column-name="attribute_id"

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 2 1

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ
 data-type="map" component-item-type="attributeValue"

 cascade="update,delete"/>

 </table>

</item-descriptor>

formHandler Item Properties

formHandler item properties include the following:

Property Description

name The form handler’s name in the ACC

description Optional description of this formHandler

path The Nucleus path of this formHandler component

attributes Optional key/value pairs. This property sets the attributes property of the
form handler class atg.epub.servlet.AssetFormHandler.

Form handlers are provided for all the default asset types in ATG Content Administration. The following
table shows the form handler items in the view mapping repository and the form handler component to
which they point.

ACC form handler items Form handler component in
/atg/epub/servlet

DefaultFile BinaryFileAssetFormHandler

DefaultRepository RepositoryAssetFormHandler

DefaultRepositoryConflict ProjectDiffFormHandler

DefaultRepositoryDiff AssetDiffFormHandler

File Folder Form Handler FolderAssetFormHandler

File Form Handler FileRepositoryAssetFormHandler

ViewMapping:formHandler:100062 TextFileAssetFormHandler

ViewMapping:formHandler:100080 SegmentAssetFormHandler

View Mapping system form handlers must implement this interface:

atg.epub.servlet.AssetFormHandler

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 2 2

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ
In general, form handlers should subclass RepositoryAssetFormHandler or one of the file asset form
handler classes in atg.epub.servlet:

 BaseFileAssetFormHandler

 FolderAssetFormHandler

 GenericFileAssetFormHandler

 BinaryFileAssetFormHandler

 TextFileAssetFormHandler

The ATG API Reference describes atg.epub.servlet.AssetFormHandler. For more about View
Mapping form handlers, see Appendix C: Form Handlers.

Overriding Default Asset Display Settings
View mapping objects are provided for all default asset types and properties in ATG Content
Administration. Thus, you can display most asset or properties without configuring any view mappings;
the View Mapping system uses the default items to represent assets.

To change the presentation of a default asset type—for example, to change a property so it uses a
dropdown list instead of radio buttons as an edit control—you must configure an appropriate view
mapping item.

The View Mapping system acts as a hierarchy of overrides, so you only need to configure the parts of a
view that differ from the default. For example, to customize the display of the myList property in asset
type foo:

1. Create an itemMapping for asset type foo.

2. Link the new itemMapping to a new or existing itemViewMapping.

3. Create a propertyView and corresponding JSP fragment for the myList property.

4. Create a propertyViewMapping whose propertyView property references the new
propertyView myList.

5. In foo’s itemViewMapping, map the asset type’s myList property to its
propertyViewMapping via the itemViewMapping’s property propertyMappings.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 2 3

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ

Thereafter, the new propertyView is used when you edit an asset of type foo. The View Mapping system
renders the asset with the changed property setting, which overrides the default setting.

Caution: Always create view mapping items rather than edit the default ones, as many default items are
used more than once in the ATG Business Control Center. Thus, changing an item can unintentionally
affect multiple asset types or properties.

The basic process for creating items for the view mapping repository—for example, a propertyView or
itemViewMapping repository item—is the same:

1. Access the ACC and display the Publishing > View Mapping task window.

Note: The View Mapping menu displays only if your user profile belongs to a group
that has the Publishing: EPublishing Repository option enabled in the People
and Organizations > Control Center Groups window. For more information on
enabling Control Center Group options, refer to the ATG Programming Guide.

2. In the List field, specify the type of item to create, then click List. Existing items of this
type are listed. It can be helpful to review these as examples.

3. Click New Item. The New Item dialog box appears, with fields appropriate for a new
item of the type to create.

Using Resource Bundles
In order to support internationalization, you can specify resource bundles at the following levels, listed in
descending order of precedence:

1. propertyViewMapping

2. itemViewMapping

3. itemMapping

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 2 4

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ
You specify a resource bundle by adding the resourceBundle attribute to the appropriate property:

For this View Mapping component: Set resourceBundle in this property:

propertyViewMapping attributeValues
componentAttributeValues

itemViewMapping attributeValues

itemMapping attributes

Default Resource Bundle

If no resource bundle is explicitly specified at any level in the View Mapping hierarchy, the View Mapping
system looks for the default resource bundle of the current asset’s repository. The View Mapping system
finds this bundle by translating the repository’s Nucleus pathname into a CLASSPATH as follows:

nucleus-path/repositoryName=classpath.repositoryNameResource

For example, given the repository name /company/Catalog, the View Mapping system looks for a
resource bundle along the CLASSPATH as follows:

company.CatalogResource

getItemMapping
A JSP can call view mapping functionality by including a getItemMapping tag. This tag is defined in the
bizui tag library:

<ATG10dir>/BIZUI/taglibs/bizui/tld/bizui-1_0.tld

In order to call getItemMapping, the JSP must include this taglib directive:

<%@ taglib prefix="biz" uri="http://www.atg.com/taglibs/bizui" %>

Parameters

 getItemMapping has the following parameters:

Parameter Description

fallbackMode The fallback mode.

item The versioned repository item or virtual file

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 2 5

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ
Parameter Description

itemName The item descriptor name or VFS file type of the item (if the item parameter is
not specified)

itemPath The Nucleus component path of the item (if the item parameter is not specified)

mode The map mode to use for this item. For more information, see Map Modes.

propertyList A list of properties that are defined in the specified item or item descriptor. If this
parameter is set, the View Mapping system processes only the listed properties.

readOnlyMode Optionally specifies the mode to use for read-only properties.

showDefault A boolean property that specifies whether to show properties that do not have
explicit mappings. The default is true.

showExpert A boolean property that specifies whether to show (true) or hide (false) expert
properties.

For usage examples, see the pages in this directory:

<ATG10dir>/PubPortlet/PubPortlets.ear/portlets.war/html/ProjectsPortlet

For example, assetEditPage.jsp contains an instance of the getItemMapping tag used in the context
of a top-level itemMapping.

Setting Up Linked Assets
You can configure an asset property to expect a link to another asset as its value. To do so, set up the
repository definition so the parent asset property is defined as a repository item of the type to reference
as the child asset. In the following example, the definition of property xyz_ref references an item of type
xyz_rep_item:

<property column-name="xyz_ref_obj" name="xyz_ref"

 item-type="xyz_rep_item"

 repository="/AnyCorp/AnyMachine/MyAssetRepository"

 category="Basics" display-name="Reference"

 required="false" readable="true" writable="true"

 queryable="true" hidden="false" expert="false"

 cache-mode="inherit">

</property>

By default, the propertyView editor that is used in the ATG Business Control Center for properties of type
repository item is popUpPickerEdit.jsp. The editor supplies buttons for creating and deleting the link
as well as the mechanism for displaying the asset where the link points.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 2 6

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ
You can link any number of assets in this way: assets can have multiple child assets that link to their own
child assets or back to their parents, and so on.

The type of asset to which a link can be created is constrained to the single repository item type you
specify in the definition. Thus, business users can link to only one type of asset from each property. You
can, however, specify multiple sub-types as the property type. In this case, business users can select any
asset belonging to any specified sub-type as the target of the link. For more information on working with
repository item sub-types, refer to Item Descriptor Inheritance in the ATG Repository Guide.

Property links to other assets can also be defined as any of the following types:

 List

 Map

 Set

The editor automatically displays controls that are appropriate for each type.

When business users create links to assets through the asset editor in the ATG Business Control Center,
the target assets are automatically added to the current project and deployed like any other asset. For
more information, see Creating Linked Assets in the ATG Content Administration Guide for Business Users.

Troubleshooting the ViewMapping System
The ViewMapping system can be analyzed and debugged at several levels:

 Rendered JSP page source

 Asset form handler log file

 ViewMappingFactory log file

Rendered JSP Page Source

You can view the HTML source of rendered itemView and propertyView JSP fragments. By doing so, you
can determine which item mappings were used to render the asset. For example:

<!--

Mapping Information --------------------

description: Default Editable ItemMapping for Repository Items

itemPath: /atg/devtest/SecuredTestRepository

itemName: descriptor1

view: DefaultRepEdit, context root: /PubPortlets URI:

/html/views/item/gsa/oneColumnEdit.jsp

-->

For each rendered standard property, the HTML source includes comments that wrap the property. For
example:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 2 7

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ
<!-- Begin JSP, context root /PubPortlets, URI

/html/views/property/enumerated/radioGroupEdit.jsp -->

<!-- End JSP, context root /PubPortlets, URI

/html/views/property/enumerated/radioGroupEdit.jsp -->

Note: Custom property views should follow this convention, but are not required to do so.

Asset Form Handler Log File

ATG Content Administration provides three form handlers to view and edit assets. You can turn on
debugging for these form handler components by setting their loggingDebug properties to true in
localconfig. The standard form handler component paths are:

 /atg/epub/servlet/RepositoryAssetFormHandle

 /atg/epub/servlet/BinaryFileAssetFormHandler

 /atg/epub/servlet/TextFileAssetFormHandler

You can also turn on debugging within the JSP assetEditPage.jsp by modifying it in two locations. To
turn on debugging for the page rendering, modify the JSP as follows:

<!-- Import form handler specified in mapping -->

<dspel:importbean var="formHandler" bean="${imapformHandler.path}"/>

<c:set target="${formHandler}" property="loggingDebug" value="true"/>

To turn on debugging for the form submit:

<dspel:input type="hidden" value="${assetInfoPath}" priority="100"

bean="${imap.formHandler.path}.assetInfoPath"/>

<dspel:input type="hidden" value="${debug}" priority="100"

bean="${imap.formHandler.path}.loggingDebug"/>

ViewMappingFactory Log File

You can obtain detailed information on how the ViewMapping system renders items and properties
through JSP fragments, by setting the DefaultViewMappingFactory component’s loggingDefault
property to true. In order to render an item and its properties for viewing, the
DefaultViewMappingFactory performs these tasks:

1. Assembles custom itemViewMappings for the item to view, if any exist; otherwise, it
maps to the default itemViews.

2. Attaches to the itemViewMappings any custom propertyViewMappings that might
exist; otherwise, it uses the default propertyViewMappings.

The log file contains detailed information on this process.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 2 8

9 - C u s t o m i z i n g A s s e t D i s p l a y

μ
Configuring the EditLive! HTML Editor

ATG Content Administration includes a propertyView that displays a Java applet you can use to edit HTML
pages with the WYSIWYG HTML editor EditLive!. The output is an HTML fragment that can be included in a
page. The propertyView is set up to appear automatically when users edit any property of type
big string.

To configure the editor for custom asset properties, create appropriate view mapping items that include
the WYSIWYG HTML Editor propertyView. The default attributes of this item are shown as an example in
the section propertyView.

Because the output of the editor is an HTML fragment, it omits <html> and <body> tags. If the asset is an
HTML content item that is propagated to the file system, and it is then accessed directly from a browser
instead of being included in another page, you might have to add <html> or <body> tags as a post-edit
or through the Code tab of the editor.

When displaying on a page the value of a property that uses the WYSIWYG editor, use the valueishtml
directive to suppress display of HTML tags on the page:

<dsp:valueof valueishtml="true" param="element.data">

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 2 9

1 0 - D e p l o y m e n t C o n c e p t s

μ
10 Deployment Concepts

This chapter introduces concepts and features that are central to ATG Content Administration
deployment. It includes the following sections:

 Target Site Basics

 Deployment Process

 Deployment Scope

 Deployment Modes

 Destination Repositories

 Deploying Unique Data to Multiple Sites

 Deploying From Multiple Asset Management Server Clusters

 Deployment Scheduling

After reading this chapter, see the chapters that follow: Setting Up Deployment, for information about the
steps required to configure a asset management server for deployment; and Deploying Project Assets, on
different ways to execute a deployment.

Target Site Basics
In ATG Content Administration, a target site is a logical grouping of one or more servers that serve the
same content. When you deploy assets, you deploy them to a specified target site. The following diagram
illustrates a single target site in a production environment:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 3 0

1 0 - D e p l o y m e n t C o n c e p t s

μ

This diagram shows deployment of several projects to a single target site in a production environment. A
production or staging environment can include one or several target sites (see Identify Deployment
Target Sites). When you deploy projects to a site, every server in the site is updated with the asset versions
from those projects. The diagram shows both server clusters in the site being updated by a deployment
that is in progress.

This diagram shows a single target site; however, your configuration can include multiple sites. Moreover,
each site can include multiple server clusters.

Note: In the context of ATG Content Administration deployment, the term target site or site denotes a
logical grouping of one or more servers where projects are deployed. In this sense, your staging and
production environments can include one site or several sites. However, a single- or multi-server ATG
Content Administration environment cannot be used to manage the assets for multiple Web sites—for
example, www.mywebsite1.com and www.mywebsite2.com.

Target site servers run one of the following agents:

 Publishing agent on the ATG servers

 Publishing Web agent on the Web servers

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 3 1

1 0 - D e p l o y m e n t C o n c e p t s

μ
Publishing Agent

The Publishing agent is a service that runs on a target site’s ATG servers and manages deployment of
repository and file assets on them. The Publishing agent performs database caching and switch
deployment operations on the target. It also maintains status information about the currently live
datastore for switch deployments, the deployment state, and the deployed snapshot.

The Publishing agent includes the virtual file system (VFS) ConfigFileSystem, which is configured out-
of-the-box to facilitate deployment of file assets to the ATG server, including scenarios, targeters, content
and profile groups, segments, and slots. Like the corresponding VFS on the asset management server, this
VFS is located in Nucleus at:

/atg/epub/file/ConfigFileSystem

For detailed information, see Repositories.

The Publishing agent is installed with the ATG platform.

Publishing Web Agent

The Publishing Web agent is a service that runs on target site’s Web servers, and manages deployment of
file assets on them. It includes the virtual file system (VFS) WWWFileSystem, which is configured out-of-
the-box to facilitate deployment of Web content (static text and binary files) to the Web server. Like the
corresponding VFS on the asset management server, this VFS is located in Nucleus at:

/atg/epub/file/WWWFileSystem

For detailed information, see Repositories.

The Publishing Web agent must be installed manually.

Deployment Process
ATG Content Administration uses the multi-threaded deployment features provided by the Dynamo
Application Framework (DAF) to transfer data from the versioned source on the asset management server
to the target site. DAF deployment uses the JDBC driver to copy repository assets to the target, and a TCP
connection to transfer file assets.

ATG Content Administration integrates with DAF deployment through the ATG Content Administration
deployment API, whose starting point is the DeploymentServer. The DeploymentServer represents the
core controller of all ATG Content Administration deployment operations and provides API access to the
targets and agents where assets are deployed.

The deployment process can be outlined as follows:

1. The ATG Content Administration deployment system assembles the data to deploy
and provides that data to the DAF DeploymentManager.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 3 2

1 0 - D e p l o y m e n t C o n c e p t s

μ
2. The DeploymentManager that handles the deployment sends JMS messages to

DeploymentManager instances on other ATG servers.

3. Each DeploymentManager instance spawns multiple threads to perform the
deployment.

4. After the data transfer is complete, the DeploymentManager returns control to the
ATG Content Administration deployment system.

Note: If the deployment process fails at any point, the DeploymentManager returns control to the ATG
Content Administration deployment system. For more information on failure handling, see Recover from
Deployment Failure.

Enabling Distributed Deployments

By default, deployment events are sent locally and only to the server that initiated the deployment. If you
want to use distributed deployment instead, so deployment events are sent as JMS messages to any
configured listener, set the DeploymentManager’s useDistributedDeployment property to true. For
more information about distributed deployment, see Using DAF Deployment in the ATG Programming
Guide.

Post-Deployment Tasks

After a successful deployment, ATG Content Administration performs these tasks:

 Updates each agent’s status.

 If the environment is configured for switch mode deployments, performs the
appropriate switches on the agent servers’ switchable repositories and VFSs.

 Invalidates repository caches where necessary.

DAF deployment architecture and its processes and phases are described in detail in the Using DAF
Deployment chapter of the ATG Programming Guide.

Deployment Scope
The scope of asset deployment to a target site is determined by the type of deployment that you choose.
Two deployment type options are available:

 Full deployment

 Incremental deployment

Your decision to perform a full or incremental deployment can depend on various factors, such as the
number and type of assets to deploy, the frequency of deployment, and the reason for deployment.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 3 3

1 0 - D e p l o y m e n t C o n c e p t s

μ
Full Deployment

A full deployment copies all assets from the asset management server to a target site. A full deployment
comprises two steps:

1. All assets are deleted from the target site.

2. All assets from projects that are currently and previously deployed to the target site
are written to that site.

Note: A full deployment to a one-off target only includes assets from checked-in projects. Assets from
deployed but still-active projects are excluded from the deployment.

On a site with many assets, full deployments can be time consuming and resource intensive. Initiate a full
deployment in order to refresh all site assets, especially when they are modified directly or are corrupt.

You can limit the scope of a full deployment in two ways:

 The SelectiveDeleteVFSService lets you specify which file assets to delete from the
local file system during full deployment. You can use this VFS in order to limit the
scope of full deployment to JSP files only, and protect other file asset types from
deletion.

 An item descriptor’s deployable attribute can be set to false in order to exclude
specific repository item types from deployment:

<attribute name=deployable value="false"/>

This attribute setting must be consistent in the versioned and target site repositories;
otherwise, attempts to deploy assets of this type fail.

Incremental Deployment

An incremental deployment only updates the site with asset changes from the deployed projects; these
changes include add, update, and/or remove operations. This type of deployment is more efficient than a
full deployment, especially when few site assets changed since the previous deployment.

Deployment Modes
The mode of deployment determines whether you update the site directly or indirectly. Two deployment
mode options are available:

 Online deployment deploys updated assets directly to the live site. Online deployment
is appropriate only for development and testing.

 Switch deployment deploys updated assets to an off-line file directory or database,
then swaps these with assets on the live site as a single transaction. Production sites
should always use switch deployment.

For demonstration and evaluation purposes, both the Publishing agent and the Publishing Web agent are
configured by default to manage online deployments.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 3 4

1 0 - D e p l o y m e n t C o n c e p t s

μ
Online Deployment

In an online deployment, a site’s repository assets are updated in one or more transactions and activated
(made live on the site) as each transaction is committed. File assets are updated on the site and activated
as each file is written to the local file system.

Switch Deployment

A production target that is configured for switch deployment requires a pair of databases for the same set
of repository assets: one that is active and the other inactive at any given time. Similarly, the same target
requires a pair of active and inactive directories for the same set of file assets.

A switch deployment updates a target site’s repository and file assets as follows:

 Repository assets are updated on the site’s inactive database while the site’s live
database continues to run undisturbed. When updates to the inactive database are
complete, the site’s SwitchingDataSource switches its underlying data source to the
updated database. The newly inactive database is updated to reflect the same
deployment.

 File assets are updated on the site’s inactive directory while the site’s live directory
runs. When updates to the inactive directory are complete, the site switches to it: the
inactive directory becomes the live directory, and vice-versa. The inactive directory is
then updated to reflect the same deployment.

Note: Switch deployment of JSPs to a Web application is not supported: the inactive directory where JSPs
are first deployed can only contain the JSPs that are managed in and deployed from the ATG Content
Administration environment. This excludes most Web applications, which include other resources such as
servlets.

Online versus Switch Deployments

Switch deployment is generally favored for production environments, where it is important that all
updates take place immediately and without error. Online deployment is liable to put a live Web site
temporarily in an inconsistent state containing both new and stale data; and it can also disrupt
performance. Moreover, failure of an online deployment can put the site in an unknown state and render
it unavailable for an extended period of time while the problem is diagnosed. The solution—often a full
deployment—can itself be time-consuming.

Switch deployment avoids the problems associated with online deployment:

 All new data is available to the live site at the same time, no matter how much data is
moved.

 Switch deployment failures only affect the offline server, so deployment failures have
no effect on the live production site.

Online deployment is generally advisable for development and testing purposes, where easier setup and
faster deployment is desirable, and the potential risks are not a major concern.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 3 5

1 0 - D e p l o y m e n t C o n c e p t s

μ
Destination Repositories

DAF deployment requires a destination repository on the asset management server for every target
repository that receives deployed data. A destination repository is an unversioned GSARepository
instance that points to the database of the matching target site repository. Only repository asset
deployment requires a destination repository. File assets are deployed directly from the asset
management server to the target sites over a TCP connection.

The following graphic shows one versioned source repository that deploys to two target sites, staging
and production. The asset management server has two destination repositories, one for staging and
another for production. The production site is configured for switch deployment: the production site
repository and the corresponding destination repository each point to a SwitchingDataSource that directs
them to the active data source.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 3 6

1 0 - D e p l o y m e n t C o n c e p t s

μ
As part of the deployment setup process for ATG Content Administration, you need to create and
configure destination repositories (see Configure Deployment Data Sources and Destination
Repositories). Later, when you set up deployment topology, you specify mappings between the source
and destination repositories.

Deploying Unique Data to Multiple Sites
DAF Deployment architecture lets you deploy from a single asset management server to multiple sites,
including multiple sites on a single target. Each site can receive a unique set of data. For example, site A
can receive data from product catalog A while site B receives data from catalog B. You set up this type of
configuration by omitting the appropriate repositories from the target sites. If the target repositories do
not exist, ATG Content Administration does not deploy to them.

To set up this type of environment, create corresponding repositories on the target server or servers only
for the repositories to be deployed from the ATG server. Data is only deployed to matching repositories.

In the illustration, production site 1 has no matching repository for source repository C, so this target site
does not receive data from that repository. Similarly, repository A is not configured on production site 2,
so this target does not receive data from repository A.

Note: Any repositories with data dependencies—for example, assets that have links to other assets—
must be deployed to the same target.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 3 7

1 0 - D e p l o y m e n t C o n c e p t s

μ
Deploying From Multiple Asset Management Server
Clusters

Multiple clusters of asset management servers can deploy to a single target site. In order to avoid conflicts
among files that are deployed from different clusters, deployment agents use cluster identifiers to assign
ownership to the deployed files. This enables agents to differentiate files from various clusters that share
the same paths and names. During deployment, agents check file ownership before deciding whether to
overwrite existing files. The site is configured with a file ownership strategy that determines how to
resolve ownership conflicts among file system assets.

For detailed information on enabling deployment from multiple ATG Content Administration clusters to
the same site, and configuring that site to handle deployment from multiple clusters correctly, see
Configure Deployment from Multiple Asset Management Server Clusters.

Deployment Scheduling
A project’s workflow determines that deployment schedules are managed in one of two ways:

 The workflow is configured to schedule project deployment immediately. Doing so
bypasses the need for a deployment administrator or the
RecurringDeploymentService to schedule deployments.

 A workflow element flags a project as approved for deployment. When this stage in
the workflow occurs, the project appears in the Admin Console in the ATG Business
Control Center. A deployment administrator can manually schedule deployment for
the project, or set up the RecurringDeploymentService to schedule approved projects
for automatic deployment in batches at a predetermined time—for example, every
night at 3 AM.

A deployment that is scheduled by the workflow for immediate deployment only pertains to one project
at a time. Deploying from the RecurringDeploymentService or the Admin Console allows simultaneous
deployment of multiple projects.

For details on scheduling a deployment manually in the Admin Console, see Deploying from the Admin
Console. For information about scheduling a deployment automatically, see Configuring the
RecurringDeploymentService.

For information on scheduling a deployment manually or automatically via a project workflow, see
Project Workflows.

Deployment Queue

However a deployment is scheduled, all deployments pass through a deployment queue. Each
deployment target maintains a separate queue of deployments. Deployments go immediately into the
queue, or the Admin Console assigns them a time to enter the queue. Queued deployments run in order
of entry; however, you can reorder them through the Admin Console.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 3 8

1 0 - D e p l o y m e n t C o n c e p t s

μ
Fulfiller Service

The deployment server has a fulfiller service that periodically passes through each queue and performs
tasks such as moving deployments whose deploy time has arrived into the appropriate queue. You can
configure the frequency of these tasks through the schedule property in the
/atg/epub/deployment/DeploymentFulfiller component.

The deployment fulfiller service is solely responsible for starting deployments. When a deployment
reaches the head of the deployment queue, the fulfiller acts as follows:

1. Verifies the target site is in a deployable state—that is, the target site is: accessible, not
in an error state, and not running a current deployment.

2. Moves the deployment out of the queue and into the position of the current
deployment.

3. Starts the deployment and moves on.

Deployments that complete successfully delete themselves and nudge the fulfiller to check the queue for
the next deployment. Deployments that fail wait in an error state and display as such in the Admin
Console until a deployment administrator corrects the problem or abandons the deployment.

Interrupting Deployments

If necessary, you can suspend and resume target queues individually from the Admin Console. The
deployment server never automatically resumes a suspended queue. However, projects can continue to
schedule deployments to the suspended queue’s site.

You suspend a queue when you need to bypass the normal deployment fulfiller cycle. After suspending
the deployment queue for a specific target site, you can move the desired deployment to the head of the
queue, and choose Run Now in the Admin Console. For more information, see Deploying from the Admin
Console in the Deploying Project Assets chapter.

One-Off Deployments
Project workflows provide versioning and asset locking safeguards that are important for managing
deployment to staging and production sites. However, you might also need to evaluate project content
before it is ready for workflow deployment. For example, after authoring new content across multiple
projects, you might wish to assess its impact on performance, or check graphic design elements before
submitting the projects for review. In this case, you can deploy project data to a site that is defined as a
one-off target—that is, a target that accepts deployments outside the workflow and versioning
safeguards that ATG Content Administration otherwise imposes.

Note: You can also set up a preview server in order to view project assets on a simulated Web application;
unlike a one-off target, a preview server is subject to ATG Content Administration controls. For more
information on preview servers, see Setting Up Preview in the ATG Business Control Center Administration
and Development Guide.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 3 9

1 0 - D e p l o y m e n t C o n c e p t s

μ
One-off deployments can be launched at any time from an ATG Content Administration project,
regardless of that project’s current workflow status. One-off deployments have no effect on that project’s
workflow or any target sites that are defined for that workflow. They do not lock project assets, so work on
the project can continue unimpeded.

You designate a target site for one-off deployments when you define its site type (see Define the Target
Site). In all other respects, you configure the site for ATG Content Administration deployment like any
other target site. After you initialize the site, its designation as a one-off target cannot be changed.

Caution: A one-off target site definition must never map its source repositories to destination repositories
that are used by a workflow target. One-off deployments to a workflow target prevent ATG Content
Administration from managing content of that target, and can yield unpredictable results.

Constraints

The following constraints apply to one-off deployments, and differentiate them from workflow
deployments:

 A one-off target site is not available for deployment assignments in a workflow. In
order to make that site available for workflow deployments, you must delete the
target and recreate it.

 A full deployment to a one-off target only includes assets from checked-in projects.
Assets from deployed but still-active projects are excluded from the deployment.

 You cannot roll back deployment on a one-off target; the Admin Console’s Projects tab
for a one-off target site is read-only. If you perform a full deployment to a one-off
target, the Projects list is emptied when deployment is complete.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 4 0

1 0 - D e p l o y m e n t C o n c e p t s

μ

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 4 1

1 1 - S e t t i n g U p D e p l o y m e n t

μ
11 Setting Up Deployment

You set up ATG Content Administration deployment in the following steps:

Note: This procedure assumes that ATG is installed on your staging and/or production target servers.

1. Plan deployment topology—that is, the target sites and agents that make up the
environment where you deploy asset data.

2. Set up deployment agents.

3. Within each deployment target:

 Configure the deployment mode for target servers: either configure switch
deployment, or configure online deployment.

 Manage asset security on target sites: adopt a strategy to protect the ATG
Content Administration-managed assets on the target from user modification.

4. Configure the asset management server:

 Configure deployment data sources and destination repositories used by the
DAF deployment system.

 Define the deployment topology for use by the DeploymentServer.

 If your environment has several ATG Content Administration clusters, configure
deployment from multiple asset management server clusters to the same site, if
desired.

 Initialize target sites.

5. If desired, on the asset management server and/or target servers, configure
deployment event listeners that listen for deployment events and take appropriate
action.

6. Schedule deletion of empty folders for folders whose assets moved to a renamed
folder.

7. Optionally, cache checksums for file assets in order to optimize deployment of file
assets. More generally, you can use other strategies to optimize frequent
deployments, or deployments of very large numbers of assets. For more information,
see Configuring DAF Deployment for Performance in the ATG Programming Guide.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 4 2

1 1 - S e t t i n g U p D e p l o y m e n t

μ
Plan Deployment Topology

The DeploymentServer requires information about the production and staging targets where assets are to
be deployed. In order to provide this information you define the deployment topology—that is,
deployment targets and their individual servers where agents are installed. Before you do so, however,
knowledge of the topology is required for several earlier steps in the deployment configuration process.
For this reason, you should plan the deployment topology as the first step towards deployment setup.

You define a deployment topology in these steps:

1. Identify deployment target sites.

2. Identify deployment agents.

3. Plan deployment agent responsibilities—for example, determine whether a given
agent deploys repository or file assets.

Identify Deployment Target Sites

A deployment target site is a logical grouping of one or more servers that serve the same content. When
you deploy to a target site, every server in the target is updated to reflect the new set of assets.

If multiple data stores mirror each other, you can group them in a single target site in order to synchronize
their content. Alternatively, you can put them in different targets, so one cluster remains functional in
case the other has deployment problems. In either case, a workflow can specify only one target site per
deployment. For example, if the workflow defines staging and production deployments, it can identify
just one target site for each deployment.

Note: A repository where you deploy assets can have reference constraints to tables from another
repository only if both repositories belong to the same target.

Identify Deployment Agents

A deployment topology requires you to identify the deployment agents that run on target servers. These
agents include:

 Publishing agents that you install on the target’s ATG servers. These agents perform
deployment-related tasks such as cache management for repository and file assets on
the ATG servers.

 Publishing Web agents that you install on the target’s Web servers. These agents
perform deployment-related tasks for Web content file assets on the Web servers.

A deployment agent can be included in only one target; you cannot include an agent in multiple targets.

For each agent, you must provide the following:

 A simple identifier or name

 The URI of the agent’s RMI client

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 4 3

1 1 - S e t t i n g U p D e p l o y m e n t

μ
Plan Deployment Agent Responsibilities

A deployment topology requires you to determine which agents in a target are responsible for managing
target assets. Only one agent should manage a shared data store. For each agent, determine which
repository or type of asset that agent will manage. The two examples that follow demonstrate the
deployment responsibilities to assign to agents in various target configurations:

 ATG servers share a single data store.

 ATG servers and Web servers use shared and local data stores.

ATG Servers Share a Single Data Store

The following target includes two ATG servers that share a single data store.

While both deployment agents share the data store, only one is given responsibility for managing all data
store assets, by selecting all available destinations in the Admin Console deployment UI.

You can also assign deployment responsibilities by giving agent P2 responsibility for managing all
repository assets. This is permissible because there are no VFS assets in the target.

If you expand this sample target to include a second cluster of ATG servers that uses a second data store,
the responsibility for managing the second store must be given to an agent that uses it.

ATG Servers and Web servers Use Shared and Local Data Stores

This target includes two ATG servers that share a data store that stores repository assets, and a Web server
where static content files are deployed from the asset management server. The Web server has its own
local VFS that stores file assets. This local VFS is located in Nucleus at /atg/epub/file/WWWFileSystem
and is installed with the Publishing Web agent.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 4 4

1 1 - S e t t i n g U p D e p l o y m e n t

μ

The various deployment agents have the following deployment responsibilities:

 Publishing agents P1 and P2 manage their own local ConfigFileSystem VFSs.

 Web publishing agent P3 manages its own local WWWFileSystem. In the Admin
Console deployment UI, specify /atg/epub/file/ConfigFileSystem as the
included destination for deployment agents P1 and P2. Because both VFSs are local,
no work is duplicated. For agent P3, specify /atg/epub/file/WWWFileSystem as the
included destination.

Set Up Deployment Agents
The following sections show how to set up deployment agents:

 Installing the Publishing Web agent

 Changing the port used for file asset deployment

 Running deployment agents

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 4 5

1 1 - S e t t i n g U p D e p l o y m e n t

μ
Note: The Publishing agent is installed by default with the ATG platform, so installation steps for this
agent are not included here.

Installing the Publishing Web Agent

In order to deploy Web content such as static text and binary files to staging and production Web servers,
install and configure a Publishing Web agent on each Web server.

Note: You use the ATG Web Server Extensions installer to install the Publishing Web agent. You can also
use it to install a DistributorServer for a Content Distributor system. For information on using the
installer to do so, as well as general information on Content Distributor systems, see the Content
Distribution chapter in the ATG Programming Guide.

Installing on Windows

To install the Publishing Web agent on a Web server running on Windows:

1. Make sure the Web server machine has a Java Virtual Machine installed.

2. Download the ATG Web Server Extensions executable file from the ATG Web site,
www.atg.com.

3. Run the ATG Web Server Extensions executable.

The installer displays the Welcome dialog box.

4. Click Next

5. Specify the installation directory for the Publishing Web agent. The default (and
recommended) directory is c:\ATG\ATGWeb10.0.1

6. Click Next

The installer displays the list of Web server extensions you can configure during the
installation process. By default, the DistributorServer and the Publishing Web
agent are both selected. You can uncheck the DistributorServer option for this
installation.

For information on configuring the DistributorServer for a Content Distributor
system, see the Content Distribution chapter in the ATG Programming Guide.

7. Click Next

8. Specify the RMI port to be used by the Publishing Web agent. The default is 8860. If
this port is already taken—for example, by the PublishingAgent of an ATG production
server running on the same machine—you must reset this to a unique value. You can
reset RMIPort in one of the following properties files:

 \config\atg\dynamo\server\RmiServer.properties

 \home\localconfig\atg\dynamo\server\RmiServer.properties

Note: Later, when you define the deployment topology, you specify the same port
number for the Web agent in the Admin Console deployment UI.

9. Click Next

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 4 6

1 1 - S e t t i n g U p D e p l o y m e n t

μ
10. Specify the local directory to be used by the Publishing Web agent. The default is

C:\ATG\ATGWeb10.0.1\home\doc. You can specify the Web server’s document root
directory or any subdirectory within the root directory.

11. Click Next

12. Specify a name for the program folder that the installer will create within the Windows
Programs folder. The default is ATG 10.0.1\ATG Web Server Extensions. The
program folder will contain a shortcut for starting the Publishing Web agent.

13. Click Next

The installer displays the installation directory you selected and indicates it is ready to
install the Publishing Web agent.

14. Review the setup information:

 Click Next to start the installation

 Click Back to change any settings

15. After installation is complete, click Finish to close the installer.

Installing on UNIX

To install the Publishing Web agent on a Web server running on UNIX:

1. Make sure the Web server machine has a Java Virtual Machine installed.

2. Download from the ATG website www.atg.com the ATG Web Server Extensions
executable.

3. Make sure you have execute permissions with this command or its equivalent:

chmod +x filename

4. Run the installation program.

5. When prompted, enter the local directory to be used by the Publishing Web agent.

You can specify the Web server’s document root directory or any subdirectory within
the root directory.

6. The installer displays the Web server extensions you can configure during the
installation process: the DistributorServer and the Publishing Web agent. By
default, both selected. You can deselect the DistributorServer option for this
installation.

For information about the DistributorServer and the Content Distributor system,
see the Content Distribution chapter in the ATG Programming Guide.

7. Specify the RMI port to be used by the Publishing Web agent. The default is 8860. If
this port is already taken—for example, by the PublishingAgent of an ATG production
server that runs on the same machine—you must reset this to a unique value. You can
reset a PublishingWebAgent’s RmiServer.RMIPort property in one of the following
locations:

 /config/atg/dynamo/server/RmiServer.properties

 /home/localconfig/atg/dynamo/server/RmiServer.properties

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 4 7

1 1 - S e t t i n g U p D e p l o y m e n t

μ
Note: Later, when you define the deployment topology, you specify the same port
number for the Web agent in the Admin Console deployment UI.

Changing the Port Used for File Asset Deployment

By default, file asset deployment uses port 8810 to send assets from the asset management server to the
target. Depending on your environment, you might need to open this port in the target server’s firewall.
Alternatively, you can change the port that the connection uses by editing the port property in the
agent’s /atg/deployment/file/FileDeploymentServer. If multiple agents run on the same VM, each
one’s FileDeploymentServer port must be unique. No corresponding change is required on the asset
management server, which detects the port automatically through the RMI connection.

Running Deployment Agents

After setting up target site deployment agents, you can start them as described in the following sections:

 Running the Publishing agent

 Running the Publishing Web agent

Caution: Do not use any ATG Content Administration modules or the DAF.Deployment module with a
standalone GSA lock manager server. Doing so causes the lock server to become a slave server of the
deployment. It attempts to deploy files, and the deployment deadlocks as a result. Symptoms include the
deployment cycling in a time out loop.

Running the Publishing Agent

To activate the Publishing agent on an ATG server, assemble an application that includes the following
application module:

PublishingAgent

You also use non-versioned modules with your ATG Content Administration application on the target site.
After assembling the application, deploy it to the appropriate server. For information on ATG modules
and application assembly, see the ATG Programming Guide.

Running the Publishing Web Agent

To use the Publishing Web agent with a Web server:

1. Make sure your JAVA_HOME environment variable is set.

2. Change to the /ATGWeb10.0.1/home directory.

3. Start the Publishing Web agent with one of the following commands:

Windows: bin\startNucleus -m PublishingWebAgent

UNIX: bin/startNucleus -m PublishingWebAgent

If you also have a configured DistributorServer on the Web server (as part of a Content Distributor
system), you can start up the Distributor and PublishingWebAgent modules at the same time, as in
the following example:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 4 8

1 1 - S e t t i n g U p D e p l o y m e n t

μ
bin/startNucleus –m PublishingWebAgent:Distributor

For information on Content Distributor systems, see the Content Distribution chapter in the ATG
Programming Guide.

Configure Switch Deployment
Configuring a target site for deployments in switch mode involves the following general steps:

1. Configure target repositories for switch deployments.

2. Configure default target VFSs for switch deployments.

3. If necessary, configure custom target VFSs for switch deployments.

4. Configure switch deployment on the asset management server.

Optimization Options

The following options are available to optimize switch deployment:

 Selective Cache Invalidation. Retaining still-valid items in repository caches can
improve a site’s post-deployment performance.

 Configure background deletion of file system assets.

 Optionally, configure a shared ConfigFileSystem for multiple agents. This lets you
deploy to a single VFS rather than to VFSs on multiple agents, which can improve
deployment time.

Configure Target Repositories for Switch Deployments

Deployments performed in switch mode require two databases, where repository assets are updated on
the target site’s inactive database while its live database runs undisturbed. Both databases must begin
with identical content. You can ensure this in one of two ways:

 Use tools provided by your database vendor to make the two databases identical.

 After you configure the target for switch deployments, perform a full deployment to
the target.

Definition files of target site repositories must not contain operation tags such as <add-item>, <update-
item>, and <remove-item>. These tags cause switch deployments to fail.

Perform the following steps on the target site ATG servers:

1. Configure data sources that connect to the two databases. Each data source must be
of class atg.nucleus.JNDIReference, where its JNDIName property points to an
application server data source. For detailed information about configuring data
sources, see the ATG Installation and Configuration Guide.

2. Configure a SwitchingDataSource to switch between the two underlying data sources.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 4 9

1 1 - S e t t i n g U p D e p l o y m e n t

μ
3. Configure destination and production-site repository components so their

datasource property points to the appropriate SwitchingDataSource.

4. Optionally, configure selective cache invalidation on target repositories.

5. Add the SwitchingDataSource to the DeploymentAgent’s list of switchable data stores.
To do this, set the property switchableDataStores to the SwitchingDataSource’s
fully qualified Nucleus path, in:

<ATG10dir>/home/localconfig/atg/epub/DeploymentAgent.properties

Configure a SwitchingDataSource

Switch deployment uses a SwitchingDataSource (atg.service.jdbc.SwitchingDataSource) instead
of a regular data source such as atg.service.jdbc.MonitoredDataSource. During deployment, it
typically switches between two data sources. DataSource method calls are passed through to the data
source that is specified by the SwitchingDataSource‘s currentDataSource property.

Caution: If you have multiple independent ATG clusters that share a single SDSRepository, each cluster
must use a unique set of SwitchingDataSource names. Otherwise, the clusters interfere with each other
during the switching process.

Set the following properties of the SwitchingDataSource component:

Name Description

dataSources A ServiceMap of DataSources that maps the short names of data
sources to their Nucleus component paths. For example:

dataSources=\

 DataSource1=/atg/dynamo/service/jdbc/FirstDataSource,\

 DataSource2=/atg/dynamo/service/jdbc/SecondDataSource

initialDataSourceName The short name of the data source to use as the currentDataSource
on the first deployment. On subsequent runs, the initial
currentDataSource is obtained from the state recorded in the
SDSRepository.

repository Set with a reference to
/atg/dynamo/service/jdbc/SDSRepository.

Specifies the switching data source repository SDSRepository, which
monitors which database the switching data source points to at any
time.

The following example shows the default settings of the switching datasource used by the ATG
Commerce product catalog:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 5 0

1 1 - S e t t i n g U p D e p l o y m e n t

μ
$class=atg.service.jdbc.SwitchingDataSource

A map from data source names to data sources

dataSources=\

 DataSourceA=/atg/commerce/jdbc/ProductCatalogDataSourceA,\

 DataSourceB=/atg/commerce/jdbc/ProductCatalogDataSourceB

The name of the data source that should be used on startup

initialDataSourceName=DataSourceA

repository=/atg/dynamo/service/jdbc/SDSRepository

Configure Default Target VFSs for Switch Deployments

The ATG distribution provides two VFSs that can be configured for switch deployments:

 /atg/epub/file/ConfigFileSystem

 /atg/epub/file/WWWFileSystem

ConfigFileSystem

The ATG distribution provides ConfigFileSystem with the Publishing agent. As installed, ConfigFileSystem
is configured for online deployments. In order to deploy personalization and scenario assets to the target,
you must configure ConfigFileSystem on each ATG server for switch deployments.

To configure each ConfigFileSystem VFS for switch deployments, perform these steps for each target ATG
server:

1. Create an instance of atg.vfs.switchable.SwitchableLocalFileSystem. The
installation provides a ConfigFileSystem.properties file that you can copy from
this location.

<ATG10dir>/PublishingAgent/config/atg/epub/file/

Uncomment the settings that are specific to switch deployment, and modify the
properties where necessary. For more information about these properties, see
SwitchableLocalFileSystem in Appendix B: Virtual File Systems.

2. Place the new ConfigFileSystem.properties file in each server’s localconfig
directory:

../localconfig/atg/epub/file/

3. For each server, add ConfigFileSystem to the list of switchable data stores configured
in the DeploymentAgent:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 5 1

1 1 - S e t t i n g U p D e p l o y m e n t

μ
../localconfig/atg/epub/DeploymentAgent.properties

Set switchableDataStores to the ConfigFileSystem’s fully qualified Nucleus path:

/atg/epub/file/ConfigFileSystem

WWWFileSystem

The ATG distribution provides WWWFileSystem with the Publishing Web agent. As installed, it is
configured for online deployments. If you install the Publishing Web agent on the target Web servers for
deployment of deploy static text and binary files, you can configure the WWWFileSystem on each Web
server for switch deployments.

To configure each WWWFileSystem VFS for switch deployments, perform these steps for each target Web
server:

1. Create an instance of atg.vfs.switchable.SwitchableLocalFileSystem . The
installation provides a WWWFileSystem.properties file that you can copy from this
location.

<ATG10dir>/PublishingWebAgent/config/atg/epub/file/

Uncomment the settings that are specific to switch deployment, and modify the
properties where necessary. For more information about these properties, see
SwitchableLocalFileSystem in Appendix B: Virtual File Systems.

2. Place the new WWWFileSystem.properties file in each server’s localconfig
directory:

../localconfig/atg/epub/file/

3. For each server, add WWWFileSystem to the list of switchable data stores configured in
the DeploymentAgent:

../localconfig/atg/epub/DeploymentAgent.properties

Specify WWWFileSystem by its fully qualified Nucleus path:

/atg/epub/file/WWWFileSystem

Configure VFSs on a New ATG server for Switch Deployment

When adding an ATG server or Web server to an existing target, configure its switchable VFSs like those
on the existing ATG target servers. Verify that:

 It has the same underlying data sources.

 Its initial data store, specified in the name1 property of the VFS, is the same as their
current data store, so the new server’s agent application starts up using the same data
store.

Configure Custom Target VFSs for Switch Deployments

To create and configure a custom VFS for switch deployments, perform these steps on the target server:

1. Install the Publishing Web agent on the target server.

2. Create and configure the switchable VFS.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 5 2

1 1 - S e t t i n g U p D e p l o y m e n t

μ
3. Configure the DeploymentAgent with the custom VFS.

Install the Publishing Web agent on the target server

If the custom VFS is not located on an ATG server, you must install the Publishing Web agent on the target
server in order to enable deployment from the asset management server. For more information, see
Installing the Publishing Web agent.

Note: The Publishing Web agent is configured with the VFS WWWFileSystem, as a convenience for users
whose sites require that static content be deployed directly to the Web server, where it is served quickly.
However, you can install the Publishing Web agent on any non-ATG server where you want to deploy
files, whether or not that server is a Web server. If you do not require the WWWFileSystem on the server,
either remove its configuration file or exclude it from your deployment topology (see Plan Deployment
Agent Responsibilities).

Create and configure the switchable VFS

Configure a SwitchableLocalFileSystem instance and place the configuration file in each server’s
localconfig directory:

../localconfig/atg/epub/file/

 You can use the WWWFileSystem.properties file that is installed with the Publishing Web agent as the
template for your custom VFS. If your site does not use WWWFileSystem, you can create the custom VFS
by renaming the WWWFileSystem.properties file and modifying its class and properties.

For example, the following properties file configures a switchable VFS /mycompany/FTPFileSystem that
stores files on an FTP server. (This example continues the example used in Configure Support for Other
File Assets.)

$class=atg.vfs.switchable.SwitchableLocalFileSystem

liveDirectory={atg.dynamo.server.home}/MyConfig/ftpFiles/live

stagingDirectory={atg.dynamo.server.home}/MyConfig/ftpFiles/staging

dataDirectory={atg.dynamo.server.home}/MyConfig/ftpFiles/data

name1=firstDataStore

name2=secondDataStore

For detailed information on SwitchableLocalFileSystem properties, see Appendix B: Virtual File
Systems.

Configure the DeploymentAgent with the custom VFS

Add the custom VFS to the DeploymentAgent’s list of switchable data stores by setting the agent’s
switchableDataStores property in:

../localconfig/atg/epub/DeploymentAgent.properties

Be sure to specify ConfigFileSystem by its fully qualified Nucleus path.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 5 3

1 1 - S e t t i n g U p D e p l o y m e n t

μ
Configure VFSs on a New ATG Server for Switch Deployment

When adding an ATG server or Web server to an existing target, configure its switchable VFSs exactly like
those on the existing target servers. Verify that:

 It has the same underlying data stores.

 Its initial data store, specified in the name1 property of the VFS, is the same as their
current data store, so the new server’s agent application starts up using the same data
store.

Configure Switch Deployment on the Asset Management Server

Follow these steps to set up switch deployment on the asset management server.

1. Set up the appropriate Nucleus components for a SwitchingDataSource.
SwitchingDataSources must be configured on the asset management server for each
production-site destination repository and must point to the target databases. See the
diagram in Destination Repositories, which shows a switch deployment configuration.

2. In the Nucleus component that configures
atg.service.jdbc.SwitchingDataSource, configure the dataSources property
so it uses the same data source names configured on the agents in the appropriate
target.

3. Set the property SwitchingDataSource.initialDataSourceName to the data
source that is not the one specified in the initialDataSourceName on the target
servers. This behavior ensures deployment of the inactive database on the target
servers.

For example, the properties file /atg/dynamo/service/jdbc/SwitchingDataSource.properties
for the asset management server might look like this:

$class=atg.service.jdbc.SwitchingDataSource

dataSources=\

 FirstDataSource=/atg/dynamo/service/jdbc/FirstDataSource,\

 SecondDataSource=/atg/dynamo/service/jdbc/SecondDataSource

initialDataSourceName=SecondDataSource

Configuring a Multi-Server Cluster

In order to enable switch deployment from a multi-server cluster, each server must be configured with
contact data about the other servers in the cluster. For more information, see Configure a Cluster for
Switch Deployment.

Selective Cache Invalidation

You can optimize a site’s performance after a switch deployment by enabling selective cache invalidation
on target repositories. A repository that is thus configured invalidates its item caches selectively during
deployment, rather than invalidating the contents of those caches entirely.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 5 4

1 1 - S e t t i n g U p D e p l o y m e n t

μ
If enabled:

Only those cached items that change as a result of the deployment are invalidated. All other cached items
remain unchanged. Because selective invalidation increases deployment overhead, you might want to
configure a threshold for the number of invalidated items. On exceeding that threshold—the sum of all
changed items in a deployment—the selective invalidation process is skipped and the deployment
invalidates all cached items in the target repositories.

If not enabled:

Item caches of all deployed repositories are invalidated. This can result in slow response time to initial
requests, as fresh data is obtained directly from the database.

Constraints

Two general constraints apply to usage of selective cache invalidation:

 Selective cache invalidation only applies to item descriptors that use simple caching
mode.

 The atg.repository.RepositoryImpl method invalidateCaches() clears all
caches from the target repository, even if selective cache invalidation is enabled for
that repository.

Configuration Steps

You configure selective cache invalidation on the production server and the asset management server, as
follows:

 On each production site repository, set the GSARepository property
selectiveCacheInvalidationEnabled to true. By default, this property is set to
false.

Note: You can use the liveconfig configuration layer to enable selective cache
invalidation on desired repositories. As installed, the liveconfig configuration layer
enables selective cache invalidation on certain ATG repositories such as
productCatalog.

 On the asset management server, configure the item invalidation threshold by setting
the threshold property to a positive integer in this component:

/atg/epub/sci/ServerSCIThresholdController

The default setting of -1 allows an unlimited number of item invalidations.

Excluding Repositories and Item Descriptors

A production site publishing agent can be configured to exclude specific repositories and item
descriptors from selective cache invalidation—in other words, require that item caches be fully
invalidated on each deployment. To do so, set the property fullInvalidationRepositoryPaths in
this component:

/atg/epub/sci/AgentSCIThresholdController

You set this property as follows:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 5 5

1 1 - S e t t i n g U p D e p l o y m e n t

μ
fullInvalidationRepositoryPaths=\

 repository-path[=item-descriptor[;item-descriptor]...] \

 [,...]

 repository-path is the path to a repository.

 item-descriptor specifies which item caches in that repository to invalidate on
each deployment.

If no item descriptors are supplied, all item caches in the repository are invalidated. The property can
specify multiple comma-delimited repositories, and each repository can specify multiple semi-colon-
delimited item descriptors.

For example:

fullInvalidationRepositoryPaths=\

 /atg/commerce/catalog/ProductCatalog=category;product

Background Deletion of File System Assets

During a full switch deployment, the SwitchableLocalFileSystem must delete all file assets from the
target site’s inactive directory before updated content can be deployed from ATG Content
Administration. On a large site, the deletion process can significantly delay updates to the live site. You
can optimize deployment by configuring the SwitchableLocalFileSystem to enable background
deletion: when switch deployment begins, the VFS simply moves the current inactive directory to a
temporary directory and proceeds with deployment. Separately, it launches another thread that is
responsible for physically removing files from the temporary directory—which it typically defers until
system resources are more plentiful.

Note: By default, full deployment of file system assets is optimized through checksum verification, which
minimizes disk reads and writes (see Cache Checksums for File Assets). This is usually faster than full
deployment with background deletion, where checksum verification is disabled (see Requirements and
Constraints), so all files eventually must be physically removed from disk. In general, full deployment with
background deletion is appropriate when you must purge a target site of all file system assets.

Properties

Three SwitchableLocalFileSystem properties enable background deletion and control its behavior:

 deleteInBackground enables background deletion if set to true. By default, this
property is set to false.

 deletionThreadPriorityDelta lets you manually set the deletion thread’s priority.
In general, you should let the system set thread priority, and omit this property.

 deletionThreadDelay specifies in milliseconds how long the deletion thread waits
before it begins to delete files from the temporary directory. If set to 0 (the default),
deletion begins immediately.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 5 6

1 1 - S e t t i n g U p D e p l o y m e n t

μ
Requirements and Constraints

The following requirements and constraints apply to background deletion of file system assets:

 Background deletion only occurs during full deployments.

 Checksum verification must be disabled, by setting the following file deployment
property in the component /atg/deployment/file/DeploymentConfiguration:

noVerificationByChecksum=true

 ownerCacheEnabled must be set to false in the VFS configuration of the production
and staging servers (see Enable tracking of file ownership). As a result, you cannot
deploy from multiple asset management servers.

 Background deletion prevents components from restarting properly, so it should not
be used on the ConfigFileSystem.

Shared ConfigFileSystem for Multiple Agents

Optionally, you can configure an ATG Content Administration environment distributed across multiple
VMs so it deploys to a single ConfigFileSystem. To do so, you create a master ConfigFileSystem on one VM
and slave ConfigFileSystems on the others, so only one VM on a given machine is responsible for file
deployments. This configuration can significantly increase performance because deployment data, which
can be very large, is sent to one agent rather than all agents.

Note: A shared ConfigFileSystem is supported for switch mode deployments only.

To set up a shared ConfigFileSystem deployment model:

1. Designate one ATG instance on each machine as the master instance. Other ATG
instances are considered slave targets and use the ConfigFileSystem on the master
instance.

2. From the class atg.vfs.switchable.SwitchableLocalFileSystem, configure a
master ConfigFileSystem.properties file:

../localconfig/atg/epub/file/ConfigFileSystem.properties

3. From the class atg.vfs.switchable.SlaveLocalFileSystemService, configure
identical slave ConfigFileSystem.properties files:

../localconfig/atg/epub/file/ConfigFileSystem.properties

4. Configure the master ConfigFileSystem as a switchable data store:

 On the master instance:
../localconfig/atg/epub/DeploymentAgent.properties

 Set the property switchableDataStores:

switchableDataStores+=/atg/epub/file/ConfigFileSystem

5. Perform a full deployment to synchronize the new data directories with the asset
management server.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 5 7

1 1 - S e t t i n g U p D e p l o y m e n t

μ
Master ConfigFileSystem.properties

The following sample shows a ConfigFileSystem.properties file on the master instance:

Note: Paths are machine-specific.

#$class=atg.vfs.journal.JournalingFileSystemService

#virtualFileSystem=ConfigFileSystemLocal

#journalDirectory={serverHomeDirResource?resourceURI=PublishingAgent/

 deploymentconfig/data/config}

#clearJournalOnUpdate=true

#updateListeners+=/atg/epub/monitor/PersonalizationConfigurationMonitor

################################

#Use this configuration for a switch deployment

$class=atg.vfs.switchable.SwitchableLocalFileSystem

liveDirectory={serverHomeDirResource?resourceURI=PublishingAgent/

 deploymentconfig/live/config}

stagingDirectory={serverHomeDirResource?resourceURI=PublishingAgent/

 deploymentconfig/staging/config}

dataDirectory={serverHomeDirResource?resourceURI=PublishingAgent/

 deploymentconfig/data/config}

journaling=true

clearJournalOnUpdate=true

backupJournal=true

name1=VFSName1

name2=VFSName2

Slave ConfigFileSystem.properties

The following sample shows a ConfigFileSystem.properties file for slave instances:

Note: Paths are machine-specific.

$class=atg.vfs.switchable.SlaveLocalFileSystemService

references to SwitchableLocalFileSystem

rootDirectory=c:\\atg\\atg10.0.1\\home\\servers\\target-

primary\\PublishingAgent\\deploymentconfig\\live\\config

journalDirectory=c:\\atg\\atg10.0.1\\home\\servers\\target-

primary\\PublishingAgent\\deploymentconfig\\data\\config\\journalBackup

statusFile=c:\\atg\\atg10.0.1\\home\\servers\\target-

primary\\PublishingAgent\\deploymentconfig\\data\\config\\status.dat

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 5 8

1 1 - S e t t i n g U p D e p l o y m e n t

μ
schedule for checking switch status to see if an update event is required

scheduler=/atg/dynamo/service/Scheduler

schedule=every 20 seconds

Adding an ATG Server

When adding an ATG server to an existing target, configure its repositories and SwitchingDataSource like
those on the existing ATG target servers. Verify that:

 It has the same underlying data sources.

 Its initial data source is the same as their current data source, so the new server’s agent
application starts up using the same data source.

Configure Online Deployment
In order to configure a target site for online deployment, you must:

 Configure repositories for online deployments.

 Configure custom VFSs for online deployments.

The ConfigFileSystem that is provided with the Publishing agent is configured by default for online
deployment; it is a configured instance of class atg.vfs.journal.JournalingFileSystemService, a
VFS implementation that provides the journaling functionality required to notify the appropriate services
of personalization and scenario updates.

The WWWFileSystem that is provided with the Publishing Web agent is also configured out-of-the-box for
online deployment; it is a configured instance of class atg.service.vfs.LocalVFSService.

Configure Repositories for Online Deployments

Configuring target site repositories for online deployment requires no special ATG Content
Administration-specific configuration changes. Simply configure the SQL repository component as
described in the ATG Repository Guide.

Configure Custom VFSs for Online Deployments

To create and configure a custom VFS for online deployments, perform this procedure on the target
server:

1. If the custom VFS is not on an ATG server, you must install the Publishing Web agent
on the target server, to enable communication with the asset management server
during deployment, (see Installing the Publishing Web Agent).

Note: The Publishing Web agent is configured with an out-of-the-box VFS, the
WWWFileSystem, as a convenience for users whose sites require that static content be

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 5 9

1 1 - S e t t i n g U p D e p l o y m e n t

μ
deployed directly to the Web server, where it is served quickly. However, you can
install the Publishing Web agent on any non-ATG server where you want to deploy
files, whether or not that server is a Web server. In this case, if you do not require the
WWWFileSystem on the server, either remove its configuration file or exclude it from
your deployment topology (see Plan Deployment Agent Responsibilities).

2. Create the local VFS by configuring a LocalVFSService instance and placing the
configuration file in your localconfig directory.

Note: You can use the WWWFileSystem.properties file that is installed with the
Publishing Web agent as the template for your custom VFS. If you do not require the
WWWFileSystem on the given server, you can create a custom VFS simply by renaming
the WWWFileSystem.properties file and modifying its localDirectory property.

For example, the following is the configuration file for a local VFS
/mycompany/FTPFileSystem that stores files on an FTP server. (This continues the
example used in the Configure Support for Other File Assets section of the earlier
chapter Setting Up an Asset Management Server.)

$class=atg.service.vfs.LocalVFSService

localDirectory={atg.dynamo.server.home}/MyConfig/ftpFiles

In the localDirectory property, specify the directory to which the files should be
deployed from the asset management server. Also make sure the directory does not
store files used by other services; it should contain only files deployed from the
corresponding custom VFS on the asset management server.

Manage Asset Security on Target Sites
Assets that are created and managed in the content development environment should not be modified
directly on the target site. Therefore, it is important to secure target site assets to prevent changes that
are outside the control of the content development environment.

Preventing uncontrolled changes is especially important with respect to ATG Content Administration
deployments:

 The changes that users make on the target site are liable to be overwritten by
subsequent deployments. In the case of a full deployment, all changes are always
overwritten, inasmuch as the deployment begins by deleting all target assets.

 Incremental deployments assume that the set of assets that is active on a target
actually represents the assets on that target.

In an incremental deployment, ATG Content Administration identifies the current set of assets on the
target, examines it against the project to deploy, and deploys the new set by deploying only the asset
changes to the target site. It is this element of the incremental deployment procedure that makes it faster
than a full deployment.

However, if a user modifies the assets on the target directly, the target’s knowledge of its current set of
assets is no longer valid because it no longer represents the target’s actual data. Therefore, subsequent
incremental deployments are compromised and cannot result in a new current set of assets that

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 6 0

1 1 - S e t t i n g U p D e p l o y m e n t

μ
accurately represents the target’s data. In this situation, a full deployment to the target site which first
deletes all target assets is necessary in order to restore a valid set of assets.

Note: If you use secured repositories in the content development environment to control access of ATG
Content Administration users to specific asset types and individual assets, be aware that ATG Content
Administration does not deploy the ACLs for those assets when they are deployed to a target.

For all these reasons, it is critical that you secure ATG Content Administration-managed assets on your
staging and production targets so users cannot modify them. Several recommended strategies follow,
which are suitable to various content development, testing, and production requirements.

Modifying User Access Privileges in the ACC

If you require access to the ACC in the target environment, you should do one of the following:

 If you use secured repositories in the target environment, manually modify their
definition files so the appropriate ACC user groups are restricted to List and Read
access to repository items. Users who belong to those groups can only view the
items—for example, for content validation purposes. For information on managing
secured repository definition files, see the ATG Repository Guide.

 If you do not use secured repositories in the target environment, and you do not
require access to them, simply remove UI access privileges to those repositories from
the appropriate ACC user groups. For information on modifying the UI access
privileges for ACC user groups, see the ATG Programming Guide.

Alternatively, if you require access to the repositories, configure secured repositories
to sit on top of your repositories and restrict the appropriate ACC user groups to List
and Read access to the repository items, as described in the ATG Repository Guide.

Restricting Access to Personalization and Scenario Assets

If you manage personalization and/or scenario assets with ATG Content Administration, do one of the
following:

 If you do not require access to the assets in the target environment, disable access to
the Targeting and/or Scenarios task areas in the ACC by removing those UI access
privileges from the appropriate ACC user groups. For information on how to do this,
see the discussion on managing access control in the ATG Programming Guide.

 If you do require access to the assets in the target environment, prevent users from
modifying scenarios by granting only List and Read access to all scenario folders to the
appropriate ACC user groups. This ensures that all users who belong to those groups
can view (but not add to or edit) the folders and their contents. For information on
how to do this, see the discussion on setting up security for scenarios in the ATG
Personalization Programming Guide.

Note: This functionality is not available for other ACC-editable personalization and scenario assets that
you can manage with ATG Content Administration, namely, targeters, content and profile groups, and
slots.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 6 1

1 1 - S e t t i n g U p D e p l o y m e n t

μ
Configure Deployment Data Sources and Destination
Repositories

For deployment, the asset management server must have a data source configured to point to each
target server’s database. This section describes how to configure the data source and create destination
repositories, which are repositories on the asset management server that point to target site databases.
For more about the relationship between data source and the destination repositories, see Destination
Repositories.

Before you start this configuration, determine the number of repositories on each deployment target. The
example that follows assumes two targets: staging and production. Each target has two repositories,
productCatalog and priceLists, which correspond to two versioned repositories on the asset
management server. Thus configured, the environment requires ten repositories, as shown in the
following table.

Repository name Type Server

productCatalog versioned ATG Content Administration

priceLists versioned ATG Content Administration

productCatalog_staging destination ATG Content Administration

priceLists_staging destination ATG Content Administration

productCatalog_production destination ATG Content Administration

priceLists_production destination ATG Content Administration

productCatalog target staging

priceLists target staging

productCatalog target production

priceLists target production

Given this configuration, complete the following steps:

1. Create a destination repository data source.

2. Create and configure a destination repository.

3. Update the Destination Repositories list.

Create a Destination Repository Data Source

For each destination repository, create a data source to point to the target database:

1. On the asset management server, copy and rename JTDataSource.properties—
for example, JTDataSource_staging.properties.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 6 2

1 1 - S e t t i n g U p D e p l o y m e n t

μ
The copy must be in the same location as the original files.

Alternatively, extract and use the following distribution files:

 JTDataSource_staging.properties, in:
<ATG10dir>\DafEar\base\configlayers\stagingandprod\config.jar

 JTDataSource_production.properties, in:
<ATG10dir>\DAS\config\config.jar

2. Point the new JTDataSource properties file to the target site’s database. For details,
see Configuring Databases and Database Access in the ATG Installation and
Configuration Guide.

Note: Configuration of the destination repository’s datasource might require special handling if the target
site database is set up as an Oracle RAC cluster with multiple nodes. For more information, see the ATG
Installation and Configuration Guide.

Create and Configure a Destination Repository

For each target repository, you must create a destination GSARepository. For example, given two targets,
staging and production, and two repositories on each target, ProductCatalog and PriceLists, four
destination repositories are required:, two for staging and two for production, as configured by these
properties files:

/atg/commerce/catalog/ProductCatalog_staging.properties

/atg/commerce/pricing/priceLists/PriceLists_staging.properties

/atg/commerce/catalog/ProductCatalog_production.properties

/atg/commerce/pricing/priceLists/PriceLists_production.properties

Note: The distribution for ATG Merchandising provides ProductCatalog and PriceLists repositories and
their corresponding destination repositories, for production-only and production/staging deployments. If
you create your own repositories, you must also create their destination repositories.

Foreign Repository Mappings

Items in one destination repository can link to items in another through their repository attribute.
Because the destination repositories are renamed copies of the corresponding production repositories,
you must provide a way to resolve external references. For example, items in the destination repository
ProductCatalog_production might reference items in the original repository PriceList, as follows:

<property name="priceList"

 column-name="price_list"

 item-type="priceList"

 repository="/atg/myApp/PriceLists" >

To ensure that cross-references resolve correctly, you can create a RepositoryMapper component from
the class atg.repository.RepositoryMapper, which extends the GenericService class. This
component’s RepositoryMappings property provides the mappings that are required by a foreign
repository, as follows:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 6 3

1 1 - S e t t i n g U p D e p l o y m e n t

μ
repositoryMappings=\

 /Nucleus-path/original-repository=/Nucleus-path/new-repository,\

 /Nucleus-path/original-repository=/Nucleus-path/new-repository,\

 ...

where Nucleus-path must be the repository’s absolute Nucleus path.

Thus, given the previous example, you set the RepositoryMappings property for a RepositoryMapper as
follows:

repositoryMappings=\

 /atg/myApp/ProductCatalog=/atg/myApp/ProductCatalog_production,\

 /atg/myApp/PriceLists=/atg/myApp/PriceLists_production

Each repository that requires mapping for its items must set a RepositoryMapper in its
foreignRepositoryMapper property. Given the previous example,
ProductCatalog_production.properties and PriceLists_production.properties must set
their foreignRepositoryMapper property to a RepositoryMapper as follows:

foreignRepositoryMapper=/Nucleus-path/repository-mapper

Note: The ATG platform distribution provides a RepositoryMapper that contains required mappings; you
can add your own mappings to these by creating, in the management server’s localconfig layer,
/atg/repository/ProductionRepositoryMapper.properties, and setting repositoryMappings
with the increment/assignment operator += as follows:

repositoryMappings+=mapping[,]...

Procedure

To create a destination repository, perform these steps:

1. Copy an existing unversioned repository properties file into the localconfig
directory of the asset management server and rename it.

2. In the properties file:

 Set the value of the repositoryName property to the name of the destination
repository.

 Set the dataSource property to point to this repository’s data source. Each
destination repository must be set to a data source component that is specific
to the destination. For example, all destination repositories for the production
server might set their dataSource property to
/atg/dynamo/service/jdbc/JTDataSource_production, while all
destination repositories for the staging server might specify
/atg/dynamo/service/jdbc/JTDataSource_staging.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 6 4

1 1 - S e t t i n g U p D e p l o y m e n t

μ
 Set the lockManager property to a ClientLockManager component. This

ClientLockManager is defined to communicate with the corresponding
ServerLockManager on the production server. While the ClientLockManager
component is configured on the asset management server, it is logically part of
the production server cluster and must be configured against that server’s
components.

For information about configuring a ClientLockManager, refer to the SQL
Repository Caching chapter in the ATG Repository Guide.

 Set foreignRepositoryMapper to the RepositoryMapper that you use to map
destination repository names, as described earlier.

For example:

repositoryName=ProductCatalog_production

dataSource=/atg/dynamo/service/jdbc/JTDataSource_production

lockManager=/atg/dynamo/service/ClientLockManager_production

foreignRepositoryMapper=/atg/repository/ProductionRepositoryMapper

Update the Destination Repositories List

On the asset management server, add the destination repositories to the property
additionalAssetSources, in /localconfig/atg/dynamo/service/AssetResolver.properties.
This updates the Destination Repositories list in the Admin Console deployment UI, so it displays the new
repositories.

For example:

additionalAssetSources+=\

 /atg/myApp/ProductCatalog_staging,\

 /atg/myApp/PriceLists_staging,\

 /atg/myApp/ProductCatalog_production,\

 /atg/myApp/PriceLists_production

Define the Deployment Topology
After you plan deployment topology, you can implement it through the Admin Console in the ATG
Business Control Center. The Admin Console lets you set up the target sites, agents, and agent
responsibilities that define an ATG Content Administration deployment topology:

1. Assemble a Web application that includes asset management server according to the
instructions in the ATG Programming Guide. Deploy the application to the appropriate
server.

2. Access the ATG Business Control Center.

3. Log in as a user with access rights to the Admin Console (see Accessing the Admin
Console).

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 6 5

1 1 - S e t t i n g U p D e p l o y m e n t

μ
4. In the Home page, under ATG Content Administration click Admin Console.

5. From the Deployment Administration page, click Configuration.

6. From the Configuration page, click Add Site. You then configure the new site on its
Details and Agents tabs, where you:

 Define the target site

 Configure target site deployment agents

Note: You can also define a deployment topology by editing deploymentTopology.xml, as described later
in this section.

Define the Target Site

You define a target site on its Details tab, where you supply data for the following fields, then click Save
Changes. After you define deployment target sites, you can return to the workflows that your
environment uses and specify these targets in the appropriate task elements.

You can also use the Details tab to delete a target site.

Caution: Before deleting a target site, make sure no active project uses a workflow that includes that
target.

Site Name

Supply the target site’s name—for example, Staging, or Production. See Identify Deployment Target Sites
for more information.

Note: The installed workflows that ATG provides predefine one or two target sites with the following
identifiers:

 Production is the sole target defined in the production-only workflow.

 Staging and Production targets are defined in the staging/production workflow.

In order to use a workflow with these predefined target site identifiers, you must define the deployment
topology with site names that correspond exactly to these identifiers. You must also set the following
property to false:

/atg/epub/Configuration.queryWorkflowTargetByID

Site Type

Choose one of the following options:

 Workflow target: A target that is defined in a project workflow. Project assets are
deployed to this target only after they are approved for deployment

 One-off target: A target that is available for deployment from any project at any
workflow stage. Development sites that are used to test code or performance are
typically suitable for this designation. For more information, see One-Off Deployments
in the Deployment Concepts chapter.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 6 6

1 1 - S e t t i n g U p D e p l o y m e n t

μ
After the target site is initialized, its site type designation cannot be changed.

Site Initialization Options

Choose one of the following options:

 Flag Agents Only: Select if the data on the target site was imported for use as the
starting data for the versioned database on the asset management server. If so, a full
deployment is unnecessary when this target is initialized, because the same data is
being sent back to the target site. Flag Agents Only initializes the target only with data
that changed since the original data was imported.

 Do a Full Deployment: Select if target site data differs from versioned data on the
asset management server. This option ensures that data is the same on both. Be aware
that a full deployment can be time-consuming.

Site Description

Enter text you can use to identify this target. The description appears in the Deployment Administration
Overview list for this target. You can edit the description later if required.

Source Repository and Destination Repository

You use the Source Repository and Destination Repository to set up mappings between this target’s
source and destination repositories. For each mapping, follow these steps:

1. Choose a versioned source repository whose assets you wish to deploy to this target.

This list is populated with all versioned repositories in the application’s configuration
path. If the items you need do not appear, make sure all appropriate modules are
included in your application.

2. Choose the matching destination repository on the asset management server. This is
the repository that is configured to point to the target server’s database; for more
information, see Configure Deployment Data Sources and Destination Repositories.

3. Click Add. The mapping is added to the Source Repository list.

To remove a mapping from this list, click X.

Configure Target Site Deployment Agents

After you set the details of a target site, click on its Agents tab to configure its deployment agents. For
each agent, click Add Agent to Site and supply agent data, then click Save Changes. Each agent requires
the following data:

Name

The agent’s name—for example, Repository Agent. See Identify Deployment Agents for more information

Transport URL

The agent’s transport URL.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 6 7

1 1 - S e t t i n g U p D e p l o y m e n t

μ
Include File Systems

Shows the VFS destinations to be updated by this agent. You populate this list from the Available File
Systems list. For more information, see Plan Deployment Agent Responsibilities.

Note: Be sure to assign each asset type (repository or VFS) or asset destination (identified by its name in
Nucleus) that resides in a shared data store to only one agent that uses the data store.

Essential

A checkbox that specifies whether this agent is required for deployment. During the deployment process,
the DeploymentServer requires all essential agents in the target to be online and functional. If you do not
set this checkbox for an agent, you identify it as an unessential agent—that is, it is not required for
deployment. In this case, the unessential agent can be off-line and deployment can proceed if the
following conditions are also true:

 The /atg/epub/DeploymentServer property allowMissingNonEssentialAgents
is set to true. By default, this property is set to false. If set to false, unessential agents
are treated like essential agents and must be online and functional during
deployment.

 All agents that are flagged as essential are online and functional.

Note: This setting applies only to agents that are configured to deploy repository assets. An agent that is
configured to deploy VFS assets is always regarded as essential, whether or not it is explicitly flagged as
such.

During a deployment’s Activate Data phase, the DeploymentServer tries to contact all essential and
unessential agents before it starts any task that might affect those agents—for example, flush repository
caches and switch data stores. If an unessential agent is offline at that time, the DeploymentServer logs
error messages before continuing the deployment. In this case, you might need to perform the following
maintenance tasks on the agent after deployment is complete:

 Manually flush its repositories’ caches.

 If the agent is configured for deployments in switch mode, manually switch the
agent’s switchable data stores so its current live stores are the same as other agents.

Note: This task is generally optional. A switch deployment always updates the newly
inactive store (which is still used by the unessential agent) after updating and
activating the newly live store. Also, the DeploymentServer automatically
synchronizes all online agents during the next deployment’s Activate Data phase.

Editing deploymentTopology.xml

You can manually define deployment topology from an XML file, which uses the following DTD:

http://www.atg.com/dtds/publishing_deployment/publishing_deployment_1.0.dtd

The ATG distribution provides a template for creation of this file:

<atg10dir>/Publishing/base/src/config/atg/epub/deploymentTopology.xml

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 6 8

1 1 - S e t t i n g U p D e p l o y m e n t

μ
This section provides information about defining a deployment topology in XML and importing it into
your ATG Content Administration environment. After you perform these tasks, you can initialize targets
from the Admin Console’s Configuration page, as described later in this chapter in Initialize Target Sites.

Sample Deployment Topology XML

The following example shows part of a deploymentTopology.xml file:

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE publishing-deployment-topology SYSTEM

 "http://www.atg.com/dtds/publishing_deployment/publishing_deployment_1.0.dtd">

<publishing-deployment-topology>

 <target>

 <target-name>Production</target-name>

 <agent>

 <agent-name>PubAgent</agent-name>

 <include-asset-destination>

 /atg/epub/file/ConfigFileSystem

 </include-asset-destination>

 <include-asset-destination>

 /atg/epub/file/WebAppRefFileSystem

 </include-asset-destination>

 <transport>

 <transport-type>RMI</transport-type>

 <rmi-uri>

 rmi://production1.yourcompany.com:8860/atg/epub/AgentTransport

 </rmi-uri>

 </transport>

 </agent>

 <agent>

 <agent-name>WebAgent1</agent-name>

 <include-asset-destination>

 /atg/epub/file/WWWFileSystem

 </include-asset-destination>

 <transport>

 <transport-type>RMI</transport-type>

 <rmi-uri>

 rmi://production2.yourcompany.com:8860/atg/epub/AgentTransport

 </rmi-uri>

 </transport>

 </agent>

<!-- Order matters. Repository mappings must come after agent tags.

-->

 <repository-mapping>

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 6 9

1 1 - S e t t i n g U p D e p l o y m e n t

μ
 <source-repository>/atg/MyRepository</source-repository>

 <destination-repository>/atg/MyRepository_production</destination-repository>

 </repository-mapping>

 <repository-mapping>

 <source-repository>/atg/MyRepository2</source-repository>

 <destination-repository>/atg/MyRepository2_production</destination-repository>

 </repository-mapping>

 <repository-mapping>

 <source-repository>/atg/commerce/catalog/ProductCatalog</source-repository>

 <destination-repository>

 /atg/commerce/catalog/ProductCatalog_staging

 </destination-repository>

 </repository-mapping>

 <repository-mapping>

 <source-repository>

 /atg/commerce/pricing/priceLists/PriceLists

 </source-repository>

 <destination-repository>

 /atg/commerce/pricing/priceLists/PriceLists_staging

 </destination-repository>

 </repository-mapping>

 </target>

 <target>

 <target-name>Staging</target-name>

 <!-- Agents in the Staging target defined here

 ...

 -->

 </target>

</publishing-deployment-topology>

The <repository-mapping> tags specify the source and destination repositories for the deployment.

Defining Targets for One-Off Deployment

By default, a target is defined for use in a project workflow. In order to define a target for one-off
deployments, nest this tag in the <target> definition:

<target-deploy-type>ONE-OFF</target-deploy-type>

If this tag is not set, the target is available only for deployment within a project workflow. If desired, you
can explicitly set a target for workflow deployment as follows:

<target-deploy-type>WORKFLOW</target-deploy-type>

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 7 0

1 1 - S e t t i n g U p D e p l o y m e n t

μ
Including and Excluding Asset Destinations

You specify an agent’s deployment responsibilities through two tags:

 <include-asset-destination> includes this asset destination for an agent.

 <exclude-asset-destination> excludes this asset destination for an agent.

Tags <include-asset-destination> and <exclude-asset-destination> are set to the deployed
repository or VFS’s absolute Nucleus component name on the asset manager server. Multiple instances of
the <include-asset-destination> and <exclude-asset-destination> include and exclude
multiple asset destinations, respectively.

The <exclude-asset-destination> tag is typically used to exclude a versioned content repository
that is listed as a destination for the agent’s target—for example, in cases where that agent does not need
to access the given repository. By excluding the repository, you avoid the overhead that the agent
otherwise incurs by invalidating the repository cache during a switch.

Note: When manually supplying values in a deploymentTopology.xml file for tags <include-asset-
destination> and <exclude-asset-destination>, specify the names of the repositories exactly as
they are listed in the VersionManager.

Mapping VFSs

You can configure deployment so a VFS of one name on the asset management server deploys to a VFS of
another name on the agent server. You do this through a <vfs-mapping> tag that embeds tags
<source-vfs> and <destination-vfs>:

 <source-vfs> specifies a VFS previously specified in an <incude-asset-
destination> tag.

 <destination-vfs> specifies a VFS on the agent server.

If these tags are omitted, the VFS on the agent and asset management servers are assumed to have the
same name.

For example, a deployment topology might include the following VFS for deployment:

<include-asset-destination>/atg/epub/file/WWWFileSystem

</include-asset-destination>

You can map this VFS so it deploys on the agent server to the VFS WWWFileSystemOnAgent, as in the
following example:

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE publishing-deployment-topology SYSTEM

 "http://www.atg.com/dtds/publishing_deployment/publishing_deployment_1.0.dtd">

<publishing-deployment-topology>

<target>

<target-name>AgentMappingTest</target-name>

 <agent>

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 7 1

1 1 - S e t t i n g U p D e p l o y m e n t

μ
 <agent-name>TestAgent</agent-name>

 <include-asset-destination>/atg/epub/file/WWWFileSystem

 </include-asset-destination>

 <vfs-mapping>

 <source-vfs>/atg/epub/file/WWWFileSystem</source-vfs>

 <destination-vfs>/atg/epub/file/WWWFileSystemOnAgent</destination-vfs>

 </vfs-mapping>

 <transport>

 <transport-type>RMI</transport-type>

 <rmi-uri>rmi://localhost:8860/atg/epub/AgentTransport</rmi-uri>

 </transport>

 </agent>

</target>

</publishing-deployment-topology>

Importing a Deployment Topology File

You import a deploymentTopology.xml file as follows:

To import a deploymentTopology.xml file:

1. In the ATG Business Control Center, navigate to the Admin Console.

2. From the Deployment Administration page, click Configuration

3. From the Configuration page, click Import from XML

4. Find the desired deploymentTopology.xml file and select it for import.

5. On the Configuration screen, click on the new target site and display its Details page.

6. Select Flag Agents Only (see Site Initialization Options) and click Save Changes.

Configure Deployment from Multiple Asset Management
Server Clusters

Multiple clusters of asset management servers can deploy to a single target site. In order to implement
this deployment topology, each cluster must have a unique identifier, which enables target site
deployment agents to differentiate the deploying clusters. To establish a cluster’s identity, you configure
each of its servers as follows:

 Set the cluster name.

 Define the cluster hosts.

Other requirements that are specific to repository assets and file assets are discussed later in this section.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 7 2

1 1 - S e t t i n g U p D e p l o y m e n t

μ
Set the Cluster Name

You can set the server’s cluster name in two ways:

 In /atg/dynamo/service/ClusterName, set the clusterName property. Each
cluster name must be unique; within a cluster, all servers must set their clusterName
property to the same value.

 Save the cluster name in the ATG Content Administration database by setting two
properties in /atg/dynamo/service/ClusterName: set clusterName as described
above, and set useClusterTable to true. On initial application startup, the server
saves the clusterName setting to the database. When starting up later, the server
checks the database name and compares it to the clusterName ; if clusterName is
empty, it uses the stored database value. If it finds a mismatch, it uses the property
setting and writes this back to the database.

By setting useClusterTable to true on all cluster servers, you can set the cluster
name on just one server, in order to propagate it to the others via the database.

Define the Cluster Hosts

Each server must be configured with contact data about the other servers in the cluster. For each server in
a cluster, configure these properties in /atg/epub/Configuration:

 remoteHosts: In a comma-delimited list, specify the host names of other servers in
this server’s cluster.

 remoteRMIPorts: In a comma-delimited list, specify the RMI port settings that are
configured for the hosts specified in remoteHosts. List the ports in the same order as
the corresponding hosts.

 remotePorts: Set this property only if you use the
FileSynchronizationDeployServer to synchronize distributed file system assets
(see Manage Distributed File Assets).

In a comma-delimited list, specify the file synchronization ports that are configured for
the other servers in their FileSynchronizationDeployServer components. List the
ports in the same order as the corresponding hosts in remoteHosts.

For example:

remoteHosts=\

 jupiter.acme-widgets.com,\

 saturn.acme-widgets.com,\

 uranus.acme-widgets.com

remoteRMIPorts=\

 8860,\

 8860,\

 8860

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 7 3

1 1 - S e t t i n g U p D e p l o y m e n t

μ
Repository Assets

When setting up deployment from multiple asset management server clusters, make sure that each
cluster deploys from a unique set of repositories. After you initialize a target site with the repository of
one ATG Content Administration cluster, you should only deploy repository assets from that cluster.

Caution: Deployment of the same repositories from different ATG Content Administration clusters to the
same target is not supported.

File Assets

Because different ATG Content Administration clusters can deploy to the same VFS repository, it is
possible for file system assets on these clusters to share the same paths and names. Using cluster
identifiers, deployment agents on the target site can keep track of deployed file ownership; this enables
them to differentiate between files from different clusters whose paths are otherwise identical.

In order to enable deployment of files assets from multiple ATG Content Administration clusters, you
must configure a target site in two ways:

 Enable tracking of file ownership.

 Set a strategy for handling ownership conflicts.

Enable Tracking of File Ownership

In order to enable file ownership in a virtual file system, ownerCacheEnabled must be set to true in the
target site’s VFS configuration. Depending on your configuration, this property is set in one or more of the
following VFS configuration files:

 /atg/epub/file/WebAppRefFileSystem

 /atg/epub/file/WWWFileSystem

 /atg/epub/file/ConfigFileSystem

Note: In all configuration properties files, uncomment the ownerCacheEnabled property.

When ownerCacheEnabled is set to true, the target site deployment agent caches file ownership data.
For online deployment, the owner cache file path is explicitly set in the VFS configuration’s property
ownerCacheDataFile. For switch deployments, SwitchableLocalFileSystem components do not have
this property; instead, they write the owner cache data to the following locations:

 ConfigFileSystem:
/home/PublishingAgent/deploymentconfig/data/config

 WWWFileSystem:
/home/PublishingWebAgent/deploymentdocroot/data

The owner cache contents can help answer deployment questions related to file ownership. The
following example shows a fragment from the owner cache file for the WWWFileSystem component. It
shows three files that are stored in the local WWWFileSystem and their path. The cache file also identifies
each file’s cluster owner as CA1 or CA2.:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 7 4

1 1 - S e t t i n g U p D e p l o y m e n t

μ
\Products\Doc\copyright_X-Boite.txt:CA1

\About_Us\execProfiles.txt:CA2

\Products\Doc\whitePaper_X-Boite.pdf:CA1

Given these file owners, an attempt by cluster CA1 to deploy About_Us\execProfiles.txt triggers an
ownership conflict, which is resolved according to the ownerStrategy that is configured for the target
site (see below).

Set a Strategy for Handling Ownership Conflicts

You can choose one of several strategies to handle potential file conflicts during deployment, by setting
three properties on the target component /atg/deployment/file/DeploymentConfiguration:

 ownerStrategy

 ownerSpecificWinnerId

 ownerWarning

ownerStrategy controls how to handle file ownership conflicts. You can set this property to one of the
following values:

ownerStrategy setting Behavior

RESOLVE_ERROR (default) On any file conflict, throw an error and stop deployment. This setting
is appropriate when you wish to exercise complete manual oversight
over all possible file ownership conflicts.

RESOLVE_SPECIFIC Give precedence to one cluster over all others in the event of a
conflict. If you use this setting, you must specify the cluster by also
setting ownerSpecificWinnerId. Attempts by other clusters to
deploy this file are ignored and yield a warning if ownerWarning is
true.

This setting is appropriate for automating ownership conflict
resolution.

RESOLVE_CLOBBER Use the most recent file, regardless of its owner. The overwritten file is
owned by the latest deploying cluster. If ownerWarning is true,
changes to file ownership yield a warning.

RESOLVE_NO_CLOBBER Allow deployment of a file only from its latest cluster owner. Attempts
by other clusters to deploy this file are ignored and yield a warning if
ownerWarning is true.

Attempts to deploy conflicting file assets are ignored unless you set ownerStrategy to RESOLVE_ERROR,
where all file deployments fail in the event of any conflict, or RESOLVE_CLOBBER, where all deployments
succeed. RESOLVE_ERROR and RESOLVE_SPECIFIC provide the greatest levels of control for resolving file
ownership conflicts.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 7 5

1 1 - S e t t i n g U p D e p l o y m e n t

μ
ownerSpecificWinnerId specifies the identifier of the cluster to take precedence if ownerStrategy is set
to RESOLVE_SPECIFIC. If ownerStrategy is set to another value, this property is ignored.

Set this property to the same string value used to set the cluster name property clusterName.

ownerWarning specifies whether to print warnings on ownership conflicts to the deployment agent. The
default setting is true.

Managing Multi-Cluster Deployment Data

You can use the Dynamo Component Browser to view the details of a target site’s DeploymentAgent
component: the agent’s deployment state, deployment mode, current live data store, and so on. The view
includes Cluster Status Detail sections for each cluster that deploys to that agent. Each section lists the
repositories deployed from the cluster, the time stamp of the latest deployment, and other cluster-
specific information.

The DeploymentAgent component is found in Nucleus on the target site:
/atg/epub/DeploymentAgent. You can access the Dynamo Component Browser as follows:

http://hostname:port/dyn/admin/nucleus/atg/epub/DeploymentAgent/

For more information about the Dynamo Component Browser and default port used by your application
server, see the ATG Installation and Configuration Guide.

Deleting cluster data

On occasion, you might need to remove ATG Content Administration cluster data from a target site’s
deployment agents. Generally, you do this after deleting the deployment topology of an ATG Content
Administration cluster. For example, you might remove the existing deployment topology of cluster CA1,
then create a topology for cluster CA2 that maps the same repositories as CA1. Before making the CA2
changes live, you must remove the stale CA1 deployment data from the target site’s deployment
agents—both Publishing agents and Publishing Web agents; otherwise, the agents return errors when
you try to deploy from CA2.

You remove cluster data from deployment agents as follows:

 Publishing agent: From the Dynamo Component Browser, find the cluster to remove
in /atg/epub/DeploymentAgent and click its Delete button.

 Publishing Web agent: On the target site:

 Navigate to: /home/PublishingWebAgent/data.

 Delete the file cluster-stat-oldCluster, where oldCluster is the name of
the cluster to remove, the same string value used to set the cluster name
property clusterName.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 7 6

1 1 - S e t t i n g U p D e p l o y m e n t

μ
Initialize Target Sites

After you configure target sites, you must initialize the target sites for use with the DeploymentServer.

Note: If you use an MS SQL database, review the next section, Initializing Targets on MS SQL with
Clustered Primary Keys, before starting the procedure below.

This procedure assumes the asset management server is already running.

1. Start an application on each target server that includes the appropriate agents. For
information on starting agents, see Running Deployment Agents earlier in this
chapter.

2. Access the ATG Business Control Center and log in as a user with access rights to the
Admin Console.

3. In the Home page, expand the ATG Content Administration option in the Operations
list, and click Admin Console.

4. Click Configuration.

5. Click Make Changes Live.

6. Select Flag Agents Only or Do a Full Deployment as appropriate (see Site Initialization
Options), and click Make Changes Live.

7. Display the Overview page, and review the information that appears for the target
sites you initialized.

You can also confirm target initialization by viewing the service information for the
atg/epub/DeploymentServer component via the Component Browser in the ATG Dynamo Server
Admin interface.

If you need to restart an initialized target site application, you must also restart the asset management
server applications that deploy to it.

Initializing Targets on MS SQL with Clustered Primary Keys

If your ATG Content Administration environment uses an MS SQL Server database that employs clustered
primary keys for repository tables, locking errors might occur when you initialize your targets:

Warning /atg/deployment/DeploymentManager Transaction (Process ID 164) was

deadlocked on lock resources with another process and has been chosen as

the deadlock victim. Rerun the transaction.

These errors can occur if READ_COMMITTED_SNAPSHOT is not enabled for the database, as described in the
ATG Installation and Configuration Guide. Check all recommended settings.

If deadlock persists, reduce the number of threads by setting the following property values in the
/atg/deployment/DeploymentManager component:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 7 7

1 1 - S e t t i n g U p D e p l o y m e n t

μ
phaseCompletePollingInterval=30000

maxThreads=5

transactionBatchSize=5

If the errors still occur, try the following settings:

phaseCompletePollingInterval=60000

maxThreads=1

transactionBatchSize=1

Reducing the number of threads can adversely affect performance. If this occurs, contact ATG Customer
Support Services for further help.

Adding Agents to an Initialized Target

After you initialize a target, you can add a deployment agent to that site as follows:

1. Configure the deployment agent as described earlier (see Configure Target Site
Deployment Agents).

2. Return to the target site’s Configuration page and click Make Changes Live.

3. Perform the steps associated with one of the following conditions:

If the new agent is responsible for... Perform these steps:

File assets (ConfigFileSystem or WWWFileSystem) Perform a full deployment on the target site.

File assets whose file directories are on a sharable
network resource used by other agents in the
ATG Content Administration cluster

Check to be sure that the file system points to
the network resource.

Repository assets 1. Open the Component Browser page in ATG
Dynamo Server Admin and navigate to
/atg/epub/DeploymentServer

2. Scroll to the target site. In the Force Snapshot
ID field, enter the Current Installed Agent
Snapshot value.

3. Click Init.

4. If using switch deployment, verify that the new agent switchable datastore settings
are consistent with the agents for the same target site, as follows:

 From the Admin Console, click Overview.

 Navigate to the target site of the new agent.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 7 8

1 1 - S e t t i n g U p D e p l o y m e n t

μ
 Click on the Agents tab.

 From the Agents tab, click Switchable Datastores

The Agents tab lists the target datastores that each agent is configured to switch, and
identifies which datastores are currently live.

Configure Deployment Event Listeners
You can manually monitor the status of deployments through the ATG Business Control Center’s Admin
Console. The Details section displays the current status of each deployment target. Alternatively, you can
use event listeners that automatically monitor and manage deployments. These listeners listen for the
deployment events that are fired upon the different state changes in a deployment. On receiving these
events, the listener can respond with the appropriate action—for example, by sending email. See the
following subsections for more information:

 Understanding Deployment Events

 Creating and Configuring a DeploymentEventListener

Note: This section assumes you are familiar with events and event listeners, as covered in the Core
Dynamo Services chapter of the ATG Programming Guide.

Understanding Deployment Events

As described in Deployment Process, each time the deployment or an agent begins or ends a deployment
phase (or fails during a phase), a DeploymentEvent is fired to indicate the change in state. These
DeploymentEvent objects are fired by the following event sources:

 DeploymentServer when a state change occurs in the deployment.

 DeploymentAgent when a state change occurs in the target server agent.

The DeploymentEvent object includes the old state, the new state that caused the event to fire, the
deployed project, and other information. For a full list of properties, see
atg.deployment.common.event.DeploymentEvent in the ATG API Reference.

Creating and Configuring a DeploymentEventListener

You can automate many aspects of deployment monitoring and management by configuring event
listeners on the asset management server and the target servers, to listen for deployment events that
include a specific state code.

To create and configure a DeploymentEventListener:

1. Define a listener service class that implements the interface DeploymentEventListener
and the method deploymentEvent(DeploymentEvent pEvent).

2. Configure an instance in Nucleus on the appropriate server and register it with the
DeploymentServer or DeploymentAgent as appropriate:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 7 9

1 1 - S e t t i n g U p D e p l o y m e n t

μ
 Configure the listener on the asset management server and register it with the
/atg/epub/DeploymentServer, so it listens for deployment events fired
when the deployment changes its state.

 Configure the listener on the target server and register it with the local
/atg/epub/DeploymentAgent, so it listens for deployment events fired when
an agent changes its state.

For an example, examine the source code for the DeploymentEmailer listener class, which is located
at:

<ATG10dir>/Publishing/samples/Java

DeploymentEmailer Listener

 ATG Content Administration includes this DeploymentEventListener class:

atg.deployment.common.event.DeploymentEmailer

You can use this listener to send email notifications when a deployment succeeds, is interrupted, or fails.

By default, instances of the DeploymentEmailer class listen for deployment events that are fired when a
deployment enters one of the following states:

 DEPLOYMENT_COMPLETE

 EVENT_INTERRUPT

 Any error state such as ERROR and ERROR_PREPARE

On receiving such an event, the listener sends an email message to a specified recipient.

To set up a DeploymentEmailer listener, first configure an instance of the DeploymentEmailer class on
the asset management server. For example:

$class=atg.deployment.common.event.DeploymentEmailer

SMTPEmailSender=/atg/dynamo/service/SMTPEmail

fromAddress=personA@myCompany.com

toAddress=personB@myCompany.com

useShortMessage=true

The following table describes the properties to configure:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 8 0

1 1 - S e t t i n g U p D e p l o y m e n t

μ
Property Description

SMTPEmailSender The SMTPEmailSender service through which to send the email.

ATG provides a standard component of type SMTPEmailSender at:

/atg/dynamo/service/SMTPEmail

For more information on email senders and listeners, see the ATG
Programming Guide.

fromAddress The sender’s email address.

toAddress The destination email address.

useShortMessage Specifies the level of message detail:

True: The listener sends a short, pager-sized message.

False (default): The listener sends a longer, more verbose message.

active Specifies whether to enable the listener:

True (default): The listener is enabled to send email notifications.

False: The listener is disabled.

After the DeploymentEmailer listener is configured, register it with the
/atg/epub/DeploymentServer by adding it to the list of listeners in the deploymentEventListeners
property.

If you require different functionality for the event listener, create a subclass of DeploymentEmailer,
override its deploymentEvent() method with your own implementation, and configure an instance of
this subclass.

Schedule Deletion of Empty Folders
When you deploy a renamed folder to a target site, the assets in the original folder are moved to the new
one; however, the original folder—now empty—remains on the target site. Empty folders are periodically
removed by the following VFS components:

 ConfigEmptyDirDeleter monitors the ConfigFileSystem in the Publishing agent.

 WWWEmptyDirDeleter monitors the WWWFileSystem in the Publishing Web agent.

These components wake up at regular intervals and delete any empty folders that are older than the
configured age. You can configure both components in their respective properties files, in
/atg/epub/file:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 8 1

1 1 - S e t t i n g U p D e p l o y m e n t

μ
Property Description

enabled A boolean, must be set to true (the default) in order to schedule empty directory
removal.

folderAge Specifies in milliseconds how old an empty folder must be before it is eligible for
removal. The default is 604800000 (one week).

schedule Schedules empty folder removal by specifying a PeriodicSchedule and/or
RelativeSchedule, or a CalendarSchedule.

Default setting:

every 1 hour in 1 hour

For detailed information on setting schedules, see the section Scheduler Services
in the ATG Programming Guide.

If you create a custom VFS, you should create and configure its own ConfigEmptyDirDeleter or
WWWEmptyDirDeleter component for the appropriate agent. To configure this component, simply copy
the appropriate properties file from the installed ATG distribution into the appropriate folder, and modify
as needed. For example:

$class=atg.vfs.EmptyFolderCleanupService

virtualFileSystem=custom-VFS-name

scheduler=/atg/dynamo/service/Scheduler

schedule=every 24 hours in 4 hours

enabled=true

folderAge=17280000

You must also specify this component as one of the initial services in
atg/epub/file/Initial.properties. For example:

initialServices+=\

 ConfigFileSystem,\

 ConfigEmptyDirDeleter

Cache Checksums for File Assets
ATG includes the following checksum caching features, which you can use to improve performance for
file asset deployments.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 8 2

1 1 - S e t t i n g U p D e p l o y m e n t

μ
Note: For information on configuring deployment to optimize performance, especially for environments
that require frequent deployments or deploy very large numbers of assets, refer to Configuring DAF
Deployment for Performance in the ATG Programming Guide.

Checksum Caching on the Asset Management Server

In ATG, 64-bit file data checksums are calculated whenever a file is saved. Importing files with
importRepository also triggers checksum calculations.

The checksums are stored in the PublishingFileRepository. To disable this feature, remove the checksum
property from publishingFiles.xml.

Checksum Caching on Production Servers or Agents

The LocalVFSService and SwitchableLocalFileSystem components include checksum caching features.
Calculated checksums are stored in memory, and they are occasionally written to or retrieved from a
single file. JournalingFileSystemService components use this feature if it is enabled on the
LocalVFSService to which they point.

This feature is useful only for file systems that have large numbers of files, and it is disabled by default,
though enabling it does not adversely affect file systems with small numbers of files. It is highly
recommended for the WWWFileSystem component on the agent if significant numbers of assets (more
than 1000) are deployed to that component. It is enabled by default in the WWWFileSystem component
on the PublishingWebAgent.

The following properties control this feature:

 checksumCacheEnabled: Enables/disables checksum caching.

 checksumCacheEncoding: Specifies the encoding used to save the cache data —by
default, UTF-8. If your environment uses file paths with non-UTF-8 characters, set this
property to the encoding set that you use.

 checksumCacheDataFile: The SwitchableLocalFileSystem automatically saves the
checksum cache data files in its data directory, but to enable checksum caching on a
LocalVFSService, set the value of this property to the location where a file can be
saved.

Checksum Verification Deployment Mode

By default, full file asset deployments check the timestamp, file size, and checksum of a file on the agent
before pushing a new version of the file from the asset management server. If the files match, the new file
is not sent. Note that the timestamp check is not for the exact timestamp but for a more recent file on the
server.

Occasionally, you might want to disable checksum verification in order to purge all file assets from a
target site. You can disable checksum verification by setting the following property in the
/atg/deployment/file/DeploymentConfiguration component on the asset management server:

noVerificationByChecksum=true

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 8 3

1 1 - S e t t i n g U p D e p l o y m e n t

μ
Note: This property must be set to true in order to configure background deletion of file system assets.

Local Copy During Switch Deployment

By default, full switch deployments for file assets copy the live directory of a SwitchableLocalFileSystem to
the inactive directory on the second apply phase. The copy follows the verification rules described in
Checksum Verification Deployment Mode if checksum verification is enabled
(noVerificationByChecksum=false).

There are certain site configurations where turning this feature off might improve performance,
specifically if there is a simultaneous repository deployment that takes a similar amount of time. The
feature can be disabled by setting the following property in the
/atg/deployment/file/DeploymentConfiguration component on the asset management server:

noChecksumAfterCopy=true

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 8 4

1 1 - S e t t i n g U p D e p l o y m e n t

μ

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 8 5

1 2 - D e p l o y i n g P r o j e c t A s s e t s

μ
12 Deploying Project Assets

After a project is approved for deployment, deployment of its assets to the target site can be launched
automatically or manually. Automatic deployment can be configured in two ways:

 Configure the RecurringDeploymentService so all pending deployments are launched
according to the specified schedule, as described in this chapter.

 Configure workflows to enable immediate project deployment. For information about
configuring workflows, see the ATG Personalization Programming Guide.

You can also manually launch deployments through the ATG Business Control Center Admin Console.

This chapter covers the following deployment topics:

 Configuring the RecurringDeploymentService

 Deploying from the Admin Console

 Troubleshooting Deployment

Configuring the RecurringDeploymentService
You can set up ATG Content Administration so it automatically deploys all projects listed in the To Do tab
of the Admin Console in the ATG Business Control Center.

To enable this functionality:

1. Set up your content development and target environments for ATG Content
Administration deployments (review the steps described earlier in Setting Up
Deployment).

2. Configure the RecurringDeploymentService to schedule pending projects for
deployment:

/atg/epub/deployment/RecurringDeploymentService

The following table describes each property to configure:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 8 6

1 2 - D e p l o y i n g P r o j e c t A s s e t s

μ
Property Description

candidateTargetNames Specifies targets to consider for scheduled deployments. If this
property is not set, the RecurringDeploymentService deploys to all
target sites that are set up for deployment. The
RecurringDeploymentService logs error messages for invalid targets.

deploymentServer The path of the DeploymentServer, by default
/atg/epub/DeploymentServer.

enabled Specifies whether the service is enabled. The default is false. Be sure to
set all other required properties before enabling this service.

forceFull If set to true, specifies that the RecurringDeploymentService performs
a full deployment. By default, this property is set to false (performs
incremental deployment).

personaPrefix The substring in an ACL that is used to identify the user in the
UserAuthority. The default is Profile$login$.

schedule Specifies the schedule for deploying pending projects. The schedule is
supplied to the Scheduler service specified in the Scheduler property.

In order to set up a recurring schedule, specify either a
PeriodicSchedule or CalendarSchedule. For more information on
defining these types of schedules, see the discussion on Scheduler
services in the ATG Programming Guide.

The default setting is calendar * * * * * 0, which specifies to run
the job every hour on the hour.

scheduler The path of the Scheduler service to manage deployment scheduling;
by default, set to /atg/dynamo/service/Scheduler.

transactionManager The path of the Transaction Manager to use; by default, set to
/atg/dynamo/transaction/TransactionManager.

userAuthority The userAuthority that resolves the user specified in the username
property.

username Specifies the user to authenticate. The default is publishing.

Set this property to a user name with full access to the
/atg/epub/PublishingRepository in order to ensure that the user
against whom queries are executed has the required access privileges
to all projects.

versionManager The path of the VersionManager to use; by default, set to
/atg/epub/version/VersionManagerService.

At application startup, the RecurringDeploymentService schedules a new deployment job with the
/atg/dynamo/service/Scheduler (class atg.service.scheduler.Scheduler). The Scheduler
component is a service that monitors all scheduled jobs, and calls as needed on the appropriate services

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 8 7

1 2 - D e p l o y i n g P r o j e c t A s s e t s

μ
to execute them. The ATG Dynamo Server Admin lists all jobs that the Scheduler component currently
monitors.

According to the schedule defined in the property RecurringDeploymentService.schedule, the
Scheduler calls on the RecurringDeploymentService to perform its scheduled task. When called, the
RecurringDeploymentService retrieves all pending projects in the system and deploys them to all target
sites specified in the candidateTargetNames property. If this property is not set, the
RecurringDeploymentService deploys to all targets that are configured for deployment. You can monitor
and manage scheduled tasks like other deployment activities.

Extending the RecurringDeploymentService

The default implementation of the RecurringDeploymentService schedulable service acts on all projects
that are approved for deployment. You can extend this service to include only a subset of approved
projects. For example, you might want to include only projects that contain changes to the product
catalog.

To extend the RecurringDeploymentService in this manner, create a subclass of the
atg.epub.deployment.RecurringDeploymentService class and override the following method:

public Collection getProjectsToDeploy(Collection pAllPendingProjects)

By default, getProjectsToDeploy() returns the collection of all projects approved for deployment. The
custom implementation should filter the collection as needed.

After you create the subclass, configure an instance of the class in Nucleus by placing the configuration
file in the configuration path:

/atg/epub/deployment/RecurringDeploymentService

Note: If project assets that are included in the filtered collection reference assets in other projects that are
approved for deployment, the system automatically includes those projects in the deployment.

Deploying from the Admin Console
The ATG Business Control Center Admin Console lets you manage and troubleshoot deployments
manually. The Admin Console can perform the following tasks:

 View deployment details, including errors.

 Stop deployments.

 Set deployment parameters such as time of deployment and its scope.

 Manage the deployment queue—for example, move a project to the front of the
queue.

 Switch a Target Site’s Datastores on a site that is configured for switch deployment.

 Roll back deployments—that is, undoing a specific deployment by reverting a target
site to a previous state.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 8 8

1 2 - D e p l o y i n g P r o j e c t A s s e t s

μ
 View deployment agents status: status, errors, and configuration information.

Accessing the Admin Console

To access the Admin Console:

1. Make sure the ATG asset management server is running.

2. Log into the ATG Business Control Center as a user who has access rights to the Admin
Console generic activity. By default, the EPub-Admin or EPub-Super-Admin role
provides this access (username and login publishing/publishing). For information
on generic activity access, see Access to Generic Activities.

You also need an ATG Portal role. See ATG Content Administration Users for more
information.

3. In the Home page, expand the ATG Content Administration option in the Operations
list, and click Admin Console. Two options appear:

 Configuration lets you configure target sites for deployment (see Define the
Deployment Topology).

 Overview displays summary information about the target sites that are set up
for deployment and their status. You can obtain more detailed information
about each target by clicking on the link under Site Name. This displays target
site information in a series of tabs: Details, To Do, Plan, Projects, and Agents

Note: The Overview pane displays sites according to the order that is set in the
Configuration pane through the Site Priority controls.

View Deployment Details

The Details tab for a target site shows the following information:

 The name of the project included in the most recent deployment (the project being
currently deployed)

 The number of projects waiting to be deployed

 The name of the project included in the last successful deployment (before the one
listed as most recent)

 The name of the project that is next in the queue of projects waiting to be deployed

If a project is currently being deployed, detailed information about it appears in the panel at the bottom
of the screen. For example, you can see the type of deployment (full or incremental), the time and date
that the deployment started, and the name of the deploying server.

The Details tab also displays information about the accessibility of the target site. If the site is inaccessible
or if deployment is failing, warnings appear in this tab. After you resolve any deployment issues, you are
presented with options that let you resume deployment or roll back deployment to the last set of assets
that were successfully deployed to the target site.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 8 9

1 2 - D e p l o y i n g P r o j e c t A s s e t s

μ
Stop Deployments

To stop all ongoing deployments manually: from the Details tab, click Halt Deployments.

The Details tab also contains a Critical Reset button, which you can use to delete the last deployment to
the given target (the current deployment). The operation clears the deployment state one by one from
each agent, deleting the deployment data directories from the ATG asset management server and the
target. All agents are reset to IDLE. Typically you use the Critical Reset operation only in situations where
errors occurred that are irrecoverable by stopping the deployment, fixing the error, and either resuming
or rolling back the deployment.

Set Deployment Parameters

Use the To Do tab to manage any deployments that are not automatically started by a workflow
deployment element or the RecurringDeploymentService. From this tab, select the projects to deploy and
click Deploy Selected Projects. Options appear that let you perform the following tasks:

 Deploy the projects immediately or schedule them for a given date and time.

Note: If the On Date and At Time fields are empty, the projects are scheduled for
immediate deployment.

 Perform a full or incremental deployment of project assets.

 Impose strict constraints for updating target site data.

Click Deploy after you select the appropriate settings for this project.

Setting Strict Update Constraints

Before deploying you can set one or both of the following checkboxes:

 Strict File Update Operations

 Strict Repository Update Operations

If these options are set, the deployment succeeds only if all project assets of the specified type—file
and/or repository assets—have matching data on the target site. For example, a deployment might set
Strict File Update Operations; if the deployment specifies to remove a file asset and that asset is missing
on the target site, the deployment fails and returns errors.

These options can be useful for sites that set rigorous standards for data integrity. If these options are left
unset, data discrepancies generate warnings, but do not prevent the deployment from going forward.

Manage the Deployment Queue

Use the Plan tab to manage the queue of projects that are approved for deployment (see Deployment
Scheduling). The Plan tab also shows projects that are scheduled for later deployment.

To move a project to the head of the deployment queue, select the project and select Run Now in the
Action column.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 9 0

1 2 - D e p l o y i n g P r o j e c t A s s e t s

μ
Switch a Target Site’s Datastores

If a site is configured for switch deployment, you can perform the switch through the target’s agents as
follows:

1. From the Admin Console, click Overview.

2. Navigate to the target site where you wish to switch datastores.

3. Click on the Agents tab.

4. From the Agents tab, click Switchable Datastores

The Agents tab lists the target datastores that each agent is configured to switch, and identifies which
datastores are currently live:

To switch datastores:

1. Check one or more SwitchingDataSources and SwitchableLocalFileSystem to switch
the corresponding datastores.

2. Click Switch Selected Datastores.

For information about configuring a site for switch deployment, see Configure Switch Deployment in the
Setting Up Deployment chapter.

Roll Back Deployments

The Projects tab shows a chronological listing of all deployed projects. Those deployed most recently
appear at the top of the list.

You can revert the target site to a particular deployment state by selecting a project from the list and
clicking Rollback to Selected. This behavior starts a deployment that rolls back all projects deployed after
the one you selected.

When a target site is rolled back to an earlier project, those projects whose assets are no longer on the site
are shown in grey.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 9 1

1 2 - D e p l o y i n g P r o j e c t A s s e t s

μ
Roll back Constraints

Two constraints apply to roll back deployment:

 You cannot roll back deployment on a target site while an active deployment is in
progress on that site. If the roll back operation is urgent, you must first revert all active
deployments. In general, a roll back deployment can succeed only if the target is
unchanged in the interval between when you schedule the roll back and when it
actually executes.

 You cannot roll back deployment on a one-off target; the Projects tab for a one-off
target site is read-only. If you perform a full deployment to a one-off target, the
Projects list is emptied when deployment is complete.

View Deployment Agents Status

Use the Agents tab to view status, error, and configuration information about the agents set up for this
target site.

Troubleshooting Deployment
Deployments occasionally require manual intervention, either because the deployment failed or stalled in
an indeterminate state. This section describes how to perform the following tasks:

 Recover from deployment failure.

 Release a stalled deployment.

Recover from Deployment Failure

When a deployment fails—for example, a server crashes or network connectivity lapses—you can often
recover as follows:

1. In the ATG Business Control Center Admin Console, navigate to the Details tab for the
deployment’s target site and stop the deployment.

2. Click Resume.

The deployment operation picks up where it stopped and continues to completion.
You can resume full and incremental deployments, and you can resume a deployment
multiple times in the event of successive failures.

3. If attempts to resume deployment fail:

 Stop the deployment.

 Click Rollback. The target site deployment agents undo all work completed thus
far in the failed deployment and restore the previous set of assets as the active
set on the target. Only incremental deployments are candidates for roll back; a
full deployment starts by deleting all target site data, which cannot be restored.

 Deploy the project again.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 9 2

1 2 - D e p l o y i n g P r o j e c t A s s e t s

μ
Note: You can roll back only once. If a failure occurs while rolling back a target site, the
target site is in an indeterminate state. In this situation you must perform a full
deployment of the previous set of assets (created by one or more projects) to
reestablish it as the active set on the target site.

After deployment recovery is complete, the target site is in a known, stable state and you can resume
deploying to it as usual.

For information on full and incremental deployments, see Deployment Scope.

Resuming Deployment from a Failed Asset Management Server

In a clustered environment, an asset management server might fail during a deployment that it initiated.
In that case, you cannot access the deployment from other asset management servers in the same cluster,
When viewed from other servers, the Details tab for the deployment target does not display the usual
deployment options, such as resume, stop, and roll back. Instead, it displays the following error message:

An RMI error encountered calling remote current deployment

'deployment-id' to target 'Production': getStatus() may or may not have been

passed to the running deployment

After the initiating server restarts, all available actions that pertain to the deployment become available
again, and are accessible from any asset management server in the ATG Content Administration cluster.

Release a Stalled Deployment

Resolution of project deployment—successful and unsuccessful—depends on delivery of a Success or
Failure status message to the project’s workflow. Under rare circumstances, this message is never
delivered., and the project stalls indefinitely in the workflow’s Wait for staging deployment completion or
Wait for production deployment completion stage. When this happens, the ATG Business Control Center
Admin Console shows no deployment information for this project as active or pending.

You can resolve this problem in the ATG Dynamo Server Admin Component Browser as follows:

1. Navigate to this component:

/atg/epub/messaging/PublishingMessageSource

2. Construct a message to send to the stalled deployment, by setting the following fields:

 Select Project: Choose the project whose deployment is stalled.

 Select Target: Choose the deployment’s target site.

 Select Success or Failure State: Choose the message to send, Success or
Failure. A Success message advances the workflow; a Failure message reverts
the workflow to its previous stage, Approve for production deployment, or
Approve for staging deployment. In general, it is safest to send a Failure
message and retry the deployment.

3. Click Send Deployment Complete Message.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 9 3

1 2 - D e p l o y i n g P r o j e c t A s s e t s

μ
Automating Recovery from Transient Errors

Occasionally, a full deployment can stop in an incomplete state due to a non-fatal error—for example, an
SQL deadlock or a connection timeout. In cases like these, you can manually resume the deployment
through the ATG Business Control Center Admin Console. Alternatively, you can automate the recovery
process by setting the DeploymentManager property transientErrorRetryCount. This property sets
the number of times a deployment thread tries to redeploy a transaction batch after a recoverable error.
This property’s default value is 0, which disallows retries.

transientErrorRetryCount is primarily aimed at facilitating recovery from SQL deadlock errors,
though not exclusively. Deadlocks are data dependent and some databases handle them better than
others. You should set this property to a reasonable value for your environment—typically, between 1
and 5.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 9 4

1 2 - D e p l o y i n g P r o j e c t A s s e t s

μ

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 9 5

1 3 - P u r g i n g A s s e t V e r s i o n s

μ
13 Purging Asset Versions

Over time, the versioning system in ATG Content Administration can accumulate a large number of asset
versions and completed projects. As asset versions accumulate, they can strain storage capacity and
system performance. It is generally a good idea to periodically purge versioned repositories of outdated
projects and asset versions.

AN ATG Content Administration purge encompasses all versioned repositories and file systems. The purge
operates on asset versions and projects whose check-in date is earlier than the specified purge cut-off
date.

The length of a purge depends on the number of repository and file assets that need to be purged. A
purge that encompasses a large number of file assets can be lengthy. This is especially likely if no purge
has been executed for a long time. In that case, you can minimize system overhead and user
inconvenience by scheduling multiple purges, where each purge specifies a more recent cut-off date than
the one before it.

Note: Each purge operation executes in a transaction. If a purge encompasses a large number of assets,
you might need to raise your application server’s transaction timeout setting—for example, reset the
JBoss TransactionTimeout attribute in <JBdir>/server/atg/conf/jboss-service.xml.

Scheduled and On-Demand Purge

You can initiate purges in two ways:

 Scheduled purges automatically execute at fixed dates or regular intervals.

 On-demand purges can be initiated at any time through the ATG Dynamo Server
Admin.

General Safeguards
Before you start a purge, back up all affected datastores and file systems. If you run scheduled purges, you
can write code that uses the PurgingService event listener to trigger the required backup operations.

After executing a purge, you might need to repair database indexes, especially if a large amount of
versioned data is removed. This is often the case the first time you purge versioned data. Other database-
specific considerations might apply. For example, given an Oracle database, a purge that includes millions
of asset versions might require a large undo tablespace; DB2 might require large buffer pools. For more
information, consult your database system documentation.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 9 6

1 3 - P u r g i n g A s s e t V e r s i o n s

μ
Restricted Operations

In order to ensure data consistency, a purge automatically blocks operations that are associated with
asset changes and project deployment. Before starting a purge, users should be advised to avoid using
the ATG Business Control Center until the purge ends; otherwise, errors might occur if they try to access
assets affected by the purge.

During a purge, the following ATG Content Administration operations are blocked and generate error
messages:

 Create assets.

 Check in assets—for example, advance a project to verify deployment.

 Check out assets—for example, add assets to a project.

 Resolve asset conflicts.

 Remove assets from a project.

 Delete a project.

You can advance a project to deploy; however, the deployment does not start until the purge is complete.

Protected Versions

An asset version is protected from being purged regardless of the purge cut-off date if any of the
following conditions is true:

 It is the head version of that asset.

 It is the predecessor version of an asset that is checked out to a project. Predecessor
versions must be retained in order to detect and resolve potential version conflicts.

 It is referenced by another asset that cannot be purged—for example, because the
second asset is checked out to a project.

Purge has no effect on the working versions of assets that are checked out to a project.

After the purge completes, the PurgingService verifies that no protected versions were inadvertently
deleted. Each purge executes under transaction control, so any verification failure causes the entire purge
to roll back. In the unlikely event of purge rollback, you can contact ATG Customer Support for help
diagnosing the problem before retrying the purge operation.

Scheduled Purges
The PurgingService component /atg/epub/purge/PurgingService can be configured to start purges
at regular intervals or on specific dates. By default, the scheduler property is set to
/atg/dynamo/service/Scheduler. As with other ATG services, you can set the schedule property as
follows:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 9 7

1 3 - P u r g i n g A s s e t V e r s i o n s

μ
 PeriodicSchedule and RelativeSchedule, which specify to run the purge at regular

intervals, with a start time relative to the current time. For example, the following
schedule setting specifies to run the PurgingService every 60 days, starting in two
hours:

schedule=every 60 days in 2 hours

 CalendarSchedule that schedules purges at specific points on the calendar. For
example, the following schedule setting specifies to run a purge on the last Sunday
of each month at 1:01am:

schedule=calendar * . 1 last 1 1

You set the purge cut-off date by supplying an integer value to the maxAgeDays property—by default, set
to 365. Thus, a value of 15 specifies that each scheduled purge removes versions that are 15 days old or
older.

The exact purge cut-off timestamp is determined by the property
roundPurgeCutoffToPreviousMidnight. If set to true (default), the value supplied to maxAgeDays is
rounded to the previous midnight. If set to false, the purge cut-off timestamp is not rounded.

For detailed information on setting schedules, see the Scheduler Services section in the ATG Programming
Guide.

On-demand Purges
An on-demand purge provides a summary metrics report that outlines the potential impact of purge
criteria. Before starting the purge, you can evaluate the number of asset versions and projects involved,
and the overhead likely to be incurred. If a purge cannot execute, the summary metrics report provides
detailed information on the causes of failure and points to possible remedies.

You can initiate a purge at any time through the Component Browser in the ATG Dynamo Server Admin:

/atg/epub/purge/PurgingService/

From this page, you launch an on-demand purge in the following steps:

1. Specify the purge cut-off date by entering the corresponding number of days in the
purge cut-off field. For example:

Purge projects and unused versions of assets older than 180 days.

2. Click Show Metrics.

3. Review the data in the generated Metrics Report.

4. If no validation check errors occur, execute the purge by clicking Submit Purge.

The exact purge cut-off timestamp is determined by the property
roundPurgeCutoffToPreviousMidnight. If set to true (default), the value supplied to the purge cut-off
field is rounded to the previous midnight. If set to false, the purge cut-off timestamp is not rounded.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 9 8

1 3 - P u r g i n g A s s e t V e r s i o n s

μ
A Summary Metrics report is generated before the purge begins, and another one after the purge is
complete. The report outlines the operation’s scope—for example, the number of projects and asset
versions removed, and the number of projects and asset versions that remain. It lists results from the
validation checks that the purging service uses to evaluate the versioned data to purge and, more
generally, the current state of the ATG Content Administration system. You can proceed with the purge
only if all validation checks succeed. For example:

Cached Summary Metrics

By default, an on-demand purge generates a summary metric report as a background process and caches
the results. This ensures that the SQL query completes execution and the resulting report can be accessed
regardless of the browser state. Thus, you can navigate away from the PurgingService page before the
report is complete or after viewing it; the cached report remains available for a specified period of time—
by default, 24 hours. On returning to the PurgingService page, you can access the cached report via a link
on the PurgingService page, and submit the purge for execution if desired. Cached report links are listed
in reverse order of creation, where the most recent report is listed first.

Two properties in the component /atg/epub/purge/SummaryReportCache control caching behavior:

 maximumCacheEntries specifies how many summary metrics reports can be cached
at any one time. The default setting is 5. If the number of generated reports exceeds

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

1 9 9

1 3 - P u r g i n g A s s e t V e r s i o n s

μ
this property, the purging service uses a least-recently-used (LRU) algorithm to
determine which report to flush. If usage is equal, it flushes the oldest report. To
disable caching, set this property to 0.

 maximumEntryLifetime specifies in milliseconds how long a report can remain
cached before it is invalidated. The default setting is 86400000 (24 hours).

After a purge executes, all summary metrics report caches are flushed.

Purging Unused Target Branches

Any purge, regardless of the cut-off date, removes all unused target branches and their assets from the
versioning system. Thus, you can initiate a purge that removes only those branches by setting an
unrealistically high cut-off date—for example, 14,000.

Summary Report Precision
Earlier (pre-9.0) versions of ATG Content Administration support deployment from child branches of the
versioning system. If you used these versions of ATG Content Administration, it is likely that your
versioning system retains a number of asset versions from child branches that were created for earlier
projects.

The PurgingService property preciseSummaryReports determines whether a summary metrics report
takes into account all branch asset versions when it calculates the number of asset versions to be purged.
By default, this property is set to false. Given this setting, when the purging service generates the pre-
purge summary report, it ignores asset versions on the main branch that have derived assets on child
branches. By doing so, pre-purge summary report statistics are liable to differ slightly from actual purge
results. Setting this property to true guarantees precision in pre-purge calculations; however, it can
dramatically increase the overhead incurred by report generation.

Validation Checks
Before starting a purge, the PurgingService runs a series of validation checks to determine whether it can
safely remove versioning data within the specified cut-off date. Purge execution requires the following
conditions to be true:

 The PurgingService only supports database systems that are also supported for
production use. The PurgingService does not support development-only database
systems such as Solid and MySQL.

 The DeploymentServer is active and the deployment topology is up-to-date.

 No deployments are in progress. Because a deployment and a purge both affect
snapshot data, consistency of data can be ensured only if all deployments are
complete before the purge begins.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 0 0

1 3 - P u r g i n g A s s e t V e r s i o n s

μ
 All processes whose projects were checked in before the purge cut-off date are

complete. Processes whose projects have not deployed are regarded as incomplete
and should not be purged.

 For all initialized targets, the deployed snapshot date follows the purge cut-off date. In
order to avoid deployment errors, a purge must never include the deployed snapshot.

 No projects to be purged are scheduled for deployment.

If a purge attempt fails one or more validation checks, you can often pass these checks by setting an
earlier purge cut-off date. For example, if a purge fails to execute because purge candidates include an
undeployed project, supply an earlier cut-off date that removes the project from the purge and allows the
purge to proceed.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 0 1

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Appendix A: Database Schema

The ATG Content Administration database schema includes the following types of tables:

 Core ATG Content Administration Tables

 File Repository Tables

 Media Tables

 Versioning Tables

 User Profile Tables

 Workflow Tables

 View Mapping Tables

Note: You can access the ER diagrams for the ATG Content Administration database schema from the
ATG documentation index page.

Core ATG Content Administration Tables
The following sections describe the database tables that are specific to ATG Content Administration core
functionality.

epub_history

Contains information about history elements for projects.

Column Data Type Constraint

history_id VARCHAR(40) not null

(primary key) The unique ID for a history element

profile VARCHAR(40) null

 The ID for the profile which created this history
element

timestamp TIMESTAMP null

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 0 2

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

 The time the action in this history element occurred

action VARCHAR(255) null

 The name of an action which this history element
represents

action_type VARCHAR(255) null

 The type of action which this history element
represents

description WVARCHAR(4096) null

 An associated description for this history element

epub_his_act_parm

Contains information about action parameters for the history’s action.

Column Data Type Constraint

history_id VARCHAR(40) not null

(primary key) The ID of the history

action_param VARCHAR(255) null

 The action parameters for the history’s action

sequence_num NUMERIC(19) not null

(primary key) The sequence number which determines the ordering
of the history element in relation to the other history
elements in the same project

epub_taskinfo

Contains information about the tasks associated with projects.

Column Data Type Constraint

taskinfo_id VARCHAR(40) not null

(primary key) The ID of this task information item

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 0 3

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

version BIGINT not null

 The version of the task information item

process_id VARCHAR(40) not null

 The ID of the process to which this item pertains

process_name WVARCHAR(255) not null

 The name of the process whose task this item
describes

segment_name WVARCHAR(255) not null

 The name of the process segment whose task this item
describes

task_element_id VARCHAR(255) not null

 The element ID of the task this item describes

acl VARCHAR(2048) null

 The Access Control List (ACL) assigned to the task at
runtime

priority BIGINT null

 The priority of the task

owner_name VARCHAR(255) null

 The persona name of the owner of the task, or null if
no owner is known.

last_actor_name VARCHAR(255) null

 The persona name of the last known actor on the task.

last_action_date TIMESTAMP null

 The date of the last known action on the task.

last_outcome_id VARCHAR(255) null

 The element ID of the last applied outcome for the
task.

epub_agent_trnprt

Contains information about the transport of a target agent.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 0 4

A p p e n d i x A : D a t a b a s e S c h e m a

μ

Column Data Type Constraint

transport_id VARCHAR(40) not null

 The unique ID for a transport.

version BIGINT not null

 The version of the transport.

transport_type TINYINT not null

 The type of transport. The only option currently
available is RMI.

jndi_name VARCHAR(255) null

 The name used by JNDI for the target’s agent’s
transport.

rmi_uri VARCHAR(255) null

 The URI to the RMI for the target agent’s transport.

epub_agent

Contains information about target agents

Column Data Type Constraint

agent_id VARCHAR(40) not null

(primary key) The ID of the target agent.

version BIGINT not null

 The version of the target agent.

creation_time TIMESTAMP null

 The time that the target agent definition was created.

display_name WVARCHAR(255) null

 The name of the target agent.

description VARCHAR(1024) null

 A description of the target agent.

main_agent_id VARCHAR(40) null

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 0 5

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

 The main agent ID associated with the target. The
agent ID identified in the agent_id column is a
placeholder for the agent ID held in this column.

transport VARCHAR(40) not null

 The ID of the transport that is described in the
epub_agent_trnprt table.

epub_target

Contains information about target sites.

Column Data Type Constraint

target_id VARCHAR(40) not null

(primary key) The unique ID for a target.

branch_name VARCHAR(255) null

 The branch associated with the target.

snapshot_name VARCHAR(255) null

 The name of the target’s initial snapshot.

init_branch_name VARCHAR(255) null

 The branch from which the target should be initialized.

version BIGINT not null

 The version of the target.

creation_time TIMESTAMP null

 The time the target definition was created.

main_target_id VARCHAR(40) null

 The main target ID associated with the target
definition. The target ID identified in the target_id
column is a placeholder for the target ID held in this
column.

display_name WVARCHER(255) null

 The name of the target.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 0 6

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

description VARCHAR(1024) null

 The description of the target.

halted TINYINT null

 Indicates whether the target is accepting
deployments.

flag_agents TINYINT null

 Indicates whether the target accepts import (1) or full
(0) deployment during initialization.

epub_tr_dest

Stores deployment configuration information for the targetDef item type in the PublishingRepository.

This table is used by the targetDef item’s destinations map property, whose key is a path to a source
repository and whose value is a path to a destination repository.

Column Data Type Constraint

target_id VARCHAR(40)

(primary key) The unique ID for a target.

target_source VARCHAR(100) not null

(primary key) The path to the source repository.

target_destination VARCHAR(100) not null

 The path to the destination repository.

epub_topology

Contains information about each deployment topology.

Column Data Type Constraint

topology_id VARCHAR(40) not null

(primary key) The unique ID for a topology.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 0 7

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

version BIGINT not null

 The version of the target associated with the topology.

primary_tl TINYINT null

 Indicates whether this topology is the primary
topology for the target.

epub_tr_agents

Contains information about the agents for a target.

Column Data Type Constraint

target_id VARCHAR(40) not null

(primary key) The unique ID for a target.

agent_id VARCHAR(40) not null

(primary key) The unique ID for an agent.

epub_princ_asset

Contains information about the principal assets for a target agent.

Column Data Type Constraint

agent_id VARCHAR(40) not null

(primary key) The unique ID for an agent.

principal_assets VARCHAR(40) not null

(primary key) The list of principal assets for the agent.

epub_includ_asset

Contains information about the assets with included destinations associated with a target agent.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 0 8

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

agent_id VARCHAR(40) not null

(primary key) The unique ID for a target agent.

include_assets VARCHAR(255) not null

(primary key) The assets that have included destinations for this
target agent.

epub_exclud_asset

Contains information about the assets that have excluded destinations associated with a target agent.

Column Data Type Constraint

agent_id VARCHAR(40) not null

(primary key) The unique ID for a target agent.

exclude_assets VARCHAR(255) not null

(primary key) The assets that have excluded destinations for this
target agent.

epub_project

Contains information about projects.

Column Data Type Constraint

project_id VARCHAR(40) not null

(primary key) Each project has a unique ID.

version BIGINT not null

 The version of the project object.

acl VARCHAR(2048) null

 The access control list for the project object.

display_name WVARCHAR(255) null

 The name of the project object.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 0 9

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

description WVARCHAR(1024) null

 A description of the project object.

creator VARCHAR(40) null

 The profile ID of the user which created the project.

workspace VARCHAR(255) not null

 The name of the workspace where this project exists.

workflow_id VARCHAR(40) null

 The ID of the workflow that this project is using.

checked_in TINYINT null

 Indicates whether this project is checked in (1) or
checked out (0).

editable TINYINT null

 Indicates whether this project is editable or read only.

status BIGINT null

 The status of the project. Can be one of Active,
Completed, Suspended, Error

status_detail WVARCHAR(255) null

 Details about the status of the project.

checkin_date TIMESTAMP null

 The date the project was checked in.

creation_date TIMESTAMP null

 The creation date of the project.

completion_date TIMESTAMP null

 The completion date of the project.

epub_prj_targt_ws

Contains information about the workspaces associated with a project’s target.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 1 0

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

project_id VARCHAR(40) not null

(primary key) The unique ID for a project.

target_id VARCHAR(40) not null

(primary key) The unique ID for a target.

workspace_id VARCHAR(40) null

 The unique ID for a workspace.

epub_pr_tg_status

Contains information about the status of a project associated with a target.

Column Data Type Constraint

project_id VARCHAR(40) not null

(primary key) The unique ID for a project.

target_id VARCHAR(40) not null

(primary key) The unique ID for a target.

status_code TINYINT null

 The status code for the project. A project has one
status per target. Options include:
 - approved (all tasks are complete and the project is
configured for deployment)
- accepted (approved and scheduled for deployment)
- deployed (success deployment to a target site)
- hidden (won’t be deployed based on user
preference)

epub_prj_tg_snsht

Contains information about the snapshots for a project’s target.

Column Data Type Constraint

project_id VARCHAR(40) not null

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 1 1

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

(primary key) The unique ID for a project.

target_id VARCHAR(40) not null

(primary key) The unique ID for a target.

snapshot_id VARCHAR(40) null

 The unique ID for a snapshot.

epub_pr_tg_st_ts

Contains information about the creation time for a target project’s snapshot.

Column Data Type Constraint

project_id VARCHAR(40) not null

(primary key) The unique ID for a project.

target_id VARCHAR(40) not null

(primary key) The unique ID for a target.

snapsht_creat_tm TIMESTAMP null

 The time a snapshot was created for the project’s
target.

epub_pr_tg_ap_ts

Contains information about the time a project’s target was approved.

Column Data Type Constraint

project_id VARCHAR(40) not null

(primary key) The unique ID for a project.

target_id VARCHAR(40) not null

(primary key) The unique ID for a target.

approval_time TIMESTAMP null

 The time the project’s target was approved.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 1 2

A p p e n d i x A : D a t a b a s e S c h e m a

μ

epub_pr_history

Contains information about the history of projects.

Column Data Type Constraint

project_id VARCHAR(40) not null

(primary key) The ID of the project to which the history element is
associated.

sequence_num BIGINT not null

(primary key) The sequence number which determines the ordering
of the history element in relation to the other history
elements in the same project.

history VARCHAR(40) not null

 The ID of the related history element in the project
whose ID is in the project_id column.

epub_process

Contains information about processes.

Column Data Type Constraint

process_id VARCHAR(40) not null

(primary key) The unique ID for a process.

version NUMERIC(19) not null

 The version of the process.

acl VARCHAR(2048) null

 The Access Control List for the process.

display_name WVARCHAR(255) null

 The name of the process.

description WVARCHAR (1024) null

 A description for the process.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 1 3

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

creator VARCHAR(40) null

 The profile ID of the user who created the process.

project VARCHAR(40) null

 The ID of the current project for this process.

process_data VARCHAR(40) null

 A data object associated with the process.

workflow_id VARCHAR(40) null

 The unique ID for the workflow that is managing this
process.

auto_deploy TINYINT null

 Indicates whether the project associated with this
process was used for an import (1) or not (0).

status NUMERIC(19) null

 The status of the process. Options include: Edit, Edit-
Running, Running, Deployed, and Completed.

status_detail WVARCHAR(255) null

 Additional information about the status.

creation_date TIMESTAMP null

 The date the process was created.

completion_date TIMESTAMP null

 The date the process was completed.

epub_proc_prv_prj

Contains information about a process’s completed projects.

Column Data Type Constraint

process_id VARCHAR(40) not null

(primary key) The unique ID for a process.

sequence_num NUMERIC(19) not null

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 1 4

A p p e n d i x A : D a t a b a s e S c h e m a

μ
(primary key) The number that determines where a project ID is

ordered in the context of all project IDs.

project_id VARCHAR(40) not null

 The unique ID for a project.

epub_proc_history

Contains information about a process’s history.

Column Data Type Constraint

process_id VARCHAR(40) not null

(primary key) The ID of the process to which the history element is
associated.

sequence_num NUMERIC(19) not null

(primary key) The sequence number which determines the ordering
of the history element in relation to the other history
elements in the same process.

history VARCHAR(40) not null

 The ID of the related history element in the process
whose ID is in the process_id column.

epub_proc_taskinfo

Contains information about a process’s tasks.

Column Data Type Constraint

id VARCHAR(40) not null

 The unique ID for a process.

taskinfo_id VARCHAR(40) not null

(primary key) The unique ID for a task.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 1 5

A p p e n d i x A : D a t a b a s e S c h e m a

μ
epub_deployment

Contains information about deployment scheduling.

Column Data Type Constraint

deployment_id VARCHAR(40) not null

(primary key) The unique ID for a pending deployment.

version BIGINT not null

 The version of the deployment.

target_id VARCHAR(255) null

 The unique ID for the target associated with the
deployment.

deploy_time TIMESTAMP not null

 The scheduled time for the snapshot deployment.

creation_time TIMESTAMP not null

 The time when the schedule was created.

creator VARCHAR(40) null

 The name of the user who created the schedule.

uri VARCHAR(100) null

 The RMI URI for the current deployment.

next_dep_id VARCHAR(40) null

 The ID for the schedule that is next in the queue.

previous_dep_id VARCHAR(40) null

 The ID for the previous schedule in the queue.

force_full TINYINT null

 Indicates whether to execute a full deployment (1) or
not (0).

dep_type TINYINT null

 The type of deployment.

status NUMERIC(3) null

 The status of the deployment. Options include Error
and Success.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 1 6

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

message_code VARCHAR(255) null

 The resource bundle key used for the error occurred
during execution.

epub_deploy_proj

Contains information about a project scheduled for deployment.

Column Data Type Constraint

deployment_id VARCHAR(40) not null

(primary key) The unique ID for a pending deployment.

project_id VARCHAR(40) not null

(primary key) The unique ID for a project.

sequence_num BIGINT not null

 The sequence number used to determine where the
project is ordered in the context of the deployment.

epub_dep_err_parm

Contains information about the error parameters for an error message.

Column Data Type Constraint

deployment_id VARCHAR(40) not null

(primary key) The unique ID for a pending deployment.

error_param VARCHAR(255) null

 The error parameters defined for the deployment’s
error messages.

sequence_num BIGINT not null

(primary key) The sequence number used to determine where the
error parameter is ordered in the context of the
deployment.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 1 7

A p p e n d i x A : D a t a b a s e S c h e m a

μ
epub_dep_log

Contains information about all executed deployments.

Column Data Type Constraint

log_id VARCHAR(40) not null

(primary key) The unique ID for a deployment log.

dep_id VARCHAR(40) not null

 The unique ID for a deployment.

target_name VARCHAR(255) not null

 The name of the target associated with the
deployment.

log_time TIMESTAMP not null

 The time the log was created.

begin_time TIMESTAMP not null

 The time the deployment began execution.

end_time TIMESTAMP not null

 The time the deployment finished execution.

actor_id VARCHAR(40) null

 The ID for the user who performed the operation.

type INTEGER not null

 Indicates whether the deployment is full (1) or
incremental (2).

dep_mode INTEGER not null

 The mode used for the deployment. Options include
switch and online.

status INTEGER not null

 The status of the deployment. Options include Error,
Cancel, and Success.

deli_proj_ids VARCHAR(255) null

 The IDs for deployed projects.

delimiter VARCHAR(5) not null

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 1 8

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

 The delimiter used to separate project IDs in the
deli_proj_ids column.

epub_process_data

Contains information about process data.

Column Data Type Constraint

asset_version NUMERIC(19) not null

(primary key) The 1-based counter that specifies the version of the
asset.

branch_id VARCHAR(40) not null

 The ID for the branch where the asset exists.

is_head TINYINT not null

 Indicates whether the asset is the first asset (1) in the
branch.

version_deleted NUMERIC(1) null

 Indicates this version of the asset is deleted (1) from
the branch.

version_editable NUMERIC(1) null

 Indicates whether this version of the asset is editable
(1) or read-only (0).

pred_version NUMERIC(19) null

 The ID for the previous version of the asset.

checkin_date TIMESTAMP null

 The date when the item was checked in and this
version was created.

process_data_id VARCHAR(40) not null

(primary key) The unique ID for the process data item.

type NUMERIC(19) not null

 The item descriptor associated with the process data
item.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 1 9

A p p e n d i x A : D a t a b a s e S c h e m a

μ

File Repository Tables
This section describes the database tables that store information about items in the
/atg/epub/file/PublishingFileRepository, which stores your application’s versioned file assets.

epub_file_folder

Stores information about file folder items.

Column Data Type Constraint

asset_version NUMERIC(19) not null

(primary key) The 1-based counter that specifies the version of the
asset.

workspace_id VARCHAR(40) not null

 The ID of the workspace where the asset version was
initially created.

branch_id VARCHAR(40) not null

 The ID for the branch containing the asset.

is_head TINYINT not null

 Indicates whether the asset is the first asset (1) in the
branch.

version_deleted NUMERIC(1) null

 Indicates whether the asset version is a deleted
version.

version_editable NUMERIC(1) null

 Indicates whether the asset version is an editable
version. That is, the version is a working version in a
workspace, where modifications to it can be made.

pred_version NUMERIC(19) null

 The asset version upon which this version was based.
For example, if you create version 2 by checking out
version 1, version 2’s predecessor version is version 1.

checkin_date TIMESTAMP null

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 2 0

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

 The date the item was checked in.

folder_id VARCHAR(40) not null

(primary key) The ID of the file folder.

acl VARCHAR(2048) null

 The ACL (Access Control List) for the file folder.

folder_name WVARCHAR(255) not null

 The name of the file folder.

parent_folder VARCHAR(40) null

 The parent folder that contains this file folder.

epub_file_asset

Stores information about file assets.

Column Data Type Constraint

asset_version NUMERIC(19) not null

(primary key) 1-based counter that specifies the version of the asset

workspace_id VARCHAR(40) not null

 The ID of the workspace where the asset version was
initially created.

branch_id VARCHAR(40) not null

 The ID for the branch containing the asset

is_head TINYINT not null

 Indicates whether the asset is the first asset (1) in the
branch.

version_deleted NUMERIC(1) null

 Indicates whether the asset version is a deleted
version.

version_editable NUMERIC(1) null

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 2 1

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

 Indicates whether the asset version is an editable
version. That is, the version is a working version in a
workspace, where modifications to it can be made.

pred_version NUMERIC(19) null

 The asset version upon which this version was based.
For example, if you create version 2 by checking out
version 1, version 2’s predecessor version is version 1.

checkin_date TIMESTAMP null

 The date the asset was checked in.

file_asset_id VARCHAR(40) not null

(primary key) The ID of the file asset.

type NUMERIC(19) not null

 The asset type of the file asset.

acl VARCHAR(2048) null

 The ACL (Access Control List) for the file.

filename WVARCHAR(255) not null

 The name of the file asset.

last_modified TIMESTAMP null

 The date and time the file asset was last modified.

size_bytes NUMERIC(19) null

 The size of the asset, in bytes.

checksum BIGINT null

 The 64-bit checksum value for the asset, calculated
when the file asset is saved or imported.

parent_folder VARCHAR(40) null

 The parent folder that contains the file asset.

epub_text_file

Stores information about text file assets.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 2 2

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

asset_version NUMERIC(19) not null

(primary key) The 1-based counter that specifies the version of the
asset.

text_file_id VARCHAR(40) not null

(primary key) The ID of the text file asset.

text_content LONG VARCHAR null

 The contents of the text file asset.

epub_binary_file

Stores information about binary file assets.

Column Data Type Constraint

asset_version NUMERIC(19) not null

(primary key) The 1-based counter that specifies the version of the
asset.

binary_file_id VARCHAR(40) not null

(primary key) The ID of the binary file asset.

binary_content LONG VARBINARY null

 The contents of the binary file asset.

Media Tables
This section describes the database tables related to storing media in the ATG Content Administration
system.

epub_folder

Contains information about ATG Content Administration folders.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 2 3

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

folder_id VARCHAR(40) not null

(primary key) Each folder has a unique ID.

version NUMERIC(19) not null

 The version of the folder object.

creation_date TIMESTAMP null

 The creation date of the folder.

start_date TIMESTAMP null

 The start date which the folder becomes active.

end_date TIMESTAMP null

 The end date which the folder is no longer active.

name WVARCHAR(255) not null

 The name of the folder object.

description WVARCHAR(255) null

 A description of the folder object.

path WVARCHAR(255) not null

 A relative path of where the folder is located in a
hierarchy.

parent_folder_id VARCHAR(40) null

 The parent of this folder.

epub_media

Contains information about media.

Column Data Type Constraint

media_id VARCHAR(40) not null

(primary key) Each media item has a unique ID.

version NUMERIC(19) not null

 The version of the media item.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 2 4

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

creation_date TIMESTAMP null

 The creation date of the media item.

start_date TIMESTAMP null

 The start date which the media item becomes active.

end_date TIMESTAMP null

 the end date which the media item is no longer
active.

name WVARCHAR(255) not null

 The name of the media item.

description WVARCHAR(255) null

 A description of the media item.

path WVARCHAR(255) not null

 a relative path of where the media item is located in a
hierarchy.

parent_folder_id VARCHAR(40) not null

 The parent of this media item.

media_type NUMERIC(19) null

 The type of the media item.

epub_media_ext

Contains information about media external data.

Column Data Type Constraint

media_id VARCHAR(40) not null

(primary key) Each media item has a unique ID.

url WVARCHAR(255) not null

 The URL of the media item.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 2 5

A p p e n d i x A : D a t a b a s e S c h e m a

μ
epub_media_bin

Contains information about media binary data.

Column Data Type Constraint

media_id VARCHAR(40) not null

(primary key) Each media item has a unique ID.

length NUMERIC(19) not null

 The length of the binary data.

last_modified TIMESTAMP not null

 The last modified date of the binary data.

data VARBINARY(1048576) not null

 The binary data for the media item.

epub_media_txt

Contains information about media text data.

Column Data Type Constraint

media_id VARCHAR(40) not null

(primary key) Each media item has a unique ID.

length NUMERIC(19) not null

 The length of the text data.

last_modified TIMESTAMP not null

 The last modified date of the text data.

data LONG WVARCHAR not null

 The text data for the media item.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 2 6

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Versioning Tables

The following sections describe the database tables that store versioning information used by ATG
Content Administration.

avm_devline

Contains base type information for all branches, snapshots and workspaces.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) Unique ID of the development line.

type NUMERIC(19) not null

 The type of development line: 0 for branch, 1 for
snapshot, 2 for workspace

name VARCHAR(255) null

 Development line name.

parent VARCHAR(40) null

 Parent development line from which this one was
created.

date_created TIMESTAMP null

 Date and time of creation.

avm_workspace

Contains information about workspace development lines.

Column Data Type Constraint

ws_id VARCHAR(40) not null

(primary key) Unique id of the workspace.

checked_in NUMERIC(1) not null

 Whether the workspace is checked in.

ci_time TIMESTAMP null

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 2 7

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

 When the was workspace checked in.

userid VARCHAR(255) null

 Who checked in the workspace.

locked NUMERIC(1) not null

 Indicates whether the assets in the workspace are
locked (1) or not (0).

change_was VARCHAR(4096) null

 The change made using the workspace.

asset_uri_cache LONG VARBINARY null

ref_ast_uri_cache LONG VARBINARY null

avm_asset_lock

Contains information about assets that are locked for deployment.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) The unique ID for the lock.

repository_name VARCHAR(255) not null

 The name of the repository for which the asset is a
part.

descriptor_name VARCHAR(255) not null

 The item descriptor name associated with the asset.

repository_id VARCHAR(255) not null

 The asset’s RepositoryID.

workspace_id VARCHAR(40) not null

 The unique ID for the workspace.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 2 8

A p p e n d i x A : D a t a b a s e S c h e m a

μ
User Profile Tables

The following sections describe tables that are used for the user profile extensions needed by ATG
Content Administration.

epub_user

Contains information about users within ATG Content Administration.

Column Data Type Constraint

user_id VARCHAR(40) not null

(primary key) Each user has a unique ID.

title VARCHAR(255) null

 The title of the user.

expert NUMERIC(1) null

 Indicates whether to display expert properties.

def_listing NUMERIC(19) null

 The defaultlisting to use in batch page display.

def_ip_listing NUMERIC(19) null

 The defaultlisting to use in batch in page property
display.

allow_applets NUMERIC(1) null

 Indicates whether to allow use of applets in browsers.

epub_prj_hist

Contains information about the completed projects a particular user worked on.

Column Data Type Constraint

user_id VARCHAR(40) not null

(primary key) The unique ID for a user.

sequence_num NUMERIC(19) not null

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 2 9

A p p e n d i x A : D a t a b a s e S c h e m a

μ
 The sequence number that places the project ID in an

order within the context of the user’s projects.

project_id VARCHAR(40) not null

(primary key) The unique ID for a project.

Workflow Tables
The following sections describe the database tables related to the workflow processes. Collective
workflow process instances represent all projects going through the workflow process.

epub_coll_workflow

Contains information about collective workflow instances.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) Unique ID.

workflow_name VARCHAR(255) null

 Workflow process name.

modification_time NUMERIC(19) null

 When the workflow process was last modified.

segment_name VARCHAR(255) null

 Workflow process segment name.

creator_id VARCHAR(40) null

 ID of collective process instance which created this
instance.

state VARCHAR(16) null

 The instance’s current process state machine state.

num_retries INTEGER null

 Number of current transition retries.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 3 0

A p p e n d i x A : D a t a b a s e S c h e m a

μ
epub_ind_workflow

Contains information about individual workflow instances. Each of these instances represents a single
subject (project) going through the workflow process.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) Unique ID.

workflow_name VARCHAR(255) null

 Workflow process name.

modification_time NUMERIC(19) null

 When the workflow process was last modified.

segment_name VARCHAR(255) null

 Workflow process segment name.

creator_id VARCHAR(40) null

 ID of collective process instance which created this
instance.

state VARCHAR(16) null

 The instance’s current process state machine state.

process_id VARCHAR(40) not null

 The ID of the process.

num_retries INTEGER null

 Number of current transition retries.

epub_workflow_strs

Contains information about string context variables. String context variables are associated with
individual workflow process instances.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) ID of the associated individual workflow instance.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 3 1

A p p e n d i x A : D a t a b a s e S c h e m a

μ
tag VARCHAR(25) not null

(primary key) Variable name.

context_str VARCHAR(255) null

 String variable value.

epub_workflow_bls

Contains information about boolean context variables associated with individual workflow process
instances.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) ID of the associated individual workflow instance.

tag VARCHAR(25) not null

(primary key) Variable name.

context_bool NUMERIC(1) null

 Boolean variable value.

epub_workflow_lngs

Contains information about long context variables associated with individual workflow process instances.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) ID of the associated individual workflow instance.

tag VARCHAR(25) not null

(primary key) Variable name.

context_long NUMERIC(19) null

 Long variable value.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 3 2

A p p e n d i x A : D a t a b a s e S c h e m a

μ
epub_workflow_dbls

Contains information about double context variables associated with individual workflow process
instances.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) ID of the associated individual workflow instance.

tag VARCHAR(25) not null

(primary key) Variable name.

context_dbl NUMERIC(15) scale=4 null

 Double variable valued.

epub_workflow_dats

Contains information about data context variables associated with individual workflow process instances.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) ID of the associated individual workflow instance.

tag VARCHAR(25) not null

(primary key) Variable name.

context_date TIMESTAMP null

 Date variable value.

epub_workflow_ris

Contains information about the context variables for a Repository item.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) The unique ID for a workflow instance.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 3 3

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

tag VARCHAR(25) not null

(primary key) The name of the variable.

context_item VARCHAR(25) null

 The reference to a Repository item.

epub_workflow_vfs

Contains information about the context variables for a virtual file.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) ID of the associated individual workflow instance.

tag VARCHAR(25) not null

(primary key) Variable name.

context_file VARCHAR(255) null

 The reference to a virtual file.

epub_workflow_info

Contains information about workflow definitions. Each workflow info corresponds to a workflow process
definition created using the ACC.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) Unique ID.

workflow_name VARCHAR(255) null

 Workflow process name.

workflow_status INTEGER null

 Workflow status: 1 (disabled), 2 (running).

modification_time NUMERIC(19) null

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 3 4

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

 When the workflow process was last modified.

creation_time NUMERIC(19) null

 When the workflow process was created.

author VARCHAR(25) null

 Who created the workflow process.

last_modified_by VARCHAR(25) null

 Who last modified the workflow process.

psm_version INTEGER null

 Process state machine version.

wdl LONG VARBINARY null

 Contains the WDL bytes which define the workflow
process.

epub_wf_mig_info

Contains workflow migration information.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) Unique ID.

workflow_info_id VARCHAR(40) not null

 Workflow info ID.

workflow_name VARCHAR(255) null

 Workflow process name.

modification_time NUMERIC(19) null

 Modification time at the time of migration.

psm_version INTEGER null

 Process state machine version at the time of migration.

wdl LONG VARBINARY null

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 3 5

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

 Workflow process definition at the time of migration.

migration_status INTEGER null

 Migration status: 1 (in Progress), 2 (done).

epub_wf_mg_inf_seg

Contains segment names of workflow migration infos.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) ID of the migration info.

idx INTEGER not null

(primary key) Segment’s index in the list.

segment_name VARCHAR(255) null

 Workflow process segment name.

epub_wf_templ_info

Contains information about workflow template definitions. Each of these infos corresponds to a workflow
template process definition created using the ACC.

Column Data Type Constraint

Id VARCHAR(40) not null

(primary key) Unique ID.

template_name VARCHAR(255) null

 Workflow template name.

modification_time NUMERIC(19) null

 When the workflow template was last modified.

creation_time NUMERIC(19) null

 When the workflow template was created.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 3 6

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

author VARCHAR(25) null

 Who created the workflow template.

last_modified_by VARCHAR(25) null

 Who last modified the workflow template.

wdl LONG VARBINARY null

 Contains the WDL bytes which define the workflow
template.

epub_wf_coll_trans

Contains information about pending collective transitions associated with workflow processes.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) Unique ID.

workflow_name VARCHAR(255) null

 Workflow process name.

modification_time NUMERIC(19) null

 When the workflow process was last modified.

server_id VARCHAR(40) null

 Workflow process manager server responsible for
completing this collective transition.

event_type VARCHAR(255) null

 Type of the JMS message which triggered this
collective transition.

segment_name VARCHAR(255) null

 Workflow process segment name.

state VARCHAR(16) null

 Current process state machine state of the workflow
instances participating in the transition.

coll_workflow_id VARCHAR(40) null

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 3 7

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

 ID of the collective instance taking the transition.

step INTEGER null

 Current transition step.

current_count INTEGER null

 Current transition count.

last_query_id VARCHAR(40) null

 Current transition last query ID.

message_bean LONG VARBINARY message_bean

 Message bean of the JMS message which triggered
this collective transition.

epub_wf_ind_trans

Contains information about pending individual transitions associated with workflow processes.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) Unique ID.

workflow_name VARCHAR(255) null

 Workflow process name.

modification_time NUMERIC(19) null

 When the workflow process was last modified.

server_id VARCHAR(40) null

 Workflow process manager server responsible for
completing this individual transition.

event_type VARCHAR(255) null

 Type of the JMS message which triggered this
individual transition.

segment_name VARCHAR(255) null

 Workflow process segment name.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 3 8

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

state VARCHAR(16) null

 Current process state machine state of the workflow
instances participating in the transition.

last_query_id VARCHAR(40) null

 Current transition last query ID.

message_bean LONG VARBINARY

 Message bean of the JMS message which triggered
this individual transition.

epub_wf_deletion

Contains information about pending deletions associated with workflow processes.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) Unique ID.

workflow_name VARCHAR(255) null

 Workflow process name.

modification_time NUMERIC(19) null

 When the workflow process was last modified.

epub_wf_del_segs

Contains the segment names of workflow’s pending deletions.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) ID of the pending deletion.

idx INTEGER not null

(primary key) Segment’s index in the list.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 3 9

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

segment_name VARCHAR(255) null

 Workflow process segment name.

epub_wf_migration

Contains information about a workflow’s pending migration.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) Unique ID.

workflow_name VARCHAR(255) null

 Workflow process name.

old_mod_time NUMERIC(19) null

 Modification time workflow process is being migrated
from.

new_mod_time NUMERIC(19) null

 Modification time workflow process is being migrated
to.

migration_info_id VARCHAR(40) not null

 Workflow migration info ID.

epub_wf_mig_segs

Contains segment names of a workflow’s pending migrations.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) ID of the pending migration.

idx INTEGER not null

(primary key) Segment’s index in the list.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 4 0

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

segment_name VARCHAR(255) null

 Workflow process segment name.

epub_wf_server_id

Contains information on the workflow process manager classification. The table keeps track of how the
various workflow process manager servers are classified.

Column Data Type Constraint

server_id VARCHAR(40) not null

(primary key) Workflow process manager server ID.

server_type INTEGER not null

 Workflow process manager server type: 0 (workflow
editor), 1 (global), 2 (individual).

View Mapping Tables
The following sections describe tables that contain information in support of the view mapping feature.

vmap_im

Contains information about an item.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) The unique ID for an item’s mapping.

name VARCHAR(64) null

 The name of the item mapping.

description VARCHAR(1024) null

 A description of the item mapping.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 4 1

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

item_path VARCHAR(256) not null

 The path to the item component.

item_name VARCHAR(64) not null

 The name of the item.

is_readonly NUMERIC(1) null

 Indicates whether the item is ready-only (1) or editable
(0).

form_handler INT null

 The Id for the item descriptor associated with the form
handler.

mode_id VARCHAR(40) not null

 The view mapping mode. Options include: edit, view,
and browse.

vmap_fh

Contains information about form handlers associated with view mapping.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) The unique ID for a form handler.

name VARCHAR(64) not null

 The name of the form handler.

description VARCHAR(2048) null

 A description of the form handler.

component_path VARCHAR(1024) null

 The nucleus path to the form handler component.

vmap_mode

Contains information about view mapping modes.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 4 2

A p p e n d i x A : D a t a b a s e S c h e m a

μ

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) The unique ID for a view mapping mode.

name VARCHAR(64) not null

 The name of the view mapping mode.

description VARCHAR(1024) null

 A description for the view mapping mode.

fallback_id VARCHAR(40) null

 A default mode to use when this mode is not available.

vmap_ivm

Contains information about item views.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) A unique ID for an item view.

name VARCHAR(64) null

 The name of the item view.

display_name WVARCHAR(64) not null

 The display name for the item view.

description VARCHAR(1024) null

 A description for the item view.

view_id VARCHAR(4o) null

 A unique ID for an item view.

vmap_im2ivm_rel

Contains information about item mappings and associated item view mappings.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 4 3

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

item_id VARCHAR(40) not null

(primary key) A unique ID for an item mapping.

sequence_num INTEGER not null

(primary key) The sequence number that places the item view in an
order within the context of all item views for the item
mapping.

view_id VARCHAR(40) not null

 A unique ID for an item view mapping.

vmap_iv

Contains information about an item view.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) A unique ID for an item view.

name WVARCHAR(64) not null

 The name of the item view.

description WVARCHAR(1024) not null

 A description of the item view.

uri VARCHAR(255) null

 The URI to an associated JSP.

app_name VARCHAR(255) null

 The name of the application where the JSP lives.

mode_id VARCHAR(40) not null

 The item view mode. Options include: edit, view,
and browse.

vmap_pv

Contains information about property views.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 4 4

A p p e n d i x A : D a t a b a s e S c h e m a

μ

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) A unique ID for a property view.

name WVARCHAR(64) not null

 The name of a property view.

type VARCHAR(128) not null

 The type of property view.

description WVARCHAR(1024) null

 A description of the property view.

uri VARCHAR(255) null

 The URI to an associated JSP.

app_name VARCHAR(255) null

 The name of the application where the JSP lives.

mode_id VARCHAR(40) not null

 The property view mode. Options include: edit,
view, and browse.

is_default NUMERIC(1) null

 Indicates whether the property view is the default
view for this property type.

is_readonly NUMERIC(1) null

 Indicates whether the property view is read-only (1) or
editable (0).

is_component NUMERIC(1) null

 The type of component. This column is populated for
property views that are editors for a collection.

vmap_ivm2pvm_rel

Contains information about item view mappings and associated property view mappings.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 4 5

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

ivm_id VARCHAR(40) not null

 The unique ID for an item view mapping.

pvm_id VARCHAR(40) not null

 The unique ID for a property view mapping.

name VARCHAR(64) not null

 The name of the property.

vmap_pvm

Contains information about property view mappers.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) The unique ID for a property view mapping.

description VARCHAR(1024) null

 A description of the property view mapping.

pview_id VARCHAR(40) null

 The ID for an associated property view.

cpview_id VARCHAR(40) null

 The ID for an associated component property view.

vmap_attrval

Contains information about an attribute value.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) The unique ID for an attribute value.

attr_value VARCHAR(2048) null

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 4 6

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

 The value of an attribute.

vmap_attrval_rel

Contains information about mapping items and associated attribute value items.

Column Data Type Constraint

mapper_id VARCHAR(40) not null

(primary key) The unique ID for an item mapping, item view
mapping, or property view mapping.

attribute_id VARCHAR(40) not null

(primary key) The unique ID for an attribute value.

name VARCHAR(64) not null

 The name of the attribute.

vmap_cattrval_rel

Contains information about mapping items and associated component attribute value items.

Column Data Type Constraint

mapper_id VARCHAR(40) not null

(primary key) The unique ID for an item mapping, item view
mapping, or property view mapping.

attribute_id VARCHAR(40) not null

(primary key) The unique ID for an attribute value.

name VARCHAR(64) not null

 The name of the attribute.

vmap_iv2ivad_rel

Contains information about item views and associated item view attribute definitions.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 4 7

A p p e n d i x A : D a t a b a s e S c h e m a

μ

Column Data Type Constraint

view_id VARCHAR(40) not null

(primary key) The unique ID for an item view.

attr_id VARCHAR(40) not null

 The ID for the item view attribute definition mapped to
the item view.

name VARCHAR(64) not null

(primary key) The name of the item view attribute definition.

vmap_ivattrdef

Contains information about item view attribute definitions.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) The unique ID for an item view attribute definition.

description VARCHAR(1024) null

 A description of the item view attribute definition.

default_value VARCHAR(1024) null

 The attribute’s default value.

vmap_pv2pvad_rel

Contains information about property views and associated property view attribute definitions.

Column Data Type Constraint

view_id VARCHAR(40) not null

 The unique ID for a property view.

attr_id VARCHAR(40) not null

 The ID for a property view attribute definition.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 4 8

A p p e n d i x A : D a t a b a s e S c h e m a

μ
Column Data Type Constraint

name VARCHAR(64) not null

 The name of the property view attribute definition.

vmap_pvattrdef

Contains information about property view attribute definitions.

Column Data Type Constraint

id VARCHAR(40) not null

(primary key) The unique ID for a property view attribute definition.

description VARCHAR(1024) null

 A description for the property view attribute definition.

default_value VARCHAR(1024) null

 The default value for the attribute.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 4 9

A p p e n d i x B : V i r t u a l F i l e S y s t e m s

μ
Appendix B: Virtual File Systems

A virtual file system (VFS) is a virtual container that organizes a set of file-like entities into a tree structure.
As such, virtual file systems play an important role in both the management of file assets in the content
development environment and their deployment to a target (staging or production) environment.

Choosing a VFS Implementation

In the content development environment, all VFSs must be instances of ContentRepositoryVFSService,
which provides support for managing versioned file assets. However, there are several options for your
target environment. The implementation you should use depends primarily on the mode of deployment
you require, and secondarily, on the type of assets to deploy to the VFS:

Deployment Mode VFS Implementation

switch Use a SwitchableLocalFileSystem. If you do not require journaling, you can
disable it.

Note: The deployment of JSPs in switch mode is not supported.

online If you are deploying JSPs to the target VFS, use a SelectiveDeleteVFSService.

If you are deploying personalization or scenario assets to the VFS, use a
JournalingFileSystemService. The virtual file systems that contain these
assets require support for journaling because other services must examine
the journal to identify specific types of updates (so the assets can be
activated by the appropriate subsystems).

For all other asset types, use a LocalVFSService.

This appendix provides reference information on the VFS implementations you can use with ATG Content
Administration:

 ContentRepositoryVFSService

 SwitchableLocalFileSystem

 SelectiveDeleteVFSService

 JournalingFileSystemService

 LocalVFSService

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 5 0

A p p e n d i x B : V i r t u a l F i l e S y s t e m s

μ
ContentRepositoryVFSService

The atg.vfs.repository.ContentRepositoryVFSService class is a VFS implementation that sits on
top of a content repository and exposes the content items as virtual files. It provides the necessary
support for managing file assets in a versioned environment.

This VFS implementation is used in the content development environment to expose the file assets in the
/atg/epub/file/PublishingFileRepository as virtual files for use in various contexts, such as
deployment. One ContentRepositoryVFSService instance should exist for each asset destination in
your deployment targets to which file assets are to be deployed.

You can configure the following properties of a ContentRepositoryVFSService:

Property Description

contentRepository The ContentRepository that contains the items to expose
as virtual files.

This property must be set to:

/atg/epub/file/SecuredPublishingFileRepository

This is the secured repository that sits on top of and controls
access to the
/atg/epub/file/PublishingFileRepository.

itemDescriptorNames A comma-separated list of the names of the item descriptors
that are viewable and accessible through the VFS. A null value
exposes all item types.

Note: Each item descriptor can be exposed via exactly one
VFS in the content development environment. In other words,
an item descriptor specified in this property for a given VFS
cannot be specified in this property for any other VFS.

mutableFolderDescriptorName The item descriptor in the repository specified in the
contentRepository property that represents a folder in the
content repository. A null value uses the first item descriptor.

Always set this property to fileFolder, as this is the item
descriptor that represents a folder in the
PublishingFileRepository.

SwitchableLocalFileSystem
The atg.vfs.switchable.SwitchableLocalFileSystem class is a VFS implementation that switches
between two underlying local file systems and keeps a journal of changes made. Instances of this class are

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 5 1

A p p e n d i x B : V i r t u a l F i l e S y s t e m s

μ
used to configure default target VFSs for switch deployment (ConfigFileSystem and WWWFileSystem) and
also to configure custom target VFSs for switch deployment.

Property Description

liveDirectory The live directory that contains the files used by external
facilities. No other VFS on the server can use this directory.

See liveDirectory/stagingDirectory Constraints below this
table.

stagingDirectory The inactive directory where file updates are made before
performing a switch. No other VFS on the server can use this
directory.

See liveDirectory/stagingDirectory Constraints below this
table.

dataDirectory A dynamically-created directory that stores internal data used
during deployments. No other VFS on the server can use this
directory.

journaling Indicates whether to write VFS modifications to a journal.

Note: This property is used only by a switchable
ConfigFileSystem VFS for the purpose of updating
personalization and scenario assets on a target.

updateListeners The list of event listeners that listen for events that indicate the
VFS is updated in a deployment.

Note: This property is used only by a switchable
ConfigFileSystem VFS for the purpose of updating
personalization and scenario assets on a target.

name1 The logical name of the underlying file system to use as the live
VFS at initial application startup. This property is analogous to
the initialDataSourceName property of a
SwitchingDataSource used by a repository.

All switchable VFSs in the target must specify the same name
in this property. The name must match the name in the
initialDataSourceName property of all
SwitchingDataSource instances used by target repositories.

name2 The logical name of the underlying file system to be used as
the inactive VFS at initial application start-up. All switchable
VFSs in the target must specify the same name in this property.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 5 2

A p p e n d i x B : V i r t u a l F i l e S y s t e m s

μ
Property Description

checksumCacheEnabled Turns on checksum caching for this VFS, which can be used to
improve deployment times for systems where large numbers
of file assets are being deployed. See Cache Checksums for File
Assets for more information on the checksum caching
properties in this service.

checksumCacheEncoding Used if checksum caching is enabled. Specifies the encoding
used to save the cache data (UTF-8, by default). See Cache
Checksums for File Assets for more information.

deleteInBackground Enables background deletion if set to true. By default, this
property is set to false (see Background Deletion of File System
Assets).

deletionThreadPriorityDelta Sets the deletion thread’s priority. In general, you should let
the system set thread priority, and omit this property

deletionThreadDelay Specifies in milliseconds how long the deletion thread waits
before it begins to delete files from the temporary directory. If
set to 0 (the default), deletion begins immediately.

 liveDirectory/stagingDirectory Constraints

The following constraints apply:

 Each liveDirectory and stagingDirectory directory must be reserved for the
exclusive use of a single VFS.

 liveDirectory and stagingDirectory directories must be on the same UNIX
partition.

 ConfigFileSystem only: The live directory must be located on the application’s
configuration path.

 WWWFileSystem only:

 The live directory must be located in the Web server’s document root directory
or one of its subdirectories.

 The live directory must not store files used by other services; it should contain
only files deployed from the asset management server’s WWWFileSystem.

Data Sources

Collectively, the name1 and name2 properties are analogous to the dataSources property of a
SwitchingDataSource used by a repository, as they identify the underlying data stores used by the
switchable data store—in this case, a switchable VFS. The labels used in these properties must correspond
to those used for each SwitchingDataSource.

For example, if you configured each SwitchingDataSource as follows:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 5 3

A p p e n d i x B : V i r t u a l F i l e S y s t e m s

μ
dataSources=\

 Red=/atg/dynamo/service/jdbc/Pool1,\

 Blue=/atg/dynamo/service/jdbc/Pool2

Then the name1 and name2 properties in each SwitchableLocalFileSystem must be configured as follows:

name1=Red

name2=Blue

The /atg/epub/DeploymentServer uses the logical names for all underlying data stores (for all
repositories and VFSs) to verify that all agents in the target performed each switch deployment
successfully, or, more specifically, to verify that all agents are using the same underlying store as their live
store and likewise the same underlying store as their staging store.

Read-only properties

A SwitchableLocalFileSystem also has two read-only properties that identify the current live and staging
directories: liveDataStoreName and stagingDataStoreName, respectively. These properties indicate
the current state of the VFS.

SelectiveDeleteVFSService
The atg.service.vfs.SelectiveDeleteVFSService class is a VFS implementation for a local file
system that supports selective deletion of files. This VFS implementation must be used in Web application
staging and production environments where you deploy JSPs (see Configure JSP File Asset Support).

Because a Web application can contain other files besides JSPs such as servlets, the VFS must provide a
mechanism to indicate explicitly which files in the local file system can be deleted during a deployment.
This is essential for a full deployment, which otherwise deletes all files in the asset destination before
writing the new files. Also, a deployment that explicitly deletes a file can succeed only if
SelectiveDeleteVFSService makes the file available for deletion.

You can configure the following properties of a SelectiveDeleteVFSService:

Property Description

localDirectory The root folder of the Web application—for example,
{atg.dynamo.root}/Publishing/WebAppRef/j2ee-apps/webappref. This
is the exploded directory where Web application JSPs should be deployed from
the asset management server.

fileExtensions The list of extensions for the file types that can be deleted when the file system is
updated by a deployment. Typically, this property is set to jsp,jspf. If this
property is empty, no files can be deleted.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 5 4

A p p e n d i x B : V i r t u a l F i l e S y s t e m s

μ
filePaths If specified, exposes for deletion only those files with the specified file extension

that are also on one of the specified paths. filePaths can specify one or more
comma-delimited file paths as follows:

filePaths=file-path[,file-path]...

Used in combination, fileExtensions and filePaths provide the following options for determining
which files are exposed for deletion:

Property settings Files to delete

fileExtensions=empty None

fileExtensions=ext

filePaths=empty
All files with the specified extension

fileExtensions=ext

filePaths=path
All files on the specified path with the ext extension.

JournalingFileSystemService
The atg.vfs.journal.JournalingFileSystemService class is a VFS implementation that wraps an
underlying local VFS and keeps a journal of changes made to it.

This VFS implementation is used in your staging and production targets if you are using ATG Content
Administration to manage your personalization and scenario assets. These assets are deployed to each
/atg/epub/file/ConfigFileSystem (class atg.vfs.journal.JournalingFileSystemService) in
a target. See Repositories for more information.

You can configure the following properties of a JournalingFileSystemService:

Property Description

virtualFileSystem The underlying local VFS for which to keep a journal of changes.

journalDirectory The directory in which to create the journal file. If the directory does
not exist, it is created.

updateListeners The list of event listeners that should be notified when the VFS is
updated. Listeners can iterate through the journal to identify specific
types of changes and act accordingly.

clearJournalOnUpdate Indicates whether to clear the data in the journal after all listeners are
notified that the VFS is updated.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 5 5

A p p e n d i x B : V i r t u a l F i l e S y s t e m s

μ

LocalVFSService
The atg.service.vfs.LocalVFSService class is a VFS implementation for a local file system.

This VFS implementation is used in your staging and production environments if you configure your
targets for online mode deployments performed (see Deployment Modes).

You can configure the following properties of a LocalVFSService:

Property Description

localDirectory The local directory to hold the file system (created on demand)—for
example, {atg.dynamo.home}/doc.

This is the directory to which the files should be deployed from the
asset management server. Make sure the directory does not store files
used by other services; it should contain only files deployed from the
VFS at the exact same Nucleus location on the asset management
server.

checksumCacheEnabled Turns on checksum caching for this VFS, which can be used to
improve deployment times for systems where large numbers of file
assets are being deployed. See Cache Checksums for File Assets for
more information on the checksum caching properties in this service.

checksumCacheEncoding Used if checksum caching is enabled. Specifies the encoding used to
save the cache data (UTF-8, by default).

checksumCacheDataFile Specifies the directory to be used to store the checksum cache data.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 5 6

A p p e n d i x B : V i r t u a l F i l e S y s t e m s

μ

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 5 7

A p p e n d i x C : F o r m H a n d l e r s

μ
Appendix C: Form Handlers

This appendix describes ATG Content Administration form handler classes for which components are
included. Each class section explains the configuration and navigational properties and submit handler
methods defined in it. Some form handlers have pre and post methods, which are methods defined to
execute directly before or after a given submit handler method. Pre and post methods are described in
this appendix as well.

Keep in mind that only properties and methods defined specifically in these classes are mentioned. A
class without a Navigational Properties section, for example, does not have any navigational properties
specified in the class itself, although it might inherit such properties from a parent class. Inherited
properties and methods are not included in this discussion. For a comprehensive listing of the elements in
each class, see the ATG API Reference.

This section describes the following ATG Content Administration form handlers.

 AddNoteFormHandler

 AssetDiffFormHandler

 BinaryFileAssetFormHandler

 CreateProcessFormHandler

 FireWorkflowOutcomeFormHandler

 ProcessSearchFormHandler

 ProjectFormHandler

 RepositoryAssetFormHandler

 SegmentAssetFormHandler

 TaskActionFormHandler

 TextFileAssetFormHandler

AddNoteFormHandler
The atg.epub.servlet.AddNoteFormHandler class lets you save a user’s entry as a note attached to a
project. ATG Content Administration includes one component of this class called
/atg/epub/servlet/AddNoteFormHandler.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 5 8

A p p e n d i x C : F o r m H a n d l e r s

μ
Configuration Properties

The AddNoteFormHandler has the following configuration properties:

Property Function

note Holds a user’s entry.

processId Holds the ID for the process where you want to add a note.

projectId Holds the ID for the project where you want to add a note.

Submit Handler Method

The AddNoteFormHandler has the following submit handler methods:

Method Function

handleAddNote Adds a note to a project or process. When you use this method, you must
specify a value to the note property and either the projectId or processId
property.

Pre and Post Methods

The AddNoteFormHandler has the following pre and post methods:

Method Function

preAddNote Empty method that is executed before the handleAddNote method. Define this
method when you subclass AddNoteFormhandler and you require a new method
that is executed immediately before handleAddNote.

postAddNote Empty method that is executed after the handleAddNote method. Define this
method when you subclass AddNoteFormhandler and you require a new method
that is executed immediately after handleAddNote.

Example

This example creates a form that lets users add a note to an active project or process. Since adding a note
requires a project or process ID, this code looks first for an active project to pass to the form handler. If
one doesn’t exist, the active process ID is used instead. The form created here has a large text box where a
user can enter information that, when the Add a Note button is clicked, will display as a note.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 5 9

A p p e n d i x C : F o r m H a n d l e r s

μ
<dspel:importbean bean="/atg/epub/servlet/AddNoteFormHandler"/>

 <dspel:form formid="addForm" action="addNote.jsp" method="post">

 <c:choose>

 <c:when test="${param.projectId ne null}">

 <dspel:input type="hidden" bean="AddNoteFormHandler.projectId"

 value="${param.projectId}"/>

 </c:when>

 <c:otherwise>

 <dspel:input type="hidden" bean="AddNoteFormHandler.processId"

 value="${param.processId}"/>

 </c:otherwise>

 </c:choose>

 <p>Note:<dspel:textarea bean="AddNoteFormHandler.note" rows="4"

 cols="60"></dspel:textarea>

 <dspel:input type="submit" bean="AddNoteFormHandler.addNote" value="Add a

 Note"/>

 </dspel:form>

AssetDiffFormHandler
The atg.epub.servlet.AssetDiffFormHandler class lets you select two versions of an item and
resolve the property value differences between them. ATG Content Administration includes
/atg/epub/servlet/AssetDiffFormHandler for working with assets in the asset portlet and
/atg/epub/servlet/ProjectDiffFormHandler for working with projects in the project portlet.

Configuration Properties

The AssetDiffFormHandler has the following configuration properties:

Property Function

assetURI Holds the asset’s URI and ID, which includes the repository name,
item descriptor name and asset ID. This does not provide version-
specific information.

deletedWarning Holds the message displayed when one version of an item
involved in a comparison is deleted.

diffChangeList Refers to a PropetyChangeList that records the differences
between the two versions of the item in PropertyChange
objects.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 6 0

A p p e n d i x C : F o r m H a n d l e r s

μ
Property Function

diffProperties Holds the properties that have one value in one version and a
different value in the other.

indexedVersions Holds an array of version numbers. If this property has only one
value, the working version is used as the second value. Use this
property to specify the versions you want to compare.

item1 Holds the RepositoryItem representing one version involved in
the comparison. This property is automatically populated, using
the assetURI and indexedVersions properties to locate the
Repository ID.

item2 Holds the RepositoryItem representing one version involved in
the comparison. This property is automatically populated, using
the assetURI and indexedVersions properties to locate the
Repository ID.

selectedVersionsForMerge When there are property value conflicts across two versions, this
property identifies which version’s property value is used. This
property is a map in which the key holds the property with
conflicting values and the value holds a 1 (representing item1)
or 2 (representing item2).

versions Holds an array of version numbers. Use this property to work with
all versions at the same time.

viewAttribute Holds the name of the portlet you use to access the item. Options
include assetView and projectView.

workspaceName Holds the current project’s workspace. The best way to specify a
value for this attribute is to set it to a method that accesses the
project’s workspace.

Navigational Property

The AssetDiffFormHandler has the following navigational property:

Property Function

successView Holds an integer that represents the view used to display the
item.

Submit Handle Methods

The AssetDiffFormHandler has the following submit handler methods:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 6 1

A p p e n d i x C : F o r m H a n d l e r s

μ

Method Function

handleDiffVersions This handler method accomplishes four tasks:

1. Locates the asset version RepositoryItems by combining
the version (from the indexedVersions property) and the
asset URI

2. Saves the two located RepositoryItems to the item1 and
item2 properties, respectively

3. Compares the property values in the RepositoryItems

4. Records in the diffProperties property the property names
with different values, and the values themselves as objects listed
in the diffChangeList property.

To use this method, you must specify values for the following
properties:

assetURI
workspaceName
viewAttribute
succesView
indexedVersions

Note that workspaceName is only required when your project’s
working version is involved in the comparison.

handleMergeConflicts Resolves which of the conflicting property values to use in the
latest version by overwriting the current values with the user’s
selection.

To use this method, you need to specify values for the following
properties: selectedVersionsForMerge, viewAttribute,
and succesView.

handleMergeCurrentVersion Saves all property values in the user’s version to the latest
version and discards all values provided in the competing
version.

To use this method, you need to specify values for the following
properties: projectId, viewAttribute, and succesView.

handleMergeLatestVersion Saves all property values in the competing version to the latest
version and discards all values provided in the user’s version.

To use this method, you need to specify values for the following
properties: projectId, viewAttribute, and succesView.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 6 2

A p p e n d i x C : F o r m H a n d l e r s

μ
Example

This example creates a form that displays two conflicting versions of an asset. The form uses the
projectView view and, After the View Conflicting Values button is clicked, the next page appears in
the view represented by the integer 12.

<dspel:importbean bean="/atg/epub/servlet/ProjectDiffFormHandler"/>

 <dspel:form formid="addForm" action="diffAssets.jsp" method="post">

 <dspel:input type="submit" bean="ProjectDiffFormHandler.diffVersions"

 value="View Conflicting Values"/>

 <dspel:input type="hidden" bean="ProjectDiffFormHandler.viewAttribute"

 value="projectView"/>

 <dspel:input type="hidden" bean="ProjectDiffFormHandler.successView"

 value="12"/>

 <dspel:input type="hidden" value="Myapplication/project/springPRCampaign"

 bean="ProjectDiffFormHandler.assetURI"/>

 <dspel:input type="hidden" value="${project.workspace}"

 bean="ProjectDiffFormHandler.workspaceName"/>

 <dspel:input type="hidden" bean="ProjectDiffFormHandler.indexedVersions[0]"

 value="4"/>

 <dspel:input type="hidden" bean="ProjectDiffFormHandler.indexedVersions[1]"

 value="null" />

 </dspel:form>

BinaryFileAssetFormHandler
The atg.epub.servlet.BinaryFileAssetFormHandler lets you create and update binary file assets.
Although you can modify the properties of binary assets in ATG, if you want to modify the file’s contents,
you need to work with the original file on your file system. ATG includes another class,
TextFileAssetFormHandler, which lets you create assets from binary files: the contents of those files
appear as an editable property value in the resultant asset.

This class uses a request-scoped component that temporarily stores its contents in the session-scoped
asset info component defined for a given page. That way, one BinaryFileAssetFormHandler
component can service all form pages that are able to work with binary (non-text) assets. ATG Content
Administration includes one component of this class called
/atg/epub/servlet/BinaryFileAssetFormHandler.

Instead of creating pages that explicitly use this form handler, you create an item mapping that associates
this form handler component with an asset type. The forms in JSPs rely on an asset editor to read the item
mapping so that, when a user requests a binary asset, for example, the BinaryFileAssetFormHandler
is used.

By default, the BinaryFileAssetFormHandler is available in the following contexts:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 6 3

A p p e n d i x C : F o r m H a n d l e r s

μ
 Editing asset properties in assetEditPage.jsp

 Viewing asset properties in the Asset tab of assetPropertyView.jspf

 Viewing asset properties in the Asset Browser of assetBrowserAssetDetail.jsp

Configuration Properties

The BinarFileAssetFormHandler has the following configuration properties:

Property Function

assetEditor Holds the asset editor object used by the form handler.

fileName Holds the asset name that will represent the binary file.

parentFolderPath Holds the path to the binary file on your file system.

uploadedFile Holds the name of the binary file on your file system that you want to
upload to ATG and work with as an asset.

CreateProcessFormHandler
The atg.epub.servlet.CreateProcessFormHandler class lets you create projects. ATG Content
Administration includes one component of this class called
/atg/epub/servlet/CreateProcessFormHandler.

Configuration Properties

The CreateProcessFormHandler has the following configuration properties:

Property Function

description Holds a description that is provided to the project you are creating.

displayName Holds the name used for the project in the ATG Business Control
Center and the ATG Control Center.

process Holds the project object after it is created. Other components can
access this object on a JSP using this property.

versioningLayerTools Holds the VersioningLayerTools object that manages the resources
used in the active workflow.

workflowName Holds the name of the workflow that is used by the project you are
creating.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 6 4

A p p e n d i x C : F o r m H a n d l e r s

μ

Navigational Property

The CreateProcessFormHandler has the following navigational property:

Property Function

successProjectView Holds an integer that represents the page that is displayed when a
project is created. The integer to page mapping is determined by a
component of the atg.epub.portlet.project.ProjectPortlet
class.

Submit Handler Method

The CreateProcessFormHandler has the following submit handler methods:

Method Function

handleCreateProcess Creates a project, associates a workflow with it, and saves the project to
the process property.

To use this method, you need to specify values for the workspaceName
and displayName properties.

Pre and Post Methods

The CreateProcessFormHandler has the following pre and post methods:

Method Function

preCreateProcess Empty method that is executed before the handleCreateProcess
method. Define this method when you subclass
CreateProcessFormhandler and you require a new method that is
executed immediately before handleCreateProcess.

postCreateProcess Empty method that is executed after the handleCreateProcess method.
Define this method when you subclass CreateProcessFormhandler and
you require a new method that is executed immediately after
handleCreateProcess.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 6 5

A p p e n d i x C : F o r m H a n d l e r s

μ
Example

This example defines a form used to create projects. Form fields are provided for the project display name
and description. Clicking the form’s Create button creates a project and displays the specified success
page.

<dspel:importbean bean="/atg/epub/servlet/CreateProcessFormHandler"/>

<dspel:form formid="createForm" name="createForm" action="${createActionURL}"

method="post">

 <dspel:input type="hidden" bean="CreateProcessFormHandler.workflowName"

 value="${workflowDef}"/>

 <dspel:input type="hidden" bean="CreateProcessFormHandler.successProjectView"

 value="ProjectDetailView.jsp"/>

 <dspel:input type="text" bean="CreateProcessFormHandler.displayName" size="40"

 maxlength="40"/>

 <dspel:input bean="CreateProcessFormHandler.description" size="40"

 maxlength="255" type="text"/>

 <dspel:input bean="CreateProcessFormHandler.createProcess" type="submit"

 value="Create"/>

</dspel:form>

FireWorkflowOutcomeFormHandler
After you select an outcome for a task, the /atg/epub/servlet/FireWorkflowOutcomeFormHandler
component of the atg.epub.servlet.FireWorkflowOutcomeFormHandler class fires a
WorkflowOutcome event. The Process Manager listens for fireWorkflowOutcome events and, when it
receives one, makes the next task in the workflow available.

Configuration Properties

The FireWorkflowOutcomeFormHandler has the following configuration properties:

Property Function

actionNote Holds the text that is saved as a note attached to the task.

outcomeElementId Holds the ID representing the outcome the user selected.

taskElementId Holds the ID representing the task for which an outcome was
selected.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 6 6

A p p e n d i x C : F o r m H a n d l e r s

μ
Submit Handler Method

The FireWorkflowOutcomeFormHandler has the following submit handler method:

Method Function

handleFireWorkflowOutcome Fires a WorkflowOutcome event when a task is completed.

This method requires values for the following properties:
projectId (or, if you are working with a process, processId),
taskElementId, and outcomeElementId.

Pre and Post Methods

The FireWorkflowOutcomeFormHandler has the following pre and post methods:

Method Function

preFireWorkflowOutcome Empty method that is executed before the
handleFireWorkflowOutcome method. Define this method when
you subclass FireWorkflowOutcomeFormhandler and you
require a new method that is executed immediately before
handleFireWorkflowOutcome.

postFireWorkflowOutcome Empty method that is executed after the
handleFireWorkflowOutcome method. Define this method when
you subclass FireWorkflowOutcomeFormhandler and you
require a new method that is executed immediately after
handleFireWorkflowOutcome.

Example

In this example, an approval form permits a user to add a note to a task and complete the task by clicking
the Approval button. In order for the approval to be processed, the form provides the active project ID (or
process ID when a project ID doesn’t exist), task ID, and the outcome ID.

<dspel:importbean bean="/atg/epub/servlet/FireWorkflowOutcomeFormHandler"/>

<dspel:form name="actionFormName" formid="actionFormName" action="actionNote.jsp"

method="post">

 <dspel:input type="hidden" bean="FireWorkflowOutcomeFormHandler.processId"

 value="${param.processId}"/>

 <c:if test="${param.projectId != null}">

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 6 7

A p p e n d i x C : F o r m H a n d l e r s

μ
 <dspel:input type="hidden"

 bean="FireWorkflowOutcomeFormHandler.projectId"

 value="${param.projectId}"/>

 </c:if>

 <dspel:input type="hidden" bean="FireWorkflowOutcomeFormHandler.taskElementId"

 value="${param.taskId}"/>

 <dspel:input type="hidden" value="${param.outcomeId}"

 bean="FireWorkflowOutcomeFormHandler.outcomeElementId"/>

 Enter your note here:<dspel:textarea rows="8" cols="40"

 bean="FireWorkflowOutcomeFormHandler.actionNote"/>

 <dspel:input type="submit" name="Approval"

 bean="FireWorkflowOutcomeFormHandler.fireWorkflowOutcome"/>

</dspel:form>

ProcessSearchFormHandler
The atg.epub.servlet.ProcessSearchFormHandler class lets you search for processes based on the
criteria you specify. ATG Content Administration includes one component of this class called
/atg/epub/servlet/ProcessSearchFormHandler.

ProcessSearchFormHandler defines properties that let you specify the workflow type and process
status as search criteria. Other properties indicate whether:

 Returned items must be created by the active or any user

 A user’s entry in a textbox is a partial or complete value

ProcessSearchFormHandler inherits additional properties you might want to use in a search form from
parent classes. If no criteria are specified, all processes are returned by a search.

Note: This class specifies a property called textSearchPropertyName. Ignore this property and instead
use textSearchPropertyNames property, which is inherited from a parent class.

Configuration Properties

The ProcessSearchFormHandler has the following configuration properties:

Property Function

mineOnly Indicates whether processes created by the current user (true) or all
users (false) are returned by the search. The default value is false.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 6 8

A p p e n d i x C : F o r m H a n d l e r s

μ
performDefaultSearch Indicates whether a comprehensive list of processes is generated when

the form displays. Such a list can be displayed in the form page and
make a search unnecessary. The default value is true.

profile Holds the Profile component. The default value is
/atg/userprofiling/Profile.

startingWith Indicates whether the user’s entry is intended to be a complete criteria
value (false) or the beginning portion of one (true). The default
value is true.

status Holds a process status. Only processes with this status are returned by
the search. Options include:

Edit: Process is not yet deployed.

Completed: workflow process is complete and cannot be edited.

Deployed:* Process is deployed to a target site.

Edit_Running:* The Outreach campaign is deployed and running on
the target site, and is open for modification.

Running:* The Outreach campaign is deployed and running on the
target site.

* Valid only for ATG Outreach

workflowType Holds the type of workflow associated to the process. Only processes
with this type of workflow are returned by the search. The default
workflow type is standard.

Submit Handler Method

The ProcessSearchFormHandler has the following submit handler method:

Method Function

handleSearch Returns all processes that match the specified criteria. By default, all processes are
returned.

If you want to limit the search by specifying criteria, you need to include form
input elements for status, workflowType or other relevant
ProcessSearchFormHandler properties.

To search on other process property values, set the textSearchPropertyNames
to process.<propertyName>. The entry a user provides to the textInput
property is compared to the property you indicate here.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 6 9

A p p e n d i x C : F o r m H a n d l e r s

μ
Example

This example creates a form that permits users to define the criteria used for locating processes. The form
provides a text field where a user can enter a partial process name. Drop-down lists allows users to select
the status and workflow type of the process they want to locate. There is also a checkbox that allows users
to specify that they want only processes they own to be returned.

<dspel:importbean bean="/atg/epub/servlet/ProcessSearchFormHandler"/>

<dspel:form name="searchForm2" formid="searchForm2" action="${actionURL}"

 method="post">

 <dspel:input type="hidden" bean="ProcessSearchFormHandler.startingWith"

 value="true"/>

 Process Name: <dspel:input bean="ProcessSearchFormHandler.textInput" size="30"

 type="text"/>

 <dspel:select bean="ProcessSearchFormHandler.status">

 <dspel:option value="Edit"> Editable Processes </dspel:option>

 <dspel:option value="EditRunning"> Editable Campaigns </dspel:option>

 <dspel:option value="Running"> Campaigns Deployed to a Target

 </dspel:option>

 <dspel:option value="Deployed"> Processes Deployed to a Target

 </dspel:option>

 <dspel:option value="Completed"> Completed Processes and Campaigns

 </dspel:option>

 </dspel:select>

 Type of Workflow: <dspel:select bean="ProcessSearchFormHandler.workflowType">

 <dspel:option value=""/>

 <dspel:option value="${workflow.processName}"/>

 </dspel:select>

 Only My Processes:<dspel:input type="checkbox" value="true"

 bean="ProcessSearchFormHandler.mineOnly"/>

 <dspel:input type="submit" bean="ProcessSearchFormHandler.search" value="Find

 Processes"/>

</dspel:form>

ProjectFormHandler
The atg.epub.servlet.ProjectFormHandler class lets you modify the assets associated with a
project. Use this form handler to add an asset to a project, remove an asset from a project, and revert
changes made to an asset. ATG Content Administration includes one component of this class called
atg/epub/servlet/ProjectFormHandler.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 7 0

A p p e n d i x C : F o r m H a n d l e r s

μ
Configuration Properties

The ProjectFormHandler has the following configuration properties:

Property Function

asset Holds the ID for the asset you are working with.

assetAction Holds the integer representing the type of action this form handler executes.
Set this property to the value of ADD_ASSET_ACTION, DEL_ASSET_ACTION,
DISCARD_ASSET_ACTION, or REVERT_ASSET_ACTION properties as follows:

<dspel:setvalue bean="ProjectFormHandler.assetAction" beanva

lue="ProjectFormHandler.DEL_ASSET_ACTION"/>

assets Holds an array of IDs for the assets you are working with.

version Holds the ID for the asset version you are working with.

Non-Configurable Properties

The ProjectFormHandler provides the following non-configurable properties:

Property Function

ADD_ASSET_ACTION Holds an integer representing the add asset action. This property holds
a constant value that can’t be changed and is not visible in the ATG
Control Center.

DEL_ASSET_ACTION Holds an integer representing the delete asset action. This property
holds a constant value that can’t be changed and is not visible in the
ATG Control Center.

DISCARD_ASSET_ACTION Holds an integer representing the discard asset action. This property
holds a constant value that can’t be changed and is not visible in the
ATG Control Center.

REVERT_ASSET_ACTION Holds an integer representing the revert asset action. This property
holds a constant value that can’t be changed and is not visible in the
ATG Control Center.

Submit Handle Methods

The ProjectFormHandler has the following submit handler methods:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 7 1

A p p e n d i x C : F o r m H a n d l e r s

μ
Method Function

handleAddAssets Adds assets to the project. This method requires values for the
following properties: projectId, assetAction and either asset
or assets.

handleDiscardAssets Removes assets from the project. This method requires values for
the following properties: projectId, assetAction and either
asset or assets.

handlePerformAssetAction Reads the assetAction property to determine the type of action
to perform. This method is invoked by the handleAddAsset,
handlerDiscardAssets, and handlerReverAsset methods.
This method requires values for the following properties:
projectId, assetAction and either asset or assets.

handleRevertAsset Discards unsaved changes made to an asset and displays values
held by the last saved version. This method requires values for the
following properties: projectId, assetAction and asset.

Pre and Post Methods

The ProjectFormHandler has the following pre and post methods:

Method Function

preDiscardAssets Empty method that is executed before the handleDiscardAssets
method. Define this method when you subclass ProjectFormhandler
and you require a new method that is executed immediately before
handleDiscardAssets.

postDiscardAssets Empty method that is executed after the handleDiscardAssets method.
Define this method when you subclass ProjectFormhandler and you
require a new method that is executed immediately after
handleDiscardAssets.

preRevertAsset Empty method that is executed before the handleRevertAsset method.
Define this method when you subclass ProjectFormhandler and you
require a new method that is executed immediately before
handleRevertAsset.

postRevertAsset Empty method that is executed after the handleRevertAsset method.
Define this method when you subclass ProjectFormhandler and you
require a new method that is executed immediately after
handleRevertAsset.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 7 2

A p p e n d i x C : F o r m H a n d l e r s

μ
Example

This example describes how to create a form that lets users remove an asset from a project. The active
project ID is passed to the form handler. The asset name appears next to a checkbox with the label:
Discard this asset? When the checkbox is selected, the asset is saved to the form handler asset property.
By setting assetAction to the value of the DISCARD_ASSET_ACTION property, you indicate that the
specified asset is removed from the specified project. A button at the bottom of the form invokes the
handlerDiscardAssets method.

<dspel:importbean bean="/atg/epub/servlet/ProjectFormHandler"/>

<dspel:form formid="discardForm" action="${actionURL}" method="post">

 <dspel:input type="hidden" bean="ProjectFormHandler.projectId"

 value="${currentProjectId}"/>

 Discard this asset? <c:out value="="${assetURI.displayName}"/>

 <dspel:input type="checkbox" bean="ProjectFormHandler.asset"

 value="${assetURI}"/>

 <dspel:input type="hidden" bean="ProjectFormHandler.assetAction"

 beanvalue="ProjectFormHandler.DISCARD_ASSET_ACTION"/>

 <dspel:input type="hidden" bean="ProjectFormHandler.discardAssets"

 value="Remove this Asset from this Project"/>

</dspel:form>

RepositoryAssetFormHandler
The atg.epub.servlet.RepositoryAssetFormHandler class lets you create and update your
repository assets. This class uses a request-scoped component that temporarily stores its contents in the
session-scoped asset info component defined for a given page. That way, one
RepositoryAssetFormHandler component can service all form pages that are able to work with
repository assets. ATG Content Administration includes one component of this class called
/atg/epub/servlet/RepositoryAssetFormHandler.

Instead of creating pages that explicitly use this form handler, you create an item mapping that associates
this form handler component with an asset type. The forms in JSPs rely on an asset editor to read the item
mapping so that when a user requests a repository asset, for example, the
RepositoryAssetFormHandler is used.

By default, the RepositoryAssetFormHandler is available in the following contexts:

 Editing asset properties in assetEditPage.jsp

 Viewing asset properties in the Asset tab of assetPropertyView.jspf

 Viewing asset properties in the Asset Browser of assetBrowserAssetDetail.jsp

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 7 3

A p p e n d i x C : F o r m H a n d l e r s

μ
Configuration Properties

The RepositoryAssetFormHandler has the following configuration properties:

Property Function

actionType Holds the type of action being initiated. Options include: update (for
updating the values of asset properties) and setView (for changing the
view used to display the asset).

assetInfoPath Holds the asset info component’s path and name.

assetURI Holds the asset’s URI and ID, which includes the repository name, item
descriptor name and asset ID.

attributes Holds view mapping attributes used by the form handler. This property is a
map that saves an attribute name as the key and the attribute value as the
value. To indicate that the form handler value property should be a value
Dictionary, all asset editors define atgFormValueDict as a key and value
as the value by default.

If you want to customize the attributes your form handler uses, code your
asset editor to update this property accordingly.

componentPath Holds the repository’s path and name of which the asset is a part.

contextOp Holds information used to managing the state of the asset info data stack.

displayName Holds the asset’s display name.

editMode Indicates whether the asset is in edit (true) or view-only (false) mode.

transientItem Holds the transient asset.

useRequestLocale Indicates whether the error messages are displayed in the user’s locale
(true) or the server default locale (false).

view Holds the integer representing the view being used.

Submit Handler Methods

The RepositoryAssetFormHandler has the following submit handler methods:

Method Function

handleChangeView Saves the view selection indicated in the asset editor to the view
property and displays the asset in that view.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 7 4

A p p e n d i x C : F o r m H a n d l e r s

μ
handleCreateTransient Creates an empty asset RepositoryItem, which is saved to the

transientItem property. A different form handler provides values
to the asset’s properties.

Caution: Subclasses of this form handler should not overwrite this
method.

handleSubmitAction Executes the action indicated in the actionType property.

SegmentAssetFormHandler
The atg.epub.servlet.SegmentAssetFormHandler lets you create and update segment assets. Each
segment is made up of properties and property values called characteristics. You can add and remove
characteristics from your segments using this form handler.

This class uses a request-scoped component that temporarily stores its contents in the session-scoped
asset info component defined for a given page. That way, one SegmentAssetFormHandler component
can service all form pages that are able to work with segment assets. ATG Content Administration
includes one component of this class called /atg/epub/servlet/SegementAssetFormHandler.

Instead of creating pages that explicitly use this form handler, you create an item mapping that associates
this form handler component with an asset type. The forms in JSPs rely on an asset editor to read the item
mapping so that, when a user requests a segment asset, for example, the SegmentAssetFormHandler is
used.

By default, the SegmentAssetFormHandler is available in the following contexts:

 Editing asset properties in assetEditPage.jsp

 Viewing asset properties in the Asset tab of assetPropertyView.jspf

 Viewing asset properties in the Asset Browser of assetBrowserAssetDetail.jsp

Configuration Properties

The SegmentAssetFormHandler has the following configuration properties:

Property Function

assetEditor Holds the asset editor object used by the form handler.

removeIndex Holds the integer representing the characteristic you want to remove from the
segment.

targetingTools Holds the component that determines the list of properties you can use in your
segments. The default value for this property is
/atg/targeting/html/TargetingTools.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 7 5

A p p e n d i x C : F o r m H a n d l e r s

μ

Submit Handler Methods

The SegmentAssetFormHandler has the following submit handler methods:

Method Function

handleAddCharacteristic Creates a new characteristic in the segment.

handleDeleteCharacteristic Deletes an existing characteristic from the segment.

TaskActionFormHandler
The atg.epub.servlet.TaskActionFormHandler manages task ownership by letting users assign
tasks to themselves or other users. A user can also return his or her tasks to the unclaimed list. ATG
Content Administration includes one component of this class,
/atg/epub/servlet/TaskActionFormHandler. The component is globally scoped.

Configuration Properties

The TaskActionFormHandler has the following configuration properties:

Property Function

assignee Holds the name of the user to whom the task is being assigned. This value must
use this format:

user.primaryKey:user.userDirectory.userdirectoryName

where user is the Profile component (including Nucleus address), primaryKey
is the user ID, userDirectory is the user directory component (including
Nucleus address), and userDirectoryName is the user directory display name.

taskElementId Holds the ID for the task.

Submit Handler Methods

The TaskActionFormHandler has the following submit handler methods:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 7 6

A p p e n d i x C : F o r m H a n d l e r s

μ
Method Function

handleAssignTask Assigns a task to a user. When you use this method, you must specify a
value to the projectId (or, if you are working with a process, processId),
assignee, and taskElementId properties.

handleClaimTask Assigns a task to the active user.

When you use this method, you must specify a value to the projectId (or,
if you are working with a process, processId) and taskElementId
property.

handleReleaseTask Returns a task that is currently owned by the active user to the unclaimed
list. When you use this method, you must specify a value to the projectId
(or, if you are working with a process, processId) and taskElementId
property.

Pre and Post Methods

The TaskActionFormHandler has the following pre and post methods:

Method Function

preAssignTask Empty method that is executed before the handleAssignTask method.
Define this method when you subclass TaskActionFormhandler and you
require a new method that is executed immediately before
handleAssignTask.

postAssignTask Empty method that is executed after the handleAssignTask method.
Define this method when you subclass TaskActionFormhandler and you
require a new method that is executed immediately after
handleAssignTask.

preClaimTask Empty method that is executed before the handleclaimTask method.
Define this method when you subclass TaskActionFormhandler and you
require a new method that is executed immediately before
handleClaimTask.

postClaimTask Empty method that is executed after the handleClaimTask method. Define
this method when you subclass TaskActionFormhandler and you require a
new method that is executed immediately after handleClaimTask.

preReleaseTask Empty method that is executed before the handleReleaseTask method.
Define this method when you subclass TaskActionFormhandler and you
require a new method that is executed immediately before
handleReleaseTask.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 7 7

A p p e n d i x C : F o r m H a n d l e r s

μ
postReleaseTask Empty method that is executed after the handleReleaseTask method.

Define this method when you subclass TaskActionFormhandler and you
require a new method that is executed immediately after
handleReleaseTask.

Example

This example shows how to create a form that lets you change the owner for a task. The example begins
with the creation of the form and the Assign Task button that, when clicked, assigns a task to a user. Since
this form handler works for process and project tasks, the code determines which is being used and
passes the appropriate ID to the form handler. The task ID is also passed to the form handler. If the current
task is complete, the task owner displays. For all other circumstances, the form contains a drop-down list
with one option for each user eligible to own the task.

<dspel:importbean bean="/atg/epub/servlet/TaskActionFormHandler"/>

<dspel:form formid="assignForm" name="assignForm" method="post"

 action="${actionURL}">

 <dspel:input type="submit" bean="TaskActionFormHandler.assignTask"

 value="Assign Task"/>

 <c:choose>

 <c:when test="${taskInfo.taskDescriptor.assignable eq false}"/>

 <c:otherwise>

 <dspel:input type="hidden" bean="TaskActionFormHandler.processId"

 value="${projectContext.process.id}"/>

 <c:if test="${isProjectView eq true}">

 <dspel:input type="hidden" bean="TaskActionFormHandler.projectId"

 value="${projectContext.project.id}"/>

 </c:if>

 <dspel:input type="hidden" bean="TaskActionFormHandler.taskElementId"

 value="${taskInfo.taskDescriptor.taskElementId}"/>

 <pws:getAssignableUsers var="assignUsers"

 taskDescriptor="${taskInfo.taskDescriptor}"/>

 <c:set var="unowned" value="${taskInfo.owner eq null}"/>

 <c:choose>

 <c:when test="${taskStatus.completed}">

 <c:out value="${taskInfo.owner.firstName}

 ${taskInfo.owner.lastName}"/>

 </c:when>

 <c:otherwise>

 <dspel:select bean="TaskActionFormHandler.assignee">

 <c:forEach var="user" items="${assignUsers}">

 <c:if test="${currentUserId ne user.primaryKey}">

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 7 8

A p p e n d i x C : F o r m H a n d l e r s

μ
 <dspel:option value="${user.primaryKey}

 :${user.userDirectory.userDirectoryName}"

 selected="${user.primaryKey eq

 taskInfo.owner.primaryKey}"><c:out

 value="${user.firstName}

 ${user.lastName}"/></dspel:option>

 </c:if>

 </c:forEach>

 </dspel:select>

 </c:otherwise>

 </c:choose>

 </c:otherwise>

 </c:choose>

</dspel:form>

TextFileAssetFormHandler
The atg.epub.servlet.TextFileAssetFormHandler lets you create and update text assets. Text
assets have a property called textContent that displays the file contents and makes them available for
modification.

This class uses a request-scoped component that temporarily stores its contents in the session-scoped
asset info component defined for a given page. That way, one TextFileAssetFormHandler component
can service all form pages that are able to work with text assets. ATG Content Administration includes one
component of this class called /atg/epub/servlet/TextFileAssetFormHandler.

Instead of creating pages that explicitly use this form handler, you create an item mapping that associates
this form handler component with an asset type. The forms in JSPs rely on an asset editor to read the item
mapping so that, when a user requests a text asset, for example, the TextFileAssetFormHandler is
used.

By default, the TextFileAssetFormHandler is available in the following contexts:

 Editing asset properties in assetEditPage.jsp

 Viewing asset properties in the Asset tab of assetPropertyView.jspf

 Viewing asset properties in the Asset Browser of assetBrowserAssetDetail.jsp

Configuration Properties

The TextFileAssetFormHandler has the following configuration properties:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 7 9

A p p e n d i x C : F o r m H a n d l e r s

μ
Property Function

fileName Holds the asset name that represents the text file.

parentFolderPath Holds the path to the text file on your file system.

text Holds the contents of the text file.

uploadedFile Holds the name of the text file on your file system that you want to upload
to ATG and work with as an asset.

Note: If a value is provided to uploadedFile and text, the value in uploadedFile is used.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 8 0

A p p e n d i x C : F o r m H a n d l e r s

μ

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 8 1

A p p e n d i x D : P W S 2 . 0 T a g L i b r a r y

μ
Appendix D: PWS 2.0 Tag Library

The PWS 2.0 tag library contains a core set of tags that let you access ATG Content Administration-related
Nucleus components in JSPs. By default these tags use the pws prefix, such as pws:getAsset, although
you can use any prefix you like. All tags in this library support JSP 2.0 technology and are enabled to use
the Expression Language (EL).

The tag library source and definition files are included in your ATG installation at the following location:

<ATG10dir>/Publishing/taglib/pwsTaglib-2_0.tld

For code samples that use these tags, see:

<ATG10dir>/PubPortlet/PubPortlets.ear/portlets.war/html

The PWS Tag Library includes the following tags:

Tag Name Description

pws:canFireTaskOutcome Determines whether a user can perform a workflow task.

pws:categorize Organizes objects based on categories and properties.

pws:createVersionManagerURI Accesses the URI for the VersionManager used by a
particular asset.

pws:display Modifies a text string by removing HTML formatting,
adding text, and/or shortening the string length.

pws:getAsset Locates an asset using its URI.

pws:getAssignableUsers Assembles a list of the users who are permitted to
execute a workflow task.

pws:getCurrentProject Accesses the current project ID.

pws:getDependentProjects Finds projects that have dependence on each other.

pws:getDeployedProjects Locates all projects deployed to a particular target site.

pws:getDeployment Accesses a deployment item using a deployment ID

pws:getDeployments Creates a list of deployment IDs for a given target site.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 8 2

A p p e n d i x D : P W S 2 . 0 T a g L i b r a r y

μ
Tag Name Description

pws:getItemSubTypes Locates all subtypes for a particular asset type.

pws:getProcess Accesses a process using a process ID.

pws:getProcesses Creates a list of process IDs that have a certain status.

pws:getProject Accesses a project using a project ID.

pws:getProjectAssets Locates assets in a given project.

pws:getProjects Creates a list of project IDs that have a certain status.

pws:getProjectsPendingDeployment Creates a list of projects that have are not deployed
despite the appearance of being deployment-ready.

pws:getTarget Accesses a target site via its ID.

pws:getTargets Creates a list of target IDs.

pws:getTasks Creates a list of tasks based on the criteria you specify.

pws:getVersionedAssetTypes Creates a list of asset types defined to work with the
VersionManager.

pws:getWorkflowDefinitions Accesses all workflow definition files.

pws:getWorkflowDescriptor Finds the workflow descriptor used by a particular
process.

pws:canFireTaskOutcome
This tag determines whether a user has the necessary permissions to perform a task in a given workflow.
After the tag is executed, the result is stored in a result object that’s named by the var attribute. Other
tags can access the result object’s properties.

Attributes

The following attributes are defined for the pws:canFireTaskOutcome tag:

Attribute Description Required?

var Names the Boolean result object that identifies whether the user can
perform the specified task.

yes

taskInfo The atg.workflow.TaskInfo object that represents the task to be
evaluated.

yes

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 8 3

A p p e n d i x D : P W S 2 . 0 T a g L i b r a r y

μ

Result Object Property

The following property is defined for the result object produced by the pws:canFireTaskOutcome tag:

Property Description

hasAccess A Boolean property that indicates whether the user has permission to perform the
task.

Example

<pws:canFireTaskOutcome var="taskPermission" taskInfo="deleteProject"/>

<c:choose>

 <c:when test="${taskPermission=true}">

 Your next task is to delete the project.

 </c:when>

 <c:otherwise>

 There are no tasks for you right now.

 </c:otherwise>

 </c:choose>

pws:categorize
This tag uses the category attributes in the repository XML definition file to sort the property descriptors
for each property defined in the given repository. If you have access to the RepositoryItem itself, use
the repositoryItem and itemDescriptor attributes. Otherwise, you need to specify the
repositoryPath and itemDescriptorName attributes.

After the tag is executed, the property descriptors are stored in an array result object named by the var
attribute. The result object has properties that other tags can access.

Attributes

The following attributes are defined for the pws:categorize tag:

Attribute Description Required?

id Returns the instance of the tag. Call
getItems() to return a collection of
atg.beans.DynamicPropertyDescriptors
for properties to display.

no

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 8 4

A p p e n d i x D : P W S 2 . 0 T a g L i b r a r y

μ
Attribute Description Required?

var Names the Array result object to contain the
sorted property descriptors.

no

repositoryItem The RepositoryItem with properties that you
want to sort.

no

itemDescriptor The itemDescriptor for the
RepositoryItem.

no

repositoryPath The Nucleus path to the itemDescriptor. no

itemDescriptorName The name of the itemDescriptor. no

hidden Indicates whether properties that are
designated as hidden properties are included in
(true) or excluded from (false) the sorted
collection. Hidden properties hold information
that is not directly applicable to your user
interface. The default value is false.

no

expert Indicates whether properties that are
designated as expert properties are included in
(true) or excluded from (false) the sorted
collection. Expert properties hold information
that is useful for only some technical ACC users.
The default value is false.

no

specificProperties A comma-separated list of properties to which
the result object should be restricted. Can also
be used to override the categories attribute
for given properties (see below).

no

excluded A comma-separated list of properties that
should be excluded from the result object. Can
also be used to override the
excludedCategories attribute for given
properties (see below).

no

categories A comma-separated list of categories. Only
properties that have these category values are
included in the result object.

no

excludedCategories A comma-separated list of categories.
Properties that have these category values are
excluded from the result object.

no

hideSingleCategoryDescriptor If only one category exists, indicates that the
category descriptor should not be returned
(true).

no

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 8 5

A p p e n d i x D : P W S 2 . 0 T a g L i b r a r y

μ
For an example of this tag in use, see oneColumnEdit.jsp, located in:

<ATG10dir>/PubPortlet/PubPortlets.ear/portlets.war/html/views/item/gsa/

pws:createVersionManagerURI
This tag assembles the URI used to locate a particular asset that is governed by the VersionManager. The
attributes that are required depend on the asset type:

 RepositoryItem: If you have access to the item itself, set the repositoryItem
attribute. Otherwise, use the componentName, itemDescriptorName, and itemId
attributes.

 Versioned file: Use virtualFile if you have access to the file itself or specify the
componentName and virtualFilePath attributes to locate it.

 Any object whose data type is unknown: set the object attribute.

After the tag is executed, the resultant URI is stored in a result object named by the var attribute. If var is
not specified, the URI string is sent to the page’s output stream.

Attributes

The following attributes are defined for the pws:createVersionManagerURI tag:

Attribute Description

var (optional) Names the result object to contain the VersionManager URI
string.

versionManagerName (optional) The name of the VersionManager. The default value is the
PublishingVersionManager.

repositoryItem The RepositoryItem object, required for RepositoryItem asset types if
you have access to the item itself. Otherwise, set the attributes
componentName, itemDescriptorName, and itemId.

componentName The component that represents the RepositoryItem or virtual file.

If you specify this attribute, you must also specify the following attributes:
either virtualFilePath or both of the following:
itemDescriptorName and itemId.

itemDescriptorName

itemID
A file-based asset’s item descriptor name and item ID. These attributes
must be used with componentName .

virtualFilePath The path to the file-based asset stored in ATG.

This attribute also requires the attribute componentName.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 8 6

A p p e n d i x D : P W S 2 . 0 T a g L i b r a r y

μ
Attribute Description

virtualFile The virtual file object, used for a versioned file if you have access to the
file itself; otherwise, use attributes componentName and
virtualFilePath.

object A java.lang.Object that is either a RepositoryItem or a virtual file;
required for any object whose data type is unknown.

pws:display
This tag takes the text you specify and modifies it accordingly. You can configure this tag to make the
following modifications, which are performed in this order:

 Remove HTML tags included in the text

 Shorten the text to include all characters up to the first space or, if that space is after
the character number indicated in the maxLength attribute, shorten the text to the
indicated maximum length.

 Add specific text to the end of the text string.

Keep in mind that the resultant text string is longer than the value indicated by the maxLength attribute
if you also use the appendedText attribute. The resultant text is saved to a String result object named by
the var attribute.

Note: This tag is an instance of the EscapeHTMLTextTag class.

Attributes

The following attributes are defined for the pws:display tag:

Attributes Description Required?

var Names the result object to contain the text. yes

text The text that you want to modify. yes

appendedText The text that should be appended to the resultant text. no

maxLength The maximum number of characters that remain in the text after
HTML characters are removed. When you use this attribute, the text
ends just before the first space or, if that exceeds the
maxLength value, at the maxLength value itself.

no

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 8 7

A p p e n d i x D : P W S 2 . 0 T a g L i b r a r y

μ
pws:getAsset

This tag locates an asset using the URI you specify. After the tag is executed, the resultant asset is stored in
a result object named by the var attribute. The result object has properties that other tags can access.

Attributes

The following attributes are defined for the pws:getAsset tag:

Attribute Description Required?

var Names the result object to contain the asset. yes

uri The URI that identifies the asset’s location. yes

workspaceName The name of the workspace associated with the working version
of the asset.

no

Result Object Properties

The following properties are defined for the result object produced by the pws:getAsset tag:

Property Description

asset Contains the asset.

workingVersion Identifies the working version of the asset, if you specified the
workspaceName attribute.

pws:getAssignableUsers
This tag determines all users who have the permissions necessary to execute a given workflow task. After
the tag is executed, the results are stored in a Set object named by the var attribute. The set object
consists of atg.userdirectory.User objects.

Attributes

The following attributes are defined for the pws:getAssignableUsers tag:

Attribute Description Required?

var Names the result object to contain the Set of User objects. yes

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 8 8

A p p e n d i x D : P W S 2 . 0 T a g L i b r a r y

μ
taskDescriptor The name of the task descriptor that defines the task. yes

includeAccUsers Indicates whether ACC users are included (true) or excluded
(false). The default value is false.

no

pws:getCurrentProject
This tag uses the Dynamo request object to access the project that is active during the current session
and stores that project and its related process information in a result object named by the var attribute.
Other tags can access information about the project using properties on the result object.

Attribute

The following attribute is defined for the pws:getCurrentProject tag:

Attribute Description Required?

var Names the result object to contain the active project. yes

Result Object Properties

The following properties are defined for the result object produced by the pws:getCurrentProject tag:

Property Description

process Contains the active process object.

project Contains the active project object.

pws:getDependentProjects
This tag uses the candidate project ID to locate all projects on which it is dependent for a given target site.
You must specify one candidate project (in the candidateProject attribute) to receive a list of
dependent projects or specify multiple candidate projects (in the candidateProjects attribute) to
receive a list of dependent projects for them.

In order for candidate Project A to be dependent on the Project B for target site C, all of the following
must be true:

 Project A has assets with property values that refer to resources used by Project B.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 8 9

A p p e n d i x D : P W S 2 . 0 T a g L i b r a r y

μ
 Project A is not checked in and deployed to target site C.

A collection of projects are saved to the result object named by the var attribute.

Attributes

The following attributes are defined for the pws:getDependentProjects tag:

Attribute Description Required?

var Names the result object to contain a Collection of project IDs
representing projects that are dependent on the candidate
project.

yes

target The name of the target site associated with the candidate and
dependent projects.

no

candidateProjects The names of projects that depend on other projects. no

candidateProject The name of a project that depends on another project. no

pws:getDeployedProjects
This tag obtains information about deployed projects and stores that information in a result object
named by the var attribute. That result object has properties so other tags can access project
information.

Attributes

The following attributes are defined for the pws:getDeployedProjects tag:

Attribute Description Required?

var Names the result object to contain project information. yes

target The target site associated with the version of the project about
which you want information. If no target is specified, deployed
projects for all targets are located.

no

index The number that designates where, in the context of the accessed
projects, the list of returned projects should begin. The default
value is 0.

no

count The number of projects to save to the result object. no

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 9 0

A p p e n d i x D : P W S 2 . 0 T a g L i b r a r y

μ
totalCountVar Names a secondary result object that holds the total number of

deployed projects in the database located by this tag. A subset of
the total can be saved to the result object.

no

Result Object Properties

The following properties are defined for the var-named result object produced by the
pws:getDeployedProjects tag:

Property Description

count Contains the number of deployed projects saved to the result object.

projects Contains the IDs for the deployed projects.

totalCount Contains the total number of deployed projects located by the
pws:getDeployedProjects, a subset of which can be saved to result object.

pws:getDeployment
This tag accesses an atg.deployment.server.Deployment object when you provide that item’s
deployment ID. The Deployment object is stored in a result object named by the var attribute.

Attributes

The following attributes are defined for the pws:getDeployment tag:

Attribute Description Required?

var Names the result object to contain
atg.deployment.server.Deployment object.

yes

deploymentId The ID for the Deployment object. yes

pws:getDeployments
This tag locates all IDs for the atg.deployment.server.Deployment objects that meet the criteria you
specify and stores those IDs in a result object named by the var attribute. Other tags can access the result
object and the properties defined on it.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 9 1

A p p e n d i x D : P W S 2 . 0 T a g L i b r a r y

μ
Attributes

The following attributes are defined for the pws:getDeployments tag:

Attribute Description Required?

var Names the result object to contain an array of Deployment IDs. yes

target The name of the target site for which you want to locate
associated deployment objects. If no target is specified, all
Deployment objects that meet the criteria are returned.

no

projects The projects that are part of the Deployment objects you want to
locate.

no

queuedOnly Indicates whether to include pending Deployment objects that
are deployed as soon as the target is available (true) or to exclude
such Deployment objects (false). The default value is true.

no

scheduledOnly Indicates whether to include pending Deployment objects that
are scheduled to be executed on a future date true) or to exclude
such deployment objects (false). The default value is true.

no

index The number that designates where, in the context of the located
Deployment objects, the list of returned Deployment IDs should
begin. The default value is 0.

no

count The total number of Deployment IDs to save to the result object. no

totalCountVar Names a secondary result object that holds the total number of
Deployment IDs located by this tag. A subset of the total can be
saved to the result object.

no

Result Object Properties

The following properties are defined for the var-named result object produced by the
pws:getDeployments tag:

Property Description

count Contains the number of deployed projects saved to the result object.

deployments Contains the IDs for the deployed projects.

totalCount Contains the total number of deployed projects located by the
pws:getDeployments, a subset of which can be saved to result object.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 9 2

A p p e n d i x D : P W S 2 . 0 T a g L i b r a r y

μ
pws:getItemSubTypes

This tag uses the item descriptor and path you specify to locate its descendant item descriptors. The list of
RepositoryItemDescriptor objects returned by this tag is saved to a result object named by the var
attribute. The super-type item descriptor is included in the result set if it represents an item type that isn’t
defined as hidden or expert level.

Attributes

The following attributes are defined for the pws:getItemSubTypes tag:

Attribute Description Required?

var Names the result object to contain a list of
RepositoryItemDescriptor objects.

yes

repositoryPath The Nucleus path to the item descriptor yes

itemType The item descriptor for which you want to locate descendant
item descriptors.

yes

pws:getProcess
This tag uses a process ID to obtain a process and stores it as a result object named by the var attribute.

Attributes

The following attributes are defined for the pws:getProcess tag:

Attribute Description Required?

var Names the result object to contain the specified process. yes

processId The ID for the process that you want to access. yes

pws:getProcesses
This tag accesses a list of processes that have a specific status and saves that list to a result object named
by the var attribute so other tags can interact with its properties.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 9 3

A p p e n d i x D : P W S 2 . 0 T a g L i b r a r y

μ
Attributes

The following attributes are defined for the pws:getProcesses tag:

Attributes Description Required?

var Names the result object to contain a Collection of process objects. yes

status The status that is currently assigned to all processes that are
returned. The default value is Edit (process is not deployed). Other
options include:
- Edit_Running (a campaign is deployed to a target site and
eligible for modification)
- Deployed (a process is deployed to a target site and all of its
project tasks are complete)
- Running (a campaign is deployed to a target site and all of its
tasks are complete)
- Completed (workflow process is complete)

no

sortPropert

ies

The order in which the processes are organized is based on the
values for properties included in this comma separated list. Each
process is sorted by the chronological, numerical, or alphabetical
value held by the specified properties. You can provide as many
properties as you like. For example, by supplying two properties,
you specify a primary and secondary sort order.

no

index The number that designates where, in the context of the accessed
processes, the list of returned processes should begin. The default
value is 0.

no

count The number of processes to save to the result object. no

Result Object Property

The following property is defined for the result object produced by the pws:getProcesses tag:

Property Description

processes Contains a list of process IDs.

pws:getProject
This tag uses a project ID to obtain a project and stores it as a result object named by the var attribute.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 9 4

A p p e n d i x D : P W S 2 . 0 T a g L i b r a r y

μ
Attributes

The following attributes are defined for the pws:getProject tag:

Attribute Description Required?

var Names the result object to contain the located project. yes

projectId The ID for the project that you want to access. yes

pws:getProjectAssets
This tag locates all assets for a given project that meet the criteria you specify. After the tag is executed,
the collection of assets is stored in a result object that’s named by the var attribute. Other tags can access
the result object’s properties.

Attributes

The following attributes are defined for the pws:getProjectAssets tag:

Attribute Description Required?

var Names the result object to contain the project’s assets and each
asset’s size.

yes

projectId The ID for the project that you want to access. yes

showExpert Indicates whether assets designated as expert-level should be
included in the result set. The default value is false.

no

checkedIn Indicates whether only checked-in assets should be included in the
result set. The default value is false.

no

Result Object Properties

The following properties are defined for the result object produced by the pws:getProjectAssets tag:

Property Description

assets A collection of assets associated to the specified
project.

size An integer that indicates the assets size in bytes.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 9 5

A p p e n d i x D : P W S 2 . 0 T a g L i b r a r y

μ

pws:getProjects
This tag accesses a Collection of projects that have a specific status and saves that list to a result object
named by the var attribute so other tags can interact with its properties.

Attributes

The following attributes are defined for the pws:getProjects tag:

Attributes Description Required?

var Names the result object to contain a Collection of project
objects.

yes

status The status that is currently assigned to all projects that are
returned. The default value is Active. Other options include:
Completed, Suspended, and Error.

For a definition of each status, see the Creating and Managing
Projects chapter of the ATG Content Administration Guide for
Business Users.

no

sortProperties The order in which the projects are organized is based on the
values for properties included in this comma separated list.
Each project is sorted by the chronological, numerical, or
alphabetical value held by the specified properties. You can
provide as many properties as you like. For example, by
supplying two properties, you specify a primary and
secondary sort order.

no

index The number that designates where, in the context of the
accessed projects, the list of returned projects should begin.
The default value is 0.

no

count The number of processes to save to the result object. no

Result Object Property

The following property is defined for the result object produced by the pws:getProjects tag:

Property Description

projects Contains a Collection of projects with the specified status.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 9 6

A p p e n d i x D : P W S 2 . 0 T a g L i b r a r y

μ
size Contains the number of projects in the projects property.

pws:getProjectsPendingDeployment
This tag locates a list of projects that are ready for deployment, but are not yet deployed. There are two
reasons why projects might be in this situation:

 Projects are approved and either waiting in a queue to be deployed or are scheduled
to be deployed on a future date.

 Projects are orphaned, meaning that they satisfy the workflow requirements for
deployment, but encounter a workflow configuration issue that prevents them from
being approved.

After this tag executes, it creates a result object named by the var attribute. That result object is a
collection of ToDoProject objects, one representing each located pending project.

Attributes

The following attributes are defined for the pws:getProjectsPendingDeployment tag:

Attribute Description Required?

var Names the result object to contain ToDoProject objects. yes

target The target site for which you want to find pending projects. If no
target is specified, pending projects for all targets are located.

no

index The number that designates where, in the context of the accessed
projects, the list of returned projects should begin. The default
value is 0.

no

count The total number of projects to save to the result object. no

totalCountVar Names a secondary result object that holds the total number of
pending projects located by this tag. A subset of the total can be
saved to the result object.

no

ToDoProject Object Properties

The following properties are defined for the ToDoProject objects produced by the
pws:getProjectsPendingDeployment tag for each pending project:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 9 7

A p p e n d i x D : P W S 2 . 0 T a g L i b r a r y

μ
Property Description

orphaned Indicates whether the project is orphaned. Orphaned projects are checked in and
appear to be ready for deployment, but encounter a workflow configuration issue that
prevents them from being approved. For example, if the target site is configured after
the last workflow task is complete, the target will not recognize the pending project.

project Contains an atg.epub.project.Project object.

target Contains the name for the target site.

time Contains the timestamp for the date on which the projects were approved or
orphaned.

days Contains the numbers of days for which the project is pending.

hours Contains the number of hours added to the days to total the amount of time the
project is pending.

pws:getTarget
This tag locates a target and stores it in a result object named by the var attribute.

Attributes

The following attributes are defined for the pws:getTarget tag:

Attribute Description Required?

var Names the result object to contain information about target
site(s).

yes

targetId The ID of a specified target site. yes

pws:getTargets
This tag accesses a list of atg.deployment.server.Target objects for your ATG instance and saves
that list to a result attribute named by the var attribute.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 9 8

A p p e n d i x D : P W S 2 . 0 T a g L i b r a r y

μ
Attribute Description Required?

var Names the result object to contain a list of
atg.deployment.server.Target objects.

yes

pws:getTasks
This tag locates a list of tasks that match the specified criteria and saves those tasks to a result object
named by the var attribute. None of this tag’s attributes, other than var, are required. However, if you
indicate that you want inactive as well as active tasks (by setting active="false") or unclaimed as well
as claimed tasks (unowned="true") to be returned, you must also specify a process ID. When you know
the specific task ID for the task you want returned, it’s best to enter that ID directly in the taskElementId
attribute.

Attributes

The following attributes are defined for the pws:getTasks tag:

Attributes Description Required?

var Names the result object to contain a list of tasks. yes

userOnly Indicates whether only tasks assigned to the current user (true)
or all tasks for the current process (false) are located. The default
value is false.

no

unowned Indicates whether unclaimed (true) or all (false) tasks are
located. The default value is false.

no

active Indicates whether active (true) or all (false) tasks are located.
The default value is true.

no

processId The ID for the process that has tasks you want to locate. yes, if
unowned
is set to
true or
active is
set to
false.

index The number that designates where, in the context of the accessed
tasks, the list of returned tasks should begin. The default value is 0.

no

taskElementId The ID for a particular task that you want to locate. no

count The total number of tasks that are saved to the result object. no

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

2 9 9

A p p e n d i x D : P W S 2 . 0 T a g L i b r a r y

μ

Result Object Properties

The following properties are defined for the result object produced by the pws:getTasks tag:

Property Description

processSize Contains the number of tasks in the project workflow’s parent
process.

processTasks Contains the list of located process tasks.

projectSize Contains the number of tasks in the project workflow.

projectTasks Contains the list of located project workflow tasks.

size Contains the number of located tasks.

tasks Contains each located task.

pws:getVersionedAssetTypes
This tag accesses, from the default VersionManager, a list of asset types that are defined to work in an
iterative, publishing environment. The list can be made up of asset types that are RepositoryItems,
virtual files or a combination of the two. The asset types located by this tag are stored as a list in a result
object that is named by the var attribute and accessible to other tags.

Attribute

The following attribute is defined for the pws:getVersionedAssetTypes tag:

Attribute Description Required?

var Names the result object to contain an array of asset types, one for each
repository or virtual file system.

yes

Result Object Properties

The following properties are defined for the result object produced by the
pws:getVersionedAssetTypes tag:

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

3 0 0

A p p e n d i x D : P W S 2 . 0 T a g L i b r a r y

μ
Property Description

componentPath Contains the Nucleus path to the asset type component.

repositoryName Contains the name of the Repository to which the asset type is a part.

types Contains an array of asset type names.

repository Contains the Boolean value that indicates whether the asset type is a
repository that has types that are RepositoryItems (true).

fileSystem Contains the Boolean value that indicates whether the asset type is a virtual
file system that has types that are virtual files (true).

pws:getWorkflowDefinitions
This tag accesses all available workflows and saves them to a result object named by the var attribute so
other tags can access them.

Attributes

The following attributes are defined for the pws:getWorkflowDefinitions tag:

Attribute Description Required?

var Names the result object to contain workflow information. yes

userOnly Indicates whether only workflows that the current user can start (true) or
all workflows (false) are located. The default value is false.

no

index The number that designates where, in the context of the accessed
workflows, the list of returned workflows should begin. The default value
is 0.

no

count The number of workflows to save to the result object. no

Result Object Properties

The following properties are defined for the result object produced by the
pws:getWorkflowDefinitions tag:

Property Description

size Contains the number of workflow definitions in the
workflowsDefinition property.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

3 0 1

A p p e n d i x D : P W S 2 . 0 T a g L i b r a r y

μ
workflowDefinitions Contains a list of atg.workflow.WorkflowDescriptor objects.

pws:getWorkflowDescriptor
This tag accesses the workflow descriptor used by the workflow managing a given process. Descriptor
information is stored in a result object named by the var attribute so other tags can access it.

Attributes

The following attributes are defined for the pws:getWorkflowDescriptor tag:

Attribute Description Required?

var Names the result object to contain information about the workflow
descriptor.

yes

processId The name of the process with the workflow descriptor you are looking
for.

yes

Result Object Properties

The following properties are defined for the result object produced by the
pws:getWorkflowDescriptor tag:

Property Description

workflowProcess Contains the workflow descriptor for a process workflow.

workflowProject Contains the workflow descriptor for the project
workflow.

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

3 0 2

I n d e x

μ

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

3 0 3

I n d e x

μ
Index

A
ACC

administrators-group, 81
user access, 81, 83

Activity Manager, 84
AddNoteFormHandler, 257
agent. See deployment agent
APIs

deployment, 131
versioning, 36

application
assemble, 15

application module
copy to asset management server, 44

Approve and Deploy Project workflow element, 104
approve for production deployment task

production-only workflow, 99
staging/production workflow, 102

approve for staging deployment task
staging/production workflow, 101

Approve Project workflow element, 105
asset locking, 102

optimize, 69
release locks after deployment, 105

asset management servers
checksum caching, 182
cluster, 91, See also ATG Content Administration

cluster
copy application module, 44
set up, 37
switch deployment setup, 153

AssetDiffFormHandler, 259
assets, 19, 33

check in, 34, 102, 105
check out, 34
customize display in BCC, 107
form handlers for data, 120
head version, 33
hide properties, 119
link to from another asset property, 125
optimize operations on, 68
purge versions, 195
resolve conflicts, 105
secure access to, 79
sort properties, 119
types, 25
version number, 33
versioning system, 33

versions, 34
ATG Content Administration

users. See users
ATG Content Administration cluster, 91

configure, 92
deploy from, 94
deploy from multiple clusters, 171
FileSynchronizationDeployServer, 93
hosts defined, 172
install servers, 91
manage file assets, 93
manage workflows, 92
name, 172
set up, 91
switch deployment configured for, 95

ATG Content Administration server. See asset
management server

ATG Control Center. See ACC
author task

production-only workflow, 99
staging/production workflow, 100

B
binaryFileAsset, 61

set security, 90
BinaryFileAssetFormHandler, 262
bizui taglib, 124
bizui_all_ddl.sql script, 38

subscripts, 38
branches, 33
Business Control Center, 16

access, 16
customize for new item types, 67
import default data, 41

C
caching

versioning caches, 50
Check Assets are Up to Date workflow element, 105
check in

workflow element, 105
Check In project’s Workspace workflow element, 105
check-in, 102

optimized, 68
checksum caching, 181

asset management servers, 182
production servers, 182

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

3 0 4

I n d e x

μ
checksum verification, 182
Clone Project workflow element, 105
cluster. See ATG Content Administration cluster
Complete Process workflow element, 105
Complete Project workflow element, 105
ConfigFileSystem, 26

configure as shared, 156
configure for switch deployment, 150

conflict resolution
check in workflow, 105

content review task
production-only workflow, 99
staging/production workflow, 101

ContentRepositoryVFSService, 25, 64, 250
ContentRepositoryVFSService component

properties, 250
Create Process Data workflow element, 105
Create Project workflow element, 105
CreateProcessFormHandler, 263
currentItemCacheSize, 50
currentItemCacheTimeOut, 50

D
database. See also versioned database

non-versioned, 23
optimize asset operations, 68
schema, 201
versioned, 22

Delete Project element, 105
deployment, 21

agent. See deployment agent
API, 131
ATG Content Administration cluster, 94
check in, 102
checksum verification, 182
data source, 161
destination repositories, 161
details, 188
enable distributed, 132
errors on MS SQL, 176
full, 133
incremental, 133
lock assets, 102
manual, 137
mode. See online deployment, switch deployment
multiple ATG Content Administration clusters, 171
multiple sites, 136
overview, 129
performance, 182
queue, 137, 189
recurring, 185
release asset locks, 105
requirements, 130
revert assets, 106
roll back, 190
schedule, 189
security of targets, 159
stop, 189
target site. See target site

deployment agent
define for target site, 166
essential/unessential, 167
identify on target, 142
Publishing agent, 23
Publishing Web agent, 23
responsibilities, 143
start, 147
start Publishing agent, 147
start Publishing Web agent, 147
types, 23
view status, 191

deployment event listeners, 178
configure, 178
events, 178

deployment topology
plan, 142

DeploymentEmailer, 179
DeploymentManager, 23
deploymentQueueSchedule property, 137
DeploymentServer, 131
DeploymentServer component

allowMissingNonEssentialAgents property, 167
destination repositories, 136

create, 162
data source, 161
foreign repository mappings, 162
map to source repositories, 166
RepositoryMapper, 162
update list, 164

development lines, 33
branches, 33
snapshot, 34
workspace, 33

drop_bizui_all_ddl.sql script, 39
subscripts, 40

drop_publishing_ddl.sql script, 40
drop_user_profile_ddl.sql script, 40
drop_versioned_file_repository_ddl.sql script, 40
drop_versioned_process_data_ddl.sql script, 40
drop_versionmanager_ddl.sql script, 40
drop_viewmapping_ddl.sql script, 40
drop_workflow_ddl.sql script, 40

E
EPub-Admin role, 80
EPub-Manager role, 80
EPub-Super-Admin role, 80
EPub-User role, 80
exportRepository script, 70

F
file assets, 20, 25

back up, 29
binaryFileAsset extensions, 61
checksum caching, 181
configure JSP support, 55
configure support for non-default item types, 61
delete, 29

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

3 0 5

I n d e x

μ
import into versioned content repository, 71
manage on ATG Content Administration cluster, 93
metadata, 25
metadata table, 29
performance optimizations, 181
set security, 90
store in versioned content repository, 25
store metadata, 29
synchronize with FileSynchronizationDeployServer, 93
system location, 29, 30
textFileAsset extensions, 61

FileDeploymentServer
port used by, 147

FileSynchronizationDeployServer, 93
FireWorkflowOutcomeFormHandler, 265
form handlers, 257

AddNoteFormHandler, 257
AssetDiffFormHandler, 259
BinaryFileAssetFormHandler, 262
CreateProcessFormHandler, 263
FireWorkflowOutcomeFormHandler, 265
item properties, 121
ProcessSearchFormHandler, 267
ProjectDiffFormHandler, 259
ProjectFormHandler, 269
Repository AssetFormHandler, 272
SegmentAssetFormHandler, 274
TaskActionFormHandler, 275
TextFileAssetFormHandler, 278
view mapping, 120

FTP server
deploy file assets to, 62

G
getItemMapping tag, 124

parameters, 124

H
head version, 33
headOfLineCacheSize, 50
headOfLineCacheTimeOut, 50
HTML editor

configure for propertyView, 128

I
importAssetUI script, 41
importBizui script, 41
importDPSI script, 41
importPublishing script, 41
importRepository script, 74
item descriptor

modify ACL list, 51
item types

configure support for new, 61
configure TypeMapping componentsfor custom types,

65
javaServerPage, 56
selective versioning, 49

versioning default, 48
itemMapping, 110

item descriptor, 110
properties, 111

itemView, 113
item descriptor, 113
item properties, 114
JSPs, 109

itemViewMapping, 112
item descriptor, 112
properties, 112

J
JournalingFileSystemService, 254
JSPs

configure support, 55
copy from Web application, 57
define item type for, 56
deployment support, 56
versioned module, 57
versioning module

configuration files, 58
liveconfig files, 59
manifest file, 58
resource file, 59

L
LocalVFSService, 255

M
main branch, 33
manifest

versioned module, 44
map modes, 119

add mode, 120
view mapping. See view mapping

merge, optimized, 68
MS SQL Server database

initialization errors, 176

O
one-off target

define, 165
online deployment, 134

compared to switch deployment, 134
configure, 158

ownerCacheEnabled, 156, 173

P
personalization

import data, 41
process, 20

object properties, 30

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

3 0 6

I n d e x

μ
ProcessSearchFormHandler, 267
processTaskInfo items, 29
production-only workflow, 98

approve for production deployment task, 99
author task, 99
content review task, 99
verify production deployment task, 100
wait for production deployment completion task, 99

project, 20
add assets, 34
approve and deploy in workflow, 104
approve in workflow, 105
complete, 105
create in workflow, 105
delete in workflow, 105
object properties, 31
purge, 195
user access, 82, 86

ProjectDiffFormHandler, 259
ProjectFormHandler, 269
propertyView, 116

HTML editor, 128
item descriptor, 116
JSPs, 109
properties, 117

propertyViewMapping, 114
item descriptor, 115
properties, 115

Publishing agent, 23, 131
start, 147

Publishing Web agent, 23, 131
install, 145

UNIX, 146
Windows, 145

start, 147
Publishing.WebAppRef module, 60
Publishing.WebAppRefVer module, 60
publishing_ddl.sql script, 39
PublishingActivities.xml file, 84
PublishingDeploymentSchedulableService, 137
PublishingFileRepository, 25, 26

extend, 27, 61
import initial data, 71
item type hierarchy, 26
JSP support, 56
set security, 63, 87

PublishingRepository, 28
security, 85

publishingSecurity.xml file, 86
PublishingSecurityPolicy, 86
PublishingTypeMapper component

modify for custom item types, 65
PurgingService, 195

event listener, 195
on-demand purge, 197
protected versions, 196
restricted operations, 196
roll back purge, 196
scheduled purge, 196
summary metrics report, 198
transaction timeout, 195
use of BCC during purge, 196

validation checks, 199
PWS tag library, 13

R
RecurringDeploymentService, 189

configure, 185
extend, 187

Release Asset Locks workflow element, 105
remoteHosts, 95, 172
remotePorts, 95, 172
remoteRMIPorts, 95, 172
Reopen Project workflow element, 106
repositories, 24

configure on target site for switch deployment, 148
destination. See also destination repositories
import assets, 74
standard, 28
types, 24
versioned, 25, See also versioned repositories
versioned content, 25

repository assets, 19, 25
configure support for, 45
export from production site, 70, 73
import, 74
import initial, 70
set user access, 51

repository caches
invalidate after deployment, 132
invalidate selectively after switch deployment, 153

repository definition file
attributes and tags, 46
layer in config directory, 50
multiple files, 50
verify, 45

RepositoryAssetFormHandler, 272
RepositoryMapper, 162
Revert Assets Immediately on Target workflow element,

106
revert, optimized, 68
RMI port, 94, 95
roles, 80

ATG Portal, 81
default user account, 81
EPub-Admin, 80
EPub-Manager, 80
EPub-User, 80
PublishingRepository access, 86
workflow access, 82

S
scripts

export repository assets, 73
import versioned content, 43, 74

secured repositories
default, 63
disable, 90
set user access, 51, 87

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

3 0 7

I n d e x

μ
SecuredPublishingFileRepository, 63, 87
security, 79

ACC access, 81, 83
disable secured repository, 90
project access, 82, 86
PublishingFileRepository, 87
PublishingRepository, 85
secured repositories, 87
user roles, 80
versioned repositories, 51
workflow access, 82, 86

SegmentAssetFormHandler, 274
selective cache invalidation, 153
SelectiveDeleteVFSService, 253
Send Task Notification workflow element, 106
server. See asset management server
shared tables

versioned repositories use of, 54
snapshot, 34
source repository

define, 166
staging/production workflow, 100

approve for production deployment task, 102
approve for staging deployment task, 101
author task, 100
content review task, 101
verify production deployment task, 102
verify staging deployment task, 101
wait for production deployment completion task, 102
wait for staging deployment completion task, 101

standard repositories
import assets, 74
PublishingRepository, 28
VersionManagerRepository, 28

standard repository, 28
summary metrics report, 198
switch deployment, 134, 135

asset management server setup, 153
ATG Content Administration cluster configured for, 95
background deletion of file assets, 155
compared to online deployment, 134
ConfigFileSystem configured for, 150
configure target site, 148
optimize performance, 148
repositories configured for, 148
selective cache invalidation, 153
WWWFileSystem configured for, 151

SwitchableLocalFileSystem, 155, 183, 250
SwitchingDataSource, 134
SwitchingDataSource, 148
SwitchingDataSource, 149
SwitchingDataSource, 149
SwitchingDataSource, 153
SwitchingDataSource, 252
SwitchingDataSource component

properties, 153

T
tables

create for versioned database, 38

installation script for versioned database, 38
tags. See PWS tag library
target site

configure online deployment, 158
configure shared ConfigFileSystem, 156
configure switch deployment, 148
define, 165
deployment agents, 166
identify, 142
initialization options, 166
initialize, 176
manage security, 159
type, 165

task, 21
TaskActionFormHandler, 275
taskInfo property, 29
TaskInfoPurger, 29
textFileAsset, 61

set security, 90
TextFileAssetFormHandler, 278
TypeMapping components

configure for custom item types, 65

U
user_profile_ddl.sql script, 39
users

manage access to assets, 79
roles, 80, See also roles
types, 80

V
Validate Project Deployed on Target workflow element,

106
validation checks

in PurgingService, 199
verify production deployment task

production-only workflow, 100
staging/production workflow, 102

verify staging deployment task
staging/production workflow, 101

versioned content repository, 25
import initial data, 71
set security, 87

versioned database
back up, 42
create tables, 38
destroy tables, 39
initialize, 41
script to install tables, 38

versioned database schema, 52
columns required, 53
create, 52
install, 55
shared tables support, 54

versioned module
create, 44
create for Web application, 57
JSP support, 57

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

3 0 8

I n d e x

μ
versioned repositories

cache behavior properties, 50
configuration properties, 47
configure, 45
create, 45
CurrentVersionItemCache, 50
define with multiple files, 50
HeadOfLineCache, 50
import assets, 74
import initial assets, 70
register, 55
set user access, 51
set VersionManager, 48
shared database tables, 54
specify to VersionManagerService, 67
verify definition file, 45

versioned_file_repository_ddl.sql script, 39
versioned_process_data_ddl.sql script, 39
VersionFilePropertyDescriptor, 62
versioning system

APIs, 36
branch, 33
checkout by multiple users, 35
checkout by single user, 34
database schema, 22
development lines, 33
head version, 33
main branch, 33
purge asset versions. See PurgingService
snapshot, 34
support in database schema, 52
terminology, 33
version numbering, 34
versioned database, 22
VersionManager, 34
workspace, 33

VersionManager, 34
manage asset versions, 34
set in VersionRepository, 48

versionmanager_ddl.sql script, 39
VersionManagerRepository, 28
VersionManagerService, 34

add custom VFS, 65
configure, 67
map properties, 67
properties, 67

VersionRepository
configuration properties, 47

versoning system
VersionManager, 34

VFS. See virtual file system
view mapping, 107

architecture, 107
attributes, 108
change asset presentation, 122
create for new item types, 67
create repository items, 122
edit items, 122
fallback map mode, 119
fallback mode, 119
form handler components, 121
form handler interface, 121

form handlers, 120
getItemMapping tag, 124
hide asset properties, 119
import, 41
inheritance, 108
itemMapping, 110
itemView, 113
itemViewMapping, 112
JSPs, 109
map modes, 119
propertyView, 116
propertyViewMapping, 114
repository, 110
sort asset properties, 119

viewmapping_ddl.sql script, 39
virtual file system, 249

choose implementation, 249
ConfigFileSystem, 26
configure custom VFS, 64
configure for JSP support, 56
configure on target site for switch deployment, 150
configure target for custom VFS, 67
ContentRepositoryVFSService, 25, 250
JournalingFileSystemService, 254
LocalVFSService, 255
SelectiveDeleteVFSService, 253
specify to VersionManagerService, 67
SwitchableLocalFileSystem, 250
WWWFileSystem, 26

W
wait for production deployment completion task

production-only workflow, 99
staging/production workflow, 102

wait for staging deployment completion task
staging/production workflow, 101

Web application
copy module to asset management server, 57
create versioned module to asset management server,

57
WebAppRefVer module, 58
workflow target

define, 165
workflow_ddl.sql script, 39
workflows, 20, 97, See also production-only workflow,

staging/production workflow
add elements, 104
approve and deploy project, 104
approve project, 105
check for conflict resolution, 105
create, 103
delete project, 105
edit, 103
installed, 98
manage on ATG Content Administration cluster, 92
optimize performance, 69
phase out, 103
production-only, 98
release asset locks, 105
revert assets, 106

A T G C o n t e n t A d m i n i s t r a t i o n P r o g r a m m i n g G u i d e

3 0 9

I n d e x

μ
staging/production, 100
user access, 82, 86
validate deployed project, 106

workspace, 33
check in, 34

optimize check-in, 68
WWWFileSystem, 26

configure for switch deployment, 151
owner cache file, 173

	Contents
	1 Introduction
	Documentation Conventions
	Product Support Information
	Related Documentation

	2 Getting Started
	Running ATG Content Administration
	Overview of the ATG Business Control Center
	Before You Begin

	3 Understanding the Content Development Environment
	Terminology
	ATG Content Administration Architecture
	Content Development Environment
	Production Environment

	Repositories
	Versioned Repositories
	Versioned Content Repository
	Standard Repositories

	File Asset Storage
	Deleting File Assets from the File System
	Changing File Asset Storage Location

	Processes and Projects
	Process Object Properties
	Project Object Properties

	Versioning Assets
	Versioning Terminology
	Versioning Process
	Versioning APIs

	4 Setting Up an Asset Management Server
	Create ATG Content Administration Tables
	Table Creation Subscripts
	Destroying ATG Content Administration Tables

	Initialize the Database
	Back Up the Database

	5 Creating a Versioned Module
	Copy the Application Module to the Asset Management Server
	Create the Versioned Module
	Configure Repository Asset Support
	Create and Configure Versioned Repositories
	Create and Install the Versioned Database Schema

	Register the Versioned Repositories
	Configure JSP File Asset Support
	Copy the Web Application Module to the Asset Management Server
	Create the Web Application’s Versioned Module
	Configure Targets for Deployments to the Web Application
	WebAppRef Reference Implementation

	Configure Support for Other File Assets
	Extend the PublishingFileRepository Definition
	Extend the SecuredPublishingFileRepository Definition
	Configure a Custom VFS to Expose New Item Types
	Set Up the VersionManagerService to Manage the Custom VFS
	Configure TypeMapping Components for New Item Types
	Configure a Custom VFS on Deployment Targets
	Customize the ATG Business Control Center to Support New Item Types

	Configure the VersionManagerService
	Optimizing Merge, Revert, and Check-in Performance
	Optimizing Workflow Performance

	Import Initial Repository Assets into Versioned Repositories
	Export Repository Data from the Production Server
	Import Repository Data into the Asset Management Server

	Import Initial File Assets
	exportRepository
	importRepository

	6 Managing User Access and Security
	ATG Content Administration Users
	ATG Business Control Center Users
	ATG Control Center Users

	Project and Workflow Security
	Access to Generic Activities
	To Do List
	PublishingRepository Security
	VersionRepository Security
	PublishingFileRepository Security
	Item Descriptor Security
	Content Item Security
	Scenario and Personalization Assets
	Web Assets

	Disabling a Secured Repository
	Checking Versioned Repostory Security

	7 Setting Up an ATG Content Administration Cluster
	Install Cluster Servers
	Configure Cluster Servers
	Identify the Workflow Editor Server
	Configure Distributed Caching for Versioned Repositories

	Manage Distributed File Assets
	Configure Deployment from a Cluster

	8 Project Workflows
	Installed Workflows
	Production-Only
	Staging/Production

	Asset Locking and Check-in
	Creating Project Workflows
	Workflow Action Elements

	9 Customizing Asset Display
	View Mapping System
	itemView and propertyView JSP Fragments
	View Mapping Repository
	itemMapping
	itemViewMapping
	itemView
	propertyViewMapping
	propertyView
	Map Modes
	View Mapping Form Handlers

	Overriding Default Asset Display Settings
	Using Resource Bundles
	getItemMapping
	Setting Up Linked Assets
	Troubleshooting the ViewMapping System
	Rendered JSP Page Source
	Asset Form Handler Log File
	ViewMappingFactory Log File

	Configuring the EditLive! HTML Editor

	10 Deployment Concepts
	Target Site Basics
	Publishing Agent
	Publishing Web Agent

	Deployment Process
	Enabling Distributed Deployments
	Post-Deployment Tasks

	Deployment Scope
	Full Deployment
	Incremental Deployment

	Deployment Modes
	Online Deployment
	Switch Deployment
	Online versus Switch Deployments

	Destination Repositories
	Deploying Unique Data to Multiple Sites
	Deploying From Multiple Asset Management Server Clusters
	Deployment Scheduling
	Deployment Queue
	Fulfiller Service
	Interrupting Deployments

	One-Off Deployments

	11 Setting Up Deployment
	Plan Deployment Topology
	Identify Deployment Target Sites
	Identify Deployment Agents
	Plan Deployment Agent Responsibilities

	Set Up Deployment Agents
	Installing the Publishing Web Agent
	Changing the Port Used for File Asset Deployment
	Running Deployment Agents

	Configure Switch Deployment
	Configure Target Repositories for Switch Deployments
	Configure Default Target VFSs for Switch Deployments
	Configure Custom Target VFSs for Switch Deployments
	Configure VFSs on a New ATG Server for Switch Deployment
	Configure Switch Deployment on the Asset Management Server
	Selective Cache Invalidation
	Background Deletion of File System Assets
	Shared ConfigFileSystem for Multiple Agents
	Adding an ATG Server

	Configure Online Deployment
	Configure Repositories for Online Deployments
	Configure Custom VFSs for Online Deployments

	Manage Asset Security on Target Sites
	Modifying User Access Privileges in the ACC
	Restricting Access to Personalization and Scenario Assets

	Configure Deployment Data Sources and Destination Repositories
	Create a Destination Repository Data Source
	Create and Configure a Destination Repository
	Update the Destination Repositories List

	Define the Deployment Topology
	Define the Target Site
	Configure Target Site Deployment Agents
	Editing deploymentTopology.xml

	Configure Deployment from Multiple Asset Management Server Clusters
	Set the Cluster Name
	Define the Cluster Hosts
	Repository Assets
	File Assets
	Managing Multi-Cluster Deployment Data

	Initialize Target Sites
	Initializing Targets on MS SQL with Clustered Primary Keys
	Adding Agents to an Initialized Target

	Configure Deployment Event Listeners
	Understanding Deployment Events
	Creating and Configuring a DeploymentEventListener

	Schedule Deletion of Empty Folders
	Cache Checksums for File Assets
	Checksum Caching on the Asset Management Server
	Checksum Caching on Production Servers or Agents
	Checksum Verification Deployment Mode
	Local Copy During Switch Deployment

	12 Deploying Project Assets
	Configuring the RecurringDeploymentService
	Deploying from the Admin Console
	View Deployment Details
	Stop Deployments
	Set Deployment Parameters
	Manage the Deployment Queue
	Switch a Target Site’s Datastores
	Roll Back Deployments
	View Deployment Agents Status

	Troubleshooting Deployment
	Recover from Deployment Failure
	Release a Stalled Deployment

	Automating Recovery from Transient Errors

	13 Purging Asset Versions
	General Safeguards
	Restricted Operations
	Protected Versions

	Scheduled Purges
	On-demand Purges
	Summary Report Precision
	Validation Checks

	Appendix A: Database Schema
	Core ATG Content Administration Tables
	epub_history
	epub_his_act_parm
	epub_taskinfo
	epub_agent_trnprt
	epub_agent
	epub_target
	epub_tr_dest
	epub_topology
	epub_tr_agents
	epub_princ_asset
	epub_includ_asset
	epub_exclud_asset
	epub_project
	epub_prj_targt_ws
	epub_pr_tg_status
	epub_prj_tg_snsht
	epub_pr_tg_st_ts
	epub_pr_tg_ap_ts
	epub_pr_history
	epub_process
	epub_proc_prv_prj
	epub_proc_history
	epub_proc_taskinfo
	epub_deployment
	epub_deploy_proj
	epub_dep_err_parm
	epub_dep_log
	epub_process_data

	File Repository Tables
	epub_file_folder
	epub_file_asset
	epub_text_file
	epub_binary_file

	Media Tables
	epub_folder
	epub_media
	epub_media_ext
	epub_media_bin
	epub_media_txt

	Versioning Tables
	avm_devline
	avm_workspace
	avm_asset_lock

	User Profile Tables
	epub_user
	epub_prj_hist

	Workflow Tables
	epub_coll_workflow
	epub_ind_workflow
	epub_workflow_strs
	epub_workflow_bls
	epub_workflow_lngs
	epub_workflow_dbls
	epub_workflow_dats
	epub_workflow_ris
	epub_workflow_vfs
	epub_workflow_info
	epub_wf_mig_info
	epub_wf_mg_inf_seg
	epub_wf_templ_info
	epub_wf_coll_trans
	epub_wf_ind_trans
	epub_wf_deletion
	epub_wf_del_segs
	epub_wf_migration
	epub_wf_mig_segs
	epub_wf_server_id

	View Mapping Tables
	vmap_im
	vmap_fh
	vmap_mode
	vmap_ivm
	vmap_im2ivm_rel
	vmap_iv
	vmap_pv
	vmap_ivm2pvm_rel
	vmap_pvm
	vmap_attrval
	vmap_attrval_rel
	vmap_cattrval_rel
	vmap_iv2ivad_rel
	vmap_ivattrdef
	vmap_pv2pvad_rel
	vmap_pvattrdef

	Appendix B: Virtual File Systems
	ContentRepositoryVFSService
	SwitchableLocalFileSystem
	SelectiveDeleteVFSService
	JournalingFileSystemService
	LocalVFSService

	Appendix C: Form Handlers
	AddNoteFormHandler
	Configuration Properties
	Submit Handler Method
	Pre and Post Methods
	Example

	AssetDiffFormHandler
	Configuration Properties
	Navigational Property
	Submit Handle Methods
	Example

	BinaryFileAssetFormHandler
	Configuration Properties

	CreateProcessFormHandler
	Configuration Properties
	Navigational Property
	Submit Handler Method
	Pre and Post Methods
	Example

	FireWorkflowOutcomeFormHandler
	Configuration Properties
	Submit Handler Method
	Pre and Post Methods
	Example

	ProcessSearchFormHandler
	Configuration Properties
	Submit Handler Method
	Example

	ProjectFormHandler
	Configuration Properties
	Non-Configurable Properties
	Submit Handle Methods
	Pre and Post Methods
	Example

	RepositoryAssetFormHandler
	Configuration Properties
	Submit Handler Methods

	SegmentAssetFormHandler
	Configuration Properties
	Submit Handler Methods

	TaskActionFormHandler
	Configuration Properties
	Submit Handler Methods
	Pre and Post Methods
	Example

	TextFileAssetFormHandler
	Configuration Properties

	Appendix D: PWS 2.0 Tag Library
	pws:canFireTaskOutcome
	pws:categorize
	pws:createVersionManagerURI
	pws:display
	pws:getAsset
	pws:getAssignableUsers
	pws:getCurrentProject
	pws:getDependentProjects
	pws:getDeployedProjects
	pws:getDeployment
	pws:getDeployments
	pws:getItemSubTypes
	pws:getProcess
	pws:getProcesses
	pws:getProject
	pws:getProjectAssets
	pws:getProjects
	pws:getProjectsPendingDeployment
	pws:getTarget
	pws:getTargets
	pws:getTasks
	pws:getVersionedAssetTypes
	pws:getWorkflowDefinitions
	pws:getWorkflowDescriptor

	Index

