

Version 10.0.2

Commerce Programming Guide

Oracle ATG
One Main Street
Cambridge, MA 02142
USA

ATG Commerce Programming Guide

Document Version
Doc10.0.2 COMMPROGv1 4/15/2011

Copyright
Copyright © 1997, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are “commercial
computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures
to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services.

For information about Oracle’s commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/support/contact.html or visit http://www.oracle.com/accessibility/support.html if you are hearing impaired.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

i i i

C o n t e n t s

μ

Contents

1 Introduction 1
Commerce Overview 1

Product Catalog 1
Purchasing and Fulfillment Services 2
Inventory Management 2
Pricing Services 3
Targeted Promotions 3
Commerce Services 3
ATG Business Commerce (B2B) 4
Reporting 5
Multisite Integration 5

Finding What You Need 6

2 Configuring and Populating a Production Database 9
Configuring ATG Commerce with CIM 9
Creating Database Tables 10

Creating Tables for Core ATG Commerce 11
Creating Tables for ATG Business Commerce 12

Using ATG Commerce with an Oracle Database 13
Configuring Storage Parameters 13
Configuring a Catalog for Oracle Full Text Searching 14

Using ATG Commerce with an MSSQL Database 15
Transferring Product Catalog and Price List Data Using Copy and Switch 17

Configuring a Database Copy 17
Performing a Database Copy 19
Configuring a Database Switch 20
Performing a Database Switch 22

Transferring Demo Data 23
Exporting the Motorprise Demo Data from SOLID 23
Importing the Motorprise Demo Data to Your Database 23

Destroying Database Tables for ATG Commerce 24
Destroying Tables for Core ATG Commerce 24
Destroying Tables for ATG Consumer Commerce 25
Destroying Tables for ATG Business Commerce 25

3 Integrating Third-Party Software With ATG Commerce 29
Integrating Payflow Pro with ATG Commerce 29

A T G C o m m e r c e P r o g r a m m i n g G u i d e

i v

C o n t e n t s

μ
Setting up Payflow Pro 30
Pre-Configuring the Integration 30
Using ATG Commerce with Payflow Pro 30

Integrating CyberSource with ATG Commerce 31
Installing the CyberSource Distribution 31
Initializing the CyberSource Integration 31
Configuring ATG Commerce to Use CyberSource 32
Moving the System to Production 32
Designating Tax Status of Products 32
Specifying Sales Origin and Shipment Location Information 33
Calculating Taxes on the Item Level 33
Specifying States and Provinces without Tax Obligations 34

Integrating TAXWARE with ATG Commerce 34
Before You Begin Integrating with TAXWARE 34
TAXWARE Classes 34
Configuring ATG Commerce to Use TAXWARE 35
Using the SALES/USE and WORLDTAX Integration 36
Customizing ATG Commerce’s TAXWARE Integration 36
Customizing TaxWareCalculateTax Methods 37
TaxResult and TaxRequest Fields 37
VERAZIP Integration 38
Customizing ATG Commerce’s VERAZIP Integration 38
Customizing TaxWareVerifyZipInfo Methods 39

4 Using and Extending the Product Catalog 41
Production and Development Modes for ATG Commerce 41
Product Catalog Repository 42
Catalog Properties 43
Categories and Products 45

Defining Root Categories 46
Category Properties 46
categoryInfo Properties 50
Product Properties 51
productInfo Properties 53
Defining Relationships between Categories and Products 54
Specifying Template Pages for Categories and Products 56
Associating Products with SKUs 57
Extending the Category and Product Item Types 57

SKU Items and SKU Links 58
SKU Properties 59
SKUInfo Properties 60
SKU Link Properties 61
Using SKU Media Properties 61
Using SKU Price Properties 62
Using the SKU Fulfiller Property 62
Creating SKU Bundles 62
Extending the SKU Item Type 62

A T G C o m m e r c e P r o g r a m m i n g G u i d e

v

C o n t e n t s

μ
Configurable SKUs 63

Catalog Folders 64
Folders and Media Items 64

Folder Properties 65
Media Item Properties 65
Using Media-External Properties 66
Using Media-Internal Properties 66

Internationalizing the Product Catalog 67
Catalog Security 69
Importing Product Catalog Content 69
Assigning a Catalog to a User 70

ContextValueRetriever Class 70

5 Using the Catalog Maintenance System 73
Batch Services 73

CatalogMaintenanceService 76
AncestorGeneratorService 77
CatalogVerificationService 78
CatalogUpdateService 79

Dynamic Services 80
CatalogChangesListener 80
PropertiesChangedHandler Components 81
CatalogCompletionService 81

Running Catalog Maintenance Services 81
Running Batch Services from the Commerce Admin Page 82
Running a Batch Service from the ACC 83
Batch Maintenance Form Handler 84
Running Dynamic Services 84

6 ATG Commerce Profile Extensions 85
Profile Repository Extensions 85

Promotions 85
Address Books 86
Credit Card Collection 86
Gift Lists and Wish List 86
Other Features 87

Profile Form Handler Extensions 87
Profile Tools and Property Manager Extension 87

7 Configuring Commerce for Multisite 89
Site Repository Extensions for Commerce 89
Configuring Commerce Options in Site Administration 89
Assigning Price Lists and Catalogs in a Multisite Configuration 90

8 Configuring Commerce Services 91
Setting Up Gift Lists and Wish Lists 91

A T G C o m m e r c e P r o g r a m m i n g G u i d e

v i

C o n t e n t s

μ
Gift List Business Layer Classes 92
Gift List Repository 93
Gift List Form Handlers 98
Gift List Servlet Beans 111
Purchase Process Extensions to Support Gift Lists 113
Gift and Wish Lists in a Multisite Environment 116
Extending Gift List Functionality 119
Disabling the Gift List Repository 121

Setting Up Product Comparison Lists 122
Understanding the Product Comparison System 122
Using Product Comparison Lists in a Multisite Environment 132
Extending the Product Comparison System 132
Using TableInfo to Display a Product Comparison List 133

Setting Up Gift Certificates and Coupons 133
The Claimable Repository 134
The ClaimableTools Component 135
The ClaimableManager Component 135
Setting Up Gift Certificates 135

9 Commerce Pricing Services Overview 143
Common Terms in Pricing Services 143
Using Dynamic vs Static Product Pricing 145

How Static Pricing Works 145
How Dynamic Pricing Works 146

How Pricing Services Generate Prices 147
PricingTools Class 149
PricingModelHolder 150
PricingAdjustment 150
PricingCommerceItem 151
PricingModelProperties 151

10 Commerce Pricing Engines 153
Pricing Engine Interfaces 153

The Base Pricing Engine 153
ItemPricingEngine Interface 154
OrderPricingEngine Interface 155
ShippingPricingEngine Interface 155
TaxPricingEngine Interface 156
PricingConstants Interface 156

Default Pricing Engines 156
PricingEngineService 156
Default Item Pricing Engine 157
Default Order Pricing Engine 157
Default Tax Pricing Engine 157
Default Shipping Pricing Engine 157

Price Holding Classes 158

A T G C o m m e r c e P r o g r a m m i n g G u i d e

v i i

C o n t e n t s

μ
AmountInfo 158
ItemPriceInfo 158
DetailedItemPriceInfo 158
OrderPriceInfo 162
ShippingPriceInfo 162
TaxPriceInfo 162

Extending Pricing Engines 162
Extending a Pricing Engine 162
Creating a New Pricing Engine 163

11 Commerce Pricing Calculators 165
Pricing Calculator Interfaces 165

ItemPricingCalculator Interface 165
OrderPricingCalculator Interface 166
ShippingPricingCalculator Interface 166
TaxPricingCalculator Interface 166
CalculatorInfoProvider Interface 166

Pricing Calculator Classes 167
DiscountCalculatorService 167
ItemPriceCalculator 168
ItemDiscountCalculator 170
BulkItemDiscountCalculator 170
ItemListPriceCalculator 171
ItemSalePriceCalculator 171
ConfigurableItemPriceCalculator 171
OrderDiscountCalculator 172
BulkOrderDiscountCalculator 172
OrderSubtotalCalculator 173
ShippingCalculatorImpl 173
ShippingDiscountCalculator 173
BulkShippingDiscountCalculator 174
PriceRangeShippingCalculator 174
DoubleRangeShippingCalculator 175
FixedPriceShippingCalculator 176
PropertyRangeShippingCalculator 176
WeightRangeShippingCalculator 177
NoTaxCalculator 178
TaxDiscountCalculator 178
BulkTaxDiscountCalculator 178
TaxProcessorTaxCalculator 178
Price List ConfigurableItemPriceListCalculator 179
Price List ItemListPriceCalculator 179
Price List ItemPriceCalculator 179
Price List ItemSalesPriceCalculator 180
Price List ItemSalesTieredPriceCalculator 180
Price List ItemTieredPriceCalculator 180
BandedDiscountCalculatorHelper 181

A T G C o m m e r c e P r o g r a m m i n g G u i d e

v i i i

C o n t e n t s

μ
CalculatorInfo 181

Extending Pricing Calculators 182
Adding a New Pricing Calculator 182
Extending Calculators 183

12 Qualifier Class 185
Qualifier Class Overview 185

Qualifier Properties 186
Overriding Qualifier Filters 187
Default Qualifier Service 188

Evaluating Qualifiers Example 188
QualifiedItem Class 190
FilteredCommerceItem 191
Extending the Qualifier Class 191

Adding New Criteria to the Filter Methods 192
Replacing the Way a PMDL Rule Is Evaluated 193
Replacing the Way the Qualifier Determines the Result Set 193
Accessing FilteredCommerceItems 194

13 Understanding Promotions 195
Promotion Repository Item Properties 195
PromotionFolder Repository Items 203
PromotionStatus Repository Items 203
Understanding PMDL Discount Rules 203

PMDL XML Structure 204
PMDL Example: Bulk Discount 207
Examples of PMDL Rules 208

Extending Promotions Functionality 213
Extending the PMDL 214
Adding New Promotion Discount Types 214

Adding New Promotions Templates 215
Promotion Template Basics 215
Creating the PMDT File 216
Translating User Input Values in Templates 223
Working with Repository Item Properties in Templates 226
Using Promotion Upsell in Templates 229
Validating Promotions 230
Localizing Promotions Templates 232
Editing Existing Promotion Templates 232

Importing and Exporting Promotions 232
Architecture Overview 233
Performing a Promotions Import or Export 233
Mapping Promotion Properties 237
Using the PromotionImportExportIntegrator Interface 240
Configuring Import/Export Batching 241
Configuring the PublishingWorkflowAutomator Component 241

A T G C o m m e r c e P r o g r a m m i n g G u i d e

i x

C o n t e n t s

μ
Performance Issues Related to Promotion Delivery 242

14 Using Price Lists 243
Overview of Setting Up Price Lists 243

Caching Price Lists 244
Using Price Lists in Combination with SKU-Based Pricing 244

Description of Volume Pricing 245
Setting up Price List Functionality in ATG Consumer Commerce 246
PriceListManager 246

Assigning a Price List to a User 247
Price List Calculators 247

Using ItemPriceInfo with Price Lists 248
Implementing Sale Prices using Price Lists 248
Calculating Prices with a Specific Price List 251
Using the CurrencyConversionFormatter to Convert Currency 252
Price List Security Policy 252

The PriceListSecurityPolicy Class 253
Configuring the Price List Security Policy 253

Converting a Product Catalog to Use Price Lists 254

15 Working With Purchase Process Objects 255
The Purchase Process Subsystems 255

Base Commerce Classes and Interfaces 256
Address Classes 260
Business Layer Classes 260
OrderTools 261
Pipelines 265
Order Repository 265

Creating Commerce Objects 266
Creating an Order 266
Using Orders in a Multisite Environment 267
Creating Multiple Orders 268
Creating Commerce Items, Shipping Groups, and Payment Groups 269
Adding an Item to an Order via a URL 274
Preventing Commerce Items from Being Added to Types of Shipping Groups275
Removing Commerce Objects from an Order 276
Using the SimpleOrderManager 276

Using Relationship Objects 276
Relationship Types 277
Commerce Item Relationships 281
Relationship Priority 282

Assigning Items to Shipping Groups 283
Assigning Costs to Payment Groups 284

Assigning an Order’s Total Cost to Payment Groups 285
Assigning an Order’s Component Costs to Payment Groups 286

Setting Handling Instructions 288

A T G C o m m e r c e P r o g r a m m i n g G u i d e

x

C o n t e n t s

μ
HandlingInstruction Objects 288
Adding Handling Instructions to a Shipping Group 289

ATG Commerce States 290

16 Configuring Purchase Process Services 299
Loading Orders 300

Refreshing Orders 301
Modifying Orders 305

Understanding the CartModifierFormHandler 305
Modifying the Current Order 311

Repricing Orders 313
Saving Orders 315

Updating an Order with the OrderManager 316
Canceling Orders 317
Checking Out Orders 318

Preparing a Simple Order for Checkout 318
Preparing a Complex Order for Checkout 320
Checking Out an Order 333

Processing Payment of Orders 339
Overview of the Payment Process 340
Extending the Payment Operations of a Payment Method 341
Extending the Payment Process to Support a New Payment Method 342
Extending Order Validation to Support New Payment Methods 356

Scheduling Recurring Orders 360
Understanding the scheduledOrder Repository Item 361
Submitting Scheduled Orders 362
Creating, Modifying, and Deleting Scheduled Orders 365
Using Scheduled Orders with Registered Sites 369

Setting Restrictions on Orders 369
Understanding the Order Restriction Classes 369
Implementing Order Restrictions 371

Tracking the Shopping Process 372
Shopping Process Stages 372
Working with Shopping Process Stages 373
Shopping Process Recorder 374
Turning Off Recording of Shopping Process Tracking 374

Troubleshooting Order Problems 374
Handling Returned Items 375
Managing Transactions in ATG Commerce 376
Extending the ATG Commerce Form Handlers 377

17 Customizing the Purchase Process Externals 379
Purchase Process Event Messages 379
Integrating with Purchase Process Services 380

Purchase Process Integration Points 380
Adding Credit Card Types to ATG Commerce 381

A T G C o m m e r c e P r o g r a m m i n g G u i d e

x i

C o n t e n t s

μ
Extending the Purchase Process 383

Adding a Subclass with Primitive Data Type Properties 383
Adding a Subclass with Object Data Type Properties 390
Manipulating Extended Objects 409

Merging Orders 409

18 Processor Chains and the Pipeline Manager 411
Pipeline Manager Overview 411
Using the Pipeline Editor 412

Accessing the Pipeline Editor 413
Opening an Existing Pipeline Definition 413
Creating a New Pipeline Definition 414
Editing Existing Pipeline Definitions 416
Printing a Pipeline Definition 417
Activating Verbose Mode 418
Pipeline Debugging 418
Changing the Display Font of the Pipeline Editor 419
Reinitializing the Pipeline Manager 419

Running a Processor Chain 419
Creating a Processor Pipeline 420

Configuring a Pipeline Manager 421
Creating Processors 421
Pipeline Definition Files 421
Creating and Editing Processor Chains Programmatically 427
Extending the PipelineChain and PipelineResult Classes 429

Pipelines and Transactions 432
Processor Transaction Management 432
Spanning Transactions over a Chain Subset 433

Extending the Processor Pipeline Classes 433
Using Site-Based Forking in a Processor Chain 434
Adding a Commerce Processor Using XML Combination 435

Executing Processor Chains from Processors within Other Chains 436

19 Inventory Framework 437
Overview of the Inventory System 438

Using the Inventory System 438
Inventory System Methods 439
Inventory Classes 441

InventoryManager 441
InventoryException 443
MissingInventoryItemException 444

InventoryManager Implementations 444
AbstractInventoryManagerImpl 444
NoInventoryManager 444
RepositoryInventoryManager 444
CachingInventoryManager 448

A T G C o m m e r c e P r o g r a m m i n g G u i d e

x i i

C o n t e n t s

μ
LocalizingInventoryManager 449

Examples of Using the Inventory Manager 450
Allocating Items for an Order 451
Canceling or Removing an Item from an Order 452
Displaying an Item’s Availability to a Customer 453
Filling Partial Orders 453
Preventing Inventory Deadlocks 453

Handling Bundled SKUs in the Inventory 454
Inventory Repository 457
Inventory JMS Messages 458
Configuring the SQL Repository 459

Caching the Inventory 459
Inventory Repository Administration 460

Using the InventoryLookup Servlet Bean 461
Building a New InventoryManager 463

Configuring a New Inventory Manager 464

20 Configuring the Order Fulfillment Framework 465
Overview of Fulfillment Process 466
Running the Fulfillment Server 470
Order Fulfillment Classes 470
Using Locking in Fulfillment 479
Using the OrderFulfiller Interface 480
Using the Fulfiller 481

Notifying the HardgoodFulfiller of a Shipment 482
HardGoodFulfiller Examples 483

Creating a New Fulfiller 485
Configuring a New Fulfiller 488

Order Fulfillment Events 491
Fulfillment Server Fault Tolerance 493

Fulfillment Message Redelivery 493
Replacing the Default Fulfillment System 494
Integrating the Order Fulfillment Framework with an External Shipping System 495
Changing Payment Behavior in Fulfillment Server 496
Using Scenarios in the Fulfillment Process 497
Questions & Answers 498

21 Managing the Order Approval Process 501
Understanding the Order Approval Process 501

Modifying the Order Approval Process 506
Servlet Beans and Form Handlers for Approving Orders 506

ApprovalRequiredDroplet Servlet Bean 506
ApprovedDroplet Servlet Bean 507
ApprovalFormHandler 507

JMS Messages in the Order Approval Process 507

A T G C o m m e r c e P r o g r a m m i n g G u i d e

x i i i

C o n t e n t s

μ
22 Using Abandoned Order Services 509

An Overview of Abandoned Orders 509
Abandonment States 511
Order Repository Extensions 511
Profile Repository Extensions 512
The AbandonedOrderLogRepository 513

Defining and Detecting Abandoned Orders 513
Defining Abandoned and Lost Orders 514
Detecting Abandoned and Lost Orders 514

Configuring AbandonedOrderService 516
Configuring AbandonedOrderTools 518
Scenario Events and Actions 523

Scenario Events 523
Scenario Actions 526

Tracking Abandoned Orders of Transient Users 529
AbandonedOrderEventListener 529
TransientOrderRecorder 530
Turning Off Transient Order Tracking 530

Customizations and Extensions 530
Defining Additional Types of Abandoned and Lost Orders 530
Modifying the Criteria Used to Identify Abandoned and Lost Orders 532

23 Generating Invoices 535
Invoice Overview 535
Invoices in Checkout 536
Invoice Payment 537

Using the Invoice Manager 537
Invoice Pipelines 538

The Invoice Repository 539
Invoice Repository Item 539
DeliveryInfo Repository Item 540
PaymentTerms Repository Item 541
Sending Invoice JMS Messages 541

24 Using Requisitions and Contracts 543
Requisitions 543
Contract Repository Items 544
Using Contracts 545

25 Preparing to Use Commerce Reporting 547
Setting Up Commerce Reporting Environments 547

Setting up the Asset Management Environment 548
Setting Up the Production Environment 548
Setting Up the Data Loading Environment 548

Configuring a Parent Catalog 548
Logging Data for Commerce Reporting 549

A T G C o m m e r c e P r o g r a m m i n g G u i d e

x i v

C o n t e n t s

μ
Site Visit Data Logging 550
Order Submit Data Logging 550
Commerce Search Data Logging 551
Product Catalog Data Logging 551
User Data Logging 552
Segment Data Logging 553
Data Logging Configuration 554
Initial Data Logging for Catalogs, Users, and Segments 555
JMS Message Information for Data Logging 556

Loading Data for Commerce Reporting 558
Data Loader Components 558
Data Warehouse Loader Repository 562
Handling Errors 563
Pipeline Drivers and Processors 563

26 Customizing Reporting Data 575
Adding an Attribute to a Dimension 576
Adding a New Dimension 577
Dimension Converters 579

Conversion Context 579
Setting Conversion Property Parameters 580
Example Dimension Converter 582

Appendix A: ATG Commerce Web Services 585
Order Management Web Services 585

addCreditCardToOrder Web Service 586
addItemToOrder Web Service 587
addItemToShippingGroup Web Service 588
addShippingAddressToOrder Web Service 589
cancelOrder Web Service 589
createOrder Web Service 590
createOrderForUser Web Service 590
createOrderFromXML Web Service 591
getCurrentOrderId Web Service 592
getDefaultPaymentGroupId Web Service 592
getDefaultShippingGroupId Web Service 593
getOrderAsXML Web Service 594
getOrdersAsXML Web Service 594
getOrderStatus Web Service 595
moveItemBetweenShippingGroups Web Service 596
removeCreditCardFromOrder Web Service 597
removeItemFromOrder Web Service 598
removeItemQuantityFromShippingGroup Web Service 598
removePaymentGroupFromOrder Web Service 599
removeShippingGroupFromOrder Web Service 600
setItemQuantity Web Service 601

A T G C o m m e r c e P r o g r a m m i n g G u i d e

x v

C o n t e n t s

μ
setOrderAmountToPaymentGroup Web Service 601
submitOrderWithReprice Web Service 602
Order Management Web Services Example 603

Pricing Web Services 603
calculateOrderPrice Web Service 604
calculateOrderPriceSummary Web Service 604
calculateItemPriceSummary Web Service 605
Pricing Web Services Example 606

Promotion Web Services 606
claimCoupon Web Service 607
getPromotionsAsXML Web Service 608
grantPromotion Web Service 608
revokePromotion Web Service 609
Promotion Web Services Example 610

Inventory Web Services 610
getInventory Web Service 611
getInventoryStatus Web Service 611
setStockLevels Web Service 612
setStockLevel Web Service 613
Inventory Web Services Example 613

Catalog Web Services 614
catalogItemViewed Web Service 614
getProductSkusXML Web Service 615
getProductXMLByDescription Web Service 616
getProductXMLById Web Service 616
getProductXMLByRQL Web Service 617
Catalog Web Services Example 618

Profile Web Services 618
getDefaultShippingAddress Web Service 619
getDefaultBillingAddress Web Service 620
getDefaultCreditCard Web Service 620
setDefaultBillingAddress Web Service 621
setDefaultCreditCard Web Service 622
setDefaultShippingAddress Web Service 622
Profile Web Services Example 623

Commerce Web Services Security 623
Using the Order Owner Security Policy 624

Appendix B: ATG Commerce Databases 627
Core ATG Commerce Functionality Tables 627

Product Catalog Tables 628
Commerce Users Tables 666
Claimable Tables 668
Shopping Cart Events Table 672
Inventory Tables 673
Order Tables 674
Promotion Tables 711

A T G C o m m e r c e P r o g r a m m i n g G u i d e

x v i

C o n t e n t s

μ
User Promotion Tables 719
Gift List Tables 720
Price List Tables 725
Abandoned Order Services Tables 730
Order Markers Table 733

ATG Business Commerce Tables 734
ATG Business Commerce Product Catalog Tables 734
ATG Business Commerce Order Tables 736
ATG Business Commerce Organizational Tables 743
ATG Business Commerce User Profile Extensions 748
ATG Business Commerce Invoice Tables 753
ATG Business Commerce Contract Tables 758

Appendix C: ATG Commerce Messages 761
Base ATG Commerce Messages 761

Fulfillment System Messages 761
Order and Pricing Messages 766
Promotion Messages 772

Abandoned Order Messages 775
ATG Business Commerce Messages 776

Appendix D: ATG Commerce Scenario Recorders 781
dcs 781
dcs-analytics 782
shoppingprocess 784

Appendix E: Purchase Process Class Diagrams 787
Order Interfaces Diagrams 787
Order Classes Diagram 798
Order Containment Diagram 811

Appendix F: ATG Commerce and Session Backup 817

Appendix G: Commerce Pipeline Chains 819
Core Commerce Pipelines 819

updateOrder Pipeline Chain 819
loadOrder Pipeline Chain 823
refreshOrder Pipeline Chain 823
repriceOrderForInvalidation Pipeline Chain 827
processOrderWithReprice Pipeline Chain 827
processOrder Pipeline Chain 827
validateForCheckout Pipeline Chain 832
validatePostApproval Pipeline Chain 835
validatePaymentGroupsPostApproval Pipeline Chain 836
validateNoApproval Pipeline Chain 837
validatePaymentGroup Pipeline Chain 837

A T G C o m m e r c e P r o g r a m m i n g G u i d e

x v i i

C o n t e n t s

μ
recalcPaymentGroupAmounts Pipeline Chain 838
repriceOrder Pipeline Chain 839
repriceAndUpdateOrder Pipeline Chain 839
moveToConfirmation Pipeline Chain 840
validatePaymentGroupPreConfirmation Pipeline Chain 840
moveToPurchaseInfo Pipeline Chain 841
validateShippingInfo Pipeline Chain 842
validateShippingGroup Pipeline Chain 842
sendScenarioEvent Pipeline Chain 843
processScheduledOrder Pipeline Chain 843

Fulfillment Pipelines 844
handleSubmitOrder Pipeline Chain 848
splitShippingGroupsFulfillment Pipeline Chain 851
executeFulfillOrderFragment Pipeline Chain 852
handleModifyOrder Pipeline Chain 853
performIdTargetModification Pipeline Chain 855
performOrderModification Pipeline Chain 857
removeOrder Pipeline Chain 858
handleModifyOrderNotification Pipeline Chain 859
handleIdTargetModification Pipeline Chain 861
handleShipGroupUpdateModification Pipeline Chain 863
handlePaymentGroupUpdateModification Pipeline Chain 863
handleShippingGroupModification Pipeline Chain 863
updateShippingGroup Pipeline Chain 865
completeRemoveOrder Pipeline Chain 866
completeOrder Pipeline Chain 867
handleRelationshipModification Pipeline Chain 867
updateRelationship Pipeline Chain 869
handleHardgoodFulfillOrderFragment Pipeline Chain 869
processHardgoodShippingGroup Pipeline Chain 871
allocateShippingGroup Pipeline Chain 872
allocateItemRelationship Pipeline Chain 873
allocateItemRelQuantity Pipeline Chain 874
allocateItemRelQuantityForConfigurableItem Pipeline Chain 875
splitShippingGroupForAvailability Pipeline Chain 876
handleHardgoodUpdateInventory 876
handleOrderWaitingShipMap Pipeline Chain 877
handleHardgoodModifyOrder Pipeline Chain 878
performHardgoodIdTargetModification Pipeline Chain 880
performHardgoodShippingGroupModification Pipeline Chain 881
removeHardgoodShippingGroup Pipeline Chain 882
removeShipItemRelsFromShipGroup Pipeline Chain 883
updateHardgoodShippingGroup Pipeline Chain 884
shippingGroupHasShipped Pipeline Chain 885
performHardgoodItemModification Pipeline Chain 886
performHardgoodRelationshipModification Pipeline Chain 887
handleHardgoodModifyOrderNotification Pipeline Chain 888

A T G C o m m e r c e P r o g r a m m i n g G u i d e

x v i i i

C o n t e n t s

μ
handleHardgoodShipGroupUpdateModification Pipeline Chain 890
shipPendingShippingGroups Pipeline Chain 890
shipShippingGroup Pipeline Chain 891
handleElectronicFulfillOrderFragment Pipeline Chain 892
processElectronicShippingGroup Pipeline Chain 894
allocateElectronicGood Pipeline Chain 895
handleElectronicModifyOrder Pipeline Chain 896
handleElectronicModifyOrderNotification Pipeline Chain 898
handleElectronicShipGroupUpdateModification Pipeline Chain 899
sendOrderToFulfiller Pipeline Chain 900
processHardgoodShippingGroups Pipeline Chain 900
retrieveWaitingShipMap Pipeline Chain 900
processElectronicShippingGroups Pipeline Chain 901

Order Approval Pipelines 901
approveOrder Pipeline Chain 902
checkRequiresApproval Pipeline Chain 904
orderApproved Pipeline Chain 905
orderRejected Pipeline Chain 906
checkApprovalComplete Pipeline Chain 907
checkApprovalCompleteError Pipeline Chain 909

Index 912

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1

1 - I n t r o d u c t i o n

μ
1 Introduction

Welcome to the ATG Commerce Programming Guide. The ATG Commerce application serves as the
foundation for your online store. It contains everything you need to manage your product database,
pricing, inventory, fulfillment, merchandising, targeted promotions, and customer relationships.

This chapter includes the following sections:

Commerce Overview

Finding What You Need

Commerce Overview
This chapter introduces you to the major features of ATG Commerce:

 Product Catalog

 Purchasing and Fulfillment Services

 Inventory Management

 Pricing Services

 Targeted Promotions

 Commerce Services

 ATG Business Commerce (B2B)

 Reporting

 Multisite Integration

Product Catalog

The product catalog is a collection of repository items (categories, products, media, etc.) that provides the
organizational framework for your commerce site. ATG Commerce includes a catalog implementation
based on the ATG SQL Repository, which you can use or extend as necessary.

You can create and edit all of your repository items through the ATG Control Center, which also allows
you to create page templates to display these items (see the ATG Commerce Guide to Setting Up a Store), or
through ATG Merchandising (see the ATG Merchandising Guide for Business Users).

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2

1 - I n t r o d u c t i o n

μ
Purchasing and Fulfillment Services

ATG Commerce provides tools to handle pre-checkout order-processing tasks such as adding items to a
shopping cart, ensuring items are shipped by the customer’s preferred method, and validating credit card
information. The system is designed for flexibility and easy customization; you can create sites that
support multiple shopping carts for a single user, multiple payment methods and shipping addresses, or
share carts across multiple sites.

As soon as a customer submits an order, the fulfillment framework takes over processing. This system
includes a collection of standard services which coordinate and execute the order fulfillment process. Like
the purchase process, the fulfillment framework can be customized to meet the needs of your sites.

ATG Commerce also includes an HTML-based Fulfillment Administration page that you can use for:

 Viewing orders that are ready to be shipped.

 Notifying the fulfillment system that an order has been shipped to the customer.

 Notifying the fulfillment system that a shipping group has changed and needs to be
reprocessed.

 Printing order information.

ATG Commerce allows you to export customer orders in XML for easy integration with your other
systems. Your customers can also create template orders from a new or existing order, and then create a
schedule for the same order to be placed regularly during the time frame they specify. For example, a
company could set up a scheduled order to buy certain supplies on a monthly basis for the next year.

Inventory Management

The inventory framework facilitates inventory querying and inventory management for your sites. It
allows you to:

 Remove items from inventory.

 Notify the store of a customer’s intent to purchase an item that is not currently in stock
(backorder) or has never been in stock (preorder).

 Make a specific number of items available for customers to purchase, backorder, or
preorder.

 Determine and modify the number of items available for purchase, backorder, or
preorder.

 Determine when a specific item will be in stock.

Inventory information is stored in the Inventory repository, which is separate from the product catalog.
You can use the ATG Control Center (ACC) to view, add and delete inventory items, and edit their
property values.

ATG Commerce also includes an HTML-based administration interface for the Inventory Manager.
Administrators can use this interface to view the results of the inventory query operations, manipulate the
various properties of each item, and notify the system of inventory updates.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3

1 - I n t r o d u c t i o n

μ
Pricing Services

ATG Commerce pricing services revolve around pricing engines and pricing calculators. The pricing
engine determines the correct pricing model for an order, individual item, shipping charge, or tax, based
on a customer’s profile. The pricing calculator performs the actual price calculation based on information
from the pricing engine. These services make it possible to generate prices dynamically under constantly
changing business conditions.

The price lists feature allows you to target a specific set of prices to a specific group of customers. Price
lists are managed through the ACC (see the ATG Commerce Guide to Setting Up a Store) or through ATG
Merchandising (see the ATG Merchandising Guide for Business Users). For example, price lists can be used to
implement business-to-business pricing where each customer can have its own unique pricing for
products based on contracts, RFQ and pre-negotiated prices.

Targeted Promotions

Business managers can use ATG Commerce promotions to highlight products and offer discounts as a
way of encouraging customers to make purchases. Promotions typically fall into the following categories:

 Specific amount off a particular product

 Specific amount off a whole order

 Percentage amount off a particular product

 Percentage amount off a whole order

 Specific amount or percentage off a product based on an attribute

 Free product or free order

 Substitution (buy product A for the price of product B)

 Free shipping for a specific product

You can create promotions through the ACC (see the ATG Commerce Guide to Setting Up a Store) or
through ATG Merchandising (see the ATG Merchandising Guide for Business Users).

Commerce Services

ATG Commerce provides services for implementing a variety of features on your commerce site.

 Gift Lists and Wish Lists

Gift lists allow customers to register for an event, such as a birthday or wedding, and
create a list of products that other site visitors can view. Customers can create an
unlimited number of gift lists for themselves. Part of the purchase process allows
special handling instructions for gift purchases, such as address security, wrapping
and shipping.

Wish lists allow customers to save lists of products without actually placing the items
in their shopping cart. A wish list is similar to a gift list, except that it is only accessible
to the person who created it. Customers can access their wish lists and purchase items
from it at any time.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4

1 - I n t r o d u c t i o n

μ
 Comparison lists

Comparison lists enable customers to select multiple product SKUs and compare them
side-by-side.

 Gift Certificates and Coupons

You can set up gift certificates as an item in your product catalog. When a customer
purchases a gift certificate, it is delivered via e-mail to the recipient, who, in turn, can
use it to pay for purchases on the site.

Coupons are similar to gift certificates, except that they are a type of promotion (20%
of an order over $100, for example) sent to specific customers. Customers redeem gift
certificates and coupons entering a claim code during the checkout process.

You can use the the ACC (see the ATG Commerce Guide to Setting Up a Store) or ATG Merchandising (see
the ATG Merchandising Guide for Business Users) to manage gift-list, coupon, and gift certificate repository
items.

ATG Business Commerce (B2B)

ATG Commerce is available in two versions. While ATG Consumer Commerce is used for developing
standard business-to-consumer (B2C) stores, ATG Business Commerce is used for sites oriented more
toward business-to-business (B2B) uses. You will occasionally see the text “ATG Business Commerce only”
in this manual.

B2B-only features of the purchasing and fulfillment system include:

 Cost Centers allow customers to track internal costs by designating parts of their
organization as cost centers, enabling them to track costs by department and run
related reports.

 Order Approvals. B2B applications often require that customers’ orders be reviewed by
authorized persons who can approve or reject them. The approval process in ATG
Business Commerce can identify customers for whom approvals are required, and
check for the conditions that trigger an approval for an order, such as when an order
limit is exceeded. After an approver has reviewed the order, if approved, the order
proceeds through checkout.

 Invoicing gives your customers the option of being invoiced for orders they place.

 Requisitions work with the order approval process, enabling your customers to attach
requisition numbers to orders, then submit them for approval within their
organization, improving your customers’ ability to track internal activities.

In addition, ATG Business Commerce includes contracts as a pricing system feature. Contracts tie together
several important new features of ATG Business Commerce, allowing you to associate a particular catalog,
price list(s), and payment terms with a specific organization.

For ease of use, B2B configuration data is kept in a separate configuration layer:

<ATG10dir>/B2BCommerce/config/

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5

1 - I n t r o d u c t i o n

μ
Reporting

ATG Commerce is fully integrated with ATG Customer Intelligence, and includes a default set of reports
that can provide essential information on store performance. See the Guide to ATG Commerce Reports for
detailed information on these reports. See the Preparing to Use Commerce Reporting chaper of this guide
for configuration information.

Multisite Integration

ATG’s multisite feature allows you to build and launch new sites quickly, and to manage brands, country
stores, and other differentiators efficiently across multiple channels. This section describes some of the
aspects of multisite that are important in an ATG Commerce application.

 Site Context—Within a user’s session, the site context identifies what catalogs,
products, or SKUs are available to the user, which price list to apply, and which
shopping cart to use.

 Site Membership—Defines the sites to which a catalog and its items belong. These
items can include catalogs, categories, products, SKUs, and catalog folders. Catalogs
and other items can belong to more than one site.

 SiteIdForItemDroplet and SiteLinkDroplet—These platform droplets (see the
ATG Page Developer’s Guide) are useful for Commerce developers. Items that appear in
multiple catalogs can be displayed together; when a customer selects one, you can
specify which site’s version of the details to use.

 Shopping Cart—The cart tracks the site on which it was created (when the customer
adds the first item), on which each item was added, and on which the most recent
activity occurred.

 Scheduled Orders—These orders include site information when creating and pricing
orders.

 Gift, Purchase, and Wish Lists—All of these track the site on which they were created
and on which each item was added.

 Shared Carts and Wish Lists—You can configure shopping carts and
gift/purchase/wish lists to be shared among sites.

 Searching—Search form handlers are site-aware and can be constrained by site.

 Reports—All Commerce reports include site information. See the Guide to ATG
Commerce Reports.

Information on the multisite uses of ATG Commerce features can be found throughout this guide, where
applicable. See the ATG Multisite Administration Guide for general information on implementing multisite
in ATG applications.

Note: If you are using B2B, some multisite features are turned off by default. Standard B2B processing
assigns catalogs and price lists to individual shoppers or organizations, and does not rely on site
information even in a multisite-enabled configuration. The B2BCommerce configuration layer performs
the following overrides on multisite features:

 Sets the siteScope property to all for the catalog repository search form handlers in
the following components:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6

1 - I n t r o d u c t i o n

μ
/atg/commerce/catalog/AdvProductSearch

/atg/commerce/catalog/CatalogSearch

/atg/commerce/catalog/CategorySearch

/atg/commerce/catalog/ProductSearch

/atg/commerce/catalog/ProductTextSearch

 Sets the filterBySite property to false for item lookup droplets in the following
components:
/atg/commerce/catalog/CategoryLookup

/atg/commerce/catalog/ProductLookup

/atg/commerce/catalog/SKULookup

 Sets the enabled property to false in the plug-ins for ProfilePropertyServlet
(page pipeline):
/atg/userprofiling/CatalogProfilePropertySetter

/atg/userprofiling/PriceListProfilePropertySetter

 Turns off site filtering in the form handlers for both ATG Commerce native searching
and ATG Search.

Finding What You Need
ATG Commerce is a comprehensive product that provides the tools you need to create a commerce Web
site that’s customized to meet the particular needs of your business. Instructions for working with ATG
Commerce can be found in a variety of books. Here’s a key to finding the information you need:

Tasks Audience Instructions

Installing ATG Commerce System
Administrators,
Programmers

ATG Installation and Configuration
Guide

Also see Configuring and
Populating a Production Database
in this guide.

Installing ATG Commerce databases in
a production environment.

Site Administrators See Configuring and Populating a
Production Database in this guide.
Users who also have ATG
Merchandising should see the ATG
Merchandising Administration
Guide instead.

Installing database tables in support
of ATG Merchandising

Site Administrators ATG Merchandising Administration
Guide

Extending ATG Commerce
programmatically by creating
subclasses and modifying
repositories.

Programmers Covered in this guide.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7

1 - I n t r o d u c t i o n

μ
Tasks Audience Instructions

Building JSPs that use ATG Commerce
servlet beans.

Page Developers ATG Commerce Guide to Setting Up
a Store

Assembling applications that include
ATG Commerce.

Site Administrators ATG Programming Guide

Working with promotions, price lists,
abandoned orders, scenarios, and cost
centers.

Business Users ATG Commerce Guide to Setting Up
a Store

Creating a catalog and populating it
with categories, products and SKUs
using the ACC. Configuring the
fulfillment and inventory tools
provided with ATG Commerce.

Business Users ATG Commerce Guide to Setting Up
a Store

Developing a catalog and its
categories, products, SKUs in ATG
Merchandising.

Business Users ATG Merchandising Guide for
Business Users

Review database tables, session
backup procedures, JMS messages,
and recorders.

Site Administrators Appendices in this guide.

Working with the Motorprise ATG
Business Commerce Reference
Application.

All ATG Business Commerce Reference
Application Guide

Working with the ATG Commerce
Reference Store application.

All ATG Commerce Reference Store
Overview

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8

1 - I n t r o d u c t i o n

μ

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9

2 - C o n f i g u r i n g a n d P o p u l a t i n g a P r o d u c t i o n D a t a b a s e

μ
2 Configuring and Populating a

Production Database

The SOLID database included with the ATG platform is provided so that customers can sample and
become familiar with the ATG products. You will need to install a production-ready database before you
can begin building your Web application. The following sections describe how to create and configure
your production database:

Configuring ATG Commerce with CIM

Creating Database Tables

Using ATG Commerce with an Oracle Database

Using ATG Commerce with an MSSQL Database

Transferring Product Catalog and Price List Data Using Copy and Switch

Transferring Demo Data

Destroying Database Tables For ATG Commerce

The information in this chapter focuses specifically on ATG Commerce databases. For general information
on production database configurations, requirements, and performance enhancements, refer to the ATG
Installation and Configuration Guide.

Warning: If your product stack includes ATG Commerce, ATG Content Administration and ATG
Merchandising, see the ATG Merchandising Administration Guide for instructions for creating the database
tables you need.

Configuring ATG Commerce with CIM
ATG’s Configuration and Installation Manager (CIM) helps to simplify ATG product configuration by
walking you through the required steps. This ensures that all necessary steps are completed and are done
in the correct order. You can use CIM to get an installation running quickly and easily.

CIM handles the following configuration steps:

 Creates database tables and imports initial data as described in this chapter, including
those for the ACI data ware house.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 0

2 - C o n f i g u r i n g a n d P o p u l a t i n g a P r o d u c t i o n D a t a b a s e

μ
 Creates data sources according to the database connection information you supply (as

described in the ATG Installation and Configuration Guide), including those needed for
the ACI data warehouse.

 Creates and configures ATG servers, including a lock manager (as described in the ATG
Installation and Configuration Guide and the ATG Programming Guide) and a data
warehouse loader server.

 Assembles your application EAR files for each ATG server (as described in the ATG
Programming Guide).

 Deploys EAR files to your application server.

See the CIM help and the ATG Installation and Configuration Guide for additional information on CIM.

To configure Commerce using CIM, do the following:

1. Install your application server.

2. Install your applications.

3. To start CIM, go to <ATG10dir>/home/bin and type:

cim

4. Select the products you want to configure.

5. Select add-ons (such as Search or Reporting).

6. Continue through CIM according to the prompts. Type H at any prompt for additional
information.

Note that CIM does not configure the following:

 Your Content Administration topography. See the ATG Content Administration
Programming Guide.

 Your Commerce catalog.

 Your Search IndexingOutputConfig component. See the ATG Search Installation and
Configuration Guide. CIM does handle some Search configuration options, such as
whether you plan to index by product or by SKU, but you will most likely have to do
additional configuration.

Creating Database Tables
When you want to run ATG Commerce on a database other than SOLID, you need to create and configure
the database tables for the following products:

1. Create tables for ATG Adaptive Scenario Engine by following the instructions provided
in the Configuring Databases and Database Access chapter of the ATG Installation and
Configuration Guide.

2. Create the ATG Commerce tables necessary for your product suite:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 1

2 - C o n f i g u r i n g a n d P o p u l a t i n g a P r o d u c t i o n D a t a b a s e

μ
 All ATG Commerce users should see the Creating Tables for Core ATG

Commerce section. Motorprise reference application users can skip this step if
they want to install tables for all products at once as described below.

 ATG Business Commerce users should also see the Creating Tables for ATG
Business Commerce section.

Note that if you want to run the Motorprise Reference Application, you can skip all steps defined here and
follow the instructions provided in Creating Motorprise Reference Application Tables.

For descriptions of core ATG Commerce, ATG Business Commerce, and ATG Consumer Commerce
database tables, see Appendix B: ATG Commerce Databases.

If you are using an Oracle or MSSQL database with ATG Commerce, see the sections provided in this
chapter for configuring your database. See Using ATG Commerce with an Oracle Database and Using ATG
Commerce with an MSSQL database respectively.

Creating Tables for Core ATG Commerce

First, create the core ATG Commerce tables. Refer to the sections that follow for information on
configuring the database tables that are specific to the version of ATG Commerce you are using.

To create the database tables for core ATG Commerce, run the dcs_ddl.sql script from the following
directory:

<ATG10dir>/DCS/sql/install/database-vendor

The dcs_ddl.sql script is derived from the subscripts listed in the table below. If necessary, you can run
these subscripts individually from the following directory:

<ATG10dir>/DCS/sql/db_components/database-vendor

Script name Purpose Schema

claimable_ddl.sql Configures the schema for the ATG Commerce
Claimable repository

core

commerce_user.sql Creates tables for ATG Commerce credit card profile
extensions

core

dcs_mappers.sql Creates a table for handling shopping cart events core

inventory_ddl.sql Creates tables for the ATG Commerce inventory
system

core

order_ddl.sql Creates tables for the ATG Commerce purchase
process

core

order_markers_ddl.sql Defines the tables that contain order markers core

priceLists_ddl.sql Creates tables for price lists catalog

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 2

2 - C o n f i g u r i n g a n d P o p u l a t i n g a P r o d u c t i o n D a t a b a s e

μ
product_catalog_ddl.s

ql

Creates tables for the ATG Commerce product
catalog

catalog

promotion_ddl.sql Creates tables for ATG Commerce pricing promotions catalog

user_giftlist_ddl.sql Creates tables for ATG Commerce Giftlist services core

user_promotion_ddl.sq

l

Creates tables for ATG Commerce promotion profile
extensions

core

Creating Tables for ATG Business Commerce

When you want to configure your database to work with ATG Business Commerce, configure the core
ATG Commerce tables first, as described in Creating Tables for Core ATG Commerce. Then ,create the ATG
Business Commerce tables by running the b2bcommerce_ddl.sql script from the following directory:

<ATG10dir>/B2BCommerce/sql/install/database-vendor

The b2bcommerce_ddl.sql script executes subscripts in a particular order to create the schema used by
the ATG Business Commerce product. Some subscripts are part of the core ATG Commerce product and
are described in the Creating Tables for Core ATG Commerce section. The remaining subscripts are
described in the table below. If necessary, you can run an individual subscript from the following
directory:

<ATG10dir>/B2BCommerce/sql/db_components/database-vendor

Script name Description Schema

b2b_order_ddl.sql Creates tables for ATG Business Commerce order
repository extensions

core

b2b_product_catalog_ddl.

sql

Creates tables for ATG Business Commerce product
catalog extensions

catalog

b2b_user_ddl.sql Creates tables for ATG Business Commerce profile
extensions

core

contracts_ddl.sql Creates tables for the ATG Business Commerce
contracts repository

core

invoice_ddl.sql Creates tables for the ATG Business Commerce
invoice repository

core

organization_ddl.sql Creates tables for ATG Business Commerce
organization extensions

core

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 3

2 - C o n f i g u r i n g a n d P o p u l a t i n g a P r o d u c t i o n D a t a b a s e

μ
Creating Motorprise Reference Application Tables

You can configure your database to work with the ATG Adaptive Scenario Engine, core ATG Commerce,
ATG Business Commerce, and the Motorprise reference application by running a single script,
motorpriseall_ddl.sql, from the following directory:

<ATG10dir>/MotorpriseJSP/sql/install/database-vendor

Alternatively, to configure just the database tables for the Motorprise reference application, run the
motorprise_ddl.sql script from the same directory.

The motorprise_ddl.sql script is derived from the subscripts that are described in the Creating Tables
for ATG Business Commerce section as well as other subscripts listed in the table below. If necessary, you
can run these subscripts individually from the following directory:

<ATG10dir>/MotorpriseJSP/sql/db_components/database-vendor

Script name Purpose

b2b_auth_cc_ddl.sql Creates tables for Motorprise profile extensions for authorization

b2b_custom_catalog_ddl.sql Creates tables for Motorprise catalog extensions

b2b_user_orddet_ddl.sql Creates tables for Motorprise profile extensions for order details

german_catalog_ddl.sql Creates tables for the Motorprise product catalog extensions for
German content

japanese_catalog_ddl.sql Creates tables for the Motorprise product catalog extensions for
Japanese content

Using ATG Commerce with an Oracle Database
To use ATG Commerce with an Oracle database, you need to configure the storage parameters for several
tables and configure your ATG Commerce catalog for full text searching. This section covers these
configuration tasks:

 Configuring Storage Parameters

 Configuring a Catalog for Oracle Full Text Searching

Configuring Storage Parameters

The SQL scripts that configure ATG Commerce databases on Oracle do not set storage parameters to
control how free database space is allocated. You should spread your tablespaces across several disk
drives and disk controllers. The size of the tablespaces needed to store ATG Commerce tables depends on
your specific requirements in terms of the catalog items you have, the expected number of user profiles
and Web site visitors, and the expected transaction volume.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 4

2 - C o n f i g u r i n g a n d P o p u l a t i n g a P r o d u c t i o n D a t a b a s e

μ
To allocate space, you need to specify the initial extent and the incremental extent for the tables that are
likely to expand significantly. The initial extent parameter limits the amount of space that is reserved
initially for a table’s data segment. The incremental extent limits the additional space that is reserved
when the segment’s initial data blocks become full, and more space is required.

To begin, you can set the extent sizes for the tablespaces to be 512K with pctincrease equal to 50. If
you are loading the Motorprise reference application on an Oracle database, you should configure the
storage parameters for the following ATG Commerce tables:

Table Name Initial Extent Incremental Extent

DCS_CATEGORY 1M 1M

DCS_PRODUCT 1M 1M

DCS_SKU 1M 1M

DCS_MEDIA_BIN 4M 2M

DSS_SCENARIO_INFO 4M 2M

Note: These storage parameters are guidelines only. As previously mentioned, the optimal settings for
your database may vary depending on the expected number of user profiles, Web site visitors, and
catalog items, as well as the expected transaction volume.

To specify a storage parameter, include it in the STORAGE clause of the CREATE TABLE statement for these
tables. For additional information about configuring storage parameters, see your Oracle documentation.

Configuring a Catalog for Oracle Full Text Searching

If your product catalog is stored in an Oracle database, you must configure the catalog to properly handle
full text searching. There are two main steps involved in this configuration:

1. Set up the proper ConText full text indexes on the appropriate columns in the
database.

2. Make sure the simulateTextSearchQueries property of each product catalog
repository component is set to false.

These steps are described in more detail in the sections that follow.

Setting Up the ConText Indexes

The SQL Repository has built-in support for Oracle’s ConText full text search engine, which processes
queries and returns information based on the content or themes of text stored in a text column of an
Oracle database. To enable full text searching on columns, you must create ConText indexes for the
columns. See your Oracle documentation for information about how to do this.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 5

2 - C o n f i g u r i n g a n d P o p u l a t i n g a P r o d u c t i o n D a t a b a s e

μ
Note: By default, an Oracle database rebuilds a full-text index after each commit. This behavior can cause
a full deployment to hang indefinitely. To prevent this, you should configure ConText indexing to occur at
regular intervals, using the following format:

CREATE INDEX schema-index-name ON schema-table (column)

INDEXTYPE IS CTXSYS.CONTEXT PARAMETERS('SYNC (EVERY "interval-string" ');

If you are using the default product catalog, index these tables:

DCS_PRODUCT

DCS_CATEGORY

If you have imported the Motorprise product catalog into Oracle, index these tables:

DCS_PRODUCT

DCS_CATEGORY

DBC_CATEGORY_DE

DBC_PRODUCT_DE

In each of these tables, create a ConText index on the DESCRIPTION, LONG_DESCRIPTION, and
DISPLAY_NAME columns.

Configuring the Repository Components for Full Text Searching

To enable a SQL Repository to use full text searching in an Oracle database, the
simulateTextSearchQueries property of the SQL Repository component must be set to false. Make
sure this property is set to false for any SQL Repository component that connects to an Oracle database.

If you are using the default product catalog, the SQL Repository component for the catalog has the
Nucleus address /atg/commerce/catalog/ProductCatalog.

Using ATG Commerce with an MSSQL Database
If your ATG Commerce product catalog is stored in a Microsoft SQL Server database, you must configure
the database and catalog to properly handle full text searching. There are four steps involved in the
configuration process:

1. Set up the proper full text indexes on the appropriate columns in the database.

2. Modify the template definition file.

3. Set the simulateTextSearchQueries property of each product catalog repository
component to false.

4. Configure each search form handler component.

See the subsections that follow for information on completing each step.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 6

2 - C o n f i g u r i n g a n d P o p u l a t i n g a P r o d u c t i o n D a t a b a s e

μ
Setting Up the MS SQL Full Text Indexes

To enable full text searching on columns, you must create full text indexes for the columns. See your
Microsoft SQL Server documentation for specific information on performing this step.

If you are using the default ATG Commerce product catalog, index these tables:

DCS_PRODUCT

DCS_CATEGORY

If you have imported the Motorprise product catalog into MS SQL, index these tables:

DCS_PRODUCT

DCS_CATEGORY

DBC_CATEGORY_DE

DBC_PRODUCT_DE

For each of these tables, create an index for the LONG_DESCRIPTION, DESCRIPTION and DISPLAY_NAME
columns.

Modifying the Template Definition File

If you include any full text search queries in the XML template definition file (using the <query-items>
tag), verify that the queries use the appropriate format for MS SQL Full Text Query. For example:

<query-items item-descriptor="product">

 description MATCHES "Ethernet" USING "MSSQL_TSQL"

</query-items>

For more information on template definition files, see the ATG Repository Guide.

Configuring the Repository Components for Full Text Searching

To enable a SQL repository to work with a full text search engine, the simulateTextSearchQueries
property of the SQL repository component must be set to false.

If you are using the default product catalog, the SQL repository component for the catalog has the
Nucleus address /atg/commerce/catalog/ProductCatalog.

Configuring the Search Form Handlers

If your sites use components of class
atg.commerce.catalog.custom.CatalogSearchFormHandler to build search forms for full-text
searching, you must configure these components to generate full-text queries in the appropriate form. To
do this, each component must be configured as follows:

1. Set the searchStringFormat property to MSSQL_TSQL.

2. Set the allowEmptySearch property to false.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 7

2 - C o n f i g u r i n g a n d P o p u l a t i n g a P r o d u c t i o n D a t a b a s e

μ
By default, ATG Commerce includes five instances of this class in /atg/commerce/catalog/:

 AdvProductSearch

 CatalogSearch

 CategorySearch

 ProductSearch

 ProductTextSearch

If you’ve created your own instances of this class, be sure to also set the properties of those components
as described above.

Also note that the Motorprise Store Solution Set uses its own instance of
atg.commerce.catalog.custom.CatalogSearchFormHandler, which is located in Nucleus at
/atg/projects/b2bstore/catalog/SearchCompare. If you have imported the Motorprise product
catalog into MS SQL, configure this component as described above as well.

Transferring Product Catalog and Price List Data Using
Copy and Switch

The database Copy and Switch features assist you in moving your product catalog and price lists data
from one environment to another, for example, from a staging environment to a “live” production
environment. The database Copy feature enables you to copy product catalog and price lists data from
one database to another. The database Switch feature enables you to switch the product catalogs and
price lists on your Web sites to use a different data source.

Both database Copy and database Switch are Dynamo Application Framework (DAF) features that can be
used with any database. However, ATG Commerce provides a user interface for performing a database
copy or switch. This user interface requires initial configuration before you perform each type of update
for the first time, as described in these sections:

 Configuring a Database Copy

 Performing a Database Copy

 Configuring a Database Switch

 Performing a Database Switch

Note: For additional information about setting up your database servers, see the ATG Installation and
Configuration Guide. For information about ATG Commerce database tables, see Appendix B: ATG
Commerce Databases in this manual.

Configuring a Database Copy

This section describes the configuration steps you must take before performing a database copy ofyour
product catalog and price lists data. You must complete this process before performing an initial database

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 8

2 - C o n f i g u r i n g a n d P o p u l a t i n g a P r o d u c t i o n D a t a b a s e

μ
copy. However, you don’t need to complete this process before subsequent database copies as long as
the source and destination databases remain the same.

Note: While the process used in this section assumes the data is in a SOLID database, the mechanisms are
the same regardless of what kind of database is used. The differences are in the configuration of the
environment within which ATG Commerce is running. Some database clients require additional
configuration to perform the database copy. Refer to the database client’s documentation for more
information.

Follow these configuration steps to prepare to copy the product catalog and price lists data from one
database to another:

1. Create the destination database and all destination tables.

Most interactions between the ATG Commerce and a database are done through
JDBC, but the DBCopier in this process instead uses native commands according to
the database manufacturer. It executes a new process and uses the vendor’s bulk copy
tools to copy the tables from one database to another. This means that the DBCopier
and, therefore, the JVM running Dynamo must have the proper environment set up as
specified by the vendor. See your vendor documentation for these specifications. For
information on the API for the specific DBCopier you are using, you can refer to the
ATG API Reference.

The following are some SOLID-specific configuration settings:

 $SOLIDDIR should be defined in the environment in which Dynamo is running.

 The names of the servers to use when performing the database copy should be
defined in the solid.ini file.

[Data Sources]

SOLID=TCP/IP localhost 1313,SOLID

Note that “SOLID” is a valid server name.

2. Verify that the environment is set up correctly. Make sure that all the necessary
environmental variables are set as specified by the vendor. Verify that all the necessary
drivers or client tools are installed.

3. Create a DBCopier component with which to copy the product catalog and price lists
data. The class from which you instantiate the DBCopier depends on the database
you are using. The following are subclasses of atg.adapter.gsa.DBCopier and are
in package atg.adapter.gsa:

 BcpDBCopier (for Microsoft)

 DB2DBCopier

 OracleDBCopier

 SolidDBCopier

For more information on these DBCopier classes, refer to the ATG API Reference.

Alternatively, you can use one of the preconfigured DBCopier components that are
included with ATG Commerce. They are:

 ProductCatalogMsSqlDBCopier

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 9

2 - C o n f i g u r i n g a n d P o p u l a t i n g a P r o d u c t i o n D a t a b a s e

μ
Note: By default, the
ProductCatalogMsSqlDBCopier.maxTextOrImageSize property is set to a
negative value (-1) in order to force the copier not to use the –T option with the
bcp utility; the –T option does not work with MS SQL. For more information on
the maxTextOrImageSize property, refer to the BcpDBCopier class (from
which ProductCatalogMsSqlDBCopier is instantiated) in the ATG API
Reference. For more information on the bcp utility, refer to your database
vendor documentation.

 ProductCatalogOracleDBCopier

 ProductCatalogDB2DBCopier

 ProductCatalogSolidDBCopier

 These DBCopier components are located in Nucleus at /atg/commerce/jdbc/.

4. Check that the directory specified in the directory property of the DBCopier
component is available in the file system used by ATG.

5. Verify that the tables property of the DBCopier component includes all the
necessary tables to copy in the correct order. The tables in the destination database
will be updated according to the list of tables in this property.

6. Optionally, to obtain information on the activity of the DBCopier, you can set the
loggingDebug property of the DBCopier component to true.

7. Create an instance of atg.droplet.sql.DBCopyFormHandler to handle the
database copy. Alternatively, you can use the preconfigured DBCopyFormHandler
included with ATG Commerce. It is located in Nucleus at
/atg/commerce/jdbc/ProductCatalogCopierForm.

8. Perform the database copy from the Copy Product Catalog and Price Lists page, as
described in Performing a Database Copy.

Performing a Database Copy

This section describes the process to copy the contents of one database to another database. It can be
used, for example, to copy the updated contents of the product catalog/price lists database on an
Administration server to the product catalog/price lists database on a Staging server.

Note: You must have read, write and delete permissions, as well as import and export permissions, to
perform the database copy. If you do not have the appropriate permissions, ask your database
administrator to copy the database.

To perform a database copy of the product catalog and price lists data:

1. Make sure the configuration file of the DBCopier you are using has been updated to
account for any database tables you have created or deleted. (See Configuring a
Database Copy for a code example of a DBCopier configuration file.)

2. Access the main Commerce Administration page of the Dynamo Administration UI
using the port appropriate for your application server. See the ATG Installation and
Configuration Guide to find the default port. For example, on JBoss the default URL is:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 0

2 - C o n f i g u r i n g a n d P o p u l a t i n g a P r o d u c t i o n D a t a b a s e

μ
http://hostname:8080/dyn/admin/atg/commerce/admin

Note: Your application must include the Dynamo Administration UI in order for you to
access this page.

3. Click the Copy/Switch Commerce Data link.

The system displays the Product Catalog and Price Lists Copy/Switch page.

4. Click the Copy link.

The system displays the Copy Product Catalog and Price Lists page.

5. Enter the Server Name, Username, and Password for the Source database.

6. Enter the Server Name, Username, and Password for the Destination database.

7. Click the Copy button.

The contents of the Source database are copied into the Destination database. Note
that the time it takes to perform the database copy depends on the size of the
database.

Configuring a Database Switch

When you perform a database switch, you use a SwitchingDataSource to switch between two product
catalog/price lists data sources. The SwitchingDataSource can switch from one underlying data source
to another. For example, the method could switch from a test database to a production database.

This section describes the configuration required before performing a database switch. ATG strongly
recommends using CIM to configure data source components. Once you have configured these
components, you do not need to change them unless your data sources change.

The Nucleus components used in this example are located at /atg/commerce/jdbc.

Note: While the process used in this section assumes the data is in a SOLID database, the mechanisms are
the same regardless of what kind of database is used.

Follow these configuration steps to prepare to switch the data source used by the product catalog and
price lists repositories:

1. Create the underlying data sources. Alternatively, you can use the data sources
provided with the default configuration of ATG Commerce. They are:

/atg/commerce/jdbc/ProductCatalogDataSourceA and
/atg/commerce/jdbc/ProductCatalogDataSourceB.

These data sources are used as the example data sources in this procedure.

2. Configure the dataSource property in each of the data sources.

The dataSource property contains a reference to the data source that stores
information for connection to a database. By setting this property for
ProductCatalogDataSourceA and ProductCatalogDataSourceB, you control to
what database each data source points.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 1

2 - C o n f i g u r i n g a n d P o p u l a t i n g a P r o d u c t i o n D a t a b a s e

μ
driver=solid.jdbc.SolidDriver

URL=jdbc:solid://hostname:port

user=user

password=password

The port for SOLID is typically 1313.

3. Create a SwitchingDataSource. Alternatively, you can use
ProductCatalogSwitchingDataSource, which is located in Nucleus at
/atg/commerce/jdbc/. This SwitchingDataSource is provided with the default
configuration of ATG Commerce.

A SwitchingDataSource is a DataSource that can switch between two or more
underlying data sources. In a SwitchingDataSource, all DataSource method calls
are passed through to the DataSource specified in the currentDataSource
property, which is defined at run time. For more information on
SwitchingDataSource, see the ATG API Reference and the ATG Installation and
Configuration Guide.

The following example shows the configuration for the
ProductCatalogSwitchingDataSource included with ATG Commerce.

$class=atg.service.jdbc.SwitchingDataSource

A map from data source names to data sources

dataSources=\

 DataSourceA=/atg/commerce/jdbc/ProductCatalogDataSourceA,\

 DataSourceB=/atg/commerce/jdbc/ProductCatalogDataSourceB

The name of the data source that should be used

initialDataSourceName=DataSourceA

The dataSources property of a SwitchingDataSource is a mapping of data source
names to the Nucleus path of each data source.

The initialDataSource is the data source used.

4. Configure the ProductCatalog repository to use the SwitchingDataSource. By
default, the ProductCatalog repository does not use this data source, so you must
add the following to the ProductCatalog.properties file at
localconfig/atg/commerce/catalog/:

dataSource=/atg/commerce/jdbc/ProductCatalogSwitchingDataSource

5. Configure the PriceLists repository to use the SwitchingDataSource. By default,
the PriceLists repository does not use this data source, so you must add the
following to the PriceLists.properties file at
localconfig/atg/commerce/pricing/priceLists/:

dataSource=/atg/commerce/jdbc/ProductCatalogSwitchingDataSource

6. Configure the switchingDataSource property of the ProductCatalogSwitcher
form handler (class atg.droplet.sql.SwitchDataSourceFormHandler) to use the

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 2

2 - C o n f i g u r i n g a n d P o p u l a t i n g a P r o d u c t i o n D a t a b a s e

μ
SwitchingDataSource. The Switch UI uses the ProductCatalogSwitcher form
handler to perform the database switch; the switchingDataSource property
specifies the specific SwitchingDataSource controlled by the form handler.

7. Perform the database switch as described in Performing a Database Switch.

Performing a Database Switch

This section describes the process of switching the data source used by the product catalog and price lists
on your Web sites.

When you perform a database switch, you must do so on each DRP server instance in an ATG server
cluster. This is necessary because the SwitchingDataSource components on separate instances do not
synchronize themselves. Consequently, for each DRP server instance, you need to connect to the server’s
Admin port, access the Commerce Administration UI, and perform the database switch.

Follow these steps to switch the data source currently used by the product catalog and price lists on your
Web sites.

1. Access the main Commerce Administration page of the Dynamo Administration UI
using the port appropriate for your application server. See the ATG Installation and
Configuration Guide to find the default port. For example, on JBoss the default URL is:

http://hostname:8080/dyn/admin/atg/commerce/admin/en/index.jhtml

Note: Your application must include the Dynamo Administration UI module in order
for you to view this page.

2. Click the Copy/Switch Commerce Data link.

The system displays the Product Catalog and Price Lists Copy/Switch page.

3. Click the Switch link.

The system displays the Switch the Product Catalog’s and Price List’s Data Source:
Prepare page.

The names and paths of the available data sources are listed. The data source currently
used is displayed below the table.

4. Select the name of the data source to which you want to switch from the drop-down
list at the bottom of the page.

5. Click the Prepare for Switch button.

The system prepares for the switch by sending events to each of the repositories that
are using the switching data source. Each repository performs any functions needed to
prepare for a switch.

When preparation is complete, the following message displays at the top of the Switch
the Product Catalog’s and Price List’s Data Sources: Switch page: “Now that you have
prepared the data source, you can finish the switch.”

6. Click the Switch button to complete the switch.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 3

2 - C o n f i g u r i n g a n d P o p u l a t i n g a P r o d u c t i o n D a t a b a s e

μ
When the switch is complete, the page displays the following message: “You have
finished switching the data source used by the Product Catalog and the Price Lists.”
The data source to which you just switched is now listed as the current data source.

Transferring Demo Data
You can move the Motorprise demo data from the SOLID database to another database using the ATG
startSQLRepository utility. You can export that data to your production database to test the demos
against your production environment. Once you have exported the data to your database, you must
update your connection pool service to use the new database. For more information on configuring
connection pools, refer to the Configuring Databases and Database Access section of the ATG Installation
and Configuration Guide.

To transfer the demo data to your production database, you must do the following:

 Export the demo data

 Reset your production database, if necessary

 Import the demo data

Microsoft SQL users: In order to run the ATG demos with a Microsoft SQL database, you must configure
the database to be case-sensitive. See your MS SQL documentation for instructions.

Exporting the Motorprise Demo Data from SOLID

Make sure that either there are no connection pool properties files, or that they are pointing to the demo
SOLID database. Start the SOLID database and use the command below (on one line, with no line breaks)
to export the demo data to an XML file called all.xml.

bin/startSQLRepository -m MotorpriseJSP -exportRepositories all all.xml

Importing the Motorprise Demo Data to Your Database

Your connection pool properties file must be pointing to the new target database. All ATG-supported
databases can import all.xml.

Oracle users: Before importing the demo data, set the useSetCharacterStream property of all SQL
repository components to true so that non-8859 characters are displayed correctly. You can set this
property in your localconfig/GLOBAL.properties file: useSetCharacterStream=true

From the command line, go to the <ATG10dir>/home directory. Use the command below (on one line,
with no line breaks) to import the data contained in all.xml to your target database. Your connection
pool properties file must be pointing to the new target database.

bin/startSQLRepository -m MotorpriseJSP -import all.xml

For more information about the startSQLRepository utility, see the ATG Repository Guide.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 4

2 - C o n f i g u r i n g a n d P o p u l a t i n g a P r o d u c t i o n D a t a b a s e

μ
Destroying Database Tables for ATG Commerce

This section describes how to destroy the ATG Commerce database tables. When you destroy database
tables, you need to destroy them in the opposite order you used for creating them. If you want to remove
all tables for ATG Business Commerce, for example, you would destroy first the ATG Business Commerce
tables, then the core ATG Commerce, followed by the ATG Adaptive Scenario Engine tables.

This section includes the following subsections:

 Destroying Tables for Core ATG Commerce

 Destroying Tables for ATG Consumer Commerce

 Destroying Tables for ATG Business Commerce

For descriptions of core ATG Commerce, ATG Business Commerce, and ATG Consumer Commerce
database tables, see Appendix B: ATG Commerce Databases.

Destroying Tables for Core ATG Commerce

To destroy all core ATG Commerce tables, run the drop_dcs_ddl.sql script from the following directory:

<ATG10dir>/DCS/sql/install/database-vendor

The drop_dcs_ddl.sql script is derived from the subscripts listed in the table below. If necessary, you
can run these subscripts individually from the following directory:

<ATG10dir>/DCS/sql/uninstall/database-vendor

File Name Description

drop_claimable_ddl.sql Destroys the schema for the ATG Commerce Claimable
repository

drop_commerce_user.sql Destroys the tables for the ATG Commerce credit card
profile extensions

drop_dcs_mappers.sql Destroys the table for handling shopping cart events

drop_inventory_ddl.sql Destroys the tables for the ATG Commerce inventory
system

drop_order_ddl.sql Destroys the tables for the ATG Commerce purchase
process

drop_order_markers_ddl.sql Destroys the tables that contain order markers

drop_priceLists_ddl.sql Destroys the tables for the ATG Commerce price lists

drop_product_catalog_ddl.sql Destroys the tables for the ATG Commerce product
catalog

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 5

2 - C o n f i g u r i n g a n d P o p u l a t i n g a P r o d u c t i o n D a t a b a s e

μ
drop_promotion_ddl.sql Destroys the tables for the ATG Commerce promotions

drop_reporting_views.sql Destroys the views for reporting

drop_reporting_views1.sql Destroys additional views for reporting

drop_reporting_views2.sql Destroys additional views for reporting

drop_reporting_views3.sql Destroys additional views for reporting

drop_user_giftlist_ddl.sql Destroys the tables for the ATG Commerce Giftlist
Services

drop_user_promotion_ddl.sql Destroys the tables for the ATG Commerce promotions
profile extensions

Destroying Tables for ATG Consumer Commerce

To destroy all ATG Consumer Commerce tables, you only need to destroy the core ATG Commerce tables,
as described in Destroying Tables for Core ATG Commerce. You do not need to destroy any additional
database tables.

Destroying Tables for ATG Business Commerce

To destroy all ATG Business Commerce tables, destroy first the core ATG Commerce tables, as described in
Destroying Tables for Core ATG Commerce and then run the ATG Business Commerce script appropriate
for your product suite.

Note: While dropping these tables you may see error messages indicating that six views could not be
removed. This is not an error. During the installation of ATG Business Commerce, six views that are
created by ATG Consumer Commerce are removed because they are not applicable in ATG Business
Commerce. The views involved are listed below:

 View DRPT_PRODUCTS

 View DRPT_CATEGORY

 View DRPTW_CAT_SALES

 View DRPTM_CAT_SALES

 View DRPTQ_CAT_SALES

 View DRPTA_CAT_SALES

To destroy all ATG Business Commerce tables, destroy the core ATG Commerce tables, as described in
Destroying Tables for Core ATG Commerce, and then run the drop_b2bcommerce_ddl.sql script from
the following directory:

<ATG10dir>/B2BCommerce/sql/install/database-vendor

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 6

2 - C o n f i g u r i n g a n d P o p u l a t i n g a P r o d u c t i o n D a t a b a s e

μ
The drop_b2bcommerce_ddl.sql script is derived from subscripts described in Destroying Tables for
Core ATG Commerce as well as subscripts listed in the table below. If necessary, you can run each
subscript individually from the following directory:

<ATG10dir>/B2BCommerce/sql/uninstall/database-vendor

Script name Purpose

drop_b2b_order_ddl.sql Destroys the tables for the ATG Business Commerce order
repository extensions

drop_b2b_product_catalog_ddl.sql Destroys the tables for the ATG Business Commerce
product catalog extensions

drop_b2b_reporting_views.sql Destroys the views for reporting on ATG Business
Commerce

drop_b2b_user_ddl.sql Destroys the tables for the ATG Business Commerce profile
extensions

drop_contracts_ddl.sql Destroys the tables for the ATG Business Commerce
contracts repository

drop_invoice_ddl.sql Destroys the tables for the ATG Business Commerce
invoice repository

drop_organization_ddl.sql Destroys the tables for the ATG Business Commerce
organization extensions

Destroying Motorprise Reference Application Tables

You can destroy the database tables for ATG Adaptive Scenario Engine, core ATG Commerce, ATG
Business Commerce, and the Motorprise reference application by running a single script,
drop_motorpriseall_ddl.sql, from the following directory:

<ATG10dir>/MotorpriseJSP/sql/install/database-vendor

Alternatively, to destroy just the database tables for the Motorprise reference application, run the
drop_motorprise_ddl.sql script from the same directory.

The drop_motoprise_ddl.sql script is derived from the Destroying Tables for ATG Business Commerce
as well as subscripts listed in the table below. If necessary, you can run each subscript individually from
the following directory:

<ATG10dir>/MotorpriseJSP/sql/uninstall/database-vendor

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 7

2 - C o n f i g u r i n g a n d P o p u l a t i n g a P r o d u c t i o n D a t a b a s e

μ
Script name Purpose

drop_b2b_auth_cc_ddl.sql Destroys tables for the Motorprise profile extensions for
authorization

drop_b2b_custom_catalog_ddl.sql Destroys tables for the Motorprise catalog extensions

drop_b2b_user_orddet_ddl.sql Destroys tables for the Motorprise profile extensions for
order details

drop_german_catalog_ddl.sql Destroys tables for the Motorprise product catalog
extensions for German content

drop_japanese_catalog_ddl.sql Destroys tables for the Motorprise product catalog
extensions for Japanese content

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 8

2 - C o n f i g u r i n g a n d P o p u l a t i n g a P r o d u c t i o n D a t a b a s e

μ

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 9

3 - I n t e g r a t i n g T h i r d - P a r t y S o f t w a r e W i t h A T G C o m m e r c e

μ
3 Integrating Third-Party Software

With ATG Commerce

This chapter describes how to integrate ATG Commerce with the following third party software
applications:

Integrating Payflow Pro with ATG Commerce

Integrating CyberSource with ATG Commerce

Integrating TAXWARE with ATG Commerce

Note: You can use more than one third-party application module. The order of the modules affects their
precedence, and the module with the highest precedence is at the end of the line. If two application
modules each implement the same capability, such as address verification, then the address verification
implementation of the module with the highest precedence is used.

As an example, CyberSource and TAXWARE both have a tax calculation feature. When you assemble your
application, be sure to specify the module for the third party software you want to use. To use
CyberSource for credit verification and TAXWARE instead of CyberSource for tax information, include the
following modules:

 For ATG Business Commerce:
B2BCommerce Cybersource Taxware

 For ATG Consumer Commerce:
B2CCommerce Cybersource Taxware

Integrating Payflow Pro with ATG Commerce
The Payflow Pro payment object handles credit card authorization, settlement, and crediting. To use
Payflow Pro with ATG Commerce, follow these steps:

1. Install and register Payflow Pro. See Setting Up Payflow Pro.

2. Start Payflow Pro

3. Provide property values to two Nucleus components. See Pre-Configuring the
Integration.

4. Assemble an application that includes ATG Commerce and Payflow Pro. See Using ATG
Commerce with Payflow Pro.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 0

3 - I n t e g r a t i n g T h i r d - P a r t y S o f t w a r e W i t h A T G C o m m e r c e

μ
Setting up Payflow Pro

Before using Payflow Pro, be sure to install and configure Payflow Pro SDK, which involves downloading
the product, setting several environment variables, and registering with VeriSign. The registration process
has two parts: setting up a Payflow Pro account and obtaining a Merchant account. Refer to the
documentation and information available at http://www.verisign.com/. Keep track of the registration
information you specify because you’ll need to provide some of it to the ATG Commerce.

Pre-Configuring the Integration

Before you assemble your application, you need to provide property values to two existing components.
The first, PayFlowProConnection, is a service that enables all Payflow Pro activities. You need to set up
this service manually. Create a file called PayFlowProConnection.properties in a local configuration
directory, such as <ATG10dir>/home/localconfig, with the following contents:

$class=atg.integrations.payflowpro.PayFlowProConnection

$scope=global

partner=

vendor=

user=

password=

hostAddress=

hostPort=

timeout=

proxyAddress=

proxyPort=

proxyLogon=

proxyPassword=

Provide the same value to each property that you provided when you registered for Payflow Pro.
Although it’s recommended to set a value for all properties, you are not required to provide values for
proxyAddress, proxyPort, proxyLogon, or proxyPassword. Set the vendor property to the merchant
name.

Also, create a file called PaymentManager.properties in a local configuration directory, such as
<ATG10dir>/home/localconfig, with the following contents:

$class=atg.commerce.payment.PaymentManager

$scope=global

creditCardProcessor=/atg/commerce/payment/PayFlowProConnection

Using ATG Commerce with Payflow Pro

When you use ATG Commerce with Payflow Pro, ATG Commerce automatically configures the Payflow
Pro integration as long as the following PayFlowPro module is specified during application assembly.
For information on ATG modules and application assembly, see the ATG Programming Guide.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 1

3 - I n t e g r a t i n g T h i r d - P a r t y S o f t w a r e W i t h A T G C o m m e r c e

μ
Integrating CyberSource with ATG Commerce

CyberSource performs the following tasks:

 Credit card authorization, settlement, and crediting

 Tax calculations

 Address verification

This section describes the process of enabling the CyberSource integration with ATG Commerce.

Before using CyberSource, your e-commerce site must:

 Establish an appropriate business arrangement with CyberSource Inc.

 Download and uncompress the CyberSource ICS Java Client distribution file

 Refer to the documentation and information available in the CyberSource PDF file at
http://www.cybersource.com

Installing the CyberSource Distribution

The CyberSource ZIP file contains a set of test certificates and keys that can be used to test the system.
After uncompressing the distribution file, your machine will have the configuration file
ICSClient.props in the properties folder of the CyberSource installation directory.

The configuration ICSClient.props file contains name=value pair information for communication with
the CyberSource test payment server. For example:

file with the location of your cert required

myCert=ICS2Test.crt

Edit ICSClient.props to change the relative path of the keys and certificates to absolute path to make
sure they will be properly located and loaded by the integration. For example, myCert for CyberSource
must be changed as follows:

 On Windows:
myCert=<CyberSource Install Dir>\\keys\\ICS2Test.crt

 On UNIX:
myCert=<CyberSource Install Dir>/keys/ICS2Test.crt

The test keys and certificates are installed in the keys directory. Rename the jar file to
cdkjava_cybersource.jar and copy it to the <ATG10dir>/Cybersource/lib directory.

Initializing the CyberSource Integration

Before using CyberSource, you must set up the CyberSource integration. Create the
CyberSourceConnection.properties file in the following directory:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 2

3 - I n t e g r a t i n g T h i r d - P a r t y S o f t w a r e W i t h A T G C o m m e r c e

μ
<ATG10dir>/home/localconfig/atg/commerce/payment

This file should contain one line that sets the csConfigFile property to the absolute path of the
ICSClient.props file:

 On Windows:
csConfigFile=<CyberSource Install Dir>\\properties\\ICSClient.props

 On UNIX:
csConfigFile=<CyberSource Install Dir>/properties/ICSClient.props

Configuring ATG Commerce to Use CyberSource

When you use ATG Commerce with CyberSource, ATG Commerce automatically configures the
CyberSource integration, running routines that set up CONFIGPATH and CLASSPATH and add libraries to
the system’s path.

In order to use CyberSource, you must specify the Cybersource module as well as either ATG Business
Commerce or ATG Consumer Commerce modules during application assembly. For information on ATG
modules and application assembly, see the ATG Programming Guide.

If you receive a ClassDefNotFound exception about any ICS classes not being found, then the ICS Java
libraries JAR file was not properly named or was not placed in the right location. See the Installing the
CyberSource Distribution section for more information. Re-assemble your ATG application after fixing the
problem.

If you receive errors about the ICSClient.props file not being found, the path in
CyberSourceConnection.properties file is incorrect. Fix this problem by using the ATG Control
Center to edit the /atg/commerce/payment/CyberSourceConnection component. Set the
csConfigFile property to the correct path of the ICSClient.props file.

Moving the System to Production

When your system is ready to go into production, perform the following steps:

1. Generate a new set of keys and certificates.

2. Edit ICSClient.props to replace the test data set with the live set. For more
information, refer to the CyberSource documentation.

Designating Tax Status of Products

CyberSource allows you to flag items with different product codes that indicate whether the product
should be taxed. The ATG Commerce tax data structure allows this information to be propagated to the
integration. You can configure ATG Commerce to use these tax codes at the SKU level and then you can
configure the tax calculators to extract the tax codes from the SKU and place into the TaxableItem.

1. Add a taxStatus property to the SKU repository definition. For example:

<property name="taxStatus" data-type="enumerated" default="default"

 column-name="tax_status" queryable="false">

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 3

3 - I n t e g r a t i n g T h i r d - P a r t y S o f t w a r e W i t h A T G C o m m e r c e

μ
 <attribute name="useCodeForValue" value="false"/>

 <option value="default" code="0"/>

 <option value="beverages" code="1"/>

 <option value="clothing" code="2"/>

 <option value="electronic_software" code="3"/>

 <option value="groceries" code="4"/>

 <option value="physical_software" code="5"/>

</property>

Important: useCodeForValue must be set to false. If it is not, CyberSource will not
calculate tax correctly.

Note: The tax_status column is already defined in the dcs_sku table.

2. When you create a SKU, flag it with the appropriate taxStatus flag.

3. Set the taxStatusProperty property on the
/atg/commerce/pricing/calculators/TaxProcessorTaxCalculator service to
taxStatus.

4. Set CyberSource to calculate taxes on the item level. See Calculating Taxes on the Item
Level for more information.

Specifying Sales Origin and Shipment Location Information

The CyberSourceTax component includes properties that represent information about the selling
agency. The CyberSourceTax component is located in the /atg/commerce/payment/ directory. The
properties are:

 originCity: The city from which the sale originated.

 originCountry: The country from which the sale originated.

 originState: The city from which the sale originated.

 originZip: The zip code of the area from which the sale originated.

 shipFromCity: The city from which the product will be shipped.

 shipFromCountry: The city from which the product will be shipped.

 shipFromState: The state from which the product will be shipped.

 shipFromZip: The zip code of the area from which the product will be shipped.

Calculating Taxes on the Item Level

When taxes are determined for a shipping group as a whole, ATG Commerce assumes that all item in the
group are taxable. This is the default behavior.

If some or all items should be taxed, you need to configure ATG Commerce to calculate taxes individually,
by following these instructions:

 Specify which products are not to be taxed. See Designating Tax Status of Products.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 4

3 - I n t e g r a t i n g T h i r d - P a r t y S o f t w a r e W i t h A T G C o m m e r c e

μ
 Specify the item calculation mode by setting the

/atg/commerce/payment/CyberSourceTax.useProductCode property to true.

Specifying States and Provinces without Tax Obligations

The noNexus property in the CyberSourceTax component lists states and provinces that do not have tax
obligations. For example, noNexus=MA,NY,NJ. This value is passed to the CyberSource tax system. The
CyberSourceTax component is located in the /atg/commerce/payment/ directory.

Integrating TAXWARE with ATG Commerce
TAXWARE’s SALES/USE, STEP and WORLDTAX systems provide an accurate means of calculating
applicable taxes. TAXWARE’s VERAZIP system provides a means of verifying city, state, and ZIP code
information, and determining when additional information is needed to accurately assess taxes (such as
county or city-limits information).

Before You Begin Integrating with TAXWARE

Before you begin integrating TAXWARE with ATG Commerce, copy the taxcommon.class file into your
<ATG10dir>/Taxware/lib directory. The taxcommon.class file is in the TAXWARE installation
directory.

 On Windows:
Place the shared objects files (taxcommon.dll, taxcommono.dll, avptax.dll,
avpstep.dll, and avpzip.dll) from the TAXWARE CD into the following directory:

<ATG10dir>\Taxware\os_specific_files\i486-unknown-win32

 On Linux:

Copy the shared object files (libtaxcommon.so, libtaxcommono.so,
libsalesusetax.so, libstep.so, and libverazip.so, libworldtax.so) from
the TAXWARE CD into a directory contained in your LD_LIBRARY_PATH environment
variable.

 On UNIX:
Copy the shared object files (libtaxcommon.so, libtaxcommono.so,
libsalesusetax.so, libstep.so, and libverazip.so, libworldtax.so) from
the TAXWARE CD into the appropriate directory for your operating system. For
example:

<ATG10dir>/Taxware/os_specific_files/sparc-sun-solaris2

TAXWARE Classes

ATG Commerce’s TAXWARE SALES/USE and WORLDTAX integration consists of several classes:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 5

3 - I n t e g r a t i n g T h i r d - P a r t y S o f t w a r e W i t h A T G C o m m e r c e

μ
Class Description

TaxWareCalculateTax TaxWareCalculateTax is an order processing class that implements
the TaxProcessor interface. This class calls the appropriate
TaxService (domestic or international) to perform the tax calculation
process. The TaxWareCalculateTax calculates taxes and returns a
TaxWareStatus object (implements TaxStatus interface) that
contains the results of the calculation. This class also has an option to
call to the VERAZIP system to obtain means for an extensive address
verification procedure.

TaxWareVerifyZipInfo TaxWareVerifyZipInfo is an order processing class called by
TaxWareCalculateTax to verify the city, state, and ZIP code
information before taxes are calculated. You can choose this execution
by toggling the useVerazip property in TaxWareCalculateTax. This
class calls to the TAXWARE VERAZIP system. TAXWARE may report
errors concerning invalid ZIP code or state information, which your
users may need to correct before proceeding.

SalesTaxService The persistent service that TaxWareCalculateTax calls. One
SalesTaxService object represents one origin and shipping-source
location and is used by TaxWareCalculateTax to create a domestic
TaxRequest that contains default company, ship-from, and origin
information.

WorldTaxService This service represents one ship-from location. It is used by
TaxWareCalculateTax to create an international TaxRequest that
contains default company, ship-from, and transaction information.

TaxRequest Represents a request for tax information.

TaxResult Represents the result of tax information.

Configuring ATG Commerce to Use TAXWARE

When you use ATG Commerce with TAXWARE, ATG Commerce automatically configures the TAXWARE
integration, running routines that setup CONFIGPATH and CLASSPATH and add libraries to the system’s
path.

To use TAXWARE, specify the following module as well as the ATG Business Commerce or ATG Consumer
Commerce module during application assembly:

Taxware

For information on ATG modules and assembling applications, see the ATG Programming Guide.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 6

3 - I n t e g r a t i n g T h i r d - P a r t y S o f t w a r e W i t h A T G C o m m e r c e

μ
Using the SALES/USE and WORLDTAX Integration

Follow these steps to integrate SALES/USE and WORLDTAX with ATG Commerce if you want to customize
the TAXWARE integration. Use the ATG Control Center to perform these steps. For more information on
using the ATG Control Center, see the ATG Control Center online help.

1. Use the ATG Control Center to modify the SalesTaxService component. It is located
in /atg/commerce/payment. Modify the following properties in SalesTaxService:
companyId, OriginCity, OriginCountry, OriginGeoCode, OriginState,
OriginZip, ShipFromCity, ShipFromCountry, ShipFromGeoCode,
ShipFromState, and ShipFromZip. See TAXWARE’s documentation of the TAXWARE
taxcommon API for a description of these fields..

2. If you ship products from more than one location or origin, you may want to create
multiple SalesTaxServices under separate names (for example,
NYCSalesTaxService and DallasSalesTaxService). See the Customizing ATG
Commerce’s TAXWARE Integration section for more information.

3. If you created more than one SalesTaxService, you may want to create multiple
/atg/commerce/payment/TaxWareCalculateTax components (for example,
named NYCTaxWareCalculateTax and DallasTaxWareCalculateTax) and point
their salesTaxService properties to the corresponding SalesTaxServices.

If you do this, you will need to subclass the TaxWareCalculateTax class so that it sets
taxes only when appropriate. See Customizing ATG Commerce’s TAXWARE Integration
for more information.

4. Check to see if any of your products fall into special taxation categories. If so, see
Customizing ATG Commerce’s TAXWARE Integration below.

5. By default, the TaxWareCalculateTax component points to SalesTaxService,
which is designated for United States or Canadian requests. If you want to perform a
WORLDTAX calculation, set the taxService property to
/atg/commerce/payment/WorldTaxService. The properties of the
WorldTaxService should be set accordingly. Refer to your TAXWARE’s WORLDTAX
manual for the information about these fields. If you have more than one international
location, follow the steps 2-4 above to set multiple WORLDTAX services.

Note: Refer to the WORLDTAX manual to install TAXWARE WORLDTAX System.

Customizing ATG Commerce’s TAXWARE Integration

You may want to customize ATG Commerce’s TAXWARE classes if:

 your products fall into special taxation categories

 you have multiple origin or ship-from locations

 you need to record or log additional tax information

Most customizations can be completed by creating a subclass of the TaxWareCalculateTax class. You
will probably want to override the modifyRequest(), recordResult() and
getAppropriateSalesTaxService() in methods.

Once you create a subclass, set the $class property of TaxWareCalculateTax to your subclass.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 7

3 - I n t e g r a t i n g T h i r d - P a r t y S o f t w a r e W i t h A T G C o m m e r c e

μ
Customizing TaxWareCalculateTax Methods

The following TaxWareCalculateTax methods are called in the order listed.

 If you have multiple items in the same order and these items fall under different tax
categories, you may also want to override calculateTaxes() to make multiple item
requests to TAXWARE based on their tax categories. You may want your version of
calculateTaxes() to make multiple calls to TaxWareCalculateTax’s version. In
this case, you should override modifyRequest to set the tax category. Since
TAXWARE supports multiple shipping destinations per order, the current
TaxWareCalculateTax implementation creates a multiple record TAXWARE input
request where each record designates a unique shipping destination group with all
items in it, see TaxRequestInfo class for more references.

 getAppropriateSalesTaxService() returns the appropriate
SalesTaxService/WorldTaxService based on the user and order. If you have
multiple ship-from or origin locations, and each order only involves one of those
locations, you may want to over-ride this method to return the appropriate
SalesTaxService/WorldTaxService. If so, you will also likely want to add
additional SalesTaxService/WorldTaxService properties that
getAppropriateSalesTaxService will choose between. If you have multiple ship-
from or origin locations and an order may involve more than a single location, it
probably makes sense to override modifyRequest() instead. The
SalesTaxService/ WorldTaxService returned by
getAppropriateSalesTaxService() is used to create a request, which is then
passed to modifyRequest.

 modifyRequest() Make additional changes to the TaxRequest object before it is
submitted to TAXWARE. Examples of information you may want to add or modify
include setting appropriate origin and ship-from information, setting special tax-
category information, setting tax exemption information. See TAXWARE’s taxcommon
API for possible field values.

 getAppropriateSalesTaxService() takes a TaxRequestInfo object.
TaxRequestInfo.getOrder() returns a NULL object. To prevent this NULL return,
subclass atg.commerce.pricing.TaxProcessorTaxCalculator.priceTax()
and override priceTax, calculateTax and calculateTaxByShipping to check for
a null order. If the order is NULL, assign it the order that is passed in and call the
superclass.

TaxResult and TaxRequest Fields

ATG Commerce includes convenience methods for accessing commonly used fields of TaxResult and
TaxRequest. Other fields can be accessed using the getTTTTFieldValue(), where TTTT is the type
returned by that call. For example, the convenience method TaxResult.getCityTaxRate() actually
just called returns the result of calling getDoubleFieldValue("TAXRATECITY").

You can set field values for fields without convenience methods by calling setFieldValue(). For
example, setShipFromCity() calls setFieldValue("SHIPFROMCITY", CITY), where CITY is the
string argument passed to setShipFromCity.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 8

3 - I n t e g r a t i n g T h i r d - P a r t y S o f t w a r e W i t h A T G C o m m e r c e

μ
If you call setFieldValue() directly, the value should be of the appropriate type for the field. You can
examine the field definitions to determine which fields are available and what type they are.

The fields for a TaxRequest are defined in the InputRecordDef class and the fields for TaxResult are
defined in the OutputRecordDef class.

Amount and rate values can be obtained either as doubles or as longs. The long values represent the raw
amount read for TAXWARE, without correction for place (so rate values are 100,000 larger and US
transaction price amounts are in cents when accessed as Integer). The double values reflect the implicit
decimal points (rates are a percentage), and US transaction price amounts are in dollars.

VERAZIP Integration

ATG Commerce’s VERAZIP integration consists of several classes:

 TaxWareVerifyZipInfo is an Order Processing class that calls the VeraZipCaller
class to perform the city, state, and ZIP code verification. The
TaxWareVerifyZipInfo class adds ZIP amount information to the current order. If
the address verification fails for a specific address, the sophisticated error message is
returned in the TaxWareStatus object. The verifyZipInfo property of
TaxWareCalculateTax should point to TaxWareVerifyZip component in
/atg/commerce/payment/. If necessary, use the Component Editor in the ATG
Control Center to set the useVerazip property of TaxWareCalculateTax to false to
prevent the TaxWareVerifyZip from executing, it is set to false by default.

 ZipRequest: Represents a request for ZIP code information.

 ZipResult: Represents the result of ZIP code information.

To install ATG Commerce’s TAXWARE VERAZIP integration, you need a working copy of VERAZIP on the
server machine. Since the VERAZIP Java interface calls into the TAXWARE VERAZIP libraries, VERAZIP must
be installed and functioning on the server machine.

Customizing ATG Commerce’s VERAZIP Integration

You may want to customize ATG Commerce’s TAXWARE VERAZIP classes if:

 you have additional location information you want to add to ZipRequest object

 you need to record or log addition ZIP code information

 you need to record or log additional tax information

 you need to specify additional fields in your TAXWARE request (if you are using
WORLDTAX, for example)

Most customizations can be completed by creating a subclass of the TaxWareVerifyZipInfo class. You
will likely want to override the modifyRequest() method.

Once you have created a subclass, set the $class variable of
/atg/commerce/payment/TaxWareVerifyZip to your subclass.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 9

3 - I n t e g r a t i n g T h i r d - P a r t y S o f t w a r e W i t h A T G C o m m e r c e

μ
Customizing TaxWareVerifyZipInfo Methods

The following TaxWareVerifyZipInfo methods are called in the order listed.

 modifyRequest()
Make additional changes to the ZipRequest object before it is submitted to
TAXWARE.

 verifyZip()
Accepts an object that implements the VeraZipable interface and uses that object to
invoke the address verification routines.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 0

3 - I n t e g r a t i n g T h i r d - P a r t y S o f t w a r e W i t h A T G C o m m e r c e

μ

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 1

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
4 Using and Extending the Product

Catalog

This chapter describes the product catalog definition and explains how to extend it to address your
commerce site’s requirements. ATG Commerce allows you to set up your product catalog so different
customers see different information about the products they view, or different products altogether. The
default catalog provides sufficient functionality for many sites. However, you may want to extend or
modify this catalog definition to include additional item types or properties.

You create and modify catalog items through the ATG Control Center, as described in the ATG Commerce
Guide to Setting Up a Store, or through the ATG Merchandising application, as described in the ATG
Merchandising Guide for Business Users.

This chapter includes the following sections:

Production and Development Modes for ATG Commerce

Product Catalog Repository

Catalog Properties

Categories and Products

SKU Items and SKU Links

Catalog Folders

Folders and Media Items

Internationalizing the Product Catalog

Catalog Security

Importing Product Catalog Content

Assigning a Catalog to a User

Production and Development Modes for ATG Commerce
You can run ATG Commerce in either production mode or development mode. The mode that you run in
determines how values for catalog-related properties are obtained, which significantly affects your
Commerce application’s performance.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 2

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
 development mode: Uses derived properties so that you can preview a product

catalog on a web site while you’re making changes without having to run the
CatalogMaintenanceService (see Using the Catalog Maintenance System in this
guide). Development mode makes updates incrementally so you can preview your
changes throughout the development process.

Development mode overrides the definitions of certain properties in the catalog
repository that are normally computed by the batch service, and these properties are
derived on-the-fly. Development mode is more resource-intensive than production
mode because these properties have to be computed at the time they are referenced,
rather than being pre-computed by the batch service.

 production mode: Uses computed properties. This mode uses properties pre-
computed by the CatalogMaintenanceService, so performance is superior to
development mode.

EAR files are assembled with slight differences for each mode; for information, see the ATG Programming
Guide.

Product Catalog Repository
ATG Commerce uses the ATG SQL Repository to define the product catalog. Before reading this chapter,
you should be familiar with the ATG SQL Repository, as described in the ATG Repository Guide.

A catalog repository is similar to any other SQL repository. There are three main parts:

1. The database schema on your SQL database server.

2. The repository component, which is of class atg.adapter.gsa.GSARepository.

3. The repository definition file, which is an XML file that defines the relationship
between the SQL database and the repository component.

A given user can only have permission to view one catalog. This catalog can be assigned in the catalog
property of the user’s profile, or derived from the user’s parentOrganization.

If you are using ATG’s multisite feature, you can assign catalogs to sites. The categories, products, and
SKUs in that catalog inherit membership in that site from the catalog.

Catalogs consist of rootCategories and rootSubCatalogs. A catalog’s rootCategories combine
with the rootCategories of its rootSubCatalogs to make up the list of the catalog’s
allRootCategories. For example:

Catalog A:
rootCategories = category1, category2

Catalog B:
rootCategories = category3, category4

rootSubCatalogs = CatalogA

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 3

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
When a user of Catalog B views the allRootCategories, they see all of the root categories of Catalog B
(category3 and category4) as well as the root categories of the subcatalogs (category1 and category2)
meaning there appear to be four root categories.

The catalog repository component is located at /atg/commerce/catalog/ProductCatalog. You can
extend the product catalog or create a different catalog structure in several ways:

 To modify the product catalog by adding or removing items or properties, change the
standard repository definition file, then use the startSQLRepository script to
generate the database schema.

 To design your catalog from scratch, write the repository definition file, then use the
startSQLRepository script to generate the database schema.

 To use an existing database schema, write a repository definition file that corresponds
to that schema.

If you replace the standard repository definition file or extend it through XML file combination, you must
configure the SQL repository component appropriately.

Catalog Properties
Catalogs allow you to create complicated product structures that are specifically tailored to different
users. They form the base of the hierarchy used for navigating your commerce site. Catalogs can contain
catalogs and categories.

The following table describes the catalog properties. It uses these abbreviations:

 CCS—CatalogCompletionService (see Using the Catalog Maintenance System in this
guide)

 CMS—CatalogMaintenanceService (see Using the Catalog Maintenance System in this
guide)

 GSA—Generic SQL Adapter (see the ATG Repository Guide)

 ACC—ATG Control Center (see the ATG Commerce Guide to Setting Up a Store)

Property How it is set Description

allRootCategories CCS Lists of all the root categories in the catalog, including
the allRootCategories in the rootSubCatalogs.
This is used for display purposes.

allRootCategoryIds Implicitly set
by the CCS

List of the repository IDs of all root categories for the
catalog. Read-only. This property refers to the same
database table as allRootCategories.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 4

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
Property How it is set Description

ancestorCategories CCS All categories that are connected to this catalog
through its children. This property allows the
CatalogCompletionService to find all the sub-
catalogs of a category that is being added to a catalog
or another category. By maintaining this property, the
system can query for catalogs that contain the
category being added in the ancestorCategories,
and update those catalogs’ ancestor-catalogs
properties accordingly.

ancestorCatalogsAndS

elf

Derived The combination of
directAncestorCatalogsAndSelf and
indirectAncestorCatalogs.

creationDate Implicitly set
by GSA when
catalog is
created

Date the catalog was created.

directAncestorCatalo

gsAndSelf

CCS All the catalogs that use this catalog’s
allRootCategories as their root categories. This
property, along with indirectAncestorCatalogs,
compiles a complete list of all ancestor catalogs within
each catalog.

The ancestors are divided into direct and indirect lists
to make it easier to compute the
allRootCategories property. A rootCategory of a
catalog only belongs in the allRootCategories list
of an ancestor catalog if it is a direct ancestor.

displayName ACC Name used for the catalog in other ATG applications.
Required.

id Can be set in
the ACC

Repository ID for the catalog. If not set, the GSA
generates the value.

indirectAncestorCata

logs

CCS All the ancestor catalogs that do not use
allRootCategories as their root categories. (See
directAncestorCatalogsAndSelf for further
explanation).

lastModifiedDate Implicitly set
by GSA when
catalog is
modified

Date the catalog was last modified.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 5

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
Property How it is set Description

parentCategories Implicitly
through
category.su

bCatalogs

The set of categories that have this catalog as a
subcatalog. Refers to the subCatalogs property of
the category, and allows a catalog to find all of its
parent categories. Adding a product to another
category’s child list automatically updates the
parentCategories property.

rootCategoryIds Implicitly set
in the ACC

Repository IDs of top-level categories in the catalog.
Read-only. Refers to the same database table as
rootCategories.

rootCategories ACC List of the top-level categories in the catalog.

rootSubCatalogs ACC List of catalogs whose root categories are also root
categories of the catalog (for use in combining
catalogs).

siteIds CCS If you are using ATG’s multisite feature, the IDs of
those sites to which the catalog belongs.

subCatalogIds Optionally
implicitly
computed by
the CCS

Repository IDs of catalogs contained within the
catalog, including rootSubCatalogs and their
subCatalogs, and the subCatalogs of any
categories in the catalog. Read-only. This property
refers to the same database table as subCatalogs.

Categories and Products
Categories organize your catalog into a hierarchy that provides a navigational framework for your
commerce site. A category can contain catalogs, other categories, and products.

For example, you could have a category called Fruit, which contains two products, Apples and Pears, and
also contains another category, Citrus Fruit. The Citrus Fruit category could then include products called
Lemons, Limes, and Oranges.

A product is a navigational end-point in the catalog. In this example, Oranges is an end-point; it cannot
contain other categories or products. However, products do not represent the items that customers
actually purchase. The purchased items are called stock keeping units (SKUs). A product can have several
different SKUs associated with it, representing different varieties, sizes, and colors. For example, if you
have a product called Oranges, some of the SKUs associated with it might be Valencia, Navel, and Blood
Orange. For more information about SKUs, see SKU Items and SKU Links later in this chapter.

The hierarchy defined by products and categories is not rigid. Each category or product can be the child
of one or more categories.

This section uses the following abbreviations:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 6

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
 CCS—CatalogCompletionService (see Using the Catalog Maintenance System in this

guide)

 CMS—CatalogMaintenanceService (see Using the Catalog Maintenance System in this
guide)

 GSA—Generic SQL Adapter (see the ATG Repository Guide)

 ACC—ATG Control Center (see the ATG Commerce Guide to Setting Up a Store)

Defining Root Categories

With any group of categories, you need to know where to start when navigating. That starting point is
called a root category.

Designate a category as a root category by setting the value of the rootCategories property of the
catalog to include the category you want to be considered the top level of the product catalog. The
allRootCategories property of the user’s catalog specifies all the categories in a catalog’s
rootCategories property.

Note: Root categories of a “root sub catalog” are also considered root categories. For example, if Catalog
A has Catalog B as a “Sub catalog at root” then allRootCategories of Catalog B are included in the
allRootCategories of Catalog A.

See the Catalog Navigation and Searching chapter of the ATG Commerce Guide to Setting Up a Store for an
example of using this targeter to find root categories.

Category Properties

The following table describes the category item properties in the catalog.

Property How it is set Description

ancestorCategories CMS/CCS All the categories that can be used
to navigate to this category
(through
category.childCategories),
regardless of catalog.
(category.childCategories is a
combination of
fixedChildCategories and
subCatalogsChildCategories).

ancestorCategoryIds Implicitly set by
CMS and CCS

RepositoryIDs of the ancestor
categories. Read-only. Uses same
database table as
ancestorCategories.

auxiliaryMedia ACC Additional media to be displayed
with this category.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 7

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
Property How it is set Description

catalog Derived in
development mode

Set by CMS in
production mode.

The catalog that owns this category.

As of ATG 10, this property is no
longer used, but remains available
for backward compatibility.

catalogs CCS All the catalogs that include some
path to this category; this property
is used to determine whether an
end user has permission to view this
category.

categoryInfos ACC (optional) Map from catalogId to a
categoryInfo.,

childCategories Derived List of all categories that are
children of this category; a merge of
fixedChildCategories,
dynamicChildCategories, and
subCatalogsChildCategories.
Read-only.

childCategoryGroup ACC Name of the content group that
contains the list of
dynamicChildCategories.

childProductGroup ACC Name of the content group that
contains the list of
dynamicChildProducts.

childProducts ACC List of all products that are children
of this category; a merge of
fixedChildProducts and
dynamicChildProducts. Read-
only.

creationDate Implicitly set by
GSA

Date this category was created.
Read-only.

defaultParentCategory CCS This field is no longer actively used.
The parentCategory derivation
uses this value if the
parentCategoriesForCatalogMa

p does not provide a value.

description ACC Short descriptive text for display
with this category.

displayName ACC Name used for the category on the
site. Required.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 8

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
Property How it is set Description

dynamicChildCategories Derived List of the categories in the content
group specified by the
childCategoryGroup property.
Read-only.

dynamicChildProducts Derived List of the products in the content
group specified by the
childProductGroup property.
Read-only.

dynamicRelatedCategori

es

Derived List of the categories in the content
group specified by the
relatedCategoryGroup property.
Read-only.

endDate ACC Date this category will no longer be
available, if a collection filter is
implemented to use this
property. See the ATG
Personalization Programming Guide
for information on filtering.

fixedChildCategories ACC List of child categories of this
category. Used by catalog
administrator to explicitly set the
descendant categories of a
category.

fixedChildProducts ACC List of child products of this
category. Used by catalog
administrator to explicitly set the
descendant products of a category.

fixedRelatedCategories ACC Static list of categories related to
this category.

id ACC or GSA RepositoryID for this category. If
this property is not set through the
ACC during creation, it is implicitly
set by GSA.

keywords ACC Set of words that can be used in
searching for this category.

largeImage ACC Large image associated with the
category.

longDescription ACC Detailed descriptive text for display
with this category.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 9

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
Property How it is set Description

parentCatalog CCS The parent catalog of this category.
Only holds a value if the catalog is a
rootCategory of the given catalog.
This is used in the ParentCatalog
derivation.

This property is no longer used, but
remains available for backward
compatibility.

parentCatalogs Reference to
catalog.rootCat

egories

The set of all catalogs that have this
category as a root category.

parentCategory Derived The parent category of this
category. Derived from
parentCategoryForCatalog; if
that is null, derived from
defaultParentCategory.

parentCategoriesForCat

alog

CMS or ACC The parent category for each non-
root category. There can be more
than possible parent category, in
which case the CMS selects one
arbitrarily. This is used to derive the
value in the parentCategory
property.

parentCategoryForCatal

og

Derived The parent category in the context
of the current catalog. Calculated
from the
parentCategoriesForCatalog

map.

relatedCategories Derived List of all categories that are
children of this category; this
represents a merge of
fixedRelatedCategories,
dynamicRelatedCategories,
and the categoryInfo property
catalogsRelatedCategories.
Read-only.

relatedCategoryGroup ACC Name of the content group that
contains the list of categories that
dynamicRelatedCategories is set
to.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 0

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
Property How it is set Description

siteIds CMS on production
server; CCS on asset
management
server

If you are using ATG’s multisite
feature, the IDs of those sites to
which the category belongs.

smallImage ACC Small image associated with the
category.

startDate ACC Date this category becomes
available, if a collection filter is
implemented to use this property.

subCatalogs ACC List of catalogs whose root
categories will be considered child
categories of this category. Used by
catalog admin to explicitly set direct
descendant catalogs of a category.

subCatalogsChildCatego

ries
Derived The Collective Union of the

allRootCategories of each
catalog in subCatalogs. Used to
compile the childCategories
property, which includes the
complete list of all descendant
categories of a category.

template ACC JSP used to display this category.

thumbnailImage ACC Thumbnail image associated with
this category.

type N/A Provided for subclassing purposes;
use to indicate if an item belongs to
the superclass or a subclass. Read-
only.

version Implicitly set by
GSA

Integer that is incremented
automatically each time the
category is updated; used to
prevent version conflict.

categoryInfo Properties

categoryInfo objects are optional. You can create categoryInfo objects through the ACC if you want
to keep catalog-specific information for a category.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 1

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
Property How it is

set
Description

version Implicitly
set by GSA

Integer that is incremented automatically each
time the categoryInfo is updated; used to
prevent version conflict.

Product Properties

The following table describes the product item properties in catalog:

Property How it is
set

Description

ancestorCategories CMS All the categories that you can navigate
through (via category.childCategories
and category.childProducts) to this
category, regardless of catalog. Used for
hierarchical search.

ancestorCategoryIds Implicitly
set by CMS

RepositoryIDs of the ancestor categories.
Read-only. This property uses the same
database table as ancestorCategories.

auxiliaryMedia ACC Additional media to be displayed with this
product.

catalogs Derived
(developm
ent only)

In development, this is the Collective Union of
catalogs for each category in
parentCategories. This is not queryable. In
production, this value is set by the
CatalogMaintenanceService. Used to
determine if an end user has permission to
view this product.

catalogsRelatedProduc

ts

derived Generated Set of related products that are
only shown to users of a particular catalog.
Read-only.

childSKUs ACC List of child SKUs of this product. Used by
catalog administrator to explicitly set child
SKUs of a product.

creationDate Implicitly
set by GSA

Date this product was created. Read-only.

description ACC Short descriptive text for display with this
product.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 2

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
Property How it is

set
Description

displayableSkuAttribu

tes

ACC List of properties of the product’s SKUs that
can be displayed by the
DisplaySkuProperties servlet bean.

displayName ACC Name used for the product on the site.
Required.

dynamicRelatedProduct

s

derived List of the products in the content group
specified by the relatedProductGroup
property. Read-only.

endDate ACC Date this product will no longer be available, if
a collection filter is implemented to use this
property. See the ATG Personalization
Programming Guide for information on
filtering.

fixedRelatedProducts ACC Static list of products related to this product.

id ACC
(optional)

RepositoryID for this category. Can be set in
ACC upon creation of product. If it is not set
through the ACC, it is implicitly set by GSA

keywords ACC Set of words that can be used in searching for
this product.

largeImage ACC Large image associated with the product.

longDescription ACC Detailed descriptive text for display with this
product.

parentCategories Implicit
GSA reuse

Reuses the same table as
category.fixedChildCategories.
Therefore adding a product to another
category’s child list automatically updates the
parentCategories property.

parentCategoriesForCa

talog

CMS The parentCategory for each catalog. If this
property is null and there is more than one
possible parent category, the CMS chooses
one arbitrarily. Used to derive the value for
the parentCategory property.

parentCategory derived In development, the product’s
ParentCategory is derived by inspecting
each category in parentCategories.
In production, the CatalogMapDerivation is
used to get the correct parent.

productInfos ACC Map from productId to a productInfo.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 3

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
Property How it is

set
Description

relatedProductGroup ACC Name of the content group that contains the
list of dynamicRelatedProducts.

relatedProducts ACC List of all products that are children of this
product; a merge of
fixedRelatedProducts,
dynamicRelatedProducts, and the
productInfo property
catalogsRelatedProducts. Read-only.

siteIds CMS or
derived

If you are using ATG’s multisite feature, the list
of IDs for the sites to which the product
belongs. On a production server, this is
calculated by the CMS; on an asset
management server, it is derived from a union
of the siteIds of the parent categories of the
product.

smallImage ACC Small image associated with the product.

startDate ACC Date this product becomes available, if a
collection filter is implemented to use this
property. See the ATG Personalization
Programming Guide for information on
filtering.

template ACC JSP used to display this product.

thumbnailImage ACC Thumbnail image associated with this
product.

type Not used
out-of-the-
box

Provided for subclassing purposes; use to
indicate if an item belongs to the superclass
or a subclass. Read-only.

version Implicitly
set by GSA

Integer that is incremented automatically
each time the product is updated; used to
prevent version conflict. Read-only.

productInfo Properties

productInfo objects are optional. You can create productInfo objects using the ACC if you wish to
keep catalog-specific information for a product.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 4

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
Property How it is

set
Description

catalogsRelatedProdu

cts

ACC Related products that are only shown to users
of the catalog that maps to this productInfo.

version Implicitly set
by GSA

Integer that is incremented automatically
each time the product is updated; used to
prevent version conflict. Read-only.

Defining Relationships between Categories and Products

The SQL Repository allows you to define properties that return repository items. The value of one of these
items is the object ID. The SQL Repository can transform the ID into the repository item and return the
actual object. This mechanism enables you to define the relationship between categories and products in
many ways.

Most properties of the SQL Repository return values retrieved from the database. The SQL Repository also
provides the ability to compute values of certain properties through Java code. Properties computed
dynamically are called user-defined properties. This mechanism is used for the default definitions of
several properties of the category and product items, to allow for dynamic definition of item relationships.
For more information about user-defined properties, see the SQL Repository Item Properties chapter of the
ATG Repository Guide.

Deriving the childCategories and childProducts Properties

The hierarchical relationships between categories and products are determined by their properties. The
childCategories and childProducts properties of a category define the list of categories and
products that are children of the category.

The childCategories property is a list of all categories that are children of the category. This is a user-
defined property that is computed by the atg.repository.NotEmptyChooserPropertyDescriptor
class, which sets the value of the property by merging the lists of categories in the
fixedChildCategories and dynamicChildCategories properties. In the repository definition file, the
definition of the childCategories property looks like this:

<property name="childCategories"

 property-type="atg.repository.NotEmptyChooserPropertyDescriptor"

 data-type="list" component-item-type="category" writable="false"

 queryable="false">

 <attribute name="properties"

 value="fixedChildCategories,dynamicChildCategories"/>

 <attribute name="merge" value="true"/>

</property>

This structure enables a page developer to refer to one named property (in this case, childCategories)
whose value is assembled from different sources.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 5

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
The fixedChildCategories property is an explicit list of categories you specify. The
dynamicChildCategories property is a user-defined property that is computed by the
atg.repository.GroupMembersPropertyDescriptor class. This class looks at the
childCategoryGroup property, which specifies the name of a content group, retrieves the list of
categories in that content group, and sets the value of dynamicChildCategories to that list.

This mechanism enables you to use business rules to determine the list of child categories. For example,
you can create a content group that consists of categories that share a particular attribute, and set the
value of childCategoryGroup to the name of this content group.

The childProducts property of the category is computed in the same way, using the
fixedChildProducts, dynamicChildProducts, and childProductGroup properties.

For example, suppose your site has a category called Hats, and some of the hats are available all year,
while others are seasonal. You could set the fixedChildProducts property of the Hats category to a list
of the hats that are available all year. You could also create a content group called Seasonal Hats, which
contains a list of hats that changes from season to season, and set the childProductGroup property of
the Hats category to the name of this content group.

When a user accesses a page that refers to childProducts, ATG computes the current value of
childProducts as follows:

1. Finds the current set of products in the content group specified in
childProductGroup, and sets dynamicChildProperties to that set of products.

2. Sets childProducts to the merge of the set of products in dynamicChildProducts
and the set of products in fixedChildProducts.

For information about creating content groups, see the ATG Personalization Guide for Business Users.

Deriving the relatedCategories and relatedProducts Properties

In addition to the childCategories property, the category item has a property named
relatedCategories. This property defines a list of categories that are related to the category, but which
do not form a hierarchy with it. Related categories are useful for cross-selling. For example, if the Fruit
category has Vegetables as a related category, you can use this relationship to display a link to the
Vegetables category on the Fruit page.

The relatedCategories property is a user-defined property that is derived in a similar way to the
childCategories property. The relatedCategories property is computed by the
atg.repository.NotEmptyChooserPropertyDescriptor class, which sets the value of the property
by merging the lists of categories in the fixedRelatedCategories and dynamicRelatedCategories
properties. The dynamicRelatedCategories property is also a user-defined property, which the
atg.repository.GroupMembersPropertyDescriptor class computes by retrieving the list of
categories in the content group specified by the relatedCategoryGroup property.

The product item has a relatedProducts property that is computed in the same way, using the
fixedRelatedProducts, dynamicRelatedProducts, and relatedProductGroup properties.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 6

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
Removing the SQL Repository Definitions of User-Defined Properties

If you do not plan to use dynamically related products or categories on your commerce site, you can
remove these properties from the repository definition. System performance improves when you simplify
the data model to use only fixed relationships. For example, if all categories are explicitly related, you can
remove the definitions of the childCategories, dynamicChildCategories, and
childCategoryGroup properties, and just use the fixedChildCategories property, which you can
then rename as childCategories.

Specifying Template Pages for Categories and Products

You can display categories and products on your commerce site using JSPs. Rather than requiring you to
create a separate JSP for each page on your commerce site, you can to create template pages that fill in
the product’s properties dynamically. You can then specify which template to use as a property of the
category or product. This enables you to display any item without knowing in advance what template the
item uses.

For example, the following portion of a JSP uses a CategoryLookup servlet bean to retrieve the current
category, and a ForEach servlet bean to create links to all of the child products of the category. The URL
for each link is found by looking at the template.url property of the product being linked to.

<dsp:droplet name="/atg/commerce/catalog/CategoryLookup">

<dsp:param param="itemId" name="id"/>

<dsp:oparam name="output">

 <dsp:droplet name="/atg/dynamo/droplet/ForEach">

 <dsp:param param="element.childProducts" name="array"/>

 <dsp:oparam name="outputStart">

 <p>Child Products:

 </dsp:oparam>

 <dsp:oparam name="output">

 <dsp:getvalueof var="templateURL" param="element.template.url"/>

<dsp:a href="${templateURL}">

 <dsp:valueof param="element.displayName"/>

 <dsp:param param="element.repositoryId" name="itemId"/>

 </dsp:a>

 </dsp:oparam>

 </dsp:droplet>

</dsp:oparam>

</dsp:droplet>

For information about the CategoryLookup and ProductLookup servlet beans, see the Catalog
Navigation and Searching chapter of the ATG Commerce Guide to Setting Up a Store.

Media Properties

Media elements such as images and JSPs can be associated with a category or product. Both item types
have a template property, as well as three image properties: thumbnailImage, smallImage, and
largeImage. In addition to the explicit properties that store media, a Map property called

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 7

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
auxiliaryMedia allows you to store any number of other media elements. You can also extend the
category or product item to include additional properties, as discussed in the Extending the Category and
Product Item Types section.

Associating Products with SKUs

The childSKUs property of a product is a list of all the SKUs that are children of the product. A product
called Apples might have several different SKUs that represent different varieties of apples, such as
McIntosh, Delicious, and Granny Smith.

The product item also has a property named displayableSkuAttributes, which you can use to specify
a list of the SKU properties that can be displayed using the DisplaySkuProperties servlet bean. For
more information about this servlet bean, see the ATG Commerce Guide to Setting Up a Store.

Extending the Category and Product Item Types

By default, there is only one type of category and one type of product in the catalog. These item types are
sufficient for many commerce sites. However, you may find you need to extend the catalog by creating
additional properties for these item types, or by creating additional item types.

To create additional properties for an item type, you can either add new tables to the schema or modify
the database schema to add columns to the database tables for that item type.

Note: Creating separate tables reduces the chance of complications during future ATG upgrades;
however, it can negatively affect performance. If you have a large product catalog, performance may be
of more importance.

After altering your database, make the corresponding additions to the repository definition file. For
greater flexibility, you can create new item types. There are two ways to create a new item type:

 Create an entirely new type, whose definition is independent of existing types.

 Create an item type that is a sub-type of an existing type. A sub-type inherits the
properties from its parent item type, and can include additional properties that are
unique to the sub-type.

The default category and product item definitions include an enumerated property named type, which
you can use to create item sub-types:

<property name="type" data-type="enumerated" column-name="product_type"

 writable="false" hidden="true"> </property>

To create a product sub-type, add an option value to the product type enumeration:

<property name="type" data-type="enumerated" column-

 name="product_type" writable="false" hidden="true">

 <option value="option1"/>

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 8

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
 <option value="option2"/>

</property>

Then add a new item-descriptor to the repository definition file, and set its super-type attribute to the
name of the parent item type:

<item-descriptor name="item-name" super-type="type" sub-type-

 value="option1">

 <!-- properties -->

 </item-descriptor>

Then add your new sub-type to the appropriate property of the /atg/commerce/CatalogTools
component:

catalogFolderItemTypes=catalogFolder

catalogItemTypes=catalog

productItemTypes=product

categoryItemTypes=category

SKUItemTypes=sku,configurableSku

For example, if you create a new subtype called customCategory, add the following to the
/atg/commerce/CatalogTols component::

categoryItemTypes+=customCategory

The new item type inherits all of the defined properties of the parent item type, and can add properties
not defined for the parent item type. Inheritance is a very convenient mechanism for creating new item
types, especially for creating types that are closely related to each other. However, you should avoid using
too many levels of inheritance. Queries against items whose properties span multiple sub-types may
require joins of all of the tables in the hierarchy. If you use these kinds of queries, keep in mind that
performance decreases as the number of tables joined increases.

For more information, see the Item Descriptor Inheritance section of the SQL Repository Data Models
chapter of the ATG Repository Guide.

SKU Items and SKU Links
A product is a navigational end-point in the catalog. However, customers do not actually purchase the
product; they purchase a SKU (stock keeping unit). A product can have several different SKUs associated
with it, representing varieties, sizes, and colors.

The properties of a SKU are used for display purposes, similar to products and category properties. The
properties are also used to integrate with other ATG Commerce systems, such as pricing and fulfillment.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 9

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
A SKU usually represents an indivisible unit that can be purchased. However, the catalog includes a SKU
link item type that you can use to create SKU bundles, which are virtual SKUs that are composed of several
other SKUs. Bundles allow the product catalog to offer a SKU that can be purchased as a single item,
although it is treated as multiple items in fulfillment.

You can also create SKUs as configurable if they have components that might vary depending on
customer preferences, such as with computers, which could include different memory or hard drives, or a
car with optional features. See the Configurable SKUs section of this chapter.

SKU Properties

The following table describes the SKU item properties in the catalog:

Property How it is
set

Description

auxiliaryMedia ACC Additional media to be displayed with the SKU.

bundleLinks ACC List of SKU links that make up the SKU bundle; if
null, SKU is not a bundle.

catalogs CMS or
Derived

In development this is the Collective Union of
catalogs for each product in parentProducts. This
is not queryable. In production, this value is set by
the CatalogMaintenanceService. Used to
determine if an end user has permission to view this
SKU.

catalogsReplacement

Products

Derived Replacement products that are only shown to users
of a particular catalog. Read-only.

creationDate Implicitly
set by
GSA

Date the SKU is created. Read-only.

description ACC Short descriptive text for display with the SKU.

displayName ACC Name used for the SKU on the site. Required.

dynamicAttributes ACC Additional attributes of the SKU.

endDate ACC Date the SKU is no longer available, if a collection
filter is implemented to use this property. See the
ATG Personalization Programming Guide for
information on filtering.

fixedReplacementPro

ducts

ACC Static list of products related to this SKU.

fulfiller ACC Fulfiller who will ship the item.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 0

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
id ACC Repository ID for this SKU. Can be set in ACC upon

item creation, otherwise implicitly set by GSA.

largeImage ACC Large image associated with the SKU.

listPrice ACC Default price of the SKU before any discounts or
promotions.

onSale ACC Boolean property that indicates if the item is on sale.

parentProducts implicit
GSA
reuse

Reuses the same table as product.childSkus.
Therefore adding a SKU to a product’s child list will
automatically update the parentProducts
property.

replacementProducts derived Products to suggest as replacements if the item is
out of stock. Read-only.

salePrice ACC Price of the SKU if onSale property is true.

siteIds CMS or
derived

If you are using ATG’s multisite feature, the IDs of
the sites to which the SKU belongs. On the
production server, this is calculated by the CMS; on
the asset management server, it is derived from the
union of the siteIds of the SKU’s parent products.

skuInfos ACC Map from SKU to a SKUInfo.

smallImage ACC Small image associated with the SKU.

startDate ACC Date on which the SKU is available, if a collection
filter is implemented to use this property.

template ACC JSP template used to display the SKU.

thumbnailImage ACC Thumbnail image associated with the SKU.

type Not used
out-of-
the-box

Provided for subclassing purposes; use to indicate if
an item belongs to the superclass or a subclass.
Read-only.

version Implicitly
set by
GSA

Integer that is incremented automatically each time
the SKU is updated; used to prevent version conflict.
Read-only.

wholesalePrice ACC Wholesale price of the SKU.

SKUInfo Properties

You can create SkuInfo objects using the ACC if you wish to keep catalog-specific information for a SKU.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 1

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
Property How it is

set
Description

catalogsRepla

cementProduct

s

ACC These are replacement products that are only shown to
users of the catalog that maps to this SKUInfo.

version Implicitly
set by
GSA

Integer that is incremented automatically each time the
SKUInfo is updated; used to prevent version conflict. Read-
only.

SKU Link Properties

The following table describes the SKU link properties in the product catalog:

Property Description

creationDate Date this SKU link was created.

description Short descriptive text for display with this SKU link.

displayName Name used for the SKU link on the site.

endDate Date this SKU link will no longer be available, if a collection filter is
implemented to use this property.

item SKU that is being bundled.

quantity Quantity of the SKU specified by the item property.

startDate Date on which this SKU link becomes available, if a collection filter is
implemented to use this property.

version Integer that is incremented automatically each time the SKU link is
updated; used to prevent version conflict.

Using SKU Media Properties

The SKU item has the same set of media properties that categories and products have: template,
thumbnailImage, smallImage, largeImage, and auxiliaryMedia. Your sites may not need all of these
properties. For example, at most commerce sites, each SKU would not be displayed in its own template
page. More commonly, a product’s template page displays all of the child SKUs of the product.

Categories, products, and SKUs all have the same set of media properties in order to give you as much
flexibility as possible. Depending on how your sites are organized, you might want to associate certain
media items with products rather than SKUs, or vice versa. For example, if SKUs are differentiated by a
visible characteristic such as color, you might want to have different images for each SKU, rather than

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 2

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
having a single set of images associated with the parent product. If each product has only one SKU, you
could even change the repository definition to remove the product item type entirely.

Using SKU Price Properties

The SKU item has four price properties: wholesalePrice, listPrice, onSale, and salePrice. These
list and sale price calculators use these properties in the Pricing Engine.

ListPrice is required, but the wholesalePrice and salePrice can be undefined. WholesalePrice is
not used by the pricing calculators. When the sale price is defined and onSale is set to true, the pricing
calculators assume the SKU is on sale and adjust the price. Placing the prices at the SKU level allows each
individual SKU to have its own price, but adds complexity to pricing administration. If your product
catalog does not need to price each SKU separately, then the listPrice, salePrice, and onSale
properties can be moved to the product item type to simplify maintenance. If the price properties are
moved, the list and sale price calculators will require a small change in configuration. For more
information, see the Commerce Pricing Calculators chapter of this manual.

Using the SKU Fulfiller Property

The fulfillment engine uses the fulfiller property to determine how to manage the fulfillment of the
purchase. This property is an enumerated value. By default, it defines a HardgoodFulfiller. For more
information, see the Configuring the Order Fulfillment Framework chapter.

Creating SKU Bundles

The bundleLinks property designates a SKU as a bundle, rather than an individual item. The
bundleLinks property is a list whose elements are of another item type called a SKU link. If the SKU is not
a bundle, then bundleLinks is null.

Each SKU link includes a SKU and a quantity. For example, a SKU link might represent three red shirts. A
SKU bundle can include any number of SKU links. For example, a SKU bundle might consist of two SKU
links, one that represents three red shirts and another that represents one black hat. Note that the
bundleLinks property of the SKU item holds only SKU links, not SKU items. However, you can create a
SKU link whose quantity is 1, and include that SKU link in the bundleLinks list.

When the fulfillment system recognizes that a SKU is a bundle, it fulfills the purchase by performing the
fulfillment of each quantity of items defined in the SKU link. For more information, see the Configuring
the Order Fulfillment Framework chapter.

Extending the SKU Item Type

The base SKU definition does not include any configuration properties such as size, color, etc. Depending
on the requirements of your sites, you may be able to differentiate the SKUs for a product through the
description properties of the SKUs. For example, if the SKUs are differentiated only by color, the
description of each SKU could mention the color. However, this approach can become awkward if there
are several different configuration variables.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 3

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
You may want to add properties to the SKU item type, or create sub-types of the SKU item type that
include additional properties. If you create a sub-type, you must add it to the SKUItemTypes property of
the /atg/commerce/catalog/CatalogTools component in order for it to be available to the PMDL
rules used in promotions. See Extending the Category and Product Item Types in this guide for
information about extending catalog item types. See the ATG Commerce Guide to Setting Up a Store and
the ATG Merchandising Guide for Business Users for information on promotions.

An alternate approach, which does not require modifying the SKU item definition, is to store
configuration information in the dynamicAttributes property. The property is a Map that stores a
key/value pair for each attribute you define. For example, you could specify the dynamicAttributes
property of a SKU as {color=red,size=small}. This mechanism is very flexible, because it allows each
SKU to have its own set of configuration attributes.

One disadvantage of this approach is that data is stored less efficiently than if you explicitly add
configuration properties to the definition of the SKU item. If you add properties, each property
corresponds to a column in a table, so each SKU can be represented by a single row in the table. If you use
dynamicAttributes, each SKU is represented by one row per attribute. So if dynamicAttributes
specifies three attributes (e.g., size, color, and length), the SKU will be represented by three rows in a
table. The additional rows can have a negative effect on performance. Therefore, if you need to define a
large number of attributes, explicitly adding properties to the SKU item definition is a better approach.

Configurable SKUs

A configurable SKU holds other SKUs, in a different way than linked SKUs do. An example of a
configurable item is a computer; customers can order them with varying amounts of memory, hard drive
types, video cards, etc. Configurable items consist of a “base SKU” and a number of optional subSKUs for
the user to choose among.

The following repository items are used when working with configurable SKUs:

Item Description

configurableSku Base SKU for the product, to which other products can be added as
options, such as a computer.

configurableProperty A category of subSKUs, such as Memory or Modems. The
configurableProperty holds the list of configurationOptions.

configurationOption The SKU representing the actual product option, such as a particular
model of hard drive.

foreignCatalog An external system with which ATG Commerce communicates.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 4

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
Catalog Folders

You can use catalog folders to organize catalogs. Catalog folders are used only in the administrator user
interface, not in the commerce site itself. The following table describes the folder item properties in the
product catalog:

Property Description

creationDate Date this folder was created.

description Short descriptive text for display with this folder.

endDate Date this folder will no longer be available, if a collection filter is
implemented to use this property. See the ATG Personalization
Programming Guide for information about filtering.

name File name of the folder.

parentFolder Folder that contains this folder; if null, this folder is a root folder.

path Complete pathname of the folder.

startDate Date this folder becomes available, if a collection filter is implemented
to use this property.

siteIds If you are using ATG’s multisite feature, the IDs of the sites to which the
catalog folder belongs.

version Integer that is incremented automatically each time the folder is
updated; used to prevent version conflict.

Folders and Media Items
As described in the SQL Content Repositories chapter of the ATG Repository Guide, a SQL Repository can be
configured as a content repository. A content repository is composed of folder and content repository
items. The product catalog defines folder and media item types that correspond to these two parts of the
repository.

You can use folders to organize media elements. Folders are used only in the administrator user interface,
not in the commerce site itself. Both the folder and media items define several administrative properties:
version, creationDate, startDate, endDate, and description. These properties are used as an aid
to catalog administrators, not intended for display on the site.

The media item is similar to an abstract Java object; it cannot be instantiated itself. The item type is
marked as abstract by tagging it as expert in the repository definition file. As part of this abstract
definition, two properties are defined: data and url. These properties are intended to be overridden in
the sub-types.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 5

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
The media item includes a property named type that is used to specify the media sub-type of the item.
The product catalog includes three sub-types:

 media-external: This item type references a piece of content that is stored outside the
database. The content can be either be either a binary file or a text file.

 media-internal-binary: This item type can be used to store binary objects (such as
images) in the catalog database.

 media-internal-text: This item type can be used to store text files (such as JSPs) in the
catalog database.

For information about uploading media elements to your product catalog, see ATG Commerce Catalog
Administration of the ATG Commerce Guide to Setting Up a Store.

Folder Properties

The following table describes the folder item properties in the product catalog:

Property Description

creationDate Date this folder was created.

description Short descriptive text for display with this folder.

endDate Date this folder will no longer be available, if a collection filter is
implemented to use this property. See the ATG Personalization
Programming Guide for information about filtering.

name File name of the folder.

parentFolder Folder that contains this folder; if null, this folder is a root folder.

path Complete pathname of the folder.

startDate Date this folder becomes available, if a collection filter is implemented
to use this property.

version Integer that is incremented automatically each time the folder is
updated; used to prevent version conflict.

Media Item Properties

The following table describes the media item properties in the product catalog:

Property Description

url Relative URL that can be used in a JSP to access the media item.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 6

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
data Defines whether a media item is binary or text.

mimeType A user-defined property that returns the content type value by
examining the url property.

name File name for this media item.

path Complete path for this media item.

parentFolder Folder that contains this media item.

startDate Date this media item becomes available, if a collection filter is
implemented to use this property.

endDate Date this media item will no longer be available. if a collection filter is
implemented to use this property.

description Short descriptive text for display with this media item.

Using Media-External Properties

In the media-external item type, the data property is a user-defined property computed by the
atg.repository.FilePropertyDescriptor class. If the url property is a relative URL, then data is a
java.io.File object, which references the file.

As part of defining a ContentRepositoryItem, the item definition must supply a length and a last
modified value. In a media-external item, these values are automatically extracted from the File object
returned from data.

Using Media-Internal Properties

The media-internal sub-types differ only in the way the data property is defined. The data property is
either binary (for media-internal-binary items) or text (for media-internal-text items).

The media-internal item types define their own length and lastModified properties. The mimeType
property is a user-defined property that is computed by the MimeTyperPropertyDescriptor class,
which determines the value from the name property.

The url property of the media-internal item types is a user-defined property computed by the
atg.distributor.DistributorPropertyDescriptor class. When a customer accesses a media-
internal-binary or media-internal-text item, the /atg/commerce/catalog/ContentDistributorPool
service extracts the content from the database and generates a URL to make the item accessible to a web
browser.

For more information about configuring content distributors, see the Content Distribution chapter of the
ATG Programming Guide.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 7

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
Internationalizing the Product Catalog

If you want to internationalize your product catalog, you can extend the Commerce repository to support
translated versions of some properties. This section outlines ATG’s recommended internationalization
strategy, which is implemented as part of the Commerce Reference Store (CRS). This “best practice” offers
the following benefits over other approaches:

 Applications can switch between international and non-international modes without
requiring any JSP page changes. The same property names are used in the JSP page
code and each repository derives the appropriate language as necessary.

 No database schema changes are required to add additional languages.

To extend your repository to include internationalized values, follow these steps:

1. Decide which properties of which item types you want to translate. This example uses
properties of the SKU item type, but you may need to translate product, category, and
even catalog properties, depending on your catalog structure.

2. For each item type you are internationalizing, add new properties corresponding to
that item type’s translatable properties.

For example, you want to provide internationalized versions of four SKU properties:
displayName, description, size, and color. You would add four new properties
(displayNameDefault, descriptionDefault, sizeDefault, and colorDefault)
to the SKU item descriptor.

The new properties refer to the original properties’ database columns and represent
the default text for the properties (thereby allowing us to redefine the original
properties as derived properties).

These four properties refer to the display_name, description, sku_size, and
color columns, where default-language text for the content are stored.

 Add another property to the item type. This property (with a name such as
translations) is a map whose key is a locale and whose value is an item of type
baseTypeTranslation, described below. Note that the locale key does not have to
be a fully qualified locale.

 Define a set of helper item types for all existing item types that have translatable
properties. Our example uses the naming convention baseTypeTranslation, where
baseType refers to an existing item type; for example, create a skuTranslation item
type to correspond with the sku item type, a productTranslation item type for the
product item type, and so on.

baseTypeTranslation items function as containers for locale-specific content. As
such, each baseTypeTranslation item type has properties that correspond to the
translatable properties of its base item type. In our example, we have selected four
SKU properties for translation (displayName, description, size, and color).
Therefore, the skuTranslation item also has four properties for displayname,
description, size, and color. Each baseTypeTranslation item type has its own
table in the database, where each row represents a single basetypeTranslation
item with a unique ID. For example, the cbp_sku_xlate table contains all the

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 8

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
skuTranslation items, the cbp_prd_xlate table contains all the
productTranslation items, and so on.

Every base item (SKU, product, category) is tied, through its translations property, to one or more
baseTypeTranslation items (one for each locale, with the exception of the default locale). The
following example shows three sku items and six corresponding skuTranslation items which contain
translated content for two locales, French and German.

To create the relationships that connect a base item to its baseTypeTranslation items, change the
definitions of the translatable properties in the existing item types. The new definitions should specify
that each translatable property is a derived property whose value is determined as follows:

 Use the current locale to look up a corresponding baseTypeTranslation item in the
translations property map. The property derivation attempts to find a best match.
First, it searches the locale keys for a match on the entire locale with a variant, then it
searches for a match on the locale without a variant, and finally it searches on just the
language code.

 If a baseTypeTranslation item exists for the current locale, use its value for the
property.

 If a baseTypeTranslation item doesn’t exist for the current locale, or its value for the
property is null, use the translatablePropertyDefault value instead.

The ATG Commerce Reference Store code uses the atg.repository.dp.LanguageTranslation class
to implement the derivation.

The following example shows how CRS derives the sku.displayName property for a store that has
English (default), German, and French translations:

1. giftListShop.jsp requests the sku.displayName property for a SKU and
determines the locale, which in this example is DE_de.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 9

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
2. The catalog repository finds the corresponding skuTranslation item using the

translations property map. Based on the locale, the repository determines that it
should reference the German skuTranslation item.

3. The catalog repository returns the displayName property from the German
skuTranslation item.

4. If no skuTranslation item exists for the locale, it returns the value from
displayNameDefault.

Catalog Security
Securing a catalog allows certain users to view and edit a catalog while preventing other users from doing
so. ATG Commerce implements a security policy for catalogs based on the secured repositories feature
(for more information, see the Secured Repositories chapter in the ATG Repository Guide).

In the catalog security policy, an access control list (ACL) is stored for each individual item (catalog,
product, SKU, media) except for category; the ACL of a category is the same as the ACL of the catalog that
contains it. The ACL contains lists of users or groups of users, and the permissions they have.

Note: If you are using ATG Customer Intelligence for reporting with secured catalogs, in order for the
ProductCatalog logs to be created during deployment, you must create a
server_name/localconfig/atg/reporting/datacollection/commerce/ProductCatalogDeploy

mentListener.properties file with the following contents:

repositoryPathAliasMap=\

/atg/commerce/catalog/SecureProductCatalog=/atg/commerce/catalog/

ProductCatalog

sourceRepositoryPathToItemDecriptorNames+=\

/atg/commerce/catalog/SecureProductCatalog=category;product;sku;promotion

See the Preparing to Use Commerce Reporting chapter in this guide for information on data logging.

Importing Product Catalog Content
You may want to maintain your catalogs in an external system and use that content as a basis for your
ATG product catalogs, which are organized into repository data sets. The way you approach exporting
this content depends largely on the system that currently holds your content and the data itself. Consult
your third-party system documentation for exporting instructions. ATG includes two importing tools:

 The startSQLRepository script imports content formatted in an XML file into
content or SQL repositories. See the startSQLRepository script and Template Parser
section in the ATG Repository Guide.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 0

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
 The Repository Loader is a module that conducts single or scheduled imports of XML,

HTML, binary, and file system files into content or SQL repositories. See the Repository
Loader chapter of the ATG Repository Guide for information.

You can also write your own import code. Keep in mind that the XML files parsed by the
startSQLRepository script are easier to write than their Repository Loader counterparts, however,
running the Repository Loader uses less memory than the startSQLRepository script.

It’s a good idea to familiarize yourself with repositories in general by reading through the Introduction and
Repository API chapters of the ATG Repository Guide as well as the documentation on the commerce
repositories available to you. The commerce repositories are described in the Using and Extending the
Product Catalog chapter of this guide. Learning about the repositories you’ll use will help you understand
the format required by the ATG importing tools, and planning your data organization strategy will
minimize the amount of manual tweaking you’ll need to do later. The ATG Commerce repositories are
extensible, so you have the option of changing them if they don’t offer the properties or item types your
product catalog requires.

Once you generate the export files, import your content into ATG Commerce using the ATG tool you
prefer.

Assigning a Catalog to a User
In order for users to view a catalog, they must have that catalog assigned to their profile. The catalog
assumes the existence of a catalog property for the user repository item. The catalog property is a
derived property. You can set it in either the user’s myCatalog property or the catalog property of the
contract for the user’s parentOrganization. If myCatalog is set, the parent organization’s setting is
ignored.

ATG Commerce adds CatalogProfilePropertySetter and PriceListProfilePropertySetter
components to the profilePropertySetters property of the
/atg/dynamo/servlet/dafpipeline/ProfilePropertyServlet component in the DAF servlet
pipeline:

profilePropertySetters+=/atg/userprofiling/CatalogProfilePropertySetter,\

 /atg/userprofiling/PriceListProfilePropertySetter

For the profile’s catalog property, the CatalogProfilePropertySetter calls the determineCatalog
method of the /atg/commerce/catalog/CatalogTools component (class
atg.commerce.catalog.custom.CustomCatalogTools). This method invokes the
/atg/commerce/util/ContextValueRetriever component, which is the primary mechanism for
identifying the catalog to assign so that the appropriate items can be displayed. See
ContextValueRetriever Class for more information.

ContextValueRetriever Class

The class for the ContextValueRetriever component is
atg.commerce.util.ContextValueRetriever, which holds most of the logic for determining which

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 1

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ
catalog to assign to each user. It performs a parallel function for price lists – see PriceListManager for more
information. It has one property, useProfile, which is a boolean that defaults to false. The main method,
retrieveValue, goes through the following steps. The method does not continue to the next step if it
finds a non-null value.

1. It calls the shouldUseProfile method (see below). If this method returns true, it
retrieves the requested property from the profile.

2. If a site was provided, it retrieves the requested property from the site. See Assigning
Price Lists and Catalogs in a Multisite Configuration for more information.

If ContextValueRetriever returns null, CustomCatalogTools.determineCatalog picks up the
default catalog and returns that to the CatalogProfilePropertySetter.

The out-of-the-box implementation of the shouldUseProfile method simply returns the value of the
useProfile property. By default this property is set to false, which is appropriate for most multisite
environments. The false value means that anything that might already be set in the profile is ignored, and
values are retrieved instead from the current site or the global (CatalogTools) default. If you assign
catalogs or price lists via your own pipeline servlet or a scenario, set useProfile to true to prevent your
profile settings from being overridden with the global defaults.

If your business requires different choices for different customers, you can override shouldUseProfile.
For example, assume some special customers (for example employees and sales reps) have values pre-set
in their profiles, while most customers should get site defaults. The shouldUseProfile method can look
at any profile property to decide if a customer is special or not and return true for the special customers
and false for everyone else. In addition, if you want to add another source for catalogs or price lists,
beyond profiles and sites, you can override the retrieveValue method.

Note that ATG 10.0.1 provides a single component that handles both catalogs and price lists. This
configuration assumes you want to apply the same logic for both types of values, which is common. If you
want to apply different logic for catalogs and price lists, you can configure a second Nucleus instance of
the ContextValueRetriever component, change its configuration or implementation class, and
reconfigure either CatalogTools or PriceListManager to refer to the new instance.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 2

4 - U s i n g a n d E x t e n d i n g t h e P r o d u c t C a t a l o g

μ

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 3

5 - U s i n g t h e C a t a l o g M a i n t e n a n c e S y s t e m

μ
5 Using the Catalog Maintenance

System

Relationships among items in a catalog can be very complex. Any time you make changes to the catalog,
those relationships might change. Maintaining these relationships is vital in order to allow customers to
navigate and search your catalogs. ATG catalogs use several batch and dynamic services to perform
catalog updates and to verify catalog relationships. These services are collectively referred to as the
Catalog Maintenance System (CMS).

The CMS updates property values that enable navigation and hierarchical search (see the Catalog
Navigation and Searching chapter of the ATG Commerce Guide to Setting Up a Store). It also verifies the
relationships of catalog repository items and properties. These services can be run either on demand or in
scheduled mode, and each service performs functions that can be selectively executed using the function
names.

This chapter includes the following sections:

Batch Services

Dynamic Services

Running Catalog Maintenance Services

Important: If you add items to catalog folders, the catalog maintenance services propagate site
membership from those folders to the items added. If you remove items from those folders, however,
they remain linked to their sites; the CMS has no way to know if the site association existed before the
catalog folder relationship.

Batch Services
These services facilitate catalog updates in batch mode. All batch services can be run on demand or in
scheduled mode. The batch mode services are:

 CatalogMaintenanceService, which includes the following services:

 AncestorGeneratorService

 CatalogVerificationService

 CatalogUpdateService

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 4

5 - U s i n g t h e C a t a l o g M a i n t e n a n c e S y s t e m

μ
Each service keeps in memory a history of all information, warning and error level messages. The
messages are exposed through a set of API methods: getWarningMessages, getErrorMessages,
getInfoMessages and getCurrentMessage. They can be viewed using the View Status option on the
Commerce Administration Page. For more information see Running Catalog Maintenance Services.

Each service creates a global lock at the start of execution and releases it upon completion. This prevents
services that use the same lock name from executing simultaneously on the same server, or other servers
in the cluster.

All services have the following configurable properties, in addition to their own unique properties:

Property Description

schedule Schedule on which the service will execute. If this property is
valued, the service will schedule itself accordingly when it is
first instantiated.

availableFunctions A list of function names that the service can perform.
Function names identify specific processes that can be
performed by the service, such as AGS_GENCATALOGS to
generate ancestor catalogs.

functionsToPerformBy

Default

This property configures a default set of function names that
are executed if none are explicitly provided, which may be
the case if the services is running in schedule mode, or
through the Java API. It can include any of the functions
exposed by the availableFunctions property.

saveMessages If true, the info, error, and warning messages from the last
execution of the service are retained in memory. These
messages are used for the maintenance log display on the
Dynamo Admin UI. The default is true.

maxItemsPerTransacti

on

The number of repository items that are updated in a single
transaction. This can be used in the case of very large catalogs
to spread updates across several transactions.

jobName The scheduler job name used when the service is scheduled.

jobDescription The scheduled job description.

lockTimeOut Time in milliseconds before a timeout when acquiring the
global lock.

lockName The name used for the global lock.

The AncestorGeneratorService, CatalogVerificationService, and CatalogUpdateService all
include a catalogProperties property. The catalogProperties property points to the
/atg/commerce/catalog/custom/CatalogProperties component, which includes the following
properties:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 5

5 - U s i n g t h e C a t a l o g M a i n t e n a n c e S y s t e m

μ

Property Description

categoryItemName The name of the item type that functions as a
category in the catalog. If the catalog has multiple
category item types related by inheritance, set this
property to the name of the parent type; the
service will generate ancestor categories for the
subtypes as well as the parent type.

Default: category

productItemName The name of the item type that functions as a
product in the catalog. If the catalog has multiple
product item types related by inheritance, set this
property to the name of the parent type; the
service will generate ancestor categories for the
subtypes as well as the parent type.

Default: product

ancestorCategoriesPropertyNa

me

The name of the property used to store the Set of
ancestor categories of the item; this must be a
property of the item types specified by
categoryItemName and productItemName.

Default: ancestorCategories

childCategoriesPropertyName The name of the property used to store the Set of
categories that the item is the parent category of;
this must be a property of the item type specified
by categoryItemName.

Default: fixedChildCategories

childProductsPropertyName The name of the property used to store the Set of
products that the item is the parent category of;
this must be a property of the item type specified
by categoryItemName.

Default: fixedChildProducts

catalogIds An array of the IDs of the Repository objects that
make up the catalog. If your sites use only a single
repository for its product catalog, this property can
be null.

Default: null

includDynamicChildren If true, AncestorGeneratorService generates
properties for both fixed and dynamic children; if
false, it generates properties only for fixed children.
The default is false.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 6

5 - U s i n g t h e C a t a l o g M a i n t e n a n c e S y s t e m

μ

CatalogMaintenanceService

Component: /atg/commerce/catalog/CatalogMaintenanceService

The CatalogMaintenanceService component is a container for the AncestorGeneratorService and
the CatalogVerificationService (note, however, that the CatalogVerificationService is
disabled by default); it provides a single point of access to those services and a consolidated view of their
processing results.

The history log for each of the registered services can be viewed from the Dynamo Admin UI. This log is
maintained only in memory and is discarded after a redeployment of ATG Commerce. The ATG platform
logs can be used as a historical reference to the service logs.

You can execute or schedule any functions for either the AncestorGeneratorService or the
CatalogVerificationService from the CatalogMaintenanceService. Therefore, this service can be
scheduled to sequentially execute other services it contains, as opposed to scheduling each service
individually.

CatalogMaintenanceService includes the following properties as well as the properties listed at the
beginning of the Batch Services section:

Property Description

availableServices An array of Nucleus paths to each contained service
component. Each component is resolved by path
and added to the servicesMap property.

availableFunctions A consolidated list of all the availableFunctions
provided by the contained services.

functionsToPerformByDefault Configures a default set of function names that are
executed when none are provided, such as in
schedule mode, or through the Java API. It can be
any of the function names exposed by the
availableFunctions property.

The CatalogMaintenanceService has a related /atg/epub/CatalogMaintenanceHelper
component. This component is used by installations that use ATG Content Administration to manage
their catalogs; it listens for ATG Content Administration deployments and runs catalog maintenance
services automatically. For ATG Commerce purposes, the component’s important property is
extraTriggeringAffectedItemDescriptors. By default, the CatalogMaintenanceHelper listens
for changes to catalog items such as catalog, category, categoryInfo, product, productInfo, sku,
and skuInfo. If you have created custom subtypes based on these item types, you can add them to this
property, so that changes to these item types can also trigger catalog maintenance services. For example:

extraTriggeringAffectedItemDescriptors+=myCustomDesc1,myCustomDesc2

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 7

5 - U s i n g t h e C a t a l o g M a i n t e n a n c e S y s t e m

μ
For general information on ATG Content Administration, see the ATG Content Administration Programming
Guide.

AncestorGeneratorService

Component: /atg/commerce/catalog/custom/AncestorGeneratorService.

The AncestorGeneratorService component generates ancestor categories for the product and
category item types, and stores the names of these ancestor categories in the ancestorCategories
property of each product and category.

The AncestorGeneratorService updates the following property values for each of the catalog item
types. This service must be executed after making catalog updates in order for catalog navigation and
search to work correctly.

Item Type Property Names

Categories computedCatalogs

ancestorCategories

parentCategoriesForCatalog

siteIds

Products computedCatalogs
ancestorCategories
parentCategoriesForCatalog
siteIds

SKUs computedCatalogs
sideIds

If you have extended the ATG catalog schema, you can still use AncestorGeneratorService to
generate ancestor categories, provided that:

 The catalog includes item types that represent categories and products (regardless of
the actual names of these item types).

 The item types representing categories and products each have a property for storing
the names of ancestor categories (regardless of the name of the property; note,
however, that the property must have the same name for each item type).

Available Functions

AGS_GENCATALOGS: generates the catalogs properties

AGS_GENPARENTCATS: generates the parentCategoriesForCatalog property

AGS_GENANCESTORS: generates the ancestorCategories property

AGS_GENPROPERTIES: generates all properties for all items

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 8

5 - U s i n g t h e C a t a l o g M a i n t e n a n c e S y s t e m

μ
AGS_GENPROPERTIES_FOR_CATEGORY: generates all properties for categories

AGS_GENPROPERTIES_FOR_PRODUCT: generates all properties for categories and products

CatalogVerificationService

Component: /atg/commerce/catalog/custom/CatalogVerificationService

The CatalogVerificationService verifies relationships between catalog items. It validates the
following property values for each catalog item type:

Item Type Property Names

Catalogs ancestorCategories
allRootCategories
directAncestorCatalogsAndSelf
indirectAncestorCatalogs

Categories fixedRelatedCategories
categoryInfos
parentCategory

Products fixedRelatedProducts
catalogsRelatedProducts
productInfos
parentCategoriesForCatalog

SKUs fixedReplacementProducts
catalogsReplacementProducts
skuInfos

Note: This service is disabled by default for performance reasons. Consider running this service
periodically if any of the following apply:

 You define cross-sells on each product and want to be sure that your cross-sells don’t
cross catalogs

 You use breadcrumbs and want to be sure that the defined parent categories on
products and categories make sense for your catalog structure

 You want to make sure the incrementally-maintained catalog properties
(ancestorCategories, allRootCategories, directAncestorCatalogsAndSelf,
indirectAncestorCatalogs) have not gotten out of sync

Available Functions

CVS_VERIFYCATALOGS: verifies catalog item properties

CVS_VERIFYCATEGORIES: verifies category item properties

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 9

5 - U s i n g t h e C a t a l o g M a i n t e n a n c e S y s t e m

μ
CVS_VERIFYPRODUCTS: verifies product item properties

CVS_VERIFYSKUS: verifies SKU item properties

CatalogUpdateService

Component: /atg/commerce/catalog/custom/CatalogUpdateService

The CatalogUpdateService updates the same catalog properties that are updated by the dynamic
service CatalogCompletionService, but in batch mode. Because the CatalogCompletionService
can be disabled and may not be actively updating the catalog property values in real time, this service can
be used to batch update them on an as-needed basis.

The CatalogUpdateService includes the following configurable properties:

Property Description

includeDynamicChildren This flag determines whether dynamic children
should be calculated as part of processing.

maxItemsPerTransaction Specifies how many items to include in each
processing batch.

projectWorkflow Identifies the workflow to use when creating a
Content Administration project.

serviceFunctions Sets the list of available functions. By default this
includes on CUS_UPDATECATALOGS, which
updates all item properties in the catalog.

catalogIds Identifies the catalogs that should be updated.

The service can be run in a versioned ATG instance. If you use startSQLRepository to import catalog
data, you can run this service immediately after the import to compute all properties, which can
afterwards be maintained by CatalogCompletionService.

This service updates the following property values for each of the catalog item types.

Item Type Property Names

Catalog directAncestorCatalogsAndSelf
indirectAncestorCatalogs
ancestorCategories
allRootCategories

siteIds

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 0

5 - U s i n g t h e C a t a l o g M a i n t e n a n c e S y s t e m

μ
Category siteIds

computedCatalogs

parentCategoriesForCatalog

Catalog Folder siteIds

Available Functions

CUS_UPDATECATALOGS: Updates all item properties in the catalog

Dynamic Services
The dynamic services are components that enable catalog properties to be dynamically updated as the
catalog structure is modified by an ACC user, BCC user, or a program using the Repository API.

 CatalogChangesListener

 PropertiesChangedHandler Components

 CatalogCompletionService

CatalogChangesListener

Component: /atg/commerce/catalog/custom/CatalogChangesListener

This component registers itself at deployment. It is notified for each repository change made to a catalog
folder, category or catalog item in the product catalog.

As each change is made, the CatalogChangesListener calls the appropriate
PropertiesChangedEventHandler listed in the eventHandlers property. The event handlers then call
the CatalogCompletionService.

The CatalogChangesListener includes the following configurable properties:

Property Description

enabled Determines whether or not this component is
used.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 1

5 - U s i n g t h e C a t a l o g M a i n t e n a n c e S y s t e m

μ
eventHandlers Lists the PropertiesChangedEventHandler

components that are available for this component.
By default, the list includes the following:

CatalogFolderPropertiesChangedHandler

CatalogPropertiesChangedHandler

CategoryPropertiesChangedHandler

If you want to listen for changes on additional item
types, you can implement a new
PropertiesChangedEventHandler component
and add it to the eventHandlers map.

PropertiesChangedHandler Components

The PropertiesChangedHandler components are registered with the CatalogChangesListener
component. There are three PropertiesChangedHandler components:

 CatalogFolderPropertiesChangedHandler

 CatalogPropertiesChangedHandler

 CategoryPropertiesChangedHandler

Each PropertiesChangedHandler listens for changes to its designated property type and then calls the
CatalogCompletionService to make the necessary changes.

CatalogCompletionService

Component: /atg/commerce/catalog/custom/CatalogCompletionService

This component updates catalog item property values in real time based on changes made to the product
catalog repository. It is called by the PropertiesChangedHandler components when changes are made
to the product catalog repository.

Refer to the CatalogUpdateService for a list of properties that are maintained by this service.

Running Catalog Maintenance Services
This section describes the options available for running the catalog maintenance services. You can also
configure services to run on a scheduled basis.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 2

5 - U s i n g t h e C a t a l o g M a i n t e n a n c e S y s t e m

μ
Running Batch Services from the Commerce Admin Page

Catalog Maintenance batch services should be run the in a staging environment rather than against the
production database. They should be run after any structural changes are made to the catalog. For
example, it should be run after adding new categories, products, or SKUs.

The catalog batch maintenance services are available from the Commerce Administration page. For more
information on accessing the Dynamo Administration UI, see the ATG Installation and Configuration Guide.

Important: If you are running ATG Content Administration, you must configure one agent server on your
target cluster to run the Catalog Maintenance Service. For more information, see the ATG Merchandising
Administration Guide.

There are four options available on the menu; Catalog Update, Catalog Verification, Basic Maintenance
and View Status.

Catalog Update

This CatalogUpdateService batch updates catalog property values that are normally updated
incrementally by the CatalogCompletionService. When CatalogUpdateService is enabled, all
updates to the catalog that are made using the Repository API (this includes the ACC, BCC, and ATG
Merchandising) trigger these properties to be computed and updated dynamically. The default is to run
all the functions of the CatalogUpdateService.

If the DCS catalog is updated using some process other than the Repository API, or if
CatalogUpdateService is disabled, you can run CatalogUpdateService manually to batch update
the appropriate property values.

To run CatalogUpdateService from the Commerce Administration Page, click on the Catalog Update
link. Click on the Start Process button at the bottom of the Catalog Update page.

Catalog Verification

This process verifies catalog component relationships for accuracy. The default is to run all the functions
of the CatalogVerficationService.

To run CatalogVerficationService from the Commerce Administration Page, click on the Catalog
Verification link. Click on the Start Process button at the bottom of the Verify Catalog page.

Basic Maintenance

This process executes the standard batch maintenance services against the DCS catalog. The default
configuration runs all the functions of the AncestorGeneratorService and
CatalogVerificationService.

To run Basic Maintenance from the Commerce Administration Page, click on the Basic Maintenance link.
Click on the Start Process button at the bottom of the Basic Maintenance page.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 3

5 - U s i n g t h e C a t a l o g M a i n t e n a n c e S y s t e m

μ
View Status

The View status page let you view the information, errors and warnings from the last execution of
maintenance on the server. To view the status log from the Commerce Administration Page, click on the
View Status link. The status from the last execution displays. For example:

Running a Batch Service from the ACC

To use the ACC to execute a service:

1. In the Components > by Path window, select the component by path:
/atg/commerce/catalog/CatalogMaintenanceService.

2. Choose File > Open Component.

The Component Editor opens.

3. If the component is not currently running, choose Component > Start Component.

4. Select the Methods tab.

5. Click the Invoke button next to the performService method.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 4

5 - U s i n g t h e C a t a l o g M a i n t e n a n c e S y s t e m

μ
Batch Maintenance Form Handler

Component: /atg/commerce/catalog/RunServiceFormHandler

There is one form handler that is used to execute the batch services from the Commerce Administration
Pages. This form handler executes the CatalogMaintenanceService, passing a configurable set of
functions for each available option. The execution of the CatalogMaintenanceService is started in a
new thread, then the View Status page is shown. The View Status can be refreshed to monitor the
progress of the batch maintenance run.

Property information:

Property Description

basicMaintenanceFunctions These are the function names passed to the
CatalogMaintenanceService for the
execution of the Basic Catalog Maintenance
option.

verifyFunctions These are the function names passed to the
CatalogMaintenanceService for the
execution of Verify Catalog option.

updateFunctions These are the function names passed to the
CatalogMaintenanceService for the
execution of Update Catalog option.

Running Dynamic Services

The dynamic service components are started automatically. You can disable the
CatalogCompletionService by setting the service’s enabled property to false. If you set the
enabled property to false, the component still starts up with ATG Commerce, but does not do anything
if called.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 5

6 - A T G C o m m e r c e P r o f i l e E x t e n s i o n s

μ
6 ATG Commerce Profile Extensions

ATG Commerce extends the profile configuration and classes of the Personalization module in several
ways to add functionality. Components of ATG Commerce rely on these extensions to perform their logic.
Removing or modifying the profile additions may require modifying logic in ATG Commerce.

This chapter includes the following sections:

Profile Repository Extensions
Describes the attributes that ATG Commerce adds to the user Item Descriptor to
support gift lists, wish lists, promotions, address books, credit card collection and
other minor features.

Profile Form Handler Extensions
Describes the ATG Commerce profile form handler extensions.

Profile Tools and Property Manager Extensions
Describes the extensions related to the ATG Commerce profile tools, which provide
additional methods to access commerce specific profile properties such as shipping
and billing addresses and credit card information. Also describes the extensions
related to the ATG Commerce Property Manager, which provides additional access to
profile property names specific to Commerce customers that are used by
CommerceProfileTools.

Profile Repository Extensions
The Personalization module’s Profile Repository is an instance of the Generic SQL Adapter. It is located in
/atg/userprofiling/ProfileAdapterRepository. In this adapter, the Personalization module
defines a base “user” Item Descriptor. This user has many general attributes defined, such as first and last
name, e-mail address, date of birth and home address. See the Standard User Profile Repository Definition
section of the Setting Up a Profile Repository chapter in the ATG Personalization Programming Guide for
more information on the attributes included. Associated with the user definition is an item type created
for contact information (contactInfo) which encapsulates fields such as address, city, state, postal code,
phone number.

ATG Commerce adds several attributes to the user Item Descriptor to support gift lists, wish lists,
promotions, address books, credit card collection and other features.

Promotions

Three attributes manage promotions for each user:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 6

6 - A T G C o m m e r c e P r o f i l e E x t e n s i o n s

μ
 activePromotions: Stores the list of promotions that can be used by the user in

pricing their orders.

 usedPromotions: Stores promotions that can no longer be used. A promotion is
moved to the used list if it was created with a limited number of uses, and the user has
reached the threshold.

Each of these collection attributes has a component item type of promotion which is defined in the
Product Catalog repository /atg/commerce/catalog/ProductCatalog.

Address Books

Three attributes are defined as part of the address book: billingAddress, shippingAddress and
secondaryAddresses. The billing and shipping address is a contactInfo and the secondary addresses
are a map of contactInfo objects. It is intended that the billingAddress and shippingAddress
attributes are for “default” address values for the user. The user can create nicknames for other addresses
and store those as the key/value pairs in the secondaryAddresses map.

Credit Card Collection

The Commerce profile extensions also include defining a new credit-card item type. A credit card includes
the following attributes:

 creditCardNumber

 creditCardType

 expirationMonth

 expirationDayOfMonth

 expirationYear

 billingAddress

The user definition includes defaultCreditCard and creditCards map attribute.

Gift Lists and Wish List

Three attributes manage gift lists for each user:

 Wishlist: Stores the index to the default wish list created for a user.

 Giftlists: Stores the list of gift lists created by a user when they register an event.

 OtherGiftlists: Stores the list of gift lists from which a customer is currently
shopping. These are registries of other customers that have been accessed by the
customer using the gift list search feature.

Each attribute has a component item type of gift-list defined in the Giftlist Repository. The giftlist
repository is located in /commerce/gifts/Giftlists. For more information on gift lists and wish lists,
see the Configuring Commerce Services chapter.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 7

6 - A T G C o m m e r c e P r o f i l e E x t e n s i o n s

μ
Other Features

The following list contains some other attributes that are used through out the commerce system.

 allowPartialShipment: This Boolean value can be used as the user’s default setting
for allowing partial shipments. If your sites support multiple shipping groups, you can
give the customer the option of allowing a shipping group to be automatically split if
some items cannot be shipped together (e.g. some items are backorderId). See the
Configuring the Order Fulfillment Framework chapter for information on allowing
partial shipments.

 daytimeTelephoneNumber: The user’s daytime telephone number.

 currentLocation: This is an enumerated attribute to be used with targeting.

In the associated JSPs use a <setvalue> call to set the current location. For example, <dsp:setvalue
bean="Profile.currentLocation" value="home"/>

Profile Form Handler Extensions
The ATG Commerce profile form handler (atg.commerce.profile.CommerceProfileFormHandler) is
a subclass of atg.userprofiling.ProfileFormHandler. It performs operations specific to Commerce.
For example, an anonymous user can accumulate promotions in their activePromotions attribute.
During login, the anonymous user’s active promotions are copied into the list of active promotions of the
persistent user. During the registration and login process, any shopping carts (Orders) created before
logging in are changed to be persistent.

If the user’s persistent profile contains any old shopping carts (Orders in an incomplete state), these
shopping carts are loaded into the user’s session. After log in, the PricingModelHolder component is
reinitialized to cache all the promotions that the persistent user has accumulated during previous
sessions. These operations are performed by overriding the addPropertiesOnLogin, postCreateUser
and postLoginUser methods from the ProfileFormHandler.

Profile Tools and Property Manager Extension
The ATG Commerce profile tools class (atg.commerce.profile.CommerceProfileTools) is a subclass
of atg.userprofiling.ProfileTools. It provides additional methods to access commerce specific
profile properties such as shipping and billing addresses and credit card information. The ATG Commerce
Property Manager (atg.commerce.profile.CommercePropertyManager) is a subclass of
atg.userprofiling.PropertyManager. It provides additional access to profile property names specific
to Commerce customers that are used by CommerceProfileTools.

For example, a registered Commerce customer may have multiple shipping addresses. These different
shipping addresses are managed by the CommerceProfileTools component. This extension of the tools
component provides methods to create, delete and update profile repository shipping addresses as well
as to retrieve all shipping addresses. The shipping address property names are stored in

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 8

6 - A T G C o m m e r c e P r o f i l e E x t e n s i o n s

μ
CommercePropertyManager. This provides a convenient central location to store property names that
may change depending on the site.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 9

7 - C o n f i g u r i n g C o m m e r c e f o r M u l t i s i t e

μ
7 Configuring Commerce for Multisite

This chapter describes the Commerce-specific configuration tasks required in order to use ATG’s multisite
feature. The term multisite refers to running multiple Web sites from a single ATG instance. For example, a
clothing manufacturer with two brands, a bargain brand and a luxury brand, could create and manage a
separate Web site for each brand from one instance of ATG products. The sites could be configured to
share items such as shopping carts.

This chapter includes the following sections:

Site Repository Extensions for Commerce

Configuring Commerce Options in Site Administration

Assigning Price Lists and Catalogs in a Multisite Configuration

Site Repository Extensions for Commerce
ATG Commerce extends the site repository with the following Commerce-specific properties:

 catalog

 listPriceList

 salePriceList

This allows you to associate catalogs and price lists with sites through Site Administration, as described in
the following section. The CommerceSitePropertyManager component provides access to these
properties through its own properties:

 catalogPropertyName

 listPriceListPropertyName

 salePriceListPropertyName

Configuring Commerce Options in Site Administration
Site Administration is the main tool for creating and configuring sites. For general information on Site
Administration, see the ATG Multisite Administration Guide.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 0

7 - C o n f i g u r i n g C o m m e r c e f o r M u l t i s i t e

μ
When you create sites in Site Administration, some of the configuration options you set are related to
your ATG Commerce application. Note that if you have created your own site templates, or extended the
provided template, you may have different options or additional options.

In Site Administration, configure the following:

1. When you select the site type, select the Commerce option.

2. Provide the following default Commerce information for the site:

 Default Catalog

 Default List Price List

 Default Sale Price List

3. Configure the shareable type, if necessary. ATG Commerce by default includes a single
shareable type, atg.ShoppingCart, which controls sharing for both the shopping
cart and product comparison lists.

Assigning Price Lists and Catalogs in a Multisite
Configuration

As described in Configuring Commerce Options in Site Administration, you select default catalog and
(optionally) price lists for each site in your multisite environment during initial configuration. This section
describes how ATG Commerce determines which catalog and price lists to assign to the user’s profile
when a user visits a given site, allowing the appropriate items to display.

For the profile’s catalog property, the /atg/userprofiling/CatalogProfilePropertySetter
component calls the determineCatalog method of the /atg/commerce/catalog/CatalogTools
component. This method invokes the /atg/commerce/util/ContextValueRetriever component. If
this component’s useProfile property is false (the default), the following logic is applied:

 If there is a current site (the application is running in a multisite environment), use the
value of the defaultCatalog property of the siteConfiguration item for the
current site.

 Otherwise, use the value of the defaultCatalog property of the CatalogTools
component.

Similar logic is used to set the profile’s priceList and salePriceList properties. The
/atg/userprofiling/PriceListProfilePropertySetter component calls the
/atg/commerce/pricing/priceLists/PriceListManager component’s determinePriceList
method, which calls ContextValueRetriever.

For more information on the ContextValueRetriever, see ContextValueRetriever Class.

Note that ATG Business Commerce can run in a multisite environment, but does not actually support
multiple sites. ATG Business Commerce disables CatalogProfilePropertySetter and
PriceListProfilePropertySetter to prevent catalog and price list settings stored in customer
profiles from being overridden.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 1

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
8 Configuring Commerce Services

This chapter includes the following information on ATG Commerce services:

Setting Up Gift Lists and Wish Lists
Customers can use gift lists and wish lists to create lists of items for future purchase.
This section describes how to implement these lists.

Setting Up Product Comparison Lists
Comparison lists enable customers to make side-by-side comparisons of different
products and SKUs. This section describes how to implement comparison lists.

Setting Up Gift Certificates and Coupons
Enables customers to purchase and use gift certificates and redeem coupons.

Setting Up Gift Lists and Wish Lists
Gift lists are lists of items selected by a site visitor. Gift lists can be used in two ways:

 As gift lists
Gift lists are lists of products that other site visitors can view. Customers can use gift
lists to register for events, such as birthdays or weddings. Customers c an create an
unlimited number of gift lists for themselves. Part of the purchase process allows for
special handling instructions for gift purchasing, for example, address security,
wrapping, and shipping.

 As wish lists
Customers can use wish lists to save lists of products without placing the items in their
shopping carts. A wish list is actually a gift list that is accessible to only the person who
created it. Customers can access their wish lists every time they log into their accounts,
and they can purchase items from their wish lists at any time. All customers have a
single default wish list.

The gift list class package is atg.commerce.gifts. Refer to the ATG API Reference for more information
on the associated classes and programming interfaces. The following scenarios demonstrate how gift lists
can be used on a commerce site.

Example of Using a Gift List

The following scenario describes how a site customer can use a gift list while shopping on a store web
site. John Smith logs onto the site and creates a list of gifts he would like to receive for his birthday. Mike,

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 2

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
John’s friend, then visits the site and searches for “John Smith.” Mike can use advanced search criteria to
refine his search by including a state, event name, or event type.

The store returns a list of gift lists found. Mike selects the correct list and views the items that John
selected. Mike sees that John needs two new inner tubes for his bike. Mike can see that someone has
already purchased one of the inner tubes. Mike decides to purchase the other inner tube for John and
adds it to his cart. During the checkout process, Mike can send the item to his own address or send it
directly to John. The gift list now reflects that two inner tubes have been purchased for John.

Example of Using a Wish List

The following scenario describes how a site customer uses a wish list while shopping on a store web site.
A customer, Sally, browses the store and finds items she would like to purchase, but can not afford to buy
right now. Sally can add the items to her private wish list and save the list. The next time she visits the site,
she can view her wish list. She can buy the items by moving them to her shopping cart. The remaining
items are saved in the wish list for later visits. A wish list is not searchable or visible by other customers of
the store. It serves only as a holder of items the customer has found.

Gift List Functionality

The gift list functionality is broken down into the following sub-areas. Each of these sub-areas is described
in detail later in this section.

 Gift List Business Layer Classes: Business layer classes contain the logic for gift list
creation and manipulation. These classes consist of a GiftlistManager and
GiftlistTools.

 Gift List Repository: The repository definition maps the Giftlists repository to
database tables. The business layer classes access the gift lists through the repository
layer.

 Gift List Form Handlers and Gift List Servlet Beans: The form handlers and servlet beans
provide an interface to the Giftlists repository. They provide the interface between
the UI and the business layer classes to create and edit gift lists.

 Purchase Process Extensions to Support Gift Lists: The purchase process has been
extended to support purchasing gifts from published gift lists. This section describes
the components that are used to support this functionality. For example, these
components support adding an item from a gift list to a shopping cart and updating
the Giftlists repository at checkout.

 Extending gift list functionality: Gift list functionality provided in ATG Commerce
supports most requirements of commerce sites. However, you can extend this
functionality if needed. This section describes what steps to take if extending the
system is necessary.

 Disabling the Gift List Repository: Describes how to disable the Giftlists repository.
Disable the repository if you are not going to use the gift list functionality.

Gift List Business Layer Classes

The business layer classes contain the logic for managing gift lists and items. The methods within these
classes are used to create, update, and delete selected gift lists for a given customer. The business layer

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 3

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
components are the interface to the Giftlists repository. All calls to modify a gift list are made through
these classes.

Gift list business layer classes include the following:

 GiftlistManager: The majority of the functionality for gift list management exists in
the GiftlistManager component. The class contains such methods as
createGiftlist, updateGiftlist, addItemToGiftlist and
removeItemFromGiftlist. These methods are higher level than those in
GiftlistTools and mostly perform validation tasks before calling GiftlistTools
to update the gift list repository.

 GiftlistTools: The GiftlistTools component is the low level interface and
contains the logic for creating and editing gift lists in the repository. GiftlistTools
is not usually called directly. Generally, it is called by the GiftlistManager class to
perform tasks on gift lists.

Because these classes do not contain any state, it makes sense for them to exist as globally-scoped
services in ATG Commerce. Rather than constructing a new object when required, ATG Commerce places
one instance of each component into the Nucleus hierarchy to be shared. They can be found in the
hierarchy under:

 /atg/commerce/gifts/GiftlistTools

 /atg/commerce/gifts/GiftlistManager

Note: Gift lists use the ClientLockManager component to control locks on repository items. The
ClientLockManager prevents a deadlock situation or data corruption that could occur when multiple
customers update the same gift list. The ClientLockManager is located at
/atg/dynamo/service/ClientLockManager. See the Using Locking in Fulfillment section of the
Fulfillment Framework chapter for more information on the ClientLockManager.

Gift List Repository

The Giftlists repository is the layer between ATG Commerce and the database itself. It provides an
interface to the database layer to persist gift list information. The Giftlists repository uses the SQL
Repository implementation. For more information on SQL repositories, see the ATG Repository Guide.

The Giftlists repository is defined in the giftlists.xml definition file, located in the ATG Commerce
configuration path at /atg/commerce/gifts/. This XML file defines item descriptors for gift lists and gift
list items. In addition, properties in the userProfile.xml definition file allow you to link user profiles
with gift lists in the gift list repository. The userProfile.xml file is located in the ATG Commerce
configuration path at /atg/userprofiling.

The following example shows the content of the /atg/commerce/gifts/giftlists.xml file located in
<ATG10dir>/DCS/src/config/config.jar.

Note: The siteId properties defined for both the gift-list and gift-item item descriptors is
required for multisite environments only. See Gift and Wish Lists in a Multisite Environment for more
details.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 4

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE taglib

 PUBLIC "-//Art Technology Group, Inc.//DTD General SQL Adapter//EN"

 "http://www.atg.com/dtds/gsa/gsa_1.0.dtd">

<gsa-template>

 <header>

 <name>Commerce Giftlists</name>

 <author>DCS Team</author>

 <version>$Id: //product/DCS/main/templates/DCS/config/atg/

 commerce/gifts/giftlists.xml#6 $$Change: 546512 $</version>

 </header>

 <!--

 GiftList (also gift registries)

 -->

 <item-descriptor name="gift-list" item-cache-size="1000" query-cache-size="1000"

 display-name-resource="itemDescriptorGiftList">

 <attribute name="resourceBundle"

 value="atg.commerce.GiftListsTemplateResources"/>

 <attribute name="categoryBasicsPriority" value="10"/>

 <attribute name="categoryShippingPriority" value="20"/>

 <attribute name="categoryInfoPriority" value="30"/>

 <table name="dcs_giftlist" type="primary" id-column-name="id">

 <property name="id" writable="false" category-resource="categoryInfo"

 display-name-resource="id">

 <attribute name="propertySortPriority" value="-10"/>

 </property>

 <property name="owner" item-type="user"

 repository="/atg/userprofiling/ProfileAdapterRepository"

 column-name="owner_id" category-resource="categoryBasics"

 display-name-resource="owner">

 <attribute name="propertySortPriority" value="-11"/>

 </property>

 <property name="siteId" data-type="string" column-name="site_id"

 category-resource="categoryInfo" display-name-resource="siteId">

 <attribute name="propertySortPriority" value="-10"/>

 </property>

 <property name="public" data-type="boolean" column-name="is_public"

 default="false" category-resource="categoryInfo"

 display-name-resource="public" required="true">

 <attribute name="propertySortPriority" value="-8"/>

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 5

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
 </property>

 <property name="published" data-type="boolean" column-name="is_published"

 default="false" category-resource="categoryInfo"

 display-name-resource="published" required="true">

 <attribute name="propertySortPriority" value="-7"/>

 </property>

 <property name="eventName" data-type="string" column-name="event_name"

 category-resource="categoryBasics" display-name-resource="eventName">

 <attribute name="propertySortPriority" value="-10"/>

 </property>

 <property name="eventDate" data-type="timestamp" column-name="event_date"

 category-resource="categoryBasics" display-name-resource="eventDate">

 <attribute name="propertySortPriority" value="-9"/>

 </property>

 <property name="eventType" data-type="enumerated" default="other"

 column-name="event_type" category-resource="categoryBasics"

 display-name-resource="eventType">

 <attribute name="useCodeForValue" value="false"/>

 <option resource="valentinesDay" code="0"/>

 <option resource="wedding" code="1"/>

 <option resource="bridalShower" code="2"/>

 <option resource="babyShower" code="3"/>

 <option resource="birthday" code="4"/>

 <option resource="anniversary" code="5"/>

 <option resource="christmas" code="6"/>

 <option resource="chanukah" code="7"/>

 <option resource="otherHoliday" code="8"/>

 <option resource="iJustWantThisStuff" code="9"/>

 <option resource="other" code="10"/>

 <attribute name="propertySortPriority" value="-8"/>

 </property>

 <property name="comments" data-type="string" column-name="comments"

 category-resource="categoryBasics" display-name-resource="comments">

 <attribute name="propertySortPriority" value="-10"/>

 </property>

 <property name="description" data-type="string" column-name="description"

 category-resource="categoryBasics" display-name-resource="description">

 <attribute name="propertySortPriority" value="-10"/>

 </property>

 <property name="instructions" data-type="string" column-name="instructions"

 category-resource="categoryShipping"

 display-name-resource="instructions">

 <attribute name="propertySortPriority" value="-5"/>

 </property>

 <property name="lastModifiedDate" data-type="timestamp"

 column-name="last_modified_date" category-resource="categoryInfo"

 display-name-resource="lastModifiedDate">

 <attribute name="uiwritable" value="false"/>

 <attribute name="propertySortPriority" value="-5"/>

 </property>

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 6

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
 <property name="creationDate" data-type="timestamp"

 column-name="creation_date" category-resource="categoryInfo"

 display-name-resource="creationDate">

 <attribute name="uiwritable" value="false"/>

 <attribute name="useNowForDefault" value="true"/>

 <attribute name="propertySortPriority" value="-6"/>

 </property>

 <property name="shippingAddress" item-type="contactInfo"

 repository="/atg/userprofiling/ProfileAdapterRepository"

 column-name="shipping_addr_id" category-resource="categoryShipping"

 display-name-resource="shippingAddress">

 <attribute name="propertySortPriority" value="-6"/>

 </property>

 </table>

 <table name="dcs_giftinst" type="multi" id-column-name="giftlist_id"

 multi-column-name="tag">

 <property name="specialInstructions" column-name="special_inst"

 component-data-type="string" data-type="map"

 category-resource="categoryShipping"

 display-name-resource="specialInstructions">

 <attribute name="propertySortPriority" value="-4"/>

 </property>

 </table>

 <table name="dcs_giftlist_item" type="multi" id-column-name="giftlist_id"

 multi-column-name="sequence_num">

 <property name="giftlistItems" data-type="list"

 component-item-type="gift-item" column-name="giftitem_id"

 cascade="delete" category-resource="categoryBasics"

 display-name-resource="giftlistItems">

 <attribute name="propertySortPriority" value="-7"/>

 </property>

 </table>

 </item-descriptor>

 <item-descriptor name="gift-item" display-property="displayName"

 item-cache-size="1000" query-cache-size="1000"

 display-name-resource="itemDescriptorGiftItem">

 <attribute name="resourceBundle"

 value="atg.commerce.GiftListsTemplateResources"/>

 <attribute name="categoryBasicsPriority" value="10"/>

 <attribute name="categoryInfoPriority" value="20"/>

 <table name="dcs_giftitem" type="primary" id-column-name="id">

 <property name="id" column-name="id" writable="false"

 category-resource="categoryInfo" display-name-resource="id">

 <attribute name="propertySortPriority" value="-10"/>

 </property>

 <property name="catalogRefId" data-type="string"

 column-name="catalog_ref_id"

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 7

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
 editor-class="atg.ui.commerce.SkuItemStringEditor"

 category-resource="categoryInfo" display-name-resource="catalogRefId">

 <attribute name="propertySortPriority" value="-9"/>

 </property>

 <property name="productId" data-type="string" column-name="product_id"

 editor-class="atg.ui.commerce.ProductItemStringEditor"

 category-resource="categoryInfo" display-name-resource="productId">

 <attribute name="propertySortPriority" value="-8"/>

 </property>

 <property name="siteId" data-type="string" column-name="site_id"

 category-resource="categoryInfo" display-name-resource="siteId">

 <attribute name="propertySortPriority" value="-7"/>

 </property>

 <property name="displayName" data-type="string" column-name="display_name"

 category-resource="categoryBasics" display-name-resource="displayName">

 <attribute name="propertySortPriority" value="-10"/>

 </property>

 <property name="description" data-type="string" column-name="description"

 category-resource="categoryBasics" display-name-resource="description">

 <attribute name="propertySortPriority" value="-9"/>

 </property>

 <property name="quantityDesired" data-type="long"

 column-name="quantity_desired" category-resource="categoryBasics"

 display-name-resource="quantityDesired">

 <attribute name="propertySortPriority" value="-8"/>

 </property>

 <property name="quantityPurchased" data-type="long"

 column-name="quantity_purchased" category-resource="categoryBasics"

 display-name-resource="quantityPurchased">

 <attribute name="propertySortPriority" value="-7"/>

 </property>

 </table>

 </item-descriptor>

</gsa-template>

<!-- @version $Id:

//product/DCS/main/templates/DCS/config/atg/commerce/gifts/giftlists.xml#6

$$Change: 546512 $ -->

The following excerpt from the /atg/userprofiling/userProfile.xml file, located in
<ATG10dir>/DCS/config/config.jar shows how gift lists are associated with user profiles.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE taglib

 PUBLIC "-//Art Technology Group, Inc.//DTD General SQL Adapter//EN"

 "http://www.atg.com/dtds/gsa/gsa_1.0.dtd">

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 8

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
<gsa-template>

 <header>

 <name>Commerce Related Profile Changes</name>

 <author>DCS Team</author>

 <version>$Id: userProfile.xml,v 1.24 2000/05/03 03:51:19

 petere Exp $</version>

 </header>

 <item-descriptor name="user" default="true"

 sub-type-property="userType">

 <!-- key into private wishlist -->

 <table name="dcs_user_wishlist" type="auxiliary"

 id-column-name="user_id">

 <property name="wishlist" item-type="gift-list"

 repository="/atg/commerce/gifts/Giftlists" column-name="giftlist_id"

 cascade="insert,update,delete"/>

 </table>

 <!-- key into user created giftlists -->

 <table name="dcs_user_giftlist" type="multi" id-column-name="user_id"

 multi-column-name="sequence_num">

 <property name="giftlists" data-type="list"

 component-item-type="gift-list"

 repository="/atg/commerce/gifts/Giftlists"

 column-name="giftlist_id" cascade="delete"/>

 </table>

 <!-- key into giftlists found for other customers -->

 <table name="dcs_user_otherlist" type="multi" id-column-name="user_id"

 multi-column-name="sequence_num">

 <property name="otherGiftlists" data-type="list"

 component-item-type="gift-list"

 repository="/atg/commerce/gifts/Giftlists"

 column-name="giftlist_id"/>

 </table>

</gsa-template>

Gift List Form Handlers

Form handlers process forms and pages. They provide an interface between the customer and the
business layer classes that have access to the Giftlists repository. Forms (or JSPs) use these handlers to
take input from the user and call methods to perform actions on the Giftlists repository. For more
information on form handlers, see the Working with Forms and Form Handlers chapter in the ATG
Programming Guide and the Using Repository Form Handlers chapter in the ATG Page Developer’s Guide.

This section describes the following gift list form handlers:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 9

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
 GiftlistFormHandler

 GiftlistSearch

GiftlistFormHandler

The /atg/commerce/gifts/GiftlistFormHandler accepts input from the customer to create, update
and delete gift lists, as well as to add items to and remove items from gift lists. Properties in the handler
are used to store user input for processing, as well as to store success and failure URLs for redirect after
processing. Some handle methods have pre- and post- methods defined to make it easier to extend the
methods.

Note: You can remove items from a gift list by using the GiftlistFormHandler to update the item’s
quantity to 0. Alternatively, you can use the GiftitemDroplet to remove items. See GiftitemDroplet
in Gift List Servlet Beans for more information .

The GiftlistFormHandler should be session-scoped because multiple pages usually gather the
information needed for gift list management. The customer should be able to enter information on
different pages to configure the same gift list.

GiftlistFormHandler Properties

The GiftlistFormHandler has the following properties that support the management of gift lists and
items in the repository.

Property Function

giftlistManager The manager component that interfaces with the Giftlists
repository.

catalogTools The tools component that performs low-level operations on
the catalog repository.

CommerceProfileTools The tools component that performs low-level operations on
the user profile repository.

Giftlist properties Properties that store gift list attributes, as entered by the
customer. For example, eventName, eventDate,
description.

Success and failure URL
properties

Properties that tell ATG what pages to redirect the customer
to after an action is performed. Both success and failure URL
properties are provided for each handle method.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 0 0

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
siteId Used in multisite environments only.

In multisite environments, if you don’t want to use the
current site as the siteId when creating a gift list or adding
a gift item, you can set the GiftlistFormHandler’s siteId
property and use it instead. Typically, this property would be
set by the JSP page. See the Gift and Wish Lists in a Multisite
Environment for more information.

GiftlistFormHandler Handle Methods

The GiftlistFormHandler has a number of handle methods. Many of the handle methods have
corresponding premethodName, postmethodName, and methodName methods. For example, the
handleCreateGiftlist method has corresponding preCreateGiftlist, postCreateGiftlist and
createGiftlist methods. A handle method calls its premethodName method before executing its
methodName method. Likewise, it calls its postmethodName method after executing its methodName
method. The pre and post methods, whose default implementations are empty, provide an easy way to
extend the functionality of the handle methods. The exceptions to this rule are handleDeleteGiftlist,
handleSaveGiftlist, and handleUpdateGiftlist. These three methods have pre and post methods
but they must call the GiftlistManager class to accomplish their primary tasks of deleting, saving, and
updating gift lists.

GiftlistformHandler also has a set of successURL and errorURL properties that map to its handle
methods. For example, handleCreateGiftlist has corresponding createGiftlistSuccessURL and
createGiftlistErrorURL properties. After a handle method executes, you can use these properties to
redirect the customer to pages other than those specified by the form’s action attribute. The redirected
page’s content depends on the type of operation and whether the operation succeeded or not. For
example, if an attempt to create a gift list fails, you could redirect the customer to a page explaining what
missing information caused the failure. If the value for a particular success or failure condition is not set,
no redirection takes place and the form is left on the page defined as the action page.

The value of the redirect properties is a URL relative to the action page of the form. You can either
specify the values of these URL properties in the properties of the form handler or you can set them in the
JSP itself using a hidden tag attribute. For example, you can set the addItemToGiftlistSucessURL
property with this tag:

<dsp:input bean="GiftlistFormHandler.addItemToGiftlistSucessURL"

 value="../user/lists.jsp " type="hidden"/>

The following table lists the GiftlistFormHandler handle methods, along with each method’s pre and
post methods, and success/failure URLs.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 0 1

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
Method Function

handleAddItemToGiftlist() Adds items to a gift list during the shopping process, using the
following properties taken from the form: quantity,
catalogRefIds (an array of SKU IDs), giftlistId, and siteId
(multisite environments only).

handleAddItemToGiftlist() calls
GiftlistFormHandler.addItemToGiftlist(), whose
primary responsibility is to call
GiftlistManager.addCatalogItemToGiftlist(), where
the actual work of adding an item to a gift list is done.
addCatalogItemToGiftlist() performs several steps to
create the item and then add it to the gift list. First, it determines
whether an item already exists in the gift list with the same SKU
ID, product ID, and, in multisite environments, site ID. If an item
already exists, addCatalogItemToGiftlist() increments the
quantity of the item. If a corresponding item doesn’t already
exist, addCatalogItemToGiftlist() creates the gift item.
Next, addCatalogItemToGiftlist() calls
GiftlistManager.addItemToGiftlist() to add the newly
created gift item to the specified gift list. In multisite
environments, addItemToGiftlist() also determines whether
the gift item and the gift list have compatible site IDs before
adding the item to the list (see Gift and Wish Lists in a Multisite
Environment for more details).

Associated Methods:
addItemToGiftlist()

preAddItemToGiftlist()

postAddItemToGiftlist()

GiftlistManager.addCatalogItemToGiftlist()

Success and Failure URL properties:
addItemToGiftlistSuccessURL

addItemToGiftlistErrorURL

handleCreateGiftlist() Resets the properties in the GiftlistFormHandler in
preparation for creating a new gift list.

Associated Methods:
createGiftList()

preCreateGiftList()

postCreateGiftList()

Success and Failure URL properties:
createGiftlistSuccessURL

createGiftlistErrorURL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 0 2

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
handleDeleteGiftlist() Deletes a gift list from the user’s profile and from the repository.

This method calls GiftlistManager.removeGiftlist() with
the profileId and giftlistId to remove the gift list from the
repository.

Associated Methods:
preDeleteGiftlist()

postDeleteGiftlist()

GiftlistManager.removeGiftlist()

Success and Failure URL properties:
deleteGiftlistSuccessURL

deleteGiftlistErrorURL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 0 3

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
handleMoveItemsFromCart() Takes items out of the shopping cart and adds them to the gift

list whose ID is passed into the form handler.

handleMoveItemsFromCart() calls
GiftlistFormHandler.moveItemsFromCart(). This method
performs several steps to create the gift item and then add it to
the gift list. First, it determines whether an item already exists in
the gift list with the same SKU ID, product ID, and, in multisite
environments, site ID. If an item already exists,
moveItemsFromCart() increments the quantity of the item,
using the quantity specified. If no quantity is specified,
moveItemsFromCart() moves the entire quantity to the gift
list. If a corresponding item doesn’t already exist,
moveItemsFromCart() calls
GiftlistManager.createGiftlistItem() to create the gift
item, based on the properties in the original commerce item,
then moveItemsFromCart() calls
GiftlistManager.addItemToGiftlist() to add the item to
the specified gift list. In multisite environments,
addItemToGiftlist() also determines whether the gift item
and the gift list have compatible site IDs before adding the item
to the list (see Gift and Wish Lists in a Multisite Environment for
more details). Finally, moveItemsFromCart() calls
GiftlistFormHandler.updateOrder(). This method is
responsible for updating the quantity of the commerce item in
the shopping cart, or removing the item altogether if the entire
quantity has been transferred to the gift list.

Associated Methods:
moveItemsFromCart()

updateOrder()

preMoveItemsFromCart()

postMoveItemsFromCart()

GiftlistManager.createGiftlistItem()

GiftlistMnager.addItemToGiftlist()

Success and Failure URL properties:
moveItemsFromCartSuccessURL

moveItemsFromCartErrorURL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 0 4

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
handleSaveGiftlist() Creates and saves gift lists in the Giftlists repository. This

method calls createGiftlist() in the GiftlistManager
component with gift list properties to create a gift list in the
repository, save properties and add the gift list to the customer’s
profile.

Associated Methods:
preSaveGiftlist()

postSaveGiftlist()

GiftlistManager.createGiftlist()

Success and Failure URL properties:
saveGiftlistSuccessURL

saveGiftlistErrorURL

handleUpdateGiftlist() Updates the current gift list. This method calls
updateGiftlist() in the GiftlistManager component,
passing in gift list properties, to update a particular gift list in the
repository.

Associated Methods:
preUpdateGiftlist()

postUpdateGiftlist()

GiftlistManager.updateGiftlist()

Success and Failure URL properties:
updateGiftlistSuccessURL

updateGiftlistErrorURL

handleUpdateGiftlistItems

()

Changes the quantity of a gift list item or removes the item from
the list.

Associated Methods:
updateGiftlistItems()

preUpdateGiftlistItems()

postUpdateGiftlistItems()

Success and Failure URL properties:
updateGiftlistItemsSuccessURL

updateGiftlistItemsErrorURL

GiftlistFormHandler Example

The GiftlistFormHandler.properties file is used to configure the GiftlistFormHandler. This file
is located at /atg/commerce/gifts/ in <ATG10dir>/DCS/config/config.jar.

Note: The GiftlistFormHandler.siteId property is typically set in the JSP page, not in the
GiftlistFormHandler.properties file.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 0 5

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
$class=atg.commerce.gifts.GiftlistFormHandler

$scope=session

Profile properties

profile=/atg/userprofiling/Profile

defaultLocale^=/atg/commerce/pricing/PricingTools.defaultLocale

Giftlist repository

giftlistRepository=Giftlists

Business layer giftlist manager

giftlistManager=GiftlistManager

Business layer order manager

orderManager=/atg/commerce/order/OrderManager

shoppingCart=/atg/commerce/ShoppingCart

pipelineManager=/atg/commerce/PipelineManager

commerce tools

giftlistTools=GiftlistTools

catalogTools=/atg/commerce/catalog/CatalogTools

profileTools=/atg/userprofiling/ProfileTools

giftlist properties

itemType=gift-list

The following code sample demonstrates how to use the GiftlistFormHandler in a template. This
serves as an example of how to display error messages, set up input and URL properties and make calls to
handle methods in the form handler.

Note: This code sample works for both multisite and non-multisite environments. In multisite
environments, the sample will use the current site’s ID when setting the siteId property on the newly
created gift list. To set a gift list’s siteId to something other than the current site, you should add
another dsp:input tag (hidden or otherwise) that sets the siteId property on the
GiftlistFormHandler. For more information on the siteId property, see Gift and Wish Lists in a
Multisite Environment.

<!-Import statements for components-->

<dsp:importbean bean="/atg/commerce/gifts/GiftlistFormHandler"/>

<dsp:importbean bean="/atg/dynamo/droplet/ErrorMessageForEach"/>

<dsp:importbean bean="/atg/dynamo/droplet/ForEach"/>

<dsp:importbean bean="/atg/dynamo/droplet/Switch"/>

<!-- Display any errors processing form -->

<dsp:droplet name="Switch">

<dsp:param bean="GiftlistFormHandler.formError" name="value"/>

<dsp:oparam name="true">

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 0 6

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
 <dsp:droplet name="ErrorMessageForEach">

 <dsp:param bean="GiftlistFormHandler.formExceptions"

 name="exceptions"/>

 <dsp:oparam name="output">

 <dsp:valueof param="message"/>

 </dsp:oparam>

 </dsp:droplet>

</dsp:oparam>

</dsp:droplet>

<!-Save giftlist -->

<dsp:form action="lists.jsp" method="POST">

 <!-Success and error URLs -->

 <dsp:input bean="GiftlistFormHandler.saveGiftlistSuccessURL"

 value="./lists.jsp" type="hidden"/>

 <dsp:input bean="GiftlistFormHandler.saveGiftlistErrorURL"

 value="./new_list.jsp" type="hidden"/>

 Event Name

 <dsp:input size="40" type="text" bean="GiftlistFormHandler.eventName"/>

 <p>

 Event Type

 <dsp:select bean="GiftlistFormHandler.eventType">

 <dsp:droplet name="ForEach">

 <dsp:param bean="GiftlistFormHandler.eventTypes" name="array"/>

 <dsp:oparam name="output">

 <dsp:option paramvalue="element"><dsp:valueof

 param="element">UNDEFINED</dsp:valueof>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:select>

 <p>

 Event Description

 <dsp:setvalue bean="GiftlistFormHandler.description" value=""/>

 <dsp:textarea bean="GiftlistFormHandler.description" value="" cols="40"

 rows="4"></dsp:textarea>

 <p>

 Where should people ship the gifts?<p>

 <dsp:select bean="GiftlistFormHandler.shippingAddressId">

 <!-display address nicknames for profile to select from -->

 <dsp:droplet name="ForEach">

 <dsp:param bean="GiftlistFormHandler.addresses" name="array"/>

 <dsp:oparam name="output">

 <dsp:option paramvalue="key"/>

 <dsp:valueof param="element">UNDEFINED</dsp:valueof>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:select>

 Gift list public?

 <p>

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 0 7

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
 <dsp:input bean="GiftlistFormHandler.isPublished" value="true"

 type="radio" name="published"/> Make my list public now

 <dsp:input bean="GiftlistFormHandler.isPublished" value="false"

 checked="<%=true%>" type="radio" name="published"/> Don't make my list

 public yet

 <dsp:input bean="GiftlistFormHandler.saveGiftlist" value="Save gift

 list" type="submit"/>

GiftlistSearch

The /atg/commerce/gifts/GiftlistSearch form handler searches the repository for gift lists. The
form handler uses input from the customer, such as owner name, event name, event type and state, to
find gift lists published by other customers. It returns a list of gift lists that match the given criteria.

GiftlistSearch should be session-scoped because multiple pages are typically involved in gathering
and displaying information for gift list searching (for example, you might want to maintain a list of results
for paging purposes). This form handler uses supporting servlet beans to add the retrieved gift lists to the
customer’s profile and to display gift list contents.

GiftlistSearch is configurable to support all gift list searching requirements. Booleans specify what
types of searching are done. The configurable searches include:

 Name Search: Searches by the name of the gift list owner.

 Advanced Search: Searches for matches to specific gift list properties (such as event
name, event type, and owner’s state).

 Published List Search: When true, searches for published lists only. When false,
searches for both published and unpublished gift lists.

GiftlistSearch Properties

GiftlistSearch has the following properties to support gift list searching:

Property Function

doNameSearch Specifies whether to search gift lists by the owner’s name.

nameSearchPropertyNames Specifies the fields to use during a name search (typically,
owner.firstName and owner.lastName).

doAdvancedSearch Specifies whether to search gift lists using properties other than
the owner’s name.

advancedSearchPropertyName

s

Specifies the fields to use during an advanced search (for
example, eventType, eventName, and state).

doPublishedSearch Specifies whether to search only published gift lists.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 0 8

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
publishedSearchPropertyNam

es

When searching only published gift lists, lists must be both
public and published in order to be included in the search
results. Therefore, if doPublishedSearch is set to true, set this
value to public,published.

giftlistRepository The repository that stores your gift lists. Set this value to
Giftlists.

itemTypes The gift list item type. Set this value to gift-list.

giftlistManager

siteGroupManager

siteScope

These three properties are required for multisite environments
only. See Gift and Wish Lists in a Multisite Environment for more
details.

siteIds This property is used in multisite environments only. See Gift
and Wish Lists in a Multisite Environment for more details.

searchInput Input text parsed for searching. This property should be set by
the JSP page.

searchResults Giftlist repository items found based on searching criteria.
Your results page must use this property to render search
results.

searchSuccessURL URL of the page to which the user is redirected on a successful
search.

searchErrorURL URL of the page to which the user is redirected on an error.

GiftlistSearch Handle Methods

GiftlistSearch has the following handle method:

Method Function

handleSearch handleSearch provides the core functionality of this form. This method builds a search
query based on the configuration specified in the GiftlistSearch form handler’s
properties file, along with any properties set on the JSP page itself. It then applies the query
to the Giftlists repository to find a list of gift lists. The list is stored in the
searchResults property for the form to display.

GiftlistSearch Example

The following properties file is an example of how you configure the GiftlistSearch form handler.
Note that the last three properties, giftlistManager, siteGroupManager, and siteScope, are
required for multisite environments only. This properties file is located at
/atg/commerce/gifts/GiftlistSearch.properties in <ATG10dir>/DCS/config/config.jar.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 0 9

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
$class=atg.commerce.gifts.SearchFormHandler

$scope=session

doNameSearch=true

nameSearchPropertyNames=owner.firstName,owner.lastName

doAdvancedSearch=true

advancedSearchPropertyNames=eventType,eventName,state

doPublishedSearch=true

publishedSearchPropertyNames=public,published

giftlistRepository=Giftlists

itemTypes=gift-list

Multisite properties: required for multisite enviromments only

giftlistManager=/atg/commerce/gifts/GiftlistManager

siteGroupManager=/atg/multisite/SiteGroupManager

siteScope^=/atg/commerce/gifts/GiftlistManager.siteScope

The following code sample demonstrates one method for using GiftlistSearch in a template in non-
multisite environments.

Note: This code sample works for both multisite and non-multisite environments. In multisite
environments, the sample will use the current site’s ID when determining which gift lists to return. To
return gift lists from sites other than the current one, you should add another dsp:input tag (hidden or
otherwise) that sets the siteIds property on the GiftlistSearch form handler. For more information
on the siteIds property, see Gift and Wish Lists in a Multisite Environment.

<!-Import statements for form components>

<dsp:importbean bean="/atg/commerce/gifts/GiftlistSearch"/>

<dsp:importbean bean="/atg/dynamo/droplet/IsEmpty"/>

<dsp:importbean bean="/atg/dynamo/droplet/ForEach"/>

<dsp:importbean bean="/atg/dynamo/droplet/Switch"/>

<TITLE>Giftlist Search</TITLE>

<dsp:form action="giftlist_search.jsp">

<p>

Find someone's gift list

<hr size=0>

Name: <dsp:input bean="GiftlistSearch.searchInput" size="30" type="text"/>

<p>

Optional criteria that may make it easier to find the right list:

<p>

<dsp:droplet name="ForEach">

 <!-- For each property specified in

 GiftlistSearch.advancedSearchPropertyNames, retrieve all possible

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 1 0

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
 property values. This allows the customer

 to pick one to search on for advanced searching. -->

 <dsp:param bean="GiftlistSearch.propertyValuesByType" name="array"/>

 <dsp:oparam name="output">

 <dsp:droplet name="Switch">

 <dsp:param param="key" name="value"/>

 <dsp:oparam name="eventType">

 Event Type

 <!-- property to store the customer's selection is

 propertyValues -->

 <dsp:select bean="GiftlistSearch.propertyValues.eventType">

 <dsp:option value=""/>Any

 <dsp:setvalue paramvalue="element" param="outerelem"/>

 <dsp:droplet name="ForEach">

 <dsp:param param="outerelem" name="array"/>

 <dsp:oparam name="output">

 <dsp:option/><dsp:valueof param="element">UNDEFINED</dsp:valueof>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:select>

 </dsp:oparam>

 <dsp:oparam name="eventName">

 Event Name

 <!-- property to store the customer's selection is

 propertyValues -->

 <dsp:input bean="GiftlistSearch.propertyValues.eventName" size="30"

 value="" type="text"/>

 </dsp:oparam>

 <dsp:oparam name="state">

 State

 <!-- property to store the customer's selection is

 propertyValues -->

 <dsp:input bean="GiftlistSearch.propertyValues.state" size="30"

 value="" type="text"/>

 </dsp:oparam>

 </dsp:oparam>

</dsp:droplet>

</dsp:droplet>

<p>

<dsp:input bean="GiftlistSearch.search" value="Perform Search"

 type="hidden"/>

<dsp:input bean="GiftlistSearch.search" value="Perform Search"

 type="submit"/>

</dsp:form>

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 1 1

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
Gift List Servlet Beans

Several servlet beans are provided to support gift list and wish list functionality. These servlet beans can
be used with forms to look up gift lists and gift items, as well as to perform actions, such as removing or
purchasing items from a gift list, adding gift lists to a profile, and removing gift lists from a profile.

Lookup Servlet Beans

The GiftlistLookupDroplet and GiftitemLookupDroplet servlet beans, located in Nucleus at
/atg/commerce/gifts/, are instances of class atg.repository.servlet.ItemLookupDroplet.
These servlet beans provide a way to search for and display gift lists and gift items in the Giftlists
repository based on ID. For information about the input, output, and open parameters of servlet beans
instantiated from ItemLookupDroplet, refer to Appendix B: ATG Servlet Beans in the ATG Page Developer’s
Guide.

The following code example demonstrates how to use the GiftlistLookupDroplet to look up a gift list
in the repository and check that the owner ID equals the ID of the current profile before displaying the gift
list.

<dsp:droplet name="/atg/commerce/gifts/GiftlistLookupDroplet">

 <dsp:param param="giftlistId" name="id"/>

 <dsp:oparam name="output">

 <dsp:droplet name="IsEmpty">

 <dsp:param param="element" name="value"/>

 <dsp:oparam name="false">

 <dsp:setvalue paramvalue="element" param="giftlist"/>

 <dsp:droplet name="/atg/dynamo/droplet/Switch">

 <dsp:param bean="Profile.id" name="value"/>

 <dsp:getvalueof var="ownerId" param="giftlist.owner.id"/>

 <dsp:oparam name="${ownerId}">

 <%-- display gift list info here --%>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

</dsp:droplet>

Note: In multisite environments, the GiftlistLookupDroplet should be used in conjunction with the
GiftlistSiteFilterDroplet to ensure that only gift lists that are appropriate for the site context are
displayed. For more details, see Filtering Multisite Gift and Wish Lists in the ATG Commerce Guide to Setting
Up a Store.

GiftlistDroplet

The GiftlistDroplet servlet bean (class atg.commerce.gifts.GiftlistDroplet), which is located
in Nucleus at /atg/commerce/gifts/, adds or removes customer A’s gift list from customer B’s
otherGiftlists Profile property, depending on the action supplied via the action input parameter.
This enables the given customer to easily find those for whom the customer has shopped or is shopping.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 1 2

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
GiftlistDroplet takes the following input parameters:

 action: The action to perform on the gift list (“add” or “remove”). (Required)

 giftlistId: The ID of the gift list. (Required)

 profile: The profile of the current customer. If not passed, the profile will be resolved
by Nucleus.

GiftlistDroplet doesn’t set any output parameters. It renders the following open parameters
(oparams):

 output: The oparam rendered if the gift list is added or removed successfully from a
profile.

 error: The oparam rendered if an error occurs while adding or removing the gift list.

The following code example demonstrates how to use the GiftlistDroplet to add a gift list that was
retrieved in a search to a customer’s profile.

<dsp:droplet name="/atg/dynamo/droplet/IsEmpty">

 <dsp:param param="giftlistId" name="value"/>

 <dsp:oparam name="false">

 <dsp:droplet name="/atg/commerce/gifts/GiftlistDroplet">

 <dsp:param param="giftlistId" name="giftlistId"/>

 <dsp:param value="add" name="action"/>

 <dsp:param bean="/atg/userprofiling/Profile" name="profile"/>

 <dsp:oparam name="output">Output</dsp:oparam>

 <dsp:oparam name="error">Error</dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

</dsp:droplet>

GiftitemDroplet

Servlet beans instantiated from class atg.commerce.gifts.GiftitemDroplet enable customers either
to buy or to remove items from their own personal gift lists, depending on the configuration of the servlet
bean. (For information on how to add items to a personal gift list, see GiftlistFormHandler. For
information on how to buy items from another’s gift list, see CartModifierFormHandler.)

Two ATG Commerce servlet beans have been instantiated from GiftitemDroplet; they are
BuyItemFromGiftlist and RemoveItemFromGiftlist. They take the following input parameters,
both of which are required:

 giftId: The ID of the gift.

 giftlistId: The ID of the gift list.

They don’t set any output parameters. They render the following open parameters:

 output: The oparam rendered if the item is bought or removed successfully from list.

 error: The oparam rendered if an error occurs during processing.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 1 3

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
The following code example demonstrates how to use the RemoveItemFromGiftlist component to
remove an item from a customer’s personal gift list.

<dsp:droplet name="/atg/dynamo/droplet/IsEmpty">

<dsp:param param="giftId" name="value"/>

<dsp:oparam name="false">

 <dsp:droplet name="/atg/commerce/gifts/RemoveItemFromGiftlist">

 <dsp:param param="giftlistId" name="giftlistId"/>

 <dsp:param param="giftId" name="giftId"/>

 </dsp:droplet>

</dsp:oparam>

</dsp:droplet>

Purchase Process Extensions to Support Gift Lists

The ATG Commerce purchase process supports features such as browsing the catalog, adding items to a
shopping cart, selecting payment methods, entering billing and shipping information, and the entire
checkout process.

To also support purchasing gifts off a gift list, components in the order package (atg.commerce.order)
have been extended. To understand how gift lists work in ATG Commerce, it is important to know which
components in the order package support this functionality. This section describes how order
management and the purchasing process have been extended to support gift lists. (See the Configuring
Purchase Process Services chapter for more information on the purchase process.)

The following classes provide gift list functionality to the purchase process:

 CartModifierFormHandler

 GiftlistHandlingInstruction

 ShippingGroupDroplet and ShippingGroupFormHandler

 ProcUpdateGiftRepository

 ProcSendGiftPurchasedMessage

CartModifierFormHandler

atg.commerce.order.purchase.CartModifierFormHandler is one class that provides the
functionality to support shopping carts and the purchase process in ATG Commerce. More importantly,
the addItemToOrder method of CartModifierFormHandler provides support for purchasing items
that appear on gift lists. CartModifierFormHandler and the addItemToOrder method are described in
Understanding the CartModifierFormHandler in the Configuring Purchase Process Services chapter.

Adding a gift item to an order is virtually the same as adding any item to an order. A gift item is
distinguished by two additional form input fields, CartModifierFormHandler.giftlistId and
CartModifierFormHandler.giftlistItemId. When these two fields contain non-null values,
addItemToOrder calls addGiftToOrder in the GiftListManager component, which does additional
processing for the gift as required by the purchase process.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 1 4

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
The following code sample demonstrates how to use the CartModifierFormHandler in a template for
gifts. It is an example of how to set up input and URL properties and make calls to handle methods in the
form handler. In this example, a customer is purchasing an item from another customer’s gift list and
adding it to the shopping cart.

<dsp:droplet name="/atg/commerce/gifts/GiftlistLookupDroplet">

 <dsp:param param="giftlistId" name="id"/>

 <dsp:param value="giftlist" name="elementName"/>

 <dsp:oparam name="output">

 Get this gift for

 <dsp:valueof param="giftlist.owner.firstName">someone</dsp:valueof>

 <dsp:form action="giftlists.jsp" method="post">

 <dsp:input bean="CartModifierFormHandler.addItemToOrderSuccessURL"

 value="../checkout/cart.jsp" type="hidden"/>

 <dsp:input bean="CartModifierFormHandler.productId"

 paramvalue="Product.repositoryId" type="hidden"/>

 <dsp:input bean="CartModifierFormHandler.giftlistId"

 paramvalue="giftlist.id" type="hidden"/>

 <dsp:input bean="CartModifierFormHandler.giftlistItemId"

 paramvalue="giftid" type="hidden"/>

 <dsp:droplet name="/atg/commerce/gifts/GiftitemLookupDroplet">

 <dsp:param param="giftId" name="id"/>

 <dsp:param value="giftitem" name="elementName"/>

 <dsp:oparam name="output">

 <dsp:input bean="CartModifierFormhandler.catalogRefIds"

 paramvalue="giftitem.catalogRefId" type="hidden"/>

 <dsp:valueof param="giftlist.owner.firstName">firstname</dsp:valueof>

 wants

 <dsp:valueof param="giftitem.quantityDesired">?</dsp:valueof>

 <dsp:valueof param="giftitem.catalogRefId">sku</dsp:valueof>

 and so far people have bought

 <dsp:valueof param="giftitem.quantityPurchased">?</dsp:valueof>.

 <p>

 </dsp:oparam>

 </dsp:droplet>

 Buy <dsp:input bean="CartModifierFormHandler.quantity" size="4"

 value="1" type="text"/>

 <dsp:input bean="CartModifierFormHandler.addItemToOrder"

 value="Add to Cart" type="submit"/>

 </dsp:form>

 </dsp:oparam>

</dsp:droplet>

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 1 5

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
GiftlistHandlingInstruction

The GiftlistHandlingInstruction specifies what special handling needs to be done for a gift. For
example, it could update gift list information to reflect that the item was purchased. A separate
GiftlistHandlingInstruction could indicate that the gift should be wrapped.

A GiftlistHandlingInstruction is created in the following sequence of events: When a person
purchases an item off a gift list, CartModifierFormHandler calls addGiftToOrder in
GiftlistManager. addGiftToOrder performs additional tasks to adding the item to an order. These
tasks include:

 Creating a new shipping group with the recipient’s address

 Adding that item(s) to the new shipping group

 Creating a GiftlistHandlingInstruction object for the item

For more information on Handling Instructions, see Setting Handling Instructions in the Configuring
Purchase Process Services chapter.

ShippingGroupDroplet and ShippingGroupFormHandler

Your sites may use ShippingGroupDroplet and ShippingGroupFormHandler to pull shipping
information from the user’s profile and to allow the user to assign shipping addresses to items in an order.
Both of these components have been extended for gift lists so that shipping information for gift items is
automatically preserved. See Adding Shipping Information to Shopping Carts in the Implementing Shopping
Carts chapter of the ATG Commerce Guide to Setting Up a Store and Preparing a Complex Order for
Checkout in the Configuring Purchase Process Services chapter for descriptions of these components.

ProcUpdateGiftRepository

A pipeline is an execution mechanism that allows for modular code execution. Pipelines are used in ATG
Commerce to execute a series of tasks such as saving an order, loading an order and everything required
during checkout. The PipelineManager used by ATG Commerce is located in
/atg/commerce/PipelineManager.

The commerce pipeline configuration file contains the definition for the processOrder chain. The
ProcUpdateGiftRepository processor is added to the processOrder chain to support gift lists. It goes
through the order and looks for a gift that has been added to the shopping cart. If one has been added, it
updates the Giftlists repository to update the purchased count of items off the gift list.

ProcSendGiftPurchasedMessage

The ProcSendGiftPurchasedMessage processor is added to the processOrder chain. It goes through
the order and looks for a gift that has been purchased. If one has been purchased, it sends a message that
contains the order, gift, and recipient profile to the Scenarios module. This message can be used to trigger
an event such as sending an e-mail message to the recipient. In multisite environments, the message also
includes the ID of the site the gift was purchased from, so that the e-mail message may be properly
branded.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 1 6

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
Gift and Wish Lists in a Multisite Environment

This section provides information specific to working with gift and wish lists in a multisite environment.

Notes:

 As you read this section, keep in mind that, when a customer adds a SKU to a gift list,
ATG creates a gift item based on that SKU, of item type gift-item, and then adds the
gift item to the gift list.

 This section assumes you are familiar with sharing groups and shareable types, which
are the foundation for shared data in a multisite environment. For more information
on these concepts, refer to the ATG Multisite Administration Guide.

Using Gift and Wish Lists in a Multisite Environment

Gift list accessibility in a multisite environment typically falls into one of these categories:

 Gift lists are universal and accessible by all sites. Microsite environments, where a
microsite shares most resources with its parent site, typically use universal gift lists.

 Gift list access is limited based on site context. This is a common approach for affiliated
site environments where sites share profiles and shopping carts but not catalogs. For
example, ATG Commerce Reference Store aligns gift list access with shopping cart
access, so customers may only see gift lists that they are allowed to purchase items
from.

Note: See the ATG Multisite Administration Guide for more information on microsites
and affiliated sites.

Wish lists, by contrast, are always universal because there is only one wish list per profile and all sites must
be able to access it. As such, a wish list may contain items from multiple sites, making the ability to filter
those items based on site context a necessity.

Gift Item and Gift List Site IDs

When the GiftlistManager creates either a gift-list or gift-item item in the gift lists repository, it
includes a siteId property that represents the site the new item is affiliated with. Adding siteId’s to
both gift lists and gift items allows Nucleus components to evaluate whether a gift list or a gift item
should be included in a gift list operation, based on site context (for example, which items can be added
to gift lists associated with site X, which gift lists should Nucleus return for a gift list search initiated from
site X, and so on). Inclusion or exclusion is determined by the gift list site scope, described later in this
section.

Gift list site IDs correspond to the site the customer was on when the gift list was created. A gift item, on
the other hand, represents a SKU or CommerceItem that may be affiliated with multiple sites, so a gift
item’s siteId is not as straightforward. By default, the ID of the current site is used, however, you can
override the default by doing the following:

 Use the atg.droplet.multisite.SiteIdForItemDroplet servlet bean to
determine an appropriate site ID for the item.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 1 7

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
 Set the GiftlistFormHandler.siteId property to the site ID returned by

SiteIdForItemDroplet before calling any of the handle methods that save, update,
or add a gift item to a gift list.

Notes:

 Gift lists and gift items with null site IDs are a special case; see Gift Lists and Gift Items
with a Null Site ID for more information.

 See ATG Page Developer’s Guide for more information on the SiteIdForItemDroplet.

Gift List Site Scope

The GiftlistManager component has a siteScope property that controls whether gift list activity is
limited to the current site, limited to sites in a sharing group, or not limited at all. Effectively, the
siteScope property determines what items can be added to a gift list, what gift lists should be returned
by a search, and what gift items should be filtered out based on site context. There are three possible
values:

 all—Gift list activity is not limited. This is the default.

 current—Gift list activity is limited to the specified sites or, if none have been
specified, the current site.

 ShareableType-ID—Gift list activity is limited to the specified sites, or the current
site if none are specified, and any sites that are in a sharing group with those sites, as
defined by the ShareableType ID. For example, setting
GiftlistManager.siteScope to the ShoppingCartShareableType component’s
ID will limit gift list activity to the specified sites, or the current site if none are
specified, and any sites that share a shopping cart with those sites. For information on
where to find ShareableType IDs, see the ATG Multisite Administration Guide.

Other components, described later in this section, use the GiftlistManager.siteScope property to do
their work. These components accept an optional list of site IDs (the aforementioned “specified sites”) and
use that list, in conjunction with the GiftlistManager.siteScope property to determine which sites
should included in the operation.

Continue with the following sections to see in detail how site scope affects adding gift items to, searching
for, and filtering gift lists.

Adding Gift Items to Gift Lists in a Multisite Environment

Customers can add a gift item to a gift list either by adding the item from a product detail page, or by
moving the item from their shopping cart to a gift list. In either case, the GiftlistManager must
determine whether the gift item and the gift list are compatible, from a siteId perspective, before
performing the add operation. To determine compatibility, the
GiftlistManager.addItemsToGiftlist() method consults the GiftlistManager.siteScope
property and then compares the siteId properties of the gift item and the gift list to determine if the
sites are compatible, as shown in the following table:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 1 8

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
Compatibility Test All Current ShareableType ID

Gift item and gift list
have the same siteId

Add gift item to
gift list

Add gift item to
gift list

Add gift item to
gift list

Gift item and gift list
have different siteId’s

Add gift item to
gift list

Don’t add gift
item to gift list

Add gift item to gift list if both sites
are in the same sharing group

Gift list has a null
siteId (i.e., it is a wish
list)

Add gift item to
gift list

Add gift item to
gift list

Add gift item to gift list

As previously mentioned, adding a gift item to a gift list is a two-step process:

1. Create a gift item, based on an existing SKU item or a CommerceItem in the shopping
cart, including the item’s siteId.

2. Add the gift item to the gift list.

It’s during this second step that the GiftlistManager evaluates the gift list and gift item’s siteId
properties for compatibility. If they are determined to be compatible, the gift item is added to the gift list.

Searching for Gift Lists in a Multisite Environment

A key aspect of gift list functionality is the ability to allow customers to search for another customer’s gift
lists. Similar to the process for adding a gift list, when the GiftlistSearch form handler searches for gift
lists, it must determine which gift lists not only match the search criteria but are also appropriate to
include in the search results from a site context perspective. To support searching for gift lists in a
multisite environment, the GiftlistSearch form handler includes the following multisite-specific
properties:

 giftlistManager: Reference to the gift list manager component
/atg/commerce/gifts/GiftlistManager.

 siteGroupManager: Reference to the site group manager component
/atg/multisite/SiteGroupManager. This component determines which sites are
part of the same sharing group and can share data such as gift lists.

 siteScope: Controls the scope of the gift list search, as described in Gift List Site
Scope above. By default, this property is set to the GiftlistManager component’s
siteScope property, however, you can override that setting by specifying a different
scope (all, current, or shareableType-ID) in the GiftlistSearch form handler’s
siteScope property.

 siteIds: This property, typically set by the JSP page, may contain an array of
siteId’s. This set of IDs, in conjunction with siteScope setting, defines the set of
sites whose gift lists should be included in the search results. If no siteId’s are passed
to the form handler, the current site’s siteId is used. The following example shows
how to set the siteIds array in a JSP page so that it contains three sites:

<dsp:input bean="GiftlistSearch.siteIds" type="hidden"

value="siteId1"/>

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 1 9

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
<dsp:input bean="GiftlistSearch.siteIds" type="hidden"

value="siteId2"/>

<dsp:input bean="GiftlistSearch.siteIds" type="hidden"

value="siteId3"/>

When searching for gift lists, the GiftlistSearch form handler uses its siteScope and siteIds
properties to apply constraints on the search query so that only gift lists that match the search terms and
have compatible site IDs are returned, as shown in the following table:

Compatibility Test All Current ShareableType ID

Gift list’s siteId is in
the siteIds array

Include gift list
in search results

Include gift list
in search results

Include gift list
in search results

Gift list’s siteId is not
in the siteIds array

Include gift list
in search results

Do not include
gift list in search
results

Include gift list in search results if the
gift list’s siteId is in the specified
sharing group (for example, the
shopping cart sharing group) with
any of the sites in the siteIds array

Filtering Gift Lists

ATG Commerce includes functionality that allows you to filter collections of gift lists and gift items so that
you display only those lists/items that are appropriate for the customer’s site context. In a multisite
environment, any time you retrieve a collection of gift lists or gift items by referring to a repository item’s
property, such as Profile.giftlists or Profile.wishlist.giftlistItems, you get back an
unfiltered list that may contain items from multiple sites. For these situations, you should consider
whether the collection should be filtered or not and, if so, implement gift list filtering functionality. For
detailed information on this functionality, see Filtering Multisite Gift and Wish Lists in the ATG Commerce
Guide to Setting Up a Store.

Gift Lists and Gift Items with a Null Site ID

In non-multisite environments, there is no site context, so the GiftlistManager sets the siteId
properties for new gift lists and gift items to null. If a non-multisite environment is reconfigured to be
multisite aware, gift lists and gift items with a null siteId are considered to be universal and all sites in
the environment may manipulate them.

Wish lists must be accessible by all sites, so they always have a null site ID in both multisite and non-
multisite environments.

Extending Gift List Functionality

The ATG Commerce implementation of gift lists supports most of the requirements for this feature for a
typical commerce site. However, gift list functionality can be extended, if necessary.

This section describes how to extend gift list functionality by adding additional item properties to the
gift-list item descriptor. The process includes the following basic steps:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 2 0

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
 Updating the Database and Repository Definition

 Extending GiftlistFormHandler

Updating the Database and Repository Definition

You can extend your sites’ gift list functionality by adding new gift-list item properties. To add new
properties, do the following:

1. Modify your database schema and update the database script included with ATG
Commerce. The script for gift lists is found in
<ATG10dir>/DCS/sql/db_components/database_vendor/user_giftlist_ddl.

sql.

2. Extend the repository definition for gift lists by layering on a giftlists.xml file at
/atg/commerce/gifts/ in your local configuration directory. This new file should
add your new property to the gift-list item descriptor.

As an example, the following XML example demonstrates how you might add the
property giftlistStatus to the gift-list item descriptor.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE taglib

 PUBLIC "-//Art Technology Group, Inc.//DTD General SQL Adapter//EN"

 "http://www.atg.com/dtds/gsa/gsa_1.0.dtd">

<gsa-template>

 <header>

 <name>Commerce Giftlists</name>

 <author>Company XYZ</author>

 <version>Id</version>

 </header>

 <item-descriptor name="gift-list">

 <table name="dcs_giftlist">

 <property name="giftlistStatus" data-type="timestamp"

 column-name="giftlist_status"/>

 </table>

 </item-descriptor>

</gsa-template>

Note: You should only need to add to the schema and repository definition. Removing anything that is
already there requires substantially more work.

Extending GiftlistFormHandler

After Updating the Database and Repository Definitions to support additional gift-list item
properties, you also need to extend the GiftlistFormHandler component to support them. To do so,
do the following:

1. Extend the class atg.commerce.gifts.GiftlistFormHandler to support your new
properties and override related methods. The source code for this form handler can be
found in <ATG10dir>/DCS/src/Java/atg/commerce/gifts.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 2 1

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
Note that most handlers in the GiftlistFormHandler have preXXX and postXXX
methods that can be overridden to support your requirements. To support your new
property, you should override the postSaveGiftlist method to save your new
property value in the repository.

2. Layer on a GiftlistFormHandler.properties file to configure an instance of the
new class you created in step 1. The contents of the configuration file would look
similar to the following:

MyNewGiftlistFormHandler

$class=xyz.commerce.gifts.MyNewGiftlistFormHandler

Disabling the Gift List Repository

If you are not going to use the Giftlists repository, you can disable it. This repository is represented by
the /atg/commerce/gifts/Giftlist component. Disabling this repository prevents you from having
to create the associated tables in your database.

Perform the following steps to disable the Giftlists repository:

1. Edit the /atg/registry/ContentRepositories component and remove the value
in the initialRepositories property that references the
/atg/commerce/gifts/Giftlist component. For more information, see the
Configuring the SQL Repository Component section of the SQL Repository Reference
chapter in the ATG Repository Guide.

2. Edit the /atg/commerce/gifts/GiftlistTools component and set the
giftlistRepository property to null.

3. Optionally, edit the userProfile.xml file and remove properties that reference
items in the Giftlists repository. The userProfile.xml file is located in the
Commerce configuration layer. Remove the following lines:

<!-- key into private wishlist -->

<table name="dcs_user_wishlist" type="auxiliary"

id-column-name="user_id">

 <property category="Commerce - Lists" name="wishlist"

 item-type="gift-list"

 repository="/atg/commerce/gifts/Giftlists"

 column-name="giftlist_id"cascade="insert,update,delete"

 display-name="Wish list"/>

</table>

<!-- key into user created giftlists -->

<table name="dcs_user_giftlist" type="multi"

id-column-name="user_id" multi-column-name="sequence_num">

 <property category="Commerce - Lists" name="giftlists"

 data-type="list" component-item-type="gift-list"

 repository="/atg/commerce/gifts/Giftlists"

 column-name="giftlist_id" display-name="Gift list"/>

</table>

<!-- key into giftlists found for other customers -->

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 2 2

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
<table name="dcs_user_otherlist" type="multi"

id-column-name="user_id" multi-column-name="sequence_num">

 <property category="Commerce - Lists" name="otherGiftlists"

 data-type="list" component-item-type="gift-list"

 repository="/atg/commerce/gifts/Giftlists"

 column-name="giftlist_id"

 display-name="Other gift lists"/>

</table>

4. Remove the updateGiftRepository and sendGiftPurchased processors from the
commerce pipeline. These processors are found in the processOrder pipeline chain.
After these entries have been removed from the chain definition, create a link from the
authorizePayment processor to the addOrderToRepository processor.

Setting Up Product Comparison Lists
Commerce sites often require the ability for a user to compare items in the product catalog. A simple site
may offer the user a single product comparison list. A more complex site may offer the user multiple
comparison lists to compare different types of items. A multisite configuration may provide the ability to
compare items across sites.

The default implementation of the product comparison system enables the user to compare any number
of products and to do so using the products’ category, product, SKU, and inventory information. (You can
extend the system to include additional information.) Additionally, it enables the page developer to
display product comparison information as a sortable table, which the user can manipulate to change the
sort criteria for the displayed information.

This section describes the default implementation of the product comparison system and includes the
following subsections:

 Understanding the Product Comparison System

 Extending the Product Comparison System

 Using TableInfo to Display a Product Comparison List

Understanding the Product Comparison System

The product comparison system consists of the following four classes in the
atg.commerce.catalog.comparison package:

 ComparisonList

A class that provides a generic data structure to maintain an ordered list of objects and
an associated set of sort directives to apply when displaying the items.

 ProductComparisonList

A subclass of ComparisonList that provides an extended API for comparing product
information. ATG Commerce includes a session-scoped instance of

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 2 3

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
ProductComparisonList, located in Nucleus at
/atg/commerce/catalog/comparison/ProductList.

 ProductListContains

A droplet that queries whether a product comparison list contains an entry for a
specific product. ATG Commerce includes a globally-scoped instance of
ProductListContains, located in Nucleus at
/atg/commerce/catalog/comparison/ProductListContains.

 ProductListHandler

A form handler that manages product comparison lists. ATG Commerce includes a
session-scoped instance of ProductListHandler, located in Nucleus at
/atg/commerce/catalog/comparison/ProductListHandler.

ComparisonList

atg.commerce.catalog.comparison.ComparisonList provides a generic data structure to maintain
an ordered list of items that the user may want to compare, as well as an associated set of sort directives
to apply when displaying the items in the list. The objects in the list may be of any Java class. Like Java
List classes, ComparisonList maintains the insertion order of items in the list. Unlike List classes, it
prohibits duplicate entries in the list by ignoring requests to add items that compare equal to items
already in the list.

The following table describes the ComparisonList methods used to maintain a list of items to compare.
For additional methods and details, refer to the ATG API Reference.

Method Description

addItem Adds an item to the end of the comparison list if the item isn’t already
present in the list.

clear Removes all items from the comparison list.

containsItem Returns true if the comparison list contains the specified item.

getItem(n) Returns the item at the specified index in the comparison list.

getItems Returns the list of items being compared.

indexOf Returns the index of the specified item in the comparison list; returns -1
if the item does not appear in the list.

removeItem Removes an item from the comparison list if it was present in the list.

Size Returns the number of items in the comparison list.

ComparisonList internally synchronizes operations on the list. This makes it possible for multiple
request-scoped servlet beans and form handlers to operate safely on a shared session-scoped
ComparisonList, as long as all changes to the list are made through the ComparisonList API. Note that
if your application calls the getItems method to obtain a reference to the list, you should synchronize all

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 2 4

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
operations on the list or call the java.util.Collections.synchronizedList method to obtain a
thread-safe version of the list upon which to operate.

ComparisonList maintains a property of type atg.service.util.TableInfo as a convenience to the
developer. In cases where the comparison information will be displayed as a table, this provides an easy
way to associate default table display properties with a comparison list. ATG Commerce includes a
session-scoped instance of TableInfo, located in Nucleus at
/atg/commerce/catalog/comparison/TableInfo. For more information about the TableInfo
component and how to use it to display sortable tables, see the Implementing Sortable Tables chapter in
the ATG Page Developer’s Guide.

Use ComparisonList when you want to compare sets of simple Java beans, repository items, user
profiles, or other self-contained objects. If you want to compare more complex objects, or sets of objects
against each other, you’ll want to subclass ComparisonList to be able to manage application-specific
objects.

ProductComparisonList

ProductComparisonList extends ComparisonList, providing an API designed to manage and
compare products and SKUs. ProductComparisonList uses the items property to store a list of Entry
objects, each of which represents a product or SKU that the user has added to her product comparison
list. Entry is an inner class defined by ProductComparisonList; it combines category, product, SKU,
and inventory information about a product into a single object.

You can configure additional instances of ProductComparisonList in Nucleus to provide multiple
comparison lists.

The API for ProductComparisonList

The public API for ProductComparisonList can be divided broadly into the following four categories:

 add methods, which add entries to the list.

When you call ProductComparisonList’s add method, a new Entry object is
automatically constructed and added to the item list if it is not already present. When
you call ProductComparisonList’s addAllSkus method, a new Entry object for
each SKU associated with the given product is automatically constructed and added to
the item list.

When the add method or addAllSkus method is called, if no category ID for the given
product is specified, then the product’s default parent category is used. If no default
parent category for the given product is set, then the category property of the new
Entry object is null. Similarly, if no SKU is specified in the method call, then the given
product’s first child SKU is used. If the product has no child SKUs, then the sku
property of the new Entry object is null.

 remove methods, which remove entries from the list.

 contains methods, which query whether the list contains an entry matching specified
product, category, SKU, or site information.

 set and get methods, which set and get various properties of the
ProductComparisonList itself.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 2 5

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
When you call getItems on a ProductComparisonList, you get back a List of Entry
objects. When working with these objects in Java, you can either cast the objects to
ProductComparisonList.Entry or use the DynamicBeans system to retrieve the
product, category, SKU, site, and inventory information from the Entry. When
working with these objects in JSPs, you can refer to their properties in the same way
you refer to the properties of any other Java bean.

 refresh methods, which refresh the inventory information for the items in the
ProductComparisonList.

The refreshInventoryData() method iterates over the items in the
ProductComparisonList and loads updated inventory information into them.

The setRefreshInventoryData(String unused) method calls the
refreshInventoryData() method. This method enables you to update the
inventory information for the items when you render the page that displays the
ProductComparisonList. To do so, you could use the following setvalue tag at the
top of the page:

<setvalue bean="ProductList.refreshInventoryData">

For related form handler methods, see ProductListHandler.

There are several different variations on the add, remove, and contains methods. The various methods
take different sets of arguments to support a wide range of application behaviors. For example, there are
remove methods to remove all entries for a specific product, to remove all entries for all products in a
specified category, and to remove the entry for a particular category/product/SKU combination.

Additionally, several methods of ProductComparisonList take an optional catalogKey parameter.
This String parameter is useful for applications using catalog localization because it enables you to
specify the product catalog to use when operating on a product comparison list. Through the
catalogKey parameter, you pass a key to CatalogTools, which then uses the given key and its key-to-
catalog mapping to select a product catalog repository.

Refer to the ATG API Reference for additional information on the public API for ProductComparisonList.
Also note that there is one important protected method:

protected Entry createListEntry(RepositoryItem pCategory,

RepositoryItem pProduct, RepositoryItem pSku)

The createListEntry method is called to create a new list entry with a given category, product, and
SKU. By subclassing ProductComparisonList and overriding createListEntry, you can extend or
replace the properties of the Entry object. See Extending the Product Comparison System for more
information.

The Entry Inner Class

The public API for the Entry class exposes properties that the page developer can display in a product
comparison list or table. The default implementation includes the following properties:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 2 6

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
Property Name Property Type Description

product RepositoryItem The product being compared.

category RepositoryItem The category of the product being compared. If
the category is not set explicitly when the
product is added to the list, then the product’s
default parent category is used. If the product’s
default parent category is unset, the category
property is null.

sku RepositoryItem The product’s SKU. If the SKU is not set explicitly
when the product is added to the list, then the
first SKU in the product’s childSkus list is used. If
the product has no child SKUs, then the sku
property is null.

inventoryInfo InventoryData The InventoryData object that describes the
inventory status for the given product and SKU. If
the sku property is null or the inventory
information isn’t available, then the
inventoryInfo property is null. (See the next
section for more information on the
InventoryData object.)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 2 7

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
productLink String An HTML fragment that specifies an anchor tag

that links to the product’s page in the catalog.
The default format for the link is <a
href="product.template.url?id=product.

repositoryId">product.displayName.

If you are using ATG’s multisite feature, the
ProductComparisonList automatically uses the
SiteURLManager to find the base production
URL for the site from which the entry was added.

You can change the link format by setting the
ProductComparisonList.productLink

Format property.

Note: If you display the product comparison
information in a table, you can use the
productLink property in the configuration of
the TableInfo object that maintains the table
information, as in the following example:

columns=\

 Product Name=productLink,\

 Price=sku.listPrice,\

 …

Or, similarly, to display the product link in a table
column but sort the column on the product’s
display name, you could modify the example in
the following manner:

columns=\

 Product Name=productLink;

product.displayName,\

 Price=sku.listPrice,\

 …

For more information on the TableInfo
component, see the Implementing Sortable Tables
chapter in the ATG Page Developer’s Guide.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 2 8

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
categoryLink String An HTML fragment that specifies an anchor tag

that links to the category’s page in the catalog.
The default format for the link is <a
href=category.template.url?id=category

.repositoryId>category.displayName.
However, you can change the format by setting
the
ProductComparisonList.categoryLinkForm

at property.

Note: Like the productLink property, the
categoryLink property can be used in the
configuration of a TableInfo component. See
the description of the productLink property in
this table for more information.

Also like productLink, if you are using ATG’s
multisite feature, the ProductComparisonList
automatically uses the SiteURLManager to find
the base production URL for the site from which
the entry was added.

id Int A unique ID that names the list entry. You can use
this property to retrieve individual entries by
calling
ProductComparisonList.getItems(id) in
Java code or by using <dsp:valueof
bean="ProductList.entries[id]"/> in a
.jsp page.

You can also use this property to delete specific
entries, for example, with a form handler. For a
JSP example, refer to Examples of Product
Comparison Pages in the Implementing Product
Comparison chapter of the ATG Commerce Guide
to Setting Up a Store.

siteId String If you are using ATG’s multisite feature, this
property holds the ID of the site with which the
item is associated.

A page developer can refer to the properties of the Entry objects using familiar JSP syntax, as in the
following example:

<dsp:droplet name="ForEach">

 <dsp:param bean="ProductComparisonList.items" name="array"/>

 <dsp:oparam name="output">

 <p>Product Name: <dsp:valueof

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 2 9

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
param="element.product.displayName"/>

 Category: <dsp:valueof param="element.category.displayName"/>

 Inventory: <dsp:valueof

param="element.inventoryInfo.inventoryAvailabilityMsg"/>

 </dsp:oparam>

</dsp:droplet>

The InventoryData Inner Class

The getInventoryInfo() method of the Entry inner class (class
atg.commerce.catalog.comparison.ProductComparisonList.Entry) returns an instance of the
InventoryData inner class (class
atg.commerce.catalog.comparison.ProductComparisonList.Entry.InventoryData).

The InventoryData object stores the inventory data for a given item in the product comparison list. It
returns a subset of the readable properties of an InventoryInfo object (class
atg.commerce.inventory.InventoryInfo). However, unlike an InventoryInfo object, an
InventoryData object is serializable, which enables it to participate in session failover. For a list of
InventoryData properties, refer to the ATG API Reference.

ProductListContains

When given a category, product, and SKU, the ProductListContains droplet queries whether a product
comparison list includes the given item.

The behavior of ProductListContains parallels that of ProductComparisonList. Namely, you can
specify a product ID with or without an accompanying category or SKU. In the latter situation,
ProductListContains behaves as follows:

 If you don’t specify a category ID for the given product, then ProductListContains
looks for a list entry whose category property matches either the given product’s
default category or null if there is no default category for the given product.

 If you don’t specify a SKU for the given product, then ProductListContains looks
for a list entry whose sku property matches either the given product’s first child SKU
or null if there are no SKUs for the given product.

For a list of the input, output, and open parameters for ProductListContains, and for JSP examples of
how page developers can use ProductListContains, refer to the Implementing Product Comparison
chapter of the ATG Commerce Guide to Setting Up a Store.

ProductListHandler

The ProductListHandler form handler manages product comparison lists. By default, ATG Commerce
includes a session-scoped instance of ProductListHandler, located in Nucleus at
/atg/commerce/catalog/comparison/ProductListHandler. It is configured to operate on the
product comparison list located at /atg/commerce/catalog/comparison/ProductList.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 3 0

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
If your application uses multiple instances of ProductComparisonList to manage multiple product
comparison lists, then you may want to configure multiple instances of ProductListHandler to manage
the contents of each list.

If your application uses alternate product catalogs for different locales, you can specify the product
catalog to use when operating on a product comparison list. To do so, set the
ProductListHandler.repositoryKey property to the key to pass to CatalogTools. CatalogTools
uses the given key and its key-to-catalog mapping to select a product catalog repository. Typically, you
would set the ProductListHandler.repositoryKey property via a hidden input field in a form. If the
repositoryKey property is unset, then the default product catalog repository is used.

The following table describes ProductListHandler’s handle methods for managing a product
comparison list:

Handle Method Description

handleAddProduct Adds the product specified by productID to the
product comparison list, applying optional
category, SKU, and site information if supplied in
categoryID, skuID, and siteID.

handleAddProductAllSkus Adds all of the SKUs for the product specified by
productID to the product comparison list,
applying optional category and site information if
supplied in categoryID and siteID.

handleAddProductList Adds all of the products specified by
productIDList to the product comparison list,
applying optional category and site information if
supplied in categoryID, siteID, and the default
SKU for each product, if any.

handleAddProductListAllSkus Adds all of the SKUs for all of the products specified
by productIDList to the product comparison list,
applying optional category and site information if
supplied in categoryID and siteID.

handleCancel Resets the form handler by setting productID,
categoryID, skuID, and siteID to null.

handleClearList Clears the product comparison list.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 3 1

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
handleRefreshInventoryData Calls the

ProductComparisonList.refreshInventory

Data() method.

The handleRefreshInventoryData method also
calls pre and post methods. If necessary, your
subclasses can override these methods to provide
additional application-specific processing. Also
note that ProductListHandler has two optional
properties, refreshInventoryDataSuccessURL
and refreshInventoryDataErrorURL, which
you can set to redirect the user when the handle
method succeeds or fails, respectively.

handleRemoveCategory Removes all entries for the category specified by
categoryID and siteID from the product
comparison list.

handleRemoveEntries Removes the list entries whose ids are specified in
entryIds from the product comparison list.

handleRemoveProduct Removes the product specified by productID from
the product comparison list, applying the optional
category, SKU, and site information if supplied in
categoryID, skuID, and siteID respectively.

handleRemoveProductAllSkus Removes all entries for the product specified by
productID and siteID from the product
comparison list.

handleSetProductList Sets the product comparison list to the products
specified by productIDList, applying optional
category information if supplied in categoryID
and the default SKU for each product, if any.

handleSetProductListAllSkus Sets the product comparison list to contain all the
SKUs for all the products specified by
productIDList, applying optional category
information if supplied in categoryID.

The behavior of ProductListHander’s handle methods parallels that of ProductComparisonList.
Namely, optional category and SKU information is managed in the same way. If a product’s category
information isn’t specified in categoryID, then the form handler looks for the default category of the
product. If no default value exists, then the property is set to null. Similarly, if a product’s SKU information
isn’t specified in skuID, then the form handler looks for the product’s first child SKU (that is, the default
SKU). If no default value exists, then the property is set to null.

For additional information on ProductListHandler’s methods, refer to the ATG API Reference. For
examples of how page developers can use ProductListHandler in JSPs to manage product comparison

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 3 2

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
lists, refer to the Implementing Product Comparison chapter of the ATG Commerce Guide to Setting Up a
Store.

Using Product Comparison Lists in a Multisite Environment

If you are using ATG’s multisite feature, you may want to provide users with the ability to compare
products across multiple sites. You do not need to do any additional configuration to use this feature; the
ProductComparisonList is registered as a shareable component by default and works the same way in
a multisite environment as in a single site. The ProductComparisonList,
ProductComparisonList.Entry, and ProductListContains classes are all site-aware by default.

Note: The product comparison list does not prevent users from adding the same product to a list from
different sites.

The shareable Nucleus component that refers to the ProductComparisonList is located at
/atg/commerce/ShoppingCartShareableType. By default, the ProductComparisonList is
registered as a shareable component:

id=atg.ShoppingCart

paths=/atg/commerce/ShoppingCart,\

 /atg/commerce/catalog/comparison/ProductList

See the ATG Multisite Administration Guide for information on shareable components and how to use
sharing groups in your multisite configuration.

Extending the Product Comparison System

As previously described, the Entry object maintains category, product, SKU, site, and inventory
information in a single object. ProductComparisonList maintains a list of Entry objects, with each
Entry object representing a product that the user has added to her product comparison list.

You can subclass ProductComparisonList and override its createListEntry method to extend the
information stored in an Entry object. Although the Entry class contains convenience methods for
setting and getting properties like product, category, sku, siteId, and inventoryInfo, your
subclasses don’t need to provide similar methods for their own properties. Because Entry is a subclass of
java.util.HashMap, you can call Entry.put(name, value) to add a new property value to the Entry
object. The following code example illustrates this point; it stores a hypothetical value called “popularity,”
which indicates how popular a given product is.

public class MyProductComparisonList extends ProductComparisonList

 {

 protected Entry createListEntry(RepositoryItem pCategory,

 RepositoryItem pProduct,

 RepositoryItem pSku),

 RepositoryItem pSiteId)

{

 Entry e = super.createListEntry(pCategory, pProduct, pSku, pSiteId);

 int score = computePopularity(pProduct);

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 3 3

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
 e.put("popularity", score);

 return e;

 }

 public int computePopularity(RepositoryItem pProduct) {

 ...

 }

 }

Note that by the time the createListEntry method is called, pCategory and pSku will have been
populated with the product’s default parent category and first child SKU, if necessary and available.
Consequently, createListEntry is called with the same category and SKU values that the user
ultimately sees on the page in the product comparison list.

Page developers can refer to the popularity property of a ProductComparisonList entry to display
the corresponding value in a JSP.

Using TableInfo to Display a Product Comparison List

The ProductList component, which maintains the list of Entry objects in its items property, also
includes a reference to a TableInfo object in its tableInfo property. The TableInfo component
maintains the display information to compare the products in table form, such as the properties to display
in the table, the column headings for the table, and the sorting instructions for the table.

Depending on the complexity of your commerce application, you may require multiple instances of
ProductComparisonList and TableInfo. In general, however, an application will maintain one
instance of ProductComparisonList and one instance of TableInfo for each comparison table
desired.

For detailed information on TableInfo, refer to the Implementing Sortable Tables chapter in the ATG Page
Developer’s Guide. For JSP examples of how to use the ProductList and TableInfo components to
manage product comparisons, refer to the Implementing Product Comparison chapter of the ATG
Commerce Guide to Setting Up a Store. For an example of using multiple instances of TableInfo to
manage a single product comparison table, refer to the Viewing Compare Results section of the Displaying
and Accessing the Product Catalog chapter in the ATG Business Commerce Reference Application Guide.

Setting Up Gift Certificates and Coupons
ATG Commerce provides the ability to create and manage gift certificates and coupons. (Collectively,
these are sometimes referred to as “claimable items” in ATG Commerce.) By providing gift certificates as
an option for your customers, you can increase sales and attract new business. Coupons can also help
increase your customer base (for example, by including them in a cold call e-mail campaign), but more
importantly they provide an alternative way to deliver promotions to your existing customers.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 3 4

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
If you are using ATG’s multisite feature, you can specify at the time of coupon creation whether users can
claim the coupon on any site, or only sites to which the associated promotion is limited. See the ATG
Merchandising Guide for Business Users for information.

The claimable item system in ATG Commerce is made up of three components:

 The Claimable repository

 The ClaimableTools component

 The ClaimableManager component

The Claimable Repository

The Claimable repository holds claimable items, namely, gift certificates and coupons . The repository
itself is made up of two parts: the database schema and the XML repository definition file. The definition
file represents an item that can be claimed (a sub-type of type Claimable) and then defines specific
implementations of this item.

The following example shows the pertinent code from the Claimable repository definition file:

<item-descriptor name="claimable" sub-type-property="type"

 version-property="version">

 ...

 <property name="type" data-type="enumerated">

 <option value="GiftCertificateClaimable"/>

 </property>

 ...

</item-descriptor>

Each item in the Claimable repository has a repositoryId property. The system uses the value in this
property as the key for claiming the item (for example, as the claim code for a gift certificate). The value is
created by the ObfuscatedIdGenerator service. The ObfuscatedIdGenerator service creates non-
sequential repositoryId values. This is important to prevent users from guessing claim codes. The
standard IdGenerator generates sequential repositoryId values. See the ID Generators section of the
Core Dynamo Services chapter in the ATG Programming Guide.

Disabling the Claimable Repository

The Claimable repository is represented by the /atg/commerce/claimable/ClaimableRepository
component. If you are not going to use the Claimable repository, you can disable it. Disabling the
repository prevents you from having to create the associated tables in your database.

Follow these steps to disable the Claimable repository:

1. Edit the /atg/registry/ContentRepositories component and remove the value
in the initialRepositories property that references the
/atg/commerce/claimable/ClaimableRepository component.

2. Edit the /atg/commerce/claimable/ClaimableTools component and set the
claimableRepository property to null.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 3 5

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
The ClaimableTools Component

The ClaimableTools component (/atg/commerce/claimable/ClaimableTools) provides two
pieces of functionality:

 Low-level access to the Claimable repository.

 Naming for various claimable item properties.

The first use of the ClaimableTools component is simply to create and claim any type of claimable item.
When claiming items, it can obtain any super-type of type claimable since they all share the same
common base type of claimable. Additionally, it takes the item-descriptor type as an argument and then
creates and adds the claimable item to the repository.

The second use of the ClaimableTools component is to provide configurable values for the various
properties of claimable items. For example, if someone changes the name of a field in the XML file, you
can reflect that change in the code by adjusting the property values of the ClaimableTools component.

The ClaimableManager Component

The ClaimableManager component (/atg/commerce/claimable/ClaimableManager) provides
higher level access to the repository and is the mechanism that most applications use to interact with the
claimable item functionality. It provides the ability to claim items, initialize them, and then perform
functions that are specific to one type of claimable item, thus combining several smaller functions from
the ClaimableTools package.

An example of how the ClaimableManager component can layer together several pieces of functionality
from the ClaimableTools package is as follows: when a user claims an item by entering a code for a gift
certificate, the ClaimableManager component attempts to claim the item through the
ClaimableTools package. Then it attempts to adjust the status of the item to a claimed status, also
through the ClaimableTools package.

Other examples of functions that the ClaimableManager component provides are as follows:

 createClaimableGiftCertificate – creates a gift certificate in the system.

 debitClaimableGiftCertificate – debits a specific amount from the gift
certificate.

 creditClaimableGiftCertificate – credits a specific amount to a gift certificate.

The ClaimableManager also handles coupon functionality. For example, if you are using ATG’s multisite
feature, the ClaimableManager can check the user’s site against the list of sites for which the coupon is
valid before allowing it to be claimed.

Setting Up Gift Certificates

Gift certificates allow a customer to pay for all or part of a purchase using a prepaid amount. Processing a
gift certificate involves the following steps:

1. Customer A purchases the gift certificate on behalf of Customer B.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 3 6

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
2. ATG Commerce fulfills the purchase for Customer A (and sends a notification e-mail to

Customer B as part of the fulfillment process).

3. Customer B uses (claims) the gift certificate to pay for all or part of an order.

The Purchase and Fulfillment Process for Gift Certificates

Set up gift certificates as items in your product catalog, adding separate SKUs for different amounts. For
example, you could have two SKUs, one for a $50 dollar certificate and another for a $100 certificate. The
value of the gift certificate is stored in the listPrice property of each gift certificate SKU in the product
catalog.

Each SKU has a fulfiller property that defines an ElectronicFulfiller. When Customer A adds a
gift certificate to his or her shopping cart, the fulfiller property tells the OrderFulfiller to route the
purchase to the specified ElectronicFulfiller. The ElectronicFulfiller then creates the gift
certificate in the Claimable repository (by means of the ClaimableManager component) and sends an
e-mail to the recipient notifying him or her that a gift certificate has been purchased on his or her behalf
and including the code to use for claiming it. Refer to the Configuring the Order Fulfillment Framework
chapter for more information on the ElectronicFulfiller.

The following properties can be set when the gift certificate is created. The gift certificate is not functional
unless the three required properties (identified below) are set.

amount (Required) The original dollar value of the gift certificate.

amountAuthorized (Required) The total amount of money on the gift certificate that has been
authorized for debit.

amountRemaining (Required) The current amount of money remaining on the gift certificate
for debit.

purchaserId The profileId of the person who bought the gift certificate.

purchaseDate The date the gift certificate was purchased.

lastUsed The latest date on which fulfillment updated the amount.

Note: By default, the stock level of a gift certificate is set to -1 indicating that an infinite number of the
item is available. Setting the stock level of a gift certificate to 0 (out of stock) does not affect the gift
certificate’s availability because the ElectronicFulfiller does not check a gift certificate’s stock level.

Sending an e-mail to the recipient of the gift certificate requires knowing his or her e-mail address. ATG
Commerce does this through an ElectronicShippingGroup, which designates the necessary
information for delivering electronic goods, in this case an e-mail address. So, when Customer A adds the
gift certificate to his or her cart, you add an ElectronicShippingGroup to the order as well, and define
the relationship between the two. Use the handleAddSoftGoodToOrder() method in the
/atg/commerce/order/ShoppingCartModifier component to do this. The following example shows
the JSP code you would add to the page on which the gift certificate product is displayed. It adds the gift
certificate to the customer’s order and prompts him or her to specify the e-mail address of the recipient:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 3 7

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
<%@ taglib uri="http://www.atg.com/dsp.tld" prefix="dsp" %>

<dsp:page>

<dsp:form action="<%=request.getServletPath()%>" method="post">

<!-- Store this Product's ID in the Form Handler: -->

 <dsp:input bean="ShoppingCartModifier.ProductId"

paramvalue="Product.repositoryId" type="hidden"/>

<!--set id param so that the Navigator won't get messed up

 in case of an error that makes us return to this page.-->

 <input value='<dsp:valueof param="Product.repositoryId"/>' type="hidden"

name="id">

 Give

 <dsp:input bean="ShoppingCartModifier.quantity" size="4" value="1"

type="text"/>

<!-----------DropDownList format (default) ----------- -->

<!--Create a dropdown list will all Sku in the Product.

 Store the selected SKU's id in the Form Handler: -->

 <dsp:select bean="ShoppingCartModifier.catalogRefIds">

<!--For each of the SKUs in this Product, add the SKU to the

 dropdown list:-->

 <dsp:droplet name="/atg/dynamo/droplet/ForEach">

 <dsp:param param="Product.childSKUs" name="array"/>

 <dsp:param value="Sku" name="elementName"/>

 <dsp:param value="skuIndex" name="indexName"/>

 <dsp:oparam name="output">

<!--This is the ID to store, if this SKU is selected in

 dropdown:-->

 <dsp:getvalueof id="option48" param="Sku.repositoryID"

idtype="java.lang.String">

<dsp:option value="<%=option48%>"/>

</dsp:getvalueof>

<!--Display the SKU's display name in the dropdown

 list:-->

 <dsp:valueof param="Sku.displayName"/>

 </dsp:oparam>

 </dsp:droplet>

<!--ForEach SKU droplet-->

 </dsp:select> to

 Recipient's e-mail address

 <dsp:input bean="ShoppingCartModifier.softGoodRecipientEmailAddress"

size="30"/>

 <p>

 <!-- ADD TO CART BUTTON: Adds this SKU to the Order-->

 <dsp:input bean="ShoppingCartModifier.addSoftGoodToOrder"

value=" Add Gift Certificate to Cart " type="submit"/>

 <!-- Goto this URL if NO errors are found during the ADD TO CART

 button processing:-->

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 3 8

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
 <dsp:input bean="ShoppingCartModifier.addSoftGoodToOrderSuccessURL"

value="../checkout/cart.jsp" type="hidden"/>

 <dsp:input bean="ShoppingCartModifier.addSoftGoodToOrderErrorURL"

value="product_gift_certificate.jsp" type="hidden"/>

 </td>

 </tr>

 </table>

</dsp:form>

</dsp:page>

In this example, note the code that handles the recipient’s e-mail address. The customer enters the
recipient’s e-mail address into a form field set to the property
ShoppingCartModifier.softGoodRecipientEmailAddress. Thus, the e-mail address is set in the
ElectronicShippingGroup through the handleAddSoftGoodToOrder method, and then the
ElectronicFulfiller examines it to determine where to send the message.

Note that electronic goods require special processing, so the submit method of the form is set to
addSoftGoodOrder and not addItemToOrder.

For more information on the ShoppingCartModifier component, please refer to the Setting Up Gift
Lists and Wish Lists section.

Using a Gift Certificate

On your Checkout page (or an equivalent page on your sites), include a text field where customers can
enter the claim codes for any gift certificates they may have (you send the codes in the gift certificate
notification e-mail). Hook the text field up to the giftCertificateNumbers property of the
ShoppingCartModifier component. During the handleMoveToConfirmation process, the
ShoppingCartModifier parses any values it finds in this field into tokens, using white space as the
delimiter. This behavior allows customers to enter multiple gift certificate codes into a single text field.

After the system tokenizes the giftCertificateNumbers property, it hands each token string to the
ClaimableManager component. The ClaimableManager attempts to match each string to a
corresponding gift certificate in the Claimable repository. If it cannot find a corresponding item, it adds
an error to the FormHandler. If the system does find an item that corresponds to the token string, it
creates a new GiftCertificate payment group and adds it to the order.

You must initialize the properties of the payment group to the correct values. The properties to initialize
include the claim code ID, the user profile ID, and the amount of the gift certificate. Finally, create a
relationship between the order and the new payment group indicating that the gift certificate payment
group can account for any amount up to the value of the gift certificate.

Please refer to the Configuring Purchase Process Services chapter for more information on payment
groups.

Settling a Gift Certificate

Gift certificate settlement is handled similar to the way that settlement for credit cards is handled. (For
more information, see the Processing Payment of Orders section.)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 3 9

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
When an order is submitted, each PaymentGroup in the order is authorized using the PaymentManager.
The PaymentManager has different processors for gift certificates and credit cards. The processor used for
gift certificates handles the authorization, debit, and credit of gift certificates. When a gift certificate is
authorized, the amountRemaining is reduced by the amount being authorized. This prevents the same
gift certificate from being used for more than it is worth.

During fulfillment, the PaymentGroup containing the gift certificate is debited through the
PaymentManager (and ultimately the GiftCertificateProcessor). When this happens, the amount
that was authorized is checked against the amount that is being debited. If the amount authorized was
the same as the amount being debited, the PaymentManager.debit returns successfully. If there are any
differences, they are corrected now. To make sure that the gift certificate is valid if an order is removed
before the debit occurs (and after authorization), any amount that was authorized will be credited back to
the gift certificate before the PaymentGroup is removed.

ATG Commerce treats coupons as a type of promotion that customers can claim. The customer types in a
specific code, and the system adds the corresponding promotion or promotions to the customer’s profile.
Most of the code for handling coupons is included in the ClaimableManager component and the
standard promotion architecture, with a FormHandler to connect these two systems. The process for
handling a coupon is as follows:

1. Obtain a coupon code.

2. Try to claim the coupon from the ClaimableRepository.

Coupon codes are case-sensitive. For example, COUP100 and coup100 are two
different coupon codes.

Important: If you are using an MSSQL database, be aware that unlike some other
databases, MSSQL uses case-insensitive character set by default. If you want to have
case-sensitive coupon codes, ATG recommends setting the case-sensitive character
set at the database level.

3. Add the resulting promotion or promotions to the activePromotions list in the user
profile.

Use the /atg/commerce/promotion/CouponFormHandler component to obtain a coupon code and
add it to a customer’s list of promotions in the customer’s activePromotions profile property. Create an
input field on an appropriate site page (for example, a Checkout page) and hook it up to the
couponClaimCode property of the CouponFormHandler component. Then, have the form submit to the
handleClaimCoupon method of the form handler. This method uses the ClaimableManager
component to attempt to get a coupon from the Claimable repository. Then it extracts the promotion
from the coupon and uses the PromotionTools component to place the promotion into the customer’s
user profile.

The following example shows the JSP code for using the CouponFormHandler component:

<%@ taglib uri="http://www.atg.com/dsp.tld" prefix="dsp" %>

<dsp:page>

<dsp:form method="post">

<!-- Where to go to on success or failure -->

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 4 0

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
<dsp:input bean="CouponFormHandler.claimCouponSuccessURL"

value="CouponClaim.jsp" type="hidden"/>

<dsp:input bean="CouponFormHandler.claimCouponSuccessURL"

value="CouponClaim.jsp" type="hidden"/>

<!-- Get the coupon claim code -->

Coupon code: <dsp:input bean="CouponFormHandler.couponClaimCode"

type="text"/>

<dsp:input bean="CouponFormHandler.claimCoupon" type="submit"/>

</dsp:form>

</dsp:page>

When a user enters a coupon code on a Checkout page, ATG Commerce checks that:

 The coupon is active

 The coupon has not expired

 The coupon is valid on the current site

 Any promotions associated with the coupon are not expired or otherwise invalid

If these conditions are met, the user “claims” the coupon, which means that the promotions are added to
the user’s activePromotions profile property. Note that promotions cannot be granted independently
while claiming a coupon; either all are granted or none.

During order pricing, ATG Commerce determines whether the order qualifies for the coupon’s
promotions by checking that:

 The order meets the requirements of the promotions

 The promotions have not expired

This double-checking ensures that if a user claims a coupon as part of one order, discontinues that order,
then creates a second one, any promotions apply to the second order, as long as the promotions are
active and applicable.

Promotions given by a coupon persist on the user profile, not as part of the order. A claimed coupon is
automatically applied to any order to which it qualifies; there’s no need to claim a coupon twice. You can
persist a coupon code with an order by adding a new property to the Order object and storing the
coupon code in the new property. For information on how to extend the commerce object hierarchy to
include a new property, refer to Extending the Purchase Process in the Customizing Purchase Process
Externals chapter.

The other step to consider when you set up coupons is to make sure that there are coupons in the
Claimable repository for a customer to claim. The following example shows the default item-descriptor for
coupons:

<!-- Promotion Claimable object -->

<item-descriptor name="PromotionClaimable" super-type="claimable"

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 4 1

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ
 sub-type-value="PromotionClaimable">

 <table name="dcspp_coupon" type="auxiliary" id-column-name="coupon_id">

 <property name="promotion" column-name="promotion_id"

item-type="promotion" repository="/atg/commerce/pricing/Promotions"/>

 </table>

</item-descriptor>

The coupon item-descriptor is defined in /atg/commerce/claimable/claimableRepository.xml,
which is located in a .jar file at <ATG10dir>/DCS/config/config.jar. The item-descriptor defines a
claim code ID and a link to a promotion object in the Promotions repository. If your Web sites require
multiple types of coupons, you can define additional item-descriptor types by editing the
claimableRepository.xml file and then specifying the valid coupon types in the
validCouponItemTypes property in the CouponFormHandler properties file. When a coupon is
claimed, the CouponFormHandler.checkPromotionType method checks the item type of the coupon
corresponding to the given claim code against the array of acceptable item types in the
CouponFormHandler.validCouponItemTypes property.

You can populate the Claimable repository through the following methods:

 ATG Merchandising (see the ATG Merchandising Guide for Business Users)

 ATG Control Center (see the ATG Commerce Guide to Setting Up a Store)

 the atg.commerce.promotion.CouponDroplet (see Appendix: ATG Commerce
Servlet Beans in the ATG Commerce Guide to Setting Up a Store)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 4 2

8 - C o n f i g u r i n g C o m m e r c e S e r v i c e s

μ

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 4 3

9 - C o m m e r c e P r i c i n g S e r v i c e s O v e r v i e w

μ
9 Commerce Pricing Services Overview

The next several chapters discuss the ATG Commerce pricing services. This chapter provides an
introduction to concepts and terms, while those that follow provide details on the default services and
the ways you can extend them.

Pricing services in ATG Commerce provide a flexible system for personalizing the prices of items in your
product catalog. Just as you can personalize content for every shopper who visits your sites, you can tailor
prices and generate them dynamically on demand. You can also set up coupons, sales, and other
promotions, target them for appropriate visitors, associate them with sites in a multisite environment, and
use them in dynamic pricing situations.

ATG Commerce pricing services include a set of standard features that are designed to handle the pricing
demands of most Web sites. If your sites require additional functionality, you can write a new
implementation of the many public pricing APIs that the product supplies.

This chapter provides an overview of the provided classes and components that make up the pricing
system. It includes the following sections:

Common Terms in Pricing Services

Using Dynamic vs Static Product Pricing

How Pricing Services Generate Prices

PricingTools Class

FilteredCommerceItem

PricingModelHolder

PricingAdjustment

PricingCommerceItem

PricingModelProperties

Common Terms in Pricing Services
The following table describes common terms used in pricing. Each of these terms is described in detail in
the chapters that follow.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 4 4

9 - C o m m e r c e P r i c i n g S e r v i c e s O v e r v i e w

μ
Pricing Term Definition

Calculator An object that looks at all or part of an Order and returns a price.
See the Commerce Pricing Calculators chapter for information.

Pricing Model
Definition Language
(PMDL)

Describes promotions. This includes the discount rules for when a
promotion may apply (the condition), the rules for what may be
discounted (the offer), and how to apply the discount (for
example, 10% off).

The ACC includes an interface for creating rules, as does ATG
Merchandising; see the ATG Commerce Guide to Setting Up a Store
and the ATG Merchandising Guide for Business Users

PriceInfo An object that contains the price of part of an order. There are
four main kinds of priceInfo objects: OrderPriceInfo,
ItemPriceInfo, ShippingPriceInfo, and TaxPriceInfo.
There is also a DetailedItemPriceInfo, which is described
with the ItemPriceInfo object. See the Price Holding Classes
section of the Base Commerce Pricing Engines chapter.

PricingAdjustment Describes why and how a particular price was changed. It
includes a description of the change and the amount. It also
contains the promotion (if any) that triggered the change. See
the DetailedItemPriceInfo object for information.

PricingContext Provides the items being priced, the order, the site, the
promotion, the locale, and the profile used when a price was
calculated. It can also include secondary information not
applicable in all cases, such as the shipping group.

PricingModel A repository item that describes a discount. It includes a PMDL
rule and the discount type and amount. It also contains
information about when the pricing model may be used,
including upsell information if applicable.

Promotion Allows you to offer periodic discounts on specific products or
groups of products. See PMDL and PricingModel in this table,
and the Understanding Promotions chapter.

Qualifier A service that interprets a PMDL rule and decides what, if
anything, may be discounted.

Condition The first part of a PMDL rule, which defines when something can
receive a discount.

Offer The second part of a PMDL rule, which defines which part of an
order receives a discount.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 4 5

9 - C o m m e r c e P r i c i n g S e r v i c e s O v e r v i e w

μ
Using Dynamic vs Static Product Pricing

ATG Commerce supports two pricing methods for use on product pages:

 Static pricing—Each item in the catalog has a list price stored in the listPrice
property of the catalog repository (optionally, each item can also have a salePrice).
You display the price on the appropriate site pages, and the ATG Commerce pricing
services use that price as a base for calculating order totals, shipping costs, and sales
tax.

 Dynamic pricing—Programmatically determines the price. Dynamic pricing is always
used on the shopping cart and purchase process pages, but can also be used on
product pages if necessary.

These are both forms of SKU-based pricing, as opposed to pricing based on price lists. See the Using Price
Lists chapter for information on price lists.

Using dynamic pricing on a product page can cause a significant decrease in performance compared to
using static pricing. Many sites do not need to show dynamic pricing on product pages; it may be
sufficient to show dynamic prices only when a customer places items in the shopping cart. For example,
suppose you send a specific group of customers a coupon for 20% off all blue items. On the product
pages of the site, blue items appear with their static list or sale price, which is the same for all customers.
However, when a customer with the “20% off” coupon adds a blue item to his or her shopping cart,
dynamic pricing takes effect, and the item price appears on the Shopping Cart or Checkout page (for
example) with a discount of 20%.

If you do decide to use dynamic pricing on product pages, you can still ensure a high level of performance
by using the pricing features selectively. You can use dynamic pricing on certain product templates and
static pricing on others. You can also choose to restrict dynamic pricing to certain types of customers (for
example, registered visitors only).

How Static Pricing Works

With static pricing, each item in the catalog has a list price stored in the listPrice property of the
catalog repository. You display the price on the appropriate site pages, and the ATG Commerce Pricing
Services can then use that price as a base for calculating order totals, shipping costs, and sales tax.

Optionally, you can maintain more than one price per item – for example, you can give each item a fixed
sale price in addition to its list price by specifying a value for the salePrice property in the catalog
repository. When you want the alternate price to take effect, use the Switch servlet bean with the
onSale property from the Catalog repository. The following example uses the default ATG Commerce
product catalog:

<dsp:droplet name="/atg/dynamo/droplet/Switch">

 <dsp:param param="sku.onSale" name="value"/>

 <dsp:oparam name="false">

 List price of <dsp:valueof param="sku.listPrice" converter="currency"/>

 </dsp:oparam>

 <dsp:oparam name="true">

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 4 6

9 - C o m m e r c e P r i c i n g S e r v i c e s O v e r v i e w

μ
 List price of <dsp:valueof param="sku.listPrice" converter="currency"/>

 on sale for <dsp:valueof param="sku.salePrice" converter="currency"/>!

 </dsp:oparam>

</dsp:droplet>

For information about the Switch servlet bean, see Appendix B: ATG Servlet Beans in the ATG Page
Developer’s Guide.

How Dynamic Pricing Works

You can use dynamic pricing for the following types of pricing object:

 Items. Each item has a list price that can be specified in the listPrice property of
the Product Catalog repository. ATG Commerce pricing services adapt the list price by
applying any discounts or other promotions that you have set up. For example, you
might set up a “2-for-1” sale for a limited period on a specific type of item. (Note that
an “item” is a CommerceItem, which represents a quantity of a SKU or a product).

 Orders. ATG Commerce pricing services calculate the total cost of an order and can
apply any discounts that are applicable (for example, a customer might have a coupon
offering a 10% discount on a total order).

 Shipping price. ATG Commerce pricing services can calculate the price of shipping for
an order and apply discounts if applicable.

 Tax. ATG Commerce pricing services can calculate the sales tax for an order.

ATG Commerce uses the same basic structure for pricing each type of object. The structure includes the
following:

 A pricing engine

 One or more calculators

 A helper method in the qualifier service

 An item-descriptor in the Promotions repository

For example, the structure for pricing and discounting catalog items includes the following:

 An Item Pricing Engine

 An Item List Price Calculator, an Item Sale Price Calculator, and an Item Discount
Calculator

 The findQualifyingItems call in atg.commerce.pricing.Qualifier

 The Item Discount item-descriptor in the repository
/atg/commerce/pricing/Promotions.

Note: The structure for determining sales tax is slightly different because ATG Commerce does not
support offering discounts on tax. For this reason, there is no item-descriptor for tax discounts in the
default Promotions repository. You could add such an item-descriptor if necessary.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 4 7

9 - C o m m e r c e P r i c i n g S e r v i c e s O v e r v i e w

μ
The ATG Business Commerce Reference Application Guide contains extensive descriptions of how ATG
implemented dynamic pricing in the Motorprise reference application. Also see the sections on the
PriceItem and the PriceEachItem servlet beans in the ATG Commerce Guide to Setting Up a Store.

How Pricing Services Generate Prices
ATG Commerce pricing services are based on two complementary elements: pricing engines and pricing
calculators. These components work together to determine prices for orders, sales tax, and shipping.

Pricing engines are responsible for these tasks:

 Retrieving any promotions that are available to site visitors

 Determining which pricing calculators generate prices

 Invoking the calculators in the correct order

Pricing calculators are responsible for the following:

 Looking up the price.

 Using information they receive from the pricing engines, promotions, and the qualifier
service to determine prices.

The following overview describes the way ATG Commerce calculates prices.

Note: If your promotions were generated using ATG 9.1 or earlier versions, see the documentation for
that version; the pricing process treats promotions differently depending on the version of ATG
Commerce used to create them.

Before pricing happens, the following steps take place:

1. On a scheduled basis, the pricing engines load global promotions (those defined as
applying automatically to all customers). An engine builds its list by using its
globalPromotionsQuery property to query the Promotions repository, searching for
any promotion where the Automatically Give to All Customers (global) property is set
to true. Each engine loads the global promotions that are specific to that pricing
engine; for example, the ItemPricingEngine loads the global Item Discount
promotions.

2. At the start of the customer session, a PricingModelHolder instance is created.
PricingModelHolder calls each pricing engine’s getPricingModels() method.

3. The pricing engine getPricingModels() method gets any promotions listed in the
activePromotions property of the current customer’s profile and merges them with
the global promotions list it previously created. The pricing engine can also veto
promotions from being returned to the PricingModelHolder at this point.

4. PricingModelHolder periodically updates both the global and active promotions.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 4 8

9 - C o m m e r c e P r i c i n g S e r v i c e s O v e r v i e w

μ
The result is that PricingModelHolder has a merged list of global and active promotions for each
pricing engine. When the customer performs an action that prompts a pricing operation, such as adding
an item to their cart, the following steps are performed:

1. The business layer logic (such as a PriceItem servlet bean in a page) invokes a pricing
engine (see The Base Pricing Engine).

2. The pricing operation invokes PricingTools which then gets the
PricingModelHolder for that customer.

3. PricingTools gets the promotions from the PricingModelHolder and calls the
pricing engine’s priceItems method, passing in the promotions as a list.

4. The pricing engine applies its configured precalculators in the order in which they
appear in its preCalculators property. A precalculator modifies a price without
using any associated promotions. For example, a site could use a list price
precalculator or an order subtotal precalculator to establish a base price to which
subsequent calculators then apply a discount.

Each type of engine calls its corresponding type of precalculator – for example, the
OrderPricingEngineImpl calls OrderPricingCalculators and the
TaxPricingEngineImpl calls TaxPricingCalculators.

5. The pricing engine then takes the promotions list that was passed in and can again
veto promotions from that list. The remaining promotions are sorted by priority and
then evaluated.

Each promotion contains a PMDL rule that describes the discount. For example, a rule
might define a discount in which a customer buys one item and receives a second for
free. The PMDL specifies the calculator type to use to determine the amount of the
discount in the calculator-type attribute of the discount-structure element.
The calculator type maps to a calculator component in the
calculatorTypeCalculators map.

For each available promotion, ATG Commerce does the following:

 The pricing engine calls the appropriate helper method
(findQualifyingItems, findQualifyingOrder, or
findQualifyingShipping) in the Qualifier class to determine which items
should be discounted. The pricing engine passes the current pricing context
into the helper method’s input parameters.

 The findQualifyingItems() method calls evaluateTarget(), which
returns a Collection of QualfiedItem objects, representing CommerceItem
objects. The findQualifyingOrder() and findQualifyingShipping()
methods return a single MatchingObject.

 The QualifiedItem and MatchingObject include discount information such
as the PMDL discount structure. See the QualifiedItem Class for more
information.

 The QualifiedItem or MatchingObject information is returned to the
pricing engine, which uses the discount information to determine which
calculator to use.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 4 9

9 - C o m m e r c e P r i c i n g S e r v i c e s O v e r v i e w

μ
 The pricing engine calls the calculator and passes in the items to be discounted

and the discount information.

 The calculator marks items that have received a discount, which might not be
eligible for further promotions.

 The qualifier marks items that have already been used as qualifiers for the
promotion. This prevents the qualifier items from being used again during the
same price calculation.

 The calculator applies the discount to the list of objects.

6. The pricing engine applies its configured PostCalculators, which make any
necessary modifications to the price after discounts have been applied. Each pricing
engine calls postcalculators of its own type.

7. The pricing engine returns an updated PriceInfo object.

This process is repeated every time a price is requested. Price requests are resource-intensive, and should
be performed only when necessary.

PricingTools Class
The atg.commerce.pricing.PricingTools class is the main way in which business-layer logic
interacts with the pricing engines and the other classes in the atg.commerce.pricing package. In ATG
Commerce, the classes that extend the ItemPricingDroplet class (PriceItemDroplet and
PriceEachItemDroplet) use PricingTools to interface with all the ATG Commerce pricing engines.

When a store using ATG Commerce needs a price for items, orders, shipping, or tax, PricingTools can
be consulted to return the price. In addition, PricingTools contains translation functions that identify
which currencyCode goes with which locale.

PricingTools includes methods that can be called to produce prices. These methods consult the
configured pricing engines, which are described in detail in the Commerce Pricing Engines chapter.

PricingTools also determines the pricing locale. If you are using SKU-based pricing (instead of price
lists; see Using Price Lists for information), PricingTools returns the configured defaultLocale
property. The pricing engines use this to determine the currency code. If you are using ATG’s multisite
feature and want to use different currency codes for different sites, you can take the following steps:

1. Add a pricing locale to the Site repository items.

2. Override the PricingTools.getDefaultLocale method to retrieve the currency
code for the site.

See the ATG API Reference for detailed information on the properties and methods of this class.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 5 0

9 - C o m m e r c e P r i c i n g S e r v i c e s O v e r v i e w

μ
PricingModelHolder

 The atg.commerce.pricing.PricingModelHolder class is a session-scoped component that holds
the merged list of a customer’s active and global promotions while he or she is using the Web application.
The pricing engine APIs define a method for collecting a customer’s pricing models. Because it can be
resource intensive to perform this operation, the PricingModelHolder is essentially a session cache of
promotions.

If a new promotion becomes available during a user’s session, the user’s promotions must be reloaded for
the user to see this new discount. The reinitializeTime property in the pricingModelHolder is set
to reload a user’s promotions every 10 minutes by default. You can change this time if desired. Setting the
reinitializeTime property to a smaller value (two minutes) will affect performance, but will minimize
the risk of a user missing a promotion that is added during his or her session. You should consider
changing the reinitializeTime value if new promotions are added frequently. You should also
decrease this value if promotions are being delivered by scenarios with short delays in them, for example,
giving a promotion two minutes after a user logs in.

Before adding a promotion to the list, the PricingModelHolder runs a series of checks to eliminate as
many promotions as possible from consideration (for example, a “buy one rain hat, get a free umbrella”
promotion where the customer’s cart does not contain a rain hat). This saves considerable processing
effort, as fewer promotions have to be evaluated at pricing time.

The PricingTools class uses PricingModelHolder to perform order pricing. Each pricing engine takes
only the collection of pricing models related to its own type as a parameter. For example, order pricing
engines take only the pricing models related to order pricing. The PricingTools method, which accepts
a PricingModelHolder, extracts individual collections and passes the collections into the appropriate
pricing engines.

Developers should not create an instance of this class and call into the PricingTools class. Instantiate an
instance of this class only as a session-scoped component that can be resolved through the request. This
is the pattern that the item pricing servlet beans use. If no pricing models are supplied as explicit
parameters, the PricingModelHolder is resolved from the request, and the collection is retrieved.

PricingAdjustment
The atg.commerce.pricing.PricingAdjustment class represents an element of a price’s audit trail. A
chain of these objects represents all changes made to the price. These objects appear in the
adjustments list of AmountInfo. A PricingAdjustment is created by a pricing calculator when it
modifies an AmountInfo object.

The PricingAdjustment class contains the following properties:

 adjustmentDescription: A short description of the adjustment that this object
records.

 pricingModel: The ID of the pricing model, if any, that adjusted the price.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 5 1

9 - C o m m e r c e P r i c i n g S e r v i c e s O v e r v i e w

μ
 manualPricingAdjustment: ID of the manual adjustment that was applied to the

order, if any. Manual adjustments are applied by agents using CSC; see the ATG
Commerce Service Center User Guide.

 totalAdjustment: The total adjustment amount is calculated by multiplying the
adjustment property by the quantityAdjusted.

 quantityAdjusted: The quantity of the object whose price was adjusted.

 adjustment: The price adjustment per quantity of one object. This value is calculated
by dividing the value of the totalAdjustment property by the value of the
quantityAdjusted property.

PricingCommerceItem
The atg.commerce.pricing.PricingCommerceItem is a simple CommerceItem used as a placeholder
while pricing items. This CommerceItem cannot be added to an order.

The pricing engines can compute prices only within the context of a CommerceItem. There may be times,
however, when you want to price an entity for a customer and no CommerceItem is available. This
problem is most evident when prices are shown for products in the catalog. Products and SKUs are usually
represented by RepositoryItems, which the pricing engines do not handle. PricingCommerceItem is a
CommerceItem class into which you can plug the product and SKU objects. The item pricing servlet beans
deal with input, which are plain RepositoryItems, and “convert” them to CommerceItems.

These CommerceItems cannot be used in the default order management system. Use the OrderManager
APIs to add a CommerceItem to an order.

PricingModelProperties
The atg.commerce.pricing.PricingModelProperties class contains the names of properties of the
ItemDescriptor in the Promotions repository that represents pricing models.

The PricingModelProperties class stores these names so that they may be internationalized or
otherwise changed to suit a particular installation. For more information, refer to the ATG API Reference. If
the name of a property descriptor is changed in the ItemDescriptor that defines the pricing models in
the Promotions repository, you must change the corresponding value here as well. For example, the
PricingModelRepository holds all pricing models. It contains an item descriptor called pricingModel.
The properties of this item descriptor need to appear in the PricingModelProperties class.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 5 2

9 - C o m m e r c e P r i c i n g S e r v i c e s O v e r v i e w

μ

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 5 3

1 0 - C o m m e r c e P r i c i n g E n g i n e s

μ
10 Commerce Pricing Engines

Pricing engines are responsible for the following tasks:

 Retrieving any promotions that are available to the site visitor.

 Determining which pricing calculators generate the price.

 Invoking the calculators in the correct order.

This chapter describes the base Commerce pricing engine classes and interfaces. It includes the following
sections:

Pricing Engine Interfaces

Default Pricing Engines

Price Holding Classes

Extending Pricing Engines

For more information on the default pricing interfaces and classes, see the ATG API Reference.

Pricing Engine Interfaces
This section describes the ATG Commerce engine interfaces:

 The Base Pricing Engine

 ItemPricingEngine Interface

 OrderPricingEngine Interface

 ShippingPricingEngine Interface

 TaxPricingEngine Interface

 PricingConstants Interface

The Base Pricing Engine

atg.commerce.pricing.PricingEngine is the main interface for interacting with the
atg.commerce.pricing package. Extensions of this interface describe objects that calculate prices for
different types of Commerce object. The PricingEngine interface itself contains only one method,
getPricingModels, which extracts a collection of promotions from an input profile. Different

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 5 4

1 0 - C o m m e r c e P r i c i n g E n g i n e s

μ
PricingEngine implementations take a range of information to calculate prices for their specific classes
of object.

ATG Commerce provides four extensions of the main PricingEngine interface. Each extension provides
a price for a different object type:

 atg.commerce.pricing.ItemPricingEngine
Provides a price for atg.commerce.order.CommerceItem objects.

 atg.commerce.pricing.OrderPricingEngine
Provides a price for atg.commerce.order.Order objects.

 atg.commerce.pricing.ShippingPricingEngine
Provides a price for atg.commerce.order.ShippingGroup objects.

 atg.commerce.pricing.TaxPricingEngine
Determines tax for atg.commerce.order.Order objects.

The pricing context is defined by the method’s input parameters, which typically include the following:

 The objects to be priced.

 The promotions to apply to the prices.

 The customer’s profile.

 The locale for which the price is being generated.

 A hash table of extra parameters, which exists so that new APIs do not have to be
created to accommodate additional pricing context information. One important use
for extra parameters is to pass in the site ID, if you want to override the current site
context.

These engine interfaces are described in the sections that follow; the calculators are described in the
Commerce Pricing Calculators chapter.

ItemPricingEngine Interface

atg.commerce.pricing.ItemPricingEngine is an extension of the PricingEngine interface. It
describes an object that determines prices for atg.commerce.order.CommerceItem objects. The prices
that are generated are ItemPriceInfo objects.

An ItemPricingEngine can determine prices in three ways:

 The priceItem method prices an item as a single item. It reviews any promotions that
are passed in through a pPricingModels parameter.

The single item that is passed in is the only one available to satisfy the requirements of
any promotion. For example, if the item passed in is “5 blue women’s shorts,” and
there is a promotion for “Buy 7 or more blue shorts, get one pair free,” the promotion
would not take effect. This call is mainly used for displaying item prices when a
customer is browsing the catalog.

 The priceEachItem method batch processes all the items that are passed in, but they
are priced as if they were passed into PriceItem one at a time.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 5 5

1 0 - C o m m e r c e P r i c i n g E n g i n e s

μ
 The priceItems method prices all input items all in the same context. To continue

with the same example, the customer now puts “6 blue men’s shorts” in the shopping
cart in addition to the “5 blue women’s shorts.” While the customer is just browsing
the catalog, the “Buy 7 or more blue shorts, get one pair free” promotion is not
factored in when displaying prices. Therefore, when the customer makes the decision
to add the shorts to the shopping cart, the price shown is still full price for all the
shorts. However, when the customer subsequently displays the contents of his or her
cart, the promotion takes effect and shows that one pair of shorts is free.

The pricing context is defined by the method’s input parameters. In the case of
priceItem, the context is as follows: the items to be priced, the promotions to factor,
the profile of the user, the locale, and any additional parameters.

The context can be important because some promotions take effect only if the item
appears in a pricing context with other items. For example, a certain promotion might
give 10 percent off an order if the pricing context includes one shirt and one pair of
pants. The items would only receive the discount if priced in the same context.

ATG Commerce provides the ItemPricingEngineImpl class as a default implementation of the
ItemPricingEngine interface. It computes the price of items both individually and in a larger context. It
invokes a series of ItemPricingCalculators.

OrderPricingEngine Interface

atg.commerce.pricing.OrderPricingEngine is an extension of the PricingEngine interface. (See
The Base Pricing Engine.) It describes an object that determines prices for Order objects, which equal the
total price of all items in a customer’s shopping cart. An OrderPricingEngine uses the priceOrder
method to determine the price of an order.

The pricing context is defined by the priceOrder method’s input parameters. Implementations of this
interface create an OrderPriceInfo object that accurately represents the price of an input order. The
way in which they do this depends on the implementation. The specific way in which the engine creates
the order object varies according to individual implementations.

ATG Commerce provides the OrderPricingEngineImpl class as a default implementation of the
OrderPricingEngine interface. It computes the price for an order, invoking a series of
OrderPricingCalculators.

ShippingPricingEngine Interface

atg.commerce.pricing.ShippingPricingEngine is an extension of the PricingEngine interface. It
describes an object that determines prices for ShippingGroup objects.

Implementations of this interface determine the cost of shipping the contents of a shipping group. The
priceShippingGroup method asks this object to determine a price for the specified shipping group. The
getAvailableMethods call returns the methods available for shipping the specified group.

ATG Commerce provides the ShippingPricingEngineImpl class as a default implementation of the
ShippingPricingEngine interface. It computes the shipping cost for an order by invoking a series of
ShippingPricingCalculators.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 5 6

1 0 - C o m m e r c e P r i c i n g E n g i n e s

μ
TaxPricingEngine Interface

atg.commerce.pricing.TaxPricingEngine is an extension of the PricingEngine interface. It
describes an object that determines taxes for Order objects.

Implementations of this interface determine the price for the tax associated with a specified order object.
The interface provides one way to ask for a tax price. The calling code provides the pricing context by
inputting the order, any pricing models (promotions), a locale in which the pricing should occur, the
current profile, and any additional parameters.

ATG Commerce provides the TaxPricingEngineImpl class as a default implementation of the
TaxPricingEngine interface. It computes the tax for an order, invoking a series of
TaxPricingCalculators.

PricingConstants Interface

The atg.commerce.pricing.PricingConstants interface contains constant values for static reference
by other classes in the atg.commerce.pricing package.

Default Pricing Engines
ATG Commerce includes four preconfigured implementations of its pricing engine classes. You can use
these implementations as they are or adapt them for your own site development needs.

 Default Item Pricing Engine

 Default Order Pricing Engine

 Default Tax Pricing Engine

 Default Shipping Pricing Engine

PricingEngineService

The PricingEngineService class is a GenericService implementation of a PricingEngine.
PricingEngine implementations can extend this class to leverage scheduling, global promotions, locale,
and other configuration functionality.

The PricingEngineService includes the getCalculatorForCalculatorType() method, which
determines the calculator component to use for promotions (note that it is not used for pre- or post-
calculators). To make this determination, it consults a Map in which the key is a CalculatorType. The
calculator type specified in the PMDL is used to identify the correct calculator component. The calculator
identified by getCalculatorForCalculatorType() is then used by the pricing calculator (such as
ItemPriceCalculator). You can use the map to extend the pricing engine and add your own
calculators to the pricing system.

Note: Only use the calculator type Map for promotions created in ATG Commerce 10 or later. Earlier
versions use a different mechanism for retrieving calculator details.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 5 7

1 0 - C o m m e r c e P r i c i n g E n g i n e s

μ
The QualifiedItems and MatchingObjects are passed to the calculator using the “extra parameters”
Map. For the ItemPricingCalculator, the List of QualifiedItem objects is stored in
Constants.QUALIFIED_ITEMS. For Order, Shipping, and TaxPricingCalculators, the
MatchingObject is stored in Constants.MATCHING_OBJECT. For both, the DiscountStructure is
stored in Constants.DISCOUNT_STRUCTURE.

Default Item Pricing Engine

The ItemPricingEngine component is a preconfigured implementation of the
ItemPricingEngineImpl class. It determines the price of one or more items by retrieving applicable
promotions from the customer’s profile and invoking one or more ItemPricingCalculators.

You can view and modify this component in the ATG Control Center. Its location is
/atg/commerce/pricing/ItemPricingEngine.

Default Order Pricing Engine

The OrderPricingEngine component is a preconfigured implementation of the
OrderPricingEngineImpl class. It determines the price of an entire order by invoking a series of
OrderPricingCalculators. It uses the same mechanisms as the ItemPricingEngine component for
determining which promotions to apply.

You can view and modify this component in the ATG Control Center. Its location is
/atg/commerce/pricing/OrderPricingEngine.

Default Tax Pricing Engine

The TaxPricingEngine component is a preconfigured implementation of the TaxPricingEngineImpl
class. It determines the price of tax for an order by invoking a series of TaxPricingCalculators. It uses
the same mechanisms as the ItemPricingEngine component for determining which promotions to
apply to taxes.

The TaxPricingCalculator determines if an item is taxable using pricingTools.isTaxable()
method. If an item is taxable, pricingTools.isTaxable() returns true. By default, all items are taxable.
pricingTools.calculateTaxableAmount() then determines the tax by returning 0 if isTaxable
returns false, otherwise it returns the price of the item minus its orderDiscountShare.

You can view and modify this component in the ATG Control Center. Its location is
/atg/commerce/pricing/TaxPricingEngine.

Default Shipping Pricing Engine

The /atg/commerce/pricing/ShippingPricingEngine component is a preconfigured
implementation of the ShippingPricingEngineImpl class. It determines the price of shipping for an
order by invoking a series of ShippingPricingCalculators. It uses the same mechanisms as the
ItemPricingEngine component for determining which promotions to apply.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 5 8

1 0 - C o m m e r c e P r i c i n g E n g i n e s

μ
Price Holding Classes

This section describes the ATG Commerce price holding classes. These classes are used to store price
information about different object types.

 AmountInfo

 ItemPriceInfo

 DetailedItemPriceInfo

 OrderPriceInfo

 ShippingPriceInfo

 TaxPriceInfo

AmountInfo

The atg.commerce.pricing.AmountInfo parent class represents price information about an object. In
addition to the actual amount, it also contains information about how to interpret that amount. This class
is the base for the ItemPriceInfo, OrderPriceInfo, TaxPriceInfo, and ShippingPriceInfo classes.

For information about AmountInfo properties, see the ATG API Reference.

ItemPriceInfo

The atg.commerce.pricing.ItemPriceInfo class contains information about the price of an item (a
CommerceItem). It also contains detailed price information about how individual quantities of the
CommerceItem were priced. For example, if an item’s quantity is 5, and 3 items received Discount A and
the other two received Discount B, there would be two DetailedItemPriceInfo entries in
currentPriceDetails:

 One DetailedItemPriceInfo entry for the quantity of 3, describing the changes
discount A made to the price.

 One DetailedItemPriceInfo entry for the quantity of 2, describing the changes
discount B made to the price.

The amount property of ItemPriceInfo (inherited from AmountInfo) should always equal the sum of
the amounts of the DetailedItemPriceInfo entries in currentPriceDetails.

For information about ItemPriceInfo properties, see the ATG API Reference.

DetailedItemPriceInfo

This section describes DetailedItemPriceInfo objects, including how DetailedItemPriceInfo
objects relate to each other and to their ItemPriceInfo.

It is easiest to understand DetailedItemPriceInfo by comparing it to ItemPriceInfo. The
ItemPriceInfo object describes the price for an entire CommerceItem in an order. The amount property
of the ItemPriceInfo is the final price for the given CommerceItem. If part of the quantity of the

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 5 9

1 0 - C o m m e r c e P r i c i n g E n g i n e s

μ
CommerceItem was discounted due to a promotion, this information is reflected in the ItemPriceInfo.
For example, if the order contains 10 shirts at $10.00 each, and there was a promotion “Buy 9 shirts, get 1
free” then the amount property of the ItemPriceInfo would be $90.00. The PricingAdjustments in
the ItemPriceInfo would contain one PricingAdjustment for the list price, and one for the
promotion. For more information on the ItemPriceInfo object, see the ItemPriceInfo section.

The DetailedItemPriceInfo objects provide a much more detailed view of the price of an item. In the
example above, there would be two DetailedItemPriceInfo objects:

 DetailedItemPriceInfo object #1:

 quantity: 9

 amount: $90.00

 PricingAdjustment: set to the list price.

 DetailedItemPriceInfo object #2:

 quantity: 1

 amount: $0.00

 PricingAdjustment: There would be two PricingAdjustments. One with
the list price, and one with the promotion that caused the item to be free.

Another feature of DetailedItemPriceInfo is the range property. Instead of a detail referring to “5
items” it is more specific and refers to “the first 5 items” or “items 2-6”. This is used for two reasons:

 To split the details of items in different shipping groups. There is a range property in
ShippingGroupCommerceItemRelationship. DetailedItemPriceInfo objects
cannot refer to items in more than one shipping group.

 During qualification of a promotion (the process of determining if a particular
promotion applies to the order) we need to know which items have been looked at
and which items have already qualified a promotion. For more information, see the
Qualifier Class section.

The following statements are true for all CommerceItem objects:

 Each CommerceItem has exactly one ItemPriceInfo.

 The price of a particular item (if there are 10 shirts, the first shirt, or the second shirt,
etc.) is described by exactly one detail.

 Each DetailedItemPriceInfo in the ItemPriceInfo describes the price of a
quantity of items that are all priced in exactly the same way. (The same list price, the
same sale price, and the same promotions.)

 All the items described by a DetailedItemPriceInfo are in the same shipping
group.

To make sure all of the above statements are true, each ItemPricingCalculator has the responsibility
of manipulating the DetailedItemPriceInfos correctly.

The following sections describe how the three different types of item calculators interact with
DetailedItemPriceInfos:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 6 0

1 0 - C o m m e r c e P r i c i n g E n g i n e s

μ
 Using List Price Calculators with DetailedItemPriceInfo Objects

 Using Sale Price Calculators with DetailedItemPriceInfo Objects

 Using Item Discount Calculators with DetailedItemPriceInfo Objects

Using List Price Calculators with DetailedItemPriceInfo Objects

The list price calculators are responsible for calculating the price based on the list price. They can usually
look up a list price and multiply it by the quantity. If the entire quantity of the item is being shipped to the
same place, there will only need to be one DetailedItemPriceInfo. The logic for making sure that each
detail only refers to items in one shipping group is contained in this method:
pricingTools.detailedItemPriceTools.createInitialDetailedItemPriceInfos.

This method takes the following parameters:

 TotalPrice - The total price for which the new DetailedItemPriceInfo objects
must account. TotalPrice is the price of the entire CommerceItem (listPrice *
quantity).

 PriceQuote - The current working price of the Item. PriceQuote is the
ItemPriceInfo to which the newly created details will be added.

 Item - The CommerceItem being priced. This is needed to get to the
ShippingGroupCommerceItemRelationships.

 PricingModel - The discount that will be set in the PricingAdjustment (usually
null).

 Profile - The person for whom the items are to be discounted (currently ignored).

 Locale - The locale in which the items are to be discounted (currently ignored).

 ExtraParameters - Any extra information that this method might need to set the
number of the qualifying item (currently ignored).

 AdjustmentDescription - The adjustment description used when creating all new
PricingAdjustments that is added to each new detail.

These parameters are the only parameters required to perform list pricing and bulk pricing. The entire
quantity gets the same price. To facilitate tiered pricing, there is another version of this method that also
takes a Range argument. This means that new details will only be created for the given range. In this case,
the TotalPrice is the price for the range as opposed to the entire CommerceItem. The
ItemTieredPriceCalculator will call this method once per tier.

This method will only modify the DetailedItemPriceInfo objects. It is the responsibility of the caller to
update the ItemPriceInfo.

Using Sale Price Calculators with DetailedItemPriceInfo Objects

The calculators responsible for calculating the sale price usually change the price of the entire quantity.
The calculator retrieves the sale price, subtracts the list price, and then modifies the amount accordingly.

This functionality is contained in a centralized method:
pricingTools.detailedItemPriceTools.assignSalePriceToDetails. The
assignSalePriceToDetails method takes the following parameters:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 6 1

1 0 - C o m m e r c e P r i c i n g E n g i n e s

μ
 DetailedItemPriceInfos - The list of DetailedItemPriceInfo objects that

should be adjusted. This will usually be the entire list of details.

 UnitSalePrice - The sale price for a single given CommerceItem. The total
adjustment for each detail is this amount times the quantity of the detail.

 PriceQuote - The current working price of Item. This is taken from the
ItemPriceInfo to which the newly created details will be added. This is also ignored.

 Item - CommerceItem being priced. This is ignored in the default implementation.

 PricingModel - The discount that will be set in the PricingAdjustment (usually
null).

 Profile - The person for whom the items are to be discounted (currently ignored).

 Locale - The locale in which the items are to be discounted (currently ignored).

 ExtraParameters - Any extra information that this method might need to set the
prices of a number of the qualifying item(currently ignored).

 AdjustmentDescription - This is the adjustment description used when creating all
new PricingAdjustments.

The assignSalePriceToDetails method walks through each detail and adjusts the amount
accordingly. There is no reason to create any new details. This method will only modify the
DetailedItemPriceInfo objects. It is the responsibility of the caller to update the ItemPriceInfo
objects.

One sale calculator that does not use this method is the ItemSalesTieredPriceCalculator. This
calculator splits the details since each quantity of the item will not necessarily get the same unit sale price.
Therefore it usually splits each detail to maintain the property that each item in a detail was priced in
exactly the same way (this includes having the same unit sale price).

Using Item Discount Calculators with DetailedItemPriceInfo Objects

The calculators that are responsible for discounting the price based on a promotion usually only adjust
the price for some subset of the quantity. Therefore, the ItemDiscountCalculator frequently splits
details. The ItemDiscountCalculator determines the range that is undiscounted vs. the range that is
discounted. It creates a new DetailedItemPriceInfo for the undiscounted portion and set its quantity
to the number of undiscounted items. It modifies the current detail to be discounted and changes its
price. Then, with each detail, it calls
pricingTools.detailedItemPriceTools.splitDetailsAccordingtoRanges.

This method takes the following parameters:

 Detail—The DetailedItemPriceInfo to split apart.

 Ranges—The list of Ranges that should have a DetailedItemPriceInfo. The size of
these must equal the quantity of Detail.

This method takes the current detail and creates enough new details so that there is one per Range that is
passed in. All the details are returned.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 6 2

1 0 - C o m m e r c e P r i c i n g E n g i n e s

μ
OrderPriceInfo

The atg.commerce.pricing.OrderPriceInfo class contains information about the price of an order.
Its properties are modified by order pricing calculators and returned by order pricing engines.

For information about OrerPriceInfo properties, see the ATG API Reference.

ShippingPriceInfo

The atg.commerce.pricing.ShippingPriceInfo class contains information about the price of a
ShippingGroup.

For information about ShippingPriceInfo properties, see the ATG API Reference.

TaxPriceInfo

The atg.commerce.pricing.TaxPriceInfo class represents tax price information.

For information about TaxPriceInfo properties, see the ATG API Reference.

Extending Pricing Engines
ATG Commerce provides several preconfigured pricing engines (see Default Pricing Engines). You can
extend these engines to fit your sites’ requirements, and you can also create new pricing engines if
necessary.

Extending a Pricing Engine

You can extend one or more of the pricing engine implementations to provide new pricing functionality.
For example, you can extend ItemPricingEngineImpl to create an algorithm that prices a set of items
differently from the current implementation of priceEachItem. You could create an algorithm that
applies promotions in a random order rather than in order of ascending precedence.

Because each implementation of the PricingEngine interface extends the PricingEngineService
class, you can extend one or all of the implementations to alter the behavior of a method of
PricingEngineService. For example, you could implement the expirePromotion method to send a
JMS event enabling the creation of scenarios related to unused and expired promotions. After you
complete your extensions, configure the corresponding pricing engine component to use the class. (For
more information, see the description of PricingEngineService.)

Each engine can also be extended to leverage existing code. For example, you can extend the pricing
engine to determine global promotions using a Personify or NetPerceptions integration. The
ItemPricingEngine could be extended to get its global promotions from the integration.

The relevant interfaces are:

 atg.commerce.pricing.ItemPricingEngine

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 6 3

1 0 - C o m m e r c e P r i c i n g E n g i n e s

μ
 atg.commerce.pricing.TaxPricingEngine

 atg.commerce.pricing.ShippingPricingEngine

 atg.commerce.pricing.OrderPricingEngine

 atg.commerce.pricing.ItemDiscountCalculator

 atg.commerce.pricing.OrderDiscountCalculator

 atg.commerce.pricing.ShippingDiscountCalculator

The properties of a promotion repository item are in
atg.commerce.pricing.PricingModelProperties.

The Qualifier class that holds helper methods is atg.commerce.pricing.Qualifier.

Creating a New Pricing Engine

In the following example, you want to create a new pricing engine that prices handling costs separately
from shipping. You create a HandlingPricingEngine that acts independently of the
ShippingPricingEngine.

1. Create an interface called HandlingPricingEngine that extends PricingEngine.

2. Create an implementation called HandlingPricingEngineImpl that extends
PricingEngineService.

3. Create a HandlingPricingInfo that extends the AmountInfo price holding class.
(For more information, see AmountInfo.)

4. Create a calculator called HandlingPricingCalculator and implementations of it
that calculate and discount handling as your business requires.

5. Modify the Promotions repository definition file (by default, pricingModels.xml).
Add an item-descriptor for the Handling discount type and sub-descriptors for the
various implementations of the HandlingPricingCalculator that you created.

6. Create properties files for the HandlingPricingEngine and each of the calculators.

Your engine is ready for use. You may also want to add preCalculators that calculate the base cost of
handling.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 6 4

1 0 - C o m m e r c e P r i c i n g E n g i n e s

μ

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 6 5

1 1 - C o m m e r c e P r i c i n g C a l c u l a t o r s

μ
11 Commerce Pricing Calculators

Pricing calculators are responsible for the following:

 Looking up the price in the catalog.

 Using information they receive from the pricing engines and from the qualifier service
to determine prices.

This chapter describes the base ATG Commerce pricing engine classes and interfaces. It includes the
following sections:

Pricing Calculator Interfaces

Pricing Calculator Classes

Extending Pricing Calculators

For more information on the default calculator interfaces and classes, see the ATG API Reference.

Pricing Calculator Interfaces
This section describes the interfaces that are used as part of the ATG Commerce calculators. These
interfaces are:

 ItemPricingCalculator Interface

 OrderPricingCalculator Interface

 ShippingPricingCalculator Interface

 TaxPricingCalculator Interface

 CalculatorInfoProviderInterface

ItemPricingCalculator Interface

atg.commerce.pricing.ItemPricingCalculator modifies the price of a CommerceItem.

A calculator’s priceItem, priceEachItem, or priceItems method is invoked by the corresponding
method of the same name on the pricing engine. The calculator’s priceItem method modifies the input
priceObjects according to the current pricing context. The specific way in which the calculator modifies
an item price varies according to individual implementations.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 6 6

1 1 - C o m m e r c e P r i c i n g C a l c u l a t o r s

μ
OrderPricingCalculator Interface

The OrderPricingCalculator interface, atg.commerce.pricing.OrderPricingCalculator,
modifies the price of an order.

The priceOrder method of the OrderPricingCalculator (or calculators) is invoked by the order
pricing engine that is configured to use it. The priceOrder method modifies the input pPriceQuote
according to the current pricing context. The specific way in which the calculator modifies an order price
varies according to individual implementations.

ShippingPricingCalculator Interface

The ShippingPricingCalculator interface,
atg.commerce.pricing.ShippingPricingCalculator, modifies a price object that represents the
cost of shipping for an order.

The shipping pricing engine invokes the priceShippingGroup method of the
ShippingPricingCalculator (or calculators) that it is configured to use. The priceShippingGroup
method modifies the input pPriceQuote according to the current pricing context. The specific way in
which the calculator modifies a shipping price varies according to individual implementations.

ATG Commerce includes several classes that are implementations of the ShippingPricingCalculator
interface. For example, it includes the atg.commerce.pricing.ShippingDiscountCalculator class,
which you can use to apply a promotional discount to the shipping price of an order.

TaxPricingCalculator Interface

The atg.commerce.pricing.TaxPricingCalculator interface modifies the price of tax for an order.

The tax pricing engine invokes the priceTax method of the TaxPricingCalculator (or calculators).
The calculator’s priceTax method modifies the input pPriceQuote according to the current pricing
context. The specific way in which the calculator modifies a tax price varies according to individual
implementations.

ATG Commerce includes several classes that are implementations of the TaxPricingCalculator
interface. For example, it includes the atg.commerce.pricing.NoTaxCalculator class, which you can
use for situations in which a sales tax of zero is applicable for an order.

CalculatorInfoProvider Interface

The atg.commerce.pricing.CalculatorInfoProvider interface allows a calculator to provide
information in the form of a CalculatorInfo object. This interface is used by default in promotions
templates to dynamically update the user interface and PMDL for calculators.

If a calculator does not implement this interface, the pricing engine returns a default CalculatorInfo
object.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 6 7

1 1 - C o m m e r c e P r i c i n g C a l c u l a t o r s

μ
Pricing Calculator Classes

These classes are used by the ATG Commerce pricing engines to calculate prices. They can be extended
according to your needs (see Extending Pricing Calculators).

 DiscountCalculatorService

 ItemPriceCalculator

 ItemDiscountCalculator

 ItemListPriceCalculator

 ItemSalePriceCalculator

 ConfigurableItemPriceCalculator

 OrderDiscountCalculator

 OrderSubtotalCalculator

 ShippingCalculatorImpl

 ShippingDiscountCalculator

 PriceRangeShippingCalculator

 DoubleRangeShippingCalculator

 FixedPriceShippingCalculator

 PropertyRangeShippingCalculator

 WeightRangeShippingCalculator

 NoTaxCalculator

 TaxProcessorTaxCalculator

 Price List ConfigurableItemPriceListCalculator

 Price List ItemListPriceCalculator

 Price List ItemPriceCalculator

 Price List ItemSalesPriceCalculator

 Price List ItemSalesTieredPriceCalculator

 Price List ItemTieredPriceCalculator

DiscountCalculatorService

The atg.commerce.pricing.DiscountCalculatorService class is an extension of GenericService.
DiscountCalculatorService computes a price based on the type of discount, the discount amount,
and the current price. It holds information common to all the discount calculators, which can extend this
class to eliminate redundant configuration code.

The adjust method can be used as a quick way to apply a discount. It calculates a price based on an
existing price, the discount type, and the discount amount. This functionality is used by all discount
calculators.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 6 8

1 1 - C o m m e r c e P r i c i n g C a l c u l a t o r s

μ
The DiscountCalculatorService also includes getAdjuster() and getDiscountType() methods,
which make it easy to override the default means of determining the adjuster and discount types.

The following list describes important properties in the DiscountCalculatorService class:

 pricingModelProperties: Points to a configuration bean that holds the names of all
the properties of a pricing model repository item.

 negativeAmountException: ATG Commerce never discounts the price of an object
to less than zero. This property determines what happens when a discount would
cause the amount to be negative. True: Throw an exception when a discount causes
an amount to be negative. False: (default) Log a warning message and set the
amount to 0.0 when a discount causes an amount to be negative.

ItemPriceCalculator

The abstract class atg.commerce.pricing.ItemPriceCalculator is the parent class for many item
pricing calculators (for example, ItemListPriceCalculator and ItemSalePriceCalculator),
consolidating the functionality that these calculators have in common.

This class determines a price for an object based on a pricesource object and the properties of that
pricesource. It contains a single abstract method, priceItems. Extending classes implement this
method to leverage the other item pricing functionality that this class provides.

The ItemPriceCalculator class also contains the following properties:

 loggingIdentifier: The ID that this class uses to identify itself in logs.

 pricePropertyName: The name of the property of the priceSource that represents
an item’s price. The priceSource is the value returned from the getPriceSource
property.

 requirePriceValue: If this property is true, an exception is thrown if the
priceSource of the CommerceItem does not have its pricePropertyName property
set.

 priceFromCatalogRef: If this property is true, getPriceSource returns the
catalogRef property of the input CommerceItem. If this property is false,
getPriceSource returns the productRef property.

ItemPriceCalculator determines an item’s price based on a property value. The property value comes
from a priceSource object. The priceSource object can be one of two objects, depending on the
boolean value of the priceFromCatalogRef property.

 If true, the priceSource object is the catalogRef property of the item to be priced.

 If false, the priceSource object is the productRef property of the item to be
priced.

The catalogRef property of items to be priced points to a SKU in the SKU catalog. The productRef
property points to a product in the product catalog. For more information, see the
atg.commerce.order.CommerceItem entry in the ATG API Reference.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 6 9

1 1 - C o m m e r c e P r i c i n g C a l c u l a t o r s

μ
The pricePropertyName in the ItemPriceCalculator (and therefore the
ItemListPriceCalculator and ItemSalePriceCalculator, which extend ItemPriceCalculator)
identifies the property on the priceSource object (the SKU or product) that contains the price for the
current item. The ItemListPriceCalculator and ItemSalePriceCalculator read this value and
return a price object that contains the price.

How Classes that Extend ItemPriceCalculator Determine Prices

The ItemListPriceCalculator extends ItemPriceCalculator. In this example, the
ItemListPriceCalculator is set with the following properties:

 priceFromCatalogRef=true (indicating it will get its property from a SKU)

 pricePropertyName=listPrice.

In this example, the SKU catalog contains a SKU that identifies blue shorts. That SKU has the following
properties:

 color = blue

 itemType = shorts

 listPrice = 10.00

When a CommerceItem is passed to the ItemListPriceCalculator, this particular
Itemlistpricecalculator looks at the item’s catalogRef property (SKU) and retrieves the value of
that object’s listPrice property (10.00). The ItemListPriceCalculator then modifies the input price
to be 10.00 and returns it.

The ItemSalePriceCalculator works in almost the same way. The ItemSalePriceCalculator has
an additional property called onSalePropertyName, which is a boolean property on the priceSource
object that indicates whether the item is on sale.

In this example, the priceFromCatalogRef property of ItemSalePriceCalculator is set to true. The
pricePropertyName property is set to salePrice. A SKU in the SKU catalog has a property called
onSale. If a SKU were on sale, the onSale property would be set to true. The onSalePropertyName
property of ItemSalePriceCalculator is set to onSale.

When an item is passed to the ItemSalePriceCalculator, it has a catalogRef property that points to
a SKU from the SKU catalog.

 color=blue

 itemType=shorts

 listPrice=10.00

 onSale=true

 salePrice=7.00

When the ItemSalePriceCalculator receives this item, it uses the value of the SKU’s onSale property
to determine if it is on sale. In this example, the value is true, indicating that the SKU is on sale. The
calculator then gets the sale price using the SKU’s salePrice property. The price in this case is 7.00. The
calculator then modifies the input price for the item to be 7.00 and registers that a change has been made

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 7 0

1 1 - C o m m e r c e P r i c i n g C a l c u l a t o r s

μ
to the price. This registering is done by creating a new PricingAdjustment and adding it to the
adjustments property of the price object, which in this case is an ItemPriceInfo. The adjustment would
be -3.00, and it would show that the ItemSalePriceCalculator was responsible for the change.

ItemDiscountCalculator

The atg.commerce.pricing.ItemDiscountCalculator class calculates the new price for an item or
items based on a given pricing model. It applies the discount that the pricing model describes to the price
in the ItemPriceInfo corresponding to each passed CommerceItem. The discount can be a fixed
amount, a percentage, or a fixed price.

The ItemDiscountCalculator class inherits all the properties of DiscountCalculatorService. See
the ATG API Reference for detailed information on ItemDiscountCalculator and its related classes.

The ItemDiscountCalculator component is a preconfigured instance of the class
atg.commerce.pricing.ItemDiscountCalculator class. It is the default discount calculator for the
item discount promotions.

The following table describes the properties of the ItemDiscountCalculator component.

Property Description

pricingModelProperties Specifies a bean that hosts the names of all of the properties of a
pricing model repository item.

qualifierService Specifies a Qualifier that performs the actual evaluation of a
pmdlRule of the PricingModel against the running environment.
See the Qualifier Properties section for additional information.

negativeAmountException ATG Commerce never discounts the price of an item to less than
zero. This property determines what happens when a discount
would cause the amount of an item to be negative.

True: Throw an exception when a discount causes an amount to be
negative.

False: (default) Log a warning message and set the amount to 0.0
when a discount causes an amount to be negative.

You can view and modify this component in the ATG Control Center. Its location is
/atg/commerce/pricing/calculators/ItemDiscountCalculator.

BulkItemDiscountCalculator

The atg.commerce.pricing.BulkItemDiscountCalculator class is a calculator that supports bulk
item discounts. This class is based on the ItemDiscountCalculator. The unique behavior of
BulkItemDiscountCalculator is to determine the adjuster for the discount; other functionality is
inherited.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 7 1

1 1 - C o m m e r c e P r i c i n g C a l c u l a t o r s

μ
The calculator has two default properties for banding attributes, in case those are not provided in the
PMDL:

defaultBandingProperty = null

defaultBandingPropertyScope = "DetailedItemPriceInfo"

The defaultBandingPropertyScope provides access to the collection of qualified items for the
calculator to process.

The calculator’s bandedDiscountCalculatorHelper points to a helper class,
BandedDiscountCalculatorHelper, that holds the banded discount logic. See the
BandedDiscountCalculatorHelper section for details.

ItemListPriceCalculator

The atg.commerce.pricing.ItemListPriceCalculator class is a calculator that determines the list
price of an item and sets the itemPriceInfo to that amount. This class extends the
ItemPriceCalculator. The list price is determined based on the value returned from the
getPriceSource property. This is typically the first in a series of calculations, with this calculator
providing a starting price for other calculators. The ItemListPriceCalculator sets the listPrice
property of the input price object to the input Price.

The ItemPriceCalculator section includes an example of how the ItemListPriceCalculator
determines a price.

ItemSalePriceCalculator

The atg.commerce.pricing.ItemSalePriceCalculator class extends the ItemPriceCalculator. It
determines the sale price of an item and discounts the itemPriceInfo to that amount. This class also
maintains the audit trail of the ItemPriceInfo. There is no rule associated with this calculator. If one of
the pricing methods of ItemSalePriceCalculator is invoked, all input items are discounted to the sale
price.

The ItemSalePriceCalculator class also contains the following property:

 onSalePropertyName: The boolean property of the price source that determines if
the price source is on sale. A price source is the catalogRef or productRef of a
CommerceItem.

The ItemPriceCalculator section includes an example of how the ItemSalePriceCalculator
determines a price.

ConfigurableItemPriceCalculator

The atg.commerce.pricing.ConfigurableItemPriceCalculator class extends the
ItemPriceCalculator. It calculates the list price of a configurable item and sets the itemPriceInfo to
that amount. It computes the price of the configurable item by adding up the price of all the individual
subSKUs and the price of the configurable SKU. This sets the list price with the prices of the subSKUs that

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 7 2

1 1 - C o m m e r c e P r i c i n g C a l c u l a t o r s

μ
are configured in the configurable item. If the configurable item is on sale then the sale price will also be
modified.

OrderDiscountCalculator

The atg.commerce.pricing.OrderDiscountCalculator class implements the
OrderPricingCalculator. It calculates OrderPriceInfo values for orders when the calculator is
invoked. This calculator receives a MatchingObject and DiscountStructure from the pricing engine,
then computes an OrderPriceInfo based on the input PricingModel (RepositoryItem).

See the ATG API Reference for detailed information on OrderDiscountCalculator and its related classes.

The OrderDiscountCalculator component is a preconfigured instance of the class
atg.commerce.pricing.OrderDiscountCalculator. It is the default discount calculator for order
promotions.

The following table describes the properties of the OrderDiscountCalculator component.

Property Description

pricingModelProperties Specifies a bean that hosts the names of all of the properties of a pricing
model repository item. pricingModelProperties are used so you do
not have to hard code the properties into a pricing model.

qualifierService Specifies a Qualifier that performs the actual evaluation of a pmdlRule
of the PricingModel against the running environment.

negativeAmountException Determines what happens when discounts cause the amount of an item
to be negative.

True: Throw an exception when a discount causes an amount to be
negative.

False: (default) Log a warning message and set the amount to 0.0
when a discount causes an amount to be negative.

You can view and modify the OrderDiscountCalculator component in the ATG Control Center. The
component is located in /atg/commerce/pricing/calculators/OrderDiscountCalculator.

BulkOrderDiscountCalculator

The atg.commerce.pricing.BulkOrderDiscountCalculator class is a calculator that supports bulk
item discounts. This class is based on the OrderDiscountCalculator. The unique behavior of
BulkOrderDiscountCalculator is to determine the adjuster for the discount; other functionality is
inherited.

The calculator has a default property for banding attributes, in case those are not provided in the PMDL:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 7 3

1 1 - C o m m e r c e P r i c i n g C a l c u l a t o r s

μ
defaultBandingProperty = "OrderPriceInfo.amount"

The defaultBandingProperty provides access to the price for the calculator to process.

The calculator’s bandedDiscountCalculatorHelper points to a helper class,
BandedDiscountCalculatorHelper, that holds the banded discount logic. See the
BandedDiscountCalculatorHelper section for information.

OrderSubtotalCalculator

The atg.commerce.pricing.OrderSubtotalCalculator class computes the rawSubtotal and
amount of an OrderPriceInfo that corresponds to the input order. Unlike in the case of discount
calculators, there is no rule that determines whether the subtotal should be calculated. The order’s
subtotal is always calculated by summing the prices of the items in the order. If a pricing model is passed
in, it is ignored.

ShippingCalculatorImpl

The atg.commerce.pricing.ShippingCalculatorImpl class is an abstract class that acts as a starting
point for general price calculation in shipping groups. The implementation of priceShippingGroup
checks that there are items in the shipping group. If there are no items, the price quote is reset to zero. If
there are items to price for shipping, the performPricing method confirms that the items in the group
should be priced. For example, soft goods, such as gift certificates, should not be priced for shipping.

When extending this class, implement the getAmount method as the base shipping cost in this calculator.

The amount returned is set into the ShippingPriceInfo. If the addAmount property is true, the amount
returned is added to the current ShippingPriceInfo amount. This behavior allows for the addition of
surcharges.

Set the shippingMethod property to the name of a particular delivery process that your sites offer, for
example ground, 2-day or next day. If the ignoreShippingMethod property is true, then the calculator
does not expose a shipping method name (through getAvailableMethods). In addition, this calculator
always attempts to perform pricing. This option is useful for situations in which you do not want to give
customers a choice of different shipping methods.

ShippingDiscountCalculator

The atg.commerce.pricing.ShippingDiscountCalculator class calculates ShippingPriceInfos
for specified ShippingGroups. This calculator receives a MatchingObject and DiscountStructure
from the pricing engine, then computes a ShippingPriceInfo based on the input PricingModel
(RepositoryItem).

See the ATG API Reference for detailed information on ShippingDiscountCalculator and its related
classes.

The ShippingDiscountCalculator component is a preconfigured instance of the class
atg.commerce.pricing.ShippingDiscountCalculator. It is the default discount calculator for
shipping promotions.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 7 4

1 1 - C o m m e r c e P r i c i n g C a l c u l a t o r s

μ
The following table describes the properties of the ShippingDiscountCalculator component.

Property Description

pricingModelProperties Specifies a bean that hosts the names of all of the properties of a
pricing model repository item.

qualifierService Specifies a Qualifier that performs the actual evaluation of a
pmdlRule of the PricingModel against the running environment.

negativeAmountException Determines what happens when discounts cause the amount of an
item to be negative.

True: Throw an exception when a discount causes an amount to be
negative.

False: (default) Log a warning message and set the amount to 0.0
when a discount causes an amount to be negative.

You can view and modify the ShippingDiscountCalculator component in the ATG Control Center.
The component is located in
/atg/commerce/pricing/calculators/ShippingDiscountCalculator.

BulkShippingDiscountCalculator

The atg.commerce.pricing.BulkShippingDiscountCalculator class is a calculator that supports
bulk item discounts. This class is based on the ShippingDiscountCalculator. The unique behavior of
BulkShippingDiscountCalculator is to determine the adjuster for the discount; other functionality is
inherited.

The calculator has a default property for banding attributes, in case those are not provided in the PMDL:

defaultBandingProperty = "OrderPriceInfo.amount"

The defaultBandingProperty provides access to the shipping price for the calculator to process.

The calculator’s bandedDiscountCalculatorHelper method points to a helper class,
BandedDiscountCalculatorHelper, that holds the banded discount logic. See
BandedDiscountCalculatorHelper in this chapter.

PriceRangeShippingCalculator

The atg.commerce.pricing.PriceRangeShippingCalculator class determines the shipping price
based on the subtotal of all the items in the shipping group. The service is configured through the
ranges property. With the given array of price range configurations (format: low:high:price) the
service parses the values into their double format for calculating shipping costs. For example:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 7 5

1 1 - C o m m e r c e P r i c i n g C a l c u l a t o r s

μ
ranges=00.00:15.99:4.50,\

 16.00:30.99:6.00,\

 31.00:40.99:7.25,\

 41.00:MAX_VALUE:10.00

Note: The keyword MAX_VALUE indicates the maximum possible value in the range.

The PriceRangeShippingCalculator also contains the following properties:

 addAmount: If the property addAmount is true, instead of setting the price quote
amount to the value of the amount property, the calculator adds the amount to the
current amount in the price quote. This can be used to configure a “surcharge”
calculator, which increases the shipping price.

 shippingMethod: The shippingMethod property is set to the name of a particular
delivery process. For example: UPS Ground, UPS 2-day or UPS Next Day.

 ignoreShippingMethod: Setting the ignoreShippingMethod property to true
prevents this calculator from exposing the shipping method name (through
getAvailableMethods). In addition, this calculator always attempts to perform
pricing. This option is useful for situations in which you do not want to give customers
a choice of different shipping methods.

DoubleRangeShippingCalculator

This atg.commerce.pricing.DoubleRangeShippingCalculator class is an abstract shipping
calculator that determines the shipping price by comparing a value from the ShippingGroup to a series
of ranges. The service is configured through the ranges property. It is extended by the
PriceRangeShippingCalculator, PropertyRangeShippingCalculator, and
WeightRangeShippngCalculator classes.

With the given array of price range configurations (format: low:high:price), the service parses the
values into their double format for calculating shipping costs. For example:

ranges=00.00:15.99:4.50,\

 16.00:30.99:6.00,\

 31.00:40.99:7.25,\

 41.00:MAX_VALUE:10.00

Note: The keyword MAX_VALUE indicates the maximum possible value in the range.

The DoubleRangeShippingCalculator also contains the following properties:

 addAmount: If the property addAmount is true, instead of setting the price quote
amount to the value of the amount property, the calculator adds the amount to the
current amount in the price quote. This behavior can be used to configure a
“surcharge” calculator, which increases the shipping price.

 shippingMethod: The shippingMethod property is set to the name of a particular
delivery process, for example ground, 2-day or next day.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 7 6

1 1 - C o m m e r c e P r i c i n g C a l c u l a t o r s

μ
 ignoreShippingMethod: Setting the ignoreShippingMethod property to true

prevents this calculator from exposing the shipping method name (through
getAvailableMethods). In addition, this calculator always attempts to perform
pricing. This option is useful for situations in which you do not want to give customers
a choice of different shipping methods.

FixedPriceShippingCalculator

The atg.commerce.pricing.FixedPriceShippingCalculator class is a shipping calculator that sets
the shipping amount to a fixed price.

The FixedPriceShippingCalculator also contains the following properties:

 addAmount: If the property addAmount is true, instead of setting the price quote
amount to the value of the amount property, the calculator adds the amount to the
current amount in the price quote. This behavior can be used to configure a
“surcharge” calculator, which increases the shipping price.

 shippingMethod: The shippingMethod property is set to the name of a particular
delivery process. For example: ground, 2-day or next day.

 ignoreShippingMethod: Setting the ignoreShippingMethod property to true
prevents this calculator from exposing the shipping method name (through
getAvailableMethods). In addition, this calculator always attempts to perform
pricing. This option is useful for situations in which you do not want to give customers
a choice of different shipping methods.

PropertyRangeShippingCalculator

The atg.commerce.pricing.PropertyRangeShippingCalculator class is a highly flexible shipping
calculator that identifies an item property and adds the value provided to each item in the shipping
group together to create a shipping group total. The total falls into one of the ranges specified in the
ranges property, which provides a shipping cost for each range.

For example, all items may have a property called weight that correlates to the weight of the item in
pounds. To base shipping cost on the cumulative weight total, you set the
PropertyRangeShippingCalculator propertyName property to weight. If your shipping group has
three items, each of which has a weight of 1, ATG Commerce calculates a total of three and uses the
ranges property to determine how much to charge. The range property takes the format of
low:high:price and holds these options:

ranges=00.00:15.99:4.50,\

 16.00:30.99:6.00,\

 31.00:40.99:7.25,\

 41.00:MAX_VALUE:10.00

In this example, shipping charges total $4.50. Note that keyword MAX_VALUE indicates the maximum
possible value in the range.

The PropertyRangeShippingCalculator also contains the following properties:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 7 7

1 1 - C o m m e r c e P r i c i n g C a l c u l a t o r s

μ
 addAmount: If the property addAmount is true, instead of setting the price quote

amount to the value of the amount property, the calculator adds the amount to the
current amount in the price quote. This can be used to configure a “surcharge”
calculator, which increases the shipping price.

 shippingMethod: The shippingMethod property is set to the name of a particular
delivery process. For example: ground, 2-day or next day.

 ignoreShippingMethod: Setting the ignoreShippingMethod property to true
prevents this calculator from exposing the shipping method name (through
getAvailableMethods). In addition, this calculator always attempts to perform
pricing. This option is useful for situations in which you do not want to give customers
a choice of different shipping methods.

 propertyName: Set the propertyName property to the name of the property that you
want to add across all items. For example, “weight” would calculate the total weight of
an order by adding together the weight property values of all the items.

 useCatalogRef: If the useCatalogRef property is set to true, the property value is
extracted from the catalogRef of the CommerceItem (usually the SKU). If
useCatalogRef property is set to false, the product is used as the source.

WeightRangeShippingCalculator

The atg.commerce.pricing.WeightRangeShippingCalculator class is a shipping calculator that
determines the shipping price based on the sum of the weights of each item in a shipping group.

The service is configured through the ranges property. With the given array of price range configurations
(format: low:high:price), the service parses the values into their double format for calculating shipping
costs. For example:

ranges=00.00:15.99:4.50,\

 16.00:30.99:6.00,\

 31.00:40.99:7.25,\

 41.00:MAX_VALUE:10.00

Note: The keyword MAX_VALUE indicates the maximum possible value in the range.

The WeightRangeShippingCalculator also contains the following properties:

 addAmount: If the property addAmount is true, instead of setting the price quote
amount to the value of the amount property, the calculator adds the amount to the
current amount in the price quote. This can be used to configure a “surcharge”
calculator, which increases the shipping price.

 shippingMethod: The shippingMethod property is set to the name of a particular
delivery process. For example: ground, 2-day or next day.

 ignoreShippingMethod: Setting the ignoreShippingMethod property to true
prevents this calculator from exposing the shipping method name (through
getAvailableMethods). In addition, this calculator always attempts to perform
pricing. This option is useful for situations in which you do not want to give customers
a choice of different shipping methods.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 7 8

1 1 - C o m m e r c e P r i c i n g C a l c u l a t o r s

μ
NoTaxCalculator

The atg.commerce.pricing.NoTaxCalculator class creates a new TaxPriceInfo object that
specifies a tax price of zero for an order.

TaxDiscountCalculator

Use the atg.commerce.pricing.TaxDiscountCalculator to calculate TaxPriceInfo objects for
Orders. This calculator receives a MatchingObject and DiscountStructure from the pricing engine,
then computes a TaxPriceInfo based on the input PricingModel.

See the ATG API Reference for detailed information on TaxDiscountCalculator and its related classes.

BulkTaxDiscountCalculator

The atg.commerce.pricing.BulkTaxDiscountCalculator class is a calculator that supports bulk
item discounts. This class is based on the TaxDiscountCalculator. The unique behavior of
BulkTaxDiscountCalculator is to determine the adjuster for the discount; other functionality is
inherited.

The calculator has a default property for banding attributes, in case those are not provided in the PMDL:

defaultBandingProperty = "OrderPriceInfo.amount"

The defaultBandingProperty provides access to the shipping price for the calculator to process.

The calculator’s bandedDiscountCalculatorHelper method points to a helper class,
BandedDiscountCalculatorHelper, that holds the banded discount logic. See the
BandedDiscountCalculatorHelper section in this chapter.

TaxProcessorTaxCalculator

You use the atg.commerce.pricing.TaxProcessorTaxCalculator class if you are setting up a site
that uses third-party software to handle tax calculation. This class consults a TaxProcessor (an
implementation of the atg.payment.tax.TaxProcessor interface) to determine how much tax to
charge for an order. For more information, refer to Integrating Third-Party Software With ATG Commerce.

The TaxProcessorTaxCalculator component is located in the ACC at
atg/commerce/pricing/calculators. TaxProcessorTaxCalculator class has the following
properties:

 taxStatusProperty: The property in the SKU repository that indicates whether each
SKU is taxable or not. See Integrating CyberSource with ATG Commerce for more
information.

 taxProcessor: The ATG tax integration that this calculator consults for tax amounts,
currently either CyberSourceTax or TaxWareTax.

 orderManager: The location of the OrderManager class instance. The default is
/atg/commerce/order/OrderManager.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 7 9

1 1 - C o m m e r c e P r i c i n g C a l c u l a t o r s

μ
 pricingTools: The location of the PricingTools class instance. The default is

/atg/commerce/pricing/PricingTools.

 verifyAddresses: If true, the TaxProcessor verifies the addresses passed in before
attempting to calculate tax.

 calculateTaxByShipping: If true, the calculator calculates tax by shipping group. If
false, tax is calculated by total order.

Note: The default TaxProcessor for ATG Commerce is
/atg/commerce/payment/DummyTaxProcessor, which always returns “no tax.”

Price List ConfigurableItemPriceListCalculator

The ConfigurableItemPriceListCalculator calculator assumes the ItemListPriceCalculator
has already run. ItemListPriceCalculator calculator sets the list price and the amount of the
ItemPriceInfo based on the price of the ConfigurableSku. The
ConfigurableItemPriceListCalculator calculator then iterates through the subSKUs and modifies
the list price and amount accordingly.

For example, consider a situation when a parentSKU is $5, subSKU A is $2 and subSKU B is $1. If we buy
two of this configurable SKU, then coming into this calculator the listPrice will be $5 and the amount
will be $10. After the ConfigurableItemPriceListCalculator calculator runs the listPrice will be
$8 and the amount will be $16.

The ConfigurableItemPriceListCalculator component is located in the ACC at
atg/commerce/pricing/calculators/ConfigurableItemPriceListCalculator. For more
information on this calculator, see the Price List Calculators section of the Using Price Lists chapter.

Price List ItemListPriceCalculator

This calculator determines the list price of an item and sets the itemPriceInfo to that amount. The
pricing scheme for that item is list pricing.

The ItemListPriceCalculator component is located in the ACC at
atg/commerce/pricing/calculators/ ItemListPriceCalculator. For more information on this
calculator. See the Price List Calculators section of the Using Price Lists chapter.

Price List ItemPriceCalculator

The ItemPriceCalculator class can either price a single commerce item or price a list of commerce
items. It first selects the priceList to use based on the profilePriceListPropertyName property.
The ItemPriceCalculator then delegates the pricing to different ItemSchemePriceCalculators
based on the item’s pricing scheme by the pricingSchemePropertyName property.

The ItemPriceListCalculator component is located in the ACC at
atg/commerce/pricing/calculators/ItemPriceListCalculator. It has the following properties:

 loggingIdentifier: the ID that this class uses to identify itself in logs.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 8 0

1 1 - C o m m e r c e P r i c i n g C a l c u l a t o r s

μ
 pricingSchemePropertyName: the property name in the repository for the pricing

scheme.

 profilePriceListPropertyName: the property name in the repository for the user’s
price list.

 useDefaultPriceList: If true and ProfilePriceListPropertyName is null, then
the value of the automaticallyUseDefaultPriceList property of the
PriceListManager determines if the default price list is used. If false, then the default
price list is never used.

 noPriceIsError: If true, and the price list is null or there is no price in the price list,
then an error is thrown. If false, and the price list is null, then nothing happens.

 priceListManager: points to the location of the PriceListManager.

 pricingSchemeNames: the Map whose key is the allowed scheme names and whose
value is the corresponding calculators.

For more information on this calculator. See the Price List Calculators section of the Using Price Lists
chapter.

Price List ItemSalesPriceCalculator

The ItemSalesPriceCalculator sets the sales price for a commerce item. The
ItemSalesPriceCalculator implements the SalePriceListsListCalculator component, which is
located in the ACC at atg/commerce/pricing/calculators/SalePriceListsListCalculator.

For more information on this calculator. See the Price List Calculators section of the Using Price Lists
chapter.

Price List ItemSalesTieredPriceCalculator

A calculator which determines the sales tiered price of an item and sets the itemPriceInfo to be that
amount. The definition of tiered pricing can be referenced in ItemTieredPriceCalculator.

The ItemSalesTieredPriceCalculator implements the SalePriceListsTieredCalculator
component, which is located in the ACC at
atg/commerce/pricing/calculators/SalePriceListsTieredCalculator.

For more information on this calculator, see the Price List Calculators section of the Using Price Lists
chapter.

Price List ItemTieredPriceCalculator

The ItemTieredPriceCalculator determines the tiered price of an item and sets the itemPriceInfo
to that amount. The pricing scheme for that item is tier pricing. For more information on tiered pricing,
see the Using Price Lists section of this chapter.

The ItemTieredPriceCalculator implements the PriceListsTieredCalculator component,
which is located in the ACC at
atg/commerce/pricing/calculators/PriceListsTieredCalculator.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 8 1

1 1 - C o m m e r c e P r i c i n g C a l c u l a t o r s

μ
For more information on this calculator, see the Price List Calculators section of the Using Price Lists
chapter.

BandedDiscountCalculatorHelper

The BandedDiscountCalculatorHelper class is used by BulkItemDiscountCalculator,
BulkOrderDiscountCalculator, BulkShippingDiscountCalculator, and
BulkTaxDiscountCalculator.

public class BandedDiscountCalculatorHelper extends ApplicationLoggingImpl

{

 public double getAdjuster(

 RepositoryItem pPricingModel,

 Collection pQualifiedItems,

 Map pExtraParameters,

 String pDefaultBandingProperty,

 String pDefaultBandingPropertyScope) throws PricingException

}

The function of the helper class is to get adjuster information for bulk discounts. The getAdjuster()
method does the following:

1. Gets the discount structure from the extra parameters map using the key
Constants.DISCOUNT_STRUCTURE.

2. Returns the adjuster value if it has already been calculated.

3. Get all the discount details from the discount structure, which allows the class to
identify and sort the bands to use.

4. Identify which property to use for placing items within the bands.

5. Identify the QualifiedItems for the promotion and their quantities (if applicable) to
determine the banding value.

6. Set the adjuster value for that band on the discount structure object before
returning the adjuster value.

CalculatorInfo

The CalculatorInfo object is used by the BulkTypeDiscountCalculator classes. It provides access
to the following information for a calculator:

 CalculatorType—Corresponds to the key of the calculatorTypeCalculators
map in the pricing engine.

 DiscountStructureAttributeInfos—An array of attributes specified under the
discount-structure in the PMDL, such as bandingProperty or
bandingPropertyScope.

 DiscountDetailAttributeinfos—An array of attributes that can be specified per
discount-detail in the PMDL, such as band or adjuster.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 8 2

1 1 - C o m m e r c e P r i c i n g C a l c u l a t o r s

μ
 DiscountTypes—Discount types valid for this calculator, such as fixedPrice or

percentOff.

For information on the discount-structure in PMDL, see the Understanding PMDL Discount Rules
section.

Extending Pricing Calculators
ATG Commerce provides several preconfigured pricing calculators (see Pricing Calculator Classes for more
information). You can extend these calculators to fit your sites’ requirements, and you can also create new
pricing calculators if necessary.

Adding a New Pricing Calculator

This section explains how to create a new implementation of a pricing calculator interface and how to use
the new calculator.

Creating a New Pricing Calculator

Use the following interfaces to create a new pricing calculator that fits into the existing ATG Commerce
pricing architecture:

 atg.commerce.pricing.ItemPricingCalculator

 atg.commerce.pricing.OrderPricingCalculator

 atg.commerce.pricing.ShippingPricingCalculator

 atg.commerce.pricing.TaxPricingCalculator

Implement the interface that corresponds to the type of price you want to calculate. For example, if you
want to make calculations on order prices, implement OrderPricingCalculator.

In the following example, assume you have identified a need for a calculator that sets an item’s price to
half its current price plus one. The existing ATG Commerce tools include an ItemDiscountCalculator
that discounts items. It can give a percent off a price or an amount off, or it can set an item’s price to a
fixed amount. None of these three options, however, easily gives a “half off plus one” discount. To achieve
that result, you would have to use two different discounts: one to give 50 percent off, and another to add
1 to that total. A better alternative would be to create a new calculator that discounts an item’s price to
half its current price plus one.

To create the new calculator, you create a class called HalfPlusOneItemDiscountCalculator that
implements the ItemPricingCalculator interface. The HalfPlusOneDiscountCalculator is an
example of a discount calculator that leverages existing ATG Commerce functionality to perform its own
unique task.

In addition to modifying an item’s price, the ATG Commerce item discount calculators also do the
following:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 8 3

1 1 - C o m m e r c e P r i c i n g C a l c u l a t o r s

μ
 Maintain an audit trail of the changes made to the price using the

PricingAdjustments property in the AmountInfo price object.

 Mark items that have been discounted and therefore may not be eligible for additional
discounts.

 Maintain DetailedItemPriceInfo objects.

The HalfPlusOneDiscountCalculator leverages all the above functionality from the
ItemDiscountCalculator. The only method it overrides is the findAdjustedPrice method, which
modifies an input DetailedItemPriceInfo to be the right amount. In this case, the class modifies the
price of the detail to half its current price plus one.

Using a New Pricing Calculator

After you have created a new calculator, you must associate it with its corresponding pricing engine. You
can do this in one of the following ways:

 Add the calculator to an engine’s list of pre- or post-calculators. The configuration
invokes the calculator on the price of every item that passes through the engine.

 Add the calculator to the PricingEngineService CalculatorType map, along
with the type of calculation it provides.

Extending Calculators

You can extend any of the pricing calculators to add functionality, if that suits your needs more than
implementing one of the provided interfaces. As an example this section describes the order of calls in
ItemDiscountCalculator; other calculators may vary:

1. The priceItems method changes the price of input items. It first calls
findQualifyingItems to get items whose prices need changing. It then calls
priceQualifyingItems to change their price.

2. The findQualifyingItems method selects items to be discounted. It bases item
selection on attributes of the input environment as represented by the method’s
parameters.

3. The priceQualifyingItems method modifies the prices of an input collection of
items. It also verifies that the items’ audit trail is maintained. priceQualifyingItems
calls priceQualifyingItem once for each input item to be priced.

4. The priceQualifyingItem method modifies the price of the input item. It also
verifies that the item’s audit trail is maintained. priceQualifyingItem calls each
priceDetailedItemPriceInfo, discounting details until the total number of items
to discount has been reached.

5. The priceDetailedItemPriceInfo method modifies the price of a
detailedItemPriceInfo. It maintains the audit trail and marks the details that have
acted as qualifiers. It calls findAdjustedPrice to find the new price of the details.

6. The findAdjustedPrice method produces a number that is the new price of a
DetailedItemPriceInfo. It examines the existing price and the input parameters,
and it returns the new price.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 8 4

1 1 - C o m m e r c e P r i c i n g C a l c u l a t o r s

μ
You can override any of these methods to provide new functionality while leveraging the existing code.

 Override findQualifyingItems to change the way the calculator finds the items to
discount.

 Override priceQualifyingItems to change how a group of ItemPriceInfos are
adjusted.

 Override priceQualifyingItem to change how an individual ItemPriceInfo is
adjusted.

 Override priceDetailedItemPriceInfo to change how a
DetailedItemPriceInfo within an ItemPriceInfo is adjusted.

 Override findAdjustedPrice to change how the calculator determines new prices.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 8 5

1 2 - Q u a l i f i e r C l a s s

μ
12 Qualifier Class

The atg.commerce.pricing.Qualifier class is a helper class for discount calculators. An instance of
the Qualifier class is sometimes referred to as a qualifier service, because Qualifier extends
atg.nucleus.GenericService.

This chapter contains the following sections:

Qualifier Class Overview

Evaluating Qualifiers Example

QualifiedItem Class

Extending the Qualifier Class

Qualifier Class Overview
Each pricing engine calls a corresponding helper method in the Qualifier class to determine the
objects to which it should apply a discount. The Qualifier determines whether anything qualifies for
the discount and then figures out which pieces should receive the discount.

The Qualifier determines which things should change and how they should be discounted; it does not
modify the actual prices. The pricing engine passes the parameters that make up its pricing context to the
qualifier, and goes through the result set returned by the qualifier, calling the correct calculator to
discount each element as appropriate.

 ItemPricingEngine uses the qualifier’s findQualifyingItems method, which
returns a Collection of QualifiedItems. Each QualifiedItem maps a
DetailedItemPriceInfo to the list of Ranges that qualified for the discount. The
CommerceItem containing these DetailedItemPriceInfos is also stored. For more
information, see the QualifiedItem Class.

 OrderPricingEngine uses the qualifier’s findQualifyingOrdermethod, which
returns a MatchingObject identifying the Order to discount.

 ShippingPricingEngine uses the qualifier’s findQualifyingShipping method,
which returns a MatchingObject object identifying the ShippingGroup to discount.

Each method determines its result set by comparing the PMDL rule of a given promotion to the input
item or items.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 8 6

1 2 - Q u a l i f i e r C l a s s

μ
The doFilters() method evaluates items in the qualifier and target rules. It takes an array of filter
components, which act to disqualify items from the qualifier or target; see the Qualifier Properties section
for descriptions of the filters.

Qualifier Properties

The Qualifier class contains the following properties:

 PMDLCache—The cache that maps pricing model RepositoryItems to their parsed
PMDL bean representations.

 pricingModelProperties—A list of the names of the properties of a pricing model
RepositoryItem.

The following Qualifier class properties determine the objects that the evaluateQualifier method
can use to evaluate the qualifier element of a PMDL rule. (For more information, see Replacing the Way a
PMDL Rule Is Evaluated.)

 filterForQualifierNegativePrices—Determines whether items with negative
prices can act as qualifiers. If this property is set to true (the default value), negative
prices cannot act as qualifiers.

 filterForQualifierZeroPrices—Determines whether items with zero prices can
act as qualifiers. If this property is set to true (the default value), zero prices cannot act
as qualifiers.

 filterForQualifierDiscountedByCurrentDiscountId—Determines whether
items discounted by the current discount can act as qualifiers. If this property is set to
true (the default value), items discounted by the current discount cannot act as
qualifiers.

 filterForQualifierDiscountedByAnyDiscountId—Determines whether items
discounted by any discount can act as qualifiers. If this property is set to true (the
default value), it masks the
filterForQualifierDiscountedByCurrentDiscountId property.

The following example demonstrates how the
filterForQualifierDiscountedByAnyDiscountId works. In this example, the
following three promotions are being applied to an order:

 Promotion #1: Buy 1 orange, get 1 apple for $1

 Promotion #2: Buy 1 apple, get 1 banana for $1

 Promotion #3: Buy 1 banana, get 1 plum for $1

The order in this example is for one orange, one apple, one banana, and one plum. The
value of the filterQualifierDiscountedByAnyDiscountId changes the way the
promotions are applied in the following ways:

 If filterQualifierDiscountedByAnyDiscountId is false, then the orange is
list price, discounting the apple, banana and plum to $1 each.

 If filterQualifierDiscountedByAnyDiscountId is true, then the orange is
list price, discounting the apple to $1, and the banana is list price (since the
apple was discounted), discounting the plum to $1.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 8 7

1 2 - Q u a l i f i e r C l a s s

μ
 filterForQualifierOnSale—Indicates whether items that were priced with a sale

price should be allowed to act as qualifiers. This property is set to False by default.

The following Qualifier class properties determine the items that the evaluateTarget method can
use to evaluate the target element of a PMDL rule. (For more information, see Replacing the Way a PMDL
Rule Is Evaluated.)

 filterForTargetNegativePrices—Determines whether items with negative
prices can act as qualifiers. The default value is true.

 filterForTargetZeroPrices—Determines whether items with zero prices can act
as qualifiers. The default value is true.

 filterForTargetDiscountedByCurrentDiscountId—Determines whether items
that have been discounted by the current discount can receive the discount again. The
default value is true.

 filterForTargetDiscountedByAnyDiscountId—Determines whether items that
have been discounted by any discount can receive the discount again. The default
value is true.

 filterForTargetActedAsQualifierForAnyDiscount—Determines whether
items that have acted as a qualifier for any discount can receive the current discount.
The default value is true.

 filterForTargetOnSale—Indicates whether items that were priced with a sale
price should be allowed to receive the current discount. The default value is false.

 filterForTargetPriceLessThanOrEqualToPromotionPrice—Determines
whether items with prices that are already less than the price that would be granted
by a “fixed price” promotion should receive the promotion. The default value is true.

Overriding Qualifier Filters

As described in the Qualifier Properties section, the Qualifer class includes a number of Boolean filters
that determine how the Qualifier treats items it is evaluating. You may want to use a standard set of
filters for most situations, but have a few special cases in which you want to override the normal filtering.

In order to do this, create an additional qualifier service component and configure the filter flags as
necessary for your special case. Then set the qualifierService property of the promotion repository
item to the new qualifier component. The qualifierService property is an expert property that is not
available through ATG Merchandising, but can be set manually or through the ACC. The
qualifierService property is null by default; if set, it overrides the pricing engine’s determination of
which qualifier to apply.

Some examples of circumstances in which you may want to override filters are:

 You want an item that is the target of an item promotion to be eligible to act as a
qualifying item for a shipping promotion; set
filterForQualifierDiscountedByAnyDiscountId to false.

 You want an item to simultaneously be the qualifier and the target, for instance “Buy 4
shirts for $20.” The promotion should have the following structure:

 Discount type = fixed price

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 8 8

1 2 - Q u a l i f i e r C l a s s

μ
 Adjuster = $2.50

 Qualifier=‘For next 4 product whose category is shirt’

 Target=‘up to 4 product whose category is shirt’

In addition, set the filterForTargetActedAsQualifierForAnyDiscount property
to false.

Default Qualifier Service

The QualifierService component is a preconfigured instance of the helper class
atg.commerce.pricing.Qualifier. The default ATG Commerce discount calculators use this
component to determine the objects to which they should apply their discounts.

The following table describes the properties included in QualifierService.

Property Description

pricingModelProperties Specifies a bean that hosts the names of all of the properties of a
pricing model repository item.

PMDLCache An instance of atg.service.cache.Cache that maps a Pricing
Model to its parsed Java form.

In a production environment, caching increases site performance by
allowing ATG Commerce to evaluate pricing models more quickly. A
setting of -1 indicates an unlimited cache size.

In a development environment, however, you may want to disable
caching for pricing models so that changes you make to PMDL rules
appear on your development site immediately, without requiring you
to flush the cache. To disable caching for pricing models, locate the
maximumCacheEntries property in the appropriate instance of
atg.service.cache.Cache and set the property to 0.

You can view and modify the QualifierService component in the ATG Control Center. The component
is located in /atg/commerce/pricing/QualifierService.

Evaluating Qualifiers Example
This section describes how qualifiers are evaluated using a “buy 1 get 1 free” example. This example uses
a promotion of type “Item Discount” where the fixed price is $0.00 and the PMDL rule is:

Condition:
When order contains at least 1 (product named Shirt)
Apply discount to:
up to 1 (product named Hat)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 8 9

1 2 - Q u a l i f i e r C l a s s

μ
The discount-structure in the PMDL would contain the following information:

<calculator-type="standard" discount-type="fixed-price"

adjuster="0">

If the list price of the shirt is $10.00 and the list price of the hat of $5.00, then first, the
ItemPricingEngine iterates through each of the pre-calculators:

 The ItemListPriceCalculator looks up the list price of each item in the order.
Based on the list prices, the shirt is priced at $10.00 and the hat will be priced at $5.00.
This will update the ItemPriceInfo for both the CommerceItem objects in the order.

 The ItemSalePriceCalculator looks up the sale price of each item in the order.
Because neither item is on sale, this has no effect on the price.

Next, The ItemPricingEngine iterates through each of the promotions. In this example, the “Buy 1 shirt,
get 1 hat free” promotion is the only promotion.

The pricing engine calls findQualifyingItems() and uses the returned calculator-type to look up
the ItemDisCountCalculator.

The findQualifyingItems method performs the following functions (as well as some standard
parameter verification and error checking):

 wrapCommerceItems - creates FilteredCommerceItems for each item

 filterItemsForQualifier - runs through the list of the qualifier filters. In this
example, none of the qualifiers apply.

 evaluateQualifier - Three arguments are passed to evaluateQualifier.

PricingContext contains the following information, with specifics for this example
in parentheses:

 pricingModel—Current promotion (Buy 1 shirt, get 1 hat free)

 profile—Current profile object

 locale—User’s locale

 order—The order being priced

 orderPriceInfo—The order’s price (not yet calculated for this order)

 shippingGroup—The ShippingGroup being priced (null, as what is being
priced is not a shipping group)

 shippingPriceInfo—Costs associated with the shipping group being priced
(null, as what is being priced is not a shipping group)

FilterQualfiedItems represents a List of FilteredCommerceItem objects (Shirt
and Hat) and their corresponding ItemPriceInfo objects ($10 and $5).

ExtraParametersMap is not needed in this example, but can be used to pass
additional parameters as needed.

In this example, the evaluateQualifier method returns Boolean.TRUE. The reason
this is a boolean value is because this is a when rule. There are three choices for the

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 9 0

1 2 - Q u a l i f i e r C l a s s

μ
condition: always, when, and for. In the case of always and when, evaluateQualifier
returns a boolean value.

Note: If the rule were a for rule, then evaluateQualifier would return the list of
items that triggered the promotion. If the promotion was “For next 1 (product named
shirt)” then this method would return a List containing one MatchingObject that
wrapped the “shirt” CommerceItem and had quantity 1.

 Because the promotion is valid, we must determine which items will receive the
discount. The first step is to filter the items for the target. (filterItemsForTarget).

Note: Because this promotion involves a when rule, we can immediately evaluate the
target. If this was a for rule, we would first determine the range within which
DetailedItemPriceInfo(s) acted as the qualifier.

Call evaluateTarget. Assuming none of the target filters applied, the list of
arguments here will be the same as the list passed to evaluteQualifier. In this
example, one item should be discounted so this method will return a List with one
item in it. The item will be a MatchingObject with the following property values:

 matchingObject property is the hat CommerceItem

 quantity property is 1

 discounts property contains a List of DiscountStructure objects,
representing the discount-structure element from the PMDL.

Next, the pricing engine gets the calculator-type from the DiscountStructure object, looks up the
calculatorTypeCalculators map to get the calculator component, puts the QualifiedItem objects
into the extra parameters map, and then calls the calculator.

Finally, the calculator’s findQualifyingItems method pulls the QualifiedItem objects out of the
map. The getAdjuster and getDiscountType methods get the DiscountStructure out of the map.
The calculator now knows which items should receive the discount, so it calls priceQualifyingItems.
This method goes through each detail of each item that qualifies (there is only one in our case) and
updates the price.

QualifiedItem Class
The atg.commerce.pricing.QualifiedItem class holds information about a CommerceItem that
qualifies for a discount. Each CommerceItem is paired with a DiscountStructure object, which contains
discount information to apply.

Each QualifiedItem contains a single DiscountStructure to be applied to a quantity of a given
CommerceItem. If multiple discounts within a single promotion apply to a single CommerceItem, multiple
QualifiedItem objects are returned. For example, a single item might qualify for two discounts within a
single promotion, one for $10 off and a second for an additional $5 off. In that case, two QualfiedItem
objects are returned. (Note that this is a highly unusual case; the default behavior is to prevent a single
item from receiving multiple discounts.)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 9 1

1 2 - Q u a l i f i e r C l a s s

μ
Unlike a QualifiedItem, a MatchingObject can contain multiple discount structures. The usual
purpose of PMDL containing multiple discount structures is to discount one set of items by one discount
and a different set of items by the second discount. Note that the ATG Merchandising promotions user
interface does not support assigning multiple discount structures in a single promotion; however, you can
create custom templates that include this ability.

QualifiedItems are returned from the Qualifier.findQualifyingItems method. The
QualifiedItem class contains the following properties:

 item—The CommerceItem that qualified for a discount.

 qualifyingDetailsMap—A map keyed by the DetailedItemPriceInfo objects
contained in the ItemPriceInfo object (which, in turn, is contained in the
CommerceItem). The value for each DetailedItemPriceInfo object is a List of
Range objects, which specifies the objects matched.

For example, if a commerce item represents two T-shirts and has a single
DetailedItemPriceInfo and a promotion applies to one of those T-shirts, the map
would have one entry. The key would be the DetailedItemPriceInfo and the value
is a List with a single Range entry. The Range in this case is [0,0]. If both T-shirts
qualified, the Range would be [0,1].

FilteredCommerceItem
The FilteredCommerceItem object represents a CommerceItem that is currently participating in a rules
evaluation in the Qualifier. This object holds a reference to the object it is wrapping. Item points to the
wrapped CommerceItem. All CommerceItem methods except quantity call through to the wrapped
item.

atg.commerce.pricing.FilteredCommerceItem adds four properties that are used to determine if
and how the wrapped CommerceItem should participate in pricing:

 quantityAsQualifierDetails—A map of DetailedItemPriceInfo objects to
Range objects, which state the units of the details that have acted as a qualifier for
something.

 detailsRangesValidForTarget—A map of DetailedItemPriceInfo objects to
the number of details that are available for discounting based on the exclusion rules
defined by various properties in the Qualifier.

 priceQuote—The value of the current ItemPriceInfo.

 usePriceQuote—A Boolean set to true after the PMDL has been evaluated. When
true, calls to getPriceInfo return the priceQuote, ensuring that the evaluation
process uses the most current price information.

Extending the Qualifier Class
This section describes the following ways of extending the Qualifier class:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 9 2

1 2 - Q u a l i f i e r C l a s s

μ
 Adding New Criteria to the Filter Methods

 Replacing the Way a PMDL Rule Is Evaluated

 Replacing the Way the Qualifier Determines the Result Set

 Accessing FilteredCommerceItems

Adding New Criteria to the Filter Methods

The existing Qualifier doFilters() method evaluates items in the qualifier and target rules. The
method uses the Qualifier service’s filtering methods to disqualify items before comparing them to a
promotion’s PMDLRule.

The filtering process prevents problems with pricing rules. For example, in the promotion “buy one item,
get one item free,” most retailers exclude the item that acts as a qualifier from receiving the discount. This
prevents a customer from buying just one item and getting that one item free; the customer must put
two items in the cart in order to get the discount.

The following example shows how the filterItemsForQualifier and filterOrdersForTarget
methods work. This example uses the rule “for next 1 item that is blue, discount up to 1 item that is
green.”

The filterItemsForQualifier method is invoked first. By default, this method uses the following
criteria to remove items from the environment. This prevents the items from helping to satisfy the
constraints specified in the “qualifier” portion of the input PMDL rule:

 If an item’s price is zero or negative, the item is removed.

 If an item is on sale, it is removed.

 If an item has already acted as a qualifier, the item is removed.

 If an item has already received the discount currently being evaluated, the item is
removed.

After items are filtered out of the environment, the evaluateQualifier method is invoked.
evaluateQualifier selects one blue item that acts as a qualifier from the environment. (For more
information on these methods, refer to the next section, Replacing the Way a PMDL Rule Is Evaluated.)

If the qualifier is satisfied, the system evaluates the offer, if there is one, to determine which objects
among all those available should receive the discount that is enabled by the one blue item. ATG
Commerce currently performs this selection for CommerceItems only.

Before the target element is evaluated, the filterItemsForTarget method must be invoked. The
filterItemsForTarget method uses the following criteria to remove items from the environment
against which the target is compared:

 If the item price is zero, negative, or less than the promotion price

 If the item is on sale

 If an item already acted as a qualifier

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 9 3

1 2 - Q u a l i f i e r C l a s s

μ
 If an item already received the discount that is currently being evaluated, or any other

discount

If the item meets any of those criteria, the item is removed.

After the filterItemsForTarget method is invoked, the evaluateTarget method is called. This
method returns a set of items that can receive the discount because they satisfy the target element of the
rule.

You can change the criteria by which items are filtered out of the environment before a rule is evaluated.
For example, your filter could allow items with a price of zero to act as qualifiers for a rule. You could
rewrite the filterItemsForQualifier method to remove that restriction, or write your own filter
component using the atg.commerce.pricing.PromotionQualifyingFilter interface.

Replacing the Way a PMDL Rule Is Evaluated

The Qualifier class contains two protected methods, evaluateQualifier and evaluateTarget,
which are responsible for evaluating different elements of a PMDL rule.

The evaluateQualifier method determines if the input environment (the pricing context) satisfies the
constraints of the qualifier rule. The input environment is represented by the parameters passed into the
method. If the constraints are satisfied, evaluateQualifier determines which objects acted as qualifiers
in satisfying the rule. For more information, see the Evaluating Qualifiers Example section

For example, in the rule “Buy 1 shirt, get 1 hat free,” the “one shirt” element of the rule is evaluated
through evaluateQualifier. If the promotion is a “For next” promotion, the method returns the shirt
item that satisfies the constraint; if a “When” promotion, a Boolean value of true is returned.

For example, consider the PMDL rule “When there is at least 1 blue item, discount 1 green item.” If a blue
item is included in the input environment, the qualifier returns a java.lang.Boolean indicating that
the environment matched the rule. If the rule had been written “For the next blue item, discount one
green item,” the blue item is returned.

The evaluateTarget method is invoked in every promotion situation, in order to retrieve the discount
structure from the offer.

Replacing the Way the Qualifier Determines the Result Set

You can replace the way that a helper method determines its result set by extending the Qualifier to
override any of the existing findQualifyingitemType methods.

For example, you might not want to use a PMDL rule to determine the objects to discount. You could use
a repository query to select the items that a given promotion should discount. The list of items to
discount could be stored in the promotion itself. The findQualifyingItems method could access the
promotion, read the items to discount, and return them.

Alternatively, you can create your own custom Qualifier service with its own
findQualifyingitemtype implementation. You can then configure a pricing engine to use the new

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 9 4

1 2 - Q u a l i f i e r C l a s s

μ
Qualifier service, or configure individual promotions to use it through the qualifierService
property.

Accessing FilteredCommerceItems

The findQualifyingItems, findQualifyingOrder, and findQualifyingShipping methods process
FilteredCommerceItems. If you extend the Qualifier class, and the extension needs access to a
wrapped item, it can get it by calling the getWrappedItem method of the FilteredCommerceItem.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 9 5

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
13 Understanding Promotions

Promotions are a way of encouraging a user to make a purchase by highlighting and offering discounts
on products and services. Examples of promotion types include the following:

 Specific amount off a particular product

 Percentage amount off a whole order

 Specific amount or percentage off a product based on an attribute

 Free shipping for a specific product

This chapter discusses the back-end functionality that supports promotions as a part of the ATG
Commerce pricing system.

You can create promotions using the ACC or ATG Merchandising, and deliver them to users through a
variety of methods, including scenarios. See the Creating and Maintaining Promotions chapter of the ATG
Commerce Guide to Setting Up a Store for information on creating and delivering promotions using the
ACC. See the ATG Merchandising Guide for Business Users for information on creating promotions using
ATG Merchandising.

Note that promotions you create in the ACC can be edited in ATG Merchandising; however, promotions
created using Merchandising templates cannot be edited in the ACC, due to differences in the PMDL
(Pricing Model Description Language) generated.

This chapter contains the following sections:

Promotion Repository Item Properties

PromotionStatus Repository Items

Understanding PMDL Discount Rules

Extending Promotions Functionality

Adding New Promotions Templates

Importing and Exporting Promotions

Promotion Repository Item Properties
 The properties of a promotion RepositoryItem are documented in the table below. These properties
work together to form a description of what discount to give, under which conditions it should be given,
and the mechanism by which the discount is applied.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 9 6

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
In addition to the standard property types (strings, numbers, dates, etc.) promotions also include a
property type unique to promotions items, pmdlRule, which stores the PMDL rule for the promotion as a
string. This property has a custom property editor associated with it in the Promotions section of the ATG
Control Center; see the ATG Commerce Guide to Setting Up a Store for information.

The following table describes the pricing model properties available in the Item, Shipping, Tax, and Order
descriptors when you create a commerce item. These descriptors are defined in
/atg/commerce/pricing/pricingModels.xml, which is located in
<ATG10dir>/DCS/config/config.jar.

Property Name Type Values Flags

double any double none adjuster

(display name: Discount Price
or Percentage, depending on
the discount type)

Number by which the item is discounted. Works in
conjunction with discountType to specify the discount
to be applied. For example, an adjuster of 15 and a
discountType of percentOff produce a discount of “15
percent off.”

Note: This property is no longer used, and is maintained
only for backward compatibility.

allowMultiple

(display name: Give to a
customer more than once)

Boolean true or false none

 Determines whether the promotion can be given to a
customer only once. If set to false, the system grants the
promotion only once. If set to true, the system adds a
copy of the promotion to the customer’s profile every
time the customer is granted the promotion.

Note: This property is ignored if the global property is
set to true.

beginUsable timestamp any date none

(display name: Usage start
date)

The date that the promotion becomes effective. Used
when the relativeExpiration property is set to false.

Together with the endUsable date, defines the period
within which the promotion is valid, including global
promotions. If both values are null, the promotion is
always valid.

creationDate date any date read-
only

(display name: Creation date) The date when the promotion was created.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 9 7

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
Property Name Type Values Flags

description string any string none

(display name: Description) Provides a short description of the item.

string percentOff

amountOff

fixedPrice

read-
only

discountType

(display name: Discount type)

The type of discount this promotion gives.

Note: This property is no longer used, and is maintained
only for backward compatibility.

displayName string any string none

(display name: Name) Specifies the name visible in the user interface.

Boolean true or false none enabled

(display name: Enabled) Specify true to enable the promotion. If enabled, the
promotion takes effect according to the specified usage
period. If disabled, the promotion never takes effect
regardless of the usage period.

Note: As a general rule, you should never delete
promotions and instead disable them by setting the
enabled property to false. This approach eliminates the
possibility of deleting a promotion that has been used in
an order, which produces errors.

endDate date any date none

(display name: Distribute
through)

The date that the promotion stops being delivered to
people, if the collection filtering feature is implemented
to use this property.

endUsable timestamp any date none

(display name: Usage end
date)

The date that the promotion stops being effective. Used
when the relativeExpiration property is set to false.

Together with the beginUsable date, defines the period
within which the promotion is valid. If both values are
null, the promotion is always valid.

giveToAnonymousProfiles Boolean true or false none

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 9 8

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
Property Name Type Values Flags

(display name: Give to
anonymous customers)

If both this property and the global property are false,
then only registered visitors can receive the promotion. If
this property is true, and the global property is false,
then anonymous visitors and registered visitors can
receive the promotion. In both cases, the visitors must
meet any other conditions specified by the promotion in
order to receive it.

Note: This property is ignored if the global property is
set to true.

global Boolean true or false none

(display name: Automatically
apply to all orders)

Setting the global property to true indicates that this
promotion will be applied an unlimited number of times,
to all visitors (including anonymous visitors), for use on an
unlimited number of orders, during the specified usage
period, regardless of the values set for the following
properties:

-- allowMultiple

-- startDate

-- endDate

-- giveToAnonymousProfiles

-- relativeExpiration

-- timeUntilExpire

-- uses

Setting the global property to false indicates that the
system delivers and applies the promotion according to
all of the values specified for the promotion.

media map map of object to object none

(display name: Media) The media, such as icons, associated with this discount.

Boolean true or false none oneUsePerOrder

(display name: One use per
order)

A property used for shipping promotions only. It
determines whether a shipping promotion can discount a
single order multiple times. If set to true, then only one
shipping group in the order can use the promotion. If set
to false, then it is possible for each shipping group in
the order to be discounted by the promotion.

pmdlRule string any valid PMDL rule none

A T G C o m m e r c e P r o g r a m m i n g G u i d e

1 9 9

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
Property Name Type Values Flags

(display name: Discount rule) This is the PMDL rule describing the conditions under
which this promotion should take effect. The rule is
created in the ATG Control Center using the interface
designed for promotion creation. For more information,
see the ATG Commerce Guide to Setting Up a Store.

pricingCalculatorServic

e

enumerated a calculator none

(display name: Pricing
Calculator)

The calculator that computes and applies this
promotion’s discount.

Note: This property is no longer used, and is maintained
only for backward compatibility.

priority integer any integer none

(display name: Order of
application)

The priority of the promotion. Promotions are applied in
order of priority, with low priority numbers applied first.
Engines sort the promotions by the value of this property.

Note that this property functions within the context of a
particular promotion type. For example, you can specify
how a given Item Discount promotion is applied
compared to other Item Discount promotions, but not the
order in which Item Discounts are applied compared to
Shipping Discounts.

Boolean true or false none relativeExpiration

(display name: Usage Period) Determines whether the usage period for the promotion
is fixed or relative.

If false, the promotion’s usage period is determined by
the dates set in the beginUsable and endUsable
properties. If true, the promotion’s usage period is set
according to the date it is received by the user (that is,
when the promotion is added to the user’s
activePromotions profile property). The start date and
time is set when the user receives the promotion. The end
date and time is set by the start date/time and the value
of the timeUntilExpire property.

startDate date any date none

(display name: Distribute
starting)

The date that the promotion begins to be able to be
delivered to people, if the collection filtering feature is
implemented to use this property.

timeUntilExpire int any int none

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 0 0

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
Property Name Type Values Flags

(display name: Redeemable
for)

Determines the usage period in minutes for the
promotion. Used when the relativeExpiration
property is set to true.

The promotion becomes active as soon as the user
receives the promotion; that is, the promotion is added to
the list of promotions in the user’s activePromotions
profile property. The expiration date and time is then
determined by the number of minutes in
timeUntilExpire to the current time.

Note: This property is ignored when the global property
is set to true.

type

(hidden)

enumerated ATG 10 and later versions:

Item Discount
Shipping Discount
Order Discount

Versions prior to ATG 10:

Item Discount– Percent Off
Item Discount– Amount Off
Item Discount– Fixed Price
Item Discount– Multiplier
Shipping Discount- Percent Off
Shipping Discount- Amount Off
Shipping Discount - Fixed Price
Order Discount - Percent Off
Order Discount - Amount Off
Order Discount - Fixed Price

read-
only

 The type of discount this promotion gives. This is set
during item creation.

uses int any positive integer, zero none

(display name: Number of
uses allowed per customer)

The number of orders for a given customer to which the
promotion can be applied. If this number hits zero, the
promotion can no longer be applied.

Note: A promotion can sometimes discount a single order
multiple times. This is still considered one “use.” For
shipping promotions only, you can prevent the
promotion from discounting a single order multiple times
by setting the oneUsePerOrder property to true.

Note: This property is ignored when the global property
is set to true.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 0 1

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
Property Name Type Values Flags

version long any long hidden

(display name: Version) Used by the SQL Repository to protect against data
corruption caused by two different threads attempting to
modify the same item the same time.

parentFolder promotion

Folder

any promotionFolder item none

(display name: Parent Folder) The parent folder of the promotion.

sites set set of siteConfiguration items none

(display name: Sites) The siteConfiguration item or items with which the
promotion is associated. Pricing engines should only
evaluate promotions that include the current site context,
or where both the sites and siteGroups properties are
null.

siteGroups set set of siteGroup items none

(display name: Site Groups) The siteGroup or groups with which the promotion is
associated. Pricing engines should only evaluate
promotions whose siteGroups properties include the
current site context or where sites and siteGroups are
null.

template string any string representing a
template name

none

(display name: Template) The template with which the promotion is associated.
Promotions templates are used in ATG Merchandising;
see the ATG Merchandising Guide for Business Users.

templateValues map Map of template placeholder
values

none

(hidden) Placeholder values are used to build the PMDL from a
template; see Adding New Promotions Templates.

uiAccessLevel int 0 or 1 none

(hidden) The value in this field identifies whether or not the
promotion is read-only (0) or writeable (1).

pmdlVersion int 1 or 2 none

(hidden) The value in this field identifies whether the PMDL is pre-
ATG 10 (version 1), or ATG 10 or later (version 2).

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 0 2

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
One important part of promotion creation is making sure that the promotion can only be used in the way
you intend it to be used. Incorrectly worded or configured promotions could allow customers to receive
greater benefits from the promotion than you intended. The following list describes issues to keep in
mind when you are creating promotions:

 Check the startDate, endDate, beginUsable, and endUsable dates of all
promotions to prevent a promotion from taking effect before you are ready for it.

Note: When setting dates for a promotion, be aware that a number of factors can
cause the promotion to be unusable for a number of minutes after it is set to be active
and to be usable after it is set to expire, depending on the schedule set for the pricing
engine (for global promotions) or the PricingModelHolder (for both global and
nonglobal promotions).

 Because it can be resource intensive to collect a user’s list of promotions, or pricing
models, the session-scoped UserPricingModels component (class
atg.commerce.pricing.PricingModelHolder) stores them in a session cache.
When a session starts for a user, UserPricingModels queries each pricing engine for
the customer’s promotions. PricingModelHolder is schedulable, and can also be
configured to periodically update the promotions cache.

These promotions include both the promotions in the user’s activePromotions
profile property and the list of global promotions. To retrieve the list of global
promotions, the pricing engine uses its globalPromotionsQuery property to query
the Promotions repository for all promotions where the global property is set to
true, and it does so every x minutes as defined by the schedule specified in its
updateSchedule property. Once collected, the pricing models in
UserPricingModels are then used for all pricing operations during the user’s
session.

Consequently, if a user’s session is created after you have added a new global
promotion but before the next scheduled job to update the pricing engine’s list of
global promotions, the user will not receive the new global promotion. You can
prevent this situation by manually calling the
pricingEngine.loadGlobalPromotions method when you add the new global
promotion. Additionally, if a user’s session was created before you added a new
promotion (either targeted or global), that user will never receive the new promotion.
This is because the user’s list of pricing models has already been collected and stored
in the user’s UserPricingModels. To prevent this situation, manually call the
pricingModelHolder.initalizePromotions method when you add any new
promotion (targeted or global). The initializePromotions method generates a
new list of pricing models to store in the user’s UserPricingModels. (Note that the
pricingModelHolder.initializePromotions method should be called after the
pricingEngine.loadGlobalPromotions method in order to collect all new global
promotions.)

For more information on the PricingModelHolder class, see the
PricingModelHolder section. For more information on the pricing engine APIs, see
the Commerce Pricing Engines chapter.

 When creating promotions, evaluate the wording of the discount rule carefully to
make sure that only the intended products receive the promotion. Be as specific as
possible when creating rules. For example, if a particular brand is on sale, specify the

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 0 3

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
brand in the rule rather than relying on an attribute of the brand that you might think
is unique.

 Use caution when creating “infinite use” promotions, which a customer can use an
infinite number of times during a specified time period. Be certain the beginUsable
and endUsable dates are set correctly.

PromotionFolder Repository Items
Promotions can be stored in a promotions folder. The promotionFolder repository item in the
Promotions repository includes the following information, which is standard for many repository items:

 id

 name

 parentFolder

PromotionStatus Repository Items
When a promotion is associated with a customer’s profile, it is wrapped inside a PromotionStatus
RepositoryItem. This repository item tracks the number of times a customer can use an individual
promotion. A PromotionStatus RepositoryItem is a repository item with an ItemDescriptor that
describes the status of the promotion.

A customer’s profile has an activePromotions property that contains a list of PromotionStatus
RepositoryItems. Each PromotionStatus item contains the following information:

 A reference to the underlying promotion that was created in the ACC Promotions
editor.

 The number of times that a customer can use the promotion.

 The date on which the user was granted the promotion.

During the pricing process, pricing engines inspect the customer’s profile to see which promotions
should be considered when generating prices.

Understanding PMDL Discount Rules
This section describes the XML used for constructing discount rules that represent promotions in ATG
Commerce.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 0 4

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
PMDL XML Structure

The PMDL that describes ATG Commerce promotions discount rules is relatively simple. The PMDL DTD is
located in the DCS module at /atg/dtds/pmdl/pmdl1.0.dtd. The DTD defines a number of iterators
(such as next and every), quantifiers (used in “when” conditions), operators (such as and and not), and
comparators (such as contains and less-than) you can use in creating your PMDL rules.

Pricing-Model Element

The root tag for the PMDL.

Offer Element

Every pricing-model element requires one offer element. The offer includes one or more
discount-structure elements, which contain detailed information about the discount and its target.
The offer is evaluated by the evaluateTarget method.

You can include more than one discount-structure element in an offer; this allows you to wrap
multiple discounts in a single promotion (note that this is not supported in ATG Merchandising, but you
can build a custom template with this functionality).

If you have multiple discount structures within a single item promotion, you can specify the filter-
collection-name attribute of the offer; this ensures that once a given item has been marked to
receive a discount, it cannot receive a discount from any other discount-structures. If filter-
collection-name is not set, filtering does not take place, and a given commerce item can be the target
for more than one discount. The filter-collection-name should match the iterator element’s
collection-name attribute, which is normally set to items. Filtering is not required for single discount
structures, or for non-item-based promotions.

Qualifier Element

Every pricing-model element requires one qualifier element. The element is the root tag for the
condition part of the promotion.

Target Element

Your discount structure should not include a target element if the promotion is for orders or shipping;
only item discounts include target as part of the discount-structure. The target specifies the rule
for selecting the items to be discounted.

Discount-Structure Element

The discount-structure element has the following attributes:

 calculator-type—A calculator service configured in the pricing engine’s
calculatorTypeCalculators map.

 discount-type—The calculators use this value to determine how to calculate an
adjustment. Examples include percentOff and fixedPrice.

 adjuster—This optional attribute specifies the price adjustment to make for this
discount.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 0 5

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
A discount-structure element can also include discount-detail elements.

Discount-Detail Element

This element is optional, and is used for complex discount types. For example, in a tiered discount, each
band is represented by a discount-detail element. In this case, a discount-detail element would
include one or more attribute elements that describe the band. For example, the XML representation of a
band where buying 5 or more items gives the customer 10% off might look like the following:

<attribute name="band" value="5"/>

<attribute name="adjuster" value="10"/>

Attribute Element

The attribute element allows you to add generic name/value pairs to parent tags, similar to the process
used to extend an ATG repository. During PMDL parsing, the attributes and their values are placed in an
attribute Map.

Iterator Element

Iterators are evaluation beans that sort a collection of items, then evaluate each item against one or more
sub-expressions. It returns those items that match the sub-expressions.

The iterator element allows you to create custom iterators. Your new iterator element must include
a name attribute that is unique across the PMDL.

An iterator element can have the following attributes and sub-elements:

 name attribute—Required

 sort-by attribute—Required

 order attribute—Required

 collection-name—Required

 element-name—Required

 element-quantity-property—Optional

Quantifier Element

Quantifiers are evaluation beans that evaluate a collection of items against one or more sub-expressions.
It returns true or false, depending on the quantity of items that match the sub-expressions.

The quantifier element allows you to create custom quantifiers. Your new quantifier element must
include a name attribute that is unique across the PMDL.

A quantifier element can have the following attributes and sub-elements:

 name attribute—Required

 number attribute—Optional

 collection-name—Required

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 0 6

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
 element-name—Required

 element-quantity-property—Optional

Operator Element

Operators are evaluation beans that return true or false based on the Boolean results from their sub-
expressions.

The operator element allows you to create custom operators. Your new operator element must include
a name attribute that is unique across the PMDL.

An operator element can specify any number of attribute sub-elements and operates on at least one
comparator, operator or quantifier.

Comparator Element

Comparators are evaluation beans that return true or false depending on the values of their sub-
expressions.

The comparator element allows you to create custom comparators. Your new comparator element
must include a name attribute that is unique across the PMDL. A comparator element can specify any
number of attribute sub-elements and must specify at least one value or array name.

Comparators evaluate using one or more sub-expressions. For example:

<comparator name="isoneof">

 <value>item.auxiliaryData.productId</value>

 <constant>

 <data-type>java.lang.String</data-type>

 <string-value>xprod2147</string-value>

 <string-value>xprod2163</string-value>

 </constant>

</comparator>

Comparators can also compare two value elements, and custom comparators could include any number
of value or constant elements.

Value and String-Value Elements

The value element returns the value of a property of the commerce item being evaluated. For example:

<value>item.auxiliaryData.productId</value>

To represent strings, use a string-value element. For example:

<string-value>ManufacturerA</string-value>

To represent a comma-separated list of strings, use multiple string-value elements. For example, to
represent “ManufacturerA, ManufacturerB” use the following:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 0 7

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
<string-value>ManufacturerA</string-value>

<string-value>ManufacturerB</string-value>

Constant Element

The constant element returns a constant value against which other values can be compared. For example:

 <constant>

 <data-type>java.lang.String</data-type>

 <string-value>xprod2147</string-value>

 </constant>

PMDL Example: Bulk Discount

The example that follows shows these structures in operation. Note that in the normal course of events
you should not have to work directly with the PMDL unless creating new promotions templates (see
Adding New Promotions Templates). Occasionally, however, a user creates a promotion in which the
PMDL is invalid; in this case, the promotion cannot be edited in ATG Merchandising or in the ACC, but
must be manually corrected or discarded.

This rule describes a promotion in which a customer buys up to five of a particular product (xprod2104) to
receive $5 off. The customer can buy six of the same item and receive $10 off.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE pricing-model SYSTEM dynamosystemresource:/atg/dtds/pmdl/pmdl_1.0.dtd">

 <pricing-model>

 <qualifier/>

 <offer>

 <discount-structure calculator-type="bulk"

 discount-type="amountOff">

 <discount-detail>

 <attribute name="band" value="1"/>

 <attribute name="adjuster" value="5"/>

 </discount-detail>

 <discount-detail>

 <attribute name="band" value="6"/>

 <attribute name="adjuster" value="10"/>

 </discount-detail>

 <target>

 <iterator name="up-to-and-including" number="1"

 sort-by="priceInfo.listPrice" sort-order="ascending">

 <collection-name>items</collection-name>

 <element-name>item</element-name>

 <element-quantity-property>quantity

 </element-quantity-property>

 <comparator name="equals">

 <value>item.auxiliaryData.productId</value>

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 0 8

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
 <constant>

 <data-type>java.lang.String</data-type>

 <string-value>xprod2104</string-value>

 </constant>

 </comparator>

 </iterator>

 </target>

 </discount-structure>

</offer>

</pricing-model>

Examples of PMDL Rules

The tables in this section demonstrate how to represent some standard promotions using PMDL rules in
the discount rule editor.

For more examples of PMDL Rules, see the Creating and Maintaining Promotions chapter of the ATG
Commerce Guide to Setting Up a Store.

Item Pricing Model Examples

The following table describes how to set up item pricing models using PMDL rules:

Percentage off price:
Get Y for 25% off.

The “25% off” part of this rule is contained at the
PricingModel level. You can create an “Item Discount -
percent off” promotion, then set its adjuster to 25.

The PMDLRule describes Y. For example, if Y is something
blue, the following is one possible PMDL representation:

“always discount every item whose SKU’s color is blue”

This rule is written for items that register their color in the
“color” property of their SKU.

Dollar amount off price:
Get Y for $10 off

The “$10 off” part of this rule is contained at the
PricingModel level. You create an “Item Discount -
amount off” promotion, then set its adjuster to 10. The
PMDLRule describes Y. For example, if Y is something red,
the following is one possible PMDL representation:

“always discount every item whose SKU’s color is red”

This rule is written for items that register their color in the
“color” property of their SKU.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 0 9

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
Fixed pricing:
Get Y for $0.25

The “$.25” part of this rule is contained at the
PricingModel level You create an “Item Discount - fixed
price” promotion, then set its adjuster to .25. The
PMDLRule describes Y. For example, if Y is something
green, the following is one possible PMDL representation:

“always discount every item whose SKU’s color is green”

This rule is written for items that register their color in the
“color” property of their SKU.

Note: You can create a rule that gives a discount to a product that is in a specific category. For example,
you could create a rule that gives a 10% discount to all products that are part of the shoe category. This
rule gives a discount to a “CommerceItem whose
auxilliaryData.productRef.ancestorCategoryIds contains categoryIdX” where X is the shoe
category. By default, the productRef is a product item from the product catalog. To use a rule that
discounts based on category, the productRef needs to have its ancestorCategoryIds populated. If
this property is not populated, rules of this type always evaluate to false. For more information on the
product catalog, see the Using and Extending the Product Catalog chapter.

Quantity Pricing Model Examples

The quantity rules have one thing in common: they all depend on a set of items that match the
description “X.” A number of X items are needed as a precondition for the rule being applied to any items.
By default, the items that act to satisfy this precondition are not eligible to receive the discount.

The following table describes how to set up quantity pricing models using PMDL rules:

Buy one, get one free If the free item is “anything blue” then the rule is actually
“buy one blue item, get one blue item free.”

The “free” part of the discount is configured in the
promotion itself. Create an Item Discount promotion. Set
the adjuster to Zero.

Next, create the following PMDL representation:

“For next 1 items whose SKU color is blue, discount up to 1
items whose SKU color is blue”

The second half of this rule refers to “up to 1 item” means
that only one blue item will be discounted for every blue
item purchased.

This rule is written for items that register their color in the
“color” property of their SKU.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 1 0

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
Buy three, get one free This rule indicates that if a customer buys 3 items, they will

receive one item free. If they buy 6 items, they will receive 2
items free, etc.

Create an Item Discount promotion. Set the adjuster to
Zero.

Create the following PMDL representation:

“For next 3 items whose SKU color is blue, discount up to 1
item whose SKU color is blue”

Buy three or more, get one
free

This rule is a version of the “Buy 3, get 1 free” promotion
that limits the promotion to one free item per order. For
example, if you buy six items, you still just get one free
item.

Create an Item Discount promotion. Set the adjuster to
Zero.

Create the following PMDL representation:

“When order contains at least 3 (product in category
named clothing); Apply discount to up to 1 (product in
category named clothing)”

Buy 13 of X for the price of
12 X’s

This rule could be rewritten as “for every 12 Xs that you
buy, get 1 X free,” or more simply “buy 12, get one free.”

If X is “something blue,” Create a discount of type Item
Discount and set its adjuster to zero.

Next, create the following PMDL rule:

“for next 12 items whose SKU’s color is blue, discount up to
1 item whose SKU’s color is blue”

Buy 2 of X, get the 3rd X for
20% off [or $20 off]

This example follows the same pattern as the above two
examples, except that the applied discount is different. If X
is something blue. Create an Item Discount promotion. Set
the adjuster to 20.

Next, create the following PMDL rule:

“for next 2 items whose SKU’s color is blue, discount up to 1
item whose SKU’s color is blue.”

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 1 1

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
Tier pricing: Buy the first 5 at
$10 each, buy the next 5 at
$5 each

This promotion can be created through a combination of
two promotions. This is necessary because the promotion
given is different based on the number of items bought.

In the following example, the item being purchased is
“something blue.”

1) Create one Item Discount promotion and set its adjuster
to 10. Next, create the following PMDL rule:

“Always, discount up to 5 (sku whose color is blue). Order
of Application: 1”

2) Create another Item Discount promotion and set its
adjuster to 5.

Next, create the following PMDL rule:

“Always, discount up to 5 (sku whose color is blue). Order
of Application: 2”

Shipping Pricing Model Examples

The following table describes how to set up shipping pricing models using PMDL rules:

Free shipping This promotion is written out in the form “under these
conditions, give free shipping.” In the following example, the
conditions are that there is at least one blue thing in the
order.

Create a promotion of type Shipping Discount. Set its adjuster
to 0.

Next, create the following PMDL rule:

“when order contains at least 1 (sku whose color is blue),
discount shipping group”

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 1 2

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
Upgraded shipping:
Upgrade from regular 7-day
shipping to next day
shipping for the price of 7-
day shipping.

This promotion is represented by a “fixed price” promotion. In
the following example, the conditions for this promotion
taking effect are that the order contains at least one SKU that’s
blue.

Create a promotion of type Shipping Discount. Set the
adjuster to the price of seven-day shipping.

The rule ensures that you only discount next day air.

Next, create the following PMDL rule:

“when order contains at least 1 (sku whose color is blue) and
Shipping Group’s shippingGroupType is ‘Next Day’ discount
shipping group”

Order Pricing Model Examples

The following table describes how to set up Order pricing models using PMDL rules:

10% of the total price of the order This rule requires a condition under which the Y%
should be taken off. In the following example, the
condition is that the order contains a blue item.

Create a new discount of type Order Discount. Set
the adjuster to 10. Next, create the following PMDL
rule:

“when order contains at least 1 (sku whose color is
blue), discount order total.”

$10 off the total price of the order This rule requires a condition under which the Y%
should be taken off. In the following example, the
condition is that the order contains a blue item.

Create a new discount of type Order Discount.

Set the discount percentage to 10. Next, create the
following PMDL rule:

“when order contains at least 1 (sku whose color is
blue), discount order total.”

10% off orders of $100 or more This rule is an order discount based in the order’s
priceInfo property. Create a new discount of type
Order Discount.

“when Order’s priceInfo's amount is greater than
100, discount all items.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 1 3

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
Free Y with the order This rule is actually an Item Discount because it’s the

Y that’s being described and Y’s price that is being
discounted. In the following example, Y is a blue
item.

Create a new promotion of type Item Discount. Set
the adjuster to 0.

“when order contains at least 1 (sku whose color is
blue), discount up to 1 (sku whose color is blue)”

Note that this will not automatically add the item to
be discounted to the customer’s shopping cart. You
must create a scenario to add the item to the cart.
See the ATG Personalization Guide for Business Users
for more information on scenarios.

Extending Promotions Functionality
Extending the existing promotions functionality can involve doing any one or more of the following:

 Specifying multiple targets for a discount

 Creating new promotion types (these map directly to pricing engines, and by default
the types include item, order, or shipping)

 Creating new discount calculators (by default, ATG Commerce includes standard and
tiered calculators) Calculator types map to Nucleus components.

The PMDL stores the discount information and ties together a set of target items with the discount that
should be applied. PMDL allows you to include multiple targets and multiple discount structures in the
same promotion, but the latter must all be the same promotion/pricing engine type.

For example, say you want to create another tiered pricing calculator to handle a special discount, such as
free ground shipping.

1. Write a new discount calculator as a Nucleus component. The new calculator should
implement the calculatorInfoProvider interface. The interface provides a
calculatorinfo object that describes the calculator, including the discount types
that it supports and the attributes that calculator is interested in.

2. Configure the item pricing engine to add the new calculator type, using the
calculatorTypeCalculators map in the pricing engine.

3. The new calculator and discount type appears automatically in the Advanced
Template (see the ATG Merchandising Guide for Business Users), and you can also create
your own custom templates that use this discount type.

If you add a new calculator type, you will most likely modify an existing calculator to support it, perhaps
by adding a new method (see the Commerce Pricing Calculators chapter).

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 1 4

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
Extending the PMDL

As well as adding discount types and calculators, you can extend the PMDL itself; for example, you may
have a need for a <xor> element, which is not included in the PMDL by default.

For iterators, quantifiers, comparators, and operators, the process is extremely simple:

1. Create a Java class containing the logic for the new tag. For example,
myClasses.pricing.definition.XorElem.class.

2. Use XML-combine to extend the PMDL schema to include your new tag. For example:

<operator name="xor">

…

</operator>

1. Add a mapping between your Java class and the PMDL element in the
PMDLParser.xml. For example:

<bean name="xor" class="myClasses.pricing.definition.XorElem.class">

</bean>

If you want to add an element other than iterators, quantifiers, comparators, and operators, you must also
update the DTD to support the new element.

When adding elements to the PMDL, use the name attribute rather than directly naming the new element.
For example, if you add a custom xor operator, the following PMDL is valid:

<operator name="xor">

….

</operator>

Note that the following is not valid unless you have also updated the DTD:

<xor>

….

</xor>

You can use the new tag in your custom promotions templates. Note however that the new tag does not
appear in the Advanced condition and offer expression editor.

Adding New Promotion Discount Types

Adding a new discount type involves the following tasks:

1. Extend or create a calculator that supports the discount type.

2. Modify the CalculatorInfo object to include the new discount type and calculator
information.

The PMDL uses the CalculatorInfo to identify which calculator to use.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 1 5

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
Adding New Promotions Templates

ATG Merchandising includes a number of ready-to-use promotions templates that make the job of
creating new promotions easy for business users. You may find that your users frequently create
promotions that are not based on one of the provided templates. In that case, you may want to create
your own templates to streamline the process for them and reduce the chance for user errors.

This section describes the XML grammar used for promotions templates.

Promotion Template Basics

Promotions templates are XML files that are named with a .pmdt extension. You must store templates in
a root location specified in the configurationRootPath property of the
/atg/commerce/promotion/template/registry/PromotionTemplateRegistry component. The
default setting is:

configurationRootPath=/atg/registry/data/promotiontemplates

You can set this path to any valid value and construct any additional folder structure needed below it as
you add templates. Templates are referenced by both name and location, therefore the names do not
have to be unique, but it is good practice to give them unique names.

Template files are created manually. You can shorten the process by creating a PMDL rule in the
Advanced Condition and Offer Editor, then retrieving the generated PMDL from the
DCS_DISCOUNT_PROMO table or from the asset detail page of the project. That PMDL can be used for the
template’s pmdlrule repository property, replacing placeholder names with the necessary values. You
must still ensure that your template XML file includes the requisite user interface elements.

Note that if you do use this method to create a PMDL rule, you should be careful to delete the promotion
you created, to avoiding confusing your users. You cannot delete promotions through ATG
Merchandising the way you can some other assets, but you can create a temporary project in ATG
Merchandising, then delete the project without deploying.

What Promotion Templates Do

Templates allow your users to set promotion repository item properties through a simple interface. The
pmdlRule property one of the most important properties, but other properties such as usage dates can
also be set this way (see Promotion Repository Item Properties for a full property list).

1. The ui-description section of the template lays out the visual elements of the
template, which determine how it appears on the user’s screen. Much of the ui-
description relies on standard form elements such as textInput.

The user interface also includes product set criteria (PSCs), which are sets of
combination boxes that allow users to specify products to include in or exclude from a
promotion. Modeling for these expressions is handled by a custom
PSCExpressionModel component, which requires no configuration.

See Creating the PMDT File for information on ui-description elements.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 1 6

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
2. The end-user provides their input to the template in ATG Merchandising. For example,

the user might select products to include in the promotion, set begin and end dates
for the promotion, and specify how many times the promotion can be given to a
customer.

3. The template associates the user input with the id attribute of the element through
which it was selected. For example, you could have a textInput that allows the user
to specify how many items can have the promotion applied:

<textInput id="numberOfItemsToDiscount_textInput">

In the textInput example, the information referenced by the id is most likely a
simple integer; in the case of PSCs, the id references a complex string of PMDL
representing the user’s selections, their AND or OR conditions, etc.

4. Translator elements in the template perform any transformations necessary to the user
input; the translated input it assigned to a placeholder. For example, you may need to
change date formatting or capitalization. For PSCs, the translators add required tags to
create well-formed PMDL, which can then be processed by the back-end systems. See
Translating User Input Values in Templates.

5. The item-properties section of the template provides the blueprint for the
promotion, and defines what property information the promotion stores.

Creating the PMDT File

This section describes the main sections that make up the PMDT file from which the template user
interface is created.

Template Header

The first part of the template PMDT file is the header, which provides basic information about the
template. The header includes the following attributes:

The template header attributes are:

 item-type—Required. Type of repository item the template represents. The default
options are item-discount, order-discount, and shipping-discount.

 author—Optional. Name of the template author.

 last-modified-by—Optional. Name of the person who last modified the template.
Must be manually updated if used.

 creation-date—Optional. Creation date of the template.

 deprecated-by—Optional. Name of the person who deprecated the template. Must
be manually updated if used.

For example:

<template item-type="Item Discount"

 repository="some/repository/path"

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 1 7

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
 author="Template Author"

 last-modified-by="Template Author"

 creation-date="28/09/2009">

UI Description Element

If you want your template to appear in the ATG Merchandising user interface, you must include a ui-
description element as part of the template.

If the template has no ui-description section, it is not displayed in ATG Merchandising’s template list.
If the template does have a ui-description section then it will appear in the template list unless the
available-in-ui attribute is explicitly set to false.

Note: You may not want the template to appear in the UI if the template is intended for importing or
exporting promotions (see Importing and Exporting Promotions), or if you want to remove the template
from the list from which users can select.

The ui-description tag includes the following attributes, all of which are optional:

 display-name—String used to label the template in the template list and in the
template screen title bar.

 resource-bundle—Optional. The location of the resource bundle used to represent
this template in the UI.

 display-name-resource—Optional. If the resource-bundle attribute is present,
the display-name-resource is used as a key to retrieve the localized value from the
indicated resource bundle. If resource-bundle is not present or the specified
resource bundle cannot be found, the display-name-resource attribute value is
used for display. This attribute overrides the display-name attribute.

 available-in-ui—Optional. If this attribute is not included in the XML, it defaults to
true. If explicitly set to false, the template is not displayed on the template selection
screen, even if it has a ui-description section.

UI Description Child Elements

The ui-description can include a number of sub-elements.

The multi-element-translators element is used to combine, translate, or insert values into the item
properties. See Translating User Input Values in Templates.

Additional elements are structural, and provide layout information for the template page:

 The screen-segment element provides a means of grouping elements within the
template. A screen-segment has a name and however many line elements you want
to include.

 The line element contains user interface items you want to appear as one line to the
user, for example a label and its corresponding input area.

A line element is the smallest structural unit of a template.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 1 8

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
This example shows a screen segment with a single line of input:

<screen-segment display-name="Condition"

 <line>

 <label id="spendLabel"

 display-name="Spend:"

 <textInput id="spend_textInput"

 placeholder-name="spend_value"/>

 <label id="spend_example_label"

 display-name="ex. 100" styleName="infoText"/>

 </line>

</screen-segment>

The resulting user interface resembles the following:

Line Child Elements

The line element can include any of the following sub-elements

 textInput

 comboBox

 radioButtonGroup

 checkBox

 textArea

 date

 label

 spacer

 horizontalRule

Most of these elements represent standard user interface components. Each can include a number of
attributes such as height, label, and a resource bundle reference; see the PMDT.DTD for detailed
information.

The following elements are unique to promotions templates, and are described in the sections that
follow:

 expression—Used by the advanced screen to display a condition or offer sequence
See the Expression Elements section for more information.

 grid—Used for table layouts; see the Grid Elements section for details.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 1 9

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
 includesProductSetCriteria and excludesProductSetCriteria—Used to

construct rules that identify which products are eligible for the promotion. See the
Product Set Criteria Elements section for more information.

 switchableDiscount—This element allows a user to toggle between discount
amount and a discount structure grid view. See the SwitchableDiscount Element
section.

 assetCollector—When clicked, pops up an asset picker dialog from which assets
can be selected. (See the ATG Business Control Center Administration and
Development Guide)

Each element in the user interface has an id attribute, which can be used to identify the user input for
that element elsewhere in the template. Elements can also have a place-holder-name attribute. The
place-holder-name attribute is used to insert user input into the PMDL statement the template
constructs.

Expression Elements

The expression element allows you to support complex, freeform conditional statements such as those
used in the Advanced Condition & Offer template. It does this using an independent grammar file, and
appears in the user interface as an expression editor.

The expression element functionality is available through the Advanced Condition & Offer page, and
has the following attributes:

 id—Id to use when referencing the expression.

 model-path—Path to a Nucleus component that provides the information necessary
to configure the expression with the correct sequence information.

 enabled—True by default; if false, the expression section appears grayed out and
uneditable in the template.

 required—True by default; if false, the expression section is included but is not
required by the template.

SwitchableDiscount Element

If the offer type is not Gift with Purchase, the switchableDiscount element allows a user to toggle
between discount amount and a discount structure grid view. The examples shown are from the
Advanced Condition & Offer:

Discount Amount

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 2 0

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ

Discount Structure

The following code sample illustrates the use in the template:

<line>

 <switchableDiscount id="switchable_discount">

 <view>

 <label id="discount_structure_label" display-name-

resource="template.common.discountStructureLabel" container-width="100" container-

h-align="right"/>

 <grid id="discountStructureData"

validator="/atg/remote/promotion/template/validators/TieredItemDiscountValidator">

 <content-source

path="/atg/remote/promotion/template/contentSource/BandedDiscountStructureContents

">

 <attribute-value-reference name="calculatorType" element-

id="calculatorType"/>

 </content-source>

 </grid>

 </view>

 <view>

 <label id="discount_amount_label" display-name-

resource="template.common.discountAmountLabel" container-width="100" container-h-

align="right"/>

 <textInput id="discountAmount" required="true" restrict="0-9\."

validator="/atg/remote/promotion/template/validators/NumberValidator"/>

 <label id="discount_amount_example_label" display-name-

resource="template.common.discountInfoLabel" styleName="infoText"/>

 </view>

 </switchableDiscount>

</line>

Grid Elements

The grid element allows you to include a DataGrid component as part of your template’s user interface.
The main use for grids is to provide users with an easy means to enter data when creating banded
promotions. For example:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 2 1

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ

Users can add or subtract rows in the grid using the – and + buttons.

The grid element supports two approaches to defining the DataGrid component; these approaches are
described in the sections that follow.

When the template is validated on startup, if a grid element has both a content-source and one or
more grid columns, or if it has neither a content-source nor a grid-column, an error is logged, and
the template is not included in the template list in the user interface.

Dynamically Determining Grid Structure at Runtime

The first method for creating a grid in a template dynamically generates the grid contents at runtime. The
XML used for the user interface would resemble this example:

<line>

 <label display-name="Discount Structure:"/>

 <grid id="tieredPromo" placeholder-name="tiered_promo_value">

 <content-source path="/atg/xxx/yyy">

 <attribute name="calculator-type" value="bulk"/>

 </content-source>

 </grid>

</line>

If you use this approach, the grid element must include a content-source element. The content-
source points to a Nucleus that provides the grid with the necessary data structure. The provided
/atg/remote/promotion/template/contentSource/BandedDiscountStructureContents
component is specific to discount structures; if you want the grid for some other purpose, you can write
your own component.

The component should obtain a CalculatorInfo object for the appropriate calculator type (defined in
the child attribute element of the content-source) and the promotion type (Item, Order, Shipping or
Tax), both of which are passed to the component as the page is generated.

Explicitly Defining Table Structure

As an alternative to dynamic grid generation, you can also explicitly define the DataGrid. In this case, the
XML used would resemble the following example:

<line>

 <label display-name="Discount Structure:"/>

 <grid id="tieredPromo"

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 2 2

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
 placeholder-name="tiered_promo_value">

 <grid-column display-name="band">

 <textInput />

 </grid-column>

 <grid-column display-name="adjuster">

 <textInput />

 </grid-column>

 </grid>

</line>

The grid element in this case explicitly lists the components needed to let the user interface render and
build the grid. The child grid-column elements control the display and data-input characteristics of each
column in the table. The display-name attribute of the grid-column contains the column header (in
this example, it uses a resource bundle). The child elements of the grid-column specify the editor type to
be presented in the user interface, which can be either textInput or comboBox.

Product Set Criteria Elements

The includesProductSetCriteria and excludesProductSetCriteria elements can be used within
a line element. They allow users to construct statements for determining products to include in or
exclude from the promotion. Each element consists of multiple combo boxes that allow users to specify a
sequence of comparative values for properties. The output is a placeholder value that can be used in a
PMDL rule.

The includesProductSetCriteria and excludesProductSetCriteria elements have the following
attributes:

 id—Identifier for the PSC element

 required—Whether or not the PSC is required; the default is true

 model-path—The model for a PSC is a Nucleus component that controls how the
combination boxes are populated and displayed. For product set criteria elements, the
model-path should be:

model-path="/atg/remote/promotion/expreditor/psc/PSCExpressionModel

Four additional attributes control basic display options:

 container-width

 container-height

 container-h-align

 container-v-align

This example shows an includesProductSetCriteria element in a ui-description:

<includesProductSetCriteria id="PSC" required="true" model

-path="/atg/remote/promotion/expreditor/psc/PSCExpressionModel" />

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 2 3

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
The user interface representation of an expression element consists of three parts:

 A fully qualified property of an item such as a product or SKU

 A comparator such as equals or is one of

 The editor to use for the property

The resulting combination box looks like the following example:

The user can add can add criteria by clicking the Add Criteria button in the UI (button inclusion and
placement is automatic), and join these criteria as AND or OR combinations.

When the user makes selections and saves the template-based promotion, the information is translated
into a PMDL statement by the PSCExpressionModel.

Using Optional Fields

It may be necessary to mark fields as optional in your template. You can do this by including an
required="false" attribute in any user interface element tag. When this attribute is not present, the
element is marked with an asterisk as usual for template fields.

If you make a field optional and the user submits no content for that field, a blank area is substituted for
the placeholder associated with the field in the associated item property (as linked by the placeholder-
name), which could render the PMDL invalid. If you do make fields optional, make sure that your PMDL
blueprint permits an empty string.

For example, if the user interface element for a particular placeholder value is optional and might be left
empty, the placeholder should include both the start and end tags of the PMDL, or should be positioned
so that an empty string does not break the PMDL.

Translating User Input Values in Templates

As part of your template design, take into account whether you need to translate the values users enter
into values appropriate for the promotion repository item. For example, you may have a field that allows
the user to input a Cents value between 0 and 99. The PMDL expects a dollar amount; therefore, the 25
the user enters must be converted to 0.25. This task is handled by Nucleus components called translators.

Translator components are based on classes that implement the ElementTranslator interface (see the
ATG API Reference for details). Translators are called after any client-side validation takes place. They take
the following input:

 The element ID

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 2 4

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
 The element type

 The raw value to be translated, as entered by the user

 A list of ElementState objects, which can be used if the translation for the current
element is affected by input to another element

 A set of known repository property names and values for the item type

The output is a value that can be directly applied to the property based on the placeholder-name. If
further translation is required at this point, you should use a multi-element translator instead.

In addition to basic translation, you may need to combine user-entered values in order to provide a valid
PMDL input. For example, it is common to combine the output of an “excludes” product set criteria with
an “includes” product set criteria. Components that handle this advanced processing are called multi-
element translators; they can take multiple inputs and supply multiple output values.

For example, the provided item discount templates include the UnlimitedDiscountTranslator. These
templates have a discount section that contains a textInput element, in which the user can enter the
number of times a customer can use the discount, and a checkbox element to indicate unlimited use. The
checkbox element has the following attribute:

placeholder-value-checked="-1"

This attribute means that if the checkbox is selected, the output value is -1.

The UnlimitedDiscountTranslator takes the user-entered value or the unlimited option and provides
a single placeholder value as output, which either contains the number of items to discount or a -1 to
indicate unlimited. The placeholder value is then inserted in the location of its corresponding
placeholder-name.

For example, the following snippet shows PMDL before translation:

<iterator name="up-to-and-including"

number="${no_of_items_to_discount}" sort-by="priceInfo.listPrice"

sort-order="${sort_order}">

After translation, if the user enters a value, the PMDL looks like the following::

<iterator name="up-to-and-including" number="5" sort

-by="priceInfo.listPrice" sort-order="${sort_order}">

If the user checks unlimited, the PMDL looks like the following:

<iterator name="up-to-and-including" number="-1" sort-

by="priceInfo.listPrice" sort-order="${sort_order}">

Multi-element translators are defined in the ui-description section of the template within a multi-
element-translators element. For example, the following code shows how the
multiElementTranslator for the unlimited discount functionality is implemented:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 2 5

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
<multi-element-translators>

 <multi-element-translator id="unlimited_discount_translator"

translator-path="/atg/remote/promotion/template/translators

/UnlimitedDiscountTranslator">

 <placeholder-info placeholder-name="no_of_items_to_discount"

translator-output-name="itemNumber"/>

 <element-info element-id="numberOfItemsToDiscount_textInput"

translator-input-name="itemNumber"/>

 <element-info element-id="unlimited_checkbox"

 translator-input-name="unlimited"/>

 </multi-element-translator>

</multi-element-translators>

The UnlimitedDiscountTranslator accepts two inputs, which are mapped to the translator-
input-name element’s itemNumber and to unlimited in the element-info child element. The
placeholder-info element maps the placeholder-name to the translator’s output-name key.

Input and output names for each translator are defined in its properties file. The properties file for the
example UnlimitedDiscountTranslator above is:

$class=atg.remote.promotion.template.translators.UnlimitedDiscount

Translator

$scope=session

Translator inputs

itemNumberInputName=itemNumber

unlimitedInputName=unlimited

Translator outputs

itemNumberOutputName=itemNumber

By default, ATG Commerce includes the following translators:

 AssetCollectorTranslator - Translates selected asset IDs into PMDL

 RawPMDLTranslator – Retrieves the PMDL from the promotion item

ATG Commerce also includes the following multi-element translators:

 DiscountStructureTranslator – translates the discount structure PMDL

 QualifierTranslator – translates the qualifier PMDL

 TargetTranslator – translates the target PMDL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 2 6

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
 DiscountTranslator – Converts separate discount type and adjuster user

interface inputs into separate discount-type and adjuster output values, allowing
for a discount type of free.

 UnlimitedDiscountTranslator – Sets up the iterator number attribute for PMDL
iterators based on amount to discount or unlimited if a checkbox on the user interface
is checked.

You can create your own translators based on the provided framework; see the ATG API Reference.
Translators should implement either the ElementTranslator.java or the
MultiElementTranslator.java interface.

Working with Repository Item Properties in Templates

The sections that follow describe how to expose and use repository item properties as part of your
promotions template.

Note: If creating a template using a custom discount type, make sure the PMDL in that template sets the
discount-type attribute correctly.

The item-properties section of the PMDT file complements the ui-description and allows you to
set promotion properties using the place-holder-value attributes of the template elements. The
property statements are based around a separate grammar from that used in the UI portion of the
template.

The item-properties section of the template for a beginUsable and endUsable looks like the
following sample. Note the $ marking where place-holder-value information is inserted:

 <property name="beginUsable">

 ${beginUsableValue}

 </property>

 <property name="endUsable">

 ${endUsableValue}

 </property>

Displaying Static Values in Templates

The default behavior for generating a display name for a property is:

1. If the resource bundle includes an entry of "psc.property.<full property
name>" use that value.

psc.property.item.auxiliaryData.productRef.ancestorCategoryIds=Categories

2. If not, get the supported bean from which the property came and check the resource
bundle for an entry of psc.bean.<supported bean name>. This forms the first part
of the display name. If no entry is found, use the display name of the
DynamicBeanDescriptor for that bean.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 2 7

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
psc.bean.product=Product

3. For each sub-property part of the property name, check the resource bundle for an
entry of psc.property.<sub property part name> and append that value to the
display name. If no entry is found, use the display name of the
DynamicPropertyDescriptor instead.

psc.property.amount=Price

Displaying Dynamic Properties in Templates

The content-source element dynamically obtains information for display in the template. One common
use is populating combo boxes (see the Product Set Criteria Elements section), but you can use it to
populate any user interface element, provided that the content source’s Nucleus component provides the
correct output.

For example, consider this template XML:

<comboBox id="discountType">

 <content-source path="/atg/remote/promotion/template/contentSource/

CustomDiscountListContent">

 <attribute-value-reference name="calculatorType"

 element-id="calculatorType"/>

 </content-source>

</comboBox>

The path attribute is required, and identifies the location of the Nucleus component that returns the
dynamic information.

You can use the optional child attribute element to specify parameters to pass to the Nucleus
component. Parameter values are either set explicitly or obtained from the user input to another field in
the template user interface. The component returns a ContentState object that contains the
information used to populate the field.

For example, the attribute-value-reference element in the code shown above tells the content
source to watch a second user interface element, that has the element-id="calculatorType". The
user’s currently selected value for the calculatorType is assigned the name calculatorType and sent
to the CustomDiscountListContent component. The component obtains a valid discount list for that
calculatorType.

If the user changes the selected calculatorType, the new value is sent to the component to obtain an
updated discount list for display.

Content source Nucleus components should implement the
atg.remote.promotion.template.contentSource.java interface. See the ATG API Reference for
information on this interface.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 2 8

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
Using an Asset Picker in a Promotions Template

If you have included repository item properties in your template, you need to provide a map to the Asset
Picker editor needed to manipulate that property. The asset picker is a Flex RepositoryItemSetEditor
component used in many ATG applications (see the ATG Business Control Center Administration and
Development Guide for general information on asset pickers).

The asset picker requires three pieces of information:

 A Nucleus path to the repository in which the assets are found

 The assets’ repository item type

 Whether not multiple assets can be selected

To provide this information, configure the assetPickerPropertyMap and the
assetPickerRepositoryMap components in the PSCExpressionContext component.

The assetPickerRepositoryMap property provides a map of properties to their repositories. The
assetPickerPropertyMap property provides a map of properties to their repository item types. If a
property appears in this map, the promotions user interface uses the asset picker editor for that property;
otherwise, it defaults to a simple text editor.

Whether or not the asset picker allows multiple selections depends on the operator the user selects; for
example, “is” allows only single selection, but “is one of” permits multiple selections.

If a property is included in the assetPickerPropertyMap, the promotions expression editor displays an
asset picker for that property on the right hand side of the product set criteria expression, using the value
of the map as the asset type. If an entry for the property is also in the assetPickerRepositoryMap, the
value of this map is used as the repository path for the asset picker.

If a property is in the assetPickerPropertyMap but not in the assetPickerRepositoryMap, then the
asset picker defaults to using the RepositoryPropertyDescriptor for that property to determine the
repository to use.

This sample shows configuration for the two properties:

assetPickerPropertyMap+=\

 item.auxiliaryData.catalogRef.sites=siteConfiguration

assetPickerRepositoryMap+=\

 item.auxiliaryData.catalogRef.sites=/atg/multisite/SiteRepository

The resulting user interface would display the Sites property of the sku repository item in an asset
picker. The picker would use the siteConfiguration asset type and SiteRepository.

Automatic Property Filtering in Templates

ATG Commerce repository items used in promotions tend to have many properties that are not useful as
promotion criteria. Therefore, the list of properties is filtered by default.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 2 9

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
If you add custom properties to your ATG Commerce repository, note that category properties do not
appear in the PSC; only product and SKU properties are exposed.

The /atg/remote/promotion/expreditor/psc/PSCExpressionContext component includes the
excludedProperties property. The value for this property can end in * to exclude all sub-properties of a
property. Note that a * does not exclude the referenced property itself, but only its sub-properties. The
actual property must be excluded separately. For example:

excludedProperties+=\

 item.auxiliaryData.productRef.template.*

The example above excludes all sub-properties of the template property, but does not exclude the
template property itself. To exclude the template property, use the following configuration:

excludedProperties+=\

 item.auxiliaryData.productRef.template\

 item.auxiliaryData.productRef.template.*

The PSCPropertyChoiceExpression class on which the PSCExpressionContext component is based
extends the PricingPropertyChoiceExpression class; therefore, it inherits a standard filtering
mechanism which by default filters out properties marked as expert = true or queryable = false in
the repository definition. You can override this behavior using the mandatoryProperties property of
PSCExpressionContext.

Note that the mandatoryProperties property does not support wildcards; all mandatory properties
must be specified explicitly. This example shows mandatoryProperties in use:

mandatoryProperties+=\

 item.auxiliaryData.productRef.ancestorCategoryIds

This configuration results in the ancestorCategoryIds property being included, even though this
property is marked as expert in the repository.

Using Promotion Upsell in Templates

Along with other common promotion elements, you can include promotion upsell opportunities in your
promotion template. To do so, create a screen-segment within the ui-description to contain the
upsell information. The screen-segment should contain one or more line elements to provide the
closeness qualifier information.

The screen-segment should also include the display-once=true attribute. In ATG Merchandising,
users can create promotion upsells directly from a promotion only during the initial promotion creation
(additional options are available to users for creating promotion upsells; see the ATG Merchandising Guide
for Business Users).

For example, consider a promotion “Spend over $100, get free shipping”. The closeness qualifier in this
case is “spend over $X”. The user interface for this would be similar to the following:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 3 0

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
<screen-segment display-name-resource="closenessQualifierTitle" display

-once="true">

 <line>

 <label id="spend_label"

 display-name="Amount to spend:"/>

 <textInput id="spend_textInput" placeholder-name="spend_value"/>

 </line>

</screen-segment>

The matching item-properties section in template must contain a property named
closenessQualifiers, which contains the PMDL information required to build the closeness qualifier.
The property would be similar to the following:

<item-properties>

 <property name="closenessQualifiers">

 <item-properties>

 <property name="pmdlRule">

 <![CDATA[

 <pricing-model>

 <qualifier>

 <comparator name="greater-than-or-equals">

 <value>order.priceInfo.amount</value>

 <constant>

 <data-type>java.lang.Double</data-type>

 <string-value> ${spend_value} </string-value>

 </constant>

 </comparator>

 </qualifier>

 </pricing-model>

]]>

</property>

 </item-properties>

</property>

</item-properties>

You cannot nest multiple item-properties elements within a property element.

Validating Promotions

When a user views a promotion, the PromotionTemplateManager determines whether the template is
valid for that promotion.

If the template fails validation but can still be parsed, ATG Merchandising may provide an opportunity to
open the promotion using the Advanced Condition and Offer page (see the ATG Merchandising Guide for
Business Users). If the Advanced Condition and Offer is unable to display the template, ATG Merchandising
displays the raw PMDL.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 3 1

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
When a user creates a new promotion from a template, the promotion is validated through a combination
of client-side and server-side activities. Client-side validation is limited; for textInput and textArea
elements, you can use the following attributes for validation:

 maxChars – limits the number of characters that can be typed in the field

 restrict – indicates the set of characters that a user can enter. If the restrict attribute
is a string of characters, the user can only enter those characters into the field. You can
specify ranges using a hyphen. Use a double backslash to include characters such as ^,
- and \. For example, the following code allows the user to enter a dash (-) in the
textInput:

restrict="\\-"

The restrict attribute maps to the Flex restrict object, and supports standard
Flex functionality.

You can also associate a user interface element with a Nucleus validator component, using the
validator attribute in the ui-description element. The Nucleus component performs the validation
when the user clicks OK on the completed Condition and Offer popup.

Each user interface component type has its own validator, but you can use a single validator for multiple
UI element types. The validator is passed the type of element the information came from, the information
that was supplied by the user and the id of the field it came from. The field id uniquely identifies the user
interface element to be validated.

If validation and any subsequent translation are successful, a PropertyState object containing the
promotion properties is returned. If some validation failed, then an error string is passed back to the user
interface inside the PropertyState object, to be associated with the user interface element failing
validation. The promotion itself is not created or saved at this time.

By default, ATG Commerce includes the following validator components in the
atg.remote.promotion.template.validators package:

 BandedDiscountValidator

 Number Validator

 RegexValidator

The RegexValidator includes several preconfigured variations that can check for the following patterns:

 DecimalValidator—Match any positive floating point number, includes zero

regexPattern=(^[0-9]*(\.[0-9]+)?$)

 DollarValidator—Match any dollar amount to two decimal places, includes zero

regexPattern=(^[0-9]*(\.[0-9][0-9])?$)

 NonZeroDecimalValidator—Match any positive floating point number, excludes zero

regexPattern=(^([0-9]*[.][0-9]*[1-9]+[0-9]*)$)|(^([0-9]*[1-9]+

[0-9]*[.][0-9]+)$)|(^([0-9]*[1-9]+[0-9]*)$)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 3 2

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
You can extend the provided validation framework by adding your own validators. Custom validators
must implement the atg.remote.promotion.template.contentSource.java interface; see the ATG
API Reference for details.

Localizing Promotions Templates

You can use resource bundles to localize promotions templates. The resource bundles must be placed in
the following directory:

<ATG10dir>/ATG10/home/locallib

To specify a bundle for key/value retrieval, use the resource-bundle attribute of the ui-description
element:

<ui-description available-in-ui="false" resource-

bundle="atg.remote.promotion.template.Resources" display-name-

resource="template.item.advancedItemDiscount.title" >

If a user views a template that refers to a resource bundle that has not already been loaded, the client
attempts to locate the new bundle before displaying the template. If it cannot do so, the client displays an
error message, and the template includes the resource keys instead of the localized strings.

Editing Existing Promotion Templates

You can use XML-combine to override and extend an existing promotions template. If you do this, be
careful not to break any promotions that have already been created based on the original template (if the
promotion can no longer be displayed due to changes in the template, the user may be able to convert
the template to use an Advanced Condition and Offer. Bear in mind that promotion assets cannot be
deleted in ATG Merchandising.

Another option is to make changes in a copy of the original template, and then use the new version for
future promotions.

Similarly, do not delete any templates unless you are certain that no promotions based on that template
exist.

Importing and Exporting Promotions
If ATG Commerce is not your usual tool for creating and maintaining promotions, you will need to import
promotions you create in your external system into ATG Commerce for pricing purposes. ATG Commerce
includes an API that allows you to build custom code for this purpose.

If you are using promotions templates, importing promotions is as simple as specifying which template to
use and the placeholder values. If you are not using templates, you must first build the PMDL for your
promotions.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 3 3

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
You can import promotions on either a production instance or an asset management instance. If the
latter, the import automatically takes the form of a Content Administration project. This topic is addressed
in the Configuring the PublishingWorkflowAutomator Component section.

If you are using ATG Commerce to create and maintain promotions, but need to access them in a third-
party system, you can export your ATG promotions using a similar mechanism. In this case, you are
responsible for understanding the your third-party system’s requirements.

Architecture Overview

The promotions import/export API relies mainly on the following two components:

 /atg/commerce/promotion/PromotionImportExport—The main component
used for importing and exporting promotions

 /atg/epub/PublishingWorkflowAutomator—Used automatically when you
import promotions into a versioned repository; you should never need to call this
component yourself

Supporting functionality is provided by the following additional components:

 /atg/commerce/promotion/PromotionImportExportTools

 /atg/commerce/claimable/ClaimableTools

 /atg/commerce/promotion/PromotionTemplateManager

In addition to these components, there are a number of classes used for importing and exporting
promotions.

PromotionImportExportInfo is a data class used to transfer information between ATG Commerce and
your external promotion management system (see Mapping Promotion Properties). You can use either
PMDL version 1 (for promotions created before ATG 10, which do not use templates) or 2 (for template-
based promotions created with ATG 10 or later).

See the ATG API Reference for detailed information on the other classes used for promotion import/export.

Performing a Promotions Import or Export

The PromotionsImportExport component contains the main methods used for importing and
exporting promotions. Both processes start and end with startImportExportSession() and
endImportExportSession() methods.

Warning: The atg.commerce.promotion.PromotionImportExport class on which this component is
based allows you to run multiple concurrent import/export sessions. However, it provides no safeguards
against making multiple concurrent updates to a given repository item.

The sections that follow describe the methods in this component at a high level. See the ATG API Reference
for additional details.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 3 4

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
startImportExportSession()

To import promotions, first call startImportExportSession(). This method sets up the import session,
and must be called before doing the import itself.

The method performs the following tasks:

1. If the session ID is not specified, the method generates a session ID randomly and
creates a new PromotionImportExportSession object.

2. The method retrieves the promotions repository, using the PromotionTools
component.

3. If the promotions repository is versioned, the method calls the
PublishingWorkflowAutomator.startWorkflowSession() method to set up the
Content Administration project workflow. The PublishingWorkflowAutomator
performs the following tasks:

 Creates a new PublishingWorkflowSession object

 Creates a project name by appending the session ID to the
PublishingWorkflowAutomator component’s projectNameStub property,
separated by a dash. The workflow is configured in the
PublishingWorkflowAutomator component; see Configuring the
PublishingWorkflowAutomator Component.

 Performs the necessary interactions with Content Administration security

 Creates the process and workspace for the project

4. The method creates a new transaction in preparation for the import-export session.

5. The method checks the component’s integrators property to establish whether or
not any integrators have been configured. (See Using the
PromotionImportExportIntegrator Interface.) For each configured integrator, call its
preImportExportSession method, passing the session object as a parameter.

The method returns a PromotionImportExportSession object.

importPromotion()

This method enables you to create or update an individual promotion and its associated items (such as
closeness qualifiers, promotion folders, coupons, and coupon folders), depending on the action specified.

Always make sure that you have a PromotionImportExportSession object before using
importPromotion().

The method performs the following tasks:

1. Creates a new PromotionImportExportStatus object.

2. Checks the component’s integrators property to establish whether or not any
integrators have been configured. For each configured integrator, call its
preImportPromotion method, passing the session object and the promotion object,
as parameters.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 3 5

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
The action property on the PromotionImportExportInfo object determines whether the repository
item is created, updated, or deleted. Each item associated with the promotion also specifies its own
action, but the available actions depend on the parent promotion’s action, as shown by this table:

Promotion Action Supported Closeness
Qualifier Actions

Supported Coupon
Actions

ADD UPDATE
DELETE

DELETE

UPDATE (none) (none)

When adding promotions, property values from the template manager take precedence over the
equivalent values specified in the PromotionImportExportInfo object; for updates, the opposite holds.

The method returns a PromotionImportExportSessionStatus object.

exportPromotionsById()

This method enables you to export promotions by specifying a list of promotion item IDs (for an
alternative export method, see the exportPromotionsByRQLQuery section.

This method first calls the PromotionManager.getPromotionsById() method using the specified list
of promotion IDs (if the list is null, all promotions are returned). The getPromotionsById() method
returns a list of promotion repository items. The exportPromotionsById() method then processes each
of the returned promotion repository items as follows:

1. Create a PromotionImportExportInfo object.

2. Populate the object’s promotionPropertyValues, templateId and
templateValues properties from the promotion repository item.

3. Retrieve the promotion’s folder (if not null).

4. For each closeness qualifier in the closenessQualifiers property of the promotions
repository item, execute the following tasks:

 Call the PromotionImportExportTools.getClosenessQualifier()
method to get the closenessQualifier repository item.

 Create a new ClosenessQualifierImportExportInfo object.

 Populate its closenessQualifierPropertyValues map from the repository
item properties.

 Add the ClosenessQualifierImportExportInfo object to the
closenessQualifiers list property in the PromotionImportExportInfo
object.

5. Call the ClaimableManager.getCouponsForPromotion() method to retrieve the
coupon details associated with the promotion. That method returns a list of coupon
repository items. For each coupon item in the list, execute the following tasks:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 3 6

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
 Create a new CouponImportExportInfo object and populate its
couponPropertyValues map from the repository item properties.

 If the coupon repository item’s parentFolder property is not null, then call the
ClaimableManager.getCouponFolderPath() method. That method returns
the full path for the coupon folder, which is used to set the couponFolderPath
property in the CouponImportExportInfo object.

 Add the CouponImportExportInfo object to the coupons list property in the
PromotionImportExportInfo object.

6. Add the PromotionImportExportInfo object to the list to be returned to the caller.

7. Return the list of PromotionImportExportInfo objects.

exportPromotionsByRQLQuery

This method enables the user to export promotions by specifying a list of promotion via an RQL query.

This method calls the PromotionManager.getPromotionsByRQLQuery() method to query the
promotions item descriptor. The method returns a list of promotion repository items. Once the list of
repository items has been returned the remaining processing is identical to that of the
exportPromotionsById method.

endImportExportSession

The endImportExportSession() method ends your import session. The method performs the
following tasks:

1. If the session ID is not specified, throws an exception.

2. Checks the component’s integrators property to establish whether or not any
integrators have been configured. (See Using the PromotionImportExportIntegrator
Interface.) For each configured integrator, call its postImportExportSession
method, passing the session object as a parameter. In case of exceptions, the
PublishingWorlflowAutomator’s endWorkflowSession method must be called to
clean up the session.

3. Checks if the current transaction is marked for roll back; if it is, then the roll back is
executed, otherwise, the transaction is committed.

4. If running against a versioned repository and the sessionStatus is set to
SESSION_ERROR, the workflow session is rolled back by calling the
abandonWorkflowSession method on the PublishingWorkflowAutomator
component.

If running against a versioned repository and the sessionStatus is set to
SESSION_OK, then the workflow session is committed by calling the
stopWorkflowSession method on the PublishingWorkflowAutomator
component.

After finishing the import, the workflow advances to the next stage.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 3 7

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
Mapping Promotion Properties

The atg.commerce.promotion.PromotionImportExportInfo data class provides a means by which
you can map properties between ATG Commerce promotions and your external system.

Property Required Type Description

action Yes int The action is required for
imports but is null when
returning export information.
The valid values are:

ACTION_ADD

ACTION_UPDATE

Note that there is no DELETE
action available for promotions.
This means that you cannot
accidentally delete promotions
that are being used by
merchandisers.

promotionProper

tyValues

No Map<String,String> A map of promotion repository
item property names and their
corresponding values.

If you are not using templates,
specify the PMDL rule for the
promotion in this map. If you
are using templates, you can
use the templateValues map
(see below in this table) to build
the PMDL instead.

Note: The templateId and
templateValues properties
are separated from other
promotion properties, and do
not need to be included in the
map (see below in this table).

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 3 8

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
promotionFolder

Path

No String Promotions can be organized
using a logical folder structure.
This property specifies the full
folder path. For example:

“/Summer/Shoes”

The Promotions Import Export
API converts this path into
individual promotion folders,
creates those which do not
already exist, and links them
together into a tree structure.

Note that no two children of the
same parent folder can have the
same name, but folders can
have the same name if they are
child folders of different parent
folders.

templateId No String If the promotion is based on a
template, the path and filename
of the template to use.

templateValues No Map<String,String> A map of template placeholders
and their corresponding values.

See any of the existing
promotions templates for an
understanding of this mapping.

closenessQualif

iers

No List<ClosenessQualif
ierImportExportInfo
>

A list of
ClosenessQualifierImportE

xportInfo objects.

coupons No List<CouponImportE
xportInfo>

A list of
CouponImportExportInfo
objects.

A similar class (atg.commerce.promotion.ClosenessQualifierImportExportInfo) exists for
closeness qualifier information.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 3 9

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
Property Required Type Description

action Yes int The action is required for
imports but is null when
returning export
information. The valid values
are:

ACTION_ADD

ACTION_UPDATE

ACTION_DELETE

closenessQualifierPr
opertyValues

No Map<String,String> A map of closeness qualifier
repository item property
names and their
corresponding values.

closenessQualifierTe
mplateValues

No Map<String,String> A map of template
placeholders and their
corresponding values,
specifically for the closeness
qualifier section of the
template.

A similar class (atg.commerce.promotion.CouponImportExportInfo) exists for coupon information.

Property Required Type Description

action Yes int The action is required for
imports but is null when
returning export
information. The valid values
are:

ACTION_ADD

ACTION_UPDATE

ACTION_DELETE

couponPropertyValues Yes Map<String,String> A map of coupon repository
item property names and
their corresponding values.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 4 0

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
couponFolderPath No String Coupons can be organized

using a logical folder
structure. This property
specifies the full folder path.
For example:

“/Summer/Shoes”

The Promotions Import
Export API converts this path
into individual coupon
folders, creates those which
don’t already exist, and links
them together into a tree
structure.

Note no two children of the
same parent folder can have
the same name, but folders
can have the same name if
they are child folders of
different parent folders.

Using the PromotionImportExportIntegrator Interface

You can customize the import/export process by adding your own components and registering them
with the PromotionImportExport component. In order to be used automatically by the existing
import/export classes, your components must implement the
atg.commerce.promotion.PromotionImportExportIntegrator interface.

The interface includes four methods:

 preImportExportSession()

 postImportExportSession()

 preImportPromotion()

 postImportPromotion()

Extending these methods allows you to insert your custom code at different points in the import process
performed by the PromotionImportExport component.

After creating the component, configure the integrators property of the PromotionImportExport
component to add your new component:

integrators=/Nucleus_path/to/custom/component

Your components are inserted into the import process.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 4 1

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
Configuring Import/Export Batching

The import/export API supports transactional batching. The import API logically groups all items
associated with an individual promotion, such as upsell qualifiers, folders, and coupons. This means that if
an error occurs, you can roll back all items associated with that promotion.

To change the batch size, in the /atg/commerce/promotion/PromotionImportExport component,
change the following property:

batchSize=1

The default is 1, so that each promotion (and its associated items, if any) is created in a separate
transaction. This simplifies error recovery, but may impact performance. ATG recommends using the
default setting unless performance is unacceptable, in which case you may want to increase the batch
size.

Configuring the PublishingWorkflowAutomator Component

If you plan to use promotions import/export against a versioned repository, configure the
/atg/epub/PublishingWorkflowAutomator component to provide the desired information when it
creates the ATG Content Administration project for your import or export.

The PublishingWorkflowAutomator is a generic component that provides a high level API for working
with ATG Content Administration. The import/export API calls this component automatically when it
detects that it is running against versioned repositories. Any repository actions carried out within the
context of the import threads is associated with the ATG Content Administration project (after a call is
made to startWorkflowSession).

You are likely to want to change the following properties:

 username—Appended to the personaPrefix to give the persona object ID

 workflowName—Workflow name used when creating the process for the import

 taskOutcomeId—Determines the task in the workflow to be advanced to after the
import

 projectNameStub—Stub name for the project; the full ATG Content Administration
project name for the import is created by appending the sessionId to this value

For example:

userName=publishing

workflowName=/Content Administration/import-review.wdl

taskOutcomeId=4.1.1

projectNameStub=Promotion Import

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 4 2

1 3 - U n d e r s t a n d i n g P r o m o t i o n s

μ
Performance Issues Related to Promotion Delivery

In general, the more promotions a customer has in their profile, the longer it takes to generate a price for
that customer. A customer can have hundreds of promotions without it significantly affecting the time it
takes to price an item. However, performance is noticeably affected when a customer profile contains
thousands of promotions. As a general rule, assign customers as few promotions as possible to
accomplish the business goals for the site.

Do not rely on promotions to do the bulk of price generation for a site. Use properties of the SKU (for
example, the salePrice property) to provide varied pricing. In general, if a promotion does not refer to
information that might change from one request to another, there may be a more efficient way of
implementing that promotion.

For example, referring to a customer’s profile is an efficient way to structure a promotion. The profile will
probably be different for every price being generated throughout the site, since many different customers
will be using the site.

It is not always efficient to refer to the date, or to other conditions that do not change on a request basis,
as part of the promotion evaluation process. For example, consider a situation in which you put all black
shoes on sale one week. Rather than creating a promotion that puts black shoes on sale and giving it to
every customer, you could set the sale price of the black shoes in either the SKU repository or the
underlying database. This way, the promotion is still applied, but no undue load is placed on the
promotion evaluation engine.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 4 3

1 4 - U s i n g P r i c e L i s t s

μ
14 Using Price Lists

Price Lists allow you to target a specific set of prices to a specific group of customers. For example, price
lists can be used to implement business to business pricing where each customer can have its own
unique pricing for products based on contracts, RFQ and pre-negotiated prices. Price lists are managed
through a single interface in the ACC, which includes a list of product IDs, SKU IDs, and configurable SKU
IDs. Pricing can be inherited based on products and/or SKUs. For example, if a price is defined as $9.99 for
product X, all SKUs that are in product X will be given a price of $9.99 unless the price is explicitly
overwritten.

This chapter contains information on the following price list topics:

Overview of Setting Up Price Lists

Description of Volume Pricing

Setting Up Price List Functionality in ATG Consumer Commerce

PriceListManager

Price List Calculators

Implementing Sale Prices using Price Lists

Calculating Prices with a Specific Price List

Using the CurrencyConversionFormatter to Convert Currency

Price List Security Policy

Converting a Product Catalog to Use Price Lists

Overview of Setting Up Price Lists
You can create multiple lists. Each list has the following properties:

 Name

 Base price list

 Creation date

 Last modified date

 Start date

 End date

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 4 4

1 4 - U s i n g P r i c e L i s t s

μ
 Locale

The list will display the following information about a product and a SKU:

 Product ID

 SKU ID

 Description

 Pricing scheme

 List price

 Complex price

Note: Either the List Price or the Complex Price is required, not both.

The following steps describe how to price items using price lists.

1. Assign a price list to a user.

The price list that is used to price an order is stored in the priceList property (of type
priceList) in the user’s profile.

ATG Business Commerce users can also store this price list in the contract used by the
customer’s organization.

2. Price an item with a price list.

There are price list-specific versions of each of the precalculators used by the
ItemPricingEngine. ItemPriceListCalculator is the precalculator for list
pricing. ConfigurableItemPriceListCalculator is the precalculator for
configurable item pricing.

3. View a price through JSP code.

The PriceDroplet servlet bean is used for looking up the price of an item. For more
information on the PriceDroplet servlet bean, see the PriceDroplet section in this
chapter in the ATG Commerce Guide to Setting Up a Store.

For information on setting up price lists using the ACC, see the Managing Price Lists chapter of the ATG
Commerce Guide to Setting Up a Store.

Caching Price Lists

PriceCache allows you to cache the prices in price lists. Price lists can contain a large number of prices. If
you do not want the PriceCache to hold all the prices in the prices list, adjust the PriceCache settings
in your liveconfig directory. The PriceCache settings are located in
liveconfig/atg/commerce/pricing/priceLists/PriceCache.properties.

Using Price Lists in Combination with SKU-Based Pricing

ATG Commerce supports three pricing model options: SKU-based pricing alone, price lists alone, and a
combination of both. In the combination case, your pricing system is configured to use price lists, but if
no price is found in the lists you have specified, it falls back to the catalog price. Consider using combined

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 4 5

1 4 - U s i n g P r i c e L i s t s

μ
price lists and SKU-based pricing if most of your customers pay the same prices for most of your products,
with only a few variations.

To use this pricing method, create the price lists as normal; however, your lists need only include the
specific products for which you want to offer multiple prices. Then configure the following two properties
of the atg.commerce.pricing.priceLists.ItemPriceCalculator component:

noPriceIsError=false

noPriceCalculator=path_to_an_ItemPricingCalculator

Which ItemPriceCalculator component to configure depends on the desired behavior. For example, if
you want to allow missing non-sale prices to use SKU pricing, configure the ItemPriceListCalculator
as shown:

noPriceIsError=false

noPriceCalculator=/atg/commerce/pricing/calculators/ItemListPriceCalculator

Note that the component being configured is the PriceListCalculator, and the path points to the
ListPriceCalculator. See the Price List Calculators section of this chapter for further information on these
components.

Description of Volume Pricing
Price lists can be used to implement many pricing models. Two popular models are bulk pricing and
tiered pricing.

Bulk pricing calculates the price of a product based on the minimum quantity that is ordered. For
example, you could:

 purchase up to 10 steel beams for $50 each

 purchase 11 to 20 steel beams for $45 each

 purchase 21 or more steel beams for $40 each

In this bulk pricing example, if you bought 23 steel beams, the total cost of the order would be $920. Each
of the 23 beams would cost $40.

Tiered pricing calculates the price of a product using fixed quantity or weight at different pricing levels.
For example, you could:

 purchase up to 10 steel beams for $50 each

 after purchasing 10 beams for $50 each, purchase beams 11 through 20 for $45 each.

 after purchasing 10 beams for $50 each and purchasing beams 11 through 20 for $45
each, purchase any more than 20 beams for $40 each

In this tiered pricing example, 23 steal beams would cost $1070:

 10 beams (beams 1-10) for $50= $500

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 4 6

1 4 - U s i n g P r i c e L i s t s

μ
 10 beams (beams 11-20) for $45= $450

 3 beams (beams 21-23) for $40= $120

Setting up Price List Functionality in ATG Consumer
Commerce

ATG Consumer Commerce users do not have a price list functionality available by default. To add price list
functionality, you should configure the ItemPricingEngine to use the appropriate precalculator.

There are price list-specific versions of each of the precalculators used by the ItemPricingEngine.
ItemPriceListCalculator is the precalculator for list pricing.
ConfigurableItemPriceListCalculator is the precalculator for configurable item pricing.

The following code example shows how the
/atg/commerce/pricing/ItemPricingEngine.properties file should change to use the
priceList calculators

preCalculators=\

 calculators/ItemPriceListCalculator,\

 calculators/ConfigurableItemPriceListCalculator

Note: The configurable item calculator is optional. It only needs to be used if your sites support
configurable commerce items.

When an item is priced, the pricing calculators will use the price lists defined here to determine what price
to use.

PriceListManager
The PriceListManager class maintains the price lists. A price may be retrieved from the
PriceListManager from a given price list by product, by SKU, or by a product/SKU pair.

The most important method in PriceListManager is getPrice. This is used during pricing of an order
to get the correct price for a given product/SKU pair.

PriceListManager can be used to assign a default price list (DefaultPriceListId) and a default sale
price list(DefaultSalePriceListId) in the event that one cannot be found for a customer, using the
defaultPriceListId. Using DefaultSalePriceListID, the property name of a default price list can
be added as an input parameter, determining which default list should be displayed. For example:

public RepositoryItem getDefaultPriceList(String pPriceListName)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 4 7

1 4 - U s i n g P r i c e L i s t s

μ
Assigning a Price List to a User

ATG Commerce uses similar mechanisms for assigning catalogs and price lists to customer profiles. It adds
CatalogProfilePropertySetter and PriceListProfilePropertySetter components to the
profilePropertySetters property of the
/atg/dynamo/servlet/dafpipeline/ProfilePropertyServlet component in the DAF servlet
pipeline:

profilePropertySetters+=/atg/userprofiling/CatalogProfilePropertySetter,\

 /atg/userprofiling/PriceListProfilePropertySetter

To set the profile’s priceList and salePriceList properties, the
PriceListProfilePropertySetter component calls the
/atg/commerce/pricing/priceLists/PriceListManager component’s determinePriceList
method, which calls the /atg/commerce/util/ContextValueRetriever component. If this
component’s useProfile property is false (the default), the following logic is applied:

 If there is a current site (the application is running in a multisite environment), use the
value of the defaultListPriceList and defaultSalePriceList properties of the
siteConfiguration item for the current site. For more information, refer to
Assigning Price Lists and Catalogs in a Multisite Configuration.

 Otherwise, use the DefaultPriceListId and DefaultSalePriceListId values set
in the PriceListManager component.

For details on the ContextValueRetriever, including information on when you should override the
useProfile property for price lists, see ContextValueRetriever Class.

Price List Calculators
An ItemPriceCalculator class maintains all the functionality common to all the pricing schemes. The
ItemPriceCalculator has the following important properties:

 PriceListManager: holds the reference to PriceListManager

 PricingSchemeNames: holds the key/Value pair for each allowed pricing scheme and
its corresponding Calculator.

For example:

listPrice corresponds to the PriceListsListCalculator
bulkPrice corresponds to the PriceListsBulkCalculator
tieredPrice corresponds to the PriceListsTieredCalculator

Also, see the Using Price Lists in Combination with SKU-Based Pricing section for properties related to that
capability.

The public API exposed by this class includes:

 getPricingScheme: returns the pricing scheme for the CommerceItem

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 4 8

1 4 - U s i n g P r i c e L i s t s

μ
 priceItem: examines the allowed PricingSchemeNames HashMap. When a match is

found, it will call the corresponding Calculator’s priceItem method. Otherwise, an
exception is thrown to indicate that the pricing scheme is not found.

Three sub-calculators correspond to the three different pricing schemes. The three different schemes are
calculating the list price of an item, calculating the price of an item using bulk pricing, and calculating the
price of an item using tiered pricing. For more information on bulk and tiered pricing, see the Using Price
Lists section.

All of these calculators implement the ItemSchemePriceCalculator, which only has a priceItem
method.

 ItemListPriceCalculator: Calls the getPrice method from the
PriceListManager to retrieve the list price of the CommerceItem. It then multiplies
the price by the quantity returned by the getQuantity method of CommerceItem to
get the total price. The ItemPriceInfo will contain one DetailedItemPriceInfo
for each ShippingGroupCommerceItemRelationship in the CommerceItem. This is
because of the Range property in both ShipItemRels and
DetailedItemPriceInfos.

 ItemBulkPriceCalculator: Calls the getPrice method from the
PriceListManager to retrieve the complex price for the CommerceItem. It will check
each price level of that complex price based on the quantity of the CommerceItem to
decide the correct unit price for the item. The ItemPriceInfo will contain one
DetailedItemPriceInfo for each ShippingGroupCommerceItemRelationship.

 ItemTierPriceCalculator: Calls the getPrice method from the
PriceListManager to retrieve the complex price for the CommerceItem. It will check
each price level of that complex price to decide which unit price is used for each tier.
The ItemPriceInfo will might several DetailedItemPriceInfos to reflect different
unit prices for each tier.

Using ItemPriceInfo with Price Lists

One ItemPriceInfo class fits three different pricing schemes. Each calculator uses a different description
for the PricingAdjustment added to the ItemPriceInfo.

The priceList property of ItemPriceInfo is set to the priceList that was actually used to calculate
it. This is nullable since other calculators other than those mentioned here will not set this. The
ItemPriceCalculator is responsible for setting this value.

Implementing Sale Prices using Price Lists
By default, there is no sale pricing configured when using price lists. In the standard pricing model (where
the price is stored directly in the SKU in the product catalog) there is a listPrice property and a
salePrice property. The SKU also has a boolean onSale property that indicates that the given SKU
should be priced using the sale price.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 4 9

1 4 - U s i n g P r i c e L i s t s

μ
In the price list model, a price repository item has a listPrice (or a complexPrice) but no salePrice.
This section describes how to implement sale pricing with price lists.

The quickest way to implement sale pricing using price lists is to create a sale price list.

In this situation, you could store all the list prices for a specific user in one price list and all the sale prices
for a specific user in another price list. This set up provides flexibility. For example, you could have
different sale prices for two different users, even if they have the same price list normally. It also allows us
to inherit sale prices while overriding the list prices (or vice versa).

Follow these steps to implement sale pricing using price lists.

1. Creating the sale price list

Create a sale price list the same way you create other price lists. Structurally there is no
difference between a sale price list and any other price list.

2. Assign the sale price list to a user.

Since we want the flexibility of keeping sale prices completely separate from list prices,
user’s will need to have two price lists assigned to them. There will need to be an
additional property in the user’s profile to store the salePriceList.

Note: ATG Business Commerce users can create an additional property for the user
and the contract. Create this new property by copying the priceList property and
changing the name.

3. Pricing an item with a price list

If you want to price an item without price lists, the following steps occur: There are
two precalculators in the ItemPricingEngine. The item is first priced with the list
price. The item is then priced with the sale price. The ItemPriceInfo stores both
pieces of information, allowing users to calculate the discount that the user received.
Price lists use a similar approach:

The first calculator in the list by default is:
/atg/commerce/pricing/calculators/ItemPriceListCalculator

This is an instance of
atg.commerce.pricing.priceLists.ItemPriceCalculator. It configures the
name of the profile property that stores the price list as well as the map that
configures which calculator to use for each pricingScheme. For sale pricing, create a
new instance of this calculator called ItemSalePriceCalculator.

The ItemSalePriceCalculator which prices an item on sale

$class=atg.commerce.pricing.priceLists.ItemPriceCalculator

loggingIdentifier=ItemSalePriceCalculator

profilePriceListPropertyName=salePriceList

useDefaultPriceList=false

noPriceIsError=false

pricingSchemePropertyName=pricingScheme

priceListManager=/atg/commerce/pricing/priceLists/PriceListManager

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 5 0

1 4 - U s i n g P r i c e L i s t s

μ
 pricingSchemeNames=\

listPrice=/atg/commerce/pricing/calculators/SalePriceListsListCalculator,\

bulkPrice=/atg/commerce/pricing/calculators/SalePriceListsBulkCalculator,\

tieredPrice=/atg/commerce/pricing/calculators/

 SalePriceListsTieredCalculator

The following list describes the important properties of ItemSalePriceCalculator:

 profilePriceListPropertyName=salePriceList

This property forces the calculator to use the sale price list for pricing.

 useDefaultPriceList=false

When using list pricing, you can assign a default price list. This is usually not
needed when using sale pricing so this is set to false.

 noPriceIsError=false

When calculating a list price, it is an error if there is no price defined (since we
wouldn’t know how much to charge). It is most probably not an error if there is
no sale price, this would only mean the item is not on sale. If this is false, then
no error is thrown, and no change is made to the price.

 pricingSchemeNames=\
listPrice=/atg/commerce/pricing/calculators/SalePriceListsLis

tCalculator,\

bulkPrice=/atg/commerce/pricing/calculators/SalePriceListsBul

kCalculator,\

tieredPrice=/atg/commerce/pricing/calculators/SalePriceListsT

ieredCalculator

These calculators are provided by default with ATG Commerce because sale
price calculators manipulate the ItemPriceInfo in a different way than list
price calculators. Sale price calculators add different PricingAdjustments and
update salePrice instead of listPrice.

You also need to price the configurable items. A
ConfigurableItemPriceListSaleCalculator provided out of the box. The
ItemPricingEngine defines the following precalculators:

preCalculators=\

 calculators/ItemPriceListCalculator,\

 calculators/ItemPriceListSaleCalculator,\

 calculators/ConfigurableItemPriceListCalculator,\

 calculators/ConfigurableItemPriceListSaleCalculator

4. View a price through a JSP using JSP code.

Using the PriceDroplet servlet bean retrieves the list price. Another instance of this
servlet bean retrieves the sale price. For example:

$class=atg.commerce.pricing.priceLists.PriceDroplet

 $scope=global

 priceListManager=/atg/commerce/pricing/priceLists/PriceListManager

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 5 1

1 4 - U s i n g P r i c e L i s t s

μ
 profilePriceListPropertyName=salePriceList

 useDefaultPriceList=false

This servlet bean is used in the same way as the PriceDroplet servlet bean.

Calculating Prices with a Specific Price List
You can specify a price list that will be used to price items regardless of what price list is specified in a
user’s profile.

ItemPriceCalculator, ConfigurableItemPriceListCalculator, and
ConfigurableItemPriceListSaleCalculator all look in pExtraParameters for the price list before
looking in the profile. You can set a specific price list by adding an entry to pExtraParameters with a key
of profilePriceListPropertyName and a value of the priceList that you with to use (or the ID of the
priceList). For example, if extraParameters maps the string priceList to a price list (or a price list
ID) and profilePriceListPropertyName is set to priceList (default), then the price list in the map is
used instead of the profile’s price list.

One way to implement this is to use the generic pipeline processor AddExtraParamsEntry. It adds
pipeline support for specifying price lists. AddExtraParamsEntry adds a string key and string value to
the extra parameters map.

To use this with pricing, create a properties file in
/atg/commerce/pricing/processor/UseDifferentPriceList.properties with the following
code:

$class=atg.service.pipeline.processor.AddExtraParamsEntry

 value=200005

 key=priceList

Then modify the repriceOrderChain in the commercepipeline.xml as follows:

<pipelinechain name="repriceOrder" transaction="TX_REQUIRED"

 headlink="useDifferentPriceList">

 <pipelinelink name="useDifferentPriceList" transaction="TX_MANDATORY">

 <processor jndi="/atg/commerce/pricing/processor/UseDifferentPriceList"/>

 <transition returnvalue="1" link="priceOrderTotal"/>

 <transition returnvalue="2" link="priceOrderTotal"/>

 </pipelinelink>

 <pipelinelink name="priceOrderTotal" transaction="TX_MANDATORY">

 <processor jndi="/atg/commerce/pricing/processor/PriceOrderTotal"/>

 </pipelinelink>

</pipelinechain>

This causes all orders (regardless of what is in the profile) to be priced with priceList 100012.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 5 2

1 4 - U s i n g P r i c e L i s t s

μ
Using the CurrencyConversionFormatter to Convert
Currency

The CurrencyConversionFormatter servlet bean can be used to convert and format a numeric
amount. The amount can be converted from one currency to another. For more information on this
servlet bean, see Appendix B: ATG Servlet Beans in the ATG Page Developer’s Guide.

Price List Security Policy
The ATG Control Center allows users to create, edit, and delete price lists. When a user attempts to view or
edit a price list, the security system checks the security information associated with the object and grants
or denies access based on the information. For example, if a user does not have write access to a
particular item, then the ACC will display the item in gray characters. Additionally, certain objects might
not be visible to certain users. The ACC is capable of checking this security information for all items
contained in the price list repository:

 Price List

 Prices

 Complex Prices

 Folders

While having the ability to specify security information for each item is a very powerful concept, it can
place a burden on both the system as well as the administrator entering security information. To alleviate
this burden, policies can be created that group logical items together. By having a logical policy, users
would only need to enter data for some of the items and then other items could derive their security
information from these few items. This prevents an administrator from having to enter security
information for every object in the repository.

Note: You can also plug in a different security policy if your business needs are not met by the policy
described in this section.

For more information, see the discussion on security measures for deployment in the ATG Installation and
Configuration Guide.

The default security policy returns the ACL information stored on each repository item. The price list
security policy “walks” up the tree until an item finds the priceList to which it belongs and then
retrieves the security information from the price list item.

In the price list security policy, all security information flows from a priceList down. This means that if
there is a group of price and complexPrice that live in a priceList, these objects will have the same
security information as the priceList. Therefore, if only users in the admin group can edit a particular
price list, then those same users would be the only ones that could edit the price entries in the price list.

In the following example, all objects under Price List A would share the same security information.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 5 3

1 4 - U s i n g P r i c e L i s t s

μ
Price List A
Price Entry for SKU A
Price Entry for SKU B
Complex Price

The PriceListSecurityPolicy Class

The PriceListSecurityPolicy class is located in the atg.commerce.security package. The class
needs to has the following signatures:

public class PriceListSecurityPolicy

 extends SecuredRepositorySecurityPolicy

{

 // overridden method from the super class. This is method

 // that will perform special logic to get ACLs for a repository

 // item that lives in the PriceList repository. It should

 // figure out if the repository item type is "interesting"

 // and then dispatch to an appropriate method. The methods

 // it could dispatch to are below.

 public AccessControlList getEffectiveAccessControlList(Object pObject);

 // get the ACL for a Price repository item

 protected AccessControlList getACLForPrice(SecuredRepositoryItem pItem;)

 // get ACL for complexPrice repository item

 protected AccessControlList getACLForComplexPrice(SecuredRepositoryItem pItem);

}

Configuring the Price List Security Policy

Follow these steps to implement the security policy used by the SecuredPriceList repository:

Note: These configuration steps should be performed at the Commerce configuration layer.

1. Create a new PriceListSecurityPolicy component located in
/atg/dynamo/security/. This component should have
PriceListSecurityPolicy as its class.

2. Create a new PriceListSecurityConfiguration component located in
/atg/dynamo/security/. This component should reference the
PriceListSecurityPolicy component created in the previous step.

3. Edit the configuration of the SecurePriceLists component located in
/atg/commerce/pricing/priceLists/. Point the securityConfiguration
property to the PriceListSecurityConfiguration component defined in the
previous step.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 5 4

1 4 - U s i n g P r i c e L i s t s

μ
Converting a Product Catalog to Use Price Lists

ATG Commerce includes a tool that can be used to convert your existing product catalog without price
lists so that it can use price lists.

The PriceListMigration component first creates two price lists: one for the list price, and the other for
the sales price. For each SKU in the product catalog, the PriceListMigration component creates a
price that points to the list price list and sets its list price as the SKU’s list price. If the onSale property for
the SKU is true, it creates another price that points to the sales price list and set its list price as the SKU’s
salePrice.

To use the PriceListMigration component:

1. Run the price list SQL script against your catalog database. This script can be found at:

<ATG10dir>/DCS/sql/db_components/dbvendor/priceLists_ddl.sql

2. Start the /atg/commerce/pricing/priceLists/PriceListMigration
component.

3. Open the component editor for the PriceListMigration component. Invoke the
runMigration method from the methods tab in the component editor.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 5 5

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
15 Working With Purchase Process

Objects

This chapter includes basic information on the various commerce objects used in the purchase process
and how they interrelate. It includes the following sections:

The Purchase Process Subsystems

Creating Commerce Objects

Using Relationship Objects

Assigning Items to Shipping Groups

Assigning Costs to Payment Groups

Setting Handling Instructions

ATG Commerce States

The Purchase Process Subsystems
The purchase process can be broken down into the following subsystems:

 Base Commerce Classes and Interfaces
The base commerce interface implementations hold and manage other commerce
interface implementations. For example, an Order interface implementation contains
implementations of the CommerceItem, ShippingGroup, PaymentGroup, and
Relationship interfaces. These interfaces define a mechanism for accessing the data
stored in an object in a manner that frees it from the underlying implementation.

 Address Classes
While not commerce-specific objects, the Address and ContactInfo classes play
important roles in the purchase process.

 Business Layer Classes
The business layer classes hold business logic for tasks like adding an item to an order,
retrieving an order, adding shipping methods, and adding payment methods. These
classes use the base commerce classes and the base commerce interfaces.

 Pipelines
The purchase process pipelines execute a series of operations when called by the
business layer classes.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 5 6

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
 Order Repository

The Order repository is the layer between ATG Commerce and the database server.

Base Commerce Classes and Interfaces

The base commerce classes and interfaces are core objects that are used throughout ATG Commerce.
These objects store the data that represent shopping carts, items to be purchased, shipping information,
pricing information, and payment information. All the individual parts of ATG Commerce use these
classes.

The ATG Commerce interfaces are described in this section. For information on how the classes and
interfaces are related, refer to Appendix E: Purchase Process Class Diagrams.

Interface Description

Order The Order interface represents the delivery and payment information
for a collection of items. An Order contains CommerceItems,
ShippingGroups, PaymentGroups, and Relationships.

CommerceItem The CommerceItem interface represents information about a product
to be purchased. A CommerceItem contains the SKU (also called the
catalogRefId) and the quantity of the item purchased.

ShippingGroup The ShippingGroup interface contains information about the delivery
of a collection of CommerceItem objects. A ShippingGroup could
contain a physical delivery address.

PaymentGroup The PaymentGroup interface contains payment information, shipping
costs, and tax information for each item or the entire Order. This
includes information such as a credit card number, an expiration date,
and the amount to be charged.

Relationship The Relationship interface represents an association between two or
more of the commerce objects listed above, such as the relationship
between a CommerceItem and a ShippingGroup.

It is important to understand the concept of relationships, although
they are usually hidden from the ATG Commerce user. The commerce-
specific interfaces that extend Relationship are
CommerceItemRelationship, ShippingGroupRelationship,
PaymentGroupRelationship, and OrderRelationship. For more
information, see the Using Relationship Objects section.

HandlingInstruction The HandlingInstruction interface describes special handling for a
CommerceItem within a given ShippingGroup. Gift wrapping is an
example of HandlingInstruction.

The following types of classes implement the interfaces described above:

Order Classes

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 5 7

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
Item Classes

Shipping Classes

Payment Classes

Relationship Classes

Handling Classes

In some cases, there may be only one implementation. Other interfaces are implemented by more than
one class. For example, PaymentGroupImpl, CreditCard, and GiftCertificate all implement the
PaymentGroup interface.

Order Classes

Class Description

OrderImpl This class implements Order. It contains data structures for managing collections of
other commerce objects. It manages collections of CommerceItem, ShippingGroup,
PaymentGroup, and Relationship objects.

Order equality is determined by comparing the orderId, the lastModified information, and transient
properties.

If you write any new code that modifies the Order object, make sure the code synchronizes on the Order
object before it is modified.

Item Classes

Class Description

CommerceItemImpl This class implements CommerceItem. It stores the data about a specific
item in an Order.

Shipping Classes

Classes Description

ShippingGroupImpl This class implements ShippingGroup. It stores the data
describing where and how to ship CommerceItems, as well as the
Relationships to items in the shipping group. This class provides
no functionality itself; it is used through the
HardgoodShippingGroup and ElectronicShippingGroup
subclasses (described below).

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 5 8

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
HardgoodShippingGroup This class implements ShippingGroup and extends

ShippingGroupImpl. In addition to storing inherited data, it
stores information about how the CommerceItems are to be
shipped to a physical street address, such as the carrier and postal
address.

ElectronicShippingGroup This class implements ShippingGroup and extends
ShippingGroupImpl. In addition to storing inherited data, it
stores information about how CommerceItems are to be delivered
electronically, such as an e-mail address.

Payment Classes

Payment Classes

PaymentGroupImpl This class implements PaymentGroup. It stores the payment information for
CommerceItems, shipping costs, and tax. It also can contain
Relationships to those items, shipping costs, or tax costs in the
PaymentGroup. This class provides no functionality itself, but is used
through the CreditCard and GiftCertificate subclasses (described
below in this table).

CreditCard This class implements PaymentGroup and extends PaymentGroupImpl. In
addition to storing inherited data, it stores information about how
CommerceItems, shipping costs, and tax costs are paid for using a credit
card.

GiftCertificate This class implements PaymentGroup and extends PaymentGroupImpl. In
addition to storing inherited data, it stores information about how
CommerceItems, shipping costs, and tax costs are paid for using a gift
certificate.

StoreCredit This class implements PaymentGroup and extends PaymentGroupImpl. In
addition to storing inherited data, it stores information about how
CommerceItems, shipping costs, and tax costs are paid for using a store
credit.

Relationship Classes

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 5 9

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
Classes Description

ShippingGroupCommerceItemRelationship When this Relationship is added to a
ShippingGroup and CommerceItem, the
CommerceItem is shipped using the information
in the ShippingGroup. This Relationship
object contains data such as the quantity to be
shipped.

PaymentGroupCommerceItemRelationship When this Relationship is added to a
PaymentGroup and CommerceItem, the
CommerceItem is paid for using the information
in the PaymentGroup. This Relationship
object contains data such as the quantity of the
item to be paid for using the PaymentGroup.

PaymentGroupShippingGroupRelationship When this Relationship is added to a
PaymentGroup and ShippingGroup, the
shipping cost is paid for using the information in
the PaymentGroup. This Relationship object
contains data such as the amount of the
shipping cost to be paid for using the
PaymentGroup.

PaymentGroupOrderRelationship When this Relationship is added to a
PaymentGroup and Order, the tax cost or order
cost is paid for using the information in the
PaymentGroup. This Relationship object
contains data such as the amount of the tax cost
to be paid for using the PaymentGroup.

Handling Classes

Classes Description

HandlingInstructionImpl This class implements HandlingInstruction. It contains a
ShippingGroup ID, CommerceItem ID, and quantity, as well
as data about the quantity of CommerceItems in a
ShippingGroup needs special handling. This class provides
no functionality itself, but should be used through a subclass.

GiftlistHandlingInstruction This class implements HandlingInstruction and extends
HandlingInstructionImpl. In addition to storing all the
basic data that it inherits, it also stores data about which
CommerceItems in the Order were added from a gift list.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 6 0

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
Address Classes

There are two address classes that are not technically a part of ATG Commerce, but they play an
important role in many commerce processes. They are atg.core.util.Address and
atg.core.util.ContactInfo. These objects are referenced when a user checks out a shopping cart.
You may need to extend these objects to track additional information about your users.

See the Setting Up a Profile Repository chapter in the ATG Personalization Programming Guide for
information on adding properties to user profiles.

Business Layer Classes

The business layer classes contain logic and business rules for the purchase process. The methods in these
classes are used to make changes to an Order. These methods contain logic that alters the Order’s data
structure and maintains its accuracy; all calls to alter an Order should be made through these classes.

Class Description

OrderTools Low-level interface containing the logic for editing an Order data
structure. It is not meant to contain business logic or to be used
directly. In general, only the OrderManager or SimpleOrderManager
makes calls to an OrderTools object. For more information, see the
OrderTools section.

OrderManager Contains most of the functionality for working with an Order,
including methods such as createOrder(), as well as properties
referencing the other manager classes listed below. The methods in
this class are higher level than the methods in OrderTools.

CommerceItemManager Contains functionality for working with a CommerceItem, including
methods such as addCommerceItemToOrder() and
addItemQuantityToShippingGroup().

ShippingGroupManager Contains functionality for working with ShippingGroups, including
createShippingGroup() and splitShippingGroup().

HandlingInstructionMa

nager

Contains functionality for working with handling instructions,
including methods such as createHandlingInstruction() and
removeHandlingInstructionsFromShippingGroup().

PaymentGroupManager Contains functionality for working with PaymentGroups, including
createPaymentGroup() and intializeCreditCard().

OrderQueries Contains lookup methods such as getOrdersForProfile() and
getOrderIdsWithinDateRange().

SimpleOrderManager This class extends OrderManager. It is a very high-level interface for
altering an Order; only one method call in SimpleOrderManager is
required to make a series of changes to an Order. For more
information, see the Using the SimpleOrderManager section.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 6 1

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ

OrderTools

OrderTools contains a set of properties that you can use to customize the purchase process. The default
property settings should be suitable for most sites, but can be changed. The OrderTools component is
located in Nucleus at /atg/commerce/order/.

The following OrderTool properties can be customized:

orderTypeClassMap

defaultOrderType

commerceItemTypeClassMap

defaultCommerceItemType

shippingTypeClassMap

defaultShippingGroupType

defaultShippingGroupAddressType

paymentTypeClassMap

defaultPaymentGroupType

defaultPaymentGroupAddressType

relationshipTypeClassMap

beanNameToItemDescriptorMap

You can view the OrderTools component in the ACC to see the configured values for these properties.

orderTypeClassMap

This property defines the type-to-class name mapping for Order objects. You can have more than one
type of Order object. When creating a new Order, a string is passed as a parameter to the create method.
(For example, the string “default” could be passed.) This constructs an instance of an Order class that is
mapped to that string.

Below is a sample of how a mapping is defined in the properties file. The following code defines the
default values:

orderTypeClassMap=\

default=atg.commerce.order.OrderImpl,\

shoppingcart=atg.commerce.order.OrderImpl

Note: The shoppingcart order type is no longer used and remains defined only for backwards
compatibility.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 6 2

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
defaultOrderType

This property defines the default Order type. In the example below, the default type is defined as the
string “default,” which in turn maps to a class in the orderTypeClassMap property. The following code
defines the default value:

defaultOrderType=default

commerceItemTypeClassMap

This property defines the type-to-class name mapping for CommerceItem objects. You can have more
than one type of CommerceItem object. When creating a new CommerceItem, a string is passed as a
parameter to the create method. (For example, the string “default” could be passed.) This constructs an
instance of a CommerceItem class that is mapped to that string.

Below is a sample of how a mapping is defined in the properties file. The following code defines the
default values:

CommerceItemTypeClassMap=\

 default=atg.commerce.order.CommerceItemImpl

defaultCommerceItemType

This property defines the default CommerceItem type. In the example below, the default type is defined
as the string “default,” which in turn maps to a class in the commerceItemTypeClassMap property. The
following code defines the default value:

defaultCommerceItemType=default

shippingTypeClassMap

This property defines the type-to-class name mapping for ShippingGroup objects. You can have more
than one type of ShippingGroup object. When creating a new ShippingGroup, a string is passed as a
parameter to the create method. (For example, the string hardgoodShippingGroup could be passed.)
This constructs an instance of a ShippingGroup class that is mapped to that string.

Below is a sample of how a mapping is defined in the properties file:

shippingTypeClassMap=\

default=atg.commerce.order.ShippingGroupImpl,\

hardgoodShippingGroup=atg.commerce.order.HardgoodShippingGroup

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 6 3

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
defaultShippingGroupType

This property defines the default ShippingGroup type. In the example below, the default type is defined
as the string hardgoodShippingGroup, which in turn maps to a class in the shippingTypeClassMap
property. The following code defines the default value:

defaultShippingGroupType=hardgoodShippingGroup

defaultShippingGroupAddressType

This property defines the default ShippingGroupAddressType.

defaultShippingGroupAddressType=RepositoryContactinfo

To customize your address information, subclass RepositoryContactInfo and use your new class name
for the defaultShippingGroupAddressType.

paymentTypeClassMap

This property defines the type-to-class name mapping for PaymentGroup objects. You can have more
than one type of PaymentGroup object. When creating a new PaymentGroup, a string is passed as a
parameter to the create method. (For example, the string creditCard could be passed.) This constructs
an instance of a PaymentGroup class that is mapped to that string.

Below is a sample of how a mapping is defined in the properties file. The following code defines the
default values:

paymentTypeClassMap=\

default=atg.commerce.order.PaymentGroupImpl,\

creditCard=atg.commerce.order.CreditCard,\

giftCertificate=atg.commerce.order.GiftCertificate,\

storeCredit=atg.commerce.order.StoreCredit

defaultPaymentGroupType

This property defines the default PaymentGroup type. In the example below, the default type is defined
as the string creditCard , which in turn maps to a class in the paymentTypeClassMap property. The
following code defines the default value:

defaultPaymentGroupType=creditCard

defaultPaymentGroupAddressType

This property defines the default PaymentGroupAddressType.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 6 4

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
defaultPaymentGroupAddressType=RepositoryContactinfo

To customize your address information, subclass RepositoryContactInfo and use your new class name
for the defaultPaymentGroupAddressType.

relationshipTypeClassMap

This property defines the type-to-class name mapping for Relationship objects. You can have more
than one type of Relationship object. Relationships are not created directly by a user. Relationships are
created by methods based on the type of relationship that the method needs.

The relationshipTypeClassMap property maps a name to a class. It is used to configure the class type
that will be instantiated when a request to construct a relationship is made. By overriding the default
values, you can customize the environment to use a Relationship class you have subclassed.

The example below demonstrates how a mapping is defined in the properties file. This mapping does not
need to be modified unless the system is extended. The following code defines the default values:

relationshipTypeClassMap =\

shippingGroupCommerceItem=atg.commerce.order.

 ShippingGroupCommerceItemRelationship,\

paymentGroupCommerceItem=atg.commerce.order.

 PaymentGroupCommerceItemRelationship,\

paymentGroupShippingGroup=atg.commerce.order.

 PaymentGroupShippingGroupRelationship,\

paymentGroupOrder=atg.commerce.order.

 PaymentGroupOrderRelationship

beanNameToItemDescriptorMap

This property maps a bean name to an OrderRepository item descriptor name. When saving an Order,
the processors look for an OrderRepository item descriptor with the same name as the bean class. The
beanNameToItemDescriptorMap property contains this mapping.

All objects that can be mapped to an item descriptor are listed in the beanNameToItemDescriptorMap.
The format is bean name=repository item descriptor. The example below demonstrates how a mapping is
defined in the properties file. The following code defines the default values:

beanNameToItemDescriptorMap=\

atg.commerce.order.OrderImpl=order,\

atg.commerce.order.CommerceItemImpl=CommerceItem,\

atg.commerce.order.ShippingGroupImpl=shippingGroup,\

atg.commerce.order.HardgoodShippingGroup=hardgoodShippingGroup,\

atg.commerce.order.PaymentGroupImpl=paymentGroup,\

atg.commerce.order.CreditCard=creditCard,\

atg.commerce.order.GiftCertificate=giftCertificate,\

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 6 5

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
atg.commerce.order.ShippingGroupCommerceItemRelationship=shipItemRel,\

atg.commerce.order.PaymentGroupCommerceItemRelationship=payItemRel,\

atg.commerce.order.PaymentGroupShippingGroupRelationship=payShipRel,\

atg.commerce.order.PaymentGroupOrderRelationship=payOrderRel,\

atg.payment.PaymentStatus=paymentStatus,\

atg.commerce.pricing.OrderPriceInfo=orderPriceInfo,\

atg.commerce.pricing.ItemPriceInfo=itemPriceInfo,\

atg.commerce.pricing.TaxPriceInfo=taxPriceInfo,\

atg.commerce.pricing.ShippingPriceInfo=shippingPriceInfo,\

atg.commerce.pricing.DetailedItemPriceInfo=detailedItemPriceInfo,\

atg.commerce.pricing.PricingAdjustment=pricingAdjustment

Pipelines

A pipeline is an execution mechanism that allows for modular code execution. ATG Commerce uses
pipelines to execute tasks such as loading, saving, and checking out Orders. The PipelineManager
implements the pipeline execution mechanism.

The commerce pipeline is defined in an XML file, which can be found at
<ATG10dir>/B2CCommerce/config/atg/commerce/commercepipeline.xml for ATG Consumer
Commerce and at <ATG10dir>/B2BCommerce/config/atg/commerce/commercepipeline.xml for
ATG Business Commerce. To execute a pipeline through JSPs, define a handle method in a form handler
class that calls the PipelineManager.

In the Nucleus hierarchy, the PipelineManager is located at /atg/commerce/PipelineManager. When
you deploy an application that includes ATG Commerce, a new instance is created and the commerce
pipeline configuration is loaded. The commerce pipeline configuration file contains the definition for the
processOrder chain. To insert a new link, add a new element to the XML file that references the new
pipeline processor. The new functionality is inserted into the execution chain without affecting the
existing code.

A pipeline should generally be executed from an OrderManager method. This is the case for the
loadOrder(), updateOrder(), and processOrder() methods.

For more information, see Appendix G: Commerce Pipeline Chains.

Order Repository

The Order repository is the layer between ATG Commerce and the database server. The repository is
where Orders are saved after processing and stored in between customers’ visits. It is implemented using
a SQL repository.

The Order repository definition file defines the item descriptors for all commerce classes; for every class
that is saved, there exists a corresponding item descriptor. Each item descriptor defines a repository item
type that describes all the properties that are common to the repository items of that type. Additionally,
each item descriptor subtype inherits all of the properties of its parent item descriptor. For example, the
hardgoodShippingGroup item descriptor extends the shippingGroup item descriptor, so it inherits all
of the properties of the shippingGroup item descriptor.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 6 6

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
The base Order repository definition file is located at
<ATG10dir>/DCS/config/atg/commerce/order/orderrepository.xml. In ATG Consumer
Commerce, this base file is combined with an additional definition file that is located at
<ATG10dir>/B2CCommerce/config/atg/commerce/order/orderrepository.xml. In ATG Business
Commerce, this base file is combined with an additional definition file that is located at
<ATG10dir>/B2BCommerce/config/atg/commerce/order/orderrepository.xml.

The beanNameToItemDescriptorMap property of the OrderTools component maps the Order
repository item descriptors to bean names (see the beanNameToItemDescriptorMap section in this
chapter for details). In ATG Commerce, the processors that save and load an Order look for an item
descriptor that is mapped to the corresponding commerce object class; the
beanNameToItemDescriptorMap property contains this mapping.

For more information about the OrderTools component, see the OrderTools section of this chapter. For
information about saving and loading orders, see the Configuring Purchase Process Services chapter. For
more information on SQL repositories, see the ATG Repository Guide.

Creating Commerce Objects
The ATG Commerce manager classes contain methods for creating commerce objects and adding them
to and removing them from an Order. This section describes how to use the manager classes to create
commerce objects. It includes the following subsections:

 Creating an Order

 Using Orders in a Multisite Environment

 Creating Multiple Orders

 Creating Commerce Items, Shipping Groups, and Payment Groups

 Adding an Item to an Order via a URL

 Preventing Commerce Items from Being Added to Types of Shipping Groups

 Removing Commerce Objects from an Order

 Using the SimpleOrderManager

Creating an Order

The first step in working with Commerce objects is to create an Order. A shopping cart is an
implementation of the Order interface. To create an Order, you must have a reference to an
OrderManager or SimpleOrderManager. Once you have the reference, use createOrder() to create
the new Order.

There are many versions of the createOrder method, each of which takes a different set of parameters:

createOrder(String pProfileId)

createOrder(String pProfileId, String pOrderType)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 6 7

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
createOrder(String pProfileId, String pOrderId, String pOrderType)

createOrder(String pProfileId, OrderPriceInfo pOrderPriceInfo,

TaxPriceInfo pTaxPriceInfo, ShippingPriceInfo pShippingPriceInfo)

createOrder(String pProfileId, OrderPriceInfo pOrderPriceInfo,

TaxPriceInfo pTaxPriceInfo, ShippingPriceInfo pShippingPriceInfo,

String pOrderType)

createOrder(String pProfileId, String pOrderId, OrderPriceInfo

pOrderPriceInfo, TaxPriceInfo pTaxPriceInfo, ShippingPriceInfo

pShippingPriceInfo, String pOrderType)

All methods create an Order object and assign it a unique ID. The type of Order created depends on the
method used. If the method takes an orderType parameter, that parameter determines the type of
object that is constructed. Otherwise, the defaultOrderType property of the OrderTools component
(see OrderTools in this chapter) defines the Order type.

By default, an Order contains one empty ShippingGroup and one empty PaymentGroup when it is
created, and their types are determined by the defaultShippingGroupType and
defaultPaymentGroupType properties of the OrderTools component.

Note: If you do not want to create an empty ShippingGroup and an empty PaymentGroup for every new
Order, set the createDefaultShippingGroup and createDefaultPaymentGroup properties in the
OrderTools component to false.

The following example demonstrates how to create an Order:

// Get a reference to the OrderManager

OrderManager orderManager = (OrderManager)

 request.resolveName("/atg/commerce/order/OrderManager");

// Create the Order

Order order = orderManager.createOrder(profileId);

By default, orders are persistent. To disable persistence, set the persistOrders property in the
ShoppingCart component to false. The ShoppingCart component is located in Nucleus at
/atg/commerce/.

Using Orders in a Multisite Environment

If you are using ATG’s multisite feature, you may want to provide users with the ability to place items from
multiple sites in a single order. You do not need to do any additional configuration to use this feature; the
ShoppingCart is registered as a shareable component by default and works the same way in a multisite
environment as in a single site.

To register the ShoppingCart as a shareable component, it is added by default to the
NucleusComponentShareableType component:

shareableTypes+=/atg/multisite/ShoppingCartShareableType

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 6 8

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
The shareable component that refers to the ShoppingCart can be configured in the following properties
file:

/atg/commerce/ShoppingCartShareableType.properties

See the ATG Multisite Administration Guide for information on shareable components and how to use
sharing groups in your multisite configuration.

Creating Multiple Orders

Customers can have an unlimited number of orders at one time. They can place items in different
shopping carts, switch between carts, retrieve a list of saved carts, delete carts, and can check out one
cart’s contents while waiting until later to check out the contents of others.

Using multiple orders requires atg.commerce.order.OrderHolder in addition to
atg.commerce.order.Order. This class maintains the current Order object as well as a collection of
saved Order objects. The component that utilizes OrderHolder is /atg/commerce/ShoppingCart, a
session-scoped component whose handleXXX methods add, delete, and switch between carts, as
explained in the rest of this section.

You implement multiple shopping carts using the handleCreate method of the OrderHolder class. This
method creates a new Order and sets it as the currentOrder in the OrderHolder. Any previously
existing Order object is placed into the collection of saved carts. Refer to the following JSP example:

<dsp:form action="ShoppingCart.jsp" method="post">

 <dsp:input bean="ShoppingCart.create" value="Create" type="submit"/> another

 shopping cart.

</dsp:form>

The handleSwitch() method allows customers to switch between shopping carts. It switches the
current Order object out to the saved collection of orders and sets the current Order to the Order
identified by the handlerOrderId property. If a customer has several shopping carts saved, you can
allow them to switch between any of the Order objects using the following JSP code:

<dsp:form action="ShoppingCart.jsp" method="post">

 <dsp:select bean="ShoppingCart.handlerOrderId">

 <dsp:droplet name="ForEach">

 <dsp:param bean="ShoppingCart.saved" name="array"/>

 <dsp:param value="SavedOrder" name="elementName"/>

 <dsp:oparam name="output">

 <dsp:getvalueof id="option12" param="SavedOrder.id" idtype="java.lang.String">

<dsp:option value="<%=option12%>"/>

</dsp:getvalueof>

 <valueofparam="SavedOrder.id"></dsp:valueof>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:select>

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 6 9

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
 <dsp:input bean="ShoppingCart.switch" value="Switch" type="submit"/>

</dsp:form>

The example iterates through the list of saved shopping carts, displays the shopping carts to the
customer, and gives the customer the option to select one of the saved carts. The handlerOrderId
property would be set to the selected Order ID, and the corresponding Order would be set as the current
Order.

The handleDelete() and handleDeleteAll() methods remove a single Order or all orders (both
current and saved), respectively.

Creating Commerce Items, Shipping Groups, and Payment Groups

After an Order has been created, the next step is to add CommerceItems and possibly additional
ShippingGroups and PaymentGroups. Creating these objects follows the same pattern as creating
Orders. First, call createObjectType() in the appropriate manager class, for example,
CommerceItemManager.createCommerceItem(). The call returns the type of class specified by the
objectType parameter, or the default type when the method used does not accept that parameter.

After creating the objects, use the following methods to add them to the Order:

 CommerceItemManager.addItemToOrder()

 ShippingGroupManager.addShippingGroupToOrder()

 PaymentGroupManager.addPaymentGroupToOrder()

These methods take an Order and their respective object type as parameters. For PaymentGroups, the
order in which they are added to the Order determines their precedence.

For more information on creating these commerce objects and adding them to an order, refer to the
following subsections:

 Creating a Standard Commerce Item

 Creating a Configurable Commerce Item

 Creating a Shipping Group

 Creating a Payment Group

Creating a Standard Commerce Item

Follow these steps to create a new CommerceItem and associate it with an Order:

1. Call CommerceItemManager.createCommerceItem().

2. Make any changes to the CommerceItem, such as setting the quantity.

3. Call CommerceItemManager.addItemToOrder(pOrder, pCommerceItem) to add
the CommerceItem to the Order.

Refer to the following example:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 7 0

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
// Get a reference to the OrderManager

OrderManager orderManager = (OrderManager)

 request.resolveName("/atg/commerce/order/OrderManager");

// Create the CommerceItem

CommerceItem commerceItem =

 commerceItemManager.createCommerceItem(pCatalogRefId);

commerceItem.setQuantity(3);

// Add the CommerceItem to the Order

commereceItemManager.addItemToOrder(pOrder, commerceItem);

Note: createCommerceItem() will work even if you pass it a nonexistent catalog reference ID. This
allows you to use ATG Commerce as an ordering system with multiple catalogs, some of which may not
have repositories. If you want to prevent this behavior, you must institute a check.

CommerceItem objects can include an auxiliary data construct. This structure allows you to store arbitrary
data with a CommerceItem. Examples of auxiliary data could include size and color options for a
CommerceItem. If your system includes remote components, auxiliary data can be serialized at any time;
however, when defining AuxiliaryData objects, the classes must be defined as serializable.

By default, the class includes ProductID, ProductRef, PropertyValue, and CatalogRef properties.

Creating Commerce Items in a Multisite Environment

If you are using ATG Commerce in a multisite-enabled installation, some additional methods and tools for
manipulating Commerce items may be useful.

Follow these steps to create a new CommerceItem and associate it with an Order in a multisite setting:

1. Call CommerceItemManager.createCommerceItem(…, …, pSiteId).

The createCommerceItem() method is overloaded in the ATG API. One version is
intended for use with ATG’s multisite feature, and includes a pSiteId parameter. If
the siteId is null but multisite is in use, the method retrieves the ID from
SiteContextManager.getCurrentSiteId.

2. Make any changes to the CommerceItem, such as setting the quantity.

3. Call CommerceItemManager.addItemToOrder(pOrder, pCommerceItem) to add
the CommerceItem to the Order.

In a multisite setting, the addItemToOrder() method and the related
addAsSeparateItemToOrder() method use the validateSiteCompatibility()
method to ensure that the item can be added to the order. If the item’s siteId is not
null, that siteId is added to the order’s siteId. If the order’s creationSiteId is
null, the item’s siteId is copied there as well.

The validateSiteCompatibility() check is also used when creating configurable
Commerce items (see Creating a Configurable Commerce Item).

Refer to the following example:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 7 1

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
// Get a reference to the OrderManager

OrderManager orderManager = (OrderManager)

 request.resolveName("/atg/commerce/order/OrderManager");

// Create the CommerceItem

CommerceItem commerceItem =

 commerceItemManager.createCommerceItem(pCatalogRefId);

commerceItem.setQuantity(3);

// Add the CommerceItem to the Order

commereceItemManager.addItemToOrder(pOrder, commerceItem);

Auxiliary data holds the siteId property in a multisite-enabled ATG configuration; you can access this
property at item.auxiliaryData.siteId.

Creating a Configurable Commerce Item

Configurable commerce items are items with other items as optional components, and are described in
the Using and Extending the Product Catalog chapter of this manual.

Follow these steps to create a ConfigurableCommerceItem and associate it with an Order:

1. Call CommerceItemManager.createCommerceItem() to create the base commerce
item.

2. Call CommerceItemManager.addSubItemToConfigurableItem() or
addAsSeparateSubItemToConfigurableItem() to add options to the base item.

Note: If you are using ATG Commerce’s multisite feature, these methods check to
ensure that the item can be added to the customer’s cart (if more than one site is
involved, the sites must share their shopping cart). See Creating Commerce Items in a
Multisite Environment for details.

The example below illustrates how to programmatically create a ConfigurableCommerceItem with
subSKU items and then add it to an Order:

ConfigurableCommerceItem configurableItem = (ConfigurableCommerceItem)

getCommerceItemManager().createCommerceItem("configurableCommerceItem",

 "sku10001", null, "prod10001", null, 1, null, null, new ItemPriceInfo());

SubSkuCommerceItem subskuItem = (SubSkuCommerceItem)

getCommerceItemManager().createCommerceItem("subSkuCommerceItem",

"sku20001", null, "prod20001", null, 1, null, null, new ItemPriceInfo());

getCommerceItemManager().addSubItemToConfigurableItem(configurableItem,

subskuItem);

subskuItem = (SubSkuCommerceItem)

getCommerceItemManager().createCommerceItem("subSkuCommerceItem",

"sku20002", null, "prod20002", null, 1, null, null, new ItemPriceInfo());

getCommerceItemManager().addSubItemToConfigurableItem(configurableItem,

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 7 2

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
subskuItem);

getCommerceItemManager().addItemToOrder(order, configurableItem);

Creating a Shipping Group

A ShippingGroup contains information on the shipping address and delivery method for a group of
commerce items. By default, a new Order has one default ShippingGroup. As items are added to the
Order, these items automatically become part of the default ShippingGroup. Once a second
ShippingGroup is added to the Order, all the items in the Order are removed from the default
ShippingGroup and must be explicitly added to one of two shipping groups. Relationships must now be
created to associate the items with shipping groups. (For more information, see Assigning Items to
Shipping Groups.)

Follow these steps to create a new ShippingGroup and add it to an Order:

1. Call ShippingGroupManager.createShippingGroup().

2. Make any changes to the ShippingGroup, such as setting the address.

3. Call ShippingGroupManager.addShippingGroupToOrder(pOrder,
pShippingGroup) to add the ShippingGroup to the Order.

Refer to the following example:

// Get a reference to the OrderManager

OrderManager orderManager = (OrderManager)

 request.resolveName("/atg/commerce/order/OrderManager");

// Create the ShippingGroup

ShippingGroup shippingGroup = shippingGroupManager.createShippingGroup();

// Add the ShippingGroup to the Order

shippingGroup.addShippingGroupToOrder(pOrder, shippingGroup);

When setting the shipping and billing addresses, normally you pass a RepositoryContactInfo object
to setShippingAddress() or setBillingAddress(). If you want to use a ContactInfo object
instead, but do not want to subclass RepositoryContactInfo (see defaultShippingGroupAddressType
in the Order Tools section), you must modify some Nucleus components. List the properties of your
address object in the savedProperties property of
/atg/commerce/order/processor/SaveShippingGroupObjects and the loadProperties property
of atg/commerce/order/processor/LoadShippingGroupObjects.

Creating Multiple Shipping Groups

Multiple shipping groups (which implement Multishipment) on a commerce site permit a customer to
ship parts of an order to different addresses using different methods of delivery.

For example, suppose a customer enters the checkout process on a site that supports multiple shipping
methods for a single order. The customer chooses to have the items shipped to different locations. The

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 7 3

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
site must provide a UI that allows the customer to enter an address, and then associate it with a shipper,
such as UPS or US Postal.

After the customer selects a shipper, a ShippingGroup is created. The site must then provide a UI that
allows the customer to associate items with that shipping group. If there is only one shipping group, then
all the items to be shipped will go into that shipping group. If more than one shipping group is associated
with the order, then the customer must decide which items go into each group.

Creating a Payment Group

A PaymentGroup contains information about the payment method that will be used to purchase a group
of commerce items. By default, a new Order has one default PaymentGroup. As items are added to the
Order, these items automatically become part of the default PaymentGroup. Once a second
PaymentGroup is added to the Order, all the items in the Order are removed from the default
PaymentGroup and must be explicitly added to one of the two payment groups. Relationships must now
be created to associate the items with payment groups. (For more information, see the Assigning Costs to
Payment Groups section.)

Payment groups also contain a requisitionNumber property for orders that require approval before a
means of payment can be specified. Orders with requisition numbers are automatically assumed to
require approval. (See the Managing the Order Approval Process chapter for information on approvals.)

Follow these steps to create a new PaymentGroup and add it to an Order:

1. Call PaymentGroupManager.createPaymentGroup().

2. Make any changes to the PaymentGroup. For example, you could set the credit card
number and expiration date.

3. Call PaymentGroupManager.addPaymentGroupToOrder(pOrder,
pPaymentGroup) to add the payment group to the order.

Refer to the following example:

// Get a reference to the OrderManager

OrderManager orderManager = (OrderManager)

 request.resolveName("/atg/commerce/order/OrderManager");

// Create the PaymentGroup

PaymentGroup paymentGroup = paymentGroupManager.createPaymentGroup();

// Add the PaymentGroup to the Order

paymentGroupManager.addPaymentGroupToOrder(pOrder, paymentGroup);

Creating Multiple Payment Groups

Multiple payment groups follow a similar pattern to multiple shipping groups. The payment groups
implement Multipayment, and permit a customer to split the cost of an order by amount or by items. For
example, the customer might put the first $1000 of a $1250 order on a Visa credit card, then pay the the
remaining $250 using points earned on the site during previous visits.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 7 4

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
While customers can select payment methods by item level, amount level, or any combination of the two,
you can limit the ways in which an order’s costs can be split, if necessary.

Adding an Item to an Order via a URL

The CommerceCommandServlet provides a foundation for URL-based actions. Out of the box, you can
allow a user to add an item to his or her order by clicking a URL. Because this process is part of the
request-handling pipeline (which handles all ATG requests and responses), each time a page is requested,
the request will be checked to see if it includes Commerce item information.

Consider the following example request URL:

http://yoursite.com/yourpage.jsp?dcs_action=additemtocart&url_catalog_ref_

id=sku10001&url_product_id=prod10001&url_quantity=1&dcs_ci_catalogKey=en_

US&dcs_subsku=sku10001,prod10001,2&dcs_subsku=sku10002,prod10002,1

The dcs_action flag notifies the request-handling pipeline of the action to be performed, and additional
parameters give specifics for the action. The following table explains the URL elements:

Element Function

dcs_action (Required) When CommerceCommandServlet receives the dcs_action
additemtocart, it calls the AddItemToCartServlet.

You can extend the CommerceCommandServlet and the pipeline to let the
user trigger some other action by clicking a URL.

The AddItemToCartServlet component includes a pricingOperation
parameter, which determines what action the servlet takes when called. The
default action is ORDER_TOTAL. The possible actions are included in
atg.commerce.pricing.PricingConstants.

url_catalog_ref_

id

(Required) The SKU of the product to add to the cart.

url_product_id (Required) The product ID of the product to add to the cart.

url_quantity (Required) The quantity of the SKU to add to the cart.

url_shipping_gro

up_id

The ID of the ShippingGroup to which to add the item.

url_item_type A string specifying which CommerceItem type to use.

url_commerce_ite

m_id

The ID of the CommerceItem which this configuration should replace. If this
parameter is supplied, then this is a reconfiguration.

dcs_ci_* An identifier for setting a CommerceItem property. For example,
dcs_ci_catalogKey=en_US causes the property catalogKey to be set to
the value en_US.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 7 5

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
dcs_subsku An identifier for a configurable property of a CommerceItem. The format is:

dcs_subsku=sku id, product id, individual quantity. The
individual quantity portion of this parameter reflects the quantity of the item
which will be added to a single ConfigurableCommerceItem. For example,
if you are adding a computer with 2 hard drives, the individual quantity
would be 2. If you were adding 1000 computers, each with 2 hard drives, the
individual quantity would still be 2. ATG Commerce handles the
multiplication.

If you need to add two different computer configurations, you must issue
two separate requests to ATG Commerce to add each of the configurations
as separate ConfigurableCommerceItems. For example,
dcs_subsku=sku10001,prod10001,2&dcs_subsku=sku10002,prod1000

2,1 causes the servlet to add a CommerceItem with SKU/product
combination sku10001, prod10001 and quantity 2 and SKU/product
combination sku10002,prod10002 and quantity 1 to the
ConfigurableCommerceItem.

The first four parameters listed in the table above are required. If no other parameters are supplied, the
servlet creates a CommerceItem and adds it to the cart.

If a dcs_subsku parameter is in the URL, then the base SKU/product is represented in a
ConfigurableCommerceItem object and the subSKU is represented in a SubSkuCommerceItem object.
SubSkuCommerceItem is a subclass of CommerceItemImpl.

If all required parameters and shipping_group_id are supplied, then the item is added to the
ShippingGroup with the specified ID.

Preventing Commerce Items from Being Added to Types of Shipping
Groups

By default, all items are allowed to go into any type of ShippingGroup. However, it might be necessary to
prevent specific commerce items from being added to certain types of shipping groups. For example,
only certain types of items can be assigned to an ElectronicShippingGroup. It does not make sense for
a box of golf balls to be shipped electronically.

Follow these steps to prevent commerce items from being added to specific types of shipping groups:

1. Add a new shippingGroupsAllowed property to the SKU item descriptor in the
product repository. The shippingGroupsAllowed property should contain a list of
shipping groups to which the SKU that this CommerceItem represents can be added.

Note: The available ShippingGroup types are listed in the shippingTypeClassMap
property of the OrderTools component.

2. Override any necessary methods to make sure the shippingGroupsAllowed
property in the SKU that this CommerceItem represents matches the
shippingGroupClassType property of the ShippingGroup to which the
CommerceItem is being added.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 7 6

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
These methods are addItemToShippingGroup() in the ShippingGroupManager,
and addItemQuantityToShippingGroup and
addRemainingItemQuantityToShippingGroup() in the CommerceItemManager.

Alternatively, you could create a shippingGroupsNotAllowed property for the SKU item descriptor in
the product repository. In this property, list the names of the ShippingGroup types to which a
CommerceItem is not allowed.

Removing Commerce Objects from an Order

The counterparts to the add methods are the methods for removing commerce items, shipping groups,
and payment groups from an Order. They are:

 CommerceItemManager.removeItemFromOrder()

 ShippingGroupManager.removeShippingGroupFromOrder()

 PaymentGroupManager.removePaymentGroupFromOrder()

These methods take an Order and their respective object ID as parameters. The object ID is found in the
id property of the CommerceItem, ShippingGroup, or PaymentGroup.

To remove subitems from configurable commerce items, use one of these methods:

 CommerceItemManager.removeSubItemFromConfigurableItem()

 CommerceItemManager.removeAllSubItemsFromConfigurableItem()

Using the SimpleOrderManager

SimpleOrderManager extends OrderManager. By default, a SimpleOrderManager object is configured
in Nucleus at /atg/commerce/order/OrderManager. Logically, the SimpleOrderManager sits above
the OrderManager and provides higher-level functionality. What takes several lines of code to do in the
OrderManager takes only a single line of code in the SimpleOrderManager. You can use
SimpleOrderManager in place of OrderManager to simplify your code, as the example below shows.

String skuId = getSkuId();

String productId = getProductId();

long quantity = getQuantity();

ShippingGroup shippingGroup = getShippingGroup();

getSimpleOrderManager().addItemToShippingGroup(order, skuId, productId, quantity,

 shippingGroup);

Using Relationship Objects
A Relationship represents an association between two other objects. For example, a
ShippingGroupCommerceItemRelationship represents a relationship between a CommerceItem and

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 7 7

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
a ShippingGroup. The Relationship indicates that the CommerceItem will be handled according to
the information in the ShippingGroup. The Relationship contains the CommerceItem to ship, the
ShippingGroup, and the quantity of this item to ship to the address in the ShippingGroup.

Another Relationship example is a PaymentGroupOrderRelationship, which represents a
relationship between an Order and the PaymentGroup responsible for the whole or partial cost of the
Order. The PaymentGroup contains the credit card information. The
PaymentGroupOrderRelationship contains the amount to charge, the PaymentGroup, and the Order.

In ATG Commerce, a new Order has one default payment group, one default shipping group, and no
Relationships. While you never explicitly add a Relationship to an Order, you do so implicitly by
calling methods like addItemQuantityToShippingGroup() or
addShippingCostAmountToPaymentGroup(). When you create these additional associations,
relationships handle the details of which payment or shipping method to use for which items. Below is a
code sample that associates part of an order’s cost with a specific PaymentGroup. A
PaymentGroupOrderRelationship is constructed implicitly.

// Get a reference to the OrderManager

OrderManager om = (OrderManager)

 request.resolveName("/atg/commerce/order/OrderManager");

// Creates a PaymentGroupOrderRelationship implicitly

om.addRemainingOrderCostToPaymentGroup(pOrder, pPaymentGroup);

Unlike most business objects, Relationship objects do not have their own manager class. Methods
where the operator is a Relationship are placed in the operand’s manager class. For example, a method
for adding an Order to a ShippingGroup is in the OrderManager, and a method for assigning a
CommerceItem to a ShippingGroup is in the CommerceItemManager. Methods that operate on a
subclass of a given commerce object are placed in the superclass’s manager class.

Relationship Types

Relationship objects have associated types. These types determine what happens when an Order is
checked out, as well as what types the relationship’s member variables have. This section describes the
following Relationship objects and their possible relationship types:

 ShippingGroupCommerceItemRelationship Object

 PaymentGroupOrderRelationship Object

 PaymentGroupCommerceItemRelationship Object

 PaymentGroupShippingGroupRelationship Object

For details on assigning items to relationships of specific types, see the next two sections, Assigning Items
to Shipping Groups and Assigning Costs to Payment Groups.

Note: For all of the following relationship types, quantities and amounts designated by a number are
processed as “up to and including” the given number. For example, if a PaymentAmount relationship
exists with quantity 6 and references an item with quantity 10, 6 of those items will be paid for using the
PaymentGroup that the relationship references. The remaining 4 will be handled by the next relationship

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 7 8

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
whose priority is less than the first relationship. On the other hand, if the relationship contained quantity
15, then all 10 items will be paid for using that first PaymentGroup.

Also note that it is not possible to have more than one Relationship of a specific “remaining” type
(described below) in any given object. For example, a given CommerceItem cannot have more than one
PaymentGroupRelationship of a remaining type. However, it can have a
PaymentGroupRelationship and a ShippingGroupRelationship – both of a remaining type –
because the two relationships are separate entities.

ShippingGroupCommerceItemRelationship Object

A ShippingGroupCommerceItemRelationship represents a relationship between a CommerceItem
and a ShippingGroup. This relationship can be assigned the relationship type ShippingQuantity or
ShippingQuantityRemaining. These relationship types assign CommerceItems to ShippingGroups
that specify which items in the Order will be shipped to each destination. The following list describes the
relationship types:

 ShippingQuantity: This relationship type indicates that a specific quantity of the
item will be shipped using the information in the ShippingGroup. The quantity to
ship is stored inside the Relationship, and the quantity purchased is stored inside
the CommerceItem. If the quantity in the Relationship is greater than the quantity
in the CommerceItem, then all the CommerceItems are shipped to the location in the
ShippingGroup.

 ShippingQuantityRemaining: This relationship type indicates that the remaining
quantity of the item unaccounted for by other
ShippingGroupCommerceItemRelationship objects will be shipped using the
information in the ShippingGroup.

Note: Any ShippingQuantityRemaining relationships have the lowest priority. A
CommerceItem can have only one Relationship of type
ShippingQuantityRemaining.

For example, a customer places an order for CommerceItem Apple with quantity 10. Two
ShippingGroups already exist, SG1 (home) and SG2 (office).

The customer wants three apples shipped to his home, so a
ShippingGroupCommerceItemRelationship is created between CI1 (apple) and SG1 (home). This
relationship type is ShippingQuantity and the quantity to ship is 3.

The customer wants the remaining seven apples shipped to his office. A
ShippingGroupCommerceItemRelationship is created between CI1 (apple) and SG2 (office). This
relationship can have either the relationship type ShippingQuantity with quantity 7, or the relationship
type ShippingQuantityRemaining.

The difference between creating a second relationship with type ShippingQuantity and using
ShippingQuantityRemaining is that, using ShippingQuantity, if the quantity of CI1 increases, then
the new items would not be assigned to a ShippingGroup. If the second relationship is of type
ShippingQuantityRemaining, then the new items default to the ShippingGroup in that relationship.

Both relationship types use an atg.core.util.Range object to determine which particular
CommerceItems to include for a given quantity. Set the Range’s lowBound and highBound to indicate

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 7 9

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
which items to include. Bounds are inclusive. For example, if one
CommerceItemShippingGroupRelationship accounts for four out of six CommerceItems, setting the
lowBound to 1 and the highBound to 4 means the first four CommerceItems are shipped using this
relationship. Setting the lowBound to 3 and the highBound to 6 means the last four are shipping using
this relationship.

Range information is calculated when the end user checks out, ensuring correct pricing for each
CommerceItem regardless of any changes the user may make to ShippingGroups while browsing.

PaymentGroupOrderRelationship Object

A PaymentGroupOrderRelationship represents a relationship between an Order and a
PaymentGroup. There are two ways to split the cost of an Order across PaymentGroups. Either split the
entire cost by using PaymentGroupOrderRelationships, or assign different types of costs (such as
item cost vs. tax) to separate PaymentGroups.

A PaymentGroupOrderRelationship can be assigned the type OrderAmount,
OrderAmountRemaining, TaxAmount, or TaxAmountRemaining. These relationship types assign the
order and tax amounts to different PaymentGroups. The following list describes the relationship types:

 OrderAmount: This relationship type indicates that a specific amount of the total cost
of the Order (including CommerceItems, ShippingGroups, and tax) will be paid
using the information in the PaymentGroup. The amount must be greater than zero. If
the relationship amount is greater than the total amount of the Order, then the cost
of the entire Order will be paid using the referenced PaymentGroup.

 OrderAmountRemaining: This relationship type indicates that the remaining cost of
the Order unaccounted for by other PaymentGroupOrderRelationship objects will
be paid using the information in the PaymentGroup.

Note: An Order can have only one Relationship of type OrderAmountRemaining.

 TaxAmount: This relationship type indicates that a specific amount of the tax charged
for the Order will be paid using the information in the PaymentGroup. The amount
must be greater than zero. If the relationship amount is greater than the total amount
of the Order, then all the tax will be paid for using the referenced PaymentGroup.

 TaxAmountRemaining: This relationship type indicates that the tax cost unaccounted
for by other PaymentGroupOrderRelationship objects will be paid using the
information in the referenced PaymentGroup.

Note: An Order can have only one Relationship of type TaxAmountRemaining.

Example #1

The following example describes how to use the OrderAmount and OrderAmountRemaining types.

A customer places an Order with a total of $600. The customer wants to pay for the order using two
credit cards (Visa and MasterCard). A different PaymentGroup represents each credit card. Two
relationships are created to split the payment:

 One PaymentGroupOrderRelationship is created between the Visa’s
PaymentGroup and the Order. The relationship type is set to OrderAmount, and the
amount is set to $400.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 8 0

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
 One PaymentGroupOrderRelationship is created between the MasterCard’s

PaymentGroup and the Order. The relationship type is set to
OrderAmountRemaining.

When the Order is charged, $400 will be charged on the Visa and $200 will be charged on the
MasterCard.

Example # 2

The following example describes how to use the TaxAmountRemaining type.

A customer places an order with a total tax of $100. The customer wants to pay for the tax with a separate
credit card than the rest of the order payment. A PaymentGroupOrderRelationship is created between
the PaymentGroup that represents the credit card and the Order. The relationship type is set to
TaxAmountRemaining, which covers whatever the tax amount turns out to be.

PaymentGroupCommerceItemRelationship Object

A PaymentGroupCommerceItemRelationship represents a relationship between a CommerceItem and
a PaymentGroup. This relationship type is used to split payment for a single CommerceItem between
multiple payment groups.

The relationship can have the relationship type PaymentAmount or PaymentAmountRemaining. The
following list describes the relationship types:

 PaymentAmount: This relationship type indicates that a specific amount of the item’s
cost will be paid for using the information in the PaymentGroup. The amount must be
greater than zero. If the amount is greater than the total amount of the item stored in
the CommerceItem, then the entire cost of the item will be paid for using the
referenced PaymentGroup.

 PaymentAmountRemaining: This relationship type indicates that any remaining
payment amount unaccounted for by other
PaymentGroupCommerceItemRelationship objects will be paid using the
information in the PaymentGroup. If there is only one relationship between a given
CommerceItem and a PaymentGroup of type PaymentAmountRemaining, then the
entire cost of that item will be paid for using the information in the PaymentGroup.

Note: A CommerceItem can have only one Relationship of type
PaymentAmountRemaining.

For example, a customer places an order for a CommerceItem (Car) with the total cost $10,000. The
customer wants to split the payment of this item between three credit cards (Visa, MasterCard, and
American Express). A different PaymentGroup represents each credit card. To split the item between
three payment groups, PaymentGroupCommerceItemRelationships must be created between the
CommerceItem (Car) and the three PaymentGroup objects:

 The first PaymentGroupCommerceItemRelationship connects the CommerceItem
(car) and the first PaymentGroup (Visa). The relationship type is set to
PaymentAmount, and the amount is set to $4000.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 8 1

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
 The second PaymentGroupCommerceItemRelationship connects the

CommerceItem (car) and the second PaymentGroup (MasterCard). The relationship
type is set to PaymentAmount, and the amount is set to $4000.

 The third PaymentGroupCommerceItemRelationship connects the CommerceItem
(car) and the third PaymentGroup (American Express). The relationship type is set to
PaymentAmountRemaining.

PaymentGroupShippingGroupRelationship Object

A PaymentGroupShippingGroupRelationship represents a relationship between a ShippingGroup
and a PaymentGroup. This type of Relationship is used to assign shipping costs in a ShippingGroup to
PaymentGroups.

This relationship can be assigned the relationship types ShippingAmount or
ShippingAmountRemaining. The following list describes the relationship types:

 ShippingAmount: This relationship type indicates that a specific amount of the
shipping cost will be paid using the information in the PaymentGroup. The amount
must be greater than zero. If the amount is greater than the total amount of the item
stored in the ShippingGroup, then the cost of the entire item will be paid using the
referenced PaymentGroup.

 ShippingAmountRemaining: This relationship type indicates that any remaining
shipping cost amount unaccounted for by other
PaymentGroupShippingGroupRelationship objects will be paid using the
information in the PaymentGroup. If there is only one relationship between a given
ShippingGroup and a PaymentGroup of type PaymentAmountRemaining, then the
entire shipping cost will be paid using the information in the PaymentGroup.

Note: A ShippingGroup can have only one Relationship of type
PaymentAmountRemaining.

For example, an order is shipped to one location stored in a ShippingGroup. The shipping costs are $10.
The customer wants to pay for the shipping costs with a credit card. The credit card information is stored
in the only PaymentGroup. A PaymentGroupShippingGroupRelationship of type ShippingAmount is
created, and the amount is set to $10.

Commerce Item Relationships

The CommerceItemRelationship interface, which is implemented by
ShippingGroupCommerceItemRelationship and PaymentGroupCommerceItemRelationship
objects as described previously, contains a set of numeric methods (get/setQuantity(),
get/setAmount(), get/setRange()). Certain method calls are valid depending on the relationship
type. If an invalid method is called, the returned value is undefined. The table below summarizes which
methods are valid with which relationship types.

Relationship Type Valid Methods

ShippingQuantity get/setQuantity(),

get/setRange()

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 8 2

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
ShippingQuantityRemaining get/setRange()

OrderAmount get/setAmount()

OrderAmountRemaining N/A

PaymentAmount get/setAmount()

PaymentAmountRemaining N/A

ShippingAmount get/setAmount()

ShippingAmountRemaining N/A

TaxAmount get/setAmount()

TaxAmountRemaining N/A

Relationship Priority

The priority of a Relationship is important during order processing. A relationship’s type determines its
priority. If relationships are the same types, the priority is determined by the order in which the
relationships were created.

When an Order is being processed or fulfilled, the system moves through the relationships of
CommerceItems, ShippingGroups, and PaymentGroups in the following order:

1. Shipping Priority

 ShippingQuantity

 ShippingQuantityRemaining

2. Commerce Item Payment Priority

 PaymentAmount

 PaymentAmountRemaining

3. Shipping Cost Payment Priority:

 ShippingAmount

 ShippingAmountRemaining

4. Tax Cost Payment Priority:

 TaxAmount

 TaxAmountRemaining

5. Order Cost Payment Priority

 OrderAmount

 OrderAmountRemaining

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 8 3

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
Assigning Items to Shipping Groups

When an Order is first created, it has an empty ShippingGroup, which serves as the default
ShippingGroup for the Order. The type of default ShippingGroup that is created is determined by the
defaultShippingGroupType property of the OrderTools component. By default, this property is set to
hardgoodShippingGroup in ATG Consumer Commerce and b2bHardgoodShippingGroup in ATG
Business Commerce.

When a CommerceItem is added to the Order, that item is automatically a part of the default
ShippingGroup because it is assumed that when there is only one ShippingGroup, all items are a part of
that group. However, once a second ShippingGroup is added to the Order, the existing CommerceItem
and any new commerce items must be explicitly assigned to one of the two shipping groups; any items
that were in the default ShippingGroup are no longer a part of any ShippingGroup.

Before the Order is checked out, all of the order’s commerce items must be a part a ShippingGroup. This
requirement is checked during the checkout process by the validateForCheckout pipeline, which is
executed by the processOrder pipeline. Each processor in the validateForCheckout pipeline
validates a different part of the Order as complete. The validateShippingGroupsForCheckout
processor, in specific, validates the shipping groups in the Order. The shipping groups are considered
complete if the following criteria are met:

1. None of the required fields (name, address, city, state, and postal code) are empty in
any ShippingGroup.

2. All of the commerce items in the Order are assigned to a ShippingGroup. This
requirement must be met according to the following rules:

 If there is only one ShippingGroup in the Order and no relationships exist
between that ShippingGroup and the commerce items in the Order, then the
shipping of all commerce items in the Order implicitly is accounted for by that
ShippingGroup.

 If there is only one ShippingGroup in the Order and relationships exist
between that ShippingGroup and the commerce items in the Order, or if
there is more than one ShippingGroup in the Order, then every
CommerceItem in the Order must have its shipping explicitly accounted for
with one or more ShippingGroupCommerceItemRelationship objects, as
follows:

If a CommerceItem has a ShippingGroupCommerceItemRelationship of
type ShippingQuantityRemaining, then the item’s shipping is accounted for
regardless of whether it has other shipping relationships. This is because a
“remaining” relationship type covers any quantity of the CommerceItem that is
not accounted for by other shipping relationships.

If a CommerceItem has one or more
ShippingGroupCommerceItemRelationship objects of type
ShippingQuantity, but no relationship of type
ShippingQuantityRemaining, then the total quantity of the CommerceItem
covered by the relationships must be equal to or greater than the quantity in
the CommerceItem.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 8 4

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
The range property in the ShippingGroupCommerceItemRelationship
identifies which particular items out of the total quantity of a CommerceItem
are associated with a given ShippingGroup.

Note: The priority of a Relationship in an Order, which is determined by the
relationship’s type, plays a role in when the Relationship is processed as the
Order proceeds through the checkout process. For more on relationship types
and priority, see the Relationship Priority subsection of the Using Relationship
Objects section in the Working With Purchase Process Objects chapter.

For more information on ShippingGroupCommerceItemRelationship objects, see the Relationship
Types section in this chapter. For more information on the processOrder and validateForCheckout
pipelines, see the Checking Out an Order section of the Configuring Purchase Process Services chapter.

Assigning Costs to Payment Groups
When an Order is first created, it has an empty PaymentGroup, which serves as the default
PaymentGroup for the Order. The type of default PaymentGroup that is created is determined by the
defaultPaymentGroupType property of the OrderTools component. By default, this property is set to
CreditCard.

When a CommerceItem is added to the Order, that item is automatically a part of the default
PaymentGroup because it is assumed that when there is only one PaymentGroup, all CommerceItem
costs – along with all shipping and tax costs -- are a part of that group. However, once a second
PaymentGroup is added to the Order, the existing CommerceItem, any new commerce items, and all
shipping and tax costs must be explicitly assigned to one of the two payment groups; any items that were
in the default PaymentGroup are no longer a part of any PaymentGroup.

Before the Order is checked out, all of the order’s costs must be a part of a PaymentGroup. This
requirement is checked during the checkout process by the validateForCheckout pipeline, which is
executed by the processOrder pipeline. Each processor in the validateForCheckout pipeline
validates a different part of the Order as complete. The payment groups in the Order are considered
complete if the following criteria are met:

1. None of the required fields (name, address, city, state, and postal code) are empty in
any PaymentGroup.

2. All of the costs associated with the Order, which include the commerce item costs,
shipping costs, and tax, are accounted for by one or more payment groups.

If the Order has only one payment group, then the assignment of Order costs is automatic. However, if
the Order has more than one payment group, you must explicitly assign the Order costs to the payment
groups. You can do so using one of following methods:

 Assign the total cost of the Order to one or more payment groups. This approach is
more frequently used, and it is the most straightforward way to account for an order’s
payment because you are dealing with the Order costs as a whole. See Assigning an
Order’s Total Cost to Payment Groups.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 8 5

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
 Assign the component costs of the Order -- the commerce item costs, shipping costs,

and tax -- to one or more payment groups. You should use this method if you need
more control over where to assign the component costs of an Order. See Assigning an
Order’s Component Costs to Payment Groups.

For more information on the processOrder and validateForCheckout pipelines, see the Checking
Out an Order section of the Configuring Purchase Process Services chapter. For information on the
PaymentGroupCommerceItemRelationship and PaymentGroupShippingGroupRelationship
objects that are described in the following subsections, see the Relationship Types section in this chapter.

Note: The priority of a Relationship in an Order, which is determined by the relationship’s type, plays a
role in when the Relationship is processed as the Order proceeds through the checkout process. For
more on relationship types and priority, see the Relationship Priority subsection of the Using Relationship
Objects section in the Working With Purchase Process Objects chapter.

Assigning an Order’s Total Cost to Payment Groups

To assign the total cost of the Order to one or more payment groups, use the
addOrderAmountToPaymentGroup() and addRemainingOrderAmountToPaymentGroup() methods in
the OrderManager. These methods add PaymentGroupOrderRelationship objects (of type
OrderAmount or OrderAmountRemaining, respectively) to the Order.

Example 1

This example assigns an order’s total cost to a single PaymentGroup. The order’s total cost is $20.90. You
can account for the total cost of the Order by calling:

 addRemainingOrderAmountToPaymentGroup() and passing in the required
parameters.

-- or --

 addOrderAmountToPaymentGroup() and passing in the value 20.90 for the amount
parameter.

The disadvantage to calling addOrderAmountToPaymentGroup() instead of
addRemainingOrderAmountToPaymentGroup() is that if the order’s total amount increases above
$20.90, then you must call removeOrderAmountFromPaymentGroup() and then call
addOrderAmountToPaymentGroup() again and pass in the new amount.

Example 2

This example assigns an order’s total cost to more than one PaymentGroup. The order’s total cost is
$20.90, and there are two payment groups in the Order. You want to assign $10.00 to the first
PaymentGroup and $10.90 to the second PaymentGroup. Follow these steps to assign the amounts to
the different payment groups:

1. Call addOrderAmountToPaymentGroup() and pass in the first PaymentGroup and
10.00 for the amount parameter.

2. Call addRemainingOrderAmountToPaymentGroup(), or call
addOrderAmountToPaymentGroup() and pass in the second PaymentGroup and
10.90 for the amount parameter.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 8 6

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
Accounting for an Order’s Total Cost

If the total cost of an Order is assigned to one or more payment groups, then during checkout the order’s
total cost is accounted for according to the following rules:

 If the Order contains a PaymentGroupOrderRelationship of type
OrderAmountRemaining, then the order’s total cost is accounted for regardless of
whether or not the Order has other payment relationships. This is because a
“remaining” relationship covers everything not accounted for by other payment
relationships.

 If an Order contains one or more PaymentGroupOrderRelationship objects of type
OrderAmount, then the sum of the amounts in the relationships must be equal to or
greater than the total amount of the Order to account for the order’s total cost. (The
total amount of an Order is the sum of its CommerceItem costs, ShippingGroup
costs, and tax.)

Assigning an Order’s Component Costs to Payment Groups

An order’s component costs include its commerce item costs, shipping costs, and tax. You can assign
these various costs to payment groups using the following methods:

 CommerceItemManager.addItemAmountToPaymentGroup()

 CommerceItemManager.addRemainingItemAmountToPaymentGroup()

 ShippingGroupManager.addShippingCostAmountToPaymentGroup()

 ShippingGroupManager.addRemainingShippingCostToPaymentGroup()

 OrderManager.addTaxAmountToPaymentGroup()

 OrderManager.addRemainingTaxAmountToPaymentGroup()

For example, suppose an Order has two commerce items, two payment groups, and one shipping group.
The cost of the first item is $5.99, and the cost of the second item is $9.99. Both items are in the shipping
group, and the shipping cost is $5.00. The tax for the order is $0.80. You might account for the order’s
costs by doing the following:

1. Call addItemAmountToPaymentGroup() for the first item and pass 5.99 for the
amount parameter to the first payment group.

2. Call addItemAmountToPaymentGroup() for the second item and pass 9.99 for the
amount parameter to the second payment group.

3. Call addShippingCostAmountToPaymentGroup() for the shipping group and pass
5.00 for the amount parameter to the first payment group.

4. Call addTaxAmountToPaymentGroup() for the order’s tax and pass 0.80 for the
amount parameter to the second payment group.

The order’s costs are now accounted for because the commerce item costs, shipping
costs, and tax have all been assigned to a payment group.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 8 7

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
Accounting for Commerce Item Costs

If the CommerceItem costs of an Order are assigned to one or more payment groups, then during
checkout the order’s CommerceItem costs are accounted for according to the following rules:

 If there is only one PaymentGroup in the Order and no relationships exist between
that PaymentGroup and the commerce items in the Order, then the cost of all
commerce items in the Order implicitly is accounted for by that PaymentGroup.

 If there is only one PaymentGroup in the Order and relationships exist between that
PaymentGroup and the commerce items in the Order, or if there is more than one
PaymentGroup in the Order, then every CommerceItem in the Order must have its
costs explicitly accounted for with one or more
PaymentGroupCommerceItemRelationship objects, as follows:

If a CommerceItem has a PaymentGroupCommerceItemRelationship of type
PaymentAmountRemaining, then that relationship accounts for the cost of the
CommerceItem regardless of whether the CommerceItem has other payment
relationships. This is because a “remaining” relationship covers everything not
accounted for by other payment relationships.

If a CommerceItem has one or more PaymentGroupCommerceItemRelationship
objects of type PaymentAmount, but no
PaymentGroupCommerceItemRelationship of type PaymentAmountRemaining,
then the total cost covered by all of the relationships must be equal to or greater than
the total cost of the CommerceItem.

Accounting for Shipping Costs

If the shipping costs of an Order are assigned to one or more payment groups, then during checkout the
order’s shipping costs are accounted for according to the following rules:

 If there is only one PaymentGroup in the Order and no relationships exist between
that PaymentGroup and the shipping groups in the Order, then the shipping costs for
the Order implicitly are accounted for by that PaymentGroup.

 If there is only one PaymentGroup in the Order and relationships exist between that
PaymentGroup and the shipping groups in the Order, or if there is more than one
PaymentGroup in the Order, then every ShippingGroup in the Order must have its
costs explicitly accounted for by one or more
PaymentGroupShippingGroupRelationship objects, as follows:

If a ShippingGroup has a PaymentGroupShippingGroupRelationship of type
ShippingAmountRemaining, then that relationship accounts for the cost of the
ShippingGroup regardless of whether the ShippingGroup has other payment
relationships. This is because a “remaining” relationship covers everything not
accounted for by other payment relationships.

If a ShippingGroup has one or more PaymentGroupShippingGroupRelationship
objects of type ShippingAmount, but no
PaymentGroupShippingGroupRelationship of type ShippingAmountRemaining,
then the total cost covered by all of the relationships must be equal to or greater than
the total cost of the ShippingGroup.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 8 8

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
Accounting for Tax

If the tax of an Order is assigned to one or more payment groups, then during checkout the order’s tax
cost is accounted for according to the following rules:

 If the Order contains a PaymentGroupOrderRelationship of type
TaxAmountRemaining, then the order’s tax cost is accounted for regardless of
whether or not the Order has other payment relationships. This is because a
“remaining” relationship covers everything not accounted for by other payment
relationships.

 If the Order contains one or more PaymentGroupOrderRelationship objects of
type TaxAmount, then the sum of the amounts in the relationships must be equal to or
greater than the total tax amount of the Order to account for tax payment.

Setting Handling Instructions
Handling instructions are specific instructions that can be associated with the commerce items in a
shipping group. For example, a customer could set handling instructions for gift wrapping.

HandlingInstruction Objects

HandlingInstruction objects are constructed using one of the createHandlingInstruction()
methods in the HandlingInstructionManager. After the object is created and populated with the
required data, call the addHandlingInstructionToShippingGroup() method to add the handling
instructions to the ShippingGroup that contains the commerce item(s) whose IDs are specified in the
HandlingInstruction.

A customer can set more than one handling instruction for a given CommerceItem in a ShippingGroup.
For example, if an Order contains a single CommerceItem that was added to a user’s shopping cart from
another user’s gift list and needs to be gift wrapped, two HandlingInstructions must be created – one
for the gift wrapping and another for the gift list. Each HandlingInstruction would be of a different
class type: GiftwrapHandlingInstruction and GiftlistHandlingInstruction, respectively. Each
HandlingInstruction would contain:

 The ID of the ShippingGroup that contains the CommerceItem.

 The ID of the CommerceItem to which the handling instruction applies.

 A quantity of 1.

 Any other necessary fields of GiftwrapHandlingInstruction and
GiftlistHandlingInstruction.

The sum of HandlingInstruction quantities cannot exceed the quantity in the ShippingGroup for a
particular HandlingInstruction class. In the above example, there can be only one
GiftwrapHandlingInstruction with a quantity of 1 in the ShippingGroup because there is only one
item in the ShippingGroup. However, there can be a GiftlistHandlingInstruction in the
ShippingGroup that references the same item because the two HandlingInstruction objects are
different types.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 8 9

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
For details on GiftListHandlingInstructions, see the Configuring Commerce Services chapter.

Adding Handling Instructions to a Shipping Group

Handling instructions can be added to either shipping groups or individual commerce items. This section
provides an example of how to create handling instructions for gift wrapping one item in a shipping
group. The example also uses a repository with a wrapping paper item descriptor.

For additional, detailed examples of how to extend the purchase process to support new commerce
objects, see the Extending the Purchase Process section in this guide. For information on how to create
new item descriptors in a repository, see the SQL Repository Data Models chapter in the ATG Repository
Guide. For more information on HandlingInstruction, see the ATG API Reference.

Step 1: Create a GiftwrapHandlingInstruction class that extends the
atg.commerce.order.HandlingInstructionImpl class. Add a property to identify the wrapping
paper. For example:

public String getWrappingPaperId();

public void setWrappingPaperId(String pWrappingPaperId);

Step 2: Add support for this class to the OrderTools component. For example, in the localconfig
directory add the following lines to /atg/commerce/order/OrderTools.properties:

handlingTypeClassMap+=giftwrapHandlingInstruction=

mypackage.GiftwrapHandlingInstruction

beanNameToItemDescriptorMap+=mypackage.GiftwrapHandlingInstruction=

giftwrapHandlingInstruction

Step 3: Add support for the new item descriptor to orderrepository.xml. The
orderrepository.xml file is located in /atg/commerce/order/orderrepository.xml in the
configpath.

First, add the new type to the handlingInstruction item descriptor:

<table name="dcspp_hand_inst" type="primary"

 id-column-name="handling_inst_id">

 <property name="type" data-type="enumerated"

 default="handlingInstruction" expert="true"

 display-name="Type">

 <attribute name="useCodeForValue" value="false"/>

 <option value="handlingInstruction" code="0"/>

 <option value="giftlistHandlingInstruction" code="1"/>

 </property>

 . . .

</table>

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 9 0

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
Second, add the new item descriptor:

<item-descriptor

 name="giftwrapHandlingInstruction"

 super-type="handlingInstruction"

 sub-type-value="giftwrapHandlingInstruction"

 cache-mode="locked"

 display-name="Gift wrap Handling Instruction">

 <attribute name="writeLocksOnly" value="true"/>

 <table name="dcspp_wrap_inst"

 id-column-name="handling_inst_id">

 <property name="wrappingPaperId"

 column-name="wrap_id"

 data-type="string"

 display-name="Wrapping Paper Id"/>

 </table>

</item-descriptor>

Step 4: Create a method that adds the handling instruction to the order in a class that extends the
HandlingInstructionManager:

public wrapCommerceItemInShippingGroup(ShippingGroup

 pGiftShippingGroup, CommerceItem pWrappedItem,String pWrappingPaperId)

 {

 GiftwrapHandlingInstruction giftwrap = (GiftwrapHandlingInstruction)

 handlingInstructionManager.createHandlingInstruction(

 "giftwrapHandlingInstruction",

 pGiftShippingGroup.getId(), pWrappedItem.getId(),

 pWrappedItem.getQuantity());

 giftwrap.setWrappingPaperId(wrappingId);

 pGiftShippingGroup.addHandlingInstruction(giftwrap);

 }

Step 5: Add any additional processors. For example, you could add a processor to the
validateForCheckout pipeline to validate the wrapping paper type.

ATG Commerce States
In ATG Commerce, the subclasses of atg.commerce.states.ObjectStates represent the possible
states for the order objects. For example, the atg.commerce.states.CommerceItemStates class
represents the possible states of a CommerceItem, the atg.commerce.states.PaymentGroupStates
class represents the possible states of a PaymentGroup, and so on. The state names are defined in static
String variables in each state class, and ATG Commerce code uses the state name to set the state of a
given object. For example:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 9 1

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
// set the state of shippingGroup to the integer value of the

// PENDING_SHIPMENT state. sgStates.PENDING_SHIPMENT is the

// name of the state

ShippingGroupStates sgStates = getShippingGroupStates();

shippingGroup.setState(sgStates.getStateValue(sgStates.PENDING_SHIPMENT));

ATG Commerce provides the following configured instances of the state classes, which are located in
Nucleus at /atg/commerce/states/:

 OrderStates: indicates the states of an Order.

 CommerceItemStates: indicates the states of a CommerceItem.

 PaymentGroupStates: indicates the states of a PaymentGroup.

 ShippingGroupStates: indicates the states of ShippingGroup.

 ShipItemRelationshipStates: indicates the states of a
ShippingGroupCommerceItemRelationship.

The properties files of these state objects configure the following properties, which provide mappings of
the order object’s state names to corresponding String values (for easy reading) and integer values (for
easy comparisons):

 stateValueMap: maps each state name to an Integer value.

 stateStringMap: maps each state’s Integer value to a display name. This is the
String value that users see and that is stored in the repository.

 stateDescriptionMap: maps each state’s Integer value to a String description of
the state.

Note that a state’s name and display name are two different values.

Each state class (OrderStates, CommereItemStates, and so on) contains several methods for retrieving
a requested state’s Integer value, display name, or description from the state mappings. The following
table describes these methods:

Method name Description

getStateValue Given a state name, this method returns its
Integer value.

getStateFromString Given a state’s display name, this method
returns its Integer value.

getStateString Given a state’s Integer value, this method
returns its display name.

getStateDescription Given a state’s Integer value or display
name, this method returns its description.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 9 2

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
getStateAsUserResource Given a state’s Integer value or display name

(as configured in the properties file of the
relevant states component, for example,
OrderStates.properties or
CommerceItemStates.properties), this
method returns the display name that is
defined in the resource file that is
appropriate for the current locale.

Note: Used for internationalization, as
described below.

getStateDescriptionAsUserResource Given a state’s Integer value or display name
(as configured in the properties file of the
relevant states component, for example,
OrderStates.properties or
CommerceItemStates.properties), this
method returns the state’s description that
is defined in the resource file that is
appropriate for the current locale.

Note: Used for internationalization, as
described below.

The methods in the preceding table are called by several methods in the implementation classes of the
order objects. Consequently, to retrieve the Integer value for the state of an order object, you can simply
call the getState method of that order object. For example, call OrderImpl.getState to retrieve the
corresponding Integer value for the state of the Order from OrderStates.properties. Similarly, call
CommerceItemImpl.getState to retrieve the corresponding Integer value for the state of the
CommerceItem from CommerceItemStates.properties.

Additionally, if your commerce site isn’t internationalized, use the following order object methods to
retrieve the display name or description, respectively, for the state of the order object. Like the getState
method, these methods retrieve a value specified in the properties file of the relevant states component:

 getStateAsString
For example, call OrderImpl.getStateAsString to retrieve the display name for the
state of the Order object from OrderStates.properties. Similarly, call
CommerceItemImpl.getStateAsString to retrieve the display name for the state of
the CommerceItem from CommerceItemStates.properties.

 getStateDetail
For example, call OrderImpl.getStateDetail to retrieve the description for the
state of the Order object from OrderStates.properties. Similarly, call
CommerceItemImpl.getStateDetail to retrieve the description for the state of the
CommerceItem from CommerceItemStates.properties.

If your commerce site is internationalized, and you, therefore, need to provide one or more translations of
the display names and descriptions for the states of the ATG Commerce order objects, then you should
specify those values in ResourceBundle.properties files that are placed in the CLASSPATH. By default,

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 9 3

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
ATG Commerce provides a base ResourceBundle.properties file named
StateResources.properties, which is used when a locale-specific resource file isn’t found during a
request. The StateResources.properties file maps each state’s configured display name to a
translated display name and description using the following key-value format:

 For the display names of states:

ORDER.INCOMPLETE=INCOMPLETE

ORDER.SUBMITTED=SUBMITTED

SHIPPING.INITIAL=INITIAL

SHIPPING.PROCESSING=PROCESSING

ITEM.INITIAL=INITIAL

ITEM.PENDING_REMOVE=PENDING_REMOVE

 For the descriptions of states:

ORDERDESC.INCOMPLETE=The order is incomplete

ORDERDESC.SUBMITTED=The order has been submitted to Fulfillment

SHIPPINGDESC.INITIAL=The shipping group has been initialized

SHIPPINGDESC.FAILED=The shipping group has failed

ITEMDESC.INITIAL=The item has been initialized

ITEMDESC.PENDING_REMOVE=The item is pending remove request

Note that the keys are the display names of the states as configured in the properties files of the states
components (OrderStates.properties, ShippingStates.properties, and so on). Also note that,
because different order objects may use the same display name for a given state, each key is prepended
with a prefix to avoid conflict.

To add an additional resource file, copy StateResource.properties and rename the file according to
Java naming guidelines for ResourceBundle inheritance, using any appropriate language, country, and
variant suffixes. Then translate the file according to the translation guidelines provided in the
Internationalizing a Dynamo Web Site chapter in the ATG Programming Guide. (You can refer to that
chapter for more information on working with ResourceBundles.) Finally, place the resource file in the
CLASSPATH. By default, StateResources.properties is located in the CLASSPATH at
atg.commerce.states.StateResources.properties, and each states component refers to this file in
its resourceFileName property (OrderStates.resourceFileName,
CommerceItemStates.resourceFileName, and so on). However, note that in ATG Business Commerce,
OrderStates.resourceFileName only is set to
atg.b2bcommerce.states.StateResources.properties, which includes resources for some
additional Order object states.

If your commerce site is internationalized and, therefore, makes use of StateResources.properties
resource files, use the following order object methods to retrieve a locale-specific display name or
description, respectively, for the state of the order object:

 getStateAsUserResource
For example, call OrderImpl.getStateAsUserResource to retrieve a locale-specific
display name for the state of the Order object from the appropriate
StateResources_XX.properties file.

 getStateDescriptionAsUserResource
For example, call OrderImpl.getStateDescriptionAsUserResource to retrieve a

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 9 4

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
locale-specific description for the state of the Order object from the appropriate
StateResources_XX.properties file.

Like the other order object methods, these methods call through to the methods in the states classes
(OrderStates, CommerceItemStates, and so on), namely the getStateAsUserResource and
getStateDescriptionAsUserResource methods. Given the current locale and the basename specified
in the resourceFileName property of the states component (OrderStates.resourceFileName,
CommerceItemStates.resourceFileName, and so on), these latter methods use ResourceBundle
inheritance rules to retrieve the most appropriate resource file for the current locale. For example, if the
locale is fr_FR, the code first looks for a StateResources_fr_FR.properties file. If the file doesn’t
exist, it then looks for a StateResources_fr.properties file. If that file doesn’t exist, it retrieves the
default resource file, StateResources.properties. Once the appropriate resource file is obtained, the
appropriate prefix is appended to the key, and the requested value is retrieved.

As previously mentioned , in ATG Commerce the subclasses of atg.commerce.states.ObjectStates
represent the possible states for the order objects. You can refer to the subsections that follow for
descriptions of these states:

 CommerceItem States

 Order States

 PaymentGroup States

 ShippingGroup States

 ShippingGroupCommerceItemRelationship States

CommerceItem States

The following table describes the possible states of a CommerceItem:

State Name Description

BACK_ORDERED The item isn’t available in the inventory; it has been backordered.

DISCONTINUED The item isn’t available in the inventory; it cannot be backordered.

FAILED The item has failed.

INITIAL The item is in an initial state, that is, it is not yet associated with any
shipping group.

ITEM_NOT_FOUND The item could not be found in the inventory.

OUT_OF_STOCK The item isn’t available in the inventory, and it has not been
backordered.

PENDING_REMOVE The item will be removed pending verification that all item
relationships referring to it can be removed.

PRE_ORDERED The item isn’t available in the inventory; it has been preordered.

REMOVED The item has been removed from the order.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 9 5

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
SUBITEM_PENDING
_DELIVERY

The item is available in the inventory, and it is being prepared for
shipment to the customer.

Order States

The following table describes the possible states of an Order:

State Name Description

APPROVED (Used in ATG Business Commerce only) The approval
process for the order is complete, and the order has
been approved.

FAILED The order failed.

FAILED_APPROVAL (Used in ATG Business Commerce only) The approval
process for the order is complete, and the order has
been rejected.

INCOMPLETE The order is in the purchase process.

NO_PENDING_ACTION The order has been fulfilled, and processing of the order
is complete. All shipping groups in the order are in a
NO_PENDING_ACTION or REMOVED state, and order
payment has been settled.

PENDING_APPROVAL (Used in ATG Business Commerce only) The order
requires approval (or an additional approval) by an
authorized approver.

PENDING_CUSTOMER_ACTION Processing of the order requires the customer’s attention
for some reason, such as an incorrect customer address.

PENDING_CUSTOMER_RETURN This is an unused state. It is placed in the list of states for
the convenience of those who might want to implement
this state.

PENDING_MERCHANT_ACTION Processing of the order requires merchant attention for
some reason, such as the failure of a payment group in
the order.

PENDING_REMOVE A request was made to remove the order. The order is
placed in this state until all shipping groups in the order
are set to a PENDING_REMOVE state.

PROCESSING The order is being processed by Fulfillment.

QUOTED This is an unused state. It is placed in the list of states for
the convenience of those who might want to implement
this state.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 9 6

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
REMOVED The order has been removed successfully.

SUBMITTED The order has completed the purchase process and has
been submitted to Fulfillment.

TEMPLATE The order is a template order used by a scheduled order.

PaymentGroup States

The following table describes the possible states of a PaymentGroup:

State Name Description

AUTHORIZE_FAILED Authorization of the payment group has failed.

AUTHORIZED The payment group has been authorized and can be debited.

CREDIT_FAILED Credit of the payment group has failed.

INITIAL The payment group hasn’t been acted on yet.

REMOVED The payment group has been removed.

SETTLE_FAILED Debit of the payment group has failed.

SETTLED The payment group has been debited successfully.

ShippingGroup States

The following table describes the possible states of a ShippingGroup:

State Name Description

INITIAL The shipping group is in a pre-fulfillment state.

PROCESSING The shipping group has started the fulfillment process.

PENDING_REMOVE A request for the removal of the entire order was made,
and the removal of this shipping group is possible.

REMOVED The shipping group has been removed.

FAILED The shipping group has failed to process.

PENDING_SHIPMENT The shipping group awaits shipment. This is used by
ATG Commerce to determine which shipping groups
are ready to be shipped.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 9 7

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ
NO_PENDING_ACTION The shipment of all the items in the shipping group is

complete.

PENDING_MERCHANT_ACTION An error occurred while trying to process the shipping
group; the error requires the merchant’s attention.

ShippingGroupCommerceItemRelationship States

The following table describes the possible states of a ShippingGroupCommerceItemRelationship:

State Name Description

BACK_ORDERED The item isn’t available in the inventory; it has been backordered.

DELIVERED The item has been delivered. This state occurs when the shipping
group containing this relationship has shipped.

DISCONTINUED The item isn’t available in the inventory; it cannot be backordered.

FAILED The item relationship failed.

INITIAL The order fulfillment framework has not acted on the item
relationship.

ITEM_NOT_FOUND The item could not be found in the inventory.

OUT_OF_STOCK The item isn’t available in the inventory, and it has not been
backordered.

PENDING_DELIVERY The item has been allocated in the inventory system and is ready to
be delivered.

PENDING_REMOVE A request to remove the shipping group was made, and the items
have not yet shipped.

PENDING_RETURN This is an unused state. It is placed in the list of states for the
convenience of those who might want to implement this state.

PENDING_SUBITEM
_DELIVERY

The item is available in the inventory, and it is being prepared for
shipment to the customer.

PRE_ORDERED The item isn’t available in the inventory; it has been preordered.

REMOVED The item relationship has been removed.

RETURNED This is an unused state. It is placed in the list of states for the
convenience of those who might want to implement this state.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 9 8

1 5 - W o r k i n g W i t h P u r c h a s e P r o c e s s O b j e c t s

μ

A T G C o m m e r c e P r o g r a m m i n g G u i d e

2 9 9

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
16 Configuring Purchase Process

Services

ATG Commerce enables you to build sites that support simple or complex purchasing processes. A simple
purchase process might provide customers with a single shopping cart, and enable customers to
purchase products using a single payment method and to ship those products to a single location. In
contrast, a more complex purchase process might include multiple shopping carts, payment methods,
and shipping locations. You can use ATG Commerce to customize a purchase process that fills all the
requirements of your sites.

This chapter includes information on the following purchase process services:

Loading Orders
Describes the process involved in loading an Order from the Order Repository.
Includes information on how the purchase process manages refreshing Orders.

Modifying Orders
Describes how to modify an Order using the catalogRefId of a CommerceItem or
the ID of a ShippingGroupCommerceItemRelationship. Includes information on
adding items to an Order, removing items from an Order, and modifying item
quantities in an Order.

Repricing Orders
Describes how to reprice and update an Order using the RepriceOrderDroplet
servlet bean.

Saving Orders
Describes the process involved in saving an Order to the Order Repository.

Canceling Orders
Describes the process involved in deleting an Order from the user’s shopping cart.

Checking Out Orders
Describes the process involved in preparing a simple or complex Order for checkout,
submitting the Order for checkout, and actually checking out the Order.

Processing Payment of Orders
Describes how payment of Orders is processed. Also describes how to extend the
system to support new payment operations and payment methods.

Scheduling Recurring Orders
Describes how to create recurring Orders that automatically submit themselves on a
schedule.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 0 0

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
Setting Restrictions on Orders
Describes how to set restrictions on placing Orders.

Tracking the Shopping Process
Describes how to track stages an Order goes through in the purchase process.

Troubleshooting Order Problems
Provides important information if you have modified the OrderManager and are now
experiencing problems with orders.

Handling Returned Items
Describes how the purchase process handles returned items.

Extending the ATG Commerce Form Handlers
Describes how the ATG Commerce form handlers manage transactions. Also provides
information to assist you when extending them.

For detailed information on the various classes and interfaces used in the ATG Commerce purchase
process, see the Working With Purchase Process Objects chapter.

Loading Orders
The actual loading of an Order object occurs by calling the loadOrder() method in the OrderManager.
The loadOrder() method calls into the PipelineManager to execute the loadOrder pipeline, which
creates and populates the Order object.

The following table describes the individual processors in the loadOrder pipeline. They are listed in order
of execution.

PipelineLink name Description

loadOrderObject Given an Order ID supplied by the PipelineManager, this processor
creates an Order object and loads its properties from the Order
Repository.

Note that while the Order object is loaded, none of the contained
objects, such as the CommerceItems or ShippingGroups, are loaded.
Later, when an Order property is accessed (for example, by calling a
method like getCommerceItems() or getShippingGroups() in the
Order), the rest of the objects in the Order are loaded. See Refreshing
Orders below for details.

The atg.commerce.order.processor.ProcLoadOrderObject
class implements this functionality.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 0 1

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
PipelineLink name Description

loadPriceInfoObjects Creates OrderPriceInfo and TaxPriceInfo objects for the given
Order and loads their properties from the Order Repository.

Note that only the OrderPriceInfo and TaxPriceInfo objects are
loaded at this point. Later, when an Order property is accessed (for
example, by calling getPriceInfo() or getCommerceItems() in the
Order), the rest of the AmountInfo objects in the Order are loaded,
such as the ItemPriceInfo objects in the CommerceItems and the
ShippingPriceInfo objects in the ShippingGroups. See Refreshing
Orders below for details.

The
atg.commerce.order.processor.ProcLoadPriceInfoObjects
class implements this functionality.

For more information about PriceInfo objects, see the Commerce
Pricing Engines chapter.

For more information about the OrderManager, see the Working With Purchase Process Objects chapter.
For more information about pipelines, the PipelineManager, see the Processor Chains and the Pipeline
Manager chapter; for information about the transactional modes and transitions of the processors in the
loadOrder pipeline, see Appendix G: Commerce Pipeline Chains.

Refreshing Orders

In ATG Commerce, the purchase process controls the refreshing of Orders.

When an Order is loaded from the Order Repository, the loadOrder() method in the OrderManager
calls into the PipelineManager to execute the loadOrder pipeline, which creates and loads the Order
object, as well as its OrderPriceInfo and TaxPriceInfo objects. (See Loading Orders above for details.)
Later, when an Order property is accessed (for example, by calling getCommerceItems() or
getPriceInfo()), the refreshOrder pipeline is invoked, which creates and loads the rest of the
contained objects in the Order.

The refreshOrder pipeline is called only when the Order is first accessed and subsequently when an
Order is invalidated and, therefore, needs to be reloaded from the Order Repository.

The following table describes the individual processors in the refreshOrder pipeline. They are listed in
order of execution.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 0 2

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
PipelineLink name Description

loadOrderObjectForRefresh Given an Order object supplied by the
PipelineManager, this processor reloads its properties
from the Order Repository. The
atg.commerce.order.processor.ProcLoadOrderObj

ect class implements this functionality.

loadCommerceItemObjects Creates CommerceItem objects for the Order and loads
the properties for those CommerceItem objects from the
Order Repository. The
atg.commerce.order.processor.ProcLoadCommerce

ItemObjects class implements this functionality.

loadShippingGroupObjects Creates ShippingGroup objects for the Order and loads
the properties for those ShippingGroup objects from the
Order Repository. The
atg.commerce.order.processor.ProcLoadShipping

GroupObjects class implements this functionality.

loadHandlingInstructionObjects Creates HandlingInstruction objects for the
ShippingGroups in the Order and loads the properties
for those HandlingInstruction objects from the Order
Repository. The
atg.commerce.order.processor.ProcLoadHandling

InstructionObjects class implements this
functionality.

loadPaymentGroupObjects Creates PaymentGroup objects for the Order and loads
the properties for those PaymentGroup objects from the
Order Repository. The
atg.commerce.order.processor.ProcLoadPaymentG

roupObjects class implements this functionality.

loadPaymentStatusObjects Creates PaymentStatus objects for all the payment
groups in the Order and loads the properties for those
PaymentStatus objects from the Order Repository. The
atg.commerce.order.processor.ProcLoadPayment

StatusObjects class implements this functionality.

loadRelationshipObjects Creates Relationship objects for the Order and loads
the properties for those Relationship objects from the
Order Repository. The
atg.commerce.order.processor.ProcLoadRelation

shipObjects class implements this functionality.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 0 3

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
PipelineLink name Description

loadPriceInfoObjects Reloads the OrderPriceInfo and TaxPriceInfo objects
in the given Order. Also creates the rest of the
AmountInfo objects for the Order, such as the
ItemPriceInfo objects in the CommerceItems and the
ShippingPriceInfo objects in the ShippingGroups,
and loads their properties from the Order Repository. For
more information about AmountInfo objects, see the
Commerce Pricing Engines chapter.

The
atg.commerce.order.processor.ProcLoadPriceInf

oObjects class implements this functionality.

setCatalogRefs Sets the catalogRef property in the AuxiliaryData
object of each CommerceItem in the Order. This
processor looks up the catalog reference in the Catalog
Repository using the catalogRefId in the
CommerceItem.

Note that, if SetCatalogRefs.substituteRemovedSku
is true, this processor replaces all deleted SKUs in the
Order with the “dummy” SKU defined by
SetCatalogRefs.substituteDeletedSkuId. For more
information, see Managing Orders that Contain Deleted
Products and SKUs below.

The
atg.commerce.order.processor.ProcSetCatalogRe

fs class implements this functionality.

setProductRefs Sets the productRef property in the AuxiliaryData
object of each CommerceItem in the Order. This
processor looks up the catalog reference in the Catalog
Repository using the productRefId in the
AuxiliaryData object.

Note that, if
SetProductRefs.substituteRemovedProduct is true,
this processor replaces all deleted products in the Order
with the “dummy” product defined by
SetProductRefs.substituteDeletedProductId. For
more information, see Managing Orders that Contain
Deleted Products and SKUs below.

The
atg.commerce.order.processor.ProcSetProductRe

fs class implements this functionality.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 0 4

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
PipelineLink name Description

removeExpiredCommerceItems Used in conjunction with SetCatalogRefs and
SetProductRefs. If the state of the Order is one that is
defined in
RemoveExpiredCommerceItems.openOrderStates,
this processor removes from the Order any
CommerceItem that contains a “dummy” SKU or product
that was substituted by SetCatalogRefs or
SetProductRefs. A “dummy” SKU is automatically
removed. A “dummy” product is removed only if
RemoveExpiredCommerceItems.removeItemsWithDel

etedProducts is set to true; the default is true. For more
information, see Managing Orders that Contain Deleted
Products and SKUs below.

The
atg.commerce.order.processor.ProcRemoveExpire

dCommerceItems class implements this functionality.

For more information about pipelines, the PipelineManager, see the Processor Chains and the Pipeline
Manager chapter; for information about the transactional modes and transitions of the processors in the
refreshOrder pipeline, see Appendix G: Commerce Pipeline Chains.

Managing Orders that Contain Deleted Products and SKUs

 As described in the previous section, Refreshing Orders, the last three processors in the refreshOrder
pipeline can be used to operate on the commerce items in an order that refer to products and/or SKUs
that have been deleted from the catalog. If your catalog administrators delete products and/or SKUs in
the ongoing management of the product catalog, you should configure these processors to handle
affected orders appropriately.

To configure the refreshOrder pipeline to manage deleted SKUs, do the following:

1. Create a new SKU in the product catalog. In an Order, this “dummy” SKU will be
substituted for any SKU that has been deleted from the catalog.

2. Set the SetCatalogRefs.substituteDeletedSkuId property to the ID of the
dummy SKU you created in step 1.

3. Set the SetCatalogRefs.substituteRemovedSku property to true. If this property
is true, the processor replaces any deleted SKU found in the Order with the SKU
defined in the substituteDeletedSkuId property.

4. If the Order is in an open state, all dummy SKUs in the Order are removed
automatically by a later processor in the refreshOrder pipeline,
RemoveExpiredCommerceItems. See RemoveExpiredCommerceItems in the table
above for more information.

To configure the refreshOrder pipeline to manage deleted products, do the following:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 0 5

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
1. Create a new product in the product catalog. In an Order, this “dummy” product will

be substituted for any product that has been deleted from the catalog.

2. Set the SetCatalogRefs.substituteDeletedProductId property to the ID of the
dummy product you created in step 1.

3. Set the SetProductRefs.substituteRemovedProduct property to true. If this
property is true, the processor replaces any deleted product found in the Order with
the product defined in the substituteDeletedProductId property.

4. If you want all dummy products in an Order (in an open state) to be removed later on
in the refreshOrder pipeline by the RemoveExpiredCommerceItems processor, set
its removeItemsWithDeletedProducts property to true. (See
RemoveExpiredCommerceItems in the table above for more information.)

It’s important to note that deleting products and SKUs is not recommended because of its impact on
customers’ order histories. Site pages that render order histories typically draw order information
(descriptions, media, and so on) from product and SKU repository items. If those items are deleted, order
histories cannot be rendered accurately.

If you need to remove products and SKUs from your database (for example, because of a high turnover
rate), you should implement a strategy that addresses its impact on order histories. Possible strategies
include:

 Storing the relevant description information in the CommerceItem. Note that this will
cause a significant duplication of information across multiple items.

 Removing all historical orders that contain products or SKUs that have been removed.

 Keeping all historical orders that contain products or SKUs that have been removed.
These orders will display description information for the “dummy” SKUs and products
instead of for the actual items that were purchased.

Modifying Orders
You can modify an Order by adding items to it, removing items from it, and changing the quantities of
the items in the Order. CartModifierFormHandler is provided to support these modification
processes.

This section includes information about the following:

 Understanding the CartModifierFormHandler

 Modifying the Current Order

Understanding the CartModifierFormHandler

The CartModifierFormHandler is used to add items to and remove items from an Order, modify the
quantity of items in the Order, and prepare the Order for the checkout process.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 0 6

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
CartModifierFormHandler is an instance of class
atg.commerce.order.purchase.CartModifierFormHandler; it is located in Nucleus at
/atg/commerce/order/purchase/CartModifierFormHandler.

Many of the methods in CartModifierFormHandler call OrderManager.updateOrder() to save the
Order in its present state to the Order Repository. For information on OrderManager.updateOrder()
and the updateOrder pipeline that it executes, see the Updating an Order with the Order Manager
subsection of Saving Orders in this chapter.

The following sections describes the important methods in CartModifierFormHandler. As can be seen
from the method descriptions that follow, the handleAddXXX and handleRemoveXXX methods of
CartModifierFormHandler automatically reprice the Order whenever the user makes changes to it.

However, you should note that users can also make changes to their orders through other purchase
process form handlers that do not reprice orders, such as the form handlers that create and manage
shipping groups. In these situations, where the user can change the current Order in ways that affect its
price, and where the form handler used to process those changes does not reprice the Order, you should
use the RepriceOrderDroplet servlet bean to reprice the Order before displaying its price to the user.
For more information on RepriceOrderDroplet, see Repricing Orders section of the ATG Commerce
Guide to Setting Up a Store.

getQuantity

Retrieves the quantity for the given item.

getCatalogKey

Retrieves a string that identifies the catalog to use when obtaining a catalogRef and productRef for
the creation of a CommerceItem. The string is determined by the user’s locale, which is obtained from the
Request object. Consequently, the key is the user’s locale and the value is the corresponding repository
to use (for example, en_US=ProductCatalog, fr_FR=FrenchCatalog).
/atg/commerce/catalog/CatalogTools maintains the key-to-catalog mapping.

getShippingGroupCommerceItemRelationships

Retrieves the list of ShippingGroupCommerceItemRelationships within the order.

handleAddItemToOrder

Adds items to an order by calling addItemToOrder(), which actually adds the items to the Order. It then
calls OrderManager.updateOrder().

See the addItemToOrder() method for more information.

handleSetOrder

Performs the actual work necessary to save an Order. It calls modifyOrder() to validate the user’s
changes and modify the Order. It then calls runProcessSetOrder(), which executes the pipeline set in
CartModifierFormHandler.setOrderChainId. Finally, it calls OrderManager.updateOrder().

See the modifyOrder() and runProcessSetOrder() methods for more information.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 0 7

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
handleSetOrderByRelationshipId

Performs the actual work necessary to save an Order. It calls modifyOrderByRelationshipId() to
validate the user’s changes and modify the Order. It then calls runProcessSetOrder(), which executes
the pipeline set in CartModifierFormHandler.setOrderChainId. Finally, it calls
OrderManager.updateOrder().

See the modifyOrderByRelationshipId() and runProcessSetOrder() methods for more
information.

handleMoveToPurchaseInfo

Performs the actual work necessary to save an Order. Unlike handleSetOrder() and
handleSetOrderByRelationshipId(), it also verifies that the Order is ready for checkout.

The handle method calls modifyOrder() to validate the user’s changes and modify the Order. It then
calls runProcessMoveToPurchaseInfo(), which executes the pipeline set in
CartModifierFormHandler.moveToPurchaseInfoChainId. Finally, it calls
OrderManager.updateOrder().

See the modifyOrder() and runProcessMoveToPurchaseInfo() methods for more information.

handleMoveToPurchaseInfoByRelId

Performs the actual work necessary to save an Order. Unlike handleSetOrder() and
handleSetOrderByRelationshipId(), it also verifies that the Order is ready for checkout.

The handle method calls modifyOrderByRelationshipId() to validate the user’s changes and modify
the Order. It then calls runProcessMoveToPurchaseInfo(), which executes the pipeline set in
CartModifierFormHandler.moveToPurchaseInfoChainId. Finally, it calls
OrderManager.updateOrder().

See the modifyOrderByRelationshipId() and runProcessMoveToPurchaseInfo() methods for
more information.

addItemToOrder

Invoked by handleAddItemToOrder(). The method calls mergeItemInputForAdd(). If all input values
are valid, the method then calls doAddItemToOrder().

See the mergeItemInputForAdd() and doAddItemToOrder() methods for more information.

mergeItemInputForAdd

Invoked by addItemToOrder() to unify the way input values are made available to
doAddItemToOrder() and to validate input values.

The method first calls CartModifierFormHandler.getItems(). If the returned value is null, the
method constructs an items array whose size matches the size of the return value from
CartModifierFormHandler.getCatalogRefIds(). The method copies the values from
getCatalogRefIds() into the items array elements. Then the method copies the values returned by

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 0 8

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
the following CartModifierFormHandler.getXXX methods into the items array elements: quantity,
productId or productIds, value, commerceItemType, giftlistId, and giftlistItemId.

If the initial CartModifierFormHandler.getItems() call retrieves a non-null value, the method copies
the value returned by CartModifierFormHandler.getCommerceItemType() to every items array
element whose commerceItemType subproperty was null. The method also calls
CartModifierFormHandler.mergeValueDictionaries() to combine the Dictionary returned by
CartModifierFormHandler.getValueDictionary() with each items array element’s Dictionary.

doAddItemToOrder

Invoked by addItemToOrder(). The method retrieves the list of items to add by calling
CartModifierFormHandler.getItems(), and calls CartModifierFormHandler.getCatalogKey()
to determine which catalog to use. Then, for each item to add to the Order, the method uses the
PurchaseProcessHelper class to do the following:

 Creates a CommerceItem using the commerceItemType, catalogRefId, productId
and quantity found in the current array element from getItems().

 Adds the created CommerceItem to the order.

 Copies custom values from the current item’s value Dictionary to the new
CommerceItem.

 Calls the PurchaseProcessHelper.getShippingGroupForItem() method to get a
shipping group of the appropriate type. The type can be determined in one of three
ways.

 Passed in to PurchaseProcessHelper from the
CartModifierFormHandler.getItems()[]. shippingGroupType. The
passed-in type is used along with the item’s gift information (if any) to
determine the correct shipping group to which the item should be added.

 Use the first shipping group of the passed-in type (if that information is
available) or the first shipping group on the order, regardless of the item type. If
this is the desired behavior (perhaps you only sell goods with one shipping
group type, and the default is always the correct type), set the
addItemToDefaultShippingGroup property of the
/atg/commerce/order/purchase/PurchaseProcessHelper component to
true. This property is set to true by default.

 PurchaseProcessHelper can determine the correct group from the item type
(based on the SKU’s fulfiller property value) and gift information. To use
this behavior, set the addItemToDefaultShippingGroup property of the
/atg/commerce/order/purchase/PurchaseProcessHelper component to
false.

 Calls PurchaseProcessHelper.addItemToShippingGroup(), which calls
CommerceItemManager.addItemQuantityToShippingGroup() which in turn takes
the given quantity of the CommerceItem and the given ShippingGroup and creates a
ShippingGroupCommerceItemRelationship of type SHIPPINGQUANTITY.

For information on the SHIPPINGQUANTITY type of
ShippingGroupCommerceItemRelationship, see Relationship Types in the Using
Relationship Objects section of the Working With Purchase Process Objects chapter.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 0 9

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
 Calls createConfigurableSubitems(), which is an empty method that can be

overridden as needed by sites that use configurable commerce items.

 Calls processGiftAddition(), which checks if the item that was added to the order
is a gift (that is, the item’s input giftlistId or giftlistItemId property is non-
null). If the item is a gift, processGiftAddition() calls
GiftListManager.addGiftToOrder() to perform additional gift list processing.

After the above steps have been taken for all the new items, addItemToOrder() calls
runProcessRepriceOrder(), which reprices the Order by executing the pipeline set in
CartModifierFormHandler.repriceOrderChainId. Then, for each new item addItemToOrder()
calls runProcessAddItemToOrder(), which executes the pipeline set in
CartModifierFormHandler.addItemToOrderChainId. Finally, the method fires a scenario event of
type ItemAddedToOrder for each new item.

See the runProcessRepriceOrder() and runProcessAddItemToOrder() methods for more
information.

modifyOrder

Invoked by handleSetOrder() and handleMoveToPurchaseInfo().

The modifyOrder() method modifies the Order based on the changes made in the request. It iterates
over each CommerceItem in the Order. For each CommerceItem, it retrieves the current quantity by
calling getQuantity() and passing in the catalogRefId (SKU ID) of the item.

Next, the method checks if the catalogRefId of the current item is in the removalCatalogRefIds list.
If it is, then the quantity of the current item is set to zero.

Then, the quantity of the current item is assessed and one of two actions occurs:

 If the quantity is greater than zero, the method sets the quantity in the CommerceItem
and the corresponding ShippingGroupCommerceItemRelationship.

 If the quantity is less than or equal to zero, then it removes the CommerceItem and
any associated Relationship objects from the Order.

modifyOrderByRelationshipId

Invoked by handleSetOrderByRelationshipId() and handleMoveToPurchaseInfoByRelId().

The modifyOrderByRelationshipId() method updates the Order based on the changes made in the
request and the existing ShippingGroupCommerceItemRelationships in the Order. It iterates over
each ShippingGroupCommerceItemRelationship in the Order. For each
ShippingCommerceItemRelationship, it first checks to make sure the Relationship is of type
SHIPPINGQUANTITY. If it is not, then an exception is thrown. Then, the method retrieves the current
quantity of the ShippingGroupCommerceItemRelationship by calling getQuantity() and passing in
the ShippingGroupCommerceItemRelationship ID.

Next, the method checks if the ID of the ShippingGroupCommerceItemRelationship is in the
removalRelationshipIds list. If it is, then the quantity of the current
ShippingGroupCommerceItemRelationship is set to zero.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 1 0

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
Then, the quantity of the current ShippingGroupCommerceItemRelationship is assessed and one of
two actions occurs:

 If the quantity is greater than zero, then the quantity of the
ShippingGroupCommerceItemRelationship and the quantity of the associated
CommerceItem are adjusted appropriately.

 If the quantity is less than or equal to zero, then the
ShippingGroupCommerceItemRelationship is removed from the Order and the
quantity of the associated CommerceItem is adjusted appropriately.

For more information on the SHIPPINGQUANTITY type of
ShippingGroupCommerceItemRelationship, see Relationship Types in the Using Relationship Objects
section of the Working With Purchase Process Objects chapter.

handleRemoveItemFromOrder

Removes items from the Order by CommerceItem ID. This handle method calls deleteItems() to delete
the items from the Order and then calls OrderManager.updateOrder().

See the deleteItems() method for more information.

handleRemoveItemFromOrderByRelationshipId

Removes items from the Order by ShippingGroupCommerceItemRelationship ID. This handle
method calls deleteItemsByRelationshipId() to delete the items from the Order and then calls
OrderManager.updateOrder().

See the deleteItemsByRelationshipId() method for more information.

deleteItems

Deletes from the Order all CommerceItems whose IDs are in the removalCommerceIds property. The
method also removes all associated ShippingGroupCommerceItemRelationships and calls
runProcessRepriceOrder(), which reprices the Order by executing the pipeline set in
CartModifierFormHandler.repriceOrderChainId. Finally, the method fires a scenario event of type
ItemRemovedFromOrder.

See the runProcessRepriceOrder() method for more information.

deleteItemsByRelationshipId

This method deletes CommerceItems from the Order by ShippingGroupCommerceItemRelationship
ID. It iterates through the IDs in the removalShippingGroupCommerceItemRelIds property. For each
ID, it first ensures that the Relationship type is of type SHIPPINGQUANTITY (logging an error if it is not),
and then it removes the HandlingInstructions associated with the ShippingGroup. Next, one of two
conditions can exist:

 If the quantity in the ShippingGroupCommerceItemRelationship is greater than or
equal to the quantity in the CommerceItem, then the CommerceItem and all
associated Relationships are removed from the Order. The method then calls
runProcessRepriceOrder(), which reprices the Order by executing the pipeline

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 1 1

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
set in CartModifierFormHandler.repriceOrderChainId. Finally, the method fires
a scenario event of type ItemRemovedFromOrder. (See the
runProcessRepriceOrder() method in this table for more information.)

 If the quantity in the ShippingGroupCommerceItemRelationship is less than the
quantity in the CommerceItem, but the CommerceItem has Relationships to other
ShippingGroups, then the quantity in the CommerceItem is reduced and the given
ShippingGroupCommerceItemRelationship removed.

runProcessAddItemToOrder

Invoked by the handleAddItemToOrder() method. This method runs the pipeline set in
CartModifierFormHandler.addItemToOrderChainId. By default, this property is set to
addItemToOrder.

Note: By default, the addItemToOrder pipeline is commented out of commercepipeline.xml, the
commerce pipeline configuration file. It is provided for extension purposes, should you need to include
additional functionality, such as scenario events.

runProcessSetOrder

Invoked by handleSetOrder() and handleSetOrderByRelationshipId(). This method runs the
pipeline set in CartModifierFormHandler.setOrderChainId. By default, this property is set to
setOrder.

Note: By default, the setOrder pipeline is commented out of commercepipeline.xml, the commerce
pipeline configuration file. It is provided for extension purposes, should you need to include additional
functionality, such as scenario events.

runProcessRepriceOrder

Runs the pipeline to execute whenever the order needs to be repriced. The pipeline to run is set in
CartModifierFormHandler.repriceOrderChainId. By default, this property is set to repriceOrder.
By default, this method executes an ORDER_TOTAL pricing operation. (For more information about
pricing operations, see the Repricing Shopping Carts section of the ATG Commerce Guide to Setting Up a
Store.)

runProcessMoveToPurchaseInfo

Invoked by handleMoveToPurchaseInfo() and handleMoveToPurchaseInfoByRelId(). This
method runs the pipeline set in CartModifierFormHandler.moveToPurchaseInfoChainId. By
default, this property is set to moveToPurchaseInfo.

The moveToPurchaseInfo pipeline, in turn, executes the validateForCheckout pipeline, which
verifies that the Order is ready for checkout. For more information on both pipelines, see Appendix G:
Commerce Pipeline Chains.

Modifying the Current Order

To modify an Order, you must supply either a CatalogRefId of a CommerceItem or a
ShippingGroupCommerceItemRelationship ID. It is recommended that you modify an Order by

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 1 2

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
ShippingGroupCommerceItemRelationship ID, especially if you intend to support complex product-
SKU relationships, such as multiple CommerceItems with the same catalogRefId (SKU ID) or multiple
shipping groups. For example, a customer could order 5 of a given item and choose to ship a quantity of 3
to a home address and the remaining 2 to a work address. In this example, to remove the items being
shipped to the work address, you would modify (and ultimately remove) the
ShippingGroupCommerceItemRelationship instead of modifying the CommerceItem.

The following subsections describes both order modification methods:

 Modifying an Order by catalogRefId

 Modifying an Order by ShippingGroupCommerceItemRelationship ID

Modifying an Order by catalogRefId

Modifying orders by catalogRefId works for very simple sites. Because it does not provide the
granularity necessary to delete just a part of a CommerceItem, it is not recommended for sites with
complex features, such as multiple CommerceItems with the same catalogRefId or multiple shipping
groups.

You can use the following CartModifierFormHandler methods to modify an Order by catalogRefId:

 handleSetOrder()

 handleRemoveItemFromOrder()

 handleMoveToPurchaseInfo()

Refer to Understanding the CartModifierFormHandler for more information on these handle methods.

To change the quantities of items in an Order using the catalogRefIds of CommerceItems, call the
CartModifierFormHandler.handleSetOrder() method for each CommerceItem whose quantity you
want to change and pass in the catalogRefId and quantity for the CommerceItem. This is illustrated in
the following JSP code:

<dsp:input bean='beanName' value='<dsp:valueof param="CommerceItem.quantity"/>'

type="text" name='<dsp:valueof param="CommerceItem.catalogRefId"/>'/>

Note that if no quantity is found for a CommerceItem, then the CommerceItem is removed from the
Order.

To remove items from an Order using the catalogRefIds of CommerceItems, edit the JSPs that invoke
the CartModifierFormHandler handle methods that delete items from the Order. Populate the form
handler’s removalCatalogRefIds array with the catalogRefIds of the CommerceItems to be
removed. For example, you can populate the array using following JSP code:

<dsp:input bean="CartModifierFormHandler.removalCatalogRefIds"

paramvalue="CommerceItem.catalogRefId" type="checkbox"/>

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 1 3

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
Modifying an Order by ShippingGroupCommerceItemRelationship ID

If your sites support complex product-SKU relationships (for example, multiple CommerceItems with the
same catalogRefId) or multiple shipping groups, then it is recommended that you modify an Order
using the IDs of the ShippingGroupCommerceItemRelationship objects in the Order. Doing so makes
the changes at the CommerceItem-to-ShippingGroup level.

You can use the following CartModifierFormHandler methods to modify an Order by
ShippingGroupCommerceItemRelationship ID:

 handleSetOrderByRelationshipId()

 handleRemoveItemFromOrderByRelationshipId()

 handleMoveToPurchaseInfoByRelId()

Refer to Understanding the CartModifierFormHandler for more information on these handle methods.

To change the quantity of an item in the Order, pass the new quantity into the
ShippingpingGroupCommerceItemRelationship, as shown in the following JSP example:

<dsp:input value='<dsp:valueof param="SgCiRelationship.quantity"/>'

type="text" name='<dsp:valueof param="SgCiRelationship.Id"/>'>

To delete an item from the Order, pass the ID of the associated
ShippingGroupCommerceItemRelationship into the form handler’s removalRelationshipIds
property, as shown in the following JSP example:

<dsp:input bean="CartModifierFormHandler.removalRelationshipIds"

paramvalue="SgCiRelationship.Id" type="checkbox"/>

Repricing Orders
As described in Modifying Orders and Checking Out Orders in this chapter, two form handlers in the ATG
Commerce purchase process have handle methods that you can use to reprice an Order:

 CartModifierFormHandler, which is used to modify orders by adding and removing
items and changing item quantities.

 ExpressCheckoutFormHandler, which manages and expedites the pre-checkout
processing of orders.

However, you’ll need to reprice orders via some other mechanism if customers can make order changes
that affect order price through other form handlers that do not reprice orders (for example, by making
shipping changes via the form handlers that create and manage shipping groups), or if the orders are
modified through some other means in ways that affect order price, such as the delivery of a promotion
via a scenario.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 1 4

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
If your sites have any pages where you need to reprice an Order, but you cannot do so through a form
action and corresponding handle method, use the RepriceOrderDroplet servlet bean. By default, the
servlet bean is configured to invoke the repriceAndUpdateOrder pipeline, which reprices the Order by
calling the repriceOrder pipeline and then updates the Order by calling
OrderManager.updateOrder().

The RepriceOrderDroplet servlet bean is an instance of
atg.commerce.order.purchase.RepriceOrder, which extends
atg.service.pipeline.servlet.PipelineChainInvocation. ATG Commerce provides an instance
of RepriceOrder, which is located in Nucleus at
/atg/commerce/order/purchase/RepriceOrderDroplet.

The RepriceOrder class provides the required objects for executing a repricing pipeline as convenient
properties. Typically, execution of a repricing pipeline requires the Order, the Profile, the
OrderManager, and the user’s PricingModelHolder. RepriceOrder is conveniently configured to
reference these objects, which means that a page developer doesn’t need to supply them as input
parameters every time the RepriceOrderDroplet servlet bean is invoked. Consequently, the only
required parameter that must be supplied is the pricing operation to execute. Acceptable pricing
operations are defined in the atg.commerce.pricing.PricingConstants interface; they are the
following:

Pricing Operation Pricing Constant

ORDER_TOTAL PricingConstants.OP_REPRICE_ORDER_TOTAL

ORDER_SUBTOTAL PricingConstants.OP_REPRICE_ORDER_SUBTOTAL

ORDER_SUBTOTAL_SHIPPING PricingConstants.OP_REPRICE_ORDER_SUBTOTAL_SHIPPING

ORDER_SUBTOTAL_TAX PricingConstants.OP_REPRICE_ORDER_SUBTOTAL_TAX

ITEMS PricingConstants.OP_REPRICE_ITEMS

SHIPPING PricingConstants.OP_REPRICE_SHIPPING

ORDER PricingConstants.OP_REPRICE_ORDER

TAX PricingConstants.OP_REPRICE_TAX

NO_REPRICE PricingConstants.OP_NO_REPRICE

The following code sample is taken from RepriceOrderDroplet.properties and indicates its default
configuration:

$class=atg.commerce.order.purchase.RepriceOrder

$scope=request

defaultPipelineManager=/atg/commerce/PipelineManager

defaultChainId=repriceAndUpdateOrder

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 1 5

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
order^=/atg/commerce/ShoppingCart.current

profile=/atg/userprofiling/Profile

orderManager=/atg/commerce/order/OrderManager

userPricingModels=/atg/commerce/pricing/UserPricingModels

This default configuration enables a page developer to include the RepriceOrderDroplet servlet bean
on any shopping cart page that requires the repricing and updating of Orders with the following JSP
code:

<dsp:droplet name="RepriceOrderDroplet">

 <dsp:param value="ORDER_SUBTOTAL" name="pricingOp"/>

</dsp:droplet>

For information on all of the input, output, and open parameters of RepriceOrderDroplet, see the
RepriceOrder reference entry in Appendix: ATG Commerce Servlet Beans of the ATG Commerce Guide to
Setting Up a Store. For information on the OrderManager.updateOrder() method and the
updateOrder pipeline, see Updating an Order with the Order Manager in this chapter.

For more information about pipelines, the PipelineManager, see the Processor Chains and the Pipeline
Manager chapter; for information about the transactional modes and transitions of the processors in the
repriceOrder pipeline, see Appendix G: Commerce Pipeline Chains.

Saving Orders
The SaveOrderFormHandler (class atg.commerce.order.purchase.SaveOrderFormHandler) saves
the user’s current Order and adds the Order to the ShoppingCart’s list of saved orders. Additionally, it
constructs a new, empty Order and sets it as the user’s current Order. ATG Commerce includes an
instance of SaveOrderFormHandler, which is located in Nucleus at
/atg/commerce/order/purchase/SaveOrderFormHandler.

If you are writing custom code, to avoid the possibility of deadlocks, be sure to synchronize on the Order
before beginning the transaction.

The following table describes the important methods in SaveOrderFormHandler.

Method Description

handleSaveOrder This handle method first calls the empty preSaveOrder() method, then
calls the saveOrder() method to save the order, and finally calls the empty
postSaveOrder() method.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 1 6

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
saveOrder This method first sets the current Order’s description based on the provided

String description. If no description is provided, the method sets the
description using the date and time as represented by the user’s locale. Next,
the method saves the Order to the repository by calling the
OrderManager.updateOrder() method. Finally, the method adds the
Order to the list of saved orders in the ShoppingCart.saved property, and
constructs a new, empty Order that is set as the user’s current order.

For more information on OrderManager.updateOrder(), see Updating an
Order with the OrderManager below.

Updating an Order with the OrderManager

The actual saving of an Order object occurs by calling the updateOrder() method in the
OrderManager. The updateOrder() method calls into the PipelineManager to execute the
updateOrder pipeline. Each processor in the pipeline saves a different type of commerce object.

The following table describes the individual processors in the updateOrder pipeline. They are listed in
order of execution.

PipelineLink name Description

updateOrderObject Saves an Order object’s properties to the repository.
The Order is supplied in the optional user parameter of
the PipelineManager. The class that implements this
functionality is
atg.commerce.order.processor.ProcSaveOrderO

bject.

updateCommerceItemObjects Saves the CommerceItem properties for the items in
the Order. The class that implements this functionality
is
atg.commerce.order.processor.ProcSaveCommer

ceItemObjects.

updateShippingGroupObjects Saves the ShippingGroup properties for the shipping
groups in the Order. The class that implements this
functionality is
atg.commerce.order.processor.ProcSaveShippi

ngGroupObjects.

updateHandlingInstructionObjects Saves the HandlingInstruction properties for the
handling instructions in the Order. The class that
implements this functionality is
atg.commerce.order.processor.ProcSaveHandli

ngInstructionObjects.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 1 7

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
updatePaymentGroupObjects Saves the PaymentGroup properties for the payment

groups in the Order. The class that implements this
functionality is
atg.commerce.order.processor.ProcSavePaymen

tGroupObjects.

updatePaymentStatusObjects Saves the PaymentStatus properties for the
PaymentStatus objects in all the payment groups in
the Order. These are the authorizationStatus,
debitStatus, and creditStatus properties in the
PaymentGroup class. The class that implements this
functionality is
atg.commerce.order.processor.ProcSavePaymen

tStatusObjects.

updateRelationshipObjects Saves the Relationship properties for the Relationships
in the Order. The class that implements this
functionality is
atg.commerce.order.processor.ProcSaveRelati

onshipObjects.

updatePriceInfoObjects Saves the PriceInfo properties for the PriceInfo in
the Order. The properties saved are in Order
(priceInfo and taxPriceInfo), ShippingGroup
(priceInfo), and CommerceItems (priceInfo). The
class that implements this functionality is
atg.commerce.order.processor.ProcSavePaymen

tGroupObjects.

setLastModifiedTime Sets the lastModifiedTime property in the Order
object if any changes were made to the Order. If no
changes were made, then the lastModifiedTime is
not changed. The class that implements this
functionality is
atg.commerce.order.processor.ProcSetLastMod

ifiedTime.

For more information about pipelines, the PipelineManager, see the Processor Chains and the Pipeline
Manager chapter; for information about the transactional modes and transitions of the processors in the
updateOrder pipeline, see Appendix G: Commerce Pipeline Chains.

Canceling Orders
The CancelOrderFormHandler (class atg.commerce.order.purchase.CancelOrderFormHandler)
cancels the user’s current Order, which deletes the Order from the ShoppingCart. ATG Commerce
includes an instance of CancelOrderFormHandler, which is located in Nucleus at
/atg/commerce/order/purchase/CancelOrderFormHandler.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 1 8

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
The following table describes the important methods in CancelOrderFormHandler.

Method Description

handleCancelOrder This handle method calls either the deleteOrder() method or the
preserveOrder() method (depending on whether the Order can be
deleted).

deleteOrder If the state of the current Order is one of the configured states in the
CancelOrderFormHandler.deleteStates property, then the
deleteOrder() method deletes the current Order from the user’s
ShoppingCart.

preserveOrder If the state of the current Order isn’t one of the configured states in the
CancelOrderFormHandler.deleteStates property, then the
preserveOrder() method simply sends a ModifyOrder GenericRemove
notification message to Fulfillment for any action deemed appropriate.

Checking Out Orders
The order checkout process can vary depending on the requirements and complexities of your sites. This
section describes the checkout process for both simple and complex sites and includes the following
sections:

 Preparing a Simple Order for Checkout
Describes the use of ExpressCheckoutFormHandler, which manages and expedites
the pre-checkout processing of orders. Intended for sites that support only a single
HardgoodShippingGroup and CreditCard.

 Preparing a Complex Order for Checkout
Describes the various form handlers that manage the pre-checkout processing of
orders. Intended for sites that support any number or type of shipping group, or any
number or type of payment group.

 Checking Out an Order
Describes the processing of an Order after the customer has supplied all necessary
information for the Order and has submitted it for checkout.

Preparing a Simple Order for Checkout

If your sites support the use of only a single HardgoodShippingGroup and a single CreditCard for a
given Order, you can manage and expedite the pre-checkout process for Orders using the
ExpressCheckoutFormHandler (class
atg.commerce.order.purchase.ExpressCheckoutFormHandler). ExpressCheckoutFormHandler
supports the use of a single Profile-derived HardgoodShippingGroup and a single Profile-derived
CreditCard.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 1 9

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
However, if your sites support any number or type of shipping group, or any number or type of payment
group, then you must use the form handlers described in Preparing a Complex Order for Checkout. Note
that the form handlers described in that section also work with simple Orders that have a single
HardgoodShippingGroup and a single CreditCard.

ATG Commerce provides an instance of ExpressCheckoutFormHandler, which is located in Nucleus at
/atg/commerce/order/purchase/ExpressCheckoutFormHandler. The following table describes its
important methods:

Method Description

handleExpressCheckout This handle method first invokes the runRepricingProcess()
method to reprice the Order, then calls
OrderManager.updateOrder() to save the Order in its present
state to the Order Repository, and finally calls commitOrder() to
submit the Order for checkout.

For more information on OrderManager.updateOrder() and the
updateOrder pipeline that it executes, see the Updating an Order
with the Order Manager subsection of Saving Orders in this chapter.

runRepricingProcess Reprices the Order by running the pipeline specified in
ExpressCheckoutFormHandler.repriceOrderChainId. By
default, this property is set to repriceOrder.

For more information on the repriceOrder pipeline, see Appendix
G: Commerce Pipeline Chains.

commitOrder This method first ensures that the user isn’t trying to double-submit
the Order by checking if the ID of the current Order is equal to the ID
of the user’s last Order (in ShoppingCart.last). If the IDs are not
equal, then the current Order can be submitted for checkout. The
method then calls the OrderManager.processOrder() method,
which executes the processOrder pipeline (See Checking Out an
Order later in this chapter.). Finally, the method sets the submitted
Order as the user’s last Order (in ShoppingCart.last), and it
constructs a new, empty Order and sets it as the user’s current Order
(in ShoppingCart.current).

The following boolean properties of the ExpressCheckoutFormHandler govern its behavior:

Property Name Description

paymentGroupNeeded If true, then a CreditCard payment group is automatically taken from
the Profile. If false, then the user can supply the CreditCard
information in a form through the
ExpressCheckoutFormHandler.paymentGroup property.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 2 0

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
shippingGroupNeeded If true, then a HardgoodShippingGroup is automatically taken from

the Profile. If false, then the user can supply the
HardgoodShippingGroup information in a form through the
ExpressCheckoutFormHandler.shippingGroup property.

commitOrder If true, then the
ExpressCheckoutFormHandler.handleExpressCheckout() method
submits the Order for checkout. You can set this property to false if
you want to display a confirmation page before committing the Order.
By default, this property is set to false.

Note: Recall that, as with all shopping cart-related form handlers, empty preXXX and postXXX methods
are provided so you can extend ExpressCheckoutFormHandler, as necessary. To implement a system
that requires a more complex checkout process, see Preparing a Complex Order for Checkout.

See Checking Out an Order for detailed information on the order checkout process.

Preparing a Complex Order for Checkout

ATG Commerce provides several form handlers to support a checkout process that uses any number or
type of shipping group and payment group. If your sites have this type of complex checkout process, then
you should use the form handlers described in this section instead of ExpressCheckoutFormHandler.
(For more information on ExpressCheckoutFormHandler, see Preparing a Simple Order for Checkout.)

The form handlers described in this section manage different subprocesses in the pre-checkout process,
which makes it easier for you to extend them when necessary. Separate form handlers exist to support the
following tasks:

 Creating shipping groups

 Associating shipping groups with an Order and its items

 Creating payment groups

 Associating payment groups with an Order and its items

 Submitting an Order for checkout

Creating Shipping Groups

ATG Commerce provides two implementations of the CreateShippingGroupFormHandler interface to
support the form-driven creation of hard good and electronic shipping groups. These form handler
classes create the ShippingGroups and optionally add them to the ShippingGroupMapContainer.
Once the shipping groups are added to the ShippingGroupMapContainer, the user can then select
from among them for use in the current Order.

The two default implementations of CreateShippingGroupFormHandler are:

 CreateHardgoodShippingGroupFormHandler

This form handler class creates a HardgoodShippingGroup and exposes it via a
getHardgoodShippingGroup() method, which makes it possible for users to edit its

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 2 1

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
properties directly via JSP forms. ATG Commerce provides an instance of
atg.commerce.order.purchase.CreateHardgoodShippingGroupFormHandler;
it is located in Nucleus at
/atg/commerce/order/purchase/CreateHardgoodShippingGroup

FormHandler.

To create the HardgoodShippingGroup, the
handleNewHardgoodShippingGroup() method invokes the
createHardgoodShippingGroup() method, which actually creates the shipping
group. The form handler’s hardgoodShippingGroupType property determines the
type of shipping group to create; by default, this property is set to
hardgoodShippingGroup. The form handler’s hardgoodShippingGroupName
property determines the name of the new shipping group, as referenced in the
ShippingGroupMapContainer.

CreateHardgoodShippingGroupFormHandler is configured to use
/atg/commerce/util/AddressValidator to validate the shipping address before
creating the shipping group. The default configuration is:

 validateFirstName=true

 validateLastName=true

 validateAddress1=true

 validateCity=true

 validateCounty=false

 validateState=true

 validatePostalCode=true

 validateCountry=true

 validateEmail=false

 validatePhoneNumber=false

 validateFaxNumber=false

This validation can be performed every time the shipping group is updated, via the
UpdateHardgoodShippingGroupFormHandler class.

Finally, the form handler’s addToContainer property determines whether the new
shipping group is added to the ShippingGroupMapContainer and made the default
shipping group; by default, this property is set to True. Once the
HardgoodShippingGroup is added to the ShippingGroupMapContainer, the user
can use it when checking out the Order.

After creating the HardgoodShippingGroup, you can use the
UpdateHardgoodShippingGroupFormHandler to handle shipping address changes.
UpdateHardgoodShippingGroupFormHandler can update this information in any or
all of three places, based on these properties:

 updateContainer—Updates the HardgoodShippingGroup in the
ShippingGroupMapContainer.

 updateProfile—Updates the shipping address in the profile.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 2 2

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
 updateOrder—Updates the HardgoodShippingGroup in the order.

 CreateElectronicShippingGroupFormHandler

This form handler class creates an ElectronicShippingGroup and exposes it via a
getElectronicShippingGroup() method, which makes it possible for users to edit
its properties directly via JSP forms. ATG Commerce provides an instance of
atg.commerce.order.purchase.CreateElectronicShippingGroupFormHandle

r; it is located in Nucleus at
/atg/commerce/order/purchase/CreateElectronicShippingGroupFormHandl

er.

To create the ElectronicShippingGroup, the
handleNewElectronicShippingGroup() method invokes the
createElectronicShippingGroup() method, which actually creates the shipping
group and sets the shipping group’s emailAddress property. The form handler’s
electronicShippingGroupType property determines the type of shipping group to
create; by default, this property is set to electronicShippingGroup. The form
handler’s electronicShippingGroupName property determines the name of the
new shipping group, as referenced in the ShippingGroupMapContainer. Finally, the
form handler’s addToContainer property determines whether the new shipping
group is added to the ShippingGroupMapContainer and made the default shipping
group; by default, this property is set to True. Once the ElectronicShippingGroup
is added to the ShippingGroupMapContainer, the user can use it when checking out
the Order.

After creating the ElectronichippingGroup, you can use the
UpdateShippingGroupFormHandler to handle updates to the shipping group.
UpdateShippingGroupFormHandler can update shipping group information in the
container and/or the order, based on these properties:

 updateContainer—Updates the ElectronicShippingGroup in the
ShippingGroupMapContainer.

 updateOrder—Updates the ElectronicShippingGroup in the order.

You can also create Profile-derived ShippingGroups and add them to the
ShippingGroupMapContainer by using the ShippingGroupDroplet servlet bean (class
atg.commerce.order.purchase.ShippingGroupDroplet). The input parameters passed into
ShippingGroupDroplet determine what types of ShippingGroups are created (hard good, electronic,
or both) and whether the ShippingGroupMapContainer is cleared before they are created. For a
detailed list of these input parameters, as well as output parameters, open parameters, and a code
example, see the Adding Shipping Information to Shopping Carts section of the Implementing Order
Retrieval chapter of the ATG Commerce Guide to Setting Up a Store.

To initialize the ShippingGroup objects, the service method of ShippingGroupDroplet calls
initializeUsersShippingMethods(), which initializes one or more ShippingGroups for the current
user and adds them to the ShippingGroupMapContainer. For each entry in
ShippingGroupDroplet.shippingGroupTypes (which is supplied via an input parameter), its
corresponding ShippingGroupInitializer is obtained from the ServiceMap in
ShippingGroupDroplet.shippingGroupInitializers (keyed by ShippingGroup type). The
initializeShippingGroups() method of the ShippingGroupInitializer is then used to initialize
the ShippingGroup and add it to the ShippingGroupMapContainer.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 2 3

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
Note that ATG Commerce provides two implementations of the ShippingGroupInitializer interface,
namely HardgoodShippingGroupInitializer and ElectronicShippingGroupInitializer. The
former creates HardgoodShippingGroups based on their existence in the user’s Profile, and the latter
creates ElectronicShippingGroups based on the existence of an e-mail address in the user’s Profile.

To use this framework with a new ShippingGroup type that you create, first, write a new
ShippingGroupInitializer implementation. Its initializeShippingGroups() method should
gather the user’s ShippingGroups by type and add them to the ShippingGroupMapContainer
referenced by the ShippingGroupFormHandler. For example, the
ElectronicShippingGroupInitializer queries the Profile’s email property and applies the result
to a new ElectronicShippingGroup, which is subsequently added to the
ShippingGroupMapContainer. Second, register a Nucleus component for the new
ShippingGroupInitializer implementation and add it to the ServiceMap in
ShippingGroupDroplet.shippingGroupInitializers, which is keyed by ShippingGroup type.
Finally, include the new ShippingGroup type in the ShippingGroupDroplet.shippingGroupTypes
parameter on those site pages where the new ShippingGroup type is utilized.

Associating Shipping Groups with an Order and Its Items

When the user has supplied the shipping information for an Order, the ShippingGroupFormHandler
can be used to create and manage the associations between the ShippingGroups and the items in the
Order. ATG Commerce provides a request-scoped instance of
atg.commerce.order.purchase.ShippingGroupFormHandler, which is located in Nucleus at
/atg/commerce/order/purchase/ShippingGroupFormHandler.

The ShippingGroupFormHandler works in conjunction with the ShippingGroupDroplet to
manipulate the relationships between CommerceItems and ShippingGroups in the order. Handling
Instructions and their relationships to CommerceItems and ShippingGroups are also manipulated based
on the relationship between each CommerceItem and the ShippingGroups.

By default, this form handler invokes the validateShippingInfo pipeline chain to validate
ShippingGroup information. To skip validation, set the validateShippingGroups property to false.
To learn more about the pipeline chain, see the validateShippingInfo Pipeline Chain section.

It should be noted that ShippingGroupFormHandler does not reprice the given Order. Consequently, if
you enable customers to make order changes that affect order price through this form handler, you
should then reprice the given Order using the RepriceOrderDroplet servlet bean before displaying its
price to the customer. For more information on RepriceOrderDroplet, see Repricing Orders section of
the ATG Commerce Guide to Setting Up a Store.

The ShippingGroupFormHandler is composed of the following containers:

 atg.commerce.order.purchase.ShippingGroupMapContainer, which defines a
Map of user-assigned ShippingGroup names to ShippingGroups. This container
stores the user’s potential ShippingGroups for the Order.

 atg.commerce.order.purchase.CommerceItemShippingInfoContainer, which
defines a Map of CommerceItems to CommerceItemShippingInfo Lists. This
container stores the user’s CommerceItemShippingInfo objects for the
CommerceItems in the Order.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 2 4

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
Additionally, the ShippingGroupFormHandler uses the following helper classes:

 atg.commerce.order.purchase.CommerceItemShippingInfo, which represents
the association between a CommerceItem and its shipping information and includes
properties such as quantity, splitQuantity, and relationshipType. These
objects store the information needed to create
ShippingGroupCommerceItemRelationships for the Order.

 atg.commerce.order.purchase.HandlingInstructionInfo, which is used to
associate handling instruction information with each CommerceItemShippingInfo
object. HandlingInstructionInfo is stored in a handingInstructionInfos list
property of the CommerceItemShippingInfo object.

 atg.commerce.order.purchase.ShippingGroupDroplet, which contains a
reference to both the ShippingGroupMapContainer and
CommerceItemShippingInfoContainer. The ShippingGroupDroplet servlet bean
is used to initialize ShippingGroup objects and CommerceItemShippingInfo
objects for use by the ShippingGroupFormHandler. The resulting collections of
ShippingGroups and CommerceItemShippingInfos are exposed via the output
parameters of the servlet bean. For more information on using the
ShippingGroupDroplet to initialize ShippingGroup objects, see the previous
section, Creating Shipping Groups. For more information on initializing
CommerceItemShippingInfo objects, see below.

 atg.commerce.order.purchase.CommerceItemShippingInfoTools, which
contains helper methods for creating, modifying, removing and applying the
CommerceItemShippingInfo and ShippingGroup objects in the
CommerceItemShippingInfoContainer and ShippingGroupMapContainer
containers respectively. CommerceItemShippingGroupTools includes the
includeGifts flag, which determines how gift items are handled when split across
shipping groups.

With these helper classes and containers, the ShippingGroupFormHandler adds the necessary
ShippingGroups to the Order, establishes their relationships to the CommerceItems, performs
validation, and updates the Order. The following table describes the handle methods used in these
processes:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 2 5

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
Method Description of Functionality

handleSplitShippingInfos This handle method splits the quantities of CommerceItems
across several CommerceItemShippingInfo objects.

The handle method calls splitShippingInfos(), which
retrieves the list of CommerceItemShippingInfo objects from
the CommerceItemShippingInfoContainer. The method
then iterates through the list. For each
CommerceItemShippingInfo, it retrieves the quantity and
the splitQuantity. If the splitQuantity is greater than
zero and not greater than the quantity, then the method calls
splitCommerceIdentifierShippingInfoByQuantity(). In
turn,
splitCommerceIdentifierShippingInfoByQuantity()
creates a new CommerceIdentifierShippingInfo object,
adjusts the properties of both the new and existing objects,
and adds the new object to the
CommerceItemShippingInfoContainer.

handleSpecifyDefault

ShippingGroup

This handle method is used to let the user specify a default
ShippingGroup to use for shipping. The method calls
specifyDefaultShippingGroup(), which sets the
defaultShippingGroupName in the
ShippingGroupMapContainer.

Setting the default ShippingGroup can facilitate simpler
applications that permit only one ShippingGroup per Order,
as well as advanced applications that apply a default
ShippingGroup to any remaining items not explicitly covered
by other ShippingGroups.

handleApplyShippingGroups This handle method adds the ShippingGroups to the Order. It
is used when the customer has supplied the necessary shipping
information for the Order and is ready to proceed with the
next checkout phase.

The handle method calls applyShippingGroups(), which first
calls
ShippingGroupManager.removeAllShippingGroupsFromO

rder() to remove any existing ShippingGroups from the
Order. This ensures a clean Order.

The applyShippingGroups() method then calls
applyCommerceItemShippingInfo(), which applies all
CommerceItemShippingInfo objects to the Order. The
applyCommerceItemShippingInfo() method iterates
through the list of CommerceItemShippingInfo objects in the
CommerceItemShippingInfoContainer. For each
CommerceItemShippingInfo object, the associated
ShippingGroup is retrieved and added to the Order (if it isn’t
already in the Order). Then the method retrieves the

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 2 6

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
Relationship type of the current
CommerceItemShippingInfo object and calls either
CommerceItemManager.addItemQuantityToShippingGrou

p() or
CommerceItemManager.addRemainingItemQuantityToShi

pping(), depending on the relationshipType
(SHIPPINGQUANTITY OR SHIPPINGQUANTITYREMAINING). This
adds the appropriate quantity of the CommerceItem to the
ShippingGroup.

Next, if the form handler’s applyDefaultShippingGroup
property is True, then the applyShippingGroups() method
checks for a default shipping group in the
ShippingGroupMapContainer. If one exists, then the
remaining quantity of all CommerceItems in the Order is
added to the default shipping group.

Then, the handle method calls
runProcessValidateShippingGroups() to validate the
ShippingGroups in the Order. This executes the shipping
validation pipeline specified in
ShippingGroupFormHandler.validateShippingGroupsCh

ainId; by default, this property is set to
validateShippingInfo. For information on the
validateShippingInfo pipeline, see Appendix G: Commerce
Pipeline Chains.

Finally, the handle method calls
OrderManager.updateOrder() to save the Order in its
present state to the Order Repository. For more information on
OrderManager.updateOrder() and the updateOrder
pipeline that it executes, see the Updating an Order with the
Order Manager subsection of Saving Orders in this chapter.

As previously mentioned, the ShippingGroupDroplet servlet bean is used to initialize
CommerceItemShippingInfo objects and add them to the CommerceItemShippingInfoContainer,
so they can be used by the ShippingGroupFormHandler. To initialize the CommerceItemShippingInfo
objects, the service method calls initializeCommerceItemShippingInfos() which, by default,
creates and initializes a CommerceItemShippingInfo for each CommerceItem in the Order and adds
them to the CommerceItemShippingInfoContainer. Each new CommerceItemShippingInfo
references the default ShippingGroup in the ShippingGroupMapContainer.

The paragraph above describes the default behavior of the ShippingGroupDroplet. The droplet,
however, has several input parameters that control whether and how CommerceItemShippingInfo
objects are created. An additional parameter controls whether the
CommerceItemShippingInfoContainer is cleared before the objects are created. For a detailed list of
these input parameters, as well as ShippingGroupDroplet output parameters, open parameters, and a
code example, see the Adding Shipping Information to Shopping Carts section of the Implementing Order
Retrieval chapter of the ATG Commerce Guide to Setting Up a Store.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 2 7

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
The HandlingInstructionInfo class makes it possible to split, merge, and apply handling information
along with the CommerceItemShippingInfo objects with which it is associated. When the
ShippingGroupDroplet initializes a container based on the current contents of an Order,
HandlingInstructionInfo objects are automatically generated for any handling instructions currently
in the Order. These HandlingInstructionInfo objects are then associated with the appropriate
CommerceItemShippingInfo objects based on the CommerceItem referenced in the handling
instruction.

Gift items in an order are identified by a special handling instruction (GiftHandlingInstruction), and
therefore the ShippingGroupDroplet and ShippingGroupFormHandler automatically handle splitting
and merging of gift items in the order.

If the CommerceItemShippingInfoTools includeGifts property is set to false (the default), it has
the following effects:

 CommerceItemShippingInfo objects don’t include the quantity of the items
designated as gifts. For example, if an item is quantity 3, and 1 is a gift, a
CommerceItemShippingInfo will be created for a quantity of 2.

 GiftHandlingInstructions are not included in the HandlingInstructionInfos
associated with the CommerceItemShippingInfos

 ShippingGroups that contain only gifts are not added to the
ShippingGroupMapContainer

The result is that none of the gift-related objects in the Order are added to the
CommerceItemShippingInfoContainer and ShippingGroupMapContainer when initializing based
on the Order, and after applying, they remain unchanged in the Order.

Creating Payment Groups

ATG Commerce provides two implementations of the CreatePaymentGroupFormHandler interface to
support the form-driven creation of credit card and invoice payment groups. These form handler classes
create the payment groups and optionally add them to the PaymentGroupMapContainer. Once the
payment groups are added to the PaymentGroupMapContainer, the user can then select from among
them for use in the current Order.

The default implementations of the CreatePaymentGroupFormHandler are:

 CreateCreditCardFormHandler

This form handler creates a CreditCard payment group and exposes it via a
getCreditCard() method, which makes it possible for users to edit its properties
directly via JSP forms. ATG Commerce provides an instance of
atg.commerce.order.purchase.CreateCreditCardFormHandler; it is located in
Nucleus at /atg/commerce/order/purchase/CreateCreditCardFormHandler.

To create the CreditCard payment group, the handleNewCreditCard() method
invokes the createCreditCard() method, which actually creates the payment
group. The form handler’s creditCardType property determines the type of
CreditCard payment group to create; by default, this property is set to creditCard.
The form handler’s creditCardName property determines the name of the new
payment group, as referenced in the PaymentGroupMapContainer. The form

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 2 8

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
handler’s addToContainer property determines whether the new payment group is
added to the PaymentGroupMapContainer and made the default payment group; by
default, this property is set to True. (Once the payment group is added to the
PaymentGroupMapContainer, the user can use it when checking out the Order.)

CreateCreditCardFormHandler can optionally validate credit card information
using the credit card’s verification number. To validate credit cards, set the
validateCreditCard property to true. Finally, the form handler’s copyToProfile
property determines whether the payment group is copied to the Profile; by
default, this property is set to true.

After creating the credit card information, you can use the
UpdateCreditCardFormHandler to deal with any changes the user makes to their
credit card information. UpdateCreditCardFormHandler can update this
information in any or all of three places, based on these properties:

 updateContainer—Update the credit card in the
PaymentGroupMapContainer.

 updateProfile—Update the credit card in the profile.

 updateOrder—Update the credit card in the order.

 CreateInvoiceRequestFormHandler

(ATG Business Commerce only) This form handler creates an InvoiceRequest
payment group and exposes it via a getInvoiceRequest() method, which makes it
possible for users to edit its properties directly via JSP forms. ATG Business Commerce
provides an instance of
atg.b2bcommerce.order.purchase.CreateInvoiceRequestFormHandler; it is
located in Nucleus at
/atg/commerce/order/purchase/CreateInvoiceRequestFormHandler.

To create the InvoiceRequest payment group, the handleNewInvoiceRequest()
method first invokes the checkRequiredProperties() method. By default, this
method checks that a poNumber for the invoice has been specified and throws an
exception if one has not been provided. The handle method then calls
createInvoiceRequest(), which actually creates the payment group.

The form handler’s invoiceRequestType property determines the type of
InvoiceRequest payment group to create; by default, this property is set to
invoiceRequest. The form handler’s addToContainer property determines whether
the new payment group is added to the PaymentGroupMapContainer and made the
default payment group; by default, this property is set to True. (Once the payment
group is added to the PaymentGroupMapContainer, the user can use it when
checking out the Order.) The form handler’s billingAddressPropertyName
determines the billing address Profile property to copy into the InvoiceRequest;
by default, this property is set to defaultBillingAddress. Finally, the form handler’s
invoiceRequestProperties property determines what additional Profile
properties to dynamically add to the InvoiceRequest.

You can also create Profile-derived PaymentGroups and add them to the
PaymentGroupMapContainer by using the PaymentGroupDroplet servlet bean (class
atg.commerce.order.purchase.PaymentGroupDroplet). The input parameters passed into
PaymentGroupDroplet determine what types of PaymentGroups are created (credit card, store credit,

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 2 9

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
gift certificate) and whether the PaymentGroupMapContainer is cleared before they are created. For a
detailed list of these input parameters, as well as its output parameters, open parameters, and a code
example, see the Adding Payment Information to Shopping Carts section of the Implementing Shopping
Carts chapter of the ATG Commerce Guide to Setting Up a Store.

To initialize the PaymentGroup objects, the service method of PaymentGroupDroplet calls
initializeUserPaymentMethods(), which initializes one or more PaymentGroups for the current user
and adds them to the PaymentGroupMapContainer. For each entry in
PaymentGroupDroplet.paymentGroupTypes (which is supplied via an input parameter), its
corresponding PaymentGroupInitializer is obtained from the ServiceMap in
PaymentGroupDroplet.paymentGroupInitializers (keyed by PaymentGroup type). The
initializePaymentGroups() method of the PaymentGroupInitializer is then used to initialize the
PaymentGroup and add it to the PaymentGroupMapContainer.

Note that ATG Commerce provides four implementations of the PaymentGroupInitializer interface.
They are:

 CreditCardInitializer

 GiftCertificateInitializer

 StoreCreditInitializer

 InvoiceRequestInitializer (ATG Business Commerce only)

To use this framework with a new PaymentGroup type that you create, first, write a new
PaymentGroupInitializer implementation. Its initializePaymentGroups() method should gather
the user’s PaymentGroups by type and add them to the PaymentGroupMapContainer referenced by the
PaymentGroupFormHandler. For example, the StoreCreditInitializer queries the Claimable
Repository for the user’s StoreCredit PaymentGroups, instantiates objects for them, and then adds
them to the PaymentGroupMapContainer. Second, register a Nucleus component for the new
PaymentGroupInitializer implementation and add it to the ServiceMap in
PaymentGroupDroplet.paymentGroupInitializers, which is keyed by PaymentGroup type. Finally,
include the new PaymentGroup type in the PaymentGroupDroplet.paymentGroupTypes parameter on
those site pages where the new PaymentGroup type is utilized.

Associating Payment Groups with an Order and Its Items

When the user has supplied the payment information for an Order, the PaymentGroupFormHandler can
used to create and manage the associations between the PaymentGroups and the various parts of the
Order. Any Order that has been successfully processed by the PaymentGroupFormHandler is ready for
the next phase of the purchase process, which is typically order confirmation. ATG Commerce provides a
request-scoped instance of atg.commerce.order.purchase.PaymentGroupFormHandler, which is
located in Nucleus at /atg/commerce/order/purchase/PaymentGroupFormHandler.

The PaymentGroupFormHandler adds the PaymentGroups to the Order, adds the CommerceItems,
ShippingGroups, tax, cost amount and cost remaining information to the PaymentGroups, validates the
PaymentGroup information, and finally saves the Order in its present state to the Order Repository. If
you’d prefer for items to be priced according to a pricelist rather than the default behavior provided by
the pricing engine, set the priceListId property to the appropriate pricelist. When it is finished, the
Order is ready to proceed to the next step in the purchase process, which typically is Order checkout.
(See Submitting an Order for Checkout.)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 3 0

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
The PaymentGroupFormHandler is composed of the following containers:

 atg.commerce.order.purchase.PaymentGroupMapContainer, which defines a
Map of user-assigned PaymentGroup names to PaymentGroups. This container stores
the user’ potential PaymentGroups for the Order.

 atg.commerce.order.purchase.CommerceIdentifierPaymentInfoContainer,
which defines a Map of CommerceIdentifiers to
CommerceIdentifierPaymentInfo Lists. This container stores the user’s
CommerceIdentifierPaymentInfo objects for the Order.

Additionally, the PaymentGroupFormHandler uses the following helper classes:

 atg.commerce.order.purchase.CommerceIdentifierPaymentInfo, which
represents the association between a CommerceIdentifier and its payment
information and includes properties that allow the cost of a given quantity or even a
single item to be spread across multiple payment groups. These objects store the
information need to create payment Relationships for the Order.

 atg.commerce.order.purchase.PaymentGroupDroplet, which implements both
the PaymentGroupMapContainer and
CommerceIdentifierPaymentInfoContainer interfaces. The
PaymentGroupDroplet servlet bean is used to initialize PaymentGroup objects and
CommerceIdentifierPaymentInfo objects for use by the
PaymentGroupFormHandler. The resulting collections of PaymentGroups and
CommerceIdentifierPaymentInfo objects are exposed via the output parameters
of the servlet bean. (For more information on using PaymentGroupDroplet to
initialize PaymentGroup objects, see Creating Payment Groups. For more information
on initializing CommerceIdentifierPaymentInfo objects, see below in this section.)

With these helper classes and containers, the PaymentGroupFormHandler adds the necessary
PaymentGroups to the Order, validates them, and updates the Order. The following table describes the
handle methods used in these processes:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 3 1

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
Method Description of Functionality

handleSplitPaymentInfos This handle method is used when the user wants to split a
particular CommerceIdentifierPaymentInfo by amount across
multiple PaymentGroups.

The handle method calls splitPaymentInfos(), which retrieves
the list of CommeceIdentifierPaymentInfo objects from the
CommerceIdentifierPaymentInfoContainer. The
splitPaymentInfos() method then iterates through the list
and calls splitCommerceIdentifierPaymentInfo() on each
object. In turn, splitCommerceIdentifierPaymentInfo()
calls splitCommerceIdentifierPaymentInfoByAmount() to
split the CommerceIdentifierPaymentInfo object. The
method creates a new CommerceIdentifierPaymentInfo
object, adjusts the properties of both the existing and new
objects, and adds the new object to the
CommerceIdentifierPaymentInfoContainer.

In a form, the user might request to split $50 of an original
CommerceIdentifier amount of $100 to a separate payment
method. This creates a separate
CommerceIdentifierPaymentInfo object, and adjusts the
amount of both the original and the new
CommerceIdentifierPaymentInfo objects to add up to the
original CommerceIdentifier total amount.

handleSpecifyDefault

PaymentGroup

This handle method is used to let the user specify a default
PaymentGroup to use for payment. The method calls
specifyDefaultPaymentGroup(), which sets the
defaultPaymentGroupName in the
PaymentGroupMapContainer.

Setting the default PaymentGroup can facilitate simpler
applications that permit only one PaymentGroup per Order, as
well as advanced applications that apply a default PaymentGroup
to any remaining Order amount not explicitly covered by other
PaymentGroups.

handleApplyPaymentGroups This handle method adds the PaymentGroups to the Order. It is
used when the user has supplied the necessary payment
information for the Order and is ready to proceed with the next
checkout phase.

The handle method calls applyPaymentGroups(), which first
calls
PaymentGroupManager.removeAllPaymentGroupsFromOrder

() to remove any existing PaymentGroups from the Order. This
ensures a clean Order.

Next, the applyPaymentGroups() method calls
applyCommerceIdentifierPaymentInfo(), which applies the

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 3 2

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
CommerceIdentierPaymentInfo objects to the Order. The
applyCommerceIdentifierPaymentInfo() method iterates
through the list of CommerceIdentifierPaymentInfo objects
in the CommerceIdentifierPaymentInfoContainer. For each
CommerceIdentifierPaymentInfo object, the associated
PaymentGroup is retrieved and added to the Order (if it isn’t
already in the Order). Then the method retrieves the
Relationship type of the current
CommerceIdentifierPaymentInfo object and calls the
appropriate method in the appropriate “Manager” to add the
amount to the PaymentGroup. For more information, see the
Assigning Costs to PaymentGroups section of the Working With
Purchase Process Objects chapter.

Next, if the form handler’s applyDefaultPaymentGroup
property is True, then the applyPaymentGroups() method
checks for a default payment group in the
PaymentGroupMapContainer. If one exists, then the remaining
order amount is added to the default payment group.

Then, applyPaymentGroups() calls
PaymentGroupManager.recalculatePaymentGroupAmount()
to recalculate the payment groups.

Next, the handle method calls
runProcessValidatePaymentGroups() to validate the
PaymentGroups in the Order. This executes the payment
validation pipeline specified in
PaymentGroupFormHandler.validatePaymentInformationC

hainId; by default, this property is to moveToConfirmation. The
moveToConfirmation pipeline both prices and validates a given
Order. For more information, see Appendix G: Commerce
Pipeline Chains.

Finally, the handle method calls OrderManager.updateOrder()
to save the Order in its present state to the Order Repository. For
more information on OrderManager.updateOrder() and the
updateOrder pipeline that it executes, see the Updating an
Order with the Order Manager subsection of Saving Orders in this
chapter.

As previously mentioned, the PaymentGroupDroplet servlet bean is used to initialize
CommerceIdentifierPaymentInfo objects and add them to the
CommerceIdentifierPaymentInfoContainer, so they can be used by the
PaymentGroupFormHandler. To initialize the CommerceIdentifierPaymentInfo objects, the service
method of PaymentGroupDroplet calls initializePaymentInfos(), which creates and initializes
CommerceIdentifierPaymentInfo objects for the Order, as well as the Order’s CommerceItems,
ShippingGroups, and tax. These objects are then added to the
CommerceIdentifierPaymentInfoContainer.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 3 3

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
The input parameters passed into PaymentGroupDroplet determine whether the
CommerceIdentifierPaymentInfo objects are created and whether the
CommerceIdentifierPaymentInfoContainer is cleared before they are created. For a detailed list of
these input parameters, as well as its output parameters, open parameters, and a code example, see the
Adding Payment Information to Shopping Carts section of the Implementing Order Retrieval chapter of the
ATG Commerce Guide to Setting Up a Store.

Submitting an Order for Checkout

The CommitOrderFormHandler (class atg.commerce.order.purchase.CommitOrderFormHandler)
submits the user’s current Order for checkout. ATG Commerce includes an instance of
CommitOrderFormHandler, which is located in Nucleus at
/atg/commerce/order/purchase/CommitOrderFormHandler.

The form handler’s handleCommitOrder() method ensures that the user is not trying to double-submit
the order by checking if the ID of the current Order is equal to the ID of the user’s last Order (in
ShoppingCart.last). If the IDs are not equal, then the current Order can be submitted. The handle
method then calls the OrderManager.processOrder() method, which executes the processOrder
pipeline. (See Checking Out an Order below.)

If no errors occur during the validation or checkout of the Order, then handleCommitOrder() sets the
submitted Order as the user’s last Order in ShoppingCart.last, and it constructs a new, empty Order
and sets it as the user’s current Order in ShoppingCart.current.

Checking Out an Order

Order processing occurs when a customer has supplied all the necessary information for the Order and
has submitted it for checkout. The processing of an Order begins with a call to
OrderManager.processOrder(), which calls into the PipelineManager to execute the processOrder
pipeline. The processOrder pipeline first validates the Order and then processes it. Note that, by
default, ATG Commerce does not process an incomplete Order. To allow the processing of incomplete
Orders, you must modify the pipeline accordingly.

The PipelineManager Nucleus component for ATG Commerce is located at
/atg/commerce/PipelineManager. In ATG Consumer Commerce, the related XML configuration file is
defined in <ATG10dir>/B2CCommerce/config/atg/commerce/commercepipeline.xml. In ATG
Business Commerce, the related XML configuration file is defined in
<ATG10dir>/B2BCommerce/config/atg/commerce/commercepipeline.xml.

Note: You can use the credit card information listed below to process payments during testing of the
order checkout process. The expiration date for all cards can be any date in the future.

 Visa: 4111111111111111

 MasterCard: 5555555555554444

 American Express: 378282246310005

 Discover: 6011111111111117

The following table describes the processors in the processOrder pipeline. They are listed in order of
execution.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 3 4

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ

PipelineLink name Description

executeValidateForCheckoutChain Executes the validateForCheckout pipeline (Refer to
the next table in this section.) The
atg.commerce.order.processor.ProcExecuteCha

in class implements this functionality. Its properties file
defines the execution chain to run in the chainToRun
property. By default, this property is set to
validateForCheckout.

If any errors occur during the execution of this
processor, execution of the processOrder pipeline
stops.

executeApproveOrderChain (ATG Business Commerce only) Executes the
approveOrder pipeline, which begins the approval
process. The
atg.commerce.order.processor.ProcExecuteCha

in class implements this functionality.

See the Managing the Order Approval Process chapter
for more information.

stopChainIfOrderRequiresApproval (ATG Business Commerce only) Checks the state of the
Order. If the Order requires approval and has not been
approved yet, execution of the processOrder pipeline
stops. If the Order required approval and has been
approved, the processOrder pipeline continues with
executeValidatePostApprovalChain. If the Order
did not require approval, the pipeline continues with
executeValidateNoApprovalChain.

The
atg.commerce.order.processor.ProcDispatchOn

OrderState class implements this functionality. See
the Managing the Order Approval Process chapter for
more information.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 3 5

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
executeValidatePostApprovalChain (ATG Business Commerce only) For Orders that have

been approved. This processor executes the
validatePostApproval pipeline, which revalidates
information the approver may have changed.
Specifically, the pipeline revalidates payment
information (all payment groups and cost centers) and
checks that all Order and shipping costs are accounted
for.

The
atg.commerce.order.processor.ProcExecuteCha

in class implements this functionality. See the
Managing the Order Approval Process chapter for more
information.

executeValidateNoApprovalChain (ATG Business Commerce only) For Orders that didn’t
require approval. This processor executes the
validateNoApproval pipeline, which validates
information intentionally skipped by the
executeValidateForCheckout pipeline processor.
Specifically, by default the pipeline validates
InvoiceRequests, which are intentionally skipped by
the validateForCheckout pipeline until it is
determined that the Order requires approval.

The
atg.commerce.order.processor.ProcExecuteCha

in class implements this functionality. See the
Managing the Order Approval Process chapter for more
information.

checkForExpiredPromotions Checks that expired promotions are not used in Order
that is being checked out. The
atg.commerce.order.processor.ProcCheckForEx

piredPromotions class implements this functionality.

removeEmptyShippingGroups Removes any empty (unused) shipping groups from
the Order. An empty ShippingGroup is one without
any CommerceItemRelationships. The
atg.commerce.order.processor.ProcRemoveEmpt

yShippingGroups class implements this functionality.

removeEmptyPaymentGroups Removes any empty (unused) payment groups from
the Order. An empty PaymentGroup is one without
any CommerceItemRelationships,
ShippingGroupRelationships, and
OrderRelationships. The
atg.commerce.order.processor.ProcRemoveEmpt

yPaymentGroups class implements this functionality.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 3 6

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
createImplicitRelationships Validates the special case of an Order having one

ShippingGroup and/or one PaymentGroup and no
Relationships. In this situation, the processor
actually creates relationships between all the
CommerceItems and the ShippingGroup. It also
creates a relationship between the PaymentGroup and
the Order. The
atg.commerce.order.processor.ProcCreateImpl

icitRelationships class implements this
functionality.

setPaymentGroupAmount Determines and sets the amount to charge in each
PaymentGroup based on the Relationships in the
Order. The
atg.commerce.order.processor.ProcSetPayment

GroupAmount class implements this functionality.

setCostCenterAmount (ATG Business Commerce only) Determines and sets
the amount to assign to each cost center in the Order.
The
atg.b2bcommerce.order.processor.ProcSetCost

CenterAmount class implements this functionality.

See the Implementing Cost Centers chapter of the ATG
Commerce Guide to Setting Up a Store for more
information.

moveUsedPromotions Moves all promotions that a customer used in the
Order to the usedPromotions list in the customer’s
profile. If the promotion is a single-use promotion, it is
also removed from the activePromotions list and
added to the customer’s inactivePromotions list.
The
atg.commerce.order.processor.ProcMoveUsedPr

omotions class implements this functionality.

authorizePayment Authorizes all PaymentGroups (CreditCard, or
GiftCertificate, or StoreCredit) in the Order.
The
atg.commerce.order.processor.ProcAuthorizeP

ayment class implements this functionality.

Note: For information on how to prevent the
authorization of a user’s credit card under certain
circumstances, such as when the items in the Order
don’t exist in inventory, see Preventing Payment
Authorization for Unfulfilled Orders later in this section.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 3 7

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
updateGiftRepository Updates the Gift List Repository to reflect the purchase

of any gifts in the order. The
atg.commerce.order.processor.ProcUpdateGift

Repository class implements this functionality

sendGiftPurchasedMessage Sends a message to the messaging system that
describes the gifts that were purchased. The message
can then be used to execute scenarios. The
atg.commerce.order.processor.ProcSendGiftPu

rchasedMessage class implements this functionality.

addOrderToRepository This processor first calls
OrderManager.updateOrder() to save the Order to
the Order Repository. (See Updating an Order with the
Order Manager.) The
atg.commerce.order.processor.ProcAddOrderTo

Repository class implements this functionality.

sendPromotionUsedMessage Sends a message to the messaging system that
describes the promotions that were used in the Order.
The message can then be used to execute scenarios.
The
atg.commerce.order.processor.ProcSendPromot

ionUsedMessage class implements this functionality.

sendFulfillmentMessage Sends a message that includes the Order to the
fulfillment system. This message indicates to the
fulfillment system that it can fulfill the Order. The
atg.commerce.order.processor.ProcSendFulfil

lmentMessage class implements this functionality.

The first processor in the processOrder pipeline, named executeValidateForCheckoutChain, in turn
executes the validateForCheckout pipeline. The following table describes the processors in the
validateForCheckout pipeline. They are listed in order of execution.

PipelineLink name Description

ValidateOrderForCheckout Verifies that the Order contains at least one
CommerceItem, ShippingGroup, and
PaymentGroup. The
atg.commerce.order.processor.ProcValidateO

rderForCheckout class implements this
functionality.

VerifyOrderAddresses Verifies the addresses for shipping groups and
payment groups. The
atg.commerce.order.processor.ProcVerifyOrd

erAddresses class implements this functionality.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 3 8

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
validateShippingGroupsForCheckout Verifies that all CommerceItems in the Order are

assigned to a ShippingGroup. The processor also
verifies that all required fields have been supplied to
all ShippingGroups in the Order. The
atg.commerce.order.processor.ProcValidateS

hippingGroupsForCheckout class that implements
this functionality is.

creditCardModCheck Verifies that the credit card number and expiration
date are valid. The credit card is not authorized by a
processing system at this point. (See the previous
table, which describes the processors in the
processOrder pipeline.) Rather, the processor
applies a simple algorithm to the credit card number
to determine if it is valid. It then checks the date to
determine if the card has expired. The
atg.commerce.order.processor.ProcCreditCar

dModCheck class implements this functionality.

validatePaymentGroupsForCheckout Verifies that all CommerceItems in the Order can
account for their costs, which means that the
processor verifies all
PaymentGroupCommerceItemRelationships. It
also verifies that all required fields have been supplied
to all PaymentGroups in the Order. The
atg.commerce.order.processor.ProcValidateP

aymentGroupsForCheckout class implements this
functionality.

validateShippingCostsForCheckout Verifies that all ShippingGroups can account for
their costs, which means that the processor verifies all
PaymentGroupShippingGroupRelationships. The
atg.commerce.order.processor.ProcValidateS

hippingCostsForCheckout class implements this
functionality.

validateOrderCostsForCheckout Verifies the Order can account for its cost, which
means the processor verifies all
PaymentGroupOrderRelationships. The
atg.commerce.order.processor.ProcValidateO

rderCostsForCheckout class implements this
functionality.

validateHandlingInstructionsForChe

ckout

Verifies that all HandlingInstructions are assigned
to a valid ShippingGroup and CommerceItem
combination. The
atg.commerce.order.processor.ProcValidateH

andlingInstructionsForCheckout class
implements this functionality.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 3 9

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
validateCurrencyCodes Validates that all the currency codes in the

PriceInfo objects are the same. Also validates that
all the items, shipping, tax, and order have been
priced. The
atg.commerce.order.processor.ProcValidateC

urrencyCodes class implements this functionality.

For more information about pipelines, the PipelineManager, see the Processor Chains and the Pipeline
Manager chapter; for information about the transactional modes and transitions of the processors in the
processOdOrder and validateForCheckout pipelines, see Appendix G: Commerce Pipeline Chains.

Preventing Payment Authorization for Unfulfilled Orders

The processOrder pipeline performs several checkout functions, including authorizing a user’s credit
card for the amount of the order. Under certain circumstances, you may want to prevent the
authorization of a credit card, for example, when the order contains items that do not exist in inventory. In
this example, the user could be alerted of the lack of inventory and allowed to modify the order before
checkout.

You can modify the processOrder pipeline to prevent credit card authorization under certain
conditions. To do so, you need to modify the pipeline to include a branch. One processor in the pipeline
should check that the items being purchased do exist in inventory. If they do, then the Order should
continue through the pipeline for checkout (and authorization of the user’s credit card). If the items do
not exist in inventory, then the Order should branch to an alternate pipeline that does not authorize the
user’s credit card. Instead, the pipeline might redirect the user to a page that indicates which items could
not be allocated from inventory and allows the user to change the Order. The important concept is that
the processOrder pipeline branches so that the user’s credit card is not authorized.

As previously mentioned, the PipelineManager Nucleus component for ATG Commerce is located at
/atg/commerce/PipelineManager. In ATG Consumer Commerce, the related XML configuration file is
defined in <ATG10dir>/B2CCommerce/config/atg/commerce/commercepipeline.xml. In ATG
Business Commerce, the related XML configuration file is defined in
<ATG10dir>/B2BCommerce/config/atg/commerce/commercepipeline.xml.

For information on how to set up a branching pipeline, see the Processor Chains and the Pipeline
Manager chapter.

Processing Payment of Orders
The PaymentManager manages the authorization, debit, and credit of PaymentGroups in an Order, and
it tracks the results of those payment operations using PaymentStatus objects.

This section provides information on how the payment of orders is processed in ATG Commerce and
describes how to extend the system to add functionality or to support a new payment method. It includes
the following sections:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 4 0

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
 Overview of the Payment Process

 Extending the Payment Operations of a Payment Method

 Extending the Payment Process to Support a New Payment Method

 Extending Order Validation to Support New Payment Methods

Overview of the Payment Process

When the PaymentManager’s authorize/credit/debit method is called, it takes the Order and a
single PaymentGroup or List of PaymentGroups as parameters. It then calls its
authorize/credit/debit method that takes an additional amount parameter, passing in the amount in
the current PaymentGroup. This second authorize/credit/debit method performs the actual
payment operation for the current PaymentGroup by looking up the pipeline appropriate for the current
PaymentGroup class type and then calling that pipeline.

To obtain the appropriate pipeline to run, the authorize/credit/debit method calls
getXXXChainName(PaymentGroup), for example, getCreditChainName(PaymentGroup). In turn, this
method calls getChainName(PaymentGroup), which uses the class name of the given PaymentGroup as
the key to look up the appropriate pipeline to run in PaymentManager.paymentGroupToChainNameMap.
This property stores a map of PaymentGroup class types to the names of the pipelines that perform the
payment actions for the payment methods. By default, this property is configured as follows:

paymentGroupToChainNameMap=\

 atg.commerce.order.CreditCard=creditCardProcessorChain,\

 atg.commerce.order.GiftCertificate=giftCertificateProcessorChain,\

 atg.commerce.order.StoreCredit=storeCreditProcessorChain

Thus, the creditCardProcessorChain pipeline handles authorization, debit, and credit work for the
atg.commerce.order.CreditCard class, the giftCertificateProcessorChain pipeline handles
authorization, debit, and credit work for the atg.commerce.order.GiftCertificate class, and so on.

By default, each of the pipelines in PaymentManager.paymentGroupToChainNameMap is composed of
two processors. The first processor aggregates the necessary information for performing the requested
payment action (for example, CREDIT) and creates an XXXInfo object (for example, CreditCardInfo) for
use in that action. The second processor performs the actual operation – authorizing, debiting, or
crediting the appropriate payment method. Note that while a single pipeline exists to perform authorize,
debit, and credit actions for a single PaymentGroup type, you can split these actions into separate
pipelines if your processing needs for a given payment action are unusual.

Once the appropriate pipeline to run has been obtained (for example, the creditCardProcessorChain
pipeline), the authorize/credit/debit method calls into the PaymentPipelineManager to execute
the pipeline. It passes in the PaymentManagerPipelineArgs Dictionary object as an argument to the
runProcess() method of the pipeline. This Dictionary object contains the information required to
perform the transaction, which is as follows:

 Order

 PaymentManager

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 4 1

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
 PaymentGroup

 Payment amount

 Action (PaymentManagerAction.AUTHORIZE, PaymentManagerAction.CREDIT, or
PaymentManagerAction.DEBIT)

 Generic Info object (for example, CreditCardInfo and GiftCertificateInfo))

 PaymentStatus

The PaymentStatus object represents the results of the authorize, credit, or debit transaction performed
by the pipeline; it contains properties such as amount, errorMessage, transactionId,
transactionSuccess, and transactionTimestamp. When the PaymentManager’s
authorize/credit/debit method is called, the method performs the payment operation and then adds
a PaymentStatus object to the given PaymentGroup. The PaymentStatus object is discussed in more
detail at the end of this section.

Note: The PaymentManager is also used by the Fulfillment system. For information about the Fulfillment
system, see the Configuring the Order Fulfillment Framework chapter.

Extending the Payment Operations of a Payment Method

Sometimes you may find that you need to extend the way a given payment operation works. For
example, you may have an unusual credit operation that you want to perform on credit cards.

This section provides information on how to extend the way payment operations work for a given
payment method, using the CreditCard payment method as an example. The process to extend the
payment operations of the StoreCredit payment method, the GiftCertificate payment method,
and the InvoiceRequest payment method (ATG Business Commerce only) works in the same fashion.

As described in the previous section, the PaymentManager.properties file at
/atg/commerce/payment/PaymentManager is configured to map CreditCard objects to the
creditCardProcessorChain pipeline. Like all of the default payment pipelines,
creditCardProcessorChain is composed of two processors. The first processor –
CreateCreditCardInfo -- aggregates the necessary information for performing the requested payment
action (for example, CREDIT) and creates an XXXInfo object (for example, CreditCardInfo) for use in
that action. The second processor – ProcessCreditCard --performs the actual operation – authorizing,
debiting, or crediting the appropriate payment method.

The ProcessCreditCard processor is located in Nucleus at
/atg/commerce/payment/processor/ProcessCreditCard, and it is instantiated from class
atg.commerce.payment.processor.ProcProcessCreditCard, which extends
atg.commerce.payment.processor.ProcProcessPaymentGroup. The ProcessCreditCard
processor authorizes, debits, and credits a CreditCard PaymentGroup by calling through to a
CreditCardProcessor object to perform the actual operations. The specific object used to perform the
actual operations is retrieved from PaymentManager.creditCardProcessor; this property points to an
object instantiated from a class that implements the
atg.payment.creditCard.CreditCardProcessor interface.

To change the way credit cards are operated on, write a new class that implements the
CreditCardProcessor interface and provides the additional functionality your sites require, then create

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 4 2

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
and configure an instance of the new class in Nucleus, and finally change the
PaymentManager.creditCardProcessor property to point to the new component.

Extending the Payment Process to Support a New Payment Method

If your sites require it, you can extend the payment process to support a new payment method. This
section provides information on how to create and support a new payment method, using an example
called the StorePoints payment method. In this example, customers earn store points when they
purchase items, and they can later redeem those points on other purchases. The StorePoints system is
just one example of the many new payment methods you can implement.

The StorePoints system is implemented using the following basic steps. Detailed instructions are
provided in the referenced subsections that follow.

1. Create the new StorePoints PaymentGroup. See Creating a New PaymentGroup.

2. Create a new repository item type for the StorePointsPaymentGroup. Associate the
new item type to the new class by adding an entry to the
beanNameToItemDescriptorMap property of the OrderTools component. Add the
new class to the paymentTypeClassMap. See Integrating a New Commerce Object:
Using a New Item Descriptor.

3. Implement the payment processors involved in operating on the StorePoints
PaymentGroup. See Implementing Processors for the New PaymentGroup.

4. Define the pipeline that processes the StorePoints PaymentGroup for authorization,
debits, and credits, and configure the PaymentManager to invoke it when appropriate.
See Integrating the New Payment Processors into the PaymentManager.

5. Extend the Order validation process to validate the StorePoints PaymentGroup
during checkout. See Extending Order Validation to Support New Payment Methods in
the next section.

The following diagram shows the relationships between the objects involved in processing a payment
transaction. In ATG Commerce, by default the CreditCard, GiftCertificate, StoreCredit, and
InvoiceRequest (ATG Business Commerce only) systems are provided.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 4 3

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ

CreditCardProcessor

PaymentManager

External Credit
Card Processing

System
CreditCardStatus

Custom
Code

CreditCardInfo

GiftCertificateProcessor

Gift Certificate
Processing

System
GiftCertificateStatus

Custom
Code

GiftCertificateInfo

PaymentGroup

StoreCreditProcessor

StoreCredit
Processing

System
StoreCreditStatus

Custom
Code

StoreCreditInfo

InvoiceRequestProcessor

InvoiceRequest
Processing

System
InvoiceRequestStatus

Custom
Code

InvoiceRequestInfo

StoreCreditProcessor

StoreCredit
Processing

System
StoreCreditStatus

Custom
Code

StoreCreditInfo

Creating a New PaymentGroup

The first step in creating and supporting a new StorePoints payment method is to create a new
PaymentGroup named StorePoints. The new PaymentGroup allows you to distinguish StorePoints
from other payment groups and to store data relating to the store points system. The following code
sample is an example of the StorePoints PaymentGroup.

package store.some.package;

import atg.commerce.order.*;

public class StorePoints extends PaymentGroupImpl

{

 public StorePoints() {

 }

 public String getUserId() {

 return (String) getPropertyValue("userId");

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 4 4

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
 }

 public void setUserId(String pUserId) {

 setPropertyValue("userId", pUserId);

 }

 public int getNumberOfPoints() {

 return ((Integer) getPropertyValue("numberOfPoints")).intValue();

 }

 public void setNumberOfPoints(int pNumberOfPoints) {

 setPropertyValue("numberOfPoints", new Integer(pNumberOfPoints));

 }

}

Implementing Processors for the New PaymentGroup

As previously mentioned, the default payment pipelines are composed of two processors. The first
processor aggregates the necessary information for performing the requested payment action (for
example, CREDIT) and creates an XXXInfo object (for example, CreditCardInfo) for use in that action.
The second processor actually performs the operation – authorizing, debiting, or crediting the
appropriate payment method. For example, the creditCardProcessorChain pipeline is composed of
the CreateCreditCardInfo processor (class
atg.commerce.payment.processor.ProcCreateCreditCardInfo) and the ProcessCreditCard
processor (class atg.commerce.payment.processor.ProcProcessCreditCard). The
ProcessCreditCard processor calls through to a CreditCardProcessor object to perform the actual
operations. The specific object used to perform the actual operations is retrieved from
PaymentManager.creditCardProcessor, which points to an object instantiated from a class that
implements the atg.payment.creditcard.CreditCardProcessor interface.

For the StorePoints PaymentGroup, you need to implement similar processors -- a pipeline processor
to create the XXXInfo object for the StorePoints PaymentGroup, a second pipeline processor to
authorize, debit, and credit the StorePoints PaymentGroup, and a processor that implements a
StorePointsProcessor interface and actually performs the payment operations.

First, write the StorePointsProcessor interface that defines the authorize(), debit(), and
credit() methods for the StorePoints PaymentGroup, as shown in the following code example. Note
that the authorize, debit, and credit methods of the StorePointsProcessor interface all return a
StorePointsStatus object, which represents the transaction on the StorePoints PaymentGroup. This
object is discussed in more detail later in this section.

package store.some.package;

import atg.payment.*;

public interface StorePointsProcessor

{

 /**

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 4 5

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
 * Authorize the amount in StorePoints

 *

 * @param pStorePointsInfo the StorePointsInfo reference which contains

 * all the authorization data

 * @return a StorePointsStatus object detailing the results of the

 * authorization

 */

 public StorePointsStatus authorize(StorePointsInfo pStorePointsInfo);

 /**

 * Debit the amount in StorePoints after authorization

 *

 * @param pStorePointsInfo the StorePointsInfo reference which contains

 * all the debit data

 * @param pStatus the StorePointsStatus object which contains

 * information about the transaction. This should be the object

 * which was returned from authorize().

 * @return a StorePointsStatus object detailing the results of the debit

 */

 public StorePointsStatus debit(StorePointsInfo pStorePointsInfo,

 StorePointsStatus pStatus);

 /**

 * Credit the amount in StorePoints after debiting

 *

 * @param pStorePointsInfo the StorePointsInfo reference which contains

 * all the credit data

 * @param pStatus the StorePointsStatus object which contains

 * information about the transaction. This should be the object

 * which was returned from debit().

 * @return a StorePointsStatus object detailing the results of the

 * credit

 */

 public StorePointsStatus credit(StorePointsInfo pStorePointsInfo,

 StorePointsStatus pStatus);

 /**

 * Credit the amount in StorePoints outside the context of an Order

 *

 * @param pStorePointsInfo the StorePointsInfo reference which contains

 * all the credit data

 * @return a StorePointsStatus object detailing the results of the

 * credit

 */

 public StorePointsStatus credit(StorePointsInfo pStorePointsInfo);

}

Second, write an implementation of the StorePointsProcessor interface named
StorePointsProcessorImpl. StorePointsProcessorImpl must work with the resources needed to

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 4 6

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
carry out the transactions. For example, if the customer’s points data are stored in a database table, then
its methods must operate against that table, reading and writing values to reflect the operation. For a
different custom payment method, the implementation must work with whatever 3rd-party resources are
needed to carry out the transactions.

The following code sample is taken from the StorePointsProcessorImpl class, an example of an
implementation of the StorePointsProcessor interface. You can assume that
StorePointsProcessorImpl extends GenericService and, therefore, can use standard ATG
Commerce logging calls.

Note in the code sample that the authorize, debit, and credit methods of StorePointsProcessorImpl
all return a PaymentStatus object, which represents the results of transaction performed by the pipeline.
Recall that a PaymentStatus object contains properties such as amount, errorMessage,
transactionId, transactionSuccess, and transactionTimestamp. It is discussed in more detail
later in this section.

/**

 * This method will obtain the <code>StorePointsInfo</code> object from

 * the pParams parameter and invoke the

 * {@link #authorize<code>authorize</code>} method.

 *

 * @param pParams PaymentManagerPipelineArgs object which contains the

 * StorePointsInfo object.

 * @return a PaymentStatus object that will detail the authorize details

 * @exception CommerceException if an error occurs

 */

 public PaymentStatus authorizePaymentGroup(PaymentManagerPipelineArgs

pParams)

 throws CommerceException

 {

 StorePointsInfo spi = null;

 try {

 spi = (StorePointsInfo)pParams.getPaymentInfo();

 }

 catch (ClassCastException cce) {

 if (isLoggingError())

 logError("Expecting class of type StorePointsInfo but got: " +

 pParams.getPaymentInfo().getClass().getName());

 throw cce;

 }

 return authorize(spi);

 }

/**

 * This method will obtain the <code>StorePointsInfo</code> object from

 * the pParams parameter and invoke the {@link #debit<code>debit</code>}

 * method.

 *

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 4 7

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
 * @param pParams PaymentManagerPipelineArgs object which contains the

 * StorePointsInfo and StorePointsStatus objects.

 * @return a PaymentStatus object that will detail the debit details

 * @exception CommerceException if an error occurs

 */

 public PaymentStatus debitPaymentGroup(PaymentManagerPipelineArgs

pParams)

 throws CommerceException

 {

 StorePointsInfo spi = null;

 try {

 spi = (StorePointsInfo)pParams.getPaymentInfo();

 }

 catch (ClassCastException cce) {

 if (isLoggingError())

 logError("Expecting class of type StorePointsInfo but got: " +

 pParams.getPaymentInfo().getClass().getName());

 throw cce;

 }

 StorePointsStatus authStatus = null;

 PaymentGroup pg = pParams.getPaymentGroup();

 try {

 authStatus = (StorePointsStatus)

pParams.getPaymentManager().getLastAuthorizationStatus(pg);

 }

 catch (ClassCastException cce) {

 if (isLoggingError()) {

 String authStatusClassName =

pParams.getPaymentManager().getLastAuthorizationStatus(pg).getClass().getN

ame();

 logError("Expecting class of type StorePointsStatus but got: " +

 authStatusClassName);

 }

 throw cce;

 }

 return debit(spi, authStatus);

 }

 /**

 * This method will obtain the <code>StorePointsInfo</code> object from

 * the pParams parameter and invoke the

 * {@link #credit<code>credit</code>} method.

 *

 * @param pParams PaymentManagerPipelineArgs object which contains the

 * StorePointsInfo, PaymentGroup and StorePointsStatus object.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 4 8

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
 * @return a PaymentStatus object that will detail the credit details

 * @exception CommerceException if an error occurs

 */

 public PaymentStatus creditPaymentGroup(PaymentManagerPipelineArgs

pParams)

 throws CommerceException

 {

 StorePointsInfo spi = null;

 try {

 spi = (StorePointsInfo)pParams.getPaymentInfo();

 }

 catch (ClassCastException cce) {

 if (isLoggingError())

 logError("Expecting class of type StorePointsInfo but got: " +

 pParams.getPaymentInfo().getClass().getName());

 throw cce;

 }

 StorePointsStatus debitStatus = null;

 PaymentGroup pg = pParams.getPaymentGroup();

 try {

 debitStatus = (StorePointsStatus)

pParams.getPaymentManager().getLastDebitStatus(pg);

 }

 catch (ClassCastException cce) {

 if (isLoggingError()) {

 String debitStatusClassName =

pParams.getPaymentManager().getLastDebitStatus(pg).getClass().getName();

 logError("Expecting class of type StorePointsStatus but got: " +

 debitStatusClassName);

 }

 throw cce;

 }

 return credit(spi, debitStatus);

 }

Third, implement a pipeline processor that performs the payment transactions for the StorePoints
PaymentGroup by calling through to StorePointsProcessorImpl. You might call this pipeline
processor class ProcProcessStorePoints. Because the implementation will be called within the
context of a pipeline, it must also implement the atg.service.pipeline.PipelineProcessor
interface. ATG Commerce provides an abstract class that implements both the PipelineProcessor
interface and several other helper methods that determine what action is requested (authorize, debit, or
credit) and then dispatch to the appropriate method call. This abstract class is
atg.commerce.payment.processor.ProcProcessPaymentGroup. By extending
ProcProcessPaymentGroup, you only need to define three abstract methods:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 4 9

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
authorizePaymentGroup(), debitPaymentGroup() and creditPaymentGroup(). These methods
should call through to their respective methods in the StorePointsProcessorImpl object, passing in
the data from the PaymentManagerPipelineArgs object that is supplied as a parameter. Additionally,
ProcProcessStorePoints should include an additional property named storePointsProcessor that
can be set to the StorePointsProcessor object that actually performs the payment operations. In this
example, ProcProcessStorePoints.storePointsProcessor would be set
StorePointsProcessorImpl.

Recall from the previous code example of StorePointsProcessorImpl that the StorePoints
PaymentGroup itself is not passed as a parameter to the StorePointsProcessorImpl processor. This
keeps the payment processors independent of the commerce objects in ATG Commerce. Instead, before
the ProcProcessStorePoints pipeline processor is invoked, a previous pipeline processor must
aggregate the necessary information for performing the requested payment action, create an XXXInfo
object for use in that action, and finally add the XXXInfo object to the PaymentManagerPipelineArgs
Dictionary object. The Dictionary object is then passed as an argument “downstream” to the
ProcProcessStorePoints pipeline processor and on to the StorePointsProcessorImpl processor.

In this StorePoints example, the XXXInfo object might be called StorePointsInfo, and the processor
that creates it might be called ProcCreateStorePointsInfo. The StorePointsInfo object must hold
all of the data required by the methods in StorePointsProcessorImpl. It might hold a user ID
(Profile ID) and the number of points for the operation. The following code sample is an example of the
StorePointsInfo class.

package store.some.package;

public class StorePointsInfo

{

 public StorePointsInfo() {

 }

 private String mUserId = null;

 public String getUserId() {

 return mUserId;

 }

 public void setUserId(String pUserId) {

 mUserId = pUserId;

 }

 private int mNumberOfPoints = 0;

 public int getNumberOfPoints() {

 return mNumberOfPoints;

 }

 public void setNumberOfPoints(int pNumberOfPoints) {

 mNumberOfPoints = pNumberOfPoints;

 }

}

Next, implement the ProcCreateStorePointsInfo processor that must construct the
StorePointsInfo object and add it to the PaymentManagerPipelineArgs Dictionary object. As

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 5 0

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
with the StorePointsProcessorImpl class, the ProcCreateStorePointsInfo class must implement
the atg.service.pipeline.PipelineProcessor interface because the implementation will be called
within the context of a pipeline. The following code sample is an example of the
ProcCreateStorePointsInfo class.

package store.some.package;

import atg.nucleus.GenericService;

import atg.service.pipeline.PipelineProcessor;

import atg.service.pipeline.PipelineResult;

import atg.commerce.order.*;

import atg.commerce.payment.*;

/**

 * This pipeline processor element is called to create generic

 * StorePointsInfo objects from instances of the StorePoints

 * payment group. It places them into the pipeline argument dictionary so

 * that downstream pipeline processors can retrieve them by calling

 * <code>PaymentManagerPipelineArgs.getPaymentInfo()</code>.

 *

 * <p>This processor is designed so that the StorePointsInfo class can

 * easily be extended. See

 * {@link #setStorePointsInfoClass "<code>setStorePointsInfoClass</code>"}

 * and

 * {@link #addDataToStorePoints "<code>addDataToStorePointsInfo</code>"}

 * for more information.

 *

 */

public class ProcCreateStorePointsInfo

 extends GenericService

 implements PipelineProcessor

{

 /** The possible return value for this processor. **/

 public static final int SUCCESS = 1;

 //---

 // property: StorePointsInfoClass

 String mStorePointsInfoClass = "store.some.package.StorePointsInfo";

 /**

 * Return the class to instantiate when creating a new StorePointsInfo

 * object.

 **/

 public String getStorePointsInfoClass() {

 return mStorePointsInfoClass;

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 5 1

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
 }

 /**

 * Specify the class to instantiate when creating a new StorePointsInfo

 * object. If the <code>StorePointsInfo</code> class is extended to

 * include more information, this property can be changed to reflect the

 * new class.

 **/

 public void setStorePointsInfoClass(String pStorePointsInfoClass) {

 mStorePointsInfoClass = pStorePointsInfoClass;

 }

 //--

 /**

 * This method populates the <code>StorePointsInfo</code> object with

 * data. If the additional data is required, a subclass of

 * <code>StorePointsInfo</code> can be created with additional

 * properties, the <code>storePointsInfoClass</code> property can be

 * changed to specify the new class, and this method can be overridden

 * to add data for the new properties (or another pipeline processor

 * could be added after this processor to populate the additional

 * properties).

 *

 * @param pOrder

 * The order being paid for.

 * @param pPaymentGroup

 * The payment group being processed.

 * @param pAmount

 * The amount being authorized, debited, or credited

 * @param pParams

 * The parameter dictionary passed to this pipeline processor

 * @param pStorePointsInfo

 * An object that holds information understood by the store

 * points payment processor.

 **/

 protected void addDataToStorePointsInfo(Order pOrder,

 StorePoints pPaymentGroup, double pAmount,

 PaymentManagerPipelineArgs pParams, StorePointsInfo

 pStorePointsInfo)

 {

 pStorePointsInfo.setUserId(pPaymentGroup.getUserId());

 pStorePointsInfo.setNumberOfPoints(pPaymentGroup.getNumberOfPoints());

 }

 //--

 /**

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 5 2

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
 * Factory method to create a new StorePointsInfo object. The class

 * that is created is that specified by the

 * <code>storePointsInfoClass</code> property, and must be a subclass

 * of <code>store.some.package.StorePointsInfo</code>

 *

 * @return

 * An object of the class specified by

 * <code>storePointsInfoClass</code>

 * @throws Exception

 * if any instantiation error occurs when creating the info object

 **/

 protected StorePointsInfo getStorePointsInfo()

 throws Exception

 {

 if (isLoggingDebug())

 logDebug("Making a new instance of type: " +

getStorePointsInfoClass());

 StorePointsInfo spi = (StorePointsInfo)

 Class.forName(getStorePointsInfoClass()).newInstance();

 return spi;

 }

 //--

 /**

 * Generate a StorePointsInfo object of the class specified by

 * <code>StorePointsInfoClass</code>, populate it with data from a

 * <code>StorePoints</code> payment group by calling

 * <code>addDataToStorePointsInfo</code>, and add it to the pipeline

 * argument dictionary so that downstream pipeline processors can access

 * it.

 *

 * @param pParam

 * Parameter dictionary of type PaymentManagerPipelineArgs.

 * @param pResult

 * Pipeline result object, not used by this method.

 * @return

 * An integer value used to determine which pipeline processor is

 * called next.

 * @throws Exception

 * If any error occurs creating or populating the store points info

 * object.

 **/

 public int runProcess(Object pParam, PipelineResult pResult)

 throws Exception

 {

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 5 3

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
 PaymentManagerPipelineArgs params =

(PaymentManagerPipelineArgs)pParam;

 Order order = params.getOrder();

 StorePoints storePoints = (StorePoints)params.getPaymentGroup();

 double amount = params.getAmount();

 // create and populate store points info class

 StorePointsInfo spi = getStorePointsInfo();

 addDataToStorePointsInfo(order, storePoints, amount, params, spi);

 if (isLoggingDebug())

 logDebug("Putting StorePointsInfo object into pipeline: " +

spi.toString());

 params.setPaymentInfo(spi);

 return SUCCESS;

 }

 //--

 /**

 * Return the possible return values for this processor. This processor

 * always returns a success code.

 **/

 public int[] getRetCodes() {

 int retCodes[] = {SUCCESS};

 return retCodes;

 }

As previously mentioned, the StorePointsStatus object represents a transaction on a StorePoints
PaymentGroup. When the PaymentManager gets this object, it adds it to one of the
authorizationStatus, debitStatus, or creditStatus List objects in the PaymentGroup. The
specific list to which it is added depends on the operation.

Because none of the StorePointsProcessor methods throw exceptions, all operations must return an
object that implements the PaymentStatus interface, as PaymentStatusImpl does. Therefore, when
you implement StorePointsStatus, you should extend PaymentStatusImpl, which implements the
atg.payment.PaymentStatus interface. Follow the steps in Extending the Purchase Process to ensure
that objects are persisted properly. The following table describes the properties in the PaymentStatus
interface.

PaymentStatus Property Type Description

transactionId String A unique ID for the transaction that is generated by the
payment processor.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 5 4

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
amount double The amount of the transaction.

transactionSuccess boolean Indicates whether the transaction was successful. True
indicates that the transaction succeeded. False indicates
that it failed.

errorMessage String A detailed error message about the failure.

transactionTimestamp Date The time that the transaction was executed.

Below is an example of the StorePointsStatus class. All properties in this object must have values. The
most important property is transactionSuccess. If transactionSuccess is false, then an exception is
thrown with the message in the errorMessage property.

package store.some.package;

import atg.payment.*;

public class StorePointsStatus extends PaymentStatusImpl

{

 public StorePointsStatus() {

 }

 private String mConfirmationNumber = null;

 public String getConfirmationNumber() {

 return mConfirmationNumber;

 }

 public void setConfirmationNumber(String pConfirmationNumber) {

 mConfirmationNumber = pConfirmationNumber;

 }

}

Integrating the New Payment Processors into the PaymentManager

Integrating the new payment processors that you created in step 2 for the StorePoints PaymentGroup.
This involves two steps:

1. Create the pipeline that creates StorePointsInfo objects and processes the
StorePoints PaymentGroup for authorization, debits, and credits.

2. Configure the PaymentManager to invoke the pipeline when an operation is
requested on a StorePoints PaymentGroup.

See the sections that follow for details.

Creating the Pipeline

To create the pipeline that creates the StorePointsInfo objects and performs actions on the
StorePoints PaymentGroup:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 5 5

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
1. Configure a pipeline processor to create the StorePointsInfo object. To do this,

create a Nucleus component for the ProcCreateStorePointsInfo object. To create
a Nucleus component located at
/store/payment/processor/CreateStorePointsInfo, place the following
properties file into Nucleus at that path:

$class=store.some.package.ProcCreateStorePointsInfo

$scope=global

storePointsInfoClass=store.some.package.StorePointsInfo

2. Configure a pipeline processor to authorize, debit, and credit the StorePoints
payment method. To do this, create a Nucleus component for the
ProcProcessStorePoints object. To create a Nucleus component located at
/store/payment/processor/ProcessStorePoints, place the following properties
file into Nucleus at that path:

$class=store.some.package.ProcProcessStorePoints

$scope=global

storePointsProcessor=/store/payment/StorePointsProcessorImpl

Note that the ProcessStorePoints.storePointsProcessor property is set to the
StorePointsProcessor object that actually performs the payment operations.
ProcessStorePoints calls through to this object to perform the operations. In this
example, it would be set to the StorePointsProcessorImpl Nucleus component.

3. Create a Nucleus component for the StorePointsProcessorImpl object. This is the
object that actual performs the payment operations on the StorePoints payment
method. To create a Nucleus component located at
/store/payment/StorePointsProcessor, place the following properties file into
Nucleus at that path:

$class=store.some.package.StorePointsProcessorImpl

$scope=global

4. Define the storePointsProcessorChain pipeline and add it to the pipelines used
by the /atg/commerce/payment/PaymentPipelineManager. To do this, create a
paymentpipeline.xml file in Nucleus at
/atg/commerce/payment/paymentpipeline.xml. This XML file should define the
single pipeline that operates on StorePoints PaymentGroups; it will be combined
with the existing XML definition of payment pipelines using XML file combination.

The following is a code example of the storePointsProcessorChain pipeline:

<pipelinemanager>

<!-- This chain is used to process a store point payment group-->

<!-- This single chain knows how to auth/credit/debit a -->

<!-- payment group. It also creates the StorePointInfo object-->

<pipelinechain name="storePointProcessorChain" transaction="TX_REQUIRED"

headlink="createStorePointInfo">

 <pipelinelink name="createStorePointInfo" transaction="TX_MANDATORY">

 <processor jndi="/store/payment/processor/CreateStorePointInfo"/>

 <transition returnvalue="1" link="processStorePoints"/>

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 5 6

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
 </pipelinelink>

 <pipelinelink name="processStorePoints" transaction="TX_MANDATORY">

 <processor jndi="/store/payment/processor/ProcessStorePoints"/>

 </pipelinelink>

</pipelinechain>

</pipelinemanager>

Configure the PaymentManager to Invoke the StorePointsProcessorChain

To configure the PaymentManager to invoke the storePointsProcessorChain pipeline when an
operation is requested on a StorePoints PaymentGroup, you need to add a new entry to
PaymentManager.paymentGroupToChainNameMap. The paymentGroupToChainNameMap property
stores a mapping of PaymentGroup class names to the names of the pipelines to invoke when an
operation for those PaymentGroups is requested.

To add a new entry to PaymentManager.paymentGroupToChainNameMap, layer on a configuration file
that makes an additional entry to the paymentGroupToChainNameMap property. The new configuration
file would be located in Nucleus at /atg/commerce/payment/PaymentManager and would look like the
following:

PaymentGroupToChainNameMap+=Store.some.package.StorePoints=storePointsProc

essorChain

Extending Order Validation to Support New Payment Methods

Note: You can also follow this process to extend shipping group validation.

If you have implemented a custom payment method, such as the StorePoints payment method
described in detail in the previous section, you may want to perform validation on the custom payment
method during checkout. For example, for the StorePoints payment method you might want to make
sure that the number of points specified is greater than zero. You might also want to include other
validation logic – for example, you might decide that users cannot apply more than 500 store points to
any order, and that store points may not be used to pay for more than 25% of the order price. You can test
all of these conditions in a custom validation component for the StorePoints payment group.

When a user checks out an Order, the ATG Commerce purchase process performs validation checks on all
of the payment groups in the Order by executing the validateForCheckout pipeline, which is defined
in commercepipeline.xml. The validateForCheckout pipeline includes a
ValidatePaymentGroupsForCheckout processor, which iterates over the payment groups in the Order
and calls the validatePaymentGroup pipeline for each one to verify that the payment group is ready for
checkout.

The validatePaymentGroup pipeline begins with a processor that examines the type of the current
PaymentGroup and transfers control to a pipeline processor appropriate to that type. Credit cards are
checked by one processor, gift certificates by another, store credits by still another. You can add your own
pipeline processor to check the custom payment groups that you create.

Adding validation for your new payment method involves four steps:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 5 7

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
Step 1: Implement a validation pipeline processor.

Step 2: Create an instance of the processor.

Step 3: Add the custom payment method to the ValidatePaymentGroupByType
processor.

Step 4: Add the custom payment method to the validatePaymentGroup pipeline.

This subsections that follow describe each step in detail, using the StorePoints payment group that you
created in the previous section as an example.

Step 1: Implement a validation pipeline processor

The first step in validating your custom payment method is to write a pipeline processor that examines a
payment group and determines whether it meets the criteria for use in the Order. Recall that your
processor must implement the interface atg.service.pipeline.PipelineProcessor, which consists
of two methods:

 public int[] getRetCodes();

 public int runProcess(Object pParam, PipelineResult pResult) throws

Exception;

A validation processor for StorePoints might look similar to the following:

package store.checkout;

import atg.service.pipeline.*;

import atg.nucleus.GenericService;

import atg.commerce.order.processor.ValidatePaymentGroupArgs;

import store.payment.StorePoints;

public class ValidateStorePoints

extends GenericService

implements PipelineProcessor

{

 private static int SUCCESS_CODE = 1;

 private static int[] RETURN_CODES = { SUCCESS_CODE };

/**

 * Return the list of possible return values from this

 * processor. This processor always returns a single value

 * indicating success. In case of errors, it adds messages

 * to the pipeline result object.

 **/

 public int[] getRetCodes()

{

 return RETURN_CODES;

 }

 /**

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 5 8

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
 * Perform validation for a StorePoints payment group.

 **/

public int runProcess(Object pParam, PipelineResult pResult)

{

 ValidatePaymentGroupPipelineArgs args;

 // Dynamo guarantees that the pipeline parameter object

 // passed to a payment group validation processor will be

 // of type ValidatePaymentGroupPipelineArgs.

 args = (ValidatePaymentGroupPipelineArgs)pParam;

 PaymentGroup pg = args.getPaymentGroup();

 // Now try casting the payment group to the type we expect

 // and validating the fields. If the payment group is of

 // the wrong type, or if anything else goes wrong, add an

 // error to the pipeline result so the order manager will

 // abort the checkout process.

 try

 {

 StorePoints points = (StorePoints)pg;

 int nPoints = points.getNumberOfPoints();

 Order order = args.getOrder();

 double orderPrice = order.getPriceInfo().getTotal();

 // Log some debugging info about the number of points

 // and the total order price.

 if (isLoggingDebug())

 logDebug("Applying " + nPoints + " store points " +

 " to an order totaling " + orderPrice);

 // Are we using more than 500 points or trying to pay

 // for more than 25% of the order? If so, add an error

 // to the pipeline result before returning.

 if (nPoints <= 0)

 pResult.addError(

 "NoPointsUsed",

 "The number of points should be greater than zero.");

 else if (nPoints > 500)

 pResult.addError(

 "TooManyPointsUsed",

 "A maximum of 500 points can be used per order.");

 else if (nPoints > orderPrice * .25)

 pResult.addError(

 "PointsValueExceeded",

 "Store points cannot pay for more than 25% of an order.");

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 5 9

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
 }

 catch (ClassCastException cce)

 {

 pResult.addError(

 "ClassNotRecognized",

 "Expected a StorePoints payment group, but got "

 + pg.getClass().getName() + " instead.");

 }

 return SUCCESS_CODE;

}

}

Note the use of the ValidatePaymentGroupPipelineArgs class in the runProcess() method. When
the OrderManager validates payment groups, it guarantees that the pipeline arguments passed to your
processor are an instance of this class. This provides you with a convenient way to retrieve items like the
Order, the OrderManager, the PaymentGroup, and the server’s Locale from the pipeline parameter
map.

Step 2: Create an instance of the processor

After implementing your pipeline processor, you must configure an instance of the processor in Nucleus.
For the StorePoints example, the validation processor might be located at
/store/checkout/ValidateStorePoints, and it is configured with the following properties file:

Store Points validation processor

$class=store.checkout.ValidateStorePoints

loggingDebug=true

In this simple example the processor doesn’t require any additional property settings.

Step 3: Add the custom payment method to the ValidatePaymentGroupByType processor

Recall that payment groups are validated at checkout by invoking the validatePaymentGroup pipeline
for each payment group in the order. The validatePaymentGroup pipeline begins with a pipeline
processor called ValidatePaymentGroupByType, which examines the type of each payment group and
returns an Integer that identifies the payment method. The pipeline then dispatches control to one of a
number of different processors based on this return code.

To add support for your payment method, you must add an entry to ValidatePaymentGroupByType’s
returnValues property, which maps your payment method’s name (storePoints in this example) to a
unique return value. You can use any return value as long as it isn’t used by any other payment method.
This example uses a value of 10. Configure the property by creating a file as follows in
localconfig/atg/commerce/order/processor/ValidatePaymentGroupByType.properties:

Add a return code for the storePoints payment method

returnValues+=\

 storePoints=10

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 6 0

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
Note that the payment method name, storePoints, is the name you added to the
paymentTypeClassMap in the OrderTools component; it is not the name of your payment group’s
implementation class.

Step 4: Add the custom payment method to the validatePaymentGroup pipeline

The final step in adding validation for your StorePoints payment method is to reconfigure the
validatePaymentGroup pipeline so it invokes the ValidateStorePoints processor when
ValidatePaymentGroupByType returns a value of 10. This requires two changes to the pipeline
configuration.

First, add a new transition tag to the dispatchOnPGType pipeline link in order to specify the pipeline link
to use when ValidatePaymentGroupByType returns a value of 10. Second, define the new pipeline link
and configure it to invoke your ValidateStorePoints component (in bold in the example that follows).
You can do both steps using XML combination facilities. Modify the pipeline using the following code in
localconfig/atg/commerce/commercepipeline.xml:

<!-- Modify the validatePaymentGroup chain to include -->

<!-- validation for payment groups of type storePoints -->

<pipelinemanager>

 <pipelinechain name="validatePaymentGroup">

 <pipelinelink name="dispatchOnPGType">

 <transition returnvalue="10" link="validateStorePoints"/>

 </pipelinelink>

 <pipelinelink name="validateStorePoints">

 <processor jndi="/store/checkout/ValidateStorePoints"/>

 </pipelinelink>

 </pipelinechain>

</pipelinemanager>

ATG Commerce will now perform validation on your StorePoints payment method.

Scheduling Recurring Orders
Sites often require the functionality to create orders to be fulfilled repeatedly on a specific schedule, or to
construct and save orders to be placed at a later date. You can use ATG Commerce to support these
requirements through the use of scheduled orders.

In ATG Commerce, a scheduled Order object (of type scheduledOrder) maintains the schedule
information for the scheduled order, and a template Order object maintains the order information for the
scheduled order. The template Order object is a typical Order in the orderRepository, but it has a state
of TEMPLATE. When a scheduled order is placed, the template order is cloned, and the cloned order is
checked out and sent to Fulfillment. Consequently, the template Order is never processed, but simply
serves as a prototype.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 6 1

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
Template orders must include enough information, such as all necessary shipping and payment
information, to process the cloned Order without further user interaction. A previously processed order
or even the user’s shopping cart (once the shipping and payment information has been specified) can be
used to create a template order.

This section describes the ATG Commerce framework that supports scheduled orders and includes the
following subsections:

Understanding the scheduledOrder Repository Item

Submitting Scheduled Orders

Creating, Modifying, and Deleting Scheduled Orders

Using Scheduled Orders with Registered Sites

For an example implementation of scheduled orders, see the Scheduling Orders section of the My Account
chapter in the ATG Business Commerce Reference Application Guide.

Understanding the scheduledOrder Repository Item

The scheduled Order objects, stored in the Order Repository, maintain the schedule information for
scheduled orders, as well as extra information as defined by the scheduledOrder item descriptor (for
example, name and state).

The scheduledOrder item descriptor is defined in
<ATG10dir>/B2BCommerce/atg/commerce/order/orderRepository.xml. By default, a
scheduledOrder repository item contains the following properties:

Property Description

name The name that the user has assigned to the scheduled Order.

profileId The profile ID of the user who created the scheduled Order.

templateOrderId The ID of the template Order that is cloned whenever the scheduled order
is placed.

state The state of the scheduled Order (active, inactive, or error).

clonedOrders The list of scheduled orders that have been placed. These Orders are clones
of the template Order that have been checked out.

schedule A string describing the Order’s placement schedule.

nextScheduledRun The next date and time that the scheduled Order should be placed.

createDate The date and time that the scheduled Order was created.

startDate The date and time that start the period within which the scheduled Order
can be placed.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 6 2

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
endDate The date and time that end the period within which the scheduled Order

can be placed.

Note: If unset, the scheduled Order is repeatedly placed indefinitely.

id The ID of the scheduled Order object. A read-only property.

type The type of repository item. This is set to scheduledOrder.

Version A value used to protect against data corruption that might be caused if two
users attempt to edit this repository item at the same time. The system
updates this read-only property automatically.

maxThreads The current implementation of the scheduled order service can be
configured to employ multiple threads when placing orders. By setting the
parameter maxThreads to a number greater than 1, you can specify the
number of threads that are started to process scheduled orders. If the
maxThreads parameter is kept at the default of 1, all orders will be
processed in the main thread. The optimal number of threads depends on a
variety of factors, including server load, machine and database speed and
the complexity of the scheduled order templates.

Submitting Scheduled Orders

The ScheduledOrderService is the back-end service that polls the Order Repository at a periodic
interval and submits scheduled Orders according to their schedules.

When an application that includes ATG Commerce deploys, a PlaceScheduledOrders task is scheduled
with the /atg/dynamo/service/Scheduler. This scheduled task is run at the interval specified in
ScheduledOrderService.schedule. When the scheduled task is run, the Scheduler calls
ScheduledOrderService.performScheduledTask(). The ScheduledOrderService then attempts
to obtain a global write lock from the server lock manager. If the lock is obtained successfully, then it calls
doScheduledTask().

At a general level, the ScheduledOrderService.doScheduledTask() method polls the Order
Repository for all scheduled Orders that should be checked out. For each scheduled Order it finds due
for checkout, it then clones the template Order associated with the scheduled Order, checks out the
cloned Order, and sets the nextScheduledRun property of the scheduled Order to the next date and
time it should be checked out. If an error occurs when processing an individual scheduled Order, then a
CommerceException is thrown, the state of the scheduled Order is set to Error, and the state of the
cloned Order is set to PENDING_MERCHANT_ACTION. However, the remaining scheduled Orders are
processed.

The following table describes the various methods of ScheduledOrderService that support this
process:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 6 3

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
Method Description

performScheduledTask Called when the Scheduler finds that the
placeScheduledOrders task is scheduled to run. When this
method is called, the ScheduledOrderService attempts to
obtain a global write lock from the server lock manager. If the
lock is obtained successfully, the ScheduledOrderService
calls its own doScheduledTask() method.

The placeScheduledOrders task is run at the interval defined
in ScheduledOrderService.schedule. While the schedule
that you set depends on the business needs of your sites, as a
general rule, it is recommended that you set it to “every 1 day.”
For information on how to specify a schedule, see the Scheduler
Services section of the Core Dynamo Services chapter in the ATG
Programming Guide.

Note: Be aware that the defined interval specified in
ScheduledOrderService.schedule begins when an
application that includes ATG Commerce deploys. Therefore, if,
for example, the ATG Commerce server is redeployed every 11
hours, and if the schedule property of a given scheduled Order
is set to “every 12 hours,” then the scheduled Order is never
placed.

doScheduledTask Calls processDueScheduledOrders() to process any
scheduled Orders that need to be checked out. Other objects
can call this method to trigger on demand a poll of the Order
Repository for due scheduled Orders.

processDueScheduledOrders Processes all scheduled Orders that need to be checked out.

This method calls pollForNewOrders() to retrieve the list of
scheduled Orders that need to be checked out. It then iterates
through the array and calls processDueScheduledOrder() on
each scheduled Order. (See the methods described later in this
table for details.)

pollForNewOrders Uses the query defined in the
ScheduledOrderService.pollQuery property to poll the
Order Repository defined in the
ScheduledOrderService.orderRepository property with
the repository view defined in the itemDescriptorName
property (by default, set to scheduledOrder). The method
returns an array of scheduled Orders that need to be checked
out.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 6 4

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
processDueScheduledOrder Processes the current scheduled Order.

This method calls placeScheduledOrder() to check out the
scheduled Order. If the scheduled Order is successfully checked
out, then the method calls getNextScheduledRun() to set its
nextScheduledRun property to the next date and time that it
should be checked out.

If the scheduled Order fails to be checked out, then it rolls back
to its original state. It will be retrieved again for processing the
next time that pollForNewOrders() is executed.

getNextScheduledRun Sets the next time that the scheduled Order should be checked
out.

placeScheduledOrder This method checks out the current scheduled Order using the
following process:

First, the template Order is retrieved by calling
ScheduledOrderTools.getTemplateOrder() and passing in
the current scheduled Order.

Second, ScheduledOrderTools.UseOrderPriceListsFirst
identifies if price list information should be extracted from an
order template. The default is false.

Third, the template Order is cloned by calling
ScheduledOrderTools.cloneOrder().

Fourth, if the ScheduledOrderTools.repriceOnClone
property is set to True, then the cloned order is repriced by
calling ScheduledOrderTools.repriceScheduledOrder().

Fifth, the cloned Order is saved to the Order Repository in its
present state by calling OrderManager.updateOrder(), which
executes the updateOrder pipeline. (For more information on
the updateOrder pipeline, see Updating an Order with the
Order Manager in this chapter.)

Finally, the cloned Order is checked out by calling
ScheduledOrderTools.processScheduledOrder(), which
in turn calls OrderManager.processOrder() and passes in the
cloned Order and pipeline to execute. The pipeline to execute is
set in ScheduledOrderTools.processOrderChainId; by
default, this property is set to processOrder. When the order
has been checked out successfully, it is passed on to Fulfillment.
(For more information on the processOrder pipeline, see
Checking Out an Order in this chapter.)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 6 5

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
repriceScheduledOrder Reprices the cloned Order. The repriceScheduledOrder()

method calls
ScheduledOrderTools.repriceScheduledOrder(), which
executes the repricing pipeline specified in
ScheduledOrderTools.repriceOrderChainId. By default,
this property is set to repriceOrder. (For more information on
the repriceOrder pipeline, see Appendix G: Commerce
Pipeline Chains.)

ATG Commerce provides an instance of class
atg.commerce.order.scheduled.ScheduledOrderService, which extends
atg.service.scheduler.SingletonSchedulableService. It is located in Nucleus at
/atg/commerce/order/scheduled/ScheduledOrderService.

Class atg.service.scheduler.SingletonSchedulableService enables multiple ATG Commerce
servers to run the same scheduled service, while guaranteeing that only one instance of the service will
perform the scheduled task at any given time. This provides a degree of protection from server failures,
since the loss of any single ATG Commerce server will not prevent the scheduled service from running on
some other ATG Commerce server.

To use a SingletonSchedulableService like ScheduledOrderService on multiple ATG Commerce
instances, you must run a server lock manager and point all client lock managers at it. For more
information on SingletonSchedulableService, see the Scheduler Services section of the Core Dynamo
Services chapter in the ATG Programming Guide.

Creating, Modifying, and Deleting Scheduled Orders

The ScheduledOrderHandler is responsible for creating, updating, deleting, activating, and
deactivating scheduled orders. ATG Commerce provides an instance of
atg.commerce.order.scheduled.ScheduledOrderHandler, which extends
atg.repository.servlet.RepositoryFormHandler. It is located in Nucleus at
/atg/commerce/order/scheduled/ScheduledOrderFormHandler.

A scheduled Order has some complex properties that are incapable of being mapped directly from the
user interface to the value Dictionary defined in the RepositoryFormHandler (of which
ScheduledOrderHandler is a subclass). Simple properties, such as name and state, can be handled by
the superclass RepositoryFormHandler. However, other complex properties map to a large number of
user input fields. For example, the startDate and endDate properties in the value Dictionary are both
mapped to Year, Month, Date, and Hour input fields. Similarly, the schedule property maps to a large
number of input fields. Each property of a scheduled Order that maps to more then one form element or
needs special processing is represented by an instance of the abstract class
atg.b2bcommerce.order.scheduled.ComplexScheduledOrderProperty or one of its subclasses.
The ComplexScheduledOrderProperty class has two methods that facilitate the mapping between the
property in the value Dictionary and the corresponding user input fields in a form, namely
remapValueFromScheduledOrder() and remapValueFromUserInputField().

The ScheduledOrderFormHandler.complexScheduledOrderProperties property is a Map that
specifies the complex properties in the scheduled Order. The keys to the Map are the names of the

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 6 6

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
complex properties, and the values are the names of the classes that represent those properties, as shown
in bold by the following ScheduledOrderFormHandler.properties file:

$class=atg.commerce.order.scheduled.ScheduledOrderHandler

$scope=session

#From RepositoryFormHandler

itemDescriptorName=scheduledOrder

repository=/atg/commerce/order/OrderRepository

requireIdOnCreate=false

clearValueOnSet=true

#From ScheduledOrderFormHandler

localeService=/atg/userprofiling/LocaleService

profile=/atg/userprofiling/Profile

orderManager=/atg/commerce/order/OrderManager

transactionManager=/atg/dynamo/transaction/TransactionManager

scheduledOrderTools=ScheduledOrderTools

complexScheduledOrderProperties=\

 calendarSchedule=atg.commerce.order.scheduled.CalendarSchedu

 leProperty,\

 startDate=atg.commerce.order.scheduled.DateProperty,\

 endDate=atg.commerce.order.scheduled.DateProperty,\

 templateOrderId=atg.commerce.order.scheduled.TemplateOrderProperty

Note that the templateOrderId property is represented by the TemplateOrderProperty class, which
extends ComplexScheduledOrderProperty. When a user designates an existing Order as a template
Order, the existing Order is copied, and the new template Order is assigned a new ID. The
templateOrderId property contains a reference to the repository ID of the new template Order. When
the user later views the scheduled Order, this property loads the associated template Order represented
by the templateOrderId.

Once a scheduled order template has been modified, ScheduledOrderLookup can be used to provide
information on scheduled orders for a scheduled order ID (itemId), template ID (templateId) or profile
ID (profileId). Output parameters include scheduledOrders and count.

Scheduling information can be displayed in different formats. Using a scheduled order item or ID,
ScheduledOrderInfo can provide a reference to scheduled objects, the scheduled order item and a
readable string representation of the schedule. Output parameters to ScheduledOrderInfo are
scheduledOrderItem, readableSchedule and schedule.

The following table describes the important handle methods of ScheduledOrderFormHandler:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 6 7

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
Method Description

handleRepositoryId Called when the user wants to review or update a scheduled Order. This
method is called before the user interface is rendered to the user.

The method retrieves all of the property values for the scheduled Order
with the ID set in ScheduledOrderFormHandler.repositoryId. It
then populates the value Dictionary with the properties and finally
remaps all the complex properties from the Order Repository to the user
interface.

handleVerify Called when the user wants to review the input data for the scheduled
Order before it is created in the Order Repository. This method validates
the submitted values, throwing a form exception if one is invalid.

handleCreate Creates a scheduled Order in the Order Repository.

handleUpdate Updates an existing scheduled Order in the Order Repository.

handleDelete Deletes an existing scheduled Order from the Order Repository.

handleRemove Inactivates an existing scheduled Order in the Order Repository by
changing the state of the Order from ACTIVE to INACTIVE.

handleRestore Activates an existing scheduled Order in the Order Repository by
changing the state of the Order from INACTIVE to ACTIVE.

Note that the ScheduledOrderFormHandler uses ScheduledOrderTools to fire events for all of the
actions that are associated with these handle methods.

Using the scheduledOrderFormHandler is very similar to using the RepositoryFormHandler. (For
more information on using the RepositoryFormHandler, see the Using Repository Form Handlers
chapter of the ATG Page Developer’s Guide.) Simple properties like name, state, and nextScheduledRun
can all be set in the following manner:

<dsp:form action="setName.jsp">

 new name : <dsp:input bean="ScheduledOrderHandler.value.name"

type="text"/>

 <dsp:input bean="ScheduledOrderHandler.update" value="update name"

type="submit"/>

</dsp:form>

Complex properties of the scheduled Order are set according to the configuration of
ScheduledOrderFormHandler.complexScheduledOrderProperties property. As shown in the
ScheduleOrderFormHandler.properties file above, the startDate and endDate complex properties
of a scheduled Order are represented by the DateProperty class. The following JSP example illustrates
how to change these properties, using the month in the startDate as an example:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 6 8

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
<dsp:form action="setStartDateMonth.jsp">

 New start month : <dsp:input

bean="ScheduledOrderFormHandler.value.startDate.month" type="text"/>

 <dsp:input bean="ScheduledOrderFormHandler.update" value="update month"

type="submit"/>

</dsp:form>

You can modify the schedule property of a scheduled Order in a similar manner. Two classes in package
atg.commerce.order.scheduled can represent the schedule property of a scheduled Order:

 atg.commerce.order.scheduled.CalendarScheduleProperty

If used, the schedule property is represented by a CalendarSchedule, and the
schedule property is mapped to the user input form fields used by the
CalendarSchedule.

A CalendarSchedule specifies a task that occurs according to units of the calendar
and clock (for example, at 2:30 AM on the 1st and 15th of every month).

 atg.commerce.order.scheduled.PeriodicScheduleProperty

If used, the schedule property is represented by a PeriodicSchedule, and the
schedule property is mapped to the user input form fields used by the
PeriodicSchedule.

A PeriodicSchedule specifies a task that occurs at regular intervals (for example,
every 10 seconds in 20 minutes without catch up).

The following JSP example illustrates how to change the schedule property. In this example, the
frequency of a schedule whose scheduledMode is Monthly is updated:

<dsp:form action="setSchedule.jsp">

…

<dsp:select

bean="ScheduledOrderFormHandler.complexScheduledOrderMap.calendarSchedule.

userInputFields.scheduleMode" size="1" name="select">

 <dsp:option value="onceMonthly"/>once a month.

 <dsp:option value="biMonthly"/>every two months.

 <dsp:option value="quarterly"/>every quarter.

</dsp:select>

…

<dsp:input bean="ScheduledOrderFormHandler.update" value="Update"

type="submit"/>

</dsp:form>

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 6 9

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
For more information on CalendarScheduleProperty and PeriodicScheduleProperty, see the ATG
API Reference. For more information on CalendarSchedule and PeriodicSchedule, see the Scheduler
Services section of the Core Dynamo Services chapter in the ATG Programming Guide.

Using Scheduled Orders with Registered Sites

If you have registered sites for use with ATG’s multisite feature, then scheduled orders can be “site-aware”
just like other Commerce orders. Scheduled orders are different from regular orders placed by users,
however, because there is no actual user interacting with a site when the order is placed. Instead, the
ScheduledOrderFormHandler saves the siteId as part of the order template.

The siteId is copied from the initial order’s siteId property, even if the value is null, and overrides any
siteId set in the page. The ID is then retrieved by the ScheduledOrderService during order
processing.

The ScheduledOrderTools component includes one property to control how scheduled orders are
processed for registered sites:

 useSitePriceLists – If true, retrieves the price list from the scheduled order. If
false, the price list is determined based on the profile. The default value is true.

Setting Restrictions on Orders
In some situations you may want to prevent an order from being placed. For example, a given item might
be prohibited from sale in certain locations, or you may want to ensure that customers order a minimum
quantity of a given item, or you may want to designate some items as requiring approval for purchase.
You can use ATG Commerce to specify criteria that orders must meet if they are to be placed, thereby
setting restrictions on certain kinds of orders.

This section describes the order restriction system in ATG Commerce and includes the following
subsections:

Understanding the Order Restriction Classes

Implementing Order Restrictions

Understanding the Order Restriction Classes

You set restrictions on Orders by specifying the criteria or “rules” that an Order must meet if it is to be
placed. The functionality for this Order restriction system relies on the following ATG Commerce classes
in package atg.commerce.expression:

 Rule, which represents the rule.

 ExpressionParser, which parses the expression (rule).

 RuleEvaluator, which evaluates the expression to either to True or False.

 ProcPropertyRestriction, which evaluates the rule using the ExpressionParser and
RuleEvaluator.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 7 0

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
Rule

The atg.commerce.expression.Rule class represents a rule. A Rule object contains
RuleExpressions (operands) and an operator, which together are evaluated to either True or False.

ExpressionParser

The atg.commerce.expression.ExpressionParser class is used to parse expressions.
ExpressionParser supports the following operators: =, >, <, >=, <=, !=, contains, and containsKey. It
does not support & (and) or | (or). The ExpressionParser.parseExpression() method takes a string
containing an expression to parse, such as the following:

Order.priceInfo.amount > Profile.maxAmountAllowed

Profile.approvalRequired = true

Order.id = null

Order.specialInstructions.shippingInfo.size != 1000

After parsing the expression, the parseExpression() method returns a Rule object, which is then
passed to the RuleEvaluator for evaluation.

ATG Commerce provides a globally-scoped instance of ExpressionParser, which is located in Nucleus
at /atg/commerce/util/.

RuleEvaluator

The atg.commerce.expression.RuleEvaluator class is used to evaluate a given rule. After the
ExpressionParser parses an expression, it returns a Rule object and passes it to the RuleEvaluator. The
RuleEvaluator.evaluateRule() method then evaluates the rule to True or False.

The RuleEvaluator class supports all primitive data types in Java. These are long, double, int, short,
float, boolean, char, and String. If two incompatible data types are evaluated, such as a double and
boolean, then an EvaluationExpression is thrown.

ATG Commerce provides a globally-scoped instance of RuleEvaluator, which is located in Nucleus at
/atg/commerce/util/.

ProcPropertyRestriction

 The atg.commerce.expression.ProcPropertyRestriction class resolves all references in the rule
set in ProcPropertyRestriction.ruleExpression using the ExpressionParser and then evaluates the
rule using the RuleEvaluator. The processor then returns a value based on whether the rule evaluates to
True or False. The specific value returned is determined by its returnValueForTrueEvaluation and
returnValueForFalseEvaluation properties.

Additionally, if the expression evaluates to True and the addErrorToResultOnTrueEval property is set
to True, then the value in the errorMessage property is added to the PipelineResult object, keyed by
the string in the pipelineResultErrorMessageKey property. (See the table below for more
information on these properties.)

The ProcPropertyRestriction processor has the following properties:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 7 1

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ

Property Description

ruleExpression The expression that is passed to the ExpressionParser,
such as Order.priceInfo.amount > 1000.0. This is the
rule against which the processor evaluates the Order.

expressionParser The ExpressionParser Nucleus component.

If null, the ProcPropertyRestriction processor creates
a new instance of
atg.commerce.expression.ExpressionParser for its
use.

ruleEvaluator The RuleEvaluator Nucleus component.

If null, the ProcPropertyRestriction processor creates
a new instance of
atg.commerce.expression.RuleEvaluator for its use.

returnValueForFalseEvaluation The integer to return when the expression evaluates to
False.

returnValueForTrueEvaluation The integer to return when the expression evaluates to
True.

addErrorToResultOnTrueEval A boolean property that controls whether the
errorMessage is added to the PipelineResult object
when the expression evaluates to True.

errorMessage The error message to add to the PipelineResult object
when the expression evaluates to True.

pipelineResultErrorMessageKey The key to use when adding the errorMessage to the
PipelineResult object.

Implementing Order Restrictions

You can set restrictions on Orders by adding a ProcPropertyRestriction processor to any pipeline,
for example, the validateForCheckout pipeline.

To do so, create an instance of atg.commerce.expression.ProcPropertyRestriction, defining the
rule by which Orders are to be evaluated in ProcPropertyRestriction.ruleExpression and setting
the remaining properties as necessary. (See the table in the previous section for more information on the
properties of ProcPropertyRestriction.) Then add the processor at any point in any pipeline.

For example, you might check Orders against certain restrictions before checkout by adding a link to the
validateForCheckout pipeline in
<ATG10dir>/DCS/src/config/atg/commerce/commercepipeline.xml. To insert a new link, add a
new element to the XML file that references
atg.commerce.expression.ProcPropertyRestrictions, as follows:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 7 2

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
<pipelinechain name="validateForCheckout" transaction="TX_REQUIRED"

 headlink="validateOrderForCheckout"

 classname="atg.service.pipeline.PipelineChain"

 resultclassname="atg.service.pipeline.PipelineResultImpl">

 <pipelinelink name="propertyRestrictions" transaction="TX_MANDATORY">

 <processor

 jndi="/atg/commerce/expression/ProcPropertyRestrictions"/>

. . .

</pipelinechain>

For more information on pipelines and how to extend them, see the Processor Chains and the Pipeline
Manager chapter.

Tracking the Shopping Process
ATG’s Adaptive Customer Engine includes a business tracking feature that lets you define a business
process as a series of stages, track activity within the business process, and report on the activity for a
specified time frame. In ATG Commerce, we’ve defined the lifecycle of an order (through the point the
customer checks out) as a business process, allowing you to track stages in the shopping process from
browsing, to adding items to the shopping cart, to completing shipping and billing information, to final
check out. You can use the information gathered by tracking the stages of the shopping process to
understand better how your customers react to their experience with your sites. For example, if reports
show that many customers are abandoning their purchases at the stage where you display the shipping
price, that may be an indication of poor or confusing application page design, or undesirable pricing
schemes. You can also use shopping process tracking to modify a customer’s experience. For example,
you could offer special promotions to customers who stall at a particular point in the shopping process.

For more information about business process tracking, including information about how to create new
business processes, see the Defining and Tracking Business Processes chapter in the ATG Personalization
Programming Guide

Shopping Process Stages

ATG Commerce has one business process configured out-of-the-box, the shopping process. The shopping
process is made up of a series of stages that a customer follows, from browsing for products to, if all goes
well, purchasing and checking out. The stages of the shopping process in ATG Commerce are defined as:

Browsed

AddedToCart

ShippingInfoComplete

ShippingPriceDisplayed

RequestedBillingInfo

BillingInfoCompleted

CartSummaryViewed

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 7 3

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
These stages are defined in the stageNames property of the
/atg/commerce/bp/ShoppingProcessConfiguration component.

The ShoppingProcessConfiguration component also specifies the duplication mode for the shopping
process. The duplication mode determines what happens if an order reaches a business stage for the
second or subsequent time. By default, the duplication mode of the ShoppingProcessConfiguration
component is NO_DUPLICATES, which means an order is marked as having reached a new stage in the
shopping process only the first time it reaches that stage. No change is made if the order reaches the
same stage again.

Every commerce site is different. The business process stages that are defined by default in ATG
Commerce may not fit the needs of your sites. You can define whatever business process stages you want
by setting the stageNames property of the /atg/commerce/bp/ShoppingProcessConfiguration
component. Whether you use the default business process stages or define your own, you need to track
them by adding servlet beans to your checkout pages or defining scenarios to mark when a stage is
reached, as described in the rest of this section.

Working with Shopping Process Stages

ATG includes page-based and scenario-based tools that let you add, remove, and check for business
process stages. For the shopping process, these include the following servlet beans and scenario
elements:

Task Servlet Bean Scenario Element

Add a shopping process
stage

AddShoppingProcessStageDroplet Add Stage Reached

Remove a shopping process
stage

RemoveShoppingProcessStageDroplet Remove Stage(s) Reached

Check if a shopping process
stage has been reached

HasShoppingProcessStageDroplet Has Reached Stage

Check the most recent
shopping process stage that
has been reached

MostRecentShoppingProcessStage

Droplet

Most Recent Stage
Reached

These servlet beans are instances of classes in the atg.markers.bp.droplets package, each with the
default process name set to ShoppingProcess. See Appendix: ATG Commerce Servlet Beans in the ATG
Commerce Guide to Setting Up a Store for reference information about these servlet beans. You can use the
servlet beans to the checkout pages of an ATG Commerce application to add, remove, and check
shopping process stages. You can as an alternative use the corresponding scenario elements in a
scenario. For example, you could create a scenario like this:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 7 4

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ

The business stage scenario elements are described in the Creating Scenarios chapter of the ATG
Personalization Guide for Business Users.

Shopping Process Recorder

Data about stages reached in the shopping process is recorded by the shoppingprocess scenario
recorder:

This recorder makes a record in the Shopping Process Stage Reached Dataset whenever an order reaches
a new stage in the shopping process. Note that by default the shopping process is configured with the
NO_DUPLICATES setting, which means that we only track the first time an order reaches a stage in the
shopping process.

Turning Off Recording of Shopping Process Tracking

If you don’t want to generate reports on the shopping process, you can disable shopping process events
by setting the generateEvents property of the
/atg/commerce/bp/ShoppingProcessConfiguration component to false.

Troubleshooting Order Problems
If you modify the functionality of the OrderManager or its related components, you should make sure to
follow these guidelines:

 When making changes to an Order, you must call the updateOrder() method. (For
more information on the updateOrder() method, see Updating an Order with the
Order Manager in the Saving Orders section of this chapter.)

 updateOrder() must always be called within a transaction. (For more information on
transactions, see the Transaction Management chapter in the ATG Programming Guide.)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 7 5

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
 If errors occur when a user logs in, set the persistOrders property of the

ShoppingCart component to true.

The handleMoveToPurchaseInfoByRelId method and all other handle methods of
atg.commerce.order.purchase.CartModifierFormHandler provide good examples of how and
when to call getOrderManager.updateOrder().

Handling Returned Items
In ATG Commerce, you can use the CommerceItemManager (class
atg.commerce.order.CommerceItemManager) to manage the return of items in an Order. Call
CommerceItemManager.returnCommerceItem() to mark a given CommerceItem as returned. This
method does the following:

 Reduces the quantity property in the CommerceItem by the quantity returned.

 Reduces the quantity property in the
ShippingGroupCommerceItemRelationship by the quantity returned.

 Increases the returnedQuantity property in the
ShippingGroupCommerceItemRelationship by the quantity returned.

After the item is returned, the quantity of the CommerceItem reflects the final quantity that was
purchased. The quantity property of the ShippingGroupCommerceItemRelationship reflects the
quantity that was shipped, and its returnedQuantity reflects that quantity of the CommerceItem that
was returned.

The store credit system in ATG Commerce can also manage the return of items. The Claimable Repository
contains a storeCreditClaimable item that includes the following properties:

 amount (double) – the original amount of the credit

 amountAuthorized (double) – the amount of credit authorized for use

 amountRemaining (double) – the current amount of the store credit

 ownerId (String) – the ID of the user or organization for which the credit was issued

 lastUsed (date) – the date the credit was last accessed

To modify an existing store credit account (for example, to increase the amount of remaining credit), call
the ClaimableManager.updateClaimableStoreCredit() method. To create a new store credit
account for a user or organization, call the ClaimableManager.createClaimableStoreCredit()
method (atg.commerce.claimable.ClaimableManager) to create the new store credit and then call
the ClaimableManager.initializeClaimableStoreCredit() method to set its initial values.

Note that only one store credit account can exist for a given user or organization.

For more information on the Claimable Repository, including gift certificates, see the Configuring
Commerce Services chapter.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 7 6

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
Managing Transactions in ATG Commerce

 Most of the ATG Commerce form handlers extend
atg.commerce.order.purchase.PurchaseProcessFormHandler. This form handler, which is a
subclass of atg.droplet.GenericFormHander, is an abstract class which implements a transaction
management pattern that should be followed by any custom form handlers. This transaction
management pattern is implemented through the form handler’s beforeSet, afterSet, and handler
methods provided as part of the ATG Commerce form handlers.

beforeSet Method

This method is called once before any form handler property is set or handler method is called. It
implements the following transactional steps:

1. If the form handler’s useLocksAroundTransactions property is true (the default),
obtain a transaction lock before the transaction is created.

This prevents a user from modifying an order in multiple concurrent threads. The lock
name used defaults to the current profile ID. For more information, see
atg.commerce.util.TransactionLockFactory. (Note that use of locking has a
small performance impact.)

2. Check for an existing transaction and, if no transaction exists, create one.

Handler Methods

The handler methods implement the following transactions steps:

1. Synchronize on the Order object.

2. Execute logic for modifying the Order object.

For example, the CartModifierFormHandler subclass has a
handleAddItemToOrder method that executes the logic of adding an item to an
order.

3. Call the OrderManager object’s updateOrder method to save the order data to the
repository.

4. End the synchronization.

afterSet Method

This method is called once after all form handler processing is completed. It implements the following
transactional steps:

1. Commit or roll back any transaction that was created in the beforeSet method.

If the transaction was already in place before the beforeSet method was called, the
afterSet method does not end the transaction automatically; this is the application’s
responsibility.

2. If a transaction lock was acquired in the beforeSet method, release the lock.

If you’re extending an ATG Commerce form handler and your code makes its own decisions about errors,
you can mark a transaction for rollback by calling the setTransactionToRollbackOnly method.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 7 7

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ
For more information on PurchaseProcessFormHandler and its subclasses, you can examine the
source files at <ATG10dir>\DCS\src\Java\atg\commerce\order\purchase and refer to the ATG API
Reference.

Extending the ATG Commerce Form Handlers
If you write a form handler that modifies the Order object, you should implement the transaction-
handling pattern described above. The easiest way to do this is to extend either
PurchaseProcessFormHandler or a subclass of PurchaseProcessFormHandler. Your form handler
will then inherit the beforeSet and afterSet methods, so you won’t need to replicate their portion of
the transaction logic. However, any new handler methods you write will need to implement the
transaction logic described in the Handler Methods section.

Note that the handleXXX methods of the ATG Commerce form handlers invoke preXXX and postXXX
methods before and after any computation is performed. For example, when a customer adds an item to
their shopping cart using CartModifierFormHandler, the submit button on the form submits to the
handleAddItemToOrder method. Before any computation is done, the handleAddItemToOrder
method invokes the preAddItemToOrder method. Additionally, after all computation is complete but
before returning any information, the handleAddItemToOrder method invokes the
postAddItemToOrder method.

By default these preXXX and postXXX methods have no functionality. They are provided so you can easily
extend the form handlers to support additional functionality. However, be aware that these methods do
not take any input parameters.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 7 8

1 6 - C o n f i g u r i n g P u r c h a s e P r o c e s s S e r v i c e s

μ

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 7 9

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
17 Customizing the Purchase Process

Externals

This chapter contains information on ATG Commerce features that operate outside the actual process of
creating and placing orders. It also contains information on how to extend the existing purchase
framework.

Purchase Process Event Messages
Describes the event messages sent by the purchase process.

Integrating with Purchase Process Services
Describes the integration points in the purchase process and how to add a new credit
card type to a payment system integration.

Extending the Purchase Process
Describes how to store purchasing information that is not included in the out-of-the-
box functionality of ATG Commerce.

Merging Orders
Describes how to merge orders when you’ve extended ATG Commerce classes to store
additional information.

Purchase Process Event Messages
The event messages generated by the purchase process are sent at various points in the purchase
process. These include messages that are sent when a product or category is browsed, when an item is
added or removed from the order and when an order has been submitted for fulfillment (checkout
complete).

Note: This section is for reference. These messages are generated automatically during the purchase
process.

Event Description

ItemAddedToOrder Sent when an item is added to an order. Includes order ID,
commerce item ID, site ID, and JMS message type

ItemRemovedFromOrder Sent when an item is removed from an order. Includes the
order ID, commerce item ID and the JMS message type

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 8 0

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
SubmitOrder Sent when an order has been submitted for fulfillment

(checkout complete). Includes the serialized order, the JMS
message type

ViewItem Sent when a product or a category is browsed, includes the
repository name, the item type, the repository id and the
serialized repository item object.

ATG Commerce actions include giving promotions to customers when they add a particular item to their
order or browse a particular product or category. Additionally, confirmation e-mail is sent through a
scenario that is listening for the Submitorder message.

Integrating with Purchase Process Services
This section contains the following information:

Purchase Process Integration Points

Adding Credit Card Types to ATG Commerce

Purchase Process Integration Points

There are several points in the purchase process where specialized components can be integrated into
the system. To integrate a component, configure a property of a Nucleus component to reference an
object that implements an interface (as described below).

The following list describes the integration points in the purchase process:

 PaymentManager.creditCardProcessor

Use this property of the PaymentManager to integrate with a credit card processing
system. The credit card processing system must implement the
atg.payment.creditcard.CreditCardProcessor interface. By default, the
PaymentManager is configured to use a dummy processing system,
atg.commerce.payment.DummyCreditCardProcessor.

The PaymentManager is located in Nucleus at /atg/commerce/payment/.

 PaymentManager.giftCertificateProcessor

Use this property of the PaymentManager to integrate with a gift certificate
processing system. The gift certificate processing system must implement the
atg.payment.giftcertificate.GiftCertificateProcessor interface. By
default, the PaymentManager is configured to use the ATG Commerce gift certificate
processing system, atg.commerce.payment.GiftCertificateProcessorImpl.

The PaymentManager is located in Nucleus at /atg/commerce/payment/.

 VerifyOrderAddresses.addressVerificationProcessor

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 8 1

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
Use this property of the ProcVerifyOrderAddresses object to integrate with an
address verification system. The address verification system must implement the
atg.payment.avs.AddressVerificationProcessor interface. By default, the
VerifyOrderAddresses component, which is located in Nucleus at
/atg/commerce/order/processor/, is configured to use a dummy processing
system, atg.commerce.payment.DummyAddressVerificationProcessor.

For more information on integrating ATG Commerce with Payflow Pro, CyberSource, and TAXWARE, see
the Integrating Third-Party Software With ATG Commerce chapter of this manual.

Adding Credit Card Types to ATG Commerce

This section describes how to extend ATG Commerce and a payment system integration (such as
CyberSource) to use the additional credit card types that the payment system might accept.

By default, ATG Commerce considers only common credit cards valid. These cards include Visa,
MasterCard, etc. Many payment systems handle many other credit and debit cards, such as Switch/Solo.
Many of these other cards have more validation parameters than the standard cards. If your commerce
site needs to accept these cards, you can extend ATG Commerce to handle these card types.

The following sections describe the three parts to extending ATG Commerce to include new credit card
types:

1. Extending the ATG Commerce CreditCard Class

2. Extending the ATG Commerce CreditCardInfo Class

3. Extending the Payment System Integration

Extending the ATG Commerce CreditCard Class

The following steps describe how to extend the CreditCard class and modify ATG Commerce to use the
new class. For general information on extending a class and modifying the ATG Commerce purchase
process, see the Extending the Purchase Process section of this chapter.

1. Create a subclass of atg.commerce.order.CreditCard and include any new
properties you need for the credit card type. Add get/set methods for each of these
properties. The get and set methods need to use super.getPropertyValue() and
super.setPropertyValue(), so that the underlying repository item is updated
correctly.

For example, the following code sample creates a property for the issue number of the
credit card:

//--

 // property:IssueNumber

//--

 public void setIssueNumber(String pIssueNumber) {

 setPropertyValue("issueNumber",

 (pIssueNumber == null ? pIssueNumber :

 StringUtils.removeWhiteSpace(pIssueNumber)));

 }

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 8 2

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
 /**

 * The issue number of this credit card

 * @beaninfo description: The issue number of this credit card

 **/

 public String getIssueNumber() {

 return (String) getPropertyValue("issueNumber");

 }

2. Add columns to the dcspp_credit_card table to store your new properties for the
CreditCard subclass.

3. Extend orderrepository.xml to add the new properties in your CreditCard
subclass to the existing creditCard item descriptor.

4. Modify /atg/commerce/order/OrderTools to make ATG Commerce use your new
CreditCard subclass instead of the default class. For example:

beanNameToItemDescriptorMap+=\

 my.class.dir.myCreditCard=creditCard

paymentTypeClassMap+=\

 creditCard=my.class.dir.myCreditCard

5. Modify
/atg/commerce/payment/PaymentManger.paymentGroupToChainNameMap to
contain a pointer to your new class:

paymentGroupToChainNameMap+=\

my.class.dir.myCreditCard=creditCardProcessorChain

6. Edit the following properties of
/atg/commerce/payment/ExtendableCreditCardTools to include appropriate
values for your new CreditCard:

 cardCodesMap

 cardLengthsMap

 cardPrefixesMap

 cardTypesMap

Extending the ATG Commerce CreditCardInfo Class

The following steps describe how to extend the CreditCardInfo class to accommodate the new credit
card type.

1. Create a subclass of atg.payment.creditcard.GenericCreditCardInfo, with any
necessary new properties. Refer to the payment system’s documentation for
information on what properties it needs to process the new credit card type.

2. Modify
/atg/commerce/payment/processor/CreateCreditCardInfo.creditCardInfo

Class to point to the new subclass.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 8 3

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
3. Create a new class that extends

atg.commerce.payment.processor.ProcCreateCreditCardInfo. In this class,
extend the addDataToCreditCardInfo method to call the superclass, followed by
code that adds your new properties (added in step 1) to the CreditCardInfo object.

4. Modify the class of CreditCreditCardInfo.properties to point to your new
subclass.

Extending the Payment System Integration

The final part of the process of adding a new credit card type is to extend the credit card processor for
your payment system to use your new card type’s properties in its validation mechanisms. The payment
system integration will have an implementation of atg.payment.creditcard.CreditCardProcessor.

For example, if you are integrating with CyberSource, the class
atg.integrations.cybersource.CyberSourceCreditCard uses the credit card info in the
authorize, credit and debit methods. All of these methods get data from the ATG Commerce
creditCardInfo object, build a CyberSource request, and send the request to CyberSource. This means
that you need to extend this class and recreate most of the methods, adding logic to use the new
properties you added.

In addition, the $class line in the properties file for the credit card processor must be changed to use your
new subclass. If using CyberSource, /atg/commerce/payment/CyberSourceCreditCard must be
changed.

Extending the Purchase Process
Extending the purchase process is necessary when you want to store purchasing information that is not
included in the out-of-the-box functionality of ATG Commerce. For example, if you want to allow
customers to specify a box size for their purchases, you could extend the purchase process to store that
information.

You extend the purchase process by first subclassing an existing object in the commerce object hierarchy
to add new properties and then integrating that new class into ATG Commerce. See the following
sections for details:

Adding a Subclass with Primitive Data Type Properties

Adding a Subclass with Object Data Type Properties

Manipulating Extended Objects

Note: For information on extending the ATG Commerce payment process to support a new payment
method or additional operations for an existing payment method, see the Processing Payment of Orders
section in the Configuring Purchase Process Services chapter.

Adding a Subclass with Primitive Data Type Properties

You can extend the commerce object hierarchy by subclassing an existing object and adding new
primitive data type properties. When you add primitive data type properties, you don’t need to write any

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 8 4

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
code to save the properties to or load the properties from the Order Repository. Using introspection, the
processors in the updateOrder and loadOrder pipelines handle this automatically for primitive data
type properties.

As an example, the following code creates a new class called MyCommerceItemImpl. It extends
CommerceItemImpl and adds a new String property called shortDescription.

import atg.commerce.order.CommerceItemImpl;

public class MyCommerceItemImpl extends CommerceItemImpl {

 public MyCommerceItemImpl() {

 }

 // property: shortDescription

 private String mShortDescription = null;

 public String getShortDescription() {

 return (String) getPropertyValue("shortDescription");

 }

 public void setShortDescription(String pShortDescription) {

 setPropertyValue("shortDescription", pShortDescription);

 }

}

In the code example above, note the calls to getPropertyValue() and setPropertyValue(). These
methods retrieve and set the values of properties directly on the repository item objects; they are part of
the atg.commerce.order.ChangedProperties interface. In a commerce object that supports the
ChangedProperties interface, every get() method needs to call the getPropertyValue() method,
and similarly every set() method needs to call the setPropertyValue() method. In ATG Commerce, all
commerce objects implement the ChangedProperties interface except for
atg.commerce.order.AuxiliaryData and all subclasses of atg.commerce.pricing.AmountInfo.

The ChangedProperties interface enhances performance when saving an Order to the Order
Repository. In the example above, the call to setPropertyValue("shortDescription",
pShortDescription) in the setShortDescription() method causes the shortDescription
repository item property to be set directly when the method is called. This approach reduces the amount
of processing when OrderManager.updateOrder() is called to save the Order to the repository.
Performance is enhanced because you set the values directly to the repository item and only save the
properties that have actually been changed in the class. The call to
getPropertyValue("shortDescription") retrieves the property directly from the repository item and
eliminates the need to create a member variable in the class to store the value.

With the MyCommerceItemImpl subclass created, you now need to integrate the new commerce object
into ATG Commerce. You can do so using one of two approaches:

 (Recommended) Add the new properties to an existing item descriptor and then map
the new object to that item descriptor. This approach is recommended because it
eliminates the need to change property values that contain item descriptor names

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 8 5

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
throughout ATG Commerce. For more information, see Integrating a New Commerce
Object: Using an Existing Item Descriptor, which continues the example of
MyCommerceItemImpl.

 Create a new item descriptor subtype that includes the new properties and map the
new object to it. For more information, see Integrating a New Commerce Object: Using
a New Item Descriptor, which continues the example of MyCommerceItemImpl.

Note: You can also extend the commerce object hierarchy by subclassing AuxiliaryData, which holds
auxiliary data for a CommerceItem. If you do so, you can integrate the new class into ATG Commerce
using either process described in this section. (Recall that AuxiliaryData does not implement the
ChangedProperties interface.) However, you should take the following additional steps:

 Override the createAuxiliaryData() method in the subclass so that it creates an
instance of that new class, as follows:

protected void createAuxiliaryData() {

 if (mAuxiliaryData == null) {

 mAuxiliaryData = new MyAuxiliaryData(getRepositoryItem());

}

 Ensure the new properties of the subclass are defined within the XML definition for the
new commerce object.

 Ensure the database columns that store the new properties of the subclass go into the
table that represents the new commerce object.

Integrating a New Commerce Object: Using an Existing Item Descriptor

To integrate MyCommerceItemImpl into ATG Commerce using an existing item descriptor, follow these
steps:

Step 1 of 3 - Extend the Order Repository Definition File

Extend the Order Repository definition file, orderrepository.xml, to add the new properties in
MyCommerceItemImpl to the existing commerceItem item descriptor. In this example, the new property
to add is the shortDescription property.

The orderrepository.xml file is found in the CONFIGPATH at
/atg/commerce/order/orderrepository.xml. To extend the file, create a new
orderrepository.xml file at /atg/commerce/order/ in your localconfig directory. The new file
should define the shortDescription property for the commerceItem item descriptor. During
deployment, the ATG platform uses XML file combination to combine the orderrepository.xml files in
the CONFIGPATH into a single composite XML file. (For more information on XML file combination, see
the Nucleus: Organizing JavaBean Components chapter in the ATG Programming Guide.)

The orderrepository.xml file that you create might look as follows:

<gsa-template xml-combine="append">

 <item-descriptor name="commerceItem">

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 8 6

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
 <table name="dcspp_my_item" id-column-name="commerce_item_id">

 <property name="shortDescription" column-name="short_description"

 data-type="string"/>

 </table>

 </item-descriptor>

</gsa-template>

The first line in the above XML example begins the GSA template and instructs the XML combiner to
append the contents of the tags in this file to the contents of the tags in the file with which it is combined.

The next section defines the shortDescription property of a commerceItem repository item, as well as
the database table and column that store that property.

For more information on setting up a repository and defining item descriptors, see the ATG API Reference.

Step 2 of 3 – Modify the Order Repository Database Schema

In step 1, you defined the new shortDescription property of the commerceItem item descriptor,
specifying the database table and column that store that property. Now you need to modify accordingly
the Order Repository database schema.

The following DDL statement creates the database table and columns specified in the
orderrepository.xml file that you created in step 1.

CREATE TABLE dcspp_my_item (

 commerce_item_id VARCHAR(40) NOT NULL

REFERENCES dcspp_item(commerce_item_id),

 short_description VARCHAR(254) NULL,

 PRIMARY KEY(commerce_item_id)

);

Step 3 of 3 – Modify the OrderTools Configuration File

The OrderTools component controls many aspects of the purchase process, such as mapping between
commerce object types and class names, defining the default commerce object types, and mapping
between commerce objects and item descriptors. You need to modify the OrderTools configuration file
to support the new MyCommerceItemImpl class.

To modify the OrderTools configuration file, layer on a configuration file by creating an
OrderTools.properties file at /atg/commerce/order/ in your localconfig directory. The
OrderTools.properties file might look as follows:

beanNameToItemDescriptorMap-=\

 atg.commerce.order.CommerceItemImpl=commerceItem

beanNameToItemDescriptorMap+=\

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 8 7

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
 my.class.dir.MyCommerceItemImpl=commerceItem

commerceItemTypeClassMap+=\

 default=my.class.dir.MyCommerceItemImpl

The beanNameToItemDescriptorMap property maps Order Repository item descriptors to Bean names.
In ATG Commerce, the processors that save and load an Order look for an item descriptor that is mapped
to the corresponding commerce object class; the beanNameToItemDescriptorMap property contains
this mapping. The configuration file above first removes the out-of-the-box configuration, then remaps
the existing commerceItem item descriptor to the new Bean class, MyCommerceItemImpl. The
my.class.dir prefix specifies some Java package in which the class exists.

Because you can have more than one type of CommerceItem object, the commerceItemTypeClassMap
property maps CommerceItem types to class names. This mapping is used by the
createCommerceItem() method in the CommerceItemManager; by passing it a type parameter (such as
the string “default”), the method constructs and returns an instance of the corresponding class. When one
of the createCommerceItem() methods that does not take a type parameter is called, the method
constructs and returns an instance of the type specified in OrderTools.defaultCommerceItemType. By
default, the defaultCommerceItemType property is set to the type default, which, in turn, is mapped
to the new MyCommerceItemImpl class in the commerceItemTypeClassMap property in the
configuration file above. The my.class.dir prefix indicates some Java package in which the class exists.

Integrating a New Commerce Object: Using a New Item Descriptor

To integrate MyCommerceItemImpl into ATG Commerce using a new item descriptor subtype, follow
these steps:

Step 1 of 4 - Extend the Order Repository Definition File

Extend the Order Repository definition file, orderrepository.xml, to create a new item descriptor
subtype that supports the new properties in MyCommerceItemImpl.

The orderrepository.xml file is found in the CONFIGPATH at
/atg/commerce/order/orderrepository.xml. To extend the file, create a new
orderrepository.xml file at /atg/commerce/order/ in your localconfig directory. The new file
should define the new item descriptor subtype. During deployment, the ATG platform uses XML file
combination to combine the orderrepository.xml files in the CONFIGPATH into a single composite
XML file. (For more information on XML file combination, see the Nucleus: Organizing JavaBean
Components chapter in the ATG Programming Guide.)

The following orderrepository.xml file defines a new item descriptor named myCommerceItem. As a
subtype of the commerceItem item descriptor, myCommerceItem inherits all of the properties of
commerceItem. Additionally, it defines one new property, shortDescription.

<gsa-template xml-combine="append">

 <item-descriptor name="commerceItem">

 <table name="dcspp_item">

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 8 8

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
 <property name="type">

 <option value="myCommerceItem" code="1"/>

 </property>

 </table>

 </item-descriptor>

 <item-descriptor name="myCommerceItem" super-type="commerceItem"

 sub-type-value="myCommerceItem">

 <table name="dcspp_my_item" id-column-name="commerce_item_id">

 <property name="shortDescription" column-name="short_description"

 data-type="string"/>

 </table>

 </item-descriptor>

</gsa-template>

The first line in the above XML example begins the GSA template and instructs the XML combiner to
append the contents of the tags in this file to the contents of the tags in the file with which it is combined.

The next section defines myCommerceItem as a subtype of the commerceItem item descriptor. You do
this by adding a new string value for myCommerceItem to the type enumerated property of
commerceItem. In this case, the new type is called myCommerceItem, and its corresponding integer value
is 1. The base orderrepository.xml file contains the other options for the type property of
commerceItem.

The last section of the XML file defines the myCommerceItem item descriptor, specifying commerceItem
as the super-type (or parent item descriptor) and myCommerceItem as the sub-type-value. The
section then specifies the properties of a myCommerceItem repository item, as well as the database table
and columns that store those properties. In this case, a single property, shortDescription, is specified.
However, recall that myCommerceItem inherits all of the properties of commerceItem, its parent item
descriptor.

For more information on setting up a repository and defining item descriptors, see the ATG Repository
Guide.

Step 2 of 4 – Modify the Order Repository Database Schema

In step 1, you created the new myCommerceItem item descriptor, defining both its properties and the
database table and columns that store those properties. Now you need to modify accordingly the Order
Repository database schema.

The following DDL statement creates the database table and columns specified in the
orderrepository.xml file that you created in step 1.

CREATE TABLE dcspp_my_item (

 commerce_item_id VARCHAR(40) NOT NULL

REFERENCES dcspp_item(commerce_item_id),

 short_description VARCHAR(254) NULL,

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 8 9

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
 PRIMARY KEY(commerce_item_id)

);

Step 3 of 4 – Modify the OrderTools Configuration File

The OrderTools component controls many aspects of the purchase process, such as mapping between
commerce object types and class names, defining the default commerce object types, and mapping
between commerce objects and item descriptors. You need to modify the OrderTools configuration file
to support the new MyCommerceItemImpl class and myCommerceItem item descriptor.

To modify the OrderTools configuration file, layer on a configuration file by creating an
OrderTools.properties file at /atg/commerce/order/ in your localconfig directory. The
OrderTools.properties file might look as follows:

beanNameToItemDescriptorMap+=\

 my.class.dir.MyCommerceItemImpl=myCommerceItem

commerceItemTypeClassMap+=\

 default=my.class.dir.MyCommerceItemImpl

The beanNameToItemDescriptorMap property maps Order Repository item descriptors to Bean names.
In ATG Commerce, the processors that save and load an Order look for an item descriptor that is mapped
to the corresponding commerce object class; the beanNameToItemDescriptorMap property contains
this mapping. The configuration file above adds a new entry, mapping the myCommerceItem item
descriptor that you created in step 1 to the MyCommerceItemImpl class. The my.class.dir prefix
specifies some Java package in which the class exists.

Because you can have more than one type of CommerceItem object, the commerceItemTypeClassMap
property maps CommerceItem types to class names. This mapping is used by the
createCommerceItem() method in the CommerceItemManager; by passing it a type parameter (such as
the string “default”), the method constructs and returns an instance of the corresponding class. When one
of the createCommerceItem() methods that does not take a type parameter is called, the method
constructs and returns an instance of the type specified in OrderTools.defaultCommerceItemType. By
default, the defaultCommerceItemType property is set to the type default, which, in turn, is mapped
to the new MyCommerceItemImpl class in the commerceItemTypeClassMap property in the
configuration file above. The my.class.dir prefix indicates some Java package in which the class exists.

Step 4 of 4 – Extend the ID Spaces Definition File

Note: Because the example provided throughout this section involves an item descriptor subtype rather
than a root item descriptor, this step is not required for the example. It is provided here for information
when defining root item descriptors.

When an ID is requested for a new repository item, it is requested from the appropriate IdSpace for that
repository item. The item descriptor’s id-space-name attribute specifies which IdSpace supplies
repository IDs for items of that item type. By default, all items use the item descriptor’s name as the ID
space unless their item type inherits from another item type. In the latter case, the items use the ID space
name of the root item descriptor in the super-type hierarchy.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 9 0

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
If the new item descriptor that you’ve defined is a root item descriptor, you need to extend the ID spaces
definition file, idspaces.xml, in order to define an ID space for that item descriptor. The ATG Commerce
IdGenerator guarantees that IDs within a named ID space are unique, and each root item descriptor
defines the characteristics of its ID space in the idspaces.xml definition file.

Because the example used throughout this section involves the myCommerceItem item descriptor
subtype, which is a subtype of the commerceItem item descriptor, it doesn’t require a defined ID space.
However, if myCommerceItem were a root item descriptor, you would define an ID space for it by creating
a new idspaces.xml file at /atg/dynamo/service/ in your localconfig directory. During
deployment, the ATG platform uses XML file combination to combine the idspaces.xml files in the
CONFIGPATH into a single composite XML file. (For more information on XML file combination, see the
Nucleus: Organizing JavaBean Components chapter in the ATG Programming Guide.) The idspaces.xml
file might look as follows:

<id-spaces xml-combine="append">

 <id-space name="myCommerceItem" seed="1" batch-size="10000"

 prefix="mci"/>

</id-spaces>

For more information on defining ID spaces and its impact on repository item IDs, see the ID Generators
section of the Core Dynamo Services chapter in the ATG Programming Guide.

Adding a Subclass with Object Data Type Properties

 You can extend the commerce object hierarchy by subclassing an existing commerce object and adding
new object data type properties. Unlike with adding new primitive data type properties (see Adding a
Subclass with Primitive Data Type Properties), adding new object data type properties requires that you
write code to save and load the object’s properties.

As an example, the following code creates a new class called OrderData. It extends
CommerceIdentifierImpl and adds a new String property called miscInformation. A subsequent
code example creates a new class called MyOrder, which extends OrderImpl and adds a new OrderData
property named orderData.

Note that the OrderData class implements the ChangedProperties interface, which is explained in
detail after the code example.

package my_package;

import atg.commerce.order.ChangedProperties;

import atg.commerce.order.CommerceIdentifierImpl;

import java.util.Set;

import java.util.HashSet;

import java.util.Observable;

import atg.repository.MutableRepositoryItem;

public class OrderData extends CommerceIdentifierImpl

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 9 1

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
 implements ChangedProperties

{

 public OrderData() {

 super();

 }

 // property: miscInformation

 public String getMiscInformation() {

 return (String) getPropertyValue("miscInformation");

 }

 public void setMiscInformation (String pMiscInformation) {

 setPropertyValue("miscInformation", pMiscInformation);

 }

 //

 // Observer implementation

 //

 public void update(Observable o, Object arg) {

 if (arg instanceof String) {

 addChangedProperty((String) arg);

 }

 else {

 throw new RuntimeException("Observable update for " +

 getClass().getName() + " was received with arg type " +

 arg.getClass().getName() + ":" + arg);

 }

 }

 //

 // ChangedProperties implementation

 //

 // property: saveAllProperties

 private boolean mSaveAllProperties = false;

 public boolean getSaveAllProperties() {

 return mSaveAllProperties;

 }

 public void setSaveAllProperties(boolean pSaveAllProperties) {

 mSaveAllProperties = pSaveAllProperties;

 }

 // property: changed

 private boolean mChanged = false;

 public boolean isChanged() {

 return (mChanged || (mChangedProperties != null

 && ! getChangedProperties().isEmpty()));

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 9 2

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
 }

 public void setChanged(boolean pChanged) {

 mChanged = pChanged;

 }

 // property: changedProperties

 private HashSet mChangedProperties = new HashSet(7);

 public Set getChangedProperties() {

 return mChangedProperties;

 }

 public void addChangedProperty(String pPropertyName) {

 mChangedProperties.add(pPropertyName);

 }

 public void clearChangedProperties() {

 mChangedProperties.clear();

 }

 // property: repositoryItem

 private MutableRepositoryItem mRepositoryItem = null;

 public MutableRepositoryItem getRepositoryItem() {

 return mRepositoryItem;

 }

 public void setRepositoryItem(MutableRepositoryItem pRepositoryItem) {

 mRepositoryItem = pRepositoryItem;

 }

 // setPropertyValue/getPropertyValue methods

 public Object getPropertyValue(String pPropertyName) {

 MutableRepositoryItem mutItem = getRepositoryItem();

 if (mutItem == null)

 throw new RuntimeException("Null repository item: " + getId());

 return mutItem.getPropertyValue(pPropertyName);

 }

 public void setPropertyValue(String pPropertyName,

 Object pPropertyValue)

 {

 MutableRepositoryItem mutItem = getRepositoryItem();

 if (mutItem == null)

 throw new RuntimeException("Null repository item: " + getId());

 mutItem.setPropertyValue(pPropertyName, pPropertyValue);

 setChanged(true);

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 9 3

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
 }

}

As previously mentioned, the code above creates a new OrderData class that extends
CommerceIdentifierImpl, implements the ChangedProperties interface, and adds a new String
property called miscInformation.

The CommerceIdentifierImpl class is an abstract class that contains a single property called id; it is the
base class for all commerce object classes. The class contains the getId() and setId() methods and
implements the CommerceIdentifier interface, which contains only the getId() method. The purpose
of the id property is to store the repository ID for the given commerce object. The CommerceIdentifier
interface provides a standard way for ATG Commerce systems to access the repository IDs of items.

The ChangedProperties interface enhances performance when saving the object by allowing the
object’s property values to be set directly to the repository item. The interface contains the properties
described in the following table.

Property Description

changed A boolean property that returns true if the object has changed
since the last update and returns false if it has not.

changedProperties A Set that contains the names of all changed properties. The
property is implemented as a Set to include each property only
once.

repositoryItem Contains the repository item that refers to the object. Having the
object contain the repository item eliminates the need to look up
the item in the repository when saving it.

saveAllProperties A boolean property that marks all properties as changed. This
causes all properties to be saved to the repository, regardless of
whether or not they have changed.

With the OrderData class created, the next step is to add the OrderData property to the Order. The
following code creates a new class called MyOrder, which extends OrderImpl and adds a new
OrderData property called orderData.

package my_package;

import atg.commerce.order.OrderImpl;

import atg.repository.MutableRepositoryItem;

public class MyOrder extends OrderImpl {

 public MyOrder() {

 }

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 9 4

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
 // property: orderData

 private OrderData mOrderData = null;

 public OrderData getOrderData() {

 if (mOrderData == null) {

 mOrderData = new OrderData();

 setRepositoryItem((MutableRepositoryItem) getPropertyValue("orderData"));

 }

 return mOrderData;

 }

 public void setOrderData(OrderData pOrderData) {

 mOrderData = pOrderData;

 setPropertyValue("orderData", pOrderData.getRepositoryItem());

 }

}

With the MyCommerceItemImpl subclass created, you now need to integrate the new commerce object
into ATG Commerce.

With the OrderData and MyOrder classes created, you now need to integrate the new commerce objects
into ATG Commerce. To do so, perform the following steps:

Step 1 of 7 – Extend the Order Repository Definition File

First, extend the Order Repository definition file, orderrepository.xml, to create new item descriptors
that support the new properties in OrderData and MyOrder.

The orderrepository.xml file is found in the CONFIGPATH at
/atg/commerce/order/orderrepository.xml. To extend it, add a new orderrepository.xml file at
/atg/commerce/order/ in your localconfig directory. The new file should define the new item
descriptors. During deployment, the ATG platform uses XML file combination to combine the
orderrepository.xml files in the CONFIGPATH into a single composite XML file. (For more information
on XML file combination, see the Nucleus: Organizing JavaBean Components chapter in the ATG
Programming Guide.)

The following orderrepository.xml file defines an item descriptor named myOrder. As a subtype of
the order item descriptor, myOrder inherits all of the properties of order. Additionally, it defines one
new property, orderData. The definition file also defines a root item descriptor named orderData,
which supports the miscInformation property in OrderData.

<gsa-template xml-combine="append">

 <item-descriptor name="order">

 <table name="dcspp_order">

 <property name="type">

 <option value="myOrder" code="1"/>

 </property>

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 9 5

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
 </table>

 </item-descriptor>

 <item-descriptor name="myOrder" super-type="order"

 sub-type-value="myOrder">

 <table name="dcspp_my_order" id-column-name="order_id">

 <property name="orderData" column-name="order_data"

 item-type="orderData"/>

 </table>

 </item-descriptor>

 <item-descriptor name="orderData" sub-type-property="type"

 version-property="version">

 <table name="dcspp_order_data" type="primary"

 id-column-name="order_data_id">

 <property name="type" column-name="type" data-type="enumerated"

 default="orderData"

 writable="false">

 <attribute name="useCodeForValue" value="false"/>

 <option value="orderData" code="0"/>

 </property>

 <property name="version" column-name="version" data-type="int"

 writable="false"/>

 <property name="miscInformation" column-name="misc_information"

 data-type="string"/>

 </table>

 </item-descriptor>

</gsa-template>

The first line in the above XML example begins the GSA template and instructs the XML combiner to
append the contents of the tags in this file to the contents of the tags in the file with which it is combined.

The next section defines myOrder as a subtype of the order item descriptor. You do this by adding a new
string value for myOrder to the type enumerated property of order. In this case, the new type is called
myOrder, and its corresponding integer value is 1. The base orderrepository.xml file contains the
other options for the type property. The subsequent section of XML defines the myOrder item descriptor,
declaring order as the super-type (or parent item descriptor) and myOrder as the sub-type-value.
The sub-type-value refers to the type property in the order item descriptor. Subsequent lines define
the name of the table in the database schema that stores the properties of myOrder and then define
those properties. In this case, the table is called dcspp_my_order, and it stores a single property named
orderData.

The last section of the XML file defines orderData as a root item descriptor. The section then specifies the
properties of an orderdata repository item, as well as the database table and columns that store those
properties. (Note that each property of a repository item is stored in a database column that has the same
name as the property, unless otherwise specified using the column-name attribute.) In this case, the
following properties are specified: type, version, and miscInformation. The type and version
properties are defined as readonly (writable="false" in the XML) because they are used primarily by

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 9 6

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
the repository. All three properties are stored in the dcspp_my_order database table. The
dcspp_my_order table is declared a primary table, meaning it defines a column that stores repository
IDs. In this case, that column is order_data_id.

Step 2 of 7 – Modify the Order Repository Database Schema

In step 1, you created the new orderData and myOrder item descriptors, defining both their properties
and the database tables and columns that store those properties. Now you need to modify accordingly
the Order Repository database schema.

The following DDL statements create the database tables and columns specified in the
orderrepository.xml file that you created in step 1.

CREATE TABLE dcspp_my_order (

 order_id VARCHAR(40) NOT NULL

REFERENCES dcspp_order(order_id),

 order_data VARCHAR(40) NULL,

 PRIMARY KEY(order_id)

);

CREATE TABLE dcspp_order_data (

 order_data_id VARCHAR(40) NOT NULL,

 type integer NOT NULL,

 version integer NOT NULL,

 misc_information VARCHAR(254) NULL,

 PRIMARY KEY(order_data_id)

);

Step 3 of 7 - Subclass OrderTools and SimpleOrderManager to Create the New Object

When an Order is created, the new OrderData object must also be created and added to the Order
object. This functionality requires the following two steps:

1. Subclass atg.commerce.order.OrderTools and add a new createOrderData()
method that instantiates an OrderData object and creates an OrderData repository
item in the Order Repository.

2. Subclass atg.commerce.order.SimpleOrderManager (which extends
atg.commerce.order.OrderManager) and override its createOrder() method.
The new createOrder() method should first call the createOrder() method of the
superclass to create the Order object, then call the createOrderData() method that
you created in step 1 to create the OrderData object, and finally add the OrderData
object to the Order. (For more information on the SimpleOrderManager, see the
Using the SimpleOrderManager section of the Working With Purchase Process Objects
chapter.)

The following code example subclasses OrderTools and adds a new createOrderData() method.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 9 7

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
package my_package;

import atg.commerce.*;

import atg.commerce.order.*;

import atg.repository.*;

public class MyOrderTools extends OrderTools

{

 public MyOrderTools() {

 }

 public OrderData createOrderData() throws ObjectCreationException

 {

 // instantiate the orderData object

 OrderData orderData = new OrderData();

 if (orderData instanceof ChangedProperties)

 ((ChangedProperties) orderData).setSaveAllProperties(true);

 // create the OrderData in the repository and set its id to the

 // repository's id

 try {

 MutableRepository mutRep = (MutableRepository) getOrderRepository();

 MutableRepositoryItem mutItem = mutRep.createItem("orderData");

 orderData.setId(mutItem.getRepositoryId());

 if (orderData instanceof ChangedProperties)

 ((ChangedProperties) orderData).setRepositoryItem(mutItem);

 }

 catch (RepositoryException e) {

 throw new ObjectCreationException(e);

 }

 return orderData;

 }

}

The following code example subclasses SimpleOrderManager, overriding its createOrder() method in
order to call the createOrderData() method in the OrderTools object.

package my_package;

import atg.commerce.*;

import atg.commerce.order.*;

import atg.commerce.pricing.*;

public class MyOrderManager extends SimpleOrderManager

{

 public MyOrderManager() {

 }

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 9 8

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ

 public Order createOrder(String pProfileId, String pOrderId,

 OrderPriceInfo pOrderPriceInfo, TaxPriceInfo pTaxPriceInfo,

 ShippingPriceInfo pShippingPriceInfo, String pOrderType)

 throws CommerceException

 {

 MyOrder order = (MyOrder)super.createOrder(

 pProfileId, pOrderId, pOrderPriceInfo,

 pTaxPriceInfo, pShippingPriceInfo, pOrderType);

 OrderData orderData = ((MyOrderTools)getOrderTools()).createOrderData();

 order.setOrderData(orderData);

 return order;

 }

}

Step 4 of 7 – Modify the OrderTools and OrderManager Configuration Files

In step 3, you subclassed OrderTools and SimpleOrderManager to create the new OrderData object
and add it to the Order. Now you need to configure instances of these new classes in Nucleus.

First, configure an instance of MyOrderManager in Nucleus by modifying the existing OrderManager
configuration file. To do so, layer on a configuration file by creating an OrderManager.properties file
at /atg/commerce/order/ in your localconfig directory. The OrderManager.properties file should
look as follows (Note that no properties need to be configured.):

$class=my_package.MyOrderManager

Second, configure an instance of MyOrderTools in Nucleus by modifying the existing OrderTools
configuration file. The OrderTools component controls many aspects of the purchase process, such as
mapping between commerce object types and class names, defining the default commerce object types,
and mapping between commerce objects and item descriptors. You need to modify the OrderTools
configuration file to support the new commerce objects and item descriptors that you have created.

To modify the OrderTools configuration file, layer on a configuration file by creating an
OrderTools.properties file at /atg/commerce/order/ in your localconfig directory. The
OrderTools.properties file should look as follows:

$class=my_package.MyOrderTools

beanNameToItemDescriptorMap+=\

 my.class.dir.OrderData=orderData,\

 my.class.dir.MyOrder=myOrder

orderTypeClassMap+=\

 default=my.class.dir.MyOrder

A T G C o m m e r c e P r o g r a m m i n g G u i d e

3 9 9

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
The beanNameToItemDescriptorMap property maps Order Repository item descriptors to Bean names.
In ATG Commerce, the processors that save and load an Order look for an item descriptor that is mapped
to the corresponding commerce object class; the beanNameToItemDescriptorMap property contains
this mapping. The configuration file above adds two new entries, mapping the orderData and myOrder
item descriptors that you created in step 1 to their corresponding classes. The my.class.dir prefix
specifies the Java package in which the class exists.

Because you can have more than one type of Order object, the orderTypeClassMap property maps
Order types to class names. This mapping is used by the createOrder() method in the OrderManager;
by passing it a type parameter (such as the string “default”), the method constructs and returns an
instance of the corresponding class. When one of the createOrder() methods that does not take a type
parameter is called, the method constructs and returns an instance of the type specified in
OrderTools.defaultOrderType. By default, the defaultOrderType property is set to the type
“default,” which, in turn, is mapped to the new MyOrder class in the orderTypeClassMap property in the
configuration file above. The my.class.dir prefix indicates some Java package in which the class exists.

Step 5 of 7 – Add a Processor to Save the New Object

You do not need to write new code to save the orderData reference in the MyOrder object. The
processors in the updateOrder pipeline, which perform the actual saving of the Order object to the
Order Repository, use the Dynamic Beans mechanism to read and write the values of a bean using their
property names. However, to save the data in the OrderData object itself, you must create a new
processor that saves the OrderData object to the Order Repository and insert that new processor into the
updateOrder pipeline. (For more information on the updateOrder pipeline, see Saving Orders in the
Configuring Purchase Process Services chapter.)

First, write the Java source code for the new processor. The following Java source file,
ProcSaveOrderDataObject.java, serves as an example.

package my_package;

import atg.repository.*;

import atg.commerce.order.*;

import atg.commerce.CommerceException;

import atg.service.pipeline.*;

import atg.beans.*;

import atg.commerce.order.processor.*;

import java.util.*;

/*

This class extends a class called SavedProperties. SavedProperties provides a set

of properties and a way to retrieve a mapped property. This functionality

corresponds to the savedProperties property and the

propertyDescriptorToBeanPropertyMap property in the properties file which

corresponds the this object.

This class also implements the PipelineProcessor interface. This interface

includes the runProcess() and getRetCodes() methods. All pipeline processors must

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 0 0

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
implement this interface.

*/

public class ProcSaveOrderDataObject extends SavedProperties

 implements PipelineProcessor

{

// These are the two valid return codes for this pipeline processor

 private final int SUCCESS = 1;

 private final int FAILURE = 2;

// The constructor

 public ProcSaveOrderDataObject() {

 }

// Returns the set of all valid return codes for this processor.

 public int[] getRetCodes()

 {

 int[] ret = {SUCCESS, FAILURE};

 return ret;

 }

// property: orderDataProperty

// This is the order data property.

 private String mOrderDataProperty = "orderData";

 public String getOrderDataProperty() {

 return mOrderDataProperty;

 }

 public void setOrderDataProperty(String pOrderDataProperty) {

 mOrderDataProperty = pOrderDataProperty;

 }

 public int runProcess(Object pParam, PipelineResult pResult)

 throws Exception

 {

/*

The pParam parameter contains the data required for executing this pipeline

processor. This code extracts the required parameters for this processor.

*/

 HashMap map = (HashMap) pParam;

 Order order = (Order) map.get(PipelineConstants.ORDER);

 OrderManager orderManager = (OrderManager)

 map.get(PipelineConstants.ORDERMANAGER);

 Repository repository = (Repository)

 map.get(PipelineConstants.ORDERREPOSITORY);

 OrderTools orderTools = (OrderTools) orderManager.getOrderTools();

 MutableRepository mutRep = null;

 MutableRepositoryItem mutItem = null;

 Object value = null;

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 0 1

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
 Object[] savedProperties = null;

 String mappedPropName = null;

// Check for null parameters

 if (order == null)

 throw new InvalidParameterException();

 if (repository == null)

 throw new InvalidParameterException();

 if (orderManager == null)

 throw new InvalidParameterException();

/*

Try to cast the repository and make sure that it is a MutableRepository.

In most cases it will be a GSA Repository which is mutable.

*/

 try {

 mutRep = (MutableRepository) repository;

 }

 catch (ClassCastException e) {

 throw e;

 }

/*

This code is taking advantage of the ChangedProperties interface methods. The

first check is checking whether this processor is configured to save all

properties always, or take advantage of ChangedProperties. The

saveChangedPropertiesOnly property is inherited from SavedProperties. If

getSaveChangedPropertiesOnly() returns false, then the local variable

savedProperties is set to the entire list of properties defined in the

SaveOrderDataObject.properties file. If it returns true, then a check is done to

determine whether the orderData object implements ChangedProperties. If so, then

it gets the list of properties whose value has changed, otherwise it sets the list

of properties to save to the savedProperties property.

*/

 CommerceIdentifier orderData = (CommerceIdentifier)

 DynamicBeans.getPropertyValue(order, getOrderDataProperty());

 if (getSaveChangedPropertiesOnly()) {

 if (orderData instanceof ChangedProperties

 && (! ((ChangedProperties) orderData).getSaveAllProperties()))

 savedProperties =

 ((ChangedProperties) orderData).getChangedProperties().toArray();

 else

 savedProperties = getSavedProperties();

 }

 else {

 savedProperties = getSavedProperties();

 }

/*

Next a check is done to get the repositoryItem property from the object if it has

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 0 2

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
a repositoryItem property defined. If it does not have the repositoryItem property

or its value is null, then a lookup is done in the repository for the item and set

if it has the property.

*/

 boolean hasProperty = false;

 if (DynamicBeans.getBeanInfo(orderData).hasProperty("repositoryItem"))

 {

 hasProperty = true;

 mutItem = (MutableRepositoryItem)

 DynamicBeans.getPropertyValue(orderData, "repositoryItem");

 }

 if (mutItem == null) {

 mutItem = mutRep.getItemForUpdate(orderData.getId(),

 orderTools.getMappedItemDescriptorName(

 orderData.getClass().getName()));

 if (hasProperty)

 DynamicBeans.setPropertyValue(orderData, "repositoryItem",

 mutItem);

 }

/*

This section loops through all the properties in the savedProperties array and if

they exist in the object being saved, then the property will be saved to the

repository. The OrderRepositoryUtils class provides functionality which parses

mapped property values and either gets the property values, determines if the

property exists, etc. This code is preserved so it will allow classes created for

DCS 5.0 to still work. If your classes do not use the addChangedProperties()

method in the set() methods of your beans, then this for loop can be eliminated.

*/

 for (int i = 0; i < savedProperties.length; i++) {

 mappedPropName = getMappedPropertyName((String) savedProperties[i]);

 if (! OrderRepositoryUtils.hasProperty(order, orderData,

 mappedPropName))

 continue;

 try {

 value = OrderRepositoryUtils.getPropertyValue(order, orderData,

 mappedPropName);

 }

 catch (PropertyNotFoundException e) {

 continue; // should not happen

 }

 if (orderManager.isLoggingDebug())

 orderManager.logDebug("save property[" + (String)

 savedProperties[i] + ":" + value + ":" +

 orderData.getClass().getName() + ":" +

 orderData.getId() + "]");

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 0 3

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
 OrderRepositoryUtils.saveRepositoryItem(mutRep, mutItem,

 (String) savedProperties[i], value, orderTools);

 } // for

/*

Here the repository item is updated to the repository.

This is done here to catch any Concurrency exceptions.

*/

 try {

 mutRep.updateItem(mutItem);

 }

 catch (ConcurrentUpdateException e) {

 throw new CommerceException("Concurrent Update Attempt", e);

 }

/*

Finally, the ChangedProperties Set is cleared and the saveAllProperties property

is set to false. This resets the object for more edits. Then the SUCCESS value is

returned.

*/

 if (orderData instanceof ChangedProperties) {

 ChangedProperties cp = (ChangedProperties) orderData;

 cp.clearChangedProperties();

 cp.setSaveAllProperties(false);

 }

 return SUCCESS;

 }

}

Next, configure an instance of ProcSaveOrderDataObject by adding a
SaveOrderDataObject.properties file to your localconfig directory at
/atg/commerce/order/processor/. The configuration file might look as follows:

$class=my_package.ProcSaveOrderDataObject

This property tells the processor to only save the properties which have

changed. This requires that when a property is changed that it be marked

for saving.

saveChangedPropertiesOnly=true

These are the properties of the OrderData object which will be saved to

the repository. All properties which should be saved should be listed

here. By default a property name listed here will be saved to the

corresponding repository item property with the same name. If the name

in the bean and repository are not the same then it can be mapped in the

property propertyDescriptorToBeanPropertyMap below. Nothing needs to be

defined for this property

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 0 4

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
savedProperties=

This property maps a OrderRepository property descriptor to an OrderData

bean property. By default the processor will look for an OrderRepository

property descriptor which is the same as the bean property name. If

there are any properties whose names differ, they can be mapped here.

The format is repository_property_descriptor=bean_property_name

propertyDescriptorToBeanPropertyMap=

orderDataProperty=orderData

Finally, insert the SaveOrderDataObject processor into the updateOrder pipeline. The updateOrder
pipeline is defined in the commerce pipeline definition file, commercepipeline.xml. In ATG Consumer
Commerce, this file is located at <ATG10dir>/B2CCommerce/config/atg/commerce/. In ATG Business
Commerce, it is located at <ATG10dir>/B2BCommerce/config/atg/commerce/.

To insert the SaveOrderDataObject processor into the updateOrder pipeline, extend the
commercepipeline.xml file by creating a new commercepipeline.xml file that defines the new
processor and placing it in your localconfig directory at /atg/commerce/. During deployment, the
ATG platform uses XML file combination to combine the commercepipeline.xml files in the
CONFIGPATH into a single composite XML file. Insert the new processor into the pipeline somewhere
after the first processor, updateOrderObject, and before the last processor, setLastModifiedTime. By
convention, you should insert the processor into the pipeline immediately after the processor that
references the new object. In this example, the most appropriate place would be immediately after the
updateOrderObject processor.

For more information on how to add a processor to an existing pipeline, refer to Processor Chains and the
Pipeline Manager chapter. For more information on XML file combination, see the Nucleus: Organizing
JavaBean Components chapter in the ATG Programming Guide.

Step 6 of 7 – Add a Processor to Load the New Object

You do not need to write new code to load the orderData reference in the Order object. The
loadOrderObject processor in the loadOrder pipeline knows how to load all of the properties of the
Order object, regardless of whether the commerce object hierarchy has been extended. However, to load
the data into the OrderData object itself, you must create a new processor that loads the data from the
repository into the OrderData object and insert that new processor into the refreshOrder pipeline,
which performs the actual loading of most of the contained objects in the Order. (For more information
on loading and refreshing orders, see Loading Orders in the Configuring Purchase Process Services chapter.)

First, write the Java source code for the new processor. The following Java source file,
ProcLoadOrderDataObject.java serves as an example.

package my_package;

import atg.repository.*;

import atg.commerce.order.*;

import atg.service.pipeline.*;

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 0 5

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
import atg.beans.*;

import atg.commerce.order.processor.*;

import java.util.*;

/*

This class extends a class called LoadProperties. LoadProperties provides a set of

properties and a way to retrieve a mapped property. This functionality corresponds

to the loadProperties property and the propertyDescriptorToBeanPropertyMap

property in the properties file which corresponds the this object.

This class also implements the PipelineProcessor interface. This interface

includes the runProcess() and getRetCodes() methods. All pipeline processors must

implement this interface.

*/

public class ProcLoadOrderDataObject extends LoadProperties

 implements PipelineProcessor

{

// These are the two valid return codes for this pipeline processor

 private final int SUCCESS = 1;

 private final int FAILURE = 2;

// The constructor

 public ProcLoadOrderDataObject() {

 }

// Returns the set of all valid return codes for this processor.

 public int[] getRetCodes()

 {

 int[] ret = {SUCCESS, FAILURE};

 return ret;

 }

 // property: orderDataProperty

 private String mOrderDataProperty = null;

 public String getOrderDataProperty() {

 return mOrderDataProperty;

 }

 public void setOrderDataProperty(String pOrderDataProperty) {

 mOrderDataProperty = pOrderDataProperty;

 }

 public int runProcess(Object pParam, PipelineResult pResult)

 throws Exception

 {

/*

The pParam parameter contains the data required for executing this pipeline

processor. This code extracts the required parameters for this processor.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 0 6

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
*/

 HashMap map = (HashMap) pParam;

 Order order = (Order) map.get(PipelineConstants.ORDER);

 MutableRepositoryItem orderItem = (MutableRepositoryItem)

 map.get(PipelineConstants.ORDERREPOSITORYITEM);

 OrderManager orderManager = (OrderManager)

 map.get(PipelineConstants.ORDERMANAGER);

 OrderTools orderTools = orderManager.getOrderTools();

// Check for null parameters

 if (order == null)

 throw new InvalidParameterException();

 if (orderItem == null)

 throw new InvalidParameterException();

 if (orderManager == null)

 throw new InvalidParameterException();

/*

Local variables. loadProperties lists all the properties which must be loaded for

this object.

*/

 String mappedPropName;

 Object value;

 String[] loadProperties = getLoadProperties();

/*

This section of code first gets the orderData item descriptor from the order

repository item. Next it gets the orderData item descriptor. The third line of

code does a lookup in the OrderTools object and returns the class mapped to the

orderData item descriptor.

*/

 MutableRepositoryItem mutItem = (MutableRepositoryItem)

 orderItem.getPropertyValue(getOrderDataProperty());

 RepositoryItemDescriptor desc = mutItem.getItemDescriptor();

 String className =

 orderTools.getMappedBeanName(desc.getItemDescriptorName());

/*

Next, an instance of OrderData is constructed, its id property set to the

repository item's id, and if the object has a repositoryItem property, the item

descriptor is set to it.

*/

 CommerceIdentifier ci = (CommerceIdentifier)

 Class.forName(className).newInstance();

 DynamicBeans.setPropertyValue(ci, "id", mutItem.getRepositoryId());

 if (DynamicBeans.getBeanInfo(ci).hasProperty("repositoryItem"))

 DynamicBeans.setPropertyValue(ci, "repositoryItem", mutItem);

/*

This section loops through all the properties in the loadProperties array and

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 0 7

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
loads the property values from the repository into the object. First we look for a

mapping to the property value and then look to see if the property exists in the

item descriptor. If so, then we load it. The OrderRepositoryUtils class provides

functionality which parses mapped property values and either gets the property

values, determines if the property exists, etc. This code is preserved so it will

allow classes created for DCS 5.0 to still work. If your classes use the

getPropertyValue() method in the get() methods of your beans, then this for loop

can be eliminated.

*/

 for (int i = 0; i < loadProperties.length; i++) {

 mappedPropName = getMappedPropertyName(loadProperties[i]);

 if (desc.hasProperty(loadProperties[i]))

 {

 value = mutItem.getPropertyValue(loadProperties[i]);

 if (orderManager.isLoggingDebug())

 orderManager.logDebug("load property[" + loadProperties[i]

 + ":" + value + ":" + ci.getClass().getName()

 + ":" + ci.getId() + "]");

 OrderRepositoryUtils.setPropertyValue(order, ci, mappedPropName, value);

 }

 }

/*

If the loaded object implements ChangedProperties, then clear the

changedProperties Set. Then set the orderData property in the Order object to ci.

Finally, return SUCCESS.

*/

 if (ci instanceof ChangedProperties)

 ((ChangedProperties) ci).clearChangedProperties();

 DynamicBeans.setPropertyValue(order, getOrderDataProperty(), ci);

 return SUCCESS;

 }

}

Next, configure an instance of ProcLoadOrderDataObject by adding a
LoadOrderDataObject.properties file to your localconfig directory at
/atg/commerce/order/processor/. The configuration file might look as follows:

$class=my_package.ProcLoadOrderDataObject

These are the properties of the Order which will be loaded from the

repository. By default a property name listed here will be loaded from

the corresponding repository item property with the same name. If the

name in the bean and repository are not the same then it can be mapped

in the property propertyDescriptorToBeanPropertyMap below. Nothing needs

to be defined for this property.

loadProperties=

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 0 8

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ

This property maps a OrderRepository property descriptor to an Order

bean property. By default the processor will look for an OrderRepository

property descriptor which is the same as the bean property name. If

there are any properties whose names differ, they can be mapped here.

The format is repository_property_descriptor=bean_property_name

The repository_property_descriptor name must be listed above in

loadProperties.

propertyDescriptorToBeanPropertyMap=

orderDataProperty=orderData

Finally, insert the LoadOrderDataObject processor into the refreshOrder pipeline. The
refreshOrder pipeline is defined in the commerce pipeline definition file, commercepipeline.xml. In
ATG Consumer Commerce, this file is located at <ATG10dir>/B2CCommerce/config/atg/commerce/.
In ATG Business Commerce, it is located at <ATG10dir>/B2BCommerce/config/atg/commerce/.

To insert the LoadOrderDataObject processor into the refreshOrder pipeline, extend the
commercepipeline.xml file by creating a new commercepipeline.xml file that defines the new
processor and placing it in your localconfig directory at /atg/commerce/. During deployment, the
ATG platform uses XML file combination to combine the commercepipeline.xml files in the
CONFIGPATH into a single composite XML file. Insert the new processor into the pipeline somewhere
after the first processor, loadOrderObjectForRefresh. By convention, you should insert the processor
into the pipeline immediately after the processor that references the new object. In this example, the
most appropriate place would be immediately after the loadOrderObjectForRefresh processor.

As previously mentioned, for more information on how to add a processor to an existing pipeline, refer to
the Processor Chains and the Pipeline Manager chapter. For more information on XML file combination,
see the Nucleus: Organizing JavaBean Components chapter in the ATG Programming Guide.

Step 7 of 7 – Extend the ID Spaces Definition File

Note: This step is only necessary when the new item descriptor is a root item descriptor. It does not need
to be performed when the new item descriptor is a subclass of an item descriptor.

When an ID is requested for a new repository item, it is requested from the appropriate IdSpace for that
repository item. The item descriptor’s id-space-name attribute specifies which IdSpace supplies
repository IDs for items of that item type. By default, all items use the item descriptor’s name as the ID
space unless their item type inherits from another item type. In the latter case, the items use the ID space
name of the root item descriptor in the super-type hierarchy.

If a new item descriptor that you’ve defined is a root item descriptor, you need to modify the ID spaces
definition file, idspaces.xml, in order to define an ID space for that item descriptor. ATG Commerce
IdGenerator guarantees that IDs within a named ID space are unique, and each root item descriptor
defines the characteristics of its ID space in the idspaces.xml definition file.

In the example used throughout this section, you’ve defined a single root item descriptor, orderData.
Consequently, you need to define an ID space for that descriptor. To do so, create a new idspaces.xml
file at /atg/dynamo/service/ in your localconfig directory. During deployment, the ATG platform
uses XML file combination to combine the idspaces.xml files in the CONFIGPATH into a single

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 0 9

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
composite XML file. (For more information on XML file combination, see the Nucleus: Organizing JavaBean
Components chapter in the ATG Programming Guide.) The idspaces.xml file might look as follows:

<id-spaces xml-combine="append">

 <id-space name="orderData" seed="1" batch-size="10000"

 prefix="od"/>

</id-spaces>

For more information on defining ID spaces and its impact on repository item IDs, see the ID Generators
section of the Core Dynamo Services chapter in the ATG Programming Guide.

Manipulating Extended Objects

Regardless of the method you use to extend purchase process objects (using an existing or new item
descriptor), you may need to extend some additional areas as well:

 If you extend an implementation of CommerceItem or ShippingGroup, you may need
to make additional changes as described in Merging Orders in this chapter.

 If you add custom properties to a CommerceItem, you may need to override portions
of CartModifierFormHandler. This form handler is capable of handling new
primitive data type properties automatically. Other types of extensions require
extensions to the form handler. See Handling Custom Commerce Item Properties in the
Implementing Shopping Carts chapter of the ATG Commerce Guide to Setting Up a Store
for more information.

Merging Orders
The standard process for merging orders involves OrderManager.mergeOrders() calling
CommerceItemManager.mergeOrdersCopyCommerceItem() to copy existing commerce items from a
source order to a destination order, and calling
ShippingGroupManager.mergeOrdersCopyShippingGroup to copy existing shipping groups from the
source order to the destination order. In the ShippingGroupManager,
mergeOrdersCopyShippingGroup, in turn, calls either mergeOrdersCopyHardgoodShippingGroup or
mergeOrdersCopyElectronicShippingGroup, depending on the type of the shipping group.

If you are using the multisite features of ATG Commerce, merging orders must also take site information
into account when deciding whether two items are identical, and therefore whether to increment the
item count or to add a second item to the order. The methods used are
CommerceItemManager.shouldMergeItems() and shouldMergeSubItems().

Note that if you have extended certain ATG Commerce classes to store additional information, you must
change the methods used for merging orders so the additional information is copied to the destination
order when merging orders.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 1 0

1 7 - C u s t o m i z i n g t h e P u r c h a s e P r o c e s s E x t e r n a l s

μ
 If you’ve extended CommerceItem, you should subclass CommerceItemManager and

override the mergeOrdersCopyCommerceItem method to first call the superclass
method to do the basic copy and then copy your extended commerce item data.

 If you’ve extended HardgoodShippingGroup, you should subclass
ShippingGroupManager and override the
mergeOrdersCopyHardgoodShippingGroup method to first call the superclass
method to do the basic copy and then copy your extended commerce item data.

 If you’ve extended ElectronicShippingGroup, you should subclass
ShippingGroupManager and override the
mergeOrdersCopyElectronicShippingGroup method to first call the superclass
method to do the basic copy and then copy your extended commerce item data.

 If you’ve created a new shipping group type that is neither a subclass of
HardgoodShippingGroup nor ElectronicShippingGroup, you should subclass
ShippingGroupManager and override the mergeOrdersCopyShippingGroup
method to examine the class of the shipping group. If the shipping group is of the new
type you created, then the subclass should copy it to the destination order. Otherwise,
the method can call the superclass mergeOrdersCopyShippingGroup method to
handle the standard shipping group types.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 1 1

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
18 Processor Chains and the Pipeline

Manager

The Pipeline Manager is a system that executes a series of processors, which are linked in processor chains.
A processor is a component that executes a piece of functionality and returns a status code. The status
code determines which processor in the chain to execute next. The Pipeline Manager enables you to
dynamically add and remove processors and chains of processors. The Pipeline Manager does so in a
transactionally aware way, supporting a subset of the transactional modes that EJB supports.

The pipeline functionality is part of the main Dynamo Application Framework, but it is used primarily by
ATG Commerce.

This chapter includes the following sections:

Pipeline Manager Overview

Using the Pipeline Editor

Running a Processor Chain

Creating a Processor Pipeline

Pipelines and Transactions

Extending the Processor Pipeline Classes

Adding a Commerce Processor Using XML Combination

Pipeline Manager Overview
The Pipeline Manager controls a series of processors, which make up a processor chain. Each processor in
the processor chain is a component that performs a specific function and returns a status code. The status
code can determine which processor to execute next. You can imagine a tree structure of processor
chains as below:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 1 2

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ

Processor
C2

Processor
D0

Processor
C1

Processor
D1

Processor
D2

Processor
E

Processor
B

Processor
A

The processors in the processor chain illustrated above would be executed from left to right. Notice that
chains are allowed to split and merge together.

For a more concrete example, suppose you have a commerce site. It might include a processor chain that
is invoked when users add an item to their shopping cart. This Add to Cart chain might contain the
following elements in the given order: InventoryCheck, InventoryReserve, FraudDetection, and
AddToOrder.

If there was already an existing transaction, when it reaches the Pipeline Manager, it will simply use that
transaction for executing the pipeline. If a transaction had not been created, then the Pipeline Manager
creates a new one. Next, it calls each processor in sequence from InventoryCheck to AddToOrder
without altering the transaction in any way.

An element in a processor chain can specify that it should be executed in the context of its own
transaction. For example, the InventoryReserve processor uses its own transaction to access the
inventory. When the request reaches InventoryReserve, the Pipeline Manager suspends the current
transaction, which would be the one that was passed to the pipeline manager, creates a new transaction,
and executes the code for InventoryReserve.

When the InventoryReserve processor completes execution of its transaction, then the Pipeline
Manager either commits or rolls back the InventoryReserve transaction, and then resumes the original
transaction before it executes the FraudDetection processor.

Using the Pipeline Editor
The Pipeline Editor in the ATG Control Center provides a graphical user interface for creating, viewing and
editing pipeline chains. This section covers the following topics:

 Accessing the Pipeline Editor

 Opening an Existing Pipeline Definition

 Creating a New Pipeline Definition

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 1 3

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
 Editing Existing Pipeline Definitions

 Printing a Pipeline Definition

 Activating Verbose Mode

 Changing the Display Font of the Pipeline Editor

 Reinitializing the Pipeline Manager

Accessing the Pipeline Editor

The pipeline editor is part of the ATG Control Center. To access the pipeline editor, select Utilities >
Pipeline Editor from the navigation menu of the ACC. The Pipeline Editor opens:

Opening an Existing Pipeline Definition

The following steps describe how to open an existing pipeline definition.

Note: The pipeline manager component must be running for its definition to be loaded. If you have
problems loading an existing definition, make sure its manager is running.

1. Click on the Open Pipeline Definition icon.

2. Select the Pipeline Manager that you want to open from the list and click on the Open
Pipeline Definition button.

The pipeline definition displays in the ACC.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 1 4

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ

Creating a New Pipeline Definition

Follow these steps to create a new pipeline definition:

1. Click the New Pipeline Definition button. You see an empty definition with a single
empty chain named PipelineChain1.

2. Right-click the Pipeline Chain title icon and select Edit Details.

3. Type a new Pipeline Chain name and select a new Transaction Mode, if necessary.

4. Right-click the line between the new pipeline chain title and termination point and
select Create Pipeline Link.

5. Enter a new pipeline link name and change the Transaction Mode and Processor
Mode, if necessary.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 1 5

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
6. (JNDI Processor Mode only) Enter a processor for the link or click Choose Processor to

select one from the available processors.

7. Click the check mark to close the pipeline link window. The pipeline editor will
automatically display the appropriate number of transitions for the selected processor.

8. Repeat the steps for creating pipeline chains and links for the rest of the pipeline
definition. The first pipeline chain node is automatically inserted for the user. To create
new chain nodes, select Edit >Insert Pipeline Chain or right-click any execution line
and select Insert Pipeline Chain.

9. Save the pipeline definition by selecting one of the following from the File menu:

 Save all: The complete definition (all chains and their processors) is completely
written out to XML and all chains are marked as “xml-combine=replace”. This
ensures that this definition gets accepted when xml combination happens.

 Save diffs: Saves only the difference between the latest changes and the XML
combined version of the definition file up to the previous layer. This ensures
that information is not saved to the current layer that is already included in
other layers.

Note: If you create a new definition and later want to reopen it, you must associate the
new XML file with an existing pipeline manager. This is because you can only open
definitions associated with pipeline managers. You can create a new pipeline manager
and set its definition file to point to your new definition.

Adding New Pipeline Managers and Processors to the ACC

The Pipeline Registry is used to register pipeline manager and pipeline processor components with the
Pipeline Editor. If you do not register new components, you will not be able to see and select them in the
editor. The Pipeline Registry component is located at /atg/registry/PipelineRegistry and its
associated XML file is pipelineRegistry.xml.

To register a new pipeline manager or processor, you need to specify its Nucleus path in the XML file. You
can optionally specify additional properties for processors, including a display name, category,
description, and icon. These new properties will be used in the processor picker dialog box (edit a link
node and for its Processor property select Choose Processor). The picker lists processors by category.
Processors are shown with their icon and the description is displayed in a tool tip.

The following example registers a new manager called MyPipelineManager and a new processor called
MyProcessor:

<pipeline-registry-configuration>

 <pipeline-manager-registry xml-combine="append-without-matching">

 <pipeline-manager>

 <nucleus-path>/atg/commerce/MyPipelineManager</nucleus-path>

 </pipeline-manager>

 </pipeline-manager-registry>

 <processor-registry xml-combine="append-without-matching">

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 1 6

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
 <processor>

 <nucleus-path>/atg/commerce/payment/MyProcessor</nucleus-path>

 <display-name>My Processor</display-name>

 <category>Payment</category>

 <description>A Custom Payment Processor</description>

 </processor>

</processor-registry>

</pipeline-registry-configuration>

Editing Existing Pipeline Definitions

Pipelines in the ACC are edited in a way similar to the way scenarios are edited. You can perform the
following editing functionality on editor nodes.

 Copy and paste

 Drag and drop processor elements

 Undo and redo actions

Overview of Pipeline Editor Interface

This section describes the icons in the pipeline editor.

The icon above represents the name of the pipeline chain. You can edit the properties of this node to set
the chain’s name and transaction mode.

The icon above represents an individual link in a pipeline chain. You can edit the properties of this node
to set the link’s name, transaction mode, processor mode, and processor name. Once you have specified
the processor, the set of possible integer outcomes (as defined by the interface
atg.service.pipeline.PipelineProcessor) are automatically represented as part of the node with
separate execution paths.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 1 7

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ

The icon above represents a link whose processor returns a special value. There are two predefined return
codes with a special meaning: 0 (stop chain execution and commit) and –1 (stop chain execution and
rollback). These are defined in atg.service.pipeline.PipelineProcessor.

The icon above represents a special link whose processor is an instance of
atg.commerce.order.processor.ProcExecuteChain. This processor executes a subchain and
returns.

The icon above represents a stop in the execution of this path.

The icon above represents a jump back to a prior link in the chain. You can edit the node to change the
destination.

Printing a Pipeline Definition

Follow these steps to print the pipeline chains in the open pipeline definition. You can print any definition
in the editor window.

1. Click the Print icon.

2. Select one of the following and click OK:

 Scale to Page: Prints the entire pipeline definition on one page.

 No Scaling: Prints the pipeline definition at full size on multiple pages (if
necessary).

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 1 8

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
Activating Verbose Mode

Verbose mode allows you to view detailed information for pipeline nodes by moving your cursor over the
node. The information appears in a pop-up window. The same information is available by double-clicking
a node or right-clicking and choosing Edit Details. In addition, the verbose tool tip lists the headlink for
pipeline chains, and the possible destinations for a pipeline link. A link’s destination is the next link to be
executed if the current processor returns a certain value.

By default, verbose mode is turned off. You can activate verbose mode by selecting File > Set Verbose
Mode On. When verbose mode is active, you can turn it off by selecting File > Set Verbose Mode Off.

Pipeline Debugging

You can access the component editors for pipeline manager and pipeline processor components to turn
debugging on and off.

Follow these steps to debug a definition.

1. Select File > Edit pipeline manager component.

2. Select a pipeline manager.

3. In the component editor, set loggingDebugOnProcessors to true to turn
debugging on for all processors in the definition.

Follow these steps to debug an individual processor.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 1 9

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
1. Right-click a pipeline link node.

2. Select Edit Selected Pipeline Processor Component.

1. In the component editor, set loggingDebug to true.

Changing the Display Font of the Pipeline Editor

You can change the font that the pipeline editor uses to display the pipeline definitions in the ACC as
follows:

1. Select Tools > Preferences.

2. Click the Fonts tab.

3. Select a new font for the Scenario Editor. The Pipeline Editor uses the same font
settings.

Reinitializing the Pipeline Manager

When you deploy an application that includes ATG Commerce, the pipeline manager is automatically
reinitialized. If you make changes to a pipeline definition and you want the changes to take affect in the
session you are currently running, you must reinitialize the pipeline manager.

Follow these steps to reinitialize the pipeline manager.

1. Open an existing pipeline definition.

2. Modify the definition. For example, delete a link in a chain or change a link to execute
a different processor.

3. Click Save to save your changes.

4. Click the Reinitialize button to load the new definition into the pipeline manager.

Running a Processor Chain
To execute a processor chain in the PipelineManager, make a call to the runProcess() method in the
PipelineManager. This section describes what happens when a processor chain is executed.

The PipelineManager first finds the requested chain. If the requested chain is enabled,
PipelineManager calls runProcess() on it and passes it the user data. The runProcess() method in
the PipelineChain manages execution of the processors. If is not enabled, an exception is thrown.

A PipelineResult object or subclass of it is constructed. This is determined by what is defined in the
PipelineChain object.

The runProcess() method is called on the head PipelineLink object of the processor chain. The
PipelineLink is responsible for three actions:

 Handling the transaction (if required)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 2 0

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
 Executing the processor, and

 Returning the return code to the PipelineChain.

To handle the transaction, four methods are called before and after the call to runProcess() in the
PipelineProcessor. These methods are called in the following order:

 preChainTransaction()

 postChainTransaction()

 preLinkTransaction()

 postLinkTransaction()

These calls make the appropriate calls and construct any required objects for the execution of the
processor in the context of the transaction mode.

The runProcess() method is called between these methods and the return value of the call is returned
to the PipelineChain. The return value of 0, which is mapped to the static variable
PipelineProcessor.STOP_CHAIN_EXECUTION, tells the PipelineManager that execution for this
chain should stop normally. Any other return value from runProcess() indicates the next processor to
execute.

STOP_CHAIN_EXECUTION can be returned from any PipelineProcessor, regardless of whether it has
additional links or not. When STOP_CHAIN_EXECUTION is returned, the transactions are handled and the
PipelineResult object is returned. If a value other than STOP_CHAIN_EXECUTION is returned, the
PipelineChain calls getNextLink() on the PipelineLink just executed and passes it the return value
it received.

This call returns another PipelineLink to execute or null. If a PipelineLink is returned, then the above
process repeats. If null is returned, then an exception is thrown, the transaction is rolled back if needed,
and this method exits throwing the appropriate exception object.

Creating a Processor Pipeline
A processor pipeline consists of a Pipeline Manager and a set of processors, which can be organized into
processor chains. You can create and delete pipelines in two ways, through an XML file or through the
atg.service.pipeline API.

You can initialize a Pipeline Manager with a set of processor chains at application deployment using an
XML configuration file called a pipeline definition file. This provides you with a simple way to construct and
manage the global PipelineManager without writing code. It only can be used for initializing the
globally scoped PipelineManager that is created during deployment. For more information, see the
Pipeline Definition Files section.

Any non-globally scoped Pipeline Managers need to be created using the API. The API is provided for
dynamic creation, editing, and deletion of processor chains and processors. For more information, see the
Creating and Editing Processor Chains Programmatically section.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 2 1

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
The following sections describe how to create a processor pipeline:

 Configuring a Pipeline Manager

 Creating Processors

 Pipeline Definition Files

 Creating and Editing Processor Chains Programmatically

 Extending the PipelineChain and PipelineResult Classes

Configuring a Pipeline Manager

Each processor chain is controlled by a Pipeline Manager component. If you are using ATG Commerce, a
Pipeline Manager instance is located at /atg/commerce/PipelineManager. The Pipeline Manager has
two properties you may want to configure: definitionFile and chainLockWaitTimeout.

definitionFile Property

The definitionFile property points to the XML file that defines the processor chains that can be run by
the Pipeline Manager. For example:

definitionFile=/atg/userprofiling/registrationPipeline.xml

The value of this property is a file pathname, relative to your CONFIGPATH. This XML file can be anywhere
in the CONFIGPATH. The Pipeline Definition Files section describes how to create the XML file that defines
the processor chains controlled by a Pipeline Manager.

chainLockWaitTimeout Property

The chainLockWaitTimeout property determines the amount of time the request handling thread
should wait for a processor chain to execute its processing of the request. The value of this property is in
milliseconds. The default setting is:

chainLockWaitTimeout=15000

Creating Processors

Any Java class can act as a processor in a pipeline by implementing the
atg.service.pipeline.PipelineProcessor interface. The PipelineProcessor interface has a
single method:

int runProcess(Object pParam, PipelineResult pResult)

The runProcess() method returns an integer status code that the Pipeline Manager uses to determine
the next processor to run.

Pipeline Definition Files

The contents of the processor chains controlled by a Pipeline Manager can be determined
programmatically, as described in the next section, Creating and Editing Processor Chains

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 2 2

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
Programmatically, or can be configured by an XML definition file, as specified by the Pipeline Manager’s
definitionFile property. This section describes how to create an XML definition file for a Pipeline
Manager.

Configuring processor chains with a pipeline definition file is useful for creating chains that are not edited
or creating generic chains that will later be edited dynamically using the API based on some other criteria.
This configuration file must be written in XML.

A pipeline definition file can use the following tags:

Tag Description Attributes

PipelineManager The top level tag that
encloses a definition of
a Pipeline Manager.

none

pipelinechain Tag defining a given
processor chain in the
Pipeline Manager. A
Pipeline Manager can
include any number of
processor chains, each
defined by a
<pipelinechain>
tag.

name - (required) The name of the processor chain
(for example, AddToCart). Must be unique. This
corresponds to the id in the PipelineChain object.

headlink - (required) The first processor in the chain
to be executed.

transaction - The default transactional mode of all
the processors in this chain. The valid modes are:

TX_REQUIRED
TX_REQUIRES_NEW
TX_SUPPORTS
TX_NOT_SUPPORTED
TX_MANDATORY

classname - The full name of a Java class which is to
be instantiated and used as the PipelineChain
object. The default is
atg.service.pipeline.PipelineChain. The
value must be this class or a subclass of it.

resultclassname - The full name of a Java class which
is to be instantiated and used as the
PipelineResult object. The default is
atg.service.pipeline.PipelineResult. The
value must implement PipelineResult.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 2 3

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
pipelinelink Defines a processor

within the chain and
names it.

name - (required) A name for this processor (for
example, CheckInventory). Must be unique.

transaction - A transactional mode that overrides
the default mode of the chain. The valid modes are:

TX_REQUIRED
TX_REQUIRES_NEW
TX_SUPPORTS
TX_NOT_SUPPORTED
TX_MANDATORY

processor The name of the
PipelineProcessor
object.

class - The processor class to be instantiated or
referenced to. If the attribute is of the form
packagename.classname then a new object is to be
created. If it is of the form jndi://.../..., then the
object is resolved through JNDI and its reference is
used as the pipeline element.

jndi - The processor class to be referenced to. The
object is resolved through JNDI and its reference is
used as the processor.

transition A reference to the next
link to be executed
mapped by a return
value.

returnvalue - (required) An integer string that is
used to define the next pipeline element.

link - (required) The name of a pipelineprocessor
that will be executed if the return value of the current
pipelineprocessor matches the returnvalue of
this link.

Document Type Definition for Pipeline Definition Files

Pipeline definition files use the following XML document type definition:

<!ENTITY %transactionmodes

 "(TX_REQUIRED|TX_REQUIRES_NEW|TX_SUPPORTS|TX_NOT_SUPPORTED|TX_MANDATORY)">

<!ELEMENT PipelineManager (pipelinechain*)>

<!ELEMENT pipelinechain (pipelinelink*)>

<!ATTLIST pipelinechain

 name ID #REQUIRED

 headlink IDREF #REQUIRED

 transaction %transactionmodes; "TX_REQUIRED"

 classname CDATA "atg.service.pipeline.PipelineChain"

 resultclassname CDATA "atg.service.pipeline.PipelineResultImpl">

<!ELEMENT pipelinelink (processor,transition*)>

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 2 4

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
<!ATTLIST pipelinelink

 name ID #REQUIRED

 transaction %transactionmodes; "TX_REQUIRED">

<!ELEMENT processor EMPTY>

<!ATTLIST processor

 class CDATA #IMPLIED

 jndi CDATA #IMPLIED>

<!ELEMENT transition EMPTY

<!ATTLIST transition

 returnvalue CDATA #REQUIRED

 link IDREF #REQUIRED>

Pipeline Definition File Example

The following file, PipelineManager.xml, is an example of a pipeline definition file that might be used
for initializing a pipeline.

<?xml version="1.0"?>

<!DOCTYPE PipelineManager SYSTEM "PipelineManager.dtd">

<PipelineManager>

 <pipelinechain name="AddToCart" transaction="TX_REQUIRED" headlink="proc1">

 <pipelinelink name="proc1">

 <processor class="atg.commerce.addA"/>

 <transition returnvalue="1" link="proc2"/>

 <transition returnvalue="2" link="proc3"/>

 </pipelinelink>

 <pipelinelink name="proc2" transaction="TX_REQUIRES_NEW">

 <processor class="atg.commerce.addB"/>

 <transition returnvalue="1" link="proc4"/>

 <transition returnvalue="2" link="proc5"/>

 </pipelinelink>

 <pipelinelink name="proc3">

 <processor class="atg.commerce.addE"/>

 <transition returnvalue="1" link="proc6"/>

 <transition returnvalue="2" link="proc7"/>

 <transition returnvalue="3" link="proc2"/>

 </pipelinelink>

 <pipelinelink name="proc4">

 <processor class="atg.commerce.addC"/>

 </pipelinelink>

 <pipelinelink name="proc5" transaction="TX_REQUIRES_NEW">

 <processor class="atg.commerce.addD"/>

 </pipelinelink>

 <pipelinelink name="proc6" transaction="TX_NOT_SUPPORTED">

 <processor class="atg.commerce.addF"/>

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 2 5

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
 </pipelinelink>

 <pipelinelink name="proc7" transaction="TX_SUPPORTS">

 <processor jndi="/dynamo/atg/commerce/addG"/>

 </pipelinelink>

 </pipelinechain>

 <pipelinechain name="RemoveFromCart" transaction="TX_REQUIRED"

 headlink="proc99" classname="atg.service.pipeline.PipelineMonoChain">

 <pipelinelink name="proc99">

 <processor class="atg.commerce.removeA"/>

 </pipelinelink>

 </pipelinechain>

</PipelineManager>

Each section of the PipelineManager.xml file is described below.

The first line says that this file compiles with the XML version 1.0 specification.

<?xml version="1.0"?>

The following line says that this is an XML file and that its DTD (document type definition) is in the file
PipelineManager.dtd.

<!DOCTYPE PipelineManager SYSTEM "PipelineManager.dtd">

This following line is the start of the PipelineManager definition. A <PipelineManager> tag encloses
all of the processor chain definitions.

<PipelineManager>

The following line begins the definition for a chain named AddToCart. The default transactional mode of
the PipelineLinks is TX_REQUIRED. The head link is proc1, which specifies the name of a
PipelineProcessor defined later in the file.

<pipelinechain name="AddToCart" transaction="TX_REQUIRED"

 headlink="proc1">

The next section is the definition of a PipelineLink with name proc1 and PipelineProcessor class
name atg.commerce.addA. The PipelineManager initialization routine will construct the object
atg.commerce.addA and set the PipelineLink’s processor reference to this object. This
PipelineLink has two transitions coming out of it, one with return value 1 which links to proc2 and one
with return value 2 which links to proc3. Both proc2 and proc3 are defined later in the file.

<pipelinelink name="proc1">

 <processor class="atg.commerce.addA"/>

 <transition returnvalue="1" link="proc2"/>

 <transition returnvalue="2" link="proc3"/>

</pipelinelink>

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 2 6

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
The next section defines two additional PipelineLinks. It is like the previous section, except that proc2
has defined an overriding transactional mode, TX_REQUIRES_NEW.

<pipelinelink name="proc2" transaction="TX_REQUIRES_NEW">

 <processor class="atg.commerce.addB"/>

 <transition returnvalue="1" link="proc4"/>

 <transition returnvalue="2" link="proc5"/>

</pipelinelink>

<pipelinelink name="proc3">

 <processor class="atg.commerce.addE"/>

 <transition returnvalue="1" link="proc6"/>

 <transition returnvalue="2" link="proc7"/>

 <transition returnvalue="3" link="proc2"/>

</pipelinelink>

This section defines four more PipelineLink objects, some with overriding transactional modes. The
interesting part of this section is the processor definition for proc7. Instead of using a Java class name
definition, this processor is defined with a JNDI reference as jndi="/dynamo/atg/commerce/addG".
This JNDI reference will be resolved at initialization time and used as the processor for this link. The final
line is the closing </pipelinechain> tag for the processor chain.

<pipelinelink name="proc4">

 <processor class="atg.commerce.addC"/>

</pipelinelink>

<pipelinelink name="proc5" transaction="TX_REQUIRES_NEW">

 <processor class="atg.commerce.addD"/>

</pipelinelink>

<pipelinelink name="proc6" transaction="TX_NOT_SUPPORTED">

 <processor class="atg.commerce.addF"/>

</pipelinelink>

<pipelinelink name="proc7" transaction="TX_SUPPORTS">

 <processor jndi="/dynamo/atg/commerce/addG"/>

</pipelinelink>

</pipelinechain>

The last section defines another PipelineChain called RemoveFromCart with default transaction mode
TX_REQUIRED, headlink proc99. It specifies that the classname to be used for the construction of the
PipelineChain is called PipelineMonoChain. The last line is the closing tag that closes off the
PipelineManager definition.

<pipelinechain name="RemoveFromCart" transaction="TX_REQUIRED" headlink="proc99"

 classname="atg.service.pipeline.PipelineMonoChain">

 <pipelinelink name="proc99">

 <processor class="atg.commerce.removeA"/>

 </pipelinelink>

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 2 7

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
</pipelinechain>

</PipelineManager>

After the XML file is defined, start the Pipeline Manager component to construct the PipelineManager
and its chains automatically.

Creating and Editing Processor Chains Programmatically

The following section describes various ways to construct or edit a processor chain using the API.

Locking and Synchronization for Editing Processor Chains

When you edit a processor chain, you must first obtain a lock on the chain, using the lockChain()
method of the PipelineManager. When you lock a chain, the PipelineManager gets a reference to the
calling thread and stores it within the requested chain. If the lock reference of the chain is null, then the
lock is granted. If the lock reference is the same as the requesting thread, then the chain is already locked
by the caller and execution falls through. For all other cases, an exception is thrown, which means that the
chain is already locked by another thread.

Portions of the lockChain() and unlockChain() methods need to be synchronized, particularly those
with sections that check the lock reference and set it.

The lock cannot be granted if there are threads executing in the requested chain. The chain keeps a
reference count for all the threads executing within it. If this count is greater than 0, then the call to
lockChain() blocks until the reference count is 0. When the reference count reaches 0, then the blocked
call is notified and the lockChain() method continues. To prevent starvation of the lockChain() call,
once that method is called, other threads attempting to call runProcess() will sleep until
unlockChain() is called. Once this happens, all the threads sleeping on the runProcess() call will be
notified.

Creating a New Processor Chain from Scratch

To create a new processor chain using the API:

1. Call the PipelineManager’s method createChain(). The createChain() method
constructs the appropriate PipelineChain object and sets the proper return type
into it. It implicitly locks and disables the chain and then adds it to the Pipeline
Manager.

2. Edit the chain by making calls to the createLink(), setHeadLink(), and
addTransition() methods of the PipelineManager.

 createLink() is called to create all the PipelineLink objects that will be
used in this chain and to link them together.

 setHeadLink() is called to set the first link object into the chain.

 addTransition() is called to create any additional transitions between links.

3. Call enableChain() to allow execution and unlockChain() to allow other threads
to edit the chain. These last two calls must be made in this order. Otherwise, an

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 2 8

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
exception will be thrown because enableChain() requires the caller to have a lock
on the chain.

Editing an Existing Processor Chain

Follow these steps to edit an existing processor chain.

1. Call lockChain(). This call will block until there are no threads executing the chain
and a lock can be obtained.

2. Call setHeadLink(), createLink(), addTransition(), and removeTransition()
to edit the chain, as described in the preceding Creating a New Processor Chain from
Scratch section.

3. Call unlockChain() to release the lock and allow execution of the chain to resume.

Replacing an Existing Processor Chain

Follow these steps to remove a chain and replace it with a new version of the same chain.

1. Create a copy of the chain you want to replace by calling duplicateChain() and
passing the chainId, which will be replaced as the argument. This call will return a
duplicate disabled copy of that chain.

2. Edit the new chain, using the setHeadLink(), createLink(), addTransition(),
and removeTransition() methods, as described in the Editing an Existing Processor
Chain section.

3. Call lockChain() on the chain that is to be replaced.

4. Call replaceChain() with the new chain as the argument. This will replace the chain
that has the same name as the new chain.

5. Call enableChain() and unlockChain() on the new chain, in that order.

Creating a New Processor Chain from an Existing Chain

Follow these steps to create a chain based on an existing chain in the PipelineManager.

1. Call copyChain(oldChainName, newChainName). This returns a copy of the chain
with a new name. The new chain is locked and disabled.

2. Edit the new chain if required, as described in the Editing an Existing Processor Chain
section.

3. Call enableChain() to allow execution on it and unlockChain() to allow other
threads to edit the chain. These last two calls must be made in this order or an
exception will be thrown, because enableChain() requires the caller to have a lock.

Adding and Removing Transitions to and from a Processor Chain

Adding and removing transitions to and from a processor chain requires the use of the
addTransition() and removeTransition() methods.

The following before and after diagram demonstrates adding and removing transitions. Pipeline Link 1 is
the head of the chain. Pipeline Link 1a is inserted after Pipeline Link 1 and before Pipeline Link 2 and
Pipeline Link 3. The transition from Pipeline Link 3 to Pipeline Link 4 is removed.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 2 9

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ

Pipeline
Link 1

Pipeline
Link 3

Pipeline
Link 2

Pipeline
Link 4

Pipeline
Link 3

Pipeline
Link 2

Pipeline
Link 4

Pipeline
Link 1

Pipeline
Link 1a

1

2

1

1

1

1

1

2

1. Call lockChain() in the PipelineManager with the chainId. This insures that no
thread executes in the chain and no other thread edits this chain.

2. Remove the two transitions from Pipeline Link 1 by doing the following:

 Get references to Pipeline Link 2 and Pipeline Link 3.

 Call removeTransition() twice to remove the two transitions that come from
Pipeline Link 1.

3. Call createLink() in the PipelineChain to create Pipeline Link 1a. The arguments
to createLink() will be as follows: Pipeline Link 1a, a PipelineProcessor object, a
reference to the link whose ID is Pipeline Link 1, and 1. This creates the transition from
Pipeline Link 1 to Pipeline Link 1a.

4. Call addTransition() twice to add the two transitions to Pipeline Link 2 and Pipeline
Link 3.

5. Call removeTransition() with arguments Pipeline Link 3 and 1. This removes the
transition from Pipeline Link 3 to Pipeline Link 4.

6. Call unlockChain() on the chain.

Extending the PipelineChain and PipelineResult Classes

The examples in the preceding section, Creating and Editing Processor Chains Programmatically, showed
how to create processor chains using the default version of the createChain() method. This version of
createChain() takes one argument and constructs and returns an object of type
atg.service.pipeline.PipelineChain (the default). atg.service.pipeline.PipelineResult
will be the object used for that chain’s PipelineResult object.

If you subclass PipelineChain and PipelineResult, you can create a processor chain with your
subclass in the same way you create a chain using the default PipelineChain and PipelineResult
objects. The only difference is that you need to use another version of the createChain() method. This

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 3 0

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
createChain() method does the same thing, except that it accepts two String arguments. These String
arguments identify the classes to be used for the PipelineChain and PipelineResult objects.

Example

This example uses a specialized version of PipelineChain called PipelineMonoChain. This
PipelineChain subclass represents a singly linked list, so each PipelineLink object transitions only to
a single PipelineLink.

To create the PipelineMonoChain class, the first step is to subclass PipelineChain. The
PipelineMonoChain class overrides the following methods in PipelineChain: createLink(),
addTransition(), and the two removeTransition() methods.

The subclass’s createLink() method returns PipelineMonoLink, which is a special type of
PipelineLink object that only allows a single transition out of it. It extends
atg.service.pipeline.PipelineLink. The declaration of createLink() looks like this:

public PipelineMonoLink createLink(String aLinkId, PipelineProcessor aProc,

 PipelineLink aFromLink, int aRetCode)

 throws CreateLinkException, TransitionException

This creates a PipelineMonoLink object instead of a PipelineLink object and returns it to the caller.
The main difference is that if aFromLink already has a transition coming out of it, then a
TransitionException would be thrown.

In PipelineLink, the TransitionException is thrown if the aRetCode was already mapped in
aFromLink. The aRetCode value has a slightly different meaning in PipelineMonoLink. If its value is
returned from the PipelineProcessor for that link, then the transition is followed. Otherwise execution
on the chain ends and the PipelineResult is returned to the caller.

For PipelineMonoChain to instantiate a PipelineMonoLink, the instantiatePipelineLink method
must be overridden to return a new instance of a PipelineLink subclass. The code would look like this:

protected PipelineLink instantiatePipelineLink(String pLinkId) {

 return new PipelineMonoLink(pLinkId);

}

The addTransition() method checks to see if there is a transition coming out of aFromLink. If there is,
then a TransitionException is thrown. Otherwise, the link is mapped. Your subclass should include a
new version of addTransition() with the following signature:

void addTransition(PipelineMonoLink aFromLink, int aRetCode, PipelineMonoLink

 aToLink)

 throws TransitionException

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 3 1

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
This differs from the addTransition() in PipelineLink by the first and third arguments. The type in
the method above is PipelineMonoLink, rather than PipelineLink, as in PipelineChain. The
addTransition() method in PipelineLink however still exists and has not been overridden. This
should be explicitly overridden and the code should throw a TransitionException. This method would
only be called if a PipelineLink (or subclass) that is not a PipelineMonoLink was passed as one of the
arguments.

The removeTransition() method checks to see if a transition is coming out of aFromLink. If none
exists, then a TransitionException is thrown. If one does exist, then the transition would be removed.
Again, new versions of removeTransition() should be added with the following signatures:

void removeTransition(PipelineMonoLink aFromLink, int aRetCode)

 throws TransitionException

void removeTransition(PipelineMonoLink aFromLink, PipelineMonoLink aToLink)

 throws TransitionException

These differ again by the arguments, which provide for PipelineMonoLink objects to be passed as
parameters rather than PipelineLink objects. The removeTransition() methods that take
PipelineLink objects should again be overridden explicitly and exceptions thrown.

The PipelineMonoLink object needs to extend PipelineLink. New methods that are specific to this
implementation need to be defined and the following methods need to be overridden: getNextLink(),
getNextLinks(), and getRetCodes(). The PipelineMonoLink would contain the following methods:

public PipelineMonoLink getNextLink()

public PipelineLink getNextLink(int aRetCode)

public PipelineMonoLink getNextLinks()

public PipelineLink[] getNextLinks(int[] aRetCodes)

public int getRetCode()

public int[] getRetCodes()

Although it takes a return code parameter, getNextLink(int aRetCode) should just return the
PipelineMonoLink object that is mapped to the link that called the method. For cleanliness, a
getNextLink() method should be defined that takes no arguments and returns a PipelineMonoLink.
The inherited getNextLink(int aRetCode) method should just call the one with no arguments and
return the PipelineMonoLink object that is cast to a PipelineLink. The getNextLinks(int[]
aRetCodes) method should also just call getNextLinks() and ignore the aRetCodes and put the
PipelineMonoLink into a PipelineLink array. The int[] getRetCodes() method should again just
call getRetCode() and take the return value, insert it into an array and return it.

The example in this section implements a singly linked chain. It overrides PipelineChain and
PipelineLink to force the objects to allow each link to have only one transition. The
PipelineMonoLink enforces this. The reason PipelineChain is overridden is to create
PipelineMonoLink objects rather than PipelineLink objects.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 3 2

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
Pipelines and Transactions

The Pipeline Manager is transactionally aware. This means that as it executes the processors in its
processor chains, each processor has the ability to mark the chain execution to be rolled back. If none of
the processors mark the transaction, then it is committed when the chain has finished executing.

The Pipeline Manager relies on the Java Transaction API (JTA) for its transactional needs. For more
information about JTA transactions in the ATG platform, see the Transaction Management chapter in the
ATG Programming Guide. A processor may handle transactions in one of five modes:

TX_REQUIRED

TX_REQUIRES_NEW

TX_NOT_SUPPORTED

TX_SUPPORTS

TX_MANDATORY

Processor Transaction Management

Transaction management refers to the action of executing PipelineProcessors in the context of their
defined transaction modes. This table describes each transaction mode and what the Pipeline Manager
does for each of those modes.

TX_REQUIRED The pipeline processor requires that a transaction be present for execution.
If there is no transaction available when the pipeline manager is called, then
the manager will create one and use it for execution of the pipeline. If the
PipelineManager created the transaction then it will be committed after
the processor completes, otherwise it will not be.

TX_REQUIRES_NEW The pipeline processor requires its own transaction for execution. If a
transaction is present, then it is suspended. A new transaction is created
before the execution. The processor then executes its code. At completion,
the transaction is either committed or rolled back. The original transaction is
then resumed.

TX_NOT_SUPPORTED The processor is not to be executed in a transaction. The current transaction
is suspended, the processor executes, and then the transaction is resumed.

TX_SUPPORTS The processor can be executed in a transaction. It will execute in the context
of a transaction is one is available. If one is not available it will still execute,
but without a transaction.

TX_MANDATORY This means that a transaction must already be in place, otherwise an error
occurs. The transaction is not automatically committed after the request.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 3 3

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
Spanning Transactions over a Chain Subset

Transactions cannot span a subset of the chain. It must either span an entire chain or one element of a
chain. If a transaction must only support a subset of a chain, you can code the logic for the subset of the
chain to be in one processor and then set the transaction mode for that processor to TX_REQUIRES_NEW.

A more flexible way to span transactions over subsets of a chain is to break the subset into a new chain
and then execute that chain within a processor of another chain. This new chain should have all its
processors marked as either TX_REQUIRES or TX_MANDATORY. The processor of the calling chain should
have its mode set to TX_REQUIRES_NEW.

Extending the Processor Pipeline Classes
You can extend the atg.service.pipeline API for customized behavior. An example of this was given
in the Extending the PipelineChain and PipelineResult Classes topic of the Creating a Processor Pipeline
section. The atg.service.pipeline API contains two interfaces that allow the objects in the system to
be customized:

atg.service.pipeline.PipelineResult provides access to the pipeline
execution error data.

atg.service.pipeline.PipelineProcessor is implemented by the processor
components that the Pipeline Manager executes. Its main method is runProcess().

The following table summarizes the classes in the atg.service.pipeline package:

PipelineManager A global GenericService that controls the management of
the pipelines and the execution of requests in the pipelines.

PipelineChainConfiguration An object that contains data about a PipelineChain and a
reference to the chain itself. This object is used internally in the
PipelineManager.

PipelineChain An object that contains a PipelineLink to the first
PipelineProcessor for a given chain. It also manages the
execution and editing of the PipelineLinks.

PipelineLink An object that contains a reference to a PipelineProcessor
and a mapping of return values to next processors. It is used by
the PipelineChain to call the runProcess() method on the
component and then get the reference to the next processor
based on the return value.

PipelineResult An object that implements the PipelineResult interface.
This is the default PipelineResult object created by the
PipelineManager when a chain is executed if no other
PipelineResult object is specified.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 3 4

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
PipelineManagerException The base exception object extended by all exceptions thrown

from methods in the atg.service.pipeline package.

Using Site-Based Forking in a Processor Chain
If you are using ATG Commerce as part of a multisite ATG installation (see the ATG Multisite Administration
Guide for general information on multisite features), you can include a processor that uses the current site
ID to fork your processor chain. This allows you to specify different processing behaviors for different sites
in your installation.

Site-based forking involves two components. The first is the
/atg/commerce/CommercePipelineManager component. This component is based on the
atg.commerce.pipeline.CommercePipelineManager, which extends the basic PipelineManager
class. The CommercePipelineManager component adds the current site ID to the map of pipeline
parameters (note, however, that if an ID is already in the parameter map, CommercePipelineManager
does not override the existing value).

The CommercePipelineManager component includes the useSiteFromOrder property. If this property
is set to true and there is no current site context, the CommercePipelineManager gets the site ID from
the current order object instead of from the site context. This property is used for scheduled orders (see
Scheduling Recurring Orders), for which no site context is available.

The second component used in site-based forking is the
/atg/dynamo/service/pipeline/processor/SiteForkProcessor component. It includes a
sitesMap property, which you configure to map your sites to numeric values as shown:

sitesMap=\

 siteA=1;\

 siteB=2

The SiteForkProcessor retrieves the site ID from the pipeline parameters map and uses its own
sitesMap to find the corresponding number. If there is no number for the site, the component finds the
list of sites that occupy the same sharing group (if any), and iterates over that list; when it finds an entry
that does appear in the sites map, it returns the number associated with that site. If no site is found, the
siteForkProcessor returns a value of 0. You can use this returned value to select among options in
your pipeline chain.

In addition to the sitesMap, the SiteForkProcessor component has a shareableTypeId property. By
default this value is not set. It can contain the ID of a shareable type such as the shopping cart. To find the
valid shareableType items, look at the /atg/multisite/SiteGroupManager component. An example
of a shareableType is atg.ShoppingCart.

The shareableTypeId can be null, in which case there must be an exact match between the site ID in
the pipeline parameters and the site ID in the map.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 3 5

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
For example, to insert a fork that processes differently based on which of two sites the user is visiting,
configure your SiteForkProcessor component’s sitesMap property as shown:

sitesMap=\

 apparel=1;\

 home=2

Then create the following pipeline chain:

...

<pipelinelink name="SiteForkProcessor" transaction="TX_MANDATORY">

 <processor jndi="/myApp/pipeline/processor/SiteForkProcessor"/>

 <transition returnValue="1" link="apparelPipelineProcessor"/>

 <transition returnValue="2" link="homePipelineProcessor"/>

</pipelinelink>

<pipelinelink name="homePipelineProcessor" transaction="TX_MANDATORY">

 <processor jndi="/atg/commerce/HomeSiteProcessor"/>

 <transition returnValue="1" link="anotherProcessor"/>

</pipelinelink>

<pipelinelink name="apparelPipelineProcessor" transaction="TX_MANDATORY">

 <processor jndi="/atg/commerce/ApparelSiteProcessor"/>

 <transition returnValue="1" link="anotherProcessor"/>

</pipelinelink>

Adding a Commerce Processor Using XML Combination
There are two ways to extend a pipeline defined for a PipelineManager. One is to copy the entire XML
file into your CONFIG layer and make the necessary changes. The other way is to use XML combination.
Using XML combination is the preferred approach. The example below demonstrates of how to use XML
combination to modify a pipeline chain.

The XML below is a section of the processOrder pipeline chain as it appears out of the box.

<pipelinechain name="processOrder" transaction="TX_REQUIRED"

 headlink="executeValidateForCheckoutChain">

 <pipelinelink name="executeValidateForCheckoutChain" transaction="TX_MANDATORY">

 <processor

 jndi="/atg/commerce/order/processor/ExecuteValidateForCheckoutChain"/>

 <transition returnvalue="1" link="checkForExpiredPromotions"/>

 </pipelinelink>

 <pipelinelink name="checkForExpiredPromotions" transaction="TX_MANDATORY">

 <processor jndi="/atg/commerce/order/processor/CheckForExpiredPromotions"/>

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 3 6

1 8 - P r o c e s s o r C h a i n s a n d t h e P i p e l i n e M a n a g e r

μ
 <transition returnvalue="1" link="removeEmptyShippingGroups"/>

</pipelinelink>

The following example demonstrates how to add a new processor called purgeExcessOrderData
between the executeValidateForCheckoutChain and checkForExpiredPromotions processors in
the processOrder pipeline chain. The following XML code should be added to your config layer.

The important sections of this code are the additions of the xml-combine attributes in the
pipelinechain and pipelinelink tags. The pipelinechain tag indicates what is being appended to
its contents. The pipelinelink tag for executeValidateForCheckoutChain indicates what is
replacing its contents.

<pipelinemanager>

 <pipelinechain name="processOrder" transaction="TX_REQUIRED"

 headlink="executeValidateForCheckoutChain" xml-combine="append">

 <pipelinelink name="executeValidateForCheckoutChain" transaction="TX_MANDATORY"

 xml-combine="replace">

 <processor

 jndi="/atg/commerce/order/processor/ExecuteValidateForCheckoutChain"/>

 <transition returnvalue="1" link="purgeExcessOrderData"/>

 </pipelinelink>

 <pipelinelink name="purgeExcessOrderData" transaction="TX_MANDATORY">

 <processor jndi="/atg/commerce/order/processor/PurgeExcessOrderData"/>

 <transition returnvalue="1" link="checkForExpiredPromotions"/>

 </pipelinelink>

 </pipelinechain>

</pipelinemanager>

The purgeExcessOrderData processor’s transition is what the executeValidateForCheckoutChain
transition is in the base file within the ATG Commerce platform.

Executing Processor Chains from Processors within Other Chains

A processor uses another processor called ProcExecuteChain to execute a subchain. The property file of
the ProcExecuteChain is configured with a PipelineManager and a chain name to execute.

The key to the ProcExecuteChain execution is its return value. The value it returns is not that of the last
processor in the chain that it executed, but rather whether or not the result object contains errors. If it did
contain an error, ProcExecuteChain will return STOP_CHAIN_EXECUTION_AND_ROLLBACK, otherwise it
will return SUCCESS (SUCCESS is mapped to the value 1 by default). These return values are configurable
in the properties file.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 3 7

1 9 - I n v e n t o r y F r a m e w o r k

μ
19 Inventory Framework

The Inventory Framework facilitates inventory querying and inventory management for your sites.
Interaction with an inventory system is vital to the various stages of an electronic purchase. Many of the
ATG Commerce components interact with the Inventory System.

This chapter contains information on the following topics:

Overview of the Inventory System
Includes a brief description of the Inventory System including what the system allows
you to do and how to use it.

Inventory System Methods
Describes the methods of the Inventory Manager interface.

Inventory Classes
Describes the classes included in the inventory API.

InventoryManager Implementations
Describes the implementations of the InventoryManager included with ATG
Commerce.

Examples of Using the Inventory Manager
Includes actual examples of using the Inventory Manager including canceling or
removing an item from an order and displaying an item’s availability to a customer.

Handling Bundled SKUs in the Inventory
Describes how the inventory system handles a bundled into a collection of SKUs.

Inventory Repository
Describes the inventory repository included with ATG Commerce out of the box. The
Inventory Repository stores stock levels, availability information, and other inventory
data.

Inventory JMS Messages
Describes the Java Messaging Service messages used by the Inventory System to
communicate.

Configuring the SQL Repository
Describes how to configure the SQL Repository for use with the Inventory System.

Inventory Repository Administration
Describes how to use the repository editor to administer the Inventory System.

Building a New InventoryManager
Describes how to replace the existing InventoryManager with one of your own. It

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 3 8

1 9 - I n v e n t o r y F r a m e w o r k

μ
describes the minimum requirements for implementation and the properties to set
throughout inventory and fulfillment.

Overview of the Inventory System
The Inventory System provides a complete set of methods to support inventory handling. All users of the
Inventory System need the same functionality to complete their varied tasks.

The Inventory System allows you to:

 Remove items from inventory.

 Notify the store of a customer’s intent to purchase an item that is not currently in
stock. (backorder)

 Notify the store of a customer’s intent to purchase an item that has never been in
stock. (preorder)

The administrator of the store uses the inventory system to:

 Place a specific number of items on a shelf for customers to purchase, backorder, or
preorder.

 Decrease the number of items available for purchase, backorder, or preorder, perhaps
because of an error in stocking the item.

 Determine the number of items available for purchase, backorder, or preorder.

 Determine when a specific item will be back in stock.

There are two types of methods: those that reflect the state of the store and those that change the state
of the store. The Inventory API is not intended to be a complete inventory admin interface.

ATG Commerce uses the InventoryManager interface when performing any operation on inventory. By
default, ATG Commerce is configured with one full implementation of this interface,
RepositoryInventoryManager. For more information, see the RepositoryInventoryManager section.

RepositoryInventoryManager can be used as a complete inventory system. You can use a different
inventory system by providing your own implementation of the InventoryManager interface. For more
information on the InventoryManager interface, see the Inventory Classes section.

Using the Inventory System

The Java code you write determines the order flow and customer experience by calling Inventory API
methods in a particular order. Most sites use a ‘shopping cart’ system that allows a user to shop with the
aid of an inventory manager in a way that’s similar to a brick-and-mortar store’s experience.

For example, after the customer checks out a shopping cart and enters the shipping and payment
information, the rest of the order system (including fulfillment) uses the Inventory API.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 3 9

1 9 - I n v e n t o r y F r a m e w o r k

μ
The purchase call is made on each of the items in the shopping cart. If there is enough stock in the
inventory to fulfill the order, the purchase call succeeds. If the purchase call does not succeed, the
availability status of the item can be queried to determine if the item is preorderable, backorderable, or
out of stock. Depending on the availability status, the item can be backordered or preordered. The
fulfillment system makes this determination.

Note: Your sites can also be set up so that as the customer browses items, the inventory system can be
queried for item availability.

If an item is purchased successfully, its stocklevel is decreased. If the item is backordered, the
backorderLevel is decreased. If the item is preordered, the preorderLevel is decreased.

The store administrator uses setStocklevel, increaseStocklevel, and decreaseStocklevel to
manage the inventory levels in the store. The store administrator uses setBackorderLevel,
increaseBackorderLevel, and decreaseBackorderLevel to manage the backorderable amount. The
store administrator uses setPreorderLevel, increasePreorderLevel, and decreasePreorderLevel
for preorderable items. The administrator can get information on each of these levels with
queryStocklevel, queryBackorderLevel, and queryPreorderLevel.

Each of these levels (stocklevel, backorderLevel, and preorderLevel) has a threshold associated
with it. If the level falls below its associated threshold, an InventoryThresholdReached event is
generated. There are methods in the API for the administrator to set each of these thresholds.

Two methods can be used to purchase items that were previously backordered or previously preordered.
These are purchaseOffBackorder and purchaseOffPreorder. See the section on
RepositoryInventoryManager for further discussion of these methods.

Inventory System Methods
The Inventory System consists of implementations of an Inventory Manager interface. The interface
consists of the following methods. Refer to the ATG API Reference for more information on these methods.

Method Action Performed

purchase Decreases the inventory (stocklevel) of the item. Returns
unsuccessfully if inventory is not available. This method is required
by any implementation of the inventory system.

purchaseOffBackorder Does the same thing as purchase and increases the
backorderLevel.

purchaseOffPreorder Does the same thing as purchase and increases the preorderLevel.

preorder Decreases the preorderLevel of the item. Returns unsuccessfully if
the preorderLevel is lower than the quantity being preordered.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 4 0

1 9 - I n v e n t o r y F r a m e w o r k

μ
backorder Decreases the backorderLevel of the item. Returns unsuccessfully

if the backorderLevel is lower than the quantity being
backordered.

setStocklevel Sets the stocklevel to a fixed number.

setBackorderLevel Sets the backorderLevel to a fixed number.

setPreorderLevel Sets the preorderLevel to a fixed number.

increaseStocklevel Increases the stocklevel of an item by some quantity. This is used
if an order is cancelled after the item has already been purchased or
the administrator can call it.

increaseBackorderLevel Increases the backorderLevel of an item by some quantity. This is
used if an order is cancelled after the item has already been
backorded or the administrator can call it.

increasePreorderLevel Increases the preorderLevel of an item. This is used if an order is
cancelled after the item has already been preordered or the
administrator can call it.

decreaseStocklevel Decreases the stocklevel of an item. This should not be used in
place of purchase. An administrator usually calls it.

decreaseBackorderLevel Decreases the backorderLevel of an item. This should not be used
in place of backorder. An administrator usually calls it.

decreasePreorderLevel Decreases the preorderLevel of an item. This should not be used in
place of preorder. An administrator usually calls it.

setStockThreshold Sets the threshold associated with stocklevel (stockThreshold)
to a fixed number.

setBackorderThreshold Sets the threshold associated with backorderLevel
(backorderThreshold) to a fixed number.

setPreorderThreshold Sets the threshold associated with preorderLevel
(preorderThreshold) to a fixed number.

setAvailabilityStatus Sets the availability status.

setAvailabilityDate Sets the date at which the item will become available.

queryAvailabilityStatus Determines whether an item is in stock, out of stock, backorderable,
or preorderable. Used when determining which method to call:
purchase, backorder, or preorder.

queryStocklevel Returns the number of items available for purchase (stocklevel).

queryBackorderLevel Returns the number of items available for backorder
(backorderLevel).

queryPreorderLevel Returns the number of items available for preorder
(preorderLevel).

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 4 1

1 9 - I n v e n t o r y F r a m e w o r k

μ
queryStockThreshold Returns the stockThreshold.

queryBackorderThreshold Returns the backorderThreshold.

queryPreorderThreshold Returns the preorderThreshold.

queryAvailabilityDate Returns the date when this item will become available.

inventoryWasUpdated This method is called when a set of items is added to inventory. It is a
convenient way of notifying interested systems of a large update.
Does not change the state of the inventory.

Inventory Classes
The inventory API includes the following classes:

 InventoryManager

 InventoryException

InventoryManager

The InventoryManager is a public interface that contains all of the Inventory system functionality. Each
method described below returns an integer status code. All successful return codes should be greater
than or equal to zero, all failure codes should be less than zero. By default, the codes are:

Status Code Description

int INVENTORY_STATUS_SUCCEED=0 There was no problem performing the
operation.

int INVENTORY_STATUS_FAIL=-1 There was an unknown/generic problem
performing the operation.

int INVENTORY_STATUS_INSUFFICIENT_SUPPLY = -
2

The operation couldn’t be completed
because there were not enough of the item
in the inventory system.

int INVENTORY_STATUS_ITEM_NOT_FOUND = -3 The operation could not be completed
because a specified item could not be found
in the inventory system.

The methods that affect a change on the backend system return an integer status code. Methods that
inspect the backend system return the answer to the query. The status return codes listed above and any
implementer-defined status codes usually should be used to convey a definitive answer concerning a
method’s success.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 4 2

1 9 - I n v e n t o r y F r a m e w o r k

μ
When a method succeeds, an answer is prepared for return from the method. When a method fails, you
can either return a failure code or throw an exception. In general, a method should return a failure code
only if it is determined that the operation will not succeed. For example:

 If it is determined that five items cannot be purchased because there are only 4 items
in the store, the implementer should return
INVENTORY_STATUS_INSUFFICIENT_SUPPLY. This indicates that the program
determined that the purchase method could not succeed.

 If a network error caused a connection to time out while the InventoryManager was
querying the backend system, an exception should be thrown because the program
was unable to determine whether the operation would succeed.

The following table lists all the methods provided by the InventoryManager interface. In methods
below, the pID parameter would usually be a SKU ID.

Methods Exception thrown

int purchase (String pId, long pHowMany) InventoryException

int purchaseOffBackorder (String pId, long pHowMany) InventoryException

int purchaseOffPreorder (String pId, long pHowMany) InventoryException

int preorder (String pId, long pHowMany) InventoryException

int backorder (String pId, long pHowMany) InventoryException

int setStocklevel (String pId, long pNumber) InventoryException

int setBackorderLevel (String pId, long pNumber) InventoryException

int setPreorderLevel (String pId, long pNumber) InventoryException

int increaseStocklevel (String pId, long pNumber) InventoryException

int decreaseStocklevel (String pId, long pNumber) InventoryException

int increaseBackorderLevel (String pId, long

pNumber)

InventoryException

int decreaseBackorderLevel (String pId, long

pNumber)

InventoryException

int increasePreorderLevel (String pId, long pNumber) InventoryException

int decreasePreorderLevel (String pId, long pNumber) InventoryException

int setStockThreshold (String pId, long pNumber) InventoryException

int setBackorderThreshold (String pId, long pNumber) InventoryException

int setPreorderThreshold (String pId, long pNumber) InventoryException

int setAvailabilityStatus (String pId, int pStatus) InventoryException

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 4 3

1 9 - I n v e n t o r y F r a m e w o r k

μ
int setAvailabilityDate (String pId, Date pDate) InventoryException

int queryAvailabilityStatus(String pId) InventoryException,

MissingInventoryItemEx

ception

long queryStocklevel(String pId) InventoryException,

MissingInventoryItemEx

ception

long queryBackorderLevel(String pId) InventoryException,

MissingInventoryItemEx

ception

long queryPreorderLevel(String pId) InventoryException,

MissingInventoryItemEx

ception

long queryStockThreshold(String pId) InventoryException,

MissingInventoryItemEx

ception

long queryBackorderThreshold(String pId) InventoryException,

MissingInventoryItemEx

ception

long queryPreorderThreshold(String pId) InventoryException,

MissingInventoryItemEx

ception

Date queryAvailabilityDate(String pId) InventoryException,

MissingInventoryItemEx

ception

int inventoryWasUpdated(List pItemIds) InventoryException

For more information, see the Examples of Using the Inventory Manager section.

InventoryException

InventoryException is an exception designed for use with the Inventory Manager.
InventoryException has the following methods:

Throwable getSourceException()

void setSourceException(Throwable t)

void printStackTrace()

void printStackTrace(PrintStream pStream)

void printStackTrace(PrintWriter pWriter)

String toString()

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 4 4

1 9 - I n v e n t o r y F r a m e w o r k

μ
It has the following constructors:

InventoryException()

InventoryException(String pCause)

InventoryException(Throwable pRootException)

InventoryException(String pCause, Throwable pRootException)

MissingInventoryItemException

MissingInventoryItemException is a subclass of InventoryException. It is used if a method can’t
find the inventory item, but does not return a status code. If a method returns a status code and the item
cannot be found, then INVENTORY_STATUS_ITEM_NOT_FOUND is returned.

InventoryManager Implementations
 ATG Commerce includes the following implementations of the InventoryManager out of the box.

 AbstractInventoryManagerImpl

 NoInventoryManager

 RepositoryInventoryManager

 CachingInventoryManager

 LocalizingInventoryManager

AbstractInventoryManagerImpl

AbstractInventoryManagerImpl is an abstract class that removes all of the InventoryManager
methods except purchase, which it defines as abstract. The AbstractInventoryManagerImpl provides
a simple way for users to purchase items online, without all the extra features.

NoInventoryManager

NoInventoryManager is an implementation of the InventoryManager interface. It is intended to be a
placeholder. It will be useful in cases where no InventoryManager functionality is required, but an
inventory manager of some kind is needed for a property setting. It allows components that require an
InventoryManager to function without actually having an inventory system on the back end. All
methods in the NoInventoryManager return INVENTORY_STATUS_SUCCEED.

RepositoryInventoryManager

RepositoryInventoryManager implements all the methods of the InventoryManager interface. This
InventoryManager broadcasts events when levels are at a configurable “critical” level and when it is
notified of updated inventory.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 4 5

1 9 - I n v e n t o r y F r a m e w o r k

μ
RepositoryInventoryManager implements all the methods defined by the InventoryManager API. It
is a thin wrapper around a repository that contains the inventory information. This allows a maximum
amount of flexibility for potential third party integrators. Integrators can simply implement a repository
containing the required properties for cooperation with the RepositoryInventoryManager. The
Repository InventoryManager can then be configured to extract inventory manager information from
the third party repository.

The initial implementation of the RepositoryInventoryManager uses the a SQL Repository to store
inventory information. In the future, another repository can easily be swapped with the SQL Repository.

The RepositoryInventoryManager requires that the inventory items stored in the repository have
certain attributes. All items must contain the following properties and types to represent information the
RepositoryInventoryManager needs to store in the repository.

Note: The names of the properties are configurable in the RepositoryInventoryManager. This allows
them to be internationalized, custom configured, etc.

 java.lang.Long <stock level property>

Represents the number of items currently available for purchase. Every inventory item
in the repository must have a Long property attached to it that represents the item’s
inventory level. The default value is stockLevel. The name of this property in the
repository is configurable through the stocklevelPropertyName property in the
RepositoryInventoryManager.

 java.lang.Long <backorder level property>

Represents the number of items that can be backordered currently. Every inventory
item in the repository must have a Long property attached to it that represents the
item’s backorder level. The default value is backorderLevel. The name of this
property in the repository is configurable through the
backorderLevelPropertyName property in the RepositoryInventoryManager.

 java.lang.Long <preorder level property>

Represents the number of items that can be preordered currently. Every inventory
item in the repository must have a Long property attached to it that represents the
item’s preorder level. The default value is preorderLevel. The name of this property
in the repository is configurable through the preorderLevelPropertyName property
in the RepositoryInventoryManager.

 java.lang.Long <stock threshold property>

Every inventory item in the repository must have a Long property attached to it that
represents the item’s stock level threshold. If the stocklevel falls below this value, an
event is triggered. The default value is stockThreshold. The name of this property in
the repository is configurable through the stockThresholdPropertyName property
in the RepositoryInventoryManager.

 java.lang.Long <backorder threshold property>

Every inventory item in the repository must have a Long property attached to it that
represents the item’s backorder level threshold. If the backorderLevel falls below
this value, an event is triggered. The default value is backorderThreshold. The name
of this property in the repository is configurable through the

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 4 6

1 9 - I n v e n t o r y F r a m e w o r k

μ
backorderThresholdPropertyName property in the
RepositoryInventoryManager.

 java.lang.Long <preorder threshold property>

Every inventory item in the repository must have a Long property attached to it that
represents the item’s preorder level threshold. If the preorderLevel falls below this
value, an event is triggered. The default value is preorderThreshold. The name of
this property in the repository is configurable through the
preorderThresholdPropertyName property in the
RepositoryInventoryManager.

 java.lang.Integer < availability status property>

Every inventory item in the repository must have an Integer property attached to it
that represents the item’s availability status. The name of this property in the
repository is configurable through the availabilityStatusPropertyName
property. The default value of the property name is availabilityStatus.

The possible values are:

 AVAILABILITY_STATUS_IN_STOCK = 1000

 AVAILABILITY_STATUS_OUT_OF_STOCK = 1001

 AVAILABILITY_STATUS_PREORDERABLE = 1002

 AVAILABILITY_STATUS_BACKORDERABLE = 1003

 AVAILABILITY_STATUS_DERIVED = 1004

 AVAILABILITY_STATUS_DISCONTINUED = 1005

Note: If the status in the repository is AVAILABILITY_STATUS_DERIVED, then a call to
queryAvailabilityStatus calculates the actual status based on the values of the
item’s stocklevel, backorderLevel, and preorderLevel.

If the status is “hardcoded” to something other than DERIVED, then the status might
not reflect the actual state of the item. For example, if an item’s availability status is
AVAILABILITY_STATUS_IN_STOCK and the stockLevel is reduced to 0, then any call
to queryAvailabilityStatus will return AVAILABILITY_STATUS_IN_STOCK even
though there is no stock available. In most cases this would be an error, therefore
AVAILABILITY_STATUS_DERIVED should be used for almost all inventory items.

 java.util.Date <inventory availability date property>

The date and time at which more of the item will be available for purchase. If
availability is AVAILABILITY_STATUS_IN_STOCK then this property is not used. If
availability is AVAILABILITY_STATUS_OUT_OF_STOCK,
AVAILABILITY_STATUS_PREORDERABLE, or AVAILABILITY_STATUS_BACKORDERABLE
then this property is the date on which more of the product will be available for
purchase. The default value is availabilityDate.

 java.lang.String <catalog reference id property>

The ID of the item in the product catalog to which this inventory item refers. All the
calls in the InventoryManager that take a SKU ID use this property to find the correct
inventory item. The default value is catalogRefId and is configurable through the
catalogRefIdPropertyName property.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 4 7

1 9 - I n v e n t o r y F r a m e w o r k

μ
The RepositoryInventoryManager implements the InventoryManager interface by using the
configured properties listed above to extract data from a configured repository. For example, the
queryStocklevel method is implemented by getting the item with the requested ID from the
repository and reading the <stock level property> property.

Using the RepositoryInventoryManager to Implement the InventoryManager

The following section describes how the RepositoryInventoryManager implements the
InventoryManager interface.

Every item in the inventory has an associated SKU (Stock Keeping Unit). Each SKU has three levels
associated with it: stocklevel, backorderLevel, and preorderLevel. The behavior of each of these
levels is similar. If someone makes a successful purchase call, stocklevel is decreased. If someone makes
a successful backorder call, backorderLevel is decreased. If someone makes a successful preorder call,
preorderLevel is decreased.

Every SKU also has an availabilityStatus. In most cases, the SKU will have an availabilityStatus
of AVAILABILITY_STATUS_DERIVED. In some cases, it is strictly defined as
AVAILABILITY_STATUS_IN_STOCK, AVAILABILITY_STATUS_OUT_OF_STOCK,
AVAILABILIITY_STATUS_BACKORDERABLE, AVAILABILITY_STATUS_PREORDERABLE, or
AVAILABILITY_STATUS_DISCONTINUED.

If it is derived, queryAvailabilityStatus calculates the value based on the three levels: stocklevel,
backorderLevel, and preorderLevel.

 If stocklevel is not 0, then the SKU is IN_STOCK.

 If stocklevel is 0 but backorderLevel is not 0, then the SKU is BACKORDERABLE.

 If stocklevel and backorderLevel are both 0, but preorderLevel is not 0, then
the SKU is PREORDERABLE.

 If all three levels are 0, then the SKU is OUT_OF_STOCK.

If a purchase call fails for a particular SKU and queryAvailabilityStatus says the item is
backorderable, then backorder should be called. Calling backorder decreases the backorderLevel. To
ensure the level remains consistent after the SKU is available again, purchaseOffBackorder should be
called in place of purchase. This not only decreases stocklevel, but it also increases the
backorderLevel.

If a purchase call fails for a particular SKU and queryAvailabilityStatus says the item is preorderable,
then preorder should be called. Calling preorder decreases the preorderLevel. To ensure the level
remains consistent after the SKU is available again, purchaseOffPreorder should be called in place of
purchase. This not only decreases stocklevel, but it also increases the preorderLevel.

If your system does not need backorder levels and preorder levels, then you do not need to call
backorder, preorder, purchaseOffBackorder, or purchaseOffPreorder. The purchase call is
enough.

The default value for an item’s stockLevel is –1. This value indicates that there is an infinite amount of
stock. The default value for all other levels. (backorderLevel, preorderLevel, stockThreshold,
backorderThreshold, and preorderThreshold) is 0.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 4 8

1 9 - I n v e n t o r y F r a m e w o r k

μ
If the fulfillment system attempts to purchase an item for a customer and the item is out of stock but
BACKORDERABLE, then the fulfillment system can backorder the item. If the fulfillment system attempts
to purchase an item for a customer and item is out of stock but PREORDERABLE, then the fulfillment
system can preorder the item. Both these statuses mean that the whole order could be waiting for the
item to be in stock. Therefore, it is important that the fulfillment system is notified when an item is in
stock after being backordered, preordered, or even out of stock.

The UpdateInventory message indicates that new inventory is available for previously unavailable
items. When the fulfillment system receives an UpdateInventory message, the fulfillment system knows
that the items included in the message can be successfully purchased now. It is the responsibility of
InventoryManager to send this message. The RepositoryInventoryManager sends the message
when the inventoryWasUpdated method is called.

If a call is made to inventoryWasUpdated then an UpdateInventory message is constructed and sent
out over the port specified in the updateInventoryPort property.

The UpdateInventory message has one property:

 String[] itemIds – A list of SKUs that were BACKORDERABLE, PREORDERABLE, or
OUT_OF_STOCK, but are now IN_STOCK. This list is the same as the list of IDs passed
into the inventoryWasUpdated method.

Refer to the Inventory JMS Messages chapter for more information on the JMS Messages

CachingInventoryManager

The CachingInventoryManager is also included in the ATG Commerce out-of-the-box implementation.
The CachingInventoryManager caches any read-only data for quick display to the site user. It is
configured with a Cache and an UncachedInventoryManager.

The uncachedInventoryManager property of the CachingInventoryManager refers to any
implementation of the InventoryManager API. It is recommended that the
uncachedInventoryManager property refer to an instance of the RepositoryInventoryManager.

All methods are passed to the UncachedInventoryManager, except for

 queryStocklevel

 queryBackorderLevel

 queryPreorderLevel

 queryAvailabilityStatus

 queryAvailabilityDate

 queryStockThreshold

 queryBackorderThreshold

 queryPreorderThreshold.

These methods work by asking the cache for the item with the requested ID. The needed property value is
then read from the cached item.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 4 9

1 9 - I n v e n t o r y F r a m e w o r k

μ
If a method is called that changes a property of an inventory item, then that item’s cached value is
invalidated and will be reloaded the next time it is needed. If the CachingInventoryManager is used, it
should be used for all inventory operations or it could return invalid results. Invalid results could occur if
some updates are made directly to the InventoryManager referred to by the
uncachedInventoryManager property (as opposed to through the CachingInventoryManager). This
is because the changes made outside of the CachingInventoryManager will not have invalidated the
cache.

The flushCache method flushes the existing cache data. The flushCache method flushes the entire
cache. flushCache(List) flushes the entry for each ID in list.

The CachingInventoryManager does not actually perform inventory management. It relies on another
implementation of the InventoryManager interface. Therefore, if you provide your own implementation
of the InventoryManager interface, instant caching can be configured using the
CachingInventoryManager and setting its uncachedInventoryManager property to your
implementation.

InventoryCache

InventoryCache is the cache used by the CachingInventoryManager. It can be found at
/atg/commerce/inventory/InventoryCache in the component browser of the ACC. It is an instance
of atg.service.cache.Cache. If the inventory data changes, resulting in stale data in the cache, it is
possible to flush the cache. This class includes a public void method flush that can be accessed through
the component browser. It flushes all the entries from the caching. For more information, see the Caching
the Inventory section.

The following table describes the properties of the InventoryCache component that you can use to
define your cache policies:

maximumCacheEntries The maximum number of elements in the cache. If set to 0,
nothing will be cached. If set to –1, there is no limit on how
many elements can be in the cache.

maximumCacheSize The maximum memory size of the cache.

maximumEntrySize The maximum memory size of a single entry in the cache.

maximumEntryLifetime The maximum number of milliseconds that an entry will
live in the cache. *

* By default, the maximumEntryLifetime property is set to 7,200,000 (2 hours) in the live configuration.
The Motorprise reference application overrides this value and changes it to 60,000 (1 minute). This
frequent update time is recommended during development, so that information will be updated rapidly.

LocalizingInventoryManager

LocalizingInventoryManager is an implementation of the InventoryManager interface that is used
when you want to have more than one set of inventory data (and therefore more than one

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 5 0

1 9 - I n v e n t o r y F r a m e w o r k

μ
InventoryManager). LocalizingInventoryManager determines which data/manager set to use based
on your customer’s locale.

LocalizingInventoryManager contains the following properties:

 defaultLocaleKey – the locale to use to determine which InventoryManager to
use when the locale cannot be determined from the request.

 defaultInventoryManager – the InventoryManager to use when the
InventoryManager cannot be determined from the locale.

 inventoryManagers – a Map pairing localeKeys to their corresponding
InventoryManager components.

 useDefaultInventoryManager – a Boolean property that determines whether to
use the defaultInventoryManager if an InventoryManager cannot be found for
the user’s locale.

LocalizingInventoryManager implements all the InventoryManager methods twice:

 once with the signature provided in the InventoryManager interface

 once with an extra pLocaleKey String parameter

The methods with the InventoryManager signatures call the second implementations, passing the value
of the defaultLocaleKey property as the extra parameter.

The second methods retrieve the proper InventoryManager by calling the getInventoryManager
method with the localeKey as the parameter. Then, they call the corresponding method in the
InventoryManager that was retrieved.

LocalizingInventoryManager is compatible with the InventoryManager interface because you can
pass it the same parameters and it will use the default InventoryManager to perform operations. You
also can make your calls with the extra pLocaleKey parameter, and use LocalizingInventoryManager
to handle multiple InventoryManager instances.

The getInventoryManager method takes the localeKey parameter and checks the
inventoryManagers map for a corresponding InventoryManager. If it finds one, it is returned.
Otherwise, it checks the useDefaultInventoryManager property. If true, it returns the
DefaultInventoryManager. If false, an error is thrown.

Examples of Using the Inventory Manager
This section provides a few simple examples of how the InventoryManager can be used during
fulfillment. These examples include:

 Allocating Items for an Order

 Canceling or Removing an Item from an Order

 Displaying an Item’s Availability to a Customer

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 5 1

1 9 - I n v e n t o r y F r a m e w o r k

μ
 Filling Partial Orders

 Preventing Inventory Deadlocks

Allocating Items for an Order

For the first example, if a customer orders five of item ‘sku-0’ then the inventory system can be used to
allocate, or “purchase” that item:

String itemId = "sku-0";

long quantity = 5;

// Assume inventory manager is defined as a property in this class.

InventoryManager inventory = getInventoryManager();

int status = inventory.purchase(itemId, quantity);

The purchase call status at this time is either INVENTORY_STATUS_SUCCEED, or
INVENTORY_STATUS_FAIL. If it is INVENTORY_STATUS_SUCCEED, then everything is ready and processing
can continue. If the status is INVENTORY_STATUS_FAIL, then check the availability status of the item to
determine why it failed:

int availability = inventory.queryAvailabilityStatus(itemId);

The next step depends on the availability status. The following sample sets the newStatus value based
on the retrieved availability status.

 int newStatus;

 if(availability == inventory.AVAILABILITY_STATUS_BACKORDERABLE)

newStatus = inventory.backorder(itemId, quantity);

 else if(availability == inventory.AVAILABILITY_STATUS_IN_STOCK)

newStatus = inventory.backorder(itemId, quantity);

 else if(availability == inventory.AVAILABILITY_STATUS_PREORDERABLE_

newStatus = inventory.preorder(itemId, quantity);

 else // the only other option is AVAILABILITY_STATUS_OUT_OF_STOCK

newStatus = inventory.INVENTORY_STATUS_FAIL;

If the availability status is IN_STOCK, then backorder is called. Backorder is called because the only way
that the purchase call could fail if the item is in stock is if the requested quantity is higher than the current
stocklevel. If the item is backordered, it can be reallocated later, after the stock level increases.

The newStatus value INVENTORY_STATUS_FAIL indicates one of the following situations:

 The item is out of stock.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 5 2

1 9 - I n v e n t o r y F r a m e w o r k

μ
 The request is attempting to allocate more items than available.

 The item is backorderable but the system could not successfully backorder the item.
This could occur if the quantity in the order was higher than the number of items
available to be backordered.

 The item is discontinued.

If the newStatus value is INVENTORY_STATUS_FAIL during fulfillment, then the system sets the state of
the item to FAILED.

The above example does not include tracking features. Tracking is an important part of the inventory
system. For example, you can track backordering or preordering the item and then change that item’s
state. If an item is backordered and then the stockLevel is later increased, simply calling purchase is
insufficient to remove the item from backorder.

The following changes must be made to the first code sample. This ensures that the backorderLevel
and preorderLevel for the given items are current. For more information on states, see ATG Commerce
States.

String itemId = "sku-0";

long quantity = 5;

// assume we have some way of getting the state of the given item

// in DCS during fulfillment this is done using

// ShippingGroupCommerceItemRelationship.getState();

int itemState = getItemState();

InventoryManager inventory = getInventoryManager();

// now, use the appropriate method, depending on the state

int status;

if(itemState == INITIAL) // normal case

status = inventory.purchase(itemId, quantity);

else if(itemState == BACK_ORDERED)

status = inventory.purchaseOffBackorder(itemId, quantity);

else if(itemState == PRE_ORDERED)

status = inventory.purchaseOffPreorder(itemId, quantity)

Canceling or Removing an Item from an Order

The following example describes how to use the inventory manager to cancel or remove an item from the
order.

String id = "sku-0";

long quantity = 5;

int itemState = getItemState();

InventoryManager inventory = getInventoryManager();

// now, use the appropriate method, depending on the state

int status;

if(itemState == PENDING_DELIVERY) // normal case

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 5 3

1 9 - I n v e n t o r y F r a m e w o r k

μ
status = inventory.increaseStockLevel(itemId, quantity);

else if(itemState == BACK_ORDERED)

status = inventory.increaseBackorderLevel(itemId,quantity);

else if(itemState == PRE_ORDERED)

status = inventory.increasePreorderLevel(itemId, quantity);

Displaying an Item’s Availability to a Customer

The inventory manager is also used when building site pages. Display an item’s availability status to a
customer browsing the site with the following code:

int availability = inventory.queryAvailabilityStatus(itemId);

Filling Partial Orders

You can configure the fulfillment system to fill a partial order and backorder the rest if there is not enough
inventory to fulfill an entire order. For example, if a customer orders five towels, but there are only three
towels available, you can configure the Fulfillment system to “purchase” as many items as possible and
backorder any additional items. Follow these steps to make the configuration changes:

1. Determine how many items are available using
InventoryManager.queryStockLevel().

2. Purchase that amount remaining using InventoryManager.purchase().

Note: It is possible that another customer could purchase these items in the time
between when you called queryStockLevel and called purchase. If this is the case,
you can either loop until the purchase is successful or there is no inventory left or you
can extend the InventoryManager to purchase all items available.

3. Create a new ShippingGroupCommerceItemRelationship in the same shipping
group as the item currently being processed and for the same CommerceItem. Set the
old relationship’s quantity to whatever was successfully purchased. Set the new
relationship’s quantity to the remaining quantity. The state of the old relationship is
PENDING_DELIVERY while the state of the new relationship will depend on
InventoryManager.queryAvailabilityStatus().

Preventing Inventory Deadlocks

InventoryManager includes the acquireInventoryLocks and releaseInventoryLocks methods.
These methods can be used to prevent deadlocks in the database, especially if there are multiple ATG
Commerce instances concurrently updating inventory.

acquireInventoryLocks acquires locks for the inventory items that apply to the given IDs.
releaseInventoryLocks releases locks for the inventory items that apply to the given IDs.

RepositoryInventoryManager implements acquireInventoryLocks by calling
RepositoryInventoryManager.lock for each id (plus each id within a bundle). It does not implement

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 5 4

1 9 - I n v e n t o r y F r a m e w o r k

μ
releaseInventoryLocks since those locks will be released automatically with the end of the
transaction.

The following example demonstrates how to use these methods to prevent deadlocks:

void myPurchase(List pCatalogRefIds, long pQuantity)

{

 InventoryManager im = getInventoryManager();

 try {

 im.acquireInventoryLocks(pCatalogRefIds);

 Iterator idIterator = pCatalogRefIds.iterator();

 int success;

 while(idIterator.hasNext()) {

 String id = (String) idIterator.next();

 success = im.purchase(id, pQuantity);

 . . .

 }

 }

 finally {

 im.releaseInventoryLocks(pCatalogRefIds);

 }

}

Handling Bundled SKUs in the Inventory
When a SKU is bundled into a collection of SKUs, the RepositoryInventoryManager handles the
bundle differently than an individual SKU.

The default ATG Commerce implementation defines bundles as lists of SKUs in the Product Catalog. For
more information, see the Using and Extending the Product Catalog chapter. SKUs that represent a
bundle have a bundleLinks property that is a list of each skuLink in the bundle. Each skuLink contains
a quantity and a SKU (from the Product Catalog).

SKUs that do not represent a bundle correspond to one item in the inventory repository and have an
empty bundleLinks list. In this way, new bundles can be defined in the product catalog, without
referring to or updating the inventory repository. Alternatively, bundles can be defined within the
inventory as a separate inventory item by extending the RepositoryInventoryManager. Information
on extending the RepositoryInventoryManager is described in this section.

The RepositoryInventoryManager calculates the stocklevel of a bundle based on the stockLevel
of each item in bundle. These values are kept up to date in real time in each query method. The
stockLevel is the largest number of bundles that could be purchased given the stocklevel of the
SKUs in the bundle. For example:

The Bundle SKU D contains

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 5 5

1 9 - I n v e n t o r y F r a m e w o r k

μ
 1 of SKU A

 2 of SKU B

 10 of SKU C

The stocklevel values for the individual SKUs are:

 SKU A stocklevel = 20

 SKU B stocklevel = 20

 SKU C stocklevel = 20

Therefore, SKU D’s (the bundle’s) stocklevel=2 because that is how many bundles could successfully be
purchased given the current inventory.

A bundle’s backorderLevel and preorderLevel are calculated in a similar way.

RepositoryInventoryManager sets the threshold of bundles as 0 to prevent events from being
triggered when purchasing a bundle. If one of the bundle’s SKUs falls below its threshold, an event is
triggered. This is true for the stockThreshold, backorderThreshold, and preorderThreshold.

The availabilityDate of a bundle is the latest availabilityDate of the SKUs in the bundle. The
availabilityStatus of a bundle is calculated as follows:

 OUT_OF_STOCK – Indicates that at least one of the bundled items is OUT_OF_STOCK
or that the stockLevel, backorderLevel, and preorderLevel are all below the
quantity needed for one bundle.

 PREORDERABLE – Indicates that none of the items is OUT_OF_STOCK, but at least one
of the bundled items is PREORDERABLE.

 BACKORDERABLE – Indicates that none of the items are OUT_OF_STOCK or
PREORDERABLE, but at least one of the items is BACKORDERABLE.

 IN_STOCK – Indicates that all of the bundled items are IN_STOCK with a stockLevel
greater than the quantity of the item included in one bundle.

When a bundle is purchased, the call is successful if all of the bundled SKUs are IN_STOCK. If it is
successful, the stocklevel of each SKU is decreased by the number of bundles purchased multiplied by
the number of SKUs contained in the bundle. In the example above if someone successfully purchased
the Bundle, the stocklevel of SKU A would be decreased to 19, the stocklevel of SKU B to 18, and the
stocklevel of SKU C to 10.

Bundle processing makes it possible for a SKUs backorderLevel to decrease even if there are enough
items in stock. Consider the example above replacing SKU A’s stockLevel with 0. The bundle is not
IN_STOCK now. Assume that all the items have a backorderLevel of 100. The fulfillment framework will
try to backorder the bundle. The RepositoryInventoryManager will set SKU A’s backorderLevel to
99, SKU B’s backorderLevel to 98, and SKU C’s backorderLevel to 90 even though there is stock
available for SKU B and SKU C. When the fulfillment framework later calls purchaseOffBackorder, each
backorderLevel will be increased back to 100 (assuming no one else backordered the items in the
meantime) and each stockLevel will be decreased as described above.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 5 6

1 9 - I n v e n t o r y F r a m e w o r k

μ
When the HardgoodFulfiller receives an UpdateInventory message, it looks for orders that contain
items with the catalogRefId specified in the UpdateInventory message. The items also must have a
ShippingGroupCommerceItemRelationship in BACK_ORDERED, PRE_ORDERED, or OUT_OF_STOCK
state. Therefore, if an item is a bundle, the catalogRefId of the bundle needs to be included in the
message for orders waiting on that bundle to be updated. It is not sufficient to include only the
component of the bundle that was updated.

Building a Store without Bundles

RepositoryInventoryManager can be used as the inventory system for a store even if it does not have
bundles. If your system does not include bundles, then none of the items will be treated as bundled. If you
don’t want SKUs with a non-empty bundleLinks property to be treated as bundles, extend the
RepositoryInventoryManager and override the isBundle() method to always return false. This will
force the inventory system to treat all items the same way. Perform the same extension to the
RepositoryInventoryManager if you want bundles to be processed in the same way as regular SKUs.

Changing the Bundle Handling

If you want to handle bundles in a different way than described above, but you want process SKUs that
are not bundles in the same way, extend the RepositoryInventoryManager and override the bundle-
specific methods.

The methods listed below are called with the methods of the InventoryManager API if the ID passed in
is a bundle. For example, if purchase(someId) is called and someId refers to a bundle, purchase will call
purchaseBundle(someId). These methods are implemented in RepositoryInventoryManager, but
not in any of the other classes.

 isBundle

 purchaseBundle

 purchaseBundleOffBackorder

 purchaseBundleOffPreorder

 preorderBundle

 backorderBundle

 queryBundleStocklevel

 queryBundleBackorderLevel

 queryBundlePreorderLevel

 queryBundleStockThreshold

 queryBundleBackorderThreshold

 queryBundlePreorderThreshold

 queryBundleAvailabilityDate

 deriveBundleAvailabilityStatus

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 5 7

1 9 - I n v e n t o r y F r a m e w o r k

μ
Inventory Repository

 ATG Commerce comes with two repositories that are relevant to the inventory system: the Product
Catalog and the Inventory Repository. The Product Catalog stores prices, descriptions, images, and fulfiller
information. For more information, see the Using and Extending the Product Catalog chapter. The
Inventory Repository stores the stockLevel, availability information, and other inventory data.

This section describes the inventory repository that is included with ATG Commerce out of the box. The
inventory information is stored in a separate repository from the product catalog. Each inventory method
takes an ID from the product catalog and uses that information to get the inventory ID.

The inventory definition is stored in atg/commerce/inventory/inventory.xml. Each item in the
inventory has the following properties.

Property Definition

creationDate The date this inventory item was created.

startDate The inventory item will not be available until this date.

endDate The inventory item will not be available after this date.

displayName The name that is displayed to the user to represent this
inventory item.

description A description of this inventory item.

catalogRefId The SKU ID in the Product Catalog to which this inventory item
refers.

availabilityStatus The status of this inventory item. It is an enumerated type. The
integer code for each possible value is shown. The following
codes represent availability status:
INSTOCK (1000) - This item is in stock.
OUTOFSTOCK (1001) – This item is out of stock.
PREORDERABLE (1002)- This item may be preordered.
BACKORDERABLE (1003) - This item may be backordered.
DERIVED (1004) - This item’s availabilityStatus should be
derived from the values of its stockLevel, backorderLevel,
and preorderLevel. DERIVED is the default value for
availabilityStatus.
DISCONTINUED (1005) – This item is discontinued.

availabilityDate The date on which this item will be available if not currently
available.

stockLevel The amount of stock available for purchase. The value -1
indicates that an infinite amount is available.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 5 8

1 9 - I n v e n t o r y F r a m e w o r k

μ
backorderLevel The amount of this item that can be backordered. The value –1

indicates that the inventory system accepts an infinite number
of backorders for this item.

preorderLevel The amount of this item that can be preordered. The value –1
indicates the inventory system accepts an infinite number of
preorders for this item.

stockThreshold If the stockLevel falls below this amount, a warning event is
generated.

backorderThreshold If the backorderLevel falls below this amount, a warning
event is generated.

preorderThreshold If the preorderLevel falls below this amount, a warning
event is generated.

Inventory JMS Messages
The InventoryManager creates Java Messaging Service (JMS) messages for the following events:

JMS Message Name When message occurs Information included in
message

InventoryThresholdReached When stocklevel,
backorderLevel, or
preorderLevel falls
below its associated
threshold.

The ID number of the
item.
Name of property
(stocklevel,
backorderLevel, or
preorderLevel)
Value of property
Value of threshold

UpdateInventory When the stock level
increases. (In the
RepositoryInventoryM

anager, it occurs when
someone calls
inventoryWasUpdated)

The IDs of all items that
have stock available and
were previously
BACKORDERABLE,
PREORDERABLE, or
OUT_OF_STOCK.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 5 9

1 9 - I n v e n t o r y F r a m e w o r k

μ
Configuring the SQL Repository

The InventoryManager implementations that ATG Commerce provides out of the box require the
atg.service.cache package and an instance of the Generic SQL Adapter. For more information on SQL
Repositories, see the ATG Repository Guide.

The SQL Repository must be configured before the RepositoryInventoryManager can use it. You must
set values for the following properties:

 stocklevel (optional)

 backorderLevel (optional)

 preorderLevel (optional)

 stockThreshold (optional)

 backorderThreshold (optional)

 preorderThreshold (optional)

 availabilityStatus (required)

 availabilityDate (optional)

If the properties above are not included, all items will be treated as having a stockLevel of –1 (infinite
supply). The backorderLevel, preorderLevel, stockThreshold, preorderThreshold, and
backorderThreshold are set to zero. These default values are configurable in the
RepositoryInventoryManager.

The best way to insure that every item in the repository that represents an inventory item has the
required properties is to have a view and/or ItemDescriptor in the repository dedicated to the
“inventory item” type. However, this is not specifically required.

Caching the Inventory

By default, caching is turned off for the inventory repository. This is to insure that inventory data is always
up to date across server instances. The CachingInventoryManager is provided as an effective inventory
caching mechanism for displaying inventory information.

The CachingInventoryManager can be used to display information to customers as they browse the
product catalog because, in most situations, inventory information displayed to customers during catalog
browsing does not need to be updated in real time. Displaying inventory information using the
CachingInventoryManager improves the performance of the site.

The CachingInventoryManager should not be used when real time inventory data is needed. Real time
inventory information is usually needed during the purchase process and fulfillment process. In those
cases, the (uncached) InventoryManager should be used during these processes. For more information
on the CachingInventoryManager, see the InventoryManager Implementations section.

The InventoryDroplet provides cached data to the user when appropriate and accesses real time
inventory data from the repository when appropriate. The useCache property allows you to indicate
when to use cached inventory data:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 6 0

1 9 - I n v e n t o r y F r a m e w o r k

μ
 If the useCache property is set to false, the inventory data in the repository is

provided.

 If the useCache property is set to true, the cached data is provided.

The GSA can provide more complex types of caching. If appropriate, you can configure two instances of
the InventoryRepository GSA, one with no caching and one with distributed caching (set cache-
mode=distributed). You can configure one instance of the RepositoryInventoryManager to use the
uncached GSA, and another instance of the RepositoryInventoryManager to use the cached GSA. For
more information on distributed caching, see the SQL Repository Caching chapter in the ATG Repository
Guide.

Inventory Repository Administration
You can use the repository editor to administer the inventory system. Because the
RepositoryInventoryManager is implemented as a front-end to a repository, you can use the
repository editor to edit the RepositoryInventoryManager backend. The disadvantage to using the
repository editor is that the InventoryManager does not know when the Repository has changed.
Therefore, it cannot perform actions like sending notifications about a pending order upon receipt of
additional inventory.

ATG Commerce includes a very simple user interface for administration of the Inventory Manager. You
can access the interface through the Dynamo Administration pages, as long as the Dynamo
Administration UI is included in your application. Access the Inventory Manager UI using the URL
appropriate for your application server. For example, the default URL on JBoss is:

http://hostname:8080/dyn/admin/atg/commerce/admin/inventory/index.jhtml

See the ATG Installation and Configuration Guide to find the default URL.

This page allows an administrator to view the results of the inventory query operations, to manipulate the
various properties of each item, and to notify the system of inventory updates. Out-of-the-box, the
interface allows the administrator to set, increase, or decrease the stockLevel, backorderLevel, and
preorderLevel of any item in the inventory. This page also allows the administrator to set the
stockThreshold, backorderThreshold, preorderThreshold, availabilityStatus, and
availabilityDate for each item. is configured through The properties files of the servlet beans
described below configure the updated inventory.

The following Dynamo Server Pages manage the inventory:

Dynamo Server Page Description

index.jhtml This page allows you to administer the InventoryManager. Provides
access to the functionality mentioned above.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 6 1

1 9 - I n v e n t o r y F r a m e w o r k

μ
DisplayInventory.jhtml Displays inventory information. You can modify this page to display

more or different information for each item in the inventory. It
displays the repository ID of the catalog item, the display name, the
name of the fulfiller, the stockLevel, the stockThreshold, the
backorderLevel the backorderThreshold, the preorderLevel,
the preorderThreshold, the availabilityStatus, and any
bundled items.

Both of these pages use the InventoryFormHandler to display and manipulate inventory information.
This form handler has two handle methods:

Servlet Bean Description

handleChangeInventory Accepts four properties of the InventoryFormHandler:

SKU - the ID of the SKU to change
value - the value to change the property by
changedProperty - the name of the property to change
setType - the direction to change it in

For example, if SKU=“sku-0”, value=“5”,
changedProperty=“backorderLevel”, and setType=“increase”
then the servlet bean will call:

InventoryManager.increaseBackorderLevel("sku-0", 5)

handleUpdateInventory Uses the IDs stored in property
InventoryFormhandler.updatedItemIdList to call
InventoryManager.inventoryWasUpdated.

You can also use the InventoryFormHandler to display inventory information. It uses the properties
lowerBound, upperBound, batchNumber, batchSize, and propertyName to determine which inventory
items to display. The items that should be displayed are populated in the
InventoryFormHandler.catalogRefIds. For example, if lowerBound is ‘Q’, upperBound is ‘R’,
batchSize is 10, batchNumber is 0, and propertyName is “displayName” all the catalogRefIds for
the first 10 items in the product catalog with a display name greater than Q and less than R (sorted by
displayName) will be in the array InventoryFormHandler.catalogRefIds.

The SKULookup servlet bean is an instance of the ItemLookupRepository that returns information for a
given SKU in the repository.

Using the InventoryLookup Servlet Bean

The InventoryLookup servlet bean returns inventory information based on the input parameters. The
inventory information returned by this servlet bean includes:

 availabilityStatus: the numerical availability status

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 6 2

1 9 - I n v e n t o r y F r a m e w o r k

μ
 availabilityStatusMsg: a string that maps to the numerical

availabilityStatus with the following:

1000: INSTOCK
1001: OUTOFSTOCK
1002: PREORDERABLE
1003: BACKORDERABLE
1005: DISCONTINUED

 availabilityDate: The date on which the item will become available.

 stockLevel: The total number of units currently in stock.

 preoderLevel: The total number of units that are available for preorder.

 backorderLevel: The total number of units that are available for backorder.

 stockThreshold: The threshold for the stock level.

 preorderThreshold: The threshold for the preorder level.

 backorderThreshold: The threshold for the backorder level.

If there is an error retrieving this information, then the error oparam will be rendered. All of this
information is contained within a single inventoryInfo object, which will be rendered within the
output oparam.

This servlet bean takes one required parameter and one optional parameter.

 The required parameter is itemId. The itemId is the catalogRefId of the product
catalog SKU whose inventory information will be retrieved.

 The optional parameter is useCache. If set to true, cached data will be retrieved. This
data may be out of date, depending on how the inventory is updated, so it should be
used with caution. For general store browsing, where performance is critical,
useCache should be true. If it is essential that the information matches the latest
information in the repository, then useCache should be false.

The following code sample is an example of using the InventoryLookup servlet bean:

<dsp:droplet name="/atg/commerce/inventory/InventoryLookup">

 <dsp:param param="link.item.repositoryId" name="itemId"/>

 <dsp:param value="true" name="useCache"/>

 <dsp:oparam name="output">

 This item is

 <dsp:valueof param="inventoryInfo.availabilityStatusMsg"/>

 There are

 <dsp:valueof param="inventoryInfo.stockLevel"/>

 left in the inventory.

 </dsp:oparam>

</dsp:droplet>

Note: The Inventory Framework can also be configured to use the LocalizingInventoryDroplet,
which is similar to InventoryLookup, but can also include a localeKey parameter.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 6 3

1 9 - I n v e n t o r y F r a m e w o r k

μ
Building a New InventoryManager

This section describes how to replace the existing InventoryManager with one of your own. It describes
the minimum requirements for implementation and the properties to set throughout inventory and
fulfillment. For more information on the fulfillment system, see the Configuring the Order Fulfillment
Framework chapter.

If the ATG Commerce standard RepositoryInventoryManager does not meet your inventory
management needs, you can create your own class that implements the InventoryManager interface.
You could also create a new inventory manager if the RepositoryInventoryManager is more complex
than you need or if you are building a bridge between the ATG Commerce interface and some existing
inventory system already in place. The only requirement ATG Commerce has is that the new class
implements InventoryManager.

You can build a new InventoryManager if your sites do not require all the functionality provided by the
InventoryManager. For example, if you do not allow backorders or preorders, then you can extend the
AbstractInventoryManager. This provides default implementations of all the methods other than
purchase.

The first set of methods to consider when implementing the InventoryManager API is purchase,
purchaseOffBackorder, purchaseOffPreorder, backorder, and preorder. If it is important to
maintain separate levels for backordered and preordered items, the purchaseOffBackorder and
purchaseOffPreorder will need to maintain those, as well as provide the same functionality as
purchase. If separate levels are not needed, they could just be implemented as follows: (this depends on
your business rules):

public int purchaseOffBackorder (String pId, long pHowMany)

throws InventoryException

{

 return purchase(pId, pHowMany);

}

To allow an administrator to control the various inventory levels and to allow the system to automatically
correct them, you need to implement the following methods:

 setStockLevel

 setBackorderLevel

 setPreorderLevel

 increaseStockLevel

 increaseBackorderLevel

 increasePreorderLevel

 decreaseStockLevel

 decreaseBackorderLevel

 decreasePreorderLevel

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 6 4

1 9 - I n v e n t o r y F r a m e w o r k

μ
setAvailabilityStatus and setAvailabilityDate also control attributes for the items in inventory.
These are important when informing customers on the availability of the items in which they are
interested.

If you want to be notified when any of the inventory levels becomes dangerously low, a threshold for
each level must be maintained. To allow for this, provide implementations for setStockThreshold,
setBackorderThreshold, and setPreorderThreshold.

All the query methods are useful for providing information on each of the items in inventory. The only
one of these methods that ATG Commerce depends on out-of-the-box is queryAvailabilityStatus.

If your inventory manager will be providing notifications to other systems when inventory is increased,
implement inventoryWasUpdated.

Configuring a New Inventory Manager

Once you have implemented your inventory manager, the next step is configuring the rest of ATG
Commerce to work with it.

First, change the InventoryManager component in atg/commerce/inventory/.

Out-of-the-box, the class used by this component is RepositoryInventoryManager. Change the first
line to read;

$class=mypackage.MyInventoryManager

If you have not changed any of the other references to InventoryManager, this should be the only
change necessary. By default, CachingInventoryManager uses this Nucleus component because its
uncached inventory manager and all other components refer to one of these two components. Because
your new class implements the InventoryManager interface, it can be used throughout ATG Commerce.

If you change any other links, make the appropriate adjustments. The following properties refer to the
InventoryManager:

 atg/commerce/fulfillment/HardgoodFulfiller.inventoryManager

 atg/commerce/inventory/CachingInventoryManager.uncachedInventoryMan

ager

 atg/commerce/inventory/InventoryLookup.inventoryManager

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 6 5

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
20 Configuring the Order Fulfillment

Framework

Order fulfillment is the set of actions taken by the merchant to deliver the goods or services purchased by
the customer. In general, merchandise can be broken up into two groups: Hard Goods and Electronic
Goods. Hard Goods are physical goods that are shipped to the customer. Hard Goods include items such
as books, CDs, or toys. Electronic Goods are purchases that do not result in a tangible product that
requires shipping. Electronic Goods include software downloads, subscriptions, or gift certificates.

ATG Commerce is designed to handle both of these situations. This chapter describes the design of the
order fulfillment framework and presents an overview of the basic classes used to build this infrastructure.

This chapter contains information on the following topics:

Overview of Fulfillment Process
Describes the control flow during the fulfillment process and introduces the JMS
messages and pipeline chains used during fulfillment.

Running the Fulfillment Server
Describes how to use ATG Commerce with the fulfillment server.

Order Fulfillment Classes
Describes the base classes that make up the fulfillment architecture.

Fulfillment Pipelines
Describes the set of pipeline chains that are used during fulfillment.

Using Locking in Fulfillment
Describes the system that prevents order fulfillment components from handling more
than one message per order at any given time.

Using the OrderFulfiller Interface
Describes the OrderFulfiller interface, the interface to the fulfillment system
through which all other systems communicate.

Using the Fulfiller
Describes the tasks the fulfiller performs as part of the fulfillment process.

Creating a New Fulfiller
Describes how to create a new fulfiller if your sites require fulfillment functionality
different from that of the fulfillers that ship with ATG Commerce.

Order Fulfillment Events
Describes the order fulfillment events created and sent by the OrderChangeHandler
in the Order Fulfillment system.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 6 6

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
Fulfillment Server Fault Tolerance
Describes the fulfillment server is configured to minimize the impact of any downtime.

Replacing the Default Fulfillment System
Describes how to replace the fulfillment system that ships with ATG Commerce with
another fulfillment system.

Using Scenarios in the Fulfillment Process
Describes how the fulfillment system uses of the scenario engine to provide features
including e-mail notifications to customers.

Questions & Answers
The following section answers some commonly asked questions about the fulfillment
framework.

Overview of Fulfillment Process
Online shopping can be broken down into two major phases, the purchase process and the fulfillment
process. The purchase process is everything that is done before checking out, while the fulfillment
process begins after the checkout.

The transition from the purchase process to the fulfillment process occurs when the SubmitOrder
message is sent out after a successful checkout. The successful delivery of this message signals the
transfer of control and the beginning of the fulfillment process.

The SubmitOrder message is a JMS ObjectMessage that contains the serialized order object. The order
is serialized so that fulfillment can be serviced by an entirely independent system.

Building the fulfillment system on top of JMS provides the flexibility of a distributed fulfillment system.
For example, a site could contain products from various vendors that can be purchased through the same
account. A large site might sell bikes from one vendor and books from another publisher. These orders
would require different fulfillers because they would not be fulfilled from the same warehouse. The
Purchase Process allows for multiple shipping groups and multiple payment methods. The Fulfillment
Process then determines which shipping groups will be fulfilled by which fulfiller and forwards the
requests to the relevant fulfillers.

The default implementation assumes that the Purchase Process and all the configured fulfillment systems
share the same order repository (or database containing the order information). The architecture is
designed to provide the flexibility to accommodate systems with various back-end requirements and
fulfillment houses. JMS messages allow this flexibility during the communication between the different
subsystems because it serves as an API between the different disparate components. JMS provides the
flexibility of integrating with ATG Commerce’s fulfillment framework regardless of how and where your
existing fulfillment system resides. If the design of your fulfillment system follows the basic pattern
defined by ATG Commerce, then extending the basic functionality to support your existing fulfillment
system should be straightforward.

Flow of control defines which components have privileges to edit different parts of the order. The basic
premise is that once a component has control over a part of the order, only this component should edit
this part of the order. ATG Commerce does not verify that a component has the privileges to edit a

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 6 7

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
specific part of an order. ATG Commerce does not perform this verification because if the system is
distributed, orders might be modified with a different system.

ATG Commerce also assumes that all changes to the order will be tracked using Modification objects that
capture the type of change that occurred. For example, if an item was added to a shipping group, then a
ModifyOrderNotification message is sent with its array of Modifications including a GenericAdd
modification. See the Modification Class section for more details on modifications.

ATG Commerce assumes that all the components in the system share the same repository. If not all
components share the same repository, then ModifyOrder and ModifyOrderNotification messages
can be sent into the vendor’s system.

Vendors are responsible for listening for modifications in their subsystems. These modifications might be
different from the modifications that ATG Commerce is listening for by default. Vendors might have to
implement the various ModifyOrder requests needed to synchronize the local order repository with the
vendor’s back-end systems. Vendors should follow the guidelines for modifying objects and sending out
modifications that indicate the types of changes that have occurred. If these guidelines are followed, then
it is possible to extend the various modification handlers to maintain accurate copies of the data in the
databases.

The following list describes the control flow during the Order Fulfillment process. A diagram following
this list illustrates the flow of JMS messages during this process.

1. OrderFulfiller receives a SubmitOrder message containing a serialized copy of
the order. The owner of the order object is the component that receives this message.
By default, the OrderFulfiller receives this message.

2. The OrderFulfiller passes control of the different components to the configured
fulfillers using FulfillOrderFragments. In this example there is only one fulfiller,
the HardgoodFulfiller.

Note: The various fragments contain the shipping groups associated with the items in
the fragment. All the shipping groups listed in the fragment are now controlled by the
component receiving this message. In this example, the HardgoodFulfiller now
controls the shipping groups.

3. While the HardgoodFulfiller controls the shipping groups, all modifications to the
shipping groups take place through the HardgoodFulfiller. It is important that no
other component modifies these shipping groups while the HardgoodFulfiller
controls the shipping groups. The HardgoodFulfiller could be running on a back-
end system in a different environment. If other components need to make changes to
the shipping groups, the ModifyOrder requests are forwarded to the
HardgoodFulfiller. The HardgoodFulfiller is responsible for making the
requested changes to the shipping groups while they are under its control.

Note: All modifications are performed by fulfillers by calling pipeline chains. For more
information, see the Processor Chains and the Pipeline Manager chapter.

4. When the shipping groups are shipped, a ModifyOrderNotification message is
sent. When this message is sent, the HardgoodFulfiller gives up control of the
shipping groups within the order. Control is transferred back to the OrderFulfiller
automatically if no one else has control until the complete fulfillment of the order. This

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 6 8

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
follows the assumption in the pattern that the OrderFulfiller retains control until
the order is complete.

5. The OrderFulfiller receives the ModifyOrderNotification message. If the
business rules allow payment to settle on first shipment, then the payment groups are
charged with the cost of the items, shipment and taxes. Business rules can also specify
that payment be settled upon the shipment of the last shipping group.

6. After the order is settled, the OrderFulfiller changes its state to
NO_PENDING_ACTION and no longer controls the order.

The following diagram provides an overview of the flow of the JMS messages during the Order Fulfillment
process.

Note: By default, the system is set up with one HardGoodFullfiller. In this example, the system uses
two HardGoodFullfillers.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 6 9

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ

HardGoodFulfiller-2

Purchasing Process

HardGoodFulfiller

UIM

FOFM

SOM

MONM

MOM

UIM

MOM

FOFM

Message Key
 SOM: SubmitOrder Message
 FOFM: FulfillOrderFragment Message
 MOM: Modify Order
 MONM: ModifyOrderNotification
 UIM: Update Inventory

OrderFulfiller

Note: The OrderFulfiller is the only class that has control over the payment groups and the only class
that can modify the highest-level Order object.

The fulfillment system is designed to be a flexible implementation that is easily extensible. This flexibility
allows for the different ways businesses handle their fulfillment. If the ATG Commerce order fulfillment
system is not appropriate for a site, it is easy to remove the ATG Commerce order fulfillment framework.
Remove the ATG Commerce order fulfillment framework by not running a fulfillment server and having
another component listen for the SubmitOrder message. The SubmitOrder should contain all the
information necessary for the vendor to start the fulfillment process. See SubmitOrder Class for more
information.

Note: ATG Commerce supports scenarios where the fulfillment of certain shipping groups has no access
to the database.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 7 0

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
Running the Fulfillment Server

When you assemble your application, be sure to specify the Fulfillment module. For more information
on ATG modules, see the ATG Programming Guide.

Note: If your ATG Commerce site runs on multiple servers, only one of the instances of the site application
should include the Fulfillment module.

Order Fulfillment Classes
The fulfillment architecture consists of the following base classes:

Commerce Messages

 CommerceMessage Class

 SubmitOrder Class

 FulfillOrderFragment Class

 ModifyOrder Class

 ModifyOrderNotification Class

 UpdateInventory Class

Modification classes

 Modification Class

 GenericAdd Class

 GenericRemove Class

 GenericUpdate Class

 ShippingGroupUpdate Class

Other classes

 OrderFulfiller Class

 HardgoodFulfiller Class

 ElectronicFulfiller Class

 OrderFulfillmentTools Class

 OrderFulfillerModificationHandler Class

 HardgoodFulfillerModificationHandler Class

CommerceMessage Class

This class is the base class used by all the object messages sent in the fulfillment process. The properties in
this class can be used for tracking messages. The class includes the following properties:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 7 1

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
 source – identifies the source from which this message was sent. This property can be

used to help screen messages.

 id – a unique identifying string, the combination of the id and the source should be
unique.

 userId – the id of the last user to act on this message.

 originalSource – the original source of this message. If a message is forwarded on
from one component to the next, the originalSource never changes but the source
does.

 originalId – the original message ID as it came from the original source.

 originalUserId – the ID of the end user whose action initiated the message.

Although all these fields exist, only source, id, originalSource and originalId are used in the
fulfillment subsystem. The other fields exist to accommodate extensions to the base class.

SubmitOrder Class

The SubmitOrder message is sent to the OrderFulfiller when the order is submitted for fulfillment.
The SubmitOrder message, like all of the other messages in fulfillment, is a serializable object contained
within a JMS object message. The message includes a serialized order object containing all the
information needed to fulfill the order.

The SubmitOrder message is sent at the end of the checkout process. The message is constructed and
sent in a processor as part of the processOrder chain called sendFulfillmentMessage. The properties
are in /atg/commerce/order/processor/SendFulfillmentMessage.

In the default implementation, the SubmitOrder message is sent over localdms to the
ScenarioManager and to the MessageForwardFilter. The MessageForwardFilter forwards the
message over sqldms to the /Fulfillment/SubmitOrder durable topic. The OrderFulfiller is the
only listener on that durable topic. See the Dynamo Message System chapter in the ATG Programming
Guide for more information. See the OrderFulfiller Class section for more details about what happens after
the message is received.

FulfillOrderFragment Class

The OrderFulfiller sends the FulfillerOrderFragment message to the various fulfillment systems
responsible for sending out the products in the shipping groups. All shipping groups in an order with the
same fulfiller are sent in FulfillerOrderFragment. The FulfillerOrderFragment message contains
the shipping group IDs.

The FulfillOrderFragment message, like all of the other messages in fulfillment, is a serializable object
contained within a JMS object message. The message includes a serialized order and the list of shipping
groups IDs included in this fragment. This message is sent by the OrderFulfiller to the various
fulfillment systems responsible for fulfilling the shipping groups. When this message is sent, control of the
object is transferred to the system that receives the message. By default, this system is the
HardgoodFulfiller.

ModifyOrder Class

The ModifyOrder message extends the CommerceMessage class and adds the following properties:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 7 2

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
 orderId – the ID of the order being modified

 type – the JMS message type

 modifications – an array of modifications to be performed.

The ModifyOrder message allows external sources to request changes to the order object. The list of
modifications is included in the message’s modifications array. The recipient of the ModifyOrder
message is responsible for determining whether a modification is possible given the flow of control and
the ownership of the objects for which the modification is requested.

After attempting to perform the modification, ATG Commerce sends a ModifyOrderNotification
referencing the modifications that were requested and indicating whether the modification was
successful or not. If a component receives a ModifyOrder message for an object to which the component
does not have access, the request is forwarded on to other configured systems with access rights to the
objects to be modified.

In ATG Commerce, systems only listen for, and work on, one type of Modification in the ModifyOrder
message. By default, the modification listened for is the one requesting a cancellation of an order. This
type is implemented in the OrderFulfillerModificationHandler and the
HardgoodFulfillerModificationHandler, both of which extend the ModificationHandler class.
These classes are designed to deal with ModifyOrder and ModifyOrderNotification messages.

The ModifyOrder message is received by the OrderFulfiller. The OrderFulfiller checks that none
of the shipping groups have been shipped by examining their states. If any of the shipping groups have
been shipped then a ModifyOrderNotification message is sent with the requested modifications
marked as failed. The sender of the original ModifyOrder message is responsible for listening for the
ModifyOrderNotification.

The ModifyOrder message and its modification array are flexible enough to accommodate any changes
to the order structure and its subcomponents. However, ATG Commerce implements only the most basic
cancel order features because of the variety of business rules that can apply for requested changes and
the legality of certain changes.

The ModificationHandler class provides the flexibility to change the behavior in handling
ModifyOrder and ModifyOrderNotification messages.

ModifyOrderNotification Class

The ModifyOrderNotification class extends CommerceMessage and adds the following properties:

 orderId – the ID of the order being modified

 modifyOrderSource – the originator of the ModifyOrder message if this
ModifyOrderNotification is in response to a ModifyOrder

 modifyOrderId – the ID of the ModifyOrder message if this
ModifyOrderNotification is in response to a ModifyOrder

 modifications – an array of the modifications that were made to this order

The ModifyOrderNotification message provides a running record of all changes to the order or any of
its sub-components. All changes made by components in the system are recorded and distributed in a
ModifyOrderNotification message. This allows distributed systems a way to keep their various

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 7 3

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
databases synchronized when it pertains to certain aspects of the order. For example, it is possible for a
business that has several fulfillers to have each fulfiller use a different backend system.

The control flow described earlier in this section clearly defines which components are responsible for
order objects during different points in the fulfillment process. If one of the fulfillers makes a change to a
shipping group for which it is responsible, the change is captured in a Modification, which is sent inside a
ModifyOrderNotification. For example, the fulfiller could change the state of a given item
relationship to backordered.

The ModifyOrderNotifcation is received by all the systems that are listening for it and it is the
responsibility of those systems to update back ends to keep all the systems synchronized. In ATG
Commerce, all the repositories are accessible by all of the components. This eliminates the need to
synchronize various disparate databases. However, if a customer requires that a disparate system make
modifications to the order objects, the OrderFulfillerModificationHandler would need to be
augmented to reflect the changes reported by the ModifyOrderNotification messages being sent by
the disparate systems.

UpdateInventory Class

The UpdateInventory message extends the CommerceMessage class. It adds one property:

 itemIds – a list of IDs of items that were previously unavailable (BACKORDERABLE,
PREORDERABLE, or OUT_OF_STOCK) but now have stock available.

UpdateInventory is sent by a third party system, such as an inventory subsystem, to indicate that items
are available. The HardgoodFulfiller in ATG Commerce listens for these messages. The
HardgoodFulfiller queries the order repository for all shipping groups that contain items from the list
that are in a preordered or backordered state.

Modification Class

Each ModifyOrder and ModifyOrderNotification message contains an array of Modification
objects. The Modification class is the base class for each of these modification objects. All modifications
represent some change to a specified Order. In the default implementation of ATG Commerce, there are
four types of Modification objects: ADD, REMOVE, UPDATE, or SHIPPING_GROUP_UPDATE. Refer to
GenericAdd, GenericRemove, GenericUpdate, and ShippingGroupUpdate for more information.

Each Modification also targets a specific kind of object within an Order. For example, the Modification can
remove a shipping group. The different possible targets are TARGET_ITEM, TARGET_SHIPPING_GROUP,
TARGET_PAYMENT_GROUP, TARGET_ORDER, or TARGET_RELATIONSHIP. A status for each modification
indicates success or failure.

The IdTargetModification and IdContainerModification classes are two abstract subclasses of
Modification. For more information, see the ATG API Reference.

GenericAdd Class

The GenericAdd class is used to add a target specified by ID or value to a target specified by ID or value.
For example:

 Add item by ID or value to shipping group by ID or value.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 7 4

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
 Add item by ID or value to payment group by ID or value.

 Add item by value to order by ID.

 Add shipping group by value to order by ID.

 Add payment group by value to order by ID.

These are the only valid combinations. Both the ID and the value should not be set for either the target or
the container. Everything should be added to the order before it is used as either a target or container for
another GenericAdd.

For example if you are adding a new item, shipping group, and payment group, and want to add the item
to both of the groups you would do the following:

1. Add the item to the order.

2. Add the shipping group to the order.

3. Add the payment group to the order.

4. Add the item to the shipping group.

5. Add the item to the payment group.

GenericRemove Class

The GenericRemove class is used to remove an object specified by ID from a container specified by ID. If
an item, shipping group, or payment group is removed from an order, it is removed from any
relationships.

GenericUpdate Class

This class contains the information that describes a property change for an object. It contains the original
value of the property (as a serializable Object) and the new value for the property.

For example, to change the state of a ShippingGroup from PENDING_SHIPMENT to
NO_PENDING_ACTION (for example ship the shipping group):

 Set the targetId of the GenericUpdate to the ID of the shipping group to be
shipped.

 Set the containerId of the GenericUpdate to the ID of the order containing that
shipping group.

 Set the propertyName of the GenericUpdate to “state” to update the state property
of the shipping group.

 Set the originalValue to PENDING_SHIPMENT and set the new value to
NO_PENDING_ACTION.

If you included the resulting GenericUpdate in a ModifyOrder message and sent it to the
OrderFulfiller, the status of the given shipping group would change to reflect that it has shipped.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 7 5

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
ShippingGroupUpdate Class

This special Modification notifies the fulfillment system of any changes within a Shipping Group that
happen externally. If the OrderFulfiller receives a ModifyOrderNotification with a
ShippingGroupUpdate Modification in it, the shipping groups listed in the Modification are reprocessed.

This is a convenient way of notifying fulfillment of complex changes to an order. It contains an order ID
and an array of shipping group IDs that have been updated. After receiving this message, the
OrderFulfiller forwards it to each of the appropriate fulfillers, who then reprocess the entire shipping
group.

PaymentGroupUpdate Class

This special Modification notifies the fulfillment system of any changes within a PaymentGroup that
happen externally.

OrderFulfiller Class

The OrderFulfiller receives the SubmitOrder message, which marks the start of the fulfillment
process. The fulfillment process relies on a persistent, durable JMS subsystem to deliver messages as they
become available. There should be only one instance of an OrderFulfiller in place to receive the
SubmitOrder message. The method invoked on the reception of a message is the receiveMessage
method. The method will determine what type of message was sent and call the appropriate handle
method for that message type.

The following methods handle the different messages:

 getModificationHandler().handleModifyOrder – This method handles
ModifyOrder messages. The handling of ModifyOrder messages is delegated to the
ModificationHandler class, which is configured as a property of the
OrderFulfiller.

 getModificationHandler().handleModifyOrderNotification – This method
deals with ModifyOrder messages. The handling of ModifyOrderNotification
messages is delegated to the ModificationHandler class, which is configured as a
property of the OrderFulfiller.

 handleNewMessageType – This method is called if the types of the messages don’t
match up to any of the above three types. By default, this is left as an empty method
for future extensibility.

 handleSubmitOrder - This method is called to handle all SubmitOrder messages. It
runs the handleSubmitOrder pipeline chain. For more information, see Appendix G:
Commerce Pipeline Chains.

For information on the handling of ModifyOrder and ModifyOrderNotification messages, refer to
the OrderFulfillerModificationHandler section.

HardgoodFulfiller Class

The HardgoodFulfiller class receives the FulfillOrderFragment message and begins the
Fulfillment Process for the shipping groups listed within the message. This class is responsible for calling
the appropriate pipeline chains.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 7 6

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
When a shipping group is shipped, the warehouse notifies the HardgoodFulfiller. The
HardgoodFulfiller then calls the appropriate pipeline chain to change the state of the shipping group
and items within it and sends a ModifyOrderNotification detailing the changes. For more information
on fulfillment pipelines, see the Fulfillment Pipelines section of this chapter.

ElectronicFulfiller Class

The ElectronicFulfiller is used to fulfill any type of good that is delivered electronically. Electronic
goods should be associated with an ElectronicShippingGroup. The ElectronicFulfiller then
fulfills the order by calling the appropriate pipeline chain.

Currently, the only items that use the ElectronicFulfiller are gift certificates. The
ElectronicFulfiller could be used to fulfill any item using the following two actions

 Create a claimable item in the claimable repository

 E-mail user notification (and a claim code) that they have something waiting for them.

For more information on claimable items, see the Configuring Commerce Services chapter.

Electronic goods are fulfilled differently than hard goods. Electronic goods can take on a variety of forms.
ElectronicFulfiller creates items in a repository. These items represent an electronic good that the
user can then obtain.

The ElectronicFulfiller is responsible for fulfilling the order of various electronic goods.
ElectronicFulfiller fulfills electronic goods by performing two actions:

 Creating an entry in a repository that represents the electronic good that the user can
purchase.

 Notifying a user that an electronic good is waiting for them to claim.

By default, ATG Commerce includes a component called SoftgoodFulfiller, which is located at
/atg/commerce/fulfillment/SoftgoodFulfiller. This component is an instance of the
atg.commerce.fulfillment.ElectronicFulfiller.

OrderFulfillmentTools Class

The OrderFulfillmentTools class contains methods that help create messages, modify objects, and
manipulate the states in the Order, Shipping Groups, Payment Groups and relationships.

This class is used by fulfillment pipelines. The OrderFulfillmentTools class contains various
convenience methods for commonly performed tasks in fulfillment. For more information, please refer to
the ATG API Reference.

The OrderFulfillmentTools also maintains the mapping of fulfillers to port names. The
OrderFulfiller uses these ports to send FulfillOrderFragment messages to the correct fulfiller. The
OrderFulfiller has a different output port for each fulfiller. Messages sent through these ports are
written to a different topic for each fulfiller. It is important that each possible value of the fulfiller property
of each item in the product catalog is included in this mapping.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 7 7

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
OrderFulfillerModificationHandler Class

The OrderFulfillerModificationHandler class extends the ModificationHandler interface. It is
configured to handle the ModifyOrder and ModifyOrderNotification messages for the
OrderFulfiller class. The OrderFulfiller class contains the ModificationHandler property,
which deals with both ModifyOrder and ModifyOrderNotification messages. To change the
handling behavior of ModifyOrder and ModifyOrderNotification messages, extend the
OrderFulfillerModificationHandler class and change the ModificationHandler property of
OrderFulfiller to point to the new class.

The default implementation deals with the following ModifyOrder modifications:

 Remove an order by sending a ModifyOrder message containing a Modification of
type REMOVE. The OrderFulfiller receives this message. If the order and its
shipping group are not in a NO_PENDING_ACTION state, then ModifyOrder
messages are sent to the various fulfillers handling the shipping groups. Every fulfiller
who can cancel the shipping group responds by setting the state of the shipping
group to PENDING_REMOVE. If all of the shipping group states are changed to
PENDING_REMOVE, then the order state changes to REMOVED and all of the shipping
group states can be changed to REMOVED. An order cannot be cancelled if any of its
shipping groups have been shipped. If you attempt a GenericRemove modification
on an order that cannot be removed (for example, if one of the shipping groups in the
order has shipped) then the order is set to PENDING_MERCHANT_ACTION.

 Notify the fulfillment system that a shipping group has shipped by sending a
ModifyOrder message with a GenericUpdate that changes the state of the shipping
group from PENDING_SHIPMENT to NO_PENDING_ACTION. The OrderFulfiller will
receive this message and forward it to the responsible fulfiller. For more information,
see the GenericUpdate Class section.

The default implementation deals with the following ModifyOrderNotification modifications:

 Shipping group’s state changes to NO_PENDING_ACTION,
PENDING_MERCHANT_ACTION, PENDING_REMOVE, or failure to change to
PENDING_REMOVE.

 When a customer updates a shipping group, the OrderFulfiller sends a
ModifyOrderNotification message to the fulfiller responsible for this shipping
group. This forces a reprocessing of the shipping group.

The ATG Commerce default implementation settles payment on first or last shipment of the shipping
groups. You can configure when to charge payment in the SettleOnFirstShipment property of the
OrderFulfiller. By default, charging takes place after the shipment of the last shipping group. The
settlement is for the total value of the order. If settlement occurs on first shipment and a shipping group
that hasn’t been shipped is cancelled, a credit must be issued for the items that were paid for but never
shipped.

The extendible infrastructure allows all types of ModifyOrder messages and
ModifyOrderNotifications depending on your business requirements.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 7 8

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
HardgoodFulfillerModificationHandler Class

The HardgoodFulfillerModificationHandler deals with the ModifyOrder and
ModifyOrderNotifications messages received by the HardgoodFulfiller. The
HardgoodFulfiller contains a ModificationHandler property, which is set by default to the
HardgoodFulfillerModificationHandler. This class is similar to the
OrderFulfillerModificationHandler.

To change the handling behavior of ModifyOrder and ModifyOrderNotification messages, extend
the HardgoodFulfillerModificationHandler class and change the ModificationHandler
property HardgoodFulfiller to point to the new class.

The default implementation deals with the following ModifyOrder modification:

 Remove the shipping group from the order:

The fulfillers can remove shipping groups if they have not been shipped. Determining
whether a shipping group has been shipped can be difficult because of the
asynchronous nature of shipping items. Consulting the states may not be enough to
determine if the group has been shipped. ATG Commerce consults the state to make
sure that it isn’t in a NO_PENDING_ACTION or REMOVED state. This is sufficient
because in the default ATG Commerce configuration, there is no integration with a
real warehouse so shipment is indicated by changing a set of states in the order
repository. Some vendors might decide to create business rules that limit the time in
which cancellations can occur because it is difficult to determine the exact shipping
time for a shipping group.

 Ship the shipping group:

The HardgoodFulfiller can be notified that a shipping group has shipped through
a ModifyOrder message (which is originally sent to the OrderFulfiller, then
forwarded to the HardgoodFulfiller). The HardgoodFulfiller gets a
GenericUpdate modification through the ModifyOrder message, checks the current
state of the shipping group to ensure that it is PENDING_SHIPMENT. If everything is
fine, it sets the state to NO_PENDING_ACTION and notifies the rest of the system of the
change with a ModifyOrderNotification message.

It also handles the following ModifyOrderNotification modification:

 Shipping group update:

A shipping group is re-processed when the method
processMultipleShippingGroups in HardgoodFulfiller is called. This method is
called when a modification of type SHIPPING_GROUP_UPDATE is received. The
HardgoodFulfiller does not listen on the topic over which
ModifyOrderNotification messages are sent. Instead, the OrderFulfufiller
listens on that topic and forwards the appropriate messages directly to the
HardgoodFulfiller using the port in defined in
OrderFulfillmentTools.fulfillerPortNameMap.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 7 9

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
Using Locking in Fulfillment

An important concept in the message processing in the fulfillment process is that no component should
handle more than one message per order at any given time.

For example, a component is currently handling a ModifyOrderNotification message for orderId
‘1234’ and a ModifyOrder message for orderId ‘1234’ is received during processing. The ModifyOrder
message blocks and waits until the first message finishes running. This does not prohibit any messages
that come for another orderId from being processed. This is accomplished with locking and the
ClientLockManager. All fulfillment components use the lock manager located at
/atg/dynamo/service/ClientLockManager.

The lock acquired is for the key that is returned by the method getKeyForMessage in OrderFulfiller
and HardgoodFulfiller. The default implementation returns the orderId specified in the message.
This method can be overridden if the key to determine the locking needs to be changed but you want to
preserve the principle of having one message per key/message at a time.

The design of the OrderFulfiller and the HardgoodFulfiller uses the ClientLockManager to
prevent one component from processing messages for two different orders at the same time. Extending
the ModificationHander for either class does not require any locking changes. The only time you
should be concerned with locking is if the HardgoodFulfiller is not extended when a fulfiller class is
created.

Note: Every ClientLockManager (one per ATG Commerce instance) should be configured to point to
the ATG Commerce instance running the ServerLockManager. Every ATG Commerce component should
use the same ClientLockManager. For more information on the ServerLockManager, see the SQL
Repository Caching chapter in the ATG Repository Guide.

The following example demonstrates how the lock manager is used:

TransactionDemarcation td = new TransactionDemarcation();

try {

 td.begin(getTransactionManager(), td.REQUIRED);

 getClientLockManager().acquireWriteLock(pOrderId);

 LockReleaser lr = new LockReleaser(getClientLockManager(),

 getTransactionManager().getTransaction());

 lr.addWriteLock(pOrderId);

 <insert your code here>

catch (DeadlockException de) {

 if(isLoggingError())

 logError(de);

 return false;

}

catch (LockManagerException lme) {

 if(isLoggingError())

 logError(lme);

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 8 0

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
 return false;

}

catch(TransactionDemarcationException t) {

 if(isLoggingError())

 logError(t);

 return false;

}

finally {

 try {

 td.end();

 }

 catch(TransactionDemarcationException tde) {

 if(isLoggingError())

 logError(tde);

 }

}

The LockReleaser registers each lock with the transaction. The lock is released when the transaction
ends. Because of this, it is imperative that a transaction be in place when the LockReleaser is created.
This is the reason for all the code using TransactionDemarcation. For more information on
transactions, see the Transaction Management chapter in the ATG Programming Guide.

Using the OrderFulfiller Interface
The OrderFulfiller is the interface to the fulfillment system through which all other systems
communicate. Messages intended for any object within fulfillment are sent to the OrderFulfiller first.
The OrderFulfiller calls the appropriate fulfillment pipeline, which forwards the message to the
appropriate place. This section describes the functionality of the OrderFulfiller.

There is only one instance of the OrderFulfiller. Order fulfillment begins when the OrderFulfiller
receives the SubmitOrder message containing an order. Three things happen when the
OrderFulfiller receives the SubmitOrder message:

1. The states of the order and each shipping group are set to PROCESSING.

2. OrderFulfiller determines the fulfiller for each shipping group. If the items in a
shipping group have more than one fulfiller then that shipping group is split. After the
split, each shipping group can be fulfilled by exactly one fulfiller.

3. The OrderFulfiller creates FulfillOrderFragment messages and sends the
messages to each fulfiller. These messages include the shipping group IDs that the
fulfiller is responsible for fulfilling. For details on what the fulfiller does with that
message, see the Using the Fulfiller section.

After sending the FulfillOrderFragment messages, OrderFulfiller relinquishes control of the order
until the fulfiller has performed all necessary functions. The OrderFulfiller listens for all
ModifyOrderNotification messages for events notifying it that the fulfiller is finished.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 8 1

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
The following situations describe how the OrderFulfiller regains control of an order:

 If the shipping group’s state is set to PENDING_MERCHANT_ACTION, the
OrderFulfiller will set the order’s state to PENDING_MERCHANT_ACTION. The
customer service representative or someone representing the merchant must change
this state back to PROCESSING. The system should then be notified (through a
ShippingGroupUpdate) message to reprocess each shipping group.

 The shipping group’s state is set to NO_PENDING_ACTION after that shipping group is
shipped to the customer. The OrderFulfiller checks if the order can be settled and
cost of the order can be charged to the customer. This is done with a method in
OrderFulfillmentTools called isOrderSetttleable. ATG Commerce allows
orders to be settled at one of two points: after the first shipping group has shipped, or
after all the shipping groups have shipped. This behavior can be configured through a
property in the OrderFulfiller:

OrderFulfiller.settleOnFirstShipment

The default value of this property is false. If the order can be settled, then the following
method is called:

protected void settleOrder(Order pOrder, List

 pModificationList) throws PaymentException

This method uses the PaymentManager to debit each PaymentGroup in the order.

After determining settlement, the OrderFulfiller uses the isOrderFinished
method in OrderFulfillmentTools to determine if the order is complete.
OrderFulfillmentTools.isOrderFinished returns true if all the shipping groups
are in a NO_PENDING_ACTION state and all the PaymentGroups are in a SETTLED state.
If the order is finished, the OrderFulfiller calls the following method:

protected void finishOrder(Order pOrder, List

 pModificationList)

This sets the order into a NO_PENDING_ACTION state, indicating that all processing on this order is
complete.

Using the Fulfiller
ATG Commerce includes two fulfiller objects: the HardgoodFulfiller and the ElectronicFulfiller.
This section will describe how fulfillers are used in the fulfillment process, how to replace a fulfiller, or add
a new fulfiller of your own. Most of the examples in this section refer to the HardGoodFulfiller. For
information on the ElectronicFulfiller, see the ElectronicFulfiller Class section.

The fulfiller’s responsibility for an order begins with the receipt of the FulfillOrderFragment message.
Prior to this, the OrderFulfiller owns the order. The first method called is:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 8 2

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
public void receiveMessage (String pPortName, Message pMessage)

 throws JMSException

This method is inherited from the MessageSink interface. HardgoodFulfiller is actually a subclass of
SourceSinkTemplate, which implements the MessageSink. For more information, see the ATG API
Reference. All that this method does is get the JMS object message that was sent, check the contained
objects type and call the appropriate method. In the case of a FulfillOrderFragment message, the
method called is:

public void handleFulfillOrderFragment(String pPortName,

 ObjectMessage pMessage) throws JMSException

This method begins the processing of each shipping group included in the FulfillOrderFragment
(pMessage in the signature above).

Notifying the HardgoodFulfiller of a Shipment

The HardgoodFulfiller can be notified that a shipping group has been shipped in three different ways.
All three methods call shippingGroupHasShipped of the HardgoodFulfiller. This takes the order ID
and the shipping group ID.

 /atg/commerce/admin/en/fulfillment/ShippableGroups.jhtml is a Dynamo
Server Page where the order and shipping group IDs can be specified. This page only
lists shipping groups whose state is PENDING_SHIPMENT and whose shipOnDate is
the current date or earlier (or null). This page also allows you to print an order and
notify fulfillment of an order’s shipment. For more information of the ATG Commerce
Fulfillment Administration section of the ATG Commerce Guide to Setting Up a Store.

 The atg.commerce.fulfillment.HardgoodShipper method is a scheduled service
that can be scheduled to run when it is convenient for the store. For instructions on
setting up a scheduled service, see the Scheduler Services section of the Core Dynamo
Services chapter of the ATG Programming Guide. This service will process shipping
groups whose state is PENDING_SHIPMENT and whose shipOnDate is the current date
or earlier (or null).

Note: Start the HardgoodShipper by setting the hardgoodShipper property in the
HardgoodFulfiller component. The HardgoodFulfiller component is located in
the Nucleus path: atg/commerce/fulfillment. If you change the
HardgoodShipper schedule, you must redeploy the application that includes the
fulfillment server. See the Running the Fulfillment Server section for more information.

 Send a ModifyOrder message with a GenericUpdate modification to the
OrderFulfiller setting the state of a shipping group to NO_PENDING_ACTION. The
OrderFulfiller will forward this message to the appropriate fulfiller.

The scheduled service queries the repository for all shipping groups with the state PENDING_SHIPMENT. It
then calls the shippingGroupHasShipped of the HardgoodFulfiller.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 8 3

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
The scheduled service cannot actually communicate with the warehouse. This scheduled service is useful
if you do not have an extensive backend system and need a way to automatically mark shipping groups
as shipped.

HardGoodFulfiller Examples

The following examples demonstrate the behavior of the HardgoodFulfiller in different situations.

Example 1: An order is received with one item that is IN_STOCK:

 FulfillOrderFragment received with one shipping group.

 The one item in the shipping group successfully allocates. The
ShippingGroupCommerceItemRelationship's state is set to PENDING_DELIVERY.

 The state of the ShippingGroup is set to PENDING_SHIPMENT.

 The group ships. When the HardgoodFulfiller is notified, the shipping group is set
to NO_PENDING_ACTION and the item is set to DELIVERED.

Example 2: HardgoodFulfiller.outOfStockIsError=false and an order is received with one item
that is OUT_OF_STOCK:

 FulfillOrderFragment received with one shipping group.

 The 1 item in the shipping group fails to allocate but is successfully backordered. The
state of ShippingGroupCommerceItemRelationship is set to OUT_OF_STOCK. (This
example also applies to BACK_ORDERED and PRE_ORDERED items.)

 Some time later, an UpdateInventory message is received notifying the
HardgoodFulfiller that the item has new inventory available. The item is
reallocated.

 The state of the ShippingGroup is set to PENDING_SHIPMENT.

 The group ships. When the HardgoodFulfiller is notified, the shipping group is set
to NO_PENDING_ACTION and the item is set to DELIVERED.

Example 3: HardgoodFulfiller.outOfStockIsError=true and an order is received with one item
that is OUT_OF_STOCK:

 FulfillOrderFragment received with one shipping group.

 The one item in the shipping group fails to allocate but is successfully backordered.
The state of ShippingGroupCommerceItemRelationship is set to OUT_OF_STOCK.

 Since outOfStockIsError is true, the shipping group’s state gets set to
PENDING_MERCHANT_ACTION.

 At this point, it is the responsibility of the Customer Service Representative to correct
the problem.

Example 4: HardgoodFulfiller.allowPartialShipmentDefault=true and
HardgoodFulfiller.outOfStockIsError=false and an order is received with one item that is out of
stock and one item that is available.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 8 4

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
 FulfillOrderFragment received with one shipping group containing two items.

 The first item in the shipping group fails is out of stock. The state of
ShippingGroupCommerceItemRelationship is set to OUT_OF_STOCK.

 The second item in the shipping group successfully allocates. Its state is set to
PENDING_DELIVERY.

 Since allowPartialShipment is true, the shipping group is split into two shipping
groups. The first contains the PENDING_DELIVERY item and its state is set to
PENDING_SHIPMENT. The second shipping group contains the out of stock item and
its state remains PROCESSING.

 The first shipping group continues similarly to the fourth step in example 1. The
second shipping group continues similarly to the third step in example 2.

Example 5: An order is received with one item that has no information in the inventory system.

 FulfillOrderFragment received with one shipping group.

 The one item in the shipping group is not found. The state of
ShippingGroupCommerceItemRelationship is set to ITEM_NOT_FOUND.

 The state of ShippingGroup is set to PENDING_MERCHANT_ACTION.

Example 6: An order contains a shipping group in a state of PENDING_MERCHANT_ACTION.
HardgoodFulfiller.shippingGroupHasShipped is called with this shipping group.

 An error is logged stating that a shipping group that was not in a PENDING_SHIPMENT
state cannot be shipped.

 shippingGroupHasShipped returns false.

Example 7: An order contains a shipping group in a state of PENDING_SHIPMENT. A ModifyOrder
message with a GenericRemove Modification on the order is received by the OrderFulfiller.

 The OrderFulfiller sets the order to PENDING_REMOVE.

 The OrderFulfiller sends a ModifyOrder message with a GenericRemove
modification for each shipping group in the order to the fulfiller.

 The fulfiller receives the ModifyOrder.

 The state of the ShippingGroup is set to PENDING_REMOVE.

 Each of the items in the shipping group has its state set to PENDING_REMOVE.

 If the item was PENDING_DELIVERY, the stock level in the inventory is increased.

 If the item was BACK_ORDERED, the backorder level in the inventory is increased.

 If the item was PRE_ORDERED, the preorder level in the inventory is increased.

 A ModifyOrderNotification is sent with each of the updates.

 This message is received by the HardgoodFulfiller. The HardgoodFulfiller sets
the state of each object to REMOVED.

 HardgoodFulfiller sends a ModifyOrderNotification with these updates.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 8 5

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
 OrderFulfiller receives the ModifyOrderNotification, when all shipping

groups are REMOVED, OrderFulfiller sets the order and each CommerceItem to
REMOVED.

Example 8: An order contains a shipping group in a state of NO_PENDING_ACTION. A ModifyOrder
message with a GenericRemove Modification on the order is received by the OrderFulfiller.

 The OrderFulfiller sets the order to PENDING_REMOVE.

 The OrderFulfiller sends a ModifyOrder message with a GenericRemove
modification for each shipping group in the order to the fulfiller.

 The fulfiller receives the ModifyOrder.

 The shipping group cannot be removed since it has already shipped.

 A ModifyOrderNotification is sent with the original GenericRemove message set
to a status of STATUS_FAILED.

 This message is received by the OrderFulfiller. The OrderFulfiller sets the
state of the order to PENDING_MERCHANT_ACTION.

Creating a New Fulfiller
You can create a new fulfiller if your sites require fulfillment functionality different from that of the
HardgoodFulfiller or ElectronicFulfiller that ship with ATG Commerce. For example, you could
create a new fulfiller if your customers can purchase a research report. Instead of allocating this report
from inventory and shipping it to the customer via UPS or Federal Express, you send them the report as an
attachment via e-mail. There is no need to check inventory since the report is automatically in stock.
Shipment can be done immediately since your newly created fulfiller can interface directly with an e-mail
system. This section will describe how to implement and configure this new simpler fulfiller. In this
example, the new fulfiller is called MyOwnFulfiller.

JMS messages connect the new fulfiller and the rest of ATG Commerce. Specifically, fulfillment of a
shipping group begins with a FulfillOrderFragment message. To receive these messages, the new
fulfiller must implement atg.dms.patchbay.MessageSink.

In addition to receiving the FulfillOrderFragment messages, MyOwnFulfiller must send out
messages to inform the rest of ATG Commerce about changes made to each order. To send these
messages, MyOwnFulfiller must implement atg.dms.patchbay.MessageSource. There is a class in
atg.commerce.messaging that provides most of the functionality MyOwnFulfiller will need to send
and receive messages. This class is called SourceSinkTemplate. It implements both MessageSource
and MessageSink. MyOwnFulfiller will be defined as follow:

package myPackage;

import atg.commerce.fulfillment.*;

import atg.commerce.messaging.*;

public class MyOwnFulfiller extends SourceSinkTemplate

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 8 6

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
The only method in SourceSinkTemplate that MyOwnFulfiller needs to overwrite is
receiveMessage.

public void receiveMessage (String pPortName, Message pMessage)

 throws JMSException

{

The Patch Bay system calls this method when a message is sent to MyOwnFulfiller. For more
information, see the Dynamo Message System chapter in the ATG Programming Guide. At this time, the
only message MyOwnFulfiller listens for is FulfillOrderFragment. The receiveMessage method
can check the type of the object in the message. Only the interested code will be listed here, error
checking will be assumed.

if(pMessage.getJMSType().equals(FulfillOrderFragment.TYPE))

 handlFulfillOrderFragment(pMessage);

} // end of receiveMessage

The handleFulfillOrderFragment method retrieves the order from the message and the list of
shipping groups that need to be fulfilled. For this example, the necessary error checking will be listed
here.

1. Retrieve the FulfillOrderFragment CommerceMessage from the incoming
message:

public void handleFulfillOrderFragment(ObjectMessage pMessage)

{

 FulfillOrderFragment fragment =

 (FulfillOrderFragment) pMessage.getObject();

2. Retrieve the order and the shipping groups IDs:

Order order = fragment.getOrder();

String[] shippingGroupIds = fragment.getShippingGroupIds();

3. Call a new method called processShippingGroup for each shipping group in the
message.

for(int i=0; i<shippingGroupIds.length; i++) {

 ShippingGroup sg =

 order.getShippingGroup(shippingGroupIds[i]);

 processShippingGroup(order, shippingGroup);

}

4. One of the responsibilities of MyOwnFulfiller is to notify the rest of ATG Commerce
what changes were made to the order included in this FulfillOrderFragment. To
do this, MyOwnFulfiller needs to remember each modification made. Therefore,
inside handleFulfillOrderFragment, declare a new List that will contain
Modification objects. These objects are added to the list as changes are made. This
list will need to be included in any method calls. The above code now looks like this:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 8 7

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
List modifications = new ArrayList();

for(int i=0; i<shippingGroupIds.length; i++) {

 ShippingGroup sg =

 order.getShippingGroup(shippingGroupIds[i]);

 processShippingGroup(order, shippingGroup,

 modifications);

}

After processing is complete, MyOwnFulfiller saves the order and include the modifications in a
message. This is handled by a method in the OrderFulfillmentTools:

OrderManager orderManager = getOrderManager();

OrderFulfillmentTools tools = getOrderFulfillmentTools();

orderManager.updateOrder(order);

tools.sendModifyOrderNotification(order.getId(), // order

 modificationList, // modifications

 null, // ModifyOrder

 this, // MessageSource

 getModifyOrderNotificationPort(),// port

 null); // original message

} // end of handleFulfillOrderFragment

See the ATG API Reference for a detailed description of the OrderFulfillmentTools
sendModifyOrderNotification method.

MyOwnFulfiller depends on a few properties being set to properly function. It will need an
OrderManager, OrderFulfillmentTools, and a ModifyNotificationPort. This port is explained in
the Configuring a New Fulfiller section.

The only method that has not been discussed is processShippingGroup. The following example is a
simple example of the functions of processShippingGroup in order processing. The most important
function is the manipulation of the object states. There are two more properties necessary for the fulfiller:
ShippingGroupStates and ShipItemrRelationshipStates.

public void processShippingGroup(Order pOrder,

 ShippingGroup pShippingGroup,

 List pModificationList)

{

 ShippingGroupStates sgStates = getShippingGroupStates();

 ShipItemRelationshipStates sirStates =

 getShipItemRelationshipStates();

 OrderFulfillmentTools tools =

 getOrderFulfillmentTools();

. . . get each item relationship in the shipping group

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 8 8

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
. . . for each item

 . . . send the report via e-mail using the orders

 profile

 // set the state to DELIVERED

 tools.setItemRelationshipState(shipItemRel,

 sirStates.getStateValue(sirStates.DELIVERED),

 "Report has been e-mailed to customer",

 pModificationList);

. . . end for loop

// the shipping groups is finished

 tools.setShippingGroupState(pShippingGroup,

 sgStates.getStateValue(sgStates.NO_PENDING_ACTION),

 "This shipping group has finished shipping",

 pModificationList);

}

The methods in OrderFulfillmentTools create the appropriate modifications, which are sent in a
ModifyOrderNotification message by handleFulfillOrderFragment. The new fulfiller is now
ready to be configured into ATG Commerce.

It is possible that the e-mail cannot be sent because of some error. For example, if a message is sent out
because the shipping group cannot be shipped and the message contains an invalid e-mail address. One
possibility for dealing with this error is to set the ShippingGroup to PENDING_MERCHANT_ACTION. If you
implement your fulfiller to do this, then the Customer Service Representative must correct the order and
tell the fulfillment system to reprocess that shipping group with a ShippingGroupUpdate Modification
sent within a ModifyOrderNotification message.

To facilitate this, MyOwnFulfiller.receiveMessage should be configured to listen for
ModifyOrderNotification messages and call handleModifyOrderNotification if one of these
messages is received. That method can then call processShippingGroup for each shipping group and
send a new ModifyOrderNotification with all modifications that were made.

A new fulfiller must be configured within Nucleus before it can be used by the fulfillment system. See the
Configuring a New Fulfiller section for more information.

Configuring a New Fulfiller

A new fulfiller must be configured within Nucleus before it can be used by the fulfillment system. This
section uses the example of configuring MyOwnFulfiller, the fulfiller created in the Creating a New
Fulfiller section.

Use the ATG Control Center to edit the Configuration component located in
atg/commerce/fulfillment/.

1. Change the property fulfillerPortNameMap to include the name of this new
fulfiller.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 8 9

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
2. Configure the port on which messages will be sent to this fulfiller. This is the port on

which the OrderFulfiller component will send JMS messages for this fulfiller.

For example, add the following to Configuration.properties:

fulfillerPortNameMap+=\

 MyOwnFulfiller=MyOwnFulfillerPort

You will also need to define which types of shipping groups can be handled by your
fulfiller. OrderFulfiller uses this information to verify that a shipping group can be
fulfilled by its fulfiller. For example, add the following to
Configuration.properties:

fulfillerShippingGroupMap+=\

 MyOwnFulfiller=mypackage.MyShippingGroup

In this example, the fulfiller being added is called MyOwnFulfiller. The component
using an instance of HardgoodFulfiller should make the name property of the
HardgoodFulfiller “MyOwnFulfiller”

For example, add the following to MyOwnFulfiller.properties:

fulfillerName=MyOwnFulfiller

In addition, add the following properties to MyOwnFulfiller.properties:

orderManager^=Configuration.orderManager

orderFulfillmentTools^=Configuration.orderFulfillmentTools

messageSourceName=MyOwnFulfiller

modifyNotificationPort=ModifyNotificationPort

shippingGroupStates=/atg/commerce/states/ShippingGroupStates

shipItemRelationshipStates=

 /atg/commerce/states/ShipItemRelationshipStates

3. Configure the MyOwnFulfillerPort in the dynamoMessagingSystem.xml file so
that the OrderFulfiller component can send out the FulfillOrderFragment
messages on this port.

For example, add the following dynamoMessagingSystem.xml for OrderFulfiller:

<message-filter>

 <nucleus-name>

 /atg/commerce/fulfillment/OrderFulfiller

 </nucleus-name>

 . . .

 <output-port>

 <port-name>

 MyOwnFulfillerPort

 </port-name>

 <output-destination>

 <provider-name>

 sqldms

 </provider-name>

 <destination-name>

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 9 0

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
 sqldms:/Fulfillment/MyOwnGoods

 </destination-name>

 <destination-type>

 Topic

 </destination-type>

 </output-destination>

 </output-port>

 . . .

</message-filter>

4. Configure the MyOwnFulfiller component to send messages on the
modifyNotificationPort and listen for messages on the
sqldms:/Fulfillment/MyOwnGoods topic. These topics are described above.

<message-filter>

 <nucleus-name>

 /myPackage/MyOwnFulfiller

 </nucleus-name>

 <output-port>

 <port-name>

 ModifyNotificationPort

 </port-name>

 <output-destination>

 <provider-name>

 sqldms

 </provider-name>

 <destination-name>

 sqldms:/Fulfillment/ModifyOrderNotification

 </destination-name>

 <destination-type>

 Topic

 </destination-type>

 </output-destination>

 </output-port>

</message-filter>

<message-sink>

 <nucleus-name>

 /myPackage/MyOwnFulfiller

 </nucleus-name>

 <input-port>

 <port-name>

 DEFAULT

 </port-name>

 <input-destination>

 <provider-name>

 sqldms

 </provider-name>

 <destination-name>

 sqldms:/Fulfillment/MyOwnGoods

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 9 1

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
 </destination-name>

 <destination-type>

 Topic

 </destination-type>

 </input-destination>

 </input-port>

</message-sink>

For more information, see the Dynamo Message System chapter of the ATG
Programming Guide.

5. Set the MessageSourceName property of the MyOwnFulfiller to
“MyOrderFulfiller” or another value that indicates who sent a message. This allows
the component to ignore messages that it sent itself.

6. Add another value to the fulfiller property of the SKU in the product catalog. (Defined
in /atg/commerce/catalog/productCatalog.xml) This should match the name of
the fulfiller used to map to a port in
OrderFulfillmentTools.fulfillerPortNameMap.

<item-descriptor name="sku" display-name="SKU"

 sub-type-property="type"

 display-property="displayName"

 . . .

 <property name="fulfiller" data-type="enumerated"

 column-name="fulfiller" queryable="false">

 <attribute name="useCodeForValue" value="false"/>

 <option value="HardgoodFulfiller" code="0"/>

 <option value="SoftgoodFulfiller" code="1"/>

 <option value="MyOwnFulfiller" code="2"/>

 </property>

 . . .

</item-descriptor>

The modificationHandler property can be modified to point to another component that extends
atg.commerce.fulfillment.ModificationHandler to handle with different forms of modifications
received by the fulfiller. The ModificationHandler class provides a simple framework for changing the
handling of ModifyOrder and ModifyOrderNotifications. It is not necessary to use a separate
ModificationHandler. In the example above, handleModifyOrderNotification was implemented
directly within the fulfiller class MyOwnFulfiller.

Order Fulfillment Events
Order Fulfillment events are created and sent by the OrderChangeHandler in the Order Fulfillment
system. The OrderChangeHandler listens to the various ModifyOrderNotifications being delivered
in the system and constructs one of three basic events:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 9 2

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
Events SubType

OrderModified FINISHED
HASUNAVAILABLEDITEMS
PENDING_MERCHANT_ACTION
REMOVED

ShippingGroupModified SHIPPED
SPLIT
SPLITFORSHIPPING
SPLITFORFULFILLER
PENDING_MERCHANT_ACTION
REMOVED (if subtype is removed, then) the
shippingGroup property will be null.

PaymentGroupModified CREDITED
DEBITED
DEBIT_FAILED

Note: The OrderChangeHandler component includes a property called sendEventsWithNoProfile. If
this property is set to false, the sendScenarioEvent() method does not send events if the profile is null.

These three basic messages are sent with their subtypes set according to the reason it is being sent.

Actions in ATG Commerce include the delivery of promotions when certain conditions are met. For
example, give a promotion to the user if the OrderFinished event contains an order whose total is
greater than $50.

Other actions include sending e-mails to a customer about progress of their order. For example, an e-mail
sent indicating that a shipping group has been shipped. This e-mail might include information about
when the shipping group will be received and the tracking information.

The information necessary for the actions should be in the profile, order, payment group, or shipping
group objects that are included in the event. See the list below for a list of the objects included in each of
the messages.

The following extend Scenario Event and include the profile and the JMS type.

Message type Objects included

OrderModified Includes profile, order and an array of
ShippingGroupCommerceItemRelationships.

ShippingGroupModified Includes the profile, order, shipping group, and new
shipping group.

PaymentGroupModified Includes the profile, order and an array of the payment
groups.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 9 3

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ

Fulfillment Server Fault Tolerance
Because the ATG Commerce fulfillment framework uses SQL JMS messages, you do not need a complex
system of redundant fulfillment servers with automatic failover. SQL JMS messages are persistent and
saved until successfully delivered. If the fulfillment server goes down, re-assemble and redeploy the
application that includes it.

Fulfillment work occurs within the context of a transaction (started by the SQL JMS system). If the
fulfillment server goes down, all current transactions roll back. The message is resent after a transaction
rolls back because message delivery and processing occur within the same transaction. Any messages
that are sent to the fulfillment server while it is down, including those that are resent, are persistent in the
database and will be delivered once the fulfillment server is back online.

Fulfillment Message Redelivery

The Fulfillment module of ATG Commerce uses Patch Bay to receive order messages. Patch Bay delivers
messages from the fulfillment-related JMS destination to a fulfillment MessageSink. Fulfillment uses the
Pipeline Manager to allow the execution of transactional, multi-stage, fulfillment-related processes.

ATG Commerce uses the message redelivery features in Patch Bay. The ATG Commerce Fulfillment Patch
Bay configuration document contains configuration settings to enable the message redelivery. These
configurations are set in /atg/dynamo/messaging/dynamoMessagingSystem.xml in the Fulfillment
Module.

For more information on Patch Bay, see the Dynamo Message System chapter in the ATG Programming
Guide.

The following messaging components and destinations are configured for redelivery ports.

 Component: /atg/commerce/fulfillment/OrderChangeHandler
Destination: patchbay:/Fulfillment/ModifyOrderNotification

 Component: /atg/commerce/fulfillment/OrderFulfiller
Destination: patchbay:/Fulfillment/ModifyOrderNotification

 Component: /atg/commerce/fulfillment/OrderFulfiller
Destination: patchbay:/Fulfillment/SubmitOrder

 Component: /atg/commerce/fulfillment/OrderFulfiller
Destination: patchbay:/Fulfillment/ModifyOrder

 Component: /atg/commerce/fulfillment/HardgoodFulfiller
Destination: patchbay:/Fulfillment/HardGoods

 Component: /atg/commerce/fulfillment/SoftgoodFulfiller
Destination: patchbay:/Fulfillment/SoftGoods

Each of these was given the following redelivery port configuration:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 9 4

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
 max-attempts: 3

 delay: 60000

 failure-output-port: FulfillmentError

 redelivery-port: FulfillmentError

 output destination: patchbay:/Fulfillment/ErrorNotification

 output destination: patchbay:/Fulfillment/DeadMessageQueue

In addition, /atg/commerce/fulfillment/HardgoodFulfiller component with the
patchbay:/Fulfillment/UpdateInventory destination is configured to use redelivery.

 max-attempts: 3

 delay: 60000

 failure-output-port: UpdateInventoryError

 redelivery-port: FulfillmentError

 output destination: patchbay:/Fulfillment/
UpdateInventoryErrorNotification

 output destination: patchbay:/Fulfillment/DeadMessageQueue

The general fulfillment and inventory-related error notification destinations are configured with
respective sinks that display an error message in the ATG log file.

Fulfillment-related error notification

 message sink: /atg/commerce/fulfillment/FulfillmentErrorSink

 input-destination: patchbay:/Fulfillment/ErrorNotification

Inventory-related error notification

 message sink: /atg/commerce/fulfillment/UpdateInventoryErrorSink

 input destination: /Fulfillment/UpdateInventoryErrorNotification

Replacing the Default Fulfillment System
You can replace the fulfillment system that ships with ATG Commerce with another fulfillment system. For
example, if you wanted to use a test fulfillment system with or in place of the existing fulfillment system.

Follow these steps to replace the default ATG Commerce fulfillment system:

1. Configure your new fulfillment system within Patchbay
(/atg/dynamo/messaging/dynamoMessagingSystem.xml) to subscribe to the
sqldms://Fulfillment/SubmitOrder topic. This is where the Purchase Process
sends messages. For more information on Patch Bay, see the Dynamo Message System
chapter of the ATG Programming Guide.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 9 5

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
2. If your test fulfillment system is using a separate repository for orders, configure a new

OrderManager with a new OrderRepository. Use this from your test fulfiller. For
more information on OrderManager, see the Configuring Purchase Process Services
chapter.

3. If you want the Scenario Server to perform actions based on fulfillment events,
configure Patchbay so that your fulfillment systems sends the events and the
ScenarioManager listens for them. For more information on scenarios, see the Using
Scenarios in the Fulfillment Process section.

Integrating the Order Fulfillment Framework with an
External Shipping System

The Order Fulfillment Framework can be integrated with an external shipping system that actually ships
the order to the customer.

In the ATG Commerce default configuration, the HardGoodShipper simulates the shipping process.
There is also a mechanism for notifying fulfillment of shipment by hand, using the Fulfillment
Administration pages. See the ATG Commerce Fulfillment Administration chapter of the ATG Commerce
Guide to Setting Up a Store for more information on the Fulfillment Administration pages.

An external system can be integrated with a warehouse or with a shipment company such as Federal
Express. These systems are responsible actually tracking the packing and shipping of the items. There are
a two ways that an external system can be integrated with the existing Order Fulfillment Framework.

 Create a JMS Message Sink and Message Source that communicates with ATG
Commerce Order Fulfillment Framework through JMS messages. This approach
provides a simple integration point. The JMS Message Sink can be registered to
receive ModifyOrderNotification messages. When the shipping group state
changes to PENDING_SHIPMENT, a ModifyOrderNotification message is sent. The
new class can then communicate with the external shipping system through some
other mechanism. The Order Fulfillment Framework can indicate that a shipping
group has been shipped in either of the following three ways:

 Change the state of the shipping group to NO_PENDING_ACTION and send a
ModifyOrderNotification to notify the rest of Order Fulfillment Framework
about the shipment.

 Call HardgoodFulfiller.shippingGroupHasShipped

 Call the shippingGroupHasShipped pipeline. For more information, see
Appendix G: Commerce Pipeline Chains.

 Extend the HardgoodShipper scheduled service. Extend
HardgoodShipper.shipShippingGroup to communicate with the external system.
When the external shipping system says that a shipping group has shipped, then call
HardgoodFulfiller.shipShippingGroup.

By default, there is no integration with an external shipping system. The
HardgoodShipper is designed to query the database for all “shippable” shipping

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 9 6

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
groups (groups with a state of PENDING_SHIPMENT and with a shipOnDate that is not
in the future). It then calls HardgoodFulfiller.shippingGroupHasShipped.

Changing Payment Behavior in Fulfillment Server
Payment in the fulfillment framework can be handled in two ways. The value of
OrderFulfiller.settleOnFirstShipment determines how payment is handled:

 If settleOnFirstShipment is true, all of the payment groups are settled after the
first shipping group ships.

 If settleOnFirstShipment is false, all of the payment groups are settled after the
last shipping group ships.

You can also configure the fulfillment framework to charge each shipping group to a different credit card
at the time of shipment. There are two methods in the system that can be overwritten to facilitate this
behavior:

 OrderFulfillmentTools.isOrderSettleable

This method is called each time the OrderFulfiller is notified that a shipping group
has been shipped. (This notification occurs through a ModifyOrderNotification
message that contains a GenericUpdate on the state of the shipping group. The new
value is PENDING_SHIPMENT.)

After the OrderFulfiller receives the notification, it calls
OrderFulfillmentTools.isOrderSettleable. If this method returns true, then
OrderFulfiller.settleOrder is called. To configure the fulfillment framework to
charge each shipping group to a different credit card at the time of shipment, have
this method check if there is a PaymentGroup specific to this shipping group. If there
is, return true. It should also return true if all ShippingGroups have shipped.

 OrderFulfiller.settleOrder

By default, this method settles all PaymentGroups in the order. To pay for each
shipping group as it ships, this method should settle each PaymentGroup that is not
SETTLED and refers to a ShippingGroup that has shipped.

This method should also check if all shipping groups have shipped. If they have, than
any other PaymentGroups that have not settled, should be settled. Settling a
PaymentGroup most likely will involve using the PaymentManager.

To facilitate payment by shipping group as each shipping group is shipped, your system must create the
appropriate PaymentGroupRelationship objects. To pay for each shipping group separately (and the
items that appear in each shipping group), you will probably create each of these
PaymentGroupRelationship objects yourself. When a user creates an order, the default behavior is for
the order to include one PaymentGroup with one PaymentGroupOrderRelationship that accounts for
the cost of the entire order. You might want to create a PaymentGroupCommerceItemRelationship for
each item in the order, and a PaymentGroupShippingGroupRelationship for each shipping group in
the order. It depends on your business rules.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 9 7

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
For more information on payment groups, see the Creating Payment Groups section. For more
information on the payment manager, see the Processing Payment of Orders section.

Using Scenarios in the Fulfillment Process
Scenarios allow business users to define the set of actions to be performed when certain events or
conditions occur. A detailed discussion of how scenarios are created and used can be found in the ATG
Personalization Guide for Business Users.

The fulfillment process uses of the scenario engine to provide features including e-mail notifications to
customers. These e-mails can indicate that a shipping group has shipped, an item was
backordered/preordered or whether the order is complete.

The scenario engine listens for the three different classes of messages described in the Order Fulfillment
Events section. The default ATG Commerce implementation uses several of these messages as the events
that trigger e-mail.

The following list describes the Fulfillment and ReceiveOrder scenarios included with ATG
Commerce. These scenarios are located in the Scenarios section of the ACC in the DCS folder. For a
description of the events, see the previous section. By default, this scenario is disabled. Enable this
scenario using the ATG Control Center.

Fulfillment scenario:

 OrderFinished – When an OrderModified event with a subType of
OrderFinished is received, send an e-mail to the owner of the order (the Profile that
is included in the message). The e-mail uses the e-mail template found at
dynamo/commerce/en/email_templates/jsp/OrderFinished.jsp. It notifies the
customer that their order has shipped and payment has been made.

 ShippingGroupShipped – When an ShippingGroupModified event with a
subType of ShippingGroupShipped is received, send an e-mail to the owner of the
order. The e-mail uses the e-mail template found at
dynamo/commerce/en/email_templates/jsp/ShippingGroupShipped.jsp. It
notifies the customer that a shipping group in their order has been shipped.

 UnavailableItems: When an OrderModified event with a subType of
OrderHasUnavailableItems is received, send an e-mail to the owner of the order.
The e-mail uses the e-mail template found at
dynamo/commerce/en/email_templates/jsp/OrderHasUnavailableItems.jsp

. It notifies the customer that their order cannot be completed yet.

 OrderCancelled: When an OrderModified event with a subtype of
OrderWasRemoved is received, then send an e-mail to the owner of the order. The e-
mail uses the template found at
dynamo/commerce/en/email_templates/jsp/OrderCancelled.jsp. It notifies
the customer that their order has been cancelled.

 ItemRemoved: When an ItemRemovedFromOrder message is received and the order’s
state is 0, send and e-mail to the send an e-mail to the owner of the order. The e-mail

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 9 8

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
uses the e-mail template found at
dynamo/commerce/en/email_templates/jsp/ItemRemovedFomOrder.jsp. It
notifies the customer that the item has been removed from the order.

 PaymentGroupChanged: When a PaymentGroupModified message is received, send
and e-mail to the send an e-mail to the owner of the order. The e-mail uses the e-mail
template found at
dynamo/commerce/en/email_templates/jsp/PaymentGroupChanged.jsp. It
notifies the customer that their payment information has been updated.

ReceiveOrder scenario:

 SubmitOrder – When a SubmitOrder message is received, send an e-mail to the
owner of the order. The e-mail uses the e-mail template found at
dynamo/commerce/en/email_templates/jsp/SubmitOrderReceived.jsp. It
notifies the customer that their order has been received.

Questions & Answers
The following section answers some commonly asked questions about the fulfillment framework.

 Question: Why does ATG Commerce only use durable topics? Aren’t some messages
sent to only one component that might be listening?

Answer: Topics are used because various subsystems might be interested in the
message being sent. Examples of this include the ModifyOrderNotification
message. It can be sent by any of the components in the system. The
OrderFulfiller and the OrderChangeHandler components both listen for this
message but each does something different with it. OrderFulfiller might
determine that it now has control of the shipping group whose modifications are
included in the ModifyOrderNotification message. The OrderChangeHandler
might choose to send some other message as an event into another subsystem.

 Question: Where do we deal with Payment groups? When do we charge?

Answer: The OrderFulfiller module handles payment groups. The default
implementation charges the whole order either at the time of the order’s first
shipment or at the time of the order’s last shipment. This is configurable by changing
the state of the SettleOnFirstShipment property in the OrderFulfiller to true
or false as is needed by the business rules.

 Question: Why does ATG Commerce use Java Messaging Service (JMS)?

Answer: JMS allows you to build a distributed system that enables disparate
subsystems to handle fulfillment for various parts of the fulfillment process. JMS and
messaging allows you to abstract out all the connections and gives you the flexibility
to adapt your existing systems to the ATG Commerce system. For example, the
OrderFulfiller system might be located on the same set of machines in the site
hosting facility. The HardgoodFulfiller might be based in some other set of
headquarters. The actual warehouse that does the shipping might be in another
location. If the warehouse receives an e-mail when a shipping group is submitted,

A T G C o m m e r c e P r o g r a m m i n g G u i d e

4 9 9

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ
then a service can listen on the JMS message indicating that the shipping group is to
be shipped. An e-mail can be constructed from the contents of the message.

 Question: What are modification objects? What purpose do they serve?

Answer: The Modification object is an abstraction that tries to capture the various ways
in which changes can occur to the order. There are several types of modifications: add,
remove, or update. Modifications can be targeted and therefore can modify shipping
groups, payment groups, orders or relationships. Modifications contain a status field
indicating whether the modification was successful or a failure.

This abstraction allows the system the flexibility to interface with existing legacy or
distributed systems. A disparate system can construct an array of Modifications that
will capture the types of changes that it is requesting or the modifications it already
performed.

Refer to the sections on ModifyOrder Class and ModifyOrderNotification Class for more
information.

 Question: How do scenarios find out about what is going on in the fulfillment system?

The scenario engine receives messages that are sent during the fulfillment process.
Those messages are documented in the Inventory JMS Messages section.

The events contain the profile and the information needed for performing an action
on those events. For example, the ShippingGroupShipped event contains the profile,
the order and the shipping group that was shipped. This allows the scenario writer to
create an action that sends an e-mail to the user (the profile) with the order
information (from the order) and the details of the shipping group that was shipped
(the shipping group). For more information, refer to the Order Fulfillment Events
section.

 Question: How do I change the behavior of ModifyOrder messages?

The ModificationHandler class deals with all the ModifyOrder messages. Both the
OrderFulfiller and the HardgoodFulfiller have their own versions of those
handler classes called OrderFulfillerModificationHandler and the
HardgoodFulfillerModificationHandler. The class contains two methods
handleModifyOrder and handleModifyOrderNotification.

To change the behavior of one of those two handling methods, override the method if
you extended the existing OrderFulfillerModificationHandler or
HardgoodFulfillerModificationHandler classes. Otherwise, a new class
implementing the ModificationHandler interface should be written and configured
for the OrderFulfiller or HardgoodFulfiller.

 Question: How do I change the behavior of ModifyOrderNotification messages?

Answer: See the answer for changing the handling of the ModifyOrder message in
the previous question.

 Question: How do we deal with the Modification IDs? Who is generating them? How
do we guarantee the uniqueness?

Answer: Modification IDs are generated using the ID generator. The combination of
the message source and message ID need to be unique to allow external systems to
track the various messages in the system.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 0 0

2 0 - C o n f i g u r i n g t h e O r d e r F u l f i l l m e n t F r a m e w o r k

μ

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 0 1

2 1 - M a n a g i n g t h e O r d e r A p p r o v a l P r o c e s s

μ
21 Managing the Order Approval

Process

B2B applications often require that customers’ orders be reviewed by authorized persons who can
approve or reject them. ATG Business Commerce enables you to implement an order approval process for
your application. The approval process can identify the customers for whom approvals of orders are and
aren’t required, and, when an approval is required, check for the specific conditions that trigger an
approval for an order, such as when an order limit is exceeded.

This chapter describes the default implementation of the order approval process provided with ATG
Business Commerce and highlights the areas you’re likely to customize to meet your application’s needs.
It includes the following sections:

 Understanding the Order Approval Process

 Servlet Beans and Form Handlers for Approving Orders

 JMS Messages in the Order Approval Process

Understanding the Order Approval Process
At its most basic level, the order approval process consists of the following phases:

1. During checkout, the application determines if an order requires approval.

2. If the order requires approval, then an approver approves or rejects the order.

3. The application determines if the approval process for the order is complete.

4. If the approval process for the order is complete, then the order proceeds through
checkout.

The following properties of an Order object (class atg.b2bcommerce.order.B2BOrderImpl) support
the order approval process and maintain historical approval data for an order as it moves through these
phases.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 0 2

2 1 - M a n a g i n g t h e O r d e r A p p r o v a l P r o c e s s

μ
Property Name Property Type Description

authorizedApproverIds List The list of profile IDs of the users who
are authorized to approve the given
order.

approvalSystemMessages List The list of system messages that the
application attaches to the order.
These messages indicate what
conditions triggered an approval being
required, such as “order limit
exceeded.” They are defined by the
processors in the
checkRequiresApproval pipeline
chain.

approverIds List The list of one or more profile IDs of
the users who have approved or
rejected the order.

approverMessages List The list of messages the approvers
attach to the order.

The ApprovalFormHandler form
handler enables an approver to add
comments when he or she approves or
rejects an order. These comments are
added to this property.

The following diagram illustrates the business logic that drives the order approval process and briefly
indicates which components move an order from one step in the process to the next. The complete order
approval process is subsequently explained in detail.

In this diagram, a customer has just submitted an order for checkout, and, consequently, the
processOrder() method has executed the processOrder pipeline chain. processOrder’s first
processor, executeValidateForCheckoutChain, has validated the order. processOrder’s second
processor, executeApproveOrderChain, begins the order approval process by executing the
approveOrder chain. The first processor in the approveOrder chain is verifyApproval.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 0 3

2 1 - M a n a g i n g t h e O r d e r A p p r o v a l P r o c e s s

μ
Is the order already approved?
approveOrder’s first processor,
verifyApproval, checks whether the
order is already approved.

Yes No

Execution of approveOrder
chain stops. Order continues
through checkout process in
processOrder.

Does the order require approval?
approveOrder’s second processor,
runCheckRequiresApprovalChain,
executes a separate chain,
checkRequiresApproval.
checkRequiresApproval determines
whether the order requires approval
and returns the answer to the
approveOrder chain.

Execution of approveOrder
stops. Order continues
through checkout process in
processOrder.

Does the approver approve
the order?
Approver approves or rejects
order using form on page.

No, order
rejected

Yes, order
approved

ApprovalFormHandler’s
handleApproveOrder
method executes
orderApproved chain.

ApprovalFormHandler’s
handleRejectOrder
method executes
orderRejected chain.

Is the order approval process complete?
CheckApprovalComplete service listens for
ApprovalUpdate messages on
/Approval/ApprovalUpdate. When it receives
them, it executes the checkApprovalComplete
chain to determine if the approval process for
the order is complete.

If the order was approved, the
processOrder chain is executed
again to take the order through the
checkout process. If the order wasn’t
approved, the order does not return
to the processOrder chain.

Order waits for action, such as an
additional approval.

Note: The default implementation
never enters this state.

Yes No

Yes No

As is briefly illustrated in the preceding diagram, the order approval process is as follows:

1. approveOrder’s first processor, verifyApproval, checks whether the order already
is approved.

 If the order is approved, then execution of approveOrder stops, and the order
proceeds through the checkout process in processOrder.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 0 4

2 1 - M a n a g i n g t h e O r d e r A p p r o v a l P r o c e s s

μ
 If the order isn’t approved, then the order proceeds to the second processor in
approveOrder.

2. approveOrder’s second processor, runCheckRequiresApprovalChain, executes a
separate pipeline chain named checkRequiresApproval. checkRequiresApproval
determines whether approval is needed for the order and reports back to
approveOrder.

 If approval is needed, then the order continues through the approveOrder
chain. approveOrder changes the order’s state to PENDING_APPROVAL. The
chain adds to the order’s authorizedApproverIds property the list of profile
IDs of the users who are allowed to approve the order, and it adds to the order’s
approvalSystemMessages property the conditions that triggered an approval
to be required. Finally, approveOrder sends out an ApprovalRequired
message to the /Approval/Scenarios JMS message topic. This message can
then be used to execute scenarios.

 If approval isn’t needed, then execution of approveOrder stops, and the order
proceeds through the checkout process in processOrder. (For detailed
information on the processOrder pipeline, see Checking Out an Order in the
Checking Out Orders section of the Configuring Purchase Process Services
chapter.)

Note: The default implementation of the checkRequiresApproval chain checks the
approvalRequired property in the customer’s profile. If the approvalRequired
property is true, then approval is required for the customer. An error is then added to
the PipelineResult object, which tells the system that an approval is required, and
the reason that approval is required is stored in the errorMessages property of the
Order. This reason for approval is later added to the order’s
approvalSystemMessages property by the approveOrder chain’s
addApprovalSystemMessagesToOrder processor. If the approvalRequired
property is false, then approval isn’t required for the customer.

You can edit the checkRequiresApproval chain to create specific requirements for
whether an approval is required for a given customer. For example, you might want to
include a processor that checks the total amount of the customer’s order against an
order limit specified in the customer’s profile. If the order amount exceeds the
specified limit, then approval for the customer’s order would be required. Similarly,
you might want to include a processor that checks the manufacturers of the items in
the customer’s order against a list of preferred suppliers specified in the customer’s
profile. If a manufacturer isn’t in the list of preferred suppliers, then approval for the
customer’s order would be required.

3. If approval for the order is needed, an approver then approves or rejects the order and
submits this decision in a form using the ApprovalFormHandler form handler. The
form’s “Approve” and “Reject” submit buttons call the handleApproveOrder method
or the handleRejectOrder method, respectively.

 If the handleApproveOrder method is called, the method executes the
orderApproved pipeline chain. orderApproved adds the profile ID of the user
who approved the order to the order’s approverIds property, and adds the
messages associated with the approver’s decision to the order’s
approverMessages property. Finally, orderApproved sends out an
ApprovalUpdate message whose approvalStatus property is set to

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 0 5

2 1 - M a n a g i n g t h e O r d e r A p p r o v a l P r o c e s s

μ
“approved.” This message is sent to both the /Approval/ApprovalUpdate
JMS message queue and the /Approval/Scenarios JMS message topic. This
message can then be used to execute scenarios.

 If the handleRejectOrder method is called, the method executes the
orderRejected pipeline chain. orderRejected adds the profile ID of the user
who rejected the order to the order’s approverIds property, and adds the
messages associated with the approver’s decision to the order’s
approverMessages property. Finally, orderRejected sends out an
ApprovalUpdate message whose approvalStatus property is set to
“rejected.” This message is sent to both the /Approval/ApprovalUpdate JMS
message queue and the /Approval/Scenarios JMS message topic. This
message can then be used to execute scenarios.

Note: The orderApproved and orderRejected pipeline chains are the same with
the exception of the value of approvalStatus property of the ApprovalUpdate
message that is sent. You can edit these chains to add or remove functionality to meet
your application’s needs.

4. The ApprovalCompleteService, located in Nucleus at
/atg/commerce/approval/ApprovalCompleteService, is configured to listen for
the ApprovalUpdate messages sent by the orderApproved and orderRejected
chains to the /Approval/ApprovalUpdate JMS message queue. When
ApprovalCompleteService receives a message, it executes the
checkApprovalComplete pipeline chain. checkApprovalComplete determines
whether the approval process for the order is complete. By default,
checkApprovalComplete’s second processor, approvalCompleteAnalyzer, checks
whether at least one person has approved or rejected the order. If so, then the
approval process for the order is considered to be complete.

 If at least one person has approved the order, checkApprovalComplete
changes the order’s state from PENDING_APPROVAL to APPROVED and
executes the processOrder chain so the order can go through the checkout
process. (For detailed information on the processOrder pipeline, see Checking
Out an Order in the Checking Out Orders section of the Configuring Purchase
Process Services chapter.) Additionally, the checkApprovalComplete chain
sends an ApprovalComplete message whose approvalStatus property is set
to “approval_passed” to the /Approval/Scenarios JMS message topic. This
message can then be used to execute scenarios.

 If at least one person has rejected the order, checkApprovalComplete changes
the order’s state from PENDING_APPROVAL to FAILED_APPROVAL, and sends
an ApprovalComplete message whose approvalStatus property is set to
“approval_failed” to the /Approval/Scenarios JMS message topic. This
message can then be used to execute scenarios.

Note: As previously mentioned, the default implementation of the
approvalCompleteAnalyzer processor merely checks whether at least one person
has approved or rejected the order. If so, then the approval process for the order is
considered completed. You can change the implementation of
approvalCompleteAnalyzer in order to change the requirements for completion of
the approval process.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 0 6

2 1 - M a n a g i n g t h e O r d e r A p p r o v a l P r o c e s s

μ
For detailed information about the pipeline chains and processors mentioned in this section, refer to
Appendix G: Commerce Pipeline Chains.

Modifying the Order Approval Process

The ApprovalPipelineManager, located in Nucleus at /atg/commerce/approval/, uses an approval
pipeline configuration file to manage the pipelines in the order approval process. The configuration file is
located at <ATG10dir>/B2BCommerce/atg/commerce/approval/approvalpipeline.xml.

If you modify the pipelines in the order approval process, you’ll need to extend the
approvalpipeline.xml file to override the default configuration. To do so, create a new
approvalpipeline.xml file at /atg/commerce/approval/ in your config directory. During
deployment, the ATG platform uses XML file combination to combine the approvalpipeline.xml files
in the CONFIGPATH into a single composite XML file.

For general information about how to modify existing pipelines, see the Processor Chains and the
Pipeline Manager chapter. For more information on XML file combination, see the Nucleus: Organizing
JavaBean Components chapter in the ATG Programming Guide.

Servlet Beans and Form Handlers for Approving Orders
When an order has been determined to require approval, and its order state has been set to
PENDING_APPROVAL, an approver must then review the order and approve or reject it.
ApprovalRequiredDroplet and ApprovalFormHandler are provided for this purpose.

Additionally, an approver might want to view a historical list of the orders he or she has approved and/or
rejected. ApprovedDroplet is provided for this purpose.

ApprovalRequiredDroplet Servlet Bean

Use the ApprovalRequiredDroplet servlet bean (class
atg.b2bcommerce.approval.ApprovalRequiredDroplet) to retrieve all orders requiring approval by
a given approver. ApprovalRequiredDroplet queries the order repository and returns all orders that
meet the following two criteria:

 The order’s authorizedApproverIds property contains the approver’s ID.

 The state of the order requires approval, meaning that the state is defined in the
ApprovalRequiredDroplet orderStatesRequiringApproval property. The
order’s state is held by the property of the order that is specified in the
ApprovalRequireDroplet orderStatePropertyName property. The default value
is PENDING_APPROVAL.

Refer to Appendix: ATG Commerce Servlet Beans of the ATG Commerce Guide to Setting Up a Store for
detailed information about the input, output, and open parameters of ApprovalRequiredDroplet, as
well as a JSP code example using this servlet bean.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 0 7

2 1 - M a n a g i n g t h e O r d e r A p p r o v a l P r o c e s s

μ
ApprovedDroplet Servlet Bean

Use the ApprovedDroplet servlet bean (class atg.b2bcommerce.approval.ApprovedDroplet) to
retrieve all orders that have been approved and/or rejected by a given approver. ApprovedDroplet
queries the order repository and returns all orders that have the approver’s profile ID in the approverIds
property.

Refer to Appendix: ATG Commerce Servlet Beans of the ATG Commerce Guide to Setting Up a Store for
detailed information about the input, output, and open parameters of ApprovedDroplet, as well as a JSP
code example using this servlet bean.

ApprovalFormHandler

The ApprovalFormHandler form handler (class
atg.b2bcommerce.approval.ApprovalFormHandler) processes an approver’s approval or rejection of
an order. The ApprovalFormHandler class contains two handle methods, handleApproveOrder and
handleRejectOrder. You can associate these handle methods with Submit properties in the following
manner:

<input type=submit bean="ApprovalFormHandler.approveOrder" value=" Approve Order">

<input type=submit bean="ApprovalFormHandler.rejectOrder" value=" Reject Order">

If the handleApproveOrder method is called for ApprovalFormHandler.approveOrder, the
handleApproveOrder method executes the orderApproved pipeline chain. Similarly, if the
handleRejectOrder method is called for ApprovalFormHandler.rejectOrder, the
handleRejectOrder method executes the orderRejected pipeline chain.

Refer to Implementing an Order Approval Process chapter of the ATG Commerce Guide to Setting Up a Store
for a JSP code example that uses ApprovalFormHandler. Refer to Appendix G: Commerce Pipeline
Chains, for more information about the orderApproved and orderRejected chains.

JMS Messages in the Order Approval Process
The following JMS messagessupport the order approval process:

 ApprovalRequiredMessage

JMS Type: atg.b2bcommerce.approval.ApprovalRequired

Extends the class atg.commerce.messaging.CommerceMessageImpl.

This message includes the order requiring approval and the profile repository item for
the customer associated with the order as order and profile message properties,
respectively. If you are using ATG Commerce for multisite, the siteId property is
populated as well.

This message is sent to the /Approval/Scenarios JMS message topic, which allows
the scenario server to interact with the message using SQL JMS and obtain the profile
outside the current thread.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 0 8

2 1 - M a n a g i n g t h e O r d e r A p p r o v a l P r o c e s s

μ
 ApprovalMessage

JMS Type: atg.b2bcommerce.approval.ApprovalUpdate
atg.b2bcommerce.approval.ApprovalComplete

Extends the class atg.commerce.messaging.CommerceMessageImpl.

This message includes the order requiring approval and the profile repository item for
the customer associated with the order as order and profile message properties,
respectively. It also includes an approvalStatus message property.

If you are using ATG Commerce for multisite, the siteId property is populated as
well.

A message with a JMSType of either ApprovalUpdate or ApprovalComplete is sent
to the /Approval/Scenarios JMS message topic, which allows the scenario server to
interact with the message using SQL JMS and obtain the profile outside the current
thread.

A message with a JMSType of ApprovalUpdate is also sent to the
/Approval/ApprovalUpdate JMS message queue. ApprovalCompleteService
listens for messages on this queue.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 0 9

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
22 Using Abandoned Order Services

An abandoned order or shopping cart is one that a customer creates and adds items to, but never checks
out. Instead, the customer simply exits the Web site, thus “abandoning” the incomplete order.

The Abandoned Order Services module that is provided with base ATG Commerce includes a collection of
services and tools that enable you to detect, respond to, and report on abandoned orders and related
activity. As such, it enables you to better understand what kinds of orders your customers are
abandoning, as well as what campaigns effectively entice them to reclaim and complete them. The result
is an increase in order conversion and revenue.

This chapter is intended for developers who must configure the module according to specific Web site
requirements. It includes the following sections:

An Overview of Abandoned Orders

Defining and Detecting Abandoned Orders

Configuring AbandonedOrderService

Configuring AbandonedOrderTools

Scenario Events and Actions

Customizations and Extensions

Important: When you want to work with the Abandoned Order Services module, you need to include
DCS.AbandonedOrderServices along with B2CCommerce or B2BCommerce module when you assemble
your application. See the ATG Programming Guide for information on ATG modules and application
assembly.

For information on related tasks that are typically performed by merchants and other business users, such
as creating scenarios that respond to abandonment activity, see the Managing Abandoned Orders chapter
of the ATG Commerce Guide to Setting Up a Store.

An Overview of Abandoned Orders
Examine the following process flow diagram, which illustrates the various paths an order can take once
created by a customer.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 1 0

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
Customer

creates
an order.

Customer
adds items

to the order.

Customer
completes

(checks out)
the order.

Customer does not complete
(check out) the order within a
given timeframe. Order is idle.

Order remains idle
for extended period
of time.

Customer modifies the
order, for example, by
adding an item.

Order is abandoned Order is lost

Order is
reanimated

Order is
converted

As mentioned in the introduction to this chapter, the Abandoned Order Services module contains a
collection of services and tools that enable you to detect, respond to, and report on abandoned orders
and related activity, that is, activity that falls within the shaded area of the diagram above. As the diagram
implies, there are several general types of orders that fall within this area:

 Abandoned orders – Incomplete orders that have not been checked out by
customers and instead have remained idle for a duration of time.

 Reanimated orders – Previously abandoned orders that have since been modified by
the customer in some way, such as adding items or changing item quantities.

 Converted orders – Previously abandoned orders that have been successfully
checked out by the customer.

 Lost orders – Abandoned orders that have been abandoned for so long that
reanimation of the order is no longer considered realistic.

Note in the diagram that the process flow is not always linear. For example, an order can be abandoned,
then reanimated, then abandoned again.

The subsections that follow describe the various abandonment states, repository extensions, and
repositories that are required to support these orders and the tracking of related order abandonment
activity:

 Abandonment States

 Order Repository Extensions

 Profile Repository Extensions

 The AbandonedOrderLogRepository

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 1 1

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
Abandonment States

The table below describes the default abandonment states in the Abandoned Order Services module:

State Description

ABANDONED The order is incomplete, that is, not checked out, and meets the criteria
for identification as abandoned. Typically, an abandoned order is one that
has been idle for a specific number of days.

You define the criteria for abandoned orders in the
AbandonedOrderService component; see Defining and Detecting
Abandoned Orders.

REANIMATED The order was previously abandoned or lost but has since been modified
by the customer in some way, for example, by changing item quantities.

CONVERTED The order was previously abandoned or lost but has since been checked
out by the customer.

LOST An abandoned order that meets the criteria for identification as lost.
Typically, a lost order is one that has been idle for a specific number of
days.

You define the criteria for lost orders in the AbandonedOrderService
component; see Defining and Detecting Abandoned Orders.

Order Repository Extensions

The Abandoned Order Services module extends the repository definition for the order repository by
adding:

 an additional property named abandonmentInfo to the order item descriptor. This
property stores an item of type abandonmentInfo.

 an additional item descriptor named abandonmentInfo. This item stores the
abandonment information for an order.

The following table describes each abandonmentInfo property:

Property Description

version An integer that indicates the number of times the item has been
modified.

order The order item associated with this abandonmentInfo item.

orderId The ID of the order.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 1 2

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
orderLastUpdated The date the order was most recently modified. This property is

used to detect activity on abandoned orders.

It is important to distinguish this property from the
lastModifiedDate order property, which is updated whenever a
session is created for a user who has an incomplete order
associated with his or her profile. The lastModifiedDate order
property cannot be used to accurately detect abandoned order
activity (or, more specifically, lack thereof) because it is updated
even when a user has not accessed an incomplete order.

state The order’s current abandonment state. For a list of possible
states, see Abandonment States above.

abandonmentCount The number of times the order has been identified as
ABANDONED. Because an order can be abandoned multiple times,
this count can be greater than one.

abandonmentDate The date and time that the order was most recently abandoned.

reanimationDate The date and time that the order was most recently reanimated.

conversionDate The date and time that the order was converted, that is, checked
out successfully.

lostDate The date and time that the order was most recently lost.

For more information, see the definition file at
<ATG10dir>/DCS/AbandonedOrderServices/config/atg/commerce/order/orderrepository.xm

l.

Profile Repository Extensions

The Abandoned Order Services module extends the repository definition for the profile repository by
adding:

 an additional item descriptor named abandoned-order. Items of this type have two
properties:

 orderId, which stores the ID of the abandoned order.

 profileId, which stores the ID of the user profile associated with the
abandoned order.

 two additional properties to the user item descriptor:

 abandonedOrders, which stores the list of abandoned-order items currently
associated with the user.

 abandonedOrderCount, which is a derived property that stores the number of
items in the abandonedOrders user property.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 1 3

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
For more information, see the definition file at
<ATG10dir>/DCS/AbandonedOrderServices/config/atg/userprofiling/userProfile.xml.

The AbandonedOrderLogRepository

The Abandoned Order Services module defines an AbandonedOrderLogRepository that stores
information about converted orders. Converted orders are previously abandoned orders that
subsequently have been checked out.

The AbandonedOrderLogRepository is located in Nucleus at
/atg/commerce/order/abandoned/AbandonedOrderLogRepository. It defines a single item
descriptor named convertedOrder with the following properties:

Property Description

orderId The ID of the converted order.

convertedDate The date and time that the order was converted.

amount The total price of the converted order.

promotionCount The number of promotions that were applied to the converted
order.

promotionValue The total value of the promotions that were applied to the
converted order.

When an abandoned order is checked out by a user and, therefore, is identified as converted, the Log
Promotion Info scenario action in the Abandoned Orders scenario calculates the number and total value
of the promotions applied to the converted order and stores the information in a convertedOrder item
in the AbandonedOrderLogRepository.

The data in the AbandonedOrderLogRepository is particularly important for reporting on
abandonment activity. For a list of predefined reports that are available see Reporting on Order
Abandonment Activity in the Managing Abandoned Orders chapter of the ATG Commerce Guide to Setting
Up a Store.

Defining and Detecting Abandoned Orders
The Abandoned Order Services module provides mechanisms for defining and detecting abandoned and
lost orders. See the subsections that follow for details:

 Defining Abandoned and Lost Orders

 Detecting Abandoned and Lost Orders

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 1 4

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
For information on using scenarios to detect order abandonment activity, see the Managing Abandoned
Orders chapter of the ATG Commerce Guide to Setting Up a Store.

Defining Abandoned and Lost Orders

By default, you can define what constitutes an abandoned and lost order using the following criteria:

 number of idle days

 minimum amount (optional)

You set these criteria for abandoned and lost orders in the following properties of the
/atg/commerce/order/abandoned/AbandonedOrderService component:

 idleDaysUntilAbandoned

 idleDaysUntilLost

 minimumAmount

For the default values of these properties, see Configuring AbandonedOrderService later in this chapter.
Note that an amount specified in the AbandonedOrderService.minimumAmount property is used as a
criterion when detecting both abandoned and lost orders.

You may want to define different types of abandoned or lost orders. For example, you may want to
differentiate between high-priced and low-priced abandoned orders in order to respond differently to
each type. For information on this type of customization, see Customizations and Extensions.

Detecting Abandoned and Lost Orders

The /atg/commerce/order/abandoned/AbandonedOrderService not only defines what constitutes
an abandoned or lost order, but also queries the order repository for these types of orders according to
the schedule that you specify in its schedule property. The default schedule is “every day at 3:00 AM.”

When an AbandonedOrderService job is run, the service queries the order repository for both
abandoned and lost orders. The following table lists the criteria orders must meet to be identified as
abandoned or lost:

Criteria for Identification as “Abandoned” Criteria for Identification as “Lost”

The order’s state matches one in the
AbandonedOrderTools.abandonableOrder

States property.

Same

The abandonment state is REANIMATED. The abandonment state is not LOST.

The order has been idle for the number of days
specified in the
AbandonedOrderService.idleDaysUntilA

bandoned property.

The order has been idle for the number
of days specified in the
AbandonedOrderService.idleDaysUn

tilLost property.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 1 5

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
The order’s subtotal is greater than or equal to
the amount specified in the
AbandonedOrderService.minimumAmount
property, if set.

Same

See Configuring AbandonedOrderTools and Configuring AbandonedOrderService for information on
setting the properties referenced in the table above.

For each abandoned order found, the AbandonedOrderService does the following:

1. Adds the order to the list of abandoned orders in the user’s abandonedOrders profile
property.

2. If necessary, creates an abandonmentInfo item for the order; then updates the item
with the relevant information:

 The state property is set to ABANDONED.

 The abandonmentDate property is set to the current date and time.

 If the abandonmentInfo item is new, the abandonmentCount property is set to
1. Otherwise, it is incremented.

3. Fires an OrderAbandoned message if the
AbandonedOrderTools.sendOrderAbandonedMessage property is set to true.

For each lost order found, the AbandonedOrderService does the following:

1. Removes the order from the list of abandoned orders in the user’s abandonedOrders
profile property.

2. If the AbandonedOrderTools.deleteLostOrders property is set to true, the lost
order is deleted from the order repository.

3. If the AbandonedOrderTools.leaveAbandonmentInfoForDeletedOrders
property is set to true, the abandonmentInfo item for the order is updated with the
relevant information:

 The state property is set to LOST.

 The lostDate property is set to the current date and time.

4. Fires an OrderLost message if the
AbandonedOrderTools.sendOrderLostMessage property is set to true.

As previously mentioned, the AbandonedOrderService is a configured instance of class
atg.commerce.order.abandoned.AbandonedOrderService. This class extends
atg.service.scheduler.SingletonSchedulableService, which uses locking to enable multiple
servers to run the same scheduled service while ensuring that only one instance performs the scheduled
task at a given time.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 1 6

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
Configuring AbandonedOrderService

The /atg/commerce/order/abandoned/AbandonedOrderService is a schedulable service that has
two important functions:

 Storing the criteria that orders must meet to be identified as abandoned and lost.

 Querying the order repository on a specific schedule for orders to identify as
abandoned or lost.

The following table describes each AbandonedOrderService property you may want to configure:

Property Description Default value

orderStatePropertyName The order property that stores
the state of the order.

state

dateQueryPropertyName The order property to use when
determining how long an order
has been idle.

abandonmentInfo.order

LastUpdated

idleDaysUntilAbandoned The number of days that an
order must be idle for it to be
considered abandoned.

7

idleDaysUntilLost The number of days that an
order must be idle for it to be
considered lost. If
AbandonedOrderTools.delet

eLostOrders is set to true, you
can use the
processLostOrders method of
AbandonedOrderService to
delete such orders.

30

minimumAmount The minimum amount that an
order must cost for it to be
considered abandoned or lost
(for example, “10.00”).

Set this property to zero or leave
it unset if you do not want to use
order price as a criterion.

0

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 1 7

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
subtotalPropertyName The OrderPriceInfo property

to use when determining if an
order satisfies the “minimum
amount” criterion for
identification as abandoned or
lost.

Set this property to
rawSubtotal (the default) to
use the order’s price before
promotions, taxes, and shipping
costs are applied. Alternatively,
use “amount” to use the order’s
price after these items are
applied.

rawSubtotal

priceInfoPropertyName The order property that stores
the order’s OrderPriceInfo
object.

priceInfo

abandonedOrderTools The AbandonedOrderTools
helper component. (See
Configuring
AbandonedOrderTools below.)

/atg/commerce/order/a

bandoned/AbandonedOrd

erTools

jobName The name of the scheduled job
to run.

AbandonedOrderService

jobDescription A description of the scheduled
job.

Identify abandoned and
lost orders

schedule The schedule by which to run
AbandonedOrderService jobs.

every day at 3:00 AM

scheduler The Scheduler service that
should keep track of
AbandonedOrderService jobs
and call on this service to
execute them.

/atg/dynamo/service/

Scheduler

clientLockManager The client lock manager that
should ensure that only one
instance of this service is running
at a given time.

/atg/dynamo/service/

ClientLockManager

lockName The name of the global write
lock that identifies this service.

AbandonedOrderService

lockTimeOut The maximum time in
milliseconds to wait for a lock. To
wait indefinitely, set this
property to zero.

2000

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 1 8

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
transactionManager The TransactionManager used

by this service.
/atg/dynamo/transacti

on/TransactionManager

maxItemsPerTransaction The maximum number of items
to include in a single transaction.

1000

Configuring AbandonedOrderTools
The /atg/commerce/order/abandoned/AbandonedOrderTools component stores the central
configuration for the entire Abandoned Order Services module, including the definition of names for
required properties, repository items, and abandonment states. The following table describes important
properties you may want to configure.

Properties that store state
names

Description Default value

abandonableOrderStates The list of possible order
states an order can be in to
be considered for
identification as
abandoned or lost.

INCOMPLETE

reanimateableAbandonmentSt

ates

The list of possible
abandonment states that
an order can be in to be
considered for
identification as
reanimated.

ABANDONED,LOST

defaultAbandonedState The abandonment state to
assign to orders identified
as abandoned.

ABANDONED

defaultReanimatedState The abandonment state to
assign to orders identified
as reanimated.

REANIMATED

defaultConvertedState The abandonment state to
assign to orders identified
as converted.

CONVERTED

defaultLostState The abandonment state to
assign to orders identified
as lost.

LOST

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 1 9

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
reanimatedAbandonmentState

s

The list of possible
abandonment states that
an order can be in to be
considered reanimated.
Used to identify
reanimated orders that
should be considered re-
abandoned.

REANIMATED

lostAbandonmentStates The list of possible
abandonment states that
an order can be in to be
considered lost.

Used to determine if an
order has already been
identified as lost.

LOST

Properties that store
item names

Description Default value

orderItemName The name of the order
item descriptor in the
order repository.

Reference to
/atg/commerce/order/O

rderTools.orderItemDe

scriptorName

profileItemName The name of the profile
item descriptor in the
profile repository.

Reference to
/atg/userprofiling/Pr

ofileTools.defaultPro

fileType

abandonmentInfoItemName The name of the item
descriptor in the order
repository that holds
abandonment information
for an order.

abandonmentInfo

abandonedOrderItemName The name of the
abandoned order item
descriptor in the profile
repository.

abandoned-order

Properties that store
property names

Description Default value

abandonmentInfoPropertyNam

e

The name of the property
in the order item that
holds its
abandonmentInfo item.

abandonmentInfo

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 2 0

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
profileIdPropertyName The name of the property

in the order item that
holds the profile ID of the
user that owns the order.

profileId

abandonedOrderOrderIdPrope

rtyName

The name of the property
in the abandoned-order
item that holds the ID of
the order.

orderId

abandonedOrderProfileIdPro

pertyName

The name of the property
in the abandoned-order
item that holds the ID of
the profile that owns the
order.

profileId

abandonmentStatePropertyNa

me

The name of the property
in the abandonmentInfo
item that holds the
abandonment state of the
order.

state

orderPropertyName The name of the property
in the abandonmentInfo
item that holds the order
with which it is associated.

order

orderIdPropertyName The name of the property
in the abandonmentInfo
item that holds the ID of
the associated order.

orderId

abandonmentCountPropertyNa

me

The name of the property
in the abandonmentInfo
item that indicates the
number of times the
associated order has been
abandoned.

abandonmentCount

abandonmentDatePropertyNam

e

The name of the property
in the abandonmentInfo
item that holds the date
and time when the order
was most recently
identified as abandoned.

abandonmentDate

reanimationDatePropertyNam

e

The name of the property
in the abandonmentInfo
item that holds the date
and time when the order
was most recently
reanimated.

reanimationDate

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 2 1

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
conversionDatePropertyName The name of the property

in the abandonmentInfo
item that holds the date
and time when the order
was identified as
converted.

conversionDate

lostDatePropertyName The name of the property
in the abandonmentInfo
item that holds the date
and time when the order
was most recently
identified as lost.

lostDate

lastUpdatedPropertyName The name of the property
in the abandonmentInfo
item to be updated by the
SetLastUpdated scenario
action and servlet bean.

orderLastUpdated

Messaging-related properties Description Default value

messageSender The component that sends
abandonment-related JMS
messages.

/atg/commerce/order/a

bandoned/OrderAbandon

edSender

messageFactory The component that
builds abandonment-
related JMS messages. See
Scenario Events and
Actions in this chapter.

/atg/commerce/order/a

bandoned/AbandonedOrd

erMessageFactory

sendOrderAbandonedMessage boolean. True if an
OrderAbandoned
message should be sent
when an order is identified
as abandoned.

true

sendOrderLostMessage boolean. True if an
AbandonedOrderLost
messages should be sent
when an order is identified
as lost.

true

sendOrderReanimatedMessage boolean. True if an
AbandonedOrderReanima

ted message should be
sent when an abandoned
order is reanimated.

true

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 2 2

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
sendOrderConvertedMessage boolean. True if an

AbandonedOrderConvert

ed message should be sent
when an abandoned order
is converted.

true

Other important properties Description Default value

deleteLostOrders boolean. True if orders
identified as lost should be
removed from the order
repository. Orders must be
in an INCOMPLETE state
and idle for more days
than configured in the
AbandonedOrderService

.idleDaysUntilLost
property.

false

leaveAbandonmentInfoForDel

etedOrders

boolean. True if the
abandonmentInfo items
should be retained for lost
orders that are deleted.

Lost orders are deleted if
the
AbandonedOrderTools.d

eleteLostOrders
property is set to true.

false

orderRepository The order repository in
which to look for
abandoned and lost
orders.

/atg/commerce/order/O

rderRepository

orderManager The OrderManager to use
to delete lost orders. Note
that orders identified as
lost are deleted only if the
AbandonedOrderTools.d

eleteLostOrders
property is set to true.

/atg/commerce/order/O

rderManager

profileRepository The profile repository in
which to edit users’ lists of
abandoned orders.

/atg/userprofiling/Pr

ofileAdapterRepositor

y

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 2 3

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
Scenario Events and Actions

This section provides technical descriptions of the abandonment-related scenario events and actions that
are provided with the Abandoned Order Services module.

 Scenario Events

 Scenario Actions

For information on creating scenarios that include these elements, as well as information on testing them
via the Abandoned Order Messages page of the Commerce Administration UI, see the Managing
Abandoned Orders chapter of the ATG Commerce Guide to Setting Up a Store.

Scenario Events

The Abandoned Order Services module includes the following scenario events to watch for
abandonment-related events:

 Order Abandoned

 Abandoned Order is Modified

 Abandoned Order is Converted

 Abandoned Order is Lost

The message that triggers the events listed above contains the following properties:

Property Type Scenario editor label

abandonmentState java.lang.String abandonmentState

 The abandonment state of the order.

orderId java.lang.String orderId

 The ID of the order.

profileId java.lang.String profileId

 The profile ID of the user associated with the order.

type java.lang.String type

 The JMS type of OrderAbandoned message.

For an example scenario that utilizes some of these events, see Creating Scenarios that Respond to
Abandonment Activity in the Managing Abandoned Orders chapter of the ATG Commerce Guide to Setting
Up a Store.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 2 4

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
Order Abandoned

This event is triggered when an order is identified as abandoned.

Class name atg.commerce.order.abandoned.OrderAbandoned

JMS name atg.commerce.order.abandoned.OrderAbandoned

Display name Order Abandoned

Message context request

Message scope individual

Message source Component:
/atg/commerce/order/abandoned/OrderAbandonedSender

Class:
atg.commerce.messaging.MessageSender

Component that calls
the message source

/atg/commerce/order/abandoned/AbandonedOrderService

How this event is
triggered

Triggered when an order is identified as abandoned by the
AbandonedOrderService.

How to turn off this
event

Set the
/atg/commerce/order/abandoned/AbandonedOrderTools.sen

dOrderAbandonedMessage property to false.

Abandoned Order is Modified

This event is triggered when an abandoned order is modified by its owner. Modifications to an order can
include adding or removing items, changing item quantities, and merging orders.

Class name atg.commerce.order.abandoned.OrderAbandoned

JMS name atg.commerce.order.abandoned.OrderReanimated

Display name Abandoned Order is Modified

Message context request

Message scope individual

Message source Component:
/atg/commerce/order/abandoned/OrderAbandonedSender

Class:
atg.commerce.messaging.MessageSender

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 2 5

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
Component that calls
the message source

/atg/commerce/order/abandoned/AbandonedOrderTools

How this event is
triggered

Triggered by the Reanimate Abandoned Order scenario action or
ReanimateAbandonedOrderDroplet servlet bean.

How to turn off this
event

Set the
/atg/commerce/order/abandoned/AbandonedOrderTools.sen

dOrderReanimatedMessage property to false.

Abandoned Order is Converted

This event is triggered when an abandoned or lost order is checked out.

Class name atg.commerce.order.abandoned.OrderAbandoned

JMS name atg.commerce.order.abandoned.OrderConverted

Display name Abandoned Order Converted

Message context request

Message scope individual

Message source Component:
/atg/commerce/order/abandoned/OrderAbandonedSender

Class:
atg.commerce.messaging.MessageSender

Component that calls
the message source

/atg/commerce/order/abandoned/AbandonedOrderTools

How this event is
triggered

Triggered by the Convert Abandoned Order scenario action or
ConvertAbandonedOrderDroplet servlet bean.

How to turn off this
event

Set the
/atg/commerce/order/abandoned/AbandonedOrderTools.sen

dOrderConvertedMessage property to false.

Abandoned Order is Lost

This event is triggered when an order is identified as lost.

Class name atg.commerce.order.abandoned.OrderAbandoned

JMS name atg.commerce.order.abandoned.OrderLost

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 2 6

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
Display name Abandoned Order Lost

Message context request

Message scope individual

Message source Component:
/atg/commerce/order/abandoned/OrderAbandonedSender

Class:
atg.commerce.messaging.MessageSender

Component that calls
the message source

/atg/commerce/order/abandoned/AbandonedOrderService

How this event is
triggered

Triggered when an order is identified as lost by the
AbandonedOrderService.

How to turn off this
event

Set the
/atg/commerce/order/abandoned/AbandonedOrderTools.sen

dOrderLostMessage property to false.

Scenario Actions

The Abandoned Order Services module includes the following scenario actions to respond to user activity
on abandoned orders:

 Set Order’s Last Updated Date

 Reanimate Abandoned Order

 Convert Abandoned Order

 Log Promotion Information

All of the scenario actions listed above are utilized in the Abandoned Orders scenario that is provide out-
of-the-box. For information on this scenario, see the Managing Abandoned Orders chapter in the ATG
Commerce Guide to Setting Up a Store.

Set Order’s Last Updated Date

This action checks whether the given order has an abandonmentInfo item and, if it does not, creates one
and associates it with the order. It then updates the orderLastUpdated property of the order’s
abandonmentInfo item with the current date and time.

Action Registry Tag Value

action name Set Last Updated

configuration
component

/atg/scenario/configuration/SetLastUpdatedConfigurat

ion

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 2 7

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
action execution policy individual

action error response continue

The Set Order’s Last Updated Date action has the following parameters:

Parameter Is required? Description

orderId yes The ID of the order that has been modified by the user.

See also SetLastUpdatedDroplet in Appendix: ATG Commerce Servlet Beans of the ATG Commerce Guide to
Setting Up a Store.

Reanimate Abandoned Order

This action reanimates an abandoned or lost order. More specifically, it does the following:

1. Removes the order from the list of abandoned orders in the user’s abandonedOrders
profile property if the order is abandoned and not lost.

2. Modifies the order’s abandonmentInfo item as follows:

 Sets the state property to REANIMATED.

 Sets the reanimationDate property to the current date and time.

3. Fires an AbandonedOrderReanimated message if the
AbandonedOrderTools.sendOrderReanimatedMessage property is set to true.

Note that if the given order is not abandoned or lost, the action does nothing.

Action Registry Tag Value

action name Reanimate Abandoned Order

configuration
component

/atg/scenario/configuration/ReanimateAbandonedOrderCo

nfiguration

action execution
policy

individual

action error response continue

The Reanimate Abandoned Order action has the following parameters:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 2 8

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
Parameter Is required? Description

orderId yes The ID of the reanimated order.

See also ReanimateAbandonedOrderDroplet in Appendix: ATG Commerce Servlet Beans of the ATG
Commerce Guide to Setting Up a Store.

Convert Abandoned Order

This action converts an abandoned, reanimated, or lost order. More specifically, it does the following:

1. Removes the order from the list of abandoned orders in the user’s abandonedOrders
profile property if the order was abandoned and not lost or reanimated.

2. Modifies the order’s abandonmentInfo item as follows:

 Sets the state property to CONVERTED.

 Sets the conversionDate property to the current date and time.

3. Fires an AbandonedOrderConverted message if the
AbandonedOrderTools.sendOrderConvertedMessage property is set to true.

Note that if the state property in the order’s abandonmentInfo item is null, then the order has never
been abandoned, and the action does nothing.

Action Registry Tag Value

action name Convert Abandoned Order

configuration
component

/atg/scenario/configuration/ConvertAbandonedOrderConf

iguration

action execution
policy

individual

action error response continue

The Convert Abandoned Order action has the following parameters:

Parameter Is required? Description

orderId yes The ID of the converted order.

See also ConvertAbandonedOrderDroplet in Appendix: ATG Commerce Servlet Beans of the ATG Commerce
Guide to Setting Up a Store.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 2 9

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
Log Promotion Information

This action logs promotion-related information for a converted order. It calculates the number and total
value of the promotions applied to the converted order and stores the information in a convertedOrder
item in the AbandonedOrderRepository.

Action Registry Tag Value

action name Log Promotion Information

configuration component /atg/scenario/configuration/LogPromotionInfoConfiguration

action execution policy individual

action error response continue

The Log Promotion Information action has the following parameters:

Parameter Is required? Description

orderId yes The ID of the order whose promotion information is to
be logged.

Tracking Abandoned Orders of Transient Users
The Abandoned Order Services module can also track orders abandoned by transient users, that is,
anonymous or guest users who are not associated with a profile maintained in the profile repository
database. Orders abandoned or submitted by transient users are recorded by a scenario in a dataset,
making information about these orders available for analysis using ATG’s analytics tools.

AbandonedOrderEventListener

Transient order tracking is handled by the component
/atg/commerce/order/abandoned/AbandonedOrderEventListener. This component has two
purposes.

When a session is destroyed (either because the user logs out or the session times out), the
AbandonedOrderEventListener checks whether a profile was associated with the session, and whether
that profile is transient. If so, it then checks whether a non-empty shopping cart is also associated with the
session, and whether that shopping cart’s total value is at least as great as the
AbandonedOrderEventListener.minimumAmount property. By default, the minimumAmount property of
the AbandonedOrderEventListener points to the minimumAmount property in
AbandonedOrderService. If the order meets the criteria, then a new TransientOrderEvent is created,

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 3 0

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
and populated with the orderId, amount, and the siteId if applicable. The value 0 is placed in the
event’s submitted property. Then, the event is sent out on the messaging system.

The AbandonedOrderEventListener also registers as a listener for SubmitOrder events. When a
SubmitOrder event is received, the AbandonedOrderEventListener checks whether the profile
associated with the order is transient. If so, then it also creates a new TransientOrderEvent, this time
populating the submitted property in the event with the value 100. This allows Commece to calculate
the percentage of transient orders by averaging the values of the submitted property.

TransientOrderRecorder

The TransientOrderEvents generated by the AbandonedOrderEventListener are caught by the
TransientOrderRecorder scenario. This scenario listens for the TransientOrderEvents and records
the events in the Transient Order Reporting Dataset, storing all the values that the event was populated
with. The Transient Order Reporting Dataset lets you generate information about orders abandoned by
transient users.

Turning Off Transient Order Tracking

If you don’t want to track transient orders, you can turn off this feature by:

 setting the enabled property of the AbandonedOrderEventListener to false, so that
TransientOrderEvents will not be generated; and

 disabling the AbandonedOrders > TransientOrderRecorder scenario.

Customizations and Extensions
This section provides information on how to customize or extend the Abandoned Order Services module
in the following ways:

Defining Additional Types of Abandoned and Lost Orders

Modifying the Criteria Used to Identify Abandoned and Lost Orders

Defining Additional Types of Abandoned and Lost Orders

While the default implementation of the Abandoned Order Services module enables you to identify both
abandoned and lost orders, some sites may require more granularity. For example, you may want to
differentiate between high-priced and low-priced abandoned orders in order to respond differently to
each type via scenarios and other campaigns. This section describes how to customize the module in this
way, using this very example of high-priced and low-priced abandoned orders. You could use the same
process to define and manage additional types of lost orders.

First, configure an instance of atg.commerce.order.abandoned.AbandonedOrderTools for each type
of abandoned order you want to manage. The AbandonedOrderTools component stores the definitions
of abandonment states, including the default states. In this example, you’ll need to configure two

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 3 1

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
instances, one for high-priced abandoned orders and a second for low-priced abandoned orders. The
following table describes how to configure each component:

Component Description of Configuration

AbandonedOrderTools #1
for high-priced abandoned orders

Set the defaultAbandonedState property to
HIGH_ABANDONED.

Set the reanimatableAbandonmentStates
property to the list of all possible states that an order
can be in to be considered for identification as
reanimated. In this example, set the property to:

HIGH_ABANDONED, LOW_ABANDONED, LOST

Configure the remaining properties as necessary.

AbandonedOrderTools #2
for low-priced abandoned orders

Set the defaultAbandonedState property to
LOW_ABANDONED.

Set the reanimatableAbandonmentStates
property to the list of all possible states that an order
can be in to be considered for identification as
reanimated. In this example, set the property to:

HIGH_ABANDONED, LOW_ABANDONED, LOST

Configure the remaining properties as necessary.

Then, configure an instance of atg.commerce.order.abandoned.AbandonedOrderService for each
type of abandoned order you want to identify and manage. Again, in this example you’ll need to
configure two instances, one for high-priced abandoned orders and a second for low-priced abandoned
orders. The following table describes how to configure each component:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 3 2

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
Component Description of Configuration

AbandonedOrderService #1
for high-priced abandoned orders

Set the minimumAmount property as desired, for
example, to $100 dollars.

Set the abandonedOrderTools property to point to
the AbandonedOrderTools component you created
for high-priced orders.

Set the schedule property so that this service runs
before the AbandonedOrderService that you
created for low-priced abandoned orders. Otherwise,
the latter service will return and identify both the
high-priced and low-priced orders as abandoned.

Configuring the remaining properties as necessary.

AbandonedOrderService #2
for low-priced abandoned orders

Set the minimumAmount property as desired, for
example, to $10 dollars.

Set the abandonedOrderTools property to point to
the AbandonedOrderTools component you created
for low-priced orders.

Set the schedule property so that this service runs
after the AbandonedOrderService that you created
for high-priced abandoned orders. Otherwise, this
service will return and identify both the high-priced
and low-priced orders as abandoned.

Configuring the remaining properties as necessary.

Modifying the Criteria Used to Identify Abandoned and Lost Orders

As described in Detecting Abandoned and Lost Orders, the
/atg/commerce/order/abandoned/AbandonedOrderService uses a specific set of criteria when it
queries the order repository for orders to identify as abandoned and lost. (See that section for the list of
criteria.) The queries used are returned by the following methods of class
atg.commerce.order.abandoned.AbandonedOrderService:

 generateAbandonedQuery(), which returns a query created from the following sub-
queries:

 getDateQueryForAbandonedOrders()

 getOrderStatesQuery()

 getAbandonmentInfoQueryForAbandonedOrders()

 getMinimumAmountQuery()

 generateLostQuery(), which returns a query created from the following sub-
queries:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 3 3

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ
 getDateQueryForLostOrders()

 getOrderStatesQuery()

 getAbandonmentInfoQueryForLostOrders()

 getMinimumAmountQuery()

For details on these methods, see atg.commerce.order.abandoned.AbandonedOrderService in the
ATG API Reference.

If desired, you can modify the criteria used to identify abandoned or lost orders. To do so, create a class
that extends atg.commerce.order.abandoned.AbandonedOrderService and overrides the
appropriate method listed above. Then configure an instance of your custom class in Nucleus by layering
on a configuration file for the /atg/commerce/order/abandoned/AbandonedOrderService.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 3 4

2 2 - U s i n g A b a n d o n e d O r d e r S e r v i c e s

μ

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 3 5

2 3 - G e n e r a t i n g I n v o i c e s

μ
23 Generating Invoices

B2B commerce sites must be able to accept payment via invoice. ATG Business Commerce allows end
users to specify a purchase order number and billing address and generate an invoice. It supports
purchase order numbers as a payment type, generates invoices that refer to purchase order numbers as
well as to other payment types, and allows a user to split the bill for an order among several invoices, or
among a combination of invoices and other payment types (corporate purchasing cards, for example).

The validation process can be customized and ensures that necessary information is present. Messaging
allows communication with your other financial systems, and features are designed to make integration
with back-end systems simple.

This chapter includes the following sections:

Invoice Overview

Invoices in Checkout

Invoice Payment

The Invoice Repository

Invoice Overview
The steps involved in invoice creation and processing are:

1. A user asks for an invoice to be generated upon checkout and provides a purchase
order number. An invoiceRequest payment group is created and attached to the
order. See the Invoices in Checkout section. At this time, processors in the commerce
pipeline validate the invoiceRequest, allowing checkout to proceed. For more
information on these processors, see the Configuring Purchase Process Services
chapter in this manual.

2. When the order is fulfilled, the PaymentManager debits its payment groups. For
invoices, the PaymentManager performs a debit by calling on the InvoiceManager to
generate a new Invoice object, just as with credit cards the PaymentManager
performs a debit by contacting a billing service to bill the credit card.

3. The Invoice is created and stored in the Invoice repository.

4. JMS messages are generated informing the Dynamo Scenario Manager and any other
modules you designate that an invoice has been created.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 3 6

2 3 - G e n e r a t i n g I n v o i c e s

μ
The rest of this chapter explains the pieces involved in invoice processing, in the order they are
mentioned above.

Invoices in Checkout
The InvoiceRequest object represents the customer’s request to be billed for a purchase. It implements
the PaymentGroup interface and extends atg.commerce.order.PaymentGroupImpl. In addition to the
usual payment group fields, InvoiceRequest holds a purchase order number and a billing address,
which are mandatory, and can also include the user’s preferred invoice format and delivery mode, the
payment due date, and the payment terms.

Use the atg.b2bcommerce.order.purchase.CreateInvoiceRequestFormHandler class to create an
InvoiceRequest payment group. This form handler has only one implemented method,
handleNewInvoiceRequest(). It also includes empty preCreateInvoiceRequest() and
postCreateInvoiceRequest() methods for you to extend if your sites require.

Property Description

invoiceRequestType Indicates the type of PaymentGroup to create.

AddToContainer Boolean property that determines whether to add the InvoiceRequest
to the PaymentGroupMapContainer and make it the default payment
group for the invoice.

container The PaymentGroupMapContainer to which the InvoiceRequest is
added.

invoiceRequest A reference to a new InvoiceRequest. JSP forms can edit its properties
directly.

billingAddressPrope

rtyName

The name of the Profile that holds the user’s billing address.

invoiceRequestPrope

rties

Maps InvoiceRequest property names to profile property paths. The
form handler determines the values for each profile property and sets
them on the given InvoiceRequest property.

HandleNewInvoiceRequest() uses GetBillingAddressPropertyName() to check the user’s profile
for a business address. If one is found, it becomes the InvoiceRequest’s billingAddress as well. Then
getInvoiceRequestPropertiesMap() copies over the specified information from the user’s contract, if
one exists, to the InvoiceRequest. See the Using Requisitions and Contracts chapter for more
information on these properties.

The InvoiceRequestInfo object includes the above information and adds references to the Order and
PaymentGroup to be used when the invoice is paid.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 3 7

2 3 - G e n e r a t i n g I n v o i c e s

μ
Invoice validation is done as part of the ValidateForCheckout pipeline chain; see Appendix G:
Commerce Pipeline Chains for more information on this chain. It ensures that the PaymentGroup contains
a valid billing address. Optionally, it verifies that the poNumber property is not empty. This is optional so
you can configure your sites to offer payment by invoice without requiring a purchase at the time the
invoice is created.

Invoice Payment
The InvoiceRequestProcessor does the work of creating invoices, based on the
InvoiceRequestInfo object it receives. InvoiceRequestProcessor is then used by the ATG Business
Commerce PaymentManager, just like the credit card and gift certificate processors.

The InvoiceRequestProcessor holds authorize(), debit(), and credit() methods. Authorize()
and credit() are empty; you can add any business logic your sites need for these procedures. The
debit() method invokes the InvoiceManager’s createInvoice() method, which creates a new
invoice from the order and other information, then sends a JMS message indicating that the invoice was
created.

To enable invoice payment, add a line to the PaymentNameToChainNameMap configuration file, located at
/atg/commerce/payment/PaymentManager:

paymentGroupToChainNameMap=\

 atg.commerce.order.CreditCard=creditCardProcessorChain,\

 atg.commerce.order.GiftCertificate=giftCertificateProcessorChain,\

 atg.commerce.order.StoreCredit=storeCreditProcessorChain,\

 atg.commerce.order.Invoice=invoiceRequestProcessorChain

If you want to add further validation logic to your invoice processing, you should extend the
InvoiceRequestProcessor.authorize() method. An example of how to extend validation can be
found in the Extending Order Validation to Support New Payment Methods section of the Configuring
Purchase Process Services chapter.

Using the Invoice Manager

The InvoiceManager class provides high-level access for creating, manipulating, saving and deleting
Invoice objects in the Invoice Repository. Each action leads to execution of a pipeline chain, described
later in this section. The InvoiceManager methods are:

Method Description

addInvoice Adds a new Invoice repository item to the repository.

createInvoice Creates a new Invoice repository item.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 3 8

2 3 - G e n e r a t i n g I n v o i c e s

μ
findInvoicesByPropertyValue Searches the repository for invoices having a particular set of

property values.

getInvoiceForUpdate Gets the invoice with the specified repository id.

getInvoicesForInvoiceNumber Loads all invoices with a given invoice number. This method
returns a list because an invoice number may not be unique. It
is possible to have several invoices with the same invoice
number but different repository id’s, for example if a new
invoice is generated to reflect partial payment of an order and
a reduction in the balance due. In most cases, however, this
method returns a list containing only a single invoice.

getNextInvoiceNumber Generates the next unique invoice number to use.

loadInvoice Loads the invoice identified by a given repository id and
executes the loadInvoice pipeline chain. See Invoice
Pipelines for more information.

removeInvoice Removes the specified invoice from the repository.

updateInvoice Updates invoice properties in the invoice repository and sets
the repository item’s lastModified property to the current
date and time.

Invoice Pipelines

The InvoiceManager class executes pipelines whenever an invoice is created, loaded, updated, or
removed. Each pipeline chain receives an object of type InvoicePipelineArgs as a parameter.
InvoicePipelineArgs provides getInvoice() and getInvoiceManager() methods. You can also
subclass InvoicePipelineArgs and alter the pipeline’s expected type if you need additional methods.

The chains are defined in the PipelineManager at
/atg/commerce/invoice/pipeline/InvoicePipelineManager. Out of the box, the only thing they
do is send the messages described in the next section, but you can add links if you want to associate other
actions with invoice creation and modification.

Pipeline Chain Description

addInvoice Sends a JMS message indicating that the invoice has been added to the
repository.

updateInvoice Sends a JMS message indicating that the invoice has been updated.

removeInvoice Sends a JMS message indicating that the invoice has been removed from the
repository.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 3 9

2 3 - G e n e r a t i n g I n v o i c e s

μ
The Invoice Repository

The Invoice Repository uses a SQL repository to store customer invoices; see the SQL repository chapters
in the ATG Repository Guide for more information. Its configuration file is located at
<ATG10dir>/DCS/src/config/atg/commerce/invoice/invoicerepository.xml. This file defines
the item descriptors for the invoice classes, which in turn define important properties for the given class.
The repository itself appears at /atg/commerce/invoice/InvoiceRepository in Nucleus.

Invoice Repository Item

The invoice item descriptor includes these properties:

Property Description

balanceDue Amount to be paid by the invoice.

creationDate Date the invoice was created.

deliveryInfo Link to a deliveryInfo item.

id Unique repository ID of the invoice.

invoiceNumber System-generated identifying number. InvoiceNumber is unique as
provided, but you can customize your system to generate multiple invoices
with the same number.

lastModifiedDate Date the invoice was last modified.

orderId ID of the Order item in the Order repository to which the invoice is linked.

paymentDueDate Date the invoice must be paid.

paymentGroupId ID of the paymentGroup item in the Order repository; identifies which parts
of the order (commerce items, shipping costs, etc.) the invoice pays for.

paymentTerms Link to a paymentTerms item.

poNumber Purchase order number assigned to the invoice by the user at the time of
checkout; need not be unique.

requisitionNumber Value copied from the requisitionNumber property of the payment
group assigned to the invoice.

type Provided for subclassing purposes; use to indicate if an item belongs to the
superclass or a subclass. Read-only.

version Integer that is incremented automatically each time the product is updated;
used to prevent version conflict. Read-only.

The orderId allows you to find the Order being paid for with the invoice, and the paymentGroupId
identifies the corresponding PaymentGroup, telling you which parts of the order the invoice pays for. This

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 4 0

2 3 - G e n e r a t i n g I n v o i c e s

μ
can be important if billing is split among multiple payment groups. For example, if you want to generate
an itemized bill that includes only the items billed to a particular invoice, you need to find the
corresponding PaymentGroup and iterate over its commerce items to create the bill.

Given the orderId and paymentGroupId, you can find the Order and PaymentGroup objects using the
following code:

public void doSomethingWithInvoice(RepositoryItem invoiceItem)

 {

 OrderManager om = getOrderManager();

 Order order = null;

 PaymentGroup payment = null;

 try

 {

 String orderId =(String)invoiceItem.getPropertyValue("orderId");

 String paymentId =

 (String)invoiceItem.getPropertyValue("paymentGroupId");

 if (orderId != null)

 order = om.getOrder(orderId);

 if (order != null && paymentId != null)

 payment = order.getPaymentGroup(paymentId);

 ... work with order and payment...

 }

 catch (Exception e) {

 ... handle exceptions...

 }

 }

DeliveryInfo Repository Item

The deliveryInfo item descriptor represents physical or electronic delivery information with a flexible
repository item. Its descriptor includes these address and contact properties: city, country,
emailAddress, faxNumber, firstName, lastName, middleName, phoneNumber, postalCode, prefix,
state, and title. Additional properties are described in the table below:

Property Description

format Enumerated value indicating the format in which to deliver electronic
items. ATG Business Commerce does not use this property; it is
provided for integration with other systems. Examples: text, HTML,
XML, EDI.

id Repository ID of the deliveryInfo item.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 4 1

2 3 - G e n e r a t i n g I n v o i c e s

μ
preferredDeliveryMode Enumerated value indicating the preferred shipping method for items

ordered. ATG Business Commerce does not use this property; it is
provided for integration with other systems. Examples: USPS, fax, e-
mail.

type Provided for subclassing purposes; use to indicate if an item belongs to
the superclass or a subclass. Read-only.

version Integer that is incremented automatically each time the product is
updated; used to prevent version conflict. Read-only.

You can use the format and preferredDeliveryMode properties to let your customers indicate their
delivery preferences, then consult these preferences when exporting invoices to other systems. By default
ATG Business Commerce does not use these properties, but provides them as a convenience to
developers integrating the invoice generation system with external financial or billing systems.

PaymentTerms Repository Item

The paymentTerms item descriptor represents payment terms for an order, expressed in terms of
discount percentage, discount days, and net days. Its descriptor includes the following properties:

Property Description

discountDays Period within which the discountPercentage applies.

discountPercentage Discount on the price if the invoice is paid within the discountDays
period.

netDays Time at which payment in full of the net price is due.

type Provided for subclassing purposes; use to indicate if an item belongs to
the superclass or a subclass. Read-only.

version Integer that is incremented automatically each time the product is
updated; used to prevent version conflict. Read-only.

Sending Invoice JMS Messages

The addInvoice(), updateInvoice(), and removeInvoice() methods of the InvoiceManager all
generate JMS messages of class atg.b2bcommerce.invoice.messaging.InvoiceMessage. This class
includes the following properties:

repositoryId (String)

orderId (String)

paymentGroupId (String)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 4 2

2 3 - G e n e r a t i n g I n v o i c e s

μ
profile (RepositoryItem)

invoiceNumber (String)

PONumber (String)

requisitionNumber (String)

billingAddress (atg.core.util.ContactInfo)

preferredFormat (String)

preferredDeliveryMode (String)

balanceDue (Date)

paymentDueDate (Date)

paymentNetDays (Integer)

paymentDiscountDays (Integer)

paymentDiscountPercent (Double)

The inclusion of basic invoice properties in the message allows you to build scenarios that are invoice-
driven, while the inclusion of the orderId and paymentGroupId allows more complex ATG Commerce-
based message sinks to retrieve the invoice using the InvoiceManager and perform any required data
transformation (such as translation to XML) before passing the invoice information on to external systems.

By default, invoice messages are sent to the Scenario Manager via Local JMS, but you can change your
configuration to use SQL JMS if your system requires perfect reliability (see the Dynamo Message System
chapter in the ATG Programming Guide for more information on JMS and its alternatives in the ATG
platform, and on the Patch Bay).

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 4 3

2 4 - U s i n g R e q u i s i t i o n s a n d C o n t r a c t s

μ
24 Using Requisitions and Contracts

If you are using B2B Commerce, requisitions give your customers another way to track their purchases
through your Web sites by attaching requisition numbers to their orders. Contracts allow you to associate
a particular catalog, price list(s), and payment terms with a specific organization.

This chapter includes the following sections:

Requisitions

Contract Repository Items

Using Contracts

Requisitions
Requisition numbers provide another way for buying organizations to track orders from the purchase
process through billing. A buyer can add a requisition number to any payment group when placing an
order. ATG Business Commerce keeps track of the requisition number and carries it over to the billing
process when invoices are generated.

For example, a customer could make a purchase using a corporate credit card, and include a requisition
number with the order for the benefit of their company’s finance department. The finance department
could then link the credit card bill back to a requisition form filled out before making the purchase.

Since the requisition number is part of the payment group, your back-end code and JSPs can access it like
any other property. Linking the requisition number to the payment group rather than the order allows
purchasing departments to aggregate purchases involving multiple buyers into a single order without
losing information. After the order is created, someone at the purchasing organization must approve the
order and supply any payment information your system requires. You can override this functionality
changing the checkRequiresApproval pipeline chain. See the Managing the Order Approval Process
chapter for more information.

ATG Business Commerce classes include several features to permit use of requisitions. The
atg.commerce.order.PaymentGroup and PaymentGroupImpl classes include the
requisitionNumber property, as does the PaymentGroup item descriptor in the order repository (these
objects are discussed in depth in the Working With Purchase Process Objects chapter of this manual). The
requisitionNumber is generated by the purchasing organization. These properties exist in ATG
Consumer Commerce but are not persisted to the database.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 4 4

2 4 - U s i n g R e q u i s i t i o n s a n d C o n t r a c t s

μ
The database stores requisition numbers in the dbcpp_pmt_req table and includes an index on the
req_number column, allowing quick searches.

Requisition number use is optional. If your sites do not need to support requisition-based purchasing, you
can simply omit requisition number fields from your order processing and checkout pages.

Contract Repository Items
The Contract repository item includes these properties:

Property Description

catalog The catalog to associate with this contract. This property is
commented out; to use, uncomment it.

comments String holding additional comments on the contract.

creationDate Date the contract was created.

creator Profile of the user who created the contract.

displayName Name of the contract.

endDate Date the contract ends.

negotiatorInfo A ContactInfo item with information on the entity that
negotiated the contract.

priceList If using priceLists, the priceList to associate with this
contract. This property is commented out; to use, uncomment it.

startDate Date the contract goes into effect.

terms A contractTerms repository object.

The contractTerms repository item includes these properties:

Property Description

paymentDiscountPerc

ent

Discount on the price if the invoice is paid within the discountDays
period.

paymentDiscountDays Period within which the discountPercentage applies.

paymentNetDays Time at which payment in full of the net price is due.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 4 5

2 4 - U s i n g R e q u i s i t i o n s a n d C o n t r a c t s

μ
Using Contracts

Invoices in ATG Business Commerce are automatically set up to handle contracts appropriately. Whenever
a new InvoiceRequest is created (see the Generating Invoices chapter for further information), it
consults the user’s organization information to see if a contract exists, and copies over the
paymentNetDays, paymentDiscountDays, and paymentDiscountPercent information.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 4 6

2 4 - U s i n g R e q u i s i t i o n s a n d C o n t r a c t s

μ

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 4 7

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
25 Preparing to Use Commerce

Reporting

Commerce Reporting draws on data stored in the ATG Data Warehouse, described in detail in the ATG
Customer Intelligence Data Warehouse Guide. Before you can use this feature, data must be gathered and
loaded into the warehouse. Data is collected in the form of log files, which include information about
orders placed, visits to your sites, and changes to the product catalog or user records. This chapter
describes the components, processes, and configuration required to create and load these logs.

This chapter includes the following sections:

Setting Up Commerce Reporting Environments

Configuring a Parent Catalog

Logging Data for Commerce Reporting

Loading Data for Commerce Reporting

Setting Up Commerce Reporting Environments
A typical setup for Commerce Reporting involves three ATG environments:

 An asset management environment running ATG Merchandising. This environment is
used for maintaining the versioned site data, which it deploys to the production
environment.

 A production environment that runs the actual Commerce site. This site logs data
about customer activity.

 A data loading environment that loads the data logged by the production
environment into the Data Warehouse database tables. This Data Warehouse can then
be used for running reports.

This section describes how to set up these three environments. For additional information about
installing database tables for ATG Commerce, see the Configuring and Populating a Production Database
chapter. For more information about setting up reporting, see the ATG Customer Intelligence Installation
and Configuration Guide.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 4 8

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
Setting up the Asset Management Environment

The asset management environment runs the ATG Merchandising application (which also requires ATG
Commerce and ATG Content Administration). It manages the Commerce catalog and other data in
versioned repositories, and deploys data from these versioned repositories to nonversioned repositories
on the production environment. Note that the data loading environment also accesses this data, so both
the production environment and the data loading environment need to be deployment targets for the
merchandising environment to ensure that the repository caches on these environments remain in synch.

For information about installing and running ATG Merchandising, see theATG Merchandising
Administration Guide. In addition to following the instructions found there, run the following import script
to create the default segment lists for reporting:

<ATG10dir>/DCS/Versioned/install/importDCSVersioned

When you assemble your EAR file for the asset management environment, include the ARF.base
application module.

See also, Configuring an Asset Management Server in the ATG Customer Intelligence Installation and
Configuration Guide.

Setting Up the Production Environment

The production environment runs your site application (that is, the web application that constitutes your
online store). As customers interact with your site, the production environment logs data about orders
placed, site visits, and other customer activities. No additional tables or data are required for this
environment.

Setting Up the Data Loading Environment

The data loading environment processes the data logged by the production environment and stores
results in the Data Warehouse, where it can be used for running reports.

For information on creating the database tables for the Data Warehouse and data loaders, configuring
data sources, and assembling the loading environment EAR file, see the ATG Customer Intelligence
Installation and Configuration Guide.

Note that the data loading environment includes several repositories whose tables are part of the
production environment. These repositories include the user profile repository, the product catalog, and
the order repository. Make sure the datasources for these repositories are configured to point to the
production database. For information about configuring datasources in general, see the ATG Installation
and Configuration Guide.

Configuring a Parent Catalog
Each product can have multiple parent categories, one for each catalog that includes the product.
Therefore, you must designate a reporting catalog, which determines which catalog supplies the parent

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 4 9

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
category information for a given product. You can do this in the reportingCatalogId property of the
/atg/reporting/datawarehouse/CommerceWarehouseConfiguration component. This property is
null by default. If the property is null and a product has only a single parent category, that category is
used. If it is null and there is more than one potential parent category, the first category is used, and a
warning is logged.

Logging Data for Commerce Reporting
Data logging takes place in two environments in an ATG Commerce context. Some data comes from your
production environment, including site visits, orders, customer/visitor changes and segment definition
changes. Other data comes from the merchandising environment, including changes to categories,
products, SKUs and promotions.

Data logging components for users, segments, and site visits are located in
/atg/reporting/datacollection/userprofiling. The logging components for orders and the
product catalog are located in /atg/reporting/datacollection/commerce. All loggers have the
following common characteristics:

1. A listener monitors for one or more event types that signify log-worthy activity in the
listener’s domain. The event is placed on a queue, which notifies its associated logging
component of the event. The type of event that triggers logging differs among the
various types of logged data.

2. Depending on the log type, filtering may be performed to ensure that only changes of
interest for reporting are logged.

3. The data logger writes information about the events to a tab-delimited text file. Each
log file has a unique name in the format log-type_timestamp_unique-ID.data.
For example:

catalog_12-04-2006_03-27-31-442_200055200055.data

The unique ID is generated by the /atg/dynamo/service/IdGenerator
component. Including the ID in the filename means that even if you configure your
system to send all log files generated by any number of Dynamo instances to a central
location, there is no risk that they will overwrite one another.

All log files consist of one tab-delimited line per entry.

Log files are rotated by the FileLogger components, either at a scheduled time or
when a configured limit on the number of log entries is reached. During rotation, the
currently open log file is closed and a new one opened. The logging component fires a
JMS message, which is received by the LogRotationSink, which adds the closed log
file and its type to the queue in the DataWarehouseLoaderRepository.

Note: Rotation occurs only if the current log file contains data.

The sections that follow provide specific information on each logger. Since all loggers are configured in
similar ways, for logger configuration, see the Data Logging Configuration section.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 5 0

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
Site Visit Data Logging

The /atg/reporting/datacollection/userprofiling/SiteVisitManager Nucleus component
listens for session start, session end and page view events. It accumulates information about a site visit in
a session-scoped component called
/atg/reporting/datacollection/userprofiling/SiteVisitRequest. When the session ends, the
SiteVisitManager sends a JMS message. The siteVisit message has a JMS type of
atg.dps.SiteVisit, and is an instance of the atg.userprofiling.dms.SiteVisitMessage class.

This message is received by the SiteVisitMessageSink, which calls the
/atg/reporting/datacollection/userprofiling/SiteVisitQueue component. The
SiteVisitQueue component calls the
/atg/reporting/datacollection/userprofiling/SiteVisitFileLogger component, which
adds an entry to the site-visit_timestamp_unique-ID.data file.

The log file includes the following details for each visit:

 Session ID

 Profile ID

 Session start timestamp

 Session end timestamp

 Visit duration in seconds

 Number of pages viewed

The following is an example of the site visit log:

0385E85E9E8BC68D34354D132AFAB29C 170003 11/07/2006 14:38:46

 11/07/2006 14:38:46 0 1

65F444358B90D134E745E0E9859F3974 120000 11/07/2006 14:35:27

 11/07/2006 15:01:55 1588 25

Order Submit Data Logging

To log order data, the CommerceOrderSubmitPipeline emits a SubmitOrder event. The event is
received by the /atg/reporting/datacollection/commerce/OrderLogEntryQueueSink and
forwarded on to the /atg/reporting/datacollection/commerce/OrderFileLogger component.

There is one log entry per order. The logging file is named order_timestamp_unique ID.data, and it
includes the following:

 Timestamp

 Profile ID of the user who placed the order

 Order ID

 Set of segments the user was in when the OrderSubmit message was fired

This means those segments for which both of the following apply:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 5 1

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
 The user is a member of the segment

 The segment is part of the CommerceReporting segment list

If the logger encounters a null value, it writes the empty string to the log file. If you prefer the logger to
write the string null instead, set the skipNullOjbect property of the OrderFileLogger component to
false.

The following is an example of the order log:

12/04/2006 16:39:42 o10004 110002 5E47ED51379664EBA2077AEFCDC0F90D

 UserProfiles:ValueShoppers

Commerce Search Data Logging

This section applies if you are using ATG Search as part of your ATG Commerce site, and want to report on
the integration between these products. Commerce Search logs information when searches are
performed, and when customers click links in search results to view or purchase items. See the ATG Search
Administration Guide for information on the former; this section discusses the latter.

To associate search terms with items that are viewed or purchased, your sites must record “click-through”
events. These occur when a customer clicks on a product or SKU returned by a search, to view it or
purchase it. The recording of these events works like this:

 For each search result, the /atg/search/droplet/GetClickThroughId servlet
bean generates a click-through ID, which you append to the URL for that result using a
query parameter. The servlet bean also adds the result document to a cache.

 When a customer clicks a link to view a search result, the
/atg/search/servlet/pipeline/SearchClickThroughServlet examines the
request URL, finds the click-through ID, and uses it to look up the document in the
cache. If it finds the document, the servlet fires an
atg.search.events.SearchClickThroughMessage JMS event containing the
search request and response objects and the selected document. This event is logged
to be used for reporting.

The QueryFileLogger component logs the search information; see Data Logging for Reports in the ATG
Search Administration Guide for information on this component.

For more information about configuring your Commerce site to log data for Commerce Search reports,
see the ATG Search Administration Guide.

Product Catalog Data Logging

When you make changes to category, product, SKU or promotion items in your catalog, ATG Content
Administration creates a list of changed items to deploy. Once the deployment is completed and the
publishing clients have switched their data sources, the
/atg/reporting/datacollection/commerce/ProductCatalogDeploymentListener component
on the ATG Content Administration server is notified of the switch and the list of changes.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 5 2

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
The sourceRepositoryPathToItemDecriptorNames property of the
ProductCatalogDeploymentListener component defines the item types for which changes should be
logged and the Data Warehouse updated.

sourceRepositoryPathToItemDecriptorNames=\

 /atg/commerce/catalog/ProductCatalog=category;product;sku;promotion

You can use the ignorableTargets property to specify any Content Administration targets where
changes should not be logged, such as your staging environment:

ignorableTargets=Staging

Note: If you do a full deploy of your product catalog, all items are logged as changed, though the data
may not be any different. During its next scheduled run, the loader will then compare every item in the
catalog with the dimension data in the Warehouse Repository, and only actual changes are loaded. For
large catalogs, this process can take a long time.

The JMS message type used to identify log rotation is atg.reporting.productCatalogUpdate.

The catalog_timestamp_unique id.data file contains the following logged information:

 Timestamp when the logging component received notification of the successful data
source switch, which approximates the time when the change went live on the
production server

 Nucleus path to the repository component

 Type of item that changed

 Repository item ID for the changed item

 Change type (insert, update, or delete)

The following is an example of the product catalog log:

10/19/2006 10:08:39 /atg/commerce/catalog/ProductCatalog product

prod70002 insert

10/19/2006 10:08:39 /atg/commerce/catalog/ProductCatalog sku

 sku81007 update

10/19/2006 10:10:39 /atg/commerce/catalog/ProductCatalog product

prod70004 delete

User Data Logging

The /atg/reporting/datacollection/userprofiling/UserEventListener component is notified
whenever an insert, update, or delete is performed on either User or ContactInfo repository item
descriptors in the Profile Repository. The user_timestamp_unique ID.data log created by the
/atg/reporting/datacollection/userprofiling/UserFileLogger component includes the
following data:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 5 3

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
 Time stamp

 Dynamo path to the repository.

 Type of item that changed.

 Repository item ID for the changed item.

 Change type (insert, update, or delete)

The UserEventListener.properties file includes several configurable properties that allow you to
filter out information you do not want to log. The sourceRepositoryPathToItemDescriptorNames
property specifies which repository items have change information logged for them:

sourceRepositoryPathToItemDecriptorNames=\

 /atg/userprofiling/ProfileAdapterRepository=user;contactInfo

The excludedEventTypes property allows you to filter out change types that you do not want logged.
There are four types of change event: UPDATE, DELETE, INSERT, and CACHE_INVALIDATE. By default,
CACHE_INVALIDATE is excluded from logging. The property is set as follows:

excludedEventTypes=CACHE_INVALIDATE

The itemDescriptorToPropertyNames property allows you to explicitly identify which properties you
want to log UPDATE changes for:

itemDescriptorToPropertyNames=\

/atg/userprofiling/ProfileAdapterRepository:user=login

The following is an example of the user log:

10/19/2006 10:08:39 /atg/userprofiling/ProfileAdapterRepository

user 711 insert

10/19/2006 10:10:39 /atg/userprofiling/ProfileAdapterRepository

user 735 insert

10/19/2006 10:10:39 /atg/userprofiling/ProfileAdapterRepository

user 1710002 update

Segment Data Logging

Segments (also known as profile groups) represent different groups in your customer base. To log
segment data for reporting, the
/atg/reporting/datacollection/userprofiling/SegmentChangeListenerService listens for
ConfigurationEvents. These events occur when updates, deletions, or insertions are made to
segments. The listener sends details of segment changes to the
/atg/reporting/datacollection/userprofiling/SegmentFileLogger via a data collection
queue. The SegmentFileLogger creates the log entry.

The segment_timestamp_unique id.data file contains the following logged information:

 Timestamp

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 5 4

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
 Name of the repository to which segments are bound within the repository group

container, specified in /atg/registry/RepositoryGroups

 Item type, which is always segment

 A repository:name combination, which uniquely identifies the segment. For
example, UserProfile:HighValueCustomers.

 Change type (INSERT, UPDATE, or DELETE)

 Segment name

 Segment description from the serviceInfo property of the associated Nucleus
component

The following is an example of the segment log:

10/19/2006 20:46:01 UserProfiles segment UserProfiles:DiscountShopper

 INSERT DiscountShopper "Prefers sale items"

10/19/2006 21:46:10 UserProfiles segment UserProfiles:DiscountShopper

 UPDATE DiscountShopper "Only sale items"

10/19/2006 21:50:13 UserProfiles segment UserProfiles:DiscountShopper

 DELETE DiscountShopper "Only sale items"

Data Logging Configuration

This section describes those aspects of logging configuration that apply to all logging components.

Enabling Data Logging

Logging components can be enabled individually or as a group. By default, the enabled property of each
individual file logger is set to refer to the enabled property of an /atg/dynamo/service/ component.
Therefore, data collection for the product catalog can be enabled by setting the enabled property of the
/atg/dynamo/service/DeploymentDWDataCollectionConfig component to true. Data collection
for all other file loggers can be enabled by setting the enabled property of the
/atg/dynamo/service/DWDataCollectionConfig component to true.

Changing the enabled property of either component affects all of the loggers that point to that
component. After enabling any disabled logging component, you must restart the ATG instance to begin
logging.

Configuring Log File Rotation

You can schedule file rotation using the schedule property of each of the individual file logging
components. For example, to rotate the segment fie log hourly, in the
/atg/reporting/datacollection/userprofiling/SegmentFileLogger.properties set the
following:

schedule=every 1 hour without catch up

For information on how to specify a schedule, see the Scheduler Services section of the Core Dynamo
Services chapter in the ATG Programming Guide.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 5 5

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
You can use the dataItemThreshold of each component to trigger log rotation when the specified
number of log records is exceeded. If you set both properties, the log will be rotated whenever it exceeds
the dataItemThreshold and at the scheduled time, as long as the log file contains at least one log entry.

By default, the loggers are scheduled to rotate as follows:

 Product Catalog—Every 15 minutes

 User—Hourly

 Segment--Hourly

 Site Visit—Hourly

 Order--Hourly

Configuring Timestamp Formats in Log Entries

To change the timestamp formatting in log entries, edit the formatFields property in the file logging
component. For example, to change the timestamp format for the user file logger, edit the
timestampDateFormat property in
/atg/reporting/datacollection/userprofiling/UserFileLogger.properties:

timestampDateFormat=MM-dd-yyyy_HH-mm-ss-SS

Configuring Log File Location

Both the logging and file loading components need to know the location of the log files. Both
components must be configured to point to the same physical location, though the logical names may
differ depending on your network configuration.

The log file location is configured by the defaultRoot property in all logging and loading components.
By default, all of these components are configured to refer to the
<ATG10dir>/home/server/server_name/logs directory.

Initial Data Logging for Catalogs, Users, and Segments

For catalogs, users, and segments, in order for reporting to be useful you need a warehouse record of the
initial state of the data. To create this initial record, you can do one of two things.

 On the Dynamo Administration page, invoke the doWalk method of the
/atg/reporting/datawarehouse/service/UserService and
/atg/reporting/datawarehouse/service/ProductCatalogService
components, and the bulkLoad method of the
/atg/reporting/datacollection/userprofiling/SegmentChangeListener

Service.

Note: Before you can use this method, you must set the enabled property of the
/atg/dynamo/service/LogRotationMessageSource component to true. You can
disable it again when initial logging is finished. See the JMS Message Information for
Data Logging section for more information on this component.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 5 6

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
 If you use ATG Content Administration, you can do a full deployment of your catalog.

This creates a log entry for every catalog item, which is then treated as a change and
loaded into the Data Warehouse.

Note: Either method will take considerable time, especially if you have a large catalog.

The UserService and ProductCatalogService components walk the entire product catalog and user
repository and write a log entry for each item, with a null timestamp and an event type of INSERT. The
regular data loading process can then load the data into the Data Warehouse.

Both components must be configured with the repository to be loaded and the item descriptors to
include in the walk. For example, in UserService.properties, configure the following:

repository=/atg/userprofiling/ProfileAdapterRepository

itemDescriptorNames=user

For ProductCatalogService.properties, configure the following:

repository=/atg/commerce/catalog/ProductCatalog

itemDescriptorNames=category,product,sku,promotion

No configuration is required for SegmentChangeListenerService.

JMS Message Information for Data Logging

ATG Commerce includes the Patch Bay configuration required for data logging. Logging components use
the messageSource property to specify a component to use as the source for logging messages, as
shown in this example:

messageSource=/atg/dynamo/service/LogRotationMessageSource

The LogRotationMessageSource component is responsible for sending out logging-related JMS
messages. The message source definition for this component in dynamoMessagingSystem.xml is:

 <message-source>

 <nucleus-name>

 /atg/dynamo/service/LogRotationMessageSource

 </nucleus-name>

 <output-port>

 <port-name>

 DEFAULT

 </port-name>

 <output-destination>

 <provider-name>

 local

 </provider-name>

 <destination-name>

 localdms:/local/Reporting/LogRotation

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 5 7

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
 </destination-name>

 <destination-type>

 Queue

 </destination-type>

 </output-destination>

 </output-port>

</message-source>

The message sink for the localdms:/local/Reporting/LogRotation queue has the following
configuration:

 <message-sink>

 <nucleus-name>

 /atg/reporting/datawarehouse/loaders/LogRotationSink

 </nucleus-name>

 <input-port>

 <port-name>

 DEFAULT

 </port-name>

 <input-destination>

 <provider-name>

 local

 </provider-name>

 <destination-name>

 localdms:/local/Reporting/LogRotation

 </destination-name>

 <destination-type>

 Queue

 </destination-type>

 </input-destination>

 </input-port>

 </message-sink>

The table that follows lists the logRotationMessageType for each logging component:

Logging Component Message Type

OrderFileLogger atg.reporting.submitOrder

ProductCatalogLogger atg.reporting.productCatalogUpdate

SegmentFileLogger atg.reporting.segmentUpdate

SiteVisitFileLogger atg.reporting.siteVisit

UserFileLogger atg.reporting.userUpdate

UserServiceFileLogger atg.reporting.userUpdate

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 5 8

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
ProductCatalogServiceFileLogger atg.reporting.productCatalogUpdate

Loading Data for Commerce Reporting
As discussed in the previous section, data logging for Commerce Reporting occurs in the ATG production
environment on which the Commerce site runs. Much of the logging occurs in real time as customers use
the site. Loading data into the Data Warehouse is performed in a separate ATG environment, typically (but
not necessarily) running on a different group of physical servers. These data loader environment instances
do not handle customer requests; their primary purpose is to process data from the log files and load it
into the Data Warehouse. Unlike logging, the loading process is not performed in real time. It is run on a
regular schedule, typically once a day.

For each type of log file, the data loader environment has a data loader component. When one of these
loader components is run, it claims a log file from a queue, then parses the entries in the file in batches,
using the Data Warehouse Loader Repository to track the progress of the load operation. The loader
component hands off the batches to a pipeline driver component, which parses the data and passes it to
a processor pipeline. The pipeline processes the data and stores it in the Data Warehouse.

Data Loader Components

For each type of log file, there is a corresponding data loader component. These components are all of
class atg.reporting.datawarehouse.loader.Loader, and are located in the
/atg/reporting/datawarehouse/loaders/ Nucleus folder. The loader components are:

 OrderSubmitLoader

 ProductCatalogLoader

 SegmentLoader

 SiteVisitLoader

 UserUpdateLoader

The following table summarizes the key properties of the loader components. Some of these properties
are described in more detail below the table:

Property Description

charset The character set used for the log files. The default value is null, which
means the loader expects the log files to be encoded with the
character set specified by the JVM file.encoding system property.
Typically you should not need to change the value of this property.

defaultRoot The directory path to the location of the log files. The default is logs/.
See Specifying the Location of Log Files for more information.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 5 9

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
noLoadSleepMillis The number of milliseconds to wait if, during the loading process, the

loader determines that there are no log files currently ready to be
loaded. After the interval specified by this property, the loader will
check whether any new log files are ready to be loaded. This process is
repeated until the loader shuts down. The default is 600000 (ten
minutes). See Specifying the Loading Schedule for more information.

loadStatusListeners The component to use for archiving log files when a successful load
completion event is detected.

LogFileDeleteListener—Deletes the log file.

LogFileMoveListener—Moves the log file to the destination
directory you specify (can be used to rename the file at the same time).

LogFileGZipListener—Leaves the file in its original location and
creates a .zip archive. This is the default component.

You can write your own component based on LogStatusListener if
you require other archiving behavior.

pipelineDriver The Nucleus pathname of the pipeline driver component that the
loader passes log file lines to for processing. The default value is
different for each loader component. See Pipeline Drivers and
Processors for more information.

queueName A String that identifies the queue from which the loader reads log files.
Each loader component has a different default value for this property.
For example, the default value of the queueName property of the
OrderSubmitLoader component is
atg.reporting.submitOrder; for the SegmentLoader component,
it is atg.reporting.segmentUpdate. You should not need to
change the value of this property.

runSchedule A CalendarSchedule that specifies the schedule for starting up the
loader. See Specifying the Loading Schedule for more information.

skipRecordOnError If set to true, if the data loader encounters an error while loading a log
file, it skips the record that caused the error and moves on to the next
record.

Caution: A record that causes a loading error can indicate a serious
problem, and should be investigated. Under normal circumstances,
this flag should be false.

stopSchedule A CalendarSchedule that specifies the schedule for shutting down
the loader. See Specifying the Loading Schedule for more information.

transactionBatchSize Specifies the number of lines in a log file to process as a single
transaction. Default is 100.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 6 0

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
Note: Data loading for Commerce Search information is done by the existing Search loading components;
see Search Loader Components in the ATG Search Administration Guide

Specifying the Loading Schedule

The Loader class implements the Schedulable interface, which enables it to be run automatically on a
specified schedule. By default, each loader component is configured to start up once a day and run for a
period of several hours. When a loader first starts up, it checks the corresponding queue to see if there are
entries for any log files. If so, the loader claims an entry and begins to process the file. When it finishes
processing the file, the loader checks the queue again, and if there are any more entries, claims another
entry and processes that file. This process continues until there are no more entries in the queue.

If there are no entries in the queue, the loader sleeps for a specified period of time, and then checks again.
If at this point the queue is still empty, the loader sleeps again. This process continues until a specified
time, at which point the loader stops checking and waits until the next scheduled start time.

The schedule for starting up the loader is specified by the component’s runSchedule property. This
property is a CalendarSchedule object that is set by default to run the loader once each day. The
schedule for shutting down the loader is specified by the component’s stopSchedule property. This
property is also a CalendarSchedule object, and is set by default to shut down the loader once each
day, several hours after the component starts up. You can change these settings to run the loader on a
different schedule.

The period of time (in milliseconds) that the loader sleeps if there are no entries in the queue is set by the
component’s noLoadSleepMillis property. The default value of this property is 600000 (equivalent to
10 minutes).

For more information about scheduler components and properties, and the syntax used to set those
properties, see the Core Dynamo Services chapter of the ATG Programming Guide.

Specifying the Location of Log Files

The data loaders may be running on a different machine (or group of machines) from the production site
that creates the log files. Therefore the machines will typically use some file-sharing mechanism such as
NFS, and thus may require different pathnames to access the same files. For example, the directory
/u1/logfiles/ on the production environment might be accessed as /nfs/livesite/u1/logfiles/
on the loader environment.

To make it easier to share files, the loggers and loaders always specify files relative to a root location,
rather than using absolute paths. You configure each component to point to this root location by setting
the component’s defaultRoot property to the correct pathname for the machine the component is
running on. In the example above, you would set defaultRoot for the loggers to /u1/logfiles/, and
set defaultRoot for the loaders to /nfs/livesite/u1/logfiles/.

Loading Existing Order Data from a Repository

If you have existing order data in a repository and you want to load into the Data Warehouse for
reporting, you can use the OrderRepositoryLoader to do so. This component treats the data in your order
repository as if it were a log file and loads it accordingly.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 6 1

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
This component uses the same SubmitOrder pipeline chain as the OrderSubmitLoader, but is managed
by the OrderRepositoryPipelineDriver component.

To use the OrderRepositoryLoader, first start the OrderRepositoryPipelineDriver component.
You can either start this component in the ACC, or enter the following browser path to start it in the
Dynamo Admin UI:

http://host:port/dyn/admin/nucleus/atg/reporting/datawarehouse/

loaders/OrderRepositoryPipelineDriver

In the Admin UI, go to
/atg/reporting/datawarehouse/loaders/OrderRepositoryPipelineDriver. In the text field,
enter an RQL statement corresponding to a query against the order repository. Check the Preview box if
you want to see how many records will be retrieved before actually processing the orders.

The OrderRepositoryPipelineDriver includes the following configurable properties:

 skipRecordOnError—If set to true, the component skips any records for which
processing results in an error. The default is false.

 errorDataListener—Set this property to a component that implements the
atg.service.datacollection.DataListener interface. If skipRecordOnError is
true, the driver notifies this component when an error occurs. The record that
produced the error is added to the DataListener.

When you click Submit, the query is issued against the repository. For each result, the component creates
a new pipeline parameter object and sends that object down the pipeline, just as if it were a line item in a
log file.

The Dynamo Admin UI keeps a count of how many records have been processed out of the total
retrieved.

Note: The following data is not included for orders in the repository, and has the values indicated:

 Session ID—Null

 Site visit—Unspecified

 SegmentclusterID—Unspecified

These fields are not populated in the Data Warehouse when loading existing orders. This may affect the
conversion rate as it appears in reports, because that calculation relies on the session ID.

Configuring the Data Warehouse Time Zone

In addition to data loaders for orders, site visits, etc., there are other loaders whose purpose is to add
information that is static, rarely-changing, or not site-dependent to the Data Warehouse. One such loader
is the TimeRepositoryLoader, which populates the ARF_TIME_YEAR, ARF_TIME_MONTH, etc. tables
(see the ATG Customer Intelligence Data Warehouse Guide for information).

The TimeRepositoryLoader is run by the TimeRepositoryLoaderJob, a scheduled service that runs
every two weeks by default. When the job runs, the loader populates the next two weeks worth of days
into the appropriate tables. For example, if the loader runs on December 20, it loads the next fourteen

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 6 2

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
days, two weeks, one month, and one year into the ARF_TIME_DAY, ARF_TIME_WEEK, ARF_TIME_MONTH,
and ARF_TIME_YEAR Data Warehouse tables respectively.

The TimeRepositoryLoader includes a datetimezoneID property, which identifies the time zone to
use when loading this data. The default is UTC, meaning that, if an order is loaded into the warehouse, the
date and time of that order’s placement are converted from the values used in the order repository to the
UTC equivalent, and the UTC times are used in reports.

Data Warehouse Loader Repository

The data loaders manage the Data Warehouse Loader Repository, which keeps track of the progress of
data loading. This repository has three item types, described in the following table:

Item Type Properties

queue name (string)
entries (set of queueEntry items)

queueEntry filename (string)
queue (queue item)
creationDate (timestamp)

loaderProgress filename (string)
queue (queue item)
startTimestamp (timestamp)
endTimestamp (timestamp)
status (enumerated; 1 -- “in progress”, 2 – “failed”, 3 –”done”)
statusDetail (string)
owner (string)
recordsProcessed (int)

There is one queue repository item for each queue type tracked in the repository. For example, there is
one queue item for the order submission queue, and one for the site visit queue. The queue item for a
specific queue is created the first time a log file for the queue is rotated.

The loading process for a specific queue works like this:

1. The data loader determines that there is an entry for a log file in the queue.

2. The loader creates a new loadProgress repository item for the file, setting the item’s
status property to “in progress,” and setting its recordsProcessed property to 0
(zero).

3. The loader deletes the queueEntry repository item for the file.

4. The loader uses the ClientLockManager to acquire a lock on the loadProgress
item.

5. The loader creates a new transaction.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 6 3

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
6. The loader reads a line from the log file and passes it to a pipeline driver for processing

(see below). The loader repeats this step until it has processed the number of lines
specified by the value of its transactionBatchSize property.

7. If no errors have occurred, the loader commits the transaction and updates the
recordsProcessed property of the loaderProgress item to indicate the number of
records processed.

8. The cycle of creating a transaction, processing a batch, and committing the
transaction is repeated until the entire log file has been processed.

9. The loader sets the status property of the loaderProgress item to “done,” and
releases the lock.

To obtain information about loads performed by a specific loader component, view the component in the
Component Browser in the Dynamo Admin UI.

Handling Errors

If an error occurs while processing a batch of lines, the transaction is rolled back. The loader sets the
status property of the loaderProgress item to “failed,” and sets the statusDetail property to a
string describing the failure. Once you have resolved the problem, you can reinitiate the load process by
clicking the Return to Queue link in the entry for the failed load in the Component Browser. This changes
the value of the status property to “in progress,” so the loader will attempt to continue processing the
file when the next schedule load time arrives. Alternately, you can use the loadAllAvailable method to
start loading immediately.

The Loader class implements logic that enables it to deal with failures such as a JVM crashes. Before a
loader component looks in the queue for a file to load, it first looks for loaderProgress items whose
status properties are set to “in progress.” If the loader finds a loaderProgress item in this state, it uses
the ClientLockManager to try to obtain a lock on the item. If the lock is not granted, this means some
other process has the lock, and is currently loading the file (for instance, if there is separate instance of the
same loader running on another ATG instance).

If the lock is granted, this means that either a loader crashed earlier while loading the file (leaving the
loaderProgress item in this state), or that a load failed and the associated Return to Queue link was
subsequently clicked. In this situation, the loader will continue loading the file, starting from the first
record that has not yet been successfully processed.

Pipeline Drivers and Processors

As mentioned above, the loader component initiates the data loading process, but the actual processing
of the data is performed by a processor pipeline. The pipeline is invoked by a pipeline driver component
to which the loader passes batches of log entries. The pipeline driver calls a pipeline manager component,
which controls the pipeline. The processors in the pipeline perform such tasks as looking up dimensional
data in the warehouse; looking up profile, catalog, and order data in repositories on the production site;
and writing data about each item in an order to the warehouse.

The pipeline driver components, like the data loader components, are located in the
/atg/reporting/datawarehouse/loaders/ Nucleus folder. Each loader component has a

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 6 4

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
pipelineDriver property that points to the pipeline driver it invokes. For example, the
OrderSubmitLoader.properties file includes:

pipelineDriver=OrderSubmitPipelineDriver

All of the pipeline drivers point to the same pipeline manager component,
/atg/reporting/datawarehouse/process/PipelineManager. This pipeline manager’s definition
file, /atg/reporting/datawarehouse/process/pipeline.xml, defines several data loading
processor chains. The specific chain invoked by an individual pipeline driver is specified by its
pipelineChainId property. For example, the OrderSubmitPipelineDriver.properties file
includes:

pipelineManager=../process/pipelineManager

pipelineChainId=submitOrder

The following table summarizes the data loaders, their pipeline drivers, and the processor chains they
invoke:

Data Loader Pipeline Driver Processor Chain

OrderSubmitLoader OrderSubmitPipelineDriver submitOrder (which also runs
lineItem)

ProductCatalogLoader DimensionPipelineDriver dimensionUpdate

SegmentLoader SegmentPipelineDriver segmentUpdate

SiteVisitLoader SiteVisitPipelineDriver siteVisit

UserUpdateLoader DimensionPipelineDriver dimensionUpdate

DimensionUpdate Pipeline

The dimensionUpdate pipeline chain is triggered by the ProductCatalogLoader and
UserUpdateLoader components. The following diagrams show the processors in the chain for insert,
update, and delete events.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 6 5

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ

Pipeline Processor Chain for an Insert Event

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 6 6

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ

Pipeline Processor Chain for Delete Events

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 6 7

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ

Pipeline Processor Chain for Update Events

To ensure that locks are acquired correctly for all processed items, this pipeline makes two passes. The
first pass identifies which items require locks. The second pass acquires the locks and then makes all
inserts and updates to the repository. When the second pipeline pass is finished, all locks are released.

The pipeline uses a map to pass data through the pipeline to each processor. Each processor can get
items it needs from the map, add items it is responsible for creating to the map, and update items in the
map if needed.

The processors in this pipeline are:

 AcquireLocksProcessor—Runs only on the second pipeline pass, when it makes a
call on the lock manager to get the locks identified as necessary during the first pass of
the pipeline.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 6 8

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
 WarehouseItemLookupProcessor—In both pipeline passes, looks up the most

recent item in the Data Warehouse, using the itemId from the map.

 ChangeTypeProcessor—In both pipeline passes, determines the type of record
change indicated by the log record. If the change type is insert or delete, the next
processor that executes is the WarehouseItemExistsProcessor. If the change type
is update, the next processor is ProductionItemLookupProcessor.

 WarehouseItemExistsProcessor—In both pipeline passes, determines whether
the item being processed already exists in the warehouse. For delete actions, if the
item exists, the next processor that executes is the UpdateDeletedItemProcessor; if
not, it is InsertDummyItemProcessor. For insert actions, if the item does not exist,
the next processor is the ProductionItemLookupProcessor.

 InsertDummyItemProcessor—In the first pass, requests a lock for the item to be
inserted. In the second pass, creates a dummy item and adds it to the warehouse
repository.

 UpdateDeletedItemProcessor—In the first pass, requests a lock for the item to be
updated. In the second pass, for delete actions, this processor sets the endDate and
lastUpdateDate to the event date, and deleted to true. This is the end of the
processor pipeline for delete events.

 ProductionItemLookupProcessor—In the first processor pass for updates, looks up
the item in the production repository. If the item exists, the next processor called is the
ItemConversionProcessor. If it does not, the chain ends. In the second pass, this
processor only does a lookup if the first lookup was unsuccessful.

 ItemConversionProcessor—Converts production items into warehouse items,
using the mapping values described in Mapping Production Properties to Data
Warehouse Properties. If the conversion finds a reference to a non-existent warehouse
item, this processor creates that item by calling the pipeline chain recursively.

 InsertNewItemProcessor—In the first pass requests a lock for the item to be
updated. In the second pass, creates the new warehouse item.

 ConvertUpdateToInsertProcessor—Takes an update and makes changes
necessary to allow an insert into the Data Warehouse. Sets the eventDate to null,
since it is not known when the item was actually inserted into the product catalog. The
change type is left as update. This processor performs the conversion only on the
second pass, since the item may be added by another loader between the first and
second passes.

 CompareEventAndLastUpdatedDatesProcessor—In both pipeline passes, this
processor looks at the time of an update and the last update time of the Data
Warehouse item and compares them, to see if any changes that caused the event have
already been put into the Data Warehouse record.

 DiffProcessor—Compares the values in the production item to the values in the
Data Warehouse. This processor only does its work in the second pass.

 UpdateItemProcessor—In the first pass this processor requests a lock for the item to
be updated. On the second, it updates the Data Warehouse with changes.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 6 9

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
Mapping Production Properties to Data Warehouse Properties

Individual product catalogs and user profile repositories can vary widely from one customer site to
another. However, the Data Warehouse is a fixed structure; therefore, a map is required. The mapping is
done using an XML file with the structure shown below, which allows you to map between any ATG
repository and the Data Warehouse for data loading purposes.

You must map each item and property in your product catalog that you want to report on to the Data
Warehouse.

<data-warehouse-dimension-loader-definition>

 <data-warehouse-repository repository="path_to_warehouse_repository">

 <data-warehouse-repository-item item="item_name">

 <production-repository repository="path_to_production_repository">

 <production-repository-item item="item_name" natural-key="key"/>

 </production-repository>

 <property-mappings>

 <warehouse-property name="name" default-value="value">

 <production-property name="name"/>

 </warehouse-property>

 </property-mappings>

 </data-warehouse-repository-item>

 </data-warehouse-repository>

</data-warehouse-dimension-loader-definition>

The data-warehouse-repository names the destination repository and contains the destination
repository items. The production-repository names the source repository and items.

<data-warehouse-dimension-loader-definition>

 <data-warehouse-repository

 repository="/atg/reporting/datawarehouse/WarehouseRepository">

 <data-warehouse-repository-item item="category"

 natural-key="categoryId">

 <production-repository

 repository="/atg/commerce/catalog/ProductCatalog"

 nickname="catalog">

 <production-repository-item item="category"/>

 </production-repository>

The property-mappings element contains the individual warehouse-properties to be mapped for a
specific warehouse item.

In cases where there is a simple one-to-one mapping between the repository item property and the Data
Warehouse item property, the production-property element identifies the repository item property
which is mapped to the corresponding warehouse-property element. This example uses the user’s first
name from the profile repository:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 7 0

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
<property-mappings>

 <warehouse-property name="firstName">

 <production-property name="ProfileRepository.user.firstName"/>

 </warehouse-property>

</property-mappings>

In some cases, there is not a one-to-one mapping, so a converter component is used. Converters perform
tasks such as:

 Combining multiple repository item properties into a single warehouse item property

 Converting the data of the property before placing it in the Data Warehouse

 Looking up parent objects for SKUs, products, and categories, where there may be
multiple values to select from

For example, the AddressToRegionItemConverter component combines the user’s state and country
into the region used by the Data Warehouse.

<warehouse-property name="homeRegion" conversion-

component="/atg/reporting/datawarehouse/process/converter/

 AddressToRegionItemConverter">

 <production-property name="ProfileRepository.user.homeAddress.state" conversion-

context-name="state"/>

 <production-proprerty name="ProfileRepository.user.homeAddress.country"

conversion-context-name="country"/>

</warehouse-property>

SiteVisit Pipeline

The siteVisit chain is triggered by the SiteVisitLoader component. This pipeline has no branches.
Each processor, if successful, starts the one that follows.

Each processor uses a passed-in parameter retrieved from the log file to look up items in the Data
Warehouse. For example, the lookupVisitor processor uses the profileId from the log file to look up
the visitor in the ARF_USER table and return its ID, using an RQL query. If the visitor cannot be found, the
processor attempts to load the visitor into ARF_USER table first, and then return the ARF_USER.ID. If this
fails, the processor returns the “Unspecified” visitor. Similar patterns apply to the other lookup processors,
although the algorithm varies.

The processors are:

 lookupSiteVisitDay—Uses the session start timestamp in the log file to determine
the starting day of the visit.

 lookupSiteVisitTime—Uses the session start timestamp in the log file to
determine the starting time of the visit.

 lookupSiteVisitEndDay—Uses the session end timestamp in the log file to
determine the ending day of the visit.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 7 1

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
 lookupSiteVisitEndTimelookupSiteVisitEndDay—Uses the session end

timestamp in the log file to determine the ending time of the visit.

 lookupVisitor—Uses the profile ID in the log file to look up the visitor in the
ARF_USER table.

 lookupSiteVisitStimulusGroup—Reserved for future use. Currently returns the
“Unspecified” stimulus group.

 lookupDemographic—Examines the visitor’s date-of-birth, gender, marital status and
home region as defined in the Data Warehouse. It uses this information to look up the
record in the ARF_DEMOGRAPHIC table that classifies this user.

 logSiteVisit—Writes the row to the ARF_SITE_VISIT table in the Data
Warehouse.

SubmitOrder Pipeline

The submitOrder chain is triggered by the OrderSubmitLoader component. This pipeline has no
branches. When it starts, the only information available to the pipeline is the order ID. Each processor in
the pipeline, if successful, adds information to the data being processed and starts the next processor.

The processors are:

 fetchOrder—Uses the order ID to look up the order in the order repository.

 lookupOrder—If line items exist in the data warehouse for the current order ID, this
processor fetches those line items and creates a parameter map entry for them.

 checkOrderExists—Acts as a switch in the pipeline. If the
warehouseItemPropertyName value pair exists in the parameter map, then the line
items for the order already exist, and the current log record does not need to be
processed. If the map entry does not exist then the pipeline processes the log entry.

 createOrderId—Generates a surrogate key for the order.

 createLineItems—Breaks the order down into line items. If a single line item is
shipped to multiple addresses, each address is considered a separate line item.

 calculateLineItemsGrossRevenue—The quantity of that particular line item,
times the unit price of the item.

 allocateTax—Allocates the order’s tax amount to the individual line items, using a
weighted calculation. If rounding results in the sum of the line item allocations being
more or less than the original total, the tax on the final line item is used to make any
adjustments. The calculation is:

(line item gross revenue/total order gross revenue) * total tax

 allocateShipping—Allocates the order’s shipping amount to the individual line
items, using a weighted calculation. If rounding results in the sum of the line item
allocations being more or less than the original total, the shipping on the final line
item is used to make any adjustments. The calculation is:

(line item gross revenue/total order gross revenue) * total shipping

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 7 2

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
 allocateOrderDiscount—Allocates order-level discounts (such as free shipping) to

individual line items using a weighted calculation. If rounding results in the sum of the
line item allocations being more or less than the original total, the shipping on the
final line item is used to make any adjustments. The calculation is:

(line item gross revenue/total order gross revenue) * total discount

 calculateManualAdjustments—Calculates the manual adjustment credits and
debits for the entire order. This processor is used only for ATG Commerce Service
Center.

 allocateManualAdjustmentsDebit—Allocates manual adjustment debits to line
items. This processor is used only for ATG Commerce Service Center.

 allocateManualAdjustmentsCredit—Allocates manual adjustment credits to line
items. This processor is used only for ATG Commerce Service Center.

 calculateLineItemsDiscountAmount—Totals any discounts applied to the line
items in the order.

 calculateLineItemsMarkdownDiscountAmount—Calculates the markdown
discount. That discount is basically any discounts that apply before promotionally
discounts are applied. For example, if someone buys a package of hot dogs on sale (no
promotions) for $4.50 when the list price for the package of hot dogs is $5.00 then the
markdown discount is $.50.

 calculateLocalOrderDiscountAmountTotal—Calculates the total order discount
amount (order discount amount plus manual adjustment credits) in the local currency.

 calculateLineItemsPriceOverride—Captures price override amounts. This
processor comes into use only if you are using ATG Commerce Service Center.

 calculateLineItemNetRevenue—Calculates net revenue for individual line items
using the following formula:

Gross revenue + tax allocation + shipping allocation – line item discount

 - order discount allocation

 calculateOrderNetRevenue—Sums the net revenue of all line items. This
information is stored with the line item in the Data Warehouse, but is the same for all
items in an order.

 calcluateLocalOrderNetRevenueTotal—Sum of the order net revenue plus
manual adjustment debits in the local currency.

 convertCurrency—For all of the amounts in the pipeline to this point (gross net
revenue, line item shipping allocation, etc.), converts the local currency to the
standard currency. The standardCurrencyCode property of the processor points to
the
/atg/reporting/datawarehouse/CommerceWarehouseConfiguration.standar

dCurrencyCode, which identifies the standard currency; the default is USD.

The actual conversion is done by the CurrencyTools component. CurrencyTools
uses the ARF_CURRENCY_CONV table in the Data Warehouse to look up the
conversation rate for the day on which the order was placed, if one is available.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 7 3

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
Note: ATG does not populate the ARF_CURRENCY_CONV table. Customers are
responsible for acquiring and maintaining currency conversion rate data.

 lookupBillingRegion—Uses the billing address in the order to determine the
billing region.

 lookupSiteVisit—Looks up visit information in the ARF_SITE_VISIT table using
the SESSION_ID, START_DATE, and END_DATE columns.

 lookupInternalUser—Identifies the agent involved with the order. If not using ATG
Commerce Service Center, this value is set to Unspecified.

 lookupOriginOfOrder—Identifies the order’s place of creation. Orders can originate
either from Web or Contact Center. If the order is created from a scheduled order
template and the template is created by the Commerce site, the origin is Web. If the
template is for the Commerce Service Center, the origin is Contact Center.

 lookupSalesChannel—Identifies the sales channel through which the order was
submitted. The sales channel for an order can be either Web or Contact Center. If the
order is submitted from the Commerce site, the sales channel is Web. If the order is
submitted from Commerce Service Center, the origin is Contact Center.

 lookupDay—Uses the timestamp of the order to look up the day in the
ARF_TIME_DAY table.

 lookupTime—Uses the timestamp of the order to look up the time in the
ARF_TIME_TOD table.

 lookupLocalCurrency—Looks ups the currency used in the transaction in the
ARF_CURRENCY, using the ISO4217_ALPHA3 code for the currency.

 lookupCustomer—Uses the profile ID in the order to look up the customer in the
ARF_USER table.

 lookupCustomerDemographic—Examines the visitor’s date-of-birth, gender, marital
status and home region as defined in the Data Warehouse. It uses this information to
look up the record in the ARF_DEMOGRAPHIC table that classifies this user.

 lookupPromotionGroup—Examines the order for any promotions that were used
and uses this information to look up a promotion group.

 lookupSegmentCluster— Examines the order for segment clusters and looks up any
associated with the order.

 runLineItems—Runs the runLineItem pipeline chain for each line item in the order.

Note: The allocateTax, allocateShipping, and allocateOrderDiscount processors can be
replaced with processors that use a uniform rather than a weighted allocation strategy. ATG provides a
sample component for this purpose (the Nucleus location is
/atg/reporting/datawarehouse/process/allocators/UniformLineItemAllocator), or you can
write your own processor that implements the
atg.reporting.datawarehouse.commerce.LineItemAllocator interface. See the Processor Chains
and the Pipeline Manager chapter in this guide for information on editing pipeline chains.

The runLineItem pipeline includes the following processors:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 7 4

2 5 - P r e p a r i n g t o U s e C o m m e r c e R e p o r t i n g

μ
 lookupProduct—Uses the product ID in the order to look up the product in the

ARF_PRODUCT table via the NPRODUCT_ID column.

 lookupSku—Uses the SKU ID associated with the order to look up the SKU in the
ARF_SKU table, using the NSKU_ID column.

 lookupCategory—Uses the PARENT_CAT_ID of the product to find the category.

 listOrderStimuli—Retrieves a list of stimuli from markers in the order.

 lookupStimulusGroup—Uses all stimuli in the pipeline to look the stimulus group in
the ARF_STIMGRP table. Computes a hash code for all stimuli and uses the
HASH_VALUE column to look up the group.

 lookupShippingRegion—Uses the order’s shipping address to find the region to
which the line item is shipped.

 lookupQuestion—If the DCS.DW.Search module is running, runs an additional
pipeline chain that determines what search fact, if any, was associated with this line
item, and links the two in the ARF_LINE_ITEM_QUERY table. If DCS.DW.Search is not
running, the question is “unspecified.”

 logLineItem—Writes the line item to the Data Warehouse ARF_LINE_ITEM table.

 tailLineItemProcessor—If the DCS.DW.Search module is running, starts the
LineItemQuery pipeline and its logLineItemQuery processor,, which logs
Commerce Search data for each line item in the ARF_LINE_ITEM_QUERY table. If
DCS.DW.Search is not running, does nothing.

SegmentUpdate Pipeline

The segmentUpdate chain is triggered by the SegmentLoader component. This pipeline chain consists
of a single processor, /atg/reporting/datawarehouse/process/SegmentLoadProcessor.

This processor handles insert, update and delete operations from the segment log files. Unlike the
SiteVisit and SubmitOrder pipelines, it does not perform any lookups on the production system.

Each time the SegmentLoadProcessor component is invoked, it performs the following steps:

1. Gets a reference to the most recent Data Warehouse entry for the segment referred to
in the log entry.

2. Determines what sort of change is to be applied (insert, update, or delete).

3. If an insert action and the item is not already in the database, the processor creates a
new item. If the item already exists, the processor checks to see if a start date is
specified. If not, which will typically be the case if an update or delete action is
processed before an insert action, the start date of the existing item is set. If the start
date has already been set, meaning there has been a prior insert action for the
segment, then the current item is marked as expired and a new item is created.

If an update action, if no matching item is found, creates a new item.

If a delete action, if no matching item is found, a new item is created and marked as
deleted.

4. Applies changes in the item to the repository.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 7 5

2 6 - C u s t o m i z i n g R e p o r t i n g D a t a

μ
26 Customizing Reporting Data

The provided ACI framework supports a wide variety of potential customizations. Customization projects
can range in complexity from the very simple, such as adding a single property to an item in a repository,
to the elaborate, such as adding support for reporting on an entirely new business process. Depending on
the complexity of the data structures you are adding, these customizations may require changes to the
following layers of the reporting infrastructure:

 Data Collection

 Data Loading

 Warehouse Schema

 Metadata Model

 Reports

The examples in this chapter take you through two common and relatively simple examples:

Adding an Attribute to a Dimension
This represents a small expansion of the existing data structures, where you want to
report on an attribute that is not represented by default. The example is based on the
premise that you have added weight information to your product catalog, and would
like to include this in your reports.

Adding a New Dimension
This is a more complex example than the first, and describes how you would go about
adding a new data structure on which you can report. The example describes the steps
necessary to add shipping information to your reports.

More complicated customization projects involve integrating data from third-party sources, and are
therefore not addressed in this document. For example, you may be considering a project that
incorporates cost-of-goods data about from a non-ATG system. If you are considering a project of that
level, thoroughly review the available ACI documentation, including the chapter on logging and loading
components in this guide. Many existing components can be reused or adapted for these circumstances.

Note: This chapter assumes that you are familiar with ACI, with database and dimensional modeling
concepts, and with ATG repositories. Many books and Web sites provide information on dimensional
modeling and data warehousing. Be sure to perform appropriate research before you begin your
customization project if you are new to the subject.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 7 6

2 6 - C u s t o m i z i n g R e p o r t i n g D a t a

μ
Adding an Attribute to a Dimension

A very common practice for ATG customers is to add properties to existing repository items, for instance
by extending the product catalog. The example in this section describes in detail the changes you would
need to make if you had added a new attribute, weight, to the SKUs in your catalog. The example assumes
that you have already made this change to your repository, and now want to include weight information
in your reports.

To add an attribute to a dimension:

1. Alter the ARF_SKU table by adding a new column to represent weight. This column will
contain a numeric attribute in your standard measurement system (for instance,
pounds or kilograms). The table then contains the following columns:

ID

NSKU_ID

...

WEIGHT

2. Extend the /atg/reporting/datawarehouse/dataWarehouseRepository.xml
file to expose the weight property as in this simplified sample:

<item-descriptor name="sku">

 <table name="ARF_SKU">

 <property name="weight" column-name="WEIGHT" type="double"/>

 </table>

1. Map the weight property in the product catalog to the weight property in the data
warehouse. This mapping is crucial for loading the product catalog dimension. The
/atg/reporting/datawarehouse/process/Definition/DimensionProperties

.xml file contains a data-warehouse-repository-item element, which has a
property-mappings child element. For this example, we’ll add a new warehouse-
property element under that, identifying how to map the data.

<data-warehouse-repository-item item="sku">

 <property-mappings>

 <warehouse-property name="weight">

 <production-property name="catalog.sku.weight"/>

 </warehouse-property>

 </property-mappings>

</data-warehouse-repository-item>

This XML snippet maps the SKU’s weight property in the product catalog to the
weight property in the data warehouse.

2. Use the Framework Manager to modify the metadata model to include the new
attribute (Note: This tool is available only for Windows, and is an optional part of the
ACI installation. See the Cognos Framework Manager User Guide). Copy the model to
your local project before editing to prevent your changes being overwritten by future
ATG updates.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 7 7

2 6 - C u s t o m i z i n g R e p o r t i n g D a t a

μ
The model is located in the <ATG10dir>/DCS/DW/cpf directory. Modify the
[ARF_SKU] query subject in the Database View, the [Sku] query subject in the Model
View, and the [Catalog] regular dimension in the dimensional view.

3. Republish the metadata model with your changes.

4. Copy and modify the provided reports, or create new reports that use the new
attribute.

Adding a New Dimension
The example in this section shows how you would add a new dimension, specifically a shipping method
dimension. Having added this, you could then create reports that show sales by shipping method.

Note: Take care when designing new dimensions. One potential pitfall lies in the reduction of
performance that can result if your queries join your new dimension to existing, large dimensions such as
the User dimension. Always consider whether you could extend an existing dimension instead, or
otherwise streamline your data gathering process.

To add a new dimension:

1. Create a table that represents this dimension in the data warehouse. In this case, we’ll
call it ACME_SHIPPING_METHOD. For purposes of this example, the table is very simple,
consisting only of an identifier, the shipping method name, the estimated number of
days for delivery, and the carrier.

ACME_SHIPPING_METHOD
ID
NAME—Name of shipping method, for instance, FedEx 3 day Ground
DELIVERY_COMMENT—For instance Same Day, 1-2 Business Days
CARRIER—Name of carrier, for instance, FedEx, UPS

1. Prepopulate the table with your data. This can be done many ways, including
executing INSERT statements for static data or pipeline processors for more dynamic
information. Since this table is your custom creation, you are responsible for its
maintenance. For this example, since shipping methods are unlikely to change often,
prepopulating it via INSERT statement would probably be used.

2. Modify the ARF_LINE_ITEM table to add a SHIPPING_METHOD_ID column, which is a
foreign key reference to the ACME_SHIPPING_METHOD table’s ID column.

3. Extend the /atg/reporting/datawarehouse/dataWarehouseRepository.xml
file to add a ShippingMethod item:

<item-descriptor name="ShippingMethod">

 <table name="ACME_SHIPPING_METHOD" id-column-names="id" type="primary">

 <property name="carrier" column-name="CARRIER" type="string"/>

 <property name="deliveryComment" column-name="DELIVERY_COMMENT"

 type="string"/>

 <property name="name" column-name="NAME" type="string"/>

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 7 8

2 6 - C u s t o m i z i n g R e p o r t i n g D a t a

μ
 </table>

</item-descriptor>

Modify the line item (you can use XML-combine to make this task easier; for
information, see the ATG Repository Guide).

<item-descriptor name="lineItem">

 <table name="ARF_LINE_ITEM">

 <property name="shippingMethodID" column-name="SHIPPING_METHOD_ID"

type="int"/>

 </table>

For this example, the ID is of type int. If necessary, you can create a new item type
instead.

4. Create a new pipeline processor in /atg/reporting/datawarehouse/process/
called ShippingMethodLookupProcessor. The new processor must do the
following:

 Look up the shipping method ID. In this case, the pipeline should look up the
shipping method based on some property in the order.

 At the end of the processor, set the output to the member value. In this case, set
lineItem.shippingMethodID to the member value as shown in the following
code:

runProcess(Object pParam, PipelineResult pResult) {

 // perform shipping method id lookup

 Dynamic.Beans.setPropertyValue(pParam, "lineItem.shippingMethodId",

value)

}

You may want to review the information on existing pipeline processors in this guide.
The exact features of your pipeline will vary depending on what information you are
retrieving and what, if any, transformations you want to make to the data.

5. Modify the pipeline chain to include your new lookup processor. Add the following
line to the file:

<pipelinelink name-"shippingMethodLookup" transaction="TX_MANDATORY">

 <processor jndi="/atg/reporting/datawarehouse/process

 /ShippingMethodLookupProcessor"/>

</pipelinelink>

6. Modify the
/atg/reporting/datawarehouse/process/LineItemLoggerProcessor.proper

ties file:

lookupProperties += \lineItem.shippingMethodId

dimensionProperties += \shippingMethodId

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 7 9

2 6 - C u s t o m i z i n g R e p o r t i n g D a t a

μ
7. Use the Framework Manager to modify the metadata model to include the new

attribute (Note: This tool is available only for Windows, and is an optional part of the
ACI installation. See the Cognos Framework Manager User Guide). Copy the model to
your local project before editing to prevent your changes being overwritten by future
ATG updates.

The model is located in the <ATG10dir>/DCS/DW/cpf directory.

8. Republish the metadata model with your changes.

9. Copy and modify the provided reports, or create new reports that use the new
attribute.

Dimension Converters
A dimension data converter modifies information before it is loaded in your data warehouse dimension
tables. The data warehouse loader server invokes converter components if one is specified for a data
warehouse repository item in the DimensionProperties.xml file for a product.

Dimension converters implement the
atg.reporting.datawarehouse.process.DimensionConverter interface. This interface expects
only a single method called convert to be implemented. ATG Commerce includes several dimension
converters. You can modify these converters or develop your own if needed.

For example, the following warehouse-property element specifies that the data warehouse loader server
should invoke the ProductParentCategoryConverter dimension data converter when loading a
product repository item into a data warehouse repository item. The conversion-component attribute of
the warehouse-property element names the dimension converter.

<warehouse-property

 name="parentCategory"

 conversion-component="/atg/reporting/datawarehouse/process/

 converter/ProductParentCategoryConverter">

 <production-property

 name="catalog.product"

 conversion-context-name="product"/>

</warehouse-property>

Conversion Context

When the data warehouse loader server invokes a dimension converter, it passes it a context object. The
context object is a map of parameters that the converter can use as it modifies the information that will
be loaded in the data warehouse.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 8 0

2 6 - C u s t o m i z i n g R e p o r t i n g D a t a

μ
All dimension loader components implement a convert method. This method takes the context object
as its only argument.

Each parameter in a context object has a conversion context name. These names are defined in the
DimensionProperties.xml file. You can use atg.beans.DynamicBeans.getPropertyValue to get
the value of a parameter in the context object. See Example Dimension Converter.

Setting Conversion Property Parameters

You can pass parameters to a dimension data converter that you create or modify. Use the production-
property and conversion-property elements to define these parameters in the
DimensionProperties.xml files for your ATG Commerce products. A dimension data converter will use
the parameters when it converts specific production repository items before they are loaded into your
data warehouse.

The production-property Element

Include the production-property element in a warehouse-property element to pass the name of a
production repository item to a dimension converter component. The production-property element is
shown in the example below.

<data-warehouse-repository-item item="product" natural-key="productId">

 <production-repository

 repository="/atg/commerce/catalog/ProductCatalog"

 nickname="catalog">

 <production-repository-item item="product"/>

 </production-repository>

 <property-mappings>

 <warehouse-property

 name="parentCategory"

 conversion-component="/atg/reporting/datawarehouse/process/

 converter/ProductParentCategoryConverter">

 <production-property

 name="catalog.product"<!-- This attribute indicates the production

 repository item. The name "catalog" refers

 to the nickname of the production repository

 specified in the production-respository

 element above. -->

 conversion-context-name="product"/>

 </warehouse-property>

 </property-mappings>

</data-warehouse-repository-item>

The following table explains the attributes of the production-property element.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 8 1

2 6 - C u s t o m i z i n g R e p o r t i n g D a t a

μ
Attribute Explanation

name The identifier of a production repository item. Include the nickname of
the production repository specified in the production-repository
element of a data-warehouse-repository-item element. For
example, catalog.product.

conversion-context-name An identifier for the parameter. Use this identifier in your dimension data
converter implementation.

The conversion-property Element

Include the conversion-property element in a warehouse-property element when you need to pass
additional parameters to a dimension converter component. The conversion-property element is
shown in the example below.

<warehouse-property

 name="parentCategory"

 conversion-component="/atg/reporting/datawarehouse/process/

 converter/ProductParentCategoryConverter">

 <production-property

 name="catalog.product"

 conversion-context-name="product"/>

 <conversion-property

 property-value="1"

 property-type="java.lang.Integer"

 conversion-context-name="productIndex"/>

</warehouse-property>

The following table explains the attributes of the conversion-property element.

Attribute Explanation

property-value The value that is passed to the dimension data converter.

property-type The Java data type of the value that is passed to the dimension data
converter.

conversion-context-name An identifier for the parameter. Use this identifier in your dimension data
converter implementation.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 8 2

2 6 - C u s t o m i z i n g R e p o r t i n g D a t a

μ
Example Dimension Converter

The following two examples show the definition for a simple conversion parameter and the
implementation of a dimension data converter that uses it.

The warehouse-property element specifies that the data loader server should invoke the dimension data
converter named EchoConverter when it loads the myProperty data warehouse repository item.
Because this example is extremely simple, it does not take source data from a production repository item.

<warehouse-property

 name="myProperty"

 conversion-component="/atg/reporting/datawarehouse/process/

 converter/EchoConverter">

 <conversion-property

 property-value="Hello, World!"

 property-type="java.lang.String"

 conversion-context-name="message"/>

</warehouse-property>

The implementation of EchoConverter shows one way to use parameters in a custom dimension
converter. The convert method uses atg.beans.DynamicBeans.getPropertyValue to get the value of
the parameter named “message.” This parameter and its value are defined in the warehouse-property
element shown above. See information about the ATG classes used here in ATG API Reference.

This example is very simple. The data that it produces is nothing more than the value of the string
parameter that was passed in from the DimensionProperties.xml file.

package atg.reporting.datawarehouse.process.converter;

import atg.beans.DynamicBeans;

/**

* Echos the message property

*/

public

class EchoConverter

 implements DimensionConverter

{

 //-------------------------------------

 // Constructors

 //-------------------------------------

 /**

 * Constructs an instanceof EchoConverter

 */

 public EchoConverter() {

 }

 /**

 * Returns the message property of context, otherwise

 * the emptry string

 * @param pContext converation contexnt

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 8 3

2 6 - C u s t o m i z i n g R e p o r t i n g D a t a

μ
 * @return a message

 */

 public Object convert(Object pContext)

 throws ProcessorException {

 String returnValue = null;

 String returnValue = DynamicBeans.getPropertyValue(pContext,"message");

 if(returnValue == null)

 return "";

 return returnValue;

 }

} // end of class

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 8 4

2 6 - C u s t o m i z i n g R e p o r t i n g D a t a

μ

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 8 5

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Appendix A: ATG Commerce Web
Services

This appendix includes descriptions of all of the Commerce Web services and security information specific
to the Commerce Web services. For more information on ATG Web services, see the ATG Web Services and
Integration Framework Guide.

The Commerce Web services are separated into the following groups:

Order Management Web Services

Pricing Web Services

Promotion Web Services

Inventory Web Services

Catalog Web Services

Profile Web Services

Commerce Web Services Security

Note: Some Web services descriptions include URLs with the variables hostname:port, in which
hostname signifies the name of the machine running your application and port signifies the port on that
machine designated by your application server for handling HTTP requests.

Order Management Web Services
All order management web services are included in commerceWebServices.ear in the
orderManagement.war web application.

Ear file commerceWebServices.ear

War file orderManagement.war

Context-root commerce/orderManagment

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 8 6

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
For an example of a client calling an order management web service, see the Order Management Web
Services Example section. For the recommended security policies to be associated with order
management web services, see the Commerce Web Services Security section.

This section includes information on the following Order Web services.

addCreditCardToOrder Web Service

addItemToOrder Web Service

addItemToShippingGroup Web Service

addShippingAddressToOrder Web Service

cancelOrder Web Service

createOrder Web Service

createOrderForUser Web Service

createOrderFromXML Web Service

getCurrentOrderId Web Service

getDefaultPaymentGroupId Web Service

getDefaultShippingGroupId Web Service

getOrderAsXML Web Service

getOrdersAsXML Web Service

getOrderStatus Web Service

moveItemBetweenShippingGroups Web Service

removeCreditCardFromOrder Web Service

removeItemFromOrder Web Service

removeItemQuantityFromShippingGroup Web Service

removePaymentGroupFromOrder Web Service

removeShippingGroupFromOrder Web Service

setItemQuantity Web Service

setOrderAmountToPaymentGroup Web Service

submitOrderWithReprice Web Service

addCreditCardToOrder Web Service

The addCreditCardToOrder Web service adds the credit card information to an order.

Servlet Name addCreditCardToOrder

Input
Parameters

orderId – The ID of the order.
creditCard – The credit card to be added to the order.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 8 7

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Output The ID of newly created payment group.

Web Service
Class

atg.commerce.order.OrderServices

Nucleus
Component

/atg/commerce/order/orderServices

Executes
within a
session

Yes

WSDL URL http://hostname:port/commerce/order/addCreditCardToOrder?WSDL

Endpoint URL http://hostname:port/commerce/order/addCreditCardToOrder/addCredit

CardToOrder

Method addCreditCardToOrder(String orderId, BasicCreditCardInfoImpl

creditCard)

Security
FunctionalN

ame

orderManagement

addItemToOrder Web Service

The addItemToOrder Web service adds the given product/SKU to the order. If the product/SKU already
exists, the quantity is increased.

Servlet Name addItemToOrder

Input Parameters orderId – The ID of the order to which the item will be added.
productId – The ID of the product to be added to the order.
skuId – The ID of the SKU to be added to the order.
quantity – The number of the specified products or SKUs to be added
to the order.

Output The ID of the commerce item that was either added or updated.

Web Service Class atg.commerce.order.OrderServices

Nucleus
Component

/atg/commerce/order/orderServices

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/order/addItemToOrder?WSDL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 8 8

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Endpoint URL http://hostname:port/commerce/order/addItemToOrder/addIt

emToOrder

Method addItemToOrder(String orderId, String productId, String

skuId, long quantity)

Security
FunctionalName

orderManagement

addItemToShippingGroup Web Service

The addItemToShippingGroup Web service adds the given product/SKU to a shipping group. If the
product/SKU already exists in the shipping group, the quantity is increased.

Servlet Name addItemToShippingGroup

Input Parameters orderId – The ID of the order to which the item will be added.
productId – The ID of the product to be added to the shipping group.
skuId – The ID of the SKU to be added to the shipping group.
quantity – The number of the specified products or SKUs to be added
to the shipping group.
shippingGroupId – The ID of the shipping group to which the item will
be added.

Output The ID of the commerce item that was either added or updated.

Web Service Class atg.commerce.order.OrderServices

Nucleus
Component

/atg/commerce/order/orderServices

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/order/addItemToShippingGro

up?WSDL

Endpoint URL http://hostname:port/commerce/order/addItemToShippingGro

up/addItemToShippingGroup

Method addItemToShippingGroup(String orderId, String productId,

String skuId, long quantity, String shippingGroupId)

Security
FunctionalName

orderManagement

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 8 9

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
addShippingAddressToOrder Web Service

The addShippingAddressToOrder Web service adds a new shipping address to the order.

Servlet Name addShippingAddressToOrder

Input Parameters orderId – The ID of the order.
address – The address to be added to the order.

Output The ID of the newly created shipping group.

Web Service Class atg.commerce.order.OrderServices

Nucleus
Component

/atg/commerce/order/orderServices

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/order/addShippingAddressTo

Order?WSDL

Endpoint URL http://hostname:port/commerce/order/addShippingAddressTo

Order/addShippingAddressToOrder

Method addShippingAddressToOrder(String orderId, ContactInfo

address)

Security
FunctionalName

orderManagement

cancelOrder Web Service

The cancelOrder Web service cancels the specified Order.

Servlet Name cancelOrder

Input Parameters orderId - The ID of the order to be cancelled

Output An integer with one of three values:
1 – the request was ignored
2 – the order was deleted
3 – a JMS message was sent requesting that the order be cancelled

Web Service Class atg.commerce.order.OrderServices

Nucleus
Component

/atg/commerce/order/orderServices

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 9 0

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/order/cancelOrder?WSDL

Endpoint URL http://hostname:port/commerce/order/cancelOrder/cancelOr

der

Method cancelOrder(String orderId)

Security
FunctionalName

orderManagement

createOrder Web Service

The createOrder Web service creates a new order and assigns the current profile ID to the order.

Servlet Name createOrder

Input Parameters orderType – (Optional) the type of order to create. Null indicates the
default order type.

Output The ID of the newly created order.

Web Service Class atg.commerce.order.OrderServices

Nucleus Component /atg/commerce/order/orderServices

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/order/createOrder?WSDL

Endpoint URL http://hostname:port/commerce/order/createOrder/create

Order

Method createOrder(String orderType)

Security
FunctionalName

orderCreation

createOrderForUser Web Service

The createOrderForUser Web service creates a new order of the given type for the given user. If
orderType is null, it creates an order of the default order type. This operation is intended to be used by
applications that need to create orders on behalf of another user, such as a CSR application.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 9 1

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Servlet Name createOrderForUser

Input Parameters ProfileId - The user who will own the order
OrderType - The type of order to create. Null indicates the default
order type.

Output OrderId - The order ID of the new order.

Web Service Class atg.commerce.order.OrderServices

Nucleus Component /atg/commerce/order/orderServices

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/order/createOrderForUser

?WSDL

Endpoint URL http://hostname:port/commerce/order/createOrderForUser

/createOrderForUser

Method createOrderForUser(String orderType, String profileId)

Security
FunctionalName

orderCreationForUser

createOrderFromXML Web Service

The createOrderFromXML Web service takes the order specified in the parameter and saves it to the
order repository. The XML must follow a schema that represents an order. For more information, see the
Repository to XML Data Binding chapter in the ATG Web Services and Integration Framework Guide.

Servlet Name createOrderFromXML

Input
Parameters

OrderAsXML - The XML document represent ting the entire order.
ProfileId – The ID of the profile to be associated with the new order.

Output OrderId – The ID of the new order.

Web Service
Class

atg.commerce.order.OrderServices

Nucleus
Component

/atg/commerce/order/orderServices

Method createOrderFromXML(String pOrderXML, String pProfileId)

Executes within
a session

Yes

WSDL URL http://hostname:port/commerce/order/createOrderFromXML?WSDL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 9 2

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Endpoint URL http://hostname:port/commerce/order/createOrderFromXML/createOrde

rFromXML

Security
FunctionalNa

me

orderCreation

getCurrentOrderId Web Service

The getCurrentOrderId Web service returns the ID of the current user’s current order from the
shopping cart. If there is no order in the shopping cart, null is returned.

Servlet Name getCurrentOrderId

Input
Parameters

none

Output The ID of the current order or null if there is no current order.

Web Service
Class

atg.commerce.order.OrderService

Nucleus
Component

/atg/commerce/order/orderServices

Executes within
a session

Yes

WSDL URL http://hostname:port/commerce/order/getCurrentOrderId?WSDL

Endpoint URL http://hostname:port/commerce/order/getCurrentOrderId/getCurrentO

rderId

Method getCurrentOrderId()

Security
FunctionalNa

me

getCurrentOrderId

getDefaultPaymentGroupId Web Service

The getDefaultPaymentGroupId Web service retrieves the first payment group ID from the order.

Servlet Name getDefaultPaymentGroupId

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 9 3

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Input
Parameters

OrderId - The ID of the order.

Output The default payment group ID of the order

Web Service
Class

atg.commerce.order.OrderServices

Nucleus
Component

/atg/commerce/order/orderServices

Executes
within a
session

Yes

WSDL URL http://hostname:port/commerce/order/getDefaultPaymentGroupId?WSDL

Endpoint URL http://hostname:port/commerce/order/getDefaultPaymentGroupId/getDef

aultShippingGroupId

Method getDefaultPaymentGroupId(String pOrderId)

Security
Functional

Name

orderManagement

getDefaultShippingGroupId Web Service

The getDefaultShippingGroupId Web service retrieves the first shipping group ID from the order.

Servlet Name getDefaultShippingGroupId

Input
Parameters

OrderId - The ID of the order.

Output The default shipping group ID of the order

Web Service
Class

atg.commerce.order.OrderServices

Nucleus
Component

/atg/commerce/order/orderServices

Executes
within a
session

Yes

WSDL URL http://hostname:port/commerce/order/getDefaultShippingGroupId?WSDL

Endpoint URL http://hostname:port/commerce/order/getDefaultShippingGroupId/getDe

faultShippingGroupId

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 9 4

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Method getDefaultShippingGroupId(String pOrderId)

Security
Functional

Name

orderManagement

getOrderAsXML Web Service

The getOrderAsXML Web service returns the given order as an XML string using the GetService. The
mapping file used is the outboundOrderMappingFileName. The XML must follow a schema that
represents an order. For more information, see the Repository to XML Data Binding chapter in the ATG Web
Services and Integration Framework Guide.

Servlet Name getOrderAsXML

Input Parameters orderId - The ID of the order to be returned as an XML string.

Output An XML string valid against the schema.

Web Service Class atg.commerce.order.OrderServices

Nucleus
Component

/atg/commerce/order/orderServices

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/order/getOrderAsXML?WSDL

Endpoint URL http://hostname:port/commerce/order/getOrderAsXML/getOrderAsXML

Method getOrderAsXML(String pOrderId)

Security
FunctionalName

orderManagement

Repository
Component

/atg/commerce/order/OrderRepository

Item Descriptor order (b2c)
b2bOrder (b2b)

getOrdersAsXML Web Service

The getOrdersAsXML Web service will look up orders for a particular user. The possible search types are:

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 9 5

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
incomplete - return the orders that are incomplete
open - return the orders that are in one of the configured open states
closed - return the orders that are in one of the configured closed states.

Servlet Name getOrdersAsXML

Input Parameters profileId – The ID of the user whose orders are returned.
startIndex – Which order should be the first order returned. If you
want to start at the beginning, use 0.
numOrders – How many orders should be returned. If all orders, use -1.
searchType – Which orders should be returned: incomplete, open, or
closed. See above description for details.
sortProperty – (Optional) Which property should the results should
be sorted on. If null, the orders are not sorted.
ascending – Which direction should the orders be sorted in. If true,
then orders are sorted in ascending order. If false, then orders are
sorted in descending order.

Output An array of XML strings, each representing an order.

Web Service Class atg.commerce.order.OrderServices

Nucleus
Component

/atg/commerce/order/OrderServices

Method getOrdersAsXML(String pProfileId, int pStartIndex, int

pEndIndex, String pSearchType, String pSortProperty,

Boolean pAscending)

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/order/getOrdersAsXML?WSDL

Endpoint URL http://hostname:port/commerce/order/getOrdersAsXML/getO

rdersAsXML

Security
FunctionalName

orderLookupOperation

Repository
Component

/atg/commerce/order/OrderRepository

Item Descriptor order (b2c)
b2bOrder (b2b)

getOrderStatus Web Service

The getOrderStatus Web service returns the OrderStatus associated with the specified ID.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 9 6

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ

Servlet Name getOrderStatus

Input Parameters orderId - The ID of the order.

Output A complete OrderStatus object. This includes:

String orderId
Date dateSubmitted
String orderState
List of items and their states
List of shipping groups and their states
List of payment groups

Web Service Class atg.commerce.order.OrderServices

Nucleus Component /atg/commerce/order/orderServices

Method getOrderStatus(String orderId)

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/order/getOrderStatus?WS

DL

Endpoint URL http://hostname:port/commerce/order/getOrderStatus/ge

tOrderStatus

Security
FunctionalName

orderManagement

moveItemBetweenShippingGroups Web Service

The moveItemBetweenShippingGroups Web service moves the given quantity of the commerce item
from one shipping group into another within an order.

Servlet Name moveItemBetweenShippingGroups

Input Parameters orderId - The ID of the order.
commerceItemId - The ID of the item to be moved between
shipping groups.
quantity – the number of items to be moved.
sourceShippingGroupId - The ID of the shipping group from which
the item will be moved.
targetShippingGroupId - The ID of the shipping group to which the
item will be moved.

Output none

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 9 7

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Web Service Class atg.commerce.order.OrderServices

Nucleus Component /atg/commerce/order/orderServices

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/order/moveItemBetweenShi

ppingGroups?WSDL

Endpoint URL http://hostname:port/commerce/order/moveItemBetweenShi

ppingGroups/moveItemBetweenShippingGroups

Method moveItemBetwaeenShippingGroups(String orderId, String

commerceItemId,long quantity, String

sourceShippingGroupId,String targetShippingGroupId)

Security
FunctionalName

orderManagement

removeCreditCardFromOrder Web Service

The removeCreditCardFromOrder Web service removes the credit card with the given number from
the order.

Servlet Name removeCreditCardFromorder

Input Parameters orderId - The ID of the order from which the credit card will be
removed.
creditCardNumber – The credit card number to be removed from
the order.

Output none

Web Service Class atg.commerce.order.OrderServices

Nucleus Component /atg/commerce/order/orderServices

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/order/removeCreditCardFr

omOrder?WSDL

Endpoint URL http://hostname:port/commerce/order/removeCreditCardFr

omOrder/removeCreditCardFromOrder

Method removeCreditCardFromOrder(String orderId, String

creditCardNumber)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 9 8

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Security
FunctionalName

orderManagement

removeItemFromOrder Web Service

The removeItemFromOrder Web service decreases the quantity of the given commerce item. If the new
quantity is 0 or less, the item is removed.

Servlet Name removeItemFromOrder

Input Parameters orderId - The ID of the order from which the item will be removed.
commerceItemId - The ID of the item to remove.

Output none

Web Service Class atg.commerce.order.OrderServices

Nucleus
Component

/atg/commerce/order/orderServices

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/order/removeItemFromOrder?

WSDL

Endpoint URL http://hostname:port/commerce/order/removeItemFromOrder/

removeItemFromOrder

Method removeItemFromOrder(String orderId, String

commerceItemId)

Security
FunctionalName

orderManagement

removeItemQuantityFromShippingGroup Web Service

The removeItemQuantityFromShippingGroup Web service removes a quantity of the given item from
the shipping group. The commerce item can be completely removed from the order in this way.

Servlet Name removeItemQuantityFromShippingGroup

A T G C o m m e r c e P r o g r a m m i n g G u i d e

5 9 9

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Input
Parameters

orderId - The ID of the order.
commerceItemId - The ID of the item to be removed.
quantity – the number of items to be removed.
shippingGroupId - The ID of the shipping group from which the item will
be removed.

Output none

Web Service
Class

atg.commerce.order.OrderServices

Nucleus
Component

/atg/commerce/order/orderServices

Executes within
a session

Yes

WSDL URL http://hostname:port/commerce/order/removeItemQuantityFrom

ShippingGroup?WSDL

Endpoint URL http://hostname:port/commerce/order/removeItemQuantityFrom

ShippingGroup/removeItemQuantityFromShippingGroup

Method removeItemQuantityFromShippingGroup(String orderId, String

commerceItemId, long quantity, String shippingGroupId)

Security
FunctionalNa

me

orderManagement

removePaymentGroupFromOrder Web Service

The removePaymentGroupFromOrder Web service removes the payment group from the order.

Servlet Name removePaymentGroupFromOrder

Input Parameters orderId - The ID of the order from which the payment group will be
removed.
paymentGroupId - The ID of the payment group to be removed.

Output none

Web Service Class atg.commerce.order.OrderServices

Nucleus
Component

/atg/commerce/order/orderServices

Executes within a
session

Yes

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 0 0

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
WSDL URL http://hostname:port/commerce/order/removePaymentGroupF

romOrder?WSDL

Endpoint URL http://hostname:port/commerce/order/removePaymentGroupF

romOrder/removePaymentGroupFromOrder

Method removePaymentGroupFromOrder(String orderId, String

paymentGroupId)

Security
FunctionalName

orderManagement

removeShippingGroupFromOrder Web Service

The removeShippingGroupFromOrder Web service removes the payment shipping group from the
order.

Servlet Name removeShippingGroupFromOrder

Input Parameters orderId – The ID of the order from which the shipping group will be
removed.
shippingGroupId – The ID of the shipping group to be removed from
the order.

Output none

Web Service Class atg.commerce.order.OrderServices

Nucleus
Component

/atg/commerce/order/orderServices

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/order/removeShippingGroup

FromOrder?WSDL

Endpoint URL http://hostname:port/commerce/order/removeShippingGroup

FromOrder/removeShippingGroupFromOrder

Method removeShippingGroupFromOrder(String orderId, String

shippingGroupId)

Security
FunctionalName

orderManagement

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 0 1

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
setItemQuantity Web Service

The setItemQuantity Web service sets the item quantity for the given commerce item in the given
shipping group. The default shipping group is used if the shipping group ID argument is null. If the
quantity is set to zero, the item is removed from the shipping group (and the order if the item is part of
only one shipping group).

Servlet Name setItemQuantity

Input Parameters orderId - The ID of the order containing the item.
commerceItemId - The ID of the item whose quantity will be modified.
quantity - The new quantity of the item.

Output

Web Service
Class

atg.commerce.order.OrderServices

Nucleus
Component

/atg/commerce/order/orderServices

Executes within
a session

Yes

WSDL URL http://hostname:port/commerce/order/setItemQuantity?WSDL

Endpoint URL http://hostname:port/commerce/order/setItemQuantity/setItemQuanti

ty

Method setItemQuantity(String orderId, String commerceItemId,

 long quantity, String pShippingGroupId)

Security
FunctionalNam

e

orderManagement

setOrderAmountToPaymentGroup Web Service

The setOrderAmountToPaymentGroup Web service assigns a given amount to the payment group.

Servlet Name setOrderAmountToPaymentGroup

Input
Parameters

orderId - The ID of the order.
paymentGroupId - The ID of the payment group to which the amount will
be added.
amount - The amount of money to be added to the payment group.

Output none

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 0 2

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Web Service
Class

atg.commerce.order.OrderServices

Nucleus
Component

/atg/commerce/order/orderServices

Executes
within a
session

Yes

WSDL URL http://hostname:port/commerce/order/setOrderAmountToPayment

Group?WSDL

Endpoint URL http://hostname:port/commerce/order/setOrderAmountToPayment

Group/setOrderAmountToPaymentGroup

Method setOrderAmountToPaymentGroup(String orderId, String

paymentGroupId, double amount)

Security
FunctionalN

ame

orderManagement

submitOrderWithReprice Web Service

The submitOrderWithReprice Web service takes the order specified in the parameter and puts it into
the order process. The order is priced and authorized by ATG Commerce.

Note: The currency is normally driven by the locale in the profile associated with the order.

Servlet Name submitOrderWithReprice

Input
Parameters

OrderId - The ID of the order to be submitted.
Locale - The locale to use. This may be null.

Output none

Web Service
Class

atg.commerce.order.OrderServices

Nucleus
Component

/atg/commerce/order/orderServices

Executes
within a
session

Yes

WSDL URL http://hostname:port/commerce/order/submitOrderWithReprice?WSDL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 0 3

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Endpoint URL http://hostname:port/commerce/order/submitOrderWithReprice/submitO

rderWithReprice

Method submitOrderWithReprice(String orderId, String locale)

Security
FunctionalN

ame

orderManagement

Order Management Web Services Example

The following is an example Apache Axis client calling an order management web service. The
createOrder web service is used in this example.

The first step in calling the order management web service using Apache is to generate the client stubs:

java org.apache.axis.wsdl.WSDL2Java

http://hostname:port/commerce/order/createOrder?WSDL

Next, the following code executes the createOrder web service:

CreateOrderSEIService webService = new CreateOrderSEIServiceLocator();

CreateOrderSEI createStub = webService.getCreateOrderSEIPort();

String orderId = createStub.createOrder(null);

Pricing Web Services
All pricing web services are included in commerceWebServices.ear in the pricing.war web
application.

Ear file commerceWebServices.ear

War file pricing.war

Context-root commerce/pricing

For an example of a client calling a pricing web service, see the Pricing Web Services Example section. For
the recommended security policies to be associated with pricing web services, see the Commerce Web
Services Security section.

This section includes information on the following Pricing Web services.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 0 4

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
calculateOrderPrice Web Service

calculateOrderPriceSummary Web Service

calculateItemPriceSummary Web Service

calculateOrderPrice Web Service

The calculateOrderPrice Web service takes an order ID and a locale, prices the order, creates and
returns an OrderPrice object based on the information in the priced order.

Servlet name calculateOrderPrice

Input Parameters orderId – The ID of the order to be priced.
locale – (Optional) String representing the locale to be considered
when pricing. If this parameter is null, then the order owner’s locale will
be used. This will usually be null.

Output OrderPrice - an object containing the complete price information for
the given order

Web Service Class atg.commerce.pricing.PricingServices

Nucleus
Component

/atg/commerce/pricing/PricingServices

Method calculateOrderPrice(String pOrderId, String pLocale)

Executes within a
session

Yes

WSDL URL http://host:port/commerce/pricing/calculateOrderPrice?WS

DL

Endpoint URL http://host:port/commerce/pricing/calculateOrderPrice/ca

lculateOrderPrice

Security
FunctionalName

orderPricing

calculateOrderPriceSummary Web Service

The calculateOrderPriceSummary Web service takes an order Id and a locale, prices the order, creates
and returns an OrderPriceSummary object based on the information in the priced order.

Servlet name calculateOrderPriceSummary

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 0 5

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Input Parameters orderId – The ID of the order to be priced.

locale – (Optional) String representing the locale to be considered
when pricing. If this parameter is null, then the order owner’s locale will
be used. This will usually be null.

Output OrderPriceSummary - An object containing a summary of the price
information for the given order.

Web Service Class atg.commerce.pricing.PricingServices

Nucleus
Component

/atg/commerce/pricing/PricingServices

Method calculateOrderPriceSummary(String pOrderId, String

pLocale)

Executes within a
session

Yes

WSDL URL http://host:port/commerce/pricing/calculateOrderPriceSummary?WS
DL

Endpoint URL http://host:port/commerce/pricing/calculateOrderPriceSummary/calc
ulateOrderPriceSummary

Security
FunctionalName

orderPricing

calculateItemPriceSummary Web Service

The calculateItemPriceSummary Web service takes a SKU ID, product ID, quantity, profile ID, and a
locale, and prices the item based on the information given. The information is returned in an
ItemPriceSummary object.

Servlet name calculateItemPriceSummary

Input Parameters skuId – (Optional) The SKU ID of the item to be priced. If productId
is null, then skuId is required.
productId – (Optional) The product Id of the item to be priced. If
skuId is null, then productId is required.
quantity - The quantity of the item to be considered when pricing
profileId – (Optional) The ID of the profile to be considered when
pricing. If this is null, then the current user is used.
locale – (Optional) String representing the locale to be considered
when pricing. If this is null, the locale of the current user is used.

Output ItemPriceSummary - An object containing the price information for
the given item

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 0 6

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Web Service Class atg.commerce.pricing.PricingServices

Nucleus Component /atg/commerce/pricing/PricingServices

Method calculateItemPriceSummary(String pSkuId, String

pProductId, long pQuantity, String pProfileId, String

pLocale)

Executes within a
session

Yes

WSDL URL http://host:port/commerce/pricing/calculateItemPriceSu

mmary?WSDL

Endpoint URL http://host:port/commerce/pricing/calculateItemPriceSu

mmary/calculateItemPriceSummary

Security
FunctionalName

itemPricing

Pricing Web Services Example

The following is an example Apache Axis client calling a pricing Web service. The calculateOrderPrice
web service is used in this example.

The first step in calling a pricing web service using Apache is to generate the client stubs:

java org.apache.axis.wsdl.WSDL2Java

http://hostname:port/commerce/pricing/calculateOrderPrice?WSDL

Next, the following code executes the calculateOrderPrice web service:

CalculateOrderPriceSEIService webService = new

 CalculateOrderPriceSEIServiceLocator();

CalculateOrderPriceSEI pricingStub =

 webService.getCalculateOrderPriceSEIPort();

OrderPrice price = pricingStub.calculateOrderPrice(myOrderId, null);

Promotion Web Services
All promotion web services are included in commerceWebServices.ear in the promotions.war web
application.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 0 7

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ

Ear file commerceWebServices.ear

War file promotions.war

Context-root commerce/promtions

For an example of a client calling a promotion web service, see the Promotion Web Services Example
section. For the recommended security policies to be associated with promotion web services, see the
Commerce Web Services Security section.

This section includes information on the following Promotions Web services.

claimCoupon Web Service

getPromotionsAsXML Web Service

grantPromotion Web Service

revokePromotion Web Service

claimCoupon Web Service

The claimCoupon Web service claims the given coupon for the current user.

Servlet Name claimCoupon

Input
Parameters

profileId - The ID of the customer’s profile.
couponClaimCode – The code of the coupon being claimed. The repository
ID of the coupon item is the same as the claim code.

Output none

Web Service
Class

atg.commerce.claimable.ClaimableManager

Nucleus
Component

/atg/commerce/cliamable/ClaimableManager

Method claimCoupon(String pProfileId, String pCouponClaimCode)

Executes
within a
session

Yes

WSDL URL http://hostname:port/commerce/promotion/claimCoupon?WSDL

Endpoint URL http://hostname:port/commerce/promotion/claimCoupon/claimC

oupon

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 0 8

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Security
FunctionalN

ame

couponClaims

getPromotionsAsXML Web Service

The getPromotionsAsXML Web service looks up the given profile ID and for each available promotion
and returns an xml representation of the promotion using the GetService and the mappingFileName as
configured on PromotionTools. Both active promotions in the profile and global promotions are
returned.

Servlet Name getPromotionsAsxML

Input Parameters profileId – The ID of the profile for the customer whose
promotions will be retrieved.

Output An XML representation of each active promotion in the profile

Web Service Class atg.commerce.promotion.PromotionTools

Nucleus
Component

/atg/commerce/promotion/PromotionTools

Method getPromotionsAsXML(String pProfileId)

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/promotion/getPromotions

AsXML?WSDL

Endpoint URL http://hostname:port/commerce/promotion/getPromotions

AsXML/getPromotionsAsXML

Security
FunctionalName

profileOwnerOperation

Repository
Component

/atg/commerce/catalog/ProductCatalog

Item Descriptor promotion

grantPromotion Web Service

The grantPromotion Web service grants a promotion to a customer using customer’s profile ID and
promotion ID.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 0 9

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Servlet Name grantPromotion

Input
Parameters

promotionId – The ID of the promotion to be granted to the customer.
profileId – The ID of the of the customer’s profile.

Output none

Web Service
Class

atg.commerce.promotion.PromotionTools

Nucleus
Component

/atg/commerce/promotion/PromotionTools

Method grantPromotion(String pProfileId, String pPromotionId)

Executes within
a session

Yes

WSDL URL http://hostname:port/commerce/promotion/grantPromotion?WSDL

Endpoint URL http://hostname:port/commerce/promotion/grantPromotion/grantPromo

tion

Security
FunctionalName

promotionManagement

revokePromotion Web Service

The revokePromotion Web service invalidates a customer’s eligibility for a promotion using the
customer’s profile ID and promotion ID.

Servlet Name revokePromotion

Input
Parameters

promotionId – The ID of the promotion to be granted to the customer.
profileId – The ID of the of the customer’s profile.
removeAllInstances– If this is set to true and the promotion has more than one
instance of the given promotion, all copies of the promotion are removed.
Otherwise, only the first copy is removed.

Output none

Web Service
Class

atg.commerce.promotion.PromotionTools

Nucleus
Component

/atg/commerce/promotion/PromotionTools

Method revokePromotion(String pProfileId, String pPromotionId,

 boolean pRemoveAllInstances)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 1 0

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Executes within
a session

Yes

WSDL URL http://hostname:port/commerce/promotion/revokePromotion?WSDL

Endpoint URL http://hostname:port/commerce/promotion/revokePromotion/revokePro

motion

Security
FunctionalName

promotionManagement

Promotion Web Services Example

The following is an example Apache Axis client calling a promotions web service. The claimCoupon web
service is used in this example.

The first step in calling a promotion web service using Apache is to generate the client stubs:

java org.apache.axis.wsdl.WSDL2Java

http://hostname:port/commerce/promotion/claimCoupon?WSDL

Next, the following code executes the claimCoupon web service:

ClaimCouponSEIService webService = new ClaimCouponSEIServiceLocator();

ClaimCouponSEI couponStub = webService.getClaimCouponSEIPort();

CouponStub.claimCoupon(myProfileId, someCouponClaimCode);

Inventory Web Services
All inventory web services are included in commerceWebServices.ear in the inventory.war web
application.

Ear file commerceWebServices.ear

War file inventory.war

Context-root commerce/inventory

For an example of a client calling an inventory web service, see the Inventory Web Services Example
section. For the recommended security policies to be associated with inventory web services, see the
Commerce Web Services Security section.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 1 1

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
This section includes information on the following Inventory Web services.

getInventory Web Service

getInventoryStatus Web Service

setStockLevel Web Service

setStockLevels Web Service

getInventory Web Service

This service will return inventory information for each of the given SKUs. The information returned is in a
SimpleInventoryInfo class.

Servlet name getInventory

Input Parameters skuIds – An array of skuIds.

Output SimpleInventoryInfo[] – An array of SimpleInventoryInfo
objects, one for each SKU that was passed in as input.

Web Service Class atg.commerce.inventory.InventoryServices

Nucleus Component /atg/commerce/inventory/InventoryServices

Method getInventory(String[] skuIds) throws

InventoryException

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/inventory/getInventory?

WSDL

Endpoint URL http://hostname:port/commerce/inventory/getInventory/

getInventory

Security
FunctionalName

inventory

getInventoryStatus Web Service

This method will return an inventory status message describing the inventory status of each of the given
skuIds. The choices are: inStock, outOfStock, backorderable, preorderable, or discontinued.

Servlet name getInventoryStatus

Input Parameters skuIds – An array of skuIds.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 1 2

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Output An array of Stings (one of the above status messages).

Web Service Class atg.commerce.inventory.InventoryServices

Nucleus Component /atg/commerce/inventory/InventoryServices

Method getInventoryStatus(String[] skuIds) throws

InventoryException

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/inventory/getInventoryS

tatus?WSDL

Endpoint URL http://hostname:port/commerce/inventory/getInventoryS

tatus/getInventoryStatus

Security
FunctionalName

Inventory

setStockLevels Web Service

This service will update the stock level for each of the given SKUs.

Servlet name setStockLevels

Input Parameters skuIds – An array of SKU IDs.
stockLevels – An array of new stock level quantities. Both arrays
must be the same length.

Output void

Web Service Class atg.commerce.inventory.InventoryServices

Nucleus Component /atg/commerce/inventory/InventoryServices

Method setStockLevels(String[] skuIds, long[] stockLevels)

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/inventory/setStockLevel

s?WSDL

Endpoint URL http://hostname:port/commerce/inventory/setStockLevel

s/setStockLevels

Security
FunctionalName

inventoryAdministration

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 1 3

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ

setStockLevel Web Service

This service will update the stock level for each of the given SKUs.

Servlet name setStockLevel

Input Parameters skuId – The ID of the SKU being updated.
stockLevel – The new stock level for skuId.

Output void

Web Service Class atg.commerce.inventory.InventoryServices

Nucleus Component /atg/commerce/inventory/InventoryServices

Method setStockLevel(String skuId, long stockLevel)

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/inventory/setStockLevel

?WSDL

Endpoint URL http://hostname:port/commerce/inventory/setStockLevel

/setStockLevel

Security
FunctionalName

inventoryAdministration

Inventory Web Services Example

The following is an example Apache Axis client calling an inventory web service. The getInventory web
service is used in this example.

The first step in calling the inventory web service using Apache is to generate the client stubs:

java org.apache.axis.wsdl.WSDL2Java

http://hostname:port/commerce/inventory/getInventory?WSDL

Next, the following code executes the getInventory web service:

GetInventorySEIService webService = new GetInventoryServiceLocator();

GetInventorySEI inventoryStub = webService.getGetInventorySEIPort();

String[] skuIds = { "sku1", "sku2" };

SimpleInventoryInfo[] infos = inventoryStub.getInventory(skuIds);

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 1 4

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Catalog Web Services

All catalog web services are included in commerceWebServices.ear in the catalog.war web
application.

Ear file commerceWebServices.ear

War file catalog.war

Context-root commerce/catalog

For an example of a client calling a catalog web service, see the Catalog Web Services Example section.
For the recommended security policies to be associated with catalog web services, see the Commerce
Web Services Security section.

This section includes information on the following Catalog Web services.

catalogItemViewed Web Service

getProductSkusXML Web Service

getProductXMLByDescription Web Service

getProductXMLById Web Service

getProductXMLByRQL Web Service

catalogItemViewed Web Service

The catalogItemViewed Web service indicates that a particular item was viewed by the current user. A
new ViewItemMessage will be created and sent.

Servlet name catalogItemViewed

Input Parameters profileId – (Optional) The ID of the user who viewed the item. If null,
current user is assumed.
itemId - The ID of the item.
itemType - The type of the item viewed (for example: category or
product).

Output none

Web Service Class atg.commerce.catalog.CatalogServices

Nucleus
Component

/atg/commerce/catalog/CatalogServices

Method catalogItemViewed(String pProfileId, String pItemId,

String pItemType)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 1 5

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/catalog/catalogItemViewed?

WSDL

Endpoint URL http://hostname:port/commerce/catalog/catalogItemViewed/

catalogItemViewed

Security
FunctionalName

catalog

getProductSkusXML Web Service

The getProductSkusXML Web service retrieves the Product item in XML form as specified by the
ProductId. Catalog items are retrieved as specified by CatalogId. If no catalog item is found, then the
user in the current session is accessed and the catalog item is retrieved from the user.

Servlet name getProductSkusXML

Input Parameters productId - Specifies the product to retrieve
catalogId - (Optional) Catalog item to verify the product. If this
parameter is null, then the current user’s catalog is used.

Output SKU items present in the specified product in XML format.

Web Service Class atg.commerce.catalog.CatalogServices

Nucleus Component /atg/commerce/catalog/CatalogServices

Method getProductSkusXML(String pProductId, String

pCatalogId)

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/catalog/getProductSkus

XML?WSDL

Endpoint URL http://hostname:port/commerce/catalog/getProductSkus

XML/getProductSkusXML

Security
FunctionalName

Catalog

Repository
Component

/atg/commerce/catalog/ProductCatalog

Item Descriptor sku

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 1 6

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
getProductXMLByDescription Web Service

The getProductXMLByDescription Web service retrieves the product whose properties contain
SearchString, as specified by SearchPropertyNames or getSearchPropertyNames().

Servlet name getProductXMLByDescription

Input Parameters searchString - Search string to search for in the properties of
Product.
searchPropertyNames – (Optional) Array of property names to
search for. If this is null, then the property names configured at
CatalogServices.searchPropertyNames will be used.
catalogId – (Optional) The catalog item to verify the product. If
this parameter is null, then the current user’s catalog will be used.

Output Product items in XML format

Web Service Class atg.commerce.catalog.CatalogServices

Nucleus Component /atg/commerce/catalog/CatalogServices

Method getProductXMLByDescription(String pSearchString,

String[] pSearchPropertyNames, String pCatalogId)

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/catalog/getProductXM

LByDescription?WSDL

Endpoint URL http://hostname:port/commerce/catalog/getProductXM

LByDescription/getProductXMLByDescription

Security
FunctionalName

Catalog

Repository
Component

/atg/commerce/catalog/ProductCatalog

Item Descriptor product

getProductXMLById Web Service

The getProductXMLById Web service retrieves the Product item in XML form as specified by the
ProductId. The catalog item is retrieved as specified by CatalogId. If no catalog item is found then the
user in the current session is accessed and the catalog item is retrieved from the user.

Servlet name getProductXMLById

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 1 7

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Input Parameters productId - Specifies the product to retrieve

catalogId – (Optional) Specifies the catalogItem to check for the
product. If this parameter is null, then the current users catalog will be
used.

Output Product item in XML form.

Web Service Class atg.commerce.catalog.CatalogServices

Nucleus
Component

/atg/commerce/catalog/CatalogServices

Method getProductXMLById(String pProductId, String

pCatalogId)

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/catalog/getProductXMLByI

d?WSDL

Endpoint URL http://hostname:port/commerce/catalog/getProductXMLByI

d/getProductXMLById

Security
FunctionalName

catalog

Repository
Component

/atg/commerce/catalog/ProductCatalog

Item Descriptor product

getProductXMLByRQL Web Service

The getProductXMLByRQL Web service parses the pRQLQuery and executes the RqlStatement to
retrieve the product items. Product repository items are checked against specified catalog to include only
items present in catalog.

Servlet name getProductXMLByRQL

Input Parameters RQLQuery - RQL query string to execute against product
RepositoryView.
catalogId - (Optional) The catalog item to verify the product. If
this parameter is null, then the current users catalog will be used.

Output An array of strings containing product repository items in XML
format.

Web Service Class atg.commerce.catalog.CatalogServices

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 1 8

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Nucleus Component /atg/commerce/catalog/CatalogServices

Method getProductXMLByRQL(String pRQLQuery, String

pCatalogId)

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/catalog/getProductXMLB

yRQL?WSDL

Endpoint URL http://hostname:port/commerce/catalog/getProductXMLB

yRQL/getProductXMLByRQL

Security
FunctionalName

Catalog

Repository
Component

/atg/commerce/catalog/ProductCatalog

Item Descriptor product

Catalog Web Services Example

The following is an example Apache Axis client calling an catalog web service. The getProductXMLById
web service is used in this example.

The first step in calling the inventory web service using Apache is to generate the client stubs:

java org.apache.axis.wsdl.WSDL2Java

http://hostname:port/commerce/order/getProductXMLById?WSDL

Next, the following code executes the getProductXMLById web service:

GetProductXMLByIdSEIService webService = new

 GetProductXMLByIdServiceLocator();

GetProductXMLByIdSEI catalogStub =

 webService.getGetProductXMLByIdSEIPort();

String productXML = catalogStub.getProductXMLById("product1", null);

Profile Web Services
All profile web services are included in commerceWebServices.ear in the commerceProfile.war web
application.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 1 9

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ

Ear file commerceWebServices.ear

War file commerceProfile.war

Context-root commerce/commerceProfile

For an example of a client calling a profile web service, see the Profile Web Services Example section. For
the recommended security policies to be associated with profile web services, see the Commerce Web
Services Security section.

This section includes information on the following Commerce Profile Web services.

getDefaultBillingAddress Web Service

getDefaultCreditCard Web Service

getDefaultShippingAddress Web Service

setDefaultBillingAddress Web Service

setDefaultCreditCard Web Service

setDefaultShippingAddress Web Service

getDefaultShippingAddress Web Service

The getDefaultShippingAddress Web service retrieves the shippingAddressPropertyName from
the profile.

Servlet Name getDefaultShippingAddress

Input Parameters profileId - The profile ID of the user whose shipping address is
returned.

Output contactInfo - Contains the user’s default shipping address.

Web Service Class atg.commerce.profile.CommerceProfileServices

Nucleus Component /atg/userprofiling/ProfileServices

Method getDefaultShippingAddress(String pProfileId)

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/userprofiling/getDefaul

tShippingAddress?WSDL

Endpoint URL http://hostname:port/commerce/userprofiling/getDefaul

tShippingAddress/getDefaultShippingAddress

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 2 0

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Security
FunctionalName

profileOwnerOperation

getDefaultBillingAddress Web Service

The getDefaultBillingAddress Web service retrieves the billingAddressPropertyName from the
profile.

Servlet Name getDefaultBillingAddress

Input Parameters profileId - The profile ID of the user whose billing address is
returned.

Output contactInfo - Contains the user’s default shopping address.

Web Service Class atg.commerce.profile.CommerceProfileServices

Nucleus Component /atg/userprofiling/ProfileServices

Method getDefaultBillingAddress(String pProfileId)

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/userprofiling/getDefaul

tBillingAddress?WSDL

Endpoint URL http://hostname:port/commerce/userprofiling/getDefaul

tBillingAddress/getDefaultBillingAddress

Security
FunctionalName

profileOwnerOperation

getDefaultCreditCard Web Service

The getDefaultCreditCard Web service retrieves the creditCardPropertyName from the profile.

Servlet Name getDefaultCreditCard

Input Parameters profileId - The ID of the customer profile that contains the
credit card.

Output BasicCreditCardInfo - Contains the user’s default shopping
address.

Web Service Class atg.commerce.profile.CommerceProfileServices

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 2 1

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Nucleus Component /atg/userprofiling/ProfileServices

Method getDefaultCreditCard(String pProfileId)

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/userprofiling/getDefa

ultCreditCard?WSDL

Endpoint URL http://hostname:port/commerce/userprofiling/getDefa

ultCreditCard/getDefaultCreditCard

Security
FunctionalName

profileOwnerOperation

setDefaultBillingAddress Web Service

The setDefaultBillingAddress Web service sets the user’s billingAddressPropertyName to the
given address

Servlet Name setDefaultBillingAddress

Input Parameters profileId - The ID of the customer profile to be changed.
address - The new billing address.

Output The ID of the newly created address item

Web Service Class atg.commerce.profile.CommerceProfileServices

Nucleus Component /atg/userprofiling/ProfileServices

Method setDefaultBillingAddress(String pProfileId,

ContactInfo pAddress)

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/userprofiling/setDefau

ltBillingAddress?WSDL

Endpoint URL http://hostname:port/commerce/userprofiling/setDefau

ltBillingAddress/setDefaultBillingAddress

Security
FunctionalName

profileOwnerOperation

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 2 2

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
setDefaultCreditCard Web Service

The setDefaultCreditCard Web service sets the user’s creditCardPropertyName to the given
address.

Servlet Name setDefaultCreditCard

Input Parameters profileId - The ID of the customer profile to be changed.
creditCard - The new credit card.

Output The ID of the newly created credit card item.

Web Service Class atg.commerce.profile.CommerceProfileServices

Nucleus
Component

/atg/userprofiling/ProfileServices

Method setDefaultCreditCard(String pProfileId,

BasicCreditCardInfoImpl pCreditCardInfo)

Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/userprofiling/setDefaul

tCreditCard?WSDL

Endpoint URL http://hostname:port/commerce/userprofiling/setDefaul

tCreditCard/setDefaultCreditCard

Security
FunctionalName

profileOwnerOperation

setDefaultShippingAddress Web Service

The setDefaultShippingAddress Web service sets the user’s shippingAddressPropertyName to the
given address

Servlet Name setDefaultShippingAddress

Input Parameters profileId - The ID of the customer profile to be changed.
address - The new shipping address.

Output The ID of the newly created shipping address item.

Web Service Class atg.commerce.profile.CommerceProfileServices

Nucleus Component /atg/userprofiling/ProfileServices

Method setDefaultShippingAddress(String pProfileId,

ContactInfo pAddress)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 2 3

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
Executes within a
session

Yes

WSDL URL http://hostname:port/commerce/userprofiling/setDefau

ltShippingAddress?WSDL

Endpoint URL http://hostname:port/commerce/userprofiling/setDefau

ltShippingAddress/setDefaultShippingAddress

Security
FunctionalName

profileOwnerOperation

Profile Web Services Example

The following is an example Apache Axis client calling a profile web service. The
getDefaultShippingAddress web service is used in this example.

The first step in calling the profile web service using Apache is to generate the client stubs:

java org.apache.axis.wsdl.WSDL2Java

http://hostname:port/commerce/profile/getDefaultShippingAddress?WSDL

Next, the following code executes the getDefaultShippingAddress web service:

GetDefaultShippingAddressSEIService webService = new

GetDefaultShippingAddressSEIServiceLocator();

GetDefaultShippingAddressSEI addressStub =

webService.getGetDefaultShippingAddressSEIPort();

OrderPrice price = pricingStub.calculateOrderPrice(myOrderId, null);

Commerce Web Services Security
Web service security is controlled by the security policies associated with the Web service’s security
functional name. For more information on general web service security see the Web Service Security
section of the Creating Custom Web Services chapter in the ATG Web Services and Integration Framework
Guide.

The security functional name for each Web service is included in the sections about each web services in
this chapter. The standard security policy is described in the Managing Access Control chapter of the ATG
Programming Guide. The ProfileOwnerPolicy and RelativeRoleByProfileOrgPolicy are described
in the Profile-Related Security Policies section in the Web Services for Personalization and Scenarios chapter
of the ATG Personalization Programming Guide. The OrderOwnerPolicy is described in the Using the
Order Owner Security Policy section of this chapter.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 2 4

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
The following table lists the recommended security policy for each security functional name.

Security Functional Name Recommended Security Policy

catalog Standard security policy with an ACL that lists everyone that
is allowed to view the catalog. This ACL will probably
include all users.

couponClaims ProfileOwnerPolicy

getCurrentOrderId none recommended

inventory Standard SecurityPolicy with an ACL that lists those that
are allowed to call the inventory services. This ACL will
probably include all users.

inventoryAdministration Standard SecurityPolicy with an ACL that lists all users
that are allowed to manage inventory.

itemPricing ProfileOwnerPolicy

orderCreation Standard SecurityPolicy with ACL that lists users that are
allowed to create orders.

orderCreationForUser Standard SecurityPolicy with ACL that lists users that are
allowed to create orders for other users such as
administrators and customer service representatives.
Another option is to use the
RelativeRoleByProfileOrgPolicy to define access
relative to a user’s organization.

orderLookupOperation ProfileOwnerPolicy

orderManagement OrderOwnerPolicy

orderPricing OrderOwnerPolicy

profileOwnerOperation ProfileOwnerPolicy

profileOwnerOperation ProfileOwnerPolicy

promotionManagement ProfileOwnerPolicy

Using the Order Owner Security Policy

The Order Owner Security Policy extends the Standard Security Policy, which has all the base functionality
for interpreting the Access Control Lists (ACL). ACLs grant or deny access to secure objects. The
atg.security.StandardSecurityPolicy class is provided as part of the ATG platform. For more
information on the Standard Security Policy, see the Managing Access Control chapter of the ATG
Programming Guide.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 2 5

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
The Order Owner Security Policy appends the ACL returned by Standard Security Policy with additional
ACLs that either grant or deny access to specific personas. Personas can be users, roles or organizations.
The Order Owner Security Policy appends the ACL with the persona of the order owner. The order object
is an incoming method parameter.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 2 6

A p p e n d i x A : A T G C o m m e r c e W e b S e r v i c e s

μ
The orderParameterNames property of the /atg/commerce/security/orderOwnerSecurityPolicy
component allows you to configure the parameter names that can represent the order. By default the
orderParametNames is set to look for an order parameter with one of the following names: Order,
Orderobj, orderId, or order (in that order). If the method being secured uses a different name for the
parameter that represents the order, you can reconfigure the orderParameterNames property to include
that name.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 2 7

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
Appendix B: ATG Commerce Databases

The ATG Commerce database schema includes the following types of tables:

Core ATG Commerce Functionality Tables

Product Catalog Tables

Commerce Users Tables

Claimable Tables

Shopping Cart Events Table

Inventory Tables

Order Tables

Promotion Tables

User Promotion Tables

Gift List Tables

Price List Tables

Abandoned Order Services Tables

Order Markers Table

ATG Business Commerce Tables

ATG Business Commerce Product Catalog Tables

ATG Business Commerce Order Tables

ATG Business Commerce Organizational Tables

ATG Business Commerce User Profile Extensions

ATG Business Commerce Contract Tables

ATG Business Commerce Invoice Tables

Core ATG Commerce Functionality Tables
The following sections describe the database tables specific to core ATG Commerce functionality:

 Product Catalog Tables

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 2 8

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 Commerce Users Tables

 Claimable Tables

 Shopping Cart Events Table

 Inventory Tables

 Order Tables

 Promotion Tables

 User Promotion Tables

 Gift List Tables

 Price List Tables

 Abandoned Order Services Tables

 Order Markers Table

Product Catalog Tables

ATG Commerce uses the following tables to store product catalog information:

 dcs_allroot_cats

 dcs_cat_anc_cats

 dcs_cat_ancestors

 dcs_cat_aux_media

 dcs_cat_catalogs

 dcs_cat_catinfo

 dcs_cat_chldcat

 dcs_cat_chldprd

 dcs_cat_groups

 dcs_cat_keywrds

 dcs_cat_media

 dcs_cat_rltdcat

 dcs_cat_subcats

 dcs_cat_subroots

 dcs_catalog

 dcs_catalog_sites

 dcs_category

 dcs_category_info

 dcs_catfol_chld

 dcs_catinfo_anc

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 2 9

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 dcs_child_fol_cat

 dcs_conf_options

 dcs_config_prop

 dcs_config_opt

 dcs_ctlg_anc_cats

 dcs_dir_anc_ctlgs

 dcs_folder

 dcs_foreign_cat

 dcs_gen_fol_cat

 dcs_ind_anc_ctlgs

 dcs_media

 dcs_media_ext

 dcs_media_bin

 dcs_media_txt

 dcs_prd_anc_cats

 dcs_prd_ancestors

 dcs_prd_aux_media

 dcs_prd_catalogs

 dcs_prd_chldsku

 dcs_prd_groups

 dcs_prd_keywrds

 dcs_prd_media

 dcs_prd_prdinfo

 dcs_prd_prnt_cats

 dcs_prd_rltdprd

 dcs_prd_skuattr

 dcs_prdinfo_rdprd

 dcs_prdinfo_anc

 dcs_product

 dcs_product_acl

 dcs_product_info

 dcs_root_cats

 dcs_root_subcats

 dcs_sku

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 3 0

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 dcs_sku_attr

 dcs_sku_aux_media

 dcs_sku_bndllnk

 dcs_sku_catalogs

 dcs_sku_conf

 dcs_sku_link

 dcs_sku_media

 dcs_sku_replace

 dcs_sku_info

 dcs_sku_skuinfo

 dcs_skuinfo_rplc

 dcs_sub_catalogs

 dcs_user_catalog

dcs_allroot_cats

This table contains a list of all root categories

Column Data Type Constraint

catalog_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the custom catalog.
References dcs_catalog(catalog_id).

root_cat_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the category. References
dcs_category(category_id).

dcs_cat_anc_cats

This table defines the ancestor categories of each category. Used by the ancestorCategories property
of the category item.

Column Data Type Constraint

category_id VARCHAR(40) not null

(primary key) The ID of the category whose ancestor category is defined by the
anc_category_id column.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 3 1

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
sequence_num INTEGER not null

(primary key) Sequence number used to differentiate rows that are otherwise the
same. An ancestor can appear more than once for a given category if
there is more than one way to traverse up the catalog tree to reach the
ancestor.

anc_category_id VARCHAR(40) not null

 The ID of the ancestor category of the category defined by the
category_id column.

dcs_cat_ancestors

This table contains information about category ancestors.

Column Data Type Constraint

category_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the category.

anc_cat_id VARCHAR(40) NOT NULL

(primary key) The ID of a category that is an ancestor in the category. A category
has multiple rows in this table representing all the ancestors of a
category. A query of this value determines whether a category is a
child of another category.

dcs_cat_aux_media

This table contains information about an auxiliary media image associated with a category.

Column Data Type Constraint

category_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the category. References
dcs_category(category_id)

tag VARCHAR(42) NOT NULL

(primary key) Represents the key.

media_id VARCHAR(40) NOT NULL

 The value that points to a media item. References
dcs_media(media_id)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 3 2

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ

dcs_cat_catalogs

This table defines all the catalogs that a given category can be viewed in. Used by the catalogs property
of the category item.

Column Data Type Constraint

category_id VARCHAR(40) not null

(primary key) The ID of the category that can be viewed in the catalog defined by the
catalog_id column

catalog_id VARCHAR(40) not null

(primary key) The ID of the catalog within which the category defined in the
category_id column can be viewed

dcs_cat_catinfo

This table contains information about a specific category in the custom catalog.

Column Data Type Constraint

category_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the category. References
dcs_category(category_id).

catalog_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the catalog.

category_info_id VARCHAR(40) NOT NULL

 Unique identifier of the categoryInfo to associate with this
category when it is viewed as part of this catalog.

dcs_cat_groups

This table contains information about groups in a category.

Column Data Type Constraint

category_id VARCHAR(40) NOT NULL UNIQUE

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 3 3

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
(primary key) The unique identifier associated with the category. References

dcs_category(category_id)

child_prd_group VARCHAR(254) NULL

 Stores the name of a Content Group that should return a list of
products that should be children of this category.

child_cat_group VARCHAR(254) NULL

 Stores the name of a Content Group that should return a list of
categories that should be children of this category.

related_cat_group VARCHAR(254) NULL

 Stores the name of a Content Group that should return a list of
categories that are related to this category.

dcs_cat_chldcat

This table contains information about children of categories.

Column Data Type Constraint

category_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the category. References
dcs_category(category_id)

sequence_num INTEGER NOT NULL

(primary key) Used to order rows in this table.

child_cat_id VARCHAR(40) NOT NULL

 A category ID that should be considered a child of this category.
References dcs_category(category_id)

dcs_cat_chldprd

This table contains information about child products within a category.

Column Data Type Constraint

category_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the category. References
dcs_category(category_id)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 3 4

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
sequence_num INTEGER NOT NULL

(primary key) Used to order rows in the table.

child_prd_id VARCHAR(40) NOT NULL

 A product ID that should be considered a child of this category.
References dcs_product(product_id)

dcs_cat_keywrds

This table contains information about category keywords.

Column Data Type Constraint

category_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the category. References
dcs_category(category_id)

sequence_num INTEGER NOT NULL

(primary key) Used to order rows in this table.

Keyword VARCHAR(254) NOT NULL

 A String value used in searches.

dcs_cat_media

This table contains information about media in a category.

Column Data Type Constraint

category_id VARCHAR(40) NOT NULL UNIQUE

(primary key) The unique identifier associated with the category. References
dcs_category(category_id)

template_id VARCHAR(40) NULL

 The ID of a media item that represents the template that renders
the category. References dcs_media(media_id)

thumbnail_image_id VARCHAR(40) NULL References
dcs_media(media_id)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 3 5

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The ID of a media item that represents a thumbnail image of a

category that can be displayed in the template.

small_image_id VARCHAR(40) NULL

 The ID of a media item that represents a small image of a category
that can be displayed in the template. References
dcs_media(media_id)

large_image_id VARCHAR(40) NULL

 The ID of a media item that represents a large image of a category
that can be displayed in the template. References
dcs_media(media_id)

dcs_cat_prnt_cats

This table stores information related to a catalog’s parent categories.

Column Data Type Constraint

Category_id VARCHAR(40) not null

(primary key) The ID of a category

Catlog_id VARCHAR(40) not null

(primary key) The ID of a catalog.

parent_ctgy_id VARCHAR(40) not null

 The ID of the catalog’s parent category.

dcs_cat_rltdcat

This table contains information about category relationships.

Column Data Type Constraint

category_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the category.

sequence_num INTEGER NOT NULL

(primary key) Used to order rows in this table.

related_cat_id VARCHAR(40) NOT NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 3 6

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 A category ID that should be considered related to the category.

References dcs_category(category_id)

dcs_cat_subcats

This table contains information about the sub-categories for a specific category in the custom catalog.

Column Data Type Constraint

category_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the category. References
dcs_category(category_id).

sequence_num INTEGER NOT NULL

(primary key) This number is used to order the sub catalogs.

catalog_id VARCHAR(40) NOT NULL

 The unique identifier associated with the catalog. References
dcs_catalog(catalog_id).

dcs_cat_subroots

This table contains information about the root subcategories for a specific category in the custom catalog.

Column Data Type Constraint

category_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the category. References
dcs_category(category_id).

sequence_num INTEGER NOT NULL

(primary key) This number is used to order the sub catalogs.

sub_category_id VARCHAR(40) NOT NULL

 The unique identifier associated with the subcategory.

dcs_catalog

This table contains information that describes catalogs.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 3 7

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
Column Data Type Constraint

catalog_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the catalog.

version INTEGER NOT NULL

 The integer incremented with each revision to prevent version
conflict.

display_name VARCHAR(254) NULL

 The name of the custom catalog displayed in the ACC.

creation_date TIMESTAMP NULL

 The date the catalog was created.

last_mod_date TIMESTAMP NULL

 The last date the catalog was modified.

migration_status INTEGER NULL

 If the catalog was migrated from a standard product, this
represents the status of the migration.

migration_index INTEGER NULL

 This is the index of the last successful migration step. Used if
CatalogMigration needs to restart.

item_acl LONG VARCHAR NULL

 The security for the catalog.

dcs_catalog_sites

This table stores information related to site ownership of catalogs. Used by the multisite feature.

Column Data Type Constraint

catalog_id VARCHAR(40) not null

(primary key) The ID of a catalog.

site_id VARCHAR(40) not null

(primary key) The ID of a site to which the catalog is associated.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 3 8

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
dcs_category

This table contains information that describes a category.

Column Data Type Constraint

category_id VARCHAR(40) NOT NULL UNIQUE

(primary key) The unique identifier associated with the category.

catalog_id VARCHAR(40)

 The unique identifier associated with the catalog that contains
this category.

version INTEGER NOT NULL

 Manages the optimistic locking feature of the SQL Repository. This
value is automatically incremented by the SQL Repository when
any value of the item is modified. If you change rows directly
outside of the ATG framework, you should also increment the
version number.

creation_date DATE NULL

 The date this category was created.

start_date DATE NULL

 The date on which this category will become available. This is an
optional field that can be used by the SQL Repository as part of an
RQL filter to prevent items from being loaded from the database.

end_date DATE NULL

 The last date on which this category will be available. This is an
optional field that can be used by the SQL Repository as part of an
RQL filter to prevent items from being loaded from the database.

display_name VARCHAR(254) NULL

 The name of the category that displays in the ACC.

description VARCHAR(254) NULL

 A text description of the category.

long_description LONG VARCHAR NULL

 A long text description of the category.

parent_cat_id VARCHAR(40) NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 3 9

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The ID of the immediate and default parent category. References

dcs_category(category_id)

parent_cat_id VARCHAR(40) NULL

 The ID of the immediate and default parent category.

category_type INTEGER NULL

 An enumerated value used for defining sub-types of the initial
ATG Commerce category item descriptor.

root_category NUMERIC(1) NULL CHECK(root_category in
(01))

 A boolean (1 or 0) indicator that represents which categories
should be considered the root of the catalog hierarchy.

dcs_category_info

This table contains information about categories in custom catalogs.

Column Data Type Constraint

category_info_id VARCHAR(40) NOT NULL

(primary key) Unique identifier associated with the categoryInfo object.

version INTEGER NOT NULL

 The integer incremented with each revision to prevent version
conflict.

item_acl LONG VARCHAR NULL

 The security for the category_info.

dcs_category_sites

This table stores information related to site ownership of categories. Used by the multisite feature.

Column Data Type Constraint

category_id VARCHAR(40) not null

(primary key) The ID of a category.

site_id VARCHAR(40) not null

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 4 0

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
(primary key) The ID of a site to which the category is associated.

dcs_catinfo_anc

This table contains information about ancestor categories for categoryInfo objects.

Column Data Type Constraint

category_info_id VARCHAR(40) NOT NULL

(primary key) Identifier for the categoryInfo.

anc_cat_id VARCHAR(40) NOT NULL

(primary key) Identifier for the ancestor category.

dcs_catfol_chld

This table contains information about the folders in which catalogs are located.

Column Data Type Constraint

catfol_id VARCHAR(40) NOT NULL

(primary key) References dcs_gen_fol_cat(folder_id).

sequence_num INTEGER NOT NULL

(primary key) This number is used to order the catalogs.

catalog_id VARCHAR(40) NOT NULL

 The ID of the catalog contained in the folder.

dcs_catfol_sites

This table contains information about the sites with which catalog folders are associated.

Column Data Type Constraint

catfol_id VARCHAR(40) NOT NULL

(primary key) References dcs_gen_fol_cat(folder_id).

site_id VARCHAR(40) NOT NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 4 1

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
(primary key) References the ID of the site with with the catalog folder is

associated.

dcs_child_fol_cat

This table contains information about the child folders for a specific catalog.

Column Data Type Constraint

folder_id VARCHAR(40) NOT NULL

(primary key) References dcs_gen_fol_cat(folder_id).

sequence_num INTEGER NOT NULL,

(primary key) This number is used to order the child folders.

child_folder_id VARCHAR(40) NOT NULL,

 The ID of the child folder.

dcs_conf_options

The following table contains information related to configuration options.

Column Data Type Constraint

config_prop_id VARCHAR(40) NOT NULL

(primary key) References dcs_config_prop(config_prop_id)

config_options VARCHAR(40) NOT NULL

 The configuration options associated with the configurable
property.

sequence_num INTEGER NOT NULL

(primary key) The sequence number of the configurable option in a list.

dcs_config_prop

The following table contains information related to configurable properties.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 4 2

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
Column Data Type Constraint

config_prop_id VARCHAR(40) NOT NULL

(primary key) The repository configurable property ID.

version INTEGER NOT NULL

 The repository version number.

display_name VARCHAR(40) NULL

 The display name of the configurable property.

description VARCHAR(255) NULL

 A description of the configurable property.

item_acl LONG VARCHAR NULL

 The item access control list for this item.

dcs_config_opt

The following table contains information related to configuration options.

Column Data Type Constraint

config_opt_id VARCHAR(40) NOT NULL

(primary key) The repository configuration option ID.

Version INTEGER NOT NULL

 The repository version number.

display_name VARCHAR(40) NULL

 The configuration option display name.

description VARCHAR(255) NULL

 The configuration option description.

sku VARCHAR(40) NULL

 The configuration option SKU.

product VARCHAR(40) NULL

 The configuration option product.

price DOUBLE PRECISION NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 4 3

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The configuration option price.

item_acl LONG VARCHAR NULL

 The item access control list for this item.

dcs_ctlg_anc_cats

This table contains information that defines the ancestor categories of each catalog. Used for the
ancestorCategories property of the catalog item.

Column Data Type Constraint

catalog_id VARCHAR(40) not null

(primary key) The ID of the catalog whose ancestor category is defined by the
anc_category_id column.

sequence_num INTEGER not null

(primary key) Sequence number used to differentiate rows that are otherwise the
same. An ancestor can appear more than once for a given catalog if there
is more than one way to traverse up the catalog tree to reach the
ancestor.

category_id VARCHAR(40) not null

 The ID of the ancestor category of the catalog defined in the
catalog_id column.

dcs_dir_anc_ctlgs

This table contains information that defines a direct-ancestor relationship between two catalogs. A
catalog is considered a direct ancestor of another catalog if there are no categories separating the two
catalogs. In other words, the tree between the two catalogs will only include catalogs.

A “self” ancestor relationship is defined in this database table. Each catalog should have a row where the
ancestor catalog is itself in the directAncestorCatalogsAndSelf property of the catalog item.

Column Data Type Constraint

catalog_id VARCHAR(40) not null

(primary key) The ID of the catalog whose direct ancestor is defined in the
anc_catalog_id column.

sequence_num INTEGER not null

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 4 4

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
(primary key) Sequence number used to differentiate rows that are otherwise the

same – an ancestor can appear more than once for a given catalog if
there is more than one way to traverse up the catalog tree to reach
the ancestor.

anc_catalog_id VARCHAR(40) not null

 The direct ancestor catalog of the catalog defined in the catalog_id
column.

dcs_folder

This table contains information that describes a folder.

Column Data Type Constraint

folder_id VARCHAR(40) NOT NULL UNIQUE

(primary key) The unique identifier associated with the folder.

version INTEGER NOT NULL

 Manages the optimistic locking feature of the SQL Repository. This
value is automatically incremented by the SQL Repository when
any value of the item is modified. If you change rows directly
outside of the ATG platform, you should also increment the
version number.

creation_date DATE NULL

 The date this folder was created.

start_date DATE NULL

 The date on which this folder will become available. This is an
optional field that can be used by the SQL Repository as part of an
RQL filter to prevent items from being loaded from the database.

end_date DATE NULL

 The last date on which this folder will be available. This is an
optional field that can be used by the SQL Repository as part of an
RQL filter to prevent items from being loaded from the database.

description VARCHAR(254) NULL

 A text description of the folder.

name VARCHAR(254) NOT NULL

 The name of the folder.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 4 5

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
path VARCHAR(254) NOT NULL

 A String that represents the folder in the context of all the ancestor
folders. This value is similar to the complete absolute path of a file.

parent_folder_id VARCHAR(40) NOT NULL

 The ID of the folder that contains this folder in the catalog
hierarchy. References dcs_folder(folder_id).

dcs_foreign_cat

The following table contains information related to a foreign catalog (remote catalog) that ATG
Commerce would integrate with to support configurable commerce items.

Column Data Type Constraint

catalog_id VARCHAR(40) NOT NULL

(primary key) The unique repository ID of the catalog.

type INTEGER NOT NULL

 The type field is used for sub-typing this catalog.

version INTEGER NOT NULL

 Version property that is used internally by the Repository to
maintain data consistency.

name VARCHAR(100) NULL

 The name for this catalog that will appear in the ACC.

description VARCHAR(255) NULL

 A description of this catalog that is appropriate in a UI context.

host VARCHAR(100) NULL

 The host that this foreign catalog lives at.

port INTEGER NULL

 The port that this catalog can be located on at the host.

base_url VARCHAR(255) NULL

 The base URL to locate this catalog, at a given host.

return_url VARCHAR(255) NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 4 6

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The URL that can be used for return.

item_acl LONG VARCHAR NULL

 Maintains an ACL for security information purposes on instances
of this item-descriptor.

dcs_gen_fol_cat

This table contains information about the base folders for a specific catalog.

Column Data Type Constraint

folder_id VARCHAR(40) NOT NULL

(primary key) The unique identifier of the folder item.

type INTEGER NOT NULL

 The type of folder.

name VARCHAR(40) NOT NULL

 The name of the folder that is displayed in the ACC.

parent VARCHAR(40) NULL

 The parent folder of the folder described in this table.

description VARCHAR(254) NULL

 A description of this folder.

item_acl LONG VARCHAR NULL

 Security information for this folder.

dcs_ind_anc_ctlgs

This table contains information that defines an indirect-ancestor relationship between two catalogs. A
catalog is considered an indirect ancestor of another catalog if there is at least one category separating
the two catalogs. This table defines the indirectAncestorCatalogs property of the catalog item.

Column Data Type Constraint

catalog_id VARCHAR(40) not null

(primary key) The ID of the catalog whose indirect ancestor is defined by the
anc_catalog_id column.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 4 7

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
sequence_num INTEGER not null

(primary key) Sequence number used to differentiate rows that are otherwise the
same – an ancestor can appear more than once for a given catalog if
there is more than one way to traverse up the catalog tree to reach the
ancestor.

anc_catalog_id VARCHAR(40) not null

 The ID of the indirect ancestor catalog of the catalog defined by the
catalog_id column.

dcs_media

This table contains information that describes a media item.

Column Data Type Constraint

media_id VARCHAR(40) NOT NULL UNIQUE

(primary key) The unique identifier associated with the media item.

version INTEGER NOT NULL

 Manages the optimistic locking feature of the SQL Repository. This
value is automatically incremented by the SQL Repository when
any value of the item is modified. If you change rows directly
outside of the ATG framework, you should also increment the
version number.

creation_date DATE NULL

 The date this media item was created.

start_date DATE NULL

 The date on which this media item will become available. This is an
optional field that can be used by the SQL Repository as part of an
RQL filter to prevent items from being loaded from the database.

end_date DATE NULL

 The last date on which this media item will be available. This is an
optional field that can be used by the SQL Repository as part of an
RQL filter to prevent items from being loaded from the database.

description VARCHAR(254) NULL

 A text description of the media item.

name VARCHAR(254) NOT NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 4 8

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The name of the media item.

path VARCHAR(254) NOT NULL

 A String, which represents the folder in the context of all the
ancestor folders. This value is similar to the complete absolute
path of a file.

parent_folder_id VARCHAR(40) NOT NULL

 The ID of the folder that contains this media item in the catalog
hierarchy. References dcs_folder(folder_id)

media_type INTEGER NULL

 Used as an enumerated data type that indicates what form of
media is stored. By default this includes external, internal binary,
and internal text media items.

dcs_media_ext

This table contains information that describes extended attributes of a media item.

Column Data Type Constraint

media_id VARCHAR(40) NOT NULL UNIQUE

(primary key) The unique identifier associated with the media. References
dcs_media(media_id).

url VARCHAR(254) NOT NULL

 The external URL that references media content.

dcs_media_bin

This table contains information that describes the size of a media item.

Column Data Type Constraint

media_id VARCHAR(40) NOT NULL UNIQUE

(primary key) The unique identifier associated with the media. References
dcs_media(media_id).

length INTEGER NOT NULL

 The number of bytes of data stored in the data column.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 4 9

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
last_modified DATE NOT NULL

 The date this item was last modified.

data LONG VARBINARY NOT NULL

 The raw bytes of content.

dcs_media_txt

This table contains information about the text features of a media item.

Column Data Type Constraint

media_id VARCHAR(40) NOT NULL UNIQUE

(primary key) The unique identifier associated with the media. References
dcs_media(media_id).

length INTEGER NOT NULL

 The number of bytes of data stored in the data column.

last_modified DATE NOT NULL

 The date this item was last modified.

data LONG VARCHAR NOT NULL

 Text content that can be indexed by a search engine.

dcs_prd_anc_cats

This table defines the ancestor categories of each product. Used by the ancestorCategories property
of the product item.

Column Data Type Constraint

product_id VARCHAR(40) not null

(primary key) The ID of the product whose ancestor category is defined in the
category_id column.

sequence_num INTEGER not null

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 5 0

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
(primary key) Sequence number used to differentiate rows that are otherwise the

same. An ancestor can appear more than once for a given product if
there is more than one way to traverse up the catalog tree to reach the
ancestor.

category_id VARCHAR(40) not null

 The ancestor category of the product defined in the product_id
column.

dcs_prd_ancestors

Column Data Type Constraint

product_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the product.

anc_cat_id VARCHAR(40) NOT NULL

(primary key) The ID of a category that is an ancestor of the product. A product
has multiple rows in this table representing all the ancestors of the
product. . A query of this value determines whether a product is a
child of another category.

dcs_prd_aux_media

This table contains information about an auxiliary media image associated with a product.

Column Data Type Constraint

product_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the product. References
dcs_product(product_id)

tag VARCHAR(42) NOT NULL

(primary key) Represents the key.

media_id VARCHAR(40) NOT NULL

 The value that points to a media item. References
dcs_media(media_id)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 5 1

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
dcs_prd_catalogs

This table defines all the catalogs that a given product can be viewed in. Used by the catalogs property
of the product item.

Column Data Type Constraint

product_id VARCHAR(40) not null

(primary key) The ID of the product that can be viewed in the catalog defined by the
catalog_id column

catalog_id VARCHAR(40) not null

(primary key) The ID of the catalog within which the product defined by the
product_id column can be viewed

dcs_prd_keywrds

This table contains information about product keywords.

Column Data Type Constraint

product_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the product. References
dcs_product(product_id)

sequence_num INTEGER NOT NULL

(primary key) Used to order rows in this table.

keyword VARCHAR(254) NOT NULL

 A String value used in searches.

dcs_prd_media

This table contains information about product media items.

Column Data Type Constraint

product_id VARCHAR(40) NOT NULL UNIQUE

(primary key) The unique identifier associated with the product. References
dcs_product(product_id)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 5 2

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
template_id VARCHAR(40) NULL

 The ID of a media item that represents the template that renders
the product. References dcs_media(media_id)

thumbnail_image_id VARCHAR(40) NULL

 The ID of a media item that represents a thumbnail image of a
product that can be displayed in the template. References
dcs_media(media_id)

small_image_id VARCHAR(40) NULL

 The ID of a media item that represents a small image of a category
that can be displayed in the template. References
dcs_media(media_id)

large_image_id VARCHAR(40) NULL

 The ID of a media item that represents a large image of a category
that can be displayed in the template. References
dcs_media(media_id)

dcs_prd_chldsku

This table contains information about children of products.

Column Data Type Constraint

product_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the product. References
dcs_product(product_id)

sequence_num INTEGER NOT NULL

(primary key) Used to order rows in the table.

sku_id VARCHAR(40) NOT NULL

 The ID of a SKU that is a child of this product. References
dcs_sku(sku_id)

dcs_prd_groups

This table contains information about related product groups.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 5 3

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
Column Data Type Constraint

product_id VARCHAR(40) NOT NULL UNIQUE

(primary key) The unique identifier associated with the product. References
dcs_product(product_id)

related_prd_group VARCHAR(254) NULL

 Stores the name of a Content Group that should return a list of
products that are related to this product.

dcs_prd_prdinfo

This table contains information about the productInfos to associate with a given product in a given
catalog.

Column Data Type Constraint

product_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the product. References
dcs_product(product_id).

catalog_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with a catalog.

product_info_id VARCHAR(40) NOT NULL

 The unique identifier of the productInfo to associate with this
product when it is viewed from this catalog.

dcs_prd_prnt_cats

This table defines the parent category for each product within each catalog. It defines the
parentCategoriesForCatalog property of the product item.

Column Data Type Constraint

product_id VARCHAR(40) not null

(primary key) The ID of the product whose parent category in the catalog defined by
the catalog_id column is defined in the category_id column.

catalog_id VARCHAR(40) not null

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 5 4

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
(primary key) The ID of the catalog within which the category defined by the

category_id column is the parent category of the product defined in
the product_id column.

category_id VARCHAR(40) not null

 The ID of the parent category of the product defined by the
product_id column within the catalog defined by the catalog_id
column.

dcs_prd_rltdprd

This table contains information about related products.

Column Data Type Constraint

product_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the product. References
dcs_product(product_id)

sequence_num INTEGER NOT NULL

 Used to order rows in the table.

related_prd_id VARCHAR(40) NOT NULL

 A product ID that should be considered related to the product.
References dcs_product(product_id)

dcs_prd_skuattr

This table contains information about which attributes of a SKU should be displayed.

Column Data Type Constraint

product_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the product. References
dcs_product(product_id)

sequence_num INTEGER NOT NULL

(primary key) Used to order rows in the table.

attribute_name VARCHAR(40) NOT NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 5 5

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The name of a SKU property that should be used to display

relevant information about a SKU. For example not all the
attributes of a SKU need to be displayed, perhaps only color, size,
and display-name are necessary.

dcs_prdinfo_anc

This table contains information about the ancestor categories to associate with productInfos.

Column Data Type Constraint

product_info_id VARCHAR(40) NOT NULL

(primary key) The unique identifier of the productInfo item.

anc_cat_id VARCHAR(40) NOT NULL

(primary key) The unique identifier of the ancestor category.

dcs_prdinfo_rdprd

This table contains information about related products.

Column Data Type Constraint

product_info_id VARCHAR(40) NOT NULL

(primary key) References dcs_product_info(product_info_id).

sequence_num INTEGER NOT NULL

(primary key) This number is used to order the related products.

related_prd_id VARCHAR(40) NOT NULL

 References dcs_product(product_id).

dcs_product

This table contains information that describes a product item.

Column Data Type Constraint

product_id VARCHAR(40) NOT NULL UNIQUE

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 5 6

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
(primary key) The unique identifier associated with the product.

version INTEGER NOT NULL

 Manages the optimistic locking feature of the SQL Repository. This
value is automatically incremented by the SQL Repository when
any value of the item is modified. If you change rows directly
outside of the ATG framework, you should also increment the
version number.

creation_date DATE NULL

 The date this product was created.

start_date DATE NULL

 The date on which this product will become available. This is an
optional field that can be used by the SQL Repository as part of an
RQL filter to prevent items from being loaded from the database.

end_date DATE NULL

 The last date on which this product will be available. This is an
optional field that can be used by the SQL Repository as part of an
RQL filter to prevent items from being loaded from the database.

display_name VARCHAR(254) NULL

 The name of the product that displays in the ACC.

description VARCHAR(254) NULL

 A text description of the product.

long_description LONG VARCHAR NULL

 A long text description of the product.

parent_cat_id VARCHAR(40) NULL

 The ID of the immediate and default parent category. References
dcs_category(category_id)

parent_cat_id VARCHAR(40) NULL

 The ID of the immediate and default parent category.

product_type INTEGER NULL

 An enumerated value used for defining sub-types of the initial
ATG Commerce product item descriptor.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 5 7

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
dcs_product_acl

The table stores security information for each product repository item.

Column Data Type Constraint

product_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the product.

item_acl LONG VARCHAR NULL

 Stores the actual access control list. The access control list defines
who can read, edit and delete an item.

dcs_product_info

This table contains information about the products in catalogs.

Column Data Type Constraint

product_info_id VARCHAR(40) NOT NULL

(primary key) Unique identifier associated with the productInfo object.

version INTEGER NOT NULL

 The integer incremented with each revision to prevent version
conflict.

parent_cat_id VARCHAR(40) NULL

 Identifier for the parent category of the productInfo.

item_acl LONG VARCHAR NULL

 The security for the product_info.

dcs_product_sites

This table stores information related to site ownership of catalogs. Used by the multisite feature.

Column Data Type Constraint

product_id VARCHAR(40) not null

(primary key) The ID of a product.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 5 8

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
site_id VARCHAR(40) not null

(primary key) The ID of a site to which the product is associated.

dcs_root_cats

This table contains a list of root categories.

Column Data Type Constraint

catalog_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the catalog. References
dcs_catalog(catalog_id).

root_cat_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the category. References
dcs_category(category_id).

dcs_root_subcats

This table contains a list of root sub-catalogs.

Column Data Type Constraint

catalog_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the catalog. References
dcs_catalog(catalog_id)

sub_catalog_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the subcatalog. References
dcs_catalog(catalog_id).

dcs_sku

This table contains information that describes a SKU item.

Column Data Type Constraint

sku_id VARCHAR(40) NOT NULL UNIQUE

(primary key) The unique identifier associated with the SKU.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 5 9

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
version INTEGER NOT NULL

 Manages the optimistic locking feature of the SQL Repository. This
value is automatically incremented by the SQL Repository when
any value of the item is modified. If you change rows directly
outside of the ATG framework, you should also increment the
version number.

creation_date DATE NULL

 The date this SKU was created.

start_date DATE NULL

 The date on which this SKU will become available. This optional
field can be used by the SQL Repository as part of an RQL filter to
prevent items from being loaded from the database.

end_date DATE NULL

 The last date on which this SKU will be available. This is an
optional field that can be used by the SQL Repository as part of an
RQL filter to prevent items from being loaded from the database.

display_name VARCHAR(254) NULL

 The name of the SKU that displays in the ACC.

description VARCHAR(254) NULL

 A text description of the SKU.

sku_type INTEGER NULL

 An enumerated value used for defining sub-types of the initial
ATG Commerce SKU item descriptor.

wholesale_price DOUBLE PRECISION NULL

 The wholesale price of the SKU.

list_price DOUBLE PRECISION NULL

 The list price of the SKU.

sale_price DOUBLE PRECISION NULL

 The sale price of the SKU.

on_sale NUMERIC(1) NULL CHECK(on_sale in (01))

 Determines whether the SKU is on sale.

tax_status INTEGER NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 6 0

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 An optional field that may be used to determine the taxable status

of the SKU.

fulfiller INTEGER NULL

 An enumerated value that indicates which ATG Commerce fulfiller
should attempt to process the SKU in the submitted order.

dcs_sku_attr

This table holds information about an attribute map associated with a SKU.

Column Data Type Constraint

sku_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the SKU. References
dcs_sku(sku_id)

attribute_name VARCHAR(42) NOT NULL

(primary key) Represents the key.

attribute_value VARCHAR(254) NOT NULL

 The value that allows arbitrary name property values to be
associated with a SKU.

dcs_sku_aux_media

This table contains information about an auxiliary media image associated with a SKU.

Column Data Type Constraint

sku_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the SKU. References
dcs_sku(sku_id)

tag VARCHAR(42) NOT NULL

(primary key) Represents the key.

media_id VARCHAR(40) NOT NULL

 The value that points to a SKU. References
dcs_media(media_id)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 6 1

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ

dcs_sku_catalogs

This table defines all the catalogs that a given SKU can be viewed in. Used by the catalogs property of
the sku item.

Column Data Type Constraint

sku_id VARCHAR(40) not null

(primary key) The ID of the SKU that can be viewed within the catalog defined by the
catalog_id column

catalog_id VARCHAR(40) not null

(primary key) The ID of the catalog within which the SKU defined by the sku_id
column can be viewed

dcs_sku_link

This table describes SKU links, which are used to represent SKU bundles.

Column Data Type Constraint

sku_link_id VARCHAR(40) NOT NULL UNIQUE

(primary key) The unique identifier of the SKU link, which represents a bundle of
SKUs.

version INTEGER NOT NULL

 Manages the optimistic locking feature of the SQL Repository. This
value is automatically incremented by the SQL Repository when
any value of the item is modified. If you change rows directly
outside of the ATG framework, you should also increment the
version number.

creation_date DATE NULL

 The date this SKU was created.

start_date DATE NULL

 The date on which this SKU will become available. This is an
optional field that can be used by the SQL Repository as part of an
RQL filter to prevent items from being loaded from the database.

end_date DATE NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 6 2

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The last date on which this SKU will become available. This is an

optional field that can be used by the SQL Repository as part of an
RQL filter to prevent items from being loaded from the database.

display_name VARCHAR(254) NULL

 The name of the SKU link that displays in the ACC.

description VARCHAR(254) NULL

 A text description of the SKU.

quantity INTEGER NOT NULL

 The number of items to include in the bundle.

bundle_item VARCHAR(40) NOT NULL

 The specific SKU to include in the bundle. References
dcs_sku(sku_id)

dcs_sku_bndllnk

This table contains information that associated SKU links with SKU objects.

Column Data Type Constraint

sku_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the SKU. References
dcs_sku(sku_id)

sequence_num INTEGER NOT NULL

(primary key) Used to order rows in the table.

sku_link_id VARCHAR(40) NOT NULL

 The ID of the SKU link that should be included in the SKU bundle.
References dcs_sku_link(sku_link_id)

dcs_sku_conf

The following table contains information related to configurable SKUs.

Column Data Type Constraint

sku_id VARCHAR(40) NOT NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 6 3

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
(primary key) References dcs_sku(sku_id).

config_props VARCHAR(40) NOT NULL

 The configurable properties associated with this configurable SKU.

sequence_num INTEGER NOT NULL

(primary key) The sequence number of the configurable properties in a list.

dcs_sku_media

This table contains information about SKU media items.

Column Data Type Constraint

sku_id VARCHAR(40) NOT NULL UNIQUE

(primary key) The unique identifier associated with the SKU. References
dcs_sku(sku_id)

template_id VARCHAR(40) NULL

 The ID of a SKU that represents the template that renders the
category. References dcs_media(media_id)

thumbnail_image_id VARCHAR(40) NULL

 The ID of a media item that represents a thumbnail image of a
category that can be displayed in the template. References
dcs_media(media_id)

small_image_id VARCHAR(40) NULL

 The ID of a media item that represents a small image of a product
that can be displayed in the template. References
dcs_media(media_id)

large_image_id VARCHAR(40) NULL

 The ID of a media item that represents a large image of a SKU that
can be displayed in the template. References
dcs_media(media_id)

dcs_sku_replace

This table contains information about replacing SKUs.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 6 4

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
Column Data Type Constraint

sku_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the SKU. References
dcs_sku(sku_id)

sequence_num INTEGER NOT NULL

(primary key) Used to order the rows in the table.

replacement VARCHAR(40) NOT NULL

 The ID of a SKU that should be used as a replacement for another
SKU if it is not available for purchase.

dcs_sku_sites

This table stores information related to site ownership of catalogs. Used by the multisite feature.

Column Data Type Constraint

sku_id VARCHAR(40) not null

(primary key) The ID of a SKU.

site_id VARCHAR(40) not null

(primary key) The ID of a site to which the SKU is associated.

dcs_sku_skuinfo

This table contains information about skuInfo items associated with SKU items.

Column Data Type Constraint

sku_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the SKU. References
dcs_sku(sku_id).

catalog_id VARCHAR(40) NOT NULL

(primary key) Unique identifier associated with the catalog.

sku_info_id VARCHAR(40) NOT NULL

 Unique identifier to associate with this SKU when viewed as part
of this catalog.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 6 5

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ

dcs_sku_info

This table contains information about the SKUs in catalogs.

Column Data Type Constraint

sku_info_id VARCHAR(40) NOT NULL

(primary key) Unique identifier associated with the skuInfo object.

version INTEGER NOT NULL

 The integer incremented with each revision to prevent version
conflict.

item_acl LONG VARCHAR NULL

 The security for the sku_info.

dcs_skuinfo_rplc

This table contains information about the replacement items to associate with a skuInfo.

Column Data Type Constraint

sku_info_id VARCHAR(40) NOT NULL

(primary key) References dcs_sku_info(sku_info_id).

sequence_num INTEGER NOT NULL

(primary key) This number is used to order the replacement products.

replacement VARCHAR(40) NOT NULL

 Identifier for the replacement item to associate with this skuInfo.

dcs_sub_catalogs

This table contains a list of all sub catalogs (and their sub catalogs).

Column Data Type Constraint

catalog_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the catalog.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 6 6

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
sub_catalog_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the catalog.

dcs_user_catalog

This table defines the catalog assigned to a given user’s profile. Used by the catalog property of the
user item in the profile repository.

Column Data Type Constraint

user_id VARCHAR(40) not null

(primary key) The ID of the user profile whose catalog is defined in the
user_catalog column

user_catalog VARCHAR(40) null

 The ID of the catalog that is used by the user defined by the user_id
column

Commerce Users Tables

ATG Commerce uses the following tables to store information about commerce users:

 dps_credit_card

 dcs_user

 dps_usr_creditcard

dps_credit_card

This table contains information that describes a credit card.

Column Data Type Constraint

id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the credit card.

credit_card_number VARCHAR(40) NULL

 The credit card number.

credit_card_type VARCHAR(40) NULL

 The type of the credit card.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 6 7

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
expiration_month VARCHAR(20) NULL

 The month the credit card expires.

exp_day_of_month VARCHAR(20) NULL

 The day of the month the credit card expires.

expiration_year VARCHAR(20) NULL

 The year the credit card expires.

billing_addr VARCHAR(40) NULL

 The billing address of the credit card. References
dps_contact_info(id)

dcs_user

This table contains information about a user’s credit card and price lists.

Column Data Type Constraint

user_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the user. References
dps_user(id)

allow_partial_ship TINYINT NULL CHECK
(allow_partial_ship in (01))

 Determines whether the user will allow partial shipment of an
order.

default_creditcard VARCHAR(40) NULL

 The Unique identifier associated with the user’s default credit
card. References dps_credit_card(id)

daytime_phone_num VARCHAR(20) NULL

 The user’s daytime phone number.

express_checkout TINYINT NULL CHECK(express_checkout
in (01))

 Determines whether the user has chosen the express checkout
option.

default_carrier VARCHAR(256) NULL

 The default mail carrier for the order.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 6 8

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
price_list VARCHAR(40) NULL

 The price list assigned to the user; reference
to dcs_price_list.price_list_id.

sale_price_list VARCHAR(40) NULL

 The sale price list assigned to the user; reference
to dcs_price_list.price_list_id.

dps_usr_creditcard

This table models a java.util.Map object. It allows a user to store a collection of named credit cards.

Column Data Type Constraint

user_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the user. References
dps_user(id)

tag VARCHAR(42) NOT NULL

(primary key) The user’s chosen name for the credit card.

credit_card_id VARCHAR(40) NOT NULL

 The unique identifier associated with the credit card. References
dps_credit_card(id)

Claimable Tables

ATG Commerce uses the following table to store claimable information:

 dcspp_claimable

 dcspp_giftcert

 dcs_storecred_clm

 dcspp_coupon

 dcspp_coupon_info

 dcspp_cp_folder

dcspp_claimable

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 6 9

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
Column Data Type Constraint

claimable_id VARCHAR(40) NOT NULL

(primary key) The repository id of the claimable repository item.

version INTEGER NOT NULL

 Used by the repository to detect “out of date” updates. This
information is managed internally by the ATG repositories.

type INTEGER NOT NULL

 Indicates whether a particular instance of a repository item is a
coupon or a gift certificate.

status INTEGER NULL

 Indicates if a particular item has been claimed or not.

expiration_date DATE NULL

 If there is an expiration date, then an item cannot be claimed after
this date.

last_modified DATETIME NULL

 Indicates when the repository item was last changed.

dcspp_giftcert

Column Data Type Constraint

giftcertificate_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the gift certificate.
References dcspp_claimable(claimable_id)

amount DOUBLE PRECISION NOT NULL

 The amount of the gift certificate.

amount_authorized DOUBLE PRECISION NOT NULL

 The amount of the gift certificate authorized to be used at the
time a purchase is made.

amount_remaining DOUBLE PRECISION NOT NULL

 The amount of the gift certificate remaining after it has been used.
Before the gift certificate has been claimed, this amount is equal
to the amount property.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 7 0

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
purchaser_id VARCHAR(40) NULL

 The profile id of the person who purchased the gift certificate.

purchase_date DATE NULL

 The date on which the gift certificate is purchased

last_used DATE NULL

 The date on which the gift certificate was last used.

dcs_storecred_clm

This table includes information on store credit.

Column Data Type Constraint

store_credit_id VARCHAR(40) NOT NULL

(primary key) References dcspp_claimable(claimable_id)

amount DOUBLE PRECISION NOT NULL

 Contains the original amount of the store credit

amount_authorized DOUBLE PRECISION NOT NULL

 Contains the amount of the store credit authorized.

amount_remaining DOUBLE PRECISION NOT NULL

 The amount of the store credit which has not been consumed
yet.

owner_id VARCHAR(40) NULL

 The profile id of the owner of this store credit.

issue_date DATETIME NULL

 The date the store credit was issued.

expiration_date DATETIME NULL

 The date the store credit expires. Can be NULL.

last_used DATETIME NULL

 The date the store credit was last used.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 7 1

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
dcspp_coupon

This table relates coupons to one or more promotions.

Column Data Type Constraint

coupon_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the coupon. References
dcspp_claimable(claimable_id)

promotion_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the promotion.

dcspp_coupon_info

This table is used for coupon validation.

Column Data Type Constraint

coupon_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the coupon. References
dcspp_claimable(claimable_id)

display_name VARCHAR(254) NULL

 The name a user sees when viewing this coupon.

use_promo_site INT NULL

 Boolean indicating whether or not the coupon validation process
should check for site or site group associations.

parent_folder VARCHAR(40) NULL

 Parent folder for the coupon. References
dcspp_cp_folder(folder_id).

dcspp_cp_folder

This table holds information about coupon folders.

Column Data Type Constraint

folder_id VARCHAR(40) NOT NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 7 2

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
(primary key) The unique identifier associated with the folder.

name VARCHAR(254) NOT NULL

 The name a user sees when viewing this coupon.

parent_folder VARCHAR(40) NULL

 Parent folder for the coupon, if one is present. References
dcspp_cp_folder(folder_id).

Shopping Cart Events Table

ATG Commerce uses the following table to store information about shopping cart events:

dcs_cart_event

This table contains information about a shopping cart event, either adding or removing an item.

Column Data Type Constraint

id VARCHAR(40) NOT NULL

 Describes whether this event was an add to the cart, or a remove
from the cart.

timestamp DATE NULL

 Date and time the item was added or removed from the cart

orderid VARCHAR(40) NULL

 The order ID associated with the given shopping cart

itemid VARCHAR(40) NULL

 The SKU ID of the item that was added or removed

quantity INTEGER NULL

 The quantity of the item that was added or removed

amount NUMBER(19,7) NULL

 The total price of the item(s) added or removed

profileid VARCHAR(40) NULL

 The profile ID of the user associated with the request when this
message is sent in the context of an HTTP request.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 7 3

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
sessionid VARCHAR(100) NULL

 The current session ID associated with the request when this
message is sent in the context of an HTTP request.

parentsessionid VARCHAR(100) NULL

 The parent session ID. This ID may be different from the request’s
current session ID on application servers that use a separate
session ID for each Web application.

Inventory Tables

ATG Commerce uses the following tables to store inventory information:

dcs_inventory

This table stores all the inventory information for each SKU in the product catalog.

Column Data Type Constraint

inventory_id VARCHAR(40) NOT NULL UNIQUE

(primary key) The unique identifier associated with this inventory.

version INTEGER NOT NULL

 The version of this row. The GSA uses this value.

creation_date DATE NULL

 The date this inventory was created.

start_date DATE NULL

 The date on which this inventory will become available. This is an
optional field that can be used by the SQL Repository as part of an
RQL filter to prevent items from being loaded from the database.

end_date DATE NULL

 The last date on which this inventory will be available. This is an
optional field that can be used by the SQL Repository as part of an
RQL filter to prevent items from being loaded from the database.

display_name VARCHAR(254) NULL

 The name a user sees when viewing this row.

description VARCHAR(254) NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 7 4

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 A text description of the inventory.

catalog_ref_id VARCHAR(40) NOT NULL

 The inventory of this SKU in the product catalog.

avail_status INTEGER NOT NULL

 Indicates whether this inventory is in stock, out of stock,
backorderable, preorderable, or if the value should be derived at
runtime based on stock_level, backorder_level, and
preorder_level.

availability_date DATE NULL

 The date on which the inventory is expected to be available.

stock_level INTEGER NULL

 The number of items in stock.

backorder_level INTEGER NULL

 The number of items that may be backordered.

preorder_level INTEGER NULL

 The number of items that may be preorderable.

stock_thresh INTEGER NULL

 If the stock_level value dips below this value, a
ThresholdReached event is sent.

backorder_thresh INTEGER NULL

 If the backorder_level value dips below this value, a
ThresholdReached event is sent.

preorder_thresh INTEGER NULL

 If the preorder_level value dips below this value, a
ThresholdReached event is sent.

Order Tables

ATG Commerce uses the following tables to store order information:

 dcspp_order

 dcspp_ship_group

 dcspp_pay_group

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 7 5

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 dcspp_item

 dcspp_relationship

 dcspp_rel_orders

 dcspp_order_inst

 dcspp_order_sg

 dcspp_order_pg

 dcspp_order_item

 dcspp_order_rel

 dbcpp_sched_order

 dcspp_ship_inst

 dcspp_hrd_ship_grp

 dcspp_ele_ship_grp

 dcspp_ship_addr

 dcspp_hand_inst

 dcspp_gift_inst

 dcspp_sg_hand_inst

 dcspp_pay_inst

 dcspp_config_item

 dcspp_subsku_item

 dcspp_item_ci

 dcspp_gift_cert

 dcspp_store_cred

 dcspp_credit_card

 dcspp_bill_addr

 dcspp_pay_status

 dcspp_cc_status

 dcspp_gc_status

 dcspp_sc_status

 dcspp_auth_status

 dcspp_debit_status

 dcspp_cred_status

 dcspp_shipitem_rel

 dcspp_rel_range

 dcspp_det_range

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 7 6

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 dcspp_payitem_rel

 dcspp_payship_rel

 dcspp_payorder_rel

 dcspp_amount_info

 dcspp_order_price

 dcspp_item_price

 dcspp_tax_price

 dcspp_ship_price

 dcspp_amtinfo_adj

 dcspp_price_adjust

 dcspp_shipitem_sub

 dcspp_taxshipitem

 dcspp_ntaxshipitem

 dcspp_itmprice_det

 dcspp_det_price

 dcs_submt_ord_evt

 dcs_ord_merge_evt

 dcspp_order_adj

 dcspp_manual_adj

 dcspp_shipitem_tax

dcspp_order

This table stores information associated with a user’ s order such as the submitted date, the state, and the
price.

Column Data Type Constraint

order_id VARCHAR(40) NOT NULL

(primary key) The ID associated with the order.

type INTEGER NOT NULL

 An INTEGER representing the specific type of item descriptor.

version INTEGER NOT NULL

 The version of the data within the row.

order_class_type VARCHAR(40) NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 7 7

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 A string representing the type of order.

profile_id VARCHAR(40) NULL

 The ID of the profile to which the order belongs.

description VARCHAR(64) NULL

 A text description of the order.

state VARCHAR(40) NULL

 The state of the order.

state_detail VARCHAR(254) NULL

 Detailed state information about the order.

created_by_order VARCHAR(40) NULL

 Contains the ID of the order from which this order was created.
Used by the Customer Service Module in situations such as
exchanges.

origin_of_order ENUM(10) NULL

 Enumerated property that provides information about where the
order came from. The default options are:

default

scheduledOrder

contactCenter

You can extend this to track orders from other sources.

creation_date DATE NULL

 The date and time the order was created.

submitted_date DATE NULL

 The date and time the order was submitted for processing.

last_modified_date DATE NULL

 The date the order was last modified.

completed_date DATE NULL

 The date the order was completed.

price_info VARCHAR(40) NULL

 The price data for the order.

tax_price_info VARCHAR(40) NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 7 8

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The price data for the tax of the order.

explicitly_saved BOOLEAN NULL

 Customers can save orders without checking out to start a fresh
order. If this is done, explicitly_saved is set to true.

When the customer starts another session, the current active
shopping cart is identified as an incomplete order where
explicitly_saved is false..

agent_id VARCHAR(40) NULL

 ID of the agent associated with the order, if any.

sales_channel NUMBER(10) NULL

 Identifier of the sales channel through which the order was
placed, if any.

creation_site_id VARCHAR(40) NULL

 Contains the ID of the site on which this order was created. Used
by the multisite feature.

site_id VARCHAR(40) NULL

 Contains the ID of the site the user was on for the most recent
activity on this order. Used by the multisite feature.

dcspp_ship_group

This table stores information associated with a shipping group such as the shipping date, the state, and
the shipping cost.

Column Data Type Constraint

shipping_group_id VARCHAR(40) NOT NULL

(primary key) The ID associated with the shipping group.

type INTEGER NOT NULL

 An INTEGER representing the specific type of item descriptor.

version INTEGER NOT NULL

 The version of the data within the row.

shipgrp_class_type VARCHAR(40) NULL

 A string representing the type of shipping group.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 7 9

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
shipping_method VARCHAR(40) NULL

 The shipping method, for example Ground, Next Day, etc.

description VARCHAR(64) NULL

 A text description of the shipping order.

ship_on_date DATE NULL

 The date to ship the items within the shipping group.

actual_ship_date DATE NULL

 The actual date that the items within the shipping group were
shipped.

state VARCHAR(40) NULL

 The state of the shipping group.

state_detail VARCHAR(254) NULL

 Detailed state information about the shipping group.

submitted_date DATE NULL

 The date that the shipping group was submitted for processing.

price_info VARCHAR(40) NULL

 The price data for the shipping group.

order_ref VARCHAR(40) NULL

 The ID of the order to which this shipping group belongs.

dcspp_pay_group

This table stores information associated with a payment group such as the amount, the state, and the
submitted date.

Column Data Type Constraint

payment_group_id VARCHAR(40) NOT NULL

(primary key) The ID associated with the payment group.

type INTEGER NOT NULL

 An INTEGER representing the specific type of item descriptor.

Version INTEGER NOT NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 8 0

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The version of the data within the row.

paygrp_class_type VARCHAR(40) NULL

 A string representing the type of payment group.

payment_method VARCHAR(40) NULL

 The payment method, for example Credit Card, Gift Certificate,
etc.

amount NUMERIC (19,7) NULL

 The amount of the order this payment group represents.

amount_authorized NUMERIC (19,7) NULL

 The amount of the order that was authorized.

amount_debited NUMERIC (19,7) NULL

 The amount of the order was been debited.

amount_credited NUMERIC (19,7) NULL

 The amount of the order that was credited.

currency_code VARCHAR(10) NULL

 The currency code for the payment group.

state VARCHAR(40) NULL

 The state of the payment group.

state_detail VARCHAR(254) NULL

 Detailed state information about the payment group.

submitted_date DATE NULL

 The date and time the payment group was submitted for
processing.

order_ref VARCHAR(40) NULL

 The ID of the order to which this payment group belongs.

dcspp_item

This table stores all the properties of an item in a cart such as the SKU ID, the quantity, and the price.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 8 1

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
Column Data Type Constraint

commerce_item_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the item.

type INTEGER NOT NULL

 An integer representing the specific type of item descriptor.

version INTEGER NOT NULL

 The version of the data within the row.

item_class_type VARCHAR(40) NULL

 A string representing the type of commerce item.

catalog_id VARCHAR(40) NULL

 The ID of the catalog associated with this commerce item.

catalog_ref_id VARCHAR(40) NULL

 The catalog reference ID of the item that this item represents (the
SKU).

catalog_key VARCHAR(40) NULL

 An optional property that can be used to signify from which
catalog the item was added. Usually contains a locale.

product_id VARCHAR(40) NULL

 The ID of the product that this item represents.

quantity INTEGER NULL

 The quantity of the item.

state VARCHAR(40) NULL

 The state of the commerce item.

state_detail VARCHAR(254) NULL

 Detailed state information about the commerce item.

price_info VARCHAR(40) NULL

 The price data for the commerce item.

order_ref VARCHAR(40) NULL

 The ID of the order to which this commerce item belongs.

site_id VARCHAR(40) NULL

 ID of the site from which the item was added. Used by the
multisite feature.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 8 2

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ

dcspp_relationship

This table stores information associated with the relationship of an order such as the relationship type.

Column Data Type Constraint

relationship_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the relationship.

type INTEGER NOT NULL

 An INTEGER representing the specific type of item descriptor.

version INTEGER NOT NULL

 The version of the data within the row.

rel_class_type VARCHAR(40) NULL

 A string representing the type of relationship.

relationship_type VARCHAR(40) NULL

 The type of the relationship. For example, SHIPPINGQUANTITY.

order_ref VARCHAR(40) NULL

 The ID of the order to which this relationship belongs.

dcspp_rel_orders

This table stores the individual entries of the specialInstructions property of the
atg.commerce.order.Order object.

Column Data Type Constraint

order_id VARCHAR(40) NOT NULL

(primary key) References dcspp_order(order_id)

related_orders VARCHAR(40) NOT NULL

 The id of another order which was created in reference to this
order.

seq_num VARCHAR(40) NOT NULL

(primary key) The sequence number in the list of related orders.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 8 3

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ

dcspp_order_inst

This table stores the individual entries of the specialInstructions property of the
atg.commerce.order.Order object.

Column Data Type Constraint

order_id VARCHAR(40) NOT NULL

(primary key) The unique identifier of the order to which this instruction
belongs. References dcspp_order(order_id)

tag VARCHAR(42) NOT NULL

(primary key) The identifier for the order instruction.

special_inst VARCHAR(254) NULL

 The instruction information.

dcspp_order_sg

This table stores the list of ShippingGroup ids that are contained within an Order.

Column Data Type Constraint

order_id VARCHAR(40) NOT NULL

(primary key) The unique identifier of the order to which the shipping group
belongs. References dcspp_order(order_id)

shipping_groups VARCHAR(40) NOT NULL

 The ID of the shipping group.

sequence_num INTEGER NOT NULL

(primary key) The element number within the list to which the shipping group
belongs.

dcspp_order_pg

This table stores the list of PaymentGroup IDs that are contained within an order.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 8 4

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
Column Data Type Constraint

order_id VARCHAR(40) NOT NULL

(primary key) The unique identifier of the order to which the payment group
belongs. References dcspp_order(order_id)

payment_groups VARCHAR(40) NOT NULL

 The ID of the payment group.

sequence_num INTEGER NOT NULL

(primary key) The element number within the list to which the payment group
belongs.

dcspp_order_item

This table stores the list of CommerceItem IDs that are contained within an order.

Column Data Type Constraint

order_id VARCHAR(40) NOT NULL

(primary key) The unique identifier of the order to which the commerce item
belongs. References dcspp_order(order_id)

commerce_items VARCHAR(40) NOT NULL

 The ID of the commerce item.

sequence_num INTEGER NOT NULL

(primary key) The element number within the list to which the commerce item
belongs.

dcspp_order_rel

This table stores the list of Relationship IDs that are contained within an order.

Column Data Type Constraint

order_id VARCHAR(40) NOT NULL

(primary key) The unique identifier of the order to which the relationship
belongs. References dcspp_order(order_id)

relationships VARCHAR(40) NOT NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 8 5

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The ID of the relationship.

sequence_num INTEGER NOT NULL

(primary key) The element number within the list to which the relationship
belongs.

dbcpp_sched_order

This table contains information related to scheduled orders.

Column Data Type Constraint

scheduled_order_id VARCHAR(40) NOT NULL

(primary key) The repository ID of the scheduled order entry.

type INT NOT NULL

 The repository type of the item.

version INT NOT NULL

 The repository version number.

name WVARCHAR(32) NULL

 The user defined name of a scheduled order.

profile_id VARCHAR(40) NULL

 The profile ID of the owner of a scheduled order.

create_date TIMESTAMP NULL

 The creation date of the scheduled order.

start_date TIMESTAMP NULL

 The date that the scheduled order is to begin submission.

end_date TIMESTAMP NULL

 The date that the scheduled order is to terminate submission.

template_order VARCHAR(32) NULL

 The order ID of the template order.

state INT NULL

 The state of the scheduled order.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 8 6

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
next_scheduled TIMESTAMP NULL

 The time of the next scheduled submission.

schedule VARCHAR(255) NULL

 The schedule of when the order is to be submitted.

siteId VARCHAR(40) NULL

 ID of the site with which this scheduled order is associated.

dcspp_ship_inst

This table contains information about any special instructions associated with the shipping group.

Column Data Type Constraint

shipping_group_id VARCHAR(40) NOT NULL

(primary key) The unique identifier of the shipping group to which this
instruction belongs. References
dcspp_ship_group(shipping_group_id)

tag VARCHAR(42) NOT NULL

(primary key) The identifier for the shipping group instruction.

special_inst VARCHAR(254) NULL

 The instruction information.

dcspp_hrd_ship_grp

This table contains information about the hardgood shipping group such as the tracking number.

Column Data Type Constraint

shipping_group_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the shipping group.
References dcspp_ship_group(shipping_group_id)

tracking_number VARCHAR(40) NULL

 The tracking number for the hardgood shipping group.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 8 7

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
dcspp_ele_ship_grp

This table contains information about an electronic shipping group such as the e-mail address.

Column Data Type Constraint

shipping_group_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the shipping group.
References dcspp_ship_group(shipping_group_id)

email_address VARCHAR(40) NULL

 The e-mail address of the user to which this shipping group
belongs.

dcspp_ship_addr

This table contains information about the shipping address of a shipping group.

Column Data Type Constraint

shipping_group_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the shipping group.
References dcspp_ship_group(shipping_group_id)

prefix VARCHAR(40) NULL

 The prefix associated with the name in the shipping address.
(Miss, Mrs., etc.)

first_name VARCHAR(40) NULL

 The first name of the user at this shipping address.

middle_name VARCHAR(40) NULL

 The middle name of the user at this shipping address.

last_name VARCHAR(40) NULL

 The last name of the user at this shipping address.

suffix VARCHAR(40) NULL

 The suffix associated with the name in the shipping address. (Jr.
Sr., etc.)

job_title VARCHAR(40) NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 8 8

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The job title of the person in the shipping address.

address_1 VARCHAR(50) NULL

 The street and number of this shipping address.

address_2 VARCHAR(50) NULL

 The street and number of this shipping address.

address_3 VARCHAR(50) NULL

 The street and number of this shipping address.

city VARCHAR(40) NULL

 The city of this shipping address.

county VARCHAR(50) NULL

 The county of this shipping address.

state VARCHAR(40) NULL

 The state of this shipping address.

postal_code VARCHAR(10) NULL

 The postal code of this shipping address.

country VARCHAR(40) NULL

 The country of this shipping address.

phone_number VARCHAR(40) NULL

 The phone number of the user at this shipping address.

fax_number VARCHAR(40) NULL

 The fax number of the user at this shipping address.

email VARCHAR(40) NULL

 The e-mail of the user at this shipping address.

dcspp_hand_inst

This table stores all the properties of the atg.commerce.order.HandlingInstruction object such as
the item and quantity to which the handling instruction belongs.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 8 9

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
Column Data Type Constraint

handling_inst_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the handling instruction.

type INTEGER NOT NULL

 An integer representing the specific type of item descriptor.

version INTEGER NOT NULL

 The version of the data within the row.

hndinst_class_type VARCHAR(40) NULL

 A string representing the type of handling instruction.

handling_method VARCHAR(40) NULL

 The handling method.

shipping_group_id VARCHAR(40) NULL

 The ID of the shipping group to which this handling instruction
belongs.

commerce_item_id VARCHAR(40) NULL

 The ID of the commerce item that this handling instruction
represents

quantity INTEGER NULL

 The quantity of the commerce item to which this handling
instruction applies.

dcspp_gift_inst

This table stores all the properties of a gift list handling instruction object such as the gift list ID.

Column Data Type Constraint

handling_inst_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the gift list handling
instruction. References dcspp_hand_inst(handling_inst_id)

giftlist_id VARCHAR(40) NULL

 The ID of the gift list that this handling instruction represents.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 9 0

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
giftlist_item_id VARCHAR(40) NULL

 The ID of the item within the gift list that this handling instruction
represents.

dcspp_sg_hand_inst

This table stores the list of HandlingInstruction IDs that are contained within a shipping group.

Column Data Type Constraint

shipping_group_id VARCHAR(40) NOT NULL

(primary key) The unique identifier of the shipping group to which the handling
instruction belongs. References
dcspp_ship_group(shipping_group_id)

handling_instrs VARCHAR(40) NOT NULL

 The ID of the handling instruction.

sequence_num INTEGER NOT NULL

(primary key) The element number within the list to which the handling
instruction belongs.

dcspp_pay_inst

This table stores the individual entries of the specialInstructions property of the
atg.commerce.order.PaymentGroup object. The table contains special order instructions for each item
in a certain payment group.

Column Data Type Constraint

payment_group_id VARCHAR(40) NOT NULL

 The unique identifier associated with the payment group.
References dcspp_pay_group(payment_group_id)

Tag VARCHAR(42) NOT NULL

 The identifier for the payment group instruction.

special_inst VARCHAR(254) NULL

 The instruction information.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 9 1

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
dcspp_config_item

This table includes information on configurable commerce items.

Column Data Type Constraint

config_item_id VARCHAR(40) NOT NULL

(primary key) References dcspp_item(commerce_item_id)

reconfig_data VARCHAR(255) NULL

 Optional reconfiguration data about this configurable commerce
item.

notes VARCHAR(255) NULL

 Optional notes about this configurable commerce item.

dcspp_subsku_item

This table includes information on a subSKU.

Column Data Type Constraint

subsku_item_id VARCHAR(40) NOT NULL

(primary key) References dcspp_item(commerce_item_id)

ind_quantity INTEGER NULL

 The quantity of this subSKU that is contained within a single
configurable commerce item.

dcspp_item_ci

This table includes information on a configurable commerce item.

Column Data Type Constraint

commerce_item_id VARCHAR(40) NOT NULL

(primary key) References dcspp_item(commerce_item_id)

commerce_items VARCHAR(40) NOT NULL

 The ID of the subSKU commerce item within this configurable
commerce item.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 9 2

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
sequence_num INTEGER NOT NULL

(primary key) The sequence number in the list of subSKU commerce items.

dcspp_gift_cert

This table stores all the properties of a gift certificate in an order such as the profile ID and the gift
certificate number.

Column Data Type Constraint

payment_group_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the payment group.
References dcspp_pay_group(payment_group_id)

profile_id VARCHAR(40) NULL

 The profile ID to which this gift certificate payment group
belongs.

gift_cert_number VARCHAR(50) NULL

 The gift certificate number that this gift certificate payment group
represents.

dcspp_store_cred

This table includes information on store credit.

Column Data Type Constraint

payment_group_id VARCHAR(40) NOT NULL

(primary key) References dcspp_payment_group(payment_group_id)

profile_id VARCHAR(40) NULL

 The profile id of the user associated with the store credit
referenced in the store_cred_number.

store_cred_number VARCHAR(50) NULL

 The store credit number associated with this store credit..

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 9 3

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
dcspp_credit_card

This table stores all the properties of a credit card in an order such as the credit card number, the
expiration month, the day of the month, and year, and the credit card type.

Column Data Type Constraint

payment_group_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the payment group.
References dcspp_pay_group(payment_group_id)

credit_card_number VARCHAR(40) NULL

 The credit card number.

credit_card_type VARCHAR(40) NULL

 The type of the credit card.

expiration_month VARCHAR(20) NULL

 The month the credit card expires.

exp_day_of_month VARCHAR(20) NULL

 The day of the month the credit card expires.

expiration_year VARCHAR(20) NULL

 The year the credit card expires.

dcspp_bill_addr

This table stores the billing address information for a certain payment group.

Column Data Type Constraint

payment_group_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the payment group.
References dcspp_pay_group(payment_group_id)

prefix VARCHAR(40) NULL

 The prefix associated with the name in the billing address. (Miss,
Mrs., etc.)

first_name VARCHAR(40) NULL

 The first name of the user at this billing address.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 9 4

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
middle_name VARCHAR(40) NULL

 The middle name of the user at this shipping address.

last_name VARCHAR(40) NULL

 The last name of the user at this shipping address.

suffix VARCHAR(40) NULL

 The suffix associated with the name in the billing address. (Jr. Sr.,
etc.)

job_title VARCHAR(40) NULL

 The job title of the person in the billing address.

address_1 VARCHAR(50) NULL

 The street and number of this billing address.

address_2 VARCHAR(50) NULL

 The street and number of this billing address.

address_3 VARCHAR(50) NULL

 The street and number of this billing address.

city VARCHAR(40) NULL

 The city of this billing address.

county VARCHAR(40) NULL

 The county of this billing address.

state VARCHAR(40) NULL

 The state of this billing address.

postal_code VARCHAR(10) NULL

 The postal code of this billing address.

country VARCHAR(40) NULL

 The country of this billing address.

phone_number VARCHAR(40) NULL

 The phone number of the user at this billing address.

fax_number VARCHAR(40) NULL

 The fax number of the user at this billing address.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 9 5

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
email VARCHAR(40) NULL

 The e-mail of the user at this billing address.

dcspp_pay_status

This table stores all the properties of a payment status in a payment group such as the amount, the
transaction success, and the transaction timestamp.

Column Data Type Constraint

status_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the payment status.

type INTEGER NOT NULL

 An integer representing the specific type of item descriptor.

version INTEGER NOT NULL

 The version of the data within the row.

trans_id VARCHAR(50) NULL

 The transaction ID of the payment status.

amount NUMERIC (19,7) NULL

 The amount this payment status represents.

trans_success NUMERIC (1) NULL CHECK (trans_success IN
(01))

 A flag indicating the success of the transaction.

error_message VARCHAR(254) NULL

 The error message of the transaction, if any.

trans_timestamp DATE NULL

 The timestamp of the transaction.

dcspp_cc_status

This table stores all the properties of a credit card status in a payment group.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 9 6

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
Column Data Type Constraint

status_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the credit card status.
References dcspp_pay_status(status_id)

auth_expiration TIMESTAMP NULL

 The time and date the authorization expires.

avs_code VARCHAR(40) NULL

 The address verification code.

avs_desc_result VARCHAR(254) NULL

 The address verification descriptive result.

dcspp_gc_status

This table stores all the properties of a gift certificate status in a payment group.

Column Data Type Constraint

status_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the gift certificate status.
References dcspp_pay_status(status_id)

auth_expiration TIMESTAMP NULL

 The time and date the authorization expires.

dcspp_sc_status

This table stores all the properties of a store credit status in a payment group.

Column Data Type Constraint

status_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the store credit status.
References dcspp_pay_status(status_id)

auth_expiration TIMESTAMP NULL

 The time and date the authorization expires.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 9 7

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ

dcspp_auth_status

This table stores the list of PaymentStatus IDs that are contained within a PaymentGroup that represent
authorizations.

Column Data Type Constraint

payment_group_id VARCHAR(40) NOT NULL

(primary key) The unique identifier of the payment group which the
authorization status belongs. References
dcspp_pay_group(payment_group_id)

auth_status VARCHAR(40) NOT NULL

 The ID of the authorization status.

sequence_num INTEGER NOT NULL

(primary key) The element number within the list to which the authorization
status belongs.

dcspp_debit_status

This table stores the list of PaymentStatus IDs that are contained within a PaymentGroup that represent
debits.

Column Data Type Constraint

payment_group_id VARCHAR(40) NOT NULL

(primary key) The unique identifier of the payment group which the debit status
belongs. References dcspp_pay_group(payment_group_id)

debit_status VARCHAR(40) NOT NULL

 The ID of the debit status.

sequence_num INTEGER NOT NULL

(primary key) The element number within the list to which the debit status
belongs.

dcspp_cred_status

This table stores the list of PaymentStatus IDs that are contained within a PaymentGroup that represent
credits.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 9 8

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ

Column Data Type Constraint

payment_group_id VARCHAR(40) NOT NULL

(primary key) The unique identifier of the payment group which the credit
status belongs. References
dcspp_pay_group(payment_group_id)

credit_status VARCHAR(40) NOT NULL

 The ID of the credit status.

sequence_num INTEGER NOT NULL

(primary key) The element number within the list to which the credit status
belongs.

dcspp_shipitem_rel

This table contains information about relationships between shipping groups and commerce items. This
table stores all the properties of a ShippingGroupCommerceItemRelationship such as shipping group
ID, commerce item ID, and relationship quantity.

Column Data Type Constraint

relationship_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the shipping group
commerce item relationship. References
dcspp_relationship(relationship_id)

shipping_group_id VARCHAR(40) NULL

 The ID of the shipping group for this relationship.

commerce_item_id VARCHAR(40) NULL

 The ID of the commerce item for this relationship.

quantity INTEGER NULL

 The quantity of the commerce item to which this relationship
applies.

returned_qty NUMERIC
(19, 7)

NULL

 The returned quantity of the commerce item.

amount NUMERIC (19,7) NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

6 9 9

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The amount of the commerce item to which this relationship

applies.

state VARCHAR(40) NULL

 The state of the relationship.

state_detail VARCHAR(254) NULL

 Detailed state information about the relationship.

dcspp_rel_range

This table includes information on the ranges associated with a particular relationship. Specifically,
ShippingGroupCommerceItemRelationship objects refer to some quantity of a CommerceItem. The
range tells you which commerce items are in the given shipping group.

Column Data Type Constraint

relationship_id VARCHAR(40) NOT NULL

(primary key) The relationship that uses this range.

low_bound INTEGER NULL

 The index (inclusive) of the first item in the range.

high_bound INTEGER NULL

 The index (inclusive) of the last item in the range.

dcspp_det_range

This table includes information on the ranges associated with a particular item price detail. Specifically,
DetailedItemPriceInfo objects refer to some quantity of a CommerceItem. The range tells you which
commerce items are priced in a particular way.

Column Data Type Constraint

relationship_id VARCHAR(40) NOT NULL

(primary key) The relationship that uses this range.

low_bound INTEGER NULL

 The index (inclusive) of the first item in the range.

high_bound INTEGER NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 0 0

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The index (inclusive) of the last item in the range.

dcspp_payitem_rel

This table contains information about relationships between payment groups and commerce items. This
table stores all the properties of a PaymentGroupCommerceItemRelationship such as payment group
ID, commerce item ID, and relationship amount.

Column Data Type Constraint

relationship_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the payment group
commerce item relationship. References
dcspp_relationship(relationship_id)

payment_group_id VARCHAR(40) NULL

 The ID of the payment group for this relationship.

commerce_item_id VARCHAR(40) NULL

 The ID of the commerce item for this relationship.

quantity NUMERIC (19,7) NULL

 The quantity of the commerce item to which this relationship
applies.

amount NUMERIC (19,7) NULL

 The amount of the commerce item to which this relationship
applies.

dcspp_payship_rel

This table contains information about relationships between payment and shipping groups. This table
stores all the properties of a PaymentGroupShippingGroupRelationship such as payment group ID,
shipping group ID, and relationship amount.

Column Data Type Constraint

relationship_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the payment group shipping
group relationship. References
dcspp_relationship(relationship_id)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 0 1

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
payment_group_id VARCHAR(40) NULL

 The ID of the payment group for this relationship.

shipping_group_id VARCHAR(40) NULL

 The ID of the shipping group for this relationship.

amount NUMERIC (19,7) NULL

 The amount of the shipping group to which this relationship
applies.

dcspp_payorder_rel

This table stores all the properties of a PaymentGroupOrderRelationship such as payment group ID,
order ID, and relationship amount.

Column Data Type Constraint

relationship_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the payment group order
relationship. References
dcspp_relationship(relationship_id)

payment_group_id VARCHAR(40) NULL

 The ID of the payment group for this relationship.

order_id VARCHAR(40) NULL

 The ID of the order for this relationship.

amount NUMERIC (19,7) NULL

 The amount of the order to which this relationship applies.

dcspp_amount_info

This table stores all the common properties of the priceInfo object.

Column Data Type Constraint

amount_info_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the amount info.

type INTEGER NOT NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 0 2

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 An integer representing the specific type of item descriptor.

version integer NOT NULL

 The version of the data within the row.

currency_code VARCHAR(10) NULL

 The currency code of the amount info.

amount NUMERIC (19,7) NULL

 The amount of the amount info.

discounted NUMERIC (1) NULL CHECK(discounted IN (01))

 Flag indicating if a discount has been applied.

amount_is_final TINYINT NULL CHECK(amount_is_final IN
(0,1))

 Flag indicating if amount is final amount.

dcspp_order_price

This table contains information about the price it costs to put together an order. This table stores all the
properties of an OrderPriceInfo object such as raw subtotal, tax, and shipping.

Column Data Type Constraint

amount_info_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the order price info.
References dcspp_amount_info(amount_info_id)

raw_subtotal NUMERIC (19,7) NULL

 The raw subtotal of the order.

tax NUMERIC (19,7) NULL

 The tax for the order.

shipping NUMERIC (19,7) NULL

 The shipping cost for the order.

manual_adj_total NUMERIC (19,7) NULL

 Total amount of all manual adjustments associated with the order.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 0 3

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
dcspp_item_price

This table contains information about the price of a specific item. This table stores the properties of an
ItemPriceInfo object such as list price, raw total price, and sale price.

Column Data Type Constraint

amount_info_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the item price info.
References dcspp_amount_info(amount_info_id)

list_price NUMERIC (19,7) NULL

 The list price of the item.

raw_total_price NUMERIC (19,7) NULL

 The raw total price of the item.

sale_price NUMERIC (19,7) NULL

 The sale price of the item.

on_sale NUMERIC (1) CHECK(on_sale IN (01))

 Flag indicating whether item is on sale.

qty_discounted NUMERIC (19,0) NULL

 The quantity of the items that were discounted.

qty_as_qualifier NUMERIC (19,0) NULL

 The quantity of the items that are being used as qualifiers.

order_discount DOUBLE PRECISION NULL

 The discount associated with the item.

price_list VARCHAR(40) NULL

 The price list associated with the item.

dcspp_tax_price

This table contains all the tax information associated with an order. This table stores all the properties of a
TaxPriceInfo object such as city tax, county tax, state tax, and country tax.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 0 4

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
Column Data Type Constraint

amount_info_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the tax price info. References
dcspp_amount_info(amount_info_id)

city_tax NUMERIC (19,7) NULL

 The amount of the city tax.

county_tax NUMERIC (19,7) NULL

 The amount of the county tax.

state_tax NUMERIC (19,7) NULL

 The amount of the state tax.

country_tax NUMERIC (19,7) NULL

 The amount of the country tax.

dcspp_ship_price

This table stores information about the as raw shipping cost of an order

Column Data Type Constraint

amount_info_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the shipping price info.
References dcspp_amount_info(amount_info_id)

raw_shipping NUMERIC (19,7) NULL

 The amount of the raw shipping cost.

dcspp_amtinfo_adj

This table stores the list of PricingAdjustment IDs that are contained within a PriceInfo object.

Column Data Type Constraint

amount_info_id VARCHAR(40) NOT NULL

(primary key) The unique identifier of the amount info to which the adjustment
belongs. References dcspp_amount_info(amount_info_id)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 0 5

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
adjustments VARCHAR(40) NOT NULL

 The unique identifier of the adjustment.

sequence_num integer NOT NULL

(primary key) The element number within the list to which the adjustment
belongs.

dcspp_price_adjust

This table stores all the properties of a PricingAdjustment object such as pricing model and
adjustment.

Column Data Type Constraint

adjustment_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the adjustment.

version integer NOT NULL

 The version of the data within the row.

adj_description VARCHAR(254) NULL

 A description of the adjustment.

pricing_model VARCHAR(40) NULL

 The unique identifier of the pricing model used for this
adjustment.

Adjustment DOUBLE PRECISION NULL

 The amount of the adjustment.

qty_adjusted integer NULL

 The quantity of items this adjustment represents.

manual_adjustment VARCHAR(40) NULL

 The amount of the adjustment.

dcspp_shipitem_sub

This table contains the shipping subtotal for a shipping group in an order.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 0 6

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
Column Data Type Constraint

amount_info_id VARCHAR(40) NOT NULL

(primary key) The unique identifier of the amount info to which the shipping
subtotal info belongs. References
dcspp_amount_info(amount_info_id)

shipping_group_id VARCHAR(42) NOT NULL

(primary key) The ID associated with the shipping group.

ship_item_subtotal VARCHAR(40) NOT NULL

 The subtotal of the shipping charge.

dcspp_taxshipitem

This table contains the tax information for a shipping group in an order.

Column Data Type Constraint

amount_info_id VARCHAR(40) NOT NULL

(primary key) The unique identifier of the amount info to which the shipping tax
info belongs. References
dcspp_amount_info(amount_info_id)

shipping_group_id VARCHAR(42) NOT NULL

(primary key) The ID associated with the shipping group.

tax_ship_item_sub VARCHAR(40) NOT NULL

 The amount of the shipping tax.

dcspp_ntaxshipitem

This table contains information about the non-taxable items in a shipping group in an order.

Column Data Type Constraint

amount_info_id VARCHAR(40) NOT NULL

(primary key) References dcspp_amount_info(amount_info_id)

shipping_group_id VARCHAR(42) NOT NULL

(primary key) The ID associated with the shipping group.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 0 7

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
non_tax_item_sub VARCHAR(40) NOT NULL

 The amount of the shipping group that is non-taxable..

dcspp_itmprice_det

This table stores the list of DetailedItemPriceInfo IDs contained within a PriceInfo object.

Column Data Type Constraint

amount_info_id VARCHAR(40) NOT NULL

(primary key) The unique identifier of the amount info to which the detailed
price info belongs. References
dcspp_amount_info(amount_info_id)

cur_price_details VARCHAR(40) NOT NULL

 The detailed price info.

sequence_num integer NOT NULL

(primary key) The element number within the list to which the detailed price
info belongs.

dcspp_det_price

This table stores detailed item price information such as quantity and quantity as qualifier.

Column Data Type Constraint

amount_info_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the detailed item price info.

quantity NUMERIC (19,0) NULL

 The quantity of items to which this detailed item price info
applies.

qty_as_qualifier NUMERIC (19,0) NULL

 The quantity of items that acted as a qualifier.

order_discount DOUBLE PRECISION NULL

 The amount of the order discount.

tax DOUBLE PRECISION NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 0 8

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The amount of the tax on the order.

dcs_submt_ord_evt

This table contains information about Order Submitted events.

Column Data Type Constraint

id VARCHAR(40) NOT NULL UNIQUE

(primary key) The ID of the event.

clocktime TIMESTAMP NULL

 The date and time that the event was sent.

orderid VARCHAR(40) NULL

 The ID of the order that was submitted.

profileid VARCHAR(40) NULL

 The profile ID of the user associated with the request when this
message is sent in the context of an HTTP request.

sessionid VARCHAR(100) NULL

 The current session ID associated with the request when this
message is sent in the context of an HTTP request.

parentsessionid VARCHAR(100) NULL

 The parent session ID. This ID may be different from the request’s
current session ID on application servers that use a separate
session ID for each Web application.

dcs_ord_merge_evt

This table contains information about Orders Merged events.

Column Data Type Constraint

id VARCHAR(40) NOT NULL UNIQUE

(primary key) The ID of the event.

clocktime TIMESTAMP NULL

 The date and time that the event was sent.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 0 9

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
sourceorderid VARCHAR(40) NULL

 The ID of the source order that was merged into the destination
order.

destorderid VARCHAR(40) NULL

 The ID of the destination order into which the source order was
merged.

sourceremoved TINYINT NULL CHECK
(sourceremoved in (0,1))

 Determines whether the source order is removed after it is
merged with the destination order.

profileid VARCHAR(40) NULL

 The profile ID of the user associated with the request when this
message is sent in the context of an HTTP request.

sessionid VARCHAR(100) NULL

 The current session ID associated with the request when this
message is sent in the context of an HTTP request.

parentsessionid VARCHAR(100) NULL

 The parent session ID. This ID may be different from the request’s
current session ID on application servers that use a separate
session ID for each Web application.

dcspp_order_adj

This table contains information about manual adjustments performed by agents using CSC.

Column Data Type Constraint

order_id VARCHAR(40) NOT NULL

(primary key component) The ID of the order that received the adjustment; foreign key to
the dcspp_order table and a component of the primarykey.

adjustment_id VARCHAR(40) NOT NULL

 The ID of the adjustment.

sequence_num INTEGER NOT NULL

(primary key component) A sequentially generated number that combines with the
order_id to create a unique primary key..

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 1 0

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ

dcspp_manual_adj

This table contains information about manual adjustments performed by agents using CSC.

Column Data Type Constraint

manual_adjust_id VARCHAR(40) NOT NULL

(primary key) The ID of the manual adjustment.

type INTEGER NOT NULL

 The repository item type of the manual adjustment. Possible
values are:

0 – OrderFixedAmountAdjustment

adjustment_type INTEGER NOT NULL

 The type of adjustment made. Possible values are:

0 – amountOff (credit)

1 – amountIncrease (debit)

reason INTEGER NOT NULL

 The reason for applying the adjustment. Possible values are:

0 – reasonAppeasement

1 -- reasonOther

amount DOUBLE NULL

 Amount of the adjustment.

notes VARCHAR(255) NULL

 Agent notes related to this adjustment.

version INTEGER NOT NULL

 The integer incremented with each revision to prevent version
conflict.

dcspp_shipitem_tax

That table holds the shippingItemsTaxPriceInfos property of the taxPriceInfo item descriptor in
the order repository.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 1 1

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
Column Data Type Constraint

amount_info_id VARCHAR(40) NOT NULL

(primary key component) The unique identifier associated with the tax PriceInfo.

shipping_group_id VARCHAR(40) NOT NULL

(primary key component) The ID of the shipping group described by the PriceInfo.

ship_item_tax VARCHAR(40) NOT NULL

 The ID of a PriceInfo that describes the tax amount for the items in
a particular shipping group in the order.

Promotion Tables

ATG Commerce uses the following tables to store information about promotions:

 dcs_promotion

 dcs_promo_media

 dcs_discount_promo

 dcs_promo_upsell

 dcs_upsell_action

 dcs_close_qualif

 dcs_prm_cls_qlf

 dcs_upsell_prods

 dcs_prom_used_evt

 dcs_promo_rvkd

 dcs_promo_grntd

dcs_promotion

This table contains information about promotions.

Column Data Type Constraint

promotion_id VARCHAR(40) NOT NULL UNIQUE

(primary key) The unique identifier associated with the promotion.

version INT NOT NULL

 The version of the promotion. ATG Commerce uses this value to
allow several people to edit the same promotion at the same time.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 1 2

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
creation_date DATE NULL

 The date the promotion was created.

start_date DATE NULL

 The date on which the promotion will become available. This is an
optional field that can be used by the SQL Repository as part of an
RQL filter to prevent items from being loaded from the database.

end_date DATE NULL

 The last date on which the promotion will be available. This is an
optional field that can be used by the SQL Repository as part of an
RQL filter to prevent items from being loaded from the database.

display_name VARCHAR(254) NULL

 The name of the promotion that is displayed in the ACC.

description VARCHAR(254) NULL

 A text description of the promotion.

promotion_type INT NULL

 Indicates the type of promotion.

enabled NUMERIC(1) NULL CHECK(enabled in (01))

 Determines whether or not the promotion is valid.

begin_usable DATE NULL

 The date ATG Commerce will begin using this promotion.

end_usable DATE NULL

 The date ATG Commerce will stop using this promotion.

priority INT NULL

 The order in which the promotion should be applied. Low priority
takes precedence.

global NUMERIC(1) NULL CHECK(global in (01))

 Determines whether this promotion is global.

anon_profile NUMERIC(1) NULL CHECK(anon_profile in
(01))

 Determines whether the promotion should be given to users with
anonymous profiles.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 1 3

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
allow_multiple NUMERIC(1) NULL CHECK(allow_multiple in

(01))

 Determines whether a user can receive more than one copy of the
promotion.

uses INT NULL

 Determines how many times the promotion can be used by a
single customer.

rel_expiration NUMERIC(1) NULL CHECK(rel_expiration in
(0,1))

time_until_expire integer NULL

 The time left until the promotion expires.

dcs_promo_media

This table contains information about media used in promotions.

Column Data Type Constraint

promotion_id VARCHAR(40) NOT NULL

(primary key) The unique identifier of the promotion to which this belongs.
References dcs_promotion(promotion_id)

tag VARCHAR(42) NOT NULL

(primary key) The identifier for the promotion instruction.

media_id VARCHAR(40) NOT NULL

 The unique identifier associated with this media item. References
dcs_media(media_id)

dcs_discount_promo

This table contains information about promotion discounts. ATG Commerce uses this information to
deduct the correct amount from a user’s order, based on the rules of the promotion.

Column Data Type Constraint

promotion_id VARCHAR(40) NOT NULL UNIQUE

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 1 4

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
(primary key) The unique identifier associated with the promotion. References

dcs_promotion(promotion_id)

calculator VARCHAR(254) NOT NULL

 The ATG Commerce calculator that interprets the promotion and
applies the discount.

adjuster DOUBLE PRECISION NOT NULL

 The number by which the promotion discounts. For example, the
percent off the purchase.

pmdl_rule LONG VARCHAR NOT NULL

 The promotion rule that specifies under what conditions the
promotion applies.

one_use NUMERIC (1, 0) DEFAULT NULL

 Determines whether a promotion can be used more than once for
a given user.

dcs_promo_upsell

This table contains information about upsell promotions. ATG Commerce uses this information to
determine if the upsell feature is enabled in a promotion.

Column Data Type Constraint

promotion_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the promotion. References
dcs_promotion(promotion_id)

upsell NUMERIC (1,0) DEFAULT NULL

 Determines whether upselling is enabled for a promotion.

dcs_upsell_action

This table contains information about dynamic products used in Upsell Actions.

Column Data Type Constraint

action_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the Upsell Action.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 1 5

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
version integer NOT NULL

 Manages the optimistic locking feature of the SQL Repository. This
value is automatically incremented by the SQL Repository when
any value of the item is modified. If you change rows directly
outside of the ATG framework, you should also increment the
version number.

name VARCHAR(40) NOT NULL

 The name of the Upsell Action.

upsell_prd_grp LONG VARCHAR DEFAULT NULL

 The content group associated with an Upsell Action.

dcs_close_qualif

This table contains information about Closeness Qualifiers.

Column Data Type Constraint

close_qualif_id VARCHAR(40) NOT NULL

(primary key) The ID of the Closeness Qualifier.

version integer NOT NULL

 Manages the optimistic locking feature of the SQL Repository. This
value is automatically incremented by the SQL Repository when
any value of the item is modified. If you change rows directly
outside of the ATG framework, you should also increment the
version number.

name VARCHAR(40) NOT NULL

 The name of the Closeness Qualifier.

priority integer DEFAULT NULL

 The priority given to a Closeness Qualifier in the context of a
promotion. Closeness Qualifiers are evaluated in the order
specified by their priority.

qualifier LONG VARCHAR DEFAULT NULL

 The PMDL rule that describes under which circumstances the
Closeness Qualifier applies.

upsell_media VARCHAR(40) DEFAULT NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 1 6

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The media item associated with the Closeness Qualifier.

upsell_action VARCHAR(40) DEFAULT NULL

 The Upsell Action assigned to the Closeness Qualifier.

dcs_prm_cls_qlf

This table associates Closeness Qualifiers with promotions.

Column Data Type Constraint

promotion_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the promotion. References
dcs_promotion(promotion_id)

closeness_qualif NUMERIC (1,0) NOT NULL

 The unique identifier associated with the Closeness Qualifier.
References dcs_close_qualif(close_qualif_id)

dcs_upsell_prods

This table associates fixed products with Upsell Actions.

Column Data Type Constraint

action_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the Upsell Action.
References dcs_upsell_action(action_id)

product_id VARCHAR(40) NOT NULL

 The ID of a product associated with the Upsell Action.

sequence_num integer NOT NULL

 Used to order rows in this table.

dcs_prom_used_evt

This table contains information about Uses Promotion events.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 1 7

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
Column Data Type Constraint

id VARCHAR(40) NOT NULL UNIQUE

(primary key) The ID of the event.

clocktime TIMESTAMP NULL

 The date and time that the event was sent.

orderid VARCHAR(40) NULL

 The ID of the order for which the promotion was used.

promotionid VARCHAR(40) NULL

 The ID of the promotion that was used.

order_amount NUMERIC(26,7) NULL

 The amount of the order for which the promotion was used.

discount NUMERIC(26,7) NULL

 The amount discounted as a result of the promotion that was
used.

profileid VARCHAR(40) NULL

 The profile ID of the user associated with the request when this
message is sent in the context of an HTTP request.

sessionid VARCHAR(100) NULL

 The current session ID associated with the request when this
message is sent in the context of an HTTP request.

parentsessionid VARCHAR(100) NULL

 The parent session ID. This ID may be different from the request’s
current session ID on application servers that use a separate
session ID for each Web application.

dcs_promo_rvkd

This table contains information about Promotion Revoked events.

Column Data Type Constraint

id VARCHAR(40) NOT NULL UNIQUE

(primary key) The ID of the event.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 1 8

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
time_stamp TIMESTAMP NULL

 The date and time that the event was sent.

promotionid VARCHAR(254) NOT NULL

 The ID of the promotion that was revoked.

profileid VARCHAR(254) NOT NULL

 The profile ID of the user associated with the request when this
message is sent in the context of an HTTP request.

sessionid VARCHAR(100) NULL

 The current session ID associated with the request when this
message is sent in the context of an HTTP request.

parentsessionid VARCHAR(100) NULL

 The parent session ID. This ID may be different from the request’s
current session ID on application servers that use a separate
session ID for each Web application.

dcs_promo_grntd

This table contains information about Promotion Offered events.

Column Data Type Constraint

id VARCHAR(40) NOT NULL UNIQUE

(primary key) The ID of the event.

time_stamp TIMESTAMP NULL

 The date and time that the event was sent.

promotionid VARCHAR(254) NOT NULL

 The ID of the promotion that was offered.

profileid VARCHAR(254) NOT NULL

 The profile ID of the user associated with the request when this
message is sent in the context of an HTTP request.

sessionid VARCHAR(100) NULL

 The current session ID associated with the request when this
message is sent in the context of an HTTP request.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 1 9

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
parentsessionid VARCHAR(100) NULL

 The parent session ID. This ID may be different from the request’s
current session ID on application servers that use a separate
session ID for each Web application.

User Promotion Tables

ATG Commerce uses the following tables to store information about user promotions:

 dcs_usr_promostat

 dcs_usr_actvpromo

 dcs_usr_usedpromo

dcs_usr_promostat

This table contains information about the status of promotions owned by specific users and the number
of remaining uses of those promotions.

Column Data Type Constraint

status_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the promotion status.

profile_id VARCHAR(40) NOT NULL

 The unique identifier associated with the user who owns this
promotion status.

promotion VARCHAR(40) NOT NULL

 The unique identifier associated with the promotion. References
dcs_promotion(promotion_id)

num_uses INT none

 The number of uses the promotion has remaining.

expirationDate DATE none

 The date the promotion expires.

grantedDate DATE none

 The date the promotion was granted.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 2 0

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
dcs_usr_actvpromo

This table contains information about a user’s active promotions.

Column Data Type Constraint

id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the user. References
dps_user(id)

sequence_num INT NOT NULL

(primary key) Used to order rows in the table.

promo_status_id VARCHAR(40) NOT NULL

 The ID of the promo status Object (a promotion and its number of
uses) associated with the active promotion.

dcs_usr_usedpromo

This table contains information about promotions that have been used.

Column Data Type Constraint

id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the user.

promotion_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the promotion.

Gift List Tables

ATG Commerce uses the following tables to store information about gift lists and wish lists:

 dcs_giftlist

 dcs_giftinst

 dcs_giftitem

 dcs_giftlist_item

 dcs_user_wishlist

 dcs_user_giftlist

 dcs_user_otherlist

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 2 1

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
dcs_giftlist

This table contains information about gift lists.

Column Data Type Constraint

id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the gift list.

owner_id VARCHAR(40) NULL

 The ID of the user who owns the gift list. References
dps_user(id)

is_public NUMERIC(1) NOT NULL CHECK (is_public in
(0,1))

 Specifies whether or not this gift list is public or private.

is_published NUMERIC(1) NOT NULL CHECK (is_published
in (0,1))

 Specifies whether or not the gift list is published.

event_name VARCHAR(64) NULL

 The name of an event.

event_type INT NULL

 Enumerated type of events, for example, a birthday.

event_date DATE NULL

 The date on which the event took place.

comments VARCHAR(254) NULL

 Comments associated with the gift list.

descriptions VARCHAR(254) NULL

 A text description of the gift list.

instructions VARCHAR(254) NULL

 Any special instructions associated with the gift list.

creation_date DATE NULL

 The date the gift list was created.

last_modified DATE NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 2 2

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The date the gift list was last modified.

shipping_addr_id VARCHAR(40) NULL

 The ID of the shipping address of the user who owns the gift list.
References dps_contact_info(id)

site_id VARCHAR(40) NULL

 ID of the site on which the gift list was created. Used by the
multisite feature.

dcs_giftinst

This table contains information about instructions associated with gifts.

Column Data Type Constraint

giftlist_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the gift list. References
dcs_giftlist(id)

tag VARCHAR(42) NOT NULL

(primary key) The identifier for the gift list instruction.

special_inst VARCHAR(254) NULL

 Any special instructions associated with the gift.

dcs_giftitem

This table contains information about an item in a gift list.

Column Data Type Constraint

id VARCHAR(40) NOT NULL

(primary key) The unique identifier of an item on the gift list.

catalog_ref_id VARCHAR(40) NULL

 The SKU ID.

product_id VARCHAR(40) NULL

 The product ID.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 2 3

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
display_name VARCHAR(254) NULL

 The visible name of the item on the gift list.

description VARCHAR(254) NULL

 A short text description of the item on the gift list.

quantity_desired INT NULL

 The number of items that the person creating the list would like to
receive..

quantity_purchased INT NUL

 The number of items that have already been purchased from the
list.

site_id VARCHAR(40) NUL

 ID of the site with which the item is associated, if any.

dcs_giftlist_item

This table stores a map of items for a given gift list.

Column Data Type Constraint

giftlist_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the gift list. References
dcs_giftlist (id)

sequence_num INT NOT NULL

(primary key) Used to order rows in this table.

giftitem_id VARCHAR(40) NOT NULL

 The ID associated with an item on the gift list. References
dcs_giftitem(id)

site_id VARCHAR(40) NULL

 ID of the site on which the gift list was created. Used by the
multisite feature.

dcs_user_wishlist

This table stores a map of gift lists created by a given user.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 2 4

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ

Column Data Type Constraint

user_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the user who owns the wish
list. References dps_user(id)

giftlist_id VARCHAR(40) NULL

 The ID of the user’s gift list. References dcs_giftlist(id)

dcs_user_giftlist

This table stores the map of other gift lists for which a user is currently shopping.

Column Data Type Constraint

user_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the user who owns the gift
list. References dps_user(id)

sequence_num INT NOT NULL

(primary key) Used to order rows in this table.

giftlist_id VARCHAR(40) NULL

 The ID associated with the user’s gift list.

dcs_user_otherlist

This table contains information about a user’s other list of items.

Column Data Type Constraint

user_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the user. References
dps_user(id)

sequence_num INT NOT NULL

(primary key) Used to order rows in this table.

giftlist_id VARCHAR(40) NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 2 5

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The ID associated with the user’s gift list. References

dcs_giftlist(id)

Price List Tables

The following database tables store information related to price lists.

 dcs_price_list

 dcs_complex_price

 dcs_price

 dcs_price_levels

 dcs_price_level

 dcs_gen_fol_pl

 dcs_child_fol_pl

 dcs_plfol_chld

dcs_price_list

This table contains information related to basic price list functionality.

Column Data Type Constraint

price_list_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the price list

version integer NOT NULL

 The integer incremented with each revision to prevent version
conflict.

display_name VARCHAR(254) NULL

 The name of the price list displayed in the ACC.

description VARCHAR(254) NULL

 The description of the price list displayed in the ACC.

creation_date TIMESTAMP NULL

 The date the price list was created.

last_mod_date TIMESTAMP NULL

 The last date the price list was modified.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 2 6

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
start_date TIMESTAMP NULL

 The date that this price list should become active.

end_date TIMESTAMP NULL

 The date that this price list should become inactive.

locale INTEGER NULL

 The locale for the price list. For example, en_US.

base_price_list VARCHAR(40) NULL

 The ID of the base price list. (If a price is not found in the current
price list, look in the base price list.)

item_acl LONG VARCHAR NULL

 The security for the price list.

dcs_complex_price

This table contains information related to complex price list functionality.

Column Data Type Constraint

complex_price_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the complex price.

version INTEGER NOT NULL

 The integer incremented with each revision to prevent version
conflict.

item_acl LONG VARCHAR NULL

 The security for the complex price list.

dcs_price

This table contains information related to the price of a product, a SKU, or a product/SKU pair. The price
can be a list price, a bulk price, or a tiered price.

Column Data Type Constraint

price_id VARCHAR(40) NOT NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 2 7

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
(primary key) The unique identifier associated with the price.

version INTEGER NOT NULL

 The integer incremented with each revision to prevent version
conflict.

price_list VARCHAR(40) NOT NULL

 The unique identifier associated with the price list. References
dcs_price_list(price_list_id)

product_id VARCHAR(40) NULL

 The ID of the product that this price refers to. (optional)

sku_id VARCHAR(40) NULL

 The ID of the SKU that this price refers to. (optional)

parent_sku_id VARCHAR(40) NULL

 The ID of the configurable SKU that is a parent of this sku_id.
(optional)

pricing_scheme INTEGER NOT NULL

 The type of price. (LIST_PRICE, BULK_PRICE, TIERED_PRICE).

list_price DOUBLE PRECISION NULL

 If pricing_scheme is LIST_PRICE, this is the price.

complex_price VARCHAR(40) NULL

 If pricing_scheme is not LIST_PRICE, this is the ID of the complex
price to use. References
dcs_complex_price(complex_price_id).

item_acl LONG VARCHAR NULL

 The security for the complex price list.

dcs_price_levels

This table contains information related to which price levels are in each complex price.

Column Data Type Constraint

complex_price_id VARCHAR(40) NOT NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 2 8

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
(primary key) The unique identifier associated with the complex price.

References dcs_complex_price(complex_price_id).

price_levels VARCHAR(40) NOT NULL

 The unique identifier associated with the price level.

sequence_num INTEGER NOT NULL

(primary key) Use to order the price levels.

dcs_price_level

This table contains information related to the price level that is used to price a specific level or tier when
using bulk pricing or tiered pricing.

Column Data Type Constraint

version INTEGER NOT NULL

 The integer incremented with each revision to prevent version
conflict.

price_level_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the price.

quantity INTEGER NOT NULL

 The quantity that must be purchased for this price level to take
effect.

price DOUBLE PRECISION NOT NULL

 The unit price of each quantity that is priced with this price level.

item_acl LONG VARCHAR NULL

 The security for the price level.

dcs_gen_fol_pl

This table contains information related to the folder structure used by the ACC.

Column Data Type Constraint

folder_id VARCHAR(40) NOT NULL

(primary key) The unique identifier of the folder item.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 2 9

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
type INTEGER NOT NULL

 The type of folder.

name VARCHAR(40) NOT NULL

 The name of the folder that gets display in the ACC.

parent VARCHAR(40) NULL

 The parent folder of this folder.

description VARCHAR(254) NULL

 A description of this folder.

item_acl LONG VARCHAR NULL

 Security information for this folder.

dcs_child_fol_pl

This table contains information related to the child folders of each folder.

Column Data Type Constraint

folder_id VARCHAR(40) NOT NULL

(primary key) Unique identifier associated with the folder. References
dcs_gen_fol_pl(folder_id).

sequence_num INTEGER NOT NULL

(primary key) This number is used to order the child folders.

child_folder_id VARCHAR(40) NOT NULL

 The ID of the child folder.

dcs_plfol_chld

This table contains information related to the price lists that are contained in each folder.

Column Data Type Constraint

plfol_id VARCHAR(40) NOT NULL

(primary key) References dcs_gen_fol_pl(folder_id).

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 3 0

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
sequence_num INTEGER NOT NULL

(primary key) Use to order the price lists.

price_list_id VARCHAR(40) NOT NULL

 The ID of the price list contained in the folder.

Abandoned Order Services Tables

ATG Commerce uses the following tables to store information about users’ abandoned orders:

 dcspp_ord_abandon

 dcs_user_abandoned

 drpt_conv_order

 drpt_session_ord

See the Using Abandoned Order Services chapter for information on the Abandoned Order Services
module.

dcspp_ord_abandon

This table contains information about abandoned orders.

Column Data Type Constraint

abandonment_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the abandonmentInfo item.

version INTEGER NOT NULL

 The abandonmentInfo item’s repository version number. This
information is managed and used internally by the repository.

order_id VARCHAR(40) NOT NULL

 The ID of the order for which the abandonmentInfo item holds
abandonment information.

ord_last_updated DATE NULL

 The date and time that the order was most recently modified. This
property is used to detect activity on abandoned orders.

abandon_state VARCHAR(40) NULL

 The abandonment state of the associated order.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 3 1

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
abandonment_count INTEGER NULL

 The number of times the associated order has been identified as
ABANDONED.

abandonment_date DATE NULL

 The date and time the associated order was most recently
identified as ABANDONED.

reanimation_date DATE NULL

 The date and time the associated order was most recently
identified as REANIMATED.

convert_time DATE NULL

 The date and time the associated order was identified as
CONVERTED.

lost_date DATE NULL

 The date and time the associated order was most recently
identified as LOST.

dcs_user_abandoned

This table contains information about users’ abandoned orders.

Column Data Type Constraint

id VARCHAR(40) NOT NULL

(primary key) The ID of this abandoned-order item.

order_id VARCHAR(40) NOT NULL

 The ID of the order.

profile_id VARCHAR(40) NOT NULL

 The profile ID of the user associated with the abandoned order.

drpt_conv_order

This table contains information about users’ converted orders, that is, previously abandoned, reanimated,
or lost orders that subsequently have been checked out.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 3 2

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
Column Data Type Constraint

order_id VARCHAR(40) NOT NULL

(primary key) The ID of the converted order.

converted_date DATE NOT NULL

 The date and time that the order was converted.

amount DOUBLE
PRECISION

NOT NULL

 The total price of the converted order.

promo_count INTEGER NULL

 The number of promotions that were applied to the converted
order.

promo_value DOUBLE
PRECISION

NULL

 The total value of the promotions that were applied to the
converted order.

drpt_session_ord

This table tracks information about orders that have not been checked out at the end of a session.

Column Data Type Constraint

order_id VARCHAR(40) NOT NULL

(primary key) The ID of the submitted order.

dataset_id VARCHAR(40) NOT NULL

 The ID of the dataset.

date_time DATE timestamp NOT NULL

 The date and time that the order was converted.

amount DOUBLE
PRECISION numeric(19,7)

NOT NULL

 The total price of the submitted order.

submitted INTEGER NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 3 3

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The number of promotions that were applied to the converted

order.

session_id VARCHAR(40) NULL

 The total value of the promotions that were applied to the
converted order.

parent_session_id VARCHAR(40) NULL

 The total value of the promotions that were applied to the
converted order.

order_persistent NUMERIC NULL

 A value of 1 indicates that the order is persistent.

Order Markers Table

The following section describes the table used to hold order marker information.

dcs_order_marker

This table holds information about markers assigned to orders when an order reaches a business process
stage.

Column Data Type Constraint

marker_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the marker.

order_id VARCHAR(40) NOT NULL

 The ID of the order for that has an order marker.

marker_key VARCHAR(100) NOT NULL

 The name of the business process associated with the marker.

marker_value VARCHAR(100) NULL

 The name of the business process stage associated with the
marker.

marker_data VARCHAR(100) NULL

 This column is not currently in use.

creation_date timestamp NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 3 4

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The date the business process stage is reached and the order

marker is assigned to the order.

version INTEGER NOT NULL

 The order marker repository version number. This information is
managed and used internally by the repository.

marker_type INTEGER NULL

 This column is not currently in use.

ATG Business Commerce Tables
The following sections describe the database tables specific to ATG Business Commerce.

 ATG Business Commerce Product Catalog Tables

 ATG Business Commerce Order Tables

 ATG Business Commerce Organizational Tables

 ATG Business Commerce User Profile Extensions

 ATG Business Commerce Invoice Tables

 ATG Business Commerce Contract Tables

ATG Business Commerce Product Catalog Tables

The following tables contain information related to ATG Business Commerce product catalog
functionality.

 dbc_manufacturer

 dbc_measurement

 dbc_product

 dbc_sku

dbc_manufacturer

The following table contains information related to manufacturers. Each product that appears in the
product catalog can be associated with a particular manufacturer. These tables are used for information
purposes by the buyer.

Column Data Type Constraint

manufacturer_id VARCHAR(40) NOT NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 3 5

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
(primary key) The repository ID of the manufacturer.

manufacturer_name WVARCHAR(254) NULL

 A string name that identifies the manufacturer.

Description WVARCHAR(254) NULL

 A short description of this manufacturer.

long_description LONG WVARCHAR NULL

 A long description of this manufacturer.

Email VARCHAR(30) NULL

 An e-mail address for this manufacturer.

dbc_measurement

The following table contains information related to the measurements of a particular item.

Column Data Type Constraint

sku_id VARCHAR(40) NOT NULL

(primary key The unique SKU ID for an item

unit_of_measure INT NULL

 The unit of measurement that is used to quantify this item. Meters,
liters etc.

quantity DOUBLE PRECISION NULL

 The quantity of the particular unit of measurement.

dbc_product

The following table contains information related to enterprise commerce extensions to the product
definition.

Column Data Type Constraint

product_id VARCHAR(40) NOT NULL

(primary key References dcs_product(product_id). The unique repository
id of the product.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 3 6

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
manufacturer VARCHAR(40) NULL

 A reference to the manufacturer of this particular product.
References dbc_manufacturer(manufacturer_id).

admin_display VARCHAR(254) NULL

 A display name that is used in the ATG Control Center (ACC).

dbc_sku

The following table contains information related to enterprise commerce extensions to the SKU
definition.

Column Data Type Constraint

sku_id VARCHAR(40) NOT NULL

(primary key The unique repository id of the SKU. References
dcs_sku(sku_id).

manuf_part_num WVARCHAR(254) NULL

 A String property that represents the manufacturers part number
for this SKU.

ATG Business Commerce Order Tables

The following database tables contain information related to ATG Business Commerce orders:

 dbcpp_approverids

 dbcpp_authapprids

 dbcpp_apprsysmsgs

 dbcpp_appr_msgs

 dbcpp_invoice_req

 dbcpp_cost_center

 dbcpp_order_cc

 dbcpp_sched_clone

 dbcpp_ccitem_rel

 dbcpp_ccship_rel

 dbcpp_ccorder_rel

 dbcpp_pmt_req

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 3 7

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
dbcpp_approverids

This table contains profile ids of users who have approved the order.

Column Data Type Constraint

order_id VARCHAR(40) NOT NULL

(primary key) References dcspp_order(order_id).

approver_ids VARCHAR(40) NOT NULL

 Profile ID for an approver who approved the order.

sequence_num INT NOT NULL

(primary key) The sequence number of the approver ID in a list.

dbcpp_authapprids

This table contains profile ids of users who have authorization to approver the order.

Column Data Type Constraint

order_id VARCHAR(40) NOT NULL

(primary key) References dcspp_order(order_id).

auth_appr_ids VARCHAR(40) NOT NULL

 Profile ID for a valid approver for an order.

sequence_num INT NOT NULL

(primary key) The sequence number of the approver ID in a list.

dbcpp_apprsysmsgs

This table contains system-generated messages for order approvals.

Column Data Type Constraint

order_id VARCHAR(40) NOT NULL

(primary key) References dcspp_order(order_id).

appr_sys_msgs VARCHAR(254) NOT NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 3 8

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 System generated message for an order requiring approval.

sequence_num INT NOT NULL

(primary key) The sequence number of the system message in a list.

dbcpp_appr_msgs

This table contains user messages for order approvals.

Column Data Type Constraint

order_id VARCHAR(40) NOT NULL

(primary key) References dcspp_order(order_id).

approver_msgs VARCHAR(254) NOT NULL

 Approver message for an order, which has been approved or
rejected.

sequence_num INT NOT NULL

(primary key) The sequence number of the approver message in a list.

dbcpp_invoice_req

This table contains information related to the invoice request payment method.

Column Data Type Constraint

payment_group_id VARCHAR(40) NOT NULL

(primary key) References dcspp_pay_group(payment_group_id)

po_number VARCHAR(40) NULL

 The user-supplied purchase order number that was used to create
this invoice request.

pref_format VARCHAR(40) NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 3 9

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The preferred format for delivery of the invoice created from this

invoice request (e.g., text, HTML, XML DTD, etc.).

Note: ATG Commerce does not currently use this field. The field is
provided as a placeholder for applications that may wish to let the
user set a preferred delivery format and then try to honor that
preference when delivering an invoice.

pref_delivery VARCHAR(40) NULL

 The preferred mode for delivery of the invoice created from this
invoice request (e.g., postal mail, e-mail, electronic, etc.).

Note: ATG Commerce does not currently use this field. The field is
provided as a placeholder for applications that may wish to let the
user set a preferred delivery channel and then try to honor that
preference when delivering an invoice.

disc_percent NUMERIC(19, 7) NULL

 The discount percentage offered as part of the payment terms for
this invoice, if the invoice is paid within disc_days. This is part of
the conventional representation of payment terms, which consists
of discount percentage, discount days, and net days. For example,
payment terms of 2/10/net 30 means that a 2% discount is offered
if payment is made within 10 days, but payment in full must be
received within 30 days.

disc_days INT NULL

 The discount days part of the payment terms – i.e., the number of
days within which the invoice must be paid in order to qualify for
the specified discount percentage.

net_days INT NULL

 The net days part of the payment terms – i.e. the number of within
which the invoice must be paid in full.

pmt_due_date TIMESTAMP NULL

 The actual date on which payment is due.

dbcpp_cost_center

This table contains information related to cost centers.

Column Data Type Constraint

cost_center_id VARCHAR(40) NOT NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 4 0

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
(primary key) The repository ID of the cost center.

type INT NOT NULL

 The repository type of the item.

version INT NOT NULL

 The repository version number.

costctr_class_type VARCHAR(40) NULL

 The mapped name of the class type of the cost center

identifier VARCHAR(40) NULL

 The name of the cost center.

amount NUMERIC(19, 7) NULL

 The amount assigned to the cost center.

order_ref VARCHAR(40) NULL

 The ID of the order associated with this cost center.

dbcpp_order_cc

This table contains information about which cost centers are contained in which orders.

Column Data Type Constraint

order_id VARCHAR(40) NOT NULL

(primary key) References dcspp_order(order_id).

cost_centers VARCHAR(40) NOT NULL

 Cost center ID of the cost center within the order.

sequence_num INT NOT NULL

(primary key) The sequence number of the cost center in a list.

dbcpp_sched_clone

This table contains information related to which cloned orders are associated with scheduled orders.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 4 1

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
Column Data Type Constraint

scheduled_order_id VARCHAR(40) NOT NULL

(primary key) References dbcpp_sched_order(scheduled_order_id).

cloned_order VARCHAR(40) NOT NULL

 The order ID of the cloned order which is derived from a template
order.

sequence_num INTEGER NOT NULL

(primary key) The sequence number of the cloned order in a list.

dbcpp_ccitem_rel

This table contains information related to a cost center/commerce item relationship object. It ties
commerce items to cost centers.

Column Data Type Constraint

relationship_id VARCHAR(40) NOT NULL

(primary key) References dcspp_relationship(relationship_id).

cost_center_id VARCHAR(40) NULL

 The ID of the cost center which the relationship references.

commerce_item_id VARCHAR(40) NULL

 The ID of the commerce item which the relationship references.

Quantity NUMERIC(19, 0) NULL

 The quantity of commerce items which are assigned to the cost
center.

Amount NUMERIC(19, 7) NULL

 The amount which is assigned to the cost center.

dbcpp_ccship_rel

This table contains information related to a cost center/shipping group relationship object. It ties
shipping amounts to cost centers.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 4 2

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
Column Data Type Constraint

relationship_id VARCHAR(40) NOT NULL

(primary key) References dcspp_relationship(relationship_id).

Cost_center_id VARCHAR(40) NULL

 The ID of the cost center which the relationship references.

shipping_group_id VARCHAR(40) NULL

 The ID of the shipping group which the relationship references.

Amount NUMERIC(19, 7) NULL

 The shipping amount which is assigned to the cost center.

dbcpp_ccorder_rel

This table contains information related to a cost center/order relationship object. It ties order amounts to
cost centers.

Column Data Type Constraint

relationship_id VARCHAR(40) NOT NULL

(primary key) References dcspp_relationship(relationship_id).

Cost_center_id VARCHAR(40) NULL

 The ID of the cost center which the relationship references.

order_id VARCHAR(40) NULL

 The ID of the order which the relationship references.

amount NUMERIC(19, 7) NULL

 The order amount which is assigned to the cost center.

dbcpp_pmt_req

This table contains information related to a B2BPaymentGroup object.

Column Data Type Constraint

payment_group_id VARCHAR(40) NOT NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 4 3

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
(primary key) References dcspp_pay_group(payment_group_id).

req_number VARCHAR(40) NULL

 A requisition number for a payment group.

ATG Business Commerce Organizational Tables

The following database tables contain information related to ATG Business Commerce organizational
roles:

 dbc_organization

 dbc_org_contact

 dbc_org_admin

 dbc_org_approver

 dbc_org_costctr

 dbc_org_payment

 dbc_org_shipping

 dbc_org_billing

 dbc_org_prefvndr

 dbc_org_plist

dbc_organization

The dbc_organization table contains information related to the basic model for organizational
hierarchies. It layers properties onto the organization model that describe a business organization.

Column Data Type Constraint

id VARCHAR(40) NOT NULL

(primary key) The unique repository ID of the organization. References
dps_organization(org_id).

type INT NULL

 An enumerated property of the type of organization this
organization represents. Department, company, division etc.

cust_type INT NULL

 An enumerated property that indicates the status level of this
company. Preferred, Enterprise or Standard.

duns_number VARCHAR(20) NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 4 4

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The company’s Dun and Bradstreet number.

dflt_shipping_addr VARCHAR(40) NULL

 A default shipping address for this organization. References
dps_contact_info(id).

dflt_billing_addr VARCHAR(40) NULL

 A default billing address for this organization. References
dps_contact_info(id).

dflt_payment_type VARCHAR(40) NULL

 A default credit card for this organization. References
dps_credit_card(id).

dflt_cost_center VARCHAR(40) NULL

 A default cost center for this organization.

order_price_limit NUMERIC(19, 7) NULL

 The order limit for this organization. An order limit is used to
trigger an approval condition.

contract_id VARCHAR(40) NULL

 A contract that this organization has negotiated with the site
owning organization. References dbc_contract(contract_id).

approval_required TINYINT NULL

 Indicates whether approval is required for members of this
organization.

dbc_org_contact

The dbc_org_contact table contains information that associates an Organization with one or more
contacts.

Column Data Type Constraint

org_id VARCHAR(40) NOT NULL

(primary key) The unique repository ID of the organization. References
dbc_organization(id).

contact_id VARCHAR(40) NOT NULL

 An individual that acts as the point contact for this organization.
References dps_contact_info(id).

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 4 5

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
Seq INT NOT NULL

(primary key) Indicates the contact’s sequence in the list.

dbc_org_admin

The dbc_org_admin table contains information that associates an Organization with one or more
administrators. Unlike contacts, administrators are required to be registered users of the site, since they
can create, modify, and delete buyer accounts, organizational profile elements, etc.

Column Data Type Constraint

org_id VARCHAR(40) NOT NULL

(primary key) The unique repository ID of the organization. References
dbc_organization(id).

User_id VARCHAR(40) NOT NULL

 The repository ID of the person is an administrator for the
associated Organization. References dps_user(id).

Seq INT NOT NULL

(primary key) The sequence in the list where the admin is located.

dbc_org_approver

The dbc_org_approver table contains information that associates an Organization with one or more
order approvers. Similar to administrators, approvers are required to be registered users of the site so they
can perform online approvals.

Column Data Type Constraint

Column Data Type Constraint

org_id VARCHAR(40) NOT NULL

(primary key) The unique repository ID of the organization. References
dbc_organization(id).

approver_id VARCHAR(40) NOT NULL

 The repository ID of an individual who acts as an approver for the
associated organization. References dps_user(id).

Seq INT NOT NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 4 6

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
(primary key) Indicates the approver’s sequence in the list.

dbc_org_costctr

The dbc_org_costctr table contains information that associates an Organization with one or more cost
centers that are pre-approved for use by members of the organization.

Column Data Type Constraint

org_id VARCHAR(40) NOT NULL

(primary key) The unique repository ID of the organization. References
dbc_organization(id).

Cost_center VARCHAR(40) NOT NULL

 The repository ID of a cost center that is associated with the
organization.

Seq VARCHAR(40) NOT NULL

(primary key) Indicates the cost center’s sequence in the list.

dbc_org_payment

The dbc_org_payment table contains information that associates an Organization with one or more
payment types that are pre-approved for use by members of the organization. For now, a payment type is
always a credit card.

Column Data Type Constraint

Column Data Type Constraint

org_id VARCHAR(40) NOT NULL

(primary key) The unique repository ID of the organization. References
dbc_organization(id).

Tag VARCHAR(42) NOT NULL,

(primary key) A key by which the associated credit card will be known as. This
value acts as a key into a map.

payment_id VARCHAR(40) NOT NULL

 The repository ID of a credit card. References
dps_credit_card(id).

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 4 7

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ

dbc_org_shipping

The dbc_org_shipping table contains information that associates an Organization with one or more
pre-approved shipping addresses

Column Data Type Constraint

org_id VARCHAR(40) NOT NULL

(primary key) The unique repository ID of an organization. References
dbc_organization(id).

Tag VARCHAR(42) NOT NULL

(primary key) A key by which the associated shipping address will be known as.
This value acts as a key into a map.

addr_id VARCHAR(40) NOT NULL

 The repository ID of a contact info. This becomes a shipping
address. References dps_contact_info(id).

dbc_org_billing

The dbc_org_billing table contains information that associates an Organization with one or more pre-
approved billing addresses.

Column Data Type Constraint

org_id VARCHAR(40) NOT NULL

(primary key) The unique repository ID of an organization. References
dbc_organization(id).

Tag VARCHAR(42) NOT NULL,

(primary key) A key by which the associated billing address will be known as.
This value acts as a key into a map.

addr_id VARCHAR(40) NOT NULL

 The repository ID of a contact info. This becomes a billing address.
References dps_contact_info(id).

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 4 8

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
dbc_org_prefvndr

The dbc_org_prefvndr table contains information that associates an Organization with one or more
preferred vendors.

Column Data Type Constraint

org_id VARCHAR(40) NOT NULL

(primary key) The unique repository ID of an organization. References
dbc_organization(id).

Vendor WVARCHAR(100) NOT NULL

 A string name that identifies a vendor.

Seq INT NOT NULL

(primary key) Indicates the vendors sequence in the list.

dbc_org_plist

The dbc_org_plist table contains information that associates an Organization with one or more
standard purchase lists for buyers from that organization.

Column Data Type Constraint

org_id VARCHAR(40) NOT NULL

(primary key) The unique repository ID of an organization.

list_id VARCHAR(40) NOT NULL

 The repository ID of a purchase list.

Tag VARCHAR(40) NOT NULL

(primary key) A key that is used to identify the associated purchase list.

ATG Business Commerce User Profile Extensions

The following tables contain information about specific extensions for ATG Business Commerce user
profiles:

 dbc_cost_center

 dbc_user

 dbc_buyer_costctr

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 4 9

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 dbc_buyer_approver

 dbc_buyer_payment

 dbc_buyer_shipping

 dbc_buyer_billing

 dbc_buyer_prefvndr

 dbc_buyer_plist

dbc_cost_center

The dbc_cost_center table contains information related to a cost center. Cost centers are used by an
organization for accounting purposes. These cost centers will be associated with either an organization or
a user.

Column Data Type Constraint

id VARCHAR(40) NOT NULL

(primary key) The unique repository ID that identifies a cost center.

identifier WVARCHAR(40) NOT NULL

 A string identifier code that is used by a business for accounting
purposes.

Description VARCHAR(254) NULL

 A string description of the cost center. This description is for UI
purposes to identify the cost center.

user_id VARCHAR(40) NULL

 The ID of a user associated with the cost center.

dbc_user

The dbc_user table layers properties on to the definition of a user that are useful in a business commerce
application.

Column Data Type Constraint

id VARCHAR(40) NOT NULL

(primary key) References dps_user(id). The unique repository ID that
identifies a user.

price_list VARCHAR(40) NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 5 0

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The repository ID of a price list. This price list is then used to

retrieve pricing information from that is specific to the user.

user_catalog VARCHAR(40) NULL

 The repository ID of a catalog.

business_addr VARCHAR(40) NULL

 The repository ID of a contact info item. This will become the users
business address. References dps_contact_info(id).

dflt_shipping_addr VARCHAR(40) NULL

 The repository ID of a contact info item. This will becomes the
users default shipping address. References
dps_contact_info(id).

dflt_billing_addr VARCHAR(40) NULL

 The repository ID of a contact info item. This will become the users
default billing address. References dps_contact_info(id).

dflt_payment_type VARCHAR(40) NULL

 The repository ID of a credit card item. This will become the users
default credit card. References dps_credit_card(id).

dflt_cost_center VARCHAR(40) NULL

 The repository ID of a cost center. This will become the users
default cost center. References dbc_cost_center(id).

order_price_limit NUMERIC(19, 7) NULL

 The greatest amount that the user is able to purchase before
triggering an approval condition.

approval_required TINYINT NULL

 A flag indicating whether or not the user should be checked to see
if they triggered an approval condition.

dbc_buyer_costctr

The dbc_buyer_costctr table is used to associate many cost centers to a user.

Column Data Type Constraint

user_id VARCHAR(40) NOT NULL

(primary key) The repository ID of a user.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 5 1

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
Seq VARCHAR(42) NOT NULL

(primary key) The sequence in a list that contains the cost center.

cost_center_id VARCHAR(40) NOT NULL

 The repository ID of a cost center item. References
dbc_cost_center(id).

dbc_buyer_approver

The dbc_buyer_approver table contains information that associates a buyer with one or more order
approvers. Approvers must be registered users so they can perform online approvals.

Column Data Type Constraint

user_id VARCHAR(40) NOT NULL

(primary key) The repository ID of a user. References dps_user(id)

approver_id VARCHAR(40) NOT NULL

 The repository ID of a user who should act as an approver for the
user identified by the user_id column. References
dps_user(id).

Seq INT NOT NULL

(primary key) Indicates the approver’s sequence in the list.

dbc_buyer_payment

The dbc_buyer_payment table contains information that associates a buyer with one or more pre-
approved payment types. A payment type is a credit card.

Column Data Type Constraint

user_id VARCHAR(40) NOT NULL

(primary key) The repository ID of a user. References dps_user(id).

Tag VARCHAR(42) NOT NULL

(primary key) A key that identifies the associated credit card.

payment_id VARCHAR(40) NOT NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 5 2

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The repository ID of a credit card. References

dps_credit_card(id).

dbc_buyer_shipping

The dbc_buyer_shipping table contains information that associates a buyer with one or more pre-
approved shipping addresses.

Column Data Type Constraint

Column Data Type Constraint

user_id VARCHAR(40) NOT NULL

(primary key) The repository ID of a user. References dps_user(id).

Tag VARCHAR(42) NOT NULL

(primary key) A key to identify the associated address.

addr_id VARCHAR(40) NOT NULL

 A repository ID of a contact info item. This item becomes a
shipping address for the user. References
dps_contact_info(id).

dbc_buyer_billing

The dbc_buyer_billing table contains information that associates a buyer with one or more pre-
approved billing addresses.

Column Data Type Constraint

user_id VARCHAR(40) NOT NULL

(primary key) The repository ID of a user. References dps_user(id).

Tag VARCHAR(42) NOT NULL

(primary key) A key by which the associated address will be identified by

addr_id VARCHAR(40) NOT NULL

 The repository ID of a contact info item. This will become a billing
address. References dps_contact_info(id).

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 5 3

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
dbc_buyer_prefvndr

The dbc_buyer_prefvndr table contains information that associates a buyer with one or more preferred
vendors.

Column Data Type Constraint

user_id VARCHAR(40) NOT NULL

(primary key) The repository ID of a user References dps_user(id).

Vendor WVARCHAR(100) NOT NULL

 A text name for a vendor.

Seq INT NOT NULL

(primary key) The sequence in a list that contains the vendor.

dbc_buyer_plist

The dbc_buyer_plist table contains information that associates a buyer with one or more standard
purchase lists.

Column Data Type Constraint

user_id VARCHAR(40) NOT NULL

(primary key) The repository ID of a user.

list_id VARCHAR(40) NOT NULL

 The repository ID of a purchase list.

Tag VARCHAR(40) NOT NULL

(primary key) A key which is used to identify the associated purchase list.

ATG Business Commerce Invoice Tables

The following tables contain information related to ATG Business Commerce invoice functionality:

 dbc_inv_delivery

 dbc_inv_pmt_terms

 dbc_invoice

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 5 4

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
dbc_inv_delivery

The following table contains information about the delivery information associated with an invoice. Each
row represents one deliveryInfo repository item.

Column Data Type Constraint

id VARCHAR(40) NOT NULL

(primary key) The repository id of this deliveryInfo item.

version INT NOT NULL

 The version number of the data in this row. See the SQL Repository
Item Properties chapter of the ATG Repository Guide for information
on automatic version numbering.

type INT NOT NULL

 The subtype code for the deliveryInfo repository item
represented by this row. (See the GSA docs on item descriptor
subtypes for more info.)

prefix WVARCHAR(40) NULL

 An optional prefix (“Mr.”, “Ms.”, etc.) that appears as part of this
invoice recipient’s name.

first_name WVARCHAR(40) NULL

 The first name of the recipient of this invoice.

middle_name WVARCHAR(40) NULL

 The middle name of the recipient of this invoice.

last_name WVARCHAR(40) NULL

 The last name of the recipient of this invoice.

suffix WVARCHAR(40) NULL

 An optional suffix (“Jr.”, etc) that appears as part of this invoice
recipient’s name.

job_title WVARCHAR(80) NULL

 The invoice recipient’s job title, which an application might
choose to use when constructing a mailing address for this
invoice.

company_name WVARCHAR(40) NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 5 5

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 The invoice recipient’s company name, which an application

might choose to use when constructing a mailing address for this
invoice.

address1 WVARCHAR(80) NULL

 The first line of the delivery address for this invoice.

address2 WVARCHAR(80) NULL

 The second line of the delivery address.

address3 WVARCHAR(80) NULL

 The third line of the delivery address.

city WVARCHAR(40) NULL

 The city part of the delivery address.

county WVARCHAR(40) NULL

 The county part of the delivery address.

state WVARCHAR(40) NULL

 The state part of the delivery address.

postal_code WVARCHAR(10) NULL

 The postal code of the delivery address.

country WVARCHAR(40) NULL

 The country of the delivery address.

phone_number WVARCHAR(40) NULL

 The invoice recipient’s telephone number.

fax_number WVARCHAR(40) NULL

 The invoice recipient’s FAX number.

email_addr WVARCHAR(40) NULL

 The invoice recipient’s e-mail address.

format INT NULL

 An enumerated type code indicating the format in which the
recipient prefers to receive this invoice. This field is not used by
default, but is provided as a placeholder for applications that want
to present a list of available formats (text, HTML, EDI, XML, etc)
and attempt to deliver the invoice in a preferred format.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 5 6

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
delivery_mode INT NULL

 An enumerated type code indicating the means by which the
recipient prefers to receive this invoice. This field is not used by
default, but is provided as a placeholder for applications that want
to present a list of available delivery methods (postal, fax,
electronic, etc) and attempt to deliver the invoice using the
preferred means.

dbc_inv_pmt_terms

The following table contains information related to the payment terms for an invoice. Each row
represents one paymentTerms repository item.

Column Data Type Constraint

id VARCHAR(40) NOT NULL

(primary key) The repository id of this paymentTerms item.

version INT NOT NULL

 The version number of the data in this row. (See the GSA docs on
automatic version numbering for more info.)

type INT NOT NULL

 The subtype code for the paymentTerms repository item
represented by this row. (See the GSA docs on item descriptor
subtypes for more info.)

disc_percent NUMERIC(19, 7) NULL

 The discountPercent field of the payment terms item. This
typically specifies a percentage discount on the price that is
offered if the invoice is paid in full within a certain number of days
(the discountDays”field).

disc_days INT NULL

 The discountDays field of the payment terms item. Specifies the
number of days within which the invoice must be paid to qualify
for the discount percentage.

net_days INT NULL

 The netDays field of the payment terms item. Specifies the
number of days within which the invoice must be paid in full.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 5 7

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
dbc_invoice

The following table contains information related to invoices. Each row represents one invoice repository
item.

Column Data Type Constraint

id VARCHAR(40) NOT NULL

(primary key) The unique repository id of this invoice.

version INT NOT NULL

 The version number of the data in this row. (See the GSA docs on
automatic version numbering for more info.)

type INT NOT NULL

 The subtype code for the invoice repository item represented by
this row. (For more information on item descriptor subtypes, see
the Item Descriptor Inheritance section of the SQL Repository Data
Models chapter in the ATG Repository Guide.)

creation_date TIMESTAMP NULL

 The date this invoice was created.

last_mod_date TIMESTAMP NULL

 The date this invoice was last modified. This field is maintained
automatically when you use the InvoiceManager API to create
and modify invoices.

invoice_number VARCHAR(40) NULL

 An application-generated invoice number that identifies this
invoice for both the buyer and the seller. The invoice number is
different from the repository id, and has no meaning other than as
a way to identify a particular invoice.

po_number VARCHAR(40) NULL

 The purchase order number the buyer specified when paying for
all or part of an order by invoice.

req_number VARCHAR(40) NULL

 The requisition number the buyer specified when paying for all or
part of an order by invoice.

delivery_info VARCHAR(40) NULL

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 5 8

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
 References dbc_inv_delivery(id). Identifies the

deliveryInfo object that describes where and how to deliver
this invoice.

balance_due NUMERIC(19, 7) NULL

 The balance due on this invoice.

pmt_due_date TIMESTAMP NULL

 The date on which payment for this invoice is due.

pmt_terms VARCHAR(40) NULL

 References dbc_inv_pmt_terms(id). Identifies the
paymentTerms object that describes the payment terms for this
invoice.

order_id VARCHAR(40) NULL

 The order ID of the order being paid for with this invoice.

pmt_group_id VARCHAR(40) NULL

 The payment group ID of the specific payment group being paid
for with this invoice.

ATG Business Commerce Contract Tables

The following tables contain information related to ATG Business Commerce contract functionality.

 dbc_contract

 dbc_contract_term

dbc_contract

The following table contains information related to contract functionality.

Column Data Type Constraint

contract_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the price list.

display_name WVARCHAR(254) NULL

 The name of this contract.

creation_date TIMESTAMP NULL

 The date that this contract was created.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 5 9

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
start_date TIMESTAMP NULL,

 The date that this contract becomes active.

end_date TIMESTAMP NULL,

 The date that this contract is no longer active.

creator_id VARCHAR(40) NULL

 The user id of the creator of this contract.

negotiator_info WVARCHAR(40) NULL

 The id of the contact_info for the negotiator of this contract.

price_list_id VARCHAR(40) NULL

 The id of the price list that users of this contract will use.

catalog_id VARCHAR(40) NULL

 The id of the catalog that users of this contract will use.

term_id VARCHAR(40) NULL

 The id of the contract terms that apply.

comments WVARCHAR(254) NULL

 A free form comment field.

dbc_contract_term

The following table contains information related to contract terms.

Column Data Type Constraint

terms_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the price list.

terms LONG VARCHAR NULL

 A text field for describing any terms.

disc_percent NUMERIC(19, 7) NULL

 The default discount percent for invoices.

disc_days INT NULL

 The default discount days for invoices.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 6 0

A p p e n d i x B : A T G C o m m e r c e D a t a b a s e s

μ
net_days INT NULL

 The default net days for invoices.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 6 1

A p p e n d i x C : A T G C o m m e r c e M e s s a g e s

μ
Appendix C: ATG Commerce Messages

This appendix describes that messages sent out as part of ATG Commerce. These messages are also
described throughout the ATG Commerce Programming Guide guide in the context of systems that use the
messages.

Base ATG Commerce Messages

Abandoned Order Messages

ATG Business Commerce Messages

Base ATG Commerce Messages
The messages described in this section are defined in the base ATG Commerce layer.

 Fulfillment System Messages

 Order and Pricing Messages

 Promotion Messages

Fulfillment System Messages

Fulfillment messages include some messages that are sent by default to the scenario manager, and
messages intended for use within the fulfillment system.

The scenario messages are all sent by the OrderChangeHandler component. This component listens for
internal fulfillment messages (such as ModifyOrderNotification) and creates messages for
consumption by scenarios.

The following messages are sent to the scenario manager during fulfillment.

 atg.commerce.fulfillment.scenario.OrderModified

 atg.commerce.fulfillment.scenario.PaymentGroupModified

 atg.commerce.fulfillment.scenario.ShippingGroupModified

The following messages are used within the fulfillment system.

 atg.commerce.fulfillment.UpdateInventoryImpl

 atg.commerce.fulfillment.FulfillOrderFragment

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 6 2

A p p e n d i x C : A T G C o m m e r c e M e s s a g e s

μ
 atg.commerce.fulfillment.ModifyOrderNotification

 atg.commerce.fulfillment.ModifyOrder

atg.commerce.fulfillment.SubmitOrder

The SubmitOrder message is sent when an order has been submitted for fulfillment (checkout
complete).

Base type: CommerceMessageImpl
JMS type: atg.commerce.fulfillment.SubmitOrder

Source

The ProcSendFulfillmentMessage processor, which is part of the processOrder pipeline chain.

Properties

 order

 orderId

 originalId

 originalSource

 parentsessionId

 profile

 sessionId

 siteId

 sourceId

 type

 userId

atg.commerce.fulfillment.scenario.OrderModified

The OrderModified message is sent when an order is modified.

JMS type: atg.commerce.fulfillment.scenario.OrderModified
Base type: ScenarioEvent

Four possible kinds of modifications are accessible in the subType property:

 Order is finished

 Order has unavailable items

 Order is pending merchant action

 Order was removed

Source

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 6 3

A p p e n d i x C : A T G C o m m e r c e M e s s a g e s

μ
The OrderChangeHandler component.

Properties

 order

 shipItemRels (the list of unavailable items)

 subType

 type

atg.commerce.fulfillment.scenario.PaymentGroupModified

The PaymentGroupModified event is sent when a payment group is modified.

Base type: ScenarioEvent
JMS type: atg.commerce.fulfillment.scenario.PaymentGroupModified

Three possible kinds of modifications are accessible in the subType property:

 Payment group has been credited

 Payment group has been debited

 Payment group has failed to debit

Source

The OrderChangeHandler component.

Properties

 order

 paymentGroups

 subType

 type

atg.commerce.fulfillment.scenario.ShippingGroupModified

The ShippingGroupModified event is sent when a shipping group is modified.

Base type: ScenarioEvent
JMS type: atg.commerce.fulfillment.scenario.ShippingGroupModified

Six possible kinds of modifications are accessible in the subType property:

 Shipping group has been removed

 Shipping group shipped

 Shipping group split for unknown reasons

 Shipping group split to partially ship

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 6 4

A p p e n d i x C : A T G C o m m e r c e M e s s a g e s

μ
 Shipping group split to use multiple fulfillers

 Shipping group is pending merchant action

Source

The OrderChangeHandler component.

Properties

 order

 shippingGroup

 newShippingGroup (if split)

 subType

 type

atg.commerce.fulfillment.UpdateInventoryImpl

The UpdateInventoryImpl message is used if there is new inventory available.

Base type: CommerceMessageImpl
JMS type: atg.commerce.fulfillment.UpdateInventoryImpl

Source

The RepositoryInventoryManager sends this whenever inventoryWasUpdated is called. This method
is called by fulfillment if an order is cancelled. It may also be called by administrative tools. ATG
Commerce includes an InventoryFormHandler that calls this method and is accessible through the
Dynamo Server Admin pages.

Properties

 itemIds

 type

atg.commerce.fulfillment.FulfillOrderFragment

This message is used within fulfillment to notify a particular fulfiller of new items to fulfill. The
SubmitOrder message includes the entire order. Fulfillment splits this message into one message per
fulfiller. The FulfillOrderFragment message includes this per-fulfiller information.

Base type:CommerceMessageImpl
JMS type: atg.commerce.fulfillment.FulfillOrderFragment

Source

The source is ProcSendFulfillOrderFragment, which is one of the fulfillment pipeline processors

Properties

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 6 5

A p p e n d i x C : A T G C o m m e r c e M e s s a g e s

μ
 order

 shippingGroupIds—Shipping groups for which the fulfiller is responsible.

 type

atg.commerce.fulfillment.ModifyOrderNotification

Base type: CommerceMessageImpl
JMS type: atg.commerce.fulfillment.ModifyOrderNotification

The ModifyOrderNotification message is used to announce that changes were made to an order
during fulfillment. Each change is represented as a Modification object. Modifications can tell you
things like which payment groups have changed, which shipping groups have changed, or when the
state of an order object has changed.

Source

The fulfillment system can send this message when an order changes.

Properties

 modifyOrderSource (If this message was a response to a ModifyOrder message, this
property references the source of that ModifyOrder message.)

 modifications

 orderId

 originalSource

 originalId

 parentSessionId

 sessionId

 siteId

 sourceId

 type

 userId

atg.commerce.fulfillment.ModifyOrder

The ModifyOrder message is used to request that a change be made to an order during fulfillment. Each
change request is represented as a Modification object. Examples of modifications are to remove an
order or change the state of this order object.

Base type: CommerceMessageImpl
JMS type: atg.commerce.fulfillment.ModifyOrder

Source

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 6 6

A p p e n d i x C : A T G C o m m e r c e M e s s a g e s

μ
This message is sent by the external fulfillment system. Whenever a change needs to be made by another
part of fulfillment, a ModifyOrder message is sent.

Properties

 modifications

 orderId

 originalId

 originalSource

 parentSessionId

 siteId

 sourceId

 sessionId

 type

 userId

Order and Pricing Messages

The messages described in this section are used during order-related changes.

atg.commerce.gifts.GiftPurchased

The GiftPurchased message is sent out when a gift is purchased off of a gift list.

Base type: CommerceMessageImpl
JMS type: atg.commerce.gifts.GiftPurchased

Source

The ProcSendGiftPurchasedMessage processor is part of the processOrder pipeline chain.

Properties

 item

 order

 originalId

 originalSource

 parentSessionId

 profile

 sessionId

 siteId

 sourceId

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 6 7

A p p e n d i x C : A T G C o m m e r c e M e s s a g e s

μ
 type

 userId

atg.commerce.inventory.InventoryThresholdReached

The InventoryThresholdReached message is sent out when the inventory for a particular item dips
below some threshold.

JMS type: atg.commerce.inventory.InventoryThresholdReached

Source

The RepositoryInventoryManager sends this message whenever an inventory level is decremented
below its corresponding threshold.

Properties

 type

 id

 inventoryId

 levelPropertyName

 thresholdPropertyName

 currentValue

 thresholdValue

atg.commerce.order.ItemAddedToOrder

The ItemAddedToOrder message is sent out when an item was added to an order either before or after
checkout.

Base type: ScenarioEvent
JMS type: atg.commerce.order.ItemAddedToOrder

Source

CartModifiedFormHandler and web services.

Properties

 id

 order

 catalogRef

 product

 commerceItem

 quantity

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 6 8

A p p e n d i x C : A T G C o m m e r c e M e s s a g e s

μ
 amount

 type

 siteId

atg.commerce.order.ItemRemovedFromOrder

The ItemRemovedFromOrder message is sent out when an item is removed from an order either before
or after checkout.

Base type: ScenarioEvent
JMS type: atg.commerce.order.ItemRemovedFromOrder

Source

CartModifiedFormHandler and web services.

Properties

 order

 catalogRef

 product

 commerceItem

 quantity

 amount

 type

 siteId

atg.commerce.order.OrdersMerged

An OrdersMerged message is sent whenever orders are merged.

Base type: ScenarioEvent
JMS type: atg.commerce.order.OrdersMerged

Source

OrdersMerged is sent from OrderManager.mergeOrders, which is called by
CommerceProfileTools.loadShoppingCarts when a transient order in the session is merged with a
saved order on the profile.

Properties

 siteId

 sourceOrder

 destinationOrder

 sourceRemoved (boolean)

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 6 9

A p p e n d i x C : A T G C o m m e r c e M e s s a g e s

μ
atg.commerce.order.ItemQuantityChanged

The ItemQuantityChanged message is sent out when the quantity of an item changes in an order either
before or after checkout.

Base type: ScenarioEvent
JMS type: atg.commerce.order.ItemQuantityChanged

Source

CartModifierFormHandler

Properties

 id

 order

 catalogRef

 product

 commerceItem

 oldQuantity

 newQuantity

 type

 siteId

atg.commerce.order.scheduled.ScheduledOrderMessage

The ScheduledOrderMessage is sent for any action on a scheduled order. You can tell what the action
was by looking at the messages action property which is of type ScheduledOrderAction (Enum).

Base type: CommerceMessageImpl
JMS type: atg.commerce.order.scheduled.ScheduledOrderMessage

Actions

 Created

 Updated

 Deleted

 Submited *

This action is spelled “submited.”

Source

ScheduledOrderTools sends messages for all four actions.

Properties

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 7 0

A p p e n d i x C : A T G C o m m e r c e M e s s a g e s

μ
 action

 originalId

 originalSource

 parentSessionId

 profile

 scheduledOrder

 sessionId

 siteId

 sourceId

 type

 userId

atg.commerce.order.SwitchOrder

The ShoppingCart can contain multiple saved orders; the current property indicates which order is the
current order. The SwitchOrder message is sent when the user changes which order is the current order.

Base type: CommerceMessageImpl
JMS type: atg.commerce.order.SwitchOrder

Source

The shopping cart.

Properties

 oldOrder

 order

 originalId

 originalSource

 parenSessionId

 sessionId

 sourceId

 siteId

 type

 userId

atg.commerce.order.OrderSaved

The OrderSaved message is sent when order has been saved by the user and is moved to their list of
saved orders (this is not the same as saving an order into the repository).

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 7 1

A p p e n d i x C : A T G C o m m e r c e M e s s a g e s

μ
Base type: CommerceMessageImpl
JMS type: atg.commerce.order.OrderSaved

Source

SaveOrderFormHandler

Properties

 order

 originalId

 originalSource

 parentSessionId

 sessionId

 siteId

 sourceId

 type

 userId

atg.commerce.pricing.PriceChanged

The PriceChanged message is sent when the price of an order changes.

JMS type: atg.commerce.pricing.PriceChanged

Source

PricingTools, whenever it is used to price an order total or an order subtotal.

Properties

 id

 type

 priceChangeType

 profile

 order

 repricedObject

 oldPrice

 newPrice

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 7 2

A p p e n d i x C : A T G C o m m e r c e M e s s a g e s

μ
Promotion Messages

The messages described in this section are used by the ATG Commerce promotions features. For
additional information on how these messages are used, see the ATG Commerce Guide to Setting Up a
Store.

atg.commerce.promotion.ScenarioAddedItemToOrder

The ScenarioAddedItemToOrder message is sent out when a scenario is used to add an item to the
shopping cart.

Base type: ItemAddedToOrder
JMS type: atg.commerce.promotion.ScenarioAddedItemToOrder

Source

The AddItemToOrder scenario action.

Properties

 id

 order

 catalogRef

 product

 commerceItem

 quantity

 amount

 type

 siteId

atg.commerce.promotion.PromotionUsed

The PromotionUsed message is sent out when a promotion is used by an order that was submitted.

Base type: CommerceMessageImpl
JMS type: atg.commerce.promotion.PromotionUsed

Source

The ProcSendPromotionUsedMessage processor, which is part of the processOrder pipeline chain.

Properties

 order

 originalId

 originalSource

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 7 3

A p p e n d i x C : A T G C o m m e r c e M e s s a g e s

μ
 parentSessionId

 profile

 promotion

 sessionId

 sourceId

 siteId

 type

 userId

atg.commerce.promotion.PromotionGrantedMessage

The PromotionGranted message is sent out when a promotion is granted to a user.

Base type: CommerceMessageImpl

JMS type: atg.commerce.promotion.PromotionGranted

Source

PromotionTools.sendPromotionGrantedEvent is called by PromotionTools.addPromotion which
is called by anyone adding a promotion to the profile.

Properties

 originaId

 originalSource

 parentSessionId

 profile

 promotionId

 sessionId

 sourceId

 siteId

 type

 userId

atg.commerce.promotion.PromotionRevokedMessage

A PromotionRevoked message is sent out when a promotion is revoked from a user.

Base type: CommerceMessageImpl

JMS type: atg.commerce.promotion.PromotionRevoked

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 7 4

A p p e n d i x C : A T G C o m m e r c e M e s s a g e s

μ
Source

The source for the PromotionRevokedMessage is PromotionTools.sendPromotionRevokedEvent,
which is called by PromotionTools.revokePromotion, which is called by anyone removing a
promotion from the profile.

Properties

 originalId

 originalSource

 parentSessionId

 profile

 promotionId

 sessionId

 siteId

 sourceId

 type

 userId

atg.commerce.pricing.PromotionClosenessMessage

A PromotionClosenessMessage is sent when an order meets a given promotion’s
closenessQualification, and when an order that previously met a closenessQualification now
fails to do so.

Base type: CommerceMessageImpl

JMS type: varies

 atg.commerce.promotion.PromotionClosenessQualificationEvent

 atg.commerce.promotion.PromotionClosenessDisqualificationEvent

Source

PricingTools

Properties

 closenessQualifier

 order

 originalId

 originaSource

 parentSessionId

 profile

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 7 5

A p p e n d i x C : A T G C o m m e r c e M e s s a g e s

μ
 sessionId

 siteId

 sourceId

 type

 userId

Abandoned Order Messages
The following message class is provided as part of the DCS.AbandonedOrderServices module. For
detailed information on this module, see the Using Abandoned Order Services chapter.

atg.commerce.order.abandoned.OrderAbandoned

An OrderAbandoned message is sent out when an order’s abandonment state is changed.

Base type: CommerceMessageImpl

JMS type: varies

 atg.commerce.order.abandoned.OrderAbandoned

Sent when an order is identified as abandoned.

 atg.commerce.order.abandoned.OrderReanimated

Sent when an order is identified as reanimated.

 atg.commerce.order.abandoned.OrderConverted

Sent when an order is identified as converted.

 atg.commerce.order.abandoned.OrderLost

Sent when an order is identified as lost.

Source

This message is sent by the /atg/commerce/order/abandoned/AbandonedOrderMessageFactory
component.

Properties

 abandonmentState

 orderId

 originalId

 originalSource

 parentSessionId

 profileId

 sessionId

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 7 6

A p p e n d i x C : A T G C o m m e r c e M e s s a g e s

μ
 siteId

 sourceId

 type

 userId

atg.commerce.order.abandoned.TransientOrderEvent

A TransientOrderEvent message is sent when the AbandonedOrderEventListener checks the
profile associated with a submitted order. See Using Abandoned Order Services in this guide.

Base type: CommerceMessageImpl

Source

A TransientOrderEvent is sent by the AbandonedOrderEventListener.

Properties

 amount

 currencyCode

 orderId

 originalId

 originalSource

 parentSessionId

 profile

 sessionId

 siteId

 sourceId

 submitted

 userId

ATG Business Commerce Messages
These are the messages that are used in the B2BCommerce layer. Any base ATG Commerce messages are
also used here.

 atg.b2bcommerce.approval.ApprovalRequiredMessage

 atg.b2bcommerce.approval.ApprovalUpdate

 atg.b2bcommerce.invoice.messaging.InvoiceMessage

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 7 7

A p p e n d i x C : A T G C o m m e r c e M e s s a g e s

μ
atg.b2bcommerce.approval.ApprovalRequiredMessage

The ApprovalRequired message is sent if there is an order that requires approval before it can be
submitted.

Base type: CommerceMessageImpl
JMS type: atg.b2bcommerce.approval.ApprovalRequired

Source

 ProcSendApprovalRequiredMessage - Part of the approval pipeline which is
executed during the process order pipeline.

Properties

 order

 originalId

 originalSource

 parentSessionId

 profile

 sessionId

 siteId

 sourceId

 type

 userId

atg.b2bcommerce.approval.ApprovalUpdate

The ApprovalUpdate message is sent with one of two JMS types.

Base type: CommerceMessageImpl
JMS type: varies

 atg.b2bcommerce.approval.ApprovalUpdate
An approval update message will have one of two statuses: approved or rejected.

 atg.b2bcommerce.approval.ApprovalComplete
An approval update message will have one of two statuses: approval_passed or
approval_failed.

Source

ProcSendApprovalCompleteMessage or ProcSendApprovalMessage. Both of these are in pipeline
chains that are executed by the ApprovalFormHandler.

Properties

 approvalStatus

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 7 8

A p p e n d i x C : A T G C o m m e r c e M e s s a g e s

μ
 order

 orderOwnerProfile

 originalId

 originalSource

 parentSessionId

 profile

 sessionId

 siteId

 sourceId

 type

 userId

atg.b2bcommerce.invoice.messaging.InvoiceMessage

JMS type: varies

 atg.b2bcommerce.invoice.scenario.CreateInvoice

A new invoice repository item was created.

 atg.b2bcommerce.invoice.scenario.UpdateInvoice
An existing invoice repository item was modified.

 atg.b2bcommerce.invoice.scenario.RemoveInvoice

An existing invoice repository item was removed.

Source

 Each message is sent by a different processor in the invoice pipeline (used by the
InvoiceManager).

Properties

 invoiceRepositoryId

 orderId

 paymentGroupId

 profile

 invoiceNumber

 PONumber

 requisitionNumber

 billingAddress

 preferredFormat

 preferredDeliveryMode

 balanceDue

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 7 9

A p p e n d i x C : A T G C o m m e r c e M e s s a g e s

μ
 paymentDueDate

 paymentNetDays

 paymentDiscountDays

 paymentDiscountPercent

 siteId

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 8 0

A p p e n d i x C : A T G C o m m e r c e M e s s a g e s

μ

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 8 1

A p p e n d i x D : A T G C o m m e r c e S c e n a r i o R e c o r d e r s

μ
Appendix D: ATG Commerce Scenario
Recorders

The following scenario recorders are provided in base ATG Commerce:

dcs

dcs-analytics

shoppingprocess

See the reference entries that follow for recorder descriptions and supporting elements. You can access
the datasets, mappers, and data collection objects, respectively, in the CONFIGPATH at:

/atg/registry/data/datasets/

/atg/registry/data/mappers/

/atg/reporting/dataset/

For general information on scenario recorders, including information on creating custom recorders, see
the ATG Personalization Programming Guide.

dcs
This scenario recorder records events that affect an order’s items.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 8 2

A p p e n d i x D : A T G C o m m e r c e S c e n a r i o R e c o r d e r s

μ
Recorded Event Supporting Elements

Item added to order Dataset:
Item added to order
(itemaddedtoorder.xml)

Mapper:
DCS Cart Event SQL Mapper
(cartsqlmapper.xml)

Data collection object:
DCSCartSQLLogger

Database table:
dcs_cart_event

Item removed from order Dataset:
Item removed from order
(itemremovedfromorder.xml)

Mapper:
DCS Cart Event SQL Mapper
(cartsqlmapper.xml)

Data collection object:
DCSCartSQLLogger

Database table:
dcs_cart_event

A scenario added an item to an order Dataset:
Scenario added item to order
(scenarioaddeditemtoorder.xml)

Mapper:
DCS Cart Event SQL Mapper
(cartsqlmapper.xml)

Data collection object:
DCSCartSQLLogger

Database table:
dcs_cart_event

dcs-analytics
This scenario recorder records various order events.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 8 3

A p p e n d i x D : A T G C o m m e r c e S c e n a r i o R e c o r d e r s

μ
Recorded Event Supporting Elements

Order submitted Dataset:
Order Submitted
(submitorderevent.xml)

Mapper:
Submit Order Event SQL Mapper
(submitordermapper.xml)

Data collection object:
DCSSubmitOrderSQLLogger

Database Table:
dcs_submt_ord_evt

Uses promotion Dataset:
Promotion Used
(promotionusedevent.xml)

Mapper:
Promotion Used Event SQL Mapper
(promotionusedmapper.xml)

Data collection object:
DCSPromotionUsedSQLLogger

Database table:
dcs_prom_used_evt

Orders merged Dataset:
Orders Merged
(ordersmergedevent.xml)

Mapper:
Orders Merged Event SQL Mapper
(ordersmergedmapper.xml)

Data collection object:
DCSOrdersMergedSQLLogger

Database table:
dcs_ord_merge_evt

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 8 4

A p p e n d i x D : A T G C o m m e r c e S c e n a r i o R e c o r d e r s

μ
Item quantity changed in order Dataset:

Item quantity changed in order
(itemquantitychanged.xml)

Mapper:
DCS Item Quantity Changed Event SQL
Mapper
(itemquantitychangedmapper.xml)

Data collection object:
DCSItemQuantityChangedSQLLogger

Database table:
dcs_cart_event

Promotion offered Dataset:
DCS Promotion Granted
(promotiongranted.xml)

Mapper:
Promotion Granted SQL Mapper
(promotiongrantedmapper.xml)

Data collection object:
PromotionGrantedLoggerQueue

Database table:
dcs_promo_grntd

Promotion revoked Dataset:
DCS Promotion Revoked
(promotionrevoked.xml)

Mapper:
Promotion Revoked SQL Mapper
(promotionrevokedmapper.xml)

Data collection object:
PromotionRevokedLoggerQueue

Database table:
dcs_promo_rvkd

shoppingprocess
This scenario recorder records events generated when an order reaches a new stage in the shopping
process.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 8 5

A p p e n d i x D : A T G C o m m e r c e S c e n a r i o R e c o r d e r s

μ
Recorded Event Supporting Elements

Shopping Process Stage Reached Dataset:
Shopping Process Stage Reached
(shoppingprocess.xml)

Mapper:
Business Process Stage Reached SQL
Mapper (bpstage_reached_mapper.xml)

Data collection object:
BusinessProcessStageReachedSQLLogg

erQueue

Database table:
drpt_stage_reached

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 8 6

A p p e n d i x D : A T G C o m m e r c e S c e n a r i o R e c o r d e r s

μ

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 8 7

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ
Appendix E: Purchase Process Class
Diagrams

This section contains the following diagrams:

 Order Interfaces Diagrams

 Order Classes Diagram

 Order Containment Diagram

Note: Classes provided in only ATG Business Commerce are shaded in light blue.

Order Interfaces Diagrams

The diagrams in this section represent the order interface inheritance hierarchy and the containment
interface inheritance hierarchy in ATG Commerce. Refer to the tables that follow for information on the
properties of each interface. Note that, for a subinterface, no inherited properties are listed; see the
superinterface for these properties.

The following diagram represents the order interface inheritance hierarchy. For additional information,
see the ATG API Reference.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 8 8

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ

CommerceIdentifier

id:String

CommerceItem

B2BCommerceItem B2BShippingGroup

B2BOrder

Relationship

ShippingGroupRelationship

PaymentGroupRelationship

B2BShippingGroupRelationship

CostCenterRelationship

B2BOrderRelationship

OrderRelationship

CommerceItemRelationship

B2BCommerceItemRelationship

CostCenter Relationship

HandlingInstruction

Order

ShippingGroup

PaymentGroup

The following diagram represents the containment interface inheritance hierarchy. For additional
information, see the ATG API Reference.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 8 9

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ

CommerceItem PaymentGroup

CommerceItemContainer

ShippingGroupContainer

PaymentGroupContainer

RelationshipContainer

PaymentGroupRelationshipContainer

ShippingGroupRelationshipContainer

HandlingInstruction
Container

CommerceItemRelationshipContainer

OrderRelationshipContainer

B2BShippingGroup

CostCenter

B2BOrderRelationshipContainer

B2BCommerceItemRelationshipContainer

B2BShippingGroupRelationshipContainer
B2BOrder B2BCommerceItem

B2BShippingGroup

CostCenterRelationshipContainer

CostCenterContainer

Order ShippingGroup

B2BCommerceItem

All properties are inherited.

B2BCommerceItemRelationship

Property Data Type

b2BCommerceItem B2BCommerceItem

B2BCommerceItemRelationshipContainer

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 9 0

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ
Property Data Type

commerceItemRelationshipCount int

commerceItemRelationships List

B2BOrder

Property Data Type

approvalSystemMessages List

approverIds List

approverMessages List

authorizedApproverIds List

B2BOrderRelationship

Property Data Type

amount double

order B2BOrder

B2BOrderRelationshipContainer

Property Data Type

orderRelationship B2BOrderRelationship

orderRelationshipCount int

B2BShippingGroup

All properties are inherited.

B2BShippingGroupRelationship

Property Data Type

amount double

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 9 1

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ
shippingGroup B2BShippingGroup

B2BShippingGroupRelationshipContainer

Property Data Type

shippingGroupRelationshipCount int

shippingGroupRelationships List

CommerceIdentifier

Property Data Type

id String

CommerceItem

Property Data Type

auxiliaryData AuxiliaryData

catalogId String

catalogKey String

catalogRefId String

commerceItemClassType String

priceInfo ItemPriceInfo

quantity long

returnedQuantity long

state int

stateDetail String

CommerceItemContainer

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 9 2

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ
Property Data Type

commerceItemCount int

commerceItems List

totalCommerceItemCount long

CommerceItemRelationship

Property Data Type

amount double

commerceItem CommerceItem

quantity long

returnedQuantity long

state int

stateDetail String

CommerceItemRelationshipContainer

Property Data Type

commerceItemRelationshipCount int

commerceItemRelationships List

CostCenter

Property Data Type

amount double

costCenterClassType String

description String

identifier String

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 9 3

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ
CostCenterContainer

Property Data Type

costCenterCount int

costCenters List

CostCenterRelationship

Property Data Type

amount double

costCenter CostCenter

CostCenterRelationshipContainer

Property Data Type

costCenterRelationshipCount int

costCenterRelationships List

HandlingInstruction

Property Data Type

commerceItemId String

handlingInstructionClassType String

handlingMethod String

quantity long

shippingGroupId String

HandlingInstructionContainer

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 9 4

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ
Property Data Type

handlingInstructionCount int

handlingInstructions List

Order

Property Data Type

agentId String

changed boolean

completedDate Date

completedTime long

createdByOrderId String

creationDate Date

creationTime long

description String

explicitlySaved boolean

lastModifiedDate Date

lastModifiedTime long

orderClassType String

originOfOrder String

priceInfo OrderPriceInfo

profileId String

relatedOrders List

salesChannel String

specialInstructions Map

state int

stateDetail String

submittedDate Date

submittedTime long

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 9 5

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ
taxPriceInfo TaxPriceInfo

transient boolean

OrderRelationship

Property Data Type

amount double

order Order

OrderRelationshipContainer

Property Data Type

orderRelationship OrderRelationship

orderRelationshipCount int

PaymentGroup

Property Data Type

amount double

amountAuthorized double

amountCredited double

amountDebited double

authorizationStatus List

creditStatus List

currencyCode String

debitStatus List

paymentGroupClassType String

paymentMethod String

requisitionNumber String

specialInstructions Map

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 9 6

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ
state int

stateDetail String

submittedDate Date

PaymentGroupContainer

Property Data Type

paymentGroupCount int

paymentGroups List

PaymentGroupRelationship

Property Data Type

amount double

paymentGroup PaymentGroup

PaymentGroupRelationshipContainer

Property Data Type

paymentGroupRelationshipCount int

paymentGroupRelationships List

Relationship

Property Data Type

relationshipClassType String

relationshipType int

RelationshipContainer

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 9 7

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ
Property Data Type

relationshipCount int

relationships List

ShippingGroup

Property Data Type

actualShipDate Date

description String

priceInfo ShippingPriceInfo

shipOnDate Date

shippingGroupClassType String

shippingMethod String

specialInstructions Map

state int

stateDetail String

submittedDate Date

ShippingGroupContainer

Property Data Type

shippingGroupCount int

shippingGroups List

ShippingGroupRelationship

Property Data Type

amount double

shippingGroup ShippingGroup

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 9 8

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ
ShippingGroupRelationshipContainer

Property Data Type

shippingGroupRelationshipCount int

shippingGroupRelationships List

Order Classes Diagram

The following diagram represents the order class inheritance hierarchy in ATG Commerce. Refer to the
tables that follow for information on the properties of each class. Note that for a subclass, no inherited
properties are listed; see the superclass for these properties.

For additional information, see the ATG API Reference.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

7 9 9

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ

CommerceIdentifierImpl

id:String

ShippingGroupImpl

HandlingInstructionImpl

ShippingGroupCommerceItemRelationship

CreditCardInfo

PaymentGroupImpl

OrderImpl

PaymentGroupOrderRelationship

GiftCertificateInfo

PaymentGroupCommerceItemRelationship

PaymentGroupShippingGroupRelationship

CommerceItemImpl

CostCenterImpl

CostCenterOrderRelationship

CostCenterShippingGroupRelationship

CostCenterCommerceItemRelationship

CreditCard

GiftCertificate

B2BOrderImpl

B2BCommerceItemImpl

ElectronicShippingGroup

HardgoodShippingGroup

B2BShippingGroupImpl

B2BElectronicShippingGroup

B2BHardgoodShippingGroup

B2BCommerceItemImpl

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 0 0

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ

Property Data Type

costCenterRelationship CostCenterRelationship

costCenterRelationshipCount int

costCenterRelationships List

B2BElectronicShippingGroup

Property Data Type

costCenterRelationship CostCenterRelationship

costCenterRelationshipCount int

costCenterRelationships List

B2BHardgoodShippingGroup

Property Data Type

costCenterRelationship CostCenterRelationship

costCenterRelationshipCount int

costCenterRelationships List

B2BOrderImpl

Property Data Type

approvalSystemMessages List

approverIds List

approverMessages List

authorizedApproverIds List

costCenter CostCenter

costCenterCount int

costCenterRelationship CostCenterRelationship

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 0 1

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ
costCenterRelationshipCount int

costCenterRelationships List

costCenters List

B2BShippingGroupImpl

Property Data Type

costCenterRelationship CostCenterRelationship

costCenterRelationshipCount int

costCenterRelationships List

CommerceItemImpl

Property Data Type

auxiliaryData AuxiliaryData

catalogKey String

catalogRefId String

changed boolean

changedProperties Set

commerceItemClassType String

paymentGroupRelationshipCount int

paymentGroupRelationships List

priceInfo ItemPriceInfo

priceInfoRepositoryItem MutableRepositoryItem

quantity long

repositoryItem MutableRepositoryItem

returnedQuantity long

saveAllProperties boolean

shippingGroupRelationship String

shippingGroupRelationshipCount int

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 0 2

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ
shippingGroupRelationships List

state int

stateAsString String

stateDetail String

CostCenterCommerceItemRelationship

Property Data Type

amount double

b2BCommerceItem B2BCommerceItem

changed boolean

changedProperties Set

commerceItem CommerceItem

costCenter CostCenter

propertyValue Object

quantity long

relationshipClassType String

relationshipType int

relationshipTypeAsString String

repositoryItem MutableRepositoryItem

returnedQuantity long

saveAllProperties boolean

state int

stateDetail String

CostCenterImpl

Property Data Type

amount double

changed boolean

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 0 3

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ
changedProperties Set

commerceItemRelationship B2BCommerceItemRelationship

commerceItemRelationshipCount int

commerceItemRelationships List

costCenterClassType String

description String

identifier String

orderRelationship B2BOrderRelationship

orderRelationshipCount int

propertyValue Object

repositoryItem MutableRepositoryItem

saveAllProperties boolean

shippingGroupRelationship B2BShippingGroupRelationship

shippingGroupRelationshipCount int

shippingGroupRelationships List

CostCenterOrderRelationship

Property Data Type

amount double

changed boolean

changedProperties Set

costCenter CostCenter

order B2BOrder

propertyValue Object

relationshipClassType String

relationshipType int

relationshipTypeAsString String

repositoryItem MutableRepositoryItem

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 0 4

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ
saveAllProperties boolean

CostCenterShippingGroupRelationship

Property Data Type

amount double

changed boolean

changedProperties Set

costCenter CostCenter

propertyValue Object

relationshipClassType String

relationshipType int

relationshipTypeAsString String

repositoryItem MutableRepositoryItem

saveAllProperties boolean

shippingGroup B2BShippingGroup

CreditCard and CreditCardInfo

Property Data Type

billingAddress Address

creditCardNumber String

creditCardType String

expirationDayOfMonth String

expirationMonth String

expirationYear String

order Order

paymentId String

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 0 5

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ
ElectronicShippingGroup

Property Data Type

emailAddress String

GiftCertificate and GiftCertificateInfo

Property Data Type

giftCertificateNumber String

profileId String

HandlingInstructionImpl

Property Data Type

changed boolean

changedProperties Set

commerceItemId String

handlingInstructionClassType String

quantity long

repositoryItem MutableRepositoryItem

saveAllProperties boolean

shippingGroupId String

HardgoodShippingGroup

Property Data Type

shippingAddress Address

trackingNumber String

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 0 6

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ
OrderImpl

Property Data Type

changed boolean

changedProperties Set

commerceItemCount int

commerceItems List

commerceItemsByCatalogRefId List

completedDate Date

completedTime long

creationDate Date

creationTime long

description String

lastModifiedDate Date

lastModifiedTime long

orderClassType String

paymentGroupCount int

paymentGroupRelationshipCount int

paymentGroupRelationships List

paymentGroups List

priceInfo OrderPriceInfo

priceInfoRepositoryItem MutableRepositoryItem

profileId String

relationshipCount int

relationships List

repositoryItem MutableRepositoryItem

saveAllProperties boolean

shippingGroupCount int

shippingGroups List

specialInstructions Map

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 0 7

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ
state int

stateAsString String

stateDetail String

submittedDate Date

submittedTime long

taxPriceInfo TaxPriceInfo

taxPriceInfoRepositoryItem MutableRepositoryItem

totalCommerceItemCount long

transient boolean

PaymentGroupCommerceItemRelationship

Property Data Type

amount double

changed boolean

changedProperties Set

commerceItem CommerceItem

paymentGroup PaymentGroup

quantity long

relationshipClassType String

relationshipType int

relationshipTypeAsString String

repositoryItem MutableRepositoryItem

returnedQuantity long

saveAllProperties boolean

state int

stateDetail String

PaymentGroupImpl

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 0 8

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ
Property Data Type

amount double

amountCredited double

amountDebited double

authorizationStatus List

changed boolean

changedProperties Set

commerceItemRelationshipCount int

commerceItemRelationships List

creditStatus List

currencyCode String

debitStatus List

orderRelationship OrderRelationship

orderRelationshipCount int

paymentGroupClassType String

paymentMethod String

repositoryItem MutableRepositoryItem

saveAllProperties boolean

shippingGroupRelationshipCount int

shippingGroupRelationships List

specialInstructions Map

state int

stateAsString String

stateDetail String

submittedDate java.util.Date

PaymentGroupOrderRelationship

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 0 9

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ
Property Data Type

amount double

changed boolean

changedProperties Set

order Order

paymentGroup PaymentGroup

relationshipClassType String

relationshipType int

relationshipTypeAsString String

repositoryItem MutableRepositoryItem

saveAllProperties boolean

PaymentGroupShippingGroupRelationship

Property Data Type

amount double

changed boolean

changedProperties Set

paymentGroup PaymentGroup

relationshipClassType String

relationshipType int

relationshipTypeAsString String

repositoryItem MutableRepositoryItem

saveAllProperties boolean

shippingGroup ShippingGroup

ShippingGroupCommerceItemRelationship

Property Data Type

amount double

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 1 0

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ
changed boolean

changedProperties Set

commerceItem CommerceItem

percentage double

quantity long

relationshipClassType String

relationshipType int

relationshipTypeAsString String

repositoryItem MutableRepositoryItem

returnedQuantity long

saveAllProperties boolean

shippingGroup ShippingGroup

state int

stateAsString String

stateDetail String

ShippingGroupImpl

Property Data Type

actualShipDate Date

changed boolean

changedProperties Set

commerceItemRelationshipCount int

commerceItemRelationships List

description String

handlingInstructionCount int

handlingInstructions List

paymentGroupRelationshipCount int

paymentGroupRelationships List

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 1 1

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ
priceInfo ShippingPriceInfo

priceInfoRepositoryItem MutableRepositoryItem

repositoryItem MutableRepositoryItem

saveAllProperties boolean

shipOnDate Date

shippingGroupClassType String

shippingMethod String

specialInstructions Map

state int

stateAsString String

stateDetail String

submittedDate Date

Order Containment Diagram

The following diagram represents the object containment model in ATG Commerce. Arrows indicate that
the class being pointed to contains the pointing class as a member variable. Because some classes are
used as member variables by more than one class, they appear on the diagram more than once.

Refer to the tables that follow for information on the properties of each class. Note that, for a subclass, no
inherited properties are listed; see the superclass for these properties.

For additional information, see the ATG API Reference.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 1 2

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ

OrderRelationshipContainerImpl

PaymentGroupContainerImpl

RelationshipContainerImpl

PaymentGroupRelationshipContainerImpl

ShippingGroupContainerImpl

CommerceItemContainerImpl

CommerceItemRelationshipContainerImpl

ShippingGroupRelationshipContainerImpl

HandlingInstructionContainerImpl

CommerceIdentifierImpl

CommerceItemImpl

For details on CommerceItemImpl, see the Order
Classes diagram in the previous section.

CommerceIdentifierImpl

PaymentGroupImpl

For details on PaymentGroupImpl, see the Order
Classes diagram in the previous section.

CommerceIdentifierImpl

OrderImpl

For details on OrderImpl, see the Order
Classes digram in the previous section.

CommerceIdentifierImpl

ShippingGroupImpl

For details on ShippingGroupImpl, see the
Order Classes diagram in the previous section.

PaymentGroupRelationshipContainerImpl

PaymentGroupRelationshipContainerImpl

CommerceItemRelationshipContainerImpl

PaymentGroupRelationshipContainerImpl

OrderImpl

B2BOrderImpl

For details on B2BOrderImpl, see the Order
Classes diagram in the previous section.

CommerceItemImpl

B2BcommerceItemImpl

For details on B2BcommerceItemImpl, see the
Order classes diagram in the previous section.

CommerceIdentifierImpl

CostCenterImpl

For details on CostCenterImpl, see the Order
Classes diagram in the previous section.

CostCenterContainerImpl

CostCenterRelationshipContainerImpl

CostCenterRelationshipContainer

CommerceItemRelationshipContainerImpl

OrderRelationshipContainerImpl

ShippingGroupRelationshipContainerImpl

CommerceItemContainerImpl

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 1 3

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ

Property Data Type

commerceItemCount int

commerceItems List

totalCommerceItemCount long

CommerceItemRelationshipContainerImpl

Property Data Type

commerceItemRelationshipCount int

commerceItemRelationships List

CostCenterContainerImpl

Property Data Type

costCenterCount int

costCenters List

CostCenterRelationshipContainerImpl

Property Data Type

costCenterRelationshipCount int

costCenterRelationships List

HandlingInstructionContainerImpl

Property Data Type

handlingInstruction HandlingInstruction

handlingInstructionCount int

handlingInstructions List

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 1 4

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ

OrderRelationshipContainerImpl

Property Data Type

orderRelationship OrderRelationship

orderRelationshipCount int

PaymentGroupContainerImpl

Property Data Type

paymentGroupCount int

paymentGroups List

PaymentGroupRelationshipContainerImpl

Property Data Type

paymentGroupRelationshipCount int

paymentGroupRelationships List

RelationshipContainerImpl

Property Data Type

relationshipCount int

relationships List

ShippingGroupContainerImpl

Property Data Type

shippingGroupCount int

shippingGroups List

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 1 5

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ

ShippingGroupRelationshipContainerImpl

Property Data Type

shippingGroupRelationshipCount int

shippingGroupRelationships List

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 1 6

A p p e n d i x E : P u r c h a s e P r o c e s s C l a s s D i a g r a m s

μ

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 1 7

A p p e n d i x F : A T G C o m m e r c e a n d S e s s i o n B a c k u p

μ
Appendix F: ATG Commerce and Session
Backup

By default, ATG Commerce adds several property values to the list of values that are written to the session
backup server after every request. The property values that are added preserve the following for the user:

 current and saved orders

 active promotions

 products currently being compared

 event name for the current gift list

The properties that store this information are specified by layering on the following configuration file for
the central configuration component, /atg/dynamo/Configuration.

Add orders, promotions, and product comparisons to the list of

items that are restored on session failover.

sessionBackupServerPropertyList+=\

 /atg/commerce/ShoppingCart.restorableOrders,\

 /atg/userprofiling/ProfileFailService.activePromotions,\

 /atg/commerce/catalog/comparison/ProductList.items,\

 /atg/commerce/gifts/GiftlistFormHandler.eventName

The configuration file is located at <ATG10dir>/DCS/config/.

For more information on backing up sessions, see the ATG Installation and Configuration Guide.

For information on session failover and migration, see the documentation for your application server.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 1 8

A p p e n d i x F : A T G C o m m e r c e a n d S e s s i o n B a c k u p

μ

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 1 9

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Appendix G: Commerce Pipeline Chains

This appendix describes the pipeline chains included with ATG Commerce and their component links. For
general information on pipelines, see the Processor Chains and the Pipeline Manager chapter. This
appendix contains the following sections:

Core Commerce Pipelines

Fulfillment Pipelines

Order Approval Pipelines

Core Commerce Pipelines
This section describes the pipelines that make up core Commerce functionality.

updateOrder Pipeline Chain

The updateOrder pipeline saves the Order supplied to it. The updateOrder pipeline chain is executed
by the updateOrder() method in the OrderManager. The updateOrder() method adds the given
Order and the OrderManager to its parameter list, which is supplied to the executing chain. The pipeline
chain’s transaction mode is TX_REQUIRED.

The following sections describe each processor in the pipeline chain.

updateOrderObject

Saves the properties in the Order object.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/SaveOrderObject

PipelineProcessor object: atg.commerce.order.processor.ProcSaveOrderObject

Transitions: return value of 1 executes updateCommerceItemObjects.

updateCommerceItemObjects

Saves the properties in the CommerceItem objects in the Order.

Transactional mode: TX_MANDATORY

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 2 0

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Nucleus component: /atg/commerce/order/processor/SaveCommerceItemObjects

PipelineProcessor object: atg.commerce.order.processor.ProcSaveCommerceItemObjects

Transitions: return value of 1 executes updateShippingGroupObjects.

updateShippingGroupObjects

Saves the properties in the ShippingGroup objects in the Order.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/SaveShippingGroupObjects

PipelineProcessor object: atg.commerce.order.processor.ProcSaveShippingGroupObjects

Transitions: return value of 1 executes updateHandlingInstructionObjects.

updateHandlingInstructionObjects

Saves the properties in the HandlingInstruction objects in all the ShippingGroups in the Order.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/SaveHandlingInstructionObjects

PipelineProcessor object:
atg.commerce.order.processor.ProcSaveHandlingInstructionObjects

Transitions: return value of 1 executes updatePaymentGroupObjects.

updatePaymentGroupObjects

Saves the properties in the PaymentGroup objects in the Order.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/SavePaymentGroupObjects

PipelineProcessor object: atg.commerce.order.processor.ProcSavePaymentGroupObjects

Transitions: return value of 1 executes updatePaymentStatusObjects.

updatePaymentStatusObjects

Saves the properties in the PaymentStatus objects in all the PaymentGroups in the Order.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/SavePaymentStatusObjects

PipelineProcessor object: atg.commerce.order.processor.ProcSavePaymentStatusObjects

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 2 1

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transitions: return value of 1 executes updateRelationshipObjects.

updateRelationshipObjects

Saves the properties in the Relationship objects in the Order.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/SaveRelationshipObjects

PipelineProcessor object: atg.commerce.order.processor.ProcSaveRelationshipObjects

Transitions: return value of 1 executes updatePriceInfoObjects.

updatePriceInfoObjects

This processor saves the properties in the OrderPriceInfo and TaxPriceInfo objects in the Order, the
ShippingPriceInfo object in the ShippingGroups, and the ItemPriceInfo object in the
CommerceItems.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/SavePriceInfoObjects

PipelineProcessor object: atg.commerce.order.processor.ProcSavePriceInfoObjects

Transitions: return value of 1 will execute saveManualAdjustments next

ProcSavePriceInfoObjects includes an orderStateSaveModes property, which you can use to map
order states (see Order States in the Working with Purchase Process Objects chapter) to save
modes,which determine which types of PriceInfo object are saved. The valid save modes are:

 ALL—Saves all PriceInfo types.

 ALL_NO_AUDIT—Saves all PriceInfo types, but does not save audit trail information
(pricing adjustments and detailed price info objects)

 ORDER—Saves only the OrderPriceInfo object (not shipping, item, tax)

 ORDER_NO_AUDIT—Saves only the OrderPriceInfo object, with no audit information

 NONE—Saves no pricing information

For example:

orderStateSaveModes=INCOMPLETE=ALL_NO_AUDIT

ProcSavePriceInfoObjects also includes a defaultSaveMode to use if the current order state does
not have an entry in the orderStateSaveModes map.

saveManualAdjustments

Updates the order for any manual adjustments made by agents in ATG Commerce Service Center. If you
are not using CSC, this step does not apply. See Warning below.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 2 2

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transactional Mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/SaveManualAdjustments

PipelineProcessor object: atg.commerce.order.processor.ProcSaveManualAdjustments

Transitions: return value of 1 execute setLastModifiedTime.

Warning: Manual adjustments are changes to an order made by an agent using ATG Commerce Service
Center. Manual adjustments are applied unconditionally by the OrderAdjustmentCalculator (see the
ATG Commerce Service Center User Guide for information on this class). Once an adjustment has been
added, it affects the order’s price regardless of the order’s contents. If an adjustment is applied to an
incomplete order, changes at checkout time do not affect the adjustment; for example, if a $20 credit is
manually applied to an incomplete order, and the customer removes items, the order could end up with a
$0 total. By default, the processor is configured not to save manual adjustments for incomplete orders, in
which case the adjustment is discarded if the agent does not check out the order. However, this behavior
is configurable. If you want to apply manual adjustments to incomplete orders, set the
saveIncompleteOrderAdjustments property to true in the
/atg/commerce/order/processor/SaveManualAdjustments component. To save manual
adjustments for orders in additional states, adjust the configuration of the incompleteStates property.

The processor will save the manual adjustments to the repository for orders

in these states, depending on the value of saveIncompleteOrderAdjustments.

incompleteStates^=/atg/commerce/order/OrderLookupService.incompleteStates

The processor will save the manual adjustments to the repository for orders

in the configured incomplete states if this property is true. Otherwise, the

manual adjustments are not saved for incomplete orders.

saveIncompleteOrderAdjustments=false

setLastModifiedTime

Sets the lastModifiedTime property of an Order to the current time if any changes were made to an
Order.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/SetLastModifiedTime

PipelineProcessor object: atg.commerce.order.processor.ProcSetLastModifiedTime

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 2 3

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
loadOrder Pipeline Chain

The loadOrder pipeline chain loads the Order from the repository whose ID is supplied as a parameter.
The loadOrder pipeline chain is executed by the loadOrder() method in the OrderManager. The
loadOrder() method adds the given OrderId, OrderRepository, CatalogTools Nucleus component,
and the OrderManager to its parameter list, which is supplied to the executing chain. The pipeline chain’s
transaction mode is TX_REQUIRED.

The following sections describe each processor in the pipeline chain.

loadOrderObject

This processor constructs a new Order object and loads the properties from the repository into it.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/LoadOrderObject

PipelineProcessor object: atg.commerce.order.processor.ProcLoadOrderObject

Transitions: return value of 1 will execute loadPriceInfoObjectsForOrder next.

loadPriceInfoObjectsForOrder

This processor constructs a new OrderPriceInfo and TaxPriceInfo object for the Order it loads and
loads the properties from the repository into it. It then sets the PriceInfo to the corresponding object in
the Order.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/LoadPriceInfoObjects

PipelineProcessor object: atg.commerce.order.processor.ProcLoadPriceInfoObjects

Transitions: None. This is the last link in the chain and will cause the PipelineManager to return to the
caller.

refreshOrder Pipeline Chain

The refreshOrder pipeline chain reloads an Order from the repository. The Order object is supplied as a
parameter. The refreshOrder pipeline chain is not executed explicitly, but rather by the ATG Commerce
components. The pipeline chain’s transaction mode is TX_REQUIRED.

The following sections describe each processor in the pipeline chain.

loadOrderObjectForRefresh

This processor takes an existing Order object and reloads the properties from the repository into it. It also
loads all the supporting objects, such as CommerceItem, ShippingGroup, etc.

Transactional mode: TX_MANDATORY

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 2 4

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Nucleus component: /atg/commerce/order/processor/LoadOrderObject

PipelineProcessor object: atg.commerce.order.processor.ProcLoadOrderObject

Transitions: return value of 1 will execute loadCommerceItemObjects next

loadCommerceItemObjects

This processor constructs a new CommerceItem object for each item it loads and loads the properties
from the repository into it. It then adds the object to the Order.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/LoadCommerceItemObjects

PipelineProcessor object: atg.commerce.order.processor.ProcLoadCommerceItemObjects

Transitions: return value of 1 will execute loadShippingGroupObjects next

loadShippingGroupObjects

This processor constructs a new ShippingGroup object for each item it loads and loads the properties
from the repository into it. It then adds the object to the Order.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/LoadShippingGroupObjects

PipelineProcessor object: atg.commerce.order.processor.ProcLoadShippingGroupObjects

Transitions: return value of 1 will execute loadHandlingInstructionsObjects next

loadHandlingInstructionsObjects

This processor constructs a new HandlingInstruction object for each ShippingGroup that was
loaded in the previous processor and loads the properties from the repository into it. It then adds the
object to the ShippingGroup to which it belongs.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/LoadHandlingInstructionObjects

PipelineProcessor object:
atg.commerce.order.processor.ProcLoadHandlingInstructionObjects

Transitions: return value of 1 will execute loadPaymentGroupObjects next

loadPaymentGroupObjects

This processor constructs a new PaymentGroup object for each item it loads and loads the properties
from the repository into it. It then adds the object to the Order.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 2 5

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/LoadPaymentGroupObjects

PipelineProcessor object: atg.commerce.order.processor.ProcLoadPaymentGroupObjects

Transitions: return value of 1 will execute loadPaymentStatusObjects next

loadPaymentStatusObjects

This processor constructs a new PaymentStatus object for each PaymentGroup that was loaded in the
previous processor and loads the properties from the repository into it. It then adds the object to the
PaymentGroup to which it belongs.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/LoadPaymentStatusObjects

PipelineProcessor object: atg.commerce.order.processor.ProcLoadPaymentStatusObjects

Transitions: return value of 1 will execute loadRelationshipObjects next

loadRelationshipObjects

This processor constructs a new Relationship object for each item it loads and loads the properties from
the repository into it. It then adds the object to the Order.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/LoadRelationshipObjects

PipelineProcessor object: atg.commerce.order.processor.ProcLoadRelationshipObjects

Transitions: return value of 1 will execute loadPriceInfoObjects next

loadPriceInfoObjects

This processor constructs a new OrderPriceInfo, TaxPriceInfo, ShippingPriceInfo, or
ItemPriceInfo object for each item it loads and loads the properties from the repository into it. It then
sets the PriceInfo to the corresponding object in the Order.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/LoadPriceInfoObjects

PipelineProcessor object: atg.commerce.order.processor.ProcLoadPriceInfoObjects

Transitions: return value of 1 will execute setCatalogRefs next

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 2 6

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
setCatalogRefs

This processor sets the catalogRef property in the auxiliaryData object in the CommerceItem. It does
this by loading the RepositoryItem object using the catalogRefId in the auxiliaryData object.
Additionally, if SetCatalogRefs.substituteRemovedSku is true, this processor replaces all deleted
SKUs in the Order with the “dummy” SKU defined by SetCatalogRefs.substituteDeletedSkuId. For
more information, see Refreshing Orders in the Configuring Purchase Process Services chapter.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/SetCatalogRefs

PipelineProcessor object: atg.commerce.order.processor.ProcSetCatalogRefs

Transitions: Return value of 1 executes setProductRefs next.

setProductRefs

This processor sets the productRef property in the auxiliaryData object in the CommerceItem. It does
this by loading the RepositoryItem object using the productId in the auxiliaryData object.
Additionally, if SetProductRefs.substituteRemovedProduct is true, this processor replaces all
deleted products in the Order with the “dummy” product defined by
SetProductRefs.substituteDeletedProductId. For more information, see Refreshing Orders in the
Configuring Purchase Process Services chapter.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/SetProductRefs

PipelineProcessor object: atg.commerce.order.processor.ProcSetProductRefs

Transitions: Return value of 1 executes removeExpiredCommerceItems next.

removeExpiredCommerceItems

Used in conjunction with SetCatalogRefs and SetProductRefs. If the state of the Order is one that is
defined in RemoveExpiredCommerceItems.openOrderStates, this processor removes from the Order
any CommerceItem that contains a “dummy” SKU or product that was substituted by SetCatalogRefs or
SetProductRefs. A “dummy” SKU is automatically removed. A “dummy” product is removed only if
RemoveExpiredCommerceItems.removeItemsWithDeletedProducts is set to true; the default is true.
For more information, see Refreshing Orders in the Configuring Purchase Process Services chapter.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/RemoveExpiredCommerceItems

PipelineProcessor object: atg.commerce.order.processor.ProcRemoveExpiredCommerceItems

Transitions: None, this is the last link in the chain, and will cause the PipelineManager to return to the
caller.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 2 7

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
repriceOrderForInvalidation Pipeline Chain

This chain reprices an order when it is invalidated. It includes a single link. The following section describes
the processor in the pipeline chain.

executeRepriceOrderChain

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/pricing/processor/ExecuteRepriceOrderChain

PipelineProcessor object: atg.commerce.order.processor.ProcExecuteChain

Transitions: None, this is the last link in the chain, and will cause the PipelineManager to return to the
caller.

processOrderWithReprice Pipeline Chain

This chain processes an unpriced Order. The following sections describe each processor in the pipeline
chain.

executeRepriceOrderChainForProcessOrder

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/pricing/processor/ExecuteRepriceOrderChain

PipelineProcessor object: atg.commerce.order.processor.ProcExecuteChain

Transitions: Return value of 1 executes executeProcessOrderAfterReprice next.

executeProcessOrderAfterReprice

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ExecuteProcessOrderChain

PipelineProcessor object: atg.commerce.order.processor.ProcExecuteChain

Transitions: None, this is the last link in the chain, and will cause the PipelineManager to return to the
caller.

processOrder Pipeline Chain

The processOrder pipeline chain submits the given Order for checkout. The processOrder pipeline
chain is executed by the processOrder() method in the OrderManager. The processOrder() method
adds the given Order, Profile, Request, Locale, and OrderManager to its parameter list, which is supplied
to the executing chain. The pipeline chain’s transaction mode is TX_REQUIRED.

The following sections describe each processor in the pipeline chain.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 2 8

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
executeValidateForCheckoutChain

This processor causes the validateForCheckout chain to be executed. If the execution of this chain
causes any errors, then execution will be returned to the caller.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ExecuteValidateForCheckoutChain

PipelineProcessor object: atg.commerce.order.processor.ProcExecuteChain

Transitions: In ATG Consumer Commerce, return value of 1 executes checkForExpiredPromotions
next. In ATG Business Commerce, return value of 1 executes executeApproveOrderChain next.

(ATG Business Commerce only) executeApproveOrderChain

This processor executes the approveOrder pipeline chain, which begins the order approval process.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/ExecuteApproveOrderChain

PipelineProcessor object: atg.commerce.order.processor.ProcExecuteChain

Transitions: Return value of 1 executes stopChainIfOrderRequiresApproval next. Return value of -1
(STOP_CHAIN_EXECUTION_AND_ROLLBACK) stops the execution of the processOrder chain; this means
that an error occurred.

(ATG Business Commerce only) stopChainIfOrderRequiresApproval

This processor checks whether the order has been determined to require approval. Specifically, it checks
whether the state of the order is PENDING_APPROVAL. If it isn’t, the order moves to the next processor in
processOrder. If it is, execution of the processOrder chain stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/StopChainIfOrderRequiresApproval

PipelineProcessor object: atg.commerce.order.processor.ProcCheckOrderState

Transitions: Return value of 1 executes executeValidatePostApprovalChain next. Return value of 2
executes executeValidateNoApprovalChain.

(ATG Business Commerce only) executeValidatePostApprovalChain

If the order requires approval and has been approved, this processor revalidates order information in case
the approver changed anything.

Transactional mode: TX_MANDATORY

Nucleus component: atg/commerce/order/processor/ExecuteValidatePostApprovalChain

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 2 9

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
PipelineProcessor object: atg.commerce.order.processor.ProcExecuteChain

Transitions: Return value of 1 executes checkForExpiredPromotions next.

(ATG Business Commerce only) executeValidateNoApprovalChain

If the order does not require approval, finish validation.

Transactional mode: TX_MANDATORY

Nucleus component: atg/commerce/order/processor/ExecuteValidateNoApprovalChain

PipelineProcessor object: atg.commerce.order.processor.ProcExecuteChain

Transitions: Return value of 1 executes checkForExpiredPromotions.

checkForExpiredPromotions

This processor walks through all the promotions that are being applied to the Order and verifies that
none of them have expired.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/CheckForExpiredPromotions

PipelineProcessor object: atg.commerce.order.processor.ProcCheckForExpiredPromotions

Transitions: return value of 1 will execute removeEmptyShippingGroups next

removeEmptyShippingGroups

This processor checks to see if there are any empty ShippingGroups in the Order. It removes any empty
groups it finds. An empty ShippingGroup contains no Relationships. If the Order contains only one
ShippingGroup then it will not be removed if it is empty.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/RemoveEmptyShippingGroups

PipelineProcessor object: atg.commerce.order.processor.ProcRemoveEmptyShippingGroups

Transitions: return value of 1 will execute removeEmptyPaymentGroups next

removeEmptyPaymentGroups

This processor checks to see if there are any empty PaymentGroups in the Order. If so then it will remove
them. An empty PaymentGroup contains no Relationships. If the Order contains only one PaymentGroup
then it will not be removed if it is empty.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/RemoveEmptyPaymentGroups

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 3 0

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
PipelineProcessor object: atg.commerce.order.processor.ProcRemoveEmptyPaymentGroups

Transitions: return value of 1 will execute createImplicitRelationships next

createImplicitRelationships

This processor adds Relationships to the Order if there is only one ShippingGroup or one
PaymentGroup. If either one of these or both have no Relationships, then relationships will automatically
be created. For the ShippingGroup, Relationships will be created between it and each CommerceItem.
For the PaymentGroup, a Relationship will be created between itself and the Order with type
OrderAmountRemaining.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/CreateImplicitRelationships

PipelineProcessor object: atg.commerce.order.processor.ProcCreateImplicitRelationships

Transitions: return value of 1 will execute setPaymentGroupAmount next

setPaymentGroupAmount

This processor sets the amount property of each PaymentGroup in the Order based on the Relationships
in each PaymentGroup. This amount is the amount that will ultimately be debited by the
PaymentManager.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/SetPaymentGroupAmount

PipelineProcessor object: atg.commerce.order.processor.ProcSetPaymentGroupAmount

Transitions: return value of 1 will execute moveUsedPromotions next

moveUsedPromotions

This processor updates the promotion use information in the Profile repository for the user.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/MoveUsedPromotions

PipelineProcessor object: atg.commerce.order.processor.ProcMoveUsedPromotions

Transitions: return value of 1 will execute authorizePayment next

authorizePayment

This processor authorizes all the payment information in the PaymentGroups. It essentially calls the
authorize() method in the PaymentManager for each PaymentGroup.

Transactional mode: TX_MANDATORY

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 3 1

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Nucleus component: /atg/commerce/order/processor/AuthorizePayment

PipelineProcessor object: atg.commerce.order.processor.ProcAuthorizePayment

Transitions: return value of 1 will execute updateGiftRepository next

updateGiftRepository

This processor updates the gift list repository information for the user.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/UpdateGiftRepository

PipelineProcessor object: atg.commerce.order.processor.ProcUpdateGiftRepository

Transitions: return value of 1 will execute sendGiftPurchasedMessage next

sendGiftPurchasedMessage

This processor sends a gift purchased message to the messaging system.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/SendGiftPurchasedMessage

PipelineProcessor object: atg.commerce.order.processor.ProcSendGiftPurchasedMessage

Transitions: return value of 1 will execute setSubmittedSiteId next

setSubmittedSiteId

If you are using multisite, this processor sets the ID of the site on which the user created the order.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processing/SetSumittedSite

PipelineProcessor object: atg.commerce.order.processor.SetSubmittedSite

Transitions: return value of 1 executes addOrderToRepository next.

addOrderToRepository

This processor saves the Order to the Order Repository and if the user is not a registered user, adds the
Order to the repository and then saves it.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/AddOrderToRepository

PipelineProcessor object: atg.commerce.order.processor.ProcAddOrderToRepository

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 3 2

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transitions: return value of 1 will execute sendPromotionUsedMessage next

sendPromotionUsedMessage

This processor sends a message to the Scenario Server for each promotion that was used in the Order
signifying that the given promotion was used by the user.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/SendPromotionUsedMessage

PipelineProcessor object: atg.commerce.order.processor.ProcSendPromotionUsedMessage

Transitions: return value of 1 will execute sendFulfillmentMessage next

sendFulfillmentMessage

This processor sends a message to the fulfillment engine signifying that it should begin processing the
Order.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/SendFulfillmentMessage

PipelineProcessor object: atg.commerce.order.processor.ProcSendFulfillmentMessage

Transitions: None, this is the last link in the chain and will cause the PipelineManager to return to the
caller.

validateForCheckout Pipeline Chain

The validateForCheckout pipeline chain verifies that the Order is ready for checkout. The
validateForCheckout pipeline chain is executed by the validateOrder() method in the
OrderManager and the processOrder pipeline chain. The validateOrder() method adds the given
Order, Locale, and OrderManager to its parameter list, which is supplied to the executing chain. The
pipeline chain’s transaction mode is TX_REQUIRED.

The following sections describe each processor in the pipeline chain.

validateOrderForCheckout

This processor validates that there is at least one ShippingGroup, one PaymentGroup, and one
CommerceItem in the Order before checking out.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidateOrderForCheckout

PipelineProcessor object: atg.commerce.order.processor.ProcValidateOrderForCheckout

Transitions: return value of 1 will execute verifyOrderAddresses next

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 3 3

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
verifyOrderAddresses

This processor verifies the given addresses in the HardgoodShippingGroup and CreditCard objects. It
does this by calling the verifyAddress() method in the AddressVerificationProcessor, which is
configured in the verifyOrderAddresses processor.

Note: The AddressVerificationProcessor is not a pipeline processor.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/VerifyOrderAddresses

PipelineProcessor object: atg.commerce.order.processor.ProcVerifyOrderAddresses

Transitions: return value of 1 will execute validateShippingGroupsForCheckout next

validateShippingGroupsForCheckout

This processor validates ShippingGroups before checking an Order out. It checks that all
CommerceItems in the Order are assigned to ShippingGroups and that all the required fields in all the
ShippingGroups, regardless of type, are not null or empty String.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidateShippingGroupsForCheckout

PipelineProcessor:object:
atg.commerce.order.processor.ProcValidateShippingGroupsForCheckout

Transitions: return value of 1 will execute creditCardModCheck next

creditCardModCheck

This processor does a mod check on credit card numbers to see if they are valid. The verifyCreditCard
method of the atg.payment.creditcard.ExtendableCreditCardTools class is called on each credit
card number in the Order.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/CreditCardModCheck

PipelineProcessor object: atg.commerce.order.processor.ProcCreditCardModCheck

Transitions: return value of 1 will execute validatePaymentGroupsForCheckout next

validatePaymentGroupsForCheckout

This processor validates PaymentGroups before checking an Order out. It checks that all CommerceItems,
shipping costs, and tax in the Order are assigned to PaymentGroups. It also checks that all the required
fields in all the PaymentGroups, regardless of type, are not null or an empty String.

Transactional mode: TX_MANDATORY

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 3 4

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Nucleus component: /atg/commerce/order/processor/ValidatePaymentGroupsForCheckout

PipelineProcessor object:
atg.commerce.order.processor.ProcValidatePaymentGroupsForCheckout

Transitions: return value of 1 will execute validateShippingCostsForCheckout next

validateShippingCostsForCheckout

This processor validates that all shipping costs are accounted for by a PaymentGroup. Shipping costs are
accounted for if there is only one PaymentGroup and it has no Relationships, if the ShippingGroup has
been assigned to a PaymentGroup, or if an order level Relationship exists in the Order that covers the
entire amount of the Order.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidateShippingCostsForCheckout

PipelineProcessor object:
atg.commerce.order.processor.ProcValidateShippingCostsForCheckout

Transitions: return value of 1 will execute validateOrderCostsForCheckout next.

validateOrderCostsForCheckout

This processor validates that all order costs are accounted for by a PaymentGroup. Order costs are
accounted for if there is only one PaymentGroup and it has no Relationships or if order level Relationships
exist in the Order that cover the entire amount of the Order.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidateOrderCostsForCheckout

PipelineProcessor object: atg.commerce.order.processor.ProcValidateOrderCostsForCheckout

Transitions: return value of 1 will execute validateHandlingInstructionsForCheckout next

validateHandlingInstructionsForCheckout

This processor validates that the total quantities in the HandlingInstructions do not exceed the
amount assigned to the ShippingGroup. It does this by iterating over all the HandlingInstructions in
the ShippingGroups and validating that the sum of the quantities in the HandlingInstructions do
not exceed that which is assigned to the ShippingGroup. It will also catch errors if
HandlingInstructions contain errors such as invalid ShippingGroup and CommerceItem IDs or
CommerceItems that are not assigned to the ShippingGroup that contains the HandlingInstruction.

Transactional mode: TX_MANDATORY

Nucleus component:
/atg/commerce/order/processor/ValidateHandlingInstructionsForCheckout

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 3 5

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
PipelineProcessor object:
atg.commerce.order.processor.ProcValidateHandlingInstructionsForCheckout

Transitions: return value of 1 will execute validateCurrencyCodes next

validateCurrencyCodes

Verifies that all the PriceInfo objects in the Order have been priced using the same currency code. The
currency code in the OrderPriceInfo object is the one that must be matched. The code checks the
TaxPriceInfo object’s currency code in the Order and all the ShippingPriceInfo and
ItemPriceInfo currency codes in all the ShippingGroups and CommerceItems, respectively.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidateCurrencyCodes

PipelineProcessor object: atg.commerce.order.processor.ProcValidateCurrencyCodes

Transitions: Return value of 1 executes checkForDiscontinuedProducts next.

checkForDiscontinuedProducts

Ensures that the order does not contain any products that are no longer available.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/CheckForDiscontinuedProducts

PipelineProcessor object: atg.commerce.order.processor.ProcCheckForDiscontinuedProducts

Transitions: None, this is the last link in the chain and will cause the PipelineManager to return to the
caller.

validatePostApproval Pipeline Chain

The validatePostApproval pipeline chain revalidates an order after an order requiring approval has
been approved, or after the system determines that an order does not require approval. It only needs to
check information that the approver is expected to specify, or that the approver might change as part of
the order approval process.

By default it revalidates all payment-related information, as well as checking that all order and shipping
costs are accounted for. It assumes that other information about the order is unchanged, and does not
revalidate shipping addresses, etc. If the application’s approval process allows approvers to change other
order information, that information should also be revalidated here.

The following sections describe each processor in the pipeline chain.

validatePaymentGroupsPostApproval

Transactional mode: TX_MANDATORY

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 3 6

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Nucleus component: /atg/commerce/order/processor/ValidatePaymentGroupsPostApproval

PipelineProcessor object:
atg.commerce.order.processor.ProcValidatePaymentGroupsForCheckout

Transitions: Return value of 1 executes the validatePaymentGroupsPostApproval pipeline chain.

validateCostCentersPostApproval

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidateCostCentersForCheckout

PipelineProcessor object:
atg.commerce.order.processor.ProcValidateCostCentersForCheckout

Transitions: Return value of 1 executes the next link in the pipeline chain.

validateShippingCostsPostApproval

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidateShippingCostsForCheckout

PipelineProcessor object:
atg.commerce.order.processor.ProcValidateShippingCostsForCheckout

Transitions: Return value of 1 executes the next link in the pipeline chain.

validateOrderCostsPostApproval

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidateOrderCostsForCheckout

PipelineProcessor object: atg.commerce.order.processor.ProcValidateOrderCostsForCheckout

Transitions: None, this is the last link in the chain and will cause the PipelineManager to return to the
caller.

validatePaymentGroupsPostApproval Pipeline Chain

This chain is called by validatePaymentGroupsPostApproval to validate each payment group in turn.
This configuration is in part from the base ATG Commerce configuration for the validatePaymentGroup
chain, but also includes validation for the invoiceRequest payment method. If you add new payment
methods to the validatePaymentGroup, add them here as well so they are revalidated after order
approval.

The following section describes the processor in the pipeline chain.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 3 7

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
validatePaymentGroupsPostApproval

This processor uses dispatchOnPGTypePostApproval to determine which payment group types are
included in the Order.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidatePaymentGroupByType

PipelineProcessor object: atg.commerce.order.processor.ProcDispatchOnProperty

Transitions: A return value of 4000 results in execution of validateCreditCardPGPostApproval. A
return value of 4001 results in execution of validateGiftCertificatePGPostApproval. A return
value of 4002 results in execution of validateStoreCreditPGPostApproval. A return value of 5000
results in execution of validateInvoiceRequestPGPostApproval.

validateNoApproval Pipeline Chain

This chain validates orders that do not require approval. By default, ATG Business Commerce defers
validating the invoiceRequest payment method until it is known whether the order requires approval,
so it is validated in this chain.

The following section describes the processor in the pipeline chain.

validatePaymentGroupsNoApproval

This processor validates payment groups not validated by the validatePaymentGroupsForCheckout
chain.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidatePaymentGroupsNoApproval

PipelineProcessor object:
atg.commerce.order.processor.ProcValidatePaymentGroupsForCheckout

Transitions: None, this is the only link in the chain and will cause the PipelineManager to return to the
caller.

validatePaymentGroup Pipeline Chain

This chain validates one payment group. The following sections describe each processor in the pipeline
chain.

dispatchOnPGType

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidatePaymentGroupByType

PipelineProcessor object: atg.commerce.order.processor.ProcDispatchOnProperty

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 3 8

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transitions: If the processor returns a value of 4000, execute the validateCreditCardPG pipeline processor.
If the processor returns 4001, execute the validateGiftCertificatePG pipeline processor.If the processor
returns 4002, execute the validateStoreCreditPG processor.

validateCreditCardPG

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidateCreditCard

PipelineProcessor object: atg.commerce.order.processor.ProcValidateCreditCard

Transitions: None, this is the last link in the chain and will cause the PipelineManager to return to the
caller.

validateGiftCertificatePG

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidateGiftCertificate

PipelineProcessor object: atg.commerce.order.processor.ProcValidateGiftCertificate

Transitions: None, this is the last link in the chain and will cause the PipelineManager to return to the
caller.

validateStoreCreditPG

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidateStoreCredit

PipelineProcessor object: atg.commerce.order.processor.ProcValidateStoreCredit

Transitions: None, this is the last link in the chain and will cause the PipelineManager to return to the
caller.

recalcPaymentGroupAmounts Pipeline Chain

The recalcPaymentGroupAmounts pipeline chain regenerates the amount that must be assigned to
each PaymentGroup in the Order. The recalcPaymentGroupAmounts pipeline chain is executed by the
recalculatePaymentGroupAmounts() method in the OrderManager. The
recalculatePaymentGroupAmounts() method adds the given Order and OrderManager to its
parameter list, which is supplied to the executing chain. The pipeline chain’s transaction mode is
TX_REQUIRED.

The following section describes the processor in the pipeline chain.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 3 9

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
setPaymentGroupAmount2

This processor sets the amount property of each PaymentGroup in the Order based on the Relationships
in each PaymentGroup. This amount is the amount that will ultimately be debited by the
PaymentManager.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/SetPaymentGroupAmount

PipelineProcessor object: atg.commerce.order.processor.ProcSetPaymentGroupAmount

Transitions: None, this is the only link in the chain and will cause the PipelineManager to return to the
caller.

repriceOrder Pipeline Chain

The repriceOrder pipeline chain prices the Order. The repriceOrder pipeline chain is executed by the
handleRepriceOrder() method in the CartModifierFormHandler and the
ExpressCheckoutFormHandler. The pipeline chain’s transaction mode is TX_REQUIRED.

The following section describes the processor in the pipeline chain.

priceOrderTotal

This processor causes the Order to be re-priced using the pricing engine.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/pricing/processor/PriceOrderTotal

PipelineProcessor object: atg.commerce.pricing.processor.PriceOrderTotal

Transitions: None, this is the only link in the chain and will cause the PipelineManager to return to the
caller.

repriceAndUpdateOrder Pipeline Chain

The following sections describe each processor in the pipeline chain.

executeRepriceOrderChainForUpdate

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/pricing/processor/ExecuteRepriceOrderChain

PipelineProcessor object: atg.commerce.order.processor.ProcExecuteChain

Transitions: If returns one, executes the updateOrderAfterReprice processor.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 4 0

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
updateOrderAfterReprice

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/UpdateOrder

PipelineProcessor object: atg.commerce.order.processor.ProcUpdateOrder

Transitions: None, this is the last link in the chain and will cause the PipelineManager to return to the
caller.

moveToConfirmation Pipeline Chain

The moveToConfirmation pipeline chain prices the Order and validates it. The moveToConfirmation
pipeline chain is executed by the handleMoveToConfirmation() method in the
PaymentGroupFormHandler. The pipeline chain’s transaction mode is TX_REQUIRED.

The following sections describe each processor in the pipeline chain.

executeRepriceOrderChain

This processor causes the repriceOrder pipeline chain to be executed.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/pricing/processor/ExecuteRepriceOrderChain

PipelineProcessor object: atg.commerce.order.processor.ProcExecuteChain

Transitions: return value of 1 will execute executeValidateForCheckoutChain2 next.

executeValidateForCheckoutChain2

This processor causes the validateForCheckout chain to be executed.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ExecuteValidateForCheckoutChain

PipelineProcessor object: atg.commerce.order.processor.ProcExecuteChain

Transitions: None, this is the last link in the chain and will cause the PipelineManager to return to the
caller.

validatePaymentGroupPreConfirmation Pipeline Chain

The following sections describe each processor in the pipeline chain.

dispatchOnPGTypePreConfirmation

Transactional mode: TX_MANDATORY

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 4 1

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Nucleus component: /atg/commerce/order/processor/ValidatePaymentGroupByType

PipelineProcessor object: atg.commerce.order.processor.ProcDispatchOnProperty

Transitions: If the processor returns a value of 4000, execute the validateCreditCardPGPreConfirmation
pipeline processor. If the processor returns 4001, execute the validateGiftCertificatePGPreConfirmation
pipeline processor.If the processor returns 4002, execute the validateStoreCreditPGPreConfirmation
processor.

validateCreditCardPGPreConfirmation

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidateCreditCard

PipelineProcessor object: atg.commerce.order.processor.ProcValidateCreditCard

Transitions: None, this is the last link in the chain and will cause the PipelineManager to return to the
caller.

validateGiftCertificatePGPreConfirmation

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidateGiftCertificate

PipelineProcessor object: atg.commerce.order.processor.ProcValidateGiftCertificate

Transitions: None, this is the last link in the chain and will cause the PipelineManager to return to the
caller.

validateStoreCreditPGPreConfirmation

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidateStoreCredit

PipelineProcessor object: atg.commerce.order.processor.ProcValidateStoreCredit

Transitions: None, this is the last link in the chain and will cause the PipelineManager to return to the
caller.

moveToPurchaseInfo Pipeline Chain

The moveToPurchaseInfo pipeline chain validates the Order. The moveToPurchaseInfo pipeline chain
is executed by the handleMoveToPurchaseInfo() method in the CartModifierFormHandler. The
pipeline chain’s transaction mode is TX_REQUIRED.

The following section describes the processor in the pipeline chain.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 4 2

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
validateOrderForCheckout2

This processor causes the validateForCheckout chain to be executed.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidateOrderForCheckout

PipelineProcessor object: atg.commerce.order.processor.ProcValidateOrderForCheckout

Transitions: None, this is the only link in the chain and will cause the PipelineManager to return to the
caller.

validateShippingInfo Pipeline Chain

The validateShippingInfo pipeline chain validates the ShippingGroups in the Order. The
validateShippingInfo pipeline chain is executed by the validateShippingGroupsChainId()
method in the ShippingGroupFormHandler. The pipeline chain’s transaction mode is TX_REQUIRED.

The following section describes the processor in the pipeline chain.

validateShippingGroupsInfo

This processor validates ShippingGroups before checking an Order out. This processor checks that all
CommerceItems in the Order are assigned to ShippingGroups and that all the required fields in all the
ShippingGroups, regardless of type, are not null or empty String.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidateShippingGroupsForCheckout

PipelineProcessor object: atg.commerce.order.processor.ProcValidateShippingGroupsFor
Checkout

Transitions: None, this is the only link in the chain and will cause the PipelineManager to return to the
caller.

validateShippingGroup Pipeline Chain

The following sections describe each processor in the pipeline chain.

dispatchOnSGType

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidateShippingGroupByType

PipelineProcessor object: atg.commerce.order.processor.ProcDispatchOnProperty

Transitions: If the processor returns 4000, call the validateHardGoodSG processor. If it returns 4001, call
the ValidateElectronicSG processor.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 4 3

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
validateHardgoodSG

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidateHardgoodShippingGroup

PipelineProcessor object: atg.commerce.order.processor.ProcValidateHardgoodShippingGroup

Transitions: None, this is the last link in the chain and will cause the PipelineManager to return to the
caller.

validateElectronicSG

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/ValidateElectronicShippingGroup

PipelineProcessor object:
atg.commerce.order.processor.ProcValidateElectronicShippingGroup

Transitions: None, this is the last link in the chain and will cause the PipelineManager to return to the
caller.

sendScenarioEvent Pipeline Chain

The sendScenarioEvent pipeline chain sends a message to the Dynamo Message System. The
sendScenarioEvent pipeline chain is used in various areas of ATG Commerce. The pipeline chain’s
transaction mode is TX_REQUIRED.

The following section describes the processor in the pipeline chain.

sendScenarioEvent

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/SendScenarioEvent

PipelineProcessor object: atg.commerce.order.processor.ProcSendScenarioEvent

Transitions: None, this is the only link in the chain and will cause the PipelineManager to return to the
caller.

Notes: This processor sends scenario action events to the scenario server.

processScheduledOrder Pipeline Chain

This chain places a scheduled order and then sends an event. The following sections describe each
processor in the pipeline chain.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 4 4

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
runProcessOrderPipeline

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/RunProcessOrderChain

PipelineProcessor object: atg.commerce.order.processor.ProcExecuteChain

Transitions: If the processor returns 1, call the sendMessageScheduledOrderMessage processor.

sendMessageScheduledOrderMessage

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/SendScheduledOrderMessage

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScheduledOrderMessage

Transitions: None, this is the last link in the chain and will cause the PipelineManager to return to the
caller.

Fulfillment Pipelines
The following section includes diagrams that describe how processor chains work together in the
fulfillment system, as specified in the
<ATG10dir>/Fulfillment/atg/commerce/fulfillment/fulfillmentpipeline.xml configuration
file.

The following series of chains is triggered when the OrderFulfiller receives a SubmitOrder message.

handleSubmitOrder

splitShippingGroupsFulfillment

executeFulfillOrderFragment

This series of chains is triggered when the OrderFulfiller receives a ModifyOrder message.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 4 5

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ

handleModifyOrder

performIdTargetModification

performOrderModification

removeOrder

The following series of chains is triggered by OrderFulfiller receiving a ModifyOrderNotification
message.

handleModifyOrderNotification

handleIdTargetModification

handleShippingGroupModification

handleShipGroupUpdateModification handlePaymentGroupUpdateModification

completeRemoveOrder

completeOrder

updateRelationship

updateShippingGroup

handleRelationshipModification

The following series of chains is triggered when the HardgoodFulfiller receives a
FulfillOrderFragment message.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 4 6

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ

handle HardgoodFulfillOrderFragment

processHardgoodShippingGroup

allocateShippingGroup

allocateItemRelQuantity allocateItemRelQuantityForConfigurableItem

allocateItemRelationship

splitShippingGroupForAvailability

This series of chains is triggered when HardgoodFulfiller receives an UpdateInventory message.

handleHardgoodUpdateInventory

handleOrderWaitingShipMap

processHardgoodShippingGroup

(Se e previous diagram)

The following series of chains is triggered when HardgoodFulfiller receives a ModifyOrder message.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 4 7

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ

performHardgoodIdTargetModification

performHardgoodShippingGroupModification

re moveHardgoodShippingGroup

performHardgoodItemModification

performHardgoodRelationshipModificatio
n

shippingGroupHasShipped

removeShipItemRelsFromShipGroup

updateHardgoodShippingGroup

handleHardgoodModifyOrder

This series of chains is triggered when HardgoodFulfiller receives a ModifyOrderNotification
message.

handleHardgoodModifyOrderNotification

handleHardgoodShipGroupUpdateModification

processHardgoodShippingGroup

(See previous diagram)

By default, the following series of chains is not triggered by the fulfillment system. This series of chains is
provided as a resource for users extending the fulfillment system.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 4 8

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ

shipPendingShippingGroups

shipShippingGroup

s hippingGroupHasShipped

The following series of chains is triggered when an ElectronicFulfiller receives a
FulfillOrderFragment message.

handleElectronicFulfillOrderFragment

processElectronicShippingGroup

allocateElectronicGood

By default, the following series of chains is not triggered by the fulfillment system. This series of chains is
provided as a resource for users extending the fulfillment system.

processElectronicShippingGroups

processElectronicShippingGroup

allocateElectronicGood

handleSubmitOrder Pipeline Chain

The handleSubmitOrder chain is triggered when OrderFulfiller receives a SubmitOrder message.
The purpose of this chain is to load the order, verify that the order should be fulfilled, divide it up among

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 4 9

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
appropriate fulfillers, and deliver the necessary information to each fulfiller. This chain is triggered when
OrderFulfiller receives a SubmitOrder message.

The following sections describe each processor in the pipeline chain.

extractOrderId

Attempts to extract the ID of the order from the OrderId property of the SubmitOrder message.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ExtractOrderId

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcExtractOrderId

Transitions: Return value of 1 executes the handleRetrieveOrder processor.

handleRetrieveOrder

Determines the method by which the Order should be loaded. If the order ID was successfully extracted in
the extractOrderId processor, then moves to the loadOrder processor.

If the order ID was not extracted successfully, then check the LookUpOrderIdFromOrder property of the
OrderFulfiller. If this property is true, the chain moves to the loadSaveOrder processor. If this
property is false, then the processor throws an InvalidParameterException and chain execution
stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleRetrieveOrder

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcHandleRetrievingOrder

Transitions: Return value of 1 executes the loadSaveOrder processor. Return value of 2 executes the
loadOrder processor.

loadSaveOrder

Checks to see if the Order exists in the order repository, using the OrderExists method of
OrderManager and the ID of the serialized order within the SubmitOrder message as the parameter. If
the order exists, the processor loads the order. If the order does not exist, then fulfillment is using a
different repository than the order placement system. The processor then saves the order from the
message into the repository. In either case, the chain then moves to the verifyOrderForFulfillment
processor.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/LoadSaveOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcLoadSaveOrderRepository

Transitions: Return value of 1 executes the verifyOrderForFulfllment processor.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 5 0

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
loadOrder

Loads the order from the order repository. Control then passes to verifyOrderForFulfillement.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/LoadOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcLoadOrderRepository

Transitions: Return value of 1 executes the verifyOrderForFulfllment processor.

verifyOrderForFulfillment

Calls the verifyOrderFulfillment method of OrderFulfillmentTools, which checks to make sure
the order is in a valid state for fulfillment: not INCOMPLETE, PENDING_REMOVE, REMOVED, or
NO_PENDING_ACTION.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/VerifyOrderForFulfillment

PipelineProcessor object:
atg.commerce.fulfillment.processor.ProcVerifyOrderForFulfillment

Transitions: Return value of 1 executes the splitShippingGroupsFulfillmentChain processor.

splitShippingGroupsFulfillmentChain

Runs splitShippingGroupsFulfilllment chain.

Transactional mode: TX_MANDATORY

Nucleus component:
/atg/commerce/fulfillment/processor/SplitShippingGroupsFulfillmentChain

PipelineProcessor object: atg.commerce.order.processor.ProcExecuteChain

Transitions: Return value of 1 executes the executeFulfillOrderFragmentChain processor.

executeFulfillOrderFragmentChain

Iterates through the shipping groups, and runs executeFulfillOrderFragment chain for each.

Transactional mode: TX_MANDATORY

Nucleus component:
/atg/commerce/fulfillment/processor/ExecuteFulfillOrderFragmentChain

PipelineProcessor object:
atg.commerce.fulfillment.processor.ProcExecuteFulfillOrderFragment

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 5 1

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transitions: Return value of 1 executes the updateOrderRepository processor.

updateOrderRepository

Updates the order in the repository with any changes that may have been made during the execution of
this chain (splitting of shipping groups, update of states, etc.).

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/UpdateOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcUpdateOrderRepository

Transitions: Return value of 1 executes the sendModifyOrderNotification processor.

sendModifyOrderNotification

This processor sends a ModifyOrderNotification message with the list of modifications performed
during the execution of this chain using JMS.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/SendModifyOrderNotification

PipelineProcessor object:
atg.commerce.fulfillment.processor.ProcSendModifyOrderNotification

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

splitShippingGroupsFulfillment Pipeline Chain

The splitShippingGroupsFulfillment chain splits shipping groups according to the fulfillment
systems that handle each of the particular items within each shipping group.

The following sections describe each processor in the pipeline chain.

retrieveShippingGroupsToBeSplit

Iterates through the shipping groups contained within the order and determines if the entire shipping
group can be fulfilled by one fulfiller. It does this using the isShippingGroupSingleFulfiller method
of the OrderFulfillmentTool. Those shipping groups that cannot be fulfilled by one fulfiller are placed
as an ArrayList in the pipeline’s pParam map parameter, with the key being the pipeline’s
SHIPPINGGROUPIDS constant.

Transactional mode: TX_MANDATORY

Nucleus component:
/atg/commerce/fulfillment/processor/RetrieveShippingGroupsToBeSplit

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 5 2

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
PipelineProcessor object:
atg.commerce.fulfillment.processor.ProcRetrieveShippingGroupsToBeSplit

Transitions: Return value of 1 executes the splitShippingGroupsForFulfillment processor.

splitShippingGroupsForFulfillment

Sends the ArrayList generated in the previous processor to splitShippingGroupsByFulfiller
method of OrderFulfillmentTools, which does the actual splitting of the shipping groups, keeping
track of the changes through a Modification list.

Transactional mode: TX_MANDATORY

Nucleus component:
/atg/commerce/fulfillment/processor/SplitShippingGroupsForFulfillment

PipelineProcessor object:
atg.commerce.fulfillment.processor.ProcSplitShippingGroupsForFulfillment

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

executeFulfillOrderFragment Pipeline Chain

The executeFulfillOrderFragment chain verifies that each shipping group is in a state that is ready
for fulfillment, and sends FulfillOrderFragment messages out to the appropriate fulfillers.

The following sections describe each processor in the pipeline chain.

verifyShippingGroupsForFulfillers

Attempts to verify that the shipping groups can be fulfilled by the default fulfiller using the
verifyShippingGroupsForFulfiller method of OrderFulfillmentTools. The state of the shipping
group is set to PENDING_MERCHANT_ACTION if either of the following is true:

 The fulfiller does not appear in the FulfillerShippingGroupHashMap of
OrderFufillmentTools.

 The shipping group is not of the appropriate class for that fulfiller.

Transactional mode: TX_MANDATORY

Nucleus component:
/atg/commerce/fulfillment/processor/VerifyShippingGroupsForFulfillers

PipelineProcessor object:
atg.commerce.fulfillment.processor.ProcVerifyShippingGroupsForFulfillers

Transitions: Return value of 1 executes the sendFulfillOrderFragment processor.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 5 3

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
sendFulfillOrderFragment

Sets the order’s and all the shipping groups’ states to PROCESSING, then builds a
FulfillOrderFragment message and sends it using JMS.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/SendFulfillOrderFragment

PipelineProcessor object:
atg.commerce.fulfillment.processor.ProcSendFulfillOrderFragment

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

handleModifyOrder Pipeline Chain

The handleModifyOrder chain is triggered when a fulfiller receives a ModifyOrder message.
Determines whether the modification is valid, performs it if it is valid, and sends out a
ModifyOrderNotification message to inform other systems of the changes that were made, or that
the changes requested were invalid.

The following sections describe each processor in the pipeline chain.

extractOrderId1

This processor attempts to extract the ID of the order from the OrderId property of the ModifyOrder
message.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ExtractOrderId

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcExtractOrderId

Transitions: Return value of 1 executes the loadOrder1processor.

loadOrder1

This processor loads the order from the order repository.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/LoadOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcLoadOrderRepository

Transitions: Return value of 1 executes the handleModificationClassType processor.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 5 4

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
handleModificationClassType

Determines if the modifications listed in the ModifyOrder message are valid. If so, it calls the appropriate
processor chains, and upon conclusion, passes control to the updateOrderRepository1 processor. The
only chain that this processor will trigger is performIdTargetModification. If a modification listed is
not valid, then the chain moves on to the modificationNotSupported processor.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleModificationClassType

PipelineProcessor object:
atg.commerce.fulfillment.processor.ProcHandleModificationClassType

Transitions: Return value of 1 executes the updateOrderRepository1 processor. Return value of 2
executes the modificationNotSupported processor.

modificationNotSupported

Sets the status of the particular modification to STATUS_FAILED and adds the modification to the list to
be sent back in a ModifyOrderNotification message. Control then passes to updateOrderRepository1.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ModificationNotSupported

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcModificationUnsupported

Transitions: Return value of 1 executes the updateOrderRepository1processor.

updateOrderRepository1

Updates the order in the repository with any changes that may have been made during the execution of
this chain.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/UpdateOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcUpdateOrderRepository

Transitions: Return value of 1 executes the sendModifyOrderNotification1processor.

sendModifyOrderNotification1

Sends a ModifyOrderNotification message with the list of modifications performed during the
execution of this chain using JMS.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/SendModifyOrderNotification

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 5 5

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
PipelineProcessor object:
atg.commerce.fulfillment.processor.ProcSendModifyOrderNotification

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

performIdTargetModification Pipeline Chain

The performIdTargetModification chain is triggered by a ModifyOrder message that includes a
modification of type IdTargetModification.

The following sections describe each processor in the pipeline chain.

handleModificationTargetType

This processor determines which processor to pass control to by looking at the TargetType property of
the IdTargetModification. If the TargetType is TARGET_ORDER, then control passes to
performOrderModificationChain. If the TargetType is TARGET_SHIPPING_GROUP, control passes to
performShippingGroupModification. If the TargetType is TARGET_ITEM, control passes to
performItemModification. If TargetType is TARGET_RELATIONSHIP, control passes to
performRelationshipModification. If TargetType is none of the above types, control passes to
modificationNotSupported1.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleModificationTargetType

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the performOrderModificationChain processor. Return value of 2
executees the performShippingGroupModification processor. Return value of 3 executes the
performItemModification. Return value of 4 executes the performRelationshipModification processor.
Return value of 5 executes the modificationNotSupported1 processor.

performOrderModificationChain

This processor executes the performOrderModification chain. After execution, the execution of this
chain stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/PerformOrderModificationChain

PipelineProcessor object: atg.commerce.order.processor.ProcExecuteChain

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 5 6

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
performShippingGroupModification

Determines the appropriate fulfiller for the shipping group of the modification, and sends a ModifyOrder
message to that fulfiller. Execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component:
/atg/commerce/fulfillment/processor/PerformShippingGroupModification

PipelineProcessor object:
atg.commerce.fulfillment.processor.ProcPerformShippingGroupModification

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

performItemModification

Item modifications are not currently supported, so this processor sets the status of the particular
modification to STATUS_FAILED and adds the modification to the list to be sent back in a
ModifyOrderNotification message. Execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ModificationNotSupported

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcModificationUnsupported

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

performRelationshipModification

Determines the appropriate fulfiller for the shipping group involved in the
ShippingGroupCommerceItem relationship the modification is requested for, and sends a ModifyOrder
message to that fulfiller. Execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component:
/atg/commerce/fulfillment/processor/PerformRelationshipModification

PipelineProcessor object:
atg.commerce.fulfillment.processor.ProcPerformRelationshipModification

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

modificationNotSupported1

Sets the status of the particular modification to STATUS_FAILED and adds the modification to the list to
be sent back in a ModifyOrderNotification message. Execution of this chain then stops.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 5 7

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ModificationNotSupported

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcModificationUnsupported

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

performOrderModification Pipeline Chain

The performOrderModification chain is triggered when called by the
performOrderModifcationChain processor of the performIdTargetModification chain.

The following sections describe each processor in the pipeline chain.

handleModificationType

This processor determines the type of modification requested by looking at the ModificationType
property of the modification. If the ModificationType is ADD_MODIFICATION, control passes to
addOrder. If the ModificationType is REMOVE_MODIFICATION, control passes to removeOrderChain.
If the ModificationType is neither of these, control passes to updateOrder.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleModificationType

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcHandleModificationType

Transitions: Return value of 1 executes the addOrder processor. Return value of 2 executes the
removeOrderChain processor. Return value of 3 executes the updateOrder processor.

addOrder

Modifications that add orders are currently not supported, so this processor sets the status of the
particular modification to STATUS_FAILED and adds the modification to the list to be sent back in a
ModifyOrderNotification message. Execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ModificationNotSupported

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcModificationUnsupported

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

removeOrderChain

Executes the removeOrder pipeline. Execution of this chain then stops.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 5 8

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/RemoveOrderChain

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcRemoveOrder

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

updateOrder

Modifications that update orders are currently not supported, so this processor sets the status of the
particular modification to STATUS_FAILED and adds the modification to the list to be sent back in a
ModifyOrderNotification message. Execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ModificationNotSupported

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcModificationUnsupported

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

removeOrder Pipeline Chain

The removeOrder chain is triggered by the removeOrderChain processor of the
performOrderModification chain.

The following sections describe each processor in the pipeline chain.

verifyOrderForRemoval

Verifies that the order is in an appropriate state for removal, that none of the shipping groups have been
shipped, and that either none of the shipping groups are in a state of PENDING_SHIPMENT, or that the
fulfiller’s AllowRemoveOrderWithPendingShipment property is true. If any of those conditions are not
met, the chain stops execution. If all those conditions are met, the chain continues.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/VerifyOrderForRemoval

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcVerifyOrderForRemoval

Transitions: Return value of 1 executes the sendModifyOrderForRemoval processor.

sendModifyOrderForRemoval

This processor iterates through each fulfiller, and then each shipping group within each fulfiller. It sets the
state of the shipping group to REMOVED, and adds the modification to a modification list. After all the

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 5 9

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
fulfillers have been processed, it sends out a ModifyOrderNotification message containing the
modifications.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/SendModifyOrderForRemoval

PipelineProcessor object:
atg.commerce.fulfillment.processor.ProcSendModifyOrderForRemoval

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

handleModifyOrderNotification Pipeline Chain

The handleModifyOrderNotification chain is triggered by OrderFulfiller receiving a
ModifyOrderNotification message.

The following sections describe each processor in the pipeline chain.

extractOrderId2

This processor attempts to extract the ID of the order from the OrderId property of the
ModifyOrderNotification message.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ExtractOrderId

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcExtractOrderId

Transitions: Return value of 1 executes the loadOrder2 processor.

loadOrder2

This processor loads the order from the order repository.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/LoadOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcLoadOrderRepository

Transitions: Return value of 1 executes the handleModificationClassType1 processor.

handleModificationClassType1

Determines if the modifications listed in the ModifyOrderNotification message are valid. If so, it calls
the appropriate processor chains, and upon conclusion, passes control to the updateOrderRepository2
processor. Possible chains that ModifyOrderNotification modifications could trigger are

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 6 0

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
handleIdTargetModification, handleShipGroupUpdateModification, and
handlePayGroupUpdateModification.

If a modification listed is not valid, then the chain moves on to the modificationNotSupported3
processor.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleModificationClassType

PipelineProcessor object:
atg.commerce.fulfillment.processor.ProcHandleModificationClassType

Transitions: Return value of 1 executes the updateOrderRepository2 processor. Return value of 2
executes the modificationNotSupported3 processor.

modificationNotSupported3

This processor currently does nothing. Control then passes to updateOrderRepository1.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ModificationNotSupported

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcModificationUnsupported

Transitions: Return value of 1 executes the updateOrderRepository2 processor.

updateOrderRepository2

Updates the order in the repository with any changes that may have been made during the execution of
this chain.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/UpdateOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcUpdateOrderRepository

Transitions: Return value of 1 executes the sendModifyOrderNotification2 processor.

sendModifyOrderNotification2

If any modifications were made during the execution of this chain, this processor sends a
ModifyOrderNotification message with the list of modifications using JMS.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/SendModifyOrderNotification

PipelineProcessor object:
atg.commerce.fulfillment.processor.ProcSendModifyOrderNotification

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 6 1

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

handleIdTargetModification Pipeline Chain

The handleIdTargetModification chain is executed when called by the
handleModifyOrderNotification chain.

The following sections describe each processor in the pipeline chain.

handleModificationTargetType1

This processor determines which processor to pass control to by looking at the TargetType property of
the IdTargetModification. If the TargetType is TARGET_ORDER, then control passes to
handleOrderModificationChain. If the TargetType is TARGET_SHIPPING_GROUP, control passes to
handleShippingGroupModificationChain. If the TargetType is TARGET_ITEM, control passes to
handleItemModification. If TargetType is TARGET_RELATIONSHIP, control passes to
handleRelationshipModificationChain. If TargetType is none of the above types, control passes to
modificationNotSupported4.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleModificationTargetType

PipelineProcessor object:
atg.commerce.fulfillment.processor.ProcHandleModificationTargetType

Transitions: Return value of 1 executes the handleOrderModification processor. Return value of 2
executes the handleShippingGroupModificationChain processor. Return value of 3 executes the
handleItemModification processor. Return value of 4 executes the
handleRelationshipModificationChain processor. Return value of 5 executes the
modificationNotSupported4 processor.

handleOrderModification

This modification type is currently not supported. This processor simply logs an error. Execution of this
chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/EmptyProcessor

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcModificationUnsupported

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

handleShippingGroupModificationChain

This processor executes the handleShippingGroupModification chain. After execution, the execution
of this chain stops.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 6 2

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transactional mode: TX_MANDATORY

Nucleus component:
/atg/commerce/fulfillment/processor/HandleShippingGroupModificationChain

PipelineProcessor object: atg.commerce.order.processor.ProcExecuteChain

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

handleItemModification

This modification type is currently not supported. This processor simply logs an error. Execution of this
chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/EmptyProcessor

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcModificationUnsupported

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

handleRelationshipModificationChain

This processor executes the handleRelationshipModification chain. After execution, the execution
of this chain stops.

Transactional mode: TX_MANDATORY

Nucleus component:
/atg/commerce/fulfillment/processor/HandleRelationshipModificationChain

PipelineProcessor object: atg.commerce.order.processor.ProcExecuteChain

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

modificationNotSupported4

This processor logs an error. Execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ModificationNotSupported

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcModificationUnsupported

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 6 3

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
handleShipGroupUpdateModification Pipeline Chain

The handleShipGroupUpdateModification chain is executed when called by the
handleModifyOrderNotification chain.

The following section describes the processor in the pipeline chain.

shipGroupUpdateModification

This processor iterates through each shipping group contained within the modification. Makes sure the
state of the shipping group is INITIAL, then sets it to PROCESSING, resets the submitted date on the
shipping group to the current time, and sends out a ModifyOrderNotification message detailing the
changes made.

Transactional mode: TX_MANDATORY

Nucleus component:
/atg/commerce/fulfillment/processor/HandleShipGroupUpdateModification

PipelineProcessor object:
atg.commerce.fulfillment.processor.ProcHandleShippingGroupUpdateModification

Transitions: None. This is the only link in the chain and causes the PipelineManager to return to the
caller.

handlePaymentGroupUpdateModification Pipeline Chain

The handlePaymentGroupUpdateModification chain is executed when called by the
handleModifyOrderNotification chain.

The following section describes the processor in the pipeline chain.

paymentGroupUpdateModification

This type of modification is currently not supported. This processor simply logs an error.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/EmptyProcessor

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcModificationUnsupported

Transitions: None. This is the only link in the chain and causes the PipelineManager to return to the
caller.

handleShippingGroupModification Pipeline Chain

The handleShippingGroupModification chain is executed when called by the
handleIdTargetModification chain.

The following sections describe each processor in the pipeline chain.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 6 4

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
handleModificationType1

This processor determines the type of modification requested by looking at the ModificationType
property of the modification. If the ModificationType is ADD_MODIFICATION, control passes to
addShippingGroup. If the ModificationType is REMOVE_MODIFICATION, control passes to
cancelRemoveOrder. If the ModificationType is neither of these, control passes to
updateShippingGroupChain.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleModificationType

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcHandleModificationType

Transitions: Return value of 1 executes the addShippingGroup processor. Return value of 2 executes the
cancelRemoveOrder processor. Return value of 3 executes the updateShippingGroupChain processor.

addShippingGroup

This type of modification is currently not supported. This processor logs an error. Execution of this chain
then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/EmptyProcessor

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcModificationUnsupported

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

cancelRemoveOrder

Cancels the remove order modification because a component of the order could not be removed. Sets the
state of the order to PENDING_MERCHANT_ACTION. Execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/CancelRemoveOrder

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

updateShippingGroupChain

This processor executes the updateShippingGroup chain. Execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/UpdateShippingGroupChain

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 6 5

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

updateShippingGroup Pipeline Chain

The updateShippingGroup chain is executed when called by the
handleShippingGroupModification chain.

The following sections describe each processor in the pipeline chain.

handleShippingGroupState

Checks the newValue property of the modification to determine what state the modification is requesting
that the shipping group be set to. If the value is REMOVED, control passes to
completeRemoveOrderChain. If the value is NO_PENDING_ACTION, control passes to
completeOrderChain. If the value is PENDING_MERCHANT_ACTION, control passes to failOrder. If the
value is anything else then execution of this chain stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleShippingGroupState

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the completeRemoveOrderChain processor. Return value of 2
executes the completeOrderChain processor. Return value of 3 executes the failOrder processor.

completeRemoveOrderChain

This processor executes the completeRemoveOrder chain. After execution, execution of this chain then
stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/CompleteRemoveOrderChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

completeOrderChain

This processor executes the completeOrder chain. After execution, execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/CompleteOrderChain

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 6 6

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

failOrder

Sets the state of the order to PENDING_MERCHANT_ACTION, and adds this modification to the list of
modifications.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/FailOrder

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

completeRemoveOrder Pipeline Chain

The completeRemoveOrder chain is executed when called by the updateShippingGroup chain.

The following sections describe each processor in the pipeline chain.

creditOrder

Iterates through the payment groups in the order, and checks to see if each state is SETTLED. If it is, it calls
the credit method of the PaymentGroupManager with that payment group, then sets the status of the
payment group to INITIAL. If the payment group is not SETTLED, it checks to see if the payment group
represents a gift certificate, and if so, calls the expireGiftCertificateAuthorization method of the
PaymentGroupManager to credit the gift certificate.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/CreditOrder

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the finishRemoveOrder processor.

finishRemoveOrder

Iterates through all commerce items and payment groups contained in the order, and sets their states to
REMOVED. Also sets the order’s state to REMOVED.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/FinishRemoveOrder

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 6 7

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

completeOrder Pipeline Chain

The completeOrder chain is executed when called by the updateShippingGroup chain.

The following sections describe each processor in the pipeline chain.

settleOrder

Checks to see if all shipping groups have shipped, or if one shipping group has shipped and the
SettleOnFirstShipment property of the OrderFulfiller is true. If not, then chain execution stops.
Otherwise, it iterates through the Order’s payment groups and calls the debit method of the
PaymentGroupManager on all of them. If the debit fails for a payment group, the payment group’s state is
set to SETTLE_FAILED, and the order’s state is set to PENDING_MERCHANT_ACTION. If the debit succeeds,
the payment group’s state is set to SETTLED.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/SettleOrder

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the finishOrder processor.

finishOrder

Sets the order’s state to NO_PENDING_ACTION and adds the modification to the modification list.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/FinishOrder

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

handleRelationshipModification Pipeline Chain

The handleRelationshipModification chain is executed when called by the
HandleIdTargetModification chain.

The following sections describe each processor in the pipeline chain.

handleModificationType2

This processor determines the type of modification requested by looking at the ModificationType
property of the modification. If the ModificationType is ADD_MODIFICATION, control passes to

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 6 8

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
addRelationship. If the ModificationType is REMOVE_MODIFICATION, control passes to
removeRelationship. If the ModificationType is neither of these, control passes to
updateRelationshipChain.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleModificationType

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcHandleModificationType

Transitions: Return value of 1 executes the addRelationship processor. Return value of 2 executes the
removeRelationship processor. Return value of 3 executes the updateRelationshipChain processor.

addRelationship

This type of modification is currently not supported. This processor logs an error. Execution of this chain
then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/EmptyProcessor

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

removeRelationship

This type of modification is currently not supported. This processor logs an error. Execution of this chain
then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/EmptyProcessor

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

updateRelationshipChain

This processor executes the updateRelationship chain.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/UpdateRelationshipChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 6 9

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

updateRelationship Pipeline Chain

The updateRelationship chain is executed when called by the handleRelationshipModification
chain.

The following sections describe each processor in the pipeline chain.

handleRelationshipState

Checks to make sure the relationship exists, is a ShippingGroupCommerceItem relationship, that the
shipping group’s state was set to REMOVED, and that the modification was a success. If all these
conditions are met, the chain moves to the next processor. Otherwise, chain execution stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleRelationshipState

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the removeShipItemRelationshipFromItem processor.

removeShipItemRelationshipFromItem

Deducts the quantity that was to ship in the given shipping group from the commerce item.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/RemoveShipItemRelationshipFromItem

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

handleHardgoodFulfillOrderFragment Pipeline Chain

The handleHardgoodFulfillOrderFragment chain is executed when HardgoodFulfiller receives a
FulfillOrderFragment message.

The following sections describe each processor in the pipeline chain.

extractOrderId3

This processor attempts to extract the ID of the order from the OrderId property of the
FulfillOrderFragment message.

Transactional mode: TX_MANDATORY

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 7 0

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Nucleus component: /atg/commerce/fulfillment/processor/ExtractOrderId

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcExtractOrderId

Transitions: Return value of 1 executes the handleRetrieveOrder1 processor.

handleRetrieveOrder1

Determines the method by which the Order should be loaded. If the order ID was successfully extracted in
the extractOrderId processor, then we move to the loadOrder3 processor. If not, then it checks the
Boolean LookUpOrderIdFromOrder property of the OrderFulfiller. If true, we move to the
loadSaveOrder1 processor. If false, then it throws an InvalidParameterException, and chain execution
stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleRetrieveOrder

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcHandleRetrievingOrder

Transitions: Return value of 1 executes the loadSaveOrder1 processor. Return value of 2 executes the
loadOrder3 processor.

loadSaveOrder1

Checks to see if the Order exists in the order repository, using the OrderExists method of
OrderManager, and using the ID of the serialized order within the FulfillOrderFragment message as
the parameter. If the order exists, the processor loads the order. If it does not, then fulfillment is using a
different repository than the order placement system. The processor then saves the order from the
message into the repository. In either case, the chain then moves to the
processHardgoodShippingGroupsChain processor.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/LoadSaveOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcLoadSaveOrderRepository

Transitions: Return value of 1 executes the processHardgoodShippingGroupsChain processor.

loadOrder3

This processor loads the order from the order repository.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/LoadOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcLoadOrderRepository

Transitions: Return value of 1 executes the processHardgoodShippingGroupsChain processor.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 7 1

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
processHardgoodShippingGroupsChain

Iterates through the shipping groups contained in the FulfillOrderFragment message, and runs the
processHardgoodShippingGroup chain for each.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ProcessHardgoodShippingGroupsChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the updateOrderRepository3 processor.

updateOrderRepository3

Updates the order in the repository with any changes that may have been made during the execution of
this chain.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/UpdateOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcUpdateOrderRepository

Transitions: Return value of 1 executes the sendModifyOrderNotification3 processor.

sendModifyOrderNotification3

This processor sends a ModifyOrderNotification message with the list of modifications performed
during the execution of this chain using JMS.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/SendModifyOrderNotification

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

processHardgoodShippingGroup Pipeline Chain

The processHardgoodShippingGroup chain is executed when called by the
handleHardgoodFulfillOrderFragment chain or the
handleHardgoodUpdateShipGroupModification chain.

The following sections describe each processor in the pipeline chain.

verifyShippingGroupForFulfillment

This processor checks to make sure the shipping group’s state is PROCESSING. If not, it throws an
exception and execution of the chain stops.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 7 2

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/VerifyShippingGroupForFulfillment

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the allocateShippingGroupChain processor.

allocateShippingGroupChain

This processor executes the allocateShippingGroup chain.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/AllocateShippingGroupChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the splitShippingGroupForAvailabilityChain processor.

splitShippingGroupForAvailabilityChain

This processor executes the splitShippingGroupForAvailability chain.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/SplitShippingGroupForAvailabilityChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

allocateShippingGroup Pipeline Chain

The allocateShippingGroup chain is executed when called by the processHardgoodShippingGroup
chain.

The following section describes the processor in the pipeline chain.

allocateItemRelationshipChain

Iterates through the ShippingGroupCommerceItem relationships contained in the shipping group, and
executes the allocateItemRelationship chain for that relationship.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/AllocateItemRelationshipChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 7 3

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transitions: None. This is the only link in the chain and causes the PipelineManager to return to the
caller.

allocateItemRelationship Pipeline Chain

The allocateItemRelationship chain is executed when called by the allocateShippingGroup
chain.

The following sections describe each processor in the pipeline chain.

retrieveItemRelQuantity

This processor gets the quantity of the commerce item in the relationship (or the remaining quantity if
the relationship type is SHIPPINGQUANTITYREMAINING), and places it into the pipeline’s parameter map.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ RetrieveItemRelQuantity

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the switchOnCommerceItemType processor.

switchOnCommerceItemType

This processor checks for the type of Commerce Item in the relationship. If it is a
ConfigurableCommerceItem, control passes to
allocateItemRelQuantityForConfigurableItemChain. Otherwise, control passes to
allocateItemRelQuantityChain.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/SwitchOnCommerceItemType

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the allocateItemRelQuantityChain processor. Return value of 2
executes the allocateItemRelQuantityForConfigurableItemChain processor.

allocateItemRelQuantityChain

This processor executes the allocateItemRelQuantity chain. After execution, execution of this chain
then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/AllocateItemRelQuantityChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 7 4

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

allocateItemRelQuantityForConfigurableItemChain

This processor executes the allocateItemRelQuantityForConfigurableItem chain. After execution,
execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component:
/atg/commerce/fulfillment/processor/AllocateItemRelQuantityForConfigurableItemChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

allocateItemRelQuantity Pipeline Chain

The allocateItemRelQuantity chain is executed when called by the allocateItemRelationship
chain.

The following sections describe each processor in the pipeline chain.

handleItemRelationshipState

This processor checks the current state of the ShippingGroupCommerceItem relationship. If it is
BACK_ORDERED, control passes to purchaseItemOffBackOrder. If it is PRE_ORDERED, control passes to
purchaseItemOffPreOrder. Otherwise, control passes to purchaseItem.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleItemRelationshipState

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the purchaseItem processor. Return value of 2 executes the
purchaseItemOffPreOrder processor. Return value of 3 executes the purchaseItemOffBackOrder
processor.

purchaseItem

This processor calls the purchase method of the InventoryManager. Depending on the result of the
purchase, the state of the relationship is set accordingly. Execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/PurchaseItem

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 7 5

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

purchaseItemOffPreOrder

This processor calls the purchaseOffPreorder method of the InventoryManager. Depending on the
result of the purchase, the state of the relationship is set accordingly. Execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/PurchaseItemOffPreOrder

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

purchaseItemOffBackOrder

This processor calls the purchaseOffBackorder method of the InventoryManager. Depending on the
result of the purchase, the state of the relationship is set accordingly. Execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/PurchaseItemOffBackOrder

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

allocateItemRelQuantityForConfigurableItem Pipeline Chain

The allocateItemRelQuantityForConfigurableItem chain is executed when called by the
allocateItemRelationship chain.

The following section describes the processor in the pipeline chain.

purchaseConfigurableItem

Attempts to allocate the configurable commerce item and sub items from the inventory system.
Depending upon the result of the allocation, the state of the relationship is set accordingly.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/PurchaseConfigurableItem

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the only link in the chain and causes the PipelineManager to return to the
caller.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 7 6

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
splitShippingGroupForAvailability Pipeline Chain

Executed when called by the processHardgoodShippingGroup chain.

The following sections describe each processor in the pipeline chain.

shipAsItemsAreAvailable

This processor checks to make sure that the fulfiller is configured to allow partial shipments. If it is not,
chain execution stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ShipAsItemsAreAvailable

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the splitShippingGroupForAvailableItems processor.

splitShippingGroupForAvailableItems

This processor splits the shipping group into two shipping groups – one that contains all items in state
PENDING_DELIVERY, and one that contains all items in states that indicate they are not ready for
shipment.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/SplitShippingGroupForAvailableItems

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

handleHardgoodUpdateInventory

The handleHardgoodUpdateInventory chain is executed when HardgoodFulfiller receives an
UpdateInventory message.

The following sections describe each processor in the pipeline chain.

retrieveOrderWaitingShipMap

This processor compiles a HashMap, where the keys are Order Ids and the values are sets of shipping
group Ids whose quantities could not previously be allocated from inventory. This HashMap is placed in
the pipeline’s parameter map.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/RetrieveOrderWaitingShipMap

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 7 7

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transitions: Return value of 1 executes the handleOrderWaitingShipMapChain processor.

handleOrderWaitingShipMapChain

This processor iterates through the HashMap compiled in the previous processor, and executes the
handleOrderWaitingShipMap chain for each item.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleOrderWaitingShipMapChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

handleOrderWaitingShipMap Pipeline Chain

The handleOrderWaitingShipMap chain is executed when called by the
handleHardgoodUpdateInventory chain.

The following sections describe each processor in the pipeline chain.

lockMessage

This processor uses the ClientLockManager to guarantee that only one thread dealing with a message
for a given key is running through the system at any moment in time. The key used to acquire the lock is
returned by the method getKeyForMessage().

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/LockMessage

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the loadOrder4 processor.

loadOrder4

This processor loads the given order from the repository.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/LoadOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcLoadOrderRepository

Transitions: Return value of 1 executes the processHardgoodShippingGroupsChain1 processor.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 7 8

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
processHardgoodShippingGroupsChain1

This processor iterates through the shipping groups contained in the order, and runs the
processHardgoodShippingGroup chain for each.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ProcessHardgoodShippingGroupsChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the updateOrderRepository4 processor.

updateOrderRepository4

This processor updates the order in the repository with any changes that may have been made during the
execution of this chain.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/UpdateOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcUpdateOrderRepository

Transitions: Return value of 1 executes the sendModifyOrderNotification4 processor.

sendModifyOrderNotification4

This processor sends a ModifyOrderNotification message with the list of modifications performed
during the execution of this chain using JMS.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/SendModifyOrderNotification

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

handleHardgoodModifyOrder Pipeline Chain

The handleHardgoodModifyOrder chain is executed when HardgoodFulfiller receives a
ModifyOrder message

The following sections describe each processor in the pipeline chain.

extractOrderId4

This processor attempts to extract the ID of the order from the OrderId property of the ModifyOrder
message.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 7 9

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ExtractOrderId

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcExtractOrderId

Transitions: Return value of 1 executes the loadOrder5 processor.

loadOrder5

This processor loads the order from the repository

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/LoadOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcLoadOrderRepository

Transitions: Return value of 1 executes the handleModificationClassType2 processor.

handleModificationClassType2

This processor determines if the modifications listed in the ModifyOrder message are valid. If so, it calls
the appropriate processor chains. The only chain that will be called from this processor is
performHardgoodTargetIdModification.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleModificationClassType

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the updateOrderRepository5 processor.

updateOrderRepository5

This processor updates the order in the repository with any changes that may have been made during the
execution of this chain.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/UpdateOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcUpdateOrderRepository

Transitions: Return value of 1 executes the sendModifyOrderNotification5processor.

sendModifyOrderNotification5

This processor sends a ModifyOrderNotification message with the list of modifications performed
during the execution of this chain using JMS.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 8 0

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/SendModifyOrderNotification

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

performHardgoodIdTargetModification Pipeline Chain

The performHardgoodIdTargetModification chain is executed when called by the
handleHardgoodModifyOrder chain.

The following sections describe each processor in the pipeline chain.

handleModificationTargetType2

This processor determines which processor to pass control to by looking at the TargetType property of
the IdTargetModification. If the TargetType is TARGET_SHIPPING_GROUP, control passes to
performHardgoodShippingGroupModificationChain. If the TargetType is TARGET_ITEM, control
passes to performHardgoodItemModificationChain. If TargetType is TARGET_RELATIONSHIP,
control passes to performHardgoodRelationshipModificationChain.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleModificationTargetType

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 2 executes the performHardgoodShippingGroupModificationChain processor.
Return value of 3 executes the performHardgoodItemModificationChain processor. Return value of 4
executes the performHardgoodRelationshipModificationChain processor.

performHardgoodShippingGroupModificationChain

This processor executes the performHardgoodShippingGroupModification chain. After execution,
execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component:
/atg/commerce/fulfillment/processor/PerformHardgoodShippingGroupModificationChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 8 1

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
performHardgoodItemModificationChain

This processor executes the performHardgoodItemModification chain. After execution, execution of
this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/PerformHardgoodItemModificationChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

performHardgoodRelationshipModificationChain

This processor executes the performHardgoodRelationshipModification chain. After execution,
execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component:
/atg/commerce/fulfillment/processor/PerformHardgoodRelationshipModificationChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

performHardgoodShippingGroupModification Pipeline Chain

The performHardgoodShippingGroupModification chain is executed when called by the
performHardgoodIdTargetModification chain.

The following sections describe each processor in the pipeline chain.

handleModificationType3

This processor determines the type of modification requested by looking at the ModificationType
property of the modification. If the ModificationType is ADD_MODIFICATION, control passes to
addHardgoodShippingGroup. If the ModificationType is REMOVE_MODIFICATION, control passes to
removeHardgoodShippingGroupChain. If the ModificationType is neither of these, control passes to
updateHardgoodShippingGroupChain.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleModificationType

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcHandleModificationType

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 8 2

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transitions: Return value of 1 executes the addHardgoodShippingGroup processor. Return value of 2
executes the removeHardgoodShippingGroupChain processor. Return value of 3 executes the
updateHardgoodShippingGroupChain processor.

addHardgoodShippingGroup

This type of modification is currently not supported. This processor sets the status of the modification to
STATUS_FAILED, and adds the modification to the list to be returned in a ModifyOrderNotification
message. Execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ModificationNotSupported

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcModificationUnsupported

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

removeHardgoodShippingGroupChain

This processor executes the removeHardgoodShippingGroup chain. After execution, execution of this
chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/RemoveHardgoodShippingGroupChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

updateHardgoodShippingGroupChain

This processor executes the updateHardgoodShippingGroup chain. After execution, execution of this
chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/UpdateHardgoodShippingGroupChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

removeHardgoodShippingGroup Pipeline Chain

The removeHardgoodShippingGroup chain is executed when called by the
performHardgoodShippingGroupModification chain.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 8 3

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
The following sections describe each processor in the pipeline chain.

verifyShippingGroupForRemoval

This processor verifies that the shipping group exists and is in a proper state for removal. If it is not, then
execution of this chain stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/VerifyShippingGroupForRemoval

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the removeShipItemRelsFromShipGroupChain processor.

removeShipItemRelsFromShipGroupChain

This processor iterates through the ShippingGroupCommerceItem relationships contained within the
shipping group, and calls the removeShipItemRelsFromShipGroup chain for each relationship.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/RemoveShipItemRelsFromShipGroupChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

removeShipItemRelsFromShipGroup Pipeline Chain

The removeShipItemRelsFromShipGroup chain is executed when called by the
removeHardgoodShippingGroup chain.

The following sections describe each processor in the pipeline chain.

verifyShipItemRelationshipForRemoval

This processor verifies that the relationship is in a proper state for removal. If the state is REMOVED or
PENDING_REMOVE, then chain execution stops. If the state is DELIVERED or PENDING_RETURN, then the
state of the modification is set to FAILED, an error is logged, and chain execution stops. Otherwise, chain
execution continues.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/VerifyShipItemRelationshipForRemoval

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the removeShipItemRelationship processor.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 8 4

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
removeShipItemRelationship

This processor subtracts the quantity of the commerce item contained in the relationship from the
commerce item contained in the order. Sets the state of the shipping group to REMOVED.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/RemoveShipItemRelationship

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

updateHardgoodShippingGroup Pipeline Chain

The updateHardgoodShippingGroup chain is executed when called by the
performHardgoodShippingGroupModification chain.

The following sections describe each processor in the pipeline chain.

handleShippingGroupState1

This processor checks the NewValue property of the modification to determine what state the
modification is requesting that the shipping group be set to. If the value is SHIP_SHIPPING_GROUP,
control passes to shippingGroupHasShippedChain. If the value is anything else then control passes to
modificationNotSupported5.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleShippingGroupState

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 4 executes the shippingGroupHasShippedChain processor. Return value of 5
executes the modificationNotSupported5 processor.

shippingGroupHasShippedChain

This processor executes the shippingGroupHasShipped chain. After execution, execution of this chain
then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ShippingGroupHasShippedChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 8 5

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
modificationNotSupported5

Sets the status of the modification to STATUS_FAILED, and adds the modification to the list to be sent out
in a ModifyOrderNotification message.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ModificationNotSupported

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcModificationUnsupported

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

shippingGroupHasShipped Pipeline Chain

Executed when called by the updateHardgoodShippingGroup chain, or the shipShippingGroups
chain.

The following sections describe each processor in the pipeline chain.

verifyShippingGroupForCompletion

This processor verifies that the shipping group’s state is PENDING_SHIPMENT. If it is, control is passed to
the next processor. If the state is NO_PENDING_ACTION, execution of the chain stops. If the state is
anything else, the state of the modification is set to STATUS_FAILED, and execution of the chain stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/VerifyShippingGroupForCompletion

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the finishShippingGroup processor.

finishShippingGroup

This processor sets the state of each ShippingGroupCommerceItem relationship in the shipping group
to DELIVERED, sets the state of the shipping group to NO_PENDING_ACTION, and sets the shipped date in
the shipping group.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/FinishShippingGroup

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 8 6

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
performHardgoodItemModification Pipeline Chain

The performHardgoodItemModification chain is executed when called by the
performHardgoodIdTargetModification chain.

The following sections describe each processor in the pipeline chain.

handleModificationType4

This processor determines the type of modification requested by looking at the ModificationType
property of the modification. If the ModificationType is ADD_MODIFICATION, control passes to
addHardgoodItem. If the ModificationType is REMOVE_MODIFICATION, control passes to
removeHardgoodItem. If the ModificationType is neither of these, control passes to
updateHardgoodItem.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleModificationType

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcHandleModificationType

Transitions: Return value of 1 executes the addHardgoodItem processor. Return value of 2 executes the
removeHardGoodItem processor. Return value of 3 executes the udpateHardGoodItem processor.

addHardgoodItem

This type of modification is not currently supported. This processor sets the status of the modification to
STATUS_FAILED, and adds the modification to the list to be sent out in a ModifyOrderNotification
message. Execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ModificationNotSupported

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcModificationUnsupported

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

removeHardgoodItem

This type of modification is not currently supported. This processor sets the status of the modification to
STATUS_FAILED, and adds the modification to the list to be sent out in a ModifyOrderNotification
message. Execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ModificationNotSupported

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcModificationUnsupported

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 8 7

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

updateHardgoodItem

This type of modification is not currently supported. This processor sets the status of the modification to
STATUS_FAILED, and adds the modification to the list to be sent out in a ModifyOrderNotification
message. Execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ModificationNotSupported

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcModificationUnsupported

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

performHardgoodRelationshipModification Pipeline Chain

The performHardgoodRelationshipModification chain is executed when called by the
performHardgoodIdTargetModification chain.

The following sections describe each processor in the pipeline chain.

handleModificationType5

This processor determines the type of modification requested by looking at the ModificationType
property of the modification. If the ModificationType is ADD_MODIFICATION, control passes to
addHardgoodRelationship. If the ModificationType is REMOVE_MODIFICATION, control passes to
removeHardgoodRelationship. If the ModificationType is neither of these, control passes to
updateHardgoodRelationship.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleModificationType

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcHandleModificationType

Transitions: Return value of 1 executes the addHardgoodRelationship processor. Return value of 2
executes the removeHardGoodRelationship processor. Return value of 3 executes the
updateHardGoodRelationship.

addHardgoodRelationship

This type of modification is not currently supported. This processor sets the status of the modification to
STATUS_FAILED, and adds the modification to the list to be sent out in a ModifyOrderNotification
message. Execution of this chain then stops.

Transactional mode: TX_MANDATORY

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 8 8

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Nucleus component: /atg/commerce/fulfillment/processor/ModificationNotSupported

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcModificationUnsupported

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

removeHardgoodRelationship

This type of modification is not currently supported. This processor sets the status of the modification to
STATUS_FAILED, and adds the modification to the list to be sent out in a ModifyOrderNotification
message. Execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ModificationNotSupported

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcModificationUnsupported

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

updateHardgoodRelationship

This type of modification is not currently supported. This processor sets the status of the modification to
STATUS_FAILED, and adds the modification to the list to be sent out in a ModifyOrderNotification
message. Execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ModificationNotSupported

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcModificationUnsupported

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

handleHardgoodModifyOrderNotification Pipeline Chain

The handleHardgoodModifyOrderNotification chain is executed when HardgoodFulfiller
receives a ModifyOrderNotification message.

The following sections describe each processor in the pipeline chain.

extractOrderId5

This processor attempts to extract the ID of the order from the OrderId property of the
ModifyOrderNotification message.

Transactional mode: TX_MANDATORY

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 8 9

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Nucleus component: /atg/commerce/fulfillment/processor/ExtractOrderId

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcExtractOrderId

Transitions: Return value of 1 executes the loadOrder6 processor.

loadOrder6

This processor loads the given order from the order repository.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/LoadOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcLoadOrderRepository

Transitions: Return value of 1 executes the handleModificationClassType3 processor.

handleModificationClassType3

This processor determines if the modifications listed in the ModifyOrderNotification message are
valid. If the modifications are valid, it calls the appropriate processor chains, and upon conclusion, passes
control to the updateOrderRepository6 processor. The only chain that this processor could trigger is
handleHardgoodShipGroupUpdateModification.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleModificationClassType

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the updateOrderRepository6 processor.

updateOrderRepository6

This processor updates the order in the repository with any changes that may have been made during the
execution of this chain.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/UpdateOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcUpdateOrderRepository

Transitions: Return value of 1 executes the sendModifyOrderNotification6 processor.

sendModifyOrderNotification6

If any changes were made during the execution of this chain, this processor sends a
ModifyOrderNotification message with the list of modifications using JMS.

Transactional mode: TX_MANDATORY

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 9 0

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Nucleus component: /atg/commerce/fulfillment/processor/SendModifyOrderNotification

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

handleHardgoodShipGroupUpdateModification Pipeline Chain

The handleHardgoodShipGroupUpdateModification chain is executed when called by the
handleHardgoodModifyOrderNotification chain.

The following sections describe each processor in the pipeline chain.

extractShippingGroupIds

This processor extracts the shipping group IDs from the ModifyOrderNotification message and
places them in the pipeline’s parameter map.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ExtractShippingGroupIds

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the processHardgoodShippingGroupsChain2 processor.

processHardgoodShippingGroupsChain2

This processor iterates through the list of shipping groups and executes the
processHardgoodShippingGroup chain for each group.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ProcessHardgoodShippingGroupsChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

shipPendingShippingGroups Pipeline Chain

 The following sections describe each processor in the pipeline chain.

retrieveOrderPendingShipMap

This processor compiles a HashMap from the Order repository where the keys are the ID of the orders that
have shipping groups that are PENDING_SHIPMENT, and the values are sets of shipping group Ids whose
states are PENDING_SHIPMENT. This HashMap is then placed in the pipeline’s parameter map.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 9 1

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/RetrieveOrderPendingShipMap

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the handleOrderPendingShipMapChain processor.

handleOrderPendingShipMapChain

This processor iterates through the HashMap compiled in the previous processor, and then iterates
through each shipping group within each value, and runs the shipShippingGroup chain for each
shipping group.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleOrderPendingShipMapChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

shipShippingGroup Pipeline Chain

The shipShippingGroup chain is executed when called by the shipPendingShippingGroups chain.

The following sections describe each processor in the pipeline chain.

lockMessage1

This processor uses the ClientLockManager to guarantee that only one thread dealing with a message
for a given key is running through the system at any moment in time. The key used to acquire the lock is
returned by the method getKeyForMessage().

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/LockMessage

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the loadOrder7 processor.

loadOrder7

This processor loads the given order from the repository.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/LoadOrderRepository

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 9 2

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
PipelineProcessor object: atg.commerce.fulfillment.processor.ProcLoadOrderRepository

Transitions: Return value of 1 executes the shippingGroupHasShippedChain1 processor.

shippingGroupHasShippedChain1

This processor executes the shippingGroupHasShipped chain.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ShippingGroupHasShippedChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the updateOrderRepository7 processor.

updateOrderRepository7

This processor updates the order in the repository with any changes that may have been made during the
execution of this chain.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/UpdateOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcUpdateOrderRepository

Transitions: Return value of 1 executes the sendModifyOrderNotification7 processor.

sendModifyOrderNotification7

This processor sends a ModifyOrderNotification message with the list of modifications performed
during the execution of this chain using JMS.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/SendModifyOrderNotification

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

handleElectronicFulfillOrderFragment Pipeline Chain

The handleElectronicsFulfillOrderFragment chain is executed when a ElectronicFulfiller
receives a FulfillOrderFragment message.

The following sections describe each processor in the pipeline chain.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 9 3

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
extractOrderId6

This processor attempts to extract the ID of the order from the OrderId property of the
FulfillOrderFragment message.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ExtractOrderId

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcExtractOrderId

Transitions: Return value of 1 executes the handleRetrieveOrder2 processor.

handleRetrieveOrder2

This processor determines the method by which the Order should be loaded. If the order ID was
successfully extracted in the extractOrderId processor, then we move to the loadOrder8 processor. If
not, then it checks the Boolean LookUpOrderIdFromOrder property of the OrderFulfiller. If true, we
move to the loadSaveOrder2 processor. If false, then it throws an InvalidParameterException, and
chain execution stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleRetrieveOrder

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcHandleRetrievingOrder

Transitions: Return value of 1 executes the loadSaveOrder2 processor. Return value of 2 executes the
loadOrder8 processor.

loadSaveOrder2

This processor checks to see if the Order exists in the order repository, using the OrderExists method of
OrderManager, and using the ID of the serialized order within the FulfillOrderFragment message as
the parameter. If the order exists, the processor loads the order. If it does not, then fulfillment is using a
different repository than the order placement system. The processor then saves the order from the
message into the repository. In either case, the chain then moves to the
processElectronicShippingGroupsChain processor.

loadOrder8

This processor loads the order from the repository. Control then passes to
processElectronicShippingGroupsChain.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/LoadOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcLoadOrderRepository

Transitions: Return value of 1 executes the processElectronicShippingGroupsChain processor.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 9 4

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
processElectronicShippingGroupsChain

This processor iterates through the shipping groups contained in the FulfillOrderFragment message,
and runs the processElectronicShippingGroup chain for each.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ProcessElectronicShippingGroupsChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the updateOrderRepository8 processor.

updateOrderRepository8

This processor updates the order in the repository with any changes that may have been made during the
execution of this chain.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/UpdateOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcUpdateOrderRepository

Transitions: Return value of 1 executes the sendModifyOrderNotification8 processor.

sendModifyOrderNotification8

This processor sends a ModifyOrderNotification message with the list of modifications performed
during the execution of this chain using JMS.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/SendModifyOrderNotification

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

processElectronicShippingGroup Pipeline Chain

The processElectronicShippingGroup chain is executed when called by the
handleElectronicFulfillOrderFragment chain, or the
handleElectronicShipGroupUpdateModification.

The following section describes the processor in the pipeline chain.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 9 5

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
allocateElectronicGoodChain

This processor iterates through all of the ShippingGroupCommerceItem relationships within the given
shipping group, obtains the quantity in that relationship, and for each distinct item to be sent, it executes
the allocateElectronicGood chain.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/AllocateElectronicGoodChain

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the only link in the chain and causes the PipelineManager to return to the
caller.

allocateElectronicGood Pipeline Chain

The allocateElectronicGood chain is executed when called by the
processElectronicShippingGroup chain.

The following sections describe each processor in the pipeline chain.

createElectronicGood

This processor creates a gift certificate by using the createClaimableGiftCertificate method of
ClaimableManager.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/CreateElectronicGood

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the handleElectronicSenderType processor.

handleElectronicSenderType

This processor determines how the electronic good is to be delivered by checking
useTemplateEmailSender property of ElectronicFulfiller. If it is true, control passes to
deliverElectronicGoodByTemplate. Otherwise, control passes to
deliverElectronicGoodByListener.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleElectronicSenderType

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the deliverElectronicGoodByTemplate processor. Return value of 2
executes the deliverElectronicGoodByListener processor

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 9 6

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
deliverElectronicGoodByTemplate

This processor sends the electronic good out via e-mail using the GiftCertificateEmailTemplate of
the OrderFulfiller. Execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/DeliverElectronicGoodByTemplate

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

deliverElectronicGoodByListener

This processor delivers the electronic good out via e-mail using EmailListener property of the
OrderFulfiller. Execution of this chain then stops.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/DeliverElectronicGoodByListener

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

handleElectronicModifyOrder Pipeline Chain

The handleElectronicModifyOrder chain is executed when a ElectronicFulfiller receives a
ModifyOrder message.

The following sections describe each processor in the pipeline chain.

extractOrderId7

This processor attempts to extract the ID of the order from the OrderId property of the ModifyOrder
message.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ExtractOrderId

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcExtractOrderId

Transitions: Return value of 1 executes the loadOrder9 processor.

loadOrder9

This processor loads the given order from the repository.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 9 7

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/LoadOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcLoadOrderRepository

Transitions: Return value of 1 executes the handleModificationClassType4 processor.

handleModificationClassType4

This processor determines if the modifications listed in the ModifyOrder message are valid. If so, it calls
the appropriate processor chains. Currently, ElectronicFulfiller does not support handling of
ModifyOrder messages, so this processor will always pass control to modificationNotSupported6.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleModificationClassType

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 2 executes the modificationNotSupported6 processor.

modificationNotSupported6

This processor sets the status of the modification to STATUS_FAILED, and adds the modification to the list
to be sent out in a ModifyOrderNotification message.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ModificationNotSupported

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcModificationUnsupported

Transitions: Return value of 1 executes the sendModifyOrderNotification9 processor.

sendModifyOrderNotification9

This processor sends a ModifyOrderNotification message with the list of modifications performed
during the execution of this chain using JMS.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/SendModifyOrderNotification

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 9 8

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
handleElectronicModifyOrderNotification Pipeline Chain

The handleElectronicModifyOrderNotification chain is executed when a ElectronicFulfiller
receives a ModifyOrderNofication message.

The following sections describe each processor in the pipeline chain.

extractOrderId8

This processor attempts to extract the ID of the order from the OrderId property of the
ModifyOrderNotification message.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ExtractOrderId

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcExtractOrderId

Transitions: Return value of 1 executes the loadOrder10 processor.

loadOrder10

This processor loads the order from the repository.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/LoadOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcLoadOrderRepository

Transitions: Return value of 1 executes the handleModificationClassType5 processor.

handleModificationClassType5

This processor determines if the modifications listed in the ModifyOrder message are valid. If so, it calls
the appropriate processor chains. The only chain that this processor can trigger is
handleElectronicShipGroupUpdateModification.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/HandleModificationClassType

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: Return value of 1 executes the updateOrderRepository9 processor.

updateOrderRepository9

This processor updates the order in the repository with any changes that may have been made during the
execution of this chain.

Transactional mode: TX_MANDATORY

A T G C o m m e r c e P r o g r a m m i n g G u i d e

8 9 9

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Nucleus component: /atg/commerce/fulfillment/processor/UpdateOrderRepository

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcUpdateOrderRepository

Transitions: Return value of 1 executes the sendModifyOrderNotification10 processor.

sendModifyOrderNotification10

This processor sends a ModifyOrderNotification message with the list of modifications performed
during the execution of this chain using JMS.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/SendModifyOrderNotification

PipelineProcessor object: atg.commerce.pricing.processor.ProcSendScenarioEvent

Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

handleElectronicShipGroupUpdateModification Pipeline Chain

Executed when called by the handleElectronicModifyOrderNotification chain.

The following sections describe each processor in the pipeline chain.

extractShippingGroupIds1

This processor extracts the shipping group IDs from the ModifyOrderNotification message and
places them in the pipeline’s parameter map.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/ExtractShippingGroupIds

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcExtractShippingGroupIds

Transitions: Return value of 1 executes the processElectronicShippingGroupsChain1 processor.

processElectronicShippingGroupsChain1

This processor iterates through the shipping groups contained in the ModifyOrderNotification
message, and runs the processElectronicShippingGroup chain for each.

Transactional mode: TX_MANDATORY

Nucleus component:
/atg/commerce/fulfillment/processor/ProcessElectronicShippingGroupsChain

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcProcessShippingGroups

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 0 0

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transitions: None. This is the last link in the chain and causes the PipelineManager to return to the
caller.

sendOrderToFulfiller Pipeline Chain

 The following sections describes the processor in the pipeline chain.

sendFulfillOrderFragment1

This processor sets the order’s and all the shipping groups’ states to PROCESSING, then builds a
FulfillOrderFragment message and sends it using JMS.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/SendFulfillOrderFragment

PipelineProcessor object:
atg.commerce.fulfillment.processor.ProcSendFulfillOrderFragment

Transitions: None. This is the only link in the chain and causes the PipelineManager to return to the
caller.

processHardgoodShippingGroups Pipeline Chain

 The following section describes the processor in the pipeline chain.

processHardgoodShippingGroupsChain3

This processor iterates through the shipping groups, and runs the processHardgoodShippingGroup
chain for each.

Transactional mode: TX_MANDATORY

Nucleus component:
/atg/commerce/fulfillment/processor/ProcessHardgoodShippingGroupsChain

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcProcessShippingGroups

Transitions: None. This is the only link in the chain and causes the PipelineManager to return to the
caller.

retrieveWaitingShipMap Pipeline Chain

 The following section describes the processor in the pipeline chain.

retrieveOrderWaitingShipMap1

This processor compiles a HashMap, where the keys are Order IDs and the values are sets of shipping
group IDs whose quantities could not previously be allocated from inventory. This HashMap is placed in
the pipeline’s parameter map.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 0 1

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/fulfillment/processor/RetrieveOrderWaitingShipMap

PipelineProcessor object:
atg.commerce.fulfillment.processor.ProcRetrieveOrderWaitingShipMap

Transitions: None. This is the only link in the chain and causes the PipelineManager to return to the
caller.

processElectronicShippingGroups Pipeline Chain

 The following section describes the processor in the pipeline chain.

processElectronicShippingGroupsChain2

This processor iterates through the shipping groups contained in the FulfillOrderFragment message,
and runs the processElectronicShippingGroup chain for each.

Transactional mode: TX_MANDATORY

Nucleus component:
/atg/commerce/fulfillment/processor/ProcessElectronicShippingGroupsChain

PipelineProcessor object: atg.commerce.fulfillment.processor.ProcProcessShippingGroups

Transitions: None. This is the only link in the chain and causes the PipelineManager to return to the
caller.

Order Approval Pipelines
Several pipeline chains manage the different phases of the approval process.

The .xml configuration file for these pipeline chains is located in a .jar file at
<ATG10dir>/B2BCommerce/config/config.jar. The Nucleus location for their processors is
/atg/commerce/approval/processor/.

This section describes each pipeline chain and processor used in the order approval process.

Note: By default, both the approveOrder and checkRequiresApproval pipeline chains are configured
to run in the context of the same transaction as the calling chain, processOrder. This prevents the
situation where a processor in either of these pipelines throws an exception that causes them to roll back
but does not cause the processOrder pipeline to roll back as well. In this problematic situation, the
processOrder pipeline would finish executing without notifying the user of the error condition that
exists.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 0 2

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
approveOrder Pipeline Chain

The approveOrder pipeline determines whether the given order already is approved. If the order isn’t
already approved, it determines whether an approval for the order is required.

The approveOrder pipeline chain is executed by the executeApproveOrderChain processor in the
processOrder pipeline chain. The approveOrder() method adds the given Order and the
ApprovalPipelineManager to its parameter list, which is supplied to the executing chain. The pipeline
chain’s transaction mode is TX_REQUIRED.

The following sections describe each processor in the pipeline chain.

verifyApproval

This processor checks whether the given order has already been approved.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/VerifyApproval

PipelineProcessor object: atg.b2bcommerce.approval.processor.ProcVerifyApproval

Transitions: Returns a value of 0 (STOP_CHAIN_EXECUTION_AND_COMMIT) if the order has already been
approved; this stops execution of the approveOrder chain and resumes the processOrder chain to
complete checkout. Returns a value of 1 if the order has not already been approved; this executes the
next processor, runCheckRequiresApprovalChain.

runCheckRequiresApprovalChain

This processor executes the checkRequiresApproval pipeline chain. The properties file for the
/atg/commerce/approval/processor/RunCheckRequiresApproval component specifies
checkRequiresApproval in the chainToRun property.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/RunCheckRequiresApprovalChain

PipelineProcessor object: atg.commerce.order.processor.ProcExecuteChain

Transitions: Returns a value of 0 (STOP_CHAIN_EXECUTION_AND_COMMIT) if the order does not require
approval; this stops execution of approveOrder so the order can proceed through checkout. Returns a
value of 1 if the order requires approval; this executes the next processor, addApproverIdsToOrder.

addApproverIdsToOrder

This processor adds to the order the list of profile IDs for the users who can approve the customer’s order.
This list is obtained from the customer’s approvers profile property and is added to the order’s
authorizedApproverIds property.

If the customer’s approvers profile property is unset and the
AddApproverIdsToOrder.allowCheckoutIfApproversNotDefined property is set to false (which it is
by default), then an ApprovalException is thrown.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 0 3

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/AddApproverIdsToOrder

PipelineProcessor object: atg.b2bcommerce.approval.processor.ProcAddApproverIdsToOrder

Transitions: Return value of 1 executes changeOrderToPendingApproval next. However, if the
customer’s approvers profile property is unset and the
AddApproverIdsToOrder.allowCheckoutIfApproversNotDefined property is set to true, the
processor returns a value of 0 (STOP_CHAIN_EXECUTION_AND_COMMIT); this stops execution of
approveOrder so the order can proceed through checkout.

changeOrderToPendingApproval

This processor sets the order’s state to PENDING_APPROVAL.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/ChangeOrderToPendingApproval

PipelineProcessor object: atg.commerce.order.processor.ProcChangeOrderState

Transitions: Return value of 1 executes addApprovalSystemMessagesToOrder next.

addApprovalSystemMessagesToOrder

This processor adds to the order the list of system messages that correspond to the conditions that
triggered an approval being required. An example might be “order limit exceeded.” This list is added to
the order’s approvalSystemMessages property. The system messages are defined by the processors in
the checkRequiresApproval pipeline chain.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/AddApprovalSystemMessagesToOrder

PipelineProcessor object:
atg.b2bcommerce.approval.processor.ProcAddApprovalSystemMessagesToOrder

Transitions: Return value of 1 executes saveOrder next.

saveOrder

This processor saves the order in its present state to the Order Repository.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/order/processor/UpdateOrder

PipelineProcessor object: atg.commerce.order.processor.ProcUpdateOrder

Transitions: Return value of 1 executes sendApprovalRequiredMessage next.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 0 4

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
sendApprovalRequiredMessage

This processor sends a message to the /Approval/Scenarios JMS message topic; the message includes
the order requiring approval and the profile repository item for the customer associated with the order.
The message can then be used to execute scenarios.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/SendApprovalRequiredMessage

PipelineProcessor object:
atg.b2bcommerce.approval.processor.ProcSendApprovalRequiredMessage

Transitions: None. This is the last processor in the pipeline, which causes the ApprovalPipelineManager
to return to the caller.

checkRequiresApproval Pipeline Chain

The checkRequiresApproval pipeline chain is the chain that actually checks whether an approval is
required for a customer’s order. The default implementation of this chain checks the approvalRequired
property in the customer’s profile. If the approvalRequired property is true, then approval is required
for the customer. An error is then added to the PipelineResult object, which tells the system that an
approval is required, and the reason that approval is required is stored in the errorMessages property of
the Order. This reason for approval is later added to the order’s approvalSystemMessages property by
the approveOrder chain’s addApprovalSystemMessagesToOrder processor. If the
approvalRequired property is false, then approval isn’t required for the customer.

The checkRequiresApproval pipeline chain is executed by the runCheckRequiresApprovalChain
processor in the approveOrder pipeline chain. The checkRequiresApproval() method adds the given
Order and the ApprovalPipelineManager to its parameter list, which is supplied to the executing
chain. The pipeline chain’s transaction mode is TX_REQUIRED.

Note: You can edit this chain to create specific requirements for whether an approval is required for a
given customer. For example, you might want to include a processor that checks the total amount of the
customer’s order against an order limit in the customer’s profile. If the order amount exceeds the
specified limit, then approval for the customer’s order would be required. Similarly, you might want to
include a processor that checks the manufacturers of the items in the customer’s order against a list of
preferred suppliers in the customer’s profile. If a manufacturer isn’t in the list of preferred suppliers, then
approval for the customer’s order would be required.

The following section describes the processor in the pipeline chain.

checkProfileApprovalRequirements

This processor checks the approvalRequired property in the customer’s profile. If the property is true,
then approval is required for the customer. If the property is false, then approval isn’t required for the
customer.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/CheckProfileApprovalRequirements

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 0 5

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
PipelineProcessor object: atg.commerce.order.processor.ProcPropertyRestriction

Transitions: None. This is the only processor in the pipeline, which causes the
ApprovalPipelineManager to return to the caller.

orderApproved Pipeline Chain

The orderApproved pipeline chain processes an approval of a given order. When an approver submits
her approval of an order via a form using the ApprovalFormHandler, the form handler’s
handleApproveOrder() method executes the orderApproved pipeline chain. The pipeline chain’s
transaction mode is TX_REQUIRED.

The following sections describe each processor in the pipeline chain.

addApproverIdToOrderForApproval

This processor adds the profile ID for the approver who approved the order to the order’s approverIds
property. The approverIds property contains a list of approvers who have approved or rejected the
order.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/AddApproverIdToOrder

PipelineProcessor object: atg.b2bcommerce.approval.processor.ProcAddApproverIdToOrder

Transitions: Return value of 1 executes addApproverMessagesToOrderForApproval next.

addApproverMessagesToOrderForApproval

This processor adds the message that the approver attaches to the order to the list of messages in the
order’s approverMessages property. The message typically indicates the reason for approval. It is passed
to the orderApproved chain by the ApprovalFormHandler form handler, which is used to process the
approval.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/AddApproverMessagesToOrder

PipelineProcessor object:
atg.b2bcommerce.approval.processor.ProcAddApproverMessagesToOrder

Transitions: Return value of 1 executes sendApprovalUpdateMessageForApproval next.

sendApprovalUpdateMessageForApproval

This processor sends an ApprovalUpdate message that includes the order requiring approval and the
profile repository item for the customer associated with the order to both the
/Approval/ApprovalUpdate JMS message queue and the /Approval/Scenarios JMS message topic.
The approvalStatus property of the message is set to “approved”. The ApprovalCompleteService

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 0 6

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
listens for the message sent to the /Approval/ApprovalUpdate JMS message queue. The message
sent to /Approval/Scenarios can be used to execute scenarios.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/SendApprovalUpdateMessage

PipelineProcessor object: atg.b2bcommerce.approval.processor.ProcSendApprovalMessage

Transitions: None. This is the last processor in the pipeline, which causes the ApprovalPipelineManager
to return to the caller.

orderRejected Pipeline Chain

The orderRejected pipeline chain processes a rejection of a given order. When an approver submits her
rejection of an order via a form using the ApprovalFormHandler, the form handler’s
handleRejectOrder() method executes the orderRejected pipeline chain. The pipeline chain’s
transaction mode is TX_REQUIRED.

The following sections describe each processor in the pipeline chain.

addApproverIdToOderForRejection

This processor adds the profile ID for the approver who rejected the order to the order’s approverIds
property. The approverIds property contains a list of approvers who have approved or rejected the
order.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/AddApproverIdToOrder

PipelineProcessor object: atg.b2bcommerce.approval.processor.ProcAddApproverIdToOrder

Transitions: Return value of 1 executes addApproverMessagesToOrderForRejection next.

addApproverMessagesToOrderForRejection

This processor adds the message that the approver attaches to the order to the list of messages in the
order’s approverMessages property. The message typically indicates the reason for rejection. It is passed
to the orderRejected chain by the ApprovalFormHandler form handler, which is used to process the
rejection.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/AddApproverMessagesToOrder

PipelineProcessor object:
atg.b2bcommerce.approval.processor.ProcAddApproverMessagesToOrder

Transitions: Return value of 1 executes sendApprovalUpdateMessageForRejection next.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 0 7

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
sendApprovalUpdateMessageForRejection

This processor sends an ApprovalUpdate message that includes the order requiring approval and the
profile repository item for the customer associated with the order to both the
/Approval/ApprovalUpdate JMS message queue and the /Approval/Scenarios JMS message topic.
The approvalStatus property of the message is set to “rejected”. The ApprovalCompleteService
listens for the message sent to the /Approval/ApprovalUpdate JMS message queue. The message
sent to /Approval/Scenarios can be used to execute scenarios.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/SendApprovalUpdateMessage

PipelineProcessor object: atg.b2bcommerce.approval.processor.ProcSendApprovalMessage

Transitions: None. This is the last processor in the pipeline, which causes the ApprovalPipelineManager
to return to the caller.

checkApprovalComplete Pipeline Chain

The checkApprovalComplete pipeline determines whether the approval process for the given order is
complete. The checkApprovalComplete pipeline chain is executed by ApprovalCompleteService
when the service receives an ApprovalUpdate message from the /Approval/ApprovalUpdate JMS
message queue. The checkApprovalComplete() method adds the given Order and the
ApprovalPipelineManager to its parameter list, which is supplied to the executing chain. The pipeline
chain’s transaction mode is TX_REQUIRED.

The following sections describe each processor in the pipeline chain.

getApprovalCompleteParams

This processor takes properties from the ApprovalUpdate message and adds them to the Map object
that is passed to the ApprovalPipelineManager for execution of the checkApprovalComplete chain.
You define the properties to take from the ApprovalUpdate message in the .properties file of this
processor.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/GetApprovalCompleteParams

PipelineProcessor object: atg.b2bcommerce.approval.processor.ProcPopulatePipelineParams

Transitions: Return value of 1 executes approvalCompleteAnalyzer next.

approvalCompleteAnalyzer

This processor determines whether the approval process for the given order is complete. By default,
approvalCompleteAnalyzer checks whether at least one person has approved or rejected the order. If
so, then the approval process for the order is considered to be complete.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 0 8

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
Note: You can change the implementation of approvalCompleteAnalyzer in order to change the
requirements for completion of the approval process.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/ApprovalCompleteAnalyzer

PipelineProcessor object:
atg.b2bcommerce.approval.processor.ProcApprovalCompleteAnalyzer

Transitions: Returns a value of 0 if the approval process for the order isn’t complete (that is, the order
requires further approvals); this stops execution of the chain, and the transaction commits. Returns a
value of 1 if the order has been approved; this executes changeOrderToApproved next. Returns a value
of 2 if the order has been rejected; this executes changeOrderToFailedApproval next.

changeOrderToFailedApproval

This processor sets the order’s state to FAILED_APPROVAL, as specified in the newOrderState property of
the /atg/commerce/approval/processor/ChangeOrderToFailedApproval component.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/ChangeOrderToFailedApproval

PipelineProcessor object: atg.commerce.order.processor.ProcChangeOrderState

Transitions: Return value of 1 executes sendApprovalCompleteMessage next.

changeOrderToApproved

This processor sets the order’s state to APPROVED, as specified in the newOrderState property of the
/atg/commerce/approval/processor/ChangeOrderToApproved component.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/ChangeOrderToApproved

PipelineProcessor object: atg.commerce.order.processor.ProcChangeOrderState

Transitions: Return value of 1 executes completeProcessingOrder next.

completeProcessingOrder

This processor executes the processOrder chain, passing the given order to processOrder as one of its
parameters. The properties file for the
/atg/commerce/approval/processor/CompleteProcessingOrder component specifies
processOrder in the chainToRun property.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/CompleteProcessingOrder

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 0 9

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
PipelineProcessor object: atg.commerce.order.processor.ProcExecuteChain

Transitions: Return value of 1 executes sendApprovalCompleteMessage next.

sendApprovalCompleteMessage

This processor sends a message to the /Approval/Scenarios JMS message topic that includes the
order requiring approval and the profile repository item for the customer associated with the order. The
approvalStatus property of the message is set to either approval_passed or approval_failed,
depending on the state of the order. The message can then be used to execute scenarios.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/SendApprovalCompleteMessage

PipelineProcessor object:
atg.b2bcommerce.approval.processor.ProcSendApprovalCompleteMessage

Transitions: None. This is the last processor in the pipeline, which causes the ApprovalPipelineManager
to return to the caller.

checkApprovalCompleteError Pipeline Chain

If an error occurs while ApprovalCompleteService is processing an ApprovalComplete message, the
checkApprovalCompleteError chain is executed. This chain is a recovery chain that executes logic
when an error occurs.

Note: The default implementation of this chain adds the error message to the order’s
approvalSystemMessages property and sets the order’s state to FAILED. You can edit the chain to
perform different logic to meet your application’s needs.

The checkApprovalCompleteError pipeline chain is executed by the
checkApprovalCompleteError() method in the ApprovalPipelineManager. The
checkApprovalCompleteError() method adds the parameters that were passed to the chain in which
the error occurred to the ApprovalPipelineManager’s parameter list, which is supplied to the
executing chain. The pipeline chain’s transaction mode is TX_REQUIRES_NEW.

The following sections describe each processor in the pipeline chain.

addMessageMapperErrorToOrder

This processor adds the error message to the order’s approvalSystemMessages property.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/AddMessageMapperErrorToOrder

PipelineProcessor object:
atg.b2bcommerce.approval.processor.ProcAddMessageMapperErrorToOrder

Transitions: Return value of 1 executes changeOrderToFailed next.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 1 0

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ
changeOrderToFailed

This processor sets the order’s state to FAILED.

Transactional mode: TX_MANDATORY

Nucleus component: /atg/commerce/approval/processor/ChangeOrderToFailed

PipelineProcessor object: atg.commerce.order.processor.ProcChangeOrderState

Transitions: None. This is the last processor in the pipeline, which causes the ApprovalPipelineManager
to return to the caller.

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 1 1

A p p e n d i x G : C o m m e r c e P i p e l i n e C h a i n s

μ

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 1 2

I n d e x

μ
Index

A
Abandoned Order is Converted event, 525
Abandoned Order is Lost event, 525
Abandoned Order is Modified event, 524
abandoned order services

AbandonedOrderLogRepository, 513
AbandonedOrderService, 514, 516
AbandonedOrderTools, 518
abandonment states, 511
customizations and extensions, 530
defining abandoned orders, 514
defining lost orders, 514
detecting abandoned orders, 514
detecting lost orders, 514
developer overview, 509
messages, 775
order repository extensions, 511
orders, abandoned, 511
orders, converted, 511
orders, lost, 511
orders, reanimated, 511
profile repository extensions, 512
scenario actions, 526
scenario events, 523
transient users, 529

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 1 3

I n d e x

μ
AbandonedOrderEventListener, 529
AbandonedOrderService, 514, 516
AbandonedOrderTools, 518
AbstractInventoryManagerImpl, 444
adding new criteria to the filter methods, 192
address classes, 260
allocateElectronicGood pipeline, 895
allocateItemRelationship pipeline, 873
allocateItemRelQuantity pipeline, 874
allocateItemRelQuantityForConfigurableItem pipeline,

875
allocateShippingGroup pipeline, 872
allocating items for an order, 451
AmountInfo, 158
approval process. See order approval process
ApprovalFormHandler, 507
ApprovalMessage, 507
ApprovalRequiredDroplet, 506
ApprovalRequiredMessage, 507
approvals. See order approval process
ApprovedDroplet, 507
approveOrder pipeline, 902
attribute element, 205
AuxiliaryData, 385
availability of item inventory, 453

B
backup, 817
BandedDiscountCalculatorHelper, 181
base pricing engine, 153
building a new InventoryManager, 463
bulk pricing, 245
BulkItemDiscountCalculator, 170
BulkOrderCalculator, 172
BulkShippingDiscountCalculator, 174
BulkTaxDiscountCalculator, 178
bundled SKUs, handling bundled SKUs in the inventory,

454

C
caching

caching the inventory, 459
InventoryCache, 449

CachingInventoryManager, 448
calculating prices, 147
CalculatorInfo, 181
CancelOrderFormHandler, 317
CartModifierFormHandler, 113, 305
catalog folder properties, 64
catalog repository

extending, 43
overview, 42

catalogs, 41
assigning to users, 70
deleting items, 304
multisite, 90
properties, 43
reporting on, 69
repository, 42

security, 69
categories

extending, 57
properties, 46

ChangedProperties, 383, 390
checkApprovalComplete pipeline, 907
checkApprovalCompleteError pipeline, 909
checkout process, 318
checkRequiresApproval pipeline, 904
childCategories, deriving, 54
childProducts, deriving, 54
CIM, 9
claimable items

Claimable repository, described, 134
Claimable repository, disabling, 134
ClaimableManager, 135
ClaimableTools, 135
coupons, setting up, 139
gift certificates, fulfillment, 136
gift certificates, purchase process, 136
gift certificates, setting up, 135
gift certificates, settling, 138
gift certificates, using, 138
setting up, 133

Claimable repository
described, 134
disabling, 134

ClaimableManager, 135
ClaimableTools, 135
ClaimableTools component, 233
class diagrams, 787
cloned orders, 361
ClosenessQualifierImportExportInfo class, 238
commerce items

assigning costs to payment groups, 284
assigning to shipping groups, 283
creating, 269
removing from an order, 276
restricting in shipping groups, 275

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 1 4

I n d e x

μ
commerce objects, creating with manager classes, 266
Commerce Search data logging, 551
Commerce services, overview, 91
CommerceIdentifierPaymentInfo, 330
CommerceIdentifierPaymentInfoContainer, 330
CommerceItemRelationship, 281
CommerceItemShippingInfo, 324
CommerceItemShippingInfoContainer, 323
CommerceMessage, 470
CommerceProfileFormHandler, 87
CommerceProfileTools, 87
CommercePropertyManager, 87
CommitOrderFormHandler, 333
comparator element, 206
ComparisonList, 123
completeOrder pipeline, 867
completeRemoveOrder pipeline, 866
configurable SKUs. See SKUs, configurable
ConfigurableItemPriceCalculator, 171
ConfigurableItemPriceListCalculator, 179
configurationRootPath property, 215
configuring a new inventory manager, 464
constant element, 207
ContextValueRetriever, 70
contracts, 543

repository, 544
Convert Abandoned Order action, 528
coupons. See claimable items
CreateCreditCardFormHandler, 327
CreateElectronicShippingGroupFormHandler, 322
CreateHardgoodShippingGroupFormHandler, 320
CreateInvoiceRequestFormHandler, 328
CreatePaymentGroupFormHandler, 327
CreateShippingGroupFormHandler, 320
creating

pricing calculators, 182
CreditCardInitializer, 329
CyberSource

flagging products for non-taxable status, 32
integrating CyberSource with ATG the platform, 31

D
data loading

accessing log files, 560
handling errors, 563
loader components, 558
loading existing orders, 560
loading process, 562
processor pipelines, 563
reporting data, 558
scheduling, 560

Data Warehouse
configuring time zone, 561
loading data, 558
scheduling data loading, 560

Data Warehouse Loader Repository, 562
database copy

configuring, 17
DBCopier, 18
DBCopyFormHandler, 19

described, 17
performing, 19
ProductCatalogCopierForm, 19
ProductCatalogDB2DBCopier, 19
ProductCatalogMsSqlDBCopier, 19
ProductCatalogOracleDBCopier, 19
ProductCatalogSolidDBCopier, 19

database switch
configuring, 20
described, 17
performing, 22
ProductCatalogDataSourceA, 20
ProductCatalogDataSourceB, 20
ProductCatalogSwitcher, 21
ProductCatalogSwitchingDataSource, 21
SwitchingDataSource, 20

database tables
creating, 10
creating for ATG Business Commerce, 12
creating for ATG Core Commerce, 11
creating for Motorprise, 13
destroying, 24

databases
copy, 17
Microsoft SQL Server, 15
Oracle, 13
switch, 17

DataGrid component, 220
DB2DBCopier, 19
DBCopier, 18
DBCopyFormHandler, 19
dcs scenario recorder, 781
dcs-analytics scenario recorder, 782
deadlocks, preventing inventory, 453
demos

exporting data, 23
importing data, 23

DetailedItemPriceInfo, 158
using item discount calculators with, 161
using list price calculators with, 160
using sale price calculators with, 160

discount types
creating, 214

DiscountCalculatorService, 167
discount-detail element, 205
discount-structure element, 204
display-once attribute, 229
DoubleRangeShippingCalculator, 175
dynamic pricing, 145, 146

E
ElectronicFulfiller, 476, 481
ElectronicShippingGroupInitializer, 322
endImportExportSession method, 236
Entry, 125
event elements

SubmitOrder, 530
TransientOrderEvent, 529

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 1 5

I n d e x

μ
event messages, purchase process, 379
excludedProperties property, 228
excludesProductSetCriteria element, 222
executeFulfillOrderFragment pipeline, 852
exportPromotionsById method, 235
exportPromotionsByRQLQuery method, 236
ExpressCheckoutFormHandler, 318
expression element, 219
ExpressionParser, 370
extending

commerce pipeline definition file, 404, 408
ID Spaces definition file, 389, 408
ItemPriceCalculator, 169
Order Repository definition file, 385, 387, 394
pricing calculators, 182
Qualifier class, 191

extensions, of profile configuration and classes. See
profile extensions for commerce

F
filling partial orders, 453
filter methods for qualifier, 189, 192
FilteredCommerceItem, 191, 194
FixedPriceShippingCalculator, 176
folder properties, 65
form handlers

extending, 377
managing transactions, 376

fulfillment, 465
classes, 470
creating a new fulfiller, 485
ElectronicFulfiller, 481
fault tolerance, 493
HardgoodFulfiller, 481
integrating with an external shipping system, 495
JMS messages, 466
locking, 479
message redelivery, 493
notifying fulfillment of shipment, 482
order fulfillment events, 491
OrderFulfiller Interface, 480
overview of fulfillment process, 466
pipelines, 844
replacing the default fulfillment system, 494
starting the fulfillment server, 470
using scenarios with fulfillment, 497

FulfillOrderFragment, 471
full text search

MS SQL, 15
Oracle, 14

G
generating prices, 147
GenericAdd, 473
GenericRemove, 474
GenericUpdate, 474
gift certificates. See claimable items
gift list

site scope, 117

gift lists
adding items to in a multisite environment, 117
business classes, GiftlistManager, 92
business classes, GiftlistTools, 92
CartModifierFormHandler, 113
described, 91
disabling the repository, 121
example, 91
extensions, database definitions, 120
extensions, GiftlistFormHandler, 120
extensions, repository definitions, 120
filtering, 119
form handlers, GiftlistFormHandler, 99
form handlers, GiftlistSearch, 107
GiftlistHandlingInstruction, 115
in a multisite environment, 116
processors, ProcSendGiftPurchasedMessage, 115
processors, ProcUpdateGiftRepository, 115
purchase process extensions, 113
repository, 93
searching for in a multisite environment, 118
servlet beans, GiftitemDroplet, 112
servlet beans, GiftitemLookupDroplet, 111
servlet beans, GiftlistDroplet, 111
servlet beans, GiftlistLookupDroplet, 111
setting up, 91
site IDs, 116
with a null site ID, 119

GiftCertificateInitializer, 329
GiftitemDroplet, 112
GiftitemLookupDroplet, 111
GiftlistDroplet, 111
GiftlistFormHandler, 99

extensions, 120

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 1 6

I n d e x

μ
GiftlistHandlingInstruction, 115
GiftlistLookupDroplet, 111
GiftlistManager, 92
GiftlistSearch, 107
GiftlistTools, 92
globalPromotionsQuery, 147
grid element, 220

H
handleElectronicFulfillOrderFragment pipeline, 892
handleElectronicModifyOrder pipeline, 896
handleElectronicModifyOrderNotification pipeline, 898
handleElectronicShipGroupUpdateModification pipeline,

899
handleHardgoodFulfillOrderFragment pipeline, 869
handleHardgoodModifyOrder pipeline, 878
handleHardgoodModifyOrderNotification pipeline, 888
handleHardgoodShipGroupUpdateModification pipeline,

890
handleHardgoodUpdateInventory pipeline, 876
handleIdTargetModification pipeline, 861
handleModifyOrder pipeline, 853
handleModifyOrderNotification pipeline, 859
handleOrderWaitingShipMap pipeline, 877
handlePaymentGroupUpdateModification pipeline, 863
handleRelationshipModification pipeline, 867
handleShipGroupUpdateModification pipeline, 863
handleShippingGroupModification pipeline, 863
handleSubmitOrder pipeline, 848
handling instructions

adding to a shipping group, 289
objects, 288
setting, 288

HardgoodFulfiller, 475, 481
HardgoodFulfillerModificationHandler, 478
HardgoodShippingGroupInitializer, 322

I
ID spaces, defining, 389, 408
implementing a new pricing calculator, 183
implementing sale prices using price Lists, 248
importPromotion method, 234
includesProductSetCriteria element, 222
inheritance, item descriptor, 57
interfaces, 256
inventory framework, 437

allocating items for an order, 451
building a new InventoryManager, 463
caching the inventory, 459
canceling or removing an item from an order, 452
configuring a new inventory manager, 464
configuring the SQL repository, 459
displaying an item’s availability to a customer, 453
examples of using the inventory manager, 450
filling partial orders, 453
handling bundled SKUs in the inventory, 454
inventory classes, 441
inventory JMS messages, 458
inventory repository, 457

inventory repository administration, 460
inventory system methods, 439
InventoryLookup servlet bean, 461
InventoryManager implementations, 444
overview of the inventory framework, 438
preventing inventory deadlocks, 453

InventoryData, 129
InventoryLookup, 461
InvoiceManager, 537
InvoiceRequestInitializer, 329
invoices, 535

adding validation logic, 537
checkout, 536
DeliveryInfo, 540
PaymentTerms, 541
pipelines, 538
repository, 539
repository item, 539
sending JMS messages, 541

item calculator classes, 167
item pricing model examples, 208
ItemDiscountCalculator, 170
ItemListPriceCalculator, 171, 179
ItemLookupDroplet, 111
ItemPriceCalculator, 168, 179
ItemPriceInfo, 158
ItemPricingCalculator interface, 165
ItemPricingEngine, 154, 157
ItemPricingEngine interface, 154
item-properties element, 226
ItemSalePriceCalculator, 171
ItemSalesPriceCalculator, 180
ItemSalesTieredPriceCalculator, 180
ItemTieredPriceCalculator, 180
iterator element, 205

J
JMS messages

fulfillment, 466
inventory JMS messages, 458
order approval process, 507

L
line element, 217
loadOrder pipeline, 300
loadOrder pipeline chain, 823
locking fulfillment, 479
Log Promotion Information action, 529
logging

data for Commerce reports, 549

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 1 7

I n d e x

μ
M
mandatoryProperties property, 228
media items, properties, 65
media properties, 56
media-external properties, 66
media-internal properties, 66
MissingInventoryItemException, 444
Modification, 473
ModifyOrder, 471
ModifyOrderNotification, 472
moveToConfirmation pipeline chain, 840
moveToPurchaseInfo pipeline chain, 841
MS SQL full text search, 15
multi-element-translators element, 217

N
NoInventoryManager, 444
noNexus property, 34
NoTaxCalculator, 178

O
object states. See order object states
ObjectStates class, 290
offer element, 204
operator element, 206
Oracle databases

configuring a catalog for full text search, 14
configuring repository components, 15
configuring storage parameters, 13
setting up ConText indexes, 14

Order Abandoned event, 524
order approval process

ApprovalFormHandler, 507
ApprovalRequiredDroplet, 506
ApprovedDroplet, 507
customizing or extending, 504, 505, 904
detailed process description, 503
form handlers, 506
JMS messages, ApprovalMessage, 507
JMS messages, ApprovalRequiredMessage, 507
Order object properties, 501
overview, 501
pipelines, approveOrder, 902
pipelines, checkApprovalComplete, 907
pipelines, checkApprovalCompleteError, 909
pipelines, checkRequiresApproval, 904
pipelines, configuration file, 901
pipelines, list, 901
pipelines, orderApproved, 905
pipelines, orderRejected, 906
process diagram, 502
servlet beans, 506

order calculator classes, 167
order classes, 257
order data logging, 550
order fulfillment framewok. See fulfillment
order object states

CommerceItem states, 290

descriptions, 291
display names, 291
integer values, 291
internationalizing, 292
lists, 294
Order states, 290
ShippingGroup states, 290
ShippingGroupCommerceItemRelationship states, 290

order pricing model examples, 212
order repository, 265

extending the definition file, 385, 387, 394
modifying the database schema, 386, 388, 396

order repository, using, 265
order restrictions

classes, 369
classes, ExpressionParser, 370
classes, ProcPropertyRestrictions, 370
classes, Rule, 370
classes, RuleEvaluator, 370
implementing, 371
overview, 369

OrderAbandoned messages, 775
orderApproved pipeline, 905
OrderDiscountCalculator, 172
OrderFulfiller, 475
OrderFulfiller interface, 480
OrderFulfillerModificationHandler, 477
OrderFulfillmentTools, 476
OrderManager, modifying the configuration file, 398
OrderModified, 491
OrderPriceInfo, 162
OrderPricingCalculator interface, 166
OrderPricingEngine, 154, 157
OrderPricingEngine interface, 155
orderRejected pipeline, 906
orders

adding an item via a URL, 274
approvals. See order approval process
canceling, 317
checking out, 318, 333
creating, 266
creating multiple, 268
extending validation pipelines, 356
handling returned items, 375
loading, 300
loading into the Data Warehouse, 560
managing deleted products, 304
managing deleted SKUs, 304
merging, 409
modifying by catalogRefId, 311
modifying by ShippingGroupCommerceItemId, 311
modifying, overview, 305
preparing complex orders for checkout, 320
preparing simple orders for checkout, 318
preventing payment if unfulfilled, 339
processing, 333
processing payment of, 339
refreshing, 301
repricing, 313
saving, 315
scheduling recurring. See recurring orders, scheduling
setting restrictions. See order restrictions

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 1 8

I n d e x

μ
submitting for checkout, 333
troubleshooting problems with, 374
updating to the repository, 316

OrderSubtotalCalculator, 173
OrderTools, 261

modifying the configuration file, 386, 389, 398
subclassing, 396

P
PayFlow Pro, 29
payment

Integrating PayFlow Pro with ATG Commerce, 29
payment groups

adding validation for new, 356
assigning commerce item costs to, 284
assigning entire order cost to, 285
assigning order’s total cost to, 284
assigning partial order cost to, 286
assigning shipping costs to, 284
assigning tax costs to, 284
creating, 269, 273
creating multiple, 273

payment process
default pipelines, 340
extending for a custom payment method, 342
extending payment operations, 341
overview, 340

payment processor, integrating with PaymentManager,
354

PaymentGroupCommerceItemRelationship, 280
PaymentGroupDroplet, 328, 330
PaymentGroupFormHandler, 329
PaymentGroupInitializer, 329
PaymentGroupMapContainer, 327, 328, 330
PaymentGroupModified, 491
PaymentGroupOrderRelationship, 279
PaymentGroupShippingGroupRelationship, 281
PaymentGroupUpdate, 475
PaymentManager, 340
PaymentStatus, 341, 353
PaymentStatusImpl, 353
performance issues

promotion delivery, 242
performHardgoodIdTargetModification pipeline, 880
performHardgoodItemModification pipeline, 886
performHardgoodRelationshipModification pipeline, 887
performHardgoodShippingGroupModification pipeline,

881
performIdTargetModification pipeline, 855
performOrderModification pipeline, 857
pipeline chains

data loading, 564
extending, 356, 404, 408
order approval process, 901
order processing, 265

pipelines
data loading, 563
fulfillment, 844

place-holder-value attribute, 226
PMDL

example, 207
PMDL rules, 203

DTD, 204
examples, 208
replacing the way a PMDL rule is evaluated, 193

pmdlRule property, 195
PMDT, 216

header attributes, 216
preventing inventory deadlocks, 453
price lists, 3

assigning to users, 247
bulk and tiered pricing, 245
database copy, 17
database switch, 17
multisite, 90
price list calculator classes, 167
using in combination with SKU-based pricing, 244
using price lists, 243

PriceListManager, 246
PriceRangeShippingCalculator, 174
pricing calculators, creating, 182
pricing engine

creating, 163
pricing engines

extending, 162
pricing items, 147
pricing services, 143

creating promotions, 195
default pricing engines, 156
extending and creating pricing engines, 162
how pricing services generate prices, 147
ItemPricingCalculator interface, 165
ItemPricingEngine interface, 154
OrderPricingCalculator interface, 166
OrderPricingEngine interface, 155
overview, 147
Price Holding Classes, 158
price lists, 243
pricing calculator classes, 167
pricing calculators, 182
PricingConstants interface, 156
PricingEngine, 153
PricingEngineService, 156
ShippingPricingCalculator interface, 166
ShippingPricingEngine interface, 155
TaxPricingCalculator interface, 166
TaxPricingEngine interface, 156
terminology, 143

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 1 9

I n d e x

μ
PricingAdjustment class, 150
pricingCalculatorService, 148
PricingCommerceItem class, 151
PricingConstants interface, 156
pricing-model element, 204
PricingModelHolder class, 150
PricingModelProperties class, 151
PricingTools, 149
processElectronicShippingGroup pipeline, 894
processElectronicShippingGroups pipeline, 901
processHardgoodShippingGroup pipeline, 871
processHardgoodShippingGroups pipeline, 900
processor chains. See pipeline chains
processOrder pipeline, 333
processOrder pipeline chain, 827
ProcPropertyRestrictions, 370
ProcSendGiftPurchasedMessage, 115
ProcUpdateGiftRepository, 115
product catalog

database copy, 17
database switch, 17
products, deleting, 304
SKUs, deleting, 304

product catalog data logging, 551
product comparison

ComparisonList, 123
Entry, 125
extending the system, 132
InventoryData, 129
localization, 125, 130
overview, 122
ProductComparisonList, 124
ProductList, 122
ProductListContains, 129
ProductListHandler, 129
TableInfo, 133

ProductCatalogCopierForm, 19
ProductCatalogDataSourceA, 20
ProductCatalogDataSourceB, 20
ProductCatalogMsSqlDBCopier, 19
ProductCatalogOracleDBCopier, 19
ProductCatalogSolidDBCopier, 19
ProductCatalogSwitcher, 21
ProductCatalogSwitchingDataSource, 21
ProductComparisonList, 124

localization, 125
productInfo, properties, 53
ProductList, 122
ProductListContains, 129
ProductListHandler, 129

localization, 130
products

deleting, 304
extending, 57
properties, 51

profile extensions for commerce, 85
CommerceProfileFormHandler, 87
CommerceProfileTools, 87
CommercePropertyManager, 87
Profile repository, 85
Profile repository, address books, 86
Profile repository, credit cards, 86

Profile repository, gift and wish lists, 86
Profile repository, other, 87
Profile repository, promotions, 85

promotion templates
basics, 215

PromotionImportExport component, 233
PromotionImportExportInfo class, 237
PromotionImportExportIntegrator interface, 240
PromotionImportExportTools component, 233
promotions

adding new discount types, 214
batch importing and exporting, 241
creating, 195
extending, 213
how pricing services generate prices, 148
importing and exporting, 232
importing and exporting, mapping properties, 237
performance issues, 242
PMDL Rules, examples, 208
Promotion Folder Repository Items, 203
PromotionStatus Repository Items, 203
repository item properties, 195
types of promotions, 195

promotions templates
creating, 215
displaying dynamic properties in, 227
displaying static values in, 226
dynamically creating grids, 221
editing existing, 232
explicitly defining grids, 221
filtering properties in, 228
layout elements, 217
localizing, 232
marking fields as optional, 223
repository item properties in, 226
storing, 215
translating user input, 223
using an asset picker in, 228
using promotion upsells in, 229
validating user input, 230

PromotionTemplateManager component, 233
PromotionTemplateRegistry component, 215
PropertyRangeShippingCalculator, 176
PSCExpression component, 228
PublishingWorkflowAutomator component, 233, 234

configuring, 241
purchase process

described, 299
extending, 383
gift list extensions, 113
manipulating extended objects, 409

purchase process services, integrating with, 380
PurchaseProcessFormHandler, 376

Q
QualifiedItem class, 190
qualifier element, 204
qualifiers

accessing FilteredCommerceItems, 194
evaluating, 188, 191

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 2 0

I n d e x

μ
extending the Qualifier class, 191
overriding filters, 187
Qualifier Class, 185
Qualifier properties, 186
QualifierService, 188
replacing the way a PMDL rule is evaluated, 193
replacing the way the qualifier determines the result

set, 193
quantifier element, 205
quantity pricing model examples, 209

R
Reanimate Abandoned Order action, 527
recalcPaymentGroupAmounts pipeline chain, 838
recorder, shopping process, 374
recurring orders

creating, 365
deleting, 365
modifying, 365
overview, 360
scheduledOrder repository item, 361
ScheduledOrderHandler, 365
ScheduledOrderService, 362
scheduling, 362

refreshOrder pipeline, 301
refreshOrder pipeline chain, 823
reinitializeTime property, 150
relatedCategories, deriving, 55
relatedProducts, deriving, 55
relationships

objects, 276
priority, 282
types, 277

removeHardgoodShippingGroup pipeline, 882
removeOrder pipeline, 858
removeShipItemRelsFromShipGroup pipeline, 883
reporting

data loading, 558
data loading environment, 548
data logging, 549
database tables, 547
JMS message types, 556
loading initial data, 555
logging configuration, 554
logging overview, 549
merchandising environment, 548
parent catalog configuration, 548
production environment, 548
setting up, 547

reportingCatalogId, 548
repositories

Claimable, 134
gift lists, 93
promotions, 195

repository items
using properties in promotions templates, 226

RepositoryInventoryManager, 444
repriceOrder pipeline chain, 839
requisitions, 543
retrieveWaitingShipMap pipeline, 900
returned items, processing, 375
root categories

defining in catalogs, 46
Rule, 370
RuleEvaluator, 370

S
sale prices, using price lists, 248
SaveOrderFormHandler, 315
scenario recorders, 781

dcs, 781
dcs-analytics, 782
shoppingprocess, 784

scenarios
TransientOrderRecorder, 530
using scenarios in the fulfillment process, 497

scheduled orders. See recurring orders
ScheduledOrderHandler, 365
ScheduledOrderService, 362
screen-segment element, 217
segment data logging, 553
sendOrderToFulfiller pipeline, 900
sendScenarioEvent pipeline chain, 843
servlet beans

ApprovalRequiredDroplet, 506
ApprovedDroplet, 507
GiftitemDroplet, 112
GiftitemLookupDroplet, 111
GiftlistDroplet, 111
GiftlistLookupDroplet, 111

session backup, 817
Set Order’s Last Updated Date action, 526
shipPendingShippingGroups pipeline, 890
shipping calculator classes, 167
shipping groups

adding handling instructions to. See handling
instructions, adding to a shipping group

adding validation for new, 356
assigning commerce items to, 283
creating, 269, 272
creating multiple, 272

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 2 1

I n d e x

μ
shipping pricing model examples, 211
ShippingCalculatorImpl, 173
ShippingDiscountCalculator, 173
ShippingGroupCommerceItemRelationship, 278
ShippingGroupDroplet, 322, 324
ShippingGroupFormHandler, 323
shippingGroupHasShipped pipeline, 885
ShippingGroupInitializer, 322
ShippingGroupMapContainer, 320, 322, 323
ShippingGroupModified, 491
ShippingGroupUpdate, 475
ShippingPriceInfo, 162
ShippingPricingCalculator interface, 166
ShippingPricingEngine, 154, 157
ShippingPricingEngine interface, 155
shipShippingGroup pipeline, 891
shopping process stages, 372
shopping process tracking, 372
shoppingprocess scenario recorder, 784
SimpleOrderManager

subclassing, 396
using, 276

SingletonSchedulableService, 365
site scope, 117
site visit data logging, 550
SKU bundles, 62

building a store without bundles, 456
SKU fulfiller, 62
SKU-based pricing

with multisite, 149
SKUs, 58

associating products with, 57
configurable, 63
deleting, 304
extending, 62
media properties, 61
price properties, 62
properties, 59
SKU link properties, 61
using SKU-based pricing with price lists, 244

splitShippingGroupForAvailability pipeline, 876
splitShippingGroupsFulfillment pipeline, 851
startImportExportSession method, 234
states. See order object states
static pricing, 145
StoreCreditInitializer, 329
string-value element, 206
subclass

adding with object data type properties, 390
adding, with primitive data type properties, 383
manipulating extended objects, 409
of AuxiliaryData, 385

SubmitOrder, 471
SubmitOrder event, 530
switchableDiscount element, 219
SwitchingDataSource, 20

T
TableInfo, 133
target element, 204
tax calculator classes, 167
TaxDiscountCalculator, 178
taxes

flagging product for non-taxable status, 32
Integrating CyberSource with ATG Commerce, 31
integrating TAXWARE with ATG Commerce, 34
specifying states and provinces with no tax

obligations, 34
TaxPriceInfo, 162
TaxPricingCalculator interface, 166
TaxPricingEngine, 154, 157
TaxPricingEngine interface, 156
TaxProcessorTaxCalculator, 178
TaxResult and TaxRequest fields, 37
TAXWARE integration, 34
template orders, 361
templates, specifying, 56
tiered pricing, 245
time zone

configuring for Data Warehouse, 561

A T G C o m m e r c e P r o g r a m m i n g G u i d e

9 2 2

I n d e x

μ
TransactionLockFactory, 376
transactions in form handlers, 376
TransientOrderEvent, 529
TransientOrderRecorder scenario, 530
troubleshooting order problems, 374

U
ui-description element, 217
updateHardgoodShippingGroup pipeline, 884
UpdateInventory, 473
updateOrder pipeline chain, 819
updateRelationship pipeline, 869
updateShippingGroup pipeline, 865
user data logging, 552
using a new pricing calculator, 183

V

validateForCheckout pipeline, 337
validateForCheckout pipeline chain, 832
validateNoApproval pipeline chain, 837
validatePaymentGroupsPostApproval pipeline chain, 836
validatePostApproval pipeline chain, 835
validateShippingInfo pipeline chain, 842
validation, extending, 356
value element, 206
VERAZIP integration, 38

W
WeightRangeShippingCalculator, 177
wish lists

described, 91
example, 92
setting up, 91

	Contents
	1 Introduction
	Commerce Overview
	Product Catalog
	Purchasing and Fulfillment Services
	Inventory Management
	Pricing Services
	Targeted Promotions
	Commerce Services
	ATG Business Commerce (B2B)
	Reporting
	Multisite Integration

	Finding What You Need

	2 Configuring and Populating a Production Database
	Configuring ATG Commerce with CIM
	Creating Database Tables
	Creating Tables for Core ATG Commerce
	Creating Tables for ATG Business Commerce

	Using ATG Commerce with an Oracle Database
	Configuring Storage Parameters
	Configuring a Catalog for Oracle Full Text Searching

	Using ATG Commerce with an MSSQL Database
	Transferring Product Catalog and Price List Data Using Copy and Switch
	Configuring a Database Copy
	Performing a Database Copy
	Configuring a Database Switch
	Performing a Database Switch

	Transferring Demo Data
	Exporting the Motorprise Demo Data from SOLID
	Importing the Motorprise Demo Data to Your Database

	Destroying Database Tables for ATG Commerce
	Destroying Tables for Core ATG Commerce
	Destroying Tables for ATG Consumer Commerce
	Destroying Tables for ATG Business Commerce

	3 Integrating Third-Party Software With ATG Commerce
	Integrating Payflow Pro with ATG Commerce
	Setting up Payflow Pro
	Pre-Configuring the Integration
	Using ATG Commerce with Payflow Pro

	Integrating CyberSource with ATG Commerce
	Installing the CyberSource Distribution
	Initializing the CyberSource Integration
	Configuring ATG Commerce to Use CyberSource
	Moving the System to Production
	Designating Tax Status of Products
	Specifying Sales Origin and Shipment Location Information
	Calculating Taxes on the Item Level
	Specifying States and Provinces without Tax Obligations

	Integrating TAXWARE with ATG Commerce
	Before You Begin Integrating with TAXWARE
	TAXWARE Classes
	Configuring ATG Commerce to Use TAXWARE
	Using the SALES/USE and WORLDTAX Integration
	Customizing ATG Commerce’s TAXWARE Integration
	Customizing TaxWareCalculateTax Methods
	TaxResult and TaxRequest Fields
	VERAZIP Integration
	Customizing ATG Commerce’s VERAZIP Integration
	Customizing TaxWareVerifyZipInfo Methods

	4 Using and Extending the Product Catalog
	Production and Development Modes for ATG Commerce
	Product Catalog Repository
	Catalog Properties
	Categories and Products
	Defining Root Categories
	Category Properties
	categoryInfo Properties
	Product Properties
	productInfo Properties
	Defining Relationships between Categories and Products
	Specifying Template Pages for Categories and Products
	Associating Products with SKUs
	Extending the Category and Product Item Types

	SKU Items and SKU Links
	SKU Properties
	SKUInfo Properties
	SKU Link Properties
	Using SKU Media Properties
	Using SKU Price Properties
	Using the SKU Fulfiller Property
	Creating SKU Bundles
	Extending the SKU Item Type
	Configurable SKUs

	Catalog Folders
	Folders and Media Items
	Folder Properties
	Media Item Properties
	Using Media-External Properties
	Using Media-Internal Properties

	Internationalizing the Product Catalog
	Catalog Security
	Importing Product Catalog Content
	Assigning a Catalog to a User
	ContextValueRetriever Class

	5 Using the Catalog Maintenance System
	Batch Services
	CatalogMaintenanceService
	AncestorGeneratorService
	CatalogVerificationService
	CatalogUpdateService

	Dynamic Services
	CatalogChangesListener
	PropertiesChangedHandler Components
	CatalogCompletionService

	Running Catalog Maintenance Services
	Running Batch Services from the Commerce Admin Page
	Running a Batch Service from the ACC
	Batch Maintenance Form Handler
	Running Dynamic Services

	6 ATG Commerce Profile Extensions
	Profile Repository Extensions
	Promotions
	Address Books
	Credit Card Collection
	Gift Lists and Wish List
	Other Features

	Profile Form Handler Extensions
	Profile Tools and Property Manager Extension

	7 Configuring Commerce for Multisite
	Site Repository Extensions for Commerce
	Configuring Commerce Options in Site Administration
	Assigning Price Lists and Catalogs in a Multisite Configuration

	8 Configuring Commerce Services
	Setting Up Gift Lists and Wish Lists
	Gift List Business Layer Classes
	Gift List Repository
	Gift List Form Handlers
	Gift List Servlet Beans
	Purchase Process Extensions to Support Gift Lists
	Gift and Wish Lists in a Multisite Environment
	Extending Gift List Functionality
	Disabling the Gift List Repository

	Setting Up Product Comparison Lists
	Understanding the Product Comparison System
	Using Product Comparison Lists in a Multisite Environment
	Extending the Product Comparison System
	Using TableInfo to Display a Product Comparison List

	Setting Up Gift Certificates and Coupons
	The Claimable Repository
	The ClaimableTools Component
	The ClaimableManager Component
	Setting Up Gift Certificates

	9 Commerce Pricing Services Overview
	Common Terms in Pricing Services
	Using Dynamic vs Static Product Pricing
	How Static Pricing Works
	How Dynamic Pricing Works

	How Pricing Services Generate Prices
	PricingTools Class
	PricingModelHolder
	PricingAdjustment
	PricingCommerceItem
	PricingModelProperties

	10 Commerce Pricing Engines
	Pricing Engine Interfaces
	The Base Pricing Engine
	ItemPricingEngine Interface
	OrderPricingEngine Interface
	ShippingPricingEngine Interface
	TaxPricingEngine Interface
	PricingConstants Interface

	Default Pricing Engines
	PricingEngineService
	Default Item Pricing Engine
	Default Order Pricing Engine
	Default Tax Pricing Engine
	Default Shipping Pricing Engine

	Price Holding Classes
	AmountInfo
	ItemPriceInfo
	DetailedItemPriceInfo
	OrderPriceInfo
	ShippingPriceInfo
	TaxPriceInfo

	Extending Pricing Engines
	Extending a Pricing Engine
	Creating a New Pricing Engine

	11 Commerce Pricing Calculators
	Pricing Calculator Interfaces
	ItemPricingCalculator Interface
	OrderPricingCalculator Interface
	ShippingPricingCalculator Interface
	TaxPricingCalculator Interface
	CalculatorInfoProvider Interface

	Pricing Calculator Classes
	DiscountCalculatorService
	ItemPriceCalculator
	ItemDiscountCalculator
	BulkItemDiscountCalculator
	ItemListPriceCalculator
	ItemSalePriceCalculator
	ConfigurableItemPriceCalculator
	OrderDiscountCalculator
	BulkOrderDiscountCalculator
	OrderSubtotalCalculator
	ShippingCalculatorImpl
	ShippingDiscountCalculator
	BulkShippingDiscountCalculator
	PriceRangeShippingCalculator
	DoubleRangeShippingCalculator
	FixedPriceShippingCalculator
	PropertyRangeShippingCalculator
	WeightRangeShippingCalculator
	NoTaxCalculator
	TaxDiscountCalculator
	BulkTaxDiscountCalculator
	TaxProcessorTaxCalculator
	Price List ConfigurableItemPriceListCalculator
	Price List ItemListPriceCalculator
	Price List ItemPriceCalculator
	Price List ItemSalesPriceCalculator
	Price List ItemSalesTieredPriceCalculator
	Price List ItemTieredPriceCalculator
	BandedDiscountCalculatorHelper
	CalculatorInfo

	Extending Pricing Calculators
	Adding a New Pricing Calculator
	Extending Calculators

	12 Qualifier Class
	Qualifier Class Overview
	Qualifier Properties
	Overriding Qualifier Filters
	Default Qualifier Service

	Evaluating Qualifiers Example
	QualifiedItem Class
	FilteredCommerceItem
	Extending the Qualifier Class
	Adding New Criteria to the Filter Methods
	Replacing the Way a PMDL Rule Is Evaluated
	Replacing the Way the Qualifier Determines the Result Set
	Accessing FilteredCommerceItems

	13 Understanding Promotions
	Promotion Repository Item Properties
	PromotionFolder Repository Items
	PromotionStatus Repository Items
	Understanding PMDL Discount Rules
	PMDL XML Structure
	PMDL Example: Bulk Discount
	Examples of PMDL Rules

	Extending Promotions Functionality
	Extending the PMDL
	Adding New Promotion Discount Types

	Adding New Promotions Templates
	Promotion Template Basics
	Creating the PMDT File
	Translating User Input Values in Templates
	Working with Repository Item Properties in Templates
	Using Promotion Upsell in Templates
	Validating Promotions
	Localizing Promotions Templates
	Editing Existing Promotion Templates

	Importing and Exporting Promotions
	Architecture Overview
	Performing a Promotions Import or Export
	Mapping Promotion Properties
	Using the PromotionImportExportIntegrator Interface
	Configuring Import/Export Batching
	Configuring the PublishingWorkflowAutomator Component

	Performance Issues Related to Promotion Delivery

	14 Using Price Lists
	Overview of Setting Up Price Lists
	Caching Price Lists
	Using Price Lists in Combination with SKU-Based Pricing

	Description of Volume Pricing
	Setting up Price List Functionality in ATG Consumer Commerce
	PriceListManager
	Assigning a Price List to a User

	Price List Calculators
	Using ItemPriceInfo with Price Lists

	Implementing Sale Prices using Price Lists
	Calculating Prices with a Specific Price List
	Using the CurrencyConversionFormatter to Convert Currency
	Price List Security Policy
	The PriceListSecurityPolicy Class
	Configuring the Price List Security Policy

	Converting a Product Catalog to Use Price Lists

	15 Working With Purchase Process Objects
	The Purchase Process Subsystems
	Base Commerce Classes and Interfaces
	Address Classes
	Business Layer Classes
	OrderTools
	Pipelines
	Order Repository

	Creating Commerce Objects
	Creating an Order
	Using Orders in a Multisite Environment
	Creating Multiple Orders
	Creating Commerce Items, Shipping Groups, and Payment Groups
	Adding an Item to an Order via a URL
	Preventing Commerce Items from Being Added to Types of Shipping Groups
	Removing Commerce Objects from an Order
	Using the SimpleOrderManager

	Using Relationship Objects
	Relationship Types
	Commerce Item Relationships
	Relationship Priority

	Assigning Items to Shipping Groups
	Assigning Costs to Payment Groups
	Assigning an Order’s Total Cost to Payment Groups
	Assigning an Order’s Component Costs to Payment Groups

	Setting Handling Instructions
	HandlingInstruction Objects
	Adding Handling Instructions to a Shipping Group

	ATG Commerce States

	16 Configuring Purchase Process Services
	Loading Orders
	Refreshing Orders

	Modifying Orders
	Understanding the CartModifierFormHandler
	Modifying the Current Order

	Repricing Orders
	Saving Orders
	Updating an Order with the OrderManager

	Canceling Orders
	Checking Out Orders
	Preparing a Simple Order for Checkout
	Preparing a Complex Order for Checkout
	Checking Out an Order

	Processing Payment of Orders
	Overview of the Payment Process
	Extending the Payment Operations of a Payment Method
	Extending the Payment Process to Support a New Payment Method
	Extending Order Validation to Support New Payment Methods

	Scheduling Recurring Orders
	Understanding the scheduledOrder Repository Item
	Submitting Scheduled Orders
	Creating, Modifying, and Deleting Scheduled Orders
	Using Scheduled Orders with Registered Sites

	Setting Restrictions on Orders
	Understanding the Order Restriction Classes
	Implementing Order Restrictions

	Tracking the Shopping Process
	Shopping Process Stages
	Working with Shopping Process Stages
	Shopping Process Recorder
	Turning Off Recording of Shopping Process Tracking

	Troubleshooting Order Problems
	Handling Returned Items
	Managing Transactions in ATG Commerce
	Extending the ATG Commerce Form Handlers

	17 Customizing the Purchase Process Externals
	Purchase Process Event Messages
	Integrating with Purchase Process Services
	Purchase Process Integration Points
	Adding Credit Card Types to ATG Commerce

	Extending the Purchase Process
	Adding a Subclass with Primitive Data Type Properties
	Adding a Subclass with Object Data Type Properties
	Manipulating Extended Objects

	Merging Orders

	18 Processor Chains and the Pipeline Manager
	Pipeline Manager Overview
	Using the Pipeline Editor
	Accessing the Pipeline Editor
	Opening an Existing Pipeline Definition
	Creating a New Pipeline Definition
	Editing Existing Pipeline Definitions
	Printing a Pipeline Definition
	Activating Verbose Mode
	Pipeline Debugging
	Changing the Display Font of the Pipeline Editor
	Reinitializing the Pipeline Manager

	Running a Processor Chain
	Creating a Processor Pipeline
	Configuring a Pipeline Manager
	Creating Processors
	Pipeline Definition Files
	Creating and Editing Processor Chains Programmatically
	Extending the PipelineChain and PipelineResult Classes

	Pipelines and Transactions
	Processor Transaction Management
	Spanning Transactions over a Chain Subset

	Extending the Processor Pipeline Classes
	Using Site-Based Forking in a Processor Chain
	Adding a Commerce Processor Using XML Combination
	Executing Processor Chains from Processors within Other Chains

	19 Inventory Framework
	Overview of the Inventory System
	Using the Inventory System

	Inventory System Methods
	Inventory Classes
	InventoryManager
	InventoryException
	MissingInventoryItemException

	InventoryManager Implementations
	AbstractInventoryManagerImpl
	NoInventoryManager
	RepositoryInventoryManager
	CachingInventoryManager
	LocalizingInventoryManager

	Examples of Using the Inventory Manager
	Allocating Items for an Order
	Canceling or Removing an Item from an Order
	Displaying an Item’s Availability to a Customer
	Filling Partial Orders
	Preventing Inventory Deadlocks

	Handling Bundled SKUs in the Inventory
	Inventory Repository
	Inventory JMS Messages
	Configuring the SQL Repository
	Caching the Inventory

	Inventory Repository Administration
	Using the InventoryLookup Servlet Bean

	Building a New InventoryManager
	Configuring a New Inventory Manager

	20 Configuring the Order Fulfillment Framework
	Overview of Fulfillment Process
	Running the Fulfillment Server
	Order Fulfillment Classes
	Using Locking in Fulfillment
	Using the OrderFulfiller Interface
	Using the Fulfiller
	Notifying the HardgoodFulfiller of a Shipment
	HardGoodFulfiller Examples

	Creating a New Fulfiller
	Configuring a New Fulfiller

	Order Fulfillment Events
	Fulfillment Server Fault Tolerance
	Fulfillment Message Redelivery

	Replacing the Default Fulfillment System
	Integrating the Order Fulfillment Framework with an External Shipping System
	Changing Payment Behavior in Fulfillment Server
	Using Scenarios in the Fulfillment Process
	Questions & Answers

	21 Managing the Order Approval Process
	Understanding the Order Approval Process
	Modifying the Order Approval Process

	Servlet Beans and Form Handlers for Approving Orders
	ApprovalRequiredDroplet Servlet Bean
	ApprovedDroplet Servlet Bean
	ApprovalFormHandler

	JMS Messages in the Order Approval Process

	22 Using Abandoned Order Services
	An Overview of Abandoned Orders
	Abandonment States
	Order Repository Extensions
	Profile Repository Extensions
	The AbandonedOrderLogRepository

	Defining and Detecting Abandoned Orders
	Defining Abandoned and Lost Orders
	Detecting Abandoned and Lost Orders

	Configuring AbandonedOrderService
	Configuring AbandonedOrderTools
	Scenario Events and Actions
	Scenario Events
	Scenario Actions

	Tracking Abandoned Orders of Transient Users
	AbandonedOrderEventListener
	TransientOrderRecorder
	Turning Off Transient Order Tracking

	Customizations and Extensions
	Defining Additional Types of Abandoned and Lost Orders
	Modifying the Criteria Used to Identify Abandoned and Lost Orders

	23 Generating Invoices
	Invoice Overview
	Invoices in Checkout
	Invoice Payment
	Using the Invoice Manager
	Invoice Pipelines

	The Invoice Repository
	Invoice Repository Item
	DeliveryInfo Repository Item
	PaymentTerms Repository Item
	Sending Invoice JMS Messages

	24 Using Requisitions and Contracts
	Requisitions
	Contract Repository Items
	Using Contracts

	25 Preparing to Use Commerce Reporting
	Setting Up Commerce Reporting Environments
	Setting up the Asset Management Environment
	Setting Up the Production Environment
	Setting Up the Data Loading Environment

	Configuring a Parent Catalog
	Logging Data for Commerce Reporting
	Site Visit Data Logging
	Order Submit Data Logging
	Commerce Search Data Logging
	Product Catalog Data Logging
	User Data Logging
	Segment Data Logging
	Data Logging Configuration
	Initial Data Logging for Catalogs, Users, and Segments
	JMS Message Information for Data Logging

	Loading Data for Commerce Reporting
	Data Loader Components
	Data Warehouse Loader Repository
	Handling Errors
	Pipeline Drivers and Processors

	26 Customizing Reporting Data
	Adding an Attribute to a Dimension
	Adding a New Dimension
	Dimension Converters
	Conversion Context
	Setting Conversion Property Parameters
	Example Dimension Converter

	Appendix A: ATG Commerce Web Services
	Order Management Web Services
	addCreditCardToOrder Web Service
	addItemToOrder Web Service
	addItemToShippingGroup Web Service
	addShippingAddressToOrder Web Service
	cancelOrder Web Service
	createOrder Web Service
	createOrderForUser Web Service
	createOrderFromXML Web Service
	getCurrentOrderId Web Service
	getDefaultPaymentGroupId Web Service
	getDefaultShippingGroupId Web Service
	getOrderAsXML Web Service
	getOrdersAsXML Web Service
	getOrderStatus Web Service
	moveItemBetweenShippingGroups Web Service
	removeCreditCardFromOrder Web Service
	removeItemFromOrder Web Service
	removeItemQuantityFromShippingGroup Web Service
	removePaymentGroupFromOrder Web Service
	removeShippingGroupFromOrder Web Service
	setItemQuantity Web Service
	setOrderAmountToPaymentGroup Web Service
	submitOrderWithReprice Web Service
	Order Management Web Services Example

	Pricing Web Services
	calculateOrderPrice Web Service
	calculateOrderPriceSummary Web Service
	calculateItemPriceSummary Web Service
	Pricing Web Services Example

	Promotion Web Services
	claimCoupon Web Service
	getPromotionsAsXML Web Service
	grantPromotion Web Service
	revokePromotion Web Service
	Promotion Web Services Example

	Inventory Web Services
	getInventory Web Service
	getInventoryStatus Web Service
	setStockLevels Web Service
	setStockLevel Web Service
	Inventory Web Services Example

	Catalog Web Services
	catalogItemViewed Web Service
	getProductSkusXML Web Service
	getProductXMLByDescription Web Service
	getProductXMLById Web Service
	getProductXMLByRQL Web Service
	Catalog Web Services Example

	Profile Web Services
	getDefaultShippingAddress Web Service
	getDefaultBillingAddress Web Service
	getDefaultCreditCard Web Service
	setDefaultBillingAddress Web Service
	setDefaultCreditCard Web Service
	setDefaultShippingAddress Web Service
	Profile Web Services Example

	Commerce Web Services Security
	Using the Order Owner Security Policy

	Appendix B: ATG Commerce Databases
	Core ATG Commerce Functionality Tables
	Product Catalog Tables
	Commerce Users Tables
	Claimable Tables
	Shopping Cart Events Table
	Inventory Tables
	Order Tables
	Promotion Tables
	User Promotion Tables
	Gift List Tables
	Price List Tables
	Abandoned Order Services Tables
	Order Markers Table

	ATG Business Commerce Tables
	ATG Business Commerce Product Catalog Tables
	ATG Business Commerce Order Tables
	ATG Business Commerce Organizational Tables
	ATG Business Commerce User Profile Extensions
	ATG Business Commerce Invoice Tables
	ATG Business Commerce Contract Tables

	Appendix C: ATG Commerce Messages
	Base ATG Commerce Messages
	Fulfillment System Messages
	Order and Pricing Messages
	Promotion Messages

	Abandoned Order Messages
	ATG Business Commerce Messages

	Appendix D: ATG Commerce Scenario Recorders
	dcs
	dcs-analytics
	shoppingprocess

	Appendix E: Purchase Process Class Diagrams
	Order Interfaces Diagrams
	Order Classes Diagram
	Order Containment Diagram

	Appendix F: ATG Commerce and Session Backup
	Appendix G: Commerce Pipeline Chains
	Core Commerce Pipelines
	updateOrder Pipeline Chain
	loadOrder Pipeline Chain
	refreshOrder Pipeline Chain
	repriceOrderForInvalidation Pipeline Chain
	processOrderWithReprice Pipeline Chain
	processOrder Pipeline Chain
	validateForCheckout Pipeline Chain
	validatePostApproval Pipeline Chain
	validatePaymentGroupsPostApproval Pipeline Chain
	validateNoApproval Pipeline Chain
	validatePaymentGroup Pipeline Chain
	recalcPaymentGroupAmounts Pipeline Chain
	repriceOrder Pipeline Chain
	repriceAndUpdateOrder Pipeline Chain
	moveToConfirmation Pipeline Chain
	validatePaymentGroupPreConfirmation Pipeline Chain
	moveToPurchaseInfo Pipeline Chain
	validateShippingInfo Pipeline Chain
	validateShippingGroup Pipeline Chain
	sendScenarioEvent Pipeline Chain
	processScheduledOrder Pipeline Chain

	Fulfillment Pipelines
	handleSubmitOrder Pipeline Chain
	splitShippingGroupsFulfillment Pipeline Chain
	executeFulfillOrderFragment Pipeline Chain
	handleModifyOrder Pipeline Chain
	performIdTargetModification Pipeline Chain
	performOrderModification Pipeline Chain
	removeOrder Pipeline Chain
	handleModifyOrderNotification Pipeline Chain
	handleIdTargetModification Pipeline Chain
	handleShipGroupUpdateModification Pipeline Chain
	handlePaymentGroupUpdateModification Pipeline Chain
	handleShippingGroupModification Pipeline Chain
	updateShippingGroup Pipeline Chain
	completeRemoveOrder Pipeline Chain
	completeOrder Pipeline Chain
	handleRelationshipModification Pipeline Chain
	updateRelationship Pipeline Chain
	handleHardgoodFulfillOrderFragment Pipeline Chain
	processHardgoodShippingGroup Pipeline Chain
	allocateShippingGroup Pipeline Chain
	allocateItemRelationship Pipeline Chain
	allocateItemRelQuantity Pipeline Chain
	allocateItemRelQuantityForConfigurableItem Pipeline Chain
	splitShippingGroupForAvailability Pipeline Chain
	handleHardgoodUpdateInventory
	handleOrderWaitingShipMap Pipeline Chain
	handleHardgoodModifyOrder Pipeline Chain
	performHardgoodIdTargetModification Pipeline Chain
	performHardgoodShippingGroupModification Pipeline Chain
	removeHardgoodShippingGroup Pipeline Chain
	removeShipItemRelsFromShipGroup Pipeline Chain
	updateHardgoodShippingGroup Pipeline Chain
	shippingGroupHasShipped Pipeline Chain
	performHardgoodItemModification Pipeline Chain
	performHardgoodRelationshipModification Pipeline Chain
	handleHardgoodModifyOrderNotification Pipeline Chain
	handleHardgoodShipGroupUpdateModification Pipeline Chain
	shipPendingShippingGroups Pipeline Chain
	shipShippingGroup Pipeline Chain
	handleElectronicFulfillOrderFragment Pipeline Chain
	processElectronicShippingGroup Pipeline Chain
	allocateElectronicGood Pipeline Chain
	handleElectronicModifyOrder Pipeline Chain
	handleElectronicModifyOrderNotification Pipeline Chain
	handleElectronicShipGroupUpdateModification Pipeline Chain
	sendOrderToFulfiller Pipeline Chain
	processHardgoodShippingGroups Pipeline Chain
	retrieveWaitingShipMap Pipeline Chain
	processElectronicShippingGroups Pipeline Chain

	Order Approval Pipelines
	approveOrder Pipeline Chain
	checkRequiresApproval Pipeline Chain
	orderApproved Pipeline Chain
	orderRejected Pipeline Chain
	checkApprovalComplete Pipeline Chain
	checkApprovalCompleteError Pipeline Chain

	Index

