

Version 10.0.2

Commerce Guide to Setting Up a Store

Oracle ATG
One Main Street
Cambridge, MA 02142
USA

ATG Commerce Guide to Setting Up a Store

Document Version
Doc10.0.2 COMMSTOREv1 4/15/2011

Copyright

Copyright
Copyright © 1997, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are “commercial
computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures
to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services.

For information about Oracle’s commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/support/contact.html or visit http://www.oracle.com/accessibility/support.html if you are hearing impaired.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

i i i

C o n t e n t s

μ

Contents

1 Introduction 1
Commerce Overview 1

Product Catalog 1
Purchasing and Fulfillment Services 2
Targeted Promotions 3
Commerce Services 3
Portal Gears 4
Reporting 4
Multisite Integration 4
Reference Applications 5

Finding What You Need 6

2 ATG Commerce Catalog Administration 9
Organizing Your Product Catalog 9
Commerce Catalog Item Types 11
Viewing Catalogs 11

Viewing Catalogs as a Hierarchy 12
Viewing Catalogs as Lists 15

Creating Catalog Items 15
Creating Catalog Folders 16
Creating Catalogs 16
Creating Root Categories 16
Creating Child Categories 17
Creating Products 17
Creating SKUs 18
Creating Configurable SKUs 18
Creating SKU Bundles 19
Adding Subcatalogs to Catalogs 20
Adding Catalogs to Categories 20
Editing Catalog Items 20
Moving Items 21
Duplicating Items 21
Deleting Items 22

Adding Templates and Images to the Catalog 22
Creating Image and Template Folders 22
Adding Images 23
Adding Templates 24

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

i v

C o n t e n t s

μ
Associating Images and Templates with Catalog Items 24

Searching for Items in the ACC 25
Preventing Version Conflict 26

3 Inventory and Fulfillment Administration 27
ATG Commerce Inventory Administration 27

Accessing the Inventory Administration Page 27
Viewing the Inventory Display 28
Updating the Inventory 28
Sending Inventory Update Notifications 28

ATG Commerce Fulfillment Administration 29
Accessing the Fulfillment Administration Page 29
Notifying Fulfillment of Order Shipment 29
Reprocessing Shipping Groups 30
Printing an Order 30

4 Managing Price Lists 31
Viewing Existing Price Lists 31
Creating a New Price List Folder 33
Creating a New Price List 33
Changing Prices in an Existing Price List 34
Copying Prices Between Price Lists 35
Setting Bulk and Tiered Pricing 35

Viewing Volume Pricing 36
Setting Volume Pricing 36

Deleting a Price List 37
Assigning Price Lists to Users 37

5 Creating and Maintaining Promotions 39
How Promotions Work 40
Creating Promotions 40

Adding a New Promotion 41
Creating a Discount Rule 49
Specifying the People Who Receive the Promotion 52

Creating Closeness Qualifiers 55
Updating the Promotion 57
Detecting a Closeness Qualifier 57
Adding an Item to a Slot When Users Qualifies for a Closeness Qualifier 58
Sending an Email When Users Qualify for A Closeness Qualifier 59
Removing Closeness Qualifiers From a Slot When They No Longer Apply 60

Setting up Upselling Incentives 61
Sample Upsell Incentives 61
Working with Upsell Actions 63

Disabling Promotions 65
Displaying Promotion Media 65
Setting Up Coupon Promotions 66

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

v

C o n t e n t s

μ
Two Types of Coupons 67
Adding a Coupon 67

Delivering Promotions via a URL 68

6 Managing Cost Centers 69
Viewing Existing Cost Centers 69
Adding New Cost Centers 70
Assigning a Default Cost Center to a User 70
Adding, Modifying, and Deleting Cost Centers in a Profile 71
Adding Cost Centers to an Order 73
Adding Items to a Cost Center 74
Tracking Orders by Cost Center 74
Cost Center Classes 74
Using the CostCenterFormHandler Framework 76

7 Using Commerce Elements in Scenarios 85
Using Commerce Event Elements in Scenarios 85

Approval Complete Event 86
Approval Required Event 86
Approval Update Event 87
FulfillOrderFragment 87
Gift Purchased 87
Inventory Threshold Reached 87
Invoice Is Created 88
Invoice Is Removed 88
Invoice Is Updated 88
Item Added to Order 88
Item Quantity Changed in Order 89
Item Removed from Order 89
Modify Order 89
Modify Order Notification 89
Order Changes 89
Order Submitted 90
Orders Merged 90
Payment Group Changes 90
Price Changed 91
Promotion Closeness Disqualification 91
Promotion Closeness Qualification 91
Promotion Offered 91
Promotion Revoked 92
Scenario Added an Item to an Order 92
Scheduled Order Event 92
Shipping Group Changes 92
Update Inventory 93
Uses Promotion 93

Using Commerce Condition Elements in Scenarios 93

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

v i

C o n t e n t s

μ
Item Where 94
Order Where 94

Using Commerce Action Elements in Scenarios 94
Add Item to Order 95
Fill Related Items to Slot 95
Give Promotion 95
Revoke Promotion 95

Using Scenarios to Cross-Sell and Up-Sell Products 95

8 Managing Abandoned Orders 99
Understanding Order Abandonment 99
Responding to Order Abandonment Activity 102

Creating Scenarios that Respond to Abandonment Activity 103
Testing Scenarios that Respond to Abandonment Activity 105
Scenario Event Elements 106
Scenario Action Elements 107

9 Catalog Navigation and Searching 109
Using the parentCategory Property 109
Displaying Catalog Items 110

Looking Up Items in the Catalog 110
ForEachItemInCatalog Servlet Bean 111
Sending Messages When Items are Viewed 111

Catalog Navigation 112
Displaying Root Categories 112
Displaying Child Categories and Products 113
Historical Navigation 114

Catalog Searching 118
Overview of Catalog Searching 118
Preconfigured Catalog Search Components 119
Configuring the Search Form Handler 120
Configuring Catalog Search Types 121
Combining Catalog Search Types 124
Processing Searches 125
Displaying Search Results 127
Searching Catalogs in Preview Mode 131
Using Search Form Handlers with Internationalized Catalogs 132

10 Implementing Product Comparison 133
Understanding the ProductList Component 133
Querying the Product Comparison List 136
Managing Product Comparison Lists 137
Examples of Product Comparison Pages 139

Displaying a Product Comparison Table 139
Adding or Removing a Product from a Product Comparison List 141
Adding Multiple Products to a Product Comparison List 142

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

v i i

C o n t e n t s

μ
Removing Specific Entries from a Product Comparison List 143
Using Product Comparison Lists in a Multisite Environment 144

11 Implementing Shopping Carts 145
Understanding the ShoppingCart Component 145
Managing Shopping Carts 147

Creating and Retrieving Shopping Carts 147
Adding Items to Shopping Carts 149
Adding Shipping Information to Shopping Carts 154
Adding Payment Information to Shopping Carts 167
Repricing Shopping Carts 182
Saving Shopping Carts 183

12 Implementing an Order Approval Process 189
Displaying Orders Requiring Approval 189
Processing Approvals and Rejections 190
Displaying a History of Approved and Rejected Orders 191

13 Filtering Commerce Item Collections 193
How Product Collection Filtering Works 193
Using ATG Collection Filtering Components 194

Using InventoryFilter 195
Using ExcludeItemsInCartFilter 195
Using ProductFilter 196
Using CartSharingFilter 196

Filtering Multisite Gift and Wish Lists 196

14 Using ATG Commerce Portal Gears 201
Order Status Gear 201

Setting Up the Order Status Gear 201
Using the Order Status Gear 202
Configuring the Order Status Gear 204
Order Status Gear Implementation 206

Order Approval Gear 209
Setting Up the Order Approval Gear 209
Using the Order Approval Gear 210
Configuring the Order Approval Gear 213
Order Approval Gear Implementation 216

Appendix: ATG Commerce Servlet Beans 221
AddItemToCartServlet 226
AddBusinessProcessStage 228
ApprovalRequiredDroplet 228
ApprovedDroplet 231
AvailableShippingMethodsDroplet 233
AvailableStoreCredits 235

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

v i i i

C o n t e n t s

μ
B2BOrderLookup 236
CatalogItemLookupDroplet 240
CatalogPossibleValues 243
ClosenessQualifierDroplet 244
CollectionFilter 246
ComplexPriceDroplet 249
ConvertAbandonedOrderDroplet 250
CostCenterDroplet 251
CouponDroplet 254
CurrencyCodeDroplet 255
DisplaySkuProperties 256
ExcludeItemsInCartFilterDroplet 257
ForEachItemInCatalog 259
GetApplicablePromotions 261
GiftCertificateAmountAvailable 263
GiftitemDroplet 264
GiftlistDroplet 265
GiftShippingGroupDroplet 266
GiftShippingGroupsDroplet 267
HasBusinessProcessStage 268
InventoryDroplet 269
IsHardGoodsDroplet 271
ItemLookupDroplet 272
ItemPricingDroplet 273
MostRecentBusinessProcessStage 274
NavHistoryCollector 275
OrderLookup 277
PaymentGroupDroplet 281
PossibleValues 285
PriceDroplet 285
PriceEachItemDroplet 286
PriceItemDroplet 288
PriceRangeDroplet 290
ProductListContains 291
PromotionDroplet 293
ReanimateAbandonedOrderDroplet 294
RemoveBusinessProcessStage 295
RepriceOrder 296
SetLastUpdatedDroplet 298
ShipItemRelPrice 299
ShippableGroupsDroplet 300
ShippingDroplet 302
ShippingGroupDroplet 303
SiteIdForCatalogItem 306
UnitPriceDetailDroplet 306
ViewItemEventSender 308

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

i x

C o n t e n t s

μ
Index 310

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

x

C o n t e n t s

μ

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1

1 - I n t r o d u c t i o n

μ
1 Introduction

Welcome to the ATG Commerce Guide to Setting Up a Store. The ATG Commerce application serves as the
foundation for your online store. It contains everything you need to manage your product database,
pricing, inventory, fulfillment, merchandising, targeted promotions, and customer relationships. This
comprehensive guide covers ATG Commerce concepts for store administrators, business users, and page
developers.

ATG Commerce is available in two versions. ATG Consumer Commerce is used for developing standard
business-to-consumer (B2C) online stores. ATG Business Commerce is used for sites oriented toward
business-to-business (B2B) uses. You will occasionally see the text “ATG Business Commerce only” or “ATG
Consumer Commerce only” in this manual.

This chapter includes the following sections:

Commerce Overview

Finding What You Need

Commerce Overview
This section introduces you to the major features of ATG Commerce:

 Product Catalog

 Purchasing and Fulfillment Services

 Targeted Promotions

 Commerce Services

 Portal Gears

 Reporting

 Multisite Integration

 Reference Applications

Product Catalog

The product catalog is a collection of repository items (categories, products, media, etc.) that provides the
organizational framework for your commerce site. ATG Commerce includes a catalog implementation
based on the ATG SQL Repository, that you can use or extend as necessary.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2

1 - I n t r o d u c t i o n

μ
You can create and edit all of your repository items through the ATG Control Center, which also allows
you to create page templates to display these items. You can display different versions of your product
catalog for different viewers; for example, if a corporate customer only wants its employees to order
certain items from your store, you can confine them to viewing and ordering only those products. You
can also configure commerce items to include variable components, such as a computer that can be
purchased with different hard drive capacities.

Purchasing and Fulfillment Services

ATG Commerce provides tools to handle pre-checkout order-processing tasks such as adding items to a
shopping cart, ensuring items are shipped by the customer’s preferred method, and validating credit card
information. The system is designed for flexibility and easy customization; you can create sites that
support multiple shopping carts for a single user, multiple payment methods and shipping addresses.
You can integrate with third-party authorization and settlement tools such as Payflow Pro, CyberSource,
and TAXWARE.

As soon as a customer submits an order, the fulfillment framework takes over processing. This system
includes a collection of standard services which coordinate and execute the order fulfillment process. Like
the purchase process, the fulfillment framework can be customized to meet the needs of your sites.

ATG Commerce also includes an HTML-based Fulfillment Administration page that you can use for:

 Viewing orders that are ready to be shipped.

 Notifying the fulfillment system that an order has been shipped to the customer.

 Notifying the fulfillment system that a shipping group has changed and needs to be
reprocessed.

 Printing order information.

The fulfillment framework includes the following features:

 Cost Centers (ATG Business Commerce only). Cost Centers allow customers to track
internal costs by designating parts of their organization as cost centers, enabling them
to track costs by department and run related reports.

 Export an Order Via XML. Classes in ATG Commerce allow you to export customer
orders in XML for easy integration with your other systems.

 Scheduled Orders. Your customers can create template orders from a new or existing
order, then create a schedule for the same order to be placed regularly during the time
frame they specify. For example, a company could set up a scheduled order to buy
certain supplies on a monthly basis for the next year, then stop so the company can
review its needs and perhaps change the standard order.

 Order Approvals (ATG Business Commerce only). B2B applications often require that
customers’ orders be reviewed by authorized persons who can approve or reject them.
The approval process in ATG Business Commerce can identify customers for whom
approvals are required, and check for the conditions that trigger an approval for an
order, such as when an order limit is exceeded. After an approver has reviewed the
order, if approved, the order proceeds through checkout.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3

1 - I n t r o d u c t i o n

μ
 Invoicing (ATG Business Commerce only). This feature gives your customers the option

of being invoiced for orders they place.

 Requisitions (ATG Business Commerce only). Requisitions work with the order
approval process, enabling your customers to attach requisition numbers to orders,
then submit them for approval within their organization, improving your customers’
ability to track internal activities.

Targeted Promotions

Business managers can use ATG Commerce promotions to highlight products and offer discounts as a
way of encouraging customers to make purchases. Promotions typically fall into the following categories:

 Specific amount off a particular product

 Specific amount off a whole order

 Percentage amount off a particular product

 Percentage amount off a whole order

 Specific amount or percentage off a product, based on an attribute

 Free product or free order

 Substitution (buy product A for the price of product B)

 Free shipping for a specific product

You can create promotions through a simple interface in the ATG Control Center as described in this
guide, or through ATG Merchandising (see the ATG Merchandising Administration Guide).

Commerce Services

ATG Commerce provides services for implementing a variety of merchandising features on your
commerce site.

 Gift Lists and Wish Lists

Gift lists allow customers to register for an event, such as a birthday or wedding, and
create a list of products that other site visitors can view. Customers can create an
unlimited number of gift lists for themselves. Part of the purchase process allows
special handling instructions for gift purchases, such as address security, wrapping,
and shipping.

Wish lists allow customers to save lists of products without actually placing the items
in their shopping cart. A wish list is similar to a gift list, except that it is only accessible
to the person who created it. Customers can access their wish lists and purchase items
from them at any time.

 Comparison Lists

Comparison lists enable customers to select multiple product SKUs and compare them
side-by-side.

 Gift Certificates and Coupons

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

4

1 - I n t r o d u c t i o n

μ
You can set up gift certificates as an item in your product catalog. When a customer
purchases a gift certificate, it is delivered via e-mail to the recipient, who, in turn, can
use it to pay for purchases on the site.

Coupons are similar to gift certificates, except that they are a type of promotion (20%
of an order over $100, for example) sent to specific customers. Customers redeem gift
certificates and coupons entering a claim code during the checkout process.

You can use the ATG Control Center to manage gift list, coupon, and gift certificate repository items.

Portal Gears

If you are an ATG Commerce and ATG Portal user, you can use ATG Commerce gears in the portal pages of
your Commerce site to provide customers with a personalized gateway to their order information.

The Order Status gear, which is included with both ATG Consumer Commerce and ATG Business
Commerce, provides customers with access to their current and historical order information. The Order
Approval gear, which is included with ATG Business Commerce, displays to approvers those orders that
require their approval and provides a mechanism for approving or rejecting them. For more information
on these portal gears or “portlets,” see the Using ATG Commerce Portal Gears chapter.

Reporting

ATG Commerce is fully integrated with ATG Customer Intelligence, and includes a default set of reports
that can provide essential information on store performance. See the Guide to ATG Commerce Reports for
detailed information on these reports.

Multisite Integration

ATG’s multisite feature allows you to build and launch new sites quickly, and to manage brands, country
stores, and other differentiators efficiently across multiple channels. This section describes some of the
aspects of multisite that are important in an ATG Commerce application.

 Site Context—Within a user’s session, the site context identifies what catalogs,
products, or SKUs are available to the user, which price lists to apply, and which
shopping cart to use.

 Site Membership—Defines the sites to which a catalog and its items belong. These
items can include catalogs, categories, products, SKUs, and catalog folders. Catalogs
and other items can belong to more than one site.

 SiteIdForItemDroplet and SiteLinkDroplet—These platform droplets (see the
ATG Page Developer’s Guide) are useful for Commerce developers. Items that appear in
multiple catalogs can be displayed together.

 Shopping Cart—The cart tracks the site on which it was created (when the customer
adds the first item), on which each item was added, and on which the most recent
activity occurred.

 Scheduled Orders—These orders include site information when creating and pricing
orders.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

5

1 - I n t r o d u c t i o n

μ
 Gift, Purchase, and Wish Lists—All of these track the site on which they were created

and on which each item was added.

 Searching—Search form handlers are site-aware and can be constrained by site.

 Reports—All ATG Commerce reports include site information. See the Guide to ATG
Commerce Reports.

Information on the multisite uses of ATG Commerce features can be found throughout this guide, where
applicable. See the ATG Multisite Administration Guide for general information on implementing multisite
in ATG applications.

Note: If you are using B2B, some multisite features are turned off by default. Standard B2B processing
assigns catalogs and price lists to individual shoppers or organizations, and does not rely on site
information even in a multisite-enabled configuration. See the ATG Commerce Programming Guide for
details.

Reference Applications

The ATG platform includes reference applications that demonstrate how a Web site could use ATG
Commerce features:

 ATG Commerce Reference Store, described in the ATG Commerce Reference Store
Overview and related documents

 ATG Business Commerce Reference Application (Motorprise), as described in ATG
Business Commerce Reference Application Guide

 ATG Commerce Sample Catalog, as described in the section About the ATG Commerce
Sample Catalog

About the ATG Commerce Sample Catalog

The commerce sample catalog is a set of sample JSPs that constitute a stripped-down but functional
commerce site. As you develop your sites, you can refer to the sample catalog for simple code examples
that illustrate common ATG Commerce features, such as the following:

 Using dynamic pricing and inventory

 Navigating the product catalog

 Searching the product catalog

 Adding items to a shopping cart or gift list

 Checking out orders with a single shipping group and payment group

 Managing multiple shopping carts within one person’s session

Additionally, you can use the sample catalog JSPs as a starting point for your own JSP templates.

You can access the sample catalog through the ATG Business Commerce reference application. The
sample pages use a B2B-style user profile and catalogs. To access the sample catalog, when you assemble
your application, append the DCSSampleCatalog module to the list of modules:

MotorpriseJSP DCSSampleCatalog

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

6

1 - I n t r o d u c t i o n

μ
You can use your own Commerce application rather than MotorpriseJSP.

Note: For detailed information on assembling an ATG application, see the ATG Programming Guide.

The DCSSampleCatalog module includes a sampleCatalog Web application that contains the sample
catalog JSPs but no additional code or configuration properties. In order to access the Web application,
first you need to deploy the sampleCatalog.ear file provided in
<ATG10dir>/DCSSampleCatalog/j2ee-apps/ on your application server, then deploy the application.
Note that the sample catalog JSPs are predominantly intended as simple illustrations of common ATG
Commerce features; they are not guaranteed to work in every environment or with every application.

The sample catalog JSPs are located at <ATG10dir>/DCSSampleCatalog/j2ee-
apps/sampleCatalog/web-app/. Once the sample catalog module has been deployed, you can view
the pages by pointing your browser to http://hostname:port/sample_catalog/. The port you use
depends on your application server and how it is configured. For example, on JBoss the default URL is:

http://hostname:8080/sample_catalog/

See the ATG Installation and Configuration Guide for default port information for other application servers.

You can also access the sample catalog JSPs via the Pages and Components > J2EE Pages area of the ATG
Control Center (ACC). Via the J2EE Pages task area, you can open a specific JSP in the ACC’s Document
Editor, and, if the sample catalog application is running, preview it in your browser.

Finding What You Need
ATG Commerce is a comprehensive product that provides the tools you need to create a commerce Web
site that’s customized to meet the particular needs of your business. Here is a key to finding the
information you need:

Tasks Audience Refer To

Creating a catalog and populating it with
categories, products, and SKUs;
configuring the fulfillment and inventory
tools provided by ATG Commerce out-
the-box

Business Users ATG Commerce Catalog
Administration and Inventory
and Fulfillment
Administration chapters of
this guide.

Working with the out-of the-box
promotion, price list, scenarios,
abandoned order, and cost center tools

Business Users This guide.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

7

1 - I n t r o d u c t i o n

μ
Developing a catalog and its categories,
products, and SKUs in a publishing
environment that uses projects to
manage the tasks you perform and
maintains versions of the commerce
assets you edit

Business Users ATG Merchandising Guide for
Business Users

Building JSPs that use commerce servlet
beans

Page Developers Covered in several chapters in
this guide.

Extending ATG Commerce
programmatically by creating subclasses
and modifying repositories

Programmers ATG Commerce Programming
Guide

Integrating ATG Commerce with Payflow
Pro, CyberSource, and TAXWARE;
communicating with ATG Commerce
through Web Services

Programmers ATG Commerce Programming
Guide

Assembling an application that includes
ATG Commerce and reference application
modules

Site Administrators ATG Programming Guide

Installing ATG Commerce databases in a
production environment

Site Administrators ATG Commerce Programming
Guide unless users also have
ATG Merchandising, in which
case they should see the ATG
Merchandising Administration
Guide instead.

Installing database tables in support of
ATG Merchandising

Site Administrators ATG Merchandising
Administration Guide

Database tables, session backup, JMS
messages, and recorders

Site Administrators ATG Commerce Programming
Guide

Working with the Motorprise Business
Commerce Reference Application

All ATG Business Commerce
Reference Application Guide

Working with the ATG Commerce Sample
Catalog

Page Developers,
Programmers

See the Reference
Applications section in this
chapter.

Viewing ATG Commerce reports Business Users See the Guide to ATG
Commerce Reports.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

8

1 - I n t r o d u c t i o n

μ

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

9

2 - A T G C o m m e r c e C a t a l o g A d m i n i s t r a t i o n

μ
2 ATG Commerce Catalog

Administration

A product catalog is composed of related items that form an organizational and navigational framework,
enabling customers to locate and purchase items. A product catalog is usually built from a hierarchical
tree of categories and products.

This chapter discusses how to use the ATG Control Center (ACC) to create and modify a catalog for your
commerce site. Note that this chapter assumes that you are using the default ATG Commerce product
catalog and the default repository editor. If the product catalog or repository editor has been customized
at your sites, administering the catalog may work differently from the way this chapter describes.

Users who have ATG Merchandising and ATG Content Administration create catalogs and populate them
in a content management environment instead of the ACC, so some sections in this chapter will be
relevant for them and some won’t. See the first two sections to learn about the commerce assets you will
use and how to organize them in your catalog. See the ATG Merchandising Guide for Business Users for
information on how to work with catalogs in ATG Merchandising.

This chapter covers the following topics:

Organizing Your Product Catalog

Commerce Catalog Item Types

Viewing Catalogs

Creating Catalog Items

Adding Templates and Images to the Catalog

Searching for Items in the ACC

Preventing Version Conflict

Organizing Your Product Catalog
There are several organizational models you can use for your product catalog in ATG Commerce. For
example, you arrange your items in a simple tree-like structure. In this model, each category contains
products or other categories as its children, and each category or product has one parent category, as
shown by the following diagram.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 0

2 - A T G C o m m e r c e C a t a l o g A d m i n i s t r a t i o n

μ
Bike Store

Helmets

Bikes Accessories

BugEye
Light

Safety
Light

Floral
Helmet

BMX Racing
Helmet

RoadWind CB Comfy
Bike

= Category

= Product

Lights

Note that there is a single navigational path to any given product. For example, to get to the BMX Racing
Helmet product, the customer must select Accessories, then Helmets, and then BMX Racing Helmet.

Alternatively, you can offer your customers multiple navigation paths to reach a given product. The
following diagram illustrates a product catalog in which products have multiple parent categories.

Bike Store

Accessories

Deluxe Lighted
Helmet

Bikes

Kid’s Road
Bike

Safety
Light

Floral
Helmet

Kid’s Mountain
Bike

RoadWind
Bike

Helmets Lights Road Bikes Bikes for Kids

= Category

= Product

As a third option, you can present entirely different catalogs to different users.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 1

2 - A T G C o m m e r c e C a t a l o g A d m i n i s t r a t i o n

μ

Bike Store

Accessories

Helmets Lights

Road Bikes Bikes for Kids

= Catalog

= Root
 Category

When users with access to the Bike Store catalog view the root categories, they see all of the root
categories in the Accessories subcatalog as well as the root categories of the Bike Store catalog itself. A
user who only has access to the Accessories catalog, however, sees only the Helmets and Lights root
categories.

Commerce Catalog Item Types
In ATG Commerce, the product catalog is an ATG repository, and the elements of the catalog (such as
folders, categories, products, and images) are repository items. You build the product catalog by adding
new repository items and defining relationships between them.

The catalog item type represents different versions of your store for users to shop in. Categories are like
store departments, and products represent the individual products for sale. SKUs represent different
versions of the product, and are the actual items sold. For example, a product that represents a specific
shirt might have many associated SKUs, representing different combinations of size and color. Folders are
used for organizing items in the catalog.

Commerce also has media item types, which represent the JSP template pages used in the site, and
images, which can be displayed along with categories, products, or SKUs.

Viewing Catalogs
The ATG Control Center allows you to manage your product catalogs using a graphical user interface. You
can use the ACC to perform catalog management tasks such as creating and modifying folders, catalogs,
categories, and products, importing images, and searching for items. This chapter describes how to use
the ACC to manage your product catalog. For more information about the ATG Control Center, see the
online help.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 2

2 - A T G C o m m e r c e C a t a l o g A d m i n i s t r a t i o n

μ
Viewing Catalogs as a Hierarchy

The child categories and products of each catalog determine the catalog structure. For example, the child
categories of Baked Goods could be Cakes, Cookies, and Breads, and the child products of Breads could
be Rye, Whole Wheat, and White. A category can have both child categories and child products. For
example, Fruits might have Apples and Pears as child products, and Citrus Fruits as a child category.

Note that a category or product can be the child of more than one category. This makes the catalog more
flexible, but can complicate navigation. This is especially the case if the customer accesses a category or
product through a search facility rather than by traversing the catalog hierarchy; if the customer then
wants to move up the hierarchy, you must determine which parent category to move to. Therefore,
products and categories have a Parent category property that you can use to specify the default parent
category for each item.

For more information about the individual properties of categories and products, see the Using and
Extending the Product Catalog chapter in the ATG Commerce Programming Guide.

You can view your catalogs from the ATG Control Center. To access the product catalog:

1. From the ATG Control Center main navigation menu, select Catalog Management >
Catalogs.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 3

2 - A T G C o m m e r c e C a t a l o g A d m i n i s t r a t i o n

μ

Existing catalog folders are listed in the left-hand panel. Select a folder; existing
catalogs within that folder appear in the right-hand panel.

2. Click the catalog name (such as Tools) to view it.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 4

2 - A T G C o m m e r c e C a t a l o g A d m i n i s t r a t i o n

μ

Catalogs appear as tree structures in the left-hand panel. You can expand any item to see its child items
by clicking the plus sign (+).

When you select an item, the right-hand panel displays the names and current values of the selected
item’s properties. Depending on the item type you select, additional information may be available. For
example, products have a section for associated SKUs and one for cross-selling information, while
categories have only properties and associated images. The image that follows shows part of a product
properties panel.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 5

2 - A T G C o m m e r c e C a t a l o g A d m i n i s t r a t i o n

μ

Grayed-out properties are set automatically and are read-only. Also, the property names shown are their
display names. To see the name used in the repository for any property, move the cursor over the display
name; the property name appears as a tool tip. You must use the actual property name when referring to
the property in a JSP.

Viewing Catalogs as Lists

You can also access a nonhierarchical view of the product catalog.

1. From the ATG Control Center main navigation menu, select Catalog Management >
Catalog Elements.

2. Select the item type you want to view from the Items of Type drop-down box, then
click the List button. To add conditions to your query, click the diamond-shaped drop-
down box.

Creating Catalog Items
You can create the following catalog items using the ACC:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 6

2 - A T G C o m m e r c e C a t a l o g A d m i n i s t r a t i o n

μ
 folder—Contains any other type of item to form an organizational grouping. Folders

appear in the ACC, but do not affect how users interact with your catalog.

 catalog—Holds any number of other catalogs or categories; a catalog can be the child
of another catalog, or of a category.

 category—Can be either the child of one or more other categories or a root category.
A root category is a starting point in the navigational structure of the catalog.

 product—A navigational end-point in the catalog. However, customers actually
purchase the SKUs associated with the product, not the product itself. A product can
have several associated SKUs, representing different varieties, sizes, and colors.

Note: If you make changes to the product catalog on your staging server, run the
AncestorGeneratorService before copying your changes to the live version. See Running the Catalog
Maintenance System in the ATG Commerce Programming Guide.

Creating Catalog Folders

Catalog folders are an organizational tool provided in the ACC. They do not affect how customers interact
with your catalog.

1. From the ATG Control Center main navigation menu, select Catalog Management >
Catalogs.

2. Select the folder to which you want to add the new catalog folder.

3. Click the New Folder button.

4. Provide a name for the new folder.

5. Click OK.

Creating Catalogs

Catalogs can include other catalogs or categories. To add a catalog as a subcatalog to another catalog, see
the Adding Subcatalogs to Catalogs section of this guide.

To create a new catalog:

1. From the ATG Control Center main navigation menu, select Catalog Management >
Catalogs.

2. Select the folder to which you want to add the new catalog, or click the New Folder
button to add a new folder for your catalog.

3. Click the New Catalog button in the upper right corner of the ACC. The New Item
dialog box appears.

4. Enter a name for the new catalog, or click OK to accept the default name.

5. Click OK.

Creating Root Categories

To create a root category:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 7

2 - A T G C o m m e r c e C a t a l o g A d m i n i s t r a t i o n

μ
1. From the ATG Control Center main navigation menu, select Catalog Management >

Catalogs.

2. Select the folder in which the catalog to which you want to add a category exists.

3. Click the catalog to which you want to add a category, so the catalog name moves to
the left-hand panel.

4. Select the catalog, so the name appears highlighted.

5. To create a new category, click the New Category button. To add an existing category
to the current catalog as root, click Add Category.

6. If adding a new category, fill in the Name field (required) and any optional fields, then
click OK.

The category is automatically added to the rootCategories property of the catalog.

Creating Child Categories

To create a child category:

1. From the ATG Control Center main navigation menu, select Catalog Management >
Catalogs.

2. Select the folder in which the catalog to which you want to add a category exists.

3. Click the catalog to which you want to add a category, so the catalog name moves to
the left-hand panel.

4. Select the category to which you want to add the child category, so the name appears
highlighted.

5. To create a new category, click the New Category button. To add an existing category
to the current category, click Add Category.

6. If adding a new category, fill in the Name field (required) and any optional fields, then
click OK.

The category appears as a child category of the parent category in the catalog.

Creating Products

To create a child product:

1. From the ATG Control Center main navigation menu, select Catalog Management >
Catalogs.

2. Select the folder in which the catalog to which you want to add a product exists.

3. Click the catalog to which you want to add a product, so the catalog name moves to
the left-hand panel.

4. Select the category to which you want to add a product, so the name appears
highlighted.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 8

2 - A T G C o m m e r c e C a t a l o g A d m i n i s t r a t i o n

μ
5. To create a new product, click the New Product button. To add an existing product to

the current category, click Add Product.

6. If adding a new product, fill in the Name field (required) and any optional fields, then
click OK.

The product appears as a child product of the parent category in the catalog.

Creating SKUs

To create a new SKU for a product in a catalog:

1. From the ATG Control Center main navigation menu, select Catalog Management >
Catalogs.

2. Select the product in the catalog tree.

3. From the menu at the top of the window, select Skus.

4. Click the Add Sku button.

5. In the dialog box, select Sku from the Item Type menu.

6. In the dialog box, click New Item.

7. Fill in the Name field (required) and any optional fields.

8. Click OK.

Creating Configurable SKUs

While a regular SKU represents a single item, such as a size medium blue shirt, a configurable SKU
represents an object that is sold as a single item, but has variable components, such as a computer system
or a car. Configurable SKUs are created the same way as regular SKUs, but you must select Configurable
Sku from the Item Type drop-down menu in the New Item dialog box.

To create a configurable SKU:

1. Create an item of the type Configurable Sku. Example: Computer.

2. Create as many items of the type Configurable Property as you need. Configurable
properties represent an individual aspect of the configurable item, such as Hard drive
or RAM in our computer example.

To create a configurable property, go to Catalog Management > Catalog Elements.
Select Configurable Property from the Items of Type drop-down list, then click the
New Item button in the upper right.

3. Create as many items of the type Configurable Option as you need. Configurable
options represent the individual options for a configurable property, such as 10GB
SCSI hard drive from Company XYZ in our computer example.

Configurable options can be linked to an existing SKU. If linked to an existing SKU, the
price you set in the configurable option overrides the SKU price.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 9

2 - A T G C o m m e r c e C a t a l o g A d m i n i s t r a t i o n

μ
To create a configurable option, go to Catalog Management > Catalog Elements.
Select Configurable Option from the Items of Type drop-down list, then click the New
Item button in the upper right.

4. Go back to the configurable property you created and add the configurable options to
it.

5. Go back to the configurable SKU and add the configurable properties to it.

Creating SKU Bundles

SKU bundles are SKUs composed of several other SKUs. Bundles allow a group of items to be purchased as
a single item, although it is treated as multiple items in order fulfillment. They differ from configurable
SKUs in that the component SKUs of a bundle are always the same.

Creating a SKU bundle is a three-part process:

1. Create the individual SKUs that the SKU bundle is composed of.

2. Create SKU links from the SKUs. A SKU link is an item type that consists of an individual
SKU and a quantity.

3. Create a SKU whose Bundle links property consists of one or more SKU links.

For example, suppose you want to create a SKU bundle that consists of six #2 pencils and a pencil case:

1. Create a SKU that represents a #2 pencil, and create another SKU that represents a
pencil case.

2. Create a SKU link that represents six of the #2 pencil SKUs, and create another SKU link
that represents one of the pencil case SKUs.

3. Create a SKU bundle by creating a SKU that consists of these two SKU links.

Creating SKU Links

To create a SKU link:

1. From the ATG Control Center main navigation menu, select Catalog Management >
Catalog Elements.

2. Click the New Item button in the upper right. The New Item dialog box displays.

3. Select SKU Link from the Item Type drop-down menu.

4. Select the item field in the table and click the ... button. A dialog box opens for
selecting a SKU.

5. Click the List button to see a list of available SKUs. Select a SKU from the list and click
OK.

6. Fill in the displayName and quantity fields (required).

7. Fill in any of the optional fields you want and click OK.

Creating SKUs from SKU Links

Once you have created one or more SKU links, you can create a SKU that combines the links:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 0

2 - A T G C o m m e r c e C a t a l o g A d m i n i s t r a t i o n

μ
1. Create a SKU, as described in Creating SKUs.

2. Select the Bundle links field and click the ... button. A dialog box opens for specifying
SKU links.

3. Click Add. The New Item dialog box displays.

4. Click List to display a list of SKU links.

5. Select the SKU links from the list. You can select multiple SKU links from the list by
holding down the Ctrl key while selecting items.

6. Click OK to close the New Item dialog box, then click OK to close the Bundle links
window.

Adding Subcatalogs to Catalogs

You must create the subcatalog you want to include (see Creating Catalogs) before you can add it to
another catalog as a subcatalog.

To add a subcatalog to an existing catalog:

1. From the ATG Control Center main navigation menu, select Catalog Management >
Catalogs.

2. Select the folder in which the catalog to which you want to add a subcatalog exists.

3. Click the catalog to which you want to add a subcatalog, so the catalog name moves
to the left-hand panel and its properties appear in the right-hand panel.

4. Click the Add Catalog button to see a full list of the catalogs you can add.

5. Select the catalog you want to designate as a subcatalog of your main catalog.

6. Click OK.

Adding Catalogs to Categories

Categories can contain catalogs as well as products. To add a catalog to an existing category:

1. From the ATG Control Center main navigation menu, select Catalog Management >
Catalogs.

2. Select the category to which you want to add a catalog.

3. Click the Add Catalog button to see a full list of the catalogs you can add.

4. Select the catalog you want to add to the category.

5. Click OK.

Editing Catalog Items

When you create a catalog folder, catalog, category, product, or SKU, you can specify values for its
attributes in the New Item dialog box. After you create the item, you can modify these values.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 1

2 - A T G C o m m e r c e C a t a l o g A d m i n i s t r a t i o n

μ
Note: For some properties, you cannot enter the value directly. For example, some properties are Boolean
values, in which ATG Commerce provides a drop-down menu where you select either True or False. If the
property represents another repository item or is a collection of repository items, you cannot enter a value
in the field directly. Instead, click in the field, and then click the ... button to open a dialog box where you
can specify the item or items.

1. From the ATG Control Center main navigation menu, select Catalog Management >
Catalogs.

2. Select the item you want to edit in the catalog tree. If editing a SKU, select the product,
then select Skus from the menu at the top of the window.

3. Select Properties from the menu.

The ATG Control Center displays a table where you can edit the attribute values
directly.

4. Enter a value next to the property you want to edit.

5. After editing the catalog item, select File > Save.

Moving Items

To move a category or product from one location in the hierarchy to another, drag the item from its
current location in the catalog tree to the desired location.

1. From the ATG Control Center main navigation menu, select Catalog Management >
Catalogs.

2. Select the category or product in the catalog tree.

3. With the cursor positioned over the item, hold down the left mouse button.

4. Drag the item on top of the category you want to place it in.

5. Release the mouse button.

6. Select File > Save.

If you hold down the Ctrl key while dragging the item, the item becomes the child of both its original
parent category and the new category you drag it to. This operation does not create a new copy of the
item.

Duplicating Items

You can create a duplicate of an item which has the same property values as the original item, but which
is a completely separate repository item. To do this:

1. Right-click the item.

2. Select Duplicate from the pop-up menu.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 2

2 - A T G C o m m e r c e C a t a l o g A d m i n i s t r a t i o n

μ
If you duplicate a category, it appears as a child category of the original category. Products appear at the
same level in the hierarchy as the original item.

The new item has the same property values as the original, including the name. Although the two items
have identical properties, they are distinct repository items that are stored separately in the database. To
minimize confusion, immediately rename the new item.

Deleting Items

To delete an item from the repository:

1. From the ATG Control Center main navigation menu, select Catalog Management >
Catalogs.

2. Right-click the item in the catalog tree.

3. Select Delete from the pop-up menu. A confirmation dialog box appears.

4. Click Yes to confirm the deletion.

To remove an item from its place in the catalog structure without removing it from the repository:

1. From the ATG Control Center main navigation menu, select Catalog Management >
Catalogs.

2. Right-click the item in the catalog tree.

3. Select Delete Link from the pop-up menu.

Adding Templates and Images to the Catalog
Templates and images are media items used by your commerce site. They are stored as repository items
of type Media. A template is a JSP page used to display catalog items. An image is a graphic file used to
illustrate a category, product, or SKU.

Once you have added an image or template to the catalog, you can specify it as the value of a property of
one or more categories, products, or SKUs. For example, you could add a template for displaying certain
products, and set the Template property of each of those products to the name of that template.

The ATG Control Center uses folders to store and organize templates and images. Folders are not part of
the actual commerce site.

Creating Image and Template Folders

To create a new folder for storing images and templates:

1. From the ATG Control Center main navigation menu, select Catalog Management >
Catalog Elements.

2. Beside the List Items of Type selector, choose the folder type.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 3

2 - A T G C o m m e r c e C a t a l o g A d m i n i s t r a t i o n

μ
3. Click the New Item button in the upper right. The New Folder dialog box displays.

4. Fill in the name field. If you want the new folder to be the child of an existing folder,
use the parentFolder field to specify the parent folder; otherwise leave this field
empty.

5. Fill optional fields as needed and click OK.

Adding Images

Images are represented by catalog items of type Media. You can either create an item of type Media -
Internal Binary by importing the actual image into the database, or create an item of type Media - External
by referring to the image file’s URL.

To import an image into the database:

1. From the ATG Control Center main navigation menu, select Catalog Management >
Catalog Elements.

2. Click the New Item button in the upper right. The New Item dialog box displays.

3. Select Media - Internal Binary from the Item Type drop-down menu.

4. Click the ... button. A file selection box opens.

5. Navigate to the image file you want to import and then click OK. The image displays at
the bottom of the dialog box.

6. Fill in the name field, and use the parentFolder field to specify the folder in which to
store the item (required).

Note: The name you specify is the name for the media-internal-binary repository item
and is distinct from the name of the image file you import.

7. Fill in any of the optional fields you want and click OK.

To create a reference to an external image:

1. From the ATG Control Center main navigation menu, select Catalog Management >
Catalog Elements.

2. Click the New Item button in the upper right. The New Item dialog box displays.

3. Select Media - External from the Item type drop-down menu.

4. Fill in the name and URL fields, and use the parentFolder field to specify the folder
to store the item in (required).

Note: The name you specify is the name for the media-external repository item, and is
distinct from the name of the image file referenced by the URL.

5. Fill in any of the optional fields you want and click OK.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 4

2 - A T G C o m m e r c e C a t a l o g A d m i n i s t r a t i o n

μ
Adding Templates

Like images, templates are represented by catalog items of type Media. You can either create an item of
type Media -Internal Text by storing the actual template text in the database, or create an item of type
Media - External by referring to the template file’s URL.

To store a template in the database:

1. From the ATG Control Center main navigation menu, select Catalog Management >
Catalog Elements.

2. Click the New Item button in the upper right. The New Item dialog box displays.

3. Select Media - Internal Text from the Item Type drop-down menu.

4. Fill in the name field, and use the parentFolder field to specify the folder to store the
item in (required).

5. Enter the actual template text in the large text box at the bottom of the dialog box. For
example, you could enter or paste in a JSP page.

6. Fill in any of the optional fields you want and click OK.

To create a reference to an external template:

1. From the ATG Control Center main navigation menu, select Catalog Management >
Catalog Elements.

2. Click the New Item button in the upper right. The New Item dialog box displays.

3. Select Media - External from the Item type drop-down menu.

4. Fill in the name and URL fields, and use the parentFolder field to specify the folder
to store the item in (required).

Note that the name you specify is the name for the media-external repository item,
and is distinct from the name of the JSP file referenced by the URL.

5. Fill in any of the optional fields you want and click OK.

Associating Images and Templates with Catalog Items

Once you have added your templates and images to the ACC, you can associate them with categories,
products, or SKUs. The example that follows shows how to add a small image to a category or product.

To specify a small image in a catalog:

1. From the ATG Control Center main navigation menu, select Catalog Management >
Catalogs.

2. Select the category or product in the catalog tree.

3. From the menu, select Images.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 5

2 - A T G C o m m e r c e C a t a l o g A d m i n i s t r a t i o n

μ

4. From the drop-down menu, select Small.

5. Click the Add Image button. The New Item dialog box appears.

6. From the Item Type drop-down menu, select Media - Internal Binary.

7. Click the List button, and then select an image from the list. Click OK.

8. Select File > Save.

Searching for Items in the ACC
The catalog for a large commerce site may have thousands of items. If you are administering a large
catalog, you may find it difficult to find specific items, or items that meet a specific set of criteria.

To help you locate items in the catalog, the ATG Control Center includes a powerful search facility that
you can use to query the catalog. For example, you can construct a query that finds all products whose
name includes the word “shoe.”

To access this search facility, select the Catalog Management > Catalog Elements window, and select the
item type from the Items of Type drop-down menu. Notice the diamond to the right of the item type. For
example, if you select Product, the screen should look like this:

If you click the List button now, a list of all products in the catalog displays. If you want to restrict the set
of products displayed, click the diamond to display this drop-down menu:

The options on this menu help you construct complex queries. When you select an option from the menu,
additional menus appear on the right for specifying the search criteria. For example, in the following
query, each word to the right of “Product” is selected from a separate drop-down menu:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 6

2 - A T G C o m m e r c e C a t a l o g A d m i n i s t r a t i o n

μ

The choices you make on the left determine the options available as you move to the right. Even the
period after “shoe” is a drop-down menu that allows you to specify additional criteria. For example, you
could construct a query to find all products whose name contains “shoe” and whose creation date is
before August 17, 2009.

Once you have constructed your query, click the List button, and a list of the items that match the query is
displayed.

Preventing Version Conflict
When you edit items in the product catalog, it is possible for another administrator to edit items at the
same time; however, the ACC prevents multiple administrators from overwriting each other’s changes.

Note: The system described here is different from the versioning feature in ATG Content Administration
and ATG Merchandising. For information on that feature, see the ATG Content Administration
Programming Guide.

The ACC detects when changes are submitted that are not synchronized with the current values in the
database. The catalog repository maintains a version property for each item. The value of that property
is an integer that ATG Commerce increments automatically each time the item is modified.

For example, suppose you create a new item. The version property is 1. The next day, you open this item
in the ACC and begin modifying its properties. The changes you make exist only in memory until you save
the item. While you are editing the item, administrator Bob also opens the item. Because you have not
saved your changes yet, the version Bob opens is still version 1.

You finish making your changes, and save the item. ATG Commerce sets the value of the version property
to 2.

When Bob tries to save his changes, ATG Commerce detects that the current version in the database is not
the same version that Bob has been modifying, and rejects his changes. Version 2 (which includes your
changes) is then loaded into Bob’s editor.

Note that this system does not guarantee that the first person to open the item will be able to save his or
her changes. If Bob had saved his changes before you tried to, your changes would have been rejected.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 7

3 - I n v e n t o r y a n d F u l f i l l m e n t A d m i n i s t r a t i o n

μ
3 Inventory and Fulfillment

Administration

This chapter includes information on the following ATG Commerce Administration topics:

ATG Commerce Inventory Administration
Describes how to use the Inventory Administration page to view and manage
inventory or send notifications of changes to inventory.

ATG Commerce Fulfillment Administration
Describes how to use the Fulfillment Administration page to manage and process
shipping groups.

ATG Commerce Inventory Administration
Use the Inventory Administration page to view and manage inventory or to send notifications of changes
to inventory.

This section contains information on the following Inventory Administration topics:

 Accessing the Inventory Administration Page

 Viewing the Inventory Display

 Updating the Inventory

 Sending Inventory Update Notifications

Accessing the Inventory Administration Page

Follow these steps to access the Inventory administration page.

Assemble an application that includes the ATG platform, ATG Commerce, and the ATG Dynamo Server
Admin. For more information, see the ATG Programming Guide. Then, deploy the application.

1. Access the ATG Commerce Administration Page by pointing your browser to the URL
appropriate for your application server. For example, JBoss users use this URL by
default:

http://hostname:8080/dyn/admin/atg/commerce/admin/

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 8

3 - I n v e n t o r y a n d F u l f i l l m e n t A d m i n i s t r a t i o n

μ
See the ATG Installation and Configuration Guide for default port information for other application servers.

1. Click the Inventory Administration link.

The Inventory administration page opens.

Viewing the Inventory Display

The Inventory Administration page displays the current inventory in a table. The table lists ten items at a
time in alphabetical order. Navigate through the listing by clicking on the Next and Previous links.

You can filter the list by the item name to decrease the number of items in the table. Enter letters into the
two fields at the top of the screen to narrow your item search. For example, if you want to view all items
with names starting with the letters R and S, enter R in the first field and S in the second field, then click
the View button. The table displays items that start with R and S, listing 10 items at a time.

Note: Inventory filtering is case-sensitive. Capital and lowercase must match with the display name entry
in the product catalog.

Updating the Inventory

You can use the Inventory administration page to update the inventory configuration of the available
commerce items. For more information on these values, see the Inventory Framework chapter in the ATG
Commerce Programming Guide.

Follow these steps to update the inventory configuration:

1. Access the Inventory administration page.

2. Click the Update Inventory link at the top of the screen.

3. Enter the SKU ID of the item you want to update in the Sku id field.

4. Enter the new value for the property you want to update in the New Value field.

Select an Inventory Manager property from the first column. For more information on
the properties of the Inventory Manager, see the Inventory Framework chapter in the
ATG Commerce Programming Guide.

5. Select one of the following from the second column:

 set: sets the property to the value specified in the in the value field

 increases: increases the current value by the value specified in the value field

 decrease: decreases the current value by the value specified in the value field

6. Click the Update button.

The selected inventory property is set to the specified value.

Sending Inventory Update Notifications

You can use the Inventory Administration page to send your fulfillment system notifications of updated
inventory items. Follow these steps to make the notification:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 9

3 - I n v e n t o r y a n d F u l f i l l m e n t A d m i n i s t r a t i o n

μ
1. Access the Inventory administration page.

2. Click the Inventory Update Notification link at the top of the page.

3. Enter the SKU ID of each item with new inventory available. Separate multiple SKU IDs
with spaces.

4. Click the Notify button.

5. A Java Message Service (JMS) message is sent as notification of the Inventory update.

ATG Commerce Fulfillment Administration
Use the Fulfillment Administration page to manage and process shipping groups. This section contains
information on the following Fulfillment Administration topics:

 Accessing the Fulfillment Administration Page

 Notifying Fulfillment of Order Shipment

 Reprocessing Shipping Groups

 Printing an Order

Accessing the Fulfillment Administration Page

Follow these steps to access the Fulfillment Administration page.

1. Assemble and deploy an application that includes modules for ATG platform, ATG
Commerce, fulfillment, and Dynamo Administration UI. For more information on
assembling applications, see the ATG Programming Guide.

2. Access the ATG Commerce Administration Page by pointing your browser to the URL
appropriate for your application server. For example, JBoss users use this URL by
default:

http://hostname:8080/dyn/admin/atg/commerce/admin/

See the ATG Installation and Configuration Guide for the default URL.

3. Click the Fulfillment Administration link.

The Fulfillment Administration page opens.

Notifying Fulfillment of Order Shipment

On the Fulfillment Administration page, you can view all the shipping groups in the repository that are
ready to be shipped. The Shippable Groups section at the top of the page includes a link that retrieves all
shipping groups that are ready to be shipped. After viewing the list, you can also use this screen to notify
fulfillment that a shipping group has been shipped.

Follow these steps to view a list of shipping groups and notify fulfillment that the shipping groups have
been shipped:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 0

3 - I n v e n t o r y a n d F u l f i l l m e n t A d m i n i s t r a t i o n

μ
1. Access the Fulfillment Administration page. For more information, see the Accessing

the Fulfillment Administration Page section.

2. Click the “Click here” link in sentence “Click here to get a list of all the shipping groups
in the repository that are ready to be shipped.”

ATG Commerce displays a list of all shipping groups with a PENDING_SHIPMENT
status.

3. Enter the Order ID of the Order that contains the shipping groups.

4. Enter shipping group IDs of the shipping groups that are ready to be shipped.

5. Click the Ship button.

A JMS message is sent notifying the fulfillment system the specified groups were
shipped.

Reprocessing Shipping Groups

Use this section to send a ShippingGroupUpdate message that notifies the fulfillment system that the
given shipping groups have been changed and need to be reprocessed.

1. Enter the Order ID of the Order that contains the shipping groups.

2. Enter shipping group IDs of the shipping groups that are ready to be shipped.

3. Click the Send button.

A JMS message is sent notifying the fulfillment system the specified groups have been
changed and need to be reprocessed.

Printing an Order

The Print an Order section of the Fulfillment Administration page allows you to print order information.
This feature is useful if you need a paper record of an order’s shipping groups and changes.

1. Enter the Order ID of the Order that contains the shipping groups.

2. Click the Print Order button.

The Order is displayed in your browser window.

3. Print the order from your browser as you normally print from your browser.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 1

4 - M a n a g i n g P r i c e L i s t s

μ
4 Managing Price Lists

Price Lists allow you to target a specific set of prices to a specific group of customers. Price lists are
managed through a single interface in the ACC. For example, price lists can be used to implement
business to business pricing where each customer can have its own unique pricing for products based on
contracts, RFQ and pre-negotiated prices.

The following price list tasks can be performed by business users using the ACC.

Viewing Existing Price Lists

Creating a New Price List Folder

Creating a New Price List

Changing Prices in an Existing Price List

Copying Prices Between Price Lists

Setting Bulk and Tiered Pricing

Deleting a Price List

Assigning Price Lists to Users

Viewing Existing Price Lists
Follow these steps to view existing price lists in the ACC.

1. Select Pricing from the main ACC navigation bar.

2. Select Price Lists from the Pricing choices.

3. Select a folder from the Price List folders list and click Info on the right side of the
screen. A list of the price lists in the folder displays in the main section of the ACC.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 2

4 - M a n a g i n g P r i c e L i s t s

μ

Note: You can change the Name or the locale of a price list from this screen if
necessary. You can only change the locale of a base price list. You cannot change the
locale of a list that has a parent list. If you change the locale of a parent, the locales of
the children automatically change. You must click Refresh to see these changes.

4. Click Prices to view a list of the prices in the list.

5. Click the drop-down menu to change the search to “Find Items of type SKU.”

6. Click Find. A list of all SKUs in the price list and their associated prices displays.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 3

4 - M a n a g i n g P r i c e L i s t s

μ
 Derived
 Price

Derived Price
overridden
locally

Creating a New Price List Folder
Create a new price list folder by selecting a location for the new folder in the Price List Folder tree and
click the New Folder button in the toolbar.

Note: If you want to create a folder at the root level, you must first remove focus from the folder tree by
holding down the Ctrl key and clicking the folder that is currently selected.

Creating a New Price List
Follow these steps to create a new price list in the ACC

1. Select Pricing from the main ACC navigation bar.

2. Select Price Lists from the Pricing choices.

3. Select the folder in which to create the new price list from the Price List folders list or
create a new folder. For more information on creating a new folder, see the Creating a
New Price List Folder section.

4. Click the New Price List button. The New Item box displays:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 4

4 - M a n a g i n g P r i c e L i s t s

μ

5. Enter a name and description for the price list.

6. Select a Base price list (optional). If specified, items in the price list will take their prices
from this list by default.

Note: If you are using price lists only, all products must be represented in the price list.
If you are using a combination of price lists and SKU-based pricing, if there is no price
list price, the catalog price is used as the default. See Using Price Lists in Combination
with SKU-Based Pricing in the ATG Commerce Programming Guide for information on
using this feature.

7. Change the locale, if necessary. Change the locale by clicking on the locale field and
selecting the locale from the drop-down menu.

8. Click OK. The new price list is in the selected folder.

Changing Prices in an Existing Price List
Follow these steps to change prices in an existing price list. This section describes how to directly edit a
price in a price list. You can also change a price to use volume pricing. See the Setting Volume Pricing
section for more information.

1. Open the existing price list and view prices of SKUs in the list. See Viewing Existing
Price Lists for more information.

2. Double click directly on the price you want to change. If multiple price lists are visible,
make sure you select from the appropriate list. You can also set volume pricing. For
more information, see the Setting Volume Pricing section.

3. Enter the new price in the field and press Enter. The new price appears in the list.

Note: Prices must be entered in the convention of the locale assigned to the price list.
For example, if the locale is de_DE_Euro for European currency, then a price must be
entered with a comma, such as 2,79.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 5

4 - M a n a g i n g P r i c e L i s t s

μ
Copying Prices Between Price Lists

Follow these steps to copy prices between price lists.

Note: You can only copy prices between price lists with the same locale.

1. Highlight price field(s) you want to copy.

2. Right-click and select Copy from the menu.

3. Highlight the field(s) into which to paste.

4. Right-click and select Paste from the menu. The copied prices are pasted into the
selected field.

Note: You can only paste into fields that are in the same configuration as the fields
from which you copied the prices or multiples of the same field configuration. For
example, if you copy three fields in from a column, you can only paste these fields by
selecting three other fields in a column or six other fields in a column. The Paste option
will not appear on the right-click menu if you do not select a matching field
configuration.

Setting Bulk and Tiered Pricing
Price lists can be used to implement many pricing models. You can use volume pricing to set the price of
a product based on the number of items purchased. Bulk and Tiered pricing are two styles of volume
pricing.

Bulk pricing calculates the price of a product based on the total quantity ordered. In the following
example, hammers are priced at $20 each when you buy 1 to 10 hammers, $17 each when you buy 11 to
20 hammers, and $15 each when you buy 21 or more hammers.

Number of hammers purchased Bulk Price per item Bulk Price Total

7 hammers 7 hammers @ $20 each $140

14 hammers 14 hammers @ $17 each $238

23 hammers 23 hammers @ $15 each $345

Tiered pricing calculates the price of a product using fixed quantity or weight at different pricing levels. In
the following example, hammers are priced at $20 for the first 10 purchased, $17 each for the next 10
purchased, and $15 each for any additional hammers.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 6

4 - M a n a g i n g P r i c e L i s t s

μ
Number of hammers purchased Tiered Price per item Tiered Price Total

7 hammers 7 hammers @ $20 each $140

15 hammers 10 hammers @ $20 each
5 hammers @ $17 each

$285

23 hammers 10 hammers @ $20 each
10 hammers @ $17 each
3 hammers @ $15 each

$415

Viewing Volume Pricing

Follow these steps to use the ACC to view the volume pricing set for a SKU in a price list.

1. View the SKU pricing for your available price lists. For more information, see the
Viewing Existing Price Lists section.

2. Select a price field that is set for Volume Pricing.

3. Right-click the field and select View Volume Price from the menu. The Volume Pricing
box opens.

4. Click Dismiss to close the Volume Pricing box. See the Setting Volume Pricing section
for information on how to edit the information in this box.

Setting Volume Pricing

Follow these steps to use the ACC to set or edit the volume price of a SKU in a price list.

1. View the SKU pricing for your available price lists. For more information, see the
Viewing Existing Price Lists in this chapter.

2. Select a price field in a price list.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 7

4 - M a n a g i n g P r i c e L i s t s

μ
3. Right-click the field and select Set/Edit Volume Price from the menu. The Volume

Pricing box opens.

4. Select Bulk or Tiered from the Pricing Method area at the bottom of the box.

5. Enter the quantities and prices of the pricing scheme in the columns provided. Use the
Add and Remove buttons for adding and removing rows.

6. Click OK.

Deleting a Price List
Follow these steps to delete a price list.

1. View the list of available price list by accessing price lists and clicking on the Info tab
on the right side of the screen. For more information, see Viewing Existing Price Lists.

2. Select the row that lists the price list you want to delete.

3. Select File > Delete Price List. A prompt displays asking you to confirm to action.

4. Click Yes to delete the price list.

Assigning Price Lists to Users
Follow these steps to assign price list of a user using the ACC.

1. Select People and Organization from the main ACC navigation bar.

2. Select Profile Repository from the People and Organizations choices.

3. Select “Item of type User” and click List to view a list of all users.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 8

4 - M a n a g i n g P r i c e L i s t s

μ
4. Select a user from the list. The user’s information displays in the main section of the

screen.

5. Find the Commerce- Contracts section, and click the “…” button beside the Price List
property.

6. In the Price List dialog box, click List to display all price lists.

7. Click the name of a price list, then click OK.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 9

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
5 Creating and Maintaining

Promotions

As an optional part of the process of creating and maintaining a commerce-based Web site, you can set
up promotions that you use periodically to offer discounts on specific products or groups of products. For
example, you might decide to promote a range of products for Mother’s Day by highlighting them with
an image on your site’s “Welcome!” page and offering a 10 percent discount if customers order them by a
specific date. Alternatively, you might want to offer a discount to encourage visitors to register at your
sites – perhaps you offer two products for the price of one to anyone who registers today.

The following are some examples of the types of discounts you can set up through promotions in ATG
Commerce:

 A specific amount off a particular product

 A specific amount off a whole order

 A percentage off a particular product

 A percentage off a whole order

 A specific amount or percentage off a product based on its attributes (for example, its
color)

 Free or discounted shipping

This chapter includes the following sections:

How Promotions Work

Creating Promotions

Setting up Upselling Incentives

Disabling Promotions

Displaying Promotion Media

Setting Up Coupon Promotions

Delivering Promotions via a URL

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

4 0

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
How Promotions Work

You can set up promotions in the Pricing > Promotions area of the ATG Control Center. Promotions
specify options that define the circumstances under which site visitors will be offered promotions. For
example, you can specify the type of discount calculation to use for each promotion (fixed amount off the
regular price or a percentage off the regular price) and the period of time for which it applies. You can
also specify other options such as the number of times a visitor can use the same discount.

After setting up a promotion, you must set up a scenario that determines the visitors who qualify for the
promotion. (For more information, see the Creating Scenarios chapter in the ATG Personalization Guide for
Business Users.) The scenario tells the system how to determine the people that qualify, and then it marks
their visitor profiles accordingly by adding the promotion to their activePromotions profile attribute.
You can also set up promotions that are provided to all customers automatically– for these, you do not
need to set up a scenario.

When a customer visits a page that contains a product and its associated price, or performs some other
action that involves requesting a price from the system, ATG Commerce checks his or her visitor profile
and looks at the activePromotions attribute to see whether the customer currently qualifies to receive
any of the promotions you have set up. It also checks to see whether you have set up any automatic
promotions. ATG Commerce then uses those discounts to calculate the price of the product for the
customer, and it adjusts the price accordingly.

You can inform site visitors about promotions in several ways. For example, you could set up a discount
for a product without advertising it in any special way; the visitor simply sees the adjusted price when he
or she displays the checkout page. You could include some text that describes the offer on, for example,
the “Welcome!” page and make that text a link to the regular catalog page for the product. You could use
the GetApplicablePromotions droplet to identify promotions that apply to particular items, and
display this information on the product page. Or you could send an e-mail that describes the promotion,
perhaps including a discount coupon code in the message.

Creating Promotions
The process of setting up a promotion includes the following steps:

1. The page developer creates an HTML file that contains the text and graphics, if any,
that you want to use to advertise the promotion on your Web sites. (Text and graphics
for a promotion are called the “promotion media.”)

2. You then do the following in the ATG Control Center:

 Add the new promotion to the Promotions repository.

When you add the new promotion, you also define its properties by specifying
a range of information, such as the type of discount to offer, the amount of the
discount, and the location of the file that contains the media for it. See Adding a
New Promotion.

 Create a discount rule for the promotion.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

4 1

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
As part of adding the new promotion, you create the discount rule that defines
the product or products associated with the promotion and the circumstances
under which it is applied, for example, “If a visitor buys any mountain bike, offer
the specified discount on helmets”. See Creating a Discount Rule.

 Create and enable a scenario that defines the people to whom you want the
promotion to apply. See Specifying the People Who Receive the Promotion.

Adding a New Promotion

Promotions are stored in the Promotions repository, which is one of the default ATG Commerce
repositories. When you create a new promotion, you must add it to the Promotions repository by doing
the following:

1. Select Pricing from the main ATG Control Center (ACC) menu.

2. Select Promotions from the submenu.

The Promotions screen is displayed. You can click the List button to display all existing
promotions. You can also narrow the list of displayed promotions by using the Item
Type drop-down list to select a specific type of promotion to list. For example, you can
list all the Item Discount promotions or, to narrow the list even further, only the Item
Discount – Percent Off promotions.

Note that the type of promotions listed on the Promotions screen directly affects the
type of promotion that you can create using the ACC menu commands and buttons.
For example, if only the Item Discount –Percent Off promotions are listed, and you
select File > New Item from the menu, you can only create a promotion of the same
type. In contrast, if promotions of all types are listed on the screen, and you select File
> New Item from the menu, you can create a promotion of any type.

3. Select File > New Item. The New Item dialog box appears:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

4 2

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ

4. From the Item Type drop-down list, select the type of promotion you want to create.
Default choices are as follows:

Type of promotion Use for the following type of discount

Item discount – Amount off A specific amount off the regular price of a product. For
example, you could offer any UltraLight T-Bike for $100 off the
regular price.

Item discount – Fixed price A specific product for a fixed price. For example, you could offer
any UltraLight T-Bike for $500. Another example would be a
“buy one item, get a special price on another” discount; for
example you could offer a price of $5 for any helmet to any
customer who buys a bike.

Item discount – Percent off A specific percentage off the regular price of a product. For
example, you could offer any UltraLight T-Bike for 10% off the
regular price.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

4 3

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
Type of promotion Use for the following type of discount

Order discount – Amount off A specific amount off the total order. For example, you could
offer a $50 coupon (“Use this coupon by August 31st and get $50
dollars off your total order.”). Another example would be a
discount of $20 on any order over $100.

Order discount – Fixed price The customer pays a fixed price for his or her order. For
example, you could offer any product for $50 only.

Order discount – Percent off A specific percentage off the total order. For example, you could
offer a 10% discount off the total cost of an order.

Shipping discount – Amount off A specific amount off the price of shipping. For example, you
could offer $5 off the regular shipping charges for any order
over $200.

Shipping discount – Fixed price Shipping for a specific amount. For example, you could offer
free shipping to customers who buy any bike today.

Shipping discount – Percent off A specific percentage off the price of shipping. For example, you
could offer a 50% discount on your regular shipping charges to
anyone who buys any three items.

The options described above are provided with the system. However, the application
developers working on your Web sites can add others if needed. For information on
how to do this, see the Creating Promotions section of the Using and Extending Pricing
Services chapter in the ATG Commerce Programming Guide.

5. After you choose the type of promotion you want to add, the system displays a form at
the bottom of the dialog box. Use it to specify the properties for this new promotion.

The following table describes the properties:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

4 4

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
Property Purpose

Automatically apply to all orders Use this property to identify the promotion as an “automatic
promotion.” Automatic promotions are given to all visitors
whereas non-automatic promotions are given to a restricted
grouping of visitors who meet the criteria specified by additional
promotion property values.

If you set this property to true, all visitors who meet the criteria
in the promotion’s discount rule (if specified) qualify for the
promotion. That means the promotion is offered an unlimited
number of times, to all visitors (including anonymous visitors),
for use on an unlimited number of orders, for as long as the
promotion is enabled.

If you set this property to false, you can specify values to the
following properties in order to restrict who will receive the
promotion:

- Give to a customer more than once
- Give to anonymous customers
- Number of uses allowed per customer
- Usage period
- Redeemable for
- Usage start date
- Usage end date

Also, if you set this property to false, you must create a
scenario that offers the promotion to the appropriate visitors.
For more information on how to define who qualifies for the
promotion, see Specifying the People Who Receive the
Promotion.

Closeness qualifiers A list of products that can be used as part of closeness qualifier
messaging. For example, if you want to promote a line of
luggage, you may add them to the Closeness qualifier, then use
them in product pages, emails, or other communications when a
customer is close to qualifying for a promotion. See Setting up
Upselling Incentives

Condition and offer This field allows you to set up the discount rule that controls the
circumstances under which the system gives the promotion to a
visitor (for example, a specific product to which the discount is
applied or the number of items the customer must buy to
receive the discount). For information on how to use this field,
see Creating a Discount Rule.

Creation date The time and date that you added this new promotion to the
Promotions repository. The system fills in this field automatically.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

4 5

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
Property Purpose

Description Type a short display name for this promotion. The system can
use this name to identify the promotion to customers on, for
example, a checkout page or order form.

Discount price/amount/
percentage

Specify the amount of the discount. The type of value you enter
depends on the promotion; for example, for a discount in which
you are offering a percentage of the usual price as the reduction,
you specify the percentage here.

Discount type The item type for this promotion. The value is the type of new
promotion that you chose to create in step 4 above. The system
fills in this field automatically.

Distribute starting Specify the date and time you want to start displaying this
promotion on your sites.

Contrast this property with the Usage Start Date property below.

Distribute through Specify the date and time you want to stop displaying this
promotion on your sites.

Contrast this property with the Usage End Date property below.

Enabled Specify True when you are ready to activate this promotion. If
you specify True, the promotion does not start displaying on
your site until the Distribute Starting date and time, and it stops
displaying on your sites on the Distribute Through date and
time.

If you specify False, the promotion never takes effect
regardless of the Distribute Starting and Distribute Through
dates and times.

Enable promotion upsells If true, the Closeness qualifiers you specify can be used as part of
promotion upsells.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

4 6

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
Property Purpose

Give to a customer more than
once

Tells the system whether to deliver this promotion (for example,
by displaying it on a page) to each visitor only once. If you
specify False, the system delivers the promotion only once. If
you specify True, the system delivers the promotion every time
the site visitor performs an action that qualifies him or her to
receive it -- for example, he or she visits the page on which you
have displayed the promotion.

Note 1: If you specify True, then a visitor may have multiple
copies of the promotion. Consequently, a single order may be
discounted by multiple copies of the promotion.

Note 2: The system ignores this property if the Automatically
Apply to All Orders property is set to True.

Contrast the use of this property with the Max Uses Per
Customer property.

Give to anonymous customers Tells the system whether to apply this discount to only visitors
who have registered or to all visitors.

If this property is False and the Automatically Apply to All
Orders property is False, then only registered visitors who
qualify can use the promotion. If this property is True and the
Automatically Apply to All Orders property is False, then
anonymous visitors and registered visitors who qualify can use
the promotion.

Note: The system ignores this property if the Automatically
Apply to All Orders property is set to True.

Max uses per customer Determines the number of orders for a given customer to which
the promotion can be applied. If you specify 1, for example, the
customer can use the promotion on only one order. If you
specify infinite, the customer can use the promotion on an
unlimited number of orders during the period for which the
promotion is usable.

By default, the values you can choose for this property are
infinite, 1, 2, 3, 4, 5, 10, 25, 50, and 100. However, your
application developers can alter these choices to suit the needs
of your Web sites.

Note 1: A promotion can sometimes discount a single order
multiple times. This is still considered one “use.” For shipping
promotions only, you can prevent the promotion from
discounting a single order multiple times by setting the One Use
Per Order property to True. (See below.)

Note 2: The system ignores this property if the Automatically
Apply to All Orders property is set to True.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

4 7

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
Property Purpose

Media Specify the presentation media (for example, text or an image)
you want to associate with this promotion. The associated
Distribute starting and Distribute through fields allow you to set
date limits on media usage.

One use per order A property used for shipping promotions only. It determines
whether a shipping promotion can discount a single order
multiple times. If you specify True, the system permits the
shipping promotion to be applied to an order only once. If you
specify False, the system permits the shipping promotion to be
applied to an order for the number of times for which it meets
the criteria of the discount rule.

Parent folder Specify a parent folder for the promotion, if desired.

Priority If a visitor qualifies for more than one promotion, the system
applies them cumulatively, calculating the new price for the
order by combining the different discounts that the promotions
contain. The order in which the system combines the discounts
is vital any time more than one promotion can be applied. For
example, you give two discounts to the same customer, one
(Promotion A) offering $10 off any product and another
(Promotion B) offering 50% off any helmet. Suppose the
customer orders a helmet that usually costs $30. If the system
applies the promotions in the order A-B, the final price of the
helmet is $10. If the order is B-A, the final price is $5.

Use this property to define the order in which the discounts are
applied. Enter 1 to have the system calculate this discount first, 2
for second, and so on.

If you give the same number to more than one promotion, the
system calculates randomly the discounts for those promotions
but preserves any order between those and other promotions
with different numbers.

Note: To use this property, you must turn off the
filterForTargetDiscountedByAnyDiscountId property in
/atg/commerce/pricing/QualifierService. This property
filters out items that have already received a discount,
preventing them from being discounted again, and must be
false in order for combined discounts to work.

Promotion name Specify a name that you can use to identify this promotion
elsewhere in the ATG Control Center (for example, in the Give
Promotions element in scenarios).

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

4 8

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
Property Purpose

Redeemable for Used in conjunction with the Usage Period property when its
value is “Period following receipt.”

Specify the number of minutes for which this promotion is valid.
The start date and time of a promotion of this type is set when
the visitor receives the promotion; that is, the promotion is
added to the list of promotions in the visitor’s
activePromotions attribute in his or her profile. The end date
and time for the promotion is then determined by the start
date/time and the number of minutes you specify in this
property.

Note: The system ignores this property if the Automatically
Apply to All Orders property is set to True.

Sites If you are using ATG’s multisite feature, select sites on which the
promotion can be used. If nothing is specified, the promotion is
valid on all sites.

Site groups Select site groups on which the promotion can be used. Note
that if you select both a site group and a site within that group,
the site does not act as a restriction; all sites in that group are
eligible for the promotion.

Usage period Defines the duration of time for which this discount or coupon is
valid.

You can specify a duration of time that follows the visitor’s
receipt of the promotion; in this case, select “Period following
receipt” as the value. Or, you can specify a duration of time with
a fixed start date and end date; in this case, select “Fixed dates”
as the value.

Note: The system ignores this property if the promotion is
automatic as indicated by the Automatically Apply to All Orders
property. Automatic promotions are usable for the duration of
the distribution period.

Usage start date Used in conjunction with the Usage Period property when its
value is “Fixed dates.”

Defines the beginning of the period for which this discount or
coupon is valid. Specify the date and time that visitors can either
start purchasing a product with this discount or start using this
coupon.

Note: The system ignores this property if the Automatically
Apply to All Orders property is set to True.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

4 9

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
Property Purpose

Usage end date Used in conjunction with the Usage Period property when its
value is “Fixed dates.”

Defines the end of the period for which this discount or coupon
is valid. Specify the last date and time that visitors can either
purchase a product with this discount or use this coupon.

Note: The system ignores this property if the Automatically
Apply to All Orders property is set to True.

Version The system uses this property to protect against data corruption
that might be caused if two ATG Control Center users attempt to
edit this repository item at the same time. The system updates
the value automatically.

The most important properties of a promotion are the Discount
price/amount/percentage and the Discount rule. These properties combine to define
the actual amount of the discount and the products to which it applies. See the next
section for more information on how these properties work together.

Note: Several factors can affect whether a new promotion is available to a user at the
desired time or at all. These factors include when the new promotion was added,
when the user’s session was created, and the schedule for updating automatic
promotions. Your developers can take steps to ensure that site visitors receive a
promotion at the time you intend. For more information, refer to the ATG Commerce
Programming Guide.

6. When you are finished defining the properties of the promotion, click the OK button to
save the promotion.

Creating a Discount Rule

As part of the process of defining the properties of a new promotion, you create a discount rule, which
specifies the circumstances under which to apply the promotion.

To create a discount rule, click the empty box in the Condition and offer property for this promotion in
order to activate the box; then click the corresponding button that displays.

When you click the button, the Condition and offer dialog box appears, as follows:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

5 0

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ

Discount rules contain two parts, as represented by the two fields in the dialog box:

 A Condition statement, which defines when the discount applies, for example
“Always” or “When order contains at least one (product named
Shatterproof Helmet).”

 An Apply Discount To statement, which specifies the target items to which you want
to apply the discount, for example, “Apply discount to every (product in
category named BMX Bikes).”

The default Condition is “Always.” The default Apply Discount To statement depends on the discount
type. In the example shown above, the discount type is Item Discount - Percent Off, so the default is
“Apply discount to all items.” If you leave this rule as it is, the system applies the discount to all items in
the product catalog. The exact amount and type of the discount are specified by the Discount Type and
Discount Price/Amount/Percentage/Multiplier properties.

For example, you might have a promotion that offers a 10% discount on any products to anyone who
registers at the site. This promotion has its Discount Type and Discount Percentage properties set as
follows:

 Discount Type: Item Discount - Percent Off

 Discount Percentage: 10

The rule for this promotion is the default rule shown above: “Always discount all items.” In combination
with the other properties, the rule tells the system to give a 10% discount on all items. (For information on
how to specify the people to whom the promotion applies, see Specifying the People Who Receive the
Promotion.)

In most cases, however, you probably want to change the rule so that you narrow the set of
circumstances under which the discount is applied. To change the rule, click its parts so that menus
appear, and then select the items that define the rule as required.

If you use “and” in the “Apply Discount to” statement of a promotion, all of the conditions in the
statement must be true for the discount to be applied. The use of “and” in the following example would
cause problems as described below:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

5 1

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
Apply discount to: up to 1 (product named Blue Shirt and product named

Green Shorts)

The discount is not applied to all products named “blue shirt” and all products named “green shorts.” The
discount is only applied to items named both “blue shirt” and “green shorts.” Therefore, this discount
target would never apply a discount because products only have one name.

The rest of this section describes more examples of discount rules.

Example 1: Discounting Items from a Specific Category

Condition:

Always

Apply discount to:

every (product in category named BMX Bikes)

Key properties in this promotion are as follows:

 Discount Type: Item Discount - Percent Off

 Discount Percentage: 25

The rule tells the system to apply a 25% discount to all products in the category called “BMX Bikes.”

Example 2: Discounting a Given Amount from a Total Order

Condition:

Always

Apply discount to:

Order Total

Key properties in this promotion are as follows:

 Discount Type: Order Discount - Percent Off

 Discount Percentage: 20

The rule tells the system to apply a 20% discount to the customer’s total order.

Example 3: Offering a Promotion on Shipping

Condition:

When Order's priceInfo's amount is greater than 399.99

Apply discount to:

Shipping Group

Key properties in this promotion are as follows:

 Discount Type: Shipping Discount - Fixed Price

 Discount Price: 0

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

5 2

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
The rule tells the system to charge a fixed shipping price of $0 (in other words, to provide free shipping) to
any orders over $399.99. Note that, in this example, the first parameter of the Condition statement is
“When” rather than “Always.”

Example 4: Offering a Discount on One Product if a Customer Buys A Different Product

Condition:

When order contains at least 1 (product in category named Whole Bikes)

Apply discount to:

up to 1 (product in category named Helmets)

Key properties in this promotion are as follows:

 Discount Type: Percent Off

 Discount Percentage: 40

The rule tells the system to offer a 40% discount on any helmet to customers who buy any bike.

Example 5: Offering a 2-for-1 Discount

Condition:

When Order contains at least 3 (product in category named Lights)

Apply discount to:

Up to 1 (product in category named Lights)

Key properties in this promotion are as follows:

 Discount Type: Item Discount - Fixed Price

 Discount Price: 0

The rule tells the system to give one free light to anyone who orders at least three lights.

Note: There are various ways to set up this type of promotion. In this example, a customer must order
three items in order to get one for free; to make sure that the customer does in fact order three items, you
could add a note explaining the process to the order form or to the promotion media itself. In addition,
this example uses the structure “at least three,” which means that a customer would also receive one free
light if he ordered, for example, five. For examples of other ways to set up this type of promotion, please
refer to the ATG Commerce Programming Guide.

Specifying the People Who Receive the Promotion

You use a scenario to define the people who receive the promotion. (For detailed information on
scenarios, see the Creating Scenarios chapter in the ATG Personalization Guide for Business Users.) The
scenario tells the system to watch for specific visitor actions or behavior and apply the promotion to those
visitors. For example, you decide that you want to offer a special promotion called “New Members” to
people who have just registered; the promotion gives them 10% off their first order. You create the
promotion as described in this chapter. Then you set up a scenario that tells the system to do the
following:

 Watch for site visitors to register.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

5 3

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
 For those visitors, add the “New Members” promotion to the activePromotions

attribute in their profiles.

When those visitors order a product, the system checks their profile, sees the “New Members” promotion
in the activePromotions attribute, and deducts 10% from the total price of the order.

Note: If, when you set up the promotion, you set the Automatically Apply to All Orders attribute to True,
you do not need to create a scenario. The system automatically makes this promotion available to all site
visitors and checks to see if any such promotions exist whenever a site visitor performs an action that
involves a price request.

To create a scenario for a promotion, do the following:

1. Create a new empty scenario (or a new segment in an existing scenario, if you have
one that is appropriate). For more information, see the Creating Scenarios chapter in
the ATG Personalization Guide for Business Users.

2. Add elements that define any visitor behavior or profile attributes that you want to
use to trigger the promotion. For example, if you want to give the promotion to
people in a particular profile group, add a Condition element that specifies the profile
group.

3. Add an Action element that gives the promotion to the specified visitors. To do this,
select Action to display the a list of actions that appears as follows:

4. Select Give Promotion from the list of actions.

5. Click No Items Specified and then click Choose Promotions, as follows:

The Choose Items From Product Catalog dialog box appears.

6. Click List to display all the promotions you have previously set up in your Promotions
repository.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

5 4

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ

7. Select the promotion you want to include in this scenario and then click OK. You can
include more than one promotion by holding down the Ctrl key and clicking the
promotions you want.

8. Click the checkmark at the end of the element to add it to the scenario.

9. Enable the scenario and then copy it to the production server. For more information,
see the Creating Scenarios chapter in the ATG Personalization Guide for Business Users.

You can add other elements to this scenario if needed. For example, you can add more promotions by
adding other Give Promotion elements. Or you can include different elements that extend the scope of
the scenario; for example, you could add a Send Email element that sends a message giving information
about the promotion to the people to whom it now applies. You could also add an Audit Trail element so
that you can keep track of the promotions that you offer to site visitors. (For more information on audit
trails, see the Creating Scenarios chapter in the ATG Personalization Guide for Business Users.)

The following shows a simple scenario that makes a promotion called “10% off order” available to anyone
who registers to become a member:

In this scenario, the system watches for any site visitor to register. Then it adds the promotion called “10%
off for members” to the activePromotions attribute in the profiles of the people who just registered.
Finally, this scenario includes an Audit Trail element that records the Give Promotion action in the
predefined Audit Trail dataset.

Note: You can also deliver a promotion to site visitors via a URL on a JSP. Your page or application
developer can embed the ID of the promotion you want to offer in a URL. When a site visitor clicks that
URL, the promotion is added to the visitor’s activePromotions Profile property. For more information,
see Delivering Promotions via a URL.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

5 5

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
Withdrawing Promotions

You can limit the duration of promotional campaigns in various ways; ideally, you include a Time element
in the promotion scenario that limits the period during which the system can apply the discount.

You can also use a scenario Action element called Revoke Promotion to withdraw a promotion for specific
visitors under certain circumstances. For example, you might set up a complex series of promotions that,
in rare cases, would allow a visitor to receive a double discount on a particular item, and you might decide
that this behavior is undesirable. To correct it, you could set up a Revoke Promotion element that would
cancel one of the promotions if necessary.

The Revoke Promotion element works the same way as the Give Promotion element. You set up a
scenario segment that defines the visitor behavior or the circumstances that will trigger the withdrawal of
the promotion, and then you add the Revoke Promotion element, specifying the name of the promotion
to withdraw.

Creating Closeness Qualifiers
Each promotion can have any number of Closeness Qualifiers. Consider a “free shipping for orders over
$2500” promotion. One Closeness Qualifier may display when an order equals $2400 and users have a
bike of brand X in their cart. This upsell message might say “Spend another $100 to qualify for free
shipping. Check out our brand X windbreakers” assuming that brand X windbreakers all cost $100 or
more. Another Closeness Qualifier for the same promotion might be targeted to users with orders worth
$2000. This Closeness Qualifier may say “Shipping costs for the products in your shopping cart is w. Spend
another $500 and shipping is free.”

When you create a Closeness Qualifier, you describe the circumstances under which it applies by creating
a PMDL rule. Creating this rule is similar to creating a promotion discount rule. You can also specify a
media item, such as a graphic that entices users to purchase some product in order to receive a
promotion. Such products are designated in the Upsell Action, which is associated to the Closeness
Qualifier. Each Closeness Qualifier also has a priority.

Because a user could qualify for more than one Closeness Qualifiers for a given promotion, each Closeness
Qualifier is given a priority setting. For a given promotion, the ATG platform evaluates the highest priority
Closeness Qualifier to see if it is appropriate for the user and progresses through the list of Closeness
Qualifiers until it finds one that is. When one is found, the Closeness Qualifier is assigned to the user.

In general, users can receive one Closeness Qualifier per promotion at a given time. Since a promotion is
likely to have multiple Closeness Qualifiers, assigning priorities ensures that users who qualify for two
Closeness Qualifiers obtain the correct one. For example, if you have two Closeness Qualifiers, you would
prioritize them as orders that are at least $100 (priority 1), and orders that are at least $50 (priority 2). That
way, a user with an order of $100, who qualifies for both Closeness Qualifiers, will only be provided with
the one closest to his or her total.

At times, you may want a user to be eligible for more than one Closeness Qualifier for a promotion. As
demonstrated above, some Closeness Qualifiers may be based on certain products in a user’s shopping
cart. You may have two Closeness Qualifiers, each of which aims to upsell a specific brand when a product

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

5 6

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
of that brand is in the user’s shopping cart. If both brands are represented by products in the user’s
shopping cart, why shouldn’t the user see both Closeness Qualifiers?

You can give multiple Closeness Qualifiers in a given promotion the same priority number so that a user is
able to receive both of them. When the ATG platform finds one Closeness Qualifier that is fitting for a user,
it first evaluates all other Closeness Qualifiers with the same priority before ending the operation. A user is
granted all Closeness Qualifiers with the same priority that apply to him or her. Other Closeness Qualifiers
on that promotion with lower priority are skipped.

Create a Closeness Qualifier as follows:

1. In the Catalog Management > Catalog Elements task area, display items of type
Closeness Qualifier.

2. Select File > New Item to open the New Item dialog box.

3. In the Message field, provide a name to the Closeness Qualifier that uniquely identifies
it.

4. In the Condition field, specify the rule that controls the circumstances under which the
ATG platform provides the Closeness Qualifier to the user. Create the rule in the same
way you created the discount rule as described in Creating a Discount Rule. Once you
are finished, click OK.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

5 7

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
5. In the Priority field, specify a priority for the Closeness Qualifier that determines when,

in the context of all Closeness Qualifiers for that promotion, this Closeness Qualifier
should be executed. The highest priority is 1.

6. Click beside the Media field, and then click the “…” button. The Media dialog box
displays.

7. Locate the media item created by a page developer for this Closeness Qualifier. A
media item could be a graphic or string of text that alerts a user to their proximity to
the promotion. You can find a media item in two ways:

 Search by repositoryItem type in the Selective Listing tab using the List
button.

 Navigate to the media item in the folder hierarchy provided in the Folder
Listing.

8. Once you have selected the media item, click OK.

9. If you want to specify a list of products as an Upsell Action, click the … button for that
field. See Associating an Upsell Action to a Closeness Qualifier for instructions.

10. Click OK.

Updating the Promotion

To make a promotion able to use Closeness Qualifiers, do the following:

1. In the Pricing > Promotions task area, locate the promotion and select it.

2. Under the Promotion Upsell label, find the Closeness Qualifiers property and confirm
that it holds the appropriate Closeness Qualifiers for this promotion.

3. If the Closeness Qualifiers list needs to be modified, click the field beside the Closeness
Qualifier property and then click the “…” button within it. Once the Closeness Qualifier
dialog box opens, use the Add and Remove buttons to modify the list before clicking
OK.

4. Under the Promotion Upsell label, locate the Enable Closeness Qualifiers property and
toggle it to true.

Detecting a Closeness Qualifier

Once you have created Closeness Qualifiers for a promotion by deciding when they should display to
users and the products associated with them, you need to create a trigger action that signals ATG
Commerce to check whether a Closeness Qualifier is appropriate for a user.

There are two ways of doing this. Instruct a page developer to use the ClosenessQualiferDroplet
servlet bean on a page to check to see if any of the Closeness Qualifiers are applicable to the active user
and to display the media item on that page. For example, if this servlet bean were used in a checkout
page, when applicable Closeness Qualifiers are detected, you can display a media item beside a list of
products in the shopping cart and their totals. For instructions on using the
ClosenessQualiferDroplet servlet bean, see ClosenessQualifierDroplet.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

5 8

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
Another way to detect when a user deserves Closeness Qualifier is to use scenarios. You can create a
scenario that determines when a user qualifies for a Closeness Qualifier and then performs some other
action, such as adding an item to a slot or sending an email. You can also use a scenario to determine
when a user no longer qualifies for a Closeness Qualifier and react accordingly (for example, remove an
item from a slot). Here are scenario elements that you should know about:

 The Promotion Closeness Qualification event determines when a user obtains a
Closeness Qualifier. You can use this event to listen for any Closeness Qualifier or for a
Closeness Qualifier with a certain repositoryId. See Promotion Closeness
Qualification for more information.

 The Promotion Closeness Disqualification event is activated when a user no longer
qualifies for a Closeness Qualifier. You can focus this event to monitor all Closeness
Qualifiers or a Closeness Qualifier with a certain repositoryId. See Promotion
Closeness Disqualification for more information.

 The Add Item to Slot action allows you to add Closeness Qualifiers using
PromotionUpsellTargeter to a slot. Only Closeness Qualifiers that are relevant for
the specified event are added here.

 The Add Item to Slot action allows you to add products that are part of an Upsell
Action to a product slot using PromotionUpsellProductTargeter. Only Upsell
Actions that are relevant for the specified event’s Closeness Qualifiers are added here.

The sections below describe sample scenarios that provide upsell incentives.

Adding an Item to a Slot When Users Qualifies for a Closeness Qualifier

The following scenario specifies that, when a user has one or more Closeness Qualifiers, those Closeness
Qualifiers are added to a slot. Then, a page developer can access the media items designed for each
Closeness Qualifiers and display them to users in rotating succession.

Follow these steps to create the scenario:

1. In the Scenarios task area, create a new empty scenario (or a new segment in an
existing scenario, if you have one that is appropriate). For more information, see the
Creating Scenarios chapter in the ATG Personalization Guide for Business Users.

2. Add an Event element to the scenario.

3. Select Promotion Closeness Qualification from the list of events. This event checks to
see whether the user has any Closeness Qualifiers.

4. Click the check mark in the scenario element to close it.

5. Add an Action element to the scenario.

6. Select Add Items to Slot from the list of actions.

7. Select each of the following values from the successive drop down lists in the element
editor:

 name

 a slot able to hold Closeness Qualifiers

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

5 9

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
 from targeter

 PromotionUpsellTargeter

8. Click the check mark in the scenario element to close it.

Sending an Email When Users Qualify for A Closeness Qualifier

This example demonstrates how to create a scenario that sends an email to a user when that user
qualifies for a particular Closeness Qualifier.

1. In order to create the scenario, you need to know the ID for the Closeness Qualifier. To
find this information, locate the Closeness Qualifier in the Catalog Management >
Catalog Elements task area by causing Items of type Closeness Qualifier to display.

2. Select the Closeness Qualifier. The repositoryID is in the ID field. If the ID field is not
visible, go to Tools > Preferences on the menu, and select the Show expert-level
information checkbox. Take note of the repositoryID for future reference.

3. In the Scenarios task area, create a new empty scenario (or a new segment in an
existing scenario, if you have one that is appropriate). For more information, see the
Creating Scenarios chapter in the ATG Personalization Guide for Business Users.

4. Add an Event element to the scenario.

5. Select Promotion Closeness Qualification from the list of events. This event checks to
see whether the user has any Closeness Qualifiers.

6. Specify the particular Closeness Qualifier by selecting each of the following values
from the successive drop down lists in the element editor:

 where

 closenessQualifier's (Be sure that you select closenessQualifier's,
not the default selection closenessQualifer.)

 repositoryId

 is

 Type a string

7. In the space provided, enter the ID for the Closeness Qualifier that you noted earlier
and click the check mark in the scenario element to close it.

8. Add an Action element to the scenario.

9. Select Send email from the list of actions. This action allows you to specify an email
template that will be sent to all qualifying users.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

6 0

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
10. Depending on where the email template lives, select With Path or With Dynamo Path.

Use With Path when your template is on your file system. Use With Dynamo Path when
your template exists in a context path defined within the ATG platform.

11. Click Choose mail template to open the Select a Document dialog box.

12. In the top portion, select the context path folder in which your template lives.

13. In the bottom portion, select the template. Click OK.

14. Click the check mark in the scenario element to close it.

Removing Closeness Qualifiers From a Slot When They No Longer Apply

Assume that each Closeness Qualifier appropriate for a user is added to a slot. If a user performs an action
that makes him or her lose that Closeness Qualifier, you should remove the Closeness Qualifier from the
slot.

1. In the Scenarios task area, create a new empty scenario (or a new segment in an
existing scenario, if you have one that is appropriate). For more information, see the
Creating Scenarios chapter in the ATG Personalization Guide for Business Users.

2. Add an Event element to the scenario.

3. Select Promotion Closeness Disqualification from the list of events. This event checks
to see whether the user has previously qualified for Closeness Qualifiers that he or she
no longer qualifies for.

4. Click the check mark in the scenario element to close it.

5. Add an Action element to the scenario.

6. Select Remove Items from Slot from the list of actions.

7. Select each of the following values from the successive drop down lists in the element
editor:

 name

 a slot able to hold Products

 from targeter

 PromotionUpsellProductTargeter

8. Click the check mark in the scenario element to close it.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

6 1

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ

Setting up Upselling Incentives
Users who don’t qualify for promotions present an upselling opportunity: you can make them aware of
what they need to do in order to receive a promotion. For example, you can encourage users to purchase
more products by displaying a “Buy one more box of light bulbs and get the next one free!” message on a
checkout page.

In order to display upsell incentives for a given promotion, you need to describe the circumstances under
which those incentives are appropriate. For example, if a promotion gives free shipping to orders over
$2500, you might want to display an upsell incentive when orders are $2400 that says “Free shipping if
you spend $100!” You specify these circumstances as Closeness Qualifier items. A Closeness Qualifier has
three main parts: a rule that says when it applies (orders greater than $2400), media items that display
when the rule is met (“Free shipping if you spend $100!”), and a priority. When the Closeness Qualifier rule
fits for a user’s circumstance, the user’s profile receives a reference to that Closeness Qualifier.

You can also define an Upsell Action, which is a list of upsell products. For example, products that cost
$100 could make up your Upsell Action. Buying one such product qualifies a user for the free shipping
promotion.

Once you have defined the Closeness Qualifiers and Upsell Actions for a promotion, you need to decide
how those Closeness Qualifiers will be detected. You can design scenarios to add items to a slot that are
accessed in a page or send an email when a user obtains a Closeness Qualifier.

Follow these steps in this order to create alert notices about a user’s proximity to a promotion:

1. The Page Developer creates the text and media that advertises how close a user is to
qualifying for the promotion. These items are called media items and you will need to
know where they are located in order to complete the steps below.

2. Create the promotion. See Creating Promotions for instructions.

3. Describe the Closeness Qualifier, when users qualify for it, and the promotion it is
associated with. See Creating Closeness Qualifiers.

4. Specify upsell products in an Upsell Action. See Working with Upsell Actions.

5. Enable the upsell option on the promotion. See Updating the Promotion.

6. Activate the upsell notification by creating a scenario that uses it or instruct a page
developer to incorporate it into a JSP. See Detecting a Closeness Qualifier.

Sample Upsell Incentives

Here are two promotions, each of which has two Closeness Qualifiers.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

6 2

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
Promotion: Free Shipping to Orders Over $2500

The goal of the Closeness Qualifier Spend $100: encourages users whose cart contents cost between
$2400-$2499 to purchase products that cost $100. To implement this Closeness Qualifier, you would need
to do the following:

1. Create a Closeness Qualifier in the ACC and update its properties:

 Qualifier: When order's priceInfo's amount is greater than or
equal to $2400.

 Closeness Qualifier Priority: 1

2. This Closeness Qualifier requires an Upsell Action that has upsell products with a
certain price. You can add products that cost $100 directly to the Fixed Upsell Products
property on the Upsell Action.

3. A scenario might add this Closeness Qualifier to a slot so that a media item would
advertise the upsell products to all qualifying users.

The goal of the Closeness Qualifier Buy This Brand: encourages users whose cart includes items from
Manufacturer Z to purchase additional products from Manufacturer Z. To implement this Closeness
Qualifier, you would need to do the following:

1. Create a Closeness Qualifier in the ACC and update its properties:

 Qualifier: When order contains at least 1 product whose
Manufacturer's Manufacturer name is Z.

 Closeness Qualifier Priority: 1

Note the two Closeness Qualifiers have the same priority so that users are able to
qualify for both of them. Two Closeness Qualifiers can have the same priority when
each one has a unique, non-competing rule.

2. This Closeness Qualifier requires an Upsell Action to associate upsell products with
Manufacturer Z. Create a product content group with the following rule:

 Include this item: items whose Manufacturer.displayName is Z

3. A scenario might add this Closeness Qualifier to a slot so that a media item would
advertise the upsell products to all qualifying users. You could use the same slot you
specified for the other Closeness Qualifier.

Promotion: Buy 3 product Xs and get 1 Y free

The goal of Closeness Qualifier Buy One More X: encourages users who have two Xs in their carts to
purchase a third in order to receive a free Y.

1. Create a Closeness Qualifier in the ACC and set the Qualifier property to When order
contains exactly 2 Xs.

2. This Closeness Qualifier requires an Upsell Action to associate upsell products with a
certain price. Create an Upsell Action and set the Fixed Upsell Products property to X.

3. A scenario might send an email to users who have two product Xs, explaining with the
purchase of one more X they receive Y for free.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

6 3

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
The goal of Closeness Qualifier Buy two More Xs: encourages users who have one X and one Y in their
carts to purchase two more Xs so the Y is free.

1. Create a Closeness Qualifier in the ACC and set the Qualifier property to When order
contains exactly 1 X and order contains exactly 1 Y.

Note that priority is not important here because the two Closeness Qualifiers are not in
direct competition. Based on their respective qualifier rules, it would be acceptable for
a user to receive both Closeness Qualifiers, but their having different delivery
mechanisms (email and scenario slot) may be reason for not wanting a user to receive
both. Receiving two Closeness Qualifiers through different channels could overwhelm
users. By not setting a priority on either, you specify that users are eligible to receive
one Closeness Qualifier for this promotion.

2. This Closeness Qualifier requires an Upsell Action to associate upsell products with a
certain price. Create an Upsell Action and set the Fixed Upsell Products property to X.

3. A scenario might add an advertisement to a slot that says “How can you buy just one
X? Buy 2 more and your Y is free!”

Working with Upsell Actions

An Upsell Action holds the products that you want to upsell. Each Closeness Qualifier specifies one Upsell
Action that holds all products it aims to upsell. By purchasing products in the Upsell Action, a user could
qualify for the promotion. Using an Upsell Action is optional. When you include an Upsell Action, you can
create scenarios that add all products for an Upsell Action to a slot. A page developer can use an Upsell
Action to determine the media items to display on a page.

There are two ways to specify products in an Upsell Action. You can specify a fixed group of products. It’s
best to specify product IDs directly when you are upselling a few key products. Another option available
to you is to create a content group. Content groups allow you to create a group of product SKUs based on
the complex rules you define.

There are three tasks you need to do:

1. Create a content group if your Upsell Action requires one.

2. Create an Upsell Action.

3. Associate the Upsell Action to a Closeness Qualifier.

Creating a Content Group

A content group is a collection of items that share the same repositoryItem type and satisfy a set of
conditions. Using a content group allows you to form a collection of products that share some similarity
without needing to know anything else about those products. If you’d like to use a content group, create
it before creating your Upsell Action by following the instructions in the Creating Content Groups chapter
of the ATG Personalization Guide for Business Users. When you are asked to supply a content source, specify
CustomProductCatalog as the source and Product as the content type.

The groups you create are based on inclusion (all products with this start date) or exclusion (all products
that aren’t on sale) rules.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

6 4

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
Once you create the Upsell Action, you assign the content group to the Upsell Action’s
upsellProductsGroup property.

Creating an Upsell Action

To define an Upsell Action:

1. In the Catalog Management > Catalog Elements task area, display items of type Upsell
Action.

2. Select File > New Item to open the New Item dialog box.

3. In the Name field, provide a name to the Upsell Action that uniquely identifies it.

4. If you created a content group for your products, enter that content group name in
the Upsell Products Group field. You can use only one content group per Upsell
Action.

5. If you want to define a fixed set of products, click the field beside the Fixed Upsell
Products property and then click the “…” button within it.

The Fixed Upsell Products dialog box displays with Add and Remove buttons for
modifying the list of products.

6. Click Add.

The New Item dialog box displays.

7. Locate the products in one of two ways:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

6 5

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
 Search by repositoryItem type in the Selective Listing tab using the List

button.

 Navigate to the product in the folder hierarchy provided in the Folder Listing.

8. Select the products you want to add and click OK in the New Item dialog box.

9. Click OK in the Fixed Upsell Products dialog box.

10. Click OK in the New Item Dialog box.

Note: Ignore the two disabled properties Dynamic Upsell Products and Upsell Products. These properties
are populated at runtime when the Upsell Action is used. When you specify a content group, the Dynamic
Upsell Products property is populated by the products that make up the group. The Upsell Products
property holds the complete set of products specified using the two methods (assembled by content
groups or entered directly) for an Upsell Action.

Associating an Upsell Action to a Closeness Qualifier

Associate an Upsell Action to a Closeness Qualifier as follows:

1. In the Catalog Management > Catalog Elements task area, display items of type
Closeness Qualifier.

2. Select the Closeness Qualifier to which you want to assign the Upsell Action.

3. Click beside the Upsell Action field, and then click the “…”button. The Upsell dialog
box displays with two tabs.

4. Locate the Upsell Action by displaying all items of type Upsell Action.

5. Once you selected the Upsell Action, click OK.

Disabling Promotions
As a general rule, you should never delete promotions and instead disable them by setting the Enabled
property to false. This approach eliminates the possibility of deleting a promotion that has been used in
orders, which produces errors.

However, if you are certain that the promotion has not been used in orders, you can safely delete the
promotion.

Displaying Promotion Media
If you choose to create any media (text or images) for a promotion, the page developers working on your
Web sites can display them on the appropriate site page by using any of the standard ATG techniques for
displaying content. For example, they could set up a scenario that uses a slot element to show the
promotion media.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

6 6

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
Setting Up Coupon Promotions

ATG Commerce treats coupons as a type of promotion (sometimes, coupons are referred to as “claimable
promotions”). Coupons work as follows:

1. Add the coupon in the form of a promotion to the Promotion repository, following the
same general steps that you take when you create a regular promotion item (see
Creating Promotions). You set up the discount as appropriate for the coupon. For
example, if you wanted the coupon to give 20% off any order, you would specify Order
Discount – Percent Off as the Item Type, and then specify 20 as the Discount
Percentage. You would set up a simple Discount Rule that applies the discount to any
order:

Condition:

Always

Apply discount to:

Order Total

2. Add the coupon to the Gift Certificates and Coupons repository, associating it with the
promotion you created in step 1. (The Gift Certificates and Coupons repository is part
of the Claimable repository, which is described in the Configuring Commerce Services
chapter in the ATG Commerce Programming Guide.) As part of this step, you also create
a claim code for the coupon. For more information, see Adding a Coupon.

3. The page or application developer then sets up a form field where customers can
enter the code. For example, he or she might add a field on the Checkout page and
give it a label that says “Enter any coupon codes here:”

The developer then hooks this field up to the part of ATG Commerce that handles
coupons (initially, the CouponFormHandler component).

4. The page developer sets up an e-mail message (a JSP) to send to the customers you
want to use the coupon. The message contains the claim code for the coupon as well
as any additional text that you want to include. For information on setting up an e-
mail message, see the Working with Targeted E-Mail chapter in the ATG Personalization
Guide for Business Users.

5. You define the list of people whom you want to receive the message (in other words,
the people you want to be able to use the coupon). One way to do this is by creating
and enabling a scenario containing elements that define the group of people who will
receive the message, and a Send Email element that specifies the message to send. For
more information, see Specifying the People Who Receive the Promotion.

When customers want to use the coupon, they do the following:

1. They visit the Web site and order the products or services to which the coupon
applies. During the ordering process, they type the coupon claim code in the
appropriate field on the page (see step 3 above).

2. ATG Commerce references both the coupon repository and the corresponding item in
the Promotions repository to determine, for example, whether the claim code is valid
and the amount or type of discount to apply.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

6 7

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
Two Types of Coupons

In the ACC, you can see two types of coupons: unversioned coupons and coupons. The two types are
identical in all ways but one: coupons are supported in a versioning system (such as Content
Administration) while unversioned coupons are not.

If you have ATG Merchandising, you can create multiple versions of a coupon and publish the appropriate
one to your sites using ATG Content Administration. So, if you have ATG Merchandising, use coupons;
otherwise, use unversioned coupons.

Adding a Coupon

This section explains how to add a coupon to the Gift Certificates and Coupons repository and create a
claim code for it.

If you are using ATG’s multisite feature, you can specify at the time of coupon creation whether users can
claim the coupon on any site, or only sites to which the associated promotion is limited.

1. In the ATG Control Center, select Purchases and Payments > Gift Certificates and
Coupons.

2. In the search query box at the top of the window, specify Items of type Coupon
and then click List. Any coupons already in your system appear in the left pane of the
window.

3. Select File > New Item. The New Item dialog box appears, with Coupon selected as the
item type.

4. In the New ID field, type the string you want to use as the coupon’s claim code. This
code is what customers enter when they want to apply the coupon to an order.

Note that the claim codes for coupons are not case-sensitive.

Note: Avoid creating coupon codes that are easy to guess. For example, it is not
recommended that you create short or sequential codes (100, 101, and 102, for
example). If you leave this field blank, ATG Commerce uses its internal ID generation
system to create a random coupon code for you. It is often preferable to have ATG
Commerce create the code than to do it yourself.

5. Specify the entries in the New “Coupon” Values area of the dialog box.

 Display Name: enter a descriptive name for the coupon.

 Expiration date: enter the date and time on which you want the coupon to
become unusable. To do this, click the corresponding text box to display the
“…” button, click the “…” button, and then select the date and time from the
calendar that appears. This value is optional.

Note that a coupon’s expiration date is independent of the corresponding
promotion’s usage end date. Consequently, it is possible that a coupon may be
invalid but the promotion to which it refers is still valid (and can still be
delivered via a scenario). If you specify a value for this property, make sure it is
consistent with the usage end date for the promotion to which it applies.

 Parent folder: Select a coupon folder in which to store the coupon, if desired.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

6 8

5 - C r e a t i n g a n d M a i n t a i n i n g P r o m o t i o n s

μ
 Promotions: Click the corresponding text box to display the “…” button, click

the “…” button, and then select the promotions to use with this coupon.

6. Click OK. The system adds the new coupon to the repository and displays it by its
promotion name in the panel on the left of the window. You can hold your mouse
over the promotion name to display the coupon claim code (or ID) in a pop-up
window.

For more information on coupons, please refer to the ATG Commerce Programming Guide.

Delivering Promotions via a URL
You can deliver a promotion to site visitors in a variety of ways, such as via a scenario or coupon. The
preceding sections describe how to create promotions and use these delivery methods. This section
provides information on another way to deliver a promotion to site visitors – via a URL on a JSP. You
embed the ID of the promotion you want to offer in the URL. When a site visitor clicks that URL, the
promotion is added to the visitor’s activePromotions Profile property.

To deliver a promotion via a URL, do the following:

1. Enable the /atg/dynamo/servlet/dafpipeline/PromotionServlet by setting its
enabled property to true in its .properties file. By default, ATG Commerce inserts
PromotionServlet in the request-handling pipeline, but you must enable it for use.

2. Include a URL on the desired JSP using an anchor tag like the following:

<dsp:a href="../../samplepage.jsp" encode="true"><dsp:param

 value="promo10102" name="PROMO"/>Click here to get a 20% discount

 on shirts.</dsp:a>

where ../../samplepage.jsp is the page to which you want to link, and the value
of the PROMO request parameter is the ID of the promotion in the
/atg/commerce/pricing/Promotions repository.

Note that encode=true is required in the anchor tag. This causes the PROMO
parameter subtag to be encoded into the URL as a URL parameter and not a query
parameter. In turn, PromotionServlet calls getURLParameter() on the request to
retrieve the PROMO parameter value.

Also note that the item descriptor of the promotion must be one of the item
descriptors in PromotionServlet.promotionItemDescriptorNames.

When a request is passed into PromotionServlet, if the servlet is disabled, it simply passes the request
to the next servlet in the pipeline. If it is enabled, it looks for a PROMO parameter in the URL parameters of
the request and retrieves the associated promotion ID. Next, the servlet looks for a promotion in the
Promotions repository whose ID is the given ID and whose item descriptor is included in
PromotionServlet.promotionItemDescriptorNames. If the promotion exists, then
PromotionServlet checks that either the profile is persistent or the promotion’s Give To Anonymous
Customers (giveToAnonymousProfiles) property is set to true. If either condition is true, the promotion
is added to the user’s activePromotions Profile property.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

6 9

6 - M a n a g i n g C o s t C e n t e r s

μ
6 Managing Cost Centers

Cost Centers are an ATG Business Commerce feature that allows specific site customers to track their
internal costs by designating certain parts of their organization as cost centers. ATG Business Commerce
tracks which items and orders belong to each cost center.

For example, an insurance company could set up accounts with an office supply site so individual
employees of the insurance company could log on and purchase supplies. The insurance company could
set up several cost centers for each department that will be ordering supplies through the web site. When
an insurance company employee logs in to purchase supplies, they would specify the department to
which they belong. The insurance company could then track costs by department and run related reports.

There are two major parts to the cost center feature, assigning cost centers to profiles and assigning costs
to cost centers within an order. The concept of assigning cost centers to profiles allows a site to define
what cost centers a given user is allowed to assign costs. A user is assigned a list of cost centers. Adding
costs to cost centers allows a user to create CostCenter objects within their order using the data from
their profile. Then they can assign item, shipping, or tax costs to the cost centers.

This chapter includes the following sections:

Viewing Existing Cost Centers

Adding New Cost Centers

Assigning a Default Cost Center to a User

Adding, Modifying, and Deleting Cost Centers in a Profile

Adding Cost Centers to an Order

Adding Items to a Cost Center

Tracking Orders by Cost Center

Cost Center Classes

Using the CostCenterFormHandler Framework

Viewing Existing Cost Centers
Follow these steps to view the available cost centers in the ACC.

1. Select People and Organizations from the main task bar.

2. Click Profile Repository.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

7 0

6 - M a n a g i n g C o s t C e n t e r s

μ
3. Select “Items of type Cost Center” from the search menu and click List.

A list of all available cost centers appears.

Adding New Cost Centers
Follow these steps to add a new cost center using the ACC.

1. Search for existing cost centers in the profile repository. For more information, see
Viewing Existing Cost Centers.

2. Click the New Item button.

3. Click New Item.

4. Enter and Identifier, Owner, and Description.

5. Click OK. The new cost center appears in the list of available cost centers.

Assigning a Default Cost Center to a User
Assigning cost centers to user profiles allows you to define what cost centers a given user is allowed to
assign costs. A user can be assigned a list of possible cost centers. Follow these steps to assign cost
centers to a user using the ACC.

1. Select People and Organization from the main ACC navigation bar.

2. Select Profile Repository from the People and Organizations choices.

3. Select “Item of type User” and click List to view a list of all users.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

7 1

6 - M a n a g i n g C o s t C e n t e r s

μ
4. Select a user from the list. The user’s information displays in the main section of the

screen.

5. Add a cost center to the Default Cost Center field in the Billing and Shipping section of
the profile information. The cost center can be selected from a list of available cost
centers by clicking on the “…” button.

6. Click Save to save the cost center the profile.

Adding, Modifying, and Deleting Cost Centers in a Profile
You can add, modify, and delete cost center data for a user’s profile through the
B2BCommerceProfileTools class. Cost centers will be assigned to either a user or an organization (or
sub-organization). A cost center will consist of an identifier and a description.

There are two ways in which cost centers can be added, edited, or deleted within a profile:

 Set up web forms that allow customers to manipulate the cost centers within their
own profiles

 The site administrator can use the ATG Control Center to maintain cost center
information.

The methods of B2BCommerceProfileTools allow you to add, modify, and delete of cost centers from a
profile.

Setting up HTML forms for customers to use to make changes to the cost centers within their own profile
is done using the B2BCommerceProfileFormHandler class, which extends
CommerceProfileFormHandler. The ProfileFormHandler component is configured to point to the
B2BCommerceProfileFormHandler class. The following table describes the properties of the
B2BCommerceProfileFormHandler class:

Property Description

AddCostCenterIdentifier Stores the identifier, or name, of a new cost center to
be added to the repository.

AddCostCenterDescription Stores the description of a new cost center to be
added.

EditCostCenterIdentifier Stores the identifier of a cost center that is to be
modified.

EditCostCenterDescription Stores the description that will be the new value for
the description of the cost center identified by
EditCostCenterIdentifier.

RemoveCostCenterIdentifier Stores the identifier of the cost center to remove.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

7 2

6 - M a n a g i n g C o s t C e n t e r s

μ
DefaultCostCenter Boolean value that stores whether or not the given

cost center should become the user’s default cost
center.

AddCostCenterSuccessURL Stores the name of the JSP the user is to be taken to
after successfully adding a cost center.

AddCostCenterErrorURL Stores the name of the JSP the user is to be taken to
after an error occurs while attempting to add a cost
center.

EditCostCenterSuccessURL Stores the name of the JSP the user is to be taken to
after successfully editing a cost center.

EditCostCenterErrorURL Stores the name of the JSP the user is to be taken to
after an error occurs while attempting to edit a cost
center.

RemoveCostCenterSuccessURL Stores the name of the JSP the user is to be taken to
after successfully removing a cost center.

RemoveCostCenterErrorURL Stores the name of the JSP the user is to be taken to
after an error occurs while attempting to remove a
cost center.

The adding, editing and removing cost centers can be performed by calling handleAddCostCenter,
handleEditCostCenter, and handleRemoveCostCenter.

The following JSP example creates a form that allows a customer to add a cost center:

<h1>Add Cost Center</h1>

<dsp:form action="done.jsp" method="post">

 <dsp:input bean="ProfileFormHandler.AddCostCenterSuccessURL" value="success.jsp"

 type="hidden"/>

 <dsp:input bean="ProfileFormHandler.AddCostCenterErrorURL" value="error.jsp"

 type="hidden"/>

 Name: <dsp:input bean="ProfileFormHandler.AddCostCenterIdentifier"

 type="text"/><P>

 Description: <dsp:input bean="ProfileFormHandler.AddCostCenterDescription"

 type="text"/><P>

 <dsp:input bean="ProfileFormHandler.DefaultCostCenter" value="true"

 type="checkbox"/> Make default<P>

 <dsp:input bean="ProfileFormHandler.AddCostCenter" value="Add Cost Center"

 type="submit"/><P>

</dsp:form>

The following JSP example creates a form that allows a customer to edit a cost center:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

7 3

6 - M a n a g i n g C o s t C e n t e r s

μ
<h1>Edit Cost Center</h1>

<dsp:form action="done.jsp" method="post">

 <dsp:input bean="ProfileFormHandler.EditCostCenterSuccessURL"

 value="success.jsp" type="hidden"/>

 <dsp:input bean="ProfileFormHandler.EditCostCenterErrorURL" value="error.jsp"

 type="hidden"/>

 Name: <dsp:input bean="ProfileFormHandler.EditCostCenterIdentifier"

 type="text"/><P>

 New Description: <dsp:input bean="ProfileFormHandler.EditCostCenterDescription"

 type="text"/><P>

 <dsp:input bean="ProfileFormHandler.DefaultCostCenter" value="true"

 type="checkbox"/>

 Make default<P>

 <dsp:input bean="ProfileFormHandler.EditCostCenter" value="Edit Cost Center"

 type="submit"/><P>

</dsp:form>

The following JSP example creates a form that allows a customer to remove a cost center:

<h1>Remove Cost Center</h1>

<dsp:form action="done.jsp" method="post">

 <dsp:input bean="ProfileFormHandler.RemoveCostCenterSuccessURL"

 value="success.jsp" type="hidden"/>

 <dsp:input bean="ProfileFormHandler.RemoveCostCenterErrorURL" value="error.jsp"

 type="hidden"/>

 Name: <dsp:input bean="ProfileFormHandler.RemoveCostCenterIdentifier"

 type="text"/><P>

 <dsp:input bean="ProfileFormHandler.RemoveCostCenter" value="Remove Cost Center"

 type="submit"/><P>

</dsp:form>

Adding Cost Centers to an Order
When a site customer is purchasing a product on a site that implements cost centers, the customer can be
given the option of adding cost centers to an order. The CostCenterDroplet servlet bean can be used
to display any cost centers assigned to the user as options for the user to choose. If there are no cost
centers assigned to the user, the repository is configured to then search the parent organization for the
user and use those cost centers as options. If, again, there are no cost centers, the repository will continue
to the parent organization of that organization, and so on.

When a user assigns cost centers to an order, the cost center repository ID is included as part of the order
repository item.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

7 4

6 - M a n a g i n g C o s t C e n t e r s

μ
Adding Items to a Cost Center

If more than one cost center is assigned to an order, it is necessary to choose which items in the order
belong to each cost center. Items will be assigned to cost centers through a type of relationship called a
CostCenterCommerceItemRelationship.

The CostCenterShippingGroupRelationship and CostCenterOrderRelationship can be used if
costs are more conveniently tied to shipping groups or orders, rather than commerce items. This will also
allow tracking of shipping and tax costs.

Tracking Orders by Cost Center
Because the main purpose of cost centers is to allow organizations to better track their costs, a search
method that get a list of orders associated with a given cost center.

Use the getOrdersforCostCenter() method in the CostCenterManager class to retrieve orders
associated with a specific cost center.

Cost Center Classes
The following section briefly describes the classes related to cost centers. For more information on each of
these classes, refer to the ATG API Reference.

CostCenter Interface

The CostCenter interface represents all the information included in a cost center. The CostCenter
interface contains the following:

 CostCenterClassType

 Identifier

 Description

 Amount

CostCenterImpl is the default implementation of the CostCenter interface.

CostCenterManager

CostCenterManager includes methods for manipulation of cost centers within the context of an order.
This includes methods for adding, removing, and editing CostCenter and CostCenterRelationship
objects. As well as methods for getting order information based on cost centers.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

7 5

6 - M a n a g i n g C o s t C e n t e r s

μ
CostCenterContainer

Handles access to a group of cost centers. CostCenterContainerImpl will be the default
implementation of CostCenterContainer. This interface provides methods for managing a list of cost
centers within an order.

CostCenterRelationship

CostCenterRelationship represents a part of a relationship between items and a cost center. The
CostCenterRelationship interface consists of two properties:

 CostCenter: references the relevant Cost Center

 Amount: indicates the total price attributed to that cost center within the given order.

CostCenterCommerceItemRelationship

The CostCenterCommerceItemRelationship defines a relationship between a commerce item and the
cost center to which it belongs. It implements both CostCenterRelationship and
CommerceItemRelationship. This relationship has four possible types:

 Amount: indicates that the Amount property tells how much of the total cost of the
item should be attributed to the given cost center.

 AmountRemaining: indicates that all costs of the item that are not assigned to a
different cost center in a separate relationship will be attributed to the cost center in
the given relationship.

 Quantity: indicates that the Quantity property tells how many of a given commerce
item should be assigned to cost center.

 QuantityRemaining: indicates that all items of the item that are not assigned to a
different cost center in a separate relationship will be attributed to the cost center in
the given relationship.

CostCenterShippingGroupRelationship

The CostCenterShippingGroupRelationship is used to tie the cost center to the shipping group,
rather than each item within the shipping group. This relationship also allows assignment of shipping
charges to cost centers. This class implements both CostCenterRelationship and
ShippingGroupRelationship.

The CostCenterShippingGroupRelationship can be of two possible types:

 ShippingAmount

 ShippingAmountRemaining

CostCenterOrderRelationship

CostCenterOrderRelationship is used to tie the cost center to the order, rather than each item within
the shipping group, or to a specific shipping group. This class implements both
CostCenterRelationship and OrderRelationship. This relationship will also allow assignment of tax
and shipping charges to cost centers.

This relationship has four possible types:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

7 6

6 - M a n a g i n g C o s t C e n t e r s

μ
 TaxAmount

 TaxAmountRemaining

 OrderAmount

 OrderAmountRemaining

Using the CostCenterFormHandler Framework
The CostCenterFormHandler framework enables customers to gather complex CostCenter
information from a user during the purchase process. The primary objective of this framework permits the
user to associate their authorized cost centers with the order’s various CommerceIdentifiers.

In order to facilitate the processing of this information, the CostCenterFormHandler framework utilizes
the following helper classes:

 CommerceIdentifierCostCenter

 CommerceIdentifierCostCenterContainer

 CostCenterMapContainer

 CostCenterContainerService

 CostCenterDroplet

 CostCenterFormHandler

CommerceIdentifierCostCenter

The CommerceIdentifierCostCenter object stores the information needed to associate cost centers,
referenced by name, and CommerceIdentifiers. It contains the following properties:

Property name Type

CommerceIdentifier CommerceIdentifier

CostCenterName String

RelationshipType String

Amount double

SplitAmount double

Quantity long

SplitQuantity long

SplitCostCenterName String

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

7 7

6 - M a n a g i n g C o s t C e n t e r s

μ
CommerceIdentifierCostCenterContainer

The CommerceIdentifierCostCenterContainer interface keeps track of all the
CommerceIdentifierCostCenters associated with the various Order CommerceIdentifiers.

CostCenterMapContainer

The CostCenterMapContainer interface keeps track of all the user’s cost centers by name, as well as a
default cost center.

CostCenterContainerService

The CostCenterContainerService is a GenericService that implements both container interfaces
and comprises a convenient session-scoped component.

CostCenterDroplet

The CostCenterDroplet servlet bean includes a request-scoped component whose service method is
responsible for the following tasks:

 CostCenter initialization – The user’s authorized cost centers are created and added
to the CostCenterMapContainer.

 CommerceIdentifierCostCenter initialization - New
CommerceIdentifierCostCenter instances are created specific to the current Order
and added to the CommerceIdentifierCostCenterContainer.

During initialization, the CostCenterDroplet optionally creates one CommerceIdentifierCostCenter
object for each CommerceIdentifier type (for example, each CommerceItem, each ShippingGroup,
the Order, and the Tax) and with the following default properties:

Property Description

CommerceIdentifier Set to reference the CommerceItem, ShippingGroup, or Order

RelationshipType Set to the appropriate RelationshipTypes String property
CCAMOUNT_STR, CCQUANTITY_STR,
CCSHIPPINGAMOUNT_STR, CCORDERAMOUNT_STR, or
CCTAXAMOUNT_STR.
CostCenterCommerceItemRelationships default to
CCQUANTITY_STR unless the boolean droplet parameter
useAmount is true.

CostCenterName Set to the DefaultCostCenterName of the
CostCenterMapContainer.

Amount Set to the Amount property of the PriceInfo of the
CommerceIdentifier, if the PriceInfo exists

Quantity Set to the Quantity property of the CommerceItem.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

7 8

6 - M a n a g i n g C o s t C e n t e r s

μ
For example, a simpler cost center page might permit the customer to assign a cost center to the entire
Order, or split the entire Order cost into multiple cost centers. This simple page will not permit the user to
assign cost centers to CommerceItems, ShippingGroups, or the Tax.

A more advanced CostCenter page could permit the customer to assign and split CostCenter
associations among the CommerceItem, ShippingGroup, and the Tax. This is implemented by the same
CostCenterDroplet servlet bean with different initialization parameters.

The CostCenterDroplet takes the following parameters:

Parameter Description

initItemCostCenters Boolean which toggles CommerceIdentifierCostCenter
initialization for CommerceItems

InitShippingCostCenter

s
Boolean which toggles CommerceIdentifierCostCenter
initialization for ShippingGroups

initOrderCostCenters Boolean which toggles CommerceIdentifierCostCenter
initialization for the order

InitTaxCostCenters Boolean which toggles CommerceIdentifierCostCenter
initialization for the tax

InitCostCenters Boolean which toggles placing the user’s authorized
CostCenters into the CostCenterMapContainer

ClearCostCenterMap Boolean which toggles clearing the CostCenters in the
CostCenterMapContainer

ClearCostCenterContain

er
Boolean which toggles clearing the
CommerceIdentifierCostCenters in the
CommerceIdentifierostCenterContainer

ClearAll Boolean which toggles clearing both containers

Refer to the following code example of the CommerceCenterDroplet servlet bean:

<dsp:droplet name="CostCenterDroplet">

 <dsp:param bean="ShoppingCartModifier.order" name="order"/>

 <dsp:param value="false" name="clearAll"/>

 <dsp:param value="false" name="clearCostCenterMap"/>

 <dsp:param value="false" name="clearCostCenterContainer"/>

 <dsp:param value="true" name="initCostCenters"/>

 <dsp:param value="true" name="initItemCostCenters"/>

 <dsp:param value="true" name="initShippingCostCenters"/>

 <dsp:param value="true" name="initTaxCostCenters"/>

 <dsp:param value="false" name="useAmount"/>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

7 9

6 - M a n a g i n g C o s t C e n t e r s

μ
 <dsp:oparam name="output">

 </dsp:oparam>

 </dsp:droplet>

CostCenterFormHandler

The CostCenterFormHandler extends the PurchaseProcessFormHandler. It is a request-scoped
component with two handler methods:

 handleSplitCostCenters

This handler relies on the splitCostCenter, splitAmount and splitQuantity
properties of the CommerceIdentifierCostCenter to split extra
CommerceIdentifierCostCenter objects by quantity or by amount.

In a form, the user might decide to split $50 of an original CommerceIdentifier
amount of $100 onto a separate cost center. This will create a new
CommerceIdentifierCostCenter object, and adjust the amount of both the
original and the new CommerceIdentifierCostCenter objects to add up to the
original CommerceIdentifier total amount.

 handleApplyCostCenters

This handler, whose invocation is the objective of this entire framework, takes the
information found in the containers and applies it to the current order. The
CommerceIdentifierCostCenter associations created by the user are first
scrutinized and the appropriate business methods are called in the OrderManager
family based on the RelationshipType of the CommerceIdentifierCostCenter.
Second, any DefaultCostCenterName of the CostCenterMapContainer is used to
determine if any remaining Order amount is added to a cost center. This readily
facilitates applications that apply a default cost center to any remaining Order amount
not explicitly covered by other cost centers.

The following code sample is an example of how to use CostCenterFormHandler. The resulting JSP lists
the items in a customer’s order and has a text box and a drop-down list of available cost centers next to
each item. Customers can use this page to specify the quantity of an item and associate a cost center with
the items.

<dsp:form action="cost_centers_line_item.jsp" method="post">

 <tr>

 <td>

 <table border=0 cellpadding=6 cellspacing=0>

 <tr>

 <td></td>

 <td colspan=2>Cost Centers

 <dsp:include page="../common/FormError.jsp"></dsp:include></td>

 </tr>

 <tr valign=top>

 <td width=40><dsp:img hspace="20" src="../images/d.gif"/></td>

 <td>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

8 0

6 - M a n a g i n g C o s t C e n t e r s

μ

 <table border=0 cellpadding=4 cellspacing=1 width=85%>

 <tr>

 <td colspan=13>Assign each line item to a cost center. You

 can also divide a line item between cost centers by entering the number of

 items to assign to the new cost center.

 </td>

 </tr>

 <tr valign=bottom bgcolor="#666666">

 <td colspan=2>Part #</td>

 <td colspan=2>Name</td>

 <td colspan=3>Qty</td>

 <td colspan=2>Qty. to move</td>

 <td colspan=2>Price</td>

 <td colspan=2>Cost Center</td>

 <!--<td colspan=2>Current Cost Center</td>-->

 </tr>

 <dsp:droplet name="ForEach">

 <dsp:param param="order.commerceItems" name="array"/>

 <dsp:oparam name="output">

 <dsp:setvalue paramvalue="element" param="commerceItem"/>

 <dsp:droplet name="BeanProperty">

 <dsp:param param="ciccMap" name="bean"/>

 <dsp:param param="commerceItem.id" name="propertyName"/>

 <dsp:oparam name="output">

 <dsp:setvalue paramvalue="propertyValue" param="ciccList"/>

 <dsp:droplet name="ForEach">

 <dsp:param param="ciccList" name="array"/>

 <dsp:oparam name="output">

 <!-- begin line item -->

 <tr valign=top>

 <td><dsp:valueof param="commerceItem.catalogRefId"/></td>

 <td></td>

 <td><dsp:a href="../catalog/product.jsp?navAction=jump">

 <dsp:param param="commerceItem.auxiliaryData.productId"

 name="id"/>

 <dsp:valueof

 param="commerceItem.auxiliaryData.productRef.displayName"/>

 </dsp:a></td>

 <td></td>

 <td> </td>

 <td align=right><dsp:valueof param="element.quantity"/></td>

 <td> </td>

 <td>

 <dsp:input

 bean='<%="CostCenterDroplet.CostCenterMapContainer.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

8 1

6 - M a n a g i n g C o s t C e n t e r s

μ
 CommerceIdentifierCostCenterMap." +

 request.getParameter("commerceItem.id")+

 "[param:index].splitQuantity"%>' size="4" value="0"

 type="text"/></td>

 <td> </td>

 <td align=right><dsp:valueof param="element.amount"

 converter="currency"/></td>

 <td> </td>

 <td>

 <dsp:select bean='<%="CostCenterDroplet.CostCenterMapContainer.

 CommerceIdentifierCostCenterMap." +

 request.getParameter("commerceItem.id")+

 "[param:index].splitCostCenterName"%>'>

 <dsp:droplet name="ForEach">

 <dsp:param param="costCenters" name="array"/>

 <dsp:oparam name="output">

 <dsp:getvalueof id="option178" param="element"

 idtype="java.lang.String">

<dsp:option value="<%=option178%>"/>

</dsp:getvalueof><dsp:valueof param="element"/>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:select>

 </td>

 <td> </td>

 <td>

 </td>

 <td>

 <dsp:valueof param="element.costCenterName">

 <dsp:valueof bean="CostCenterDroplet.

 CostCenterMapContainer.defaultCostCenterName"/>

 </dsp:valueof>

 </td>

 </tr>

 <!-- end line item -->

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

 </dsp:droplet>

 <dsp:droplet name="ForEach">

 <dsp:param param="order.shippingGroups" name="array"/>

 <dsp:oparam name="output">

 <dsp:setvalue paramvalue="element" param="shippingGroup"/>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

8 2

6 - M a n a g i n g C o s t C e n t e r s

μ
 <dsp:droplet name="BeanProperty">

 <dsp:param param="ciccMap" name="bean"/>

 <dsp:param param="shippingGroup.id" name="propertyName"/>

 <dsp:oparam name="output">

 <dsp:setvalue paramvalue="propertyValue" param="ciccList"/>

 <dsp:droplet name="ForEach">

 <dsp:param param="ciccList" name="array"/>

 <dsp:oparam name="output">

 <!-- begin shipping line item -->

 <tr valign=top>

 <td colspan=7>

 <dsp:valueof param="shippingGroup.description"/></td>

 <td></td>

 <td></td>

 <td align=right><dsp:valueof param="element.amount"

 converter="currency"/></td>

 <td></td>

 <td>

 <dsp:select bean='<%="CostCenterDroplet.CostCenterMapContainer.

 CommerceIdentifierCostCenterMap." +

 request.getParameter("shippingGroup.id")+

 "[param:index].splitCostCenterName"%>'>

 <dsp:droplet name="ForEach">

 <dsp:param param="costCenters" name="array"/>

 <dsp:oparam name="output">

 <dsp:getvalueof id="option279" param="element"

 idtype="java.lang.String">

<dsp:option value="<%=option279%>"/>

</dsp:getvalueof><dsp:valueof param="element"/>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:select>

 </td>

 <td> </td>

 <td>

 </td>

 <td>

 <dsp:valueof param="element.costCenterName">

 <dsp:valueof bean="CostCenterDroplet.CostCenterMapContainer.

 defaultCostCenterName"/>

 </dsp:valueof>

 </td>

 </tr>

 <!-- end shipping line item -->

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

 </dsp:droplet>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

8 3

6 - M a n a g i n g C o s t C e n t e r s

μ
 </dsp:oparam>

 </dsp:droplet>

 <dsp:droplet name="BeanProperty">

 <dsp:param param="ciccMap" name="bean"/>

 <dsp:param param="order.id" name="propertyName"/>

 <dsp:oparam name="output">

 <dsp:setvalue paramvalue="propertyValue" param="ciccList"/>

 <dsp:droplet name="ForEach">

 <dsp:param param="ciccList" name="array"/>

 <dsp:oparam name="output">

 <!-- begin tax line item -->

 <dsp:droplet name="Switch">

 <dsp:param param="element.RelationshipType" name="value"/>

 <dsp:oparam name="CCTAXAMOUNT">

 <tr valign=top>

 <td colspan=7>Tax</td>

 <td></td>

 <td></td>

 <td align=right><dsp:valueof param="element.amount"

 converter="currency"/></td>

 <td></td>

 <td>

 <dsp:select bean='<%="CostCenterDroplet.CostCenterMapContainer.

 CommerceIdentifierCostCenterMap." +

 request.getParameter("order.id")+

 "[param:index].splitCostCenterName"%>'>

 <dsp:droplet name="ForEach">

 <dsp:param param="costCenters" name="array"/>

 <dsp:oparam name="output">

 <dsp:getvalueof id="option376" param="element"

 idtype="java.lang.String">

<dsp:option value="<%=option376%>"/>

</dsp:getvalueof><dsp:valueof param="element"/>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:select>

 </td>

 <td> </td>

 <td>

 </td>

 <td>

 <dsp:valueof param="element.costCenterName">

 <dsp:valueof bean="CostCenterDroplet.

 CostCenterMapContainer.defaultCostCenterName"/>

 </dsp:valueof>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

8 4

6 - M a n a g i n g C o s t C e n t e r s

μ
 </td>

 <td> </td>

 </tr>

 <!-- end tax line item -->

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

 </dsp:droplet>

 <tr>

 <td colspan=13>

 <table border=0 cellpadding=0 cellspacing=0 width=100%>

 <tr bgcolor="#666666">

 <td><dsp:img src="../images/d.gif"/></td>

 </tr>

 </table>

 </td>

 </tr>

 </table>

 </td>

 </tr>

 <tr>

 <td></td>

 <dsp:input bean="CostCenterFormHandler.applyCostCentersSuccessURL"

 value="confirmation.jsp" type="hidden"/>

 <dsp:input bean="CostCenterFormHandler.splitCostCentersSuccessURL"

 value="cost_centers_line_item.jsp?init=false" type="hidden"/>

 <td>You must save changes before continuing.<p>

<!-- <dsp:input bean="CostCenterFormHandler.order" type="hidden"

 beanvalue="ShoppingCart.current"/> -->

 <dsp:input bean="CostCenterFormHandler.splitCostCenters" value="Save changes"

 type="submit"/>

 <dsp:input bean="CostCenterFormHandler.applyCostCenters" value="Continue"

 type="submit"/>

 </td>

 </tr>

 </table>

 </td>

</tr>

</table>

</dsp:form>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

8 5

7 - U s i n g C o m m e r c e E l e m e n t s i n S c e n a r i o s

μ
7 Using Commerce Elements in

Scenarios

ATG Commerce provides a number of Event, Condition, and Action elements that you can use when
creating scenarios for your commerce site. This chapter describes these ATG Commerce elements and
includes the following sections:

Using Commerce Event Elements in Scenarios
Describes the Event elements provided with ATG Commerce.

Using Commerce Condition Elements in Scenarios
Describes the Condition elements provided with ATG Commerce.

Using Commerce Action Elements in Scenarios
Describes the Action elements provided with ATG Commerce.

Using Scenarios to Cross-Sell and Up-Sell Products
Describes the scenarios, scenario templates, and supporting elements that you can
use to cross-sell and up-sell products based on the customer’s current shopping cart.

For information about elements provided for the Motorprise Store, refer to the ATG Business Commerce
Reference Application Guide. For information about the elements provided with the ATG Adaptive Scenario
Engine, see the ATG Personalization Guide for Business Users.

Note: This chapter assumes you have read and understand the information provided in the Creating
Scenarios chapter in the ATG Personalization Guide for Business Users.

Using Commerce Event Elements in Scenarios
In a scenario, an Event element is the “what” part of the scenario. An Event element defines the visitor
behavior that you want to identify and use as a trigger for the next element in the scenario, for example,
“visits page in folder /shoes” or “views an item from Products in the category ‘shoes’.”

This section describes the Event elements provided with ATG Commerce for use in scenarios. These
commerce Event elements are in addition to those provided with the Scenarios module. For information
about scenarios, how to use Event elements in scenarios, and non-commerce Event elements, refer to the
Creating Scenarios chapter of the ATG Personalization Guide for Business Users.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

8 6

7 - U s i n g C o m m e r c e E l e m e n t s i n S c e n a r i o s

μ
If the Event elements provided with ATG Commerce do not meet all of your requirements, your
application developers can create custom ones. Custom Event elements appear in the ATG Control
Center, and you can use them as you would use any standard Event element.

Note for developers: For information about creating custom Event elements, refer to the Adding Custom
Events, Actions, and Conditions to Scenarios chapter in the ATG Personalization Programming Guide. If you
need to extend the Scenario module’s grammar for use with custom ATG Commerce elements, also refer
to the Commerce-Related Grammar Configuration section of the Configuring the ATG Expression Editor
chapter in the same guide.

Also note that Event elements are triggered when the ScenarioManager component receives events
sent as Dynamo Message System messages. The description of each Event element in this chapter
identifies the message that triggers the element, as well as the component or part of the system that is
responsible for sending the message. The optional parameters that appear for a specific Event element
correspond to the properties of the message bean that represents that event, including properties
inherited from any parent classes. For more information about the Dynamo Message System, refer to the
Dynamo Message System chapter of the ATG Programming Guide.

The Event elements provided with ATG Commerce are listed below in alphabetical order.

Approval Complete Event

(ATG Business Commerce only)

The system watches for the order approval system to determine that an order has completed the
approval process. You can use the optional parameters within this element to further define the type of
order to watch for.

Technical note: This element is triggered when the ScenarioManager receives an ApprovalComplete
message sent by the sendApprovalCompleteMessage processor (class
atg.b2bcommerce.approval.processor.ProcSendApprovalCompleteMessage). The processor
sends this message when an order passes through the checkApprovalComplete pipeline chain and has
been determined to have completed the order approval process. For more information, see the Managing
the Order Approval Process chapter in the ATG Commerce Programming Guide.

Approval Required Event

(ATG Business Commerce only)

The system watches for the order approval system to determine that an order requires approval by a
qualified approver. You can use the optional parameters within this element to further define the type of
order to watch for.

Technical note: This element is triggered when the ScenarioManager receives an ApprovalRequired
message sent by the sendApprovalRequiredMessage processor (class
atg.b2bcommerce.approval.processor.ProcSendApprovalRequiredMessage). The processor
sends this message when an order passes through the approveOrder pipeline chain and has been
determined to require approval. For more information, see the Managing the Order Approval Process
chapter in the ATG Commerce Programming Guide.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

8 7

7 - U s i n g C o m m e r c e E l e m e n t s i n S c e n a r i o s

μ
Approval Update Event

(ATG Business Commerce only)

The system watches for the order approval system to indicate that an order has been approved or
rejected by an approver. You can use the optional parameters within this element to further define the
type of order to watch for.

Technical Note: This element is triggered when the ScenarioManager receives an ApprovalUpdate
message. The ApprovalUpdate message is sent by either the
sendApprovalUpdateMessageForApproval processor (class
atg.b2bcommerce.approval.processor.ProcSendApprovalMessage) in the orderApproved
pipeline chain or the sendApprovalUpdateMessageForRejection processor (class
atg.b2bcommerce.approval.processor.ProcSendApprovalMessage) in the orderRejected
pipeline chain, depending on whether the approver approved or rejected the order. For more
information, see the Managing the Order Approval Process chapter in the ATG Commerce Programming
Guide.

FulfillOrderFragment

The system watches for the order fulfillment system to send shipping group information about a new
order to the part of the system that will be responsible for processing it (for example, the
HardgoodFulfiller). You can use the optional parameters within this element to further define the
type of element to watch for.

Technical note: This element is triggered when the ScenarioManager receives a
FulfillOrderFragment message sent by the OrderFulfiller. For more information, see the
Configuring the Order Fulfillment Framework chapter in the ATG Commerce Programming Guide.

Gift Purchased

The system watches for an order that a customer has designated as a gift to be processed. You can use
the optional parameters within this element to further define the type of gift purchase to watch for.

Technical note: This element is triggered when the ScenarioManager receives a GiftPurchased
message sent by the SendGiftPurchasedMessage processor (class
atg.commerce.order.processor.ProcSendGiftPurchasedMessage).

Inventory Threshold Reached

The system watches for the inventory level of items in the catalog to drop below a given value.

Technical note: This element is triggered when the ScenarioManager receives an
InventoryThresholdReached message sent by the InventoryManager. This message indicates that
the stockLevel value for the specific item has dropped below the stockThreshold value (or the
backorderLevel value is less than backorderThreshold, or preorderLevel is below
preorderThreshold). For more information, see the Inventory Framework chapter in the ATG Commerce
Programming Guide.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

8 8

7 - U s i n g C o m m e r c e E l e m e n t s i n S c e n a r i o s

μ
Invoice Is Created

(ATG Business Commerce only)

The system watches for an invoice to be added to the Invoices repository. You can use the optional
parameters within this element to further define the type of invoice to watch for.

Technical Note: This element is triggered when the ScenarioManager receives a CreateInvoice
message sent by a pipeline chain that is invoked by the InvoiceManager’s addInvoice() method. For
more information, see the Generating Invoices chapter in the ATG Commerce Programming Guide.

Invoice Is Removed

(ATG Business Commerce only)

The system watches for an invoice to be removed from the Invoices repository. You can use the optional
parameters within this element to further define the type of invoice to watch for.

Technical Note: This element is triggered when the ScenarioManager receives a RemoveInvoice
message sent by a pipeline chain that is invoked by the InvoiceManager’s removeInvoice() method.
For more information, see the Generating Invoices chapter in the ATG Commerce Programming Guide.

Invoice Is Updated

(ATG Business Commerce only)

The system watches for an invoice in the Invoices repository to be updated. You can use the optional
parameters within this element to further define the type of invoice to watch for.

Technical Note: This element is triggered when the ScenarioManager receives an UpdateInvoice
message sent by a pipeline chain that is invoked by the InvoiceManager’s updateInvoice() method.
For more information, see the Generating Invoices chapter in the ATG Commerce Programming Guide.

Item Added to Order

The system watches for a customer to add an item to a new or existing order. You can use the optional
parameters within this element to further define the combination of item and order that you want to
trigger this element.

Example: Item Added to Order and SKU named Silver Helmet. This element watches for a catalog item called
Silver Helmet to be added to an order.

Technical note: This element is triggered when the ScenarioManager component receives an
ItemAddedToOrder message sent by the SendScenarioEvent processor (class
atg.commerce.order.processor.ProcSendScenarioEvent).

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

8 9

7 - U s i n g C o m m e r c e E l e m e n t s i n S c e n a r i o s

μ
Item Quantity Changed in Order

The system watches for a customer to change the quantity of an existing item in an order. You can use the
optional parameters within this element to further define the type of order or item to watch for.

Technical note: This element is triggered when the ScenarioManager receives an
ItemQuantityChanged message sent by the SendScenarioEvent processor. For more information, see
the sendScenarioEvent Pipeline Chain section in the Commerce Processor Chains chapter of the ATG
Commerce Programming Guide.

Item Removed from Order

The system watches for a customer to remove an item from a new or existing order. You can use the
optional parameters within this element to further define the combination of item and order that you
want to trigger this element.

Technical note: This element is triggered when the ScenarioManager receives an
ItemRemovedFromOrder message sent by the SendScenarioEvent processor (class
atg.commerce.order.processor.ProcSendScenarioEvent).

Modify Order

The system watches for the order fulfillment system to make any type of change to an order that has been
submitted for processing. You can use the optional parameters within this element to further define the
changes that you want to trigger this element.

Technical note: This element is triggered when the ScenarioManager receives a ModifyOrder message,
which can be sent by any part of the system that requests or handles changes to an order (for example,
the OrderFulfiller). For more information, see the Configuring the Order Fulfillment Framework chapter
in the ATG Commerce Programming Guide.

Modify Order Notification

The system watches for the order fulfillment system to indicate that a change has occurred in the status of
an order, either as a result of receiving a ModifyOrder message (see above) or as part of processing a
new order. You can use the optional parameters within this element to further define the notification that
you want to trigger this element.

Technical note: This element is triggered when the ScenarioManager receives a
ModifyOrderNotification message, which can be sent by any part of the system that makes changes
to an order (for example, the HardGoodFulfiller). For more information, see the Configuring the Order
Fulfillment Framework chapter in the ATG Commerce Programming Guide.

Order Changes

The system watches for the order fulfillment system to indicate that the status of an order has changed in
any one of the following ways:

 The order has been completed.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

9 0

7 - U s i n g C o m m e r c e E l e m e n t s i n S c e n a r i o s

μ
 The order contains an item that is unavailable.

 A customer has cancelled the order.

 The order is in a waiting state, requiring attention from someone involved in the order
fulfillment process; for example, the system may have been unable to process the
customer’s credit card information and must wait for a customer service
representative to take appropriate action.

You can use the optional parameters within this element to define the change that you want to trigger
this element.

Example: Order Changes where Sub type is Order Was Removed. This element watches for ATG Commerce to
indicate that a customer has cancelled an order.

Technical note: This element is triggered when the ScenarioManager receives an OrderModified
message sent by the OrderChangeHandler. For more information, see the Configuring the Order
Fulfillment Framework chapter in the ATG Commerce Programming Guide.

Order Submitted

The system watches for a customer to complete the checkout process for an order.

Technical note: This element is triggered when the ScenarioManager receives a SubmitOrder message
sent by the SendFulFillmentMessage processor (class
atg.commerce.order.processor.ProcSendFulfillmentMessage).

Orders Merged

The system watches for an anonymous user’s shopping cart to be merged into a registered user’s current
shopping cart when the anonymous user logs in as a registered user. You can use the optional parameters
within this element to further define the type of event to watch for.

Technical Note: This element is triggered when the ScenarioManager receives an OrdersMerged
message sent by the SendScenarioEvent processor. For more information, see the sendScenarioEvent
Pipeline Chain section in the Commerce Processor Chains chapter in the ATG Commerce Programming Guide.

Payment Group Changes

The system watches for ATG Commerce to indicate that a change in status has occurred for the payment
information within an order. The source of the change is an external system, such as a Customer Service
application. You can use the optional parameters within this element to further define the message that
you want to trigger this element.

Technical note: This element is triggered when the ScenarioManager receives a
PaymentGroupModified message sent by the OrderChangeHandler. For more information, see the
Configuring the Order Fulfillment Framework chapter.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

9 1

7 - U s i n g C o m m e r c e E l e m e n t s i n S c e n a r i o s

μ
Price Changed

The system watches for the price of an order to change at the order subtotal level (that is, the sum of the
item prices has changed due to a change in item quantities and/or the addition or deletion of items). You
can use the optional parameters within this element, such as the new order price, to further define the
type of order to watch for. Note that, depending on the pricing operation that was performed on the
order, the new order price reflects either the order subtotal (that is, no shipping or tax costs) or the order
total.

Technical note: This element is triggered when the ScenarioManager receives a PriceChanged
message sent by the PricingTools object (class atg.commerce.pricing.PricingTools).
PricingTools sends this message if the PricingTools.generatePriceChangedEvents property is
true and if, when the order is repriced, the order’s subtotal price is found to have changed. Note that,
depending on the pricing operation that was performed on the order, the total in the OrderPriceInfo
object that is contained in the PriceChanged message reflects either the order subtotal or the order
total. For more information, see the Using and Extending Pricing Services chapter of the ATG Commerce
Programming Guide.

You can extend PricingTools.createPriceChangedEvent to respond to more object types than just
the order (such as items or shipping groups) and set the PriceChangeType to one of the given choices
(these are static constants in the PriceChanged class).

Promotion Closeness Disqualification

The system detects when a user no longer qualifies for a Closeness Qualifier. This element can be
configured to watch a particular Closeness Qualifier or all Closeness Qualifiers. To set this element to
watch for a particular Closeness Qualifier, you need to indicate “where closenessQualifier's
repositoryID is ID” where ID is the actual ID of the Closeness Qualifier. See Detecting a Closeness
Qualifier for a sample scenario that use this event.

Promotion Closeness Qualification

For users who aren’t currently receiving a promotion, the system checks if they have a particular
Closeness Qualifier or any Closeness Qualifiers, depending on how you set up this element. To set this
element to watch for a particular Closeness Qualifier, you need to indicate “where
closenessQualifier's repositoryID is ID” where ID is the actual ID of the Closeness Qualifier. This
element is often followed by a Send Email action or an Add Items to a Slot action. See Detecting a
Closeness Qualifier for sample scenarios that use this event.

Promotion Offered

The system watches for a scenario to grant a promotion to a user, or, more specifically, for the scenario to
execute a “Give Promotion” action. You can use the optional parameters within this element to further
define the type of event to watch for.

For more information on the “Give Promotion” action element, see Using Commerce Action Elements in
Scenarios in this chapter.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

9 2

7 - U s i n g C o m m e r c e E l e m e n t s i n S c e n a r i o s

μ
Technical Note: This element is triggered when the ScenarioManager receives a
PromotionGrantedMessage sent by a PromotionAction scenario action.

Promotion Revoked

The system watches for a scenario to revoke an active promotion from a user, or, more specifically, for the
scenario to execute a “Revoke Promotion” action. You can use the optional parameters within this
element to further define the type of event to watch for.

For more information on the “Revoke Promotion” action element, see Using Commerce Action Elements
in Scenarios in this chapter.

Technical Note: This element is triggered when the ScenarioManager receives a
PromotionRevokedMessage sent by a RemovePromotionAction scenario action.

Scenario Added an Item to an Order

The system watches for a scenario to add an item to an order, or, more specifically, for the scenario to
execute an “Add Item to Order” action. You can use the optional parameters within this element to further
define the type of order or item to watch for.

For more information on the “Add Item to Order” action element, see Using Commerce Action Elements
in Scenarios in this chapter.

Technical note: This element is triggered when the ScenarioManager receives a
ScenarioAddedItemToOrder message sent by the SendScenarioEvent processor. To disable the firing
of this event, set the PromotionTools.sendEventOnAddItem property to false; note that the default
value is true.

For more information on the SendScenarioEvent processor, see the sendScenarioEvent Pipeline Chain
section in the Commerce Processor Chains chapter in the ATG Commerce Programming Guide.

Scheduled Order Event

The system watches for a scheduled order event, such as the creation, update, or deletion of a scheduled
order, or a scheduled order error or failure. You can use the optional parameters within this element to
further define the type of scheduled order event to watch for.

Technical Note: This element is triggered when the ScenarioManager receives a
ScheduledOrderMessage message sent by the ScheduledOrderHandler form handler. The type of
scheduled order event that occurs depends on the value of the message’s action property. For more
information, see the Scheduling Recurring Orders section of the Configuring Purchase Process Services
chapter in the ATG Commerce Programming Guide.

Shipping Group Changes

The system watches for ATG Commerce to indicate that a change in status has occurred for the shipping
information within an order. The source of the change is an external system, such as a Customer Service

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

9 3

7 - U s i n g C o m m e r c e E l e m e n t s i n S c e n a r i o s

μ
application. You can use the optional parameters within this element to further define the message that
you want to trigger this element.

Technical note: This element is triggered when the ScenarioManager receives a
ShippingGroupModified message sent by the OrderChangeHandler. For more information, see the
Configuring the Order Fulfillment Framework chapter in the ATG Commerce Programming Guide.

Update Inventory

The system watches for the stock level of preordered, backordered, or out-of-stock catalog items to
increase. You can use the optional parameters within this element to further define the type of event to
watch for.

Technical note: This element is triggered when the ScenarioManager receives an UpdateInventory
message sent by the InventoryManager. For more information, see the Inventory Framework chapter in
the ATG Commerce Programming Guide.

Uses Promotion

The system watches for a customer to use a predefined discount to purchase a product. You can use the
optional parameters within this element to specify a promotion to watch for.

Example: Uses promotion named Buy 2 Helmets, Get One Free.

Technical note: This element is triggered when the ScenarioManager receives a PromotionUsed
message sent by the SendPromotionUsedMessage processor (class
atg.commerce.order.processor.ProcSendPromotionUsedMessage). The processor sends this
message when an order containing a promotion passes through the processOrder pipeline chain. For
more information, see the Configuring Purchase Process Services chapter in the ATG Commerce
Programming Guide.

Using Commerce Condition Elements in Scenarios
In a scenario, a Condition element follows and further qualifies an Event element, essentially adding an
“if” statement to the Event element. The options that appear for the condition vary according to the event
that the condition follows. For example, after a “visits page in folder /shoes” Event element, you could
have a Condition element that specifies the exact page: “if page is /shoes/hikingboots.jsp.”

This section describes the Condition elements provided with ATG Commerce for use in scenarios. These
commerce Condition elements are in addition to those provided with the Scenarios module. For
information about scenarios, how to use Condition elements in scenarios, and non-commerce Condition
elements, refer to the Creating Scenarios chapter of the ATG Personalization Guide for Business Users.

If the Condition elements provided with ATG Commerce do not meet all of your requirements, your
application developers can create custom ones. Custom Condition elements appear in the ATG Control
Center, and you can use them as you would use any standard Condition element.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

9 4

7 - U s i n g C o m m e r c e E l e m e n t s i n S c e n a r i o s

μ
Note for developers: For information about creating custom Condition elements, refer to the Adding
Custom Events, Actions, and Conditions to Scenarios chapter in the ATG Personalization Programming Guide.
If you need to extend the Scenario module’s grammar for use with custom ATG Commerce elements, also
refer to the Commerce-Related Grammar Configuration section of the Configuring the ATG Expression Editor
chapter in the same guide.

The Condition elements provided with ATG Commerce are described in the sections that follow.

Item Where

Allows you to further qualify one of the item-related events from ATG Commerce. The condition uses the
same criteria as the discount rules for an item-based promotion. Example:

Item where product named Shatterproof helmet

See the Creating and Maintaining Promotions chapter for more information.

Order Where

Allows you to further qualify one of the order-related events from ATG Commerce. The condition uses the
same criteria as the discount rules for an order-based promotion. Example:

Order where order contains at least 1 (product in category named BMXBikes)

See the Creating and Maintaining Promotions chapter for more information.

Using Commerce Action Elements in Scenarios
In a scenario, an Action element extends the “what” part of the scenario. While an Event element defines
what the site visitor does, an Action element defines what the system does in response. For example, you
can have the system send an e-mail, modify a specific attribute in a user’s profile, or display a specific
piece of content in a slot. (For more information on slots, see the Creating Scenarios chapter of the ATG
Personalization Guide for Business Users.)

This section describes the Action elements provided with ATG Commerce for use in scenarios. These
commerce Action elements are in addition to those provided with the Scenarios module. For information
about scenarios, how to use Action elements in scenarios, and non-commerce Action elements, refer to
the Creating Scenarios chapter of the ATG Personalization Guide for Business Users.

If the Action elements provided with ATG Commerce do not meet all of your requirements, your
application developers can create custom ones. Custom Action elements appear in the ATG Control
Center, and you can use them as you would use any standard Action element.

Note for developers: For information about creating custom Action elements, refer to the Adding Custom
Events, Actions, and Conditions to Scenarios chapter in the ATG Personalization Programming Guide. If you
need to extend the Scenario module’s grammar for use with custom ATG Commerce elements, also refer

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

9 5

7 - U s i n g C o m m e r c e E l e m e n t s i n S c e n a r i o s

μ
to the Commerce-Related Grammar Configuration section of the Configuring the ATG Expression Editor
chapter in the same guide.

The Action elements provided with ATG Commerce are listed below in alphabetical order.

Add Item to Order

Use to add a specific item to a customer’s shopping cart.

Fill Related Items to Slot

Use to add products related to those in the customer’s current shopping cart to a given slot. Specify the
slot to use and the products to show in it by property type (for example, relatedProducts).

By default, related products are not filled in the given slot when the shopping cart is empty. To fill the slot
with related products even when the shopping cart is empty, specify, “Add these items if Shopping Cart is
empty” at the end of the Action element.

For more information on using this Action element, see Using Scenarios to Cross-Sell and Up-Sell
Products.

Give Promotion

Use to make a specific promotion available to the site visitor. The system adds the promotion to the
activePromotions attribute in the visitor’s profile.

Revoke Promotion

Use to remove a specific promotion from the activePromotions attribute in the visitor’s profile.

Using Scenarios to Cross-Sell and Up-Sell Products
ATG Commerce provides you with a predefined scenario named RelatedItemsSlot that you can use to
cross-sell (or up-sell) products related to those in the customer’s current shopping cart. This section
describes how the RelatedItemsSlot scenario works and explains the components and elements that
support it.

The RelatedItemsSlot scenario uses a preconfigured, active slot named RelatedItemsOfCart, which
is provided with ATG Commerce. By default, the RelatedItemsOfCart slot is configured to display
products from the default ATG Commerce product catalog. When using the RelatedItemsSlot scenario
in your own commerce application, your page developers would simply configure the
RelatedItemsOfCart slot to display products from your own product catalog and add it to any page of
your application that displays the customer’s shopping cart.

Examine the following figure, which illustrates the RelatedItemsSlot scenario. (Note that you can
access the actual scenario in the Scenarios>Scenarios task area of the ACC.)

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

9 6

7 - U s i n g C o m m e r c e E l e m e n t s i n S c e n a r i o s

μ

RelatedItemsSlot scenario

As can be seen in the preceding figure, in the RelatedItemsSlot scenario the system watches for any
one of four events that indicate that the customer has made a change to his or her current shopping cart
(order). The first four segments of the scenario define these events; they are:

 Item added to order.

 Item removed from the order.

 Order saved.

 Saved order becomes the current order.

When one of the above events occurs, the system responds by removing all of the items in the
RelatedItemsOfCart slot.

It is the last segment of the scenario that dynamically changes the contents of the RelatedItemsOfCart
slot. In this segment, the system watches for the RelatedItemsOfCart slot to request items. Because
RelatedItemsOfCart is an active slot, it requests items whenever it is empty, and, therefore, it requests
items whenever one of the above changes is made to the customer’s shopping cart (because any one of
those events causes the system to empty the slot).

When the RelatedItemsOfCart slot does request content, the Fill Related Items to Slot action
(highlighted in yellow in the preceding figure) occurs. In this action, the system examines the customer’s
current shopping cart and fills the RelatedItemsOfCart slot with products that relate to those in the
customer’s cart.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

9 7

7 - U s i n g C o m m e r c e E l e m e n t s i n S c e n a r i o s

μ
It’s important to note that in the scenario, by default, the Fill Related Items to Slot action is
configured to fill the RelatedItemsOfCart slot with “property type relatedProducts” in order to
cross-sell (related) products. However, you can change this property type value to any property that holds
products, such as a custom property created by your application developers for up-selling products.

Note to Page Developers: Motorprise, the ATG Business Commerce Reference Application, utilizes the
RelatedItemsSlot scenario and RelatedItemsOfCart slot to cross-sell products on its shopping cart
pages. For details on this implementation, refer to the Commerce Scenarios section of the Merchandising
chapter in the ATG Business Commerce Reference Application Guide.

Creating Additional Scenarios for Cross-Selling and Up-Selling

ATG Commerce provides you with a scenario template named CrossSellProductsSlot to facilitate the
quick creation of additional scenarios for cross-selling and up-selling products on the shopping cart pages
of your application.

The following figure illustrates the CrossSellProductsSlot scenario template. (Note that you can
access the actual template in the Scenarios>Scenario Templates task area of the ACC.)

CrossSellProductsSlot scenario template

You can see from the figure that the CrossSellProductsSlot template closely resembles the
RelatedItemsSlot scenario. You simply replace the (Related Item Slot) placeholder in each
segment with the appropriate slot (either RelatedItemsOfCart or a custom slot created by your
application developers), and then you replace the (property type of Related Item Product)
placeholder with the property value that you desire -- for example, with the relatedProducts property

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

9 8

7 - U s i n g C o m m e r c e E l e m e n t s i n S c e n a r i o s

μ
to fill the slot with products to cross-sell, or a custom property created by your application developers to
fill the slot with products to up-sell.

For general information on working with scenario templates, see the Creating Scenarios chapter of the
ATG Personalization Guide for Business Users.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

9 9

8 - M a n a g i n g A b a n d o n e d O r d e r s

μ
8 Managing Abandoned Orders

An abandoned order or shopping cart is one that a customer creates and adds items to, but never checks
out. Instead, the customer simply exits the Web site, thus “abandoning” the incomplete order.

The Abandoned Order Services module that is provided with ATG Commerce includes a collection of
services and tools that enable you to detect, respond to, and report on abandoned orders and related
activity. As such, it enables you to better understand what kinds of orders your customers are
abandoning, as well as what campaigns effectively entice them to reclaim and complete them. The result
is an increase in order conversion and revenue.

This chapter is intended for merchants and business users responsible for creating campaigns that
respond to order abandonment activity. It includes the following sections:

Understanding Order Abandonment

Responding to Order Abandonment Activity

Important: For information on related tasks that are typically performed by developers, such as
configuring the module, see the Using Abandoned Order Services chapter in the ATG Commerce
Programming Guide.

Understanding Order Abandonment
Examine the following process flow diagram, which illustrates the various paths an order can take once
created by a customer.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 0 0

8 - M a n a g i n g A b a n d o n e d O r d e r s

μ
Customer

creates
an order.

Customer
adds items

to the order.

Customer
completes

(checks out)
the order.

Customer does not complete
(check out) the order within a
given timeframe. Order is idle.

Order remains idle
for extended period
of time.

Customer modifies the
order, for example, by
adding an item.

Order is abandoned Order is lost

Order is
reanimated

Order is
converted

As mentioned in the introduction to this chapter, the Abandoned Order Services module contains a
collection of services and tools that enable you to detect, respond to, and report on abandoned orders
and related activity, that is, activity that falls within the shaded area of the diagram above. As the diagram
implies, there are several general types of orders that fall within this area:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 0 1

8 - M a n a g i n g A b a n d o n e d O r d e r s

μ
Abandoned orders These are incomplete orders that have not been checked out by

customers and instead have remained idle for a duration of time.

Your developers can configure the module to use whatever criteria
you require for defining what orders should be considered
abandoned. Out-of-the-box the following criteria can be used:

-- number of idle days

-- minimum amount (optional)

For example, the system can be configured to detect incomplete
orders that have been idle for 10 days and identify them as
abandoned. Alternatively, you could narrow the criteria by also
specifying that the orders must cost a minimum amount of $25.00
to be identified as abandoned.

It’s important to note that while the default system supports only
one type of abandoned order and only the criteria listed above, it
can be configured to support multiple types of abandoned orders
and additional criteria. For example, you may want the system to
identify and differentiate two types of abandoned orders: high-cost
and low-cost incomplete orders. This would enable you to create
campaigns (scenarios, emails, and so on) that are tailored for each
type.

Once you have identified your requirements with respect to
abandoned orders, you should confer with your developers, who
must configure the system to periodically search for and identify
these orders.

Reanimated orders These are previously abandoned orders that have since been
modified by the customer in some way, such as adding items or
changing item quantities.

For your convenience, a scenario is included out-of-the-box that
watches for users to modify their previously abandoned orders and
then identifies the orders as reanimated. See Responding to Order
Abandonment Activity in this chapter.

Converted orders These are previously abandoned orders that subsequently have
been checked out by the customer.

For your convenience, a scenario is included out-of-the-box that
watches for users to check out their previously abandoned orders
and then identifies the orders as reanimated. See Responding to
Order Abandonment Activity in this chapter.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 0 2

8 - M a n a g i n g A b a n d o n e d O r d e r s

μ
Lost orders These are abandoned orders that have been abandoned for so long

that reanimation of the order is no longer considered realistic. The
default system uses the same criteria to identify lost orders as it
does abandoned orders:

-- number of idle days

-- minimum amount (optional)

For example, the system can be configured to detect incomplete
orders that have been idle for 25 days and identify them as lost.

As with abandoned orders, the criteria above is supported out-of-
the-box; however, your developers can configure the system to
support additional criteria and multiple types of lost orders.

Once you have identified your requirements with respect to lost
orders, you should confer with your developers, who must
configure the system to periodically search for and identify these
orders.

Finally, note in the diagram that the process flow with respect to order abandonment activity is not
always linear. For example, an order can be abandoned, then reanimated, then abandoned again.
Remembering this is particularly useful when creating campaigns to entice users to return to their
abandoned orders and complete them. For information on this, see the next section, Responding to Order
Abandonment Activity.

Responding to Order Abandonment Activity
Scenarios that incorporate promotions and templated email are your key tools to encourage customers to
reanimate and convert their abandoned orders. Consequently, this section provides important
information on creating and testing scenarios for this purpose.

Creating Scenarios that Respond to Abandonment Activity
Describes the out-of-the-box scenario that updates abandoned and previously
abandoned orders to reflect user activity. Also includes an example scenario whose
purpose is to entice users to reanimate and convert their abandoned orders.

Testing Scenarios that Respond to Abandonment Activity
Describes how to test abandonment-related scenarios via the Commerce
Administration user interface.

Scenario Event Elements
Describes the event elements that can be used in abandonment-related scenarios.

Scenario Action Elements
Describes the action elements that can be used in abandonment-related scenarios.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 0 3

8 - M a n a g i n g A b a n d o n e d O r d e r s

μ
Creating Scenarios that Respond to Abandonment Activity

If your Web sites run the Abandoned Order Services module, your developers have already configured the
module to periodically search for and identify orders as abandoned and lost.

As a merchant or business user, your task is to create scenarios that respond to order abandonment
activity. For your convenience a scenario that watches for user activity on abandoned and previously
abandoned orders is provided for you. You can examine that scenario, named Abandoned Orders, in the
Scenarios > Scenarios task area of the ATG Control Center; the scenario is located in the Abandoned
Orders folder. It looks as follows:

Abandoned Orders scenario

In the scenario the system watches for an event that indicates the customer has made a change to the
current order. Possible events include:

 Item added to order

 Item quantity changed

 Item removed from the order

 Order submitted

 Orders merged

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 0 4

8 - M a n a g i n g A b a n d o n e d O r d e r s

μ
When one of the above events occurs, the system updates the order to reflect the date and time it was
last updated. It then identifies the order as reanimated or converted, as appropriate. If the order is
converted, it also records the order’s promotion-related information for reporting purposes.

As previously mentioned, the Abandoned Orders scenario is provided as a convenience for you. As such,
your remaining task is to design and create scenarios that watch for abandoned and lost orders and
encourage customers to reanimate and convert them. The following hypothetical scenario is provided as
an example:

In the first part of the scenario, the system watches for an order to be identified as abandoned. When this
event occurs, the system grants the customer a promotion that offers a 10% discount if an order is placed
and notifies the customer of this promotion via an email, Discount10Reminder.jsp.

The remainder of the scenario looks as follows:

In the remainder of this scenario, one of two branches can succeed:

 If the abandoned order remains idle for one week, a second email message is sent to
remind the customer of the promotion, Discount10SecondReminder.jsp.

 If the customer reanimates the order and then re-abandons it, a different email
message is sent, PleasePlease.jsp.

Because the scenario is configured such that one only branch can succeed, the customer is sent no more
than two messages for any one abandoned order. (Recall that this scenario is hypothetical and is not
included in your installation.)

Finally, it’s important to note that users’ profiles have two abandonment-related properties that you may
want to utilize in scenarios:

 abandonedOrderCount, which stores the number of abandoned orders currently
associated with the user.

 abandonedOrders, which stores the list of abandonedOrder items currently
associated with the user. An item of this type stores the ID of the abandoned order.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 0 5

8 - M a n a g i n g A b a n d o n e d O r d e r s

μ
These properties enable you to create an even richer set of abandonment-related scenarios. For example,
you could create a scenario that watches for a user to log in and then, if the user’s abandonmentCount
profile property is equal to or greater than 1, grants a “Free Shipping on Orders Purchased Today”
promotion to the user.

Testing Scenarios that Respond to Abandonment Activity

As you create scenarios that respond to abandonment activity, you can test them via the Abandoned
Order Messages page of the Commerce Administration UI. The interface enables you to manually assign a
specific abandonment state to one or more orders, which causes the system to fire the appropriate
scenario event (Order Abandoned, Abandoned Order Reanimated, and so on). As such, you can force
orders through the various segments of your scenarios in order to test them.

To test your abandonment scenarios on one or more orders, do the following:

1. Create one or more orders to use as testing data.

2. Access the ATG Dynamo Server Administration UI by pointing your browser to the link
appropriate for your application server. For example, JBoss users use this URL by
default:

http://hostname:8080/dyn/admin

Note: During application assembly, you must specify the Dynamo Administration UI
module in order to access this UI. See the ATG Programming Guide.

3. Log into the UI with your username and password. The default username/password is
admin/admin.

4. Click the Commerce Administration link on the main Dynamo Administration page.

5. Click the Abandoned Order Administration link on the Dynamo Commerce
Administration page.

The system displays the Abandoned Order Messages page, which is shown in the
following figure:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 0 6

8 - M a n a g i n g A b a n d o n e d O r d e r s

μ

Abandoned Order Messages page of the Commerce Administration UI

6. Enter the appropriate information:

 In the Order Ids field, enter the IDs of the orders whose abandonment states
you want to change.

 In the Abandonment State drop-down list, select the abandonment state.

 In the Date of Event field, enter the date. Typically, the date to use is the current
date. However, if the scenario utilizes a time element (for example, “wait 2
weeks”), you can enter a future date to advance the scenario beyond that
element.

 Click the Notify… button.

Scenario Event Elements

The following event elements can be used in scenarios that must watch for abandoned order activity:

Order Abandoned

Abandoned Order Converted

Abandoned Order Lost

Abandoned Order Reanimated

Order Abandoned

The system watches for an order to be identified as abandoned.

While you can use the optional parameters within this element to further define the type of order to
watch for, typically no optional parameters are required.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 0 7

8 - M a n a g i n g A b a n d o n e d O r d e r s

μ
Abandoned Order Reanimated

The system watches for an order to be identified as reanimated.

While you can use the optional parameters within this element to further define the type of order to
watch for, typically no optional parameters are required.

Abandoned Order Converted

The system watches for an order to be identified as converted.

While you can use the optional parameters within this element to further define the type of order to
watch for, typically no optional parameters are required.

Abandoned Order Lost

The system watches for an order to be identified as lost.

While you can use the optional parameters within this element to further define the type of order to
watch for, typically no optional parameters are required.

Scenario Action Elements

The following action elements can be used in scenarios that must respond to abandoned order activity:

Set Order’s Last Updated Date

Reanimate Abandoned Order

Convert Abandoned Order

Log Promotion Information

Set Order’s Last Updated Date

Updates an order to reflect the date and time it was most recently modified by the owner.

Use this action element to update the order to reflect the fact that user activity has occurred. User activity
can include adding items, removing items, changing item quantities, merging orders, and checking out
orders.

Examples:

Set Order's Last Updated date orderId: Event's Order's id

Set Order's Last Updated date orderId: Event's DestinationOrder's

id

Use the second example when the action is invoked as a result of the merging of two orders. In this case,
the action should update the date and time of the destination order, not the source order.

Reanimate Abandoned Order

Identifies an abandoned order as reanimated.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 0 8

8 - M a n a g i n g A b a n d o n e d O r d e r s

μ
Use this action element when an abandoned order has been modified and should, therefore, be
reanimated. Modifications can include adding items, removing items, changing item quantities, merging
orders, and checking out orders.

Examples:

Reanimate Abandoned Order orderId: Event's Order's id

Reanimate Abandoned Order orderId: Event's DestinationOrder's id

Use the second example when the action is invoked as a result of the merging of two orders. In this case,
the action should reanimate the destination order, not the source order.

Convert Abandoned Order

Identifies a previously abandoned order as converted.

Use this action element when a previously abandoned order has been checked out by the owner and,
therefore, should be identified as converted.

Example:

Convert Abandoned Order orderId: Event's Order's id

Log Promotion Information

Calculates and records the number and total value of the promotions applied to a converted order.

Use this action element when a previously abandoned order has been converted, and you want to log its
promotion-related information.

Example:

Log Promotion Information orderId: Event's Order's id

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 0 9

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
9 Catalog Navigation and Searching

A commerce site must supply mechanisms for customers to navigate through the site and find the
products they want to buy. ATG Commerce includes services that you can use to implement navigational
and searching mechanisms on your sites.

This chapter includes the following sections:

Using the parentCategory Property

Displaying Catalog Items

Catalog Navigation

Catalog Searching

This chapter covers only components specific to the ATG Commerce native search capabilities, which are
based on the atg.commerce.catalog.SearchFormHandler; this is not the same as the ATG Search
product. For general information on components used in searching, see the Using Search Forms chapter in
the ATG Page Developer’s Guide. For information on ATG Search, including how to use it as part of your
ATG Commerce site, see the ATG Search Installation and Configuration Guide and the ATG Search
Administration Guide.

Using the parentCategory Property
A category or product can be the child of more than one category. Specifying multiple parent categories
makes the catalog more flexible, but can complicate navigation. This is especially true if the customer
accesses a category or product through a search facility rather than by traversing the catalog hierarchy; if
the customer then wants to move up the hierarchy, you need to determine which parent category to
move to. You can use the parentCategory property of the category and product items to specify a
default parent category for this purpose. A product can have different parentCategories for each
catalog in which the product appears.

For example, suppose you have a link on each page that takes the customer up one level in the catalog
hierarchy. If customer views a product that has multiple parent categories, your sites can track which
parent category the customer accessed the product from, and make this link point back to that category.
But if the customer finds the product by searching rather than navigating through the catalog hierarchy,
you can have the link point to the category specified by the parentCategory property.

If your catalog uses a different name for the parentCategory property, set the
parentCategoryPropertyName property in the

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 1 0

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
/atg/commerce/catalog/CatalogTools.properties file to the actual name of the property. For
example:

parentCategoryPropertyName=higherCategory

For more information on properties of catalogs, categories, and products, and on how to extend the
product catalog, see the ATG Commerce Programming Guide.

Displaying Catalog Items
The components described in this section allow you to find items in the product catalog and display them
for your users.

Looking Up Items in the Catalog

Use the atg.commerce.catalog.custom.CatalogItemLookupDroplet class to locate and display
items in a repository. This ATG servlet bean takes input parameters specifying the repository, repository
ID, site ID, site scope, catalog, and item type, and renders the specified item on the page.

Rather than specifying the repository and item type through input parameters, you can set these through
the servlet bean’s properties file. ATG Commerce includes several lookup components that are configured
to use the product catalog as the default repository and find a specific item type. The following three
components are all based on the CatalogItemLookupDroplet and are found in
/atg/commerce/catalog/:

 CategoryLookup

 ProductLookup

 SKULookup

If your sites include more than one catalog, or if your catalog uses item types not found in the catalog,
you may want to create additional CatalogItemLookupDroplet components. For more information
about the CatalogItemLookupDroplet servlet bean, see CatalogItemLookupDroplet in Appendix: ATG
Commerce Servlet Beans.

The following additional lookup components in /atg/commerce/catalog/ are based on the
ItemLookupDroplet, which does not include catalog or site filtering capabilities.

 MediaLookup

 CatalogLookup

See the ATG Page Developer’s Guide for information on the ItemLookupDroplet. This droplet is also used
by the gift list feature; see Setting Up Gift Lists and Wish Lists in the ATG Commerce Programming Guide.

The following example shows a portion of a JSP that uses the ProductLookup component to display the
current product. The product’s repository ID is passed to this page (via the itemId parameter) from the
page that links to it:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 1 1

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
<dsp:droplet name="/atg/commerce/catalog/ProductLookup">

<dsp:param param="itemId" name="id"/>

<dsp:oparam name="output">

<p><dsp:valueof param="element.displayName"/>

<p><dsp:getvalueof id="img13" param="element.largeImage.url"

 idtype="java.lang.String">

<dsp:img src="<%=img13%>"/>

</dsp:getvalueof>

<dsp:valueof param="element.longDescription"/>

</dsp:oparam>

</dsp:droplet>

ForEachItemInCatalog Servlet Bean

This servlet bean is identical to the commonly used ForEach bean, except that it only iterates over items
that exist in the user’s current catalog (for information on the ForEach servlet bean, see the ATG Page
Developer’s Guide). It includes an additional optional parameter, profile. The user’s profile stores
information on which catalog that user can view. If you do not supply a profile, the current session-
scoped profile is used instead.

Use this servlet bean for lists of items that might not necessarily be in the current catalog, such as
relatedProducts, relatedCategories, and replacementSkus.

Sending Messages When Items are Viewed

You can use the atg.userprofiling.ViewItemEventSender servlet bean to send JMS messages when
the customer views items in the catalog. ViewItemEventSender sends a JMS object message of class
atg.userprofiling.dms.ViewItemMessage. The ViewItemMessage object identifies the repository
item being viewed and the item’s location. These messages can be used to trigger actions. For example, a
message listener could be configured to store information in the customer’s profile about the products
viewed.

The ViewItemEventSender takes a single input parameter called eventobject that specifies the item
viewed. There are no output parameters or open parameters.

ATG Commerce includes two ViewItemEventSender components in /atg/commerce/catalog:
ProductBrowsed and CategoryBrowsed. Depending on which one you use, the eventobject passed
in is either the product or category repository item.

The following example shows a portion of a JSP that uses the ProductBrowsed component to send a
message when a product is viewed. The product’s repository ID is passed to this page (via the itemId
parameter) from the page that links to it:

<dsp:droplet name="/atg/commerce/catalog/ProductLookup">

<dsp:param param="itemId" name="id"/>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 1 2

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
<dsp:oparam name="output">

 <dsp:droplet name="/atg/commerce/catalog/ProductBrowsed">

 <dsp:param param="element" name="eventobject"/>

 </dsp:droplet>

</dsp:oparam>

</dsp:droplet>

Catalog Navigation
If your catalog has a hierarchical structure, you can set up your sites so that customers can navigate to
products by traversing the catalog hierarchy. The structure of the catalog hierarchy is determined by the
child categories and child products of each category. For example, in a grocery store site, the user might
get to a product called Oranges by first selecting the Fruit category, then selecting the Citrus Fruit
category (which is a child category of Fruit), and then selecting the Oranges product (which is a child
product of Citrus Fruit).

Displaying Root Categories

Typically, a catalog home page displays a list of root categories. Unlike other categories, root categories
cannot be found through the childCategories property of other categories. Root categories are those
that appear in the allRootCategories property of the user’s catalog.

The following example uses a ForEach servlet bean with the allRootCategories property to find the
root categories.

<HTML> <HEAD>

<TITLE>Home Page</TITLE>

</HEAD>

<BODY BGCOLOR="#FFFFFF">

<H1>Home Page</H1>

 <dsp:droplet name="/atg/dynamo/droplet/ForEach">

 <dsp:param bean="/atg/userprofiling/Profile.catalog.allRootCategories"

 name="array"/>

 <dsp:oparam name="output">

 <tr>

 <td>

 <dsp:getvalueof id="a26" param="element.template.url"

 idtype="java.lang.String">

<dsp:a href="<%=a26%>">

</dsp:getvalueof>

 <dsp:param param="element.repositoryId" name="id"/>

 <dsp:param value="pop" name="navAction"/>

 <dsp:param param="element" name="Item"/>

 <dsp:valueof param="element.displayName"/></dsp:a></td>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 1 3

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
 </tr>

 </dsp:oparam>

 <dsp:oparam name="empty">

 <p>No root categories found.

 </dsp:oparam>

 </dsp:droplet>

</BODY> </HTML>

Displaying Child Categories and Products

You can use servlet beans in your catalog pages to display a list of all of the child categories and child
products of a category. For example, the grocery store’s Fruit page might list many different fruit products
(Apples, Pears), as well as child categories (Citrus Fruit). When a user clicks on the name of a product on
this page, your sites display that product. When a user clicks on the name of a category, your sites display
a list of that category’s child categories and child products.

The following example shows a portion of a JSP that renders the displayName property of each child
category and child product of the current category. Each of these values is rendered as a link to the
corresponding item. The current category’s repository ID is passed to this page (via the itemId
parameter) from the page that links to it:

<dsp:droplet name="/atg/commerce/catalog/CategoryLookup">

<dsp:param param="itemId" name="id"/>

<dsp:oparam name="output">

 <dsp:droplet name="/atg/dynamo/droplet/ForEach">

 <dsp:param param="element.childCategories" name="array"/>

 <dsp:oparam name="outputStart">

 <p>Child Categories:

 </dsp:oparam>

 <dsp:oparam name="output">

 <dsp:getvalueof id="a24" param="element.template.url"

 idtype="java.lang.String">

<dsp:a href="<%=a24%>">

 <dsp:valueof param="element.displayName"/>

 <dsp:param param="element.repositoryId" name="itemId"/>

 </dsp:a></dsp:getvalueof>

 </dsp:oparam>

 <dsp:oparam name="outputEnd">

 </dsp:oparam>

 </dsp:droplet>

 <dsp:droplet name="/atg/commerce/catalog/ForEachItemInCatalog">

 <dsp:param param="element.childProducts" name="array"/>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 1 4

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
 <dsp:oparam name="outputStart">

 <p>Child Products:

 </dsp:oparam>

 <dsp:oparam name="output">

 <dsp:getvalueof id="a61" param="element.template.url"

 idtype="java.lang.String">

<dsp:a href="<%=a61%>">

 <dsp:valueof param="element.displayName"/>

 <dsp:param param="element.repositoryId" name="itemId"/>

 </dsp:a></dsp:getvalueof>

 </dsp:oparam>

 <dsp:oparam name="outputEnd">

 </dsp:oparam>

 </dsp:droplet>

</dsp:oparam>

</dsp:droplet>

Historical Navigation

Although a catalog is usually structured hierarchically, the hierarchical structure is not rigid. A category or
product can be the child of more than one category, so there can be multiple paths to any catalog item. In
addition, your pages may have links to related products that enable users to jump from one part of the
hierarchy to another, and other navigational aids such as search facilities.

ATG Commerce provides components that you can use to keep track of the path a customer follows when
moving around your sites. This tracking method, called historical navigation or “breadcrumbs,” enables
you to construct a list of the items the customer has visited, and create and display links to these items, so
the customer can easily get back to them.

The atg.commerce.catalog.CatalogNavHistory class tracks the customer’s path through the
catalog. CatalogNavHistory is a subclass of atg.repository.servlet.NavHistory, which can be
used to track navigation history over any set of pages that display repository content. ATG Commerce
includes a session-scoped CatalogNavHistory component at
/atg/commerce/catalog/CatalogNavHistory.

CatalogNavHistory maintains a stack of locations the customer has visited, consisting of the actual
repository items the customer viewed. It stores these locations (items) in the navHistory property.

CatalogNavHistory tracks the customer’s path across all possible actions:

 When the customer navigates down the hierarchy by clicking a navigational link, an
item is pushed onto the stack.

 When the customer navigates up the hierarchy by clicking a navigational link or the
Back button, the appropriate item is removed from the stack, and the new item is
pushed onto the stack.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 1 5

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
 When the customer jumps to an unrelated area of the site, whether by a global

navigation or some other link, the path jumps to that area. If there is a default
navigation path to the new page, as in a hierarchical structure, CatalogNavHistory
uses that default path.

To add and remove items in the navHistory array, use the CatalogNavHistoryCollector servlet
bean, which is of class atg.repository.servlet.NavHistoryCollector. This servlet bean takes the
following input parameters:

 item - The repository item currently being viewed.

 navAction - The operation to be performed on the stack. Options are push, pop, and
jump. A blank navAction is treated as push.

 navCount - Used to detect use of the Back button. The navCount parameter should
be passed in with any link that leads to a page that uses breadcrumbs. It must be
embedded in a link to enable the target page to detect Back button usage. For
example:

<dsp:getvalueof id="templateUrl" idtype="String"

 param="element.template.url">

 <dsp:a page="<%=templateUrl%>">

 <dsp:param name="id" param="element.repositoryId"/>

 <dsp:param name="navAction" value="push"/>

 <dsp:param name="navCount"

 bean="/atg/commerce/catalog/CatalogNavHistory.navCount"/>

 <dsp:valueof param="element.displayName"/>

 </dsp:a>

</dsp:getvalueof>

The navCount parameter can be used to prevent errors in the navHistory caused by
use of the Back button. The navCount parameter can be used to detect when the Back
button is used and the CatalogNavHistoryCollector resets the stack
appropriately.

For example, if you open a page that displays links to categories, each category link
should have an embedded navCount parameter with navCount=1. If you browse the
catalog for a while and then use the Back button to return to the original page, you are
given the page that was cached by your browser. The page isn’t rendered again by
ATG Commerce. The category links in that page still have navCount=1. If you click one
of those links, the CatalogNavHistoryCollector in the target page compares the
stale navCount page parameter that was passed with the link to the currentvalue of
/atg/commerce/catalog/CatalogNavHistory.navCount. These values won’t
match because the parameter from the link is stale, so the
CatalogNavHistoryCollector knows that the Back button was used and rebuilds
the navHistory.

Collecting the Customer’s History

Use the navAction push operation to collect a user’s navigation history. In the first part of our example,
below, the JSP code adds an item to the navHistory stack when the customer clicks the link to
CategoryPage.jsp, permitting you to track their path.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 1 6

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
<dsp:droplet name="/atg/dynamo/droplet/ForEach">

 <dsp:param bean="/atg/userprofiling/Profile.catalog.allRootCategories"

 name="array"/>

 <dsp:oparam name="output">

 <p>

 <!

 Here we set up the navCount and navAction parameters

 which will indicate to the next page how it should update its

 CatalogNavHistory collector. In particular, to set the navCount,

 we query the CatalogNavHistory component, asking it for a number

 that identifies its current state.

 !>

 %>

 <dsp:a href="CategoryPage.jsp">

 <dsp:valueof param="element.displayName"/>

 <dsp:param param="element.repositoryId" name="itemId"/>

 <dsp:param bean="/atg/commerce/catalog/CatalogNavHistory.navCount"

 name="navCount"/>

 <dsp:param value="push" name="navAction"/>

 </dsp:a>

 </dsp:oparam>

</dsp:droplet>

Rendering the Customer’s Path

This second half of our example shows how to render a list of the locations the customer has visited. First,
update CatalogNavHistory with the current location, using the category, navAction, and navCount
parameters passed to the page that embeds this fragment, along with the
CatalogNavHistoryCollector component, which updates CatalogNavHistory.

If the Back button is detected, CatalogNavHistory clears the stack and generates a new one for the
current page, using the default parent property of the catalog.

<dsp:droplet name="/atg/commerce/catalog/CatalogNavHistoryCollector">

 <dsp:param param="categoryObj" name="item"/>

 <dsp:param param="navAction" name="navAction"/>

 <dsp:param param="navCount" name="navCount"/>

</dsp:droplet>

Then use a page fragment such as the following to display the user’s trail. The servlet bean lists the names
of each category held by the CatalogNavHistory component and creates a link to the Category page
that displays them. The following parameters are passed:

 itemId - holds the category repositoryId

 navAction - set with the value of pop, indicating that the CatalogNavHistory
should clear its stack and rebuild it using the default parent category property

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 1 7

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
 navCount - holds the index for each category element from the

CatalogNavHistory.navHistory array

The pageType parameter indicates what type of page is calling the servlet bean; if a category page, the
last category entry in CatelogNavHistory is not made into a link. If the servlet bean is called from a
product page, the last entry is made into a link, because it represents the product’s parent category.

<dsp:droplet name="/atg/dynamo/droplet/ForEach">

 <dsp:param bean="/atg/commerce/catalog/CatalogNavHistory.navHistory"

 name="array"/>

 <dsp:oparam name="output">

 <dsp:droplet name="/atg/dynamo/droplet/Switch">

 <dsp:param param="count" name="value"/>

 <dsp:getvalueof id="nameval1" param="size" idtype="java.lang.String">

 <dsp:oparam name="<%=nameval1%>">

 <dsp:droplet name="/atg/dynamo/droplet/Switch">

 <dsp:param param="pageType" name="value"/>

 <dsp:oparam name="product">

 <dsp:a href="CategoryPage.jsp">

 <dsp:param param="element.repositoryId" name="itemId"/>

 <dsp:param value="pop" name="navAction"/>

 <dsp:param param="index" name="navCount"/>

 <dsp:valueof param="element.displayName"/>

 </dsp:a>

 </dsp:oparam>

 <dsp:oparam name="default">

 <dsp:valueof param="element.displayName"/>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

 </dsp:getvalueof>

 <dsp:oparam name="default">

 <dsp:a href="CategoryPage.jsp">

 <dsp:param param="element.repositoryId" name="itemId"/>

 <dsp:param value="pop" name="navAction"/>

 <dsp:param param="index" name="navCount"/>

 <dsp:valueof param="element.displayName"/>

 </dsp:a>

 >

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

</dsp:droplet>

Tracking Location Jumps

This example shows how to track customer navigation outside of normal history collection, such as with a
hard-coded link that deviates from hierarchical navigation.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 1 8

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ

 <param name="id" value="param:featuredProduct.repositoryId">

 <param name="navAction" value="jump">

 <param name="navCount"

 value="property:/atg/commerce/catalog/CatalogNavHistory.navCount">

 link text

Catalog Searching
You can provide searching mechanisms to enable customers to find products that satisfy a set of criteria.
This section includes the following information related to searching catalogs:

Overview of Catalog Searching

Preconfigured Catalog Search Components

Configuring the Search Form Handler

Configuring Catalog Search Types

Combining Catalog Search Types

Processing Searches

Displaying Search Results

Searching Catalogs in Preview Mode

Using Search Form Handlers with Internationalized Catalogs

For additional search information, see the Using Search Forms chapter in the ATG Page Developer’s Guide.

Overview of Catalog Searching

ATG Commerce provides the form handler class
atg.commerce.catalog.custom.CatalogSearchFormHandler to search the catalog repository for
items such as products and categories. You can use this form handler to construct searches for one or
more catalog item types, and you can specify which properties to examine when searching.

For example, you can search for products that contain a specified substring in their names, or for
categories that are tagged with a specified keyword, or for both products and categories that have a
specified set of property values.

Configuration settings in the form handler’s properties file specify the kinds of elements to search for, the
properties of those elements to consider when searching, and additional configuration details for each
type of search. Typically, customers specify target values to search for through form fields in a JSP.

The CatalogSearchFormHandler class should provide sufficient search functionality and flexibility for
most Commerce applications. ATG Commerce includes several CatalogSearchFormHandler

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 1 9

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
components in /atg/commerce/catalog, each one configured for a different set of search options (see
Preconfigured Catalog Search Components). You can create additional CatalogSearchFormHandler
components and configure them through their properties files or through the Component Editor in the
ACC. If your store requires custom search capabilities, you can extend CatalogSearchFormHandler or
write another form handler.

CatalogSearchFormHandler can be configured to perform four types of searching:

Keyword Searches
Keyword searches use keyword property names and input search strings to search
product and category keywords. The customer enters values that are used for keyword
matching. An example of a keyword search is “Show me all products and categories
with the keyword shoe.”

Text Searches
Full-text searches use text property names and input search strings to perform text
pattern matching on properties. An example of a full-text search is “Show me all
products whose longDescription property contains the word wool.” Note that your
database must be configured properly to support full-text searches. For more
information, see the discussion on databases and database access in the ATG
Installation and Configuration Guide.

Hierarchical Searches
Hierarchical searches look in a subset of categories, starting from a given category, and
including that category’s child categories, the children of those children, and so on.
The given category is indicated by the repository ID in the hierarchicalCategoryId
property. To perform hierarchical searches, you must generate the
ancestorCategories property for each product and category item, as described in
the ATG Commerce Programming Guide.

Advanced Searches
Advanced searches provide possible search options for each property specified in the
form handler’s advancedSearchPropertyNames property. For example, enumerated
types are defined in the repository with a set number of values. Advanced searches
retrieve these values from the definition to display in a selection box. The advanced
query is built from options selected by the customer to further refine the catalog
search. For example, advanced searches allow a customer to search on a description,
manufacturer, or price. An example of an advanced search is “Show me all products
with the keyword shoe where price range is expensive.”

Preconfigured Catalog Search Components

ATG Commerce includes five preconfigured instances of CatalogSearchFormHandler in
/atg/commerce/catalog/custom:

 CatalogSearch searches keywords, descriptions, and display names, and finds
matching products and categories.

 CategorySearch searches keywords and descriptions and finds matching categories
only.

 ProductSearch searches keywords and descriptions and finds matching products
only.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 2 0

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
 ProductTextSearch searches only description fields, not keywords, and finds

matching products only.

 AdvProductSearch combines keyword and text searching with hierarchical and
advanced searching, and finds products that match all search criteria.

To see how these components are configured, open them in the ACC Component Editor and view their
property settings.

Note: When running on a preview server, mode, the five preconfigured search components are instances
of FilteringSearchFormHandler in atg/commerce/catalog/custom. For more information, see
Searching Catalogs in Preview Mode.

Configuring the Search Form Handler

CatalogSearchFormHandler can search for any type of repository item in the catalog repository. You
specify the item types to find by setting the itemTypes property in the form handler’s properties file to a
list of strings, each naming one item type.

Item types typically include category or product, but you can configure search form handlers to search
for SKUs or for custom category or product subtypes you have created. You can also create multiple
instances of CatalogSearchFormHandler and configure them to search for different kinds of objects.
For example, you could have one form handler that searches only for clothing products and another that
searches for all products and categories; a clothing search page might use the first form handler, while a
more general search page would use the second.

In addition to specifying the item types to search for, you must also set the property catalogTools so
that it refers to a CatalogTools object that provides access to categories, products, SKUs, and other
catalog information. Unless you have implemented your own catalog management system, you should
use the default CatalogTools component at /atg/commerce/catalog/CatalogTools.

The following is an example of a properties file for a CatalogSearchFormHandler component that can
perform all four types of searching:

$class=atg.commerce.catalog.custom.CatalogSearchFormHandler

$scope=session

doKeywordSearch=true

keywordsPropertyNames=keywords

doTextSearch=true

textSearchPropertyNames=description,displayName

doHierarchicalSearch=true

ancestorCategoriesPropertyName=ancestorCategories

doAdvancedSearch=true

advancedSearchPropertyNames=weightRange,manufacturer,childSKUs

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 2 1

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
catalog^=/atg/commerce/catalog/custom/CatalogTools.catalog

itemTypes^=/atg/commerce/customCatalogTools.productItemTypes

Because there are so many possible combinations of search options, it is convenient to have several
CatalogSearchFormHandler components, each configured differently. ATG Commerce includes five
different CatalogSearchFormHandler components (see Preconfigured Catalog Search Components),
and you can create additional instances. You can also change the behavior of a
CatalogSearchFormHandler component for an individual page by setting hidden input fields. For
example, suppose your Commerce application has a CatalogSearchFormHandler component named
KeywordSearch that is configured only for keyword searching, but you have one page where you want
to enable text searching as well. You could use this component and just enable keyword searching on the
page by including this tag:

<dsp:input type="hidden" bean="KeywordSearch.doTextSearch" value="true">

Configuring Catalog Search Types

As mentioned previously, CatalogSearchFormHandler provides four different types of searching:

 keyword searches

 text searches

 hierarchical searches

 advanced searches

This section describes how to configure a SearchFormHandler component for each of these types of
searching.

Keyword Searches

To enable keyword searches in the form handler, set the property doKeywordSearch to true. You can
specify the target values to search for by setting the keywords property of the search form handler to an
array of strings, or by setting the searchInput property to a string containing one or more words
separated by spaces. These values are typically specified by the customer through a form input field. (You
can change the separator character used to parse searchInput by setting the form handler’s
keywordInputSeparator property.)

You can force the search form handler to convert all keyword inputs to uppercase before searching by
setting the toUpperCaseKeywords property to true. Similarly, you can force the form handler to convert
keyword inputs to lowercase by setting toLowerCaseKeywords to true instead.

By default, keyword searches look at the keywords property of each catalog item. You can override the
default behavior by setting the keywordsPropertyNames property of the form handler in its properties
file. You can specify one or more properties to consider in keyword searches, and each of these properties
can be either single-valued or multi-valued.

Keyword searches treat single-valued and multi-valued properties differently. If a property specified in
keywordsPropertyNames is single-valued (e.g., the property is of type String), the keyword search
algorithm uses the QueryBuilder.CONTAINS query to examine each target value and see if it appears

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 2 2

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
anywhere within the property’s current value. For example, if you have a keywordString property whose
type is String, and you search for the values red, green, and blue using keyword search, the resulting
query is:

keywordString CONTAINS "red"

OR keywordString CONTAINS "green"

OR keywordString CONTAINS "blue"

Since CONTAINS performs a substring match, this query returns true for an item whose keywordString
has the value reduced calorie, because reduced contains the string red within it.

However, if a property specified in keywordsPropertyNames is multi-valued (for example, the property is
of type String[]), the keyword search algorithm uses the QueryBuilder.INCLUDESANY query to
perform a single search for an exact match between any value in the property and any value in the set of
search criteria. For example, if you have a keywords property whose type is String[], and you search for
the values red, green, and blue using keyword search, the resulting query is:

keywords INCLUDES ANY ["red","green","blue"]

Since INCLUDES ANY searches for an exact match, this query returns false for an item whose keywords
are diet and reduced calorie, because red is not an exact match for reduced calorie.

If you specify multiple properties in keywordsPropertyNames, the keyword search generates a query for
each property, then combines these queries using the OR operator. This means that if any one of the
queries returns true, the item is returned by the search operation.

Text Searches

To enable text searches in the form handler, set the property doTextSearch to true. The target search
string is specified by setting the form handler’s searchInput property, typically by the customer
entering the value in a form input field. Specify which properties to examine by setting the
textSearchPropertyNames property of the form handler. If this property is not set, text searches use a
default set of properties that is defined by the repository.

The implementation of text searching is RDBMS-specific and uses the database’s text searching facility, if
there is one. If your database supports a full-text search engine, you must configure the search engine
properly, and set the repository component’s simulateTextSearchQueries property to false. If a full-
text search engine is not available (either because your RDBMS does not support one, or because you do
not have a license for the one your RDBMS supports), the SQL repository can simulate full-text searching
by using the LIKE operator to determine whether the target value is a substring of any of the text
properties being examined. To enable this feature, set the repository component’s
simulateTextSearchQueries property to true. Note that although simulated full-text searching is
useful for development purposes, performance is unlikely to be adequate for a production server.

By default, the product catalog’s simulateTextSearchQueries is set to true to support full-text
searching on the SOLID database that is included with ATG products. For more information about
configuring your catalog for full-text searching, see the ATG Commerce Programming Guide

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 2 3

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
Hierarchical Searches

To enable hierarchical searches in the form handler, set the doHierarchicalSearch property to true.
You specify the category from which to start the search by setting the form handler’s
hierarchicalCategoryId property to the repository ID of the category whose descendants you want
to find. This property is typically set through a hidden input tag, or specified by the customer through a
form input field.

Hierarchical searching requires that each category and product item have a multi-valued property whose
value is a complete list of all of its ancestor categories. Hierarchical searching restricts the search results to
items whose ancestor categories include the category specified through hierarchicalCategoryId.

Specify the name of the ancestor category property by setting the ancestorCategoriesPropertyName
property of the form handler. Each category and product item has an ancestorCategories property
whose value is a Set of that item’s ancestor categories. The values of this property can be generated
automatically using the component /atg/commerce/catalog/custom/AncestorGeneratorService.
See Using the Catalog Maintenance System in the ATG Commerce Programming Guide for more information
on AncestorGeneratorService.

Advanced Searches

To enable advanced searches, set the form handler’s doAdvancedSearch property to true. You then
specify the set of properties to search by setting the advancedSearchPropertyNames property.
Advanced searches are limited to the set of properties you name here.

Target values are specified for one or more of these properties by adding values to the propertyValues
property of the form handler, typically through form input fields. This property is a Dictionary to which
you add one key/value pair for each property you want to search. The key is the property name, and the
value to search for. For example, to look for items whose color property is set to red, set
CatalogSearchFormHandler.propertyValues.color to red. Setting a value to an empty string
omits it from the search, and therefore specifies that the property matches any value.

For each property specified in propertyValues, a query is generated based on whether the property is
single-valued or multi-valued. For single-valued properties a simple equality test is used. For multi-valued
properties an INCLUDES test is generated, so that the query succeeds if any of the property’s values match
the target value. If you specify multiple properties, the queries are combined using the AND operator, so
all properties must match for the catalog item to be selected.

For example, searching color for a value of red and availableSizes for a value of medium, where
color is a single String and availableSizes is an array of Strings, results in the following query:

(color = red) AND (availableSizes INCLUDES medium)

CatalogSearchFormHandler has a property called propertyValuesByType, which is a Dictionary
containing one key/value pair for each property named in advancedSearchPropertyValues whose
type is either enumerated or RepositoryItem. The key is the name of the property and the value is a
Collection of the possible values. The propertyValuesByType property is useful for building forms that
allow customers to select, for example, the size of an item, where size is an enumerated property with a
set of predefined values like small, medium, and large. The following example illustrates this:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 2 4

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
<!-- Create a select field to choose size and a default option -->

Size: <dsp:select bean="SearchHandler.propertyValues.size">

<!-- Create a default choice -->

<dsp:option value="" selected="true"/>Any size

<!-- Now create an option for each defined value for size -->

<dsp:droplet name="ForEach">

 <dsp:param value="SearchHandler.propertyValuesByType.size" name="array"/>

 <dsp:oparam name="output">

 <dsp:getvalueof id="option11" param="element" idtype="java.lang.String">

<dsp:option value="<%=option11><dsp:valueof param="element">Unknown

size</dsp:valueof>

 </dsp:oparam>

</dsp:droplet>

</dsp:select>

Another approach to determining the possible values of properties whose type is enumerated or
RepositoryItem is to use the servlet bean located at /atg/commerce/catalog/RepositoryValues.
This component is an instance of the atg.repository.servlet.PossibleValues class. See
PossibleValues in the ATG Page Developer’s Guide for a detailed description of this servlet bean.

Note: When running in preview mode, the /atg/commerce/catalog/RepositoryValues component
becomes an instance of atg.commerce.catalog.FilteringCatalogPossibleValues. For more
information, see Searching Catalogs in Preview Mode.

The RepositoryValues servlet bean returns essentially the same information as the
propertyValuesByType property of the CatalogSeachFormHandler class. However, there are some
important differences:

 RepositoryValues determines possible values for only a single item type at a time,
while the propertyValuesByType property works with multiple item types at the
same time.

 RepositoryValues can look up values for any property of a repository item, while
propertyValuesByType works with only the properties specified in the form
handler’s advancedSearchPropertyNames property.

 RepositoryValues works anywhere in a JSP, while the propertyValuesByType
property is only available within search forms you construct using the
SearchFormHandler class.

Combining Catalog Search Types

The CatalogSearchFormHandler class allows you to specify multiple search types in a single request.
For example, you can search on both keywords and text, or you can combine advanced searching with

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 2 5

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
hierarchical searching to find only items in a particular category. In fact, you can use any combination of
search types.

Search types are combined according to the following rules:

 Text and keyword searches are combined using the OR operator, so that a match on
either set of criteria selects an item for inclusion in the search results.

 Hierarchical and advanced searches are combined using the AND operator, limiting
the scope of the search to items that satisfy the hierarchical or advanced search
requirements in addition to any specified text or keyword search criteria.

The query is of the form:

(KeywordConditions OR TextConditions) AND HierarchicalConditions AND

AdvancedSearchConditions

For example, suppose you have a catalog of movies, and you configure a search form handler to allow all
four types of searches. The customer enters the following search criteria:

keywords=comedy

textSearchPropertyNames=description

searchInput=Steve Martin

hierarchicalCategoryId=BudgetMovies

propertyValues.format=DVD

The search will locate all comedies plus all movies whose description mentions Steve Martin, but will
return only the subset of those movies that are found in the BudgetMovies category and are available on
DVD.

Processing Searches

 To implement search in your pages, ensure that your JSP includes the search servlet bean. This example
uses CatalogSearch, but you can use any of the other servlet beans for more specific searches.

<IMPORTBEAN BEAN="/atg/commerce/catalog/CatalogSearch">

SearchFormHandler executes its search query when the handleSearch method is called. Typically, you
associate the form handler’s search property with a submit button, as in this example:

<dsp:input bean="/myCatalog/SearchForm.search" value="Go" type="submit"/>

You can limit searches to a specific catalog or set of catalogs. The CatalogSearchFormHandler and
FilteringSearchFormHandler both include catalogs and queryByCatalog properties. The
catalogs property contains an array of catalog IDs. If this property is populated, then only items that
have membership in at least one of the specified catalogs are returned. If the catalogs property is null, but
the queryByCatalog property is set to true, the query is limited to the user’s current catalog. If
catalogs is null and queryByCatalog is false, the query searches all catalogs.

If you are using the multisite feature, you can also limit searches to a specific site or sites, using the
following parameters:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 2 6

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
 siteIds—Only items that belong to the specified sites are returned.

 siteScope—Specifies the site scope to use when searching for items. Possible values
include:

 current—Returns matching repository items from the current site only. This is
the default.

 all—Returns all matching repository items and does not filter based on site
context.

 any—Returns matching repository items that belong to any site.

 none—Returns matching repository items that don’t have any site affiliations.

 shareable_type_ID—Returns matching repository items that belong to any
sites that are in a sharing group with the current site, as defined by the
ShareableType component ID. For example, you can return items that belong
to sites that share a shopping cart with the current site.

The following example shows a product search form that uses the siteIds property to filter search
results by site:

<dsp:importbean bean="/atg/dynamo/droplet/ForEach" />

<dsp:importbean bean="/atg/multisite/Site"/>

<dsp:importbean bean="/atg/commerce/catalog/ProductSearch"/>

<dsp:getvalueof id="contextroot" idtype="java.lang.String" bean="/Originating

Request.contextPath"/>

<dsp:form action="${contextroot}/search/searchResults.jsp" method="post" id=

"simpleSearch" formid="simplesearchform">

 <%-- Search input control --%>

 <dsp:input bean="ProductSearch.searchInput" type="text" value="" />

 <%-- Get the list of sites that share a shopping cart with the

 current site. --%>

 <dsp:droplet name="SharingSitesDroplet">

 <dsp:param name="shareableTypeId" value="atg.ShoppingCart"/>

 <dsp:param name="excludeInputSite" value="true"/>

 <%-- Loop through the sites that share a shopping cart and render labels

 and checkboxes for them. --%>

 <dsp:oparam name="output">

 <dsp:droplet name="ForEach">

 <dsp:param name="array" param="sites"/>

 <dsp:setvalue param="site" paramvalue="element"/>

 <%-- Display a checkbox and name for the current site first. --%>

 <dsp:oparam name="outputStart">

 <dsp:input bean="ProductSearch.siteIds" type="checkbox"

 beanvalue="Site.id" checked="true" id="currentStore"/>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 2 7

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
 <label for="currentStore">

 <dsp:valueof bean="Site.name"/>

 </label>

 </dsp:oparam>

<%-- Display the other sites that share shopping cart with the current

 site. --%>

 <dsp:oparam name="output">

 <dsp:input bean="ProductSearch.siteIds" type="checkbox"

 paramvalue="site.id" id="otherStore" checked="false"/>

 <label for="otherStore">

 <dsp:valueof param="site.name"/>

 </label>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

 <%-- If there are no shared sites, include the current site only and

 don't display checkboxes. --%>

 <dsp:oparam name="empty">

 <dsp:input bean="ProductSearch.siteIds" type="hidden"

 beanvalue="Site.id"/>

 </dsp:oparam>

 </dsp:droplet>

 <%-- Display the search form's submit button. --%>

 <dsp:input bean="ProductSearch.search" type="submit" value="Search"/>

</dsp:form>

Displaying Search Results

After executing the query, SearchFormHandler makes the search results available in two different
properties, which contain the same information but organize it differently:

 The searchResults property is a Collection of all catalog items that satisfied the
search criteria. If you search for multiple item types (such as categories and products)
all items returned by the search appear in the list regardless of their type.

 The searchResultsByItemType property is a HashMap containing one key/value
pair for each item type you searched for. The key is the item type name (the value
specified in the form handler’s itemTypes property), and the value is a Collection of
items of that type that satisfied the search criteria.

For example, if you search for categories and products in the catalog schema, the
searchResultsByItemType property will have a key called category whose value is a Collection of
matching categories, and another key called product whose value is a Collection of matching products.
The searchResults property will have a Collection in which some of the items are categories and some
of the items are products.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 2 8

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
Within each Collection, the items are not sorted, but reflect the order they were retrieved from the
database. You can use the sorting capabilities of a servlet bean (such as ForEach) to control the order in
which the items are displayed.

The following example uses ForEach with searchResultsByItemType to display only the products
returned by the search, sorted by display name:

Your search returned the following products:

<dsp:droplet name="ForEach">

 <dsp:param value="CatalogSearch.searchResultsByItemType.product" name="array"/>

 <dsp:param value="+displayName" name="sortProperties"/>

<dsp:oparam name="outputStart">

</ dsp:oparam>

 <dsp:oparam name="output">

 <dsp:valueof param="element.displayName">Unknown product</dsp:valueof>

 </dsp:oparam>

<dsp:oparam name="outputEnd">

</dsp:oparam>

 <dsp:oparam name="empty">

 <p>No matching products were found.

 </dsp:oparam>

</dsp:droplet>

The following example is longer and includes more of the available options:

<%@ taglib uri="http://www.atg.com/dsp.tld" prefix="dsp" %>

<dsp:page>

<%--

This JSP bean displays the contents of a search

that potentially returns both category and product repository items.

The one paramater, ResultArray, accepts a HashMap that contains

elements with the keys "category" and "product". The values of these

keys are collections of category or product repository items found in

the search.

--

--%>

<dsp:importbean bean="/atg/dynamo/droplet/Switch"/>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 2 9

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
<dsp:importbean bean="/atg/dynamo/droplet/IsEmpty"/>

<dsp:importbean bean="/atg/dynamo/droplet/ForEach"/>

<dsp:importbean bean="/atg/dynamo/droplet/RQLQueryForEach"/>

<dsp:droplet name="ForEach">

 <dsp:param param="ResultArray" name="array"/>

<%--Each item in this array is a Collection of Categories or

 Products...--%>

 <dsp:param value="ResultCollection" name="elementName"/>

 <dsp:oparam name="output">

 <dsp:droplet name="Switch">

<%--The key tells us if this is a Collection of Products

 or Categories:--%>

 <dsp:param param="key" name="value"/>

<%--For the list of CATEGORIES: --%>

 <dsp:oparam name="category">

 <blockquote>

 <dsp:droplet name="Switch">

 <dsp:param param="ResultCollection" name="value"/>

 <dsp:oparam name="default">

 <p>

<%--For each Category in the Collection: --%>

 <dsp:droplet name="ForEach">

 <dsp:param param="ResultCollection" name="array"/>

 <dsp:param value="+displayName" name="sortProperties"/>

 <dsp:param value="Category" name="elementName"/>

 <dsp:oparam name="outputStart">

 We found these categories matching your search

 <p>

 </dsp:oparam>

 <dsp:oparam name="output">

<%-- Display a link to the Category: --%>

 <dsp:getvalueof id="a78" param="Category.template.url"

 idtype="java.lang.String">

<dsp:a href="<%=a78%>">

 <dsp:param param="Category.repositoryId" name="id"/>

 <dsp:param value="jump" name="navAction"/>

 <dsp:param param="Category" name="Item"/>

 <dsp:valueof param="Category.displayName">No

 name</dsp:valueof></dsp:a></dsp:getvalueof>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 3 0

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
 </dsp:oparam>

 <dsp:oparam name="empty">

 There are no categories matching your search

 <p>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

<%--If NO Categories returned by the search: --%>

 <dsp:oparam name="unset">

 No category items in the catalog could be found that match your query

 </dsp:oparam>

 </dsp:droplet>

<%--ForEach Category--%>

 </blockquote>

 <P>

 </dsp:oparam>

<%--For the list of PRODUCTS: --%>

 <dsp:oparam name="product">

 <blockquote><p>

 <dsp:droplet name="Switch">

 <dsp:param param="ResultCollection" name="value"/>

 <dsp:oparam name="default">

<%--For each Product in the Collection: --%>

 <dsp:droplet name="ForEach">

 <dsp:param param="ResultCollection" name="array"/>

 <dsp:param value="+displayName" name="sortProperties"/>

 <dsp:param value="Product" name="elementName"/>

 <dsp:oparam name="outputStart">

 <p>

 We found these products matching your search

 <p>

 </dsp:oparam>

 <dsp:oparam name="output">

<%-- Display a link to the Product: --%>

 <dsp:getvalueof id="a173" param="Product.template.url"

 idtype="java.lang.String">

<dsp:a href="<%=a173%>">

 <dsp:param param="Product.repositoryId" name="id"/>

 <dsp:param value="jump" name="navAction"/>

 <dsp:param param="Product" name="Item"/>

 <dsp:valueof param="Product.displayName">No name</dsp:valueof>

 - <dsp:valueof param="Product.description"/>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 3 1

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
 </dsp:a></dsp:getvalueof>

 </dsp:oparam>

 <dsp:oparam name="empty">

 There are no products matching your search

 <p>

 </dsp:oparam>

 </dsp:droplet>

<%--ForEach Product--%>

 </dsp:oparam>

<%--If NO Products returned by the search:--%>

 <dsp:oparam name="unset">

 No product items in the catalog could be found that match your query<p>

 </dsp:oparam>

 </dsp:droplet>

 </blockquote><P>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

</dsp:droplet>

<%--ForEach Item returned by Search --%>

</dsp:droplet>

</dsp:page>

Searching Catalogs in Preview Mode

If you are using Content Administration to develop catalogs, be aware that searches against catalogs that
have not been deployed to production (preview mode) are performed slightly differently than searches
against deployed catalogs. The two main differences are that in preview mode the following hold true:

 The five preconfigured search components become instances of
atg.commerce.catalog.FilteringSearchFormHandler

 The /atg/commerce/catalog/RepositoryValues component becomes an
instance of atg.commerce.catalog.FilteringCatalogPossibleValues.

The following example demonstrates the different ways the two modes retrieve the same results.

 In production mode: By default, the SearchFormHandler and
CatalogPossibleValues classes restrict the search results to the user’s current

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 3 2

9 - C a t a l o g N a v i g a t i o n a n d S e a r c h i n g

μ
catalog (see Processing Searches). If a user does a keyword search for “red” in
production mode, the query includes a “where keywordString CONTAINS ‘red’”
clause and the SearchFormHandler adds another clause to make the query “where
keywordString CONTAINS ‘red’ and catalogs CONTAINS (the user’s current
catalog)”. Therefore, the repository would only return items that exist in the user’s
current catalog.

 In preview mode: The catalogs property of categories, products, and SKUs is
derived and non-queryable. So the SearchFormHandler cannot add the extra clause
to narrow the search to only the user’s current catalog. Instead, the query is run
without the extra clause and items not in the user’s current catalog may be returned.
Before returning the result set, FilteringCatalogSearchFormHandler then
iterates through the results, and checks the catalogs property of each. Those items
that do not contain the user’s current catalog among their catalogs are then
removed from the list, and the “filtered” result set containing only items in the user’s
current catalog is returned.

Using Search Form Handlers with Internationalized Catalogs

Some businesses require internationalized catalogs, which can display product information in different
languages, or display different sets of products to customers in different countries.

The CatalogTools component includes a property called alternateRepositories that lets you
specify a mapping between symbolic names (called repository keys) and alternative repositories to use as
the product catalog. You can then use customer locale as the repository key to determine which version
of the catalog to display.

When the customer searches the catalog on an internationalized site, you want to make sure they search
the catalog specific to their language or locale. You can do this by setting the search form handler’s
repositoryKey property to the name that identifies the repository you want to search. The search form
handler uses repositoryKey to retrieve the appropriate catalog from the CatalogTools component. If
you don’t set a repositoryKey, the catalog repository is used.

The repositoryKey property is typically set through a hidden input field in the search form, as in this
example:

<dsp:input value='<dsp:valueof bean="Profile.locale"/>' type="hidden"

bean="MySearchFormHandler.repositoryKey">

Using repositoryKey in conjunction with the alternateRepositories property of the
CatalogTools component lets you ensure that customers see only the appropriate products when
searching the catalog.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 3 3

1 0 - I m p l e m e n t i n g P r o d u c t C o m p a r i s o n

μ
10 Implementing Product Comparison

Commerce sites often require the ability for a site user to compare items in the product catalog. A simple
site may offer the user a single product comparison list and enable the user to add and remove products
from the list, as well as compare the properties of the products in the list. A more complex site may offer
the user multiple comparison lists to compare different types of items (for example, one list to compare
cameras, a different list to compare televisions, and so on). ATG Commerce provides a product
comparison system that enables you to meet both these simple and complex requirements.

The default implementation of the ATG Commerce product comparison system enables the user to
compare any number of products and to do so using the products’ category, product, SKU, and inventory
information. (Note that your application developers may have extended the system to include additional
information.) Additionally, it enables the page developer to display product comparison information as a
table, which the user can manipulate to change the sort criteria for the displayed information.

This chapter describes how to implement a product comparison system and includes the following
sections:

Understanding the ProductList Component

Querying the Product Comparison List

Managing Product Comparison Lists

Examples of Product Comparison Pages

Understanding the ProductList Component
By default, ATG Commerce includes a session-scoped instance of ProductComparisonList, located in
Nucleus at /atg/commerce/catalog/comparison/ProductList. However, your application
developers may have configured additional instances of ProductComparisonList to manage multiple
comparison lists (for example, a list to compare cameras, a different list to compare televisions, and so on).

The items property of the ProductList component stores the list of Entry objects that represent each
product in the product comparison list. Each Entry object combines category, product, SKU, and
inventory information in a single object and, by default, exposes the properties described in the table
below. (Note that your developers may have extended the product comparison system and added
additional properties.)

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 3 4

1 0 - I m p l e m e n t i n g P r o d u c t C o m p a r i s o n

μ
Property Name Property Type Description

product RepositoryIt

em

The product being compared.

category RepositoryIt

em

The category of the product being compared. If the
category is not set explicitly when the product is
added to the list, then the product’s default parent
category is used. If the product’s default parent
category is unset, the category property is null.

sku RepositoryIt

em

The product’s SKU. If the SKU is not set explicitly when
the product is added to the list, then the first SKU in
the product’s childSkus list is used. If the product has
no child SKUs, then the sku property is null.

inventoryInfo InventoryDat

a

The InventoryData object that describes the
inventory status for the given product and SKU. If the
sku property is null or the inventory information isn’t
available, then the inventoryInfo property is null.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 3 5

1 0 - I m p l e m e n t i n g P r o d u c t C o m p a r i s o n

μ
Property Name Property Type Description

productLink String An HTML fragment that specifies an anchor tag that
links to the product’s page in the catalog. The default
format for the link is <a
href="product.template.url?id=product.repo

sitoryId">product.displayName. However,
you can change the format by setting the
ProductComparisonList.productLinkFormat
property.

Note: If you display the product comparison
information in a table, you can use the productLink
property in the configuration of the TableInfo object
that maintains the table information, as in the
following example:

columns=\

 Product Name=productLink,\

 Price=sku.listPrice,\

 …

Or, similarly, to display the product link in a table
column but sort the column on the product’s display
name, you could modify the example in the following
manner:

columns=\

 Product Name=productLink;

product.displayName,\

 Price=sku.listPrice,\

 …

For more information on the TableInfo component,
see the Implementing Sortable Tables chapter in the
ATG Page Developer’s Guide.

categoryLink String An HTML fragment that specifies an anchor tag that
links to the category’s page in the catalog. The default
format for the link is <a
href=category.template.url?id=category.rep

ositoryId>category.displayName. However,
you can change the format by setting the
ProductComparisonList.categoryLinkFormat
property.

Note: Like the productLink property, the
categoryLink property can be used in the
configuration of a TableInfo component. See the
description of the productLink property in this table
for more information.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 3 6

1 0 - I m p l e m e n t i n g P r o d u c t C o m p a r i s o n

μ
Property Name Property Type Description

id Int A unique ID that names the list entry. You can use this
property to retrieve individual entries by calling
ProductComparisonList.getItems(id) in the Java
code or by using <dsp:valueof
bean="ProductList.entries[id]"/> in the JSP.
You can also use this property to delete specific
entries, for example, with a form handler.

You can refer to the properties of entries in the product comparison list (that is, the Entry objects) using
familiar JSP syntax, as in the following example:

<dsp:droplet name="ForEach">

 <dsp:param bean="ProductComparisonList.items" name="array"/>

 <dsp:oparam name="output">

 <p>Product Name: <dsp:valueof param="element.product.displayName"/>

 Category: <dsp:valueof param="element.category.displayName"/>

 Inventory: <dsp:valueof

 param="element.inventoryInfo.inventoryAvailabilityMsg"/>

 </dsp:oparam>

</dsp:droplet>

Querying the Product Comparison List
When given a category, product, and SKU, the ProductListContains servlet bean queries whether a
product comparison list includes the given product.

By default, ATG Commerce includes a globally-scoped instance of ProductListContains, located in
Nucleus at /atg/commerce/catalog/comparison/ProductListContains.

The ProductListContains servlet bean accepts the following input parameters:

 productList (Required)
The ProductComparisonList object to examine.

 productID (Required)
The repository ID of the product to look for in productList.

 categoryID
The repository ID of the category to look for in productList.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 3 7

1 0 - I m p l e m e n t i n g P r o d u c t C o m p a r i s o n

μ
If you don’t specify a category ID for the given product, then ProductListContains
looks for a list entry whose category property matches either the given product’s
default category or null if there is no default category for the given product.

 skuID
The repository ID of the SKU to look for in productList.

If you don’t specify a SKU for the given product, then ProductListContains looks
for a list entry whose sku property matches either the given product’s first child SKU
or null if there are no SKUs for the given product.

 repositoryKey
The key to pass to CatalogTools to select a product catalog repository in which to
look for the item. The key-to-catalog mapping is defined in CatalogTools. If this
parameter is unset, the default product catalog repository is used.

This optional parameter is useful for localization, which often requires the use of
alternate product catalogs for different locales.

ProductListContains doesn’t set any output parameters. However, it renders one of the following
open parameters:

 true
Rendered if the product comparison list contains the specific product, category, and
SKU.

 false
Rendered if the product comparison list doesn’t contain the specified product,
category, and SKU.

For JSP examples of the ProductListContains servlet bean, refer to Examples of Product Comparison
Pages in this chapter.

Managing Product Comparison Lists
The ProductListHandler form handler manages product comparison lists.

By default, ATG Commerce includes a request-scoped instance of ProductListHandler, which is located
in Nucleus at /atg/commerce/catalog/comparison/. ProductListHandler is configured to operate
on the product comparison list that is managed by the ProductList component located at
/atg/commerce/catalog/comparison/. That is, the ProductList component (class
atg.commerce.catalog.comparison.ProductComparisonList) is specified in
ProductListHandler.productList.

If your application uses multiple instances of ProductComparisonList to manage multiple product
comparison lists (for example, a list to compare cameras, a different list to compare televisions, and so on),
then you may want to configure multiple instances of ProductListHandler to manage the contents of
each list.

If your application uses alternate product catalogs for different locales, you can specify the product
catalog to use when operating on a product comparison list. To do so, set the

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 3 8

1 0 - I m p l e m e n t i n g P r o d u c t C o m p a r i s o n

μ
ProductListHandler.repositoryKey property to the key to pass to CatalogTools. CatalogTools
uses the given key and its key-to-catalog mapping to select a product catalog repository. Typically, you
would set the ProductListHandler.repositoryKey property via a hidden input field in a form. If the
repositoryKey property is unset, then the default product catalog repository is used.

The following table describes ProductListHandler’s handle methods for managing a product
comparison list:

Handle Method Description

handleAddProduct Adds the product specified by productID to the
product comparison list, applying optional category
and SKU information if supplied in categoryID and
skuID.

handleAddProductAllSkus Adds all of the SKUs for the product specified by
productID to the product comparison list, applying
optional category information if supplied in
categoryID.

handleAddProductList Adds all of the products specified by productIDList
to the product comparison list, applying optional
category information if supplied in categoryID and
the default SKU for each product, if any.

handleAddProductListAllSkus Adds all of the SKUs for all of the products specified
by productIDList to the product comparison list,
applying optional category information if supplied in
categoryID.

handleCancel Resets the form handler by setting productID,
categoryID, and skuID to null.

handleClearList Clears the product comparison list and redirects the
user to the clearListSuccessURL on success.

handleRefreshInventoryData Updates the inventory information in the product
comparison list.

Note that ProductListHandler has two optional
properties, refreshInventoryDataSuccessURL
and refreshInventoryDataErrorURL, which you
can set to redirect the user when the handle method
succeeds or fails, respectively.

handleRemoveCategory Removes all entries for the category specified by
categoryID from the product comparison list.

handleRemoveEntries Removes the list entries whose ids are specified in
entryIds from the product comparison list.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 3 9

1 0 - I m p l e m e n t i n g P r o d u c t C o m p a r i s o n

μ
Handle Method Description

handleRemoveProduct Removes the product specified by productID from
the product comparison list, applying the optional
category and SKU information if supplied in
categoryID and skuID, respectively.

handleRemoveProductAllSkus Removes all entries for the product specified by
productID from the product comparison list.

handleSetProductList Sets the product comparison list to the products
specified by productIDList, applying optional
category information if supplied in categoryID and
the default SKU for each product, if any.

handleSetProductListAllSkus Sets the product comparison list to contain all the
SKUs for all the products specified by
productIDList, applying optional category
information if supplied in categoryID.

Note that all of ProductListHander’s handle methods manage optional category and SKU information
in the same way. If a product’s category information isn’t specified in categoryID, then the form handler
looks for the default category of the product. If no default value exists, then the property is set to null.
Similarly, if a product’s SKU information isn’t specified in skuID, then the form handler looks for the
product’s first child SKU (that is, the default SKU). If no default value exists, then the property is set to null.

For additional information on ProductListHandler’s methods, refer to the ATG API Reference. For JSP
examples of ProductListHandler, refer to the next section, Examples of Product Comparison Pages.

Examples of Product Comparison Pages
This section provides JSP examples that illustrate the following:

 Displaying a Product Comparison Table

 Adding or Removing a Product from a Product Comparison List

 Adding Multiple Products to a Product Comparison List

 Removing Specific Entries from a Product Comparison List

Displaying a Product Comparison Table

This JSP example shows how to display a simple product comparison table using the products in
ProductList.items and the table information in ProductList.tableInfo (ProductList’s
referenced TableInfo object).

Note that ProductComparisonList (of which the ProductList component is an instance) provides
some convenience methods like sortProperties and tableColumns that call through to the

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 4 0

1 0 - I m p l e m e n t i n g P r o d u c t C o m p a r i s o n

μ
referenced TableInfo object. Consequently, the expression ProductList.tableColumns is equivalent
to the expression ProductList.tableInfo.tableColumns.

Note: The use and behavior of the TableInfo component is described in detail in the Implementing
Sortable Tables chapter in the ATG Page Developer’s Guide. Please refer to this manual for additional
information on TableInfo.

<dsp:importbean bean="/atg/dynamo/droplet/ForEach"/>

<dsp:importbean bean="/atg/dynamo/droplet/BeanProperty"/>

<dsp:importbean bean="/atg/commerce/catalog/comparison/ProductList"/>

<dsp:droplet name="ForEach">

 <dsp:param bean="ProductList.items" name="array"/>

 <dsp:param value="+product.displayName" name="sortProperties"/>

 <!-- Display table headings using TableInfo class -->

 <dsp:oparam name="outputStart">

 <table border="1" cellpadding="5" cellspacing="1">

 <dsp:droplet name="ForEach">

 <dsp:param bean="ProductList.tableColumns" name="array"/>

 <dsp:param value="" name="sortProperties"/>

 <dsp:oparam name="output">

 <dsp:valueof param="element.heading"/>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

 <!-- Display one table row for each item -->

 <dsp:oparam name="output">

 <dsp:setvalue paramvalue="element" param="currentProduct"/>

 <tr>

 <dsp:droplet name="ForEach">

 <dsp:param bean="ProductList.tableColumns" name="array"/>

 <dsp:param value="" name="sortProperties"/>

 <dsp:oparam name="output">

 <td>

 <dsp:droplet name="BeanProperty">

 <dsp:param param="currentProduct" name="bean"/>

 <dsp:param param="element.property" name="propertyName"/>

 <dsp:oparam name="output">

 <dsp:valueof valueishtml="<%=true%>" param="propertyValue"/>

 </dsp:oparam>

 </dsp:droplet>

 </td>

 </dsp:oparam>

 </dsp:droplet>

 </tr>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 4 1

1 0 - I m p l e m e n t i n g P r o d u c t C o m p a r i s o n

μ
 </dsp:oparam>

 <!-- Close the table -->

 <dsp:oparam name="outputEnd">

 </table>

 </dsp:oparam>

</dsp:droplet>

Adding or Removing a Product from a Product Comparison List

This JSP fragment shows how to add or remove a single product from a product comparison list. The
example assumes that the ProductListContains servlet bean is embedded in a product display page
using the following:

<dsp:include page="example.jsp"><dsp:param name="product"

 value="current product"/></dsp:include>

where current product is an expression that provides access to the product displayed on the page.

The given product is passed into the servlet bean in the productId input parameter. The
ProductListContains servlet bean then checks whether it is stored in the product comparison list in
ProductList. If the product is in the product comparison list, then the servlet bean renders the true
open parameter on the product display page, and the user can click the “Remove from comparison list”
submit button to remove the product from the list. If the product isn’t in the product comparison list, then
the servlet bean renders the false open parameter on the product display page, and the user can click
the “Add to comparison list” submit button to add the product to the list.

<dsp:importbean bean="/atg/commerce/catalog/comparison/ProductList"/>

<dsp:importbean bean="/atg/commerce/catalog/comparison/ProductListContains"/>

<dsp:importbean bean="/atg/commerce/catalog/comparison/ProductListHandler"/>

<dsp:form action="product.jsp" method="POST">

<dsp:droplet name="ProductListContains">

 <dsp:param bean="ProductList" name="productList"/>

 <dsp:param param="product.repositoryId" name="productID"/>

 <dsp:oparam name="true">

 <dsp:input bean="ProductListHandler.productID" paramvalue="productID"

 type="hidden"/>

 <dsp:input bean="ProductListHandler.removeProduct" value="Remove from

 comparison list" type="submit"/>

 </dsp:oparam>

 <dsp:oparam name="false">

 <dsp:input bean="ProductListHandler.productID" paramvalue="productID"

 type="hidden"/>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 4 2

1 0 - I m p l e m e n t i n g P r o d u c t C o m p a r i s o n

μ
 <dsp:input bean="ProductListHandler.addProduct" value="Add to

 comparison list" type="submit"/>

 </dsp:oparam>

</dsp:droplet>

</dsp:form>

Adding Multiple Products to a Product Comparison List

This JSP example shows how to build a form from a search results list and let the user check off multiple
products on the form and add them to a product comparison list.

Each product the user checks off on the form is added to productIdList, which stores the list of
repository IDs for the products to add to the comparison list when calling either ProductListHandler’s
handleAddProductList method or handleAddProductListAllSkus method. In this example, the
handleAddProductList method is called. (For more information on ProductListHandler’s handle
methods, refer to Managing Product Comparison Lists.)

<dsp:importbean bean="/atg/commerce/catalog/comparison/ProductListHandler"/>

<dsp:importbean bean="/atg/commerce/catalog/SearchFormHandler"/>

<dsp:form action="compare.jsp" method="POST">

<dsp:droplet name="ForEach">

 <dsp:param bean="SearchFormHandler.searchResults" name="array"/>

 <dsp:param value="+displayName" name="sortProperties"/>

 <dsp:oparam name="outputStart">

 <table border=0 cellpadding=0 cellspacing=0>

 </dsp:oparam>

 <dsp:oparam name="output">

 <tr>

 <td>

 <dsp:input bean="ProductListHandler.productIdList"

 paramvalue="element.repositoryId" type="checkbox"/>

 <dsp:valueof param="element.displayName"/> - <dsp:valueof

 param="element.description"/>

 </td>

 </tr>

 </dsp:oparam>

 <dsp:oparam name="outputEnd">

 </table></br>

 <dsp:input bean="ProductListHandler.addProductList" value="Add to list"

 type="submit"/>

 </dsp:oparam>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 4 3

1 0 - I m p l e m e n t i n g P r o d u c t C o m p a r i s o n

μ
</dsp:droplet>

</dsp:form>

Removing Specific Entries from a Product Comparison List

This JSP example shows how to build a form that lets the user either check off multiple entries to delete
from a product comparison list or delete all of the entries from the list. The ProductListHandler
identifies each entry by its unique ID, which is stored in the id property.

Each product the user checks off on the form is added to entryIds, which stores the list of entry IDs for
the products to remove from the product comparison list when calling ProductListHandler’s
handleRemoveEntries method.

To remove all of the entries from the product comparison list, the user can simply click the “Remove all”
submit button, which calls ProductListHandler’s handleClearAll method. (For more information on
ProductListHandler’s handle methods, refer to Managing Product Comparison Lists.)

<dsp:importbean bean="/atg/commerce/catalog/comparison/ProductList"/>

<dsp:importbean bean="/atg/commerce/catalog/comparison/ProductListHandler"/>

<dsp:form action="delete.jsp" method="POST">

<dsp:droplet name="ForEach">

 <dsp:param bean="ProductList.items" name="array"/>

 <dsp:param value="+product.displayName" name="sortProperties"/>

 <dsp:oparam name="empty">

 There are no items in your comparison list.

 </dsp:oparam>

 <dsp:oparam name="outputStart">

 Remove items from comparison list

 <blockquote>

 </dsp:oparam>

 <dsp:oparam name="output">

 <dsp:input bean="ProductListHandler.entryIds" paramvalue="element.id"

 type="checkbox"/>

 <dsp:valueof valueishtml="<%=true%>"

 param="element.product.displayName"/></br>

 </dsp:oparam>

 <dsp:oparam name="outputEnd">

 </blockquote>

 <dsp:input bean="ProductListHandler.clearListSuccessURL" value="compare.jsp"

 type="hidden"/>

 <dsp:input bean="ProductListHandler.clearList" value="Remove

 all" type="submit"/>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 4 4

1 0 - I m p l e m e n t i n g P r o d u c t C o m p a r i s o n

μ
 <dsp:input bean="ProductListHandler.removeProductSuccessURL"

 value="compare.jsp" type="hidden"/>

 <dsp:input bean="ProductListHandler.removeEntries" value="Remove selected

 items" type="submit"/>

 </dsp:oparam>

</dsp:droplet>

</dsp:form>

Using Product Comparison Lists in a Multisite Environment

If you are using ATG’s multisite feature, you may want to provide users with the ability to compare
products across multiple sites. You do not need to do any additional configuration to use this feature; the
ProductComparisonList is registered as a shareable component by default and works the same way in
a multisite environment as in a single site.

Note: The product comparison list does not prevent users from adding the same product to a list from
different sites.

The shareable Nucleus component that refers to the ProductComparisonList is located at
/atg/commerce/ShoppingCartShareableType. By default, the ProductComparisonList is
registered as a shareable component:

id=atg.ShoppingCart

paths=/atg/commerce/ShoppingCart,\

 /atg/commerce/catalog/comparison/ProductList

See the ATG Multisite Administration Guide for information on shareable components and how to use
sharing groups in your multisite configuration.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 4 5

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
11 Implementing Shopping Carts

In ATG Commerce, a shopping cart is an Order in an INCOMPLETE state. The shopping cart stores the
information about the items a given customer wants to order and their associated quantities and prices.
In addition, it stores the shipping and payment information for the order.

This chapter provides page developers with information on how to manage shopping carts on a
commerce site. It includes the following sections:

Understanding the ShoppingCart Component
Provides information on the ShoppingCart component, which stores a customer’s
current and saved shopping carts.

Managing Shopping Carts
Provides information on retrieving, creating, modifying, and saving shopping carts.

Many of the code examples provided in this chapter are taken from the JSPs in the commerce sample
catalog. For more information on the sample catalog and how to run it, see About the ATG Commerce
Sample Catalog section.

For additional examples of how to manage shopping carts, you can refer to the Motorprise store
reference application; see the ATG Business Commerce Reference Application Guide.

If you are using ATG’s multisite feature, note that the shopping cart tracks the site on which it was created
(when the customer adds the first item), on which each item was added, and on which the most recent
activity occurred. Cart configuration for multisite is done through Site Administration; see the ATG
Multisite Administration Guide for information.

Note: Because a shopping cart is, by definition, an Order in an INCOMPLETE state, the terms “shopping
cart” and “order” are used interchangeably in this chapter.

Understanding the ShoppingCart Component
The ShoppingCart component is responsible for storing and managing a customer’s shopping carts. It
maintains the customer’s current shopping cart that is used during the purchase process, and it stores any
other shopping carts that have been persisted by that customer. These shopping carts are represented as
atg.commerce.order.Order objects in the ATG Commerce object model, and represented as order
items in the Order Repository.

By default, the /atg/commerce/ShoppingCart component is a session-scoped instance of
atg.commerce.order.OrderHolder. The following table describes its important properties:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 4 6

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ

Property Name Property Type Description

current Order The current Order object. If null,
then a new Order is
automatically created.

currentEmpty boolean True indicates the current Order
is null or includes no
CommerceItems.

currentExists boolean True indicates the current Order
exists.

currentTransient boolean True indicates the current Order
is null or transient.

empty boolean True indicates both the current
order and the collection of saved
orders are empty.

failoverRecoveryPricingOperation String The operation to perform in case
of failover. The default setting is
ORDER_TOTAL.

handlerOrderId String Identifies the Order.

last Order The last completed Order. When
an Order is submitted for
checkout, the Order in
ShoppingCart.current is
moved to ShoppingCart.last,
and the
ShoppingCart.current
property is reinitialized.

orderType String The type of order to create when
constructing a new Order.

By default, this property is set to
/atg/commerce/order/Order

Tools.defaultOrderType.

persistOrders boolean True indicates the Order is
persisted.

repriceAfterFailoverRecovery boolean True indicates that an Order will
be repriced after failover
recovery.

restorableOrders RestorableOrders The set of orders that can be
restored through session
backup.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 4 7

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
saved Collection A Collection of the user’s

saved shopping carts.

Applications should use the
handle methods provided in
atg.commerce.order.OrderH

older to move any cart from
ShoppingCart.saved to
ShoppingCart.current. See
the ATG API Reference for more
information.

savedEmpty boolean True indicates the Collection
of saved shopping carts is null or
empty.

Managing Shopping Carts
This section provides information on the following shopping cart tasks:

 Creating and Retrieving Shopping Carts

 Adding Items to Shopping Carts

 Adding Shipping Information to Shopping Carts

 Adding Payment Information to Shopping Carts

 Repricing Shopping Carts

 Saving Shopping Carts

Creating and Retrieving Shopping Carts

As previously mentioned in this chapter, the ShoppingCart component stores a user’s current and saved
shopping carts. You can use the ShoppingCart component’s properties and handle methods to create a
new shopping cart or retrieve one of the user’s saved shopping carts and make it the user’s current
shopping cart.

The following JSP example illustrates how to create and retrieve shopping carts. In the example, the
ShoppingCart.savedEmpty property is checked to determine whether the current user has any saved
shopping carts. If the user doesn’t have any saved shopping carts, the user is given the option to create
one. If the user has saved shopping carts, the user is given the option to select one of the saved shopping
carts to either delete or make the current shopping cart, to delete all of the saved shopping carts, or to
create a new shopping cart.

<dsp:importbean bean="/atg/commerce/ShoppingCart"/>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 4 8

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
<dsp:form action="shoppingcart.jsp" method="post">

 <dsp:droplet name="/atg/dynamo/droplet/Switch">

 <dsp:param bean="ShoppingCart.savedEmpty" name="value"/>

 <dsp:oparam name="true">

 <!-- since there are no saved carts, we cannot switch to another so

 we only give them the option to create a new cart -->

 <dsp:input bean="ShoppingCart.create" value="Create" type="submit"/>

another shopping cart

 </dsp:oparam>

 <dsp:oparam name="false">

 <!-- We have other shopping carts, so let them do everything -->

 Shopping Cart <dsp:select bean="ShoppingCart.handlerOrderId">

 <dsp:droplet name="ForEach">

 <dsp:param bean="ShoppingCart.saved" name="array"/>

 <dsp:param value="savedcart" name="elementName"/>

 <dsp:oparam name="output">

 <dsp:getvalueof id="option26" param="savedcart.id"

idtype="java.lang.String">

<dsp:option value="<%=option26%>"/>

</dsp:getvalueof><dsp:valueof param="savedcart.id"/>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:select>:

 <dsp:input bean="ShoppingCart.switch" value="Switch" type="submit"/> to,

 <dsp:input bean="ShoppingCart.delete" value="Delete" type="submit"/> or

 <dsp:input bean="ShoppingCart.create" value="Create" type="submit"/>

another shopping cart.

 <dsp:input bean="ShoppingCart.deleteAll"

value="Delete All Shopping Carts" type="submit"/>

 </dsp:oparam>

 </dsp:droplet>

</dsp:form>

Implementing Order Retrieval

You can also use the OrderLookup servlet bean to retrieve a user’s incomplete orders (that is, shopping
carts). OrderLookup enables you to retrieve a single order, all orders assigned to a particular cost center
(ATG Business Commerce only), all orders placed by a particular user, or all orders placed by a particular
user that are in specific state, such as INCOMPLETE.

Once the desired shopping cart is moved to ShoppingCart.current, you can use a ForEach servlet
bean to iterate over the commerce items in the cart and display them. The following JSP code example
illustrates how to do this. In the example, a checkbox is rendered beside each item to allow the user to
remove any item from the cart; likewise, a textbox is rendered beside each item to allow the user to
modify the quantity of any item.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 4 9

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
<droplet bean="ForEach">

 <param name="array" value="bean:ShoppingCart.current.commerceItems">

 <param name="elementName" value="item">

 <oparam name="output">

<tr valign=top>

<td>

 <input type="checkbox" unchecked

 bean="CartModifierFormHandler.removalCatalogRefIds"

 value="param:item.catalogRefId">

</td>

<td>

 <input size=4 name="param:item.catalogRefId"

value="param:item.quantity">

</td>

<td>

 <droplet src="product_fragment.jsp">

 <param name="childProduct" value="param:item.auxiliaryData.productRef">

 <%@ include file="product_fragment.jsp"%>

 </droplet>

 </oparam>

</droplet>

cart.jsp in the Motorprise reference application illustrates similar functionality. If you’ve installed ATG
Business Commerce, you can access cart.jsp at <ATG10dir>\MotorpriseJSP\j2ee-
apps\motorprise\web-app\en\catalog\. You can also open the page in the ACC’s Document Editor
via the Pages and Components>J2EE Pages task area.

Adding Items to Shopping Carts

This section describes how to use the CartModifierFormHandler to add items to the current shopping
cart. It includes the following sections:

 Adding One Item at a Time

 Adding Multiple Items at Once

 Overriding the Default Commerce Item Type

 Handling Custom Commerce Item Properties

Adding One Item at a Time

The simplest way to add items to the current shopping cart is to add them one at a time. The following
JSP code example serves as an illustration.

In the example, the user can select which SKU of the current product to add to the cart from a drop-down
list. A ForEach servlet bean is used to iterate over the SKUs of the product and populate the drop-down
list, which is associated with the catalogRefIds property of the CartModifierFormHandler.
Additionally, the user can specify in a textbox a quantity of the selected SKU to add to the cart, which is
associated with the quantity property of the CartModifierFormHandler.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 5 0

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
When the user clicks the Add To Cart submit button, the form is processed, the properties of
CartModifierFormHandler are set, and the handleAddItemToOrder method of
CartModifierFormHandler is invoked. The handleAddItemToOrder method adds the quantity
(specified in CartModifierFormHandler.quantity) of the selected SKU (specified in
CartModifierFormHandler.catalogRefIds and identified by repository ID) to the current Order and
then reprices the Order.

<dsp:importbean

bean="/atg/commerce/order/purchase/CartModifierFormHandler"/>

<dsp:importbean bean="/atg/dynamo/droplet/ForEach"/>

<%--Create a form for user to select a SKU and add it to his/her cart:--%>

<dsp:getvalueof id="form10" bean="/OriginatingRequest.requestURI"

idtype="java.lang.String">

<dsp:form action="<%=form10%>" method="post">

<%--Store this product's ID in the Form Handler: --%>

<dsp:input bean="CartModifierFormHandler.ProductId"

paramvalue="Product.repositoryId" type="hidden"/>

<%--set id param so that the Navigator won't get messed up in case of an

error that makes us return to this page.--%>

<input value='<dsp:valueof param="Product.repositoryId"/>' type="hidden"

name="id">

 <table cellpadding=0 cellspacing=0 border=0>

 <tr><td class=box-top-store>Add to Cart</td></tr>

 <tr><td class=box>

<%--Display any errors that have been generated during Cart

 operations:--%>

 <dsp:include

page="../../common/DisplayCartModifierFormHandlerErrors.jsp"></dsp:include>

 Add

<%--Textbox with QTY the user wants to order: --%>

 <dsp:input bean="CartModifierFormHandler.quantity" size="4"

value="1" type="text"/>

<%--Create a dropdown list with all SKUs in the Product.

 Store the selected SKU's id in the form handler: --%>

 <dsp:select bean="CartModifierFormHandler.catalogRefIds">

<%--For each of the SKUs in this Product, add the SKU to the

 dropdown list:--%>

 <dsp:droplet name="ForEach">

 <dsp:param param="Product.childSKUs" name="array"/>

 <dsp:param value="Sku" name="elementName"/>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 5 1

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
 <dsp:param value="skuIndex" name="indexName"/>

 <dsp:oparam name="output">

<%--This is the ID to store if this SKU is selected in

 dropdown:--%>

 <dsp:getvalueof id="option73" param="Sku.repositoryID"

idtype="java.lang.String">

<dsp:option value="<%=option73%>"/>

</dsp:getvalueof>

<%--Display the SKU's display name in the dropdown

 list:--%>

 <dsp:valueof param="Sku.displayName"/>

 </dsp:oparam>

 </dsp:droplet>

<%--ForEach SKU droplet--%>

 </dsp:select>

<%-- ADD TO CART BUTTON: Adds this SKU to the Order--%>

 <dsp:input bean="CartModifierFormHandler.addItemToOrder"

value="Add to Cart" type="submit"/>

<%-- Go to this URL if NO errors are found during the ADD TO

CART button processing:--%>

 <dsp:input bean="CartModifierFormHandler.addItemToOrderSuccessURL"

value="/checkout/cart.jsp" type="hidden"/>

 </td>

 </tr>

 </table>

</dsp:form></dsp:getvalueof>

For detailed information about CartModifierFormHandler and its handle methods, you can refer to the
Modifying Orders section of the Configuring Purchase Process Services chapter in the ATG Commerce
Programming Guide.

Additionally, if you’ve installed ATG Business Commerce, you can also refer to AddToCart.jsp in the
Motorprise reference application for a similar JSP code example. AddToCart.jsp is embedded into
product.jsp to enable the user to add a quantity of the displayed SKU to the user’s shopping cart. You
can access both AddToCart.jsp and product.jsp at <ATG10dir>\MotorpriseJSP\j2ee-
apps\motorprise\web-app\en\catalog\. You can also open these pages in the ACC’s Document
Editor via the Pages and Components>J2EE Pages task area.

Adding Multiple Items at Once

You can create pages that allow users to add multiple items to the current shopping cart in a single form
submission. The items can refer to different products, different SKUs, and have different quantities. The
CartModifierFormHandler contains an items property that allows you to set per-item property values.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 5 2

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
The following JSP code example illustrates adding multiple items for more than one SKU for a single
product. In the example, the user can specify in a textbox a different quantity for each SKU to add to the
cart. There are hidden input fields for the product ID and SKUs. Each product ID, SKU, and quantity
textbox is associated with a subproperty of one element in the CartModifierFormHandler.items
array.

When the user clicks the Add To Cart submit button, the form is processed, the properties of
CartModifierFormHandler are set, and the handleAddItemToOrder method of
CartModifierFormHandler is invoked. The handleAddItemToOrder method iterates through the
CartModifierFormHandler.items elements and adds an item for each element with a non-zero
quantity, using that element’s productId and catalogRefId for the new item.

<dsp:importbean

bean="/atg/commerce/order/purchase/CartModifierFormHandler"/>

<dsp:importbean bean="/atg/dynamo/droplet/ForEach"/>

<dsp:form action="display_product.jsp" method="post">

<input name="id" type="hidden" value='<dsp:valueof

param="product.repositoryId"/>'>

<dsp:input bean="CartModifierFormHandler.addItemToOrderSuccessURL"

type="hidden" value="shoppingcart.jsp"/>

<table border=1>

<tr>

<td>SKU</td>

<td>Quantity</td>

</tr>

<dsp:droplet name="ForEach">

 <dsp:param name="array" param="product.childSKUs"/>

 <dsp:param name="elementName" value="sku"/>

 <dsp:param name="indexName" value="skuIndex"/>

 <dsp:oparam name="outputStart">

 <dsp:input bean="CartModifierFormHandler.addItemCount"

paramvalue="size" type="hidden"/>

 </dsp:oparam>

 <dsp:oparam name="output">

 <tr>

 <td><dsp:valueof param="sku.displayName"/></td>

 <td>

 <dsp:input

bean="CartModifierFormHandler.items[param:skuIndex].quantity" size="4"

type="text" value="0"/>

 <dsp:input

bean="CartModifierFormHandler.items[param:skuIndex].catalogRefId"

paramvalue="sku.repositoryId" type="hidden"/>

 <dsp:input

bean="CartModifierFormHandler.items[param:skuIndex].productId"

paramvalue="product.repositoryId" type="hidden"/>

 </td>

 </tr>

 </dsp:oparam>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 5 3

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ

</dsp:droplet>

</table>

<dsp:input bean="CartModifierFormHandler.addItemToOrder" type="submit"

value="Add To Cart"/>

</dsp:form>

The CartModifierFormHandler must be told how many elements to allocate for the items array. This is
done by setting the CartModifierFormHandler.addItemCount property. In the preceding example,
addItemCount is set to the number of SKUs defined for the product in a hidden input field . This
technique works in the example because all of the CartModifierFormHandler.items input fields have
explicit value or paramvalue attributes.

The next code fragment illustrates a more complex technique for setting
CartModifierFormHandler.addItemCount. This technique is appropriate if you want to preserve a
user’s input when a page is redisplayed because of a form submission error. The dsp:setvalue tag is not
executed if the page is redisplayed.

<dsp:droplet name="/atg/dynamo/droplet/Switch">

 <dsp:param name="value" bean="CartModifierFormHandler.addItemCount"/>

 <dsp:oparam name="0">

 <dsp:setvalue bean="CartModifierFormHandler.addItemCount" value="5"/>

 </dsp:oparam>

</dsp:droplet>

<dsp:input bean="CartModifierFormHandler.addItemCount" value="5"

type="hidden"/>

Overriding the Default Commerce Item Type

By default, ATG Commerce supports three types of commerce items. One corresponds to regular SKUs.
The other two correspond to configurable SKUs and their subproperties (see Creating Configurable SKUs
in the ATG Commerce Catalog Administration chapter). Your sites may support additional custom
commerce item types (see Extending the Purchase Process in the Customizing the Purchase Process Externals
chapter in the ATG Commerce Programming Guide).

The commerceItemType property of CartModifierFormHandler determines what type of commerce
item is created by addItemToOrder. Normally, commerceItemType is set to “default.” You can specify a
different commerce item type in the CartModifierFormHandler configuration file or in a form input
field. If you add multiple items in a single form submission, you can override the
CartModifierFormHandler.commerceItemType setting for an individual item by including a hidden
input field to set CartModifierFormHandler.items[n].commerceItemType.

Values for commerceItemType must match keys in
/atg/commerce/order/OrderTools.commerceItemTypeClassMap.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 5 4

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
Handling Custom Commerce Item Properties

The CartModifierFormHandler.addItemToOrder method has built-in support for some types of
commerce item extensions. If your sites have extended commerce items with primitive data type
properties, you can supply values for those properties by associating form fields with the
CartModifierFormHandler.value Dictionary.

For example, suppose your sites have extended commerce items to support monograms, and the custom
properties are named monogram and style. The following JSP code example illustrates how to handle
user input for monograms without making any CartModifierFormHandler changes.

Monogram Options

Initials / Text: <dsp:input bean="CartModifierFormHandler.value.monogram"

size="20" type="text"/>

Style: <dsp:select bean="CartModifierFormHandler.value.style">

 <dsp:option value="Block"/>Block

 <dsp:option value="Diamond"/>Diamond

 <dsp:option value="Panel"/>Panel

 <dsp:option value="Stagger"/>Stagger

 <dsp:option value="Script"/>Script

 </dsp:select>

If you add multiple items in a single form submission, you can supply different custom property values for
each item via the value Dictionary in each CartModifierFormHandler.items array element.
Continuing with the preceding example, you could specify a single item’s monogram text as:

Initials / Text: <dsp:input

bean="CartModifierFormHandler.items[0].value.monogram" size="20"

type="text"/>

If you add multiple items in a single form submission and you want to supply the same custom property
values for all or most of the items, you can use CartModifierFormHandler.value for the common
values and CartModifierFormHandler.items[n].value for special cases. If a property name appears
in both the common Dictionary and an individual item’s Dictionary, addItemToOrder uses the individual
item’s value.

Note that the value Dictionary cannot be used for standard commerce item properties, such as
quantity and catalogRefId.

Adding Shipping Information to Shopping Carts

Adding shipping information to shopping carts involves the following subprocesses:

 Creating a list of shipping groups for potential use in the current order. The user can
select from among these shipping groups when checking out the order. See Creating
Potential Shipping Groups.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 5 5

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
 Specifying the shipping groups to use with the current order. See Adding Shipping

Groups to an Order.

 Selecting the shipping methods, such as Ground or Next Day, for the order’s shipping
groups. See Selecting Shipping Methods.

Note 1: Be aware that the ShippingGroupFormHandler form handler and
AvailableShippingMethods servlet bean, which are described in the subsections below, do not reprice
a given Order. Consequently, if you enable customers to make order changes that affect order price
through either mechanism, you should reprice the given Order using the RepriceOrderDroplet servlet
bean before displaying its price to the customer. For more information on RepriceOrderDroplet, see
Repricing Shopping Carts in this chapter.

Note 2: If an order contains any gift items, ShippingGroupDroplet and ShippingGroupFormHandler
treat those items and their shipping information differently from other items. See the ATG Commerce
Programming Guide for details.

Creating Potential Shipping Groups

You can create a list of shipping groups for potential use in an Order in one of two ways:

 from information gathered from the user via forms

 from information stored in the user’s profile

To create shipping groups from information obtained from the user via forms, use
CreateHardgoodShippingGroupFormHandler and
CreateElectronicShippingGroupFormHandler. These form handlers create, respectively, hard good
and electronic shipping groups. Additionally, if the addToContainer property of the form handlers is set
to true (which it is by default), they add the new shipping group to the ShippingGroupMapContainer
and make it the default shipping group in the container. The ShippingGroupMapContainer stores the
shipping groups available for use in the current order. Once the shipping group is added to the
ShippingGroupMapContainer, the user can use it when checking out the current order. See Adding
Shipping Groups to An Order.

The following JSP code example from hardgood_sg.jsp in the commerce sample catalog illustrates the
use of CreateHardgoodShippingGroupFormHandler.

<dsp:importbean

bean="/atg/commerce/order/purchase/CreateHardgoodShippingGroupFormHandler"

/>

<dsp:importbean bean="/atg/userprofiling/Profile"/>

<hr>Enter new shipping address for HardgoodShippingGroup

<dsp:form action="hardgood_sg.jsp" method="post">

ShippingGroup NickName:<dsp:input

bean="CreateHardgoodShippingGroupFormHandler.hardgoodShippingGroupName"

size="30" type="text" value=""/>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 5 6

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ

First:<dsp:input

bean="CreateHardgoodShippingGroupFormHandler.HardgoodShippingGroup.Shippin

gAddress.firstName" beanvalue="Profile.firstName" size="30" type="text"/>

Middle:<dsp:input

bean="CreateHardgoodShippingGroupFormHandler.HardgoodShippingGroup.Shippin

gAddress.middleName" beanvalue="Profile.middleName" size="30"

type="text"/>

Last:<dsp:input

bean="CreateHardgoodShippingGroupFormHandler.HardgoodShippingGroup.Shippin

gAddress.lastName" beanvalue="Profile.lastName" size="30" type="text"/>

Address:<dsp:input

bean="CreateHardgoodShippingGroupFormHandler.HardgoodShippingGroup.Shippin

gAddress.address1" beanvalue="Profile.defaultShippingAddress.address1"

size="30" type="text"/>

Address (line 2):<dsp:input

bean="CreateHardgoodShippingGroupFormHandler.HardgoodShippingGroup.Shippin

gAddress.address2" beanvalue="Profile.defaultShippingAddress.address2"

size="30" type="text"/>

City:<dsp:input

bean="CreateHardgoodShippingGroupFormHandler.HardgoodShippingGroup.Shippin

gAddress.city" beanvalue="Profile.defaultShippingAddress.city" size="30"

type="text" required="<%=true%>"/>

State:<dsp:input

bean="CreateHardgoodShippingGroupFormHandler.HardgoodShippingGroup.Shippin

gAddress.state" maxsize="2"

beanvalue="Profile.defaultShippingAddress.state" size="2" type="text"

required="<%=true%>"/>

Postal Code:<dsp:input

bean="CreateHardgoodShippingGroupFormHandler.HardgoodShippingGroup.Shippin

gAddress.postalCode" beanvalue="Profile.defaultShippingAddress.postalCode"

size="10" type="text" required="<%=true%>"/>

Country:<dsp:input

bean="CreateHardgoodShippingGroupFormHandler.HardgoodShippingGroup.Shippin

gAddress.country" beanvalue="Profile.defaultShippingAddress.country"

size="10" type="text"/>

<dsp:input

bean="CreateHardgoodShippingGroupFormHandler.newHardgoodShippingGroupSucce

ssURL" type="hidden" value="shipping.jsp?init=false"/>

<dsp:input

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 5 7

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
bean="CreateHardgoodShippingGroupFormHandler.newHardgoodShippingGroupError

URL" type="hidden" value="shipping.jsp?init=false"/>

<dsp:input

bean="CreateHardgoodShippingGroupFormHandler.newHardgoodShippingGroup"

priority="<%=(int)-10%>" type="submit"

value="Create HardgoodShippingGroup"/>

</dsp:form>

The following JSP code example from electronic_sg.jsp in the commerce sample catalog illustrates
the use of CreateElectronicShippingGroupFormHandler.

<dsp:importbean

bean="/atg/commerce/order/purchase/CreateElectronicShippingGroupFormHandle

r"/>

<dsp:importbean bean="/atg/userprofiling/Profile"/>

<hr>Enter new e-mail address for ElectronicShippingGroup

<dsp:form action="electronic_sg.jsp" method="post">

ShippingGroup NickName:<dsp:input

bean="CreateElectronicShippingGroupFormHandler.electronicShippingGroupNam

e" size="30" type="text"/>

E-mail Address:<dsp:input

bean="CreateElectronicShippingGroupFormHandler.emailAddress"

beanvalue="Profile.email" size="30" type="text"/>

<dsp:input

bean="CreateElectronicShippingGroupFormHandler.newElectronicShippingGroupS

uccessURL" type="hidden" value="shipping.jsp?init=false"/>

<dsp:input

bean="CreateElectronicShippingGroupFormHandler.newElectronicShippingGroupE

rrorURL" type="hidden" value="shipping.jsp?init=false"/>

<dsp:input

bean="CreateElectronicShippingGroupFormHandler.newElectronicShippingGroup"

priority="<%=(int)-10%>" type="submit"

value="Create ElectronicShippingGroup"/>

</dsp:form>

In the commerce sample catalog, both hardgood_sg.jsp and electronic_sg.jsp are embedded into
shipping.jsp, which itself manages the shipping information for the user’s current order. (Note that
electronic_sg.jsp is commented out.)

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 5 8

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
For more information on both CreateHardgoodShippingGroupFormHandler and
CreateElectronicShippingGroupFormHandler, see the Checking Out Orders section of the
Configuring Purchase Process Services chapter in the ATG Commerce Programming Guide.

In contrast to creating shipping groups from information gathered from the user via forms, you can also
create shipping groups from information that is stored in the user’s profile using the
ShippingGroupDroplet servlet bean. ShippingGroupDroplet uses the information obtained from the
current user’s profile to initialize ShippingGroups and add them to the ShippingGroupMapContainer.
The input parameters passed into ShippingGroupDroplet determine what types of ShippingGroups
are created (hard good, electronic, or both), and whether the ShippingGroupMapContainer is cleared
before they are created. If HardgoodShippingGroups are created, ShippingGroupDroplet also creates
a default HardgoodShippingGroup for the container using the default shipping address in the user’s
profile. Once the shipping groups are added to the ShippingGroupMapContainer, the user can select
from among them when checking out the current Order. See Adding Shipping Groups to An Order.

Additionally, ShippingGroupDroplet uses the information in the user’s current Order to initialize
CommerceItemShippingInfo objects for the CommerceItem objects in the Order. A
CommerceItemShippingInfo object is a helper object that represents the relationship between a
CommerceItem and a ShippingGroup; it contains properties that allow the total quantity in the
CommerceItem to be spread across multiple shipping groups. The
CommerceItemShippingInfoContainer stores the CommerceItemShippingInfo objects created for
the current Order.

Once a set of CommerceItemShippingInfo objects is initialized for an order, you can present your
customer with a form that allows the customer to:

 Specify a different ShippingGroup for each CommerceItemShippingInfo object.

 Update the SplitQuantity and SplitShippingGroupName property values of the
CommerceItemShippingInfo objects and submit the changes by calling the
ShippingGroupFormHandler.splitShippingInfos method. In this way,
CommerceItem objects can be associated with additional ShippingGroups than
those provided by the ShippingGroupDroplet initialization. The changes are stored
in additional CommerceItemShippingInfo objects.

When the customer is satisfied with the ShippingGroup to CommerceItem associations, he or she clicks a
button to proceed with the purchase process. Behind the scenes, this button invokes the
ShippingGroupFormHandler.applyShippingGroups handler. The handler collects the information in
the CommerceItemShippingInfo helper objects and adds corresponding
ShippingGroupCommerceItemRelationship objects to the order. A
ShippingGroupCommerceItemRelationship creates an association between a CommerceItem and a
ShippingGroup and represents the quantity of the item in the CommerceItem that will be shipped using
the information in the ShippingGroup.

While they are closely related, CommerceItemShippingInfo and
ShippingGroupCommerceItemRelationship objects serve slightly different purposes. A
CommerceItemShippingInfo object is external to the order and provides a means for defining
commerce item-to-shipping group relationships. These changes do not affect the actual order until they
are applied, allowing the order to remain in a stable state until the
ShippingGroupFormHandler.applyShippingGroups handler is invoked. Once the information in the

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 5 9

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
CommerceItemShippingInfo objects is applied to the order, the relationships are stored in the order as
ShippingGroupCommerceItemRelationship objects.

The input parameters passed into ShippingGroupDroplet determine how the droplet creates and
initializes CommerceItemShippingInfo objects for each CommerceItem and whether the
CommerceItemShippingInfoContainer is cleared before they are created. Three parameters control
CommerceItemShippingInfo object creation: initShippingInfos, createOneInfoPerUnit, and
initBasedOnOrder. These parameters, along with the other ShippingGroupDroplet input parameters,
are described in the table below.

Note: For more information on CommerceItemShippingInfo objects, see Shipping to Multiple Addresses
section in the Processing Orders chapter of the ATG Business Commerce Reference Application Guide. For
more information on ShippingGroupCommerceItemRelationship objects, see the Using Relationship
Objects section in the Working with Purchase Process Objects chapter of the ATG Commerce Programming
Guide.

ShippingGroupDroplet takes the following input parameters:

Parameter Description

Clear When set to True, ShippingGroupDroplet clears both the
user’s CommerceItemShippingInfoContainer and
ShippingGroupMapContainer.

clearShippingGroups When set to True, ShippingGroupDroplet clears the user’s
ShippingGroupMapContainer.

clearShippingInfos When set to True, ShippingGroupDroplet clears the user’s
CommerceItemShippingInfoContainer.

This should be done at least once per Order to create fresh
CommerceItemShippingInfo objects that refer to the unique
CommerceItem objects in each Order.

createOneInfoPerUnit When set to True, ShippingGroupDroplet creates a
CommerceItemShippingInfo object for each individual unit
contained in each CommerceItem. For example, a
CommerceItem with a quantity of five will have five
CommerceItemShippingInfo objects created for it. If a user
has a default ShippingGroup in his or her profile, each
CommerceItemShippingInfo object is initialized with that
ShippingGroup. Set to False by default.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 6 0

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
initBasedOnOrder When set to True, ShippingGroupDroplet creates a

CommerceItemShippingInfo object for each
ShippingGroupCommerceItemRelationship object in the
Order. The CommerceItemShippingInfo is initialized with the
ShippingGroup that exists in the
ShippingCommerceItemRelationship. This option is
provided for the scenario where a customer has already gone
part way through the checkout process and the order already
contains some ShippingGroupCommerceItemRelationship
objects. Set to False by default.

initShippingGroups When set to True, the ShippingGroup types supplied in the
shippingGroupTypes input parameter will be initialized.

initShippingInfos When set to True, ShippingGroupDroplet creates a
CommerceItemShippingInfo object for each CommerceItem
in the Order. If a user has a default ShippingGroup in his or
her profile, the CommerceItemShippingInfo object is
initialized with that ShippingGroup. Set to True by default.

order Used to override the component’s default setting for the user’s
order.

shippingGroupTypes A comma-separated list of ShippingGroup types, such as
hardgoodShippingGroup or electronicShippingGroup,
that is used to determine what types of ShippingGroups to
initialize.

ShippingGroupDroplet sets the following output parameters:

Parameter Description

shippingGroups The Map referenced by the
ShippingGroupMapContainer.

order The Order object that represents the user’s order.

ShippingGroupDroplet renders one open parameter named output.

The following code example illustrates the use of ShippingGroupDroplet. The example creates
HardgoodShippingGroup objects for the current user based on the availability of shipping address
information in the user’s profile. ShippingGroupDroplet also creates CommerceItemShippingInfo
objects for the items in the user’s current order.

<dsp:droplet name="ShippingGroupDroplet">

 <dsp:param value="true" name="clear"/>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 6 1

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
 <dsp:param value="hardgoodShippingGroup" name="shippingGroupTypes"/>

 <dsp:param value="true" name="initShippingGroups"/>

 <dsp:param value="true" name="initShippingInfos"/>

 <dsp:oparam name="output"> Manipulation of objects here...

 </dsp:output>

</dsp:droplet>

You can refer to shipping.jsp in the commerce sample catalog for another JSP code example that
illustrates the use of ShippingGroupDroplet.

Adding Shipping Groups to an Order

Use ShippingGroupFormHandler to add shipping groups to an Order once the shipping information
for the Order has been gathered from the following two processes (described in detail in the previous
section):

 The shipping groups for potential use in the Order have been created via
CreateHardgoodShippingGroupFormHandler,
CreateElectronicShippingGroupFormHandler, and/or ShippingGroupDroplet.
The shipping groups have been added to the ShippingGroupMapContainer.

 The CommerceItemShippingInfo objects for each CommerceItem in the Order have
been created via ShippingGroupDroplet. The CommerceItemShippingInfo
objects have been added to the CommerceItemShippingInfoContainer.

As an example, consider the following code segment from complex_shipping.jsp in the commerce
sample catalog.

Note: In the code segment below, you can assume that each referenced component has been imported
into the page via a dsp:importbean tag. See the actual JSP for these import statements.

<dsp:droplet name="ShippingGroupDroplet">

 <dsp:param name="clearShippingGroups" value="false"/>

 <dsp:param name="initShippingGroups" value="false"/>

 <dsp:param name="initShippingInfos" param="init"/>

 <dsp:oparam name="output">

 <!-- begin output -->

<table border=0 cellpadding=0 cellspacing=0 width=800>

 <tr>

 <td width=55></td>

 <td valign="top" width=745>

 <table border=0 cellpadding=4 width=80%>

 <tr><td></td></tr>

 <tr><td></td></tr>

 <tr valign=top>

 <td>

<%-- table with multiple rows with eleven cells --%>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 6 2

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
 <table border=0 cellpadding=4 cellspacing=1 width=100%>

 <tr>

 <td colspan=12>To ship a line item to another

address, select the address and click the "Save" button. To ship only some

of the items to another address, change the quantity and select the

address. You must save changes individually before continuing.

 </td>

 </tr>

 <tr bgcolor="#666666" valign=bottom>

 <td colspan=2>Part #</td>

 <td colspan=2>Name</td>

 <td colspan=2 align=middle>Qty</td>

 <td colspan=2 align=middle>Qty to

move</td>

 <td colspan=2 align=middle>Shipping

address</td>

 <td colspan=2>Save changes</td>

 </tr>

<%-- get the real shopping cart items --%>

 <dsp:droplet name="ForEach">

 <dsp:param name="array" param="order.commerceItems"/>

 <dsp:oparam name="output">

 <dsp:setvalue paramvalue="element" param="commerceItem"/>

 <dsp:setvalue bean="ShippingGroupFormHandler.listId"

paramvalue="commerceItem.id"/>

 <dsp:droplet name="ForEach">

 <dsp:param bean="ShippingGroupFormHandler.currentList"

name="array"/>

 <dsp:oparam name="output">

 <!-- begin line item -->

 <dsp:setvalue paramvalue="element" param="cisiItem"/>

 <dsp:form action="complex_shipping.jsp" method="post">

 <tr valign=top>

 <td><nobr><dsp:valueof

param="commerceItem.auxiliaryData.catalogRef.manufacturer_part_number"/>

</nobr></td>

 <td></td>

 <td><dsp:valueof

param="commerceItem.auxiliaryData.catalogRef.displayName"/></td>

 <td></td>

 <td align=right>

<dsp:valueof param="element.quantity"/></td>

 <td> </td>

 <td>

 <dsp:input

bean="ShippingGroupFormHandler.currentList[param:index].splitQuantity"

paramvalue="element.quantity" size="4" type="text"/></td>

 <td> </td>

 <td>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 6 3

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
 <dsp:select

bean="ShippingGroupFormHandler.currentList[param:index].splitShippingGroup

Name">

 <dsp:droplet name="ForEach">

 <dsp:param name="array" param="shippingGroups"/>

 <dsp:oparam name="output">

 <dsp:droplet name="Switch">

 <dsp:param name="value" param="key"/>

 <dsp:getvalueof id="nameval4"

param="cisiItem.shippingGroupName" idtype="java.lang.String">

<dsp:oparam name="<%=nameval4%>">

 <dsp:getvalueof id="option305" param="key"

idtype="java.lang.String">

<dsp:option selected="<%=true%>" value="<%=option305%>"/>

</dsp:getvalueof><dsp:valueof param="key"/>

 </dsp:oparam>

</dsp:getvalueof>

 <dsp:oparam name="default">

 <dsp:getvalueof id="option313" param="key"

idtype="java.lang.String">

<dsp:option selected="<%=false%>" value="<%=option313%>"/>

</dsp:getvalueof><dsp:valueof param="key"/>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:select>

 </td>

 <td></td>

 <td>

 <dsp:input

bean="ShippingGroupFormHandler.splitShippingInfosSuccessURL" type="hidden"

value="complex_shipping.jsp?init=false"/>

 <dsp:input bean="ShippingGroupFormHandler.ListId"

paramvalue="commerceItem.id" priority="<%=(int)9%>" type="hidden"/>

 <dsp:input

bean="ShippingGroupFormHandler.splitShippingInfos" type="submit"

value=" Save "/>

 </td>

 </tr>

 </dsp:form>

 <!-- end line item -->

 </dsp:oparam>

 </dsp:droplet><!-- end inner ForEach -->

 </dsp:oparam>

 </dsp:droplet><!-- end outer ForEach -->

 <tr>

 <td colspan=12>

<%-- table with one row with one cell --%>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 6 4

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
 <table border=0 cellpadding=0 cellspacing=0 width=100%>

 <tr bgcolor="#666666">

 <td></td>

 </tr>

 </table>

 </td>

 </tr>

 </table>

 </td>

 </tr>

 <tr>

 <td>

 <dsp:form action="complex_shipping.jsp" method="post">

 <dsp:input

bean="ShippingGroupFormHandler.applyShippingGroupsSuccessURL"

type="hidden" value="billing.jsp?init=true"/>

 <dsp:input bean="ShippingGroupFormHandler.applyShippingGroups"

type="submit" value="Continue"/>

 </dsp:form>

 </td>

 </tr>

 </table>

 </td>

</tr>

</table>

 <!-- end output -->

 </dsp:oparam>

</dsp:droplet><!-- end ShippingGroupDroplet -->

Note the following sections of complex_shipping.jsp:

1. When the page is rendered, ShippingGroupDroplet is used to initialize
CommerceItemShippingInfo objects for the items in the user’s current order and
add them to the CommerceItemShippingInfoContainer. Recall from the previous
section that, by default, ShippingGroupDroplet associates each
CommerceItemShippingInfo object with the default shipping group in the
ShippingGroupMapContainer.

2. The remainder of the code renders an interface that enables the user to assign
quantities of the items in the order to different shipping groups. This is achieved
through the use of nested ForEach servlet beans:

 The outer ForEach servlet bean receives the array of items in the Order as an
input parameter. It renders its output open parameter once for each
CommerceItem in the Order. In the oparam, the
ShippingGroupFormHandler.listId property is set to the ID of the current
CommerceItem. The current item’s ID is the key to its List of
CommerceItemShippingInfo objects, which are now exposed via the
ShippingGroupFormHandler.currentList property. (A hidden input tag
farther down the page also sets this property on a subsequent request.)

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 6 5

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
 The inner ForEach servlet bean receives as an input parameter the array of
CommerceItemShippingInfo objects for the current CommerceItem in the
outer ForEach iteration. It renders its output oparam once for each
CommerceItemShippingInfo object in the array. Essentially, the output
rendered is a form that displays the following: the part # and name of the
associated CommerceItem, the quantity in the current
CommerceItemShippingInfo object, a drop-down list with which to change
the shipping group for a specified quantity in the
CommerceItemShippingInfo object, a textbox with which to specify the
quantity in the CommerceItemShippingInfo to assign to the selected
shipping group, and a Save submit button with which to make these new
associations.

The shipping group drop-down list is populated with the shipping groups in
the ShippingGroupMapContainer. These are exposed by the
ShippingGroupDroplet through a shippingGroups convenience parameter,
and a third nested ForEach servlet bean is used to iterate over the shipping
groups and populate the drop-down list.

Note that the shipping group drop-down list is associated with the
splitShippingGroupName property of the current
CommerceItemShippingInfo object. Similarly, the quantity textbox is
associated with the splitQuantity property of the current
CommerceItemShippingInfo object.

Finally, note that the Save submit button invokes the
handleSplitShippingInfos method of ShippingGroupFormHandler. The
handleSplitShippingInfos method uses the values in the quantity and
splitQuantity properties of the CommerceItemShippingInfo object to
determine if the object should be split into two objects. If that is necessary, it
then uses these properties and the shipping group specified in the
splitShippingGroupName property to construct a second
CommerceItemShippingInfo object. The method then sets the properties of
both the old and new objects accordingly and adds the new object to the
CommerceItemShippingInfoContainer. Once the form is processed, the
page is rendered again and reflects the changes the user has made.

3. The Continue submit button at the bottom of the page enables the user to apply the
current shipping associations to the order and proceed to specifying billing
information. The submit button invokes the handleApplyShippingGroups method
of ShippingGroupFormHandler, which adds the shipping groups that the user has
selected to the Order. It does this by iterating over the CommerceItemShippingInfo
objects in the CommerceItemShippingInfoContainer. For each
CommerceItemShippingInfo object in the container, the associated shipping group
is retrieved from the ShippingGroupMapContainer and added to the Order, and the
appropriate quantity of the associated CommerceItem is added to that
ShippingGroup.

Note: For detailed information on all the handle methods of ShippingGroupFormHandler, see the
Preparing a Complex Order for Checkout section of the Configuring Purchase Process Services chapter in the
ATG Commerce Programming Guide. For more information on adding items to shipping groups, see the

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 6 6

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
Assigning Items to Shipping Groups section of the Working With Purchase Process Objects chapter in the ATG
Commerce Programming Guide.

If you’ve installed ATG Business Commerce, you can also refer to checkout/shipping.jsp and
checkout/ship_to_multiple.jsp in the Motorprise reference application for JSP code examples that
illustrate the use of ShippingGroupFormHandler. You can access these pages at
<ATG10dir>\MotorpriseJSP\j2ee-apps\motorprise\web-app\en\checkout\. You can also open
these pages in the ACC’s Document Editor via the Pages and Components>J2EE Pages task area. For more
details, see the Shipping Information section of the Processing Orders chapter in the ATG Business
Commerce Reference Application Guide.

Selecting Shipping Methods

You can use the atg/commerce/pricing/AvailableShippingMethods servlet bean to provide the
user with a list of available shipping methods (such as Ground or Next Day) for a particular shipping
group. Given a shipping group, AvailableShippingMethods queries the ShippingPricingEngine
and returns a list of the shipping methods available for the type of the given shipping group.

AvailableShippingMethods requires only one input parameter, named shippingGroup, which is the
specific shipping group to be shipped. (For a complete list of the input parameters of
AvailableShippingMethods, see The Pricing Servlet Beans section of the Using and Extending Pricing
Services chapter of the ATG Commerce Programming Guide.) It sets one output parameter named
availableShippingMethods, which is a list of Strings representing the shipping methods that can be
used to set a shippingMethod value in a HardgoodShippingGroup. Additionally, it renders one open
parameter named output.

The following JSP code segment from /checkout/shipping_method.jsp in the Motorprise reference
application illustrates the use of AvailableShippingMethods. In the example, the
AvailableShippingMethods servlet bean is used to populate a select list from which to choose a
shipping method for the current shipping group.

<tr valign=top>

 <td align=right width=25%>Shipping method</td>

 <td align=left>

 <%-- The AvailableShippingMethods servlet bean permits the user to

 select a shipping method that is applied to the current

 ShippingGroup. --%>

 <dsp:droplet name="AvailableShippingMethods">

 <dsp:param name="shippingGroup" param="sGroup">

 <dsp:param bean="UserPricingModels.shippingPricingModels"

 name="pricingModels">

 <dsp:param bean="Profile" name="profile">

 <dsp:oparam name="output">

 <dsp:select

bean="ShoppingCart.current.ShippingGroups[param:index].shippingMethod">

 <dsp:droplet name="ForEach">

 <dsp:param name="array" param="availableShippingMethods">

 <dsp:param name="elementName" value="method">

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 6 7

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
 <dsp:oparam name="output">

 <dsp:getvalueof id="methodname" idtype="String" param="method">

 <dsp:option value="<%=methodname%>"><dsp:valueof

param="method"></dsp:getvalueof>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:select>

 </dsp:oparam>

 </dsp:droplet>

 </td>

</tr>

If you’ve installed ATG Business Commerce, you can access shipping_method.jsp at
<ATG10dir>\MotorpriseJSP\j2ee-apps\motorprise\web-app\en\checkout\. You can also open
the page in the ACC’s Document Editor via the Pages and Components>J2EE Pages task area. For more
information on shipping_method.jsp, see the Shipping Information section of the Processing Orders
chapter in the ATG Business Commerce Reference Application Guide.

Adding Payment Information to Shopping Carts

Adding payment information to shopping carts involves the following subprocesses:

 Creating a list of payment groups for potential use in the current order. The user can
select from among these payment groups when checking out the order. See Creating
Potential Payment Groups.

 Specifying the payment groups to use with current order. See Adding Payment
Groups to an Order.

Creating Potential Payment Groups

You can create a list of payment groups for potential use in an Order in one of two ways:

 from information gathered from the user via forms

 from information stored in the user’s profile

To create payment groups from information obtained from the user via forms, use
CreateCreditCardFormHandler and CreateInvoiceRequestFormHandler. (Note: The
CreateInvoiceRequestFormHandler is provided with ATG Business Commerce only.) These form
handlers create, respectively, CreditCard and InvoiceRequest payment groups. Additionally, if the
addToContainer property of the form handlers is true (which it is by default), they add the new payment
group to the PaymentGroupMapContainer and make it the default payment group in the container. The
PaymentGroupMapContainer stores the payment groups available for use in the current order. Once the
payment group is added to the PaymentGroupMapContainer, the user can use it when checking out the
current order. See Adding Payment Groups to an Order.

The following JSP code example from credit_card.jsp in the commerce sample catalog illustrates the
use of CreateCreditCardFormHandler.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 6 8

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
<dsp:importbean

bean="/atg/commerce/order/purchase/CreateCreditCardFormHandler"/>

<dsp:importbean bean="/atg/userprofiling/Profile"/>

<hr><p>Enter new CreditCard information

<dsp:form action="credit_card.jsp" method="post">

CreditCard NickName:<dsp:input

bean="CreateCreditCardFormHandler.creditCardName" size="30" type="text"

value=""/>

CreditCardNumber:<dsp:input

bean="CreateCreditCardFormHandler.creditCard.CreditCardNumber"

maxsize="20" size="20" type="text" value="4111111111111111"/>

CreditCardType:

<dsp:select bean="CreateCreditCardFormHandler.creditCard.creditCardType"

required="<%=true%>">

<dsp:option value="Visa"/>Visa

<dsp:option value="MasterCard"/>Master Card

<dsp:option value="American Express"/>American Express

</dsp:select>

ExpirationMonth: <dsp:select

bean="CreateCreditCardFormHandler.creditCard.ExpirationMonth">

<dsp:option value="1"/>January

<dsp:option value="2"/>February

<dsp:option value="3"/>March

<dsp:option value="4"/>April

<dsp:option value="5"/>May

<dsp:option value="6"/>June

<dsp:option value="7"/>July

<dsp:option value="8"/>August

<dsp:option value="9"/>September

<dsp:option value="10"/>October

<dsp:option value="11"/>November

<dsp:option value="12"/>December

</dsp:select>

expirationYear:Year: <dsp:select

bean="CreateCreditCardFormHandler.creditCard.expirationYear">

<dsp:option value="2002"/>2002

<dsp:option value="2003"/>2003

<dsp:option value="2004"/>2004

<dsp:option value="2005"/>2005

<dsp:option value="2006"/>2006

<dsp:option value="2007"/>2007

<dsp:option value="2008"/>2008

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 6 9

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
<dsp:option value="2009"/>2009

<dsp:option value="2010"/>2010

</dsp:select>

FirstName:<dsp:input

bean="CreateCreditCardFormHandler.creditCard.billingAddress.firstName"

beanvalue="Profile.firstName" size="30" type="text"/>

MiddleName:<dsp:input

bean="CreateCreditCardFormHandler.creditCard.billingAddress.middleName"

beanvalue="Profile.middleName" size="30" type="text"/>

LastName:<dsp:input

bean="CreateCreditCardFormHandler.creditCard.billingAddress.lastName"

beanvalue="Profile.lastName" size="30" type="text"/>

EmailAddress:<dsp:input

bean="CreateCreditCardFormHandler.creditCard.billingAddress.email"

beanvalue="Profile.email" size="30" type="text"/>

PhoneNumber:<dsp:input

bean="CreateCreditCardFormHandler.creditCard.billingAddress.phoneNumber"

beanvalue="Profile.daytimeTelephoneNumber" size="30" type="text"/>

Address:<dsp:input

bean="CreateCreditCardFormHandler.creditCard.billingAddress.address1"

beanvalue="Profile.defaultBillingAddress.address1" size="30" type="text"/>

Address (line 2):<dsp:input

bean="CreateCreditCardFormHandler.creditCard.billingAddress.address2"

beanvalue="Profile.defaultBillingAddress.address2" size="30" type="text"/>

City:<dsp:input

bean="CreateCreditCardFormHandler.creditCard.billingAddress.city"

beanvalue="Profile.defaultBillingAddress.city" size="30" type="text"/>

State:<dsp:input

bean="CreateCreditCardFormHandler.creditCard.billingAddress.state"

beanvalue="Profile.defaultBillingAddress.state" size="30" type="text"/>

PostalCode:<dsp:input

bean="CreateCreditCardFormHandler.creditCard.billingAddress.postalCode"

beanvalue="Profile.defaultBillingAddress.postalCode" size="30"

type="text"/>

Country:<dsp:input

bean="CreateCreditCardFormHandler.creditCard.billingAddress.country"

beanvalue="Profile.defaultBillingAddress.country" size="30" type="text"/>

<dsp:input bean="CreateCreditCardFormHandler.copyToProfile" type="hidden"

value="false"/>

<dsp:input bean="CreateCreditCardFormHandler.newCreditCardSuccessURL"

type="hidden" value="billing.jsp?init=false"/>

<dsp:input bean="CreateCreditCardFormHandler.newCreditCardErrorURL"

type="hidden" value="credit_card.jsp"/>

<dsp:input bean="CreateCreditCardFormHandler.newCreditCard" type="submit"

value="Enter Credit Card"/>

</dsp:form>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 7 0

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
In the commerce sample catalog, credit_card.jsp is embedded into billing.jsp, which itself
manages the payment information for the user’s current order.

You use CreateInvoiceRequestFormHandler in the same way that you use
CreateCreditCardFormHandler, although note that by default the
CreateInvoiceRequestFormHandler requires that a poNumber is specified for an invoice payment
group. For more information on both CreateCreditCardFormHandler and
CreateInvoiceRequestFormHandler, see the Checking Out Orders section of the Configuring Purchase
Process Services chapter in the ATG Commerce Programming Guide.

In contrast to creating payment groups from information gathered from the user via forms, you can also
create payment groups from information that is stored in the user’s profile using the
PaymentGroupDroplet servlet bean. PaymentGroupDroplet uses the information obtained from the
current user’s profile to initialize payment groups and add them to the PaymentGroupMapContainer.
The input parameters passed into PaymentGroupDroplet determine what types of PaymentGroups are
created (such as, credit card, store credit, and/or gift certificate), and whether the
PaymentGroupMapContainer is cleared before they are created. Once the payment groups are added to
the PaymentGroupMapContainer, the user can select from among them when checking out the current
Order. See Adding Payment Groups to an Order.

Additionally, PaymentGroupDroplet uses the information in the user’s current Order to initialize
CommerceIdentifierPaymentInfo objects for the Order. A CommerceIdentifierPaymentInfo
object is a helper object that represents the relationship between an Order and its components
(commerce items, shipping, and taxes) and payment information; it contains properties that allow the
cost of a given item, as well as the order’s shipping costs and tax, to be spread across multiple payment
groups. The CommerceIdentifierPaymentInfoContainer stores the
CommerceIdentifierPaymentInfo objects created for use in the current Order.
CommerceIdentifierPaymentInfo objects are further subclassed into the following types:

 OrderPaymentInfo objects store payment information for the entire order, including
all commerce items, shipping, and taxes.

 ItemPaymentInfo objects store payment information for individual items.

 ShippingPaymentInfo objects store payment information for shipping costs.

 TaxPaymentInfo objects store payment information for taxes.

The input parameters you provide to PaymentGroupDroplet determine which of the four
CommerceIdentifierPaymentInfo object types are initialized for the Order. In general, you will opt to
either initialize an OrderPaymentInfo object for the entire order, or a combination of
ItemPaymentInfo, ShippingPaymentInfo, and TaxPaymentInfo objects that account for all of the
order’s components.

Once a set of CommerceIdentifierPaymentInfo objects is initialized for an order, you can present your
customer with a form that allows the customer to:

 Specify a different PaymentGroup for each CommerceIdentifierPaymentInfo
object.

 Update the SplitPaymentMethod, SplitAmount, and SplitQuantity property
values of the CommerceIdentifierPaymentInfo objects and submit the changes by
calling the PaymentGroupFormHandler.handleSplitPaymentInfos method. In

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 7 1

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
this way, CommerceIdentifier objects can be associated with additional
PaymentGroups other than those provided by the PaymentGroupDroplet
initialization. The changes are stored in additional
CommerceIdentifierPaymentInfo objects.

The illustration below shows a sample user interface that allows the user to split payment amounts
among PaymentGroups.

When the customer is satisfied with the PaymentGroup to CommerceIdentifier associations, he or she
clicks a button to proceed with the purchase process. Behind the scenes, this button invokes the
PaymentGroupFormHandler.handleApplyPaymentGroups method. This method collects the
information in the CommerceIdentifierPaymentInfo helper objects and adds corresponding
PaymentGroup relationship objects to the order. A PaymentGroup relationship object creates an
association between a CommerceIdentifier and a PaymentGroup and represents the amount of the
cost in the CommerceIdentifier that will be paid for using the information in the PaymentGroup.
PaymentGroup relationship objects can be of several types:

 A PaymentGroupOrderRelationship represents a relationship between an Order
and a PaymentGroup. This relationship object also stores tax payment information.

 A PaymentGroupCommerceItemRelationship represents a relationship between a
CommerceItem and a PaymentGroup.

 A PaymentGroupShippingGroupRelationship represents a relationship between a
ShippingGroup and a PaymentGroup.

While they are closely related, CommerceIdentifierPaymentInfo and PaymentGroup relationship
objects serve slightly different purposes. A CommerceIdentifierPaymentInfo object is external to the
order and provides a means for defining commerce identifier-to-payment group relationships. These
changes do not affect the actual order until they are applied, allowing the order to remain in a stable state
until the PaymentGroupFormHandler.handleApplyPaymentGroups method is invoked. Once the
information in the CommerceIdentifierPaymentInfo objects is applied to the order, the relationships
are stored in the order as PaymentGroup relationship objects.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 7 2

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
Note: For more detailed information on PaymentGroup relationship objects, see the Using Relationship
Objects section in the Working with Purchase Process Objects chapter of the ATG Commerce Programming
Guide.

The input parameters passed into PaymentGroupDroplet determine how the droplet creates and
initializes CommerceIdentifierPaymentInfo objects for the order and whether the
CommerceIdentifierPaymentInfoContainer is cleared before they are created. Parameters control
CommerceIdentifierPaymentInfo object creation: initOrderPayment, initItemPayment,
initShippingPayment, initTaxPayment, and initBasedOnOrder. These parameters, along with the
other PaymentGroupDroplet input parameters, are described in the table below.

When you use PaymentGroupDroplet, you should consider the following:

 Whether the user is paying for the total cost of the Order with one or more payment
groups or the component costs of the Order (commerce item costs, shipping costs,
and tax) with one or more payment groups.

 The types of payment groups the user can use to pay for the Order. By default, ATG
Commerce supports the following types of PaymentGroups: giftCertificate,
storeCredit, and creditCard. ATG Business Commerce also supports
invoiceRequest PaymentGroups.

These factors determine what kind of PaymentGroup objects you use PaymentGroupDroplet to initialize
for potential use in the order.

PaymentGroupDroplet takes the following input parameters:

Parameter Description

clear Boolean. When set to True, PaymentGroupDroplet clears
both the user’s
CommerceIdentifierPaymentInfoContainer and
PaymentGroupMapContainer.

cleaPaymentGroups Boolean. When set to True, PaymentGroupDroplet clears
the user’s PaymentGroupMapContainer.

clearPaymentInfos Boolean. When set to True, PaymentGroupDroplet clears
the user’s CommerceIdentifierPaymentInfoContainer.
This should be done at least once per new order; the default
value is false.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 7 3

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
createAllPaymentInfos Boolean. When set to True, the PaymentGroupDroplet

creates an OrderPaymentInfo for all possible payment
types stored in the user’s profile (credit cards, store credit,
gift certificate, or invoice request). Initially, the entire order’s
cost is assigned to the OrderPaymentInfo that is
associated with the default PaymentGroup and all other
OrderPaymentInfo objects are set to 0. This option
supports a different type of user interface than that which is
described in the sections above. Use
createAllPaymentInfos to initialize the objects needed
to support a user interface where the user manually
specifies the amount of the order to be paid by each
payment type in her profile. See Using
createAllPaymentInfos for more information.

This option is False by default.

initBasedOnOrder Boolean. When set to True, PaymentGroupDroplet creates
a CommerceIdentifierPaymentInfo object for each
PaymentGroup relationship object in the Order. This option
is provided for the scenario where a customer has already
gone part way through the checkout process and the order
already contains some PaymentGroup relationship objects.

The types of CommerceIdentifierPaymentInfo objects
that are created correspond to the PaymentGroup
relationship types. For example, if a
PaymentGroupCommerceItemRelationship exists in the
Order, PaymentGroupDroplet creates a corresponding
CommerceItemPaymentInfo object and adds it to the
CommerceIdentifierPaymentInfoContainer. Each
CommerceIdentifierPaymentInfo object is initialized
with the PaymentGroup that exists in its corresponding
PaymentGroup relationship object.

Set to False by default.

initItemPayment Boolean. When set to True, PaymentGroupDroplet creates
a CommerceItemPaymentInfo object for each
CommerceItem in the order and adds them to the
CommerceIdentifierPaymentInfoContainer. If a user
has a default PaymentGroup in his or her profile, the
CommerceItemPaymentInfo object is initialized with that
PaymentGroup. Set to False by default.

Note: A CommerceItemPaymentInfo object is a
CommerceIdentifierPaymentInfo object whose
CommerceIdentifier is a CommerceItem; it is used for
CommerceItem payment information.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 7 4

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
initOrderPayment Boolean. When set to True, PaymentGroupDroplet creates

an OrderPaymentInfo object and adds it to the
CommerceIdentifierPaymentInfoContainer. If a user
has a default PaymentGroup in his or her profile, the
OrderPaymentInfo object is initialized with that
PaymentGroup. Set to True by default.

Note: An OrderPaymentInfo object is a
CommerceIdentifierPaymentInfo object whose
CommerceIdentifier is an Order; it is used for Order
payment information.

initPaymentGroups Boolean. When set to True, the PaymentGroup types
supplied in the paymentGroupTypes input parameter are
initialized.

initShippingPayment Boolean. When set to True, PaymentGroupDroplet creates
a ShippingGroupPaymentInfo object for each
ShippingGroup in the order and adds them to the
CommerceIdentifierPaymentInfoContainer. If a user
has a default PaymentGroup in his or her profile, the
ShippingGroupPaymentInfo object is initialized with that
PaymentGroup. Set to False by default.

Note: A ShippingGroupPaymentInfo object is a
CommerceIdentifierPaymentInfo object whose
CommerceIdentifier is a ShippingGroup; it is used for
ShippingGroup payment information.

initTaxPayment Boolean. When set to True, PaymentGroupDroplet creates
a TaxPaymentInfo object and adds it to the
CommerceIdentifierPaymentInfoContainer.

A TaxPaymentInfo object is a
CommerceIdentifierPaymentInfo object whose
CommerceIdentifier is an Order; it is used for tax
payment information.

order The user’s Order. You can use this parameter to override the
default setting for PaymentGroupDroplet.order.

paymentGroupTypes A comma-separated list of PaymentGroup types (such as
“creditCard,” “storeCredit,” “giftCertificate”) that is used to
determine which PaymentGroupInitializer components
are executed.

PaymentGroupDroplet sets the following output parameters:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 7 5

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
Parameter Description

cipiMap The Map referenced by the
CommerceIdentifierPaymentInfoContainer.

order The Order object that represents the user’s order.

paymentGroups The Map referenced by the PaymentGroupMapContainer.

PaymentGroupDroplet renders one open parameter named output.

The following code example illustrates the use of PaymentGroupDroplet. The example creates
CreditCard, StoreCredit, and GiftCertificate PaymentGroup objects based on their availability
for the current user. Additionally, it creates CommerceItemPaymentInfo objects,
ShippingGroupPaymentInfo objects, and a TaxPaymentInfo object. The example enables the user to
pay for the CommerceIdentifiers in the Order at the line item level with any of the available
PaymentGroup objects.

<dsp:droplet name="PaymentGroupDroplet">

 <dsp:param value="true" name="clear"/>

 <dsp:param value="giftCertificates, storeCredit, creditCard"

 name="paymentGroupTypes"/>

 <dsp:param value="true" name="initPaymentGroups"/>

 <dsp:param value="true" name="initItemPayment"/>

 <dsp:param value="true" name="initTaxPayment"/>

 <dsp:param value="true" name="initShippingPayment"/>

 <dsp:oparam name="output">Manipulation of objects here...

 </output>

</dsp:droplet>

You can refer to billing.jsp and invoice_request.jsp in the commerce sample catalog for
additional JSP code examples that illustrate the use of PaymentGroupDroplet.

Using createAllPaymentInfos

You can use the createAllPaymentInfos input parameter to initialize the objects needed to support a
user interface where the user manually specifies the amount of the order to be paid by each payment
type in her profile, for example:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 7 6

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ

When the createAllPaymentInfos parameter is set to True, the PaymentGroupDroplet creates an
OrderPaymentInfo for all possible payment types stored in the user’s profile (credit cards, store credit,
gift certificate, or invoice request). Initially, the entire order’s cost is assigned to the OrderPaymentInfo
that is associated with the default PaymentGroup and all other OrderPaymentInfo objects are set to 0.
For example, consider the following scenario:

 The total cost of the order is $100.

 The user’s profile has two credit cards stored in it, Credit Card A and Credit Card B as
well as a store credit.

 Credit Card A is the default payment method for the user.

In this scenario, PaymentGroupDroplet creates three OrderPaymentInfo objects, one for each credit
card and another for the store credit. The amount property for the OrderPaymentInfo associated with
Credit Card A is set to 100. The amount properties for the OrderPaymentInfo objects associated with
Credit Card B and the store credit are set to 0.

In the application, the user is presented with a list of payment options generated by iterating over the list
of OrderPaymentInfo objects. The user provides the amount to be paid by each payment option directly
in the form, effectively setting the amount property for the OrderPaymentInfo object associated with
each PaymentGroup. If the user adds additional PaymentGroups during the checkout process, you
should call the PaymentGroupDroplet again to create OrderPaymentInfo objects for the newly added
PaymentGroups.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 7 7

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
Adding Payment Groups to an Order

Use PaymentGroupFormHandler to add payment groups to an Order once the payment information for
the Order has been gathered from the following two processes (described in detail in the previous
section):

 The payment groups for potential use in the Order have been created via
CreateCreditCardFormHandler, CreateInvoiceRequestFormHandler, and/or
PaymentGroupDroplet. The payment groups have been added to the
PaymentGroupMapContainer.

 The CommerceIdentifierPaymentInfo objects for the CommerceIdentifiers in
the Order have been created via PaymentGroupDroplet. The
CommerceIdentifierPaymentInfo objects have been added to the
CommerceIdentifierPaymentInfoContainer.

As an example, consider the following code segment from complex_billing.jsp in the commerce
sample catalog. This page permits the user to divide the total cost of the Order across multiple
CreditCard payment groups.

Note: In the code segment below, you can assume that each referenced component has been imported
into the page via a dsp:importbean tag. See the actual JSP for these import statements.

<dsp:droplet name="PaymentGroupDroplet">

 <dsp:param name="initOrderPayment" param="init"/>

 <dsp:param name="clearPaymentInfos" param="init"/>

 <dsp:oparam name="output">

 <dsp:setvalue bean="PaymentGroupFormHandler.listId"

paramvalue="order.id"/>

 <!-- begin output -->

 <table border=0 cellpadding=0 cellspacing=0 width=800>

 <tr>

 </tr>

 <tr>

 <td width=55></td>

 <td valign="top" width=745>

 <table border=0 cellpadding=4 width=80%>

 <tr><td></td></tr>

 <tr>

 <td colspan=2>Billing</td>

 </tr>

 <tr><td></td></tr>

 <tr>

 <td colspan=2>Split payment by order amount

 Order total: <dsp:valueof converter="currency"

param="order.priceInfo.total"/>

 Enter the amount you wish to move to another

payment method and select the new method. The remaining amount will stay

on the default payment method. <P>You must save changes before

continuing.</td>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 7 8

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
 </tr>

 <tr valign=top>

 <td>

 <table border=0 cellpadding=4 cellspacing=1>

 <tr valign=top>

 <td colspan=9 align=right>

 </td>

 </tr>

 <tr valign=bottom bgcolor="#666666">

 <td colspan=2>Amount</td>

 <td colspan=2>Amt to move

 </td>

 <td colspan=2>Payment

method</td>

 <td colspan=3>Save changes</td>

 </tr>

 <dsp:droplet name="ForEach">

 <dsp:param bean="PaymentGroupFormHandler.currentList"

name="array"/>

 <dsp:oparam name="output">

 <!-- begin order line item -->

 <dsp:form action="complex_billing.jsp"

method="post">

 <tr valign=top>

 <td><dsp:valueof converter="currency"

param="element.amount"/></td>

 <td> </td>

 <td>

 $<dsp:input

bean="PaymentGroupFormHandler.currentList[param:index].splitAmount"

size="6" value="0.00" type="text"/></td>

 <td> </td>

 <td>

 <dsp:select

bean="PaymentGroupFormHandler.currentList[param:index].splitPaymentMe

thod">

 <dsp:droplet name="ForEach">

 <dsp:param name="array"

param="paymentGroups"/>

 <dsp:oparam name="output">

 <dsp:droplet name="Switch">

 <dsp:param name="value" param="key"/>

 <dsp:getvalueof id="nameval3"

param="...element.paymentMethod" idtype="java.lang.String">

<dsp:oparam name="<%=nameval3%>">

 <dsp:getvalueof id="option264"

param="key" idtype="java.lang.String">

<dsp:option selected="<%=true%>" value="<%=option264%>"/>

</dsp:getvalueof><dsp:valueof param="key"/>

 </dsp:oparam>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 7 9

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
</dsp:getvalueof>

 <dsp:oparam name="default">

 <dsp:getvalueof id="option272"

param="key" idtype="java.lang.String">

<dsp:option selected="<%=false%>" value="<%=option272%>"/>

</dsp:getvalueof><dsp:valueof param="key"/>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:select>

 </td>

 <td> </td>

 <td> </td>

 <td> </td>

 <td>

 <dsp:input bean="PaymentGroupFormHandler.ListId"

paramvalue="order.id" priority="<%=(int)9%>" type="hidden"/>

 <dsp:input

bean="PaymentGroupFormHandler.splitPaymentInfosSuccessURL" type="hidden"

value="complex_billing.jsp?init=false"/>

 <dsp:input

bean="PaymentGroupFormHandler.splitPaymentInfos" type="submit"

value=" Save "/>

 </td>

 </tr>

 </dsp:form>

 <!-- end order line item -->

 </dsp:oparam>

 </dsp:droplet>

 <td colspan=9>

<%-- table with one row with one cell --%>

 <table border=0 cellpadding=0 cellspacing=0 width=100%>

 <tr bgcolor="#666666">

 <td></td>

 </tr>

 </table>

 </td>

 </tr>

 </table>

 </td>

 </tr>

 <tr>

 <td>

 <dsp:form action="complex_billing.jsp" method="post">

 <dsp:input

bean="PaymentGroupFormHandler.applyPaymentGroupsSuccessURL" type="hidden"

value="order_confirmation.jsp"/>

 <dsp:input bean="PaymentGroupFormHandler.applyPaymentGroups"

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 8 0

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
type="submit" value="Continue"/>

 </dsp:form>

 </td>

 </tr>

 </table>

 </td>

 </tr>

 </table>

 </div>

 <!-- end output -->

 </dsp:oparam>

</dsp:droplet> <!-- end PaymentGroupDroplet -->

Note the following sections of complex_billing.jsp:

1. When the page is rendered, PaymentGroupDroplet is used to initialize an
OrderPaymentInfo object for the user’s current order and add it to the
CommerceIdentifierPaymentInfoContainer. Recall from the previous section that
by default PaymentGroupDroplet associates each
CommerceIdentifierPaymentInfo object with the default payment group in the
PaymentGroupMapContainer. (Note that the available CreditCard payment groups
have been initialized and added to the PaymentGroupMapContainer on a previous
page, billing.jsp.)

2. The PaymentGroupFormHandler.listId property is set to the ID of the Order
object set in the order output parameter of PaymentGroupDroplet. The order’s ID is
the key to its List of CommerceIdentifierPaymentInfo objects, which are now
exposed via the PaymentGroupFormHandler.currentList property. (A hidden
input tag farther down the page also sets this property on a subsequent request.)

3. The remainder of the code renders an interface that enables the user to assign specific
amounts of the order’s total cost to different payment groups. This is achieved
through the use of nested ForEach servlet beans:

 The outer ForEach servlet bean receives as an input parameter the array of
CommerceIdentifierPaymentInfo objects for the current Order. It renders
its output oparam once for each CommerceIdentifierPaymentInfo object
in the array. Essentially, the output rendered is a form that displays the
following: the amount associated with the current
CommerceIdentifierPaymentInfo object, a drop-down list with which to
change the payment group for a specified amount in the
CommerceIdentifierPaymentInfo object, a textbox with which to specify
the amount in the CommerceIdentifierPaymentInfo to associate with the
selected payment group, and a Save submit button with which to make these
new associations.

The payment group drop-down list is populated with the payment groups in
the PaymentGroupMapContainer. These are exposed by the
PaymentGroupDroplet through a paymentGroups convenience parameter,
and a second nested ForEach servlet bean is used to iterate over the payment
groups and populate the drop-down list.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 8 1

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
Note that the payment group drop-down list is associated with the
splitPaymentMethod property of the current
CommerceIdentifierPaymentInfo object. Similarly, the amount textbox is
associated with the splitAmount property of the current
CommerceIdentifierPaymentInfo object.

Finally, note that the Save submit button invokes the
handleSplitPaymentInfos method of PaymentGroupFormHandler. The
handleSplitPaymentInfos method uses the values in the amount and
splitAmount properties of the CommercIdentifierPaymentInfo object to
determine if the object should be split into two objects. If that is necessary, it
then uses these properties and the payment group specified in the
splitPaymentMethod property to construct a second
CommerceIdentifierPaymentInfo object. The method then sets the
properties of both the old and new objects accordingly and adds the new
object to the CommerceIdentifierPaymentInfoContainer. Once the form is
processed, the page is rendered again and reflects the changes the user has
made.

4. The Continue submit button at the bottom of the page enables the user to apply the
current payment associations to the order and proceed to order confirmation. The
submit button invokes the handleApplyPaymentGroups method of
PaymentGroupFormHandler, which adds the payment groups that the user has
selected to the Order. It does this by iterating over the
CommerceIdentifierPaymentInfo objects in the
CommerceIdentifierPaymentInfoContainer. For each
CommerceIdentifierPaymentInfo object in the container, the associated payment
group is retrieved from the PaymentGroupMapContainer and added to the Order,
and the appropriate amount of the associated CommerceIdentifier is added to that
PaymentGroup.

Note: For detailed information on all the handle methods of PaymentGroupFormHandler, see the
Preparing a Complex Order for Checkout section of the Configuring Purchase Process Services chapter in the
ATG Commerce Programming Guide. For more information on adding costs to payment groups, see the
Assigning Costs to Payment Groups section of the Working With Purchase Process Objects chapter in the ATG
Commerce Programming Guide.

If you’ve installed ATG Business Commerce, you can refer to checkout/payment_methods.jsp,
checkout/SplitPaymentOrderDetails.jsp, and checkout/SplitPaymentDetails.jsp in the
Motorprise reference application for additional JSP code examples that illustrate the use of
PaymentGroupFormHandler. In particular, note that /checkout/SplitPaymentDetails.jsp
illustrates how to enable the user to split the component costs or “line items” in the order (that is, the item
costs, shipping costs, and tax) across multiple payment groups. You can access these Motorprise pages at
<ATG10dir>\MotorpriseJSP\j2ee-apps\motorprise\web-app\en\checkout\. You can also open
these pages in the ACC’s Document Editor via the Pages and Components>J2EE Pages task area. For more
details, see the Payment Information section of the Processing Orders chapter in the ATG Business
Commerce Reference Application Guide.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 8 2

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
Repricing Shopping Carts

As described earlier in this chapter in Adding Items to Shopping Carts, CartModifierFormHandler
automatically reprices a shopping cart when it is used to add items to the cart. (Note that it also reprices
the cart when it is used to remove items from the cart.) However, you’ll need to reprice shopping carts via
some other mechanism if customers can make changes that affect order price through other form
handlers that do not reprice shopping carts (for example, by making shipping changes via the form
handlers that create and manage shipping groups), or if the shopping carts are modified through some
other means in ways that affect order price, such as the delivery of a promotion via a scenario.

If your sites have any pages where you need to reprice a shopping cart, but you cannot do so through a
form action and corresponding handle method, use the RepriceOrderDroplet servlet bean. In fact, you
can use the RepriceOrderDroplet servlet bean to reprice a customer’s shopping cart every time the
customer accesses a shopping cart page. This ensures that the customer always views accurate pricing
information as he or she makes changes to cart.

The RepriceOrderDroplet servlet bean takes one required input parameter, pricingOp, that should be
set to the pricing operation to execute. The possible pricing operations are defined in
atg.commerce.pricing.PricingConstants, and they include the following:

ORDER_TOTAL
ORDER_SUBTOTAL
ORDER_SUBTOTAL_SHIPPING
ORDER_SUBTOTAL_TAX
ITEMS
SHIPPING
ORDER
TAX
NO_REPRICE

Typically, the pricingOp input parameter is the only parameter you need to specify when using
RepriceOrderDroplet. For a detailed list of all the parameters of RepriceOrderDroplet, see
RepriceOrder in Appendix: ATG Commerce Servlet Beans.

To use RepriceOrderDroplet in a page on your sites, simply import the servlet bean into the page
using the following import statement:

<dsp:importbean

bean="/atg/commerce/order/purchase/RepriceOrderDroplet">

Then add JSP code similar to the following before displaying any pricing information for the current
shopping cart.

<dsp:droplet name="RepriceOrderDroplet">

 <dsp:param value="ORDER_SUBTOTAL" name="pricingOp"/>

</dsp:droplet>-->

For additional information on the RepriceOrderDroplet servlet bean, see the Repricing Orders section
of the Configuring Purchase Process Services chapter in the ATG Commerce Programming Guide.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 8 3

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
Saving Shopping Carts

You use the SaveOrderFormHandler to save the user’s current shopping cart, add the shopping cart to
the user’s list of saved carts in ShoppingCart.saved, and construct a new, empty cart as the user’s
current shopping cart in ShoppingCart.current.

Additionally, you can use the description property of SaveOrderFormHandler to set the
description property of the Order; this enables users to name their shopping carts with meaningful
names. If the user doesn’t provide a descriptive name, then the SaveOrderFormHandler automatically
creates one using the user’s locale and the current date and time.

The following JSP code illustrates the use of SaveOrderFormHandler.

<dsp:importbean bean="/atg/commerce/order/purchase/SaveOrderFormHandler"/>

Order # <dsp:valueof bean="ShoppingCart.current.id"/>

 <dsp:form action="saved_orders.jsp">

 Enter a name to identify this order:<p>

 <dsp:input bean="SaveOrderFormHandler.description" type="text"/>

 <dsp:input bean="SaveOrderFormHandler.saveOrder" value="Save order"

 type="submit"/>

 <dsp:input bean="SaveOrderFormHandler.saveOrderSuccessURL"

 value="../user/saved_orders.jsp" type="hidden"/>

 <dsp:input bean="SaveOrderFormHandler.saveOrderErrorURL"

 value="../user/save_order.jsp" type="hidden"/>

 </dsp:form>

For descriptions of the handle methods of SaveOrderFormHandler and detailed information on how an
Order is saved to the Order Repository, see the Saving Orders section of the Configuring Purchase Process
Services chapter in the ATG Commerce Programming Guide. For a JSP code example illustrating the use of
SaveOrderFormHandler, see the Saving Orders section of the My Account chapter in the ATG Business
Commerce Reference Application Guide.

The OrderLookup servlet bean retrieves one or more Order objects, depending on the supplied input
parameters. You can use this servlet bean to retrieve:

 A single order

 All orders placed by a particular user

 All orders placed by a particular user that are in a specific state

 All orders assigned to a particular cost center (ATG Business Commerce only)

The OrderLookup servlet bean that is provided with ATG Commerce is an instance of class
atg.commerce.order.OrderLookup if you are using ATG Consumer Commerce, or
atg.b2bcommerce.order.B2BOrderLookup if you are using ATG Business Commerce.

The behavior of the servlet bean is governed by several properties that are set in the OrderLookup
component. You can use the Pages and Components > Components by Path area of the ATG Control

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 8 4

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
Center to view and modify the OrderLookup component, which is located at /atg/commerce/order/.
The following properties are important when configuring the OrderLookup servlet bean.

Property Description

enableSecurity If this property is set to false, any user can view any order.

If this property is set to true, users are restricted to viewing only
their own orders. A user is considered to own an order if the profile
ID associated with the order matches the profile ID of that user.

By default, this property is set to true.

orderManager The path of the global OrderManager component that is
responsible for all direct interactions with Order objects. For most
stores, this is set to /atg/commerce/order/OrderManager.

profilePath The path to the Profile object of the user that is currently logged
in. For most stores, this is set to /atg/userprofiling/Profile.

openStates This property contains a list of order states that indicate that an
order is open. Because several order states can indicate that an
order is open, you can use this property to specify those states.
Consequently, when you query for all “open” orders, you retrieve all
orders with states specified in this property. By default, this
property is set to the following:

-- submitted
-- processing
-- pending_merchant_action
-- pending_customer_action

You can override this list of “open” states by using the optional
openStates input parameter, which is described later in this
section.

closedStates This property contains a list of order states that indicate that an
order is closed. Because several order states can indicate that an
order is closed, you can use this property to specify those states.
Consequently, when you query for all “closed” orders, you retrieve
all orders with states specified in this property. By default, this
property is set to the following:

-- no_pending_action

You can override this list of “closed” states by using the optional
closedStates input parameter, which is described later in this
section.

useRequestLocale Error messages generated by this servlet bean can be localized. If
this boolean property is set to true, the messages are localized to
the locale requested by the user.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 8 5

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
defaultLocale This property specifies the default locale to use to localize error

messages. The defaultLocale is used to localize the messages if
useRequestLocale is set to false or if the user does not request a
locale.

queryTotal If this property is set to false, the servlet bean does not set the
totalCount and total_count output parameters to the total
number of orders. (The totalCount and total_count output
parameters are described later in this section.)

The OrderLookup servlet bean takes the following input parameters:

Parameter Description

orderId The ID of the order to retrieve.

Note: If you are using ATG Consumer Commerce, either this or userId is
required. If you are using ATG Business Commerce, either this, userId, or
costCenterId is required.

userId The ID of the user profile whose orders will be retrieved.

Note: If you are using ATG Consumer Commerce, either this or orderId is
required. If you are using ATG Business Commerce, either this, orderId, or
costCenterId is required.

costCenterId

(ATG Business
Commerce only)

The ID of the cost center whose orders will be retrieved.

Note: This parameter applies to ATG Business Commerce only. Either this,
orderId, or userId is required.

state The desired state of the orders to retrieve.

This parameter can be used in conjunction with userId. You can specify
one of the following:

-- any one of the states defined in atg.commerce.states.OrderStates (if
you are using ATG Consumer Commerce) or
atg.b2bcommerce.states.B2BorderStates (if you are using ATG
Business Commerce)

-- open

-- closed

If you specify “open,” then all orders whose states are specified in the
openStates property of the OrderLookup component are returned. If you
specify “closed,” then all orders whose states are specified in the
closedStates property of the OrderLookup component are returned. You
can override either list of states by using the optional openStates or
closedStates input parameter (see below).

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 8 6

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
openStates A comma-separated list of states that correspond to “open” state.

This parameter can be used in conjunction with the state input parameter
when the state input parameter is set to “open.” Use this optional
parameter when you want to override the configured list of states in the
openStates property of the OrderLookup component.

closedStates A comma-separated list of states that correspond to “closed” state.

This parameter can be used in conjunction with the state input parameter
when the state input parameter is set to “closed.” Use this optional
parameter when you want to override the configured list of states in the
closedStates property of the OrderLookup component.

sortBy A string that specifies an Order property by which to sort the orders.

This parameter can be used in conjunction with userId. When using this
parameter, you can specify the name of any Order Repository property (that
is, the name of any property defined in orderrepository.xml), such as id,
state, or submittedDate.

sortAscending True or false. This parameter is used in conjunction with the sortBy input
parameter. If set to true, the Order objects in the resulting array are sorted
in ascending order by the property specified in the sortBy input parameter.
The default value is false.

numOrders The number of orders to return for the given query.

startIndex The index of the first order in the result set. This parameter is useful for
cycling through a large number of orders.

queryTotal Indicates whether the number of retrieved orders will be calculated into a
total that’s accessible through the totalCount and total_count output
parameters. Setting this property to false prevents the total count from
being generated, regardless of the value specified in the queryTotal
property. Omitting this parameter causes the default value, true, to be
used. Use this parameter to ensure that queries to the database are made
only when necessary.

queryTotalOnly Indicates whether the total number of orders and the orders themselves are
produced from the servlet bean. Setting this parameter to true makes the
total number of retrieved orders available through the totalCount and
total_count output parameters. The orders themselves are not retrieved
or accessible. Use this parameter to ensure that queries to the database are
made only when necessary.

Omitting this parameter, which is the same as setting it to false, saves a list
of order objects to the output open parameter as well as the total number
of orders to the totalCount and total_count output parameters.

If queryTotal=false (orders, no total) and queryTotalOnly=true (total,
no orders), a total is generated only as specified in the queryTotalOnly
parameter.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 8 7

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ

The OrderLookup servlet bean sets the following output parameters:

Parameter Description

result The array of Order objects. If the orderId input parameter was used, then this
parameter contains a single Order object.

errorMsg If an error occurred, this is the detailed error message for the user.

count The size of the array of Order objects.

totalCount If the queryTotal property is set to true, this parameter indicates the total
number of orders that meet the criteria for the order lookup.

total_count Identical to the totalCount output parameter.

startRange The index number that marks the beginning of a range of orders. For example, if
5 orders were returned from a given OrderLookup query, the startRange is
set to 1.

endRange The index number that marks the end of a range of orders. For example, if 5
orders were returned from a given OrderLookup query with a startRange of
6, the endRange is set to 10.

nextIndex The index of the first order in the next set of results. If the startIndex or
numOrders input parameter was null, then this parameter will be null.

previousIndex The index of the first order in the previous set of results. If the startIndex or
numOrders input parameter was null, then this parameter will be null.

The OrderLookup servlet bean renders the following open parameters:

Parameter Description

output The oparam rendered if the orders are successfully retrieved.

empty The oparam rendered if there are no orders to return.

error The oparam rendered if an error occurs.

The following example describes how to use the OrderLookup servlet bean to retrieve all open orders for
the current user and to display their IDs:

<dsp:droplet name="/atg/commerce/order/OrderLookup">

 <dsp:param bean="/atg/userprofiling/Profile.repositoryId" name="userId"/>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 8 8

1 1 - I m p l e m e n t i n g S h o p p i n g C a r t s

μ
 <dsp:param value="open" name="state"/>

 <dsp:oparam name="output">

 <dsp:droplet name="/atg/dynamo/droplet/ForEach">

 <dsp:param param="result" name="array"/>

 <dsp:oparam name="outputStart">

 </dsp:oparam>

 <dsp:oparam name="outputEnd">

 </dsp:oparam>

 <dsp:oparam name="empty">

 No open orders.

 </dsp:oparam>

 <dsp:oparam name="output">

 <dsp:valueof param="element.id">no order number</dsp:valueof>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

 <dsp:oparam name="error">

 ERROR:

 <dsp:valueof param="errorMsg">no error message</dsp:valueof>

 </dsp:oparam>

</dsp:droplet>

The following example describes how to use the OrderLookup servlet bean to display information about
a particular order with the ID of 123:

<dsp:droplet name="/atg/commerce/order/OrderLookup">

 <dsp:param value="123" name="orderId"/>

 <dsp:oparam name="error">

 <p>

 ERROR:

 <dsp:valueof param="errorMsg">no error message</dsp:valueof>

 <p>

 </dsp:oparam>

 <dsp:oparam name="output">

 <p>

 order #<dsp:valueof param="result.id">no order id</dsp:valueof>

 <p>

This order is in state:

<dsp:valueof param="result.stateAsString"/>

 <P>

 This order was placed on

 <dsp:valueof date="MMMMM d, yyyy" param="result.submittedDate"/>.

 <P>

 </dsp:oparam>

</dsp:droplet>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 8 9

1 2 - I m p l e m e n t i n g a n O r d e r A p p r o v a l P r o c e s s

μ
12 Implementing an Order Approval

Process

B2B applications often require that customers’ orders be reviewed by authorized persons who can
approve or reject them. If your application implements an order approval process, you need to display to
a given approver the orders that require his or her approval, and you need to provide some means to
process the approver’s decisions (of approval and/or rejection). ApprovalRequiredDroplet and
ApprovalFormHandler are provided for this purpose.

Additionally, an approver might want to view a historical list of the orders he or she has approved and/or
rejected. ApprovedDroplet is provided for this purpose.

This chapter provides information on how you can use these three components in the JSPs of your
application to support the following parts of the order approval process:

Displaying Orders Requiring Approval

Processing Approvals and Rejections

Displaying a History of Approved and Rejected Orders

Displaying Orders Requiring Approval
Use the ApprovalRequiredDroplet servlet bean to retrieve all orders requiring approval by a given
approver. ApprovalRequiredDroplet queries the order repository and returns all orders that meet the
following two criteria:

 The order’s authorizedApproverIds property contains the approver’s ID.

 The state of the order requires approval, meaning that the state is defined in the
ApprovalRequiredDroplet orderStatesRequiringApproval property. The
order’s state is held by the property of the order that is specified in the
ApprovalRequireDroplet orderStatePropertyName property. The default value
is PENDING_APPROVAL.

See the ApprovalRequiredDroplet entry in Appendix: ATG Commerce Servlet Beans for additional
information.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 9 0

1 2 - I m p l e m e n t i n g a n O r d e r A p p r o v a l P r o c e s s

μ
Processing Approvals and Rejections

Use the ApprovalFormHandler form handler (class
atg.b2bcommerce.approval.ApprovalFormHandler) to process an approver’s approval or rejection
of an order. The ApprovalFormHandler class contains two handle methods, handleApproveOrder and
handleRejectOrder. You can associate these handle methods with Submit properties in the following
manner:

<dsp:input bean="ApprovalFormHandler.approveOrder" value=" Approve Order"

 type="submit"/>

<dsp:input bean="ApprovalFormHandler.rejectOrder" value=" Reject Order"

 type="submit"/>

If the handleApproveOrder method is called for ApprovalFormHandler.approveOrder, the
handleApproveOrder method processes the approver’s approval of the order. In contrast, if the
handleRejectOrder method is called for ApprovalFormHandler.rejectOrder, the
handleRejectOrder method processes the approver’s rejection of the order.

The following JSP example illustrates how to use ApprovalFormHandler with a single order. In this
example, the approver enters an order id and a comment (or message) to be associated with his approval
or rejection of the order. He then approves or rejects the order by clicking the Approve Order submit
button or the Reject Order submit button, respectively.

<dsp:importbean bean="/atg/commerce/approval/ApprovalFormHandler"/>

<dsp:form action="pendingapprovalOrders.jsp">

 <dsp:input bean="ApprovalFormHandler.ApproveOrderSuccessURL"

 value="pendingapprovalOrders.jsp" type="hidden"/>

 <dsp:input bean="ApprovalFormHandler.ApproveOrderErrorURL"

 value="pendingapprovalOrders.jsp" type="hidden"/>

 <dsp:input bean="ApprovalFormHandler.RejectOrderSuccessURL"

 value="pendingapprovalOrders.jsp" type="hidden"/>

 <dsp:input bean="ApprovalFormHandler.RejectOrderErrorURL"

 value="pendingapprovalOrders.jsp" type="hidden"/>

 Order Id <dsp:input bean="ApprovalFormHandler.orderId" size="10" value=""

 type="text"/>

 Approver Message <dsp:input bean="ApprovalFormHandler.approverMessage"

 size="500" value="" type="text"/>

 <dsp:input bean="ApprovalFormHandler.approveOrder" value=" Approve Order "

 type="submit"/>

 <dsp:input bean="ApprovalFormHandler.rejectOrder" value=" Reject Order "

 type="submit"/>

</dsp:form>

Note: In actual implementations, JSP files will be in web applications and not relative to doc roots.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 9 1

1 2 - I m p l e m e n t i n g a n O r d e r A p p r o v a l P r o c e s s

μ
Displaying a History of Approved and Rejected Orders

Use the ApprovedDroplet servlet bean to retrieve all orders that have been approved and/or rejected by
a given approver. ApprovedDroplet queries the order repository and returns all orders that have the
approver’s profile ID in the approverIds property.

ApprovedDroplet takes the following input parameters:

 approverid: the ID of the current user profile; the approver. This parameter is
required.

 startIndex: The index of the first order to return. If startIndex is null, then it
defaults to 0. This parameter is optional and typically is used to break large result sets
into manageable pieces.

 numOrders: The number of orders to return on the query. This parameter is optional,
and typically is used to break large result sets into manageable pieces.

ApprovedDroplet sets the following output parameters:

 result: The array of Order objects.

 count: The number of Order objects in the result output parameter.

 totalCount: The total number of Order objects that satisfied the criteria.

 nextIndex: The index of the first order in the next set of results. If startIndex or
numOrders was null, then this parameter will also be null.

 previousIndex: The index of the first order in the previous set of results. If
startIndex or numOrders was null, then this parameter will also be null.

nextIndex and previousIndex allow the user to cycle back and forth between result
sets.

 startRange: The 1-based index of the first Order in the set of results.

 endRange: The 1-based index of the last Order in the set of results.

 errorMsg: The error message to display to the user if an error occurs.

It renders the following open parameters (oparams):

 output: This oparam renders the array of Order objects set in the result output
parameter.

 empty: The oparam rendered if there are no orders that have been approved and/or
rejected by the current user.

 error: The oparam rendered if an error occurs.

Note: The ApprovedDroplet servlet bean has a security feature that allows the current user, the
approver, to view only the orders of customers for whom he or she is allowed to approve orders. This
feature is enabled by default. To disable the feature, set the enableSecurity property to false.

The following JSP example retrieves from the repository the orders that have been approved and/or
rejected by the current user, an approver, and lists each order’s repository ID on the page.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 9 2

1 2 - I m p l e m e n t i n g a n O r d e r A p p r o v a l P r o c e s s

μ
<dsp:droplet name="ApprovedDroplet">

 <dsp:param bean="/atg/userprofiling/Profile.repositoryId" name="approverid"/>

 <dsp:param value="0" name="startIndex"/>

 <dsp:param value="10" name="numOrders"/>

 <dsp:oparam name="output">

 <dsp:droplet name="ForEach">

 <dsp:param param="result" name="array"/>

 <dsp:param value="order" name="elementName"/>

 <dsp:oparam name="output">

 <dsp:valueof param="order.repositoryId"/>

 </dsp:oparam>

 <dsp:oparam name="error">

 <dsp:valueof param="errorMsg"/>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

</dsp:droplet>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 9 3

1 3 - F i l t e r i n g C o m m e r c e I t e m C o l l e c t i o n s

μ
13 Filtering Commerce Item Collections

ATG Commerce extends the collection filtering feature provided in ATG Adaptive Scenario Engine by
providing independent and chained collection filtering components that are designed to work with
products.

This chapter describes collection filtering in the following sections:

How Product Collection Filtering Works

Using ATG Collection Filtering Components

Filtering Multisite Gift and Wish Lists

See these resources for more information on collection filtering:

 A general discussion of collection filtering is located in the Filtering Collections chapter
of the ATG Personalization Programming Guide.

 A reference description of the CollectionFilter servlet bean is in Appendix B: ATG
Servlet Beans of the ATG Page Developer’s Guide.

 The API collection filtering documentation resides in the sections for the
atg.service.collections.filter and atg.commerce.collections.filter
packages of the ATG API Reference.

How Product Collection Filtering Works
You can filter products from a collection using independent collection filters or filters in a chain. This
example shows how to render a collection of products that satisfy the conditions defined in a chain of
filters. The rendered collection is cached for future use.

Consider a Web page in which you want to display a list of active, available products to customers. To do
this, use a collection filtering servlet bean (ProductFilterDroplet) in a JSP to access a collection
filtering component (ProductFilter) that will then apply its chain of filters to a collection of products.
See CollectionFilter for more on ProductFilterDroplet and other collection filtering servlet beans.

It is the responsibility of ProductFilter to chain together separate collection filters and to execute that
chain. This example assumes that the ProductFilter.filters property identifies two collection filters:
StartEndDateFilter and InventoryFilter. These filters collectively remove products that aren’t
available for sale (StartEndDateFilter) and aren’t in stock (InventoryFilter).

The JSP code would look like this:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 9 4

1 3 - F i l t e r i n g C o m m e r c e I t e m C o l l e c t i o n s

μ
<dspel:droplet name="/atg/collections/filter/droplet/ProductFilterDroplet">

 <dsp:param name="collection" param="item.childproducts/>

 <dsp:param name="collectionIdentifierKey" value="catid-0067-hardscape"/>

 <dspel:oparam name="output">

 Featured Plants:<p>

 <dsp:droplet name="/atg/dynamo/droplet/ForEach">

 <dsp:param name="array" param="filteredCollection"/>

 <dsp:oparam name="output">

 <dspel:valueof param="element"/>

 </dspel:oparam>

 </dsp:droplet>

 </dspel:oparam>

 <dspel:oparam name="empty">

 There are currently no outdoor plants

 </dspel:oparam>

</dspel:droplet>

When this JSP executes, the ProductFilterDroplet passes the products to the ProductFilter
component and executes the chain:

 The first component is StartEndDateFilter, which compares the current date to
the values in the startDate and endDate properties for each product. Products that
are not active (have not been “started” or have already been “ended”) are discarded
and the remaining products are passed to the InventoryFilter

 InventoryFilter corresponds with the Inventory Manager to determine the
availability of all products in the slot. Products that are out of stock are removed from
the collection.

 When caching is enabled on ProductFilter, the FilterCache component saves
information that represents the prefiltered collection as well as the filtered result.
Subsequent renderings of this JSP will compare the cached prefiltered collection with
the current prefiltered one. When appropriate, the cached filtered result is used. For
more information about caching, see the Filtering Collections chapter of the ATG
Personalization Programming Guide.

Using ATG Collection Filtering Components
Collection filtering components are components that reduce the objects in a collection based on a unique
set of conditions. ATG Commerce includes three collection filtering components:

 Using InventoryFilter

 Using ExcludeItemsInCartFilter

 Using ProductFilter

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 9 5

1 3 - F i l t e r i n g C o m m e r c e I t e m C o l l e c t i o n s

μ
 Using CartSharingFilter

These components receive a collection from another resource (scenario or servlet bean) and return the
resultant collection to the calling resource. To involve a collection filtering component in a scenario,
define a Filter Slot Contents action element to use a collection filtering component. See the ATG
Personalization Programming Guide for information on this scenario action. Specific instructions for using
servlet beans to access collection filtering components are included for each component in the following
sections.

Keep in mind that although a collection can hold any kind of object, the collection filtering components
described here are defined to work with RepositoryItems of type Product. Any non-Product items in
the collection are ignored by the component and included in the result set.

Using InventoryFilter

The /atg/registry/CollectionFilters/InventoryFilter component, which is a component of
class atg.commerce.collections.filter.InventoryFilter, is used to eliminate products from a
collection that have a specific inventory availability.

InventoryFilter compares inventory status as defined in the InventoryManager for each product’s
SKUs to the statuses specified in the InventoryFilter.IncludeInventoryStates property. If any SKU
for a product has a status included in the IncludeInventoryStates property, the product remains in
result set collection. By default, InventoryFilter.IncludeInventoryStates has values 1000 (in
stock), 1002 (pre-orderable), and 1003 (back orderable) so any product containing one of these values is
added to the collection that’s returned.

You can access the InventoryFilter component through the InventoryFilterDroplet servlet bean
(directly) and the ProductFilterDroplet (as part of a filter chain). Although you have the option to
cache collection filter content, caching is discouraged for InventoryFilter if you are using an Inventory
Manager, like CachingInventoryManager, that has its own caching mechanism. For more information
on caching, see the Filtering Collections chapter of ATG Personalization Programming Guide.

Using ExcludeItemsInCartFilter

The /atg/registry/CollectionFilters/ExcludeItemsInCartFilter component, which is a
component of class atg.commerce.collections.filter.ExcludeItemsInCartFilter, is used to
remove any products from a collection that are in a user’s shopping cart. This component relies on the
shoppingCartPath property to locate the current user’s shopping cart. The default value is
/atg/commerce/ShoppingCart.

You can access the ExcludeItemsInCartFilter component through the
ExcludeItemInCartFilterDroplet servlet bean (directly) Although you have the option to cache
collection filter content, you are advised against caching the results from ExcludeItemsInCartFilter
because it’s unlikely that the cached content will be used again, making caching a waste of resources. For
more information on caching, see the Filtering Collections chapter of ATG Personalization Programming
Guide.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 9 6

1 3 - F i l t e r i n g C o m m e r c e I t e m C o l l e c t i o n s

μ
Using ProductFilter

The /atg/registry/CollectionFilters/ProductFilter component, which is a component of class
atg.service.collections.filter.ChainedFilter, is used to create a chain of collection filters that
apply their conditions to a collection of products.

ProductFilter passes the products to each filter defined in the ProductFilter.filters property
successively and produces a final collection that satisfies the conditions specified by each collection filter.
By default ProductFilter.filters is set to StartEndDateFilter and InventoryFilter.

You can access the ProductFilter component on a JSP using the ProductFilterDroplet servlet
bean. When you ProductFilterDroplet, the resultant content is cached by default (cacheEnabled is
set to true). For more information on the ChainedFilter class and on caching, see the Filtering
Collections chapter of the ATG Personalization Programming Guide.

Using CartSharingFilter

If you are using ATG’s multisite feature, the
/atg/registry/CollectionFilters/CartSharingFilter component, which is a component of
class atg.commerce.collections.filter.ItemSiteFilter, filters input item collections by their site
IDs.

This filter returns only products that are within the same sharing group, based on the
atg.ShoppingCart shareable type configuration (see Configuring Commerce for Multisite in the ATG
Commerce Programming Guide). Two additional properties, includeDisabledSites and
includeInactiveSites, determine which site states are taken into account (both are false by default).

You can access the CartSharingFilter component in a JSP; see the CollectionFilter section for
information.

Filtering Multisite Gift and Wish Lists
ATG Commerce includes functionality that allows you to filter collections of gift lists and gift items so that
you display only those lists/items that are appropriate for the customer’s site context. In a multisite
environment, any time you retrieve a collection of gift lists or gift items by referring to a repository item’s
property, such as Profile.giftlists or Profile.wishlist.giftlistItems, you get back an
unfiltered list that may contain items from multiple sites. For these situations, you should consider
whether the collection should be filtered or not and, if so, implement the filtering functionality described
in this section.

Filtering is particularly important for wish lists. Customers can only have one wish list, making it more
likely that items from multiple sites will exist in a single wish list. To limit wish list item display to only
those items that are appropriate for the site context, you must filter out any items affiliated with sites that
are outside of the site context.

Two components facilitate the filtering of gift lists and gift items:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 9 7

1 3 - F i l t e r i n g C o m m e r c e I t e m C o l l e c t i o n s

μ
 The

/atg/commerce/collections/filter/droplet/GiftlistSiteFilterDroplet
calls the GiftlistSiteFilter component to filter a specified collection of gift
lists/gift items and then renders the filtered results.

 The /atg/registry/CollectionFilters/GiftlistSiteFilter component
filters collections of gift lists or gift items. It returns only those lists/items that are
appropriate for the site context.

The GiftlistSiteFilterDroplet is a globally-scoped instance of the class
atg.service.collections.filter.droplet.CollectionFilter designed to render a filtered set
of gift lists/gift items. It has the following properties:

 filter: Reference to the
/atg/registry/CollectionFilters/GiftlistSiteFilter component.

 extraParameterNames: A comma-separated list that identifies the additional
parameters, namely siteIds and siteScope, that a JSP can specify as input
parameters to GiftlistSiteFilterDroplet . GiftlistSiteFilterDroplet
passes these parameters on to GiftlistSiteFilter so that it can filter gift lists
based on site context. If the JSP doesn’t pass values for these parameters,
GiftlistSiteFilter defaults to using the current site and the
GiftlistManager.siteScope value, respectively.

GiftlistSiteFilter is a globally-scoped component of class
atg.commerce.gifts.GiftlistSiteFilter. This class extends the generic collection filtering class
atg.service.collections.filter.CachedCollectionFilter by overriding the
generateFilteredCollection() method to take site scope and site ID parameters into consideration
when filtering gift lists or gift items. GiftlistSiteFilter resolves the site scope and site ID values as
follows:

 If a site scope is passed in, GiftlistSiteFilter uses that scope during filtering. If
not, GiftlistSiteFilter calls the GiftlistManager and uses its siteScope
setting for filtering. Note that, with the default siteScope setting of all, all gift
lists/items are always returned and no filtering occurs, so you should not use gift
list/item filters unless you are using a siteScope other than all.

 If a list of site IDs is passed in, GiftlistSiteFilter uses that list during filtering. If
no site IDs are passed in, the current site’s siteId is used during filtering.

When filtering gift lists, the GiftlistSiteFilter determines the site scope and then compares the
siteId’s of the gift lists/gift items in the repository to the IDs in its list, as shown in the following table:

Compatibility Test All Current ShareableType ID

Gift list/gift item’s
siteId is in the site IDs
list

Include gift
list/gift item in
filtered results

Include gift
list/gift item in
filtered results

Include gift list/gift item
in filtered results

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 9 8

1 3 - F i l t e r i n g C o m m e r c e I t e m C o l l e c t i o n s

μ
Gift list/gift item’s
siteId is not in the site
IDs list

Include gift
list/gift item in
filtered results

Do not include
gift list/gift item
in filtered results

Include gift list/gift item in filtered
results if the gift list/gift item’s
siteId is in the specified sharing
group (for example, the shopping
cart sharing group) with any of the
sites in the site IDs list.

Gift list/gift item’s
siteId is null

Note: This is also the
wish list case.

The gift list/item is
universal and
should be
included in
filtered results

The gift list/item
is universal and
should be
included in
filtered results

The gift list/item is universal and
should be included in filtered
results

Properties for the GiftlistSiteFilter component include:

 giftlistManager: Reference to the gift list manager component
/atg/commerce/gifts/GiftlistManager.

 siteGroupManager: Reference to the site group manager component
/atg/multisite/SiteGroupManager. This component determines which sites are
part of the same sharing group and can share data such as gift lists.

 includeDisabledSites: If true, the filter does not filter out items that appear on
disabled sites. The default is false.

 includeInactiveSites: If true, the filter does not filter out items that appear on
inactive sites. The default is false.

Note that, unlike the GiftlistSearch form handler, the GiftlistSiteFilter component does not
have siteScope or siteIds properties. Instead, the site scope and list of site IDs are passed to
GiftlistSiteFilter by the GiftlistSiteFilterDroplet, as described below.

This JSP excerpt shows one example of how you can use GiftlistSiteFilterDroplet to filter gift lists.
No site scope is passed in, so the GiftlistSiteFilter uses the GiftlistManager component’s
siteScope, which for the purposes of this example is set to the atg.ShoppingCart shareable type
component. Also, no site IDs are provided, so the filtered gift lists will come from the current site and sites
that share a shopping cart with the current site only.

<dsp:droplet

name="/atg/commerce/collections/filter/droplet/GiftlistSiteFilterDroplet">

 <&-- Specify the collection to filter --%>

 <dsp:param name="collection" bean="Profile.giftlists"/>

 <dsp:oparam name="output">

 <%-- Iterate through the collection. --%>

 <dsp:importbean bean="/atg/dynamo/droplet/ForEach"/>

 <dsp:droplet name="ForEach">

 <dsp:param name="array" param="filteredCollection"/>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

1 9 9

1 3 - F i l t e r i n g C o m m e r c e I t e m C o l l e c t i o n s

μ

 <dsp:oparam name="output">

 <dsp:setvalue param="giftList" paramvalue="element"/>

 <dsp:getvalueof var="eventName" param="giftList.eventName"/>

 <c:out value="${eventName}"/>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

</dsp:droplet>

This JSP excerpt filters a collection of wish list items. A site scope value of current is passed to the filter
along with a set of site IDs, resulting in a collection of items from the specified sites only.

<dsp:droplet

name="/atg/commerce/collections/filter/droplet/GiftlistSiteFilterDroplet">

 <&-- Specify the collection to filter and the site scope. --%>

 <dsp:param name="collection" bean="Profile.wishlist.giftlistItems"/>

 <dsp:param name="siteScope" value="current"/>

 <dsp:param name="siteIds" value="siteA,siteB"/>

 <dsp:oparam name="output">

 <%-- Iterate through the collection. --%>

 <dsp:importbean bean="/atg/dynamo/droplet/ForEach"/>

 <dsp:droplet name="ForEach">

 <dsp:param name="array" param="filteredCollection"/>

 <dsp:oparam name="output">

 <dsp:setvalue param="giftItem" paramvalue="element"/>

 <dsp:getvalueof var="displayName" param="giftItem.displayName"/>

 <c:out value="${displayName}"/>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

</dsp:droplet>

Notes:

 The GiftlistSiteFilter and GiftlistSiteFilterDroplet components can be
configured to use caching to improve filtering performance, just as you would for any
filter based on the CollectionFilter class. See Caching Filtered Content in the ATG
Personalization Programming Guide.

 The GiftlistSiteFilter component can be used independently of the
GiftlistSiteFilterDroplet. To do so, you must pass the siteIds and
siteScope values in the pExtraParameters map when calling the
GiftlistSiteFilter.generateFilteredCollection() method (when using the

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 0 0

1 3 - F i l t e r i n g C o m m e r c e I t e m C o l l e c t i o n s

μ
droplet, the droplet creates the pExtraParameters map before it calls the
GiftlistSiteFilter component). For more information, see the ATG API Reference.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 0 1

1 4 - U s i n g A T G C o m m e r c e P o r t a l G e a r s

μ
14 Using ATG Commerce Portal Gears

If you are an ATG Commerce and ATG Portal user, you can use ATG Commerce gears in the portal pages of
your commerce site to provide customers with a personalized gateway to their order information. For
example, the Order Status gear provides customers with direct access to their five most recently placed
orders, with access to all orders just one click away.

This chapter provides information on the portal gears (sometimes referred to as “portlets”) that are
provided with ATG Business Commerce and/or ATG Consumer Commerce. It includes the following
sections:

Order Status Gear

Order Approval Gear

The chapter assumes that you are familiar with the gear development and administration concepts
covered in the ATG Portal Development Guide and the ATG Portal Administration Guide.

Note: The ATG Commerce portal gears are packaged into individual modules that include Web
applications you need to deploy on your application server.

Order Status Gear
The Order Status gear makes current and historical order information available to portal end users.

This section explains how to run and use the Order Status gear and describes its implementation and
default configuration. It covers the following topics:

Setting Up the Order Status Gear

Using the Order Status Gear

Configuring the Order Status Gear

Order Status Gear Implementation

Setting Up the Order Status Gear

The Order Status gear is part of both ATG Business Commerce and ATG Consumer Commerce.

To set up the Order Status gear:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 0 2

1 4 - U s i n g A T G C o m m e r c e P o r t a l G e a r s

μ
1. During application assembly, specify the ATG Business Commerce, ATG Consumer

Commerce module, Motorprise module, or your own commerce application that
contains order data. Also specify the CommerceGears.orderstatus module (which
requires ATG Portal).

For example, the following modules represent the Order Status gear and Motorprise:

CommerceGears.orderstatus MotorpriseJSP

For a list of module names and assembly instructions, see the ATG Programming Guide.

2. Deploy your application as instructed by your application server documentation.

3. Register the Order Status gear with the Portal Administration Framework (PAF) by
uploading its gear manifest file to the PAF. The gear manifest is located at
<ATG10dir>\CommerceGears\orderstatus\orderstatus-manifest.xml.

For detailed information on how to register a gear, see the Portal Administration
chapter in the ATG Portal Administration Guide.

4. Create a community whose members will use the gear and add the gear to one of the
community’s pages.

For detailed information on how to create a community and add a gear to one of its
pages, see the Community Administration chapter in the ATG Portal Administration
Guide.

5. Point your browser to the URL for the community page that contains the Order Status
gear (for example,
http://host:port/portal/mycommunity/home).

Before the Order Status gear is displayed, you must log in to the page. For information
on the default port, see the ATG Installation and Configuration Guide.

6. Log in to the page as the following user to explore the gear:

 Stuart Lee, a Motorprise buyer. Stuart’s username and password are
stuart:stuart.

If you are running the Order Status gear with your own commerce application, you’ll
need to log in as an appropriate user.

Using the Order Status Gear

When an end user logs in to a portal page that includes the Order Status gear, the user initially views the
gear in Shared mode. By default, the gear displays the user’s five most recently placed orders, providing
each order’s number, order date, and current status. Additionally, the gear displays the total count of the
user’s open orders. From this page, the user can do any of the following:

 Click any order number to display the order details page for the given order.

 Click the View All Orders link to display all of the user’s orders.

 Click the Edit button in the gear’s top, right corner to configure the gear’s user
parameters.

The following figure illustrates the Order Status gear in Shared mode.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 0 3

1 4 - U s i n g A T G C o m m e r c e P o r t a l G e a r s

μ

Shared view of Order Status gear

When the user clicks the View All Orders link, the portal page is re-rendered and displays the Order Status
gear in Full Page mode. The gear displays all of the user’s orders, providing each order’s number, order
date, ship date (if applicable), current status, amount, and description. By default, if the user’s orders
exceed 10 in number, they are displayed across multiple pages.

The following figure illustrates the Order Status gear in Full Page mode.

Full view of Order Status gear

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 0 4

1 4 - U s i n g A T G C o m m e r c e P o r t a l G e a r s

μ
In Full Page mode, the user can change the display of the orders by specifying the state of the orders to
display (for example, Shipped or Submitted). The user can also specify a sorting instruction for the orders
(order number, state, date ordered). Clicking the Show Orders button then re-displays the list of orders
according to the specified instructions. As in Shared mode, the user can click any order number to display
the order details page for the given order.

Configuring the Order Status Gear

The Order Status gear includes three gear configuration pages with which to customize the function and
display of the gear:

 The installConfig page for portal administrators

 The instanceConfig page for community leaders

 The userConfig page for portal end users

The table below describes the instance parameters for the Order Status gear that can be configured on
the installConfig page. Typically, they are set by the portal administrator.

Instance
parameter

Description Default Value

OrderPage The URL of the order details page used by the
commerce application; this page is displayed
when the portal end user clicks an order
number in the Order Status gear.

Important: By default, this parameter is set to
a generic URL. If you’re running the gear with
the Motorprise store, you must change this
parameter to
/Motorprise/en/user/order.jsp.

If you’re running the gear with your own
commerce application, you must change it to
the JSP that is appropriate for the application.
Note that if the JSP does not support multiple
locales, you’ll need to configure a separate
gear instance for each required locale.

en/user/order.jsp

The table below describes the instance parameters for the Order Status gear that can be configured on
the instanceConfig page. Typically, they are set by the community leader.

Each of the instance parameters stores a boolean value that indicates whether, in Full Page mode, the
portal end user can filter and display only those orders in the specified order state. If a parameter is set to
true, then the associated state is included in the filter drop-down list.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 0 5

1 4 - U s i n g A T G C o m m e r c e P o r t a l G e a r s

μ
Instance parameter Description Default Value

ShowShippedFilterFull Indicates whether the end
user can filter and display
only Shipped orders.

true

ShowSubmittedFilterFull Indicates whether the end
user can filter and display
only Submitted orders.

true

ShowApprovedFilterFull Indicates whether the end
user can filter and display
only Approved orders.

true

ShowRejectedFilterFull Indicates whether the end
user can filter and display
only Rejected orders.

true

ShowPendingApprovalFilterFull Indicates whether the end
user can filter and display
only Pending Approval
orders.

true

ShowPendingRemoveFull Indicates whether the end
user can filter and display
only Pending Remove
orders.

true

ShowRemovedFull Indicates whether the end
user can filter and display
only Removed orders.

true

ShowPendingCustomerActionFull Indicates whether the end
user can filter and display
only Pending Customer
Action orders.

true

ShowPendingCustomerReturnFull Indicates whether the end
user can filter and display
only Pending Customer
Return orders.

true

The table below describes the user parameters for the Order Status gear that can be configured by the
portal end user on the userConfig page.

User Parameter Description Default
Value

NumberOfOrdersFull The maximum number of orders to display per
page in Full Page mode.

10

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 0 6

1 4 - U s i n g A T G C o m m e r c e P o r t a l G e a r s

μ
NumberOfOrdersShared The maximum number of orders to display in

Shared mode. If set to zero, recent order
information is not displayed.

5

ShowOpenOrdersShared Boolean value that indicates whether to show
in Shared mode the number of open orders
placed by the user.

“Open” orders are those orders whose state is
specified in OrderLookup.openStates. (For
more information on the OrderLookup
component, see the Order Status Gear
Implementation section.)

true

Order Status Gear Implementation

The Order Status gear relies upon existing ATG Portal and core ATG Commerce functionality. The
subsections that follow describe various aspects of its implementation.

Gear Modes and Display Modes

The following table lists the gear modes used in the Order Status gear, as well as their corresponding
display modes, device outputs, and gear content and configuration pages.

Gear Mode Display
Mode

Device Output Page Fragment

content Shared HTML OrderStatusShared.jsp

 Full HTML OrderStatusFull.jsp

installConfig Full HTML installConfig.jsp

instanceConfig Full HTML instanceConfig.jsp

userConfig Full HTML userConfig.jsp

For general information about gear modes, display modes, and device outputs, see the Designing a Gear
chapter in the ATG Portal Development Guide. For general information about creating gear content and
configuration pages, see the Creating Gear Page Fragments chapter in the same guide.

Components

The Order Status gear makes use of the following major components:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 0 7

1 4 - U s i n g A T G C o m m e r c e P o r t a l G e a r s

μ
Component Description

/atg/portal/gear/GearConfigFormHa

ndler

Class
atg.portal.framework.GearConfigFormH

andler.

GearConfigFormHandler is provided with
the PAF. It is used in the Order Status gear
configuration pages to create and manage
the forms with which to set the gear’s
instance and user parameters.

For more information on
GearConfigFormHandler, see the Gears and
the Portal Application Framework and Creating
Gear Page Fragments chapters in the ATG
Portal Development Guide.

/atg/commerce/states/OrderStates Class atg.commerce.states.OrderStates
for ATG Consumer Commerce; class
atg.b2bcommerce.states.B2BOrderState

s for ATG Business Commerce.

The OrderStates component is used in
instanceConfig.jsp to retrieve a list of
possible order states. For each possible order
state, a checkbox is rendered. If the
community leader checks the checkbox, then
the associated order state is included in the
list of states by which the portal end user can
filter orders in Full Page mode.

For more information on OrderStates, see
the ATG Commerce States section of the
Working With Purchase Process Objects chapter
in the ATG Commerce Programming Guide.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 0 8

1 4 - U s i n g A T G C o m m e r c e P o r t a l G e a r s

μ
/atg/commerce/gears/orderstatus/O

rderStatusGear

Class
atg.commerce.gears.orderstatus.Order

StatusFormHandler.

The OrderStatusGear form handler is used
in both the Shared and Full Page content
pages. On OrderStatusShared.jsp, the
component is used to display orders whose
states match those specified in its
sharedViewStates property. By default,
OrderStatusGear.sharedViewStates is
set to the following:

submitted,\

processing,\

pending_merchant_action,\

pending_customer_action,\

no_pending_action

On OrderStatusFull.jsp, it is used to
create and manage the form that the end user
can use to specify order state and sorting
criteria when displaying orders.

/atg/commerce/order/OrderLookup Class atg.commerce.order.OrderLookup
for ATG Consumer Commerce; class
atg.b2bcommerce.order.B2BOrderLookup
for ATG Business Commerce.

The OrderLookup servlet bean is used in the
gear content pages to retrieve and display the
user’s orders.

For more information on OrderLookup, see
the Implementing Order Retrieval chapter.

Tag Libraries

The Order Status gear uses the following standard tag libraries:

 Core tag library

 DSP tag library

 PAF tag library

 Jakarta’s i18n tag library

For information on the DSP tag libraries, see the ATG Page Developer’s Guide. For information on the PAF
tag library and Jakarta’s i18n tag library, see the ATG Portal Development Guide.

No custom tag libraries were written for this gear.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 0 9

1 4 - U s i n g A T G C o m m e r c e P o r t a l G e a r s

μ
Order Approval Gear

The Order Approval gear displays the orders requiring approval by the current approver and, if needed,
provides a mechanism for approving and/or rejecting those orders.

This section explains how to run and use the Order Approval gear and describes its implementation and
default configuration. It covers the following topics:

Setting Up the Order Approval Gear

Using the Order Approval Gear

Configuring the Order Approval Gear

Order Approval Gear Implementation

Note: The Order Approval gear is installed with ATG Business Commerce. You must run both ATG
Business Commerce and ATG Portal to run the Order Status gear.

Setting Up the Order Approval Gear

To access the Order Approval gear:

1. During application assembly, specify ATG Business Commerce, Motorprise (or your
own commerce application that contains order data), and the
CommerceGears.orderapproval module (which requires ATG Portal). For example:

CommerceGears.orderapproval MotorpriseJSP

For a list of ATG modules and assembly instructions, see the ATG Programming Guide.

2. Deploy your application as instructed by your application server documentation.

3. Register the Order Approval gear with the Portal Administration Framework (PAF) by
uploading its gear manifest file to the PAF. The gear manifest file is located at
<ATG10dir>\CommerceGears\orderapproval\orderapproval-manifest.xml.

For detailed information on how to register a gear, see the Portal Administration
chapter in the ATG Portal Administration Guide.

4. Create a community whose members will use the gear and add the gear to one of the
community’s pages.

For detailed information on how to create a community and add a gear to one of its
pages, see the Community Administration chapter in the ATG Portal Administration
Guide.

5. Point your browser to the URL for the community page that contains the Order
Approval gear (for example,
http://hostname:port/portal/mycommunity/home).

Before the Order Approval gear is displayed, you must log in to the page as a user who
is an approver. For information on the default port, see the ATG Installation and
Configuration Guide.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 1 0

1 4 - U s i n g A T G C o m m e r c e P o r t a l G e a r s

μ
6. Log in to the page as Ernesto Hernandez, a Motorprise approver, to explore the gear.

Ernesto’s username and password are ernesto:ernesto.

If you’re running the Order Approval gear with your own commerce application, you’ll
need to log in as an appropriate user.

Using the Order Approval Gear

When an end user logs in to a portal page that includes the Order Approval gear, the user initially views
the gear in Shared mode. By default, the gear displays the five most recently placed orders that require
the user’s approval, providing each order’s number, order date, total cost, buyer, and current status
(which is PENDING_APPROVAL). Additionally, the gear displays the total number of orders that require the
user’s approval. From this page, the user can do any of the following:

 Click any order number to display the order details page for the order.

 Click the View All Approval Requests link to display all the orders that require the
user’s approval.

 Click the View Resolved Approval Requests link to display all the orders which the user
has already approved or rejected.

 Click the Edit button in the gear’s top, right corner to configure the gear’s user
parameters.

The following figure illustrates the Order Approval gear in Shared mode.

Shared view of Order Approval gear

When the user clicks the View All Approval Requests link, the portal page is re-rendered and displays the
Order List page in Full Page mode. By default, on this page the gear lists all of the orders that require the

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 1 1

1 4 - U s i n g A T G C o m m e r c e P o r t a l G e a r s

μ
user’s approval, providing each order’s number, order date, total cost, buyer, and current status. If the
number of orders that require the user’s approval exceeds 10, they are displayed across multiple pages.

The following figure illustrates the Order List page.

Full view of Order Approval gear (Order List page displayed)

On the Order List page, the user can click any order number to display the order details page for the order.
If the Order Approval gear is configured to use the approval process of the running commerce
application, clicking an order number displays an order details page of the commerce application. If the
Order Approval gear is configured to use its own approval process, clicking an order number displays the
gear’s Order Details page, which is shown in the following figure.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 1 2

1 4 - U s i n g A T G C o m m e r c e P o r t a l G e a r s

μ

Full view of Order Approval gear (Order Details page displayed)

By default, the gear displays the order’s basic, billing, and shipping information on the Order Details page.
The approver can approve the order by clicking the Approve Order link or reject the order by clicking the
Reject Order link.

If the approver clicks the Approve Order link, the gear displays the Order Approval page, which is shown in
the following figure.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 1 3

1 4 - U s i n g A T G C o m m e r c e P o r t a l G e a r s

μ

Full view of Order Approval gear (Order Approval page displayed)

On the Order Approval page, the approver can enter a reason for the approval decision and complete the
approval by clicking the Approve Order button.

Note that if the approver clicks the Reject Order link on the Order Details page, the Order Rejection page is
rendered instead. In either situation, once the approver approves or rejects the order, the approver
completes the process by confirming the decision on a confirmation page.

Configuring the Order Approval Gear

The Order Approval gear includes three gear configuration pages with which to customize the function
and display of the gear:

 The installConfig page for portal administrators

 The instanceConfig page for community leaders

 The userConfig page for portal end users

The table below describes the instance parameters for the Order Approval gear that can be configured on
the installConfig page. Typically, they are set by the portal administrator.

Instance parameter Description Default
value

UseOrderApprovalOfGear Indicates whether to use the gear’s
order approval process. If set to false,
the approval process of the commerce
application is used instead.

true

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 1 4

1 4 - U s i n g A T G C o m m e r c e P o r t a l G e a r s

μ
ApprovedOrderPageURL The URL of the order details page used

by the commerce application for
approved and rejected orders. This
page is displayed when the approver
clicks the order number of an order
that he or she has already approved or
rejected.

Important: By default, this parameter
is set to a generic URL. If you’re
running the gear with the Motorprise
store, you must change this parameter
to
/Motorprise/en/user/order.jsp.

If you’re running the gear with your
own commerce application, you must
change it to the JSP that is appropriate
for the application. Note that if the JSP
does not support multiple locales,
you’ll need to configure a separate
gear instance for each required locale.

checkout/o

rder.jsp

PendingApprovalOrderPageURL The URL of the order details page used
by the running commerce application
for orders that require approval.

If the UseOrderApprovalOfGear
parameter is set to false (described
above), this page is displayed when
the portal end user clicks the order
number of an order that requires
approval (that is, the order’s status is
PENDING_APPROVAL).

Important: By default, this parameter
is set to a generic URL. If you’re
running the gear with the Motorprise
store, you must change this parameter
to
/Motorprise/en/user/order_pend

ing_approval.jsp.

If you’re running the gear with your
own commerce application, you must
change it to the JSP that is appropriate
for the application. Note that if the JSP
does not support multiple locales,
you’ll need to configure a separate
gear instance for each required locale.

checkout/o

rder.jsp

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 1 5

1 4 - U s i n g A T G C o m m e r c e P o r t a l G e a r s

μ
The table below describes the instance parameters for the Order Approval gear that can be configured on
the instanceConfig page. Typically, they are set by the community leader.

Note that these instance parameters determine the function and display of the content pages that are
used in the gear’s order approval process. Consequently, if the gear’s approval process isn’t being used
(that is, the approval process of the commerce application is being used instead), then these parameters
have no relevance or impact on how the gear functions.

Instance parameter Description Default
value

ShowOrderInfoInDetails Boolean value that indicates whether
to display the order’s basic information
on the gear’s Order Details page.

true

ShowBillingInfoInDetails Boolean value that indicates whether
to display the order’s billing
information on the gear’s Order Details
page.

true

ShowShippingInfoInDetails Boolean value that indicates whether
to display the order’s shipping
information on the gear’s Order Details
page.

true

ShowOrderInfoInApprove Boolean value that indicates whether
to display the order’s basic information
on the gear’s Order Approval page.

true

ShowMessageInApprove Boolean value that indicates whether
to provide a message box on the gear’s
Order Approval page.

true

ShowOrderInfoInReject Boolean value that indicates whether
to display the order’s basic information
on the gear’s Order Rejection page.

true

ShowMessageInReject Boolean value that indicates whether
to provide a message box on the gear’s
Order Rejection page.

true

The table below describes the user parameters for the Order Approval gear that can be configured by the
portal end user on the userConfig page.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 1 6

1 4 - U s i n g A T G C o m m e r c e P o r t a l G e a r s

μ
User parameter Description Default

value

NumberOfOrdersShared The maximum number of orders
to display in Shared mode. If set to
zero, no recent orders that require
approval are displayed.

5

ShowPendingApprovalCountShared Boolean value that indicates
whether to show the total number
of orders that require approval in
Shared mode.

true

NumberOfOrdersPerPageFull The maximum number of orders
to display per page in Full Page
mode. (If the total number of
orders that require approval
exceeds this number, the orders
are split across multiple pages.)

10

NumberOfOrdersFull The maximum total number of
orders to display in Full Page
mode. If set to –1, then all orders
are displayed.

-1

Order Approval Gear Implementation

The Order Approval gear relies upon existing ATG Portal, core ATG Commerce, and ATG Business
Commerce functionality. The subsections that follow describe various aspects of its implementation.

Gear Modes and Display Modes

The following table lists the gear modes used in the Order Approval gear, as well as their corresponding
display modes, device outputs, and JSP fragments.

Gear Mode Display
Mode

Device Output Page Fragment

content Shared HTML OrderApprovalShared.jsp

 Full HTML OrderApprovalFull.jsp

installConfig Full HTML installConfig.jsp

instanceConfig Full HTML instanceConfig.jsp

userConfig Full HTML userConfig.jsp

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 1 7

1 4 - U s i n g A T G C o m m e r c e P o r t a l G e a r s

μ
Note that OrderApprovalFull.jsp includes several other page fragments provided with the Order
Approval gear, for example, orderDetail.jsp and approveOrder.jsp. You can find these JSPs in
<ATG10dir>/CommerceGears/orderapproval/src/orderapproval.war/web/html/

content/.

For general information about gear modes, display modes, and device outputs, see the Designing a Gear
chapter in the ATG Portal Development Guide. For general information about creating gear content and
configuration pages, see the Creating Gear Page Fragments chapter in the same guide.

Components

The Order Approval gear makes use of the following major components:

Component Description

/atg/portal/gear/

GearConfigFormHandler

Class atg.portal.framework.GearConfigFormHandler.

GearConfigFormHandler is provided with the PAF. It is used in the
Order Approval gear configuration pages to create the forms with
which to set the gear’s instance and user parameters.

For more information on GearConfigFormHandler, see the Gears
and the Portal Application Framework and Creating Gear Page
Fragments chapters in the ATG Portal Development Guide.

/atg/userdirectory/

droplet/HasFunction

Class atg.userdirectory.droplet.HasFunction.

The HasFunction servlet bean is used in
OrderApprovalShared.jsp and OrderApprovalFull.jsp first to
check whether the user who has logged in is an approver and then to
render the page content accordingly. If the user is an approver, the
gear content is displayed. If the user isn’t an approver, a message
indicating that the user isn’t authorized to view the gear is displayed.

/atg/commerce/approval/

ApprovalRequiredDroplet

Class atg.b2bcommerce.approval.ApprovalRequiredDroplet.

The ApprovalRequiredDroplet servlet bean is used to retrieve and
display the orders that require approval by the current user. It is used
in both the gear’s Shared and Full Page content pages.

By default, the ApprovalRequiredDroplet.sortAscending
property is set to true; this displays the most recent orders that
require the approver’s attention first. To display the oldest orders
first, simply set this property to false.

For more information about ApprovalRequiredDroplet, see the
Implementing an Order Approval Process chapter.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 1 8

1 4 - U s i n g A T G C o m m e r c e P o r t a l G e a r s

μ
/atg/commerce/approval/

ApprovalFormHandler

Class atg.b2bcommerce.approval.ApprovalFormHandler.

ApprovalFormHandler is used in the gear’s Full Page content pages
to create and manage the forms with which the approver can
approve and reject orders.

For more information about ApprovalFormHandler, see the
Implementing an Order Approval Process chapter.

/atg/commerce/gears

/orderapproval/Approval

ResolvedDroplet

Class atg.b2bcommerce.approval.ApprovalRequiredDroplet.

The ApprovalResolvedDroplet servlet bean is used to retrieve and
display the orders that have been approved and/or rejected by the
current user. It is used in the Full Page content page that displays the
approver’s “resolved approval requests.”

For more information about the ApprovalRequiredDroplet class
from which this Order Approval gear component is instantiated, see
the Implementing an Order Approval Process chapter.

/atg/commerce/order/

OrderLookup

Class atg.b2bcommerce.order.B2BOrderLookup.

The OrderLookup servlet bean is used in the gear’s Full Page content
pages to retrieve and display a given order.

For more information on OrderLookup, see the Implementing Order
Retrieval chapter.

/atg/commerce/catalog/

ProductLookup

Class
atg.commerce.catalog.custom.CatalogItemLookupDroplet.

The ProductLookup servlet bean is used to retrieve and display
product information for the approver’s orders. It is used in the Order
List gear content page.

For more information on ProductLookup, see the
CatalogItemLookupDroplet reference entry in Appendix: ATG
Commerce Servlet Beans.

Tag Libraries

The Order Approval gear uses the following standard tag libraries:

 Core tag library

 DSP tag library

 PAF tag library

 Jakarta’s i18n tag library

For information on the DSP tag libraries, see the ATG Page Developer’s Guide. For information on the PAF
tag library and Jakarta’s i18n tag library, see the ATG Portal Development Guide.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 1 9

1 4 - U s i n g A T G C o m m e r c e P o r t a l G e a r s

μ
No custom tag libraries were written for this gear.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 2 0

1 4 - U s i n g A T G C o m m e r c e P o r t a l G e a r s

μ

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 2 1

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Appendix: ATG Commerce Servlet Beans

This appendix provides reference entries for the ATG Servlet Beans that are included with ATG Business
Commerce and/or ATG Consumer Commerce. The servlet beans are grouped below by functional area so
you can easily identify related ones. Detailed reference entries follow. Note that, because sometimes
multiple servlet beans are instantiated from the same class, the reference entries are organized and
alphabetized according to the class from which they are instantiated.

For general information about servlet beans and how to use them in JSPs, refer to the Using ATG Servlet
Beans chapter in the ATG Page Developer’s Guide. For information about how to create your own custom
servlet beans, refer to the Creating and Using ATG Servlet Beans chapter in the ATG Programming Guide.

Abandoned Order Services Servlet Beans

Class atg.commerce.order.abandoned.ConvertAbandonedOrderDroplet

 /atg/commerce/order/abandoned/ConvertAbandonedOrderDroplet

Class atg.commerce.order.abandoned.ReanimateAbandonedOrderDroplet

 /atg/commerce/order/abandoned/ReanimateAbandonedOrderDroplet

Class atg.commerce.order.abandoned.SetLastUpdatedDroplet

 /atg/commerce/order/abandoned/SetLastUpdatedDroplet

Approval Process Servlet Beans

Class atg.b2bcommerce.approval.ApprovalRequiredDroplet

 /atg/commerce/approval/ApprovalRequiredDroplet

Class atg.b2bcommerce.approval.ApprovedDroplet

 /atg/commerce/approval/ApprovedDroplet

Catalog Servlet Beans

Class atg.commerce.catalog.DisplaySkuProperties

 /atg/commerce/catalog/DisplaySkuProperties

Class atg.commerce.catalog.comparison.ProductListContains

 /atg/commerce/catalog/comparison/ProductListContains

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 2 2

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Class atg.commerce.catalog.custom.CatalogItemLookupDroplet

 /atg/commerce/catalog/CategoryLookup

 /atg/commerce/catalog/ProductLookup

 /atg/commerce/catalog/SKULookup

Class atg.commerce.catalog.custom.CatalogPossibleValues

 /atg/commerce/catalog/RepositoryValues

Class atg.commerce.catalog.custom.ForEachItemInCatalog

 /atg/commerce/catalog/ForEachItemInCatalog

Class atg.repository.servlet.ItemLookupDroplet

 /atg/commerce/catalog/CategoryLookup

 /atg/commerce/catalog/MediaLookup

 /atg/commerce/catalog/ProductLookup

 /atg/commerce/catalog/SKULookup

Class atg.repository.servlet.NavHistoryCollector

 /atg/commerce/catalog/CatalogNavHistoryCollector

Class atg.repository.servlet.PossibleValues

 /atg/commerce/catalog/RepositoryValues

Class atg.userprofiling.ViewItemEventSender

 /atg/commerce/catalog/CategoryBrowsed

 /atg/commerce/catalog/ProductBrowsed

Claimable Servlet Beans

Class: atg.commerce.claimable.AvailableStoreCredits

 /atg/commerce/claimable/AvailableStoreCredits

Class: atg.commerce.claimable.GiftCertificateAmountAvailable

 /atg/commerce/claimable/GiftCertificateAmountAvailable

Collection Filtering Servlet Beans

Class atg.service.collections.filter.droplet.CollectionFilter

 /atg/collections/filter/droplet/InventoryFilterDroplet

 /atg/collections/filter/droplet/ProductFilterDroplet

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 2 3

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
 /atg/collections/filter/droplet/StartEndDateFilterDroplet

 /atg/commerce/collections/filter/droplet/ExcludeItemsInCartFilterDr

oplet

Fulfillment Servlet Beans

Class atg.commerce.fulfillment.ShippableGroupsDroplet

 /atg/commerce/fulfillment/droplet/ShippableGroupsDroplet

Class atg.commerce.fulfillment.ShippingDroplet

 /atg/commerce/fulfillment/droplet/ShippingDroplet

Gear Servlet Beans

Class atg.b2bcommerce.approval.ApprovalRequiredDroplet

 /atg/commerce/gears/orderapproval/ApprovalResolvedDroplet

Gift List Servlet Beans

Class atg.commerce.gifts.GiftitemDroplet

 /atg/commerce/gifts/BuyItemFromGiftlist

 /atg/commerce/gifts/RemoveItemFromGiftlist

Class atg.commerce.gifts.GiftlistDroplet

 /atg/commerce/gifts/GiftlistDroplet

Class atg.commerce.gifts.GiftShippingGroupDroplet

 /atg/commerce/gifts/IsGiftShippingGroup

Class atg.commerce.gifts.GiftShippingGroupsDroplet

 /atg/commerce/gifts/GiftShippingGroups

Class atg.repository.servlet.ItemLookupDroplet

 /atg/commerce/gifts/GiftitemLookupDroplet

 /atg/commerce/gifts/GiftlistLookupDroplet

Inventory Servlet Beans

Class atg.commerce.inventory.InventoryDroplet

 /atg/commerce/inventory/InventoryLookup

Order Management Servlet Beans

Class atg.b2bcommerce.order.B2BOrderLookup

 /atg/commerce/order/OrderLookup

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 2 4

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Class atg.commerce.order.AddItemToCartServlet

 /atg/commerce/order/AddItemToCartServlet

Class atg.commerce.order.IsHardGoodsDroplet

 /atg/commerce/order/IsHardGoods

Class atg.commerce.order.OrderLookup

 /atg/commerce/order/AdminOrderLookup

 /atg/commerce/order/OrderLookup

Purchase Process Servlet Beans

Class atg.b2bcommerce.order.purchase.CostCenterDroplet

 /atg/commerce/order/purchase/CostCenterDroplet

Class atg.commerce.order.purchase.PaymentGroupDroplet

 /atg/commerce/order/purchase/PaymentGroupDroplet

Class atg.commerce.order.purchase.RepriceOrder

 /atg/commerce/order/purchase/RepriceOrderDroplet

Class atg.commerce.order.purchase.ShippingGroupDroplet

 /atg/commerce/order/purchase/ShippingGroupDroplet

Pricing Servlet Beans

Class atg.commerce.pricing.AvailableShippingMethodsDroplet

 /atg/commerce/pricing/AvailableShippingMethods

Class: atg.commerce.pricing.GetApplicablePromotions

 /atg/commerce/pricing/GetApplicablePromotions

Class atg.commerce.pricing.ItemPricingDroplet

 None (abstract class)

Class atg.commerce.pricing.PriceEachItemDroplet

 /atg/commerce/pricing/PriceEachItem

Class atg.commerce.pricing.PriceItemDroplet

 /atg/commerce/pricing/PriceItem

Class atg.commerce.pricing.PriceRangeDroplet

 /atg/commerce/pricing/PriceRangeDroplet

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 2 5

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Class atg.commerce.pricing.ShipItemRelPrice

 /atg/commerce/pricing/ShipItemRelPrice

Class atg.commerce.pricing.pricelists.ComplexPriceDroplet

 /atg/commerce/pricing/priceLists/ComplexPriceDroplet

Class atg.commerce.pricing.pricelists.PriceDroplet

 /atg/commerce/pricing/priceLists/PriceDroplet

Class: atg.commerce.pricing.CurrencyCodeDroplet

 /atg/commerce/pricing/CurrencyCodeDroplet

Class: atg.commerce.pricing.UnitPriceDetailDroplet

 /atg/commerce/pricing/UnitPriceDetailDroplet

Promotion Servlet Beans

Class atg.commerce.promotion.ClosenessQualifierDroplet

 /atg/commerce/promotion/ClosenessQualifierDroplet

Class atg.commerce.promotion.CouponDroplet

 /atg/commerce/promotion/CouponDroplet

Class atg.commerce.promotion.PromotionDroplet

 /atg/commerce/promotion/PromotionDroplet

Shopping Process Tracking Servlet Beans

Class atg.markers.bp.droplet.AddBusinessProcessStage

 /atg/commerce/bp/droplet/AddShoppingProcessStageDroplet

Class atg.markers.bp.droplet.HasBusinessProcessStage

 /atg/commerce/bp/droplet/HasShoppingProcessStageDroplet

Class atg.markers.bp.droplet.MostRecentBusinessProcessStage

 /atg/commerce/bp/droplet/MostRecentShoppingProcessStageDroplet

Class atg.markers.bp.droplet.RemoveBusinessProcessStage

 /atg/commerce/bp/droplet/RemoveShoppingProcessStageDroplet

Multisite Servlet Beans

Class atg.multisite.droplet.SiteIdForItem

 /atg/commerce/mulsite/SiteIdForCatalogItem

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 2 6

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
AddItemToCartServlet

Class Name atg.commerce.order.AddItemToCartServlet

Component(s) /atg/commerce/order/AddItemToCartServlet

The AddItemToCartServlet servlet bean adds an item to a shopping cart via a URL. This enables
product information, such as the SKU and quantity of an item, to be passed as part of a URL to ATG
Commerce from a third-party application.

AddItemToCartServlet is called by a servlet in the request-handling pipeline,
CommerceCommandServlet (class atg.commerce.order.CommerceCommandServlet). When
CommerceCommandServlet receives a dcs_action input parameter of addItemToCart, it calls
AddItemToCartServlet.

If only the required parameters for AddItemToCartServlet are supplied, then the servlet bean creates
and adds to the cart a commerce item of class atg.commerce.order.CommerceItemImpl. If additional
parameters are supplied, then AddItemToCartServlet functions differently depending on which
optional parameters are supplied.

Refer to Adding an Item to an Order Via a URL in the Working With Purchase Process Objects chapter in the
ATG Commerce Programming Guide for more information on the implementation and behavior of both
CommerceCommandServlet and AddItemToCartServlet.

Input Parameters

url_catalog_ref_id (Required)
The SKU of the item to add to the cart.

url_product_id (Required)
The product ID of the item to add to the cart.

url_quantity (Required)
The quantity of the item to add to the cart.

url_shipping_group_id
The ID of the shipping group to which to add the item.

url_item_type
The commerce item type to use to create the commerce item.

url_commerce_item_id
The ID of a commerce item that is removed from the order. Use this parameter when you want to replace
one item in the cart with another.

dcs_ci_*
An identifier for setting a CommerceItem property.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 2 7

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
If a parameter with this prefix is supplied, then the CommerceItem property to which it refers is set to the
given value in the commerce item. For example, if the dcs_ci_catalogKey parameter is supplied with a
given value of en_US, then the catalogKey property is set to en_US.

dcs_conf_<n>
An identifier for setting a configurable property of a ConfigurableCommerceItem.

Memory and hard drives are two examples of configurable properties of a computer item. That is, a
customer can order various amounts of memory and one or more hard drives for a single computer. Both
the memory and the hard drive are represented as subSKUs of the base SKU, the computer item.

If a parameter with this prefix is supplied, then the configurable property to which it refers is set to the
specified value. This parameter’s format is as follows:

dcs_conf_<n>=<sku id, product id, individual quantity>

<n> is an integer representing the configurable property in the list of configurable properties for the
given ConfigurableCommerceItem. “sku id”, “product id”, and “individual quantity” provide the data
with which to construct a SubSkuCommerceItem to represent the configurable property for the given
ConfigurableCommerceItem. “sku id” is the SKU id of the given subSKU. “product id” is the product id of
the given subSKU. “individual quantity” is the quantity of the given subSKU to add to a single
ConfigurableCommerceItem. For example, if you are adding 2 hard drives to each of 1,000 computers,
then the individual quantity of the hard drive subSKU is 2.

dcs_subsku
An identifier for a subSKU. Specify this parameter when you are adding a configurable SKU and its
subSKUs to a cart. Values for this parameter must use this format:

SKU_ID,product_ID, quantity,

To specify multiple subSKUs, create a string that includes information about each subSKU separated by
commas. For example:

79054,12159,1,79303,11900,4,90931,20133,2

Output Parameters

None. AddItemToCartServlet is called by a servlet in the request-handling pipeline,
CommerceCommandServlet.

Open Parameters

None. AddItemToCartServlet is called by a servlet in the request-handling pipeline,
CommerceCommandServlet.

Example

No JSP example is provided. AddItemToCartServlet is called by a servlet in the request-handling
pipeline, CommerceCommandServlet.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 2 8

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
AddBusinessProcessStage

Class Name atg.markers.bp.droplet.AddBusinessProcessStage

Component /atg/commerce/bp/droplet/AddShoppingProcessStageDroplet

This servlet bean marks orders when they reach a new stage in the shopping process. It is an instance of
AddBusinessProcessStage with the businessProcessName property set to ShoppingProcess.

Input Parameters

businessProcessName
The name of the business process. If not specified, then we use the value of the servlet bean’s
defaultBusinessProcessName property, which is ShoppingProcess by default.

businessProcessStage (Required)
The stage within the business process.

Output Parameters

errorMsg
The error message describing a failure.

Open Parameters

output
Rendered on successful completion

error
Rendered on error.

Example

<dsp:droplet name="AddShoppingProcessStageDroplet">

 <dsp:param name="businessProcessStage" value="ShippingPriceViewed"/>

</dsp:droplet>

ApprovalRequiredDroplet

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 2 9

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Class Name atg.b2bcommerce.approval.ApprovalRequiredDroplet

Component(s) /atg/commerce/approval/ApprovalRequiredDroplet

(ATG Business Commerce only)

/atg/commerce/gears/orderapproval/ApprovalResolvedDroplet
(Order Approval portal gear only)

The ApprovalRequiredDroplet servlet bean supports the order approval process by retrieving all
orders requiring approval by a given approver. It queries the order repository and returns all orders that
meet the following criteria:

 The order’s authorizedApproverIds property contains the approver’s ID.

 The state of the order requires approval, meaning that the state is defined in the
ApprovalRequiredDroplet orderStatesRequiringApproval property. The
order’s state is held by the property of the order that is specified in the
ApprovalRequireDroplet orderStatePropertyName property. The default value
is PENDING_APPROVAL.

 The order’s site either matches the siteID or falls within the specified siteScope.

Note that the ApprovalRequiredDroplet servlet bean has a security feature that allows the current
user, the approver, to view only the orders of customers for whom he or she is allowed to approve orders.
This feature is enabled by default. To disable the feature, set the enableSecurity property to false.

Input Parameters

approverid (Required)
The ID of the current user profile; the approver.

numOrders
The number of orders to return from the query. This parameter is optional and typically is used to break
large result sets into manageable pieces.

siteIds

A collection of site IDs used to limit the query to orders associated with the specified sites. If siteIds is
specified, siteScope is ignored.

siteScope

If you are using ATG’s multisite feature, you can filter orders by site. Use siteScope as an alternative to
siteIds, and provide one of the following scopes:

 null or all: Finds orders for all sites

 current: Finds orders for the current site, as determined by the site context

 shareableTypeId: pass in the ID of a shareable type, such as atg.ShoppingCart, to
find orders for all sites in the sharing group for that type.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 3 0

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
The default siteScope can be set through a configurable property on the component. The default value
is all.

startIndex
The index of the first order to return. If startIndex is null, then it defaults to 0. This parameter is optional
and typically is used to break large result sets into manageable pieces.

Output Parameters

result
The array of Order objects.

count
The number of Order objects in the result output parameter.

totalCount
The total number of Order objects that satisfied the criteria.

nextIndex
The index of the first order in the next set of results. If startIndex or numOrders was null, then this
parameter will also be null.

previousIndex
The index of the first order in the previous set of results. If startIndex or numOrders was null, then this
parameter will also be null.

nextIndex and previousIndex allow the user to cycle back and forth between result sets.

startRange
The 1-based index of the first Order in the set of results.

endRange
The 1-based index of the last Order in the set of results.

errorMessage
The error message to display to the user if an error occurs.

Open Parameters

output
This open parameter renders the array of order objects set in the result output parameter.

empty
This parameter is rendered if there are no orders that require approval by the current user.

error
This parameter is rendered if an error occurs.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 3 1

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Example

The following example retrieves from the repository the orders requiring approval by the current user, an
approver, and lists each order’s repository id on the page.

<dsp:droplet name="ApprovalRequiredDroplet">

 <dsp:param bean="/atg/userprofiling/Profile.repositoryId"

name="approverid"/>

 <dsp:param value="0" name="startIndex"/>

 <dsp:param value="10" name="numOrders"/>

 <dsp:oparam name="output">

<dsp:droplet name="ForEach">

 <dsp:param param="result" name="array"/>

 <dsp:setvalue param="order" paramvalue="element"/>

 <dsp:oparam name="output">

 <dsp:valueof param="order.repositoryId"/>

 </dsp:oparam>

 <dsp:oparam name="error">

 <dsp:valueof param="errorMsg"/>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

</dsp:droplet>

ApprovedDroplet

Class Name atg.b2bcommerce.approval.ApprovedDroplet

Component(s) /atg/commerce/approval/ApprovedDroplet

(ATG Business Commerce only)

The ApprovedDroplet servlet bean supports the order approval process by retrieving all orders that
have been approved and/or rejected by a given approver. It queries the order repository and returns all
orders that have the approver’s profile ID in the approverIds property.

Note that the ApprovedDroplet servlet bean has a security feature that allows the current user, the
approver, to view only the orders of customers for whom he or she is allowed to approve orders. This
feature is enabled by default. To disable the feature, set the enableSecurity property to false.

Input Parameters

approverid (Required)
The ID of the current user profile; the approver.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 3 2

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
numOrders
The number of orders to return on the query. This parameter is optional and typically is used to break
large result sets into manageable pieces.

startIndex
The index of the first order to return. If startIndex is null, then it default to 0. This parameter is optional
and typically is used to break large result sets into manageable pieces.

Output Parameters

result
The array of Order objects.

count
The number of Order objects in the result output parameter.

totalCount
The total number of Order objects that satisfied the criteria.

nextIndex
The index of the first order in the next set of results. If startIndex or numOrders was null, then this
parameter will also be null.

previousIndex
The index of the first order in the previous set of results. If startIndex or numOrders was null, then this
parameter will also be null.

nextIndex and previousIndex allow the user to cycle back and forth between result sets.

startRange
The 1-based index of the first Order in the set of results.

endRange
The 1-based index of the last Order in the set of results.

errorMessage
The error message to display to the user if an error occurs.

Open Parameters

output
This open parameter renders the array of Order objects set in the result output parameter.

empty
The open parameter rendered if there are no orders that have been approved and/or rejected by the
current user.

error
The open parameter rendered if an error occurs.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 3 3

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Example

The following example retrieves from the repository the orders that have been approved and/or rejected
by the current user, an approver, and lists each order’s repository ID on the page.

<dsp:droplet name="ApprovedDroplet">

 <dsp:param bean="/atg/userprofiling/Profile.repositoryId" name="approverid"/>

 <dsp:param value="0" name="startIndex"/>

 <dsp:param value="10" name="numOrders"/>

 <dsp:oparam name="output">

 <dsp:droplet name="ForEach">

 <dsp:param param="result" name="array"/>

 <dsp:param value="order" name="elementName"/>

 <dsp:oparam name="output">

 <dsp:valueof param="order.repositoryId"/>

 </dsp:oparam>

 <dsp:oparam name="error">

 <dsp:valueof param="errorMsg"/>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

</dsp:droplet>

AvailableShippingMethodsDroplet

Class Name atg.commerce.pricing.AvailableShippingMethodsDroplet

Component(s) /atg/commerce/pricing/AvailableShippingMethods

The AvailableShippingMethods servlet bean displays available shipping methods for a particular
shipping group. The class’s service method calls into ShippingPricingEngine’s
getAvailableMethods method to return a list of Strings representing the shipping methods. These
shipping methods correspond to the shippingMethod property of the HardgoodShippingGroup order
class.

Input Parameters

shippingGroup (Required)
The ShippingGroup to be shipped.

pricingModels
A collection of shipping pricing models. If this parameter is null, then the session-scoped
PricingModelHolder is resolved and the collection is retrieved. The path to the PricingModelHolder

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 3 4

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
component is configured through the userPricingModelsPath property of the
AvailableShippingMethodsDroplet.

profile
The RepositoryItem that represents the customer requesting the shipping methods. If this parameter is
null, then the session-scoped Profile is resolved. The path to the Profile component is configured
through the profilePath property of the AvailableShippingMethodsDroplet.

locale
The locale of the customer requesting the shipping methods. This parameter may be either a
java.util.Locale object or a String that represents a locale. If this parameter is not found, then by
default the locale is retrieved from the request. If this locale cannot be determined, then the default locale
for this component is used.

Output Parameters

availableShippingMethods
A list of Strings representing the shipping methods, which can be used for setting a shippingMethod
value in a HardgoodShippingGroup.

Open Parameters

output
An oparam that includes the availableShippingMethods parameter.

Example

The following example uses the AvailableShippingMethods servlet bean to provide a select box of
available shipping methods that are bound to the shippingMethod property of the first shipping group.

<dsp:droplet name="/atg/commerce/pricing/AvailableShippingMethods">

<dsp:param bean="ShoppingCartModifier.shippingGroup" name="shippingGroup"/>

<dsp:oparam name="output">

 <dsp:select bean="ShoppingCartModifier.shippingGroup.shippingMethod">

 <dsp:droplet name="ForEach">

 <dsp:param param="availableShippingMethods" name="array"/>

 <dsp:param value="method" name="elementName"/>

 <dsp:oparam name="output">

 <dsp:getvalueof id="option16" param="method" idtype="java.lang.String">

<dsp:option value="<%=option16%>"/>

</dsp:getvalueof><dsp:valueof param="method"/>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:select>

</dsp:oparam>

</dsp:droplet>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 3 5

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
AvailableStoreCredits

Class Name atg.commerce.claimable.AvailableStoreCredits

Component(s) /atg/commerce/claimable/AvailableStoreCredits

The AvailableStoreCredits servlet bean gives you access to store credits associated with a given
user’s profile. You can then use this information in your page code.

Input Parameters

profile (Required)
The RepositoryItem that represents the customer for whom you want to display store credit
information.

Output Parameters

storeCredits
A list of store credits associated with the provided user profile.

Open Parameters

output
Always displayed.

empty
The open parameter rendered if there are no store credits for the current user.

Example

The following example uses the AvailableStoreCredits servlet bean to provide information on a
user’s store credits.

<dsp:droplet name="AvailableStoreCredits">

 <dsp:param name="profile" bean="Profile"/>

 <dsp:oparam name="output">

 <dsp:getvalueof var="onlineCredits" vartype="java.lang.Object"

param="storeCredits"/>

 <c:if test="${not empty onlineCredits}">

 <div id="atg_store_onlineCredits">

 <h3><fmt:message key="myaccount_onlineCredits.savedOnlineCredits"/></h3>

 <c:forEach var="onlineCredit" items="${onlineCredits}"

varStatus="onlineCreditStatus">

 <dsp:setvalue param="storeCredit" value="${onlineCredit}"/>

 <dsp:getvalueof var="storeCredit" param="storeCredit"/>

 <c:if test="${not empty storeCredit}">

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 3 6

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
 <div class="atg_store_onlineCreditsDetails">

 <dsp:getvalueof var="count" vartype="java.lang.Double"

value="${onlineCreditStatus.count}"/>

 <h4>

 <fmt:message key="common.credit"/><fmt:message

key="common.numberSymbol"/>

 <fmt:formatNumber value="${count}" type="number"/>

 </h4>

 <div>

 <fmt:message

key="myaccount_onlineCredits.remainingCredit"/><fmt:message

key="common.labelSeparator"/>

 </div>

 <dsp:getvalueof var="amountRemaining" vartype="java.lang.Double"

param="storeCredit.amountAvailable"/>

 <dsp:getvalueof var="currencyCode" vartype="java.lang.String"

param="currencyCode"/>

 <div class="atg_store_onlineCreditTotal">

 <fmt:formatNumber value="${amountRemaining}" type="currency"

currencyCode="${currencyCode}" />

 </div>

 </div>

 </c:if>

 </c:forEach>

 </div>

 </c:if>

 </dsp:oparam>

 </dsp:droplet>

B2BOrderLookup

Class Name atg.b2bcommerce.order.B2BOrderLookup

Component(s) /atg/commerce/order/OrderLookup
(ATG Business Commerce only)

The OrderLookup servlet bean retrieves one or more Order objects, depending on the supplied input
parameters. It enables you to retrieve a single order, all orders assigned to a particular cost center, all
orders placed by a particular user, or all orders placed by a particular user that are in a specific state.

OrderLookup has a security feature that allows the current user to view only her own orders. By default,
this feature is enabled. To disable the feature, set the enableSecurity property to false.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 3 7

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Input Parameters

orderId (Either this, userId, or costCenterId is required.)
The ID of the order to retrieve.

userId (Either this, orderId, or costCenterId is required.)
The ID of the user profile whose orders will be retrieved.

costCenterId (Either this, orderId, or userId is required.)
The ID of the cost center whose orders will be retrieved.

state
The desired state of the orders to retrieve.

This parameter can be used in conjunction with userId. You can specify one of the following:

 any one of the states defined in atg.b2bcommerce.states.B2BOrderStates

 open

 closed

If you specify “open,” then all orders whose states are specified in the openStates property of the
OrderLookup component are returned; by default, this list of states is set to the following:

submitted
processing
pending_merchant_action
pending_customer_action

If you specify “closed,” then all orders whose states are specified in the closedStates property of the
OrderLookup component are returned; by default, this list of states is set to the following:

no_pending_action

You can override either list of states by using the optional openStates or closedStates input
parameter (see below).

openStates
A comma-separated list of states that correspond to “open” state.

This parameter can be used in conjunction with the state input parameter when the state input
parameter is set to “open.” Use this optional parameter when you want to override the configured list of
states in the openStates property of the OrderLookup component.

closedStates
A comma-separated list of states that correspond to “closed” state.

This parameter can be used in conjunction with the state input parameter when the state input
parameter is set to “closed.” Use this optional parameter when you want to override the configured list of
states in the closedStates property of the OrderLookup component.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 3 8

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
sortBy
A string that specifies an Order property by which to sort the orders.

This parameter can be used in conjunction with userId. When using this parameter, you can specify the
name of any Order Repository property (that is, the name of any property defined in
orderrepository.xml), such as id, state, or submittedDate.

sortAscending
True or false. This parameter is used in conjunction with the sortBy input parameter. If set to true, the
Order objects in the resulting array are sorted in ascending order by the property specified in the sortBy
input parameter. The default value is false.

numOrders
The number of orders to return for the given query.

startIndex
The index of the first order in the result set. This parameter is useful for cycling through a large number of
orders.

queryTotal
Indicates whether the number of retrieved orders will be calculated into a total that’s accessible through
the totalCount and total_count output parameters. Setting this property to false prevents the total
count from being generated, regardless of the value specified in the queryTotal property. Omitting this
parameter causes the default value, true, to be used. Use this parameter to ensure that queries to the
database are made only when necessary.

queryTotalOnly
Indicates whether the total number of orders and the orders themselves are produced from the servlet
bean. Setting this parameter to true makes the total number of retrieved orders available through the
totalCount and total_count output parameters. The orders themselves are not retrieved or accessible.
Use this parameter to ensure that queries to the database are made only when necessary.

Omitting this parameter, which is the same as setting it to false, saves a list of order objects to the
output open parameter as well as the total number of orders to the totalCount and total_count
output parameters.

If queryTotal=false (orders, no total) and queryTotalOnly=true (total, no orders), a total is
generated only as specified in the queryTotalOnly parameter.

Output Parameters

result
The array of Order objects. If the orderId input parameter was used, then this parameter contains a
single Order object.

errorMsg
If an error occurred, this is the detailed error message for the user.

count
The size of the array of Order objects.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 3 9

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
totalCount
If the queryTotal property is set to true, this parameter indicates the total number of orders that meet
the criteria for the order lookup.

total_count
Identical to the totalCount output parameter (above).

startRange
The index number that marks the beginning of a range of orders. For example, if 5 orders were returned
from a given OrderLookup query, the startRange is set to 1.

endRange
The index number that marks the end of a range of orders. For example, if 5 orders were returned from a
given OrderLookup query with a startRange of 6, the endRange is set to 10.

nextIndex
The index of the first order in the next set of results. If the startIndex or numOrders input parameter
was null, then this parameter will be null.

previousIndex
The index of the first order in the previous set of results. If the startIndex or numOrders input
parameter was null, then this parameter will be null.

Open Parameters

output
The open parameter rendered if the orders are successfully retrieved.

empty
The open parameter rendered if there are no orders to return.

error
The open parameter rendered if an error occurs.

Example

The following example describes how to use the OrderLookup servlet bean to retrieve all open orders for
the current user and to display their IDs.

<dsp:droplet name="/atg/commerce/order/OrderLookup">

 <dsp:param bean="/atg/userprofiling/Profile.repositoryId" name="userId"/>

 <dsp:param value="open" name="state"/>

 <dsp:oparam name="output">

 <dsp:droplet name="/atg/dynamo/droplet/ForEach">

 <dsp:param param="result" name="array"/>

 <dsp:oparam name="outputStart">

 </dsp:oparam>

 <dsp:oparam name="output">

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 4 0

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
 <dsp:valueof param="element.id">no order number</dsp:valueof>

 </dsp:oparam>

 <dsp:oparam name="outputEnd">

 </dsp:oparam>

 <dsp:oparam name="empty">

 No open orders.

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

 <dsp:oparam name="error">

 ERROR:

 <dsp:valueof param="errorMsg">no error message</dsp:valueof>

 </dsp:oparam>

</dsp:droplet>

CatalogItemLookupDroplet

Class Name atg.commerce.catalog.custom.CatalogItemLookupDroplet

Component(s) /atg/commerce/commerce/catalog/CategoryLookup

/atg/commerce/catalog/ProductLookup

/atg/commerce/catalog/SKULookup

Servlet beans instantiated from CatalogItemLookupDroplet use the ID of a RepositoryItem to look
up the item in a repository. If the item isn’t found, the empty open parameter is rendered. If the item is
found, the servlet bean then checks if the item belongs to the user’s catalog in his current Profile. Or, if a
catalog is specified via the catalog input parameter, the servlet bean instead checks if the item belongs
to the specified catalog. In either case, if the item is found, then the servlet bean renders the output open
parameter. If the item isn’t found, then the servlet bean renders the wrongCatalog open parameter.

Through properties, you can configure the repository and the item descriptor type to use when looking
up a given item, and you can define a mapping from a key to an alternate set of repositories. For example,
you might have a ProductLookup servlet bean with the following properties:

$class=atg.commerce.catalog.custom.CatalogItemLookupDroplet

repository=/atg/commerce/catalog/ProductCatalog

itemDescriptor=product

alternateRepositories=\

 fr_FR=/atg/commerce/catalog/FrenchProductCatalog

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 4 1

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
 ja_JP=/atg/commerce/catalog/JapaneseProductCatalog

 de_DE=/atg/commerce/catalog/GermanProductCatalog

If the useParams property is true, then the repository and item descriptor can be resolved through input
parameters.

Input Parameters

id (Required)
The id of the item to lookup.

catalog
The catalog in which to look for the item. The catalog must be a RepositoryItem.

Note that this parameter usually isn’t needed. If unset, the servlet bean checks for the item in the catalog
that is in the user’s profile. However, if you want to check for the item in a catalog other than the user’s
current catalog, or if there is no current session (for example, within the context of an e-mail template),
then you can explicitly provide the catalog via this parameter.

elementName
If specified, this name will be used for the parameter set within the output open parameter.

itemDescriptor
The name of the item descriptor to use to load the item.
(Note: Use of this parameter is not recommended. A better approach is to specify the item descriptor
through the itemDescriptor property of the servlet bean.)

repository
The repository in which to look for the item.
(Note: Use of this parameter is not recommended. A better approach is to define different instances of
CatalogItemLookupDroplet for each set of repositories you want to use.)

repositoryKey
If specified, this parameter will be used as a key to map to a secondary set of repositories.

Output Parameters

element
The RepositoryItem that corresponds to the supplied id. (This parameter name can be changed by
setting the elementName input parameter.)

error
The open parameter rendered if an error occurs while looking up the item.

Open Parameters

output
The open parameter rendered if the item is found in the repository and belongs to the current user’s
catalog (or instead, if specified, to the catalog passed in via the catalog input parameter).

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 4 2

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
wrongCatalog
The open parameter rendered if the item is found in the repository but doesn’t belong to the current
user’s catalog (or instead, if specified, to the catalog passed in via the catalog input parameter). This
makes the item accessible if you need it.

empty
The open parameter rendered in all other cases, such as when the item is not found in the repository or
the user did not specify a required parameter.

noCatalog
The open parameter is rendered if the droplet cannot determine which catalog is associated with the
user. This would be the case if you called the droplet without an explicit catalog parameter and there was
no catalog in the user profile.

Example

<dsp:droplet name="ProductLookup">

 <dsp:param param="productId" name="id"/>

 <dsp:param bean="/OriginatingRequest.requestLocale.localeString"

 name="repositoryKey"/>

 <dsp:param value="product" name="elementName"/>

 <dsp:oparam name="output">

 <dsp:getvalueof id="a10" param="product.template.url"

 idtype="java.lang.String">

<dsp:a href="<%=a10%>">

 <dsp:param param="product.repositoryId" name="prod_id"/>

 <dsp:valueof param="product.displayName"/>

 </dsp:a></dsp:getvalueof>

 </dsp:oparam>

</dsp:droplet>

If the mapping for the provided key is found, then that repository is used. Otherwise, the system falls back
to the default repository and searches for the item.

If the item cannot be found in the repository searched (e.g. the French product catalog), then the servlet
bean once again falls back to the default repository and attempts to find the item using the same ID. This
is only useful if the items have the same ID in each repository. For example, suppose you are viewing a site
in French, and you attempt to look at product 1234. If the ID is defined in the French product catalog, you
will see the French version of that product. However, if 1234 is not defined in the French product catalog,
then you will see the default English version of product 1234.

This behavior can be modified with the use of the useDefaultRepository and getDefaultItem
properties. If useDefaultRepository is false and an alternate repository cannot be found, then no
repository is searched and the empty open parameter is rendered. Similarly, if an alternative repository is
selected, but the item cannot be found, and if getDefaultItem is false, then the empty open parameter
is rendered.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 4 3

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
CatalogPossibleValues

Class Name atg.commerce.catalog.custom.CatalogPossibleValues

Component(s) /atg/commerce/catalog/RepositoryValues

The CatalogPossibleValues servlet bean ensures that customer searches only return products from
catalogs the customer can view.

Input Parameters

itemDescriptorName (Required)
This is the name of the item-descriptor in the repository XML file

catalog
The optional value that, if used, specifies a catalog ID. Only items located in the catalog specified here will
be returned by the search. If you don’t specify a catalog, the catalog specified in the user’s profile is used.

propertyName
The optional value that, if used, must refer to a linked property. If this parameter is specified, repository
items of the linked type will be returned.

repository
This parameter defines the repository to search. It can also be set via a properties file.

sortProperties
A string that specifies how to sort the list of repository items. This parameter is specified as a comma
separated list of property names. The first name specifies the primary sort, the second specifies the
secondary sort, etc. If the first character of each keyword is a -, this sort is performed in descending order.
If it is a + or it is not a -, it is sorted in ascending order. Note: This parameter is only valid for repository
items, it will not work with enumerated data-types.

Output Parameter

values
Within the body of the output open parameter, this parameter is set to the list of possible values for the
named item descriptor and property. The value will either be a list of tags (for enumerated properties) or
an array of repository items.

Open Parameter

output
This parameter is rendered once with the results of the search.

Example

In this example, RepositoryValues is an instance of CatalogPossibleValues.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 4 4

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
<dsp:droplet name="RepositoryValues">

 <dsp:param value="category" name="itemDescriptorName"/>

 <dsp:oparam name="output">

 <dsp:droplet name="ForEach">

 <dsp:param param="values" name="array"/>

 <dsp:param value="+displayName" name="sortProperties"/>

 <dsp:oparam name="output">

 <dsp:getvalueof id="option14" param="element.repositoryId"

 idtype="java.lang.String">

<dsp:option value="<%=option14%>"/>

</dsp:getvalueof>

 <dsp:valueof param="element.displayName"/>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

</dsp:droplet>

ClosenessQualifierDroplet

Class Name atg.commerce.promotion.ClosenessQualifierDroplet

Component atg/commerce/promotion/ClosenessQualifierDroplet

The ClosenessQualifierDroplet renders a list of closenessQualifier items associated with a given
order. You can limit the type of closenessQualifiers that are returned by specifying a type: item,
order, shipping and tax.

Input Parameters

elementName
Names an output parameter that holds the returned closenessQualifiers. If no value is specified
here, the closenessQualifers output parameter is used.

order
The order ID for which you want to access closenessQualifiers. If no order is specified here, the order
ID is taken from the active shopping cart. The shopping cart is located through a reference from
ClosenessQualiferDroplet.promotionUpsellTools property to the
/atg/commerce/promotion/PromotionUpsellTools.shoppingCartPath property.

type
The type of closenessQualifier you want to access. Options include: item, order, shipping, tax, and
all. Note that a value of order does not indicate that all closenessQualifiers for an order should be
returned, but rather that closenessQualifiers designated for the order item type should be returned.
Omitting this parameter causes Closeness Qualifiers of all types to be returned.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 4 5

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Output Parameters

closenessQualifiers
The list of Closeness Qualifiers returned for the specified order. This parameter is applicable only when a
replacement has not been specified by the elementName input parameter.

errorMsg
The error message to display to the user if an error occurs.

Open Parameters

empty
This parameter is rendered if no Closeness Qualifiers are returned.

error
This parameter is rendered if an error occurs during processing.

output
This parameter is rendered if Closeness Qualifiers are returned.

Example

In this example, the ClosenessQualifierDroplet determines whether the active user has earned any
shipping-related Closeness Qualifiers. Excluding the order parameter causes ATG Commerce to make this
determination based on the items in the current user’s shopping cart. When the user is eligible for a
Closeness Qualifier, the associated media item displays a message to the user.

<dsp:droplet name="/atg/commerce/promotion/ClosenessQualifierDroplet">

 <dsp:param name="type" value="shipping"/>

 <dsp:param name="elementName" value="closenessQualifiers"/>

 <dsp:oparam name="output">

 <dsp:droplet name="/atg/dynamo/droplet/ForEach">

 <dsp:param name="array" param="closenessQualifiers"/>

 <dsp:param name="elementName" value="closenessQualifier"/>

 <dsp:oparam name="output">

 <dsp:getvalueof id="media_url"

 param="closenessQualifier.upsellMedia" idtype="String">

 <dsp:include page="<%=media_url%>"/>

 </dsp:getvalueof>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

</dsp:droplet>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 4 6

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
CollectionFilter

Class Name atg.service.collections.filter.droplet.CollectionFilter

Components /atg/commerce/collections/filter/droplet

/InventoryFilterDroplet

/atg/commerce/collections/filter/droplet

/ProductFilterDroplet

/atg/commerce/collections/filter/droplet

/ExcludeItemInCartFilterDroplet

/atg/commerce/collections/filter/droplet

/CartSharingFilterDroplet

/atg/commerce/collections/filter/droplet

/GiftListSiteFilterDroplet

 The CollectionFilter servlet beans use collection filtering components to reduce objects in a
collection. Each servlet bean works with a different collection filtering component.

 InventoryFilterDroplet for a collection of products, determines which SKUs are
available, as determined by the Inventory Manager at the time of execution. This
servlet bean accesses InventoryFilter, which handles the filtering action.

 ProductFilterDroplet executes both InventoryFilterDroplet and
StartEndDateFilterDroplet to return only those items that satisfy both sets of
requirements. For example, a product that’s in stock and has an active startDate will
be returned while one with the same startDate but is out of stock won’t be returned.
This servlet bean accesses ProductFilter, which handles the filtering action.

 ExcludeItemInCartFilterDroplet returns those products that are not in the
user’s shopping cart. This servlet bean relies on ExcludeItemsInCartFilter to
determine the items in the shopping cart and to eliminate them from the collection.

 CartSharingFilterDroplet uses the CartSharingFilter to return only products
from sites that are within the cart sharing group.

 GiftlistSiteFilterDroplet filters a specified collection of gift lists or gift items.

The primary discussion of this class resides in Appendix B: ATG Servlet Beans of the ATG Page Developer’s
Guide. For details about collection filtering components and caching, see the Filtering Collections chapter
in the ATG Personalization Programming Guide.

Note that each droplet’s filter input parameter has a different default value of class
CollectionFilter:

 InventoryFilterDroplet uses
/atg/registry/CollectionFilters/InventoryFilter

 ExcludeItemInCartFilterDroplet uses
/atg/registry/CollectionFilters/ExcludeItemInCartFilter

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 4 7

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
 ProductFilterDroplet uses

/atg/registry/CollectionFilters/ProductFilter

 CartSharingFilterDroplet uses
/atg/registry/COllectionFilters/CartSharingFilter

ProductFilterDroplet Example

In this example, ProductFilterDroplet causes the filters (InventoryFilter and
StartEndDateFiler)specified in the ProductFilter to apply their filtering mechanisms to a collection
of products. The resultant collection of products that are in stock and active are displayed.

<dspel:droplet name="/atg/commerce/catalog/CategoryLookup">

 <dspel:param name="Id" param="catId"/>

 <dspel:oparam name="output">

 <%

 String collIdentifierKey = request.getParameter("catId") + "-childprd";

 %>

 <dspel:droplet name="/atg/collections/filter/droplet/ProductFilterDroplet">

 <dsp:param name="collection" param="item.childproducts/>

 <dsp:param name="collectionIdentifierKey" value="<%=collIdentifierKey

 %>"/>

 <dspel:oparam name="output">

 Featured Plants:

 <p><dsp:droplet name="/atg/dynamo/droplet/ForEach">

 <dsp:param name="array" param="filteredCollection"/>

 <dsp:oparam name="output">

 <dspel:valueof param="element"/>

 </dspel:oparam>

 </dsp:droplet>

 </dspel:oparam>

 <dspel:oparam name="empty">

 There are currently no outdoor plants

 </dspel:oparam>

 </dspel:droplet>

 </dspel:oparam>

</dspel:droplet>

GiftListSiteFilterDroplet Examples

This JSP excerpt shows one example of how you can use GiftlistSiteFilterDroplet to filter gift lists.
No site scope is passed in, so the GiftlistSiteFilter uses the GiftlistManager component’s
siteScope, which for the purposes of this example is set to the atg.ShoppingCart shareable type
component. Also, no site IDs are provided, so the filtered gift lists will come from the current site and sites
that share a shopping cart with the current site only.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 4 8

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
<dsp:droplet

name="/atg/commerce/collections/filter/droplet/GiftlistSiteFilterDroplet">

 <&-- Specify the collection to filter --%>

 <dsp:param name="collection" bean="Profile.giftlists"/>

 <dsp:oparam name="output">

 <%-- Iterate through the collection. --%>

 <dsp:droplet name="="/atg/dynamo/droplet/ForEach">

 <dsp:param name="array" param="filteredCollection"/>

 <dsp:oparam name="output">

 <dsp:setvalue param="giftList" paramvalue="element"/>

 <dsp:getvalueof var="eventName" param="giftList.eventName"/>

 <c:out value="${eventName}"/>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

</dsp:droplet>

This JSP excerpt filters a collection of wish list items. A site scope value of current is passed to the filter
but no site IDs are passed, resulting in a collection of items from the current site only.

<dsp:droplet

name="/atg/commerce/collections/filter/droplet/GiftlistSiteFilterDroplet">

 <&-- Specify the collection to filter and the site scope. --%>

 <dsp:param name="collection" bean="Profile.wishlist.giftlistItems"/>

 <dsp:param name="siteScope" value="current"/>

 <dsp:oparam name="output">

 <%-- Iterate through the collection. --%>

 <dsp:droplet name="="/atg/dynamo/droplet/ForEach">

 <dsp:param name="array" param="filteredCollection"/>

 <dsp:oparam name="output">

 <dsp:setvalue param="giftItem" paramvalue="element"/>

 <dsp:getvalueof var="displayName" param="giftItem.displayName"/>

 <c:out value="${displayName}"/>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

</dsp:droplet>

Notes:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 4 9

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
 The GiftlistSiteFilter and GiftlistSiteFilterDroplet components can be

configured to use caching to improve filtering performance, just as you would for any
filter based on the CollectionFilter class. See Caching Filtered Content in the ATG
Personalization Programming Guide.

 To pass site IDs to the GiftlistFilterDroplet, use a comma-separated list.

ComplexPriceDroplet

Class Name atg.commerce.pricing.priceLists.ComplexPriceDroplet

Component(s) /atg/commerce/pricing/priceLists/ComplexPriceDroplet

(ATG Business Commerce only)

The ComplexPriceDroplet servlet bean takes a complex price and returns the levels contained within it.

Input Parameters

complexPrice (Required)
The ID of the complex price.

Output Parameters

levelMinimums
The smallest quantity that applies to each level. This always begins with 1.

levelMaximums
The largest quantity that applies to each level. This is always 1 item shorter than levelMinimums since
the last level has no maximum.

prices
The list of prices for each level. The last price in this array is always the defaultPrice.

numLevels
The length of the quantities and prices arrays.

Output Parameter

error
The parameter rendered if there is an error.

Open Parameter

output
The oparam rendered if the complex price is processed successfully.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 5 0

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Example

The following example shows the JSP code for the ComplexPriceDroplet:

<dsp:droplet name="ComplexPriceDroplet">

 <dsp:param param="complexPrice" name="complexPrice"/>

 <dsp:oparam name="output">

 <table border=1>

 <dsp:droplet name="For">

 <dsp:param param="numLevels" name="howMany"/>

 <dsp:param value="index" name="indexName"/>

 <dsp:oparam name="output">

 <tr>

 <td>

 <dsp:valueof param="leveMinimums[param:index]"/> -

 <dsp:valueof param="levelMaximums[param:index]">?</dsp:valueof>

 </td>

 <td>

 <dsp:valueof param="prices[param:index]"/>

 </td>

 </tr>

 </dsp:oparam>

</dsp:droplet>

ConvertAbandonedOrderDroplet

Class Name atg.commerce.order.abandoned.ConvertAbandonedOrder

Droplet

Component(s) /atg/commerce/order/abandoned/ConvertAbandonedOrde

rDroplet

(Abandoned Order Services module only)

The ConvertAbandonedOrderDroplet servlet bean replaces the abandoned, reanimated, or lost
designation for a given order with a converted designation. More specifically, it does the following:

1. Removes the order from the list of abandoned orders in the user’s abandonedOrders
profile property if the order was abandoned and not lost or reanimated.

2. Modifies the order’s abandonmentInfo item as follows:

 Sets the state property to CONVERTED.

 Sets the conversionDate property to the current date and time.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 5 1

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
3. Fires an AbandonedOrderConverted message if the

AbandonedOrderTools.sendOrderConvertedMessage property is set to true.

Note that if the state property in the order’s abandonmentInfo item is null, then the order has never
been abandoned, and the action does nothing.

See the Using Abandoned Order Services chapter in the ATG Commerce Programming Guide for detailed
information on the Abandoned Order Services module.

Input Parameters

orderId (Required)
The ID of the current order.

Output Parameters

None.

Open Parameters

output
This parameter is rendered when an order is converted.

error
This parameter is rendered if an error occurs.

Example

<dsp:droplet name="ConvertAbandonedOrderDroplet">

 <dsp:param name="orderId" bean="/atg/commerce/ShoppingCart.current.id"/>…

</dsp:droplet>

CostCenterDroplet

Class Name atg.b2bcommerce.order.purchase.CostCenterDroplet

Component(s) /atg/commerce/order/purchase/CostCenterDroplet

(ATG Business Commerce only)

The CostCenterDroplet servlet bean is a request-scoped component whose service method is
responsible for the following tasks:

 CostCenter initialization - CostCenter objects representing the user’s authorized
cost centers are created and added to the CostCenterMapContainer.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 5 2

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
 CommerceIdentifierCostCenter initialization - New

CommerceIdentifierCostCenter instances are created specific to the current
Order and added to the CommerceIdentifierCostCenterContainer.

These tasks enable the user to associate their authorized cost centers with an order’s various
CommerceIdentifier objects. During initialization, CostCenterDroplet optionally creates one
CommerceIdentifierCostCenter object for each object of a CommerceIdentifier type (for example,
each CommerceItem, each ShippingGroup, the Order, and the Tax).

For more information on the cost center classes and framework, see the Managing Cost Centers chapter.

Input Parameters

clearAll
If this parameter is set to true, CostCenterDroplet clears both
CommerceIdentifierCostCenterContainer and the CostCenterMapContainer.

clearCostCenterContainer
If this parameter is set to true, CostCenterDroplet clears the CommerceIdentifierCostCenters in
the CommerceIdentifierCostCenterContainer.

clearCostCenterMap
If this parameter is set to true, CostCenterDroplet clears the CostCenters in the
CostCenterMapContainer.

initCostCenters
If this parameter is set to true, CostCenterDroplet places the CostCenter objects that represent the
user’s authorized cost centers into the CostCenterMapContainer.

initItemCostCenters
If this parameter is set to true, CostCenterDroplet creates a CommerceIdentifierCostCenter object
for each CommerceItem in the order and adds them to the
CommerceIdentifierCostCenterContainer.

initShippingCostCenters
If this parameter is set to true, CostCenterDroplet creates a CommerceIdentifierCostCenter object
for each ShippingGroup in the order and adds them to the
CommerceIdentifierCostCenterContainer.

initTaxCostCenters
If this parameter is set to true, CostCenterDroplet creates a CommerceIdentifierCostCenter object
for the tax and adds it to the CommerceIdentifierCostCenterContainer.

initOrderCostCenters
If this parameter is set to true, CostCenterDroplet creates a CommerceIdentifierCostCenter object
for the order and adds it to the CommerceIdentifierCostCenterContainer.

useAmount
The useAmount parameter describes the type of relationship that will exist between the commerce items
and cost centers. This is dictated by whether your developer has allowed users to divide commerce items
among cost centers by quantity or by amount. If this parameter is set to true, then amounts are used to

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 5 3

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
determine the cost center relationships. If the value is set to false, then quantities are used to determine
the cost center relationships. The default value is false.

order
The user’s order to which to assign cost centers.

Output Parameters

costCenters
The list of the user’s valid cost centers.

ciccMap
A map whose keys are the commerce identifiers, and whose values are the list of
CommerceIdentifierCostCenters associated with that commerce identifier.

order
The user’s order that was passed in.

Open Parameters

output
The open parameter rendered if the operations are successful.

Example

A common use of CostCenterDroplet is to build in its output parameter a form that 1) displays the
output set by the servlet bean, and 2) enables the user to reassign items and other costs to other valid
cost centers. This usage explains why, in the JSP example below, the clearAll, clearCostCenterMap,
and clearCostCenterContainer parameters are all set to false. If the servlet bean is used with a form
that gets reloaded after submission, setting these parameters to false prevents the erasure of any changes
the user has made and submitted.

<dsp:droplet name="CostCenterDroplet">

 <dsp:param bean="ShoppingCartModifier.order" name="order"/>

 <dsp:param value="false" name="clearAll"/>

 <dsp:param value="false" name="clearCostCenterMap"/>

 <dsp:param value="false" name="clearCostCenterContainer"/>

 <dsp:param value="true" name="initCostCenters"/>

 <dsp:param value="true" name="initItemCostCenters"/>

 <dsp:param value="true" name="initShippingCostCenters"/>

 <dsp:param value="true" name="initTaxCostCenters"/>

 <dsp:param value="false" name="useAmount"/>

 <dsp:oparam name="output">some form

 </dsp:oparam>

</dsp:droplet>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 5 4

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
CouponDroplet

Class Name atg.commerce.promotion.CouponDroplet atg.commerce.pricing.Currenc

Component(s) /atg/commerce/promotion/CouponDroplet /atg/commerce/pricing/Curren

The CouponDroplet servlet bean takes either a promotion object or promotion ID and generates a
coupon for it in the Claimable repository. You could include the CouponDroplet in a targeted e-mail JSP,
thereby creating a coupon code that is ready to send to a customer.

Input Parameters

promoId (Either this or promotions must be used)
The ID of the promotion used to create the coupon.

promotion
No longer used.

promotions (Either this or promoId must be used)
The promotions object or objects used to create the coupon.

displayName (optional)
The display name of the coupon. If none is provided, the name of the first associated promotion is used
for the coupon’s display name. The default is null.

usePromotionSiteConstraint (optional)
If true, this flag means that the coupon that is created uses the same site constraints as the promotion
with which it is associated. If more than one promotion is used to create the coupon, the promotions do
not all have to have the same site constraints. The default is false.

Output Parameters

coupon
The coupon object. The claim code for this coupon can be obtained by using coupon.id. Note that claim
codes for coupons are case-sensitive. For example, COUP100 and coup100 are two different claim codes.

Open Parameters

output
The open parameter rendered on successful creation of a coupon object.

error
The open parameter rendered if an error occurs during creation of a coupon.

Example

The following example shows the JSP code for the CouponDroplet:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 5 5

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
<dsp:importbean bean="/atg/commerce/promotion/CouponDroplet"/>

<h2>here is a coupon that was created: </h2>

<dsp:droplet name="CouponDroplet">

<dsp:param value="promo60001" name="promoId"/>

<dsp:oparam name="output">

 <dsp:valueof param="coupon.id">no value</dsp:valueof>

</dsp:oparam>

<dsp:oparam name="error">

</dsp:oparam>

</dsp:droplet>

CurrencyCodeDroplet

Class Name atg.commerce.pricing.CurrencyCodeDroplet

Component(s) /atg/commerce/pricing/CurrencyCodeDroplet

The CurrencyCodeDroplet servlet bean takes a locale as input and returns the currency code for that
locale.

Input Parameters

locale (Required)
The current locale.

Output Parameter

currencyCode
The ISO 4217 currency code for the locale.

Open Parameters

output
The open parameter is always rendered.

Example

The following example shows the JSP code for the CurrencyCodeDroplet servlet bean. In the example,
the locale is retrieved from the user’s profile and used to format the amount of a gift certificate.

<dsp:droplet name="CurrencyCodeDroplet">

 <dsp:param name="locale" bean="Profile.PriceList.locale"/>

 <dsp:oparam name="output">

 <dsp:getvalueof var="currencyCode" vartype="java.lang.String"

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 5 6

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
param="currencyCode"/>

 <dsp:getvalueof var="amount" vartype="java.lang.Double"

param="giftCertificate.amount"/>

 </dsp:oparam>

</dsp:droplet>

<%-- The format of message to display is:

A gift certificate has been purchased for you in the amount of {0} by {1} {2} --%>

<fmt:message key="emailtemplates_giftCertificate.purchasedInfo">

 <fmt:param>

 <fmt:formatNumber value="${amount}" type="currency"

currencyCode="${currencyCode}"/>

 </fmt:param>

….

DisplaySkuProperties

Class Name atg.commerce.catalog.DisplaySkuProperties

Component(s) /atg/commerce/catalog/DisplaySkuProperties

The DisplaySkuProperties servlet bean takes a SKU item as input and renders a set of specified
properties as a concatenated string. For example, you could use DisplaySkuProperties to display the
displayName, price, and description properties of the SKU.

Input Parameters

sku (Required)
The SKU item.

delimiter
Character to use as a separator between the different property values in the concatenated string. If you
omit this parameter, then a space is used as the delimiter.

propertyList or product
You can use the propertyList parameter to specify the list of SKU properties to display as a comma-
separated list, or you can use the product parameter to specify the parent product of the SKU. In the
latter case, the list of properties is takes from the product’s displayableSkuAttributes property.

displayElementName
The name to use as the parameter set within the output open parameter.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 5 7

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Output Parameter

displayElement
The concatenated text string containing the property values. (You can specify a different name for this
parameter through the optional displayElementName input parameter.)

Open Parameters

output
The open parameter rendered if the output text string is not empty.

empty
The open parameter rendered if the output text string is empty.

Example

The following example shows the JSP code for the DisplaySkuProperties servlet bean. In the example,
the SKU is passed to DisplaySkuProperties by another servlet bean in which DisplaySkuProperties
is nested.

<dsp:droplet name="/atg/commerce/catalog/DisplaySkuProperties">

 <dsp:param value=" | " name="delimiter"/>

 <dsp:param param="element" name="sku"/>

 <dsp:param value="displayName,listPrice,description" name="propertyList"/>

 <dsp:oparam name="output">

 <p><dsp:valueof param="displayElement"/>

 </dsp:oparam>

 <dsp:oparam name="empty">

 <p>There is no information available about this item.

 </dsp:oparam>

</dsp:droplet>

ExcludeItemsInCartFilterDroplet

Class Name atg.service.collections.filter.droplet.Collection

Filter

Component(s) /atg/commerce/collections/filter/droplet/ExcludeI

temsInCartFilterDroplet

The ExcludeItemsInCartFilterDroplet servlet bean allows you to filter items that are already in a
shopper’s cart out of a list.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 5 8

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Input Parameters

collectionIdentifierKey
This value identifies the unfiltered collection. If it is not provided, the consultCache and updateCache
parameters are forced to false.

filter
Any collection filter component.

profile
The value can be any profile repository item.

collection (Required)
The unfiltered collection.

consultCache
The string value can be “true” or “false”.

updateCache
The string value can be “true” or “false”.

Output Parameters

filteredCollection
The filtered collection.

errorMsg
An error message when processing errors occur.

Open Parameter

output
This tag is rendered once upon successful completion of the filter.

empty
This tag is rendered if the filtered collection is null or contains no objects.

error
This tag is rendered if an error occurs.

Example

The following JSP example uses the filteredCollection parameter in ExcludeItemsInCart to
display a filtered list of upsell products.

<dsp:droplet name="/atg/commerce/collections/filter/droplet/ExcludeItemsInCart

FilterDroplet">

 <dsp:param name="collection" param="category.upsellProducts"/>

 <dsp:oparam name="output">

 You may also like these<p>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 5 9

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
 <dsp:droplet name="/atg/droplet/ForEach">

 <dsp:param name="array" param="filteredCollection" />

 <dsp:oparam name="output">

 Product <dsp:valueof param="element.repositoryId"/><p>

 <dsp:valueof param="element.description"/><p>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

</dsp:droplet>

ForEachItemInCatalog

Class Name atg.commerce.catalog.custom.ForEachItemInCatalog

Component(s) /atg/commerce/catalog/ForEachItemInCatalog

The ForEachItemInCatalog servlet bean renders its output open parameter once for each element in
the array input parameter that exists in the user’s the current catalog.

The servlet bean is an instance of atg.commerce.catalog.custom.ForEachItemInCatalog, which
extends atg.droplet.ForEach. ForEachItemInCatalog has one additional parameter, profile,
which is used to get the current catalog for the user (from the Profile.catalog property).

Input Parameters

array (Required)
The parameter that defines the list of items to output. This parameter can be Collection (Vector, List, or
Set), Enumeration, Iterator, Map, Dictionary, or array.

profile
The current user’s profile.

sortProperties
A string that specifies how to sort the list of items in the output array. Sorting can be performed on
properties of JavaBeans, Dynamic Beans, or on Dates, Numbers, or Strings.

To sort JavaBeans, specify the value of sortProperties as a comma-separated list of property names.
The first name specifies the primary sort, the second specifies the secondary sort, etc. If the first character
of each keyword is a +, this sort is performed in ascending order. If it has a -, it is a descending order.

Example: To sort an output array of JavaBeans first alphabetically by title property and second in
descending order of the size property:

<param name="sortProperties" value="+title,-size">

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 6 0

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
To sort Dates, Numbers, or Strings, specify the value of sortProperties with either a single “+” or a
single “-” to indicate ascending or descending order respectively.

Example: To sort an output array of Strings in alphabetical order:

<param name="sortProperties" value="+">

reverseOrder
A boolean value that specifies whether the traversal order in the array should be back to front or front to
back. To sort from back to front, set this parameter to true. To sort from front to back, set this parameter
to false. Note that this parameter only takes effect if the sortProperties input parameter is not set.

Output Parameters

index
This parameter is set to the zero-based index of the current element of the array each time that the
output parameter is rendered. The value of index for the first iteration is 0.

count
This parameter is set to the one-based index of the current element of the array each time that the output
parameter is rendered. The value of count for the first iteration is 1.

key
If the array parameter is a Map or Dictionary, this parameter is set to the value of the key in the Map or
Dictionary.

element
This parameter is set to the current element of the array each time that the index increments and the
output parameter is rendered.

size
This parameter is set to the size of the array, if applicable. If the array is an Enumeration or Iterator, size is
set to -1.

Open Parameters

output
This parameter is rendered once for each element in the array.

outputStart
If the array is not empty, this parameter is rendered before any output elements. It can be used to render
the heading of a table, for instance.

outputEnd
If the array is not empty, this parameter is rendered after all output elements. It can be used to render text
following a table, for instance.

empty
This optional parameter is rendered if the array contains no elements.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 6 1

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Example

The following JSP example uses ForEachItemInCatalog to display a list of related products for a given
product on a product display page. Each related product is a link that redisplays the product display page
with the selected related product.

<dsp:droplet name="/atg/commerce/catalog/ForEachItemInCatalog">

 <dsp:param param="element.relatedProducts" name="array"/>

 <dsp:oparam name="outputStart">

 <table border=0 cellpadding=1 width=100%>

 <tr><td> Related Items</td></tr>

 <tr><td></td></tr>

 </dsp:oparam>

 <dsp:oparam name="output">

 <tr><td>

 <dsp:getvalueof id="a28" param="element.template.url"

 idtype="java.lang.String">

<dsp:a href="<%=a28%>">

 <dsp:param param="element.repositoryId" name="id"/>

 <dsp:param value="jump" name="navAction"/>

 <dsp:param param="element" name="Item"/>

 <dsp:valueof param="element.displayName">

 No name</dsp:valueof></dsp:a></dsp:getvalueof>

 </td></tr>

 </dsp:oparam>

 <dsp:oparam name="outputEnd">

 </table>

 </dsp:oparam>

</dsp:droplet>

GetApplicablePromotions

Class Name atg.commerce.pricing.GetApplicablePromotions

Component(s) /atg/commerce/pricing/GetApplicablePromotions

The GetApplicablePromotions servlet bean is used to determine which promotions can be applied to
a given product or SKU.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 6 2

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
The GetApplicablePromotions servlet bean is instantiated from
atg.commerce.pricing.GetApplicablePromotions, which extends
atg.commerce.pricing.PriceItemDroplet.

Input Parameters

item (Required)
Either a RepositoryItem that represents the item for which promotions are to be evaluated, or a
CommerceItem that can be evaluated directly. If the supplied item is a RepositoryItem, then a new
CommerceItem is created.

pricingModels
The collection of pricing models (promotions) used to price the items. If this value is not supplied, then by
default a collection of pricing models from the user’s PricingModelHolder component is used. This
component is resolved through the userPricingModelsPath property.

locale
The locale in which the evaluation should take place.

profile
The user for whom pricing is performed. If this value is not supplied, then the profile is resolved through
the property profilePath.

product
The object that represents the product definition of the item to evaluate. Typically, items are SKUs. In that
case, this is the product of the given SKU.

elementName
The name to use as the parameter set within the output open parameter.

quantity
The Long quantity of the input product. This parameter is used when constructing a CommerceItem from
the supplied information.

Output Parameters

element
The evaluated CommerceItem. This parameter name can be changed by setting the elementName input
parameter.

promotions
The promotions that apply to this CommerceItem.

Open Parameters

output
The open parameter rendered if the CommerceItem has been priced successfully.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 6 3

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Example

In the following example, the promotions, locale and profile are extracted from the request because they
are not supplied as parameters.

<dsp:droplet name="/atg/commerce/pricing/GetApplicablePromotions">

 <dsp:param name="product" param="product"/>

 <dsp:param name="item" param="product.childSkus[0]"/>

 <dsp:oparam name="output">

 <dsp:droplet name="ForEach">

 <dsp:param name="array" param="promotions"/>

 <dsp:oparam name="output">

 Promotion: <dsp:valueof param="element.displayName"/>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:droplet>

GiftCertificateAmountAvailable

Class Name atg.commerce.claimable.GiftCertificateAmountAvailable

Component(s) /atg/commerce/claimable/GiftCertificateAmountAvailable

The GiftCertificateAmountAvailable servlet bean allows you to see how much of the gift certificate
amount remains after the current purchase.

Input Parameters

usedAmount (Required)
The amount that is to be used on the gift certificate.

giftCertificateNumber (Required)
The gift certificate’s claim code.

Output

amountAvailable
The amount remaining on the gift certificate after deducting the usedAmount.

Open Parameters

output
The open parameter is always rendered.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 6 4

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Example

The following code example demonstrates how to use the GiftCertificateAmountAvailable droplet
to to display the amount remaining on a user’s gift certificate.

<dsp:droplet name="GiftCertificateAmountAvailable">

 <dsp:param name="giftCertificateNumber"

param="paymentGroup.giftCertificateNumber"/>

 <dsp:oparam name="output">

 <dt>

 <fmt:message key="common.remainingAmount"/><fmt:message

key="common.labelSeparator"/>

 </dt>

 <dd>

 <dsp:getvalueof var="amountRemaining" vartype="java.lang.Double"

param="amountAvailable"/>

 <fmt:formatNumber value="${amountRemaining}" type="currency"

currencyCode="${currencyCodeVar}"/>

 </dd>

 </dsp:oparam>

</dsp:droplet>

GiftitemDroplet

Class Name atg.commerce.gifts.GiftitemDroplet

Component(s) /atg/commerce/gifts/BuyItemFromGiftlist
/atg/commerce/gifts/RemoveItemFromGiftlist

Servlet beans instantiated from the GiftitemDroplet class allow customers to buy or remove items
from their own personal gift lists. Two Commerce servlet beans have been instantiated from
GiftitemDroplet; they are BuyItemFromGiftlist and RemoveItemFromGiftlist.

Input Parameters

giftId (Required)
The ID of the gift.

giftlistId (Required)
The ID of the gift list.

Output

None.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 6 5

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Open Parameters

output
The open parameter rendered if item is bought or removed successfully from list.

error
The open parameter rendered if an error occurs during processing.

Example

The following code example demonstrates how to use the RemoveItemFromGiftlist component to
remove items from a customer’s personal gift list.

<dsp:droplet name="/atg/dynamo/droplet/IsEmpty">

<dsp:param param="giftId" name="value"/>

<dsp:oparam name="false">

 <dsp:droplet name="/atg/commerce/gifts/RemoveItemFromGiftlist">

 <dsp:param param="giftlistId" name="giftlistId"/>

 <dsp:param param="giftId" name="giftId"/>

 </dsp:droplet>

</dsp:oparam>

</dsp:droplet>

GiftlistDroplet

Class Name atg.commerce.gifts.GiftlistDroplet

Component(s) /atg/commerce/gifts/GiftlistDroplet

The GiftlistDroplet servlet bean adds or removes other customers’ gift lists from a customer’s profile.

Input Parameters

action (Required)
The action to perform on the gift list.

giftlistId (Required)
The ID of the gift list.

profile
The profile of the current customer. If not passed, the profile will be resolved by Nucleus.

Output Parameters

None.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 6 6

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Open Parameters

output
The open parameter rendered if the gift list is added or removed successfully from a profile.

error
The open parameter rendered if an error occurs while adding or removing the gift list.

Example

The following code example demonstrates how to use the GiftlistDroplet to add a retrieved gift list
to a customer’s profile.

<dsp:droplet name="/atg/dynamo/droplet/IsEmpty">

<dsp:param param="giftlistId" name="value"/>

<dsp:oparam name="false">

 <dsp:droplet name="/atg/commerce/gifts/GiftlistDroplet">

 <dsp:param param="giftlistId" name="giftlistId"/>

 <dsp:param value="add" name="action"/>

 <dsp:param bean="/atg/userprofiling/Profile" name="profile"/>

 </dsp:droplet>

</dsp:oparam>

</dsp:droplet>

GiftShippingGroupDroplet

Class Name atg.commerce.gifts.GiftShippingGroupDroplet

Component(s) /atg/commerce/gifts/IsGiftShippingGroup

The IsGiftShippingGroup servlet bean checks a shipping group within a given order for gifts.

Input Parameters

sg (Required)
The shipping group to check for gifts.

Output Parameter

giftlistId
This parameter holds the gift list ID for a gift that’s part of the shipping group.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 6 7

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Open Parameters

true
The open parameter rendered if the shipping group contains one or more gifts.

false
The open parameter rendered if the shipping group does not contain gifts.

Example

The following example shows the JSP code for the IsGiftShippingGroup servlet bean:

<dsp:droplet name="/atg/commerce/gifts/IsGiftShippingGroup">

<dsp:param param="sg" name="sg"/>

<dsp:oparam name="true">

 Gift in shipping group

</dsp:oparam>

<dsp:oparam name="false">

 No gift in shipping group

</dsp:oparam>

<dsp:oparam name="error">

 Error

</dsp:oparam>

</dsp:droplet>

GiftShippingGroupsDroplet

Class Name atg.commerce.gifts.GiftShippingGroupsDroplet

Component(s) /atg/commerce/gifts/GiftShippingGroups

The GiftShippingGroups servlet bean checks for gifts within a given order. If gifts exist in the order,
then it builds a collection of the shipping groups that contain the gifts.

Input Parameters

order (Required)
The order to check for gifts.

Output Parameters

giftsg
The collection of shipping groups in the order that contain one or more gifts.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 6 8

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
allgifts
This parameter is boolean. The parameter’s value is true if all the items in the order are gifts. The
parameter’s value is false if only some of the items in the order are gifts.

Open Parameters

true
The open parameter rendered if the order contains gifts.

false
The open parameter rendered if the order does not contain gifts.

Example

The following JSP example shows the parameters you can use to invoke the GiftShippingGroups
servlet bean:

<dsp:droplet name="/atg/commerce/gifts/GiftShippingGroups">

<dsp:param param="order" name="order"/>

<dsp:oparam name="true">

 Gifts in order

</dsp:oparam>

<dsp:oparam name="false">

 No gifts

</dsp:oparam>

<dsp:oparam name="error">

 Error

</dsp:oparam>

</dsp:droplet>

HasBusinessProcessStage

Class Name atg.markers.bp.droplet.HasBusinessProcessStage

Component /atg/commerce/bp/droplet/HasShoppingProcessStageDroplet

This servlet bean checks whether the order has reached a specified stage in the shopping process. It is an
instance of HasBusinessProcessStage with the businessProcessName property set to
ShoppingProcess.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 6 9

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Input Parameters

businessProcessName
The name of the business process. If not specified, then we use the value of the servlet bean’s
defaultBusinessProcessName property, which is ShoppingProcess by default.

businessProcessStage (Required)
The stage within the business process. If you use the token value !_anyvalue_!, then the servlet renders
the true open parameter if any business process stage has been reached.

Output Parameters

errorMsg
The error message describing a failure.

Open Parameters

true
Rendered if the stage has been reached.

false
Rendered if the stage has not been reached.

error
Rendered on error.

Example

<dsp:droplet name="HasShoppingProcessStageDroplet">

 <dsp:param name="businessProcessStage" value="ShippingPriceViewed"/>

 <dsp:oparam name="true">

...

 </dsp:oparam>

 <dsp:oparam name="false">

...

 </dsp:oparam>

</dsp:droplet>

InventoryDroplet

Class Name atg.commerce.inventory.InventoryDroplet

Component(s) /atg/commerce/inventory/InventoryLookup

The InventoryLookup servlet bean returns inventory information for a specified item.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 7 0

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Input Parameters

itemId (Required)
The catalogRefId of the product catalog SKU whose inventory information will be retrieved.

useCache
If set to true, cached inventory data will be retrieved. Depending on how the inventory is updated, cached
data may be out of date. For general store browsing where performance is critical, useCache should be
set to true. If it is essential that the retrieved inventory information match the latest information in the
repository, then set useCache to false.

Output Parameters

inventoryInfo
The information object that holds the retrieved inventory information. The inventoryInfo object has
the following properties:

 availabilityStatus: The numerical availability status

 availabilityStatusMsg: A string that maps to the numerical
availabilityStatus as follows:

 1000: INSTOCK

 1001: OUTOFSTOCK

 1002: PREORDERABLE

 1003: BACKORDERABLE

 availabilityDate: The date on which the item will become available.

 stockLevel: The total number of units currently in stock.

 preorderLevel: The total number of units that are available for preorder.

 backorderLevel: The total number of units that are available for backorder.

 stockThreshold: The threshold for the stock level.

 preorderThreshold: The threshold for the preorder level.

 backorderThreshold: The threshold for the backorder level.

error
Any exception that may have occurred while looking up the inventory information.

Open Parameters

output
The open parameter rendered if the inventory information is successfully retrieved.

Example

The following code sample is an example of using the InventoryLookup servlet bean:

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 7 1

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
<dsp:droplet name="/atg/commerce/inventory/InventoryLookup"> </td>

 <dsp:param param="link.item.repositoryId" name="itemId"/>

 <dsp:param value="true" name="useCache"/>

 <dsp:oparam name="output">

 This item is

 <dsp:valueof param="inventoryInfo.availabilityStatusMsg"/>

 There are

 <dsp:valueof param="inventoryInfo.stockLevel"/>

 left in the inventory.

 </dsp:oparam>

</dsp:droplet>

IsHardGoodsDroplet

Class Name atg.commerce.order.IsHardGoodsDroplet

Component(s) /atg/commerce/order/IsHardGoods

The IsHardGoods servlet bean takes an order and determines if it contains any items that will be shipped
via a hardgood shipping group.

Input Parameters

order (Required)
The order object that is inspected for a HardgoodShippingGroup with commerce items.

Output Parameters

None.

Open Parameters

true
The open parameter rendered if the order contains items in a HardGoodShippingGroup.

false
The open parameter rendered if the order doesn’t contain items in a HardGoodShippingGroup.

Example

The following example illustrates the JSP code for the IsHardGoods servlet bean:

<dsp:droplet name="/atg/commerce/order/IsHardsGoods">

 <dsp:param param="someorder" name="order"/>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 7 2

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
 <dsp:oparam name="true">

 Order contains items in a Hardgood shipping group

 </dsp:oparam>

 <dsp:oparam name="false">

 No items in a Hardgood shipping group

 </dsp:oparam>

</dsp:droplet>

ItemLookupDroplet

Class Name atg.repository.servlet.ItemLookupDroplet

Component(s) /atg/commerce/catalog/CategoryLookup

/atg/commerce/catalog/MediaLookup

/atg/commerce/catalog/ProductLookup

/atg/commerce/catalog/SKULookup

/atg/commerce/gifts/GiftitemLookupDroplet

/atg/commerce/gifts/GiftlistLookupDroplet

Servlet beans instantiated from the ItemLookupDroplet class use an item’s ID to look up the item in one
or more repositories and render the item on the page. The ItemLookupDroplet class is included with
the Adaptive Scenario Engine. For more information about its various input, output, and open
parameters, see the ItemLookupDroplet entry in Appendix B: ATG Servlet Beans in the ATG Page
Developer’s Guide.

A number of Commerce servlet beans are instantiated from the ItemLookupDroplet class. These servlet
beans are listed in the table at the top of this page.

Example

The following code example demonstrates how to use the GiftlistLookupDroplet to look up a gift list
in the repository and check that its owner ID equals the ID of the current profile before displaying.

<dsp:droplet name="/atg/commerce/gifts/GiftlistLookupDroplet">

 <dsp:param param="giftlistId" name="id"/>

 <dsp:oparam name="output">

 <dsp:droplet name="IsEmpty">

 <dsp:param param="element" name="value"/>

 <dsp:oparam name="false">

 <dsp:setvalue paramvalue="element" param="giftlist"/>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 7 3

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
 <dsp:droplet name="/atg/dynamo/droplet/Switch">

 <dsp:param bean="Profile.id" name="value"/>

 <dsp:getvalueof id="nameval2" param="giftlist.owner.id"

 idtype="java.lang.String">

<dsp:oparam name="<%=nameval2%>">

 </dsp:oparam>

</dsp:getvalueof>

 </dsp:droplet>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

</dsp:droplet>

ItemPricingDroplet

Class Name atg.commerce.pricing.ItemPricingDroplet

Component(s) None

ItemPricingDroplet is an abstract class that is used as the base class for pricing items and displaying
the results to the customer. Both PriceEachItemDroplet and PriceItemDroplet extend this class.

If you extend this class, you must override the performPricing method to return the CommerceItem(s)
that have been priced. These items are then bound into the output open parameter with the default
name element.

Input Parameters

The following optional parameters are permitted:

pricingModels
A collection of pricing models (promotions) that should be used to price the items. If this value is not
supplied, then by default a collection of pricing models are used from the user’s PricingModelHolder
component. This component is resolved through the userPricingModelsPath property.

locale
The locale in which the pricing should take place.

profile
The user for whom pricing is performed. If this value is not supplied, then the profile is resolved through
the profilePath property.

product
The object that represents the product definition of the item to price. Typically, the items that are priced
are SKUs. In that case, this is the product that encompasses all of the SKUs.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 7 4

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
elementName
The name to use as the parameter set within the output open parameter.

Output Parameters

element
The priced CommerceItem or collection of priced CommerceItems. This parameter name can be changed
by setting the elementName input parameter.

Open Parameters

output
The open parameter rendered if the CommerceItem(s) has been successfully priced.

Example

None. ItemPricingDroplet is an abstract class that is meant to be subclassed. Refer to
PriceEachItemDroplet and PriceItemDroplet for JSP examples.

MostRecentBusinessProcessStage

Class Name atg.markers.bp.droplet.MostRecentBusinessProcessStage

Component /atg/commerce/bp/droplet/MostRecentShoppingProcessStageDroplet

This servlet bean checks if the shopping process stage the order has reached most recently matches the
specified stage. It is an instance of MostRecentBusinessProcessStage with the
businessProcessName property set to ShoppingProcess.

Input Parameters

businessProcessName
The name of the business process. If not specified, then we use the value of the servlet bean’s
defaultBusinessProcessName property, which is ShoppingProcess by default.

businessProcessStage (Required)
The stage within the business process.

Output Parameters

errorMsg
The error message describing a failure.

marker
The matching stage reached, if found.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 7 5

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Open Parameters

true
Rendered if the specified shopping process stage has been reached.

false
Rendered if the specified shopping process stage has not been reached.

error
Rendered on error.

Example

<dsp:droplet name="MostRecentShoppingProcessStageDroplet">

 <dsp:param name="businessProcessStage" value="ShippingPriceViewed"/>

 <dsp:oparam name="true">

...

 </dsp:oparam>

 <dsp:oparam name="false">

...

 </dsp:oparam>

</dsp:droplet>

NavHistoryCollector

Class Name atg.repository.servlet.NavHistoryCollector

Component(s) /atg/commerce/catalog/CatalogNavHistoryCollector

The CatalogNavHistoryCollector servlet bean can be used to create a “breadcrumb trail.” That is, it
constructs a list of the items the customer has visited to arrive at the current page and then creates and
displays links to the items. This trail enables the customer to easily go back to previously visited items.

The CatalogNavHistoryCollector servlet bean manages the customer’s navigation path by adding or
removing the repository items that the customer has viewed from CatalogNavHistory.navHistory,
the property that stores the stack of repository items.

Input Parameters

item (either this or itemName must be used)
The repository item that is currently being viewed. This is the item that will be added to
CatalogNavHistory.navHistory.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 7 6

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
itemName (either this or item must be used)
The name of the current page. When this page is displayed as a breadcrumb, this name will be used as the
anchor text in the link back to the page.

navAction
The operation to be performed on the navHistory stack. Choices are push, pop, and jump. An unset
navAction will be treated as push.

navCount (Required)
Used to detect the use of the Back button in order to reset the navigation path. To use this feature, at the
top of each page set a page parameter named navCount to the value of the
CatalogNavHistory.navCount property. For example:

<param name="navCount" value="bean:CatalogNavHistory.navCount">

Then, when you call the CatalogNavHistoryCollector servlet bean, set the value of the navCount
input parameter to the current value of the CatalogNavHistory.navCount property.
CatalogNavHistoryCollector compares this value to the value of the navCount page parameter. If
the values are not equal, then the Back button was used to get to the page.

Output Parameters

None.

Open Parameters

output
None.

Example

This example demonstrates how to collect the navigation history using CatalogNavHistoryCollector.
This JSP fragment should be invoked in each page that adds an item to the navHistory stack.

<dsp:droplet name="/atg/commerce/catalog/CategoryLookup">

<dsp:param param="itemId" name="id"/>

<dsp:oparam name="output">

 <dsp:droplet name="/atg/commerce/catalog/CatalogNavHistoryCollector">

 <dsp:param param="element" name="item"/>

 <dsp:param value="push" name="navAction"/>

 <dsp:param bean="/atg/commerce/catalog/CatalogNavHistory.navCount"

 name="navCount"/>

 </dsp:droplet>

</dsp:oparam>

</dsp:droplet>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 7 7

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
This second example demonstrates how to render a list of the locations the customer has visited. These
locations are displayed as a path, such as Fruit > Citrus Fruit > Oranges. Each category or product name in
the path is a link back to the corresponding item. Clicking one of these links causes the items below it in
the hierarchy to pop off the stack.

<dsp:droplet name="/atg/dynamo/droplet/ForEach">

 <dsp:param bean="CatalogNavHistory.navHistory" name="array"/>

 <dsp:oparam name="output">

 <dsp:getvalueof id="a6" param="element.template.url"

 idtype="java.lang.String">

<dsp:a href="<%=a6%>">

 <dsp:param param="element.repositoryId" name="itemId"/>

 <dsp:param value="pop" name="navAction"/>

 <dsp:param bean="CatalogNavHistory.navCount" name="navCount"/>

 <dsp:valueof param="element.displayName"/>

 </dsp:a></dsp:getvalueof>

 </dsp:oparam>

</dsp:droplet>

OrderLookup

Class Name atg.commerce.order.OrderLookup

Component(s) /atg/commerce/order/AdminOrderLookup

/atg/commerce/order/OrderLookup

(ATG Consumer Commerce only)

The OrderLookup servlet bean retrieves one or more Order objects, depending on the supplied input
parameters. It enables you to retrieve a single order, all orders placed by a particular user, or all orders
placed by a particular user that are in a specific state. For more information on the OrderLookup servlet
bean, see the Implementing Order Retrieval chapter.

OrderLookup has a security feature that allows the current user to view only her own orders. By default,
this feature is enabled for /atg/commerce/order/OrderLookup. To disable the feature, set the
enableSecurity property to false.

Input Parameters

orderId (Either this or userId is required.)
The ID of the order to retrieve.

userId (Either this or orderId is required.)
The ID of the user profile whose orders will be retrieved.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 7 8

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
state
The desired state of the orders to retrieve.

This parameter can be used in conjunction with userId. You can specify one of the following:

 any one of the states defined in atg.commerce.states.OrderStates

 open

 closed

If you specify “open,” then all orders whose states are specified in the openStates property of the
OrderLookup component are returned; by default, this list of states is set to the following:

submitted
processing
pending_merchant_action
pending_customer_action

If you specify “closed,” then all orders whose states are specified in the closedStates property of the
OrderLookup component are returned; by default, this list of states is set to the following:

no_pending_action

You can override either list of states by using the optional openStates or closedStates input
parameter.

openStates
A comma-separated list of states that correspond to “open” state.

This parameter can be used in conjunction with the state input parameter when the state input
parameter is set to “open.” Use this optional parameter when you want to override the configured list of
states in the openStates property of the OrderLookup component.

closedStates
A comma-separated list of states that correspond to “closed” state.

This parameter can be used in conjunction with the state input parameter when the state input
parameter is set to “closed.” Use this optional parameter when you want to override the configured list of
states in the closedStates property of the OrderLookup component.

sortBy
A string that specifies an Order property by which to sort the orders.

This parameter can be used in conjunction with userId. When using this parameter, you can specify the
name of any Order Repository property (that is, the name of any property defined in
orderrepository.xml), such as id, state, or submittedDate.

sortAscending
True or false. This parameter is used in conjunction with the sortBy input parameter. If set to true, the
Order objects in the resulting array are sorted in ascending order by the property specified in the sortBy
input parameter. The default value is false.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 7 9

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
numOrders
The number of orders to return for the given query.

startIndex
The index of the first order in the result set. This parameter is useful for cycling through a large number of
orders.

queryTotal
Indicates whether the number of retrieved orders will be calculated into a total that’s accessible through
the totalCount and total_count output parameters. Setting this property to false prevents the total
count from being generated, regardless of the value specified in the queryTotal property. Omitting this
parameter causes the default value, true, to be used. Use this parameter to ensure that queries to the
database are made only when necessary.

queryTotalOnly
Indicates whether the total number of orders and the orders themselves are produced from the servlet
bean. Setting this parameter to true makes the total number of retrieved orders available through the
totalCount and total_count output parameters. The orders themselves are not retrieved or accessible.
Use this parameter to ensure that queries to the database are made only when necessary.

Omitting this parameter, which is the same as setting it to false, saves a list of order objects to the
output open parameter as well as the total number of orders to the totalCount and total_count
output parameters.

If queryTotal=false (orders, no total) and queryTotalOnly=true (total, no orders), a total is
generated only as specified in the queryTotalOnly parameter.

siteIds

A collection of site IDs used to limit the query to orders associated with the specified sites.

siteScope

If you are using ATG’s multisite feature, you can filter orders by site. Use siteScope if no siteId is
specified, and provide one of the following scopes:

 null or all: Finds orders for all sites

 current: Finds orders for the current site, as determined by the site context

 shareableTypeId: pass in the ID of a shareable type, such as atg.ShoppingCart, to
find orders for all sites in the sharing group for that type.

The default siteScope can be set through a configurable property on the component. The default value
is null.

Output Parameters

result
The array of Order objects. If the orderId input parameter was used, then this parameter contains a
single Order object.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 8 0

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
errorMsg
If an error occurred, this is the detailed error message for the user.

count
The size of the array of Order objects.

totalCount
If the queryTotal property is set to true, this parameter indicates the total number of orders that meet
the criteria for the order lookup.

total_count
Identical to the totalCount output parameter (above).

startRange
The index number that marks the beginning of a range of orders. For example, if 5 orders were returned
from a given OrderLookup query, the startRange is set to 1.

endRange
The index number that marks the end of a range of orders. For example, if 5 orders were returned from a
given OrderLookup query with a startRange of 6, the endRange is set to 10.

nextIndex
The index of the first order in the next set of results. If the startIndex or numOrders input parameter
was null, then this parameter will be null.

previousIndex
The index of the first order in the previous set of results. If the startIndex or numOrders input
parameter was null, then this parameter will be null.

Open Parameters

output
The open parameter rendered if the orders are successfully retrieved.

empty
The open parameter rendered if there are no orders to return.

error
The open parameter rendered if an error occurs.

Example

The following example describes how to use the OrderLookup servlet bean to retrieve all open orders for
the current user and to display their IDs.

<dsp:droplet name="/atg/commerce/order/OrderLookup">

 <dsp:param bean="/atg/userprofiling/Profile.repositoryId" name="userId"/>

 <dsp:param value="open" name="state"/>

 <dsp:oparam name="output">

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 8 1

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
 <dsp:droplet name="/atg/dynamo/droplet/ForEach">

 <dsp:param param="result" name="array"/>

 <dsp:oparam name="outputStart">

 </dsp:oparam>

 <dsp:oparam name="output">

 <dsp:valueof param="element.id">no order number</dsp:valueof>

 </dsp:oparam>

 <dsp:oparam name="outputEnd">

 </dsp:oparam>

 <dsp:oparam name="empty">

 No open orders.

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

 <dsp:oparam name="error">

 ERROR:

 <dsp:valueof param="errorMsg">no error message</dsp:valueof>

 </dsp:oparam>

</dsp:droplet>

PaymentGroupDroplet

Class Name atg.commerce.order.purchase.PaymentGroupDroplet

Component(s) /atg/commerce/order/purchase/PaymentGroupDroplet

The PaymentGroupDroplet servlet bean is used to initialize a user’s PaymentGroups and
CommerceIdentifierPaymentInfo objects for use by the PaymentGroupFormHandler. The
PaymentGroupDroplet servlet bean is instantiated from
atg.commerce.order.purchase.PaymentGroupDroplet. The PaymentGroupDroplet class is
composed of the following containers:

 PaymentGroupMapContainer - a container for the user’s named PaymentGroup
objects.

 CommerceIdentifierPaymentInfoContainer - a container for the
CommerceIdentifierPaymentInfo objects for the CommerceIdentifier objects in
the user’s Order.

For more information on these containers, the PaymentGroupDroplet servlet bean, and the
PaymentGroupFormHandler form handler, refer to the Preparing a Complex Order for Checkout section in
the Configuring Purchase Process Services chapter in the ATG Commerce Programming Guide.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 8 2

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Input Parameters

clear
When this parameter is set to true, PaymentGroupDroplet clears both the user’s
CommerceIdentifierPaymentInfoContainer and PaymentGroupMapContainer.

clearPaymentGroups
When this parameter is set to true, PaymentGroupDroplet clears the user’s
PaymentGroupMapContainer. This should be done at least once per Order if the PaymentGroup objects
are subject to change after placing an Order (most likely because the PaymentGroup objects are from the
ClaimableRepository).

clearPaymentInfos
When this parameter is set to true, PaymentGroupDroplet clears the user’s
CommerceIdentifierPaymentInfoContainer. This should be done at least once per Order to create
fresh CommerceIdentifierPaymentInfo objects that refer to each Order’s unique
CommerceIdentifier objects.

createAllPaymentInfos

When this parameter is set to true, PaymentGroupDroplet creates an OrderPaymentInfo for all
PaymentGroups in the user’s profile. This option supports a different type of user interface than that
which is described in the Creating Potential Payment Groups section. In this UI, the user is presented with
a form that has a list of PaymentGroups. The user provides the amount to be paid by each
PaymentGroup directly in the form, effectively setting the amount property for each OrderPaymentInfo
object. If the user adds additional PaymentGroups during the checkout process, you should call the
PaymentGroupDroplet again to create OrderPaymentInfo objects for the newly added
PaymentGroups.

This option is False by default.

initBasedonOrder

When this parameter is set to true, PaymentGroupDroplet creates a
CommerceIdentifierPaymentInfo object for each PaymentGroup relationship object in the Order.
The types of CommerceIdentifierPaymentInfo objects that are created correspond to the
PaymentGroup relationship types. For example, if a PaymentGroupCommerceItemRelationship exists
in the Order, PaymentGroupDroplet creates a corresponding CommerceItemPaymentInfo object and
adds it to the CommerceIdentifierPaymentInfoContainer. Each
CommerceIdentifierPaymentInfo object is initialized with the PaymentGroup that exists in its
corresponding PaymentGroup relationship object.

This option is provided for the scenario where a customer has already gone part way through the
checkout process and the order already contains some PaymentGroup relationship objects. Set to False
by default.

initItemPayment

When this parameter is set to true, PaymentGroupDroplet creates a CommerceItemPaymentInfo object
for each CommerceItem in the order and adds them to the
CommerceIdentifierPaymentInfoContainer. If a user has a default PaymentGroup in his or her

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 8 3

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
profile, the CommerceItemPaymentInfo object is initialized with that PaymentGroup. Set to False by
default.

Note: A CommerceItemPaymentInfo object is a CommerceIdentifierPaymentInfo object whose
CommerceIdentifier is a CommerceItem; it is used for CommerceItem payment information.

initOrderPayment

When this parameter is set to true, PaymentGroupDroplet creates an OrderPaymentInfo object and
adds it to the CommerceIdentifierPaymentInfoContainer. If a user has a default PaymentGroup in
his or her profile, the OrderPaymentInfo object is initialized with that PaymentGroup. Set to True by
default.

Note: An OrderPaymentInfo object is a CommerceIdentifierPaymentInfo object whose
CommerceIdentifier is an Order; it is used for Order payment information.

initPaymentGroups
When this parameter is set to true, the PaymentGroup types supplied in the paymentGroupTypes input
parameter will be initialized.

initShippingPayment

When this parameter is set to true, PaymentGroupDroplet creates a ShippingGroupPaymentInfo
object for each ShippingGroup in the order and adds them to the
CommerceIdentifierPaymentInfoContainer. If a user has a default PaymentGroup in his or her
profile, the ShippingGroupPaymentInfo object is initialized with that PaymentGroup. Set to False by
default.

Note: A ShippingGroupPaymentInfo object is a CommerceIdentifierPaymentInfo object whose
CommerceIdentifier is a ShippingGroup; it is used for ShippingGroup payment information.

initTaxPayment

When this parameter is set to true, PaymentGroupDroplet creates a TaxPaymentInfo object and adds it
to the CommerceIdentifierPaymentInfoContainer.

Note: A TaxPaymentInfo object is a CommerceIdentifierPaymentInfo object whose
CommerceIdentifier is an Order; it is used for tax payment information.

order
The user’s order. You can use this parameter to override the default setting for
PaymentGroupDroplet.order.

paymentGroupTypes
A comma-separated list of PaymentGroup types, such as creditCard, storeCredit,
giftCertificate, that is used to determine which PaymentGroupInitializer components are
executed.

The PaymentGroupInitializer components are responsible for creating and initializing the
appropriate PaymentGroup objects and adding them to the PaymentGroupMapContainer. Each

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 8 4

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
possible PaymentGroup type is configured to reference a PaymentGroupInitializer component in the
PaymentGroupInitializer ServiceMap. The keys into the map are the Strings supplied in this
paymentGroupTypes input parameter; the values are the underlying PaymentGroupInitializer
components that do the initialization work for that PaymentGroup type.

By default, the PaymentGroupDroplet servlet bean is configured with the following
PaymentGroupInitializer components:

ServiceMap of paymentGroupTypes to PaymentGroupInitializer Nucleus components

paymentGroupInitializers=\

giftCertificate=/atg/commerce/order/purchase/GiftCertificateInitializer,\

storeCredit=/atg/commerce/order/purchase/StoreCreditInitializer,\

creditCard=/atg/commerce/order/purchase/CreditCardInitializer

Output Parameters

paymentInfo
The Map referenced by the CommerceIdentifierPaymentInfoContainer.

order
The Order object that represents the user’s order.

paymentGroups
The Map referenced by the PaymentGroupMapContainer.

Open Parameters

output
The open parameter rendered always.

Example

This example creates CreditCard, StoreCredit, and GiftCertificate PaymentGroup objects based
on their availability for the current user. Additionally, it creates CommerceItemPaymentInfo objects,
ShippingGroupPaymentInfo objects, and a TaxPaymentInfo object. The example enables the user to
pay for CommerceIdentifiers at the line item level with any of their available PaymentGroup objects.

<dsp:droplet name="PaymentGroupDroplet">

 <dsp:param value="true" name="clear"/>

 <dsp:param value="giftCertificates, storeCredit, creditCard"

 name="paymentGroupTypes"/>

 <dsp:param value="true" name="initPaymentGroups"/>

 <dsp:param value="true" name="initItemPayment"/>

 <dsp:param value="true" name="initTaxPayment"/>

 <dsp:param value="true" name="initShippingPayment"/>

 <dsp:oparam name="output">Manipulation of objects here…

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 8 5

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
 </dsp:output>

</dsp:droplet>

PossibleValues

Class Name atg.repository.servlet.PossibleValues

Component(s) /atg/commerce/catalog/RepositoryValues

The RepositoryValues servlet bean queries a repository and returns an array of possible values for a
given repository item type.

The RepositoryValues servlet bean is instantiated from class
atg.repository.servlet.PossibleValues. A PossibleValues servlet bean, instantiated from the
same class, is included with the ATG Adaptive Scenario Engine . For more information about its various
parameters and a JSP example, see Appendix B: ATG Servlet Beans in the ATG Page Developer’s Guide.

PriceDroplet

Class Name atg.commerce.pricing.priceLists.PriceDroplet

Component(s) /atg/commerce/pricing/priceLists/PriceDroplet

(ATG Business Commerce only)

The PriceDroplet servlet bean returns a price for a given product or SKU. PriceDroplet should not be
confused with PriceItemDroplet, which uses the PricingEngine to actually calculate the price for a
single item.

Input Parameters

product (Either this or sku must be used)
The product for which a price is desired.

sku (Either this or product must be used)
The SKU for which a price is desired.

parentSku
If the SKU to be priced is an option in a configurable SKU, this is the base sku item within the context of
which the configurable option should be priced.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 8 6

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
priceList
The priceList from which to retrieve the price.

Output Parameters

price
The price repository item.

error
The error that occurred when retrieving the price.

Open Parameters

output
Rendered if the price for the product or SKU is retrieved successfully.

empty
Rendered if there is no price for the given product or SKU. If you are using combined price lists and SKU-
based pricing, you can use this parameter to render the SKU-based price if there is no price list price for
the item (see the Using Price Lists in Combination with SKU-Based Pricing section of the ATG Commerce
Programming Guide for information on how to configure this feature).

Example

The following example illustrates the JSP code for the PriceDroplet servlet bean:

<dsp:droplet name="/atg/commerce/pricing/priceLists/PriceDroplet">

 <dsp:param name="sku" value="sku" />

 <dsp:param name="product" value="product" />

 <dsp:oparam name="output">

 <dsp:droplet name="/atg/dynamo/droplet/Switch">

 <dsp:param name="value" param="price.pricingScheme" />

 <dsp:oparam name="listPrice">

 <dsp:valueof param="price.listPrice" converter="currency">no

 price</dsp:valueof>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

</dsp:droplet>

PriceEachItemDroplet

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 8 7

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Class Name atg.commerce.pricing.PriceEachItemDroplet

Component(s) /atg/commerce/pricing/PriceEachItem

The PriceEachItem servlet bean is to price dynamically a collection of items by taking promotions into
account. If you need to show only static prices, you can retrieve the list or sale prices directly from the SKU
object.

The PriceEachItem servlet bean is instantiated from
atg.commerce.pricing.PriceEachItemDroplet, which extends
atg.commerce.pricing.ItemPricingDroplet.

For information on a servlet bean that can be used to price dynamically a collection of items, refer to
PriceItemDroplet.

Input Parameters

items (Required)
Either a collection of RepositoryItems that represent the items to be priced, or a collection of
CommerceItems that can be priced directly. If the supplied items are RepositoryItems, then a new
collection of CommerceItems is created.

pricingModels
The collection of pricing models (promotions) used to price the items. If this value is not supplied, then by
default a collection of pricing models from the customer’s PricingModelHolder component is used.
This component is resolved through the userPricingModelsPath property.

locale
The locale in which the pricing should take place.

profile
The user for whom pricing is performed. If this value is not supplied, then the profile is resolved through
the profilePath property.

product
The object that represents the product definition of the items to price. Usually, the items that are priced
are SKUs. In that case, this is the product that encompasses all of the SKUs.

elementName
The name to use as the parameter set within the output open parameter.

Output Parameters

element
The collection of priced CommerceItems. This parameter name can be changed by setting the
elementName input parameter.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 8 8

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Open Parameters

output
The open parameter rendered if the CommerceItems have been priced successfully.

Example

In the following example, the promotions, locale, and profile are extracted from the request, since they
are not supplied as parameters.

<dsp:droplet name="/atg/commerce/pricing/PriceEachItem">

 <dsp:param param="product.childSKUs" name="items"/>

 <!-- the product param is already defined in this scope so we do not

 need to set it -->

 <dsp:oparam name="output">

 <!-- Now iterate over each of the CommerceItems to display the prices -->

 <dsp:droplet name="/atg/dynamo/droplet/ForEach">

 <dsp:param param="element" name="array"/>

 <dsp:param value="pricedItem" name="elementName"/>

 <dsp:oparam name="output">

 <dsp:valueof param="pricedItem.auxiliaryData.catalogRef.displayName"/> -

 <!-- Toggle a different display depending if the item is on sale or not -->

 <dsp:droplet name="Switch">

 <dsp:param param="pricedItem.priceInfo.onSale" name="value"/>

 <dsp:oparam name="false">

 <dsp:valueof param="pricedItem.priceInfo.amount" converter="currency">

 no price</dsp:valueof>

 </dsp:oparam>

 <dsp:oparam name="true">

 List price for <dsp:valueof param="pricedItem.priceInfo.listPrice"

 converter="currency">no price

 </dsp:valueof>

 on sale for <dsp:valueof param="pricedItem.priceInfo.salePrice"

 converter="currency"/>!

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

</dsp:droplet>

PriceItemDroplet

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 8 9

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Class Name atg.commerce.pricing.PriceItemDroplet

Component(s) /atg/commerce/pricing/PriceItem

The PriceItem servlet bean is used to dynamically price a single item by taking promotions into account.
Note that it does not apply order-dependent promotions, but only those that apply at the item level. If
you need to show only a static price, you can retrieve the list or sale price directly from the SKU object.

The PriceItem servlet bean is instantiated from atg.commerce.pricing.PriceItemDroplet, which
extends atg.commerce.pricing.ItemPricingDroplet.

For information on a servlet bean that can be used to price dynamically a collection of items, refer to
PriceEachItemDroplet.

Input Parameters

item (Required)
Either a RepositoryItem that represents the item to be priced, or a CommerceItem that can be priced
directly. If the supplied item is a RepositoryItem, then a new CommerceItem is created for pricing.

pricingModels
The collection of pricing models (promotions) used to price the items. If this value is not supplied, then by
default a collection of pricing models from the user’s PricingModelHolder component is used. This
component is resolved through the userPricingModelsPath property.

locale
The locale in which the pricing should take place.

profile
The user for whom pricing is performed. If this value is not supplied, then the profile is resolved through
the property profilePath.

product
The object that represents the product definition of the item to price. Typically, items that are priced are
SKUs. In that case, this is the product of the given SKU.

elementName
The name to use as the parameter set within the output open parameter.

quantity
The Long quantity of the input product that should be priced. This parameter is used when constructing a
CommerceItem from the supplied information.

Output Parameters

element
The priced CommerceItem. This parameter name can be changed by setting the elementName input
parameter.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 9 0

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Open Parameters

output
The open parameter rendered if the CommerceItem has been priced successfully.

Example

In the following example, the promotions, locale and profile are extracted from the request because they
are not supplied as parameters.

<dsp:droplet name="/atg/commerce/pricing/PriceItem">

<dsp:param param="sku" name="item"/>

<dsp:param param="product" name="product"/>

<dsp:param value="pricedItem" name="elementName"/>

<dsp:oparam name="output">

 <dsp:valueof param="pricedItem.priceInfo.amount" converter="currency">

 no price</dsp:valueof>

</dsp:oparam>

</dsp:droplet>

PriceRangeDroplet

Class Name atg.commerce.pricing.PriceRangeDroplet

Component(s) /atg/commerce/pricing/PriceRangeDroplet

When given a product, this droplet determines the highest and lowest price for the range of SKUs
associated with the product.

Input Parameters

productId (required)
The id of product repository item that needs to be priced

pricelist (optional)
The price list to be used for pricing. If it is not set, the the profile’s assigned price list will be used.

salePriceList (optional)
The sale price list to be used for pricing. If it is not set, the the profile’s assigned sale price list will be used.

Output Parameters

lowestPrice
Double representing the lowest price found.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 9 1

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
highestPrice
Double representing the highest price found.

Open Paramaters

output
 - always serviced

Example

The example here shows the PriceRangeDroplet’s use.

<dsp:droplet name="/atg/commerce/custsvc/pricing/PriceRangeDroplet">

 <dsp:param name="productId" value="productId">

 <dsp:param name="priceList" bean="priceList">

 <dsp:oparam name="output">

 <dsp:valueof param="lowestPrice">no price no price

ProductListContains

Class Name atg.commerce.catalog.comparison.ProductListContains

Component(s) /atg/commerce/catalog/comparison/ProductListContains

When given a category, product, and SKU, the ProductListContains servlet bean queries whether a
product comparison list includes the given product.

Input Parameters

productList (Required)
The ProductComparisonList object to examine.

productID (Required)
The repository ID of the product to look for in productList.

categoryID
The repository ID of the category to look for in productList.

If you don’t specify a category ID, then ProductListContains looks for a list entry whose category
property matches either the given product’s default category or null if there is no default category for the
given product.

skuID
The repository ID of the SKU to look for in productList.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 9 2

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
If you don’t specify a SKU, then ProductListContains looks for a list entry whose sku property matches
either the given product’s first child SKU or null if there are no SKUs for the given product.

repositoryKey
The key to pass to CatalogTools to select a product catalog repository in which to look for the item. The
key-to-catalog mapping is defined in CatalogTools. If this parameter is unset, the default product
catalog repository is used.

This optional parameter is useful for localization, which often requires the use of alternate product
catalogs for different locales.

Output Parameters

None

Open Parameters

true
Rendered if the product comparison list contains the specific product, category, and SKU.

false
Rendered if the product comparison list doesn’t contain the specified product, category, and SKU.

Example

This JSP example shows how to add or remove a single product from a product comparison list. The
example assumes that the ProductListContains servlet bean is embedded in a product display page
using the following:

<dsp:include page="example.jsp"><dsp:param name="product"

 value="current product"/></dsp:include>

where current product is an expression that provides access to the product displayed on the page.

The given product is passed into the servlet bean in the productId input parameter. The
ProductListContains servlet bean then checks whether it is stored in the product comparison list in
ProductList.

If the product is in the product comparison list, then the servlet bean renders the true open parameter
on the product display page. The user can then click the “Remove from comparison list” submit button to
remove the product from the list. If the product isn’t in the product comparison list, then the servlet bean
renders the false open parameter on the product display page. The user can then click the “Add to
comparison list” submit button to add the product to the list.

<dsp:importbean bean="/atg/commerce/catalog/comparison/ProductList"/>

<dsp:importbean bean="/atg/commerce/catalog/comparison/ProductListContains"/>

<dsp:importbean bean="/atg/commerce/catalog/comparison/ProductListHandler"/>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 9 3

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
<dsp:form action="product.jsp" method="POST">

<dsp:droplet name="ProductListContains">

 <dsp:param bean="ProductList" name="productList"/>

 <dsp:param param="product.repositoryId" name="productID"/>

 <dsp:oparam name="true">

 <dsp:input bean="ProductListHandler.productID" paramvalue="productID"

 type="hidden"/>

 <dsp:input bean="ProductListHandler.removeProduct" value="Remove from comparison

 list" type="submit"/>

 </dsp:oparam>

 <dsp:oparam name="false">

 <dsp:input bean="ProductListHandler.productID" paramvalue="productID"

 type="hidden"/>

 <dsp:input bean="ProductListHandler.addProduct" value="Add to

 comparison list" type="submit"/>

 </dsp:oparam>

</dsp:droplet>

</dsp:form>

PromotionDroplet

Class Name atg.commerce.promotion.PromotionDroplet

Component(s) /atg/commerce/promotion/PromotionDroplet

The PromotionDroplet servlet bean associates a promotion with a user profile. The promotion is added
to the list of promotions in the activePromotions property of the user profile.

Input Parameters

promotion (Required)
The promotion to be associated with the profile. The value of this parameter must be of type
RepositoryItem.

profile
The user profile associated with the promotion. If this parameter is not supplied or is not an instance of
Profile, then it is resolved from Nucleus.

Output Parameters

error
An exception that occurred while associating the promotion the user profile.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 9 4

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Open Parameters

error
This parameter is rendered if an error occurs.

Example

<dsp:droplet name="/atg/commerce/promotion/PromotionDroplet">

 <dsp:param param="someIncomingPromotion" name="promotion"/>

</dsp:droplet>

ReanimateAbandonedOrderDroplet

Class Name atg.commerce.order.abandoned.ReanimateAbandonedOrd

erDroplet

Component(s) /atg/commerce/order/abandoned/ReanimateAbandonedOr

derDroplet

(Abandoned Order Services module only)

The ReanimateAbandonedOrderDroplet servlet bean reanimates an abandoned or lost order. More
specifically, it does the following:

1. Removes the order from the list of abandoned orders in the user’s abandonedOrders
profile property if the order was abandoned and not lost.

2. Modifies the order’s abandonmentInfo item as follows:

 Sets the state property to REANIMATED.

 Sets the reanimationDate property to the current date and time.

3. Fires an AbandonedOrderReanimated message if the
AbandonedOrderTools.sendOrderReanimatedMessage property is set to true.

Note that if the given order is not abandoned or lost, the action does nothing.

See the Using Abandoned Order Services chapter in the ATG Commerce Programming Guide for detailed
information on the Abandoned Order Services module.

Input Parameters

orderId (Required)
The ID of the current order.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 9 5

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Output Parameters

None.

Open Parameters

output
This parameter is rendered when an order is reanimated.

error
This parameter is rendered if an error occurs.

Example

<dsp:droplet name="ReanimateAbandonedOrderDroplet">

 <dsp:param name="orderId"

 bean="/atg/commerce/ShoppingCart.current.id"/>…

</dsp:droplet>

RemoveBusinessProcessStage

Class Name atg.markers.bp.RemoveBusinessProcessStage

Component /atg/commerce/bp/droplet/RemoveShoppingProcessStageDroplet

This servlet bean removes existing shopping process stage markers that match the stage specified. It is an
instance of RemoveBusinessProcessStage with the businessProcessName property set to
ShoppingProcess.

Input Parameters

businessProcessName
The name of the business process. If not specified, then we use the value of the servlet bean’s
defaultBusinessProcessName property, which is ShoppingProcess by default.

businessProcessStage (Required)
The stage within the business process. If you use the value !_anyvalue_!, then all business process
stage markers will be removed.

Output Parameters

errorMsg
The error message describing a failure.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 9 6

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
markerCount
The number of stage reached markers removed

Open Parameters

output
This parameter is rendered on successful completion

error
This parameter is rendered on error.

Example

This example removes a ShippingPriceViewed stage:

<dsp:droplet name="RemoveShoppingProcessStageDroplet">

 <dsp:param name="businessProcessStage" value="ShippingPriceViewed"/>

</dsp:droplet>

This example removes all shopping process stage markers that are found:

<dsp:droplet name="RemoveShoppingProcessStageDroplet">

 <dsp:param name="businessProcessStage" value="!_anyvalue_!"/>

</dsp:droplet>

RepriceOrder

Class Name atg.commerce.order.purchase.RepriceOrder

Component(s) /atg/commerce/order/purchase/RepriceOrderDroplet

The RepriceOrderDroplet servlet bean is an instance of
atg.commerce.order.purchase.RepriceOrder, which extends
atg.service.pipeline.servlet.PipelineChainInvocation. The RepriceOrder class provides
the objects that are needed to execute a repricing pipeline chain as convenient properties. Typically,
execution of a repricing pipeline chain requires the Order, the Profile, the OrderManager, and the
user’s PricingModelHolder. While the PipelineChainInvocation class is flexible enough to handle
these requirements (and enable you to configure the properties as required in a Map), RepriceOrder is
conveniently configured to reference these objects. This means the page developer doesn’t need to
supply them as input parameters every time RepriceOrderDroplet is invoked.

By default, RepriceOrderDroplet is configured to invoke the repriceOrder pipeline chain to reprice
an order. As such, it provides a mechanism for updating the price of an order every time a customer

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 9 7

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
accesses the shopping cart page. This is useful if your sites enable customers to access their shopping
carts through non-form actions, such as standard hyperlinks. Because of dynamic pricing, customers
could potentially view inaccurate prices in their shopping carts when accessing the shopping cart
through a hyperlink.

For more information on repricing an order, refer to the Repricing Orders section and the Checking Out an
Order section in the Configuring Purchase Process Services chapter in the ATG Commerce Programming
Guide. Also refer to the Repricing Shopping Carts section in the Implementing Shopping Carts chapter. For
more information on the repriceOrder pipeline chain, refer to the Commerce Processor Chains section of
the ATG Commerce Programming Guide.

Input Parameters

pricingOp (Required)
The pricing operation to be executed. Acceptable pricing operations are defined in the
atg.commerce.pricing.PricingConstants interface and are listed in the following table.

Pricing Operation Pricing Constant

ORDER_TOTAL PricingConstants.OP_REPRICE_ORDER_TOTAL

ORDER_SUBTOTAL PricingConstants.OP_REPRICE_ORDER_SUBTOTAL

ORDER_SUBTOTAL_SHIPPING PricingConstants.OP_REPRICE_ORDER_SUBTOTAL_SHIPPING

ORDER_SUBTOTAL_TAX PricingConstants.OP_REPRICE_ORDER_SUBTOTAL_TAX

ITEMS PricingConstants.OP_REPRICE_ITEMS

SHIPPING PricingConstants.OP_REPRICE_SHIPPING

ORDER PricingConstants.OP_REPRICE_ORDER

TAX PricingConstants.OP_REPRICE_TAX

NO_REPRICE PricingConstants.OP_NO_REPRICE

priceList
The ID of the pricelist to use. If you don’t specify this parameter, but you use pricelists to determine the
order price, the pricelist specified for the active user is used. This parameter lets you provide an alternate
pricelist.

chainId
The ID of the pipeline chain to execute. If this parameter is not set, then the servlet bean looks for a
configured pipeline chain ID in the defaultChainId property. By default,
RepriceOrderDroplet.defaultChainId is set to repriceOrder.

paramObject
A parameter Object used as an argument to the runProcess method of the PipelineManager during
pipeline chain execution. If this parameter is not set, then the servlet bean looks for a configured value in

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 9 8

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
the extraParametersMap property. It uses the configured value to construct a HashMap to use as an
argument to the PipelineManager during pipeline chain execution. extraParametersMap represents a
mapping of the new Hash Map’s keys to the request parameters that are bound to the new Hash Map’s
values. By default, RepriceOrderDroplet.extraParametersMap is empty.

pipelineManager
The PipelineManager instance to use for pipeline chain execution. If this parameter is not set, then the
servlet bean looks for a configured PipelineManager in the defaultPipelineManager property. By
default, RepriceOrderDroplet.defaultPipelineManager is set to
/atg/commerce/PipelineManager.

Output Parameters

exception
Any exception that occurred during the repricing process.

pipelineResult
The PipelineResult instance returned by the PipelineManager after a successful pipeline chain
execution.

Open Parameters

success
The parameter rendered after successful execution of the pipeline chain.

successWithErrors
This parameter is rendered after a successful pipeline chain execution that contains error messages in the
PipelineResult object.

failure
The parameter rendered after an unsuccessful attempt to execute the pipeline chain.

Example

<dsp:droplet name="RepriceOrderDroplet">

 <dsp:param value="ORDER_SUBTOTAL" name="pricingOp"/>

</dsp:droplet>

SetLastUpdatedDroplet

Class Name atg.commerce.order.abandoned.SetLastUpdatedDroplet

Component(s) /atg/commerce/order/abandoned/SetLastUpdatedDroplet

(Abandoned Order Services module only)

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

2 9 9

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
The SetLastUpdatedDroplet servlet bean checks whether the given order has an abandonmentInfo
item and, if it does not, creates one and associates it with the order. It then updates the
orderLastUpdated property of the order’s abandonmentInfo item with the current date and time.

See the Using Abandoned Order Services chapter in the ATG Commerce Programming Guide for detailed
information on the Abandoned Order Services module.

Input Parameters

orderId (Required)
The ID of the current order.

Output Parameters

None.

Open Parameters

output
This parameter is rendered when the order has an abandonmentInfo item or one was created for the
order by this servlet bean.

error
This parameter is rendered if an error occurs.

Example

<dsp:droplet name="SetLastUpdatedDroplet">

 <dsp:param name="orderId"

 bean="/atg/commerce/ShoppingCart.current.id"/>

</dsp:droplet>

ShipItemRelPrice

Class Name atg.commerce.pricing.ShipItemRelPriceDroplet

Component(s) /atg/commerce/pricing/ShipItemRelPrice

(ATG Business Commerce only)

The ShipItemRelPrice servlet bean returns a price for a
ShippingGroupCommerceItemRelationship. It looks at the range of the
ShippingGroupCommerceItemRelationship and returns the sum of the amounts of the
DetailedItemPriceInfo objects that apply to the range.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 0 0

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Refer to the Working With Purchase Process Objects chapter in the ATG Commerce Programming Guide for
more information about ShippingGroupCommerceItemRelationship and Range objects. Refer to the
Using and Extending Pricing Services chapter of the ATG Commerce Programming Guide for more
information about the DetailedItemPriceInfo price holding class.

Input Parameters

shipItemRel (Required)
The ShippingGroupCommerceItemRelationship for which you want a price.

propertyName
The property of the individual DetailedItemPriceInfo objects used to calculate the price of the
ShippingGroupCommerceItemRelationship. The default property is amount.

Output Parameters

price
The price of the ShippingGroupCommerceItemRelationship.

error
Any exception that may have occurred while processing the price of the
ShippingGroupCommerceItemRelationship.

Open Parameters

output
The open parameter rendered if the price is processed successfully.

error
The open parameter rendered if an error occurs.

Example

<dsp:droplet name="/atg/commerce/pricing/ShipItemRelPrice">

<dsp:param param="shipItemRel" name="shipItemRel"/>

<dsp:oparam name="output">Price = <dsp:valueof param="price"

 converter="currency">no price</dsp:valueof>

</dsp:oparam>

</dsp:droplet>

ShippableGroupsDroplet

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 0 1

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Class Name atg.commerce.fulfillment.ShippableGroupsDroplet

Component(s) /atg/commerce/fulfillment/droplet/ShippableGroupsDroplet

The ShippableGroupsDroplet servlet bean displays all orders with “shippable” shipping groups, that is,
all orders with shipping groups in a PENDING_SHIPMENT state.

Input Parameters

None.

Output Parameters

orders
The array of order IDs for the orders that contain one or more shippable shipping groups.

shippingGroups
The array of shipping group IDs for the shippable shipping groups.

count
The number of shippable shipping groups.

error
Any exception that may have occurred while retrieving the shippable groups.

Open Parameters

shipSchedule
Renders information related to the HardgoodShipper scheduled service, including the current time, the
time of the last run, and the schedule.

output
The open parameter rendered if there are orders with shippable shipping groups.

empty
The open parameter rendered if there are no orders with shippable shipping groups.

Example

<dsp:droplet name="/atg/commerce/fulfillment/droplet/ShippableGroupsDroplet">

 <dsp:oparam name="shipSchedule">

 <table border="1">

 <tr>

 <td colspan=2>Shipper</td>

 </tr>

 <tr>

 <td>Current Time</td><td><dsp:valueof

 param="currentTime">NA</dsp:valueof></td>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 0 2

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
 </tr>

 <tr>

 <td>Last Run</td><td><dsp:valueof param="lastRun">NA</dsp:valueof></td>

 </tr>

 <tr>

 <td>Schedule</td><td><dsp:valueof param="schedule">NA</dsp:valueof></td>

 </tr>

 </table>

 </dsp:oparam>

 <dsp:oparam name="output">

 <table border="1">

 <tr>

 <td>Order ID</td><td>Shipping Group Id</td>

 </tr>

 <dsp:droplet name="/atg/dynamo/droplet/For">

 <dsp:param param="count" name="howMany"/>

 <dsp:oparam name="output">

 <tr>

 <td><dsp:valueof param="orders[param:index]">

 no orderId</dsp:valueof></td>

 <td><dsp:valueof param="shippingGroups[param:index]">no

 shippingGroupId</dsp:valueof></td>

 </tr>

 </dsp:oparam>

 </dsp:droplet>

 </table>

 </dsp:oparam>

 <dsp:oparam name="empty">

 <table border="1">

 <tr>

 <td>Order ID</td><td>Shipping Group Id</td>

 </tr>

 <tr>

 <td colspan=2>There are no shippable groups.</td>

 </tr>

 </table>

 </dsp:oparam>

</dsp:droplet>

ShippingDroplet

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 0 3

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Class Name atg.commerce.fulfillment.ShippingDroplet

Component(s) /atg/commerce/fulfillment/droplet/ShippingDroplet

The ShippingDroplet servlet bean informs the fulfillment system when a given shipping group has
shipped.

Input Parameters

orderId (Required)
The ID of the order that contains the shipped shipping group.

shippingGroupId (Required)
The ID of the shipping group that has shipped.

Output Parameters

status
This parameter is set to one of two values: ShipCallSucceeded or ShipCallFailed.

Open Parameters

output
This open parameter is rendered if the fulfillment system is informed when a given shipping group has
shipped.

Example

<dsp:droplet name="ShippingDroplet">

 <dsp:param param="orderId" name="orderId"/>

 <dsp:param param="shippingGroupId" name="shippingGroupId"/>

 <dsp:oparam name="output">

 <dsp:valueof param="status">no status</dsp:valueof>

 </dsp:oparam>

</dsp:droplet>

ShippingGroupDroplet

Class Name atg.commerce.order.purchase.ShippingGroupDroplet

Component(s) /atg/commerce/order/purchase/ShippingGroupDroplet

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 0 4

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
ShippingGroupDroplet is a servlet bean that initializes ShippingGroup objects and
CommerceItemShippingInfo objects for use by the ShippingGroupFormHandler form handler. The
ShippingGroupDroplet class is composed of the following containers:

 ShippingGroupMapContainer – a container for the ShippingGroup objects that
represent the user’s authorized shipping groups.

 CommerceItemShippingInfoContainer – a container for the
CommerceItemShippingInfo objects for the commerce items in the user’s order.

For more information on these containers, the ShippingGroupDroplet servlet bean, and the
ShippingGroupFormHandler form handler, refer to the Preparing a Complex Order for Checkout section
in the Configuring Purchase Process Services chapter in the ATG Commerce Programming Guide.

Input Parameters

clear
When this parameter is set to True, ShippingGroupDroplet clears both the user’s
CommerceItemShippingInfoContainer and ShippingGroupMapContainer.

clearShippingGroups
When this parameter is set to True, ShippingGroupDroplet clears the user’s
ShippingGroupMapContainer.

clearShippingInfos
When this parameter is set to True, ShippingGroupDroplet clears the user’s
CommerceItemShippingInfoContainer. This should be done at least once per Order to create fresh
CommerceItemShippingInfo objects that refer to the unique CommerceItem objects in each Order.

createOneInfoPerUnit
When set to True, ShippingGroupDroplet creates a CommerceItemShippingInfo object for each
individual unit contained in each CommerceItem. For example, a CommerceItem with a quantity of five
will have five CommerceItemShippingInfo objects created for it. If a user has a default ShippingGroup in
his or her profile, each CommerceItemShippingInfo object is initialized with that ShippingGroup. Set to
False by default.

initBasedOnOrder
When set to True, ShippingGroupDroplet creates a CommerceItemShippingInfo object for each
ShippingGroupCommerceItemRelationship object in the Order. The CommerceItemShippingInfo
is initialized with the ShippingGroup that exists in the ShippingCommerceItemRelationship. This
option is provided for the scenario where a customer has already gone part way through the checkout
process and the order already contains some ShippingGroupCommerceItemRelationship objects. Set
to False by default.

initShippingGroups
When this parameter is set to True, the ShippingGroup types supplied in the shippingGroupTypes
input parameter will be initialized.

initShippingInfos
When set to True, ShippingGroupDroplet creates a CommerceItemShippingInfo object for each

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 0 5

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
CommerceItem in the Order. If a user has a default ShippingGroup in his or her profile, the
CommerceItemShippingInfo object is initialized with that ShippingGroup. Set to True by default.

order
This parameter may be used to override the component’s default setting for the user’s order.

shippingGroupTypes
A comma-separated list of ShippingGroup types, such as hardgoodShippingGroup or
electronicShippingGroup, that is used to determine which ShippingGroupInitializer
components are executed.

The ShippingGroupInitializer components are responsible for creating and initializing the
appropriate ShippingGroup objects and adding them to the ShippingGroupMap container. Each
possible ShippingGroup type is configured to reference a ShippingGroupInitializer component in
the ShippingGroupInitializers ServiceMap. The keys into the map are the Strings supplied in this
shippingGroupTypes input parameter; the values are the underlying ShippingGroupInitializer
components that do the initialization work for that ShippingGroup type.

By default, the ShippingGroupDroplet servlet bean is configured with the following
ShippingGroupInitializer components:

ServiceMap of shippingGroupTypes to ShippingGroupInitializer Nucleus components

shippingGroupInitializers=\

hardgoodShippingGroup=/atg/commerce/order/purchase/

 HardgoodShippingGroupInitializer,\

electronicShippingGroup=/atg/commerce/order/purchase/

 ElectronicShippingGroupInitializer

Output Parameters

shippingGroups
The Map referenced by the ShippingGroupMapContainer.

order
The Order object that represents the user’s order.

Open Parameters

output
The open parameter rendered always.

Example

This example creates HardgoodShippingGroup objects based on their availability for the current user.
Additionally, it creates CommerceItemShippingInfo objects, which facilitate the association between
any CommerceItems in the Order and any of the user’s HardgoodShippingGroup objects.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 0 6

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
<dsp:droplet name="ShippingGroupDroplet">

 <dsp:param value="true" name="clear"/>

 <dsp:param value="hardgoodShippingGroup" name="shippingGroupTypes"/>

 <dsp:param value="true" name="initShippingGroups"/>

 <dsp:param value="true" name="initShippingInfos"/>

 <dsp:oparam name="output"> Manipulation of objects here…

 </dsp:output>

</dsp:droplet>

SiteIdForCatalogItem

Class Name atg.droplet.multisite.SiteIdForItemDroplet

Component(s) /atg/commerce/multisite/SiteIdForCatalogItem

Note: This droplet is intended for use with ATG’s multisite feature. See the.ATG Multisite Administration
Guide.

The SiteIdForItemDroplet is described in the ATG Page Developer’s Guide; see that document for
information. The SiteIdForCatalogItem implementation sets the shareableTypeId to
atg.ShoppingCart by default.

UnitPriceDetailDroplet

Class Name atg.commerce.pricing.UnitPriceDetailDroplet

Component(s) /atg/commerce/pricing/UnitPriceDetailDroplet

The UnitPriceDetailDroplet can provide detailed price information for units in a given line item,
along with discount information. This is useful for displaying information such as “3 @ $2.00” or “2 @
$10.00, 1 @ $0.00 (Buy 2 Get 1 Free)”.

Input Parameters

item (Required)
The line item for which you want to display details.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 0 7

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
Output Parameters

UnitPriceBeans
The droplet output is a list of UnitPriceBean objects.

Open Parameters

output
The open parameter is always rendered.

Example

The following example shows a portion of a JSP that uses the UnitPriceDetailDroplet servlet bean to
display detailed information about line items in an order.

<dsp:droplet name="UnitPriceDetailDroplet">

 <dsp:param name="item" param="currentItem"/>

 <dsp:oparam name="output">

 <dsp:getvalueof var="unitPriceBeans" vartype="java.lang.Object"

param="unitPriceBeans"/>

 <c:forEach var="unitPriceBean" items="${unitPriceBeans}">

 <dsp:param name="unitPriceBean" value="${unitPriceBean}"/>

 <dsp:getvalueof var="quantity" vartype="java.lang.Double"

param="unitPriceBean.quantity"/>

 <p class="price">

 <fmt:formatNumber value="${quantity}" type="number"/>

 <fmt:message key="common.atRateOf"/>

 <dsp:getvalueof var="unitPrice" vartype="java.lang.Double"

param="unitPriceBean.unitPrice"/>

 <fmt:formatNumber value="${unitPrice}" type="currency"

currencyCode="${currencyCode}"/>

 </p>

 <dsp:getvalueof var="pricingModels" vartype="java.lang.Object"

param="unitPriceBean.pricingModels"/>

 <c:choose>

 <c:when test="${not empty pricingModels}">

 <c:forEach var="pricingModel" items="${pricingModels}">

 <dsp:param name="pricingModel" value="${pricingModel}"/>

 <p class="note">

 (<dsp:valueof param="pricingModel.description">

 <fmt:message key="common.promotionDescriptionDefault"/>

 </dsp:valueof>)

 </p>

 </c:forEach><%-- End for each promotion used to create the unit

price --%>

 </c:when>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 0 8

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
 <c:otherwise>

 <dsp:getvalueof var="currentItemOnSale"

param="currentItem.priceInfo.onSale"/>

 <c:if test='${currentItemOnSale == "true"}'>

 <p><fmt:message key="cart_detailedItemPrice.salePriceB"/></p>

 </c:if>

 </c:otherwise>

 </c:choose>

 </c:forEach>

 </dsp:oparam>

 </dsp:droplet>

ViewItemEventSender

Class Name atg.userprofiling.ViewItemEventSender

Component(s) /atg/commerce/catalog/CategoryBrowsed
/atg/commerce/catalog/ProductBrowsed

CategoryBrowsed and ProductBrowsed are two servlet beans instantiated from class
atg.userprofiling.ViewItemEventSender. These servlet beans send JMS messages to the
messaging system when a customer views items in the catalog.

Input Parameters

eventobject
The repository item the customer has viewed, which will be sent within the event message. This is either a
product or category repository item, depending on which servlet bean you use (CategoryBrowsed or
ProductBrowsed).

Output Parameters

None.

Open Parameters

error
The open parameter rendered if an error occurs while sending the message to the messaging system.

Example

The following example shows a portion of a JSP that uses the ProductBrowsed servlet bean to send a
message when a product is viewed. The product’s repository ID is passed to this page (via the ItemId
parameter) from the page that links to it.

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 0 9

A p p e n d i x : A T G C o m m e r c e S e r v l e t B e a n s

μ
<dsp:droplet name="/atg/commerce/catalog/ProductLookup">

<dsp:param param="ItemId" name="id"/>

<dsp:oparam name="output">

 <dsp:droplet name="/atg/commerce/catalog/ProductBrowsed">

 <dsp:param param="element" name="eventobject"/>

 </dsp:droplet>

</dsp:oparam>

</dsp:droplet>

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 1 0

I n d e x

μ
Index

A
Abandoned Order Converted event element, 107
Abandoned Order Lost event element, 107
Abandoned Order Reanimated event element, 107
abandoned order services, 99

business user overview, 99
creating abandonment scenarios, 103
orders, abandoned, 100
orders, converted, 100
orders, lost, 100
orders, reanimated, 100
scenario action elements, 107
scenario event elements, 106
testing abandonment scenarios, 105

action elements
Add Item to Order, 95
creating custom elements, 94
described, 94
Fill Related Items to Slot, 95
Give Promotion, 95
Revoke Promotion, 95

Add Item to Order action element, 95
AddBusinessProcessStage servlet bean, 228
adding a new cost center, 70
AddItemToCartServlet, 226
AdminOrderLookup, 277
advanced searches, 123
Approval Complete Event event element, 86
Approval Required Event event element, 86
ApprovalFormHandler, 190, 218
ApprovalRequiredDroplet, 189, 217, 218, 229
ApprovalResolvedDroplet, 218, 229
ApprovedDroplet, 191, 231
assigning a default cost center to a user, 70
assigning price lists to users, 37
ATG Control Center

using to search catalogs, 25
using to view catalogs, 11

AvailableShippingMethods, 166, 233
AvailableShippingMethodsDroplet, 233
AvailableStoreCredits, 235

B
B2BOrderLookup, 183, 208, 218, 236
B2BOrderStates, 207
BuyItemFromGiftlist, 264

C
CartModifierFormHandler, 148, 149
carts. See shopping carts
catalog folders

defined, 16
editing, 20

catalog folderss
creating, 16

catalog items
deleting, 22
duplicating, 21
moving, 21

catalog servlet beans, 221
CatalogItemLookupDroplet, 110, 218, 240
CatalogLookup, 110
CatalogNavHistory, 114
CatalogNavHistoryCollector, 114, 275
CatalogPossibleValues, 243
catalogs

adding a subcatalog, 20
adding to categories, 20
creating, 16
defined, 16
displaying items, 110
editing, 20
hierarchical navigation in, 112
historical navigation, 114
item types, 11
looking up items in, 110
organizational models, 9
searching, 25, 118
viewing as hierarchy, 12
viewing as lists, 15

CatalogSearchFormHandler, 118
configuring, 120

categories
defined, 16
editing, 20

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 1 1

I n d e x

μ
CategoryBrowsed, 308
CategoryLookup, 110, 240, 272
child categories

creating, 17
displaying, 113

child products
displaying, 113

claimable servlet beans, 222
ClosenessQualifierDroplet, 244
collection filtering servlet beans, 222
CollectionFilter, 246
CommerceIdentifierPaymentInfo, 170
comparison lists. See product comparison
ComplexPriceDroplet, 249
condition elements

creating custom elements, 94
described, 93
Item Where, 94
Order Where, 94

Convert Abandoned Order action element, 108
ConvertAbandonedOrderDroplet, 250
cost centers, managing in the ACC, 2
cost centers,managing in the ACC, 69
CostCenterDroplet, 251
CouponDroplet, 254
coupons

adding the coupon to the repository, 67
adding the promotion to the repository, 66
setting up, 66

CreateCreditCardFormHandler, 167
CreateElectronicShippingGroupFormHandler, 155
CreateHardgoodShippingGroupFormHandler, 155
CreateInvoiceRequestFormHandler, 167
cross-selling products, 95
CrossSellProductsSlot scenario template, 97
CurrencyCodeDroplet, 255
customer history, collecting, 115
customer path, rendering, 116

D
discounts. See promotions
DisplaySkuProperties, 256
droplets. See servlet beans

E
elements. See scenario elements
event elements

Approval Complete Event, 86
Approval Required Event, 86
Approval Update Event event element, 87
described, 85
FulfillOrderFragment, 87
Gift Purchased, 87
Inventory Threshold Reached, 87
Invoice Is Created, 88
Invoice Is Removed, 88
Invoice Is Updated, 88
Item Added to Order, 88
Item Quantity Changed in Order, 89

Item Removed from Order, 89
ModifyOrder, 89
ModifyOrderNotification, 89
Order Changes, 89
Order Submitted, 90
Orders Merged, 90
Payment Group Changes, 90
Promotion Revoked, 91, 92
Scenario Added an Item to an Order, 92
Scheduled Order Event, 92
Shipping Group Changes, 92
UpdateInventory, 93
Uses Promotion, 93

event messages, sending when items are viewed, 111
ExcludeItemsInCartFilterDroplet, 257

F
Fill Related Items to Slot action element, 95
folders, creating, 22
ForEachItemInCatalog, 259

page developer example, 111
fulfillment servlet beans, 223
FulfillOrderFragment event element, 87

G
GearConfigFormHandler, 207, 217
gears

Order Approval, 209
Order Status, 201
servlet beans, 223

GetApplicablePromotions, 261
gift list servlet beans, 223
gift lists

filtering, 196
Gift Purchased event element, 87
GiftCertificateAmountAvailable, 263
GiftitemDroplet, 264
GiftitemLookupDroplet, 272
GiftlistDroplet, 265
GiftlistLookupDroplet, 272
GiftShippingGroupDroplet, 266
GiftShippingGroups, 267
GiftShippingGroupsDroplet, 267
Give Promotion action element, 53, 95

H
HasBusinessProcessStage servlet bean, 268
HasFunction, 217
hierarchical searches, 123

I
images

adding, 23
specifying, 24

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 1 2

I n d e x

μ
INCOMPLETE order state, 145
inventory framework servlet beans, 223
Inventory Threshold Reached event element, 87
InventoryDroplet, 269
InventoryLookup, 269
Invoice Is Created event element, 88
Invoice Is Removed event element, 88
Invoice Is Updated event element, 88
IsGiftShippingGroup, 266
IsHardGoods, 271
IsHardGoodsDroplet, 271
Item Added to Order event element, 88
Item Quantity Changed in Order event element, 89
Item Removed from Order event element, 89
Item Where condition element, 94
ItemLookupDroplet, 272
ItemPricingDroplet, 273

K
keyword searches, 121, 125

L
location jumps, tracking, 117
Log Promotion Information action element, 108

M
managing cost centers using the ACC, 2, 69
MediaLookup, 110, 272
ModifyOrder event element, 89
ModifyOrderNotification event element, 89
MostRecentBusinessProcessStage servlet bean, 274
multisite catalog searching, 125

N
NavHistoryCollector, 275

O
Order Abandoned event element, 106
Order Approval gear

components, 217
configuring, 213
implementation, 216
implementation, display modes, 216
implementation, gear modes, 216
setting up, 209
using, 210

order approval process
ApprovalFormHandler, 190
ApprovalRequiredDroplet, 189
ApprovedDroplet, 191
displaying approved and rejected orders, 191
displaying orders requiring approval, 189
implementing, 189
processing approvals and rejections, 190
servlet beans, 221

Order Changes event element, 89
order management servlet beans, 223
Order Status gear

configuring, 204
implementation, 206
implementation, components, 206
implementation, display modes, 206
implementation, gear modes, 206
setting up, 201
using, 202

Order Submitted event element, 90
Order Where condition element, 94
OrderHolder, 145
OrderLookup, 148, 183, 208, 236, 277
orders

abandoned. See abandoned order services
adding items, 149

Orders Merged event element, 90
OrderStates, 207
OrderStatusFormHandler, 208
OrderStatusGear, 208

P
parentCategory property

using in catalogs, 109
Payment Group Changes event element, 90
PaymentGroupDroplet, 167, 281
PaymentGroupFormHandler, 177
PMDL rules

creating with the discount rule editor (business users),
49

examples (business users), 51
using (business users), 49

portlets. See gears
PossibleValues, 285
price lists, managing in the ACC, 31
PriceDroplet, 285
PriceEachItem, 287
PriceEachItemDroplet, 287
PriceItem, 289
PriceItemDroplet, 289
PriceRangeDroplet, 290
pricing servlet beans, 224
product comparison

comparison lists, managing, 137
comparison lists, querying, 136
described, 133
example JSPs, 139
implementing, 133
localization, 137
ProductList, 133
ProductListContains, 136
ProductListHandler, 137
TableInfo, 135, 140

ProductBrowsed, 308
ProductList, 133
ProductListContains, 136, 291

localization, 137

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 1 3

I n d e x

μ
ProductListHandler, 137
ProductLookup, 110, 218, 240, 272
products

creating, 17
cross-selling, 95
defined, 16
editing, 20
up-selling, 95

Promotion Revoked event element, 91, 92
PromotionDroplet, 293
promotions, 261

behavior, 40
coupons, 66
creating (business users), 40
creating scenarios for, 52
delivering via URLs, 68
described, 39
disabling, 65
discount rules, creating, 49
discount rules, examples, 51
media for, 65
properties, 43
servlet beans, 225
types of promotions, 42
withdrawing, 55

PromotionServlet, 68
purchase process servlet beans, 224

R
Reanimate Abandoned Order action element, 107
ReanimateAbandonedOrderDroplet, 294
RelatedItemsOfCart slot, 95
RelatedItemsSlot scenario, 95
RemoveBusinessProcessStage, 295
RemoveItemFromGiftlist, 264
RepositoryValues, 285
RepriceOrder, 296
RepriceOrderDroplet, 182, 296
Revoke Promotion action element, 55, 95
root categories

creating, 16
defined, 16
displaying, 112

S
SaveOrderFormHandler, 183
Scenario Added an Item to an Order event element, 92
scenario elements

action. See action elements
condition. See condition elements
event. See event elements

scenarios
RelatedItemsSlot, 95
using to cross-sell, 95
using to up-sell, 95

Scheduled Order Event event element, 92
search components

catalogs, 119

search criteria, specifying, 121
search results

displaying, 125
processing, 125

search types
advanced, 123
combining, 124
configuring, 121
hierarchical, 123
keyword, 121
text, 122

searches
displaying results, 127
in preview mode on CA, 131
processing, 125
restricting by catalog, 125
restricting by site, 125

SearchFormHandler
using with internationalized catalogs, 132

servlet beans
AddBusinessProcessStageDroplet, 228
AddItemToCartServlet, 226
AdminOrderLookup, 277
ApprovalRequiredDroplet, 189, 229
ApprovalResolvedDroplet, 229
Approved Droplet, 231
ApprovedDroplet, 191
AvailableShippingMethods, 233
AvailableStoreCredits, 235
BuyItemFromGiftlist, 264
CartSharingFilterDroplet, 246
CatalogNavHistoryCollector, 275
CatalogPossibleValues, 243
CategoryBrowsed, 308
CategoryLookup, 240, 272
ClosenessQualifierDroplet, 244
ComplexPriceDroplet, 249
ConvertAbandonedOrderDroplet, 250
CostCenterDroplet, 251
CouponDroplet, 254
CurrencyCodeDroplet, 255
DisplaySkuProperties, 256
ExcludeItemInCartFilterDroplet, 246
ExcludeItemsInCartFilterDroplet, 257
ForEachItemInCatalog, 259
GiftCertificateAmountAvailable, 263
GiftitemLookupDroplet, 272
GiftlistDroplet, 265
GiftlistLookupDroplet, 272
GiftListSiteFilterDroplet, 246
GiftShippingGroups, 267
HasBusinessProcessStageDroplet, 268
InventoryFilterDroplet, 246
InventoryLookup, 269
IsGiftShippingGroup, 266
IsHardGoods, 271
list by functional area, 221
MediaLookup, 272
MostRecentBusinessProcessStageDroplet, 274
OrderLookup, 236, 277
PaymentGroupDroplet, 281
PriceDroplet, 285

A T G C o m m e r c e G u i d e t o S e t t i n g U p a S t o r e

3 1 4

I n d e x

μ
PriceEachItem, 287
PriceItem, 289
PriceRangeDroplet, 290
ProductBrowsed, 308
ProductFilterDroplet, 246
ProductListContains, 291
ProductLookup, 240, 272
PromotionDroplet, 293
ReanimateAbandonedOrderDroplet, 294
RemoveBusinessProcessStageDroplet, 295
RemoveItemFromGiftlist, 264
RepriceOrderDroplet, 296
SetLastUpdatedDroplet, 299
ShipItemRelPrice, 299
ShippableGroupsDroplet, 301
ShippingDroplet, 303
ShippingGroupDroplet, 304
SKULookup, 240, 272
UnitPriceDetailDroplet, 306

Set Order’s Last Updated Date action element, 107
SetLastUpdatedDroplet, 299
ShipItemRelPrice, 299
ShippableGroupsDroplet, 301
Shipping Group Changes event element, 92
ShippingDroplet, 303
ShippingGroupDroplet, 155, 304
ShippingGroupFormHandler, 161
shopping carts

adding items, 149
adding payment information, 167
adding shipping information, 154
creating, 147
cross-selling, 95
handling custom commerce item properties, 154
implementing, 145
managing, 147
overriding the default commerce item type, 153
repricing, 182
retrieving, 147
saving, 183
up-selling, 95

shopping process tracking
adding stages, 228
checking stages, 268, 274
removing stages, 295

ShoppingCart, 145
SKU links, creating, 19
SKULookup, 240, 272
SKUs

creating, 18
creating bundled, 19
creating configurable, 18
defined, 16
editing, 20

SKUtLookup, 110
step pricing, 35
subcatalogs. See catalogs

T
TableInfo, 135, 140
templates

adding, 24
specifying, 24

text searches, 122
tiered pricing, 35

U
UnitPriceDetailDroplet, 306
UpdateInventory event element, 93
up-selling products, 95
Uses Promotion event element, 93

V
version conflict, preventing, 26
viewing existing cost centers, 69
ViewItemEventSender, 308
volume pricing, 35

	Contents
	1 Introduction
	Commerce Overview
	Product Catalog
	Purchasing and Fulfillment Services
	Targeted Promotions
	Commerce Services
	Portal Gears
	Reporting
	Multisite Integration
	Reference Applications

	Finding What You Need

	2 ATG Commerce Catalog Administration
	Organizing Your Product Catalog
	Commerce Catalog Item Types
	Viewing Catalogs
	Viewing Catalogs as a Hierarchy
	Viewing Catalogs as Lists

	Creating Catalog Items
	Creating Catalog Folders
	Creating Catalogs
	Creating Root Categories
	Creating Child Categories
	Creating Products
	Creating SKUs
	Creating Configurable SKUs
	Creating SKU Bundles
	Adding Subcatalogs to Catalogs
	Adding Catalogs to Categories
	Editing Catalog Items
	Moving Items
	Duplicating Items
	Deleting Items

	Adding Templates and Images to the Catalog
	Creating Image and Template Folders
	Adding Images
	Adding Templates
	Associating Images and Templates with Catalog Items

	Searching for Items in the ACC
	Preventing Version Conflict

	3 Inventory and Fulfillment Administration
	ATG Commerce Inventory Administration
	Accessing the Inventory Administration Page
	Viewing the Inventory Display
	Updating the Inventory
	Sending Inventory Update Notifications

	ATG Commerce Fulfillment Administration
	Accessing the Fulfillment Administration Page
	Notifying Fulfillment of Order Shipment
	Reprocessing Shipping Groups
	Printing an Order

	4 Managing Price Lists
	Viewing Existing Price Lists
	Creating a New Price List Folder
	Creating a New Price List
	Changing Prices in an Existing Price List
	Copying Prices Between Price Lists
	Setting Bulk and Tiered Pricing
	Viewing Volume Pricing
	Setting Volume Pricing

	Deleting a Price List
	Assigning Price Lists to Users

	5 Creating and Maintaining Promotions
	How Promotions Work
	Creating Promotions
	Adding a New Promotion
	Creating a Discount Rule
	Specifying the People Who Receive the Promotion

	Creating Closeness Qualifiers
	Updating the Promotion
	Detecting a Closeness Qualifier
	Adding an Item to a Slot When Users Qualifies for a Closeness Qualifier
	Sending an Email When Users Qualify for A Closeness Qualifier
	Removing Closeness Qualifiers From a Slot When They No Longer Apply

	Setting up Upselling Incentives
	Sample Upsell Incentives
	Working with Upsell Actions

	Disabling Promotions
	Displaying Promotion Media
	Setting Up Coupon Promotions
	Two Types of Coupons
	Adding a Coupon

	Delivering Promotions via a URL

	6 Managing Cost Centers
	Viewing Existing Cost Centers
	Adding New Cost Centers
	Assigning a Default Cost Center to a User
	Adding, Modifying, and Deleting Cost Centers in a Profile
	Adding Cost Centers to an Order
	Adding Items to a Cost Center
	Tracking Orders by Cost Center
	Cost Center Classes
	Using the CostCenterFormHandler Framework

	7 Using Commerce Elements in Scenarios
	Using Commerce Event Elements in Scenarios
	Approval Complete Event
	Approval Required Event
	Approval Update Event
	FulfillOrderFragment
	Gift Purchased
	Inventory Threshold Reached
	Invoice Is Created
	Invoice Is Removed
	Invoice Is Updated
	Item Added to Order
	Item Quantity Changed in Order
	Item Removed from Order
	Modify Order
	Modify Order Notification
	Order Changes
	Order Submitted
	Orders Merged
	Payment Group Changes
	Price Changed
	Promotion Closeness Disqualification
	Promotion Closeness Qualification
	Promotion Offered
	Promotion Revoked
	Scenario Added an Item to an Order
	Scheduled Order Event
	Shipping Group Changes
	Update Inventory
	Uses Promotion

	Using Commerce Condition Elements in Scenarios
	Item Where
	Order Where

	Using Commerce Action Elements in Scenarios
	Add Item to Order
	Fill Related Items to Slot
	Give Promotion
	Revoke Promotion

	Using Scenarios to Cross-Sell and Up-Sell Products

	8 Managing Abandoned Orders
	Understanding Order Abandonment
	Responding to Order Abandonment Activity
	Creating Scenarios that Respond to Abandonment Activity
	Testing Scenarios that Respond to Abandonment Activity
	Scenario Event Elements
	Scenario Action Elements

	9 Catalog Navigation and Searching
	Using the parentCategory Property
	Displaying Catalog Items
	Looking Up Items in the Catalog
	ForEachItemInCatalog Servlet Bean
	Sending Messages When Items are Viewed

	Catalog Navigation
	Displaying Root Categories
	Displaying Child Categories and Products
	Historical Navigation

	Catalog Searching
	Overview of Catalog Searching
	Preconfigured Catalog Search Components
	Configuring the Search Form Handler
	Configuring Catalog Search Types
	Combining Catalog Search Types
	Processing Searches
	Displaying Search Results
	Searching Catalogs in Preview Mode
	Using Search Form Handlers with Internationalized Catalogs

	10 Implementing Product Comparison
	Understanding the ProductList Component
	Querying the Product Comparison List
	Managing Product Comparison Lists
	Examples of Product Comparison Pages
	Displaying a Product Comparison Table
	Adding or Removing a Product from a Product Comparison List
	Adding Multiple Products to a Product Comparison List
	Removing Specific Entries from a Product Comparison List
	Using Product Comparison Lists in a Multisite Environment

	11 Implementing Shopping Carts
	Understanding the ShoppingCart Component
	Managing Shopping Carts
	Creating and Retrieving Shopping Carts
	Adding Items to Shopping Carts
	Adding Shipping Information to Shopping Carts
	Adding Payment Information to Shopping Carts
	Repricing Shopping Carts
	Saving Shopping Carts

	12 Implementing an Order Approval Process
	Displaying Orders Requiring Approval
	Processing Approvals and Rejections
	Displaying a History of Approved and Rejected Orders

	13 Filtering Commerce Item Collections
	How Product Collection Filtering Works
	Using ATG Collection Filtering Components
	Using InventoryFilter
	Using ExcludeItemsInCartFilter
	Using ProductFilter
	Using CartSharingFilter

	Filtering Multisite Gift and Wish Lists

	14 Using ATG Commerce Portal Gears
	Order Status Gear
	Setting Up the Order Status Gear
	Using the Order Status Gear
	Configuring the Order Status Gear
	Order Status Gear Implementation

	Order Approval Gear
	Setting Up the Order Approval Gear
	Using the Order Approval Gear
	Configuring the Order Approval Gear
	Order Approval Gear Implementation

	Appendix: ATG Commerce Servlet Beans
	AddItemToCartServlet
	AddBusinessProcessStage
	ApprovalRequiredDroplet
	ApprovedDroplet
	AvailableShippingMethodsDroplet
	AvailableStoreCredits
	B2BOrderLookup
	CatalogItemLookupDroplet
	CatalogPossibleValues
	ClosenessQualifierDroplet
	CollectionFilter
	ComplexPriceDroplet
	ConvertAbandonedOrderDroplet
	CostCenterDroplet
	CouponDroplet
	CurrencyCodeDroplet
	DisplaySkuProperties
	ExcludeItemsInCartFilterDroplet
	ForEachItemInCatalog
	GetApplicablePromotions
	GiftCertificateAmountAvailable
	GiftitemDroplet
	GiftlistDroplet
	GiftShippingGroupDroplet
	GiftShippingGroupsDroplet
	HasBusinessProcessStage
	InventoryDroplet
	IsHardGoodsDroplet
	ItemLookupDroplet
	ItemPricingDroplet
	MostRecentBusinessProcessStage
	NavHistoryCollector
	OrderLookup
	PaymentGroupDroplet
	PossibleValues
	PriceDroplet
	PriceEachItemDroplet
	PriceItemDroplet
	PriceRangeDroplet
	ProductListContains
	PromotionDroplet
	ReanimateAbandonedOrderDroplet
	RemoveBusinessProcessStage
	RepriceOrder
	SetLastUpdatedDroplet
	ShipItemRelPrice
	ShippableGroupsDroplet
	ShippingDroplet
	ShippingGroupDroplet
	SiteIdForCatalogItem
	UnitPriceDetailDroplet
	ViewItemEventSender

	Index

