

Version 10.0.2

Personalization Programming Guide

Oracle ATG
One Main Street
Cambridge, MA 02142
USA

ATG Personalization Programming Guide

Document Version
Doc10.0.2 PERSPROGGUIDEv1 04/15/2011

Copyright
Copyright © 1997, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures
to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/support/contact.html or visit http://www.oracle.com/accessibility/support.html if you are hearing impaired.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

i i i

C o n t e n t s

μ

Contents

Part I: Personalization Module Programming 1

1 Setting Up a Profile Repository 3
Introduction to Profile Repositories 3

Internal and External User Profiles 4
Profiles in a Multisite Environment 5
Profile Repository Administration Interfaces 6

Defining the Profile Repository 7
Defining Profile Sub-Types 7
Profile Repository Caching 9

Standard User Profile Repository Definition 9
Modifying Standard Profile Properties 10
Configuring the Property Manager Component 11
Configuring the Profile Tools Component 11
ACC Sorting Attributes 13
ACC Display Name Attribute 13

Extending the Standard User Profile Repository Definition 14
Adding Properties to a Database Table 14
XML File Combination and the User Profile Repository Definition 14
Moving Properties to a Different Database Table 15
Debugging Repository Definition Files 17

Replacing the Standard User Profile Repository Definition 17
Using a Different Definition File 18
Replacing userProfile.xml 18

Configuring a Profile Repository Component 19
Migrating Profiles for Use with an Internal Profile Repository 20

Profile Migration Manager Properties 21

2 Setting Up an LDAP Profile Repository 25
Creating the LDAP Profile Repository Component 26
Configuring the Personalization Module to use the LDAP Repository 26

LDAP Password Encryption 27
Sample LDAP Profile Repository Definition File 27

3 Setting Up a Composite Profile Repository 29
Introduction to Composite Profile Repositories 30

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

i v

C o n t e n t s

μ
Creating Composite Profile Items 30

Basic Process for Setting Up a Composite Profile Repository 33
Resolving Property Names in a Composite Repository 33

Sample Definition File for a Composite Profile Repository 35
Configuring Your Personalization Module for a Composite Profile Repository 37

Overriding the ProfileAdapterRepository Component 37
Creating a Separate Composite Profile Repository 38
Updating the PropertyManager for a Composite Repository 38
Configuring Targeted E-mail for a Composite Repository 39

Configuring the Scenarios Module to Use a Composite Profile Repository 39
Performing Queries against a Composite Profile Repository 40

4 Working with User Profiles 41
Tracking Users 41

Tracking Guest Users 42
Tracking Registered Users 43
Profile Cookie Configuration 44
Security Status 46
Using Security Status in Content Pages 48

User Profiling Tools 49
/atg/userprofiling/Profile 50
/atg/userprofiling/ProfileRequest 50
/atg/userprofiling/ProfileTools 50
/atg/userprofiling/PropertyManager 51
/atg/userprofiling/ProfileEventTrigger 51
/atg/userprofiling/ProfileUpdateTrigger 51

Profile Form Handlers 53
The ProfileForm Class 54
The ProfileFormHandler Class 57
Ensuring Transactions in Form Handlers 57

Multiple Profile Form Handlers 58
The MultiProfileForm class 58
The MultiProfileAddForm class 58
The MultiProfileUpdateForm class 59

Managing User Logins 59
Using Case Insensitive Login Names 60
Password Hashing 62

Password Management Features 63
Using Password Expiration 63
Using Strong Password Rule Checks 66
Handling Forgotten Passwords 69

Access Control 72
Configuring the Access Control Servlet 72
AccessRightAccessController 73
GroupAccessController 73
RuleAccessController 74
Controlling Anonymous User Access 75

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

v

C o n t e n t s

μ
Configuring Derived Properties that Calculate Time and Date 75

TimeInterval 75
YearMonthDay 77
DaysBeforeAnnualEvent 77

Managing Preview User Swapping 78
PreviewProfileRequestProcessor Component 79
Preventing Profile Swapping in Non-Preview Web Applications 80

5 Working with the Dynamo User Directory 81
User Directory Architecture 82

Creating Organizations and Roles 84
User Directory Security 85

Configuring a User Authority 85
Setting ACC and Object Access Rights through Access Control Lists 85
Using Roles for Access Control 86

User Directory API 91
atg.userdirectory 91
atg.userdirectory.droplet 93
atg.userdirectory.repository 93

Dynamo User Directory Implementation 94
User Directory Repository Definition 94
Standard User Directory Definition File 95
Configuring User Directory Components 100
Caching and the User Directory 103

6 Setting Up an LDAP User Directory 105
Setting Up a Linked Repository 105

Removing Information from an LDAP User Directory 108
Sample XML Files for an LDAP User Directory 108

Configuring LDAP User Directory Components 111
ProfileUserDirectory 112
ProfileUserDirectorySpider 117
LDAPOrganizationItemFinder 117
ProfileItemFinder 119
PropertyManager 120
ProfileUserDirectoryProperties 121
Caching an LDAP User Directory 122

7 Linking SQL and LDAP Repositories 125
Using Implicit Repository Linking 125
Defining the SQL/LDAP Linked Repositories 126
Sample SQL/LDAP Linked Repository Definitions 128
Configuring Personalization Module Components for Linked Repositories 129

PropertyManager Component 129
ProfileItemFinder Component 130

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

v i

C o n t e n t s

μ
8 Creating Rules for Targeting Content 133

Elements of Rule Sets 133
Accept Rules 134
Reject Rules 135
Combining the Accept Rules and Reject Rules 135
Sorting Directives 135
Including Elements from Other Sources 136

Rule Set Structure 136
Rules Tag Syntax 138

<ruleset> Tag 138
<accepts> Tag 138
<rejects> Tag 139
<includes> Tag 139
<rule> Tag 139
Rule Tag Attributes 139
Referring to Profile Attributes in Rules 140
Rule Tag Operations 140
<valueof> Tag 147
valueof Types 147
Using Indexed Property Values 149
Target Nodes Inside Boolean Expressions 149
<sortby> Tag 150
<sortbyvalue> Tag 150
<site> Tag 150
Null Values in Rules 152
Creating a Rule Set for a Profile Group that Includes Roles 153

Including Rule Sets, Rules, and Sorting Directives 155
Examples: src Attribute 155

Complex Rules Example 156

9 Setting Up Targeting Services 159
Setting Up a RuleSetService 160
Setting Up a RuleBasedRepositoryTargeter Service 161

Setting Up a RuleBasedRepositoryItemGroup Service 162
Setting Up a TargetingSourceMap Service 162
Using TargetingResults 163
Defining Profile and Content Groups 164

Profile Groups 165
Content Groups 166

Managing User Segments 167
How Segment Lists Are Used 168

Conflict Resolution 168
Programming Interface 168
Architecture and Implementation 169
Invoking in Servlet Beans 170

Using Slots to Deliver Content 170

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

v i i

C o n t e n t s

μ
10 Using Targeted E-mail 171

Creating Targeted E-mail 171
Creating a Targeted E-mail Template 173
Specifying a MessageContentProcessor 176
Sending Message Content as Both Text and HTML 178
Creating the Recipient List 178

Sending Targeted E-mail 179
Sending E-mail to Users Without Profiles 181
Viewing, Canceling or Resuming a Mailing 182
Avoiding E-Mail Fatigue 183
Improving Performance for SQL JMS Mailings 184

Handling E-mail Problems 184
Failed E-mail 184
Bounced E-mail 185
Stopped E-mail Campaigns 189

Distributing a Mailing across Multiple Servers 191
Configuring a Distributed E-mail Server 191
Setting Up a Mailing to Use Distributed E-mail Features 192
How Distributed Mailings Work 192
Performance Tuning Considerations for Distributed E-mail 193

Deleting Mailings 194
Targeted E-mail Demo 196

11 Personalization Module Tracking 197
Personalization Events 197

Event Triggers 198
Setting Up Event Triggers 199
Event Action Queue 201

Action Handlers 202
Event Properties 202
ConfigurableAction Properties 202
Default Action Handlers 204

12 Personalization Module Logging 205
Logging Events 205
Logging Services 206

Request Logging 206
User Event Logging 207
Content Viewed Logging 207
Log Entry IDs 207

Data Listeners and Queues 207
Configuring QueueSinks 209

Log Files 209
Configuring Log Operations 210

Enabling and Disabling Logging 211
Logging to a Database 212

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

v i i i

C o n t e n t s

μ
Limiting Input to the Database 212

Generating Reports 213
Batch Reporting Service 213
Setting the Schedule 214
Pointing to a Repository (Content) 214
Pointing to a Registry Service 215
Fine Tuning Updates 215

Part II: Scenarios Module Programming 217

13 Overview of the Scenarios Module 219
Scenario Basics 219
Scenario Processing 220

Scenario Definition Files 221
Scenario Execution 221

Individual Scenario Instances 221
Collective Scenario Instances 222
Scenario Initialization 223
Scenario Event Handling 224

Workflows 224
Internal Scenario Manager 224

14 Configuring Scenarios 227
Configuring the Scenario Manager 227

Scenario Manager Configuration File 227
Global, Individual, and Process Editor Servers 228
Configuring the Process Editor Server 229
Configuring Global Scenario Servers 230
Configuring Individual Scenario Servers 231
The Scenario Registry and Scenario Definition Files 231
Configuring the ScenarioManager Component 231
Configuring the SDLParser Component 234

Configuring SQL Repository Caching for Scenarios 235
Scenario Caching with Session Federation 236

Setting Up Scenario E-mail Sender Components 236
Setting Up TemplateEmailInfo Objects for Scenarios 236
Configuring BatchEmailListener and EmailListenerQueue Components 237

Monitoring and Debugging Scenarios 237
Viewing Scenario Information in the ATG Dynamo Server Admin Page 239

Setting the Web Application Context Root for Scenarios 241
StaticWebAppRegistry 241
ServletContextWebAppRegistry 242
Updating the Context Root for Scenarios 242

Disabling the Scenario Manager Component 243

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

i x

C o n t e n t s

μ
15 Setting Up Security Access for Scenarios 245

Using the ACC to Set Scenario Access Rights 245
Defining Access Control for Scenario Folders 246
Defining Access Control for a Scenario 247
Making a Scenario Read Only 247

16 Designing Effective Scenarios 249
Excluding Anonymous Visitors 249
Minimizing the Number of Visitors Included 249
Minimizing the Number of Collective Elements 250
Avoiding Scenarios that Run Indefinitely 251
Combining Scenarios Wherever Practical 251
Minimizing the Number of Paths through a Fork 252

17 Using Scenario Events 255
InboundEmail Event 256
Shutdown Event 259
Startup Event 259
GSAInvalidation Event 260
ClickThrough Event 261
FormSubmission Event 264
SlotItemRequest Event 265
Referrer Event 266
Login Event 267
Logout Event 268
Register Event 269
AdminRegister Event 270
StartSession Event 271
EndSession Event 272
ProfilePropertyUpdate Event 273
AdminProfilePropertyUpdate Event 276
ProfileUpdate Event 277
AdminProfileUpdate Event 278
ViewItem Event 279
PageVisit Event 281
ScenarioEnd Event 283
SiteChanged Event 284
ProfileMarkerAdded Event 285
ProfileMarkerRemoved Event 287
ProfileMarkerReplaced Event 290
Business Stage Reached Event 292
Scenario Events and Transient Properties 293
Scenarios and Anonymous Users 293

18 Using Scenario Actions 295
Modify Action 299

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

x

C o n t e n t s

μ
Set Variable Action 300

SetRandom Action 301
Redirect Action 302

RedirectActionConfiguration Component 303
FillSlot Action 303

SlotActionConfiguration Component 304
EmptySlot Action 305
DisableScenario Action 306

DisableScenarioConfiguration Component 306
RecordEvent Action 307

RecordActionConfiguration Component 307
Record Audit Trail Action 308
Filter Slot Contents Action 308
Add Marker To Profile Action 309
Remove All Markers From Profile Action 310
Remove Markers From Profile Action 310
Add Stage Reached Action 311
Remove Stage Reached Action 312
E-mail-Related Actions: EmailNotify and SendEmail 312

EmailNotify Action 313
SendEmail Action 315
Accessing Scenario Variables in an E-mail Template 317
Sending Attachments with Scenario-Based E-mail Messages 318

19 Using Slots 321
Creating a Slot as a Nucleus Component 322

Content Source 323
Content Type 323
Event Generation 323
Scope 324
Item Retrieval 324
Ordering 325
Limit Number of Items Rendered by Slot 326
Permit Duplicate Content Items 326
Store Slot Persistently in Repository 326
Creating a Slot Component for Objects other than Repository Items 327

Editing Slot Components 327
Deleting Slot Components 328
Creating a Slot as a Property of a JMS Message 328
Using Slots in a Multisite Environment 328

20 Using Scenario Recorders 331
Creating a Custom Recorder 331

Creating a New Data Collection Object 332
Creating the New Mapper 332
Creating a New Dataset for a Custom Recorder 334

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

x i

C o n t e n t s

μ
Creating a Scenario for a Custom Recorder 335

Mapper XML Definition Language 335
Sample Mapper XML File 341

21 Adding Custom Events, Actions, and Conditions to Scenarios 345
Adding Custom Events 345

Example: Adding Clickthrough Tracking To Your Application 346
Creating the LinkMessage class 346
Creating the LinkMessageSource Component 347
Adding Your Message to the Appropriate DMS Configuration File 349
Configuring the Message Source 351
Configuring the Scenario Manager to Receive Your Message 351
Adding Your Message to the Scenario Event Registry 352
Adding the Message to the DMS Message Registry 354
Declaring the Local DMS Topic 355
Declaring the SQLDMS Topic or Queue 355
Putting It All Together 355
Associating Profiles with Individual Custom Events 357

Adding Custom Actions 358
Adding the Action to the Scenario Manager Configuration File 358
Specifying the <action-execution-policy> Tag 359
Specifying the <action-error-response> Tag 360
Adding Parameters to a Scenario Action 360
Implementing the Action Interface 361
Putting It All Together 364

Adding Custom Conditions 365
Adding the New Condition to the Scenario Manager Configuration File 366
Extending the ExpressionFilter Class for the New Condition 370
Extending the Expression Editor 375

Configuring Actions and Conditions through Properties Files 381
Exposing Nucleus Components for Use in Custom Bean Expressions 382

22 Filtering Collections 385
How Collection Filtering Works 385
Using Collection Filtering Classes 386

Using StartEndDateFilter 387
Using ChainedFilter 388

Caching Filtered Content 388
Caching For Chained Filters 389
Determining When To Cache Filter Content 390
Configuring FilterCache 390

Implementing Custom Collection Filters 391
Creating Custom Collection Filters 391
Configuring Custom Collection Filters 392
Accessing a Collection Filtering Component 393

Passing Additional Parameters to a Filter (Filtering in a Multisite Environment) 393

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

x i i

C o n t e n t s

μ
23 Using Profile Markers 397

Configuring the Profile Marker Manager 398
Setting a Duplication Mode 399
Setting up Marker Validation 400
Defining Profile Marker Manager Properties 400

Marking a User Profile 403
Using Marked Profiles 403

Using Servlet Beans to Find Markers on Profiles 404
Advancing a Scenario If a Profile has Markers 405
Advancing a Scenario Based on Profile Marker Events 406

Removing Profile Markers 406
Specific Profile Markers From a Profile 407
All Profile Markers on a Profile 407

24 Defining and Tracking Business Processes 409
How Business Process Tracking Works 409

Defining a Business Process 409
Creating a BusinessProcessConfiguration Component 410
Configuring the BusinessProcessManager Component 411

Marking Business Process Stages 411
Deleting Business Process Content 412
Reporting on Business Processes 414

25 Creating and Configuring Workflows 415
Overview of Workflows 415

Creating a Workflow Type 415
Workflow Classes 416
Shared Components 417
Registration Workflow 418

Configuring the Registration Workflow Type 419
Workflow Servlet Beans 424

WorkflowTaskQueryDroplet 424
WorkflowInstanceQueryDroplet 424
ItemLookupDroplet 425
GetDirectoryPrincipal 425

Workflow Task Form Handler 425
Updating Subject Properties 428
Firing Task Outcomes 428

26 Managing Workflows on Multiple Servers 431
Designating a Process Editor Server for Workflows 431
Designating Global and Individual Workflow Servers 432
Configuring Caching for Workflows 432

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

x i i i

C o n t e n t s

μ
27 Setting Up Security Access for Workflows 435

Allowing ACC Users to Edit Workflows 435
Allowing Site Users to Execute Workflows 436
Giving Site Users Access to Workflow Tasks 437

28 Configuring the ATG Expression Editor 439
Overview of the ATG Expression Editor 439
Grammar Template Files 440

Templates, Filenames and Localization 440
Stylesheet Preamble 441
Textual Inclusion 441
Grammar Templates in the ATG Product Distribution 441
Serialization of Templates 442

Grammar Definition Fundamentals 442
Tokens 442
Literals 443
Choices 444
Sequences 444

Creating a Grammar by Composing Constructs 444
Structure and Presentation of Choices 445
Defining and Referring to Labeled Constructs 447
Advanced Features 448

Custom Expression Classes 448
Custom Editor Classes 448
Custom Assistant Classes 448
Placeholders 448
Required Terminals 448
Eliminating Spaces 449
Verbose Terminals 449
Unsigned Integer 449

Scenario UI Expression Grammar Configuration 449
Scenario Grammar Extension Header 449
Defining Expressions for Custom Events 449
Defining Expressions for Custom Actions 450
Defining Expressions for Custom Conditions 450
Associating XML Templates with Grammar Elements 450
Specification of XML templates 451
Standard XML Template Patterns 453
Special-Purpose Grammar Extension Tags 455

Commerce-Related Grammar Configuration 456
Constraining a Sequence to an Order-Related Event 456
Constraining a Sequence to a Commerce-Item-Related Event 456

Suggestions for Localization 457
Supported Character Encodings 457

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

x i v

C o n t e n t s

μ
Part III: Web Services for Personalization and Scenarios 459

Web Services Module for ATG Personalization and Scenarios 459
User Profiling Web Services 460

ProfileServices Component 460
GetProfileId Web Service 464
GetProfile Web Service 465
LoginUser Web Service 466
LogoutUser Web Service 468
CreateUser Web Service 470
UpdateUser Web Service 471
Set Password Web Service 473
SetContactInfo Web Service 474
SetLocale Web Service 475
CanClientEncryptPasswords Web Service 476
GetPassWordHashKey Web Service 478
GetPasswordHashAlgorithm Web Service 479

Content Targeting Web Services 480
TargetingServices Component 481
RecommendContent Web Service 481

Messaging Web Services 483
MessagingImporter Component and ReceiveObjectMessage() Method 483
ContentViewed Web Service 483
ContentConsumed Web Service 485

Example: Using the GetProfileId Web Service in an Axis Client 486
Returning RepositoryItems as Repo2Xml Items 487

Applying Mapping Files to Repo2Xml Items 487
Profile-Related Security Policies for Web Services 487

AppendACLPolicy 488
MethodParameterPolicy 488
ProfileOwnerPolicy 489
ProfileAsXMLOwnerPolicy 489
RelativeRoleByProfileOrgPolicy 490
Defining Security Functions and Policies 490

Using Client-Side Password Encryption 491

Appendix A: Database Tables 493
Personalization Module Database Schema 493

User Data Tables 493
User Directory Tables 499
Logging and Reporting Tables 504
Targeted E-mail Tables 511
Personalization Module Scenario Tables 516

Scenarios Module Database Schema 517
Collective and Individual Scenario Instance Tables 517
Scenario Info Tables 521
Template Info Tables 522

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

x v

C o n t e n t s

μ
Scenario Transition and Deletion Tables 523
Slot Tables 526
Server ID Tables 528
Scenario Xref Tables 528
Scenario Migration Tables 529
Event Message Tables 531
Business Process Tracking Tables 542

Index 545

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

x v i

C o n t e n t s

μ

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1

P a r t I : P e r s o n a l i z a t i o n M o d u l e P r o g r a m m i n g

μ
Part I: Personalization Module
Programming

The Personalization module is included with the ATG platform and adds visitor profiling, content
management, and targeting functionality to the ATG development framework. These features make it
possible for developers and business managers to customize the behavior, content, and presentation of
an ATG application to match each visitor’s characteristics and preferences.

Most Personalization module features are available through the ATG Control Center (ACC). For more
information, see the ATG Personalization Guide for Business Users. If your system includes ATG Content
Administration, you can access these features through the ATG Business Control Center, which is
described in the ATG Business Control Center User’s Guide. The chapters in this manual (listed below)
explain how to access and extend these features programmatically.

Setting Up a Profile Repository
Describes how to configure a SQL repository to store profile information for site users.
Includes information on extending or replacing the standard profile repository.

Setting Up an LDAP Profile Repository
Explains how to set up an LDAP (Lightweight Directory Access Protocol) repository to
store profile information.

Setting Up a Composite Profile Repository
Describes how to configure a profile repository that manages data from multiple types
of data store.

Working with User Profiles
Discusses how to work with user profiles to track visitor behavior and to control access
to your sites.

Working with the Dynamo User Directory
Describes how to set up the Dynamo User Directory, which you can use to organize
and manage a profile repository according to the relationships between the people
who use your sites.

Creating Rules for Targeting Content
Describes the programmatic method for defining targeting rules, which you use to
match visitors to site content.

Setting Up Targeting Services
Describes how to set up the components that deliver targeted content.

Using Targeted E-mail
Describes a programmatic approach for using the Targeted E-mail services provided
with the Personalization module to compose and deliver targeted e-mail.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2

P a r t I : P e r s o n a l i z a t i o n M o d u l e P r o g r a m m i n g

μ
Personalization Module Tracking
Explains how to capture information about Personalization module events and use
that information to perform actions such as updating visitor profiles or changing
component properties.

Personalization Module Logging
Describes how to use Personalization module events (page requests, content viewed,
and user events) to record useful information about the operation of your Web
application.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ
1 Setting Up a Profile Repository

This chapter includes the following topics:

Introduction to Profile Repositories
Provides an overview of profile repositories and describes the basic steps you follow to
set up a SQL profile repository. Describes how profiles work if your ATG installation
supports several Web sites. Discusses using separate profile repositories for external
and internal users, and includes information on the interfaces you can use to view and
edit profile repository items.

Defining the Profile Repository
Describes how to create an XML file that defines your profile repository.

Standard User Profile Repository Definition
Describes the default XML file that defines a standard profile repository.

Extending the Standard User Profile Repository Definition
Explains how to extend the standard user profile repository to accommodate any
custom profile properties.

Replacing the Standard User Profile Repository Definition
Explains how to use your own profile repository definition instead of the standard
definition.

Configuring a Profile Repository Component
Describes how to configure the standard profile repository components.

Introduction to Profile Repositories
A user profile is a set of attributes that represent the data you want to store for a site user, for example
login name, password, e-mail address, registration date, and so on. ATG applications use profile
repositories to manage user profiles. A standard profile repository is a SQL repository component of class
atg.adapter.gsa.GSARepository. Each user profile is represented by an item in the profile repository,
and the attributes that make up the profile are stored as properties of the repository item. When you
design your sites, you need to determine which profile attributes you want to track for your users and
then set up a database to store the profiles.

As a SQL profile repository is an instance of the generic SQL repository, the process of setting up a SQL
profile repository is similar to the process described in the SQL Repositories chapter of the ATG Repository
Guide. It requires you to perform the following basic steps:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ
1. Design your profile repository definition, determining the properties you want to have

available in your user profiles. Most profile repositories will use a single profile item
type (typically called user) for all users within that repository. See the Defining the
Profile Repository section in this chapter.

2. Create the SQL database schema on the SQL database server that corresponds to the
profile repository definition you designed.

3. Make any needed configuration changes to the appropriate profile repository
component. See the Configuring a Profile Repository Component section in this
chapter.

Although most profile repositories are SQL repositories, it is also possible to store profile information in an
LDAP directory or a composite SQL/LDAP repository. This chapter focuses on using a SQL repository as
the data store. For information on using an LDAP directory as the data store, see the Setting Up an LDAP
Profile Repository chapter. For information on using a composite SQL/LDAP profile repository, see Setting
Up a Composite Profile Repository.

Internal and External User Profiles

You can maintain separate profile repositories for external and internal users, and the ATG platform and
most ATG applications are configured by default to do so. External user profiles represent anyone who
visits your externally-facing Web sites. For commerce sites, external users are typically customers. Internal
user profiles represent people within your organization who use ATG applications such as the ATG
Business Control Center or ATG Service to create and manage site content. Maintaining distinct profiles
for internal and external users has a number of benefits:

 You can store information about your internal users in a separate data source from the
profiles used with your outward-facing Web applications.

 You can authenticate internal and external users separately, which helps eliminate the
possibility of an external user gaining access to an internal application.

 You can create different sets of targeters and scenarios for external and internal users.
(This feature is typically used by ATG Service applications, for example to display
content to customer service representatives.)

The default external user profile repository is /atg/userprofiling/ProfileAdapterRepository,
which is defined by the userProfile.xml file located in <ATG10dir>\DPS\config\profile.jar. Each
ATG application that adds properties to the external user profile stores its userProfile.xml file in an
ExternalUsers sub-module.

Internal profiles are stored in the /atg/userprofiling/InternalProfileRepository, defined by the
internalUserProfile.xml file in <ATG10dir>\DPS\InternalUsers\config\config.jar.

For information on the default internal/external profile repository model, including information on how
the repositories are used by the ATG Business Control Center and other ATG applications, refer to the ATG
Business Control Center Administration and Development Guide.

Internal Profile Repository

This chapter describes how to set up and configure the ProfileAdapterRepository. However, the
InternalProfileRepository is also an instance of atg.adapter.gsa.GSARepository, and you can

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ
extend and configure it using the methods described in this chapter for the
ProfileAdapterRepository.

Many of the services provided for the ProfileAdapterRepository that are described in this manual
also exist for the InternalProfileRepository. For example, the ATG Personalization module includes
an /atg/userProfiling/InternalProfileTools component, which is implementation of class
atg.userprofiling.ProfileTools configured for the InternalProfileRepository.

A parallel set of database tables also exists for internal user profiles. Where the user item in the
ProfileAdapterRepository references the dps_user table, the user item in the
InternalProfileRepository points to a dpi_user table, and so on.

In most cases, external user profiles are created automatically when a user visits one of your Web sites.
However, internal user profiles are typically not created in this way. After you have defined the properties
that make up the internal profile repository, you must create individual profile items for each user in your
system. The recommended interface for doing so is the ATG Business Control Center. See the next section,
Profile Repository Administration Interfaces.

Note that the ATG Business Control Center is configured by default to accept logins from profiles in the
internal user repository.

Profiles in a Multisite Environment

A multisite ATG environment is one in which a single instance of ATG products supports more than one
Web site, and the sites are configured to share resources such as a shopping cart. As an example, an
apparel manufacturer could have two brands, one for clothing and one for shoes. Each brand could have
its own Web site, but the shopping cart could be shared between the two sites, allowing cross-selling
opportunities such as the ability to give promotions for one site based on items purchased at the other.

In a multisite environment, user profiles are automatically shared across all your Web sites. The same
external and internal profile repositories are used in all cases; there is no option to set up separate profile
repositories for each site you support.

It is important to be aware of the implications of this behavior in regard to registration and login. When a
user registers at any one of your sites, a persistent profile is created for him or her and added to the
external profile repository. However, because the repository is not site aware, the registration is not
specific to Site A. Users who register at Site A are effectively registered at Site B as well. If you require login
credentials to access your sites, the user is automatically permitted to log into both Site A and Site B and
can do so using the same username and password. A user who logs into Site A simultaneously logs into
Site B.

Mechanisms such as targeting rules and scenarios that manage the display of dynamic, personalized
content can be configured to be site aware, which means you can display specific content to individual
users according to their current site. For example, you could set up a scenario that waits for users to
register on Site A and displays them personalized content. However, as stated above, the profiles
themselves are the same for all sites.

For information on configuring your environment for multisite support, refer to the ATG Multisite
Administration Guide. For more information on the multisite features available in targeting rules,

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

6

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ
scenarios, and other personalization mechanisms, see the ATG Personalization Guide for Business Users and
the chapters for those features later in this guide.

Profile Repository Administration Interfaces

The Personalization module includes three interfaces you can use to view or edit profile repository items:

 The ATG Dynamo Server Admin interface

 The Personalization > Users options in the ATG Business Control Center

 The Profile Repository window in the ACC

Profiles in the ATG Dynamo Server Admin Interface

You can view the ProfileAdapterRepository component in the ATG Dynamo Server Admin interface
at
http://hostname:port//dyn/admin/nucleus/atg/userprofiling/ProfileAdapterRepository

. The default port numbers on JBoss, Oracle WebLogic, and IBM WebSphere are 8080, 7001, and 9080,
respectively. You can view the InternalProfileRepository at
http://hostname:port/dyn/admin/nucleus/atg/userprofiling/InternalProfileRepository

. For more information, see the ATG Installation and Configuration Guide.

A profile repository’s interface page, like the other component pages in the Admin interface, displays the
properties of the profile repository component. The interface page also includes links for each of the item
descriptors in the repository that let you list all repository items belonging to that item descriptor or
examine the item descriptor, displaying the name, short description, and property type of each property
of the item descriptor.

In addition, the page displays the full definition file for the repository, including the results of all XML file
combination operations. The definition file is displayed in the value of the definitionFiles property in
the ATG Dynamo Server Admin:

http://hostname:port/dyn/admin/nucleus/atg/userprofiling/

ProfileAdapterRepository/?propertyName=definitionFiles

or

http://hostname:port/dyn/admin/nucleus/atg/userprofiling/

InternalProfileRepository/?propertyName=definitionFiles

You can use this view of a definition file for debugging XML file combination problems.

Profiles in the ATG Business Control Center

After you have defined the properties that make up your profile repository, you can use the
Personalization > Users options in the ATG Business Control Center to manage the profiles. For
information, refer to the ATG Business Control Center Administration and Development Guide.

The ATG Business Control Center is the recommended interface for managing profiles and is intended to
replace the ACC for this task (see the next section).

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

7

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ
Profiles in the ACC

You can also create and edit profile repository items through the People and Organizations > Profile
Repository window in the ACC. The query editor along the top of the screen lets you search for items in
the repository. You construct your queries by clicking through a series of dropdown attribute choices. For
example, you can create a query like this:

Items of type user whose locale is fr_FR

When you click the List button, the repository items (if any) that match your query appear in the panel on
the left side of the screen. You can add and delete repository items in this panel as well. When you select
an item from the list, a table of attribute tags and values appears on the right side of the screen. You can
edit attribute values by clicking in the value cells.

Important: By default, the ACC that is installed with the ATG platform is configured to point to the profile
repository that contains external (customer) user profiles. To change this behavior so that the ACC points
to the internal user profile repository instead, include the DPS.InternalUsers.ACC module in your EAR
file.

Defining the Profile Repository
A profile repository definition is a list of all the profile properties that you want to track for users. Since a
SQL profile repository is just a way of using the SQL repository, the profile repository definition is an
instance of a SQL repository definition, and each profile property is a property of a repository item in the
profile repository. For example, you can define a profile repository to track the first name, last name, and
address for site members. The Personalization module uses the profile repository definition to create
profiles for all the users of your sites. The Personalization module also gathers profile information and
maintains a single profile for a user across multiple site visits.

You can set values for your users’ profile properties explicitly, from information the users provide through
a registration form, a preferences page, or another personal information source, or implicitly, from sensors
triggered by user behavior on your sites. Before you can track user profiles, you must define your profile
repository definition both in your profile database and in the profile repository.

The Personalization module includes a standard profile repository definition, located in the configuration
path at /atg/userprofiling/userProfile.xml. You can use this standard profile repository
definition as is if it meets the user profiling requirements of your ATG application. More likely, you will
want to either use it as a model, or extend it, as seems appropriate. See the Standard User Profile
Repository Definition section of this chapter for a description of this repository definition. See Extending
the Standard User Profile Repository Definition for information about how to modify it, and see Replacing
the Standard User Profile Repository Definition for information about how to replace the standard
repository definition with an entirely new profile repository definition.

Defining Profile Sub-Types

You can define multiple profile types in a single profile repository definition file. Once you have defined a
root profile type, such as user or organization, you can then create sub-types that contain all the
properties of their super-type, plus any other properties that you define. Each profile sub-type is

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

8

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ
represented by an item-descriptor in your profile repository definition XML file. Note: If you add item-
descriptors to the userProfile.xml file, make sure that the user item-descriptor is always the first item-
descriptor defined in the file.

Consider the following example. The Quincy Funds demo defines some users as “user of type investor” or
“user of type broker,” where “investor” and “broker” are simply values of the “type” profile property.
Instead, you could create multiple profile sub-types to define distinct kinds of user; each sub-type can
then have a range of different properties that are specific to it and define its characteristics.

The following code sample creates two simple profile types, investor and broker. The investor profile
type contains all the properties of its super-type user, as well as the property mothersMaidenName.
Perhaps you want to require that investors provide this information and use it to log them onto your sites
for added security. The broker profile type also contains all the characteristics of its super-type user, and
adds the property commissionPercentage. A user who is a broker is the only kind of user who needs this
property, so a separate profile type holds such broker-specific properties.

<item-descriptor name="investor" super-type="user" sub-type-value="investor">

 <table name="dss_qf_investor" type="auxiliary" id-column-name="id">

 <property category-resource="categoryQuincyFundsInvestorProperties"

 name="assetValue" data-type="float" default="0.0" column-name="asset_value"

 description-resource="investorPropertiesDescription"

 display-name-resource="assetValue">

 <attribute name="resourceBundle"

 value="atg.projects.dssj2eedemo.UserProfileTemplateResources"/>

 </property>

 </table>

</item-descriptor>

<item-descriptor name="broker" super-type="user" sub-type-value="broker">

 <table name="dss_qf_broker" type="auxiliary" id-column-name="id">

 <property category-resource="categoryQuincyFundsBrokerProperties"

 name="commissionPercentage" data-type="int" default="5"

 column-name="commission_pct"

 description-resource="brokerPropertiesDescription"

 display-name-resource="commissionPercentage">

 <attribute name="resourceBundle"

 value="atg.projects.dssj2eedemo.UserProfileTemplateResources"/>

 </property>

 </table>

</item-descriptor>

Note that the ATG Business Control Center and the ACC do not currently support changing a user’s sub-
type after the user has been created. For this reason, it is recommended that you set the uiwritable
attribute to false for any sub-types you add to your repository definition files. For information on the
appropriate syntax, refer to the gsa_1.0.dtd file in <ATG10dir>\DAS\lib\classes.jar.

Defining multiple profile types allows you to write targeting rules or use queries that sort users by their
profile type instead of by a property in the user profile that defines them as an investor or a broker. You
can also query a parent item-descriptor for properties that are defined in its children item-descriptors. For

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

9

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ
example, if you defined the children item-descriptors above, you could search for “all User items whose
commissionPercentage is greater than 15%” even though the User item-descriptor does not contains
the commissionPercentage property.

For more information about using multiple profile types in targeting rules, see the Creating Rules for
Targeting Content chapter in this manual.

Profile Repository Caching

A SQL profile repository, like all SQL repositories, can maintain repository items in item caches. For most
ATG environments, it is strongly recommended that you do not use locked caching for the user item in
the profile repository. By default, the user items in both the ProfileAdapterRepository and the
InternalProfileRepository are configured to use simple cache mode. Caching is disabled for the
Password property in both repositories. For more information on cache modes, see the SQL Repository
Caching chapter in the ATG Repository Guide.

Note: Changes made to an external profile through a production site may not appear immediately in the
profile UI in the ATG Business Control Center. For example, a customer could change his address through
a Web site form, and the new address would not appear immediately to an internal user viewing the same
profile through the ATG Business Control Center. The reverse is also true. The delay occurs because of
profile repository item caching – until the item cache expires on the server where the changes were not
made, the changes do not appear on that server. To minimize this problem, you can set the item-
expire-timeout attribute for the user item descriptor to force the cache to expire after a short time. For
more information, refer to the ATG Repository Guide.

If necessary, you can also use the ATG Dynamo Admin UI to flush the item cache.

Standard User Profile Repository Definition
The Personalization module includes a standard profile repository definition with the configuration path
name /atg/userprofiling/userProfile.xml, located in <ATG10dir>/DPS/config/profile.jar.
This is the default repository definition used by the ProfileAdapterRepository. You can use it as is,
use it as a model, or extend it, as determined by the user profiling needs of your ATG application. You can
use the standard user profile repository definition with no changes if the following conditions are true:

 the standard user profile repository definition includes all the profile properties that
you need in your application, and

 the database schema defined in the standard user profile repository definition fits your
database requirements.

If the standard user profile repository definition includes profile properties you don’t need, no particular
harm is done. Your ATG application can ignore the unneeded properties, so long as those profile
properties allow null values.

The standard profile repository definition in the Personalization module defines the following item
descriptors:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 0

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ

Item Descriptor Name Description

user represents a single user, typically an external user (a customer or other
visitor to your Web sites)

contactInfo the contact information for a user, including name, postal address, phone
number and fax number

mailing properties used for contacting a user by e-mail, including properties used
by the Targeted E-mail facility

role properties that define the non-assignable roles assigned to a user

organizationalRole properties that define the global roles assigned to a user

organization represents an organization

genericFolder defines the folders in which you can place organizations

roleFolder defines the folders in which you can place global roles

Other ATG modules, including the Quincy Funds demo and ATG Commerce, extend this profile repository
definition, adding new item descriptors and properties. Each ATG module that extends the profile
repository definition includes its own definition file, each of which is also located in the configuration
path at /atg/userprofiling/userProfile.xml. The system combines all of these profile repository
definition files into a single composite repository definition, using the XML file combination rules
described in the XML File Combination section of the Nucleus: Organizing JavaBean Components chapter in
the ATG Programming Guide.

For more information on defining organizations and roles, see the Working with the Dynamo User
Directory chapter in this manual.

Modifying Standard Profile Properties

This section describes the properties defined in the standard user profile repository definition. If you
extend or replace the standard user profile repository definition, it is important to understand many of
these standard properties. A profile repository definition can include whatever profile properties you
think are useful for your ATG application. The userProfile.xml files included in ATG application
modules add certain properties that are used in various ATG features or demo applications.

Some features, such as scenarios and the Targeted E-mail facility, expect certain profile properties to exist
with certain specified names. If you eliminate the needed profile property, the ATG features that expect
the property will not work. In some cases, you can change the profile name, but you must also configure a
Nucleus component to register the new name. Sometimes you may have to change the profile name or
configure a component to use a different property in several different components. If you don’t have to
rename or remove a property from the standard profile definition, it is probably better not to.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 1

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ
If you add item-descriptors to the userProfile.xml file, make sure that the user item-descriptor is
always the first item-descriptor defined in the file. Doing so prevents errors from occurring in the ACC and
the ATG Business Control Center.

If you do decide to rename or remove properties from your profile repository definition, the names of a
number of these properties are registered in the /atg/userprofiling/PropertyManager component.
If you rename a property that is registered in the PropertyManager, you must also register the new
property name in the PropertyManager. The following section describes the PropertyManager
component and lists the properties it contains.

Configuring the Property Manager Component

The PropertyManager component registers the names of a number of properties defined in the
userProfile.xml file. If you change a property name in the userProfile.xml file, you must also
change its name in the PropertyManager component. To configure property names in the
PropertyManager component, do the following:

1. Access the PropertyManager component through the ACC at Pages and
Components > by Path > atg/userprofiling/PropertyManager.

2. Change the configured value of the property name that you have modified by clicking
on the configured value field and typing the new name in the text field.

Configuring the Profile Tools Component

The ProfileTools component includes a reference to the current profile repository through the
profileRepository property. If you change this repository, you should also change this reference. This
service provides methods that deal with the session-scoped Profile object and also contains lower-level,
repository-specific helper methods. The ProfileTools class defines methods for locating users by login
or user ID, creating users, and updating properties of profiles. If you change or remove user profile
properties, you should make sure that the other components that refer to these properties are correctly
referenced in the ProfileTools component. For more information, see User Profiling Tools in the
Working with User Profiles chapter of this manual.

Personalization Module

Even if a property listed here is not required by the Personalization module, it may be required by another
ATG server or demo application. Removing or renaming any of these properties from the profile
repository definition may break other ATG features.

Property Description

securityStatus Used, if present, to set how users have authenticated themselves.

This property name is registered in the securityStatusPropertyName
property of the /atg/userprofiling/PropertyManager component.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 2

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ
login Required for authentication. You should avoid changing the name of this

property since it is required by many other ATG services.

This property name is registered in the loginPropertyName property of
the /atg/userprofiling/PropertyManager component.

password Required for password authentication. You should avoid changing the
name of this property since it is required by many other ATG services.

This property name is registered in the passwordPropertyName property
of the/atg/userprofiling/PropertyManager component.

userType Used for having sub-types of the base user item-descriptor.

locale The Quincy Funds demo uses this property to allow customers to select
their preferred locale. Not required, but used if present by the
RequestLocale object in the internationalization features implemented by
those demo applications. See the Internationalizing a Dynamo Web Site
chapter in the ATG Programming Guide for more information.

This property name is registered in the localePropertyName property of
the/atg/userprofiling/PropertyManager component. If you use a
property with a name other than locale to represent a user’s locale, you
must also change the value of the localePropertyName property of
the/atg/userprofiling/PropertyManager component.

lastActivity Set to the time when the person last logged in. This property is set in the
/DSS/TrackActivity scenario that ships with the Scenarios module.

This property name is registered in the lastActivityPropertyName of
the /atg/userprofiling/ProfileFindForm component.

registrationDate Set to the time when the person registered. This property is set in the
/DSS/TrackActivity scenario that ships with the Scenarios module.

email The person’s e-mail address. Used by the targeted e-mail facility.

This property name is registered in the emailAddressPropertyName
property of the/atg/userprofiling/PropertyManager component. If
you use a property with a name other than emailto represent a user’s e-
mail address, you must also change the value of the
emailAddressPropertyName property of
the/atg/userprofiling/PropertyManager component.

emailStatus Boolean flag that indicates whether the e-mail address is valid.

This property name is registered in the emailStatusPropertyName
property of the/atg/userprofiling/PropertyManager component. If
you use a property with a name other than emailStatus to represent
whether a user’s e-mail address is valid, you must also change the value of
the emailStatusPropertyName property of
the/atg/userprofiling/PropertyManager component.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 3

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ
receiveEmail Boolean flag to indicate if a user wants to receive e-mail. This property is

used in scenarios to filter which users should receive targeted e-mail
messages.

This property name is registered in the receiveEmailPropertyName
property of the/atg/userprofiling/PropertyManager component. If
you use a property with a name other than receiveEmailto represent
whether a user should receive e-mail, you must also change the value of the
receiveEmailPropertyName property of
the/atg/userprofiling/PropertyManager component.

Scenarios Module

Property Description

scenarioInstances Points to a set of scenario instances currently in effect for the profile.

This property name is registered in the
scenarioInstancesPropertyName of the
/atg/userprofiling/PropertyManager component.

ACC Sorting Attributes

The Personalization module’s base profile repository definition uses two XML attributes that govern how
a property value is viewed in the ACC: category and propertySortPriority. All properties with the
same category attribute value are listed together. For example, the Login Name and Password
properties are listed together under the heading Login. Each <property> tag uses the attribute
category="Login".

If you examine the Basics category in the ACC user profile display, you will see the properties First name,
Middle name, and Last name listed in that order. The order in which these properties appear in the UI
depends on the propertySortPriority attribute. Properties with the same category attribute are listed
in ascending order according to the integer value of their propertySortPriority attributes. Properties
that do not have a propertySortPriority attribute are listed in alphabetical order.

ACC Display Name Attribute

An item descriptor or a property in a SQL repository can have a display-name-resource attribute that
determines the label used by the ACC for that item type or property. In the base profile repository
definition, the user item descriptor has this attribute:

display-name-resource="User"

This causes the People and Organizations > Profile Repository window of the ACC to list profiles under the
type User. You can change the display-name-resource attribute in the
UserProfileTemplateResources.properties file in the distribution. The strings in the XML file that

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 4

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ
appear in the ACC are separated by item-descriptor in this file. For example, if you want to change the
display-name-resource attribute for the user item-descriptor, change the word “User” in the
following line after the comment:

item descriptor User

itemDescriptorUser=User

Extending the Standard User Profile Repository Definition
This section describes how to add custom item-descriptors to a standard profile repository definition.

Note: If you extend the standard profile definition, make sure that the user item-descriptor is always the
first item-descriptor in the definition file.

Adding Properties to a Database Table

If you want to add properties to the profile definition file, you need to add a column in the appropriate
database table for the item you want to add, and you also need to add a reference to that column in the
profile repository definition file. For example, if you wanted to add the property “region” to the
dps_contact_info table, add a column called region to the table, then add the following lines to the
Personalization module’s userProfile.xml file:

<table name="dps_contact_info" type="primary">

 <property name="region" data-type="string" column-name="region"

 required="false"/>

If you are using the Personalization module, you don’t need to extend any objects to add a property to a
database table. However, if you are using another ATG application, such as ATG Commerce, you may need
to extend an object if that object is used by the another repository item. For example, the ATG Commerce
order processing system needs to be aware of the region property so that it can correctly send an order.

For more information see Working with Purchase Process Objects in the ATG Commerce Programming Guide.

XML File Combination and the User Profile Repository Definition

If you install the complete ATG platform suite, together with the Quincy Funds demo and ATG Commerce,
the standard external user profile repository definition is defined as a composite of the
/atg/userprofiling/userProfile.xml files in the following JAR files:

<ATG10dir>/DPS/config/profile.jar

<ATG10dir>/DSS/config/config.jar

<ATG10dir>/DCS/config/config.jar

<ATG10dir>/B2CCommerce/config/config.jar

plus the following XML file:

<ATG10dir>/DSSDemo/config/atg/userprofiling/userProfile.xml

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 5

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ
If you install the B2CCommerce suite, the standard user profile repository definition is defined as a
composite of the /atg/userprofiling/userProfile.xml files in the following JAR files:

<ATG10dir>/DPS/config/profile.jar

<ATG10dir>/DSS/config/config.jar

<ATG10dir>/DCS/config/config.jar

<ATG10dir>/B2BCommerce/config/config.jar

<ATG10dir>/B2BStore/config/config.jar

plus the following XML file:

<ATG10dir>/DSSDemo/config/atg/userprofiling/userProfile.xml

If you install any ATG applications that extend the standard external user profile definition, the definition
also includes the /atg/userprofiling/userProfile.xml file located in the application’s
ExternalUsers sub-module. This configuration allows all external profile properties to be visible to all
internal ATG application users. For more information on these sub-modules, including where to run them,
refer to the ATG Multiple Application Integration Guide.

The external user profile repository definition is specified by the definitionFiles property of the
ProfileAdapterRepository component. This property names a file in the ATG configuration path.
Each of the above-listed user profile repository definition files appears in the configuration path at
/atg/userprofiling/userProfile.xml. The system uses XML file combination to combine these files
into a single definition to use for the profile repository. XML file combination is described in detail in the
XML File Combination section of the Nucleus: Organizing JavaBean Components chapter in the ATG
Programming Guide. This section describes some factors to remember in modifying the standard user
profile repository definition with XML file combination.

When you extend a user profile repository definition, it is important to understand how the Dynamo
Application Framework combines XML files. An item descriptor cannot have two properties with the same
name. The xml-combine="replace" directive works only with property definitions that match exactly,
from the outermost tag to the property tag.

Moving Properties to a Different Database Table

Here is an example of what can go wrong if you do not understand how the Dynamo Application
Framework combines XML files. Suppose you extend the userProfile.xml definition file with your own
file in the localconfig configuration layer. You want to use the receiveEmail property that appears in
the standard user profile repository definition, but you want this property to be stored in the my_user
table, rather than the dps_user table. The receiveEmail property is defined in the standard profile
repository definition like this:

<!-- DPS userProfile.xml -->

 <item-descriptor name="user" ...>

 <table name="dps_user" ...>

...

 <property category="Email" name="receiveEmail" data-type="enumerated"

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 6

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ
 default="yes" column-name="receive_email"

 display-name="Receive email">

 <attribute name="useCodeForValue" value="false"/>

 <option value="yes" code="1"/>

 <option value="no" code="0"/>

 </property>

...

 </table>

 </item-descriptor>

To replace this property with a similar property that is stored in the my_user table rather than the
dps_user table, you might try to define this property in a /atg/userprofiling/userProfile.xml file
in your application module or your localconfig directory, using the xml-combine="replace"
directive, like this:

<!—Bad Example -->

<!-- my userProfile.xml -->

 <item-descriptor name="user" ...>

 <table name="my_user" ...>

 <property category="Email" name="receiveEmail" data-type="enumerated"

 default="yes" column-name="receive_email"

 display-name="Receive email" xml-combine="replace">

 <attribute name="useCodeForValue" value="false"/>

 <option value="yes" code="1"/>

 <option value="no" code="0"/>

 </property>

 </table>

 </item-descriptor>

This approach won’t work. In the Personalization module’s userProfile.xml, the receiveEmail
property is defined under the dps_user table. But in the second userProfile.xml file, that property is
defined under the my_user table. XML combination operates recursively starting from the outermost tags
and working inwards. In this case, the <table> tags are matched by name. Since the table names
dps_user and my_user don’t match, these two <table> tags are not combined. And since the <table>
tags don’t match, the tags inside the <table> tags will not match up against each other. When the two
userProfile.xml files are combined, you end up with two properties in the user item descriptor, each
with the same property name: receiveEmail. So you end up with:

<!—Bad Example -->

<item-descriptor name="user" ...>

 <table name="dps_user" ...>

 <property name="receiveEmail" ... />

 </table>

 <table name="my_user" ...>

 <property name="receiveEmail" ... />

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 7

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ
 </table>

</item-descriptor>

Since the resulting user item descriptor has two properties named receiveEmail, errors result.

To fix this is easy. Use the xml-combine="remove" directive in the dps_user table, rather than the xml-
combine="replace" directive in the my_user table, as in this example:

<item-descriptor name="user" ...>

 <table name="dps_user" ...>

 <property name="receiveEmail" xml-combine="remove" />

 </table>

 <table name="my_user" ...>

 <property category="Email" name="receiveEmail" data-type="enumerated"

 default="yes" column-name="receive_email"

 display-name="Receive email" xml-combine="replace">

 <attribute name="useCodeForValue" value="false"/>

 <option value="yes" code="1"/>

 <option value="no" code="0"/>

 </property>

 </table>

</item-descriptor>

The xml-combine="remove" directive ensures that the old receiveEmail property is eliminated from
the profile repository definition.

Debugging Repository Definition Files

If you use multiple repository definition files, it can be difficult to understand how the Dynamo
Application Framework combines all the files into a single repository definition. You can see the
composite repository definition in the ATG Dynamo Server Admin interface in the definitionFiles
property of the profile repository component. The display lists the composite XML repository definition,
as well as the DTD and the locations of all of the source files that make up the repository definition.

Replacing the Standard User Profile Repository Definition
Instead of modifying the standard user profile repository definition, as described in the Extending the
Standard User Profile Repository Definition section, you can replace it completely with a new repository
definition that is fitted to the needs of your ATG application. You can choose between two approaches to
replacing the standard user profile repository definition:

 Use a file name other than userProfile.xml for the profile repository definition file.
See Using a Different Definition File.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 8

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ
 Use userProfile.xml as the file name of the profile repository definition file,

eliminating the standard user profile repository definition with XML file combination.
See Replacing userProfile.xml.

Be aware that if you decide to use an XML file other than userProfile.xml, some features in ATG
Commerce and the Scenarios module will not work unless you include the item-descriptors on which they
depend in your own XML file.

Using a Different Definition File

A profile repository component has a property named definitionFiles that points to the profile
repository definition file. By default, the /atg/userprofiling/ProfileAdapterRepository
component has the following value for this property:

definitionFiles=/atg/userprofiling/userProfile.xml

You can configure your profile repository to use a different user profile repository definition by changing
the value of this property. For instance, if you define your user profile repository definition with a
repository definition file named /myModule/userprofiling/userTemplate.xml, you would set the
definitionFiles property as follows:

definitionFiles=/myModule/userprofiling/userTemplate.xml

The definitionFiles property indicates a location in your configuration path.

Be aware that if you don’t use the default definition file , some components and services that depend on
the item descriptors and properties in this file will not work.

Replacing userProfile.xml

You can replace the standard external user profile repository definition and create an entirely new profile
repository definition file . To do this, use XML file combination to remove the existing item types. It is
possible to remove or replace any tag within the definition file. If you remove or replace a top level tag
such as the <item-descriptor name="user"> tag, you will remove or replace everything within that
tag. This means that all the properties that other ATG modules add to the user item descriptor will be lost.

You must decide if you want to replace the entire definition file, or only parts of it. While you can replace
the whole file, a better approach is to remove specific tables or properties and to append your own table
and property definitions within the file. Once you have decided what parts of the file you want to change,
you can place a file containing your changes in your configuration path at
/atg/userprofiling/userProfile.xml. This removes all item-descriptors, tables, or properties of a
specified name defined in the profile repository by other ATG modules.

For example, if you wanted to modify the userProfile.xml file by adding a property “position” and
removing the property middleName, there is a good way and a bad way to accomplish this. If you remove
the entire contactInfo item-descriptor or the dps_contact_info table, you’ll erase all the other
properties belonging to these tags that you may want to keep. Here’s a bad example of how to modify
the contactInfo information:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 9

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ
<!-- DPS userProfile.xml -->

<!—-Bad Example -->

<gsa-template>

 <item-descriptor name="contactInfo" xml-combine="replace">

 <table name="dps_contact_info">

 <property name="firstName">

 <property name="middleName">

 <property name="lastName">

 </table>

</item-descriptor>

</gsa-template>

Instead, do the following:

<!-- DPS userProfile.xml -->

<!-—Good Example -->

<gsa-template>

 <item-descriptor name="contactInfo">

 <table name="dps_contact_info">

 <property name="firstName">

 <property name="middleName" xml-combine="remove">

 <property name="lastName">

 <property name="position" xml-combine="append">

 </table>

</item-descriptor>

</gsa-template>

For more information on XML file combination, see XML File Combination in the Nucleus: Organizing
JavaBean Components chapter of the ATG Programming Guide

Configuring a Profile Repository Component
The default profile repository components, /atg/userprofiling/ProfileAdapterRepository and
/atg/userprofiling/InternalProfileRepository, are standard SQL repository components. For
information on how to configure them, refer to the Configuring the SQL Repository Component section in
the ATG Repository Guide.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 0

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ
Migrating Profiles for Use with an Internal Profile
Repository

The Profile Migration Manager is a utility provided with the ATG platform that you can use to migrate
items (and selected properties) from one profile repository to another. Among other uses, it allows you to
migrate an environment in which a single ProfileAdapterRepository is used for internal and external
users to one in which internal profiles are stored separately.

The utility migrates items from a ProfileAdapterRepository to an InternalProfileRepository. If
you are running your application with the –layer Preview switch, you can use the
ExternalProfileRepository instead of the ProfileAdapterRepository as the source of the
profiles to migrate. (For more information on the Preview layer and the ExternalProfileRepository,
refer to the ATG Business Control Center Administration and Development Guide.)

To use the Profile Migration Manager, complete the following steps:

1. Navigate to the /atg/userprofiling/ProfileMigrationManager in the ATG
Dynamo Admin Server at the following URL:

http://hostname:port/dyn/admin/nucleus/atg/userprofiling/

ProfileMigrationManager

2. Use the Properties listing to configure the migration parameters as required. See the
descriptions of the available properties below. To change a property value, click the
name of the property, select or type the new entry in the New Value field, and then
click Change Value.

3. Click Build Plan to display a list of the items that qualify for migration. The list shows
the number of qualifying items of each item descriptor and the repository IDs of the
items that will be migrated.

or

Click Build and Execute Plan to display the list of qualified items and start the
migration.

When the migration is complete, the message “INFO Plan execution finished” appears. If you do not see
the message, check the logs for error messages.

Note that the profile migration manager does not delete the profiles from the source repository after
copying them to the destination. If you want to remove the profiles from the source, you must delete
them manually.

Migrated profile items keep the same repository ID. In other words, a user item with ID 10001 in the
source repository has the same ID, 10001, in the destination repository.

If any errors occur during the migration, the entire transaction is rolled back, and the destination
repository is returned to its previous state.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 1

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ
Profile Migration Manager Properties

You can configure the following properties of the Profile Migration Manager:

 sourceRepository

Specify the path of the ProfileAdapterRepository component from which you
want to copy items. It resolves by default to
/atg/userprofiling/ProfileAdapterRepository. If you are running your
application with the –layer Preview switch, you can also specify an
ExternalProfileRepository component as the source.

 destinationRepository

Specify the path of the InternalProfileRepository component into which the
items will be copied. The property is set to
/atg/userprofiling/InternalProfileRepository by default.

 itemDescriptorMapping

This property lists the item descriptors in the source repository and shows the item
descriptors they will be copied to in the destination repository. By default, all item
descriptors in the source are mapped to item descriptors with matching names in the
destination. To exclude an item from the migration, remove its item descriptor and
mapping from this list.

If a specified item descriptor does not exist in the destination repository, an error is
generated when the migration is started.

The following values are specified by default:

user=user

contactInfo=contactInfo

role=role

organizationalRole=organizationalRole

organization=organization

genericFolder=genericFolder

roleFolder=roleFolder

When changing these values, use commas to separate item descriptors, as shown:

itemdesc1=itemdesc1,itemdesc2=itemdesc2,itemdesc3=itemdesc3

 excludedProperties

By default, the utility copies all properties of all items specified in the
itemDescriptorMapping parameter. Use this property to specify any properties that
you do not want to copy.

The following properties are excluded by default:

user item: userType and scenarioValues properties
role item: version property
organizationalRole: version property

Use single commas to separate item descriptors and double commas to separate
properties, as shown:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 2

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ
itemdesc1=property,,property,,property,itemdesc2=property,,property

 includedItemReferences

Profile items typically have references to items in other repositories, for example the
Orders repository. This property indicates the references that should be copied. The
default configuration excludes the following references:

user item: references to homeAddress, parentOrganization, roles, ancestors
organizationalRole item: relativeTo reference
organization item: references to parentOrganization, childOrganizations,
ancestorOrganizations, members
genericFolder item: references to parent, childFolders
roleFolder item: references to childItems, childFolders, parent

Use single commas to separate item descriptors and double commas to separate
references, as shown:

itemdesc1=ref,,ref,,ref,itemdesc2=ref,,ref,itemdesc3=ref,,ref

 overwriteDestinationRepository

Use to indicate whether to overwrite any items in the destination repository that
match items in the source. Items match if they have the same repository ID. Set to false
by default. If an item in the source repository has the same repository ID as a profile in
the destination, and overwriteDestinationRepository is set to false, no migration
is attempted for that item. If overwriteDestinationRepository is set to true, the
source item replaces the destination item.

The default properties file for the ProfileMigrationManager component is shown below.

@version $Id: //product/DPS/main/templates/DPS/InternalUsers/

config/atg/userprofiling/ProfileMigrationManager.properties#2

$$Change: 416942 $

$class=atg.repository.migration.RepositoryMigrationManager

sourceRepository=/atg/userprofiling/ProfileAdapterRepository

destinationRepository=/atg/userprofiling/InternalProfileRepository

transactionManager=/atg/dynamo/transaction/TransactionManager

itemDescriptorMapping=\

 user=user,\

 contactInfo=contactInfo,\

 role=role,\

 organizationalRole=organizationalRole,\

 organization=organization,\

 genericFolder=genericFolder,\

 roleFolder=roleFolder

candidateItemQueryMap=\

 user=ALL,\

 contactInfo=ALL,\

 role=ALL,\

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 3

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ
 organizationalRole=ALL,\

 organization=ALL,\

 genericFolder=ALL,\

 roleFolder=ALL

use double comma (',,') as delimiter for properties

excludedProperties=\

 user=userType,,scenarioValues,\

 role=version,\

 organizationalRole=version

use double comma (',,') as delimiter for references

includedItemReferences=\

 user=homeAddress,,parentOrganization,,roles,,ancestors,\

 organizationalRole=relativeTo,\

 organization=parentOrganization,,childOrganizations,,

 ancestorOrganizations,,members,\

 genericFolder=parent,,childFolders,\

 roleFolder=childItems,,childFolders,,parent

overwriteDestinationRepository=false

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 4

1 - S e t t i n g U p a P r o f i l e R e p o s i t o r y

μ

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 5

2 - S e t t i n g U p a n L D A P P r o f i l e R e p o s i t o r y

μ
2 Setting Up an LDAP Profile

Repository

Lightweight Directory Access Protocol (LDAP) directories are widely used to store personnel information
and other kinds of data. ATG’s LDAP profile repository is an implementation of the Repository API that
enables you to store and access profile data in an LDAP directory. The LDAP repository is similar in
functionality to the SQL profile repository, as described in the Setting Up a Profile Repository chapter.
While by default the Personalization module is configured to use a SQL profile repository, you can change
the configuration to use an LDAP repository instead. Using an LDAP repository enables you to tap into the
profile data you already have in an LDAP directory, and to share user information across multiple
applications.

Just like the SQL profile repository, the LDAP repository implements the ATG repository API to allow you
to store, access, modify, and query user profile information. As in the SQL profile repository, repository
items are first created as transient items (RAM profiles); they become persistent after they are added to
the database. For complete information about LDAP repository concepts, architecture, and code, see the
LDAP Repositories chapter in the ATG Repository Guide.

It is important to note, however, that the LDAP repository implementation is not specific to user profiles in
any way. Since an LDAP directory can be used to store any kind of data (people, groups, mailing lists,
documents, printers, etc.), you could use the LDAP repository to expose any of that data in an ATG
application. For more information, refer to the LDAP Repositories chapter in the ATG Repository Guide.

Scenarios module and LDAP Repositories: You cannot use scenarios with an LDAP profile repository,
because the LDAP repository is not currently powerful enough to express all the data relationships
required by the Scenarios module. If you want to run scenarios, you must use either a SQL repository or a
composite repository to store all profile information.

This chapter includes the following sections:

Creating the LDAP Profile Repository Component

Configuring the Personalization Module to use the LDAP Repository
Describes how to configure the Personalization module to use an LDAP repository.

Sample LDAP Profile Repository Definition File
An example of an XML file that defines an LDAP profile repository.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 6

2 - S e t t i n g U p a n L D A P P r o f i l e R e p o s i t o r y

μ
Creating the LDAP Profile Repository Component

The LDAP profile repository is a component of class atg.adapter.ldap.LDAPRepository. Create and
configure an instance of this component as described in the LDAP Repositories chapter of the ATG
Repository Guide.

Configuring the Personalization Module to use the LDAP
Repository

By default, the Personalization module is configured to use a SQL database to store profiles. To use an
LDAP directory instead, you need to configure the following Personalization module components to work
with the LDAP repository.

Property Description

/atg/userprofiling/ProfileTools The profileRepository property of the
ProfileTools component needs to point to an
LDAP repository instance, rather than a SQL profile
repository. Set the profileRepository property to
the Nucleus address of your LDAP profile repository
component, for example:

profileRepository=

/atg/adapter/ldap/LDAPRepository

The defaultProfileType property of
ProfileTools needs to specify the name of the
item descriptor to which the Profile repository item
belongs. By default, this property is set to user. If
your LDAP repository definition uses a different
name for the Profile item descriptor, set the
defaultProfileType property accordingly.

Unless the LDAP profile item descriptor contains a
securityStatus property, you should set the
enableSecurityStatus property of
ProfileTools to false.

/atg/userprofiling/PropertyManager You may have to modify the PropertyManager
from its standard configuration to match the LDAP
password encryption scheme. See the LDAP
Password Encryption topic in this section.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 7

2 - S e t t i n g U p a n L D A P P r o f i l e R e p o s i t o r y

μ
LDAP Password Encryption

The passwordHasher property of the /atg/userprofiling/PropertyManager component points to a
password hasher component that handles password encryption. By default, this property is set as follows:

passwordHasher=/atg/dynamo/security/DigestPasswordHasher

Change this property to ensure consistency with the LDAP password encryption method you’ve chosen.
For Netscape Directory Servers, set the passwordHasher property like this:

passwordHasher=/atg/adapter/ldap/NDSPasswordHasher

The NDSPasswordHasher component supports SHA or no encryption. Set the encryption property of
the /atg/adapter/ldap/NDSPasswordHasher to the appropriate value:

encryption=SHA

to use SHA password encryption, or

encryption=clearText

to disable password encryption.

For LDAP servers other than Netscape Directory Server, you may need to create your own
PasswordHasher implementation, if none of the PasswordHasher implementations included in the ATG
platform meet your requirements. See the Password Hashing section in the Customizing Application
Security chapter of the ATG Programming Guide for more information about ATG’s PasswordHasher
implementations.

See User Profiling Tools in the Working with User Profiles chapter for more information about configuring
the PropertyManager component.

Sample LDAP Profile Repository Definition File
The following sample LDAP profile repository definition file defines a base item descriptor and view
named user.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE ldap-adapter-template

 PUBLIC "-//Art Technology Group, Inc.//DTD LDAP Adapter//EN"

 "http://www.atg.com/dtds/ldap/ldap_1.0.dtd">

<ldap-adapter-template>

<header>

 <name>ldapUserProfile.xml</name>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 8

2 - S e t t i n g U p a n L D A P P r o f i l e R e p o s i t o r y

μ
 <author>ATG</author>

 <version>Id</version>

</header>

<!-- user view -->

<view name="user" default="true">

 <!-- item descriptor -->

 <item-descriptor name="user" display-name="User" display-property="login">

 <!-- special properties -->

 <id-property name="id" in-ldap="false"/>

 <object-classes-property name="objectClasses" ldap-name="objectclass"/>

 <!-- object classes -->

 <object-class>top</object-class>

 <object-class>person</object-class>

 <object-class>organizationalPerson</object-class>

 <object-class>inetorgPerson</object-class>

 <!-- properties -->

 <property name="login" ldap-name="uid" data-type="string" required="true">

 <attribute name="unique" value="true"/>

 </property>

 <property name="password" ldap-name="userpassword" data-type="string"

 required="true"

 editor-class="atg.beans.PasswordPropertyEditor"/>

 <property name="fullName" ldap-name="cn" data-type="string" required="true"/>

 <property name="lastName" ldap-name="sn" data-type="string" required="true"/>

 <property name="firstName" ldap-name="givenName" data-type="string"/>

 <property name="email" ldap-name="mail" data-type="string"/>

 <!-- item creation -->

 <new-items parent-dn="o=example.com" rdn-property="login"/>

 </item-descriptor>

 <!-- search roots -->

 <search-root dn="o=example.com"/>

</view>

</ldap-adapter-template>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 9

3 - S e t t i n g U p a C o m p o s i t e P r o f i l e R e p o s i t o r y

μ
3 Setting Up a Composite Profile

Repository

The composite repository features included with the Personalization module allow you to set up a profile
repository that integrates information from various data sources, for example one or more SQL databases
and an LDAP directory. The composite repository consolidates these data sources into a flexible, top-level
data layer, allowing you to change or make additions to the data underneath without restructuring the
entire profile repository. Web applications that use this data model are easier to maintain than others with
a more rigid structure, and they can also be written more quickly – for example, you can create a simple
Web site for a company that has a tight deadline for launching its online business, and then you can add
data sources later without disturbing the data model.

In addition to its flexibility, the composite repository provides the following benefits over using a single-
source profile repository:

 Support for scenarios. The Scenarios module requires access to a SQL repository, so as
long as your composite repository includes a SQL database as its primary data source,
you can run scenarios against it. For more information, see Configuring the Scenarios
Module to Use a Composite Profile Repository.

 It allows you to use LDAP directories and other popular forms of data storage while
still giving you access to the power and robustness of ATG’s Generic SQL Adapter
(GSA). For more information on the GSA, see Introduction to Repositories in the ATG
Repository Guide.

 Queryability. A composite repository allows almost unlimited querying of data
regardless of the underlying source. For more information, refer to Performing Queries
against a Composite Profile Repository.

Even if the site you are building currently uses only one type of data source, you may want to set up and
use a composite repository to manage all profile data so that you can easily add data from other sources
in the future.

This chapter describes how to set up a composite repository specifically for use as a profile repository. For
a more comprehensive discussion of composite repositories, including information on basic concepts and
architecture, refer to the Composite Repositories chapter in the ATG Repository Guide.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 0

3 - S e t t i n g U p a C o m p o s i t e P r o f i l e R e p o s i t o r y

μ
Introduction to Composite Profile Repositories

A composite profile repository can have any number of composite views, for example “user,” “broker,”
and “investor.” Each composite view is a top layer of data consolidated from any number of contributing
views. One contributing view is designated as the “primary view,” which provides the ID space for the
item that the views define. (Again, these concepts are explained in more detail in the Composite
Repositories chapter in the ATG Repository Guide.)

The following diagram shows a data model for a composite profile repository that has one composite
view and stores profile data as follows:

 Scenario data and user preferences are stored in a SQL repository

 The user’s phone number is stored in a separate SQL repository

 The user’s first name and last name are stored in an LDAP directory

phoneNumber

SQL repository
 (contributing view)

firstName

lastName

LDAP directory
 (contributing view)

(scenario data)

(user preferences)

SQL repository
 (primary view)

(scenario data)

(user preferences)

firstName

phoneNumber

lastName

 composite view

Composite Profile Repository Data Model

Creating Composite Profile Items

As described above, you designate one contributing view as the primary view. Then you specify a method
for matching (linking) items in each contributing view to items in the primary view – the two possible
methods are linking by repository ID or linking by the value of one or more given properties. (Both

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 1

3 - S e t t i n g U p a C o m p o s i t e P r o f i l e R e p o s i t o r y

μ
techniques are described in the Composite Repositories chapter of the ATG Repository Guide.) When a
getItem() or createItem() method attempts to retrieve an item from the composite repository, the
repository component compares profile items in the contributing and primary views to see if any are
linked; if they are, it creates a composite profile item that is an amalgamation of the properties from the
contributing and primary views.

Consider the following example: You have a primary view and a contributing view as shown in the
diagram below. You choose to link the primary and contributing view by the value of the user’s login
property (called login in the primary view and userLogin in the contributing view). If the values in these
properties match, a composite profile item is created when an item is retrieved from the composite
repository.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 2

3 - S e t t i n g U p a C o m p o s i t e P r o f i l e R e p o s i t o r y

μ

 composite view

 primary view

 property value

firstName Mary

lastName Garcia

login mgarcia

address1 26 Any Street

address2 Springfield

 contributing view

 property value

first_Name Mary

last_Name Garcia

userLogin mgarcia

phoneNum 12345

linking
 properties

 property value

firstName Mary

lastName Garcia

login mgarcia

userLogin mgarcia

address1 26 Any Street

address2 Springfield

phoneNum 12345

first_Name Mary

last_Name Garcia

The expression you would use in the composite repository definition file to specify how to link the two
views is as follows:

 <primary-item-descriptor-link>

 <link-via-property primary="login" contributing="userLogin"/>

 </primary-item-descriptor-link>

For more information, refer to the description of the primary-item-descriptor-link tag in the
Composite Repositories chapter of the ATG Repository Guide.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 3

3 - S e t t i n g U p a C o m p o s i t e P r o f i l e R e p o s i t o r y

μ
Basic Process for Setting Up a Composite Profile
Repository

This section provides a basic overview of the steps you follow to set up and configure a composite profile
repository. Each step is described in detail in the Composite Repositories chapter of the ATG Repository
Guide.

1. Set up all contributing repositories. Note that the composite repository relies on the
data caching mechanism of the underlying repositories; it does not perform any
caching itself. As part of this step, therefore, make sure you configure caching for each
contributing repository as required.

2. For each composite view, set up contributing views and a primary view.

3. Determine the method for linking the primary and contributing views (by repository
ID or by the value of one or more given properties). See Creating Composite Profile
Items in this chapter.

4. If you choose the property value method of linking, select one or more uniquely
valued properties from each contributing view.

5. Identify any contributing properties that you want to exclude from the composite
view. See Resolving Property Names in a Composite Repository in this chapter.

6. Identify any properties you want to rename in the composite view. See Resolving
Property Names in a Composite Repository in this chapter.

7. Write the definition file for the composite profile repository. See the example in this
chapter and the detailed description in the ATG Repository Guide.

8. Configure the Personalization module to use the new repository. See Configuring Your
Personalization Module for a Composite Profile Repository in this chapter.

9. If necessary, configure the Scenarios module to use the new repository. See
Configuring the Scenarios Module to Use a Composite Profile Repository.

Resolving Property Names in a Composite Repository

The composite repository requires that all property names in a composite view map to only one property
from a primary or contributing view. Property names are resolved as follows:

1. If the all-properties-propagate attribute in the definition file is set to true for any
view, all properties from that view are combined into the composite view, retaining
their property names, property types, and any metadata they may have defined.

2. Any properties marked for exclusion are removed from the composite view. See
Explicit Property Exclusion.

3. All explicit property mappings are performed. See Explicit Property Mappings.

4. If any remaining property name is the same as any other property name in the
composite view, the Personalization module generates an error.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 4

3 - S e t t i n g U p a C o m p o s i t e P r o f i l e R e p o s i t o r y

μ
Explicit Property Exclusion

Sometimes you might not want to expose absolutely every property from the primary and contributing
views in the composite view. You can use explicit property exclusion to remove from the composite view
any properties that you do not require.

Examples:

<primary-item-descriptor name=user>

…

 <property mapped-property-name="fax" exclude="true"/>

…

</primary-item-descriptor>

…

<contributing-item-descriptor name=legacyUser>

…

 <property mapped-property-name="age" exclude="true"/>

…

</contributing-item-descriptor>

The default setting for the exclude attribute is false. The mapped-property-name attribute identifies
the property in the underlying repository view that you want to exclude from the composite view.

Explicit Property Mappings

All properties in the composite view must be unique. If two contributing views have properties with the
same name, you can avoid collision by mapping a given property in the composite view to one of the
contributing property names. The following diagram shows a primary view and a contributing view that
both contain a property called phoneNumber. One property stores a user’s home phone number, and the
other holds his or her work phone number. In the example, a workPhoneNumber property is created in
the composite view and mapped to the work phone property in the contributing view.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 5

3 - S e t t i n g U p a C o m p o s i t e P r o f i l e R e p o s i t o r y

μ

phoneNumber

contributing view

phoneNumber

primary view

phoneNumber

workPhoneNumber

 composite view

(stores the user’s home
phone number)

(stores the user’s work
phone number)

Within either the primary or contributing item descriptor definition, use the mapped-property-name
attribute of the <property> tag to create an explicit property mapping. Example:

<contributing-item-descriptor name=legacyUser>

…

 <property name="workPhoneNumber" mapped-property-name="phoneNumber"/>

…

</contributing-item-descriptor>

The mapped-property-name specifies the name of the property in the primary or contributing view (the
underlying repository). The name value specifies the new name for the property in the composite view.

For more information on <property> tags, see Standard User Profile Repository Definition in this manual
and also the SQL Repository Definition Tag Reference chapter in the ATG Repository Guide.

Sample Definition File for a Composite Profile Repository
The following sample shows a simple composite repository definition file for a profile repository that has a
SQL primary view and one contributing LDAP view. For detailed information on the tags you can include
in this file, including a description of the composite repository DTD, please refer to the ATG Repository
Guide.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE composite-repository-template

 PUBLIC "-//Art Technology Group, Inc.//DTD Scenario Manager//EN"

 'http://www.atg.com/dtds/composite-repository/composite-repository_1.0.dtd' >

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 6

3 - S e t t i n g U p a C o m p o s i t e P r o f i l e R e p o s i t o r y

μ

<!-- composite repository definition -->

<composite-repository-template>

 <header>

 <name>A sample Composite Repository template</name>

 <author>Granny</author>

 <version>$Change: 240431 $$DateTime: 2002/05/17 17:23:12 $$Author: jsmith

 $</version>

 </header>

 <!-- composite item descriptor definition -->

 <item-descriptor name="user"

 default="true"

 display-property="login"

 contributing-item-creation-policy="eager"

 null-contributing-item-policy="null"

 link-method="static">

 <!-- primary view definition -->

 <primary-item-descriptor name="gsaUser"

 repository-nucleus-name="/atg/userprofiling/gsa/GSARepository"

 repository-item-descriptor-name="user"

 all-properties-propagate="true"

 all-properties-queryable="true">

 </primary-item-descriptor>

 <!-- contributing view definition -->

 <contributing-item-descriptor name="ldapUser"

 repository-nucleus-name="/atg/userprofiling/ldap/LDAPRepository"

 repository-item-descriptor-name="user"

 all-properties-propagate="true"

 all-properties-queryable="true">

 <primary-item-descriptor-link>

 <link-via-property primary="login" contributing="ldapLogin"/>

 </primary-item-descriptor-link>

 <property name="ldapFirstName" mapped-property-name="firstName"/>

 <property name="ldapLastName" mapped-property-name="lastName"/>

 <property mapped-property-name="password" exclude="true"/>

 </contributing-item-descriptor>

 </item-descriptor>

</composite-repository-template>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 7

3 - S e t t i n g U p a C o m p o s i t e P r o f i l e R e p o s i t o r y

μ
Configuring Your Personalization Module for a Composite
Profile Repository

By default, the Personalization module is configured to use a standard SQL repository to store profiles. To
use a composite repository instead, you need to perform the following steps:

1. Override the ProfileAdapterRepository component with an instance of
atg.adapter.composite.MutableCompositeRepository. See Overriding the
ProfileAdapterRepository Component for more information.

Alternatively, you can create a new instance of the composite profile repository and
then change /atg/userprofiling/ProfileTools and other components to point
to it. This option requires more changes and it is useful only if you must keep both the
standard SQL profile repository and a composite profile repository. See Creating a
Separate Composite Profile Repository for more information.

2. If necessary, change the defaultProfileType property in the ProfileTools
component to point to the name of a composite view in the composite profile
definition. Select the view that you want to use as the default item type if no other
types are specified, for example in a query. You must perform this step if the
composite repository does not contain a composite view with the same name as the
current value of this property (the default value is user). Note that this change may be
necessary regardless of the option you select in step 1.

3. Change the names of any properties as required in the PropertyManager
component. See Updating the PropertyManager for a Composite Repository for more
information.

Overriding the ProfileAdapterRepository Component

To use a composite profile repository instead of the standard SQL profile repository, override the default
/atg/userprofiling/ProfileAdapterRepository so that it is an instance of a
MutableCompositeRepository instead. To do this, create an instance of
atg.adapter.composite.MutableCompositeRepository as described in Creating a Composite
Profile Repository Component, but save it at the Nucleus address
/atg/userprofiling/ProfileAdapterRepository.

Note that performing this step also allows a writable composite profile repository to appear in the ACC
(for example, in the People and Organizations > Users window). The composite repository whose
definition file you specify in the configurationFile property appears in the ACC interface.

Creating a Composite Profile Repository Component

The composite profile repository itself is a component of class
atg.adapter.composite.MutableCompositeRepository. Create an instance of this component with
contents similar to the settings in the MutableCompositeRepository.properties file shown here:

$class=atg.adapter.composite.MutableCompositeRepository

repositoryName=UserProfiles

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 8

3 - S e t t i n g U p a C o m p o s i t e P r o f i l e R e p o s i t o r y

μ
configurationFile=/atg/userprofiling/composite.xml

transactionManager=/atg/dynamo/transaction/TransactionManager

groupContainer=/atg/registry/RepositoryGroups

#loggingDebug=true

#debugLevel=20

In the configurationFile property, specify the XML definition file you created for the composite profile
repository. For more information, refer to Configuring the Composite Repository Component in the
Composite Repositories chapter of the ATG Repository Guide.

Creating a Separate Composite Profile Repository

If you need to keep both the standard SQL profile repository and a separate composite profile repository,
you can do so by creating a new instance of
atg.adapter.composite.MutableCompositeRepository as described in the previous section, and
then pointing all profile repository references that may exist in other components to this composite
repository. For example, you must change the value of the profileRepository property in the
/atg/userprofiling/ProfileTools component as described below. In addition, you must find all
references to the ProfileAdapterRepository in all other components and change them so that they
refer to the new composite repository. Because there are potentially dozens of such references in an ATG
application, this option is not recommended.

Configure the ProfileTools component as follows:

Point the profileRepository property of the ProfileTools component to the composite profile
repository. For example:

profileRepository=/atg/userprofiling/mutableCompositeRepository

For more information, refer to Configuring the ProfileTools Component in the Setting Up a Profile
Repository chapter of this guide.

Updating the PropertyManager for a Composite Repository

The /atg/userprofiling/PropertyManager component keeps track of the property names of
commonly used profile properties such as login, password, and email. Update the setting in this
component to reflect the names of these properties as they are in the composite view after all explicit
mappings and exclusions have been performed. For example, assume you store the user’s email address
in a contributing LDAP repository in a property called emailAddress. In the PropertyManager
component, you would set the email address property name as follows:

emailAddressPropertyName=emailAddress

See the description of the atg.userprofiling.PropertyManager class in the ATG API Reference for a
complete list of PropertyManager property names that you may have to update.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 9

3 - S e t t i n g U p a C o m p o s i t e P r o f i l e R e p o s i t o r y

μ
Configuring Targeted E-mail for a Composite Repository

If you want to use persistent targeted e-mail (the TemplateEmailPersister component) with a
composite repository, and the primary view is an LDAP repository, you must change the user_id column
in the dps_user_mailing table from the following:

varchar(40) references dps_user(id)

to the following:

varchar(255)

This change is necessary because when you use a composite repository with LDAP as the primary view,
the ID that is stored in this column is the LDAP user ID, not the default Dynamo ID. You can make the
change to the database or to the SQL scripts that initialize it.

For more information about the TemplateEmailPersister component, see Stopped E-mail Campaigns.

Configuring the Scenarios Module to Use a Composite
Profile Repository

Scenario-related profile data must be stored in a SQL repository. If you use a composite profile repository,
scenario data must be stored in the primary view, which must use a SQL repository as its data source.

The scenario data that must be in the primary view is any scenario property described in the default
userProfile.xml file included with the Scenarios module.

If you want to use scenarios that perform queries against a user directory (for example, scenarios that filter
users according to their roles or organizations), the user directory information must be stored in a SQL
repository. You cannot run scenarios against an LDAP-based user directory, even within a composite
repository.

Note also that the Scenarios module uses the values of some profile properties, either as criteria for
triggering an element or as part of the process of tracking a user’s progress through a scenario. If you
change the names of any of the profile properties required by the Scenarios module, you must update the
/atg/userprofiling/PropertyManager component for the Scenarios module (class
atg.scenario.userprofiling.ScenarioPropertyManager) to register the new names.

If you choose to keep both the default SQL profile repository and a separate composite repository (see
Creating a Separate Composite Profile Repository), you must also update the subjectRepository
property in the /atg/scenario/ScenarioManager component to point to the new repository.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 0

3 - S e t t i n g U p a C o m p o s i t e P r o f i l e R e p o s i t o r y

μ
Performing Queries against a Composite Profile
Repository

The composite profile repository supports all Repository Query Language (RQL) queries, even those
referencing properties that come from different underlying repositories (as long as they are included in
the composite view). For more information on RQL, see Repository Query Language in the ATG Repository
Guide.

Note that query performance depends to some extent on the complexity of the query—specifically, it
depends on the number of comparisons across contributing views that a given query requires. For
example, the following very common type of query generally provides a high level of efficiency:

 Find all users whose firstName is John and whose phoneNumber is 555-1212

This type of query compares properties in the composite view to constant values, and it joins those
comparisons together via AND and OR statements. In this example, the composite repository stores
firstName in the primary (GSA) view and phoneNumber in a contributing (LDAP) view. It is impossible,
however, to return the appropriate set of composite users from a single query. Therefore, the composite
view breaks the query down into sub-queries, each of which can be run against a single underlying
repository. Then the results of the sub-queries are put together using the AND or OR rules, and a final result
set is returned.

By contrast, the following example shows a type of query that may perform poorly:

 Find all users whose dayPhone is equal to their workPhone

Here, the dayPhone composite property comes from the primary (GSA) view and workPhone comes from
a contributing (LDAP) view. For this query, the composite view must find the day phone number of every
user in the primary view and compare it to the work phone number of its counterpart in the contributing
view. If the values match, the user is added to the result set. Obviously, if the number of users is large, this
search could take some time. It is recommended that you use this type of query sparingly to avoid an
adverse effect on site performance.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 1

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
4 Working with User Profiles

This chapter discusses how to work with user profiles to control access to your sites. This chapter includes
the following sections:

Tracking Users
Describes how to track users that access your sites, with or without cookies.

User Profiling Tools
Describes user profiling services built on the Repository API that can help you handle
user profiles in your application.

Profile Form Handlers
Describes profile form handler components that associate values entered in forms
with profile properties.

Multiple Profile Form Handlers
Describes multiple profile form handler components that associate values entered in
forms with multiple profile properties.

Password Hashing
Explains how to make passwords secure by configure the Personalization module to
hash user passwords.

Using Case Insensitive Login Names
Explains how to configure the Personalization module to ignore case in login names.

Access Control
Explains how to use the Access Control Servlet to restrict access to parts of your sites.

Tracking Users
Whenever a user accesses a site that uses the Personalization module, two different mechanisms are used
to track the user’s actions:

 A session is created for the user, and is maintained either through a cookie or through
URL rewriting.

 The user is associated with a profile.

The Session Tracking chapter of the ATG Programming Guide discusses session creation and tracking. This
section describes methods for tracking users by associating them with profiles. It discusses the following:

 methods for tracking guest users

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 2

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
 methods for tracking permanent users

 how to use cookies to maintain information about users

Tracking Guest Users

Guests are anonymous users who have not registered and have not logged in. There are several different
strategies you can use to track anonymous guest users:

 Maintain a session for each guest, using ATG’s session tracking, but do not attempt to
gather any additional profile information.

 Maintain a profile for each guest in memory, using implicit profile properties, but
discard the profile when the guest’s session expires.

 Maintain a profile for each guest in the database, using a persistent cookie to identify
anonymous users on subsequent visits. Note, however, that most sites have large
numbers of casual or infrequent users. If you maintain a profile for each person who
visits a site even once, your database resource requirements may be very heavy.

To maintain persistent profiles for guest users, perform the following steps:

 Set the persistentAnonymousProfiles property of the
/atg/dynamo/servlet/dafpipeline/ProfileRequestServlet component to
true. With this setting, a new profile is created in the database for each anonymous
visitor.

 Set the persistAfterLogout property of the
/atg/dynamo/servlet/dafpipeline/ProfileRequestServlet component to
true. Setting this property ensures that a profile is created in the profile repository
immediately after an anonymous user logs out of a Web site.

 Set the profileRequestTools property of the
/atg/dynamo/servlet/dafpipeline/ProfileRequestServlet component to
/atg/userprofiling/ProfileRequestTools.

 Enable auto-login by setting the autoLogin property to true in the
userprofile.xml file. (For more information, see Auto-Login with Cookies.)

 Configure your profile repository so that no properties are required (check the
repository definition file to make sure that the required attribute is not set to true for
any properties).

 Configure your profile repository so that properties not necessary for auto-login are
not marked as required (check the repository definition file to make sure that the
required attribute is not set to true for any such properties).

Note that the login and password properties are required for auto-login to work
correctly. The properties are set temporarily to the user ID. When the user registers,
they are populated with data that the user supplies.

To change the value that is used for the temporary data, extend the
/atg/userprofiling/ProfileRequestTools component and use the
setTemporaryRequiredPropertyValue method to specify a different temporary
value for your required properties.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 3

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
By default, the Personalization module does not send a login event when it creates a persistent profile for
an anonymous visitor. To have the system send a login event in these circumstances, set the
sendLoginEventForNewPersistentAnonymousProfiles property of the ProfileRequestServlet
to true.

For information about controlling access for guests, see the Controlling Anonymous User Access section
in this chapter.

Tracking Registered Users

When a registered user accesses one of your sites, that user needs to identify himself or herself to the
Personalization module to ensure that the correct profile is associated with him or her. Typically, this is
done by requiring the user to log in. Requiring a login helps maintain the security of your sites.

However, logging in may be an annoyance to users, especially if it is not necessary for security reasons.
For example, you may use the Personalization module to target personalized content to registered users,
but your sites may not contain any material to which access is restricted. If this is the case, you may want
to use the Personalization module’s Auto-Login feature. If you use Auto-Login, users do not have to login
to your sites, but the Personalization module still has sufficient information to determine the profile to
use.

When you enable auto-login, the Personalization module attempts to log in a visitor automatically, using
the value of the REMOTE-USER HTTP header from the visitor’s request. If the Personalization module
doesn’t find a profile with a visitor login property that corresponds to the REMOTE-USER header, it treats
the visitor as anonymous and creates an anonymous profile, until the visitor actively logs in. The
Personalization module cannot automatically log in a visitor unless the visitor is registered.

Auto-Login

The Personalization module offers three methods you can use to automatically log in visitors who are
returning to a site without requiring them to enter a login:

 Auto-Login with Basic Authentication

 Auto-Login with Cookies

 Auto-Login by Profile

Note that if you use any of these forms of auto-login, the Personalization module sends the login event
before it sends the session creation event. This is because the session event needs to be able to refer to
the user’s profile.

Auto-Login with Basic Authentication

You can set up your sites to log in member visitors automatically either using cookies, as described in the
Auto-Login with Cookies section, or using the ATG’s Basic Authentication service.

To enable the auto-login feature for Basic Authentication, set the following property in the
/atg/userprofiling/ProfileRequestServlet:

verifyBasicAuthentication=true

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 4

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
For more information about using the Basic Authentication service, see the discussion of the
BasicAuthenticationPipelineServlet in the Request Handling with Servlet Pipelines chapter of the
ATG Programming Guide.

Auto-Login with Cookies

You can configure the Personalization module to use persistent cookies with its auto-login features. To
configure the Personalization module to send auto-login cookies, set the following property in the
/atg/userprofiling/CookieManager component:

sendProfileCookies=true

Note that if you use auto-login with cookies, the user can access a site without logging in until the cookie
expires. However, if the user explicitly logs out, the Personalization module overwrites the persistent
cookie with a temporary cookie, so that the user must explicitly log in the next time he or she accesses the
site. (This gives users a way to keep unauthorized people from accessing their data.)

If you use auto-login with cookies, you should not also use auto-login with Basic Authentication. Disable
the auto-login feature for Basic Authentication by setting the following property in the
/atg/userprofiling/ProfileRequestServlet:

verifyBasicAuthentication=false

See Auto-Login with Basic Authentication for more information.

Auto-Login by Profile

You can set up your sites so that registered users can choose whether or not they want the sites to log
them in automatically. After a user registers on one of your sites for the first time, his or her login
information is stored in a user profile. You can provide a “Log me in automatically” option that users can
choose on your Web sites. If they choose this option, set the autoLogin property of their user profile to
true. (Note that autoLogin is the default name for this property; you can change it by setting the
autoLoginPropertyName property of the /atg/userprofiling/PropertyManager component.)

Once users choose auto-login, every time they visit one of your Web sites, the Personalization module
checks their user profile and, if the auto-login property is set to true, the PropertyManager component
tells the ProfileRequestServlet to send out an auto-login cookie and allows the user to automatically
access the sites. To use this form of auto-login, you must therefore also set the sendProfileCookies
property of the CookieManager component to true. See Auto-Login with Cookies for more information.

Note that auto-login applies to all Web sites in a multisite environment. If a user is automatically logged in
for one site in your system, he or she is logged into all sites.

Profile Cookie Configuration

You can configure many aspects of whether and how the Personalization module sends profile cookies
using the CookieManager component (/atg/userprofiling/CookieManager). The CookieManager
has the following properties:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 5

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
sendProfileCookies
Set to true to send a profile cookie including the user ID. See Auto-Login with
Cookies. (Default false)

profileCookieDomain
If present, this defines the value of the domain field that is sent for profile cookies.
(Default null)

profileCookieComment
Comment of the cookie used to carry the user ID, if cookies are in use. (Default null)

profileCookieMaxAge
If present, this defines the value of the maximum age of the cookie, in seconds. A value
of -1 indicates that there is no maximum age, making cookies non-persistent. (Default
-1)

profileCookiePath
If present, this defines the value of the path field that will be sent for profile cookies.
(Default /)

profileCookieSecure
If true, cookies will include the secure field, which indicates to the browser that
cookies should only be sent using a secure protocol, such as HTTPS or SSL. (Default
false.) Note that, depending on the browser, this setting could prevent visitors from
using the auto-login feature to access the site.

cookieHashKey
Sets a secret key that the Personalization module uses to hash the user ID cookie. This
behavior makes user cookies more secure and prevents users from using another
user’s profile by changing their cookie. Invalid profile cookies are ignored. You may
want to change this from the default value, so that your site cookies will be hashed
with a different key from that used by other sites that run ATG products.

Using Persistent Cookies

By default, the cookies that the Personalization module sends are temporary; they expire when the user
exits the browser. To enable auto-login or persistent anonymous profiles, you must configure the
/atg/userprofiling/CookieManager component to use persistent cookies.

The profileCookieMaxAge property of the CookieManager component controls cookie persistence.
This property sets the number of seconds from the time the profile cookie is sent until it expires. If you set
the property to -1 (the default), cookies are not persistent.

For example, suppose you enable auto-login, but you want the user to log in manually after a week. You
would set profileCookieMaxAge to the number of seconds in a week:

profileCookieMaxAge=604800

Securing Cookies

To make user cookies more secure and prevent site visitors from changing their cookies (which could
allow them to use someone else’s profile), the Personalization module includes a feature for checking
profile ID cookies that it can use to validate the visitor’s cookie.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 6

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
If you choose to send profile cookies (by setting sendProfileCookies to true), the Personalization
module automatically sends two cookies, DYN_USER_ID and DYN_USER_CONFIRM. The
DYN_USER_CONFIRM cookie is a hash of the user ID cookie. If the hashed DYN_USER_CONFIRM cookie
does not match the user ID cookie, the Personalization module ignores the cookies and creates a new
profile.

To change the secret key that the Personalization module uses to hash the user ID cookie, edit the
following property of /atg/userprofiling/CookieManager:

cookieHashKey=

Security Status

Web sites need to balance the user’s convenience with the need for security. If security is critical, you will
typically want to require the user to enter a user name and password to access your sites. If security is not
critical, your site can use auto-login so the user does not have to manually log in.

In some cases, you may want to require users to log in manually only if they access certain pages. To do
this, you can use a combination of auto-login and manual log in. A user can access a site without manually
logging in, but must explicitly provide a user name and password before seeing restricted pages.

The securityStatus property of the Profile component is used to indicate the type of verification the
user has passed through. When a user logs in (or is automatically logged in), the Personalization module
sets the value of this property to an integer that indicates the login method used. You can then use this
information in other areas of the site.

For example, if the user tries to access a restricted page, you can check the securityStatus value. If
securityStatus indicates the user has already manually logged in, the restricted page is displayed; if
securityStatus indicates the user was automatically logged in, the site prompts for a user name and
password before displaying the page, to ensure that no unauthorized person can access the restricted
content. The system then changes the value of securityStatus to indicate that the user has logged in
manually, so future attempts to access restricted content during the session do not require re-entering
the user name and password.

The following table lists the values of securityStatus and the login methods to which they correspond.
Note that the default value is 0. If a user accesses the site without logging in at all, the value of
securityStatus is 0. If the user logs in manually, or is automatically logged in, the system sets
securityStatus to one of the other values.

Value Login Method Used

0 Anonymous login

1 Auto-login by URL parameter

By default this login method is disabled. You can enable it by setting the
extractProfileFromURLParameter property of
/atg/userprofiling/ProfileRequest to true.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 7

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
2 Auto-login by cookie

By default this login method is disabled. You can enable it by setting the
extractProfileFromCookieParameter property of
/atg/userprofiling/ProfileRequest to true.

3 Login by http-(basic-authentication)

The user has provided a login and password, but it was provided to and verified by the
Web server, not the Personalization module.

4 Explicit login or registration in the Personalization module

The user signed in or registered using a login form that invoked
/atg/userprofiling/ProfileFormHandler.

5 Explicit login or registration in the Personalization module under https protocol.

Similar to 4, but login was through secure sockets layer (https protocol).

6 Certificate (not supported by ATG at this time).

Repository Definition

The security status property is defined in the standard user profile template as follows:

<!-- The securityStatus property is transient but a column exists in

the dps_user table.-->

<!-- If you would like to use it, just put this property descriptor within

the table tags.-->

<!-- If this property is made persistent, you may also make it queryable.-->

<property name="securityStatus" data-type="enumerated" default="ANONYMOUS"

 queryable="false" category-resource="categoryInfo"

 display-name-resource="securityStatus"

 property-type="atg.repository.SessionEnumPropertyDescriptor">

 <option value="ANONYMOUS" code="0"/>

 <option value="URL-PARAM" code="1"/>

 <option value="AUTO-SIGNIN" code="2"/>

 <option value="HTTP-BASIC-AUTH" code="3"/>

 <option value="EXPLICIT-SIGNIN" code="4"/>

 <option value="SECURE-SIGNIN" code="5"/>

 <option value="CERTIFICATE" code="6"/>

 <attribute name="resourceBundle"

 value="atg.userprofiling.UserProfileTemplateResources"/>

 </property>

securityStatus is a transient property by default, which means that it is not stored in the underlying
database (for more information, see the ATG Repository Guide). It is also a property of type
atg.repository.SessionEnumPropertyDescriptor, which means that its state is maintained in the
user’s session rather than in the cache for the profile repository item. This behavior ensures that each visit

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 8

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
to the Web site produces a unique securityStatus value, and that the securityStatus always expires
when the session ends.

Disabling Security Status

By default, security status is enabled. You can disable it by setting the enableSecurityStatus property
of the /atg/userprofile/ProfileTools component to false.

If you do not have the securityStatus property configured in your profile definition file, the
Personalization module automatically disables security status to avoid errors.

Security Status and Failover

In some cases you may want the security status to be reset for all users after server failover, requiring
them to log in again. In other cases, it may be appropriate for your users’ security status to persist after
failover. You can define this behavior through the failedOverSecurityStatus property in the
/atg/userprofiling/ProfileFailService component.

By default, the property is set to 3 (basic authentication only; users must log in to the Personalization
module again). If you set the value to -1, the users’ existing security status will be the same after failover.

If you change the value of the failedOverSecurityStatus property, you must also add
ProfileFailService.failedOverSecurityStatus to the list of properties to fail over. See Enabling
Session Backup in the ATG Installation and Configuration Guide for more information.

Using Security Status in Content Pages

You can access the value of the securityStatus property in any content page (JSP or .JHTML file). For
example, in JSP code you could display the value using a dsp:valueof tag:

<dsp:valueof bean="/atg/userprofiling/Profile.securityStatus"/>

In JHTML:

<valueof bean="/atg/userprofiling/Profile.securityStatus"></valueof>

In actual use, you will typically want to compare the value of securityStatus to some minimum
security level. The /atg/userprofiling/PropertyManager component has seven properties that
correspond to the levels of securityStatus:

 securityStatusAnonymous

 securityStatusUrl

 securityStatusCookie

 securityStatusBasicAuth

 securityStatusLogin

 securityStatusSecureLogin

 securityStatusCertificate

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 9

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
For example, the PropertyManager.securityStatusLogin property has a default value of 4, which is
the value that Profile.securityStatus is set to if the user logs in manually under http protocol.

The following JSP example illustrates a typical use of securityStatus. The Compare servlet bean
compares the value of securityStatus to the value of the securityStatusLogin property of the
PropertyManager component. If the value of securityStatus is less than the value of
securityStatusLogin, the user did not log in manually, so a login form is displayed. If the value of
securityStatus is greater than or equal to the value of securityStatusLogin, the user has already
manually logged in, so the requested content is displayed.

<dsp:droplet name="Compare">

 <dsp:param bean="Profile.securityStatus" name="obj1"/>

 <dsp:param bean="PropertyManager.securityStatusLogin" name="obj2"/>

 <dsp:oparam name="lessthan">

 <!-- send the user to the login form -->

 <dsp:include page="login_form.jsp"></dsp:include>

 </dsp:oparam>

 <dsp:oparam name="default">

 <!-- allow the user to proceed to the protected content -->

 <dsp:include page="protected_content.jsp"></dsp:include>

 </dsp:oparam>

</dsp:droplet>

Here is the same example in JHTML:

<droplet bean="Compare">

 <param name="obj1" value="bean:Profile.securityStatus">

 <param name="obj2" value="bean:PropertyManager.securityStatusLogin">

 <oparam name="lessthan">

 <!-- send the user to the login form -->

 <droplet src="login_form.jhtml"></droplet>

 </oparam>

 <oparam name="default">

 <!-- allow the user to proceed to the protected content -->

 <droplet src="protected_content.jhtml"></droplet>

 </oparam>

</droplet>

User Profiling Tools
This section describes services within the Personalization module that can help you handle user profiles in
your application. These services within Nucleus are built upon the underlying Repository API.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 0

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
/atg/userprofiling/Profile

The Personalization module creates a Profile session-scoped object for each user when the request is
processed by the ProfileRequestServlet. This component is a wrapper around the RepositoryItem,
which represents the user. In the default configuration, the ProfileRequestServlet creates an
anonymous RAM-based profile and sets the dataSource property of the Profile object. Later, if the
user logs in or goes through some other authentication process, the instance of the Profile object does
not change in the session, but the dataSource value is swapped out with the RepositoryItem that
represents the user’s persistent profile.

You should use the Profile component to access the profile properties of the user. A registered
property mapper allows the profile properties to be accessible from your site content pages. (See the
Setting Up Targeting Services chapter.) The instance of the Profile object is what the targeting engine
uses to evaluate business rules in context of the person.

The class that defines this component implements the RepositoryItem interface, and all calls to those
methods pass through to the RepositoryItem specified by the dataSource property. In addition, this
class adds an extra JavaBean property named transient. The transient property returns true when
the profile for the user is anonymous and returns false when the user is authenticated. You may find this
property useful with Switch servlet beans within content pages to show content to members of your
sites.

You can subclass this component and add your own session-based JavaBean properties. These properties
will also be accessible in targeting and visible in the the ATG Business Control Center and the ACC. To
register your own subclass to be instantiated for the /atg/userprofiling/Profile component, you
need to override the $class definition from the default configuration.

You can also add new property types to the SQL repository. Since most Profile objects are
RepositoryItems in the SQL repository, adding new property types to an item may be more effective
than creating your own subclass of the Profile object. For more information, see User-Defined Property
Types in the SQL Repositories chapter of the ATG Repository Guide.

/atg/userprofiling/ProfileRequest

The ProfileRequest component is a request-scoped object that gives you information about the
request as related to profile-specific parameters. It tells a developer the source of information used to
fetch the profile (e.g. persistent cookie, basic authentication). In addition, it can give you the status of the
profile request (e.g. old vs. new profile).

/atg/userprofiling/ProfileTools

The ProfileTools service is a very useful component because it implements many different pieces of
functionality related to the Repository API. In addition, it has references to the other globally-scoped
Open Profile Adapter services. It includes a reference to the current Profile repository through the
profileRepository property. If you need access to the global profile services within your own
components, it usually makes sense to have your own classes include a property reference to the
ProfileTools object. From this object, you can access all other facilities. Alternatively, you can keep
specific properties in your components (for example just a MutableRepository property), but you must
define the source of your property to link to the ProfileTools's property reference.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 1

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
This service provides methods that deal with the session-scoped Profile object and also contains lower-
level, repository-specific helper methods. The class defines methods for locating users by login or user ID,
creating users, and updating properties of profiles. These methods save the developer time because they
all use the same Repository APIs. For example, if you need to find a profile based on a login name,
normally you would have to do the following:

 fetch the RepositoryView that contains the user

 build a query object to perform a comparison between the supplied user name and
the login profile property

 execute the query

That logic sequence is written already, and you can access it with a single method call from the
ProfileTools component.

Note that a similar implementation of this service exists for the internal profile repository:
/atg/userprofiling/InternalProfileTools.

/atg/userprofiling/PropertyManager

The PropertyManager keeps track of information about important profile properties. This includes
system-wide functionality that manages “well known” properties that the personalization engine expects.
For example, most personalization systems rely on a login profile property. You may want to change the
exact name of that property due to legacy issues with different systems (for instance, a system may need
to call it username rather than login). This service allows you to configure the Personalization module to
know the name it should use when dealing with these expected profile properties. This component is
used by the ProfileTools.locateUserFromLogin method, which builds a Repository query looking
for people with a specific login property. You can use this service to configure the name that this method
uses for the login property.

The PropertyManager also provides configuration properties to determine if the Personalization module
should be using a one-way hash of a password or store it as clear text in the database, and to specify the
hashing algorithm. For more information, see the Password Hashing section of this chapter.

/atg/userprofiling/ProfileEventTrigger

The ProfileEventTrigger defines methods that fire off events into the system that correspond to
discrete points in a user’s site experience. These points include login, logout, and registration events. The
ProfileFormHandler and MultiProfileFormHandler use this object to automatically broadcast
these events. If you create custom form handlers, you can use this service to broadcast events as well.

/atg/userprofiling/ProfileUpdateTrigger

The ProfileUpdateTrigger component defines methods that send JMS messages when a user or an
administrator updates a profile by way of a profile form handler or multiple profile form handler (see
Profile Form Handlers).You can then set up scenario events that are triggered when one of these
messages is received. For example, you could create a scenario that sends an e-mail when a user changes
his or her maritalStatus property from “single” to “married”. For information on how to configure such

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 2

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
a scenario, see Updates Profile Property in the Scenario Events section of the ATG Personalization Guide for
Business Users.

The ProfileUpdateTrigger component contains four properties that trigger the sending of different
types of profile update message. All four properties are set to true by default, and each one has a
corresponding event that you can include in scenarios. (For more information, see Using Scenario Events.)

The properties of the ProfileUpdateTrigger component are described below.

Property Description

messageSource Specifies the name of the messageSource
component to use to send messages

Default:
/atg/userprofiling/DPSMessageSource

generateProfileUpdateEvents Sends a ProfileUpdate message when a
user changes his or her profile.

Triggers an Updates Profile scenario event in
the Scenarios module.

Default: true

generateAdminProfileUpdateEvents Sends an AdminProfileUpdate message
when an administrator changes a user profile.

Triggers a Profile Is Updated event in the
Scenarios module.

Default: true

generateProfilePropertyUpdateEvents Sends a ProfilePropertyUpdate message.
A message is sent when a users changes any
of the properties listed in the
propertiesToSendUpdateEvents property.

Triggers an Updates Profile Property event in
the Scenarios module.

Default: true

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 3

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
generateAdminProfilePropertyUpdateEvents Sends AdminProfilePropertyUpdate

messages. A message is sent when n
administrator changes any of the properties
listed in the
propertiesToSendAdminUpdateEvents
property.

Triggers a Profile Property is Updated event in
the Scenarios module.

Default: true

propertiesToSendUpdateEvents The list of properties referenced by the
generateProfilePropertyUpdateEvents
property.

Default: null (a message is sent when any
property is changed)

propertiesToSendAdminUpdateEvents The list of properties referenced by the
generateAdminProfilePropertyUpdateE

vents property.

Default: null (a message is sent when any
property is changed)

Profile Form Handlers
The Personalization module provides form handler classes that you can use to create and manage user
profiles. A profile form handler connects a registration or login page to a profile in a profile repository.
You can use a profile form handler to add new profiles, edit the current profile, and handle user login and
logout.

The main profile form handler class is atg.userprofiling.ProfileFormHandler. This class provides
all of the form handling functionality that many sites will need. The Using Profiles and Profile Forms chapter
of the ATG Page Developer’s Guide explains how to use this form handler class in content pages.

Most of the functionality in the ProfileFormHandler class is inherited from
atg.userprofiling.ProfileForm, which it extends. The source code for both
ProfileFormHandler.java and ProfileForm.java can be found in the
<ATG10dir>/DPS/src/Java/atg/userprofiling directory.

This section discusses how the ProfileForm class and the ProfileFormHandler class work internally.
You can create your own form handler classes by extending either of these classes. The class to subclass
depends on what you want to use the new profile form handler for. The ProfileForm class is designed to
be more generic and can perform operations on any profile, whereas the ProfileFormHandler class
operates on the user’s current session-scoped Profile object.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 4

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
Note that when you use an instance of a profile form handler, you must make sure that certain
components are correctly configured:

 All profile form handlers have a profileTools property that must reference the
globally scoped service /atg/userprofiling/ProfileTools.

 If the profile form handler is of class atg.userprofile.ProfileFormHandler (or a
subclass of this class), it has a profile property that must reference the session-
scoped Profile object, located at /atg/userprofiling/Profile.

The ProfileForm Class

The ProfileForm class has a set of submit handler methods for working with profiles. Each of these
methods performs a specific form handling task, such as logging in a user. When a handler performs its
task, it can perform several additional actions, including preprocessing and post-processing steps, and
redirecting the user to the appropriate page depending on whether or not it encountered errors.

The following table summarizes the main handler methods of the ProfileForm class. Each of these
methods is then explained in greater detail.

Method Function

handleCreate Creates a new permanent profile and sets the profile attributes to the
values entered in the form.

handleUpdate Modifies the attributes of the current profile.

handleLogin Uses the login and password values entered by the user to associate
the correct profile with that user.

handleChangePassword Changes the password attribute of the profile to the new value entered
by the user.

handleLogout Resets the profile to a new anonymous profile and optionally expires
the current session.

handleCreate

The handleCreate method calls three other methods that you can override to add to or modify the
default functionality. The preCreateUser and postCreateUser methods are protected methods with
no functionality. They exist as stubs for subclasses to insert application logic before and after a persistent
user is registered in the profile repository. After the preCreateUser method is called, the handler
invokes the checkFormError method. This checks for errors in the form and stops processing if it finds
any. The createUser method takes all the form values submitted by the user and attempts to register
the user.

The first step in registering a user is verifying that the user has supplied all the required form parameters.
By default, the only required form parameter is the confirmation password parameter. The
checkForRequiredParameters method is invoked if the ProfileForm component’s
checkForRequiredParameters property is set to true. In addition, if the ProfileForm component’s

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 5

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
confirmPassword property is set to true, the handler requires the user to submit the form with an
additional parameter that is not part of the profile definition. This parameter is the confirmation password
parameter, which is used to verify the password profile attribute value supplied.

After this first pass for verification, the system checks to see if a user already exists with the given login
name, and then uses the createProfileItem method to construct a MutableRepositoryItem that
represents the new user. At this point, the user’s profile exists as an object, but is not yet stored in the
database.

After the MutableRepositoryItem is created, it is updated to contain all the attributes the user supplies.
Next, if the ProfileForm component’s checkForRequiredProperties property is set to true, the
form calls the checkForRequiredProperties method to see if any of the profile attributes are required.
If any profile attributes are required, it checks whether the value of any of the required profile attributes is
null.

Finally, the createUser method transforms the RAM-based profile into a persistent profile stored in the
profile database by invoking the addUser method. After the createUser method is finished, the
handleCreate method takes the new persistent MutableRepositoryItem and updates the form
handler to use that as the current profile. At this point, the session-scoped Profile object’s dataSource
property is updated so that it also references the new persistent user data structure. As a final step, the
postCreateUser method is called, by which time the user will be a fully registered member. As noted
above, the postCreateUser does not do anything; it exists as a stub that you can override if you subclass
ProfileForm.

handleLogin

The handleLogin method is similar to the handleCreate method. It, too, provides three significant
methods that you can override: preLoginUser, findUser and postLoginUser. For each of the handleX
methods, the preprocessing and post-processing methods have no implementation. They are stubs that
you can override in subclasses. The findUser method is called after the preLoginUser method. It
attempts to locate the correct user based on the login and password information that the user supplies,
invoking the /atg/dynamo/security/IdentityManager to perform the verification of the login. If a
user is not found with a matching login name and password, the method then attempts to find a user
based on only the login name. If this process finds a user, then it is evident that the password supplied
was invalid and the form indicates that in an appropriate form exception. If no user is found with a
matching login, then the form indicates that the login name supplied was incorrect.

You can specify that certain properties should be copied upon login from the anonymous profile to the
registered user’s account. This is useful if anonymous site visitors accumulate profile information that you
do not want to lose when they log in. The method copyPropertiesOnLogin implements this
functionality. Specify which profile attributes you want copied to the persistent profile with the
propertiesToCopyOnLogin property of the ProfileForm component.

After the user has been identified by login and password and any desired properties are copied, the data
structures for the form handler and session-scoped Profile object are updated to reference the
registered user’s RepositoryItem.

For more information on login verification, see Managing User Logins.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 6

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
handleLogout

The handleLogout method allows users to log out of their authenticated sessions. Like the other
handleX methods, you can subclass ProfileForm to use the preLogoutUser and postLogoutUser
methods. The ProfileForm property expireSessionOnLogout defines the default behavior of the
handleLogout operation. The user’s session is invalidated when the handleLogout method is called if
the expiresSessionOnLogout property is set to true, which is the default value. After logout, a
subsequent request from the same user creates a new anonymous RAM profile.

If you do not wish to expire the session when you perform the logout, set the expireSessionOnLogout
property to false. With this setting, the form handler and session-scoped Profile objects are reset to
use a new anonymous RAM profile, but maintain the same session. When the user is redirected after a
successful logout operation, the Personalization module adds an extra query argument labeled
DPSLogout to the session ID information The default value of DPSLogout is true. The parameter name is
defined by the constant atg.userprofiling.ProfileRequestServlet.LOGOUT_PARAM. The
ProfileRequestServlet recognizes this query parameter and disables auto-login for the life of the
session by setting a parameter AutoLogin in the user’s session to Boolean.FALSE. Otherwise, if you
have configured the Personalization module to use auto-login, the persistent cookie or Basic
Authentication information automatically attempts to reload the user profile even though the user
logged out. See the Tracking Users section of this chapter for more information.

handleDelete

The handleDelete method permanently removes a user from the profile repository. The
preDeleteUser and postDeleteUser methods are available for performing actions before and after the
process of actually removing the user profile. The removeUser method performs the function of deleting
the user profile. This method uses the current value of the repositoryId property of ProfileForm
when invoking the MutableRepository.removeItem method.

handleUpdate

The handleUpdate method takes values entered into a profile form and explicitly updates the user’s
profile with new attribute settings. Processing can occur before and after the update procedure by
overriding the preUpdateUser and postUpdateUser methods. The updateUser method modifies the
user’s profile with the values submitted in the form. This method checks for required parameters in a
process similar to the handleCreate method.

The updateUser method calls the updateProfileAttributes method before committing the changes
by calling the MutableRepository.updateItem method. All the parameters that are managed by the
form handler are stored in a Dictionary through the ProfileForm component’s value property. These
values are stored in the Dictionary for all form submissions, including operations for handling the
registration and login of users. The updateProfileAttributes method iterates through all the
submitted parameters and looks for an associated attribute in the user profile.

Once the updateProfileAttributes method finds a profile attribute, the same method checks the
value of the profile attribute’s RepositoryPropertyDescriptor writable property to determine
whether the attribute can be updated. If this value is true, then the value stored in the Dictionary is
parsed into the correct data type for the profile attribute. Additional transformations may occur,
depending on the property to be updated. For example, for the password property, in the default
configuration, the plain-text password value is turned into a hash representation and updated in the
profile.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 7

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
By default, the login and email attributes are trimmed to remove trailing and leading spaces. The list of
properties to trim is defined by the trimProperties property. The protected method isTrimProperty
is used to test if the specific property should be trimmed. The current implementation iterates over the list
of properties specified by the trimProperties property and returns true if a match is found.

The MutableRepositoryItem for the profile is updated with all the form changes. After the update, the
same verification for required profile attributes occurs as in the handleCreate process. If there are no
errors, all updates are committed in one transaction. If there are any errors, no changes are made.

handleChangePassword

The handleChangePassword method allows users to update their password profile attribute. This
specific handler is available because it allows the form to check that the user changing the password
knows the original password value. Optionally, you can ask for a confirmation password value to verify
that the user did not mistype the new password entry. This handler also contains the standard
preprocessing and post-processing methods. The changePassword method compares the old password
value with the confirm password value. The generatePassword method of the PropertyManager is
used to transform the user’s password value (using a one-way hash) into the value that is stored in the
database.

The ProfileFormHandler Class

The atg.userprofiling.ProfileForm class can perform its operations on any profile. The property
ProfileForm.repositoryId defines the current profile that is being manipulated.

The ProfileFormHandler class is designed to perform its operations on the profile of a particular user
navigating your Web site. It adds a profile property that should be set to the session-scoped
atg.userprofiling.Profile object. The repositoryId property get and set methods are
overridden to reference this Profile object.

The createProfileItem method is subclassed to add optional behavior for registration. Typically, when
a visitor registers, you want to transform the current anonymous profile into a registered profile, taking
along all of the visitor’s current profile attributes. ProfileFormHandler allows you to set the property
createNewUser to true, with the result that all registrations start with a clean profile.

The ProfileFormHandler class uses the preprocessing and post-processing methods (such as
postCreateUser and preLogoutUser) to extend the functionality in the ProfileForm class. When the
user registers, logs in, or logs out, the ProfileFormHandler broadcasts HTTP cookies as needed and
fires off Profile Events using the ProfileEventTrigger. You can configure actions that correspond to
these events through the ACC. For more information, see the ATG Personalization Guide for Business Users.

Ensuring Transactions in Form Handlers

The handler methods in a form handler that manipulates repository items should ensure that all the
operations that occur in a method call happen in a single transaction. If all the operations do not occur in
the same transaction, there is the risk that incomplete data will be committed to the repository if
something goes wrong before the operation is finished. Committing all the operations at once ensures
that a repository or database transaction is either completed successfully, or not completed at all (in
which case, any partially committed data is rolled back).

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 8

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
The RepositoryFormHandler, ProfileForm, and ProfileFormHandler classes all ensure “atomic”
transactions in this way. If you subclass one of these classes without overriding the handler methods, your
subclass will handle transactions properly. If you override any handler methods, or add new handler
methods, make sure that they handle transactions appropriately as described here.

If you are writing a new form handler that works with repository items, you can avoid the need to add any
transaction management code to your handler methods by subclassing the
TransactionalFormHandler. In this class, the transaction management occurs in the beforeSet and
afterSet methods. This behavior establishes the transaction before any of your properties are set or
handler methods are called, rather than in the handler methods themselves. For an example of
transaction management within a handler method, see the ProfileFormHandler.java source code in
the ATG distribution at <ATG10dir>/DPS/src/Java/atg/userprofiling/.

Multiple Profile Form Handlers
The Personalization module provides multiple profile form handler classes that you can use to create and
manage batches of user profiles. A profile form handler connects a registration page to a profile in a
profile repository. You can use the multiple profile form handlers to batch add, update, or delete user
profiles using a single form.

The multiple profile form handlers extend the
atg.repository.servlet.RepositoryFormHandler.MultiProfileForm class. The Using Profiles
and Profile Forms chapter of the ATG Page Developer’s Guide explains how to use these form handler
classes in content pages.

You can extend the Multiple Profile Form Handlers, but if you do, you should make sure that they
maintain transactional integrity. See the Ensuring Transactions in Form Handlers section for more
information.

The MultiProfileForm class

The MultiProfileForm class contains all the code that is shared between the MultiProfileAddForm
and MultiProfileUpdateForm classes. This class extends RepositoryFormHandler and is the base
class for the MultiProfileAddForm and MultiProfileUpdateForm classes. To learn more about the
RepositoryFormHandler class, see Using Repository Form Handlers in the ATG Page Developer’s Guide.

The MultiProfileAddForm class

Each of the following handle methods calls the corresponding method in the MultiProfileForm class
and extends that method. The handleCancel method does not call any method in the
MultiProfileForm class. The handle methods in the MultiProfileAddForm class do the following:

handleCreate

The handleCreate method take the current set of user profiles and, if there were no errors submitting
the form, creates a new profile for each one by combining the common set of property values with the

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 9

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
values specified for each new user. The preprocessing and post-processing methods preCreateUser()
and postCreateUser() are provided to extend the functionality in the MultiProfileAddForm class.

handleCancel

The handleCancel method clears out the current list of per-user and common property values.

handleClear

The handleClear method is identical to the handleCancel method: it clear the current list of per-user
and common property values. You can use handleClear() for greater readability within a form.

The MultiProfileUpdateForm class

Each of the following handle methods calls the corresponding method in the MultiProfileForm class
and extends that method. The handleCancel method does not call any method in the
MultiProfileForm class. The handle methods in the MultiProfileUpdateForm class do the following:

handleUpdate

The handleUpdate method loops through a list of repositoryIds and modifies the associated profile
properties for each update submitted by calling the RepositoryFormHandler.handleUpdate method
for each of the IDs. The preprocessing and post-processing methods preUpdateUser() and
postUpdateUser() are provided to extend the functionality of the MultiProfileUpdateForm class.

handleDelete

The handleDelete method loops through a list of repositoryIds and modifies the associated profile
properties for each update submitted by calling the RepositoryFormHandler.handleUpdate method
for each of the IDs. The preprocessing and postprocessing methods preDeleteItem() and
postDeleteItem() are provided to extend the functionality of the MultiProfileUpdateForm class.

handleCancel

The handleCancel method clears out the current contents of the value Dictionary for each of the
repositoryIds.

handleClear

The handleClear method is identical to the handleCancel method: it clear the current contents of the
value Dictionary for each of the repositoryIds You can use handleClear() for greater readability
within a form.

Managing User Logins
As mentioned earlier in the description of the ProfileForm's handleLogin method, the Personalization
module uses the IdentityManager interface (specifically, the
/atg/dynamo/security/IdentityManager component) to handle user login verification and

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

6 0

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
management tasks. The following methods in the ProfileForm and ProfileformHandler classes call
the IdentityManager:

 ProfileForm.findUser()

 ProfileFormHandler.preLoginUser()

 ProfileFormHandler.postLoginUser()

 ProfileFormHandler.preLogoutUser()

The IdentityManager component itself calls the /atg/userprofiling/ProfileUserAuthority
component to perform the actual process of verifying logins. The ProfileUserAuthority is a
Personalization module implementation of the LoginUserAuthority interface.

For more information on the IdentityManager interface, refer to the ATG API Reference.

Note: The UserLoginManager was used in previous versions of the Personalization module to manage
the process of login verification. The UserLoginManager functionality was superseded in ATG 6.1 by the
IdentityManager, and the UserLoginManager now points to the
/atg/dynamo/security/IdentityManager component through an identityManagerPath property.
For information on updating any existing UserLoginManager references to use the new model, refer to
the ATG Migration Guide for your version of the product.

Using Case Insensitive Login Names

The Personalization module includes the profile attributes login and password for each registered user
of a Web site. These properties are both case sensitive when performing login queries. If you want to use
case-insensitive login names, you need to store a version of the login name with all lowercase characters.
Using case-insensitive passwords is not recommended because of security precautions. Using case-
insensitive passwords makes it easier for other users or systems to guess a password. To configure the
system to use case-insensitive login names, you need to subclass the Profile Form Handler and configure
an attribute that converts the login name to lowercase using Java’s toLowerCase method.

First, add a String attribute to the Profile object. You can call this String anything you want; it
represents the login name as the user enters it into the form. In this example, this String is called
memberName. The lower case version of the memberName is stored in the login attribute.

Then, modify your basic registration form so that the login name field references the memberName
attribute. Next, subclass the Profile Form Handler so that it converts the memberName attribute to
lowercase and copies it to the login name attribute. You can do this by overriding the preCreateUser
method of the ProfileFormHandler class. Once the super-class performs its operation, you can check
the ProfileFormHandler.value Dictionary property to see if the memberName attribute was submitted.
If it is found, then convert the memberName attribute to lowercase and place it in the
ProfileFormHandler.value Dictionary property under the key login. The remainder of the
registration process in the form then automatically updates the login profile attribute with the
lowercase value. The following code demonstrates this explanation:

protected void preCreateUser(DynamoHttpServletRequest pRequest,

 DynamoHttpServletResponse pResponse)

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

6 1

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
 throws ServletException, IOException

{

 super.preCreateUser(pRequest, pResponse);

 // Look for the submitted member name

 String memberName = getValue().get("memberName")

 if (memberName != null) {

 // Normalize the member name

 String login = memberName.toLowerCase();

 getValue().put("login", login);

 }

 else {

 // If the member name is not available, then make sure we clear out

 // any old login values

 getValue().remove("login");

 }

}

If you allow site members to change their login name after registration, you need to make sure that the
memberName and login attributes are still in sync and that the login value is always the lowercase
version of the memberName value. To do this, override the ProfileFormHandler.preUpdateUser
methods so that it performs the same function as the preCreateUser example above. This ensures that
the login and authentication process also uses the lowercase version of the login name when performing
queries.

If all your authentication is performed through the ProfileFormHandler, then you can override the
findUser method. For example:

protected RepositoryItem findUser(String pLogin,

 String pPassword,

 Repository pProfileRepository,

 DynamoHttpServletRequest pRequest,

 DynamoHttpServletResponse pResponse)

 throws RepositoryException, ServletException, IOException

{

 if (pLogin != null) {

 return super.findUser(pLogin.toLowerCase(), pPassword,

 pProfileRepository, pRequest, pResponse);

 }

 else {

 return super.findUser(pLogin, pPassword,

 pProfileRepository, pRequest, pResponse);

 }

}

In this example the super.findUser methods uses the ProfileTools.getItem method. If you examine
the ProfileForm class code, you can see that this method does the following:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

6 2

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
return getProfileTools().getItem(pLogin, pPassword, getLoginProfileType());

If you use the ProfileTools class to perform authentication in other areas of your Web site, then you
should override this getItem method so that it also performs the toLowerCase operation. For example,
you could use the following code to override the getItem method:

public RepositoryItem getItem(String pLogin, String pPassword,

 String pProfileType)

{

 if (pLogin != null) {

 return super.getItem(pLogin.toLowerCase(), pPassword, pProfileType);

 }

 else {

 return super.getItem(pLogin, pPassword, pProfileType);

 }

}

Password Hashing

For security reasons, you may want to store passwords in hashed form. This guards against the possibility
that someone who gains unauthorized access to the database can retrieve the passwords of every user in
the system. Hashing performs a one-way transformation on a password, turning the password into
another String, called the hashed password. “One-way” means that it is practically impossible to go the
other way - to turn the hashed password back into the original password. There are several
mathematically complex hashing algorithms that fulfill these needs. By default, the Personalization
module uses the MD5 algorithm to perform a one-way hash of the password value and to store it in
hashed form.

The hashed password value is not encrypted before it is stored in the database. When a member attempts
to log in, the Personalization module takes the supplied password, performs a similar one-way hash and
compares it to the database value. If the passwords match, then login is successful.

If you do not want to use the hashing function, you can disable it by setting the passwordHasher
property of the /atg/userprofiling/PropertyManager component to
/atg/dynamo/security/NullPasswordHasher. Thereafter all passwords will be stored and compared
in clear text. You can change the hashing algorithm used by setting the passwordHasher property to
point to a PasswordHasher component that uses the appropriate hashing algorithm. ATG provides the
following atg.security.PasswordHasher implementations:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

6 3

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
Component Description

/atg/dynamo/security/DigestPasswordHasher Uses the java.security.MessageDigest
mechanism for hashing passwords. This
hasher digests the password and then
encodes using the binary-to-text encoding
scheme specified by the encoding property
(base16 by default). This hasher does not
support one-time hashing; passwords are
encoded the same way every time.

/atg/dynamo/security/MD5PasswordHasher MD5-specific version of
DigestPasswordHasher that supports one-
time hashes.

/atg/adapter/ldap/NDSPasswordHasher A password hasher for use with the LDAP
repository and the Netscape Directory
Server.

/atg/dynamo/security/NullPasswordHasher Stores passwords unhashed. Use this if you
want passwords maintained in plain text,
rather than hashed.

Password Management Features
This section describes the password management features included as part of the ATG Personalization
module. Password management is an important part of administering any site that includes personal
information.

Password management features include:

 Setting a regular period at which passwords expire

 Defining rules that users must satisfy when creating passwords

 Handing forgotten passwords

 Notifying a user when a password is about to expire

 Forcing all passwords to expire immediately

Using Password Expiration

This section describes the features that allow you to force passwords to expire periodically or all at the
same time.

The password expiration feature allows you to require users to change their passwords after a specified
period of time, for example 90 or 120 days.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

6 4

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
Enabling Password Expiration

Password expiration is disabled by default. Password expiration must be enabled to either require regular
password changes, or force password expiration on all users.

To enable password expiration

1. Override or edit the properties file at
/atg/userprofiling/ExpiredPasswordService and set enabled=true.

2. Add a change password JSP or JHTML page to your sites. This is the form that users are
redirected to when it is determined that their password is expired. This can be done
using the ACC page template wizard.

3. Configure the ExpiredPasswordService.redirectPath property to point to the
change password JSP/JHTML page you created.

4. Optionally, configure the ExpiredPasswordService.passwordValidForNumDays
property to the value of the number of days a password remains valid.

ATG recommends that the change password page be completely static HTML. Once it has been
determined that the user’s password has expired, all requests passing through the servlet pipeline are
redirected to the URL in the redirectPath property. Any linked elements in the change password page,
such as links to CSS files or images, must be explicitly set in the
/atg/dynamo/servlet/pipeline/ExpiredPasswordServlet.localUrlsToAllow property in order
for the page to render correctly. Note that you do not need to list page includes using dsp:include and
jsp:include tags in localUrlsToAllow; these bypass the redirect. An example follows:

localUrlsToAllow=/templates/style/css/style1.jsp ,

/templates/style/css/style2.jsp

Password Expiration Process

Password expiration works as follows:

1. After a user successfully completes the login process, the ProfileFormHandler calls
the /atg/userprofiling/ExpiredPasswordService component to determine if
the user’s password is expired.

This component adds the value of the passwordValidForNumDays property in the
ExpiredPasswordService component to the profile’s lastPasswordUpdate. The
result is the date through which the password is valid. If the lastPasswordUpdate
value is null, it sets the property to 1/1/1970.

The component compares the result to the current date. If the current date is after the
result, it marks the password as expired by setting a the passwordexpired session
variable to true.

2. The ExpiredPasswordServlet checks the passwordexpired session variable. If
true, it redirects the user to the change password form URL defined in the
ExpiredPasswordService.redirectPath property.

3. When the user submits the change password form successfully, the
passwordexpired session variable is set to false. The lastPasswordUpdate property
is set to the current timestamp and persisted.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

6 5

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
4. The user can then browse the site as usual.

If the user leaves the site before completing the change password form successfully, the session times
out. The password expiration process is repeated the next time the user logs in.

Example 1:

passwordValidForNumDays = 90

lastPasswordUpdate in Jim's profile = 01/01/2005

today's date = 03/17/2005

passwordValidForNumDays + lastPasswordUpdate = 01/04/2005, which is after today’s date. The
passwordexpired session variable is set to false for Jim’s current session.

Example 2:

passwordValidForNumDays = 90

lastPasswordUpdate in Jim's profile = 01/01/2005

today's date = 05/17/2005

passwordValidForNumDays + lastPasswordUpdate = 01/04/2005, which is before today’s date.
The passwordexpired session variable is set to true for Jim’s profile.

Forcing All Passwords to Expire

As well as configuring passwords to expire individually according to the date of the last change, you can
force all passwords in the profile repository to expire on the same date. To do so, set the
forcePasswordUpdateTimeStamp property in the /atg/userprofiling/ExpiredPasswordService
component to the date when you want the passwords to expire. The property is a timestamp that is set to
01/01/2000 by default. All users will be prompted to change their passwords the first time they log in after
the specified date.

To expire all passwords immediately and force all users to change their passwords the next time they log
in, set the value to the current date.

Setting the forcePasswordUpdateTimeStamp value to a date in the future schedules all passwords to
expire on that date.

The examples below are all valid formats for specifying the property value:

 04/23/2007 4:45

 April 23 2007

 April 23 2007 4pm

23 April 2007 16:45 Forced password expiration works as follows:

1. After a user successfully completes the login process, the ProfileFormHandler calls
the /atg/userprofiling/ExpiredPasswordService component, which compares
the forcePasswordUpdateTimestamp value to the lastPasswordUpdate property
in the user’s profile.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

6 6

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
2. If the force update value is after the last password update and before the current date,

the password is marked as expired, and the process for having the user change the
password is initiated. See the Password Expiration Process section for details.

Example 1:

forcePasswordUpdate = 04/04/2005

lastPasswordUpdate in Maria's profile = 02/15/2004

today's date = 05/17/2005

The force update value is after the last password update and also before today’s date, so the
passwordexpired session variable is set to true for Maria’s current session.

Example 2:

forcePasswordUpdate = 04/04/2005

lastPasswordUpdate in Maria's profile = 04/15/2004

today's date = 05/17/2005

The force update value is before the last password update, so the passwordexpired session variable is
not set for Maria’s current session.

Notifying Users of Impending Expiration

You can include the PasswordExpiresSoon droplet on a page to notify users when their password is
about to expire.

This droplet can be found and configured at /atg/dynamo/droplet/PasswordExpiresSoon. The
displayCount setting determines how many times per session the password expiration notification is
shown to the customer logging in.

The droplet form is:

<dsp:droplet name="/atg/userprofiling/PasswordExpiresSoon">

 <dsp:param name="login" bean="/atg/userprofiling/Profile.login"/>

 <dsp:oparam name="soontoexpiremessage">

 <p>Password will expire in <dsp:valueof param="daysUntilExpired">

 </dsp:valueof> days.

 <p>Change password form here : <dsp:valueof

param="changePwdLocalUrl"></dsp:valueof>

 </dsp:oparam>

</dsp:droplet>

Using Strong Password Rule Checks

Strong password checking lets you define criteria for new passwords; for example, you can specify that
new passwords cannot be duplicates of old ones or contain the same characters as login names.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

6 7

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
You can configure and enable rules to define criteria for new passwords, whether created as part of the
forced password expiration process or by a user who has just registered.

Setting Required Criteria for New Passwords

The Nucleus components that represent the default rules are shown below. All password rule
components are implementations of the atg.security.PasswordRule interface, and they have the
Nucleus address /atg/userprofiling/passwordchecker/<RuleName>, for example
/atg/userprofiling/passwordchecker/PasswordNotInPreviousNRule.

Rule Description Default Value

PasswordMinLengthRule The password length must be at least n
characters.

8

PasswordMustNotIncludeLoginRule The password cannot include the same
sequence of characters as the value of
the user’s login property.

none

PasswordMustIncludeNumberRule The password must include at least one
numeric character. The rule is an
instance of the class
atg.security.PasswordMustInclude

CharacterRule.

none

PasswordMustIncludeSymbolRule The password must include at least one
special character such as a question
mark. The rule is an instance of the class
atg.security.PasswordMustInclude

CharacterRule.

~!@#$%^&*()_-

+={}[]|:;<>,./?

PasswordMixedCaseRule The password must contain both upper-
and lowercase characters.

none

PasswordNotInPreviousNRule The password cannot be equal to the
previous n passwords.

3

Enabling Password Rule Checking

To enable password rule checking, set the enabled property to true in the
/atg/userprofiling/passwordchecker/PasswordRuleChecker component. The following example
shows a properties file for this component, which includes an array that lists the rules you want to use to
check passwords:

$class.atg.security.PasswordRuleCheckerImpl

enabled=true

rules+=/atg/userprofiling/passwordchecker/PasswordMinLengthRule,\

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

6 8

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
 /atg/userprofiling/passwordchecker/PasswordMixedCaseRule,\

 /atg/userprofiling/passwordchecker/PasswordMustIncludeNumberRule,\

 /atg/userprofiling/passwordchecker/PasswordMustIncludeSymbolRule,\

 /atg/userprofiling/passwordchecker/PasswordMustNotIncludeLoginRule,\

 /atg/userprofiling/passwordchecker/PasswordNotInPreviousNRule

Exclude rules as needed by removing the appropriate line from the array.

Adding New Password Rules

If the preconfigured rules described in the previous section are not sufficient for your sites, you can add
additional rules by following the procedures described here.

1. Create a Java class, following the template below. It should extend
atg.nucleus.GenericService and implement
atg.userprofiling.PasswordRule.

package customPackage;

import atg.nucleus.GenericService;

import atg.servlet.ServletUtil;

import atg.userprofiling.PasswordRule;

public class myPasswordRule extends GenericService implements

 PasswordRule {

 /**

 *

 * Checks the given password against a rule

 *

 * @param password

 * @return true if password passes the rule

 */

 public boolean checkRule(String password, Map map) {

 boolean passed = false;

 if (password==null)

 return false;

 //Do some test

 passed = true;

 return passed;

 }

 /**

 * Returns the rule description as a message for use in

 * a droplet exception for display to user

 */

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

6 9

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
 public String getRuleResource() {

 return ProfileUserMessage.format("myPasswordRule",

ServletUtil.getUserLocale());

 }

}

1. Add code to the CheckRule() method to test the given password according to your
criteria.

2. Edit the getRuleResource() method to replace myPasswordRule with a resource.
Set up that resource.

3. Compile the class.

4. Create a Nucleus properties file for this rule and save to a Nucleus path similar to
/customPackage/MyPasswordRule.properties.

Example:

$class=customstuff.myPasswordRule

5. Edit the Nucleus properties file for the PasswordChecker at
/atg/userprofiling/passwordchecker/PasswordRuleChecker.properties.
Include the new rule in the list of rules to check.

$class=atg.userprofiling.PasswordRuleCheckerImpl

rules+=/atg/userprofiling/passwordchecker/PasswordMinLengthRule,\

 /atg/userprofiling/passwordchecker/PasswordMixedCaseRule,\

 /atg/userprofiling/passwordchecker/PasswordMustIncludeNumberRule,\

 /atg/userprofiling/passwordchecker/PasswordMustIncludeSymbolRule,\

 /atg/userprofiling/passwordchecker/

 PasswordMustNotIncludeLoginRule,\

 /atg/userprofiling/passwordchecker/PasswordNotInPreviousNRule,\

 /mycustomstuff/MyPasswordRule.properties

Handling Forgotten Passwords

The Personalization module can handle forgotten passwords by directing users to a form where they are
prompted to supply a known value for a specific profile property (by default, e-mail address). The
Personalization module generates a new password and sends it via e-mail. The e-mail uses a template and
can be customized to include the login name and the URL of the login page as well as the new password.

Forgotten Password Process

The forgotten password process works as follows:

1. Users browse to the forgotten password form.

2. Users enter their e-mail address (or username) and submit the form.

3. The ForgotPasswordHandler does the following:

 Locates the user’s profile. If the servlet cannot find the user, an error message is
displayed stating ‘No user information for email@address.com.”

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

7 0

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
 Generates a new password by calling the PasswordGenerator component.

 Updates the password property in the profile with the new value. The new
password is valid for all Web sites in a multisite environment.

 Flags the profile as having a generated password.

 Constructs and sends the e-mail message using TemplateEmailSender.

If the form’s emptySite property is set to true, a null siteId is passed to the
e-mail, and any siteId specified in the form is ignored. If the emptySite
property is set to false or not provided, the siteId that is passed through the
form is used in the e-mail. If no siteId is provided, the form defaults to the
current site context.

4. Users receive an email including their login name and the new password based on the
given template. A link is provided to the login form based on the given template.

5. Users either click the e-mail link or browse to the site, and then log in with the new
credentials.

6. The server sets the transient passwordExpired flag in the user profile to true, thereby
requiring the user to change the password immediately.

Generated passwords are not saved to the Previous N passwords list.

Note that the Forgotten Password logic replaces the password value in the user profile, so the old
password is no longer valid.

Enabling the Forgotten Password Features

To enable and configure the forgotten password features, complete the following steps:

1. Create a form that allows the user to submit a known value, for example e-mail
address.

2. Configure the SMTP server. This can be done in the Configuration Manager at:

http://localhost:port/dyn/admin/atg/dynamo/admin/en/

configure-email-handler.jhtml

(where the default port numbers on JBoss, Oracle WebLogic, and IBM WebSphere are
8080, 7001, and 9080, respectively. For more information, see Connecting to the
Dynamo Administration UI in the ATG Installation and Configuration Guide.

3. Set the Email Handler Host to your SMTP server. The Email Handler Port is usually set
to port 25.

4. Override or edit the Nucleus component
/atg/userprofiling/ForgotPasswordEmailInfo and set the following
properties:

 # The URL of the email template jsp/jhtml page

 templateURL=

 # Subject field of the email

 messageSubject=Forgot Password Email

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

7 1

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ

 # From field of the email

 messageFrom^=/atg/dynamo/service/SMTPEmail.defaultFrom

 # MessageContentProcessor responsible for processing the content

 contentProcessor=/atg/userprofiling/email/

 HtmlContentProcessor

5. Customize the email template.

Note: if your template JSP/JHTML page contains links to other URLs on your site, you
must specify them as absolute URLs in order for the email recipients to be able to
access the linked pages. Use the full <code>http://server:port/...</code>
form of the URL.

An example follows:

<%@ taglib uri="/dspTaglib" prefix="dsp" %>

<dsp:page>

<HTML> <HEAD>

<TITLE>Forgot Your Password</TITLE>

</HEAD>

<dsp:importbean bean="/atg/userprofiling/Profile"/>

<BODY BGCOLOR="#FFFFFF" VLINK="#637DA6" LINK="#E87F02">

Dear

<dsp:droplet name="/atg/dynamo/droplet/Switch">

 <dsp:param bean="Profile.firstname" name="value"/>

 <dsp:oparam name="unset">

 Sir or Madam,

 </dsp:oparam>

 <dsp:oparam name="default">

 <dsp:valueof bean="Profile.firstName"/>

 <dsp:valueof bean="Profile.lastName"/>,

 </dsp:oparam>

</dsp:droplet>

<p>Here is your login information with a new passord.

<p>Login: <dsp:valueof bean="Profile.login"/>

<p>New password: <%=request.getParameter("newpassword")%>

</body>

</html>

</dsp:page>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

7 2

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
Access Control

Some Web applications need to control access to some or all of the pages on the site. For instance, you
may want to restrict access to registered members or paid subscribers.

atg/dynamo/servlet/dafpipeline/AccessControlServlet is documented in the ATG Prog. Guide,

The Personalization module adds an Access Control Servlet to the standard ATG servlet pipeline. The
Access Control Servlet (/atg/userprofiling/AccessControlServlet) can allow or deny access to a
page or group of pages based on criteria such as membership in a group or satisfaction of a targeting
rule.

Configuring the Access Control Servlet

The Access Control Servlet registers one or more AccessController components in its
accessControllers service map property. This property maps URLs to AccessController
components. If the URL requested is mapped to an AccessController component, the request’s Profile
object is passed to the AccessController, which determines whether or not access should be allowed.
If access is allowed, the request is passed on; if access is denied, the servlet redirects the user to a specified
deniedAccessURL.

AccessController is an interface that has a number of implementation classes. (The interface and the
implementation classes are found in the atg.userprofiling package.) Each of the classes implements a
different mechanism for enforcing access control. Some of these implementation classes are discussed in
the sections below: AccessRightAccessController, GroupAccessController, and RuleAccessController. For
additional information about the AccessController interface and the classes that implement it, see the
ATG API Reference.

In addition to the accessControllers property, the Access Control Servlet has
accessAllowedListeners and accessDeniedListeners properties. You can use these properties to
specify atg.userprofiling.AccessAllowedListener and
atg.userprofiling.AccessDeniedListener components, which are notified when page access is
granted or denied.

The Access Control Servlet is enabled by default. You can disable it by setting the enabled property of
/atg/userprofiling/AccessControlServlet to false.

The following is an example of an AccessControlServlet.properties file:

$class=atg.userprofiling.AccessControlServlet

enabled=true

Nucleus path of the Profile object

profilePath^=ProfileRequestServlet.profilePath

List of mappings between paths and AccessController objects. If a

path refers to a directory, all the documents in that directory and

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

7 3

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
its subdirectories will be protected by the given AccessController.

accessControllers=\

 /docs/members=/your/path/MemberAccessController,\

 /docs/members/preferred=/your/path/PreferredMemberAccessController

List of "access allowed" event listeners

accessAllowedListeners=

List of "access denied" event listeners

accessDeniedListeners=

The URL to redirect to if access is denied. If the AccessController

supplies its own deniedAccessURL, it will overwrite this value.

deniedAccessURL=http://yourserver/noaccess.html

AccessRightAccessController

This implementation of the AccessController interface performs access control based on access rights.
You specify the access rights through the allowedAccessRightNames property, which is a List of access
right names. If a page’s URL is mapped to an AccessRightAccessController component (through the
Access Control Servlet’s accessControllers property) , then that component’s access rights are used to
control access to the page.

Access rights are associated with users through global and organization roles. If a user’s role and the
AccessRightsAccessController associated with the page have at least one access right in common,
the user is allowed to access the page.

GroupAccessController

This implementation of AccessController performs group-based access control. Two properties,
allowGroups and denyGroups, specify the names of the groups whose members should be allowed or
denied access, respectively. A user is allowed access only if he is a member of one of the allowGroups,
but not a member of one of the denyGroups.

If the allowGroups property is not specified, all groups are implicitly considered to be “allow” groups. If
the denyGroups property is not specified, no groups are considered to be “deny” groups. For example, if
allowGroups is not specified and denyGroups=Kids,Teenagers, then everybody but kids and
teenagers is allowed access. If, on the other hand, the denyGroups property is not specified and
allowGroups=Kids,Teenagers, then only kids and teenagers are allowed access.

As an example, here is a configuration for a PreferredMemberAccessController component that
allows access only to members of the GoldAccounts group:

$class=atg.userprofiling.GroupAccessController

enabled=true

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

7 4

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
allowGroups=GoldAccounts

groupRegistry=/atg/registry/RepositoryGroups

URL to redirect to if access is denied

deniedAccessURL=http://yourserver/preferredAccessOnly.html

RuleAccessController

This implementation of AccessController performs access control based on a set of rules, specified via
the service’s ruleSetService property. For example, suppose there is a RuleSetService named
FemaleRuleSetService, configured with the following rule set:

<ruleset>

 <accepts>

 <rule op=eq>

 <valueof target="Gender">

 <valueof constant="female">

 </rule>

 </accepts>

</ruleset>

Set the ruleSetService property of the Access Controller to point to
FemaleMembersRuleSetService. The user will be allowed access only if she is in the Female profile
group. Here is the example configuration:

$class=atg.userprofiling.RuleAccessController

enabled=true

Rules used to determine whether access should be allowed

ruleSetService=/your/path/rules/FemaleRuleSetService

URL to redirect to if access is denied

deniedAccessURL=http://yourserver/femaleAccessOnly.html

Note that when the rules are evaluated, the user’s Profile object is used to resolve the target
expressions. Note also that the rules must evaluate to a Boolean. The rules used by a
RuleAccessController component use the same syntax as those used for content targeting. See the
Creating Rules for Targeting Content and the Setting Up Targeting Services chapters for more
information.

The optional sourceMap property, if provided, is used to resolve any bean expressions in the access
control rules. If no such expressions occur in the rules, you can leave this property as null.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

7 5

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
Controlling Anonymous User Access

When you create a profile group, you specify a set of rules that allows a group of registered users to
access some part of your Web site. The AccessController allows access by anonymous users unless
your profile group rule explicitly prevents it. To avoid specifying that anonymous users should be
excluded in every rule you write, you can set the denyAnonymousUsers property of the
GroupAccessController or RuleAccessController class to true. If denyAnonymousUsers is false,
all anonymous users are allowed access even if they are in a group specified by denyGroups.

If you are persisting anonymous profiles, denyAnonymousUsers does not control whether or not
persistent anonymous profiles are allowed access, even if you set this property to true. This is because
the Personalization module treats persistent anonymous profiles as actual profiles and creates a
repository item for each persistent anonymous profile. You should expect that persistent anonymous
profiles will be allowed access unless you specifically use a rule that denies them access.

Configuring Derived Properties that Calculate Time and
Date

To any GSA repository template, including the user profile repository, you can add derived properties that
allow you to compute and store values related to time and date. The following derived properties are
available for this purpose:

 TimeInterval

 YearMonthDay

 DaysBeforeAnnualEvent

For general information on how derived properties work, see the ATG Repository Guide.

TimeInterval

The TimeInterval derived property can be used to calculate the interval between two specified times.
The feature is useful in situations in which you need to compute an unknown date or amount of time, or
to calculate the length of time between two dates. For example, you could add a custom property called
age to the user profile and use the time interval derived property to calculate its value by comparing the
user’s date of birth to today’s date.

TimeInterval derived properties are readable and queryable. Note, however, that the feature does not
support comparison queries on a derived property that is calculated using two date properties. See the
second example at the end of this section.

The TimeInterval derived property is implemented by the property descriptor
atg.repository.dp.TimeIntervalPropertyDescriptor, which uses the supporting derivation
method atg.repository.dp.TimeInterval.

The interval is an integer that can be represented as follows:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

7 6

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
int timeStampDiff(int interval, Date date1, Date date2)

where the integer is the number of intervals (which can be years, quarters, months, weeks, hours, days,
minutes, seconds, milliseconds) by which date2 is greater than date1.

The derived property has three attributes, which are described below.

Attribute Type Required Description

timeStampInterval String Yes Represents the returning interval between the
corresponding times. Must be one of year,
quarter, month, week, day, hour, minute,
second, or millisecond.

datePropertyName1 String No The name of the property to use as the date1
argument. Defaults to the current time if not
specified.

datePropertyName2 String No The name of the property to use a the date2
argument. Defaults to the current time if not
specified.

The following example shows how to configure the TimeInterval derived property in a GSA repository
definition to calculate the age of a user:

<property name="age"

 data-type="int"

 writable="false"

 property-type="atg.repository.dp.TimeIntervalPropertyDescriptor">

 <attribute name="timeStampInterval" value="year"/>

 <attribute name="datePropertyName1" value="dateOfBirth"/>

</property>

The next example illustrates the use of the time interval derived property for computing the number of
days between two date properties.

<property name="daysOfEmployment"

 data-type="int"

 writable="false"

 property-type="atg.repository.dp.TimeIntervalPropertyDescriptor">

 <attribute name="timeStampInterval" value="day"/>

 <attribute name="datePropertyName1" value="startDate"/>

 <attribute name="datePropertyName2" value="endDate"/>

</property>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

7 7

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
Important: In some cases, time interval derived properties cannot be included in comparison queries.
This restriction typically applies when the query involves a property derived from two dates, such as the
daysOfEmployment example above. Queries that compare properties derived from two dates with
another value (for example, “daysOfEmployment > 90”)are not supported in RQL.

YearMonthDay

The YearMonthDay derived property represents a date that is derived from the values of year, month, and
day fields. It is implemented by the property descriptor
atg.repository.dp.YearMonthDayPropertyDescriptor, which uses the supporting derivation
method atg.repository.dp.YearMonthDay.

The YearMonthDay property is readable, writable, and queryable. It has the following three attributes:

Attribute Type Required Description

yearPropertyName string yes The name of the property that represents the
year field.

monthOfYearPropertyName string yes The name of the property that represents the
month field.

dayOfMonthPropertyName string yes The name of the property that represents the day
field

All dates use the default time zone of the JVM.

The following example shows how to configure the time interval derived property in a GSA repository
definition to calculate a user’s date of birth:

<property name="dob"

 data-type="date"

 writable="true"

 property-type="atg.repository.dp.YearMonthDayPropertyDescriptor">

 <attribute name="yearPropertyName" value="dobYearField"/>

 <attribute name="monthOfYearPropertyName" value="dobMonthOfYearField"/>

 <attribute name="dayOfMonthPropertyName" value="dobDayOfMonthField"/>

</property>

Note that the date computed for this derived property does include the time, which is always 12:00 AM.
However, any comparison queries performed with this property ignore the time and use the date only.

DaysBeforeAnnualEvent

The DaysBeforeAnnualEvent derived property represents the number of days before an annual event
occurs. Note that the value of this property is cyclical. It starts at a positive integer less than 365 and

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

7 8

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
decreases each day to zero. Once zero is reached, the value is reset to 365 and starts decreasing again the
next day.

The DaysBeforeAnnualEvent derived property is implemented by the property descriptor
atg.repository.dp.DaysBeforeAnnualEventPropertyDescriptor, which uses the supporting
derivation method atg.repository.dp.DaysBeforeAnnualEvent. The property is readable and
queryable but not writable.

The property has two attributes, which are described below:

Attribute Type Required Description

monthPropertyName string yes The name of the property that represents
the month field.

dayOfMonthPropertyName string yes The name of the property that represents
the day field.

The following example shows how to configure the DaysBeforeAnnualEvent derived property in a GSA
repository definition to calculate the number of days before a user’s birthday.

<property name="daysBeforeBirthday"

 data-type="int"

 writable="false"

 property-type="atg.repository.dp.DaysBeforeAnnualEventPropertyDescriptor">

 <attribute name="monthPropertyName" value="dobMonthOfDayField"/>

 <attribute name="dayOfMonthPropertyName" value="dobDayOfMonthField"/>

</property>

Managing Preview User Swapping
ATG Content Administration, ATG Merchandising, and ATG Outreach include preview features that allow
internal users to test content against a sample user profile before deploying it. Preview profiles are stored
in a ProfileAdapterRepository component on the management server, and they reference the dps*
tables in the versioned database. For a diagram showing the profile repositories used by the ATG
platform, see the ATG Business Control Center Administration and Development Guide.

Preview is initiated when an internal user clicks a custom Preview button in the relevant UI. The user
selects a preview profile to use, and a page containing the previewed content appears in a separate
browser window. (For information on how to add a Preview button and create a Web application
containing the preview page or pages, refer to the ATG Business Control Center Administration and
Development Guide.)

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

7 9

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
To allow a user to preview content as another user, the ATG preview code must swap the logged-in user’s
profile for the preview profile for the duration of the request. To determine whether swapping should
occur for a given Web application, the preview code checks the current request for the value of the
atg.preview context parameter. If this parameter is set to false , the profile swap does not occur. Note
that the atg.preview parameter is set to false for all ATG’s management applications.

In some cases it is necessary or desirable to force preview swapping in a Web application that otherwise
has the feature turned off. For example, preview swapping is disabled for ATG Outreach, but it is required
by the application’s e-mail preview feature. For such cases, you can specify a forcePreviewParam query
parameter within the preview URL that tells the preview code to ignore the atg.preview setting.

After determining whether preview swapping should occur, the preview code looks for a specific request
query parameter that indicates the repository ID of the profile selected for the preview.

Note: In addition to adding a Preview button and creating the pages to use for the preview, you must run
the application on the management server with the –layer Preview switch for preview features to be
available. See the ATG Business Control Center Administration and Development Guide for more information.

PreviewProfileRequestProcessor Component

The ProfileRequestServlet contains a profileRequestProcessors property, which is an array of a
ProfileRequestProcessor interface. Preview user swapping is implemented through the
/atg/userprofiling/PreviewProfileRequestProcessor component, which is an implementation
of atg.userprofiling.ProfileRequestProcessor.

The table below shows the properties of the PreviewProfileRequestProcessor component.

Property Type Required Description

previewCriteria atg.userprofiling.

PreviewCriteria

No An implementation of
atg.userprofiling.Previ

ewCriteria.

previewRepository Repository Yes The repository that contains
the preview users.

previewItemType String No The item type of the preview
users to use. The default item
type for the repository is used
if this property is not set.

repositoryItemIdParam String No The name of the repository
item ID query parameter

forcePreviewParam String No The name of the force
preview query parameter

The default values for these properties are shown below:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

8 0

4 - W o r k i n g w i t h U s e r P r o f i l e s

μ
$class=atg.userprofiling.PreviewProfileRequestProcessor

 previewCriteria=/atg/userprofiling/DefaultPreviewCriteria

 previewRepository=/atg/userprofiling/ProfileAdapterRepository

 previewItemType=user

Preventing Profile Swapping in Non-Preview Web Applications

As described above, the preview mechanism uses a context parameter called atg.preview, which is set
in an application’s web.xml file, to determine whether to initiate a preview user swap for a given request.

<context-param>

 <param-name>atg.preview</param-name>

 <param-value>false</param-value>

</context-param>

Preview swapping can occur only for applications on the management server that are run with the –
layer Preview switch. However, the atg.preview parameter must be set to false for any Web
applications that do not specifically require preview user swapping. If atg.preview is not set to false, the
preview system assumes that any request to the given Web application is a preview request. Preview
requests do not use transient profiles, so atg.preview should be set to false for any non-previewable
apps on the management server to prevent 403 errors occuring if the user is not logged in.

Note that the swap will still occur, regardless of the atg.preview setting, if the forcePreviewParam
parameter is specified in the request query. The following example is from editSendEmail.jsp in ATG
Outreach.

<c:url context="${campaignConfiguration.campaignsUIRoot}"

 value="/preview.jsp" var="previewURL">

 <c:param name="targetAssetType" value="${previewAssetTypeParam}"/>

 <c:param name="targetVirtualPath" value="${previewPathParam}"/>

 <c:param name="${previewParams.repositoryItemIdParam}"

 value="${previewUserIdParam}"/>

 <c:param name="${previewParams.forcePreviewParam}" value="true"/>

</c:url>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

8 1

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ
5 Working with the Dynamo User

Directory

ATG repositories are collections of repository items, which are JavaBean components that correspond to
an object in an underlying data store. A user directory is a way of organizing the information in a
repository by representing repository items as objects in a graph or tree. Objects such as users,
organizations, and the roles that those users and organizations possess are displayed as Principal
objects in the Dynamo User Directory. Displaying these repository items in a user directory allows you to
manipulate them in flexible ways within the security system. You can use all Principal objects obtained
from a user directory directly in Access Control Lists and in entries managed by security domains
compatible with that directory.

The Personalization module uses one or more profile repositories to store information about Web site
visitors. Each profile in the repository contains information about a user such as the user’s name and
address. The Dynamo User Directory allows you to manage user profiles by capturing relationships
between users and the organizations to which they belong. Web site visitors may have characteristics that
come from multiple sources such as the company they work for, the Web browser they use, their age,
gender, or other sources. User directories support multiple types of individuals by placing user profiles in
an organizational graph based on rules that you specify.

The Dynamo User Directory allows you to assign access rights to repository items.

The Personalization module also organizes information about ACC users in a user directory. You can use
the Admin SQL implementation of the Dynamo User Directory to store security information and Access
Control Lists for ACC users. For more information about how the security system interacts with the Admin
SQL repository, see Secured Repositories in the ATG Repository Guide.

This chapter contains the following sections:

User Directory Architecture
Describes the basic concepts of a user directory.

User Directory Security
Describes how you can use the Dynamo User Directory to authenticate users and
assign access rights to repository items.

User Directory API
An overview of the user directory API.

Dynamo User Directory Implementations
Describes the Dynamo User Directory that is configured out-of-the-box with the
Personalization module.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

8 2

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ
User Directory Architecture

In the Dynamo User Directory, users may belong to organizations, and organizations may belong to
parent organizations. For example, you could have an organization that represents your company and
children organizations that represent the various departments within the company. An organization can
be any object you’d like to represent in the user directory. You don’t have to assign users to an
organization, although you can use organizations to group users. In the user directory UI, users who are
assigned to an organization are called members of that organization.

Users, organizations, and roles are all considered examples of principals. Principals are logical identities
that may be granted or denied access rights in various ATG security domains. In this way, user directories
provide a uniform way for ATG security models to look at a user and to understand the user from a
security point of view.

You can assign roles to users and to organizations. Roles define actions that users can take or positions
that they hold. For example, you can assign someone the role of “buyer” within a specific organization.
Buyers may have access to certain repository items, and you can easily group together all users who have
the role “buyer.” You could also assign someone the role “VP of Sales.” This role is a little different because
you probably would assign this role to only one user. You can specify access rights for a role. For example,
perhaps the role “VP of Sales” has the ability to view and to edit the profiles of all the users who have the
role “buyer.”

In addition, you can assign roles to organizations. For example, you could assign an organization in the
user directory the role of “Partner,” and you can specify that partners have access to certain repository
items. Users who belong to an organization can inherit that organization’s role. Roles can be one of two
types:

 Global roles are roles that you can assign to any user or organization. If you assign a
global role to an organization, all users who belong to that organization and any child
organizations inherit that role. Global roles are the only kind of roles that you can
organize in role folders.

A role folder is a collection of child roles and role folders that serves as a organizing
element for the space of global roles. You cannot assign any security permissions to a
role folder because it is not a Principal object. Some directory implementations may
not support the creation of any folders but the root folder. For example, if you do not
have the Personalization module installed, a user directory manages the organization
of your internal ATG product users, but it does not have the capacity to manage
profiles. In this case, a single role folder encapsulates the roles assigned to internal
users.

 Organizational roles are roles that a user plays in the context of a specific
organization. Organizational roles are also called relative roles.

An organizational role has a property called function that allows you to establish a
connection among similar organizational roles. For example, you could have several
different roles, Marketing Director, Human Resources Director, and Customer Service
Director, that have the same basic function, “director.” By specifying the same value for
the function property of each role, you can track the connection among the roles
and write custom code that makes use of it.

The following figure illustrates the relationships within a user directory:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

8 3

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ

Belongs to

Is assigned to

Inherits

Is assigned to

Global Role

Parent
Organization

Organization

Principal

Organizational Role

User

In this figure, the User, Role, and Organization objects are all Principal objects. In this example, the
user is assigned a global role and inherits the OrganizationalRole, which is a role that pertains to a
specific organization. The organization may inherit characteristics from its parent organization. A user
directory doesn’t need to support all the possibilities detailed in this diagram. It can contain any subset
that you decide upon. For example, the concept of relative roles might be absent from a user directory.

While users and organizations are usually RepositoryItem objects, groups and roles are usually objects
of other types. You can determine the PrincipalType of each Principal object. Available types are
user, organization, and role. The determination of a PrincipalType of a principal object is internal
to the user directory. You can, however, examine a Principal object within the user directory and
determine that it is a RepositoryItem or another dynamic bean and modify that object accordingly.

The following figure is an example of an organizational scheme:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

8 4

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ
Clothing
Capital

(org)

VP IT
(org)

Portal
Community

(org)

Shoe
Community

(org)

Page Author
(role)

Programmer
(role)

Design (role)

Admin (role)

Bob (user)

Bill (user)

Jim (user)

Rowena (user)

Jane (user)

Clothing
company

(org)

Retail Clothing
(org)

IT
(org)

US Employees
(rule-based

group)

Creating Organizations and Roles

After you define the profile properties that make up organizations and roles, you can use the ATG
Business Control Center to create the organizations and roles required for your Web application. For
instructions, refer to the ATG Business Control Center Administration and Development Guide.

Important: You can also use the ACC to create organizations and roles. Note however that the ACC that is
installed with the ATG platform is set up by default to point to the external profile repository, so any
organizations or roles you create through this application are available only to external user profiles. Note:
If you do use the ACC to add or edit user directory items, it is highly recommended that you use the
Organizations, Roles, and Users screens from the People and Organizations menu. If you perform the
same tasks through the profile repository editor (People and Organizations > Profile Repository), the
changes you make will not appear in other areas of the ACC unless you restart the server. For example,

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

8 5

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ
you could add a role to someone’s profile through the profile repository editor, but the ACC would not
pick up the change until you restarted the server. The same behavior does not occur if you use the
Organizations, Roles, or Users screens.

User Directory Security
The Dynamo User Directory functions both as an organizational tool and as a security tool. As an
administrator, you can allow or deny access to specific repository items and to specific properties of those
repository items. The Dynamo User Directory accesses two repositories to store information and to
implement the security system that controls repository items. These repositories are the profile repository
and the Admin SQL repository.

ATG products work with two types of repositories: “concrete” repositories, which actually hold data, and
“secure” repositories, which perform security checking. Rather than adding security checking directly to a
concrete repository, a secure repository wraps a concrete repository. This secure repository has the same
API, behavior, and data as the underlying concrete repository. In general, invoking a method on a secure
repository works the same as invoking the same method on a concrete repository, but with one essential
difference: the secure wrapper applies security checks as needed, before and after calling the concrete
repository to do the work of retrieving items from the database. This security system has two major
benefits:

 Nucleus components that require security checking access the secure repository.
Components that don’t require security checking skip the secure repository and
directly access the concrete repository.

 All repository implementations, including any that you add in the future, can use this
secure repository wrapper. This is much easier than having to add security as a feature
in each new repository implementation.

Configuring a User Authority

When a user logs into a Web site or into an ATG product, a UserAuthority object authenticates the
user’s login name and password. A user authority determines identities throughout the ATG security
system. The Personalization module provides several user authorities that are configured out-of-the-box.
The /atg/userprofiling/ProfileUserAuthority component controls security for the profile
repository user directory.

For more information about the UserAuthority object, see Security Services Classes and Interfaces in the
Managing Access Control chapter of the ATG Programming Guide.

Setting ACC and Object Access Rights through Access Control Lists

You can assign ACL-based access rights to internal and external users. Assigning access rights adds or
removes the user’s ID from the Access Control List (ACL) that belongs to every object and every property
in the repository. In most cases you can set object access rights through the ACC and the ATG Business
Control Center. You can also set access rights for specific properties of objects, but the UIs do not support
this option. To set access rights for a specific property, you must change the access rights defined for that
property in the repository definition XML file.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

8 6

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ
For information on using the ACC to set access rights for objects such as scenarios and workflows, refer to
the documentation for those objects (for example, Setting Up Security Access for Scenarios). For
information on using ACLs to control access for ACC users, refer to Configuring Access Privileges in the ATG
Programming Guide.

For information on using access rights to secure access to assets within the ATG Business Control Center,
refer to the ATG Business Control Center Administration and Development Guide.

The basic types of access rights are as follows:

create Controls the ability to create a new repository item with an item-descriptor. To add
the new item to the repository, you must also have WRITE access to the item-
descriptor.

read Controls read only access to a repository item.

write Controls the ability to add a repository item to a repository item-descriptor, or to
change the contents of a repository item or a property in a repository item. If the
WRITE access right is granted for a repository item-descriptor, it does not affect the
ability to update a repository item, only the ability to add new items.

list Controls the ability to query the repository for a specific repository item. If a user
does not have LIST rights on a repository item, a query of the repository will not
return that item. The item may still be available by asking for it specifically. Use the
READ access right to control general access to the repository item.

delete Controls the ability to remove a repository item from a repository item descriptor.
In order to delete an item you must also have DESTROY access for that item.

destroy Controls the ability to remove a repository item from the repository, destroying its
contents. Note that most Secured Repositories also require DELETE access on the
repository item-descriptor.

read-owner Controls the ability to read who owns an item

write-owner Controls the ability to change the owner of an item.

read-ACL Controls the ability to read the access control list for an item. This access right is
automatically granted to the owner of a repository item.

write-ACL Controls the ability to change the access control list of a repository item. This
access right is automatically granted to the owner of a repository item.

Using Roles for Access Control

As described in the previous section, you can use principals such as roles to secure access to the ACC, to
the ATG Business Control Center, and to repository objects. You can also use global roles in combination
with access rights to secure access to various parts of your Web application UI. For example, you might
have several pages on your sites that can be used to edit a customer’s profile, and you want to make these
available only to customer service representatives. You can set up a global role called Customer Service

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

8 7

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ
Rep and add an access right to that role that allows entry to the specified site pages. Any user who is
assigned that role, either directly or though membership of an organization, can access the appropriate
pages.

As well as assigning access rights to global roles to secure the pages of a Web UI, you can also use access
rights with roles to perform access control of repository objects (for example, workflows). For example,
you could assign access rights to an organizational role, and configure a security check that compared the
organization associated with an object against the organization associated with the organizational role.
As described earlier, you can control access to objects by assigning an access control list (ACL) that can
include a role as a principal. However, doing so requires you to set the ACL individually for each object.
Assigning access rights to roles as described in this section allows you to design a security system in
which access for multiple objects can be set at once. ATG Service uses an implementation similar to this to
secure access to solutions.

The rest of this section contains the following information:

 Using Global Roles to Control Access to UI Pages

 Adding Access Rights to a Role

 Using Roles as Templates for Adding Access Rights

Using Global Roles to Control Access to UI Pages

UI access rights that you assign through global roles work as follows:

1. In the internal user profile repository, you create an accessRight repository item that
corresponds to some functional aspect of your sites that you want to secure. For
example, you could set up an access right item called Edit Customer Profiles to be
applied to any page that allows users to change a customer’s profile information.

2. You configure an AccessRightAccessController component (class
atg.userprofiling.AccessRightAccessController) that specifies the Edit
Customer Profiles repository item you created in step 1.

3. You configure an AccessControlServlet component (class
atg.userprofiling.AccessControlServlet) whose accessControllers
property specifies the pages to which the Edit Customer Profiles access controller
should apply.

4. In the ATG Control Center, you add the Edit Customer Profiles access right to one or
more global roles, and you assign those roles to individual users. When a user
attempts to display any of the pages specified in the AccessControlServlet as
requiring the Edit Customer Profile access right, a security check is performed to verify
that the user’s profile contains the appropriate role.

The following examples show typical contents of the property files for the two components you set up:

EditCustomerProfilesAccessRightController.properties:

$class=atg.userprofiling.AccessRightAccessController

$scope=global

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

8 8

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ
accessRightsPropertyName=accessRights

accessRightNamePropertyName=name

allowedAccessRightNames=edit_customer_profiles

deniedAccessURL=/MY-APP/en/accessdenied.jsp

Note: The deniedAccessURL specifies the page to display if the user fails the security check. This
property can also be specified in the AccessControlServlet (see below), but defining it in the
AccessController helps to eliminate conflicts in cases where more than one application is running.

AccessControlServlet.properties:

$class=atg.userprofiling.AccessControlServlet

profilePath^=ProfileRequestServlet.profilePath

enabled=true

List of mappings between paths and AccessController objects. If a

path refers to a directory, all the documents in that directory and

its subdirectories will be protected by the given AccessController.

accessControllers+=\

 /MY-WEB-APP/en/edit_address.jsp=/atg/mymodule/

 EditCustomerProfileAccessRightController,\

 /MY-WEB-APP/en/edit_username.jsp=/atg/mymodule/

 EditCustomerProfileAccessRightController

Default deniedAccessURL to use if an AccessController

doesn't supply one

deniedAccessURL=

#loggingDebug=true

The item descriptor for the accessRights repository item is shown below:

<item-descriptor name="accessRight" sub-type-property="type"

id-space-name="internalAccessRight"

display-name-resource="itemDescriptorAccessRight"

 display-property="name" item-cache-size="1000" query-cache-size="1000"

version-property="version">

 <attribute name="resourceBundle"

 value="atg.userprofiling.InternalUserProfileTemplateResources"/>

 <table name="dpi_access_right" type="primary"

 id-column-name="access_right_id">

 <property name="name" column-name="name" data-type="string"

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

8 9

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ
 required="true"

 display-name-resource="rightName">

 <attribute name="propertySortPriority" value="10"/>

 </property>

 <property name="version" column-name="version" data-type="int"

 writable="false" expert="true" display-name-resource="version">

 <attribute name="propertySortPriority" value="60"/>

 </property>

 <property name="description" column-name="description" data-type="string"

 display-name-resource="rightDescription">

 <attribute name="propertySortPriority" value="30"/>

 </property>

 <property name="scope" column-name="right_scope" required="true"

 data-type="enumerated"

 display-name-resource="scope">

 <attribute name="propertySortPriority" value="40"/>

 <option value="global" code="1"/>

 <option value="organization" code="2"/>

 </property>

 <property name="type" column-name="right_type" required="true"

 data-type="enumerated" default="generic"

 display-name-resource="rightType">

 <attribute name="uiwritable" value="false"/>

 <attribute name="propertySortPriority" value="80"/>

 <option value="generic" code="1"/>

 </property>

 </table>

 </item-descriptor>

Adding Access Rights to a Role

As indicated elsewhere in this chapter, inheritance plays an important part in the way roles and
organizations work. Access rights that you grant to a role that is assigned to a parent organization are
automatically inherited by any dependent organizations. Before you assign access rights to roles, make
sure you have a clear understanding of the parent/child relationships among the entities in your user
directory.

To use the ACC to add access rights to a role, complete the following steps:

1. Display the Roles window (select People and Organizations > Roles).

2. In the list in the left pane, select the role (either global or organizational) to which you
want to add access rights. For information on the difference between the two types of
role, see User Directory Architecture.

3. Display the Profile tab for the role.

4. Click the button in the Direct Access Rights field. The Direct Access Rights dialog box
appears. Note: If the field does not appear, check that you have started ATG 10.0.2
with a module that supports adding access rights through the ATG Control Center.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

9 0

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ
5. Click Add. The New Item dialog box appears.

6. Specify Items of Type Access Right as the query, and click List. All existing access rights
appear.

7. Select the access rights you want to add for this role.

8. Click OK to return to the Direct Access Rights dialog box.

9. Click OK again.

Note: To see a brief description of an access right, complete the steps in the procedure as far as step 8. If
you double-click the name of an access right in the Direct Access Rights dialog box, its properties,
including the Description field, are displayed.

Using Roles as Templates for Adding Access Rights

In cases where you need to define access rights for a large number of roles, you can save time by adding
the rights to one role and then using that role as a template. Example: You have 20 organizations called
Product 1, Product 2, Product 3, and so on. You have forty corresponding organizational roles for Author
and Reviewer (for example, Product 1 Author, Product 1 Reviewer, Product 2 Author, Product 2 Reviewer).
You want to assign the same access rights to all the Product n Reviewer roles. To do so quickly, you can
set up a role called Reviewer, define the access rights for it, and then use it as a template for the
appropriate organizational roles.

Rights that you add through template roles are cumulative with rights added through the Direct Access
Rights field described in the previous section. This behavior allows you to use a combination technique
where you can assign shared rights through role templates and define rights that are unique to a role
through the Direct Access Rights field.

You can use both global and organizational roles as templates for any type of role. Note that only the
role’s access rights are inherited by the non-template role; no other properties of the template role are
acquired.

To use a global role as a template for adding access rights:

1. Add the required access rights to the role you want to use as a template. Follow the
procedure in the previous section, Adding Access Rights to a Role.

2. Select or create the first role to which you want to apply the template, and display the
Profile tab for that role.

3. In the templateRoles field, click the button. The Template Roles dialog box appears.

4. Click Add. The New Item dialog box appears.

5. Specify Items of Type Role as the query, and click List. All roles in your system appear.

6. Select the role you want to use as the template. (Note that you can select multiple
roles if you want to add access rights from more than one template role.)

7. Click OK to return to the Template Roles dialog box.

8. Click OK.

9. Repeat steps 2 to 8 for other non-template roles.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

9 1

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ
10. Select File > Save when you have finished.

User Directory API
The Dynamo User Directory is an implementation of the User Directory API. This section lists the specific
packages, interfaces, and classes that you can use to extend the core User Directory API with any custom
code that your application requires. For example, you can extend any of the Principal objects to add
properties that fit your business model.

The User Directory API includes the following packages:

 atg.userdirectory

 atg.userdirectory.droplet

 atg.userdirectory.repository

atg.userdirectory

The atg.userdirectory package contains the following interfaces, which represent each of the
different types of objects that can exist in a user directory:

 atg.userdirectory.User

 atg.userdirectory.Organization

 atg.userdirectory.Role

 atg.userdirectory.RelativeRole (represents organizational roles)

 atg.userdirectory.DirectoryPrincipal

 atg.userdirectory.OrganizationalEntity

 atg.userdirectory.RoleFolder

Note that each of these interfaces contains methods that you can use to search for items in a user
directory. These methods provide alternative and in some cases more flexible techniques for sorting user
directory items than the implementations in the atg.userdirectory.droplet package described in
the next section. For example, the atg.userdirectory.organizations interface contains methods for
finding all users associated with a directory and for sorting them by first name, last name, login ID, or e-
mail address.

In addition to the interfaces described above, the atg.userdirectory package contains the interface
atg.userdirectory.UserDirectory, which manages the organizational tree, and the following
additional classes:

 atg.userdirectory.RoleNotAssignableException

 atg.userdirectory.DirectoryModificationException

 atg.userdirectory.UserDirectoryUserAuthority

For information about the atg.userdirectory package, refer to the ATG API Reference.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

9 2

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ
atg.userdirectory.UserDirectoryUserAuthority

A user authority (an implementation of the atg.security.UserAuthority interface) produces Persona
objects that can be used as part of a security model to identify users and associate them with any roles
that they may have. The atg.userdirectory.UserDirectoryUserAuthority class is a user authority
that is designed for creating Persona objects specific to a user directory.

The UserDirectoryUserAuthority class supports the following items for identity lookup:

 user

 org

 role

 login

 orgpath

 rolepath

These identities can be included as PRINCIPAL_TYPE access control entries in Access Control Lists and
then extracted, for example by an ACL parser. Access Control Entries use the following format:

UD_NAME '$' PRINCIPAL_TYPE '$' UD_PRINCIPAL_KEY

where UD_NAME is the name of the user directory (for example, Profile), and UD_PRINCIPAL_KEY is the
primary key used for looking up the principal in the given user directory. The following table gives
example access control entries for the identities that the UserDirectoryUserAuthority class supports:

PRINCIPAL_TYPE UD_PRINCIPAL_KEY Example

user Profile ID Profile$user$9462

org Profile ID Profileorg341

role Profile ID Profile$role$732168

login Login name Profile$login$Mary

orgpath The path to the organization Profile$orgpath$/MyCorp/Sales

orgrole The organizational role, by
organizational path and
function name

Profile$orgrole$/MyCorp/Sales/Mana

ger

rolepath The path to the role Profile$rolepath$/designer

For more information on access control entries, refer to ACL Syntax in the ATG Repository Guide.

The /atg/dynamo/security/UserAuthority component is the default implementation of the
UserDirectoryUserAuthority class. Use the PrincipalResolver interface and the

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

9 3

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ
addPrincipalResolver() method in the UserDirectoryUserAuthority API to extend the
UserDirectoryUserAuthority.

atg.userdirectory.droplet

This package contains the API for the following form handlers and ATG Servlet Beans:

 atg.userdirectory.droplet.CreateOrganizationFormHandler: Use this form
handler to create new organizations in the user directory. The Motorprise demo for
ATG Business Commerce contains an implementation of this form handler, which it
uses to create business units. For more information, refer to Creating Business Units and
Roles in the ATG Business Commerce Reference Application Guide. If you have ATG
Business Commerce, you can also look at the JSP code in the page
business_unit_new.jsp, located by default in
<ATG10dir>\MotorpriseJSP\j2ee-apps\motorprise\web-app\en\admin.

 atg.userdirectory.droplet.HasFunction: Use to query whether or not a user is
associated with a particular organizational role function value. If the user has the
function, the true oparam is rendered. For an example, refer to Verifying Admin Access
in the ATG Business Commerce Reference Application Guide.

 atg.userdirectory.droplet.TargetPrincipalsDroplet: Use to retrieve a list of
organizations that are associated with roles containing a specific function value.

 atg.userdirectory.droplet.UserListDroplet: Retrieves a list of users
associated with a specific organization.

 atg.userdirectory.droplet.ViewPrincipalsDroplet: Retrieves a list of
Principals (either organizations or roles) for a specific user.

For more information about the atg.userdirectory.droplet package, refer to the ATG API Reference.

For information on additional ways to sort the results of queries performed on a user directory, see the
previous section, atg.userdirectory.

atg.userdirectory.repository

This package contains the interface atg.userdirectory.repository.RepositoryUserDirectory,
which handles conversion between repository items and the Principals that they represent. It also
associates each Principal type with a corresponding Repository View in the repository, allowing you to
perform queries against these views. The Repository Views can also be used for adding and removing
items that correspond to principals of different types.

For more information, refer to the ATG API Reference.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

9 4

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ
Dynamo User Directory Implementation

The Dynamo User Directory is the standard user directory implementation that is configured out-of-the-
box with your ATG server. This section describes how you can configure the Dynamo User Directory
through the profile repository definition file. It contains the following information:

 User Directory Repository Definition

 Standard User Directory Definition File

 Configuring User Directory Components

 Caching and the User Directory

User Directory Repository Definition

The profile repository definition file, userProfile.xml, defines item descriptors and properties that
belong to organizations, both types of roles, and other aspects of the user directory. You can extend these
template definitions as required, adding the properties that you want to be able to specify for
organizations and roles in the ATG Business Control Center and the ACC.

The userProfile.xml file is a combination of several userProfile.xml files, one defined for each ATG
module you install. For more information about which userProfile.xml files make up your user
directory repository definition, see XML File Combination and the User Profile Repository Definition in the
Extending the Standard User Profile Repository Definition section of this guide.

The Personalization module’s base profile repository definition file defines the following item descriptors
for the user directory:

Item Descriptor Name Description

role Defines global roles

organizationalRole Defines organizational roles

organization Represents a Personalization module organization

genericFolder Defines the folders in which you can place
organizations

roleFolder Defines the folders in which you can place global roles

Some of these item descriptors use inheritance to define a hierarchical relationship with other user
directory entities; for example, the item descriptor organizationalRole inherits attributes from the
item descriptor role, as defined in these lines from the Personalization module’s default
userProfile.xml file:

<item-descriptor name="organizationalRole" super-type="role"

 sub-type-value="organizationalRole"

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

9 5

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ
For more information on item descriptor inheritance, refer to the SQL Repositories chapter in the ATG
Repository Guide.

Note that, in addition to setting up inheritance among item descriptors, or as an alternative to it, you can
define derived properties, which allow one repository item to derive property values from another
repository item or from another property in the same repository item. This feature is used extensively for
the User item descriptor in the ATG demos; for example, in the Motorprise demo site for B2B Commerce,
the User item descriptor includes properties that it derives from the user’s parent organization as shown
in the following lines from the Motorprise version of the userProfile.xml file:

 <property name="defaultPaymentType" item-type="credit-card"

 display-name-resource="defaultPaymentType"

 category-resource="categoryBillingShipping">

 <derivation override-property="myDefaultPaymentType">

 <expression>parentOrganization.defaultPaymentType</expression>

 </derivation>

 <attribute name="resourceBundle"

 value="atg.b2bcommerce.UserProfileTemplateResources"/>

 <attribute name="propertySortPriority" value="30"/>

 </property>

For more examples and for detailed information on derived properties, refer to the SQL Repositories
chapter in the ATG Repository Guide.

Standard User Directory Definition File

The following code sample shows the section of the base userProfile.xml file, included in the
Personalization module, that defines the item-descriptors used by the Dynamo User Directory. (Note that
the sample shows only an excerpt and not the complete userProfile.xml file.)

<!-- Roles are the base class that organizational roles inherit from. -->

<item-descriptor name="role" sub-type-property="type" version-property="version"

 display-property="name" display-name-resource="itemDescriptorRole"

 sub-type-value="role" default="false" content="false" folder="false"

 use-id-for-path="false" hidden="false" expert="false" cache-mode="simple">

 <attribute name="resourceBundle"

 value="atg.userprofiling.UserProfileTemplateResources" />

 <table name="dps_role" type="primary" id-column-name="role_id">

 <property name="type" data-type="enumerated" expert="true"

 display-name-resource="type" default="role" required="false"

 readable="true" writable="true" queryable="true" hidden="false"

 cache-mode="inherit">

 <attribute name="useCodeForValue" value="false" />

 <option value="role" code="2000" />

 <option value="organizationalRole" code="2001" />

 <attribute name="propertySortPriority" value="50" />

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

9 6

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ
 </property>

 <property name="version" column-name="version" data-type="int"

 writable="false" expert="true" display-name-resource="version"

 required="false" readable="true" queryable="true" hidden="false"

 cache-mode="inherit">

 <attribute name="propertySortPriority" value="60" />

 </property>

 <property name="name" column-name="name" data-type="string" required="true"

 display-name-resource="name" readable="true" writable="true"

 queryable="true" hidden="false" expert="false" cache-mode="inherit">

 <attribute name="propertySortPriority" value="10" />

 </property>

 <property name="description" column-name="description" data-type="string"

 display-name-resource="description" required="false" readable="true"

 writable="true" queryable="true" hidden="false" expert="false"

 cache-mode="inherit">

 <attribute name="propertySortPriority" value="20" />

 </property>

 </table>

 <property name="relativeTo" hidden="true" required="false" readable="true"

 writable="true" queryable="true" expert="false" cache-mode="inherit" />

</item-descriptor>

<!-- The organizational role, which is really an implementation

 of relativeTo of item-type organization. -->

<item-descriptor name="organizationalRole" super-type="role"

 sub-type-value="organizationalRole"

 display-name-resource="itemDescriptorOrganizationalRole" default="false"

 content="false" folder="false" use-id-for-path="false" hidden="false"

 expert="false" cache-mode="simple">

 <attribute name="resourceBundle"

 value="atg.userprofiling.UserProfileTemplateResources" />

 <table name="dps_relativerole" id-column-name="role_id" type="auxiliary">

 <property name="function" column-name="dps_function" data-type="string"

 required="true" display-name-resource="function" readable="true"

 writable="true" queryable="true" hidden="false" expert="false"

 cache-mode="inherit">

 <attribute name="propertySortPriority" value="30" />

 </property>

 <property name="relativeTo" hidden="false" item-type="organization"

 column-name="relative_to" required="true" cascade="update"

 display-name-resource="relativeTo" readable="true" writable="true"

 queryable="true" expert="false" cache-mode="inherit">

 <attribute name="propertySortPriority" value="40" />

 </property>

 </table>

</item-descriptor>

<!-- The Organization definition -->

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

9 7

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ

<item-descriptor name="organization"

 display-name-resource="itemDescriptorOrganization" display-property="name"

 default="false" content="false" folder="false" use-id-for-path="false"

 hidden="false" expert="false" cache-mode="simple">

 <attribute name="resourceBundle"

 value="atg.userprofiling.UserProfileTemplateResources" />

 <attribute name="categoryBasicsPriority" value="10" />

 <attribute name="categoryOrganizationRolesPriority" value="20" />

 <table name="dps_organization" type="primary" id-column-name="org_id">

 <property category-resource="categoryBasics" name="name" data-type="string"

 required="true" column-name="name" display-name-resource="name"

 readable="true" writable="true" queryable="true" hidden="false"

 expert="false" cache-mode="inherit">

 <attribute name="propertySortPriority" value="10" />

 </property>

 <property category-resource="categoryBasics" name="description"

 data-type="string" column-name="description"

 display-name-resource="description" required="false" readable="true"

 writable="true" queryable="true" hidden="false" expert="false"

 cache-mode="inherit">

 <attribute name="propertySortPriority" value="20" />

 </property>

 <property category-resource="categoryOrganizationRoles"

 name="parentOrganization" item-type="organization"

 display-name-resource="parentOrganization" column-name="parent_org"

 required="false" readable="true" writable="true" queryable="true"

 hidden="false" expert="false" cache-mode="inherit">

 <attribute name="propertySortPriority" value="30" />

 </property>

 </table>

 <table name="dps_org_chldorg" type="multi" id-column-name="org_id">

 <property category-resource="categoryOrganizationRoles"

 name="childOrganizations" data-type="set"

 component-item-type="organization" column-name="child_org_id"

 display-name-resource="childOrganizations" required="false"

 readable="true" writable="true" queryable="true" hidden="false"

 expert="false" cache-mode="inherit">

 <attribute name="propertySortPriority" value="40" />

 </property>

 </table>

 <table name="dps_org_ancestors" type="multi" id-column-name="org_id"

 multi-column-name="sequence_num">

 <property category-resource="categoryOrganizationRoles"

 name="ancestorOrganizations" data-type="list"

 component-item-type="organization" column-name="anc_org"

 display-name-resource="ancestorOrganizations" required="false"

 readable="true" writable="true" queryable="true" hidden="false"

 expert="false" cache-mode="inherit">

 <attribute name="propertySortPriority" value="50" />

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

9 8

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ
 </property>

 </table>

<!-- Adding roles to the list of organizations -->

 <table name="dps_org_role" type="multi" id-column-name="org_id">

 <property category-resource="categoryOrganizationRoles" name="roles"

 data-type="set" component-item-type="role" column-name="atg_role"

 display-name-resource="roles" required="false" readable="true"

 writable="true" queryable="true" hidden="false" expert="false"

 cache-mode="inherit">

 <attribute name="propertySortPriority" value="60" />

 </property>

 </table>

<!-- This Organization has these RelativeRoles -->

 <table name="dps_role_rel_org" type="multi" id-column-name="organization"

 multi-column-name="sequence_num">

 <property category-resource="categoryOrganizationRoles" name="relativeRoles"

 data-type="list" component-item-type="organizationalRole"

 column-name="role_id" display-name-resource="relativeRoles"

 required="false" readable="true" writable="true" queryable="true"

 hidden="false" expert="false" cache-mode="inherit">

 <attribute name="propertySortPriority" value="70" />

 </property>

 </table>

 <table name="dps_user_org" type="multi" id-column-name="organization">

 <property category-resource="categoryOrganizationRoles" name="members"

 data-type="set" component-item-type="user" column-name="user_id"

 writable="true" display-name-resource="members" required="false"

 readable="true" queryable="true" hidden="false" expert="false"

 cache-mode="inherit">

 <attribute name="resourceBundle"

 value="atg.userprofiling.UserProfileTemplateResources" />

 <attribute name="propertySortPriority" value="-2" />

 </property>

 </table>

</item-descriptor>

<!-- The folder structure that is used by organizations -->

<item-descriptor name="genericFolder" sub-type-property="type"

 display-name-resource="itemDescriptorGenericFolder"

 sub-type-value="genericFolder" expert="true" display-property="name"

 default="false" content="false" folder="false" use-id-for-path="false"

 hidden="false" cache-mode="simple">

 <attribute name="resourceBundle"

 value="atg.userprofiling.UserProfileTemplateResources" />

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

9 9

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ
 <table name="dps_folder" type="primary" id-column-name="folder_id">

 <property name="type" data-type="enumerated" expert="true"

 display-name-resource="type" required="false" readable="true"

 writable="true" queryable="true" hidden="false" cache-mode="inherit">

 <attribute name="useCodeForValue" value="false" />

 <option value="genericFolder" code="2000" />

 <option value="roleFolder" code="2001" />

 <option value="orgFolder" code="2002" />

 <attribute name="propertySortPriority" value="60" />

 </property>

 <property name="name" data-type="string" column-name="name" required="true"

 display-name-resource="name" readable="true" writable="true"

 queryable="true" hidden="false" expert="false" cache-mode="inherit">

 <attribute name="propertySortPriority" value="10" />

 </property>

 <property name="description" data-type="string" column-name="description"

 display-name-resource="description" required="false" readable="true"

 writable="true" queryable="true" hidden="false" expert="false"

 cache-mode="inherit">

 <attribute name="propertySortPriority" value="20" />

 </property>

 <property name="parent" item-type="genericFolder" column-name="parent"

 display-name-resource="parent" required="false" readable="true"

 writable="true" queryable="true" hidden="false" expert="false"

 cache-mode="inherit">

 <attribute name="propertySortPriority" value="30" />

 </property>

 </table>

 <table name="dps_child_folder" type="multi" id-column-name="folder_id">

 <property name="childFolders" data-type="set"

 component-item-type="genericFolder" column-name="child_folder_id"

 queryable="true" display-name-resource="childFolders" required="false"

 readable="true" writable="true" hidden="false" expert="false"

 cache-mode="inherit">

 <attribute name="propertySortPriority" value="40" />

 </property>

 </table>

 <property name="childItems" required="false" readable="true" writable="true"

 queryable="true" hidden="false" expert="false" cache-mode="inherit" />

</item-descriptor>

<item-descriptor name="roleFolder" super-type="genericFolder" sub-type-

 value="roleFolder" display-name-resource="itemDescriptorRoleFolder"

 default="false" content="false" folder="false" use-id-for-path="false"

 hidden="false" expert="false" cache-mode="simple">

 <attribute name="resourceBundle"

 value="atg.userprofiling.UserProfileTemplateResources" />

 <table name="dps_rolefold_chld" type="multi" id-column-name="rolefold_id">

 <property name="childItems" data-type="set" component-item-type="role"

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 0 0

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ
 column-name="role_id" display-name-resource="childItems" required="false"

 readable="true" writable="true" queryable="true" hidden="false"

 expert="false" cache-mode="inherit">

 <attribute name="propertySortPriority" value="50" />

 </property>

 </table>

</item-descriptor>

Configuring User Directory Components

Most configuration properties that you may have to edit for the user directory are contained in the
following two components:

 ProfileUserDirectory Component

 ProfileUserDirectoryProperties Component

ProfileUserDirectory Component

The following example shows the default values in the .properties file for the
atg/userprofiling/ProfileUserDirectory component (class
atg.userdirectory.repository.RepositoryUserDirectoryImpl).

$class=atg.userdirectory.repository.RepositoryUserDirectoryImpl

#basics

repositoryItemGroupRegistry=/atg/registry/RepositoryGroups

repositoryUserDirectoryProperties=ProfileUserDirectoryProperties

repository=/atg/userprofiling/ProfileAdapterRepository

transactionManager=/atg/dynamo/transaction/TransactionManager

caches

organizationCache=OrganizationCache

organizationPathCache=OrganizationPathCache

repositoryItemGroupRoleCache=RepositoryItemGroupRoleCache

roleCache=RoleCache

rolePathCache=RolePathCache

folderCache=FolderCache

folderPathCache=FolderPathCache

userCache=UserCache

#view names

userViewName=user

relativeRoleViewName=organizationalRole

organizationViewName=organization

roleViewName=role

folderViewName=roleFolder

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 0 1

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ

#random

rootRoleFolderPrimaryKey=root

rootOrganizationPrimaryKey=root

The properties in the Basics section of the file are used as follows:

Property Use

repositoryItemGroupRegistry Points to the ATG service that registers any repository
item groups (content or profile groups) you have
created.

repositoryUserDirectoryProperties Points to the component that keeps track of the
names of properties in the user directory. See
ProfileUserDirectoryProperties Component below.

repository Points to the profile repository that is accessed by the
user directory.

transactionManager Points to the Transaction Manager service. For more
information, see Transaction Management in the ATG
Programming Guide.

The properties in the Caches section of the file identify the cache component to use for caching
repository items of each item descriptor type. For more information, see Caching and the User Directory.

The properties in the View Names section of the file are the names of the Repository Views that
correspond to the user directory item descriptors in the userProfile.xml file.

Property Use

userViewName Corresponds to the user item descriptor

relativeRoleViewName Corresponds to the organizational role item
descriptor

organizationViewName Corresponds to the organization item descriptor

roleViewName Corresponds to the global role item descriptor

folderViewName Corresponds to the role folder item descriptor

The properties in the Random section of the file are used as follows:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 0 2

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ
Property Use

rootRoleFolderPrimaryKey Identifies the root folder that appears for global roles in the
Roles window of the ATG Business Control Center and the ACC.
The value is the root folder’s repositoryId.

rootOrganizationPrimaryKey Identifies the repository ID of the root organization in the
Organizations window of the ATG Business Control Center and
the ACC. The value is the root organization’s repositoryId.

Important: If you add organizations to your user directory
programmatically, none of them will appear in the the ATG
Business Control Center or the ACC unless you change this
property to point to the repositoryId of the organization
that you added as your root.

ProfileUserDirectoryProperties Component

The atg/userprofiling/ProfileUserDirectoryProperties component (class
atg.userdirectory.repository.RepositoryUserDirectoryProperties) performs a function for
the user directory definition that is similar to the /atg/userprofiling/PropertyManager
component’s function for the user profile definition (see Modifying Standard Profile Properties). It
maintains a list of the names of various user directory properties as defined in the userProfile.xml file.
If you rename any of these properties in the XML file, you must also edit the corresponding configured
value in the ProfileUserDirectoryProperties component.

The following sample shows the properties file for this component:

$class=atg.userdirectory.repository.RepositoryUserDirectoryProperties

userLoginPropertyName^=/atg/userprofiling/PropertyManager.loginPropertyName

userPasswordPropertyName^=/atg/userprofiling/PropertyManager.passwordPropertyName

userFirstNamePropertyName^=/atg/userprofiling/

 PropertyManager.firstNamePropertyName

userLastNamePropertyName^=/atg/userprofiling/PropertyManager.lastNamePropertyName

userEmailAddressPropertyName^=/atg/userprofiling/

 PropertyManager.emailAddressPropertyName

userRolesPropertyName^=/atg/userprofiling/PropertyManager.rolesPropertyName

userParentOrganizationPropertyName^=/atg/userprofiling/

 PropertyManager.organizationPropertyName

userAncestorOrganizationsPropertyName^=/atg/userprofiling/

 PropertyManager.ancestorOrganizationsPropertyName

organizationNamePropertyName=name

organizationDescriptionPropertyName=description

organizationAncestorOrganizationsPropertyName=ancestorOrganizations

organizationParentOrganizationPropertyName=parentOrganization

organizationRolesPropertyName=roles

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 0 3

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ
organizationRelativeRolesPropertyName=relativeRoles

organizationMembersPropertyName=members

organizationChildOrganizationsPropertyName=childOrganizations

roleTypePropertyName=type

roleNamePropertyName=name

roleVersionPropertyName=version

roleDescriptionPropertyName=description

organizationalRoleFunctionPropertyName=function

organizationalRoleRelativeToPropertyName=relativeTo

folderTypePropertyName=type

folderNamePropertyName=name

folderDescriptionPropertyName=description

folderParentPropertyName=parent

folderChildFoldersPropertyName=childFolders

folderChildItemsPropertyName=childItems

Caching and the User Directory

The user directory employs standard ATG SQL repository caching techniques as described in SQL
Repository Caching in the ATG Repository Guide. By default, caching is turned off for all user directory item
descriptor types.

Each item descriptor type in the user directory has a corresponding cache component that maps
repository IDs to persistent repository items. The cache component is identified in the Caching section of
the ProfileUserDirectory.properties file. For example, in the default file, the property userCache
points to the atg/userprofiling/userCache component (class atg.service.cache.Cache).

The default properties file for the userCache component is shown in the following example:

$class=atg.service.cache.Cache

caching is off by default

cacheAdapter=/atg/userprofiling/userCacheAdapter

The properties you can set for the userCache component are shown in the following table:

Property Default Value/Description

cacheAdapter The Nucleus address of the adapter that retrieves items not found in
the cache.

Default: /atg/userprofiling/userCacheAdapter

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 0 4

5 - W o r k i n g w i t h t h e D y n a m o U s e r D i r e c t o r y

μ
maximumCacheEntries The maximum number of entries in the cache.

0 = cache nothing. Always get objects from the cacheAdapter.

-1 = unlimited (Default)

maximumCacheSize The maximum number of bytes in the cache.

0 = Cache nothing. Always get objects from the cacheAdapter.

-1 = Unlimited (Default)

maximumEntryLifetime The maximum time, in milliseconds, that an entry can exist in the
cache.

0 = cache nothing. Always get objects from the cacheAdapter.

-1 = cache entries never expire (Default)

maximumEntrySize The maximum number of bytes in a single cache entry.

0 = cache nothing. Always get objects from the cacheAdapter.

-1 = cache entries never expire (Default)

Each cache component points to a corresponding cache adapter component, which retrieves items from
the repository that are not in the cache. For example, as shown above, the userCache component points
to atg/userprofiling/userCacheAdapter (class
atg.userdirectory.repository.UserCacheAdapter). The following sample shows the default
properties file for the userCacheAdapter component:

$class=atg.userdirectory.repository.UserCacheAdapter

userDirectory=/atg/userprofiling/ProfileUserDirectory

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 0 5

6 - S e t t i n g U p a n L D A P U s e r D i r e c t o r y

μ
6 Setting Up an LDAP User Directory

This section describes how to modify the standard SQL user directory to make an LDAP system the
primary source of organization information. (Note: In this configuration, only users and organizations
come from LDAP. All role-related information is still stored only in the SQL repository.)

The process involves two main steps:

1. Setting up a linked repository.

2. Configuring LDAP user directory components.

These steps are described below.

Setting Up a Linked Repository
This section describes how to configure and link the SQL repository definition file, userProfile.xml,
and the LDAP repository’s ldapUserProfile.xml file for the purpose of creating an LDAP-based user
directory.

1. Set up implicit repository linking for the two repositories. Implicit linking is a
technique in which linked profile items share a unique property in both repositories,
and linking is performed dynamically through code. In early versions of the ATG
Personalization module, implicit linking was the recommended technique for splitting
profile data among repositories of different types; in ATG 6 and later, this technique
was superseded by the composite repository configuration described in Setting Up a
Composite Profile Repository. Using implicit linking is still required, however, if you
want to set up an LDAP-based user directory, and information about it is included in
this manual for that purpose.

Follow the directions in Linking SQL and LDAP Repositories. In particular, make sure
you perform the steps in the subsection Configuring Personalization Module
Components for Linked Repositories.

2. Follow the directions exactly to set up the user view.

3. Determine the attributes you will use as the entryId and parentId LDAP attributes.

These must be attributes that exist in one of the object classes given as the object
classes of a user. For example, the default LDAP repository implementation shows
that a user has the object classes top, person, organizationalPerson, and
inetorgPerson. Pick or create an attribute in one of these object classes to act as an
entryId. Do the same thing for parentId.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 0 6

6 - S e t t i n g U p a n L D A P U s e r D i r e c t o r y

μ
The parentId attribute holds the entryId of an object’s parent object. For example,
assume that the organizational unit People (ou=People,dc=atg.com) has the
entryId 4. Also assume there is a user in the People organization whose userid is
johnq. Johnq will have an entryId of 5, for example, and a parentId of 4. Make
LDAP properties out of these attributes (see example).

Note: In some directory servers, this relationship is already set up. However, you may
not be able to find entryId and parentId as attributes of any object class. The
process described here should work successfully regardless of whether you can find
the attributes.

If this relationship is not already defined in your brand of directory server, follow the
instructions above to add the necessary attributes to your schema. Then set the values
of those attributes for each organization and user that you want to expose in your ATG
environment. Make sure that the values set up the relationship pattern outlined
above: the root organizational unit has a particular entryId and an empty parentId.
Then, all child organizational units and users of the root organization have unique
entryIds and a parentId that is the same as the root organization’s entryId.

4. Turn the default organization SQL item descriptor into a linked item descriptor. Do
this by using XML combination to add a new property, ldapOrganization, to the
organization item descriptor. This property looks very much like the sample
ldapUser property described in Linking SQL and LDAP Repositories.

Also, you must add a new view called organizationalUnit to the
ldapUserProfile.xml file. See the sample userProfile.xml below for details. This
configuration is produced by using the example in Linking SQL and LDAP Repositories
as a model and substituting the organization item descriptor for user in the
instructions. Pick a particular item descriptor in the LDAP repository which represents
an LDAP organization.

Note: There is sometimes more than one object class that represents an organization
in an LDAP system. For example, some people consider a domain to be a type of
organization (dc=atg.com). In addition, a typical LDAP installation contains the object
classes organization and organizationalUnit. As an ATG installation uses only
one item descriptor for all organizations, there can be only one LDAP object class
which represents implicitly linked organizations. The default is organizationalUnit,
as this is the most commonly used LDAP organizational structure. Note that the root
organization must also be an organizational unit. OrganizationalUnit is in the
default installation—you can select any one object class to represent organizations in
LDAP. Unfortunately, you cannot use your domain as your root organization for the
reasons listed above. The key point is that there can be only one object class which
corresponds to an organization in ATG.

5. Make sure there is a root organization in ATG that is linked to your chosen LDAP root
organization. This step needs to be performed only if
useGSARepositoryIdAsPrimaryKey is true (see the description of the
ProfileUserDirectory component, and the important notes that follow it, for more
information). If useGSARepositoryIdAsPrimaryKey is false, the SQL repository root
organization will be created for you the first time it is accessed.

If no root organization exists in your SQL repository, create an organization item
whose uniqueIdPropertyLocal property value matches the
uniqueIdPropertyRemote property value of the LDAP repository item that

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 0 7

6 - S e t t i n g U p a n L D A P U s e r D i r e c t o r y

μ
corresponds to your chosen LDAP root organization. See Linking SQL and LDAP
Repositories for explanations of these terms.

Example: Assume you pick the organization with the DN “ou=People,dc=atg.com” in
LDAP as your root LDAP organization. You’ve set up your LDAP repository’s
organization item descriptor to have a property, name, that corresponds to the
LDAP attribute ou. If you used the instructions here as a guide, you would have an
item in the organizationalUnit item descriptor of your LDAP repository whose
name is People. You would also set up your SQL repository organization item
descriptor to have a property named ldapOrganization that is a
RepositoryLinkPropertyDescriptor. In the example, the
uniqueIdPropertyLocal is name, and the uniqueIdPropertyRemote is also name.
In order to link a SQL repository item with the previously mentioned LDAP item, all you
would have to do would be to create a SQL repository organization item whose
name is People. The RepositoryLinkPropertyDescriptor does the rest.

If there is a pre-existing root organization in your SQL repository, modify the default
root organization to point to the LDAP root organization.

The following steps show how to modify the default root organization:

 In the ACC, select People and Organizations > Profile Repository.

 Perform a query for items of type Organization.

 Edit the organization with the ID root, changing its name property to the name
of your selected LDAP root organization, for example People.

Alternatively, use a SQL editor to change the entry in the dps_organization table
whose org_id is root. Change the name property to People.

Make sure your LDAP database is using a password encryption scheme supported by
ATG’s NDSPasswordHasher component.

In addition, make sure that the passwordHasher property of the ATG installation’s
PropertyManager component points to the NDSPasswordHasher component as
follows:

passwordHasher=/atg/adapter/ldap/NDSPasswordHasher

And then set the encryption property of this component to the appropriate value
(clearText, SHA, or SSHA), for example:

encryption=SHA

Notes:

 If you change your password encryption scheme, you must then regenerate the
passwords for all existing users in your LDAP database. This is because all
existing users already have their passwords stored in the database and
encrypted with the old scheme.

 If you use an LDAP server other than Oracle Directory Server, you must create
and configure a custom password hasher component rather than using
NDSPasswordHasher. For more information, see LDAP Password Encryption in
the LDAP Repositories chapter of the ATG Repository Guide.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 0 8

6 - S e t t i n g U p a n L D A P U s e r D i r e c t o r y

μ
Removing Information from an LDAP User Directory

In an LDAP-based user directory, information flows from LDAP into ATG. For this reason, if you remove
information from LDAP using LDAP administration tools, you must also remove the corresponding
information from the ATG environment by hand. This step is not performed automatically. For example: if
you remove the organizational unit with DN “ou=People,dc=atg.com” from LDAP, you must also
remove the organization whose name is People from ATG.

Sample XML Files for an LDAP User Directory

This section includes examples of the userProfile.xml file and ldapUserProfile.xml file, set up to
show the implicit linking configuration described in the previous section.

Sample userProfile.xml file

The following code sample shows the SQL profile repository definition file, userProfile.xml, set up to
support an LDAP-based user directory. (Note that the example includes only the relevant section of this
file.)

<gsa-template>

 <item-descriptor name="user">

 <table name="dps_user">

 <!-- Remove properties which are in LDAP -->

 <property name="password" xml-combine="remove"/>

 <property name="email" xml-combine="remove"/>

 <property name="firstName" xml-combine="remove"/>

 <property name="lastName" xml-combine="remove"/>

 <!-- Replicate unique id property into LDAP -->

 <property name="login"

 property-type="atg.adapter.gsa.ReplicatePropertyDescriptor">

 <attribute name="replicateProperty" value="ldapUser.login"/>

 </property>

 </table>

 <!-- Add property which points to the LDAP item -->

 <property name="ldapUser"

 property-type="atg.repository.linked.RepositoryLinkPropertyDescriptor"

 repository="/atg/adapter/ldap/LDAPRepository"

 item-type="user">

<!--

 cascade="insert,update,delete">

-->

 <attribute name="uniqueIdPropertyLocal" value="login"/>

 <attribute name="uniqueIdPropertyRemote" value="login"/>

 </property>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 0 9

6 - S e t t i n g U p a n L D A P U s e r D i r e c t o r y

μ

 </item-descriptor>

 <item-descriptor name="organization">

 <!-- add a link property -->

 <property name="ldapOrganization"

 property-type="atg.repository.linked.RepositoryLinkPropertyDescriptor"

 repository="/atg/adapter/ldap/LDAPRepository"

 item-type="organizationalUnit">

 <attribute name="uniqueIdPropertyLocal" value="name"/>

 <attribute name="uniqueIdPropertyRemote" value="name"/>

 </property>

 </item-descriptor>

<import-items>

 <add-item item-descriptor="organization"

 repository="/atg/userprofiling/ProfileAdapterRepository" id="root">

 <set-property name="name">People</set-property>

 </add-item>

</import-items>

</gsa-template>

Sample ldapUserProfile.xml file

The following code sample shows the LDAP profile repository definition file, ldapUserProfile.xml, set
up to support an LDAP-based user directory.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE ldap-adapter-template

 PUBLIC "-//Art Technology Group, Inc.//DTD LDAP Adapter//EN"

 "http://www.atg.com/dtds/ldap/ldap_1.0.dtd">

<ldap-adapter-template xml-combine="replace">

<header>

 <name>ldapUserProfile.xml</name>

 <author>ATG</author>

</header>

<!-- organization view -->

<view name="organizationalUnit">

 <item-descriptor name="organizationalUnit" display-name="Organizational Unit"

 display-property="name">

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 1 0

6 - S e t t i n g U p a n L D A P U s e r D i r e c t o r y

μ

 <!-- special properties -->

 <id-property name="id" in-ldap="false"/>

 <object-classes-property name="objectClasses" ldap-name="objectclass"/>

 <!-- object classes -->

 <object-class>top</object-class>

 <object-class>organizationalUnit</object-class>

 <!-- properties -->

 <property name="name" ldap-name="ou" data-type="string" required="true"/>

 <property name="entryId" ldap-name="entryid" data-type="int" required="true"/>

 <property name="parentId" ldap-name="parentid" data-type="int" required="true"/>

 <!-- item creation -->

 <new-items allowed="false"/>

 </item-descriptor>

 <!-- search roots -->

 <search-root dn="dc=atg.com"/>

</view>

<!-- user view -->

<view name="user" default="true">

 <!-- item descriptor -->

 <item-descriptor name="user" display-name="User" display-property="login">

 <!-- special properties -->

 <id-property name="id" in-ldap="false"/>

 <object-classes-property name="objectClasses" ldap-name="objectclass"/>

 <!-- object classes -->

 <object-class>top</object-class>

 <object-class>person</object-class>

 <object-class>organizationalPerson</object-class>

 <object-class>inetorgPerson</object-class>

 <!-- properties -->

 <property name="names" ldap-name="cn" data-type="string" multi="true"

 required="true"/>

 <property name="login" ldap-name="uid" data-type="string" required="true">

 <attribute name="unique" value="true"/>

 </property>

 <property name="password" ldap-name="userpassword" data-type="string"

 required="false"

 editor-class="atg.beans.PasswordPropertyEditor">

 <attribute name="passwordHasher"

 bean="/atg/adapter/ldap/NDSPasswordHasher"/>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 1 1

6 - S e t t i n g U p a n L D A P U s e r D i r e c t o r y

μ
 </property>

 <property name="fullName" ldap-name="cn" data-type="string" required="true"/>

 <property name="lastName" ldap-name="sn" data-type="string" required="true"/>

 <property name="firstName" ldap-name="givenName" data-type="string"/>

 <property name="email" ldap-name="mail" data-type="string"/>

 <property name="parentId" ldap-name="parentid" data-type="int"

 required="true"/>

 <property name="entryId" ldap-name="entryid" data-type="int" required="true"/>

 <!-- item creation -->

 <new-items parent-dn="dc=atg.com" rdn-property="login"/>

<!--

 <new-items parent-dn="DC=atg,DC=com" rdn-property="login"/>

-->

 </item-descriptor>

 <!-- search roots -->

 <search-root dn="dc=atg.com"/>

<!--

 <search-root dn="DC=atg,DC=com"/>

-->

</view>

</ldap-adapter-template>

Configuring LDAP User Directory Components
This section describes the changes you need to make to the following user directory components to
support an LDAP-based user directory.

 ProfileUserDirectory

 ProfileUserDirectorySpider

 LDAPOrganizationItemFinder

 ProfileItemFinder

 PropertyManager

 ProfileUserDirectoryProperties

 LDAPUserCache

 LDAPUserCacheAdapter

 LDAPOrganizationCache

 LDAPOrganizationCacheAdapter

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 1 2

6 - S e t t i n g U p a n L D A P U s e r D i r e c t o r y

μ
ProfileUserDirectory

The following section describes how to set the properties of the
atg/userprofiling/ProfileUserDirectory component for an LDAP user directory configuration.

Property Description

profileItemFinder The profile item finder which looks users up by their
attributes or IDs. Set this property to the
Personalization module’s profile item finder. The
default is
/atg/userprofiling/ProfileItemFinder.

repositoryItemGroupRegistry The registry of repository item groups (also known as
profile groups). No change.

repositoryUserDirectoryProperties The component which tracks repository item property
names, much as does the
/atg/userprofiling/PropertyManager. No
change.

repository The backing repository. This property should point to
the implicitly linked SQL/LDAP repository. If you
follow the procedure earlier in this section, you should
not have to change this property.

transactionManager The component which helps the user directory make
use of Dynamo’s transactional database interaction.
For more information, see Transaction Management in
the ATG Programming Guide.

Note: Since LDAP systems are not transaction aware,
the LDAP repository is also not transactional. This
behavior means that it is possible for LDAP data to be
written permanently even if the transaction within
which the operation occurred is rolled back.

userDirectorySpider A spider that walks the user directory’s organization
and user hierarchy on a specified schedule, thereby
creating ATG-side objects corresponding to each user
and organization in LDAP, beginning with the root
organization. This property is not required. Set this
property to null if you don’t require this behavior.

See also ProfileUserDirectorySpider.

organizationCache The cache that translates organization primary keys
into organization objects. Set this property to
LDAPOrganizationCache.

organizationPathCache Translates organization paths within the organization
hierarchy into organization objects. No change.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 1 3

6 - S e t t i n g U p a n L D A P U s e r D i r e c t o r y

μ
repositoryItemGroupRoleCache Translates profile groups into role objects. No change.

roleCache Translates role primary keys into role objects. No
change.

rolePathCache Translates role paths within the role folder structure
into role objects. No change.

folderCache Translates role folder primary keys into role folder
objects. No change.

folderPathCache Translates role folder paths within the role folder
structure into role folder objects. No change.

userCache Translates user primary keys into user objects. Set this
property to LDAPUserCache.

userViewName The name of the user view in the repository backing
this directory.

organizationViewName The name of the organization view in the
repository backing this directory.

relativeRoleViewName The name of the relative role view in the
repository backing this directory.

roleViewName The name of the role view in the repository backing
this directory.

folderViewName The name of the folder view in the repository
backing this directory.

rootRoleFolderPrimaryKey The primary key of the root role folder. No change.

rootOrganizationPrimaryKey The primary key of the root organization. See Setting
the rootOrganizationPrimaryKey Property below.

organizationItemFinder Similar to the ProfileItemFinder (see
ProfileItemFinder Component). Its purpose is to locate
organization repository items. This property points to
an instance of
RepositoryLinkProfileItemFinder that is
configured to look for organization items. Set this
property to /atg/userprofiling/
LDAPOrganizationItemFinder (the default).

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 1 4

6 - S e t t i n g U p a n L D A P U s e r D i r e c t o r y

μ
useGSARepositoryIdAsPrimaryKey Determines whether user directory objects use their

SQL repository item’s repository ID as their primary
key (the default, and the way that the default user
directory is configured) or whether user directory
objects use the repository ID of the linked LDAP item
as their primary key. Your choice here has significant
effects on the portability of your code. See Important
Notes About the useGSARepositoryIdAsPrimaryKey
Property for information.

Setting the rootOrganizationPrimaryKey Property

The value you set for the rootOrganizationPrimaryKey property depends on the value of
useGSARepositoryIdAsPrimaryKey. If useGSARepositoryIdAsPrimaryKey is true (the default), this
value should be the repository ID of the SQL repository item that is implicitly linked to the LDAP item that
you want to be your root organization.

For example, assume you want the organization People in LDAP to be your root organization (remember
that you must pick an LDAP object of object class organizationalUnit, or of whatever type the
organization LDAP repository view specifies). First make sure that your organization shows up as an
item of type organization in your LDAP repository. Next, if useGSARepositoryIdAsPrimaryKey is
false, you set rootOrganizationPrimaryKey to be the People organization item’s repositoryId
(ou=People,dc=atg.com, perhaps). You don’t need to create a root SQL repository item, because the
organizationItemFinder will automatically create a SQL repository counterpart item when the root
organization is requested.

If useGSARepositoryIdAsPrimaryKey is true, you must first create a SQL repository item of type
organization and configure it so that it is implicitly linked with the LDAP organization repository item
for people (the LDAP item with ID ou=People,dc=atg.com). Then, set rootOrganizationPrimaryKey
to be the repository ID of your newly created root SQL repository organization (it could be anything, for
example 1111).

See the next section for some important information about the effects of setting the
useGSARepositoryIdAsPrimaryKey property.

Important Notes About the useGSARepositoryIdAsPrimaryKey Property

Do not write any application code that determines a user directory object’s primary key from a source
outside the user directory and then uses that key to fetch a user directory object.

Example: the default user directory uses a profile ID (user repository item repositoryId) as a user
directory user object’s primary key. However, applications should not use this knowledge to take a
profile ID from a session and then call findUserByPrimaryKey on the user directory, passing in the
session’s profile ID. Primary keys are implementation specific. Therefore, any application code written
to rely on aspects of the default user directory implementation’s primary key system is not
portable.

The recommended way to work with user directory primary keys is as follows:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 1 5

6 - S e t t i n g U p a n L D A P U s e r D i r e c t o r y

μ
1. Get the root organization.

2. List the child organizations of the root organization.

3. List user members of one of those organizations.

4. Get the primary key of the member and save it for later use.

5. Later, call findUserByPrimaryKey, passing in the saved primary key.

Obviously, these steps apply only to an application that wants to get a child organization of the root
organization by primary key. The important point is that user directory primary keys must come from the
user directory objects themselves, not from a source outside the user directory.

Nonetheless, in some exceptional circumstances it is necessary to write non-portable application code
that does exactly what this section recommends against doing. For example, some parts of the ACC
interface employ the knowledge that user directory user objects have a primary key that is the same as
their backing item’s repositoryId in order to reuse some RepositoryItem picker code. This design
makes the ACC interface non-portable but more functional. For purposes of maximum compatibility with
the user interface, therefore, the default setting for useGSARepositoryIdAsPrimaryKey is true. If you
require use of the ACC for managing organization, role, and user data, you must leave this property set to
true.

When useGSARepositoryIdAsPrimaryKey is true, only user directory objects whose SQL repository
item has already been created will be available for fetching by primary key. If your application code
follows the 5-step coding guidelines shown above, the problem is avoided, because by the time your
code asks a user directory object for its primary key, it has by definition got a SQL repository item
associated with it. However, if a primary key is fabricated outside the user directory, only items that have
been accessed through the user directory in some other way will be available for fetching by primary key.

Consider the following example. Some application code searches for a user whose primary key is 4444. In
the default user directory, the profile repository is not implicitly linked. Therefore, all available users exist
in the SQL repository and can be fetched at any time by their primary key (in this case, 4444). Assume,
however, that you change the SQL repository to be implicitly linked to an LDAP repository. With this
configuration, users can be in the LDAP repository but not have a SQL repository counterpart yet. When
useGSARepositoryIdAsPrimaryKey is true, the user with primary key 4444 cannot be found by
primary key until he or she is found as a member of an organization or by some similar operation.

To summarize, a useGSARepositoryIdAsPrimaryKey setting of true makes all existing user directory
application code compatible with the LDAP user directory, but it has some unexpected and potentially
undesirable results: namely that LDAP organizations and users cannot be fetched by primary key until a
SQL repository link item has been created that is implicitly linked to its LDAP manifestation. If you must
set this property to true, for example because you want to use the ACC for managing user directory data,
make sure that any code you write follows the 5-step coding guidelines in this section.

When useGSARepositoryIdAsPrimaryKey is false, user directory objects use their implicitly linked
LDAP repository item’s ID as their primary key. This behavior means that application code that must fetch
a user directory user object directly by primary key can do so, and success can be guaranteed; if the
primary key corresponds to a user repository item in LDAP, the user directory user object will always be
found.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 1 6

6 - S e t t i n g U p a n L D A P U s e r D i r e c t o r y

μ
The false setting is most useful for new application code, as existing code will not be determining the
correct primary key for a user. Existing code uses SQL repository IDs rather than LDAP repository IDs as
primary keys.

Sample ProfileUserDirectory.properties File

The code below is an example of a ProfileUserDirectory.properties file for an LDAP user directory.

$class=atg.userdirectory.repository.ldap.LDAPRepositoryUserDirectory

#basics

profileItemFinder=/atg/userprofiling/ProfileItemFinder

repositoryItemGroupRegistry=/atg/registry/RepositoryGroups

repositoryUserDirectoryProperties=ProfileUserDirectoryProperties

repository=/atg/userprofiling/ProfileAdapterRepository

transactionManager=/atg/dynamo/transaction/TransactionManager

userDirectorySpider=ProfileUserDirectorySpider

caches

organizationCache=LDAPOrganizationCache

organizationPathCache=OrganizationPathCache

repositoryItemGroupRoleCache=RepositoryItemGroupRoleCache

roleCache=RoleCache

rolePathCache=RolePathCache

folderCache=FolderCache

folderPathCache=FolderPathCache

userCache=LDAPUserCache

#view names

userViewName=user

relativeRoleViewName=organizationalRole

organizationViewName=organization

roleViewName=role

folderViewName=roleFolder

#random

rootRoleFolderPrimaryKey=root

rootOrganizationPrimaryKey=ou=People,dc=atg.com

rootOrganizationPrimaryKey=1111

ldap

organizationItemFinder=/atg/userprofiling/LDAPOrganizationItemFinder

useGSARepositoryIdAsPrimaryKey=true

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 1 7

6 - S e t t i n g U p a n L D A P U s e r D i r e c t o r y

μ
ProfileUserDirectorySpider

The /atg/userprofiling/ProfileUserDirectorySpider component is a service that periodically
walks the LDAP user and organization hierarchy on a specified schedule, thereby pulling user and
organization information from LDAP into the SQL repository.

Using this component is not required; if you do not need this behavior, set the userDirectorySpider
property in the ProfileUserDirectoryProperties component to null.

The code below is an example of a ProfileUserDirectorySpider.properties file.

Version: $Change: 217855 $$DateTime: 2001/10/31 14:12:45 $

$class=atg.userdirectory.UserDirectorySpider

userDirectory=ProfileUserDirectory

scheduler=/atg/dynamo/service/Scheduler

schedule=every 1 hour in 1 hour

Set the properties of this component as follows.

Property Description

userDirectory The name of the LDAP user directory to walk.

scheduler The Nucleus address of the scheduler service that manages the schedule on
which the spider walks the user directory.

schedule The schedule on which the spider walks the user directory.

Note that a default instance of this component is not provided with the Personalization module. If you
want to use this component, create an instance of class atg.userdirectory.UserDirectorySpider
and configure it as shown here.

LDAPOrganizationItemFinder

The /atg/userprofiling/LDAPOrganizationItemFinder component is an instance of
RepositoryLinkProfileItemFinder. Its purpose is to locate organization items in an LDAP
repository. It is similar in function and behavior to the standard ProfileItemFinder component.

The code below is an example of an LDAPOrganizationItemFinder.properties file.

$class=atg.userprofiling.RepositoryLinkProfileItemFinder

profileTools=ProfileTools

propertyManager=PropertyManager

profileRepository=ProfileAdapterRepository

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 1 8

6 - S e t t i n g U p a n L D A P U s e r D i r e c t o r y

μ
linkedRepository=/atg/adapter/ldap/LDAPRepository

linkedProfileTypeMap=organization=organizationalUnit

linkPropertyLocal=name

linkPropertyRemote=name

createLocalProfiles=true

Set the properties of this component as follows.

Property Description

profileTools The profile tools component that this finder uses to find repository
items.

Default: /atg/userprofiling/ProfileTools

propertyManager The Personalization module’s standard property manager.

Default: /atg/userprofiling/PropertyManager

profileRepository The repository in which this finder finds repository items.

Default: /atg/userprofiling/ProfileAdapterRepository

linkedRepository The repository in which the items implicitly linked to SQL repository
items reside.

Default: /atg/adapter/ldap/LDAPRepository

linkedProfileTypeMap The map of local SQL repository item types to remote LDAP item types.
The default assumes that your SQL organization item type is
organization and your LDAP organization item type is
organizationalUnit. If you change either your SQL or LDAP
organization view names, you must also change these map entries.

Default: organization=organizationalUnit

linkPropertyLocal The name of the property of SQL repository organization items that
implicitly links them to LDAP organizationalUnit items. The
linkPropertyLocal property must be set to the same value as
linkPropertyLocal for the link property in the organization item
descriptor in the userProfile.xml file.

Default: name

linkPropertyRemote The name of the property of LDAP organizationalUnit items that
implicitly links them to SQL repository organization items. The
linkPropertyRemote property must be set to the same value as
linkPropertyRemote for the link property in the organization item
descriptor in the userProfile.xml file.

Default: name

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 1 9

6 - S e t t i n g U p a n L D A P U s e r D i r e c t o r y

μ
createLocalProfiles Tells this profile finder whether to create local SQL repository

organization items when a remote LDAP organizationalUnit item
is found.

Default: false

Note that a default instance of this component is not provided with the Personalization module. If you
want to use this component, create an instance of class
atg.userprofiling.RepositoryLinkProfileItemFinder and configure it as shown here.

ProfileItemFinder

The /atg/userprofiling/ProfileItemFinder component is used by the Personalization module to
find users, either by attribute (for example, a login name or email address) or by ID. For example, when a
user logs in using a profile form handler, the supplied username and password are passed on to
ProfileItemFinder in order to locate the user in the profile repository. The component represents the
standard way for any user directory to find a user.

The code below is an example of a ProfileItemFinder.properties file configured for an LDAP-based
user directory:

$class=atg.userprofiling.RepositoryLinkProfileItemFinder

profileTools=ProfileTools

propertyManager=PropertyManager

profileRepository=ProfileAdapterRepository

linkedRepository=/atg/adapter/ldap/LDAPRepository

linkedProfileTypeMap=user=user

linkPropertyLocal=login

linkPropertyRemote=login

loginLinkedPropertyName=login

passwordLinkedPropertyName=password

firstNameLinkedPropertyName=firstName

lastNameLinkedPropertyName=lastName

emailLinkedPropertyName=email

createLocalProfiles=true

The following table describes how to set the properties in this component:

Property Description

profileTools The profile tools component that this finder uses to find repository
items.

Default: /atg/userprofiling/ProfileTools

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 2 0

6 - S e t t i n g U p a n L D A P U s e r D i r e c t o r y

μ
propertyManager The Personalization module’s standard property manager.

Default: /atg/userprofiling/PropertyManager

profileRepository The repository in which this finder finds repository items.

Default: /atg/userprofiling/ProfileAdapterRepository

linkedRepository The repository in which the items implicitly linked to SQL repository
items reside.

Default: /atg/adapter/ldap/LDAPRepository

linkedProfileTypeMap The map of local SQL repository item types to remote LDAP item types.
The default assumes that your SQL user item type is user and your
LDAP user item type is also user. If you change either your SQL or
LDAP user view names, you must also change these map entries.

Default: user=user

linkPropertyLocal The name of the property of SQL repository user items that implicitly
links them to LDAP user items. The linkPropertyLocal property
must be set to the same value as linkPropertyLocal for the link
property in the user item descriptor in the userProfile.xml file.

Default: login

linkPropertyRemote The name of the property of LDAP user items that implicitly links them
to SQL repository user items. The linkPropertyRemote property
must be set to the same value as linkPropertyRemote for the link
property in the user item descriptor in the userProfile.xml file.

Default: login

createLocalProfiles Tells this profile finder whether to create local SQL repository user
items when a remote LDAP user item is found.

Default: true

PropertyManager

To support an LDAP-based user directory, modify the PropertyManager component
(/atg/userprofiling/PropertyManager) so that the ProfileItemFinder uses LDAP as its master
record of users, looking in the LDAP repository instead of in the ProfileAdapterRepository.

The code below is an example of a PropertyManager.properties file for this type of configuration:

passwordPropertyName=ldapUser.password

emailAddressPropertyName=ldapUser.email

firstNamePropertyName=ldapUser.firstName

lastNamePropertyName=ldapUser.lastName

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 2 1

6 - S e t t i n g U p a n L D A P U s e r D i r e c t o r y

μ
loginPropertyName=login

passwordHasher=/atg/adapter/ldap/NDSPasswordHasher

Set the properties of this component as follows.

Property Description

passwordPropertyName The name of a user’s password property.

emailAddressPropertyName The name of a user’s email property.

firstNamePropertyName The name of a user’s firstName property.

lastNamePropertyName The name of a user’s lastName property.

passwordHasher The encoder for LDAP passwords. For Oracle Directory Server, set
this property to /atg/adapter/ldap/NDSPasswordHasher. For
more information, see LDAP Password Encryption in the ATG
Repository Guide.

ProfileUserDirectoryProperties

The /atg/userprofiling/ProfileUserDirectoryProperties component maps user directory
property names to repository property names. Configuring this component for use with LDAP involves
adding to the default definitions, as shown in the example below:

$class=atg.userdirectory.repository.ldap.LDAPRepositoryUserDirectoryProperties

organizationLinkPropertyName=ldapOrganization

LDAPOrganizationEntryIdPropertyName=entryId

LDAPOrganizationParentIdPropertyName=parentId

userLinkPropertyName=ldapUser

LDAPUserEntryIdPropertyName=entryId

LDAPUserParentIdPropertyName=parentId

Set the properties for this component as follows.

Property Description

organizationLinkPropertyName The name of the link property in the SQL
repository organization item descriptor.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 2 2

6 - S e t t i n g U p a n L D A P U s e r D i r e c t o r y

μ
Property Description

LDAPOrganizationEntryIdPropertyName The name of the property in the LDAP
organization item descriptor that serves as an
item’s entryid.

LDAPOrganizationParentIdPropertyName The name of the property in the LDAP
organization item descriptor that serves as an
item’s parentid.

userLinkPropertyName The name of the link property in the user item
descriptor.

LDAPUserEntryIdPropertyName The name of the property in the LDAP user item
descriptor that serves as a user’s entryid.

LDAPUserParentIdPropertyName The name of the property in the user item
descriptor that serves as a user’s parentid.

Caching an LDAP User Directory

Each item descriptor type in the user directory has a corresponding cache component that maps
repository IDs to persistent repository items. For an LDAP user directory, user and organization are the
only item types stored in the LDAP repository, so these items are the only ones whose caching you must
change from the default caching methods for a SQL-based user directory (see Caching and the User
Directory).

For the user and organization item types, you identify the cache component to use in the Caching
section of the ProfileUserDirectory.properties file. Set the userCache property to point to the
LDAPUserCache component. Set the organizationCache property to point to the
LDAPOrganizationCache component.

Each cache component points to a corresponding cache adapter component, which retrieves items from
the repository that are not in the cache.

For more information about setting up caching for a user directory that accesses an LDAP directory rather
than a SQL repository, see Configuring the LDAP Repository Components in the ATG Repository Guide.

LDAPUserCache

The /atg/userprofiling/LDAPUserCache component handles caching for the user item descriptor
type in an LDAP user directory.

Set the cacheAdapter property of this component to the
/atg/userprofiling/LDAPUserCacheAdapter component as shown in the following properties file:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 2 3

6 - S e t t i n g U p a n L D A P U s e r D i r e c t o r y

μ
$class=atg.service.cache.Cache

cacheAdapter=LDAPUserCacheAdapter

Note that a default instance of this component is not provided with the Personalization module. If you
want to use this component, create an instance of class atg.service.cache.Cache and configure it as
shown here. For information on how to set the other properties of this component, refer to the
description of the UserCache component, which manages caching for user items in a SQL-based user
directory. See Caching and the User Directory.

LDAPUserCacheAdapter

The /atg/userprofiling/LDAPUserCacheAdapter component handles the creation of the user
objects that populate the LDAPUserCache.

Set the userDirectory property of this component to the LDAP repository holding the user directory
items, as shown in the following properties file:

$class=atg.userdirectory.repository.ldap.LDAPUserCacheAdapter

userDirectory=ProfileUserDirectory

LDAPOrganizationCache

The /atg/userprofiling/LDAPOrganizationCache component handles caching for the
organization item descriptor type in an LDAP user directory.

Set the cacheAdapter property of this component to the
/atg/userprofiling/LDAPOrganizationCacheAdapter component, as shown in the following
properties file:

$class=atg.service.cache.Cache

cacheAdapter=LDAPOrganizationCacheAdapter

Note that a default instance of this component is not provided with the Personalization module. If you
want to use this component, create an instance of class atg.service.cache.Cache and configure it as
shown here. For information on how to set the other properties of this component, refer to the
description of the UserCache component, which manages caching for user items in a SQL-based user
directory. See Caching and the User Directory.

LDAPOrganizationCacheAdapter

The /atg/userprofiling/LDAPOrganizationCacheAdapter component handles the creation of the
organization objects that populate the LDAPOrganizationCache.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 2 4

6 - S e t t i n g U p a n L D A P U s e r D i r e c t o r y

μ
Set the userDirectory property of this component to the LDAP repository holding the user directory
items, as shown in the following properties file:

$class=atg.userdirectory.repository.ldap.LDAPOrganizationCacheAdapter

userDirectory=ProfileUserDirectory

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 2 5

7 - L i n k i n g S Q L a n d L D A P R e p o s i t o r i e s

μ
7 Linking SQL and LDAP Repositories

Important: In previous versions of the Personalization module, it was possible to use the implicit linking
technique described in this chapter to split your profile information between a SQL and an LDAP
repository. Although you can still use this type of profile configuration, it is no longer recommended, and
it has been superseded by the composite repository configuration described in Setting Up a Composite
Profile Repository. The information in this chapter does still apply, however, if you want to configure an
LDAP-based user directory as described earlier in this manual (see Setting Up an LDAP User Directory.)

This chapter contains the following sections:

Using Implicit Repository Linking
Describes the system that allows you to split profile data between two repositories.

Defining the SQL/LDAP Linked Repositories
Explains how to configure your XML definition files to fit your linked repository model.

Sample SQL/LDAP Linked Repository Definitions
Contains examples of XML files that define the SQL and LDAP repositories.

Configuring Personalization Module Components for Linked Repositories
Describes how to configure Personalization Server to use the linked repositories.

Using Implicit Repository Linking
In some situations, it may not be convenient to store all profile information in a SQL repository. For
example, you may want to use already existing profile data from another application that is stored in an
LDAP directory. If your profiles also contain data that is not LDAP specific, one solution is to split the
profile information between a SQL and an LDAP repository, rather than using one or the other.

This chapter describes how to link a SQL repository and an LDAP repository so that you can use them
both to store profile data. This configuration allows you to choose which data to store in which repository.
It also allows you to choose the repository through which you authenticate users. You can split up your
profile data and authenticate users through LDAP or through SQL.

Repository linking is accomplished by creating a property in the SQL profile template to refer to the
profile in the LDAP repository. You can then access LDAP properties via the SQL profile repository item.
For example, you can add an ldapUser property to the SQL repository’s user item descriptor. Then, if
your LDAP profile has an email property, you can refer to it in a JHTML page as follows:

<valueof bean="/atg/userprofiling/Profile.ldapUser.email">

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 2 6

7 - L i n k i n g S Q L a n d L D A P R e p o s i t o r i e s

μ
Furthermore, the SQL repository can be set up so that when a new SQL profile item is created, updated, or
deleted, the corresponding LDAP item is created, updated, or deleted automatically. This technique
essentially allows you to treat the profile data stored in both the SQL and LDAP repositories as a single
profile object.

The Linking Repositories section of the SQL Repositories chapter in the ATG Repository Guide describes how
repository linking can be accomplished by storing the repository ID of the linked repository item as the
value of the linked property in the database. This kind of explicit linking relies on the fact that the ID of the
linked item does not change over time. However, this may not always be the case in an LDAP repository,
which uses a directory entry’s DN (Distinguished Name) as its repository ID. Furthermore, explicit linking
does not provide for an easy way to authenticate users through the linked LDAP repository.

With implicit repository linking, the SQL repository item does not store the ID of the linked item in the
database; instead, the linking is performed dynamically, through code. This is accomplished by requiring
that the linked profile items share a property that uniquely identifies them in both repositories. Typically,
you would use a property such as login or email. For example, if both the SQL and LDAP profiles have a
login property, a SQL profile is linked to an LDAP profile whose login property value is the same as the
SQL profile’s login value.

Implicit linking is managed by the package atg.repository.linked. The ldapUser property, which
links the two repositories in the example above, is defined in the SQL profile template as a user-defined
property type atg.repository.linked.RepositoryLinkPropertyDescriptor (see the User-Defined
Property Types section of the SQL Repositories chapter in the ATG Repository Guide for an explanation of
user-defined property types). The RepositoryLinkPropertyDescriptor class contains the logic that
links the two items together; it performs a repository query to obtain the LDAP item corresponding to the
given SQL item.

The main limitation of the repository linking approach to combining SQL and LDAP profiles is that the
ldapUser property is not queryable. Thus, the queries you perform against the SQL repository cannot
include any of the LDAP properties. For example, if the lastName property is stored in LDAP, you cannot
execute a query against the SQL repository to find all users with last name Smith. If you are using the
Scenarios module, one consequence is that you cannot have scenarios that perform queries against LDAP
properties. For example, you cannot have a scenario that finds all users with the last name Smith and then
sends email to them.

In addition, the HTML profile administration interface is not sophisticated enough to handle these kinds
of composite profiles, so you cannot use it to create users or to search for or edit their LDAP properties.
However, you can still use the ATG Business Control Center or the ACC to accomplish these tasks.

Defining the SQL/LDAP Linked Repositories
This section describes how to configure your SQL and LDAP profile templates to implement repository
linking. The example used in this section assumes that you have some basic profile data, such as name,
email, login, and password, stored in an existing LDAP directory. Thus, the LDAP repository is used to
access this data and to authenticate users. The SQL repository is used to store the remaining profile data,
such as address and locale information, and all the ATG-specific data (such as scenario-related data, if you
are running the Scenarios module). The SQL repository also replicates the login property, which is used
to implicitly link the SQL and LDAP profiles.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 2 7

7 - L i n k i n g S Q L a n d L D A P R e p o s i t o r i e s

μ
You can split your data any other way, and modify the profile templates accordingly. The only
requirement is that one of the two repositories must contain both the login and password properties, so
that it can be used to authenticate the users. (Note, however, that you must set up the SQL profile
repository as the main repository and refer to LDAP profile properties through the SQL repository; you
cannot have LDAP as your main repository using this type of configuration.)

To configure your SQL and LDAP repositories, do the following:

1. Decide which profile properties will be stored in SQL and which will be stored in LDAP.

2. Set up your SQL profile repository as the main profile repository. See the Setting Up a
Profile Repository chapter for more information. Make sure that the user item
descriptor is configured through the repository definition file to have all the properties
you decided to store in SQL, but none of the LDAP properties.

For example, if you are starting with the default SQL profile template, the user item
descriptor includes the properties firstName,lastName, email, and password. If you
decided to store these properties in the LDAP repository, remove them from the SQL
definition file.

Note: Removing these properties will probably require some XML combination
techniques. See XML File Combination in the Nucleus: Organizing JavaBean Components
chapter of the ATG Programming Guide.

3. Set up your LDAP repository and configure all the associated components. See
Configuring the LDAP Repository Components in the LDAP Repositories chapter of the
ATG Repository Guide.

The LDAP repository should not be configured as the main profile repository. In other
words, the profileRepository property of the
/atg/userprofiling/ProfileTools component should point to
/atg/userprofiling/ProfileAdapterRepository, as in the default
configuration.

Remove any unneeded properties from the LDAP definition file. If you decide to
remove the login property, you will have to choose another property to be used
when constructing RDNs (Relative Distinguished Names), since the login property is
used as the value of the rdn-property attribute in the default template. This
property must have a unique value for each LDAP repository item in order for the
corresponding DNs to be unique. See New Item Creation in the LDAP Repository
Architecture section of the LDAP Repositories chapter in the ATG Repository Guide for
more information on constructing RDNs.

4. In the SQL repository definition file, add a property of type
atg.repository.linked.RepositoryLinkPropertyDescriptor to the user
item descriptor. This property links the two profiles. For example, you could call this
new property ldapUser and define it as follows:

<property name="ldapUser"

 property-type="atg.repository.linked.RepositoryLinkPropertyDescriptor"

 repository="/atg/adapter/ldap/LDAPRepository"

 item-type="user"

 category="Info"

 display-name="Linked LDAP User"

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 2 8

7 - L i n k i n g S Q L a n d L D A P R e p o s i t o r i e s

μ
 cascade="insert,update,delete">

 <attribute name="uniqueIdPropertyLocal" value="login"/>

 <attribute name="uniqueIdPropertyRemote" value="login"/>

</property>

The property definition must specify the repository and item type of the linked item. In
addition, the attributes uniqueIdPropertyLocal and uniqueIdPropertyRemote
specify which properties should be used as the unique IDs in SQL and LDAP,
respectively. The values of these properties must be the same for the two profiles to
be linked together.

The category and display-name properties are optional; they provide better display
for the item in the ATG Business Control Center or ACC interface.

If your property definition includes the cascade="insert,update,delete"
attribute as shown above, the linked item will be automatically created, updated, or
deleted whenever the SQL item is created, updated, or deleted. For example, when a
user registers through a profile form handler, both a SQL and an LDAP profile will be
created for him, and the relevant profile information will be stored in both items.

5. Because the login property is replicated in both repositories, the two property values
must always be kept in sync. For example, when the user registers, both his login and
his ldapUser.login properties must be set to the same login value. To avoid having
to do this by hand, modify the login property’s definition in the SQL profile template
as follows:

<property name="login"

 property-type="atg.adapter.gsa.ReplicatePropertyDescriptor">

 <attribute name="replicateProperty" value="ldapUser.login"/>

</property>

This code declares the login property to be of type
ReplicatePropertyDescriptor, which overrides GSAPropertyDescriptor and
takes care of automatically replicating the property value to the property specified via
the replicateProperty attribute.

With the login property configured in this way, you need worry only about setting
the login property in the SQL profile item; the corresponding LDAP item’s login
property is set automatically.

Sample SQL/LDAP Linked Repository Definitions
The following sample SQL repository definition file overrides the default SQL definition file. It removes
several properties from the default configuration, and it adds an ldapUser property, as described in step
4 above. It also modifies the default login property definition as specified in step 5.

<gsa-template>

 <item-descriptor name="user">

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 2 9

7 - L i n k i n g S Q L a n d L D A P R e p o s i t o r i e s

μ
 <table name="dps_user">

 <!-- Remove properties which are in LDAP -->

 <property name="password" xml-combine="remove"/>

 <property name="email" xml-combine="remove"/>

 <property name="firstName" xml-combine="remove"/>

 <property name="lastName" xml-combine="remove"/>

 <!-- Replicate unique id property into LDAP -->

 <property name="login"

 property-type="atg.adapter.gsa.ReplicatePropertyDescriptor">

 <attribute name="replicateProperty" value="ldapUser.login"/>

 </property>

 </table>

 <!-- Add property which points to the LDAP item -->

 <property name="ldapUser"

 property-type="atg.repository.linked.RepositoryLinkPropertyDescriptor"

 repository="/atg/adapter/ldap/LDAPRepository"

 item-type="user"

 category="Info"

 display-name="Linked LDAP User"

 cascade="insert,update,delete"

 queryable="false">

 <attribute name="uniqueIdPropertyLocal" value="login"/>

 <attribute name="uniqueIdPropertyRemote" value="login"/>

 </property>

 </item-descriptor>

</gsa-template>

See the Sample LDAP Profile Repository Definition File section of the Setting Up an LDAP Profile Repository
chapter for a sample LDAP repository definition file. No changes are needed to the LDAP definition file to
set up repository linking.

Configuring Personalization Module Components for
Linked Repositories

Depending on how you split the data between the SQL and LDAP profile repositories, you may have to
configure the following Personalization module components to work with your linked repository setup.

PropertyManager Component

The /atg/userprofiling/PropertyManager component keeps track of the property names of “well
known” profile properties, such as login, password, and email. If any of these properties now reside in

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 3 0

7 - L i n k i n g S Q L a n d L D A P R e p o s i t o r i e s

μ
LDAP, you should update their names to reflect this change. For example, if the password property is
stored in LDAP, its property path becomes ldapUser.password, rather than password. Thus, you should
configure the passwordPropertyName property of the PropertyManager component as follows:

passwordPropertyName=ldapUser.password

See the atg.userprofiling.PropertyManager class in the ATG API Reference for a complete list of
PropertyManager property names that must be updated if the corresponding properties are stored in
LDAP rather than SQL.

If a property is stored in both LDAP and SQL, such as the login property in our example, you do not need
to modify the corresponding PropertyManager property. The PropertyManager simply uses the SQL
property name.

In addition, if users are being authenticated through the LDAP repository, you must modify the
PropertyManager from its standard configuration to match the LDAP password encryption scheme. See
the Configuring Personalization Server to Use the LDAP Repository section of the Setting Up an LDAP Profile
Repository chapter for more information.

ProfileItemFinder Component

The /atg/userprofiling/ProfileItemFinder component is used by the Personalization module to
locate users given the values of their login, password, first name, last name, or email attributes. For
example, when a user logs in using a profile form handler, the supplied username and password are
passed on to ProfileItemFinder in order to locate the user in the profile repository.

By default, ProfileItemFinder is configured as a component of type
atg.userprofiling.RepositoryProfileItemFinder. The RepositoryProfileItemFinder class
finds a profile by performing a query against the profile repository. However, with the profile data split
between the SQL and LDAP repositories, ProfileItemFinder may need to query the SQL repository in
some cases and LDAP repository in others. For example, if the login and password properties are stored
in LDAP, but the email property is stored in SQL, then the ProfileItemFinder must query the LDAP
repository to find users by login/password, but it must query the SQL repository to find users by email.

When your profile data is split between two linked repositories, you should override the
ProfileItemFinder configuration so that it uses the class
atg.userprofiling.RepositoryLinkProfileItemFinder. This class extends
RepositoryProfileItemFinder and allows queries to be performed against both repositories.

With this configuration, the ProfileItemFinder component has the following properties:

Property Description

profileTools A pointer to the /atg/userprofiling/ProfileTools
component.

propertyManager A pointer to the /atg/userprofiling/PropertyManager
component.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 3 1

7 - L i n k i n g S Q L a n d L D A P R e p o s i t o r i e s

μ
profileRepository The main profile repository. This is set to the SQL repository

component,
/atg/userprofiling/ProfileAdapterRepository, by
default.

linkedRepository The repository that is linked to the main profile repository. Set
this to your LDAP repository component, for example
/atg/adapter/ldap/LDAPRepository.

linkedItemProperty The name of the property in the SQL profile repository that
points to the item in the linked repository. For example, if
your SQL repository has an ldapUser property that points to
the LDAP item, set ldapUser as the value here.

linkedProfileTypeMap The mapping between the main profile repository’s profile
types and the corresponding linked repository’s profile types.
For example, if both your SQL and LDAP repositories have a
single user type, you should set
linkedPropertyTypeMap=user=user.

linkPropertyLocal The name of the property used to link against in the SQL
repository. This name is the same as the value of the
uniqueIdPropertyLocal attribute in the ldapUser
property definition.

linkPropertyRemote The name of the property used to link against in the LDAP
repository. This name is the same as the value of the
uniqueIdPropertyRemote attribute in the ldapUser
property definition.

loginLinkedPropertyName The name of the login property in the linked repository, null
if the login property is stored in the main profile repository.
For example, if the login property is stored in LDAP, this
name should be loginLinkedPropertyName=login.

If the login property exists in both repositories (as in our
example), only set this property if the password property is
also stored in LDAP. That way, the ProfileItemFinder will
be able to locate users in the linked repository given their
login/password.

passwordLinkedPropertyName The name of the password property in the linked repository,
null if the password property is stored in the main profile
repository.

firstNameLinkedPropertyName The name of the firstName property in the linked repository,
null if the firstName property is stored in the main profile
repository.

lastNameLinkedPropertyName The name of the lastName property in the linked repository,
null if the lastName property is stored in the main profile
repository.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 3 2

7 - L i n k i n g S Q L a n d L D A P R e p o s i t o r i e s

μ
emailLinkedPropertyName The name of the emailproperty in the linked repository, null

if the email property is stored in the main profile repository.

createLocalProfiles If true, and a profile is found in the linked repository but not in
the main profile repository, the local profile is created, with its
link property (specified via linkPropertyLocal) set
accordingly. Otherwise, the local profile is not created, and
the item will not be returned by the search. The default is
false.

This property is useful in a situation where you have an
existing directory of LDAP users, and you would like the
corresponding SQL profiles to be created automatically when
the users log in. Since the ProfileItemFinder is used to
find the user during login, setting this property to true forces
the SQL profile to be created the first time a user logs in.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 3 3

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
8 Creating Rules for Targeting Content

Once you have set up your content repository, you can create rules that match repository items with user
profiles. The recommended way to create content targeting rules is to use the Targeting and
Segmentation interface in the ATG Business Control Center. For more information, refer to the ATG
Business Control Center User’s Guide. If your installation does not include the ATG Business Control Center,
you can use the Content Targeters window of the Content task area in the ACC. See the Matching Content
with Your Target Audiences chapter in the ATG Personalization Guide for Business Users.

You can also create targeting rules by hand. You can define the Personalization module’s targeting rules
either as a property of a rule set service or in a separate rules file. A rules file is a text file with a .rules
extension that you create to specify targeting rules in Personalization module applications. The
Personalization module’s rule sets use SGML format with special tags to describe the rules. This chapter
explains how to write rule sets. It includes the following sections:

Elements of Rule Sets

Rule Set Structure

Rules Tag Syntax

Including Rule Sets, Rules, and Sorting Directives

Complex Rules Example

Elements of Rule Sets
A rule set is made up of rules and sorting directives. The rules define the possible matches between items
in your repository (documents) and a user (based on the user’s profile attributes). Rules are either accept
rules or reject rules. If an accept rule is true with respect to a target object (a document in your repository),
then that target object is included in the targeting results. If a reject rule is true with respect to a target
document, then that target object is excluded from the targeting results.

Targeting rules use operators, like “and,” “equals,” and “includes,” to establish relationships between
properties of target objects (the documents or other items in your repository) and properties of source
objects (such as the profiles of your users). See Rule Tag Operations for details about all the operators you
can use in a rule set.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 3 4

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
Accept Rules

The accept rules in your rule set determine what content should be delivered to your users. The rules test
properties of the content items and properties of your user’s profile. If the relationships among these
properties result in a match, then the system delivers the content item to the user.

Example: Targeting Content

For example, suppose you have a repository that includes news items about companies in different
industrial sectors, and you want to deliver items about companies in the rubber industry sector to users
whose profiles identify them as analysts who cover the rubber industry. First, you can write a rule that
identifies which of the items in your repository relate to the rubber industry, like this:

<rule op=eq name="Rubber sector">

 <valueof target="industrySector">

 <valueof constant="rubber">

</rule>

This rule is true with respect to a document if the industrySector property of the document has the
value “rubber.” When you use the target type in a <valueof> tag, you are testing properties of items in
your repository. See <valueof> Tag.

Example: Targeting Users

Next, you can write a rule that identifies whether one of the industry sectors covered by the user is the
rubber industry, like this:

<rule op=includes name="Rubber analysts">

 <valueof bean="Profile.sectorsCovered">

 <valueof constant="rubber">

</rule>

This rule is true with respect to a user if the sectorsCovered property of his or her profile includes the
value “rubber.” The <valueof bean="..."> tag points to the user’s profile and tests the indicated
property against the constant in the next tag. See <valueof> Tag.

Example: A Complete Accept Rule

Now, you can put the two rules together in an and rule within the <accepts> tag to match the content
to the user:

<accepts>

 <rule op=and>

 <rule op=eq name="Rubber sector">

 <valueof target="industry sector">

 <valueof constant="rubber">

 </rule>

 <rule op=includes name="Rubber analysts">

 <valueof bean="Profile.sectorsCovered">

 <valueof constant="rubber">

 </rule>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 3 5

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
 </rule>

</accepts>

Reject Rules

The accept rules in the previous example defined the content that the targeting operation should
include. You can modify your rule set to exclude content, using reject rules. For example, suppose you
wanted to deliver content only about rubber companies outside the United States. You could add a
reject rule to your rule set like this:

<rejects>

 <rule op=eq name="U.S. companies">

 <valueof target="companyCountry">

 <valueof constant="United States">

 </rule>

</rejects>

This reject rule is true if the value of the companyCountry property of a document is “United States”.
Any document that this rule identifies as relating to a U.S. company is excluded from the results of the
targeting operation, and is not displayed to the user.

Combining the Accept Rules and Reject Rules

When a targeting operation specified by a given rule set is performed, the Personalization module
combines the accept and reject rules as follows to obtain the overall targeting rule:

(AND (OR <accept rules>)

 (NOT (OR <reject rules>)))

In other words, a target object satisfies the overall targeting rule if it satisfies the accept rules but does
not satisfy the reject rules.

Sorting Directives

A rule set can also include sorting directives, which determine the order in which targeting results should
be returned for display, based on properties of the target objects. The application can then either display
the targeting results in that order, or select items from the targeting results based on the order created by
the sorting directives. For example, to sort the results of the previous example by company name, in
alphabetical order, you write a sorting directive like this and add it to your rule set:

<sortby>

 <sortbyvalue value="company" dir="ascending">

</sortby>

See <sortby> Tag and <sortbyvalue> Tag for details about sorting directives.

Example: A Complete Rule Set

Here is an example of a complete rule set, putting together all the elements discussed in this section:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 3 6

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
<ruleset>

<!-- This rule delivers items about non-U.S. rubber companies to analysts who

 cover the rubber industry -->

<!-- Accept rules -->

<accepts>

 <rule op=eq name="Rubber sector">

 <valueof target="industry sector">

 <valueof constant="rubber">

 </rule>

 <rule op=includes name="Rubber analysts">

 <valueof bean="Profile.sectorsCovered">

 <valueof constant="rubber">

 </rule>

</accepts>

<!-- Reject rule -->

<rejects>

 <rule op=eq name="U.S. companies"

 <valueof target="companyCountry">

 <valueof constant="United States">

 </rule>

</rejects>

<!-- Sorting Directive -->

<sortby>

 <sortbyvalue value="company" dir=ascending>

</sortby>

</ruleset>

Including Elements from Other Sources

Rule sets can also include rules and sorting directives from other sources, or even incorporate an entire
other rule set. See Including Rule Sets, Rules, and Sorting Directives.

Rule Set Structure
A rule set has the following basic structure:

<ruleset>

 <accepts>

 <rule ...> ... </rule>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 3 7

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
 ...

 </accepts>

 <rejects>

 <rule ...> ... </rule>

 ...

 </rejects>

 <includes>

 <ruleset src=...> ... </ruleset>

 ...

 </includes>

 <sortby>

 <sortbyvalue ...>

 ...

 </sortby>

 <site type=...>

 </site>

</ruleset>

The only SGML tags allowed in a rule set are the following:

 <ruleset></ruleset>

 <accepts></accepts>

 <rejects></rejects>

 <includes></includes>

 <rule></rule>

 <valueof>

 <sortby></sortby>

 <sortbyvalue>

 <site></site>

No other SGML constructs are allowed, except for comments. Comments may occur anywhere, except
within tags themselves.

A rule set contains one <ruleset> tag. The <ruleset> tag must have at least one and at most five child
tags: one of <accepts>, <rejects>, or <includes> tags must be present. The <sortby> and <site>
tags are optional. Multiple <accepts>, <rejects>, <includes>, <sortby>, and <site> tags are not
allowed.

The <accepts> and <rejects> tags must contain one or more <rule> tags. A <rule> tag must include
an op (operation) attribute and one or more <valueof> tags. You can create complex rules by nesting
multiple rule tags within a <rule> tag.

You can also create complex rules by incorporating other rule sets with the <includes> tag. An
<includes> tag contains references to other rule sets to be included in the rule set. It must have at least
one child; each child must be a <ruleset> tag with a src attribute. See Including Rule Sets, Rules, and
Sorting Directives for details. The <ruleset> tag may also contain a <sortby> tag, which in turn may

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 3 8

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
contain one or more <sortbyvalue> tags to establish sorting directives. The <ruleset> tag may also
include a <site> tag, which specifies the Web site to use as a filter (applies to multisite ATG
environments).

Rules Tag Syntax
The function and syntax of each of these tags is described below:

 <ruleset> Tag

 <accepts> Tag

 <rejects> Tag

 <includes> Tag

 <rule> Tag

 Rule Tag Attributes

 Rule Tag Operations

 <valueof> Tag

 <sortby> Tag

 <sortbyvalue> Tag

 <site> Tag

<ruleset> Tag

The <ruleset> tag is the required top-level parent tag. It must have at least one and at most four child
tags: At least one of either an <accepts> tag, a <rejects> tag, or an <includes> tag must be present;
the <sortby> tag is optional. Multiple <accepts>, <rejects>, <includes>, or <sortby> tags are not
allowed.

A <ruleset> tag can also be used inside an <includes> tag. All <ruleset> tags used inside an
<includes> tag must use the src attribute to specify what rule set is to be included. See <includes> Tag
and Including Rule Sets, Rules and Sorting Directives for details.

The <ruleset> tag must be matched by a closing </ruleset> tag.

<accepts> Tag

The <accepts> tag is a container for all the accept rules in the rule set. If an accept rule is true with
respect to a target object (a document in your repository), then that target object is included in the
targeting results (unless the target object is rejected by a reject rule). The <accepts> tag must have at
least one child; each child must be a <rule> tag.

The <accepts> tag must be matched by a closing </accepts> tag.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 3 9

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
<rejects> Tag

Similarly, the <rejects> tag is a container for the reject rules. If a reject rule is true with respect to a
target document, then that target object is excluded from the targeting results. Like the <accepts> tag,
the <rejects> tag has at least one <rule> child.

The <rejects> tag must be matched by a closing </rejects> tag.

<includes> Tag

You may want to include entire rule sets within another rule set. You can do this with the <includes>
tag. The <includes> tag has the following syntax:

<includes>

 <ruleset src="{rule set name}"></ruleset>

 ...

</includes>

Each <includes> tag has one or more child tags. Each child tag must be a <ruleset> tag, and each
<ruleset> tag must use the src attribute to specify the Nucleus path of the rule set to include. See
Including Rule Sets, Rules, and Sorting Directives for more information.

The <includes> tag must be matched by a closing </includes> tag.

<rule> Tag

The <rule> tag has the following syntax:

<rule op={operation} [src={path}][name={name}] [tag={tag}]>

 {child tags}

</rule>

or this:

<rule src={path}></rule>

The <rule> tag must be matched by a closing </rule> tag.

Rule Tag Attributes

The <rule> tag can take four attributes:

 op

 src

 name

 tag

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 4 0

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
A rule must include either an op attribute or a src attribute. The op attribute specifies an operation to be
performed on the child tags, which must be either <rule> or <valueof> tags. Rule tag operations define
a relationship between properties, components, or other rules. The allowed operations are described
below, in Rule Tag Operations.

The src attribute allows you to incorporate rules that have already been defined in another rule set. For
more information about using the src attribute, see Including Rule Sets, Rules, and Sorting Directives.

The name and tag attributes are optional; they are used by the ATG Business Control Center and the ACC
to label a rule and attach any client data to it.

Referring to Profile Attributes in Rules

The Personalization module uses, by default, a TargetingSourceMap service that maps user profiles to
the name “Profile.” Assuming your profiles have a Nucleus address of /atg/userprofiling/Profile, a
rule can therefore refer to the name property of a profile with bean="Profile.name" instead of
bean="/atg/userprofiling/Profile.name". See the Setting Up Targeting Services chapter for more
information.

Rule Tag Operations

You can use any one of the following operators in a <rule> tag. The operator strings are case-insensitive;
for example, startsWith, STARTSWITH, and startswith are equivalent.

Note that some of these operators are not supported by certain repositories. For example, HTML and XML
repositories do not support the includesAll operator. For more information, see the ATG Repository
Guide.

 eq, neq, lt, gt, lteq, gteq

 contains, startsWith, endsWith

 includes, notIncludes

 includesAny, notIncludesAny

 includesAll, notIncludesAll

 isOneOf, isNotOneOf

 includesItem

 and, or, not, any

 matchId

 elementAt

 indexOf

 count

 inSchedule

 inFolders

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 4 1

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
 isBetween, isNotBetween

 isNull, isNotNull

 textSearch

The purpose and syntax of each of the rule tag operators is discussed below, with examples of each.

eq, neq, lt, gt, lteq, gteq

Represent an equality operation on the child tags.

Operator string Operation

eq equal to

neq not equal to

lt less than

gt greater than

lteq less than or equal to

gteq greater than or equal
to

Rules with each of these operators must have exactly two child tags. For eq and neq operators, there is no
restriction on the types of child tags; however, they are generally expected to be compatible (i.e., one
shouldn’t compare a Boolean value to an Integer). If the operation is not either eq or neq, the children
must both be either Numbers, Strings or Dates.

Example: Using the lteq operator with a Date Constant - This example rule tests whether the
lastLogin property indicates that the last time the user logged in was before 1998.

<rule op=lteq>

 <valueof bean="Profile.lastLogin">

 <valueof constant="12/31/97 11:59 pm">

</rule>

Example: Using the gt operator – This example rule tests whether the user has more money than sense.

<rule op=gt>

 <valueof bean="Profile.money">

 <valueof bean="Profile.sense">

</rule>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 4 2

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
contains, startsWith, endsWith

Represent a string pattern matching operation on the child tags (i.e., does the first string contain, start
with, or end with the second string?). Rules with the contains, startsWith, or endsWith attributes
must have exactly two child tags. Both child tags must represent String values.

Example: Comparing strings with the startsWith operator – This example rule tests whether the
longestJourney property in a profile starts with the string “a single step”.

<rule op=startsWith>

 <valueof bean="Profile.longestJourney">

 <valueof constant="a single step">

</rule>

Note that these string matching operations are case-sensitive. In the example above, the rule would not
find a profile whose longestJourney property starts with “A single step”. For case-insensitive matching,
you can use the containsIgnoreCase, startsWithIgnoreCase, and endsWithIgnoreCase operators.

includes, notIncludes

Represents a membership operation on the child tags (i.e., does the first child contain the second child as
a member?). Rules with the includes or notIncludes operator must have exactly two child tags. The
first child must represent an array or a Vector object. The second child can represent any non-null Object
value. Note that not every element of the first child has to be of the same type as the second child;
elements of different types are simply ignored during membership testing.

Example: includes Operator with a Constant Array – In this example rule, [book, article, thesis]
is a constant array expression. The rule tests whether the value of the docType property of the target
repository item is one of book, article, or thesis.

<rule op=includes>

 <valueof constant="[book, article, thesis]">

 <valueof target="docType">

</rule>

includesAny, notIncludesAny

Compares the memberships of the child tags. An includesAny rule evaluates as true if at least one of the
members of the second child tag is also a member of the first child tag. A notIncludesAny rule evaluates
as true if none of the members of the second child tag is a member of the first child tag. Rules with the
includesAny or notIncludesAny operator must have exactly two child tags, both of which are array or
Vector objects.

Example: includesAny Operator – In this example rule, keywords and favoriteSubjects are each
String arrays. The rule tests whether any of the values of the keywords property of the target repository
item match any of the values of the favoriteSubjects property of the profile.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 4 3

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
<rule op=includesAny>

 <valueof bean="Profile.favoriteSubjects">

 <valueof target="keywords">

</rule>

includesAll, notIncludesAll

Compares the memberships of the child tags. An includesAll rule evaluates as true if all of the
members of the second child tag are also members of the first child tag. A notIncludesAll rule
evaluates as true if at least one of the members of the second child tag is not a member of the first child
tag. Rules with the includesAll or notIncludesAll operator must have exactly two child tags, both of
which are array or Vector objects.

Example: includesAll Operator – In this example rule, keywords and favoriteSubjects are each
String arrays. The rule tests whether all of the values of the keywords property of the target repository
item are also members of the value of the favoriteSubjects property of the profile. If any values of the
keywords property are not found in the favoriteSubjects property, the rule returns false.

<rule op=includesAll>

 <valueof bean="Profile.favoriteSubjects">

 <valueof target="keywords">

</rule>

isOneOf, isNotOneOf

The same as includes, notIncludes, but with the order of the child tag arguments reversed.
Represents a membership operation on the child tags (i.e., is the first child a member of the second
child?). Rules with the isOneOf or isNotOneOf operator must have exactly two child tags. The first child
can represent any non-null Object value. The second child must represent an array or a Vector object.
Note that not every element of the second child has to be of the same type as the first child; elements of
different types are simply ignored during membership testing.

Example: isOneOf Operator with a Constant Array – In this example rule, [book, article, thesis]
is a constant array expression. The rule tests whether the value of the docType property of the target
repository item is one of book, article, or thesis.

<rule op=isOneOf>

 <valueof target="docType">

 <valueof constant="[book, article, thesis]">

</rule>

includesItem

Evaluates to true if the Collection property contains an element that matches the query.

For example, if the item has an addresses property that contains multiple addresses, the following rule
returns true for all items whose addresses property includes an address with the zip code 90210.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 4 4

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
<rule op="includesItem">

 <valueof target="addresses">

 <rule op="eq">

 <valueof target="postalCode">

 <valueof constant="90210">

 </rule>

</rule>

and, or, not, any

Represent a logical and, or, or not operation on the child tags. Rules that use the and or the or operators
must have at least one child tag. Rules that use the not operator must have exactly one child tag. Each of
the child tags must represent a Boolean expression. The any operator is the same as the or operator,
except that if the any operator is used in a rule with no child tags, then the rule evaluates as true.

matchId

Represents a lookup operation on the child tags (i.e., return all the items that have the IDs specified). May
have one or more child tags. Each child tag must be a <valueof constant="..."> tag that specifies a
valid ID for the content repository.

Example: matchId Operator – This rule returns items whose ID is either 14427 or 14428:

<rule op=matchId>

 <valueof constant="14427">

 <valueof constant="14428">

</rule>

elementAt

Represents a lookup operation on the child tags (i.e., get me the element from the second child at the
index specified by the first child). Must have exactly two child tags. The first child must represent an
Integer object. The second child must represent a value that will eventually evaluate to an array or a
Vector object. Rules that use the elementAt operator cannot include subrules that use the <valueof
target="..."> tag.

indexOf

Represents a reverse lookup operation on the child tags (i.e., what is the index of the first child in the
second child). Rules using the indexOf attribute must have exactly two child tags. The first child can
represent any non-null Object value. The second child must represent a value that will eventually evaluate
to an array or a Vector object. Rules that use the indexOf operator cannot include subrules that use the
<valueof target="..."> tag. Note that not every element of the second child has to be of the same
type as the first child; elements of different types are simply ignored during equality testing. The tag itself
eventually evaluates to an Integer object (with a value of -1 if the element is not found in the array or
Vector).

Example: indexOf Operator - This example rule demonstrates the use of the indexOf operator:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 4 5

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
<rule op=lteq>

 <!-- minimum clearance level required -->

 <valueof constant="5">

 <rule op=indexOf>

 <valueof bean="Profile.securityClearance">

 <valueof constant="[uncleared, confidential, restricted,

 classified, critical_sensitive,

 secret, top_secret]">

 </rule>

</rule>

count

Represents a count, or size, operation on the child tag (i.e., what is the number of elements in the child?).
Rules using the count operator must have exactly one child tag. The child tag must represent a value that
will eventually evaluate to an array or a Vector object. Rules that use the count operator cannot include
subrules that use the <valueof target="..."> tag. The tag itself eventually evaluates to an Integer
object.

Example: count Operator - This example demonstrates the count operator. This rule assumes you have
a pagesViewed property in your Profile that stores an array of site pages, and evaluates as true if the
user has viewed three or fewer pages.

<rule op=lteq>

 <valueof constant="3">

 <rule op=count>

 <valueof bean="Profile.pagesViewed">

 </rule>

</rule>

inSchedule

Represents an operation that determines whether the given time occurs in the given schedule. This
attribute is used for such things as targeting to specific dates or days of the week. Rules using the
inSchedule operator must have exactly two child tags. The first child tag must represent a value that will
eventually evaluate to a Date object. The second child tag must represent a value that will eventually
evaluate to a CalendarSchedule object. See the Scheduler Services section in the Core Dynamo Services
chapter of the ATG Programming Guide for information about the syntax for CalendarSchedule objects.
Rules that use the inSchedule operator cannot include subrules that use the <valueof
target="..."> tag.

Example: inSchedule Operator - This example demonstrates the inSchedule operator. This rule
assumes you have a /atg/Calendar object of class Date, and evaluates as true if
/atg/Calendar.today is a Monday in January, February, or March:

<rule op=inSchedule>

 <valueof bean="/atg/Calendar.today">

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 4 6

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
 <valueof constant="0-2 * 1 * *">

</rule>

inFolders

Represents a lookup operation (i.e., is the item in any of the folders specified in the child tags. The child
tags represent folder IDs. The exact syntax and semantics of a folder ID depend on the type of content
repository.

Example: inFolders Operator - This example demonstrates the inFolders operator. This rule evaluates
as true for items found in either the someFolder or the anotherFolder folders:

<rule op=inFolders>

 <valueof constant="someFolder">

 <valueof constant="anotherFolder">

</rule>

isBetween, isNotBetween

Represents a range operation on the first child tag (i.e., does the first child tag fall between the second
and third child tag?). Rules using the isBetween or isNotBetween operators must have exactly three
child tags. The children must be Numbers, Strings or Dates. This is an inclusive operation; in other words, a
rule evaluates to true if the first child tag is greater than or equal to the second child tag and less than or
equal to the third child tag.

Example: isBetween Operator – This example demonstrates the isBetween operator. This rule
evaluates to true if the value of the age property is between 21 and 55, inclusive.

<rule op=isBetween>

 <valueof bean="Profile.age">

 <valueof constant="21">

 <valueof constant="55">

</rule>

isNull, isNotNull

Represents a null check operation on the child tag. Rules using the isNull or isNotNull operator must
have exactly one child tag. This tag eventually evaluates to a Boolean object.

Example: isNull Operator – This example demonstrates the isNull operator. This rule evaluates to true
if the value of the birthday property is null.

<rule op=isNull>

 <valueof bean="Profile.birthday">

</rule>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 4 7

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
textSearch

Takes three or four rule nodes. The first three represent the search pattern, the search string format, and
the minimum score for matches. The fourth one (which is optional) is a target rule node that specifies a
property to search against. For example:

<rule op="textsearch">

 <valueof constant="denim">

 <valueof constant="ORACLE_CONTEXT">

 <valueof constant="50">

 <valueof target="description">

</rule>

<valueof> Tag

A <rule> tag can contain one or more valueof tags, depending on the rule’s operation attribute. The
<valueof> tag has the following syntax

<valueof {type}="{string}">

Note that the <valueof> tag does not take an end tag.

valueof Types

You can use the following types and attributes in a <valueof> tag:

 target

 constant

 bean

target

Represents a property of the repository item object (for example, an HTML page in the repository) that is a
potential member of the result set of a targeting operation.

Example: <valueof target="author"> could refer to the author property of a document in the
repository. This tag might be used to test whether the author of a repository item is the same person as
the visitor in a rule like this:

<rule op=eq>

 <valueof bean="Profile.name">

 <valueof target="author">

</rule>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 4 8

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
constant

Represents a constant value, which does not require evaluation (for example, “42”, “true”,
“snowboarding”, “4/10/98 5:59 PM” or “[1, 2, 3]”, which is how an array with constant elements is
represented). The string portion of the tag is parsed sequentially to determine its data type, in the
following priority.

1. The tag is first parsed as an Integer. If that fails, the tag is parsed in turn as a:

2. Double

3. Boolean

4. Date (in the same way that Date objects are parsed in .properties files)

5. CalendarSchedule. See the Scheduler Services section in the Core Dynamo Services
chapter of the ATG Programming Guide for information about the syntax for
CalendarSchedule objects.

6. Array (assuming a syntax like [1, 2, 3], as in the example above)

7. String

Example: <valueof constant="18">. This tag might be used to compare an age property in a user’s
profile to an Integer constant in a rule like this:

<rule op=lt>

 <valueof bean="Profile.age">

 <valueof constant="18">

</rule>

This rule is satisfied if the age property of the source profile is less than the integer constant, 18.

Example: <valueof constant="[Maine, New Hampshire, Vermont, Massachusetts,
Connecticut, Rhode Island]">. This tag might be used to determine whether the state property in
a user’s profile is one of the New England states included in a constant array, in a rule like this:

<rule op=includes>

 <valueof constant="[Maine, New Hampshire, Vermont, \

 Massachusetts, Connecticut, Rhode Island]">

 <valueof bean="Profile.state">

</rule>

Note the use of the backslash (\) character as a line continuation character in the <valueof
constant="..."> tag.

bean

Represents a Nucleus component or a property value of a Nucleus component. The syntax of the string
portion of the tag is: {component}.{property}. The string can include more than one property,
separated by dots.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 4 9

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
You typically use this type to represent a property of the user profile object you are targeting a rule set
against.

Example: <valueof bean="/atg/userprofiling/Profile.gender"> could refer to the gender
property of a profile bean. This tag might be used to test whether a visitor is female in a rule like this:

<rule op=eq>

 <valueof bean="/atg/userprofiling/Profile.gender">

 <valueof constant="female">

</rule>

This rule is satisfied if the value of the gender property of the source profile is the string constant female.

The default configuration of the TargetingSourceMap service maps the Nucleus path of
/atg/userprofiling/Profile to the source name “Profile.” This lets you simplify tags like the previous
example to <valueof bean="Profile.gender">. See the Setting Up Targeting Services chapter for
more information.

Using Indexed Property Values

For bean and target types, you can also refer to indexed property values. For example, each of the
following is valid:

<valueof bean="/atg/Test/Person.hobbies[0]">

<valueof target="keywords[bean: /atg/Test/Person.favoriteKeyword]">

As in regular <valueof> tags in JHTML files, you can use bean: strings inside tags to refer to properties.
However, you cannot use param: strings in a targeting rule’s <valueof> tag.

Target Nodes Inside Boolean Expressions

You cannot have rules that use the <valueof target="..."> tag as direct children of rules that use the
and, or, or not operators, even if the target property is supposed to eventually evaluate to a Boolean
value. For example, this rule is invalid:

<rule op=or name="Wrong!">

 <valueof target="isAvailable">

 <valueof bean="Profile.isAuthor">

</rule>

Instead, you must do the following:

<rule op=or>

 <rule op=eq>

 <valueof target="isAvailable">

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 5 0

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
 <valueof constant="true">

 </rule>

 <valueof bean="Profile.isAuthor">

</rule>

<sortby> Tag

The <sortby> tag is a container for all the sorting directives, which specify how the targeting results
should be sorted. You can include a sorting directive that has been previously defined, or which is defined
dynamically, using the src attribute with the <sortby> tag. See Including Rule Sets, Rules, and Sorting
Directives.

The <sortby> tag must either use the src attribute or have at least one child. Each child must be a
<sortbyvalue> tag. The order of the child <sortbyvalue> tags implies the sorting order: that is, the
first child defines the primary sorting criterion, the second child defines the secondary sorting criterion,
and so forth.

The <sortby> tag must be matched by a closing </sortby> tag.

<sortbyvalue> Tag

The <sortby> tag includes one or more <sortbyvalue> tags, which you can use to specify a property of
the target object to be used in sorting the results of a targeting operation. The <sortbyvalue> tag has
the following syntax:

<sortbyvalue value="{string}" [dir={direction}]>

The value attribute specifies the name of the property of the target object to sort by. The optional dir
attribute specifies the sorting direction, one of ascending or descending; if unspecified, the direction
defaults to ascending.

Example - This sorting directive indicates that the targeting results should be sorted by the
lastModified property of the target objects, in descending order.

<sortbyvalue value="lastModified" dir=descending>

Note that the <sortbyvalue> tag does not take an end tag.

<site> Tag

The optional <site> tag is designed for use in environments that support several Web sites. It identifies
the Web site to use as a filter for the targeting operation. If no <site> tag is specified, the query
automatically applies to the current site (the site the user is visiting). For more information on multisite
environments, refer to the ATG Multisite Administration Guide.

The <site> tag has the following syntax:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 5 1

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
<site type=...>

 ...

</site>

The <site> tag must be matched by a closing </site> tag.

This tag has one attribute, type, which can have the following values:

 current

 any

 shareable

current

Specifies the current site (the site the user is visiting) as the filter for the query.

<site type=current></site>

Items that have no site membership are included in a query if the value is current. You can also include
these items by omitting the <site> tag and making sure the user has an empty site context.

any

The any setting can be used alone, in which case all registered sites are included in the targeting query. It
can also be used with one or more child tags that identify specific sites to include in the query (effectively
a list of sites to use). Only items that have at least one site specified will be included. If an item has no site
membership, it will be ignored.

<site type=any></site>

Or

<site type=any>

 <valueof site="{siteId1}">

 <valueof site="{siteId2}">

</site>

The siteId properties are strings stored in /atg/multisite/SiteRepository. The following example
shows the siteIds for ATG Store US and ATG Store Germany from the ATG Commerce Reference Store
application:

site type=any>

 <valueof site="storeSiteUS">

 <valueof site="storeSiteDE">

</site>

For more information on the siteId property, refer to the ATG Multisite Administration Guide.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 5 2

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
shareable

Identifies one or more shareable types to use for the targeting query. Shareable types are resources such
as shopping carts that can be shared among sites in a multisite environment. In this case, the query for
the targeting operation includes only sites that are configured to share the specified type. For example,
the targeter could look for content only in sites that share a shopping cart.

<site type=shareable>

 <valueof constant="{shareableTypeId}">

</site>

The first example includes all sites that share a shopping cart with the current site. The shareableTypeId
is from ATG Commerce Reference Store:

<site type=shareable>

 <valueof constant="atg.shoppingCart">

</site>

The shareable type can also exist in a site other than the current site. The second example includes all
sites that share a shopping cart with ATG Store Germany:

<site type=shareable>

 <valueof constant="atg.shoppingCart">

 <valueof site="storeSiteDE">

</site>

Null Values in Rules

Any null value encountered by a targeter is interpreted to mean “this value is unknown.” If any such
unknown values are encountered during rule evaluation or query execution, the corresponding
repository items are not included in the targeting results. For example, consider the rule

<rule op=eq>

 <valueof bean="Profile.ageGroup">

 <valueof target="ageGroup">

</rule>

This rule might encounter null values in two cases:

 If Profile.ageGroup evaluates to null, we deduce that the user did not specify his
age, and his ageGroup is therefore unknown. In this case, no content should be
returned by this rule.

 If Profile.ageGroup evaluates to Teenagers, the only items returned from the
repository query should be the ones with ageGroup equal to Teenagers. A content
item with a null ageGroup value should not be returned, since its ageGroup property
is considered to be unknown.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 5 3

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
The less intuitive case is the case with rules that use negative rule operators, such as neq. For example:

<rule op=neq>

 <valueof bean="Profile.ageGroup">

 <valueof target="forbiddenAgeGroup">

</rule>

Here again,

 If Profile.ageGroup evaluates to null, the ageGroup is unknown, and no content is
returned.

 If Profile.ageGroup evaluates to Teenagers, the only items returned from the
repository query should be the ones which have the forbiddenAgeGroup property
set to something other than Teenagers - but not null. Items whose
forbiddenAgeGroup property is null should not be returned, since their
forbiddenAgeGroup is unknown.

The principle behind this treatment of null values is that when the user doesn’t specify a value for one of
his properties, or when the content creator does not specify a value for one of the content attributes, that
unspecified value in actuality may or may not match the rule condition we are trying to satisfy. If there is a
possibility that the condition may not be satisfied, we always err on the conservative side and do not
include the questionable people or content. If you want to include items with null values, then add a term
to the rule with an or rule operator, like this:

<rule op=or>

 <rule op=eq>

 <valueof bean="Profile.ageGroup">

 <valueof target="ageGroup">

 </rule>

 <rule op=isNull>

 <valueof target="ageGroup">

 </rule>

</rule>

This rule returns all content items whose ageGroup attribute matches the profile’s ageGroup, and also all
content items whose ageGroup attribute is null.

Creating a Rule Set for a Profile Group that Includes Roles

You can use global and organizational roles to define membership of a profile group. For example, you
can create a profile group that includes anyone assigned the global role “administrator.” You can then use
that profile group within a content targeter, effectively allowing you to deliver personalized content
according to the role of the person viewing the page.

The following example shows a rule set for a profile group that includes a global role named admin.

<rule op="includesItem">

 <valueof target="roles">

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 5 4

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
 <rule op="or">

 <rule op="and">

 <rule op="equals">

 <valueof target="name">

 <valueof constant="admin">

 </rule>

 <rule op="equals">

 <valueof target="type">

 <valueof constant="role">

 </rule>

 </rule>

 </rule>

</rule>

The <value of target="type"> setting determines whether the role is global or organizational,
allowing the Personalization module to distinguish between a global role and an organizational role that
have the same name.

Note: If you want to use global roles within rule sets, as shown above, all global role names must be
unique. For more information, refer to Adding a New Role in the ATG Personalization Guide for Business
Users.

The same restriction does not apply to organizational roles, which need to be unique only within their
organization.

The following example shows a rule set for a profile group that includes an organizational (relative) role
named buyer. This role belongs to an organization named MyCompany.

<rule op="includesItem">

 <valueof target="roles">

 <rule op="or">

 <rule op="and">

 <rule op="eq">

 <valueof target="name">

 <valueof constant="buyer">

 </rule>

 <rule op="eq">

 <valueof target="relativeTo.name">

 <valueof constant="MyCompany">

 </rule>

 </rule>

 </rule>

</rule>

Note also that you can create profile groups that include roles by using the Targeting > Profile Groups
window in the ACC. However, the ACC supports the creation of <rule op=or> rules only; in other words,
if you create a profile group that includes people assigned to Role A and Role B, everyone assigned either
role will be a member of the profile group. If you want to create rules that use other operators, for

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 5 5

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
example, <rule op=and>, write the rule by hand as described in this chapter. See Rule Tag Operations
for more information.

Including Rule Sets, Rules, and Sorting Directives
You can compose rule sets from already defined rules or sorting directives. To include an already-defined
rule set or sorting directive in your rule set, you can use the src attribute with the <ruleset>, <rule>,
and <sortby> tags. The syntax for the three tags in this form is:

<ruleset src={path}></ruleset>

<rule src={path}></rule>

<sortby src={path}></sortby>

where the path is the Nucleus path of the rule, rule set, or sorting directives to be included.

Note that if you include a rule set using the <ruleset src="..."> tag, the tag must be contained by an
includes tag. Also, when you include a rule set with the <ruleset src="..."> tag, only the rules from
that rule set are included; any sorting directives in the included rule set are ignored. You can, of course,
include them using the <sortby src="..."> tag.

Examples: src Attribute

For example, here is a rule set that combines a Males18-24 rule set and a Females18-24 rule set which
have been defined elsewhere, and sorts the results according to the sorting criteria dynamically specified
by the user. In this example, Males18-24.ruleSet and Females18-24.ruleSet refer to rule sets that
you have defined elsewhere, and sortby is a property of the UserPreferences component that can be
generated dynamically.

<ruleset>

 <includes>

 <ruleset src="/atg/rules/Males18-24.ruleSet"></ruleset>

 <ruleset src="/atg/rules/Females18-24.ruleSet"></ruleset>

 </includes>

 <sortby src="/atg/rules/UserPreferences.sortby"></sortby>

</ruleset>

If you don’t want to include the entire rule set into your rules, use the <rule src="..."> tag to include
only a particular rule. The <rule src="..."> tag can appear anywhere within the accepts or rejects
block of your rule set, not just the top level. For example:

<accepts>

 <rule op=and>

 <rule src="IsMale.rules"></rule>

 <rule op=eq>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 5 6

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
 <valueof target="gender">

 <valueof constant="male">

 </rule>

 </rule>

</accepts>

Complex Rules Example
Here is an example of a rule set that demonstrates use of many of the tags and operators discussed in this
chapter. It also shows how you can form complex rules that combine rules and nest one rule inside
another.

The accept rules test whether content that is available and whether the author property of the
repository item matches the favoriteAuthor attribute in the source profile.

The reject rules exclude content that is rated R if the user profile’s age is less than 16 and exclude
content that is rated X if the user profile’s age is less than 18.

The sorting directive declared in the <sortby> tag specifies that the targeting results are to be sorted first
by the lastModified property, from most recent to oldest, and secondarily by the name property of the
target objects, in alphabetical order.

When you put it all together, this rule outputs content:

 if it is available AND

 if the content’s author matches the profile’s favorite author

 but not if the content is rated R and the profile’s age is less than 16

 and also not if the content is rated X and the profile’s age is less than 18

<ruleset>

 <!-- accept rules -->

 <accepts>

 <rule op=and>

 <rule op=eq>

 <valueof target="isAvailable">

 <valueof constant="true">

 </rule>

 <rule op=eq>

 <valueof target="author">

 <valueof bean="Profile.favoriteAuthor">

 </rule>

 </rule>

 </accepts>

 <!-- reject rules -->

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 5 7

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ
 <rejects>

 <rule op=and name="Rated R">

 <rule op=lt>

 <valueof bean="Profile.age">

 <valueof constant="16">

 </rule>

 <rule op=eq>

 <valueof target="rating">

 <valueof constant="R">

 </rule>

 </rule>

 <rule op=and name="Rated X">

 <rule op=lt>

 <valueof bean="Profile.age">

 <valueof constant="18">

 </rule>

 <rule op=eq>

 <valueof target="rating">

 <valueof constant="X">

 </rule>

 </rule>

 </rejects>

 <!-- sorting directives -->

 <sortby>

 <sortbyvalue value="lastModified" dir=descending>

 <sortbyvalue value="name" dir=ascending>

 </sortby>

</ruleset>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 5 8

8 - C r e a t i n g R u l e s f o r T a r g e t i n g C o n t e n t

μ

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 5 9

9 - S e t t i n g U p T a r g e t i n g S e r v i c e s

μ
9 Setting Up Targeting Services

When you create a targeter using the ATG Business Control Center or the ACC, the system automatically
sets up the components needed to make your targeting rules work. When you create targeting rules by
hand, as described in the previous chapter, you need to create or configure these components yourself.
This chapter describes how to set up various components for delivering targeted content.

This chapter contains the following sections:

Setting up a RuleSetService
Explains how to create and configure a RuleSetService, which either registers a rule
set with Nucleus, or contains its own rules.

Setting up a RuleBasedRepositoryTargeter
Explains how to create and configure a RuleBasedRepositoryTargeter service,
which implements targeting according to the rules defined by the RuleSetService.

Setting up a TargetingSourceMap Service
Explains how to create and configure a TargetingSourceMap service makes it easier
to match up rules with profiles and other targeting sources.

Using TargetingResults
Explains how to use the TargetingResults component to perform targeting operations.

Defining Profile and Content Groups
Explains how to create profile groups and content groups by hand.

Managing User Segments
Describes user segments, segment lists, and the repository that segment lists are
stored in.

Conflict Resolution
Discusses conflict resolution, which is a mechanism for filtering out conflicting results
from a targeting operation.

Using Slots to Deliver Content
For users of the Scenarios module. This section contains a brief description of slot
components, which provide a more powerful method to display and manage targeted
content in your Web application. It includes a link to more detailed information on
slots.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 6 0

9 - S e t t i n g U p T a r g e t i n g S e r v i c e s

μ
Setting Up a RuleSetService

To set up a RuleSetService for your rule set, create an atg.targeting.RuleSetService component.
This component can reference a rules file, or it can itself include your targeting rules as a property. Give
the component a name that helps you link it with the rules file. Suppose you have created a rules file that
contains rules to target content for New England snowboarders called
NewEnglandSnowboarders.rules in the directory <ATG10dir>/home/targeting/rulesets. Set up
the Rule Set Service for this rules file by creating a component you could name
NewEnglandSnowboardersRuleSet. A Rule Set Service component has the following properties:

rulesFilePath

If your Rule Set Service refers to a rules file, set this property to the file path of the rules file. This path can
be an absolute path or a relative path starting from your <ATG10dir>/home directory.

ruleSet

If you want to include your rules as a property of the component, set this property to the value of your
targeting rules. The syntax for rules defined in this property is the same as for rules defined in a rules file,
except that you must indicate new lines with the backslash (\) character. (The backslash must be the last
character in the line; additional spaces after the backslash will prevent the rule set from working properly.)
For example:

ruleSet=<ruleset> \

 <accepts> \

 <rule op=and> \

 <rule op=eq name="Rubber sector"> \

 <valueof target="industry sector"> \

 <valueof constant="rubber"> \

 </rule> \

 <rule op=includes name="Rubber analysts"> \

 <valueof bean="Profile.sectorsCovered"> \

 <valueof constant="rubber"> \

 </rule> \

 </accepts> \

 <sortby> \

 <sortbyvalue value="company" dir=ascending> \

 </sortby> \

 </ruleset>

Do not use both the rulesFilePath property and the ruleSet property in the same Rule Set Service. If
you want to combine rules set in your properties file with the ruleSet property with rules defined in a
rules file, use the includes tag or the src attribute to incorporate the rules defined in the rules file into
the rules defined in the ruleSet property.

When you create rules using the ATG Business Control Center or the ACC, the system creates a Rule Set
Service using the rulesets property to define the rule, rather than pointing to a separate rules file with
the rulesFilePath property. Rule Set Service components created by the UIs are instances of

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 6 1

9 - S e t t i n g U p T a r g e t i n g S e r v i c e s

μ
atg.targeting.DynamicContentTargeter and are saved in the
/atg/registry/RepositoryTargeters folder.

useTranslatedPath

This property is set to false by default. If you use the rulesFilePath property to specify a path to a rules
file, and the path includes the system property atg.dynamo.root, as shown in the example below, you
must set the useTranslatedPath property to true so that the path can be parsed correctly:

rulesFilePath={atg.dynamo.root}/...

For more information on using the atg.dynamo.root system property to access files from application
module code, refer to the ATG Installation and Configuration Guide.

updatesEnabled

This property is set to true by default. This setting instructs the system to check the rules file for changes,
at an interval set by the rulesFileCheckSeconds property.

rulesFileCheckSeconds

If the updatesEnabled property is set to true (as it is by default), this property sets the time interval after
which to check whether the rules file has changed; if 0, the check will be performed on each request.

Example

Here is an example of a RuleSetService properties file for our NewEnglandSnowboarders.rules rules
file.

$class=atg.targeting.RuleSetService

Path of the rules file

rulesFilePath=targeting/rulesets/NewEnglandSnowboarders.rules

Should we check whether the rules file has changed?

updatesEnabled=true

Time interval after which to check whether the rules file has

changed; if 0, the check will be performed on each request.

rulesFileCheckSeconds=0

Setting Up a RuleBasedRepositoryTargeter Service
Once you’ve set up a Rule Set Service for your rules, you implement targeting with the rules by setting up
a RuleBasedRepositoryTargeter service that uses the Rule Set Service. Do this by creating a targeter
component as an instance of atg.targeting.RuleBasedRepositoryTargeter. Continuing with the

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 6 2

9 - S e t t i n g U p T a r g e t i n g S e r v i c e s

μ
example in Setting Up a RuleSetService, you would create a component with a name like
NewEnglandSnowboardersTargeter.

A RuleBasedRepositoryTargeter component can have the following properties:

repository

The repository that holds content objects to match against the profiles in the source.

ruleSetService

The Nucleus path name of the Rule Set Service used by the targeter component.

Example

The following example shows how a NewEnglandSnowboardersTargeter.properties file could look.

$class=atg.targeting.RuleBasedRepositoryTargeter

repository=/atg/adapter/html/TargetedContent

ruleSetService=/atg/targeting/NewEnglandSnowboardersRuleSet

Note that when you create a targeter component using the ATG Business Control Center or the ACC, the
component you create is an instance of atg.targeting.DynamicContentTargeter with a Nucleus
address of /atg/registry/RepositoryTargeters.

Note also that multsite features are not supported by the ACC.

Setting Up a RuleBasedRepositoryItemGroup Service

You can create groups of repository items, using the
atg.targeting.RuleBasedRepositoryItemGroup class. A repository item group has the same
properties as a RuleBasedRepositoryTargeter: repository and ruleSetService.

Create your RuleBasedRepositoryItemGroup component in /atg/registry/RepositoryGroups, so
that the system’s group registry can find it and make it available to the ATG Business Control Center or the
ACC. Note that when you create a content group component through the UIs, the component you create
is an instance of atg.targeting.DynamicContentGroup with a Nucleus address of
/atg/registry/RepositoryGroups.

Setting Up a TargetingSourceMap Service
The previous chapter, Creating Rules for Targeting Content, described how to write a rule that compares
properties of a user profile to a constant, or to properties of other objects, as in the following rule:

<rule op=includes name="Rubber analysts">

 <valueof bean="/atg/userprofiling/Profile.sectorsCovered">

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 6 3

9 - S e t t i n g U p T a r g e t i n g S e r v i c e s

μ
 <valueof constant="rubber">

</rule>

Writing a rule in that style requires you to provide the full Nucleus path of the user profile or other source
object. You can simplify your references to profiles or other source objects by using a
TargetingSourceMap service. The TargetingSourceMap maps source names to their Nucleus paths.

The Personalization module uses, by default, a TargetingSourceMap service that maps user profiles to
the name “Profile.” Each of the targeting servlet beans described in the next chapter uses this
/atg/targeting/TargetingSourceMap by default:

$class=atg.targeting.TargetingSourceMap

sourceMap+=Profile=/atg/userprofiling/Profile

The sourceMap property is a comma-delimited list of names for source objects, with the Nucleus path of
each. Now, your rule set can refer to the name property of a profile with <valueof
bean="Profile.name"> instead of <valueof bean="/atg/userprofiling/Profile.name">.

The Personalization module also uses another TargetingSourceMap service to make available short
names for the Request object and the CurrentDate object, at
/atg/targeting/TargetingSourceMap:

$class=atg.targeting.TargetingSourceMap

sourceMap+=\

 Request=/OriginatingRequest,\

 Today=/atg/dynamo/service/CurrentDate

Using TargetingResults
After you’ve set up your Rule Set Service, targeter component, and optionally a TargetingSourceMap
service, you can use the Personalization module’s targeting servlet beans to access the targeter service
from a content page (.jhtml or .jsp file). Targeting servlet beans are described in the Serving Targeted
Content with ATG Servlet Beans chapter of the ATG Page Developer’s Guide.

The atg.targeting package includes a class, atg.targeting.TargetingResults, that you can use to
perform targeting operations outside the context of a targeting servlet bean on a content page.
TargetingResults is useful in cases where you have a potentially large number of results.
TargetingResults is a Nucleus service that can be configured with the specific Targeter and
NameResolver, and used to produce the corresponding TargetingEnumeration objects.

A TargetingResults component uses the following properties:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 6 4

9 - S e t t i n g U p T a r g e t i n g S e r v i c e s

μ
Property Value

targeter A targeter that operates over the appropriate repository.

sourceMap A TargetingSourceMap for resolving names of source objects used by targeting
rules. See Setting up a TargetingSourceMap Service.

bufferSize Number of items to target for in each iteration. If 0, only one targeting operation
will be performed, with all the targeting results returned at once. Otherwise,
targeting will be performed in chunks, with the specified number of elements
returned each time.

The targeter property should point to a targeter service that operates over a repository. You can
configure the targeter service through the Targeting and Segmentation interface in the ATG Business
Control Center (see the ATG Business Control Center User’s Guide), you can use the Targeting > Content
Targeters window of the ACC (see the ATG Personalization Guide for Business Users), or you can configure
the targeter by hand (see Creating Rules for Targeting Content in this manual).

The bufferSize property lets you limit the maximum number of items that are returned at a time. The
read-only results property is used to extract the results as an Enumeration. When the Enumeration
elements are accessed, targeting is performed as needed to extract the next result array of size
bufferSize. If bufferSize is 0, the entire targeting result array is obtained the first time an
Enumeration element is asked for. Thus, if the number of items in the targeting results is potentially large,
this allows you to split one expensive targeting operation into many inexpensive ones. This is especially
useful if, for example, you are only interested in the first 10 elements in the result set.

The TargetingResults.getResults() method returns an Enumeration that is an instance of
atg.targeting.TargetingEnumeration. TargetingEnumeration is simply an implementation of
Enumeration that is created with, at a minimum, a Targeter and a NameResolver, and allows you to
access targeting results with Enumeration methods.

Defining Profile and Content Groups
This section describes how to create profile and content groups by hand. For information about creating
profile and content groups through the ACC interface, see the ATG Personalization Guide for Business Users.
For information about creating content groups through the ATG Business Control Center, refer to the ATG
Business Control Center User’s Guide.

Notes:

 In ATG installations that include ATG Content Administration and the ATG Business
Control Center, user segments replace profile groups as a way of grouping site visitors.
User segments contain the same basic functionality as profile groups but provide
additional features, including a more flexible rule editor. User segments are intended
to supersede profile groups and are the recommended tool for grouping site visitors
in installations where they are available. For detailed information on user segments,
refer to the ATG Business Control Center User’s Guide.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 6 5

9 - S e t t i n g U p T a r g e t i n g S e r v i c e s

μ
 You cannot create a profile or content group, either by hand or through the UIs, that

compares a target or a repository property to a bean property. While you can use bean
properties in rule sets in targeters, you cannot do the same in profile or content
groups. This is because profile and content groups may be evaluated without an
accompanying request or session. For example, when you are sending targeted e-mail
to a collection of people, there is no way for the ATG system to evaluate a reference to
what could be a request or a session-scoped bean. The properties to which you
compare a repository or a target property must be other target properties or
constants.

Profile Groups

You can use the ACC’s Targeting > Profile Groups window to define rules that group user profiles, based
on the available profile attributes in your profile template. Each profile group you define becomes a
boolean attribute of each user profile. For example, if you define a profile group named Retirees,
members of that profile group will have a retirees attribute with a value of true. You can create rules
that target group members like this:

<rule op=eq>

 <valueof target="retirees">

 <valueof constant="true">

</rule>

Profile groups created in the ACC’s Targeting > Profile Groups window are of class
atg.targeting.DynamicContentGroup. You can also define a profile group by hand, by creating a
component whose class is atg.targeting.RuleBasedRepositoryItemGroup, and placing the
component in the configuration tree at /atg/registry/RepositoryGroups/UserProfiles.

Profile groups that you create by hand appear in the Profile Groups window (along with any profile
groups created in that window), but these groups are not identified by the profile group icon (), and
cannot be edited in the Profile Groups window. (Only profile groups created in the Profile Groups window
can be edited there; these profile groups store rules in a special format because of the way the ACC
interface represents them.) However, profile groups created by hand are still available in the Targeting >
Content Targeters window to use in creating targeters.

Profile groups created by hand are also available as non-assignable roles in the Dynamo User Directory.
Since membership in a profile group is determined by a set of rules, you cannot arbitrarily assign users to
a profile group in the ACC screens that manipulate the User Directory. You can query the User Directory to
find users who are assigned to a specific profile group. For more information see Working with the
Dynamo User Directory in this guide.

To create a profile group by hand:

1. Create a rule set service that defines the profiles to include in the profile group. See
the Setting Up a RuleSetService section.

2. In the ACC, select Pages and Components > by Path.

3. Select /atg/registry/RepositoryGroups/UserProfiles.

4. From the File menu, select New Component.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 6 6

9 - S e t t i n g U p T a r g e t i n g S e r v i c e s

μ
5. In the Select Component Template dialog box, select Dynamo from the Modules list,

and then select Generic Component from the Templates list. Click OK.

6. In the Generic Component Wizard, specify the class as
atg.targeting.RuleBasedRepositoryItemGroup. Click Finish.

7. In the Input New Component Name dialog box, enter a name for the profile group,
and click OK.

The new component opens in the Component Editor.

8. In the Component Editor, set the Configured Value of the repository property to the
Nucleus address of the profile repository; for example,
/atg/userprofiling/ProfileAdapterRepository.

9. Set the Configured Value of the ruleSetService property to the Nucleus address of
the rule set service you created in step 1; for example,
/atg/targeting/AggressiveInvestorsRuleSetService.

Content Groups

You can use the ACC’s Targeting > Content Groups window to define rules that group content items,
based on the available item descriptors for your content repository. Installations that include ATG Content
Administration can use the Targeting and Segmentation interface in the ATG Busines Control Center to
perform this task. Note that only the ATG Business Control Center supports multisite content groups.

Content groups can help simplify your targeting rules. For example, you could create a content group
with information for guest users, and then write a targeter for displaying the content in this group.

Content groups created in the UIs are of class atg.targeting.DynamicContentGroup. You can also
define a content group by hand, by creating a component whose class is
atg.targeting.RuleBasedRepositoryItemGroup, and placing the component in the configuration
tree at /atg/registry/RepositoryGroups/<repository name>, where <repository name> is a folder
that has the same name as the content repository that contains the content included in the content
group.

Content groups that you create by hand appear in the UIs but cannot be edited there. However, they are
still available in the UIs to use in creating targeters. Note, however, that multsite features are not
supported by the ACC.

To create a content group by hand:

1. Create a rule set service that defines the content to include in the content group. See
the Setting Up a RuleSetService section.

2. In the ACC, select Pages and Components > by Path.

3. Select /atg/registry/RepositoryGroups/<repositoryname>, where
<repositoryname> is a folder that has the same name as the repository that contains
the content included in the content group.

4. From the File menu, select New Component.

5. In the Select Component Template dialog box, select Dynamo from the Modules list,
and then select Generic Component from the Templates list. Click OK.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 6 7

9 - S e t t i n g U p T a r g e t i n g S e r v i c e s

μ
6. In the Generic Component Wizard, specify the class as

atg.targeting.RuleBasedRepositoryItemGroup. Click Finish.

7. In the Input New Component Name dialog box, enter a name for the content group,
and click OK.

The component is created, and opens in the Component Editor.

8. In the Component Editor, set the Configured Value of the repository property to the
Nucleus address of the content repository; for example,
/atg/adapter/html/TargetedContent.

9. Set the Configured Value of the ruleSetService property to the Nucleus address of
the rule set service you created in step 1; for example,
/atg/targeting/StockFundsRuleSetService.

Managing User Segments
As mentioned in the previous section, profile groups created in the ACC are of class
atg.targeting.DynamicContentGroup. If your system includes ATG Content Administration, you can
also create profile groups through the ATG Business Control Center, as described in the ATG Business
Control Center User’s Guide. Profile groups created in the ATG Business Control Center are called user
segments, and are of class atg.targeting.html.UserSegment, which is subclass of a subclass of
atg.targeting.DynamicContentGroup. Note that user segments created in the ATG Business Control
Center cannot be edited in the ACC.

Some sites may define a large number of user segments. To help manage these segments, the ATG
platform uses segment lists, which are specific subsets of the set of segments defined on the site. For
example, ATG Customer Intelligence uses segment lists to determine which segments to use for creating
reports.

Segment lists are predefined for specific features and applications, but you need to specify the actual
segments to include in these lists through the ATG Business Control Center. For more information, see the
ATG Business Control Center Administration and Development Guide.

Segment lists are stored in the Personalization Repository, located at
/atg/userprofiling/PersonalizationRepository. Each segment list is represented by a single
repository item of type userSegmentList, which has these properties:

 displayName – The name used in the ATG Business Control Center for the segment
list; e.g., the displayName for the CommerceReporting list is Commerce Reports.

 description – The description of the segment list displayed in the ATG Business
Control Center

 groups – A comma-separated list of the names of the segments; e.g.,
YoungMen,Audiophiles,EarlyAdopters

Segment lists are versioned assets, and the Personalization Repository (on a system that includes ATG
Content Administration) is a versioned repository that is included in the DPS.Versioned module.
Therefore, when you build the application for your ATG Content Administration environment, you must

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 6 8

9 - S e t t i n g U p T a r g e t i n g S e r v i c e s

μ
be sure to include this module. Note that when you build the application for your production
environment, you should not include the DPS.Versioned module; the Personalization Repository on the
production site is a non-versioned repository that can be queried at runtime.

How Segment Lists Are Used

A given feature that has a segment list associated with it (such as Affinity Selling) can use the segment list
by invoking the /atg/userprofiling/UserSegmentListManager component, which determines
which segments in the segment list the current user is a member of. This determination involves
evaluating the rule set for each segment in the segment list. The feature can then restrict the data it
considers to just those segments. For example, Affinity Selling can return the products with the highest
affinity to a specified product, taking into account only the purchases of users in a segment the current
user is a part of.

Conflict Resolution
This section covers features that resolve conflicts between content items delivered to pages by targeting
servlet beans. Conflict resolution works as follows:

 Content repository administrators designate one or more properties to be used as
conflict topics, conflict tags and optional conflict priority, possibly adding these
properties to the repository configuration.

 A developer configures one or more conflict filter components in Nucleus to make
use of the above conflict data.

 Page developers deploy the above filters by passing their names as optional
parameters to targeting servlet beans in their pages (e.g., TargetingForEach). As the
page is rendered, each servlet bean employs its corresponding conflict filter to remove
items from the result set returned by a targeter or slot.

 Content creators supply the above conflict tags through the standard repository
administration user interface.

Programming Interface

Conflict filter components implement the atg.service.filter.ItemFilter interface. The targeting
servlet beans call this interface’s filterItems method, passing in the targeter’s result set plus the same
name resolver that was passed to the targeter:

public Object[] filterItems(Object[] pItems, NameResolver pResolver)

In addition, conflict filter components implement the atg.service.filter.ItemHistory interface.
The targeting servlet beans call this interface’s recordItems method, passing in the result of the
filterItems method to keep the history of all displayed items for further conflict resolutions:

public void recordItems(Object[] pItems);

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 6 9

9 - S e t t i n g U p T a r g e t i n g S e r v i c e s

μ
Architecture and Implementation

A simple implementation of the ItemFilter and ItemHistory interfaces is provided in the
atg.service.filter.TopicHistoryConflictFilter class, which maintains a historical record of all
items that have been allowed through it so far. On invocation of its filterItems method, it filters out
any items that conflict either with other items in the same result set, or with any items that have been
allowed through the filter on previous invocations.

Typically this object will be a session or request-scoped Nucleus component. If session-scoped, it provides
conflict resolution over the course of the session; if request-scoped, it provides conflict resolution within
the serving of a single page.

The algorithm used to resolve conflicts is as follows: each item is analyzed by looking at a set of specific
DynamicBeans properties, whose names are supplied by the conflict filter configuration. The analysis
determines these attributes for each item:

conflict topic
The name of a “topic” to which the item applies. For example, a soft drink promotion
might belong to the topic softDrinks, while a promotion for automobile parts might
belong to the topic autoParts.

conflict tag
A string that is used to resolve conflicts within a given topic. For example, a promotion
for Cogswell Cogs auto parts might have a conflict tag of Cogswell, while a Spacely
Sprockets auto parts promotion might have a conflict tag of Spacely.

conflict priority
An integer that determines priority within a given topic.

Two items are considered to be in conflict if their conflict topics are the same, but their conflict tags differ.
Thus, Cogswell Cogs and Spacely Sprockets promotions in the above examples would be considered in
conflict with each other. On the other hand, a soft drink promotion would not conflict with an auto parts
promotion, despite their conflict tags being different, because their conflict topics are not the same.

If two conflicting items belong to a single targeting result set being filtered, and conflict priorities can be
determined, then the item with the greater priority wins. If conflict priorities cannot be determined, then
a random choice is made.

If two items conflict and one item has already been recorded in the filter’s history as having passed the
filter, then the other item is rejected.

The configurable properties of a TopicHistoryConflictFilter are as follows:

itemTopicProperty
The name of an item DynamicBeans property which provides the conflict topic. If an
item lacks this property, it will always pass the filter.

itemTagProperty
The name of an item DynamicBeans property which provides the conflict tag by
default. If an item lacks this property, it will always pass the filter.

itemPriorityProperty (optional)
The name of an item DynamicBeans property which provides the conflict priority. If

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 7 0

9 - S e t t i n g U p T a r g e t i n g S e r v i c e s

μ
omitted, then conflict priorities are ignored and conflicts within a result set are always
resolved randomly.

Different conflict filters may be deployed in different servlet beans on the same site, if desired, to provide
conflict resolution services that are customized for particular purposes.

The Personalization module includes a /atg/targeting/ConflictFilter component that is a session-
scoped conflict filter of type TopicHistoryConflictFilter pre-configured to use the item property
names conflictTopic and conflictTag.

Invoking in Servlet Beans

All the targeted servlet beans accept the optional parameter filter. If supplied, this filter is applied to
result sets returned from the targeter specified by the servlet bean’s targeter parameter.

Using Slots to Deliver Content
Slots are Nucleus components that you can use to display and manage dynamic content on your Web
site. You use targeting servlet beans to include slots on your site pages, and you use scenarios to fill them
with content.

For more information, see Using Slots.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 7 1

1 0 - U s i n g T a r g e t e d E - m a i l

μ
10 Using Targeted E-mail

You can use the Targeted E-mail services included with the Personalization module to compose and
deliver e-mail using the same profile groups and targeting rules you use to deliver content on your Web
sites. For example, you can use targeted e-mail to:

 Send a confirmation message to a new user who registers at a site.

 Notify frequent customers of special sales.

 Notify all users who have not logged in to a site in several months that their accounts
will be closed soon.

 Send out a mass mailing with each message tailored to its recipient.

Before you begin this chapter, you may want to review the discussion of ATG’s e-mail services in the ATG
Programming Guide.

Note: While this chapter discusses accessing targeted e-mail programmatically, the Scenarios module
includes extensive capabilities for working with targeted e-mail through the ACC interface. See Using
Scenario Actions for more information.

This chapter includes the following sections:

Creating Targeted E-mail

Sending Targeted E-mail

Handling E-mail Problems

Distributing a Mailing across Multiple Servers

Deleting Mailings

Targeted E-mail Demo

Creating Targeted E-mail
You create targeted e-mail using the atg.userprofiling.email.TemplateEmailInfoImpl class. This
class draws the message body of an e-mail from a page template, invokes a MessageContentProcessor
component to process the content, and then passes the resulting JavaMail object to the
TemplateEmailSender component, which sends the message. The properties of a
TemplateEmailInfoImpl object store values that are specific to an individual e-mail campaign, so you
should create a separate instance of this class for each campaign.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 7 2

1 0 - U s i n g T a r g e t e d E - m a i l

μ
You can use targeted e-mail to produce e-mail messages that are personalized for different profiles. The e-
mail content is based on a JSP or JHTML template, specified with the templateURL property of a
TemplateEmailInfoImpl object. Using the dynamic elements of the Page template, you can customize
the e-mail for each of your users according to their profile attributes. Here is a JSP example :

<html>

<dsp:importbean bean="/atg/userprofiling/Profile"/>

<p>Dear <dsp:valueof bean="Profile.firstName">Customer</dsp:valueof>,

<p>We're writing to tell you about some exciting new offers ...

</html>

The template yields different message text depending on the attributes of the recipient’s profile. You can
use ATG’s targeting servlet beans to personalize the content of the message as well. If the template page
contains a targeting servlet bean, the servlet bean behaves just as it would in any other page, rendering
content targeted to the current profile.

The TemplateEmailInfoImpl object contains the standard e-mail message attributes as properties.
When it invokes the createMessage method, the specified e-mail attributes create and fill in a
javax.mail.Message object, which can then be sent to the desired recipient using the
TemplateEmailSender service, described in the next section.

The following table describes key properties of the TemplateEmailInfoImpl class:

Property Function

altTemplateURL Specifies the URL of a template containing a text version of an HTML
message. See Sending Message Content as Both Text and HTML.

batched Enables distributed mailing features for this mailing. See Distributing a
Mailing Across Multiple Servers.

templateURL The URL of the template page.

Example: templateURL=/en/email/newfund.jsp

If the template contains links to other URLs on your site, you must specify
them as absolute URLs in order for the email recipients to be able to
access the linked pages. Use the full http://server:port/... form of
the URL, for example <img
src="http://myserver:80/images/logo.gif> rather than <img
src="images/logo.gif> and help rather
than help.

mailingName A name used to identify an e-mail campaign

Default: Tuesday meeting

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 7 3

1 0 - U s i n g T a r g e t e d E - m a i l

μ
messageFrom “From” field of the e-mail message

Default: management@example.com

messageTo A single e-mail address that overrides the emailAddress property of the
target profile

Default: test@example.com

messageReplyTo “Reply to” field of the e-mail message

Default: hrgroup@example.com

messageCc “Cc” field of the e-mail message

Default: bill@example.com

messageBcc “Bcc” field of the e-mail message

Default: some-one@example.com

messageSubject “Subject” field of the e-mail message

Default: Mandatory Meeting, Tuesday at 3:00

messageAttachments Any files to attach to the e-mail message

Default: E:/mailattach/agenda.doc

contentProcessor MessageContentProcessor responsible for processing the message
content

Default: /atg/userprofiling/email/HtmlContentProcessor

fillFromTemplate Overrides the properties set in a JHTML or JSP file and fills the e-mail with
values from an e-mail template

Default: true

siteId (Multisite environments) The site ID to use for the message. Retrieved
from the Site Context Manager.

Note that TemplateEmailInfoImpl is a subclass of the abstract class TemplateEmailInfo. If you want
to create your own template e-mail implementation, you can create a subclass of TemplateEmailInfo
that implements all of its methods, and use it as you would use TemplateEmailInfoImpl.

Creating a Targeted E-mail Template

The page template for your targeted e-mail is specified by the templateURL property of the
TemplateEmailInfoImpl object. You create this template like any other page. Because the template
page is passed to the standard ATG servlet pipeline, it can include ATG servlet beans and additional
JHTML or JSP tags.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 7 4

1 0 - U s i n g T a r g e t e d E - m a i l

μ
Here is a sample JSP targeted e-mail template. It displays a few profile attributes and contains a targeting
servlet bean. Assuming the targeting rules used in the TargetingForEach servlet bean’s targeter service
depend on the attributes of the Profile component, the targeting results displayed in the e-mail
message will be different for each profile.

<dsp:importbean bean="/atg/userprofiling/Profile"/>

<p>Dear <dsp:valueof bean="Profile.firstName"/>

<dsp:valueof bean="Profile.lastName"/>,

<p>Thank you for your order! It has been shipped today to:

<blockquote><pre>

<dsp:valueof bean="Profile.address"/>

<dsp:valueof bean="Profile.city"/>, <dsp:valueof bean="Profile.State"/>

<dsp:valueof bean="Profile.zipCode"/>

</pre></blockquote>

<p>Since your last order, we've introduced some great new products. If you enjoy

your new <dsp:valueof bean="Profile.lastProductShipped"/>, you may also be

interested in ordering some of these great widgets:<p>

<dsp:droplet name="/atg/targeting/TargetingForEach">

 <dsp:param bean="/targeters/WidgetTargeter" name="targeter"/>

 <dsp:oparam name="output">

 <dsp:valueof param="element.name"/>

 </dsp:oparam>

</dsp:droplet>

<p>Thank you for shopping with us.

<p>Sincerely,

The Customer Service Team

help@example.com

http://www.example.com

Note that if your template page contains links to other URLs on your site, you must specify them as
absolute URLs; otherwise the e-mail recipients will not be able to access the linked pages. Use the full
http://server:port/... form of the URL. For example, in JSP code:

<dsp:img src="http://myserver:80/images/logo.gif">

<dsp:a href="http://myserver:80/help/index.html">help</dsp:a>

The following example will not work, because it uses relative URLs:

<dsp:img src="images/logo.gif">

<dsp:a href="help/index.html">help</dsp:a>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 7 5

1 0 - U s i n g T a r g e t e d E - m a i l

μ
Specifying E-mail Fields in the Template

By default, the Personalization module takes the values for various fields of an e-mail message from
properties of the TemplateEmailInfoImpl object. This behavior means that all messages using the
same object will have identical properties. For example, suppose the value of the messageSubject
property of the TemplateInfoImpl component is “Hello”. All e-mail messages created by this
component will contain the subject line “Hello”.

You can override the values of these properties in a specific e-mail template by doing the following:

1. In the template, include parameters with the same names as the corresponding
TemplateEmailInfoImpl properties.

2. Set the fillFromTemplate value of the TemplateEmailInfoImpl object to true.

For example, you can set a different subject line for a specific mailing by including a statement as follows
in the template for that mailing:

JSP example:

<dsp:setvalue value="Your order has shipped" param="messageSubject"/>

JHTML example:

<setvalue param="messageSubject" value="Your order has shipped">

Because these parameters are evaluated for each message individually, they can include dynamic
content. For example, you could set the message subject as follows.

JSP example:

<dsp:setvalue value='<%="Order " + request.getParameter("order.id")+

" has shipped"%>' param="messageSubject"/>

JHTML example:

<setvalue param="messageSubject"

 value="Order 'request.getParameter("order.id")' has shipped">

There are seven parameters that you can use in this way to override the corresponding
TemplateEmailInfoImpl properties:

 mailingName

 messageFrom

 messageTo

 messageReplyTo

 messageSubject

 messageCc

 messageBcc

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 7 6

1 0 - U s i n g T a r g e t e d E - m a i l

μ
You can use any combination of these parameters in an e-mail template; if any of these parameters is not
set, the system uses the corresponding property value instead.

For example, you could globally set the messageCc property to Cc yourself, but you could override this
property if you wanted to Cc or Bcc other people to make them aware of a particular e-mail campaign.
The messageCc and messageBcc parameters are defined as a string of e-mail addresses separated by
commas. For example, you could add the following lines to a template file.

JSP example:

<dsp:setvalue value=lewis@example.com,everyone@example.com

 param="messageCc"/>

<dsp:setvalue value=management@example.com,bob@example.com

 param="messageBcc"/>

JHTML example:

<setvalue param="messageCc" value=lewis@example.com,everyone@example.com>

<setvalue param="messageBcc" value=management@example.com,bob@example.com>

Note: Property values you set through an e-mail template are not persisted to the database. Only the
values that are set in the TemplateEmailInfoImpl object are persisted.

Specifying a MessageContentProcessor

The TemplateEmailInfoImpl’s contentProcessor property points to a MessageContentProcessor
object, which is responsible for actually setting the e-mail message content given the rendered message
body. Implementing this functionality in a separate class allows you to implement different schemes for
processing content.

MessageContentProcessor is an abstract class. The Personalization module includes two concrete
subclasses of MessageContentProcessor: SimpleContentProcessor and HtmlContentProcessor.
You can also implement your own content-processing scheme by creating a subclass of
MessageContentProcessor that implements all of its methods.

SimpleContentProcessor

SimpleContentProcessor doesn’t do any processing on the passed-in message content but simply
uses the content as is to set the javax.mail.Message content. The MIME type of the content in the
Message is specified by the service’s contentType property. For instance, if contentType is “text/html,”
the rendered page is sent as HTML; if the contentType is “text/plain,” it will be sent as simple text (no
word wrapping).

HtmlContentProcessor

HtmlContentProcessor is a more sophisticated implementation of MessageContentProcessor. The
HtmlContentProcessor does the following:

1. Takes in content of type “text/html”

2. Optionally, converts it into content of type “text/plain”

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 7 7

1 0 - U s i n g T a r g e t e d E - m a i l

μ
3. Performs word wrapping on the plain text version of the content

4. Determines whether to send the Message content as “text/html”, “text/plain”, or
“multipart/alternative” with “text/plain” and “text/html” parts

You can configure the HtmlContentProcessor with the following properties:

Property Function Defa
ult

sendAsHtml If true, send message as HTML; if sendAsText is also true, send as
multipart/alternative with text/plain and text/html parts.

true

sendAsText If true, send message as plain text; if sendAsHtml is also true, send as
multipart/alternative with text/plain and text/html parts.

true

indentWidth Indentation width used in text/plain version of message. 5

lineWidth Line width used in text/plain version of message. 70

hrChar Character to use to create horizontal rules in text/plain version of
message.

-

liChar Character to use to introduce list items in text/plain version of message. -

HtmlToTextConverter

If the sendAsText property in HtmlContentProcessor is true for a given e-mail message, the
Personalization module uses an instance of the class
atg.userprofiling.email.HtmlToTextConverter to convert the message to plain text. Note,
however, that the converter supports the conversion of content included in the following HTML tags only:

title

h1

h2

h3

h4

h5

h6

p

br

hr

blockquote

pre

ul

ol

li

See also Sending Message Content as Both Text and HTML.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 7 8

1 0 - U s i n g T a r g e t e d E - m a i l

μ
Sending Message Content as Both Text and HTML

As described in the previous section, the HtmlContentProcesser and HtmlTextConverter allow you
to send a message as both text and HTML. However, formatting results for text messages converted from
HTML may be unpredictable. For situations where you need to guarantee a properly formatted message
in both styles, you can configure the altTemplateURL property in the TemplateEmailInfo object. As
the value for this property, specify a URL that points to an alternative text template for the HTML
message. The text representation is generated in the same session as the HTML representation.

In addition, in the JSP or JHTML page that renders the alternative text template, set the MIME type of the
response to text/plain. For more information, see the ATG Page Developer’s Guide.

Note that this feature is available only if you are creating and sending mailings programmatically; it is not
available for scenario-generated mailings.

Creating the Recipient List

After you have created the TemplateEmailInfoImpl object, you need to create a targeted list of people
to send the mail to. This list of recipient profiles can be a Collection, an Enumeration, an array of
profile objects, or a group of String-based e-mail addresses. You can also create a mixed list of profile
objects and String e-mail addresses. Typically, however, you would obtain the recipient profile list by
targeting the profile repository for profiles that satisfy some particular criteria. Two ways to get a recipient
profile list are:

 Using the TargetingResults Class

 Targeting with Profile Groups

After you have defined your recipient list, call the TemplateEmailSender’s sendEmailMessage method,
passing in the TemplateEmailInfoImpl object corresponding to the e-mail and a Collection,
Enumeration, or array representing the recipient list.

Using the TargetingResults Class

The atg.targeting package includes a class, atg.targeting.TargetingResults, that you can use to
generate targeted recipient lists. TargetingResults is a Nucleus service that can be configured with the
specific Targeter and NameResolver, and used to produce the corresponding TargetingEnumeration
objects.

Set the targeter property of the TargetingResults component to point to a targeter that operates
over a profile repository (such as /atg/userprofiling/ProfileAdapterRepository). You can
configure the targeter service in the ATG Business Control Center (see the ATG Business Control Center
User’s Guide), in the ACC (see the Matching Content with Your Target Audience chapter in the ATG
Personalization Guide for Business Users), or by hand (see the Creating Rules for Targeting Content and
Setting Up Targeting Services chapters in this manual).

Once you have defined the TargetingResults object, you can obtain a recipient list by calling
TargetingResults.getResults().

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 7 9

1 0 - U s i n g T a r g e t e d E - m a i l

μ
Targeting with Profile Groups

Another way to obtain the recipient list is by asking a profile group for its members. You can create profile
groups using the ACC (see the Creating Profile Groups chapter in the ATG Personalization Guide for Business
Users) or programmatically (see the Setting Up Targeting Services chapter in this manual). Assuming you
have a pointer to a profileGroup (of type RepositoryItemGroup), you can create a list of recipients
that includes all the members of the profile group:

Object[] recipients = profileGroup.getGroupMembers();

Sending Targeted E-mail
Once you have created your messages and identified the list of recipients, you use a
TemplateEmailSender (atg.userprofiling.email.TemplateEmailSender) to send out the
mailing. There is also a TemplateEmailListener component that listens for events such as success or
failure in sending e-mails. See Handling E-mail Problems.

TemplateEmailSender is the service responsible for sending targeted e-mail. Its sendEmailMessage
method takes a TemplateEmailInfo object together with a list (Collection, Enumeration, or array) of
recipient profiles.

Note that, because TemplateEmailSender’s methods take any TemplateEmailInfo object, you can use
either the TemplateEmailInfoImpl subclass or a custom subclass you have created.

The TemplateEmailSender does the following:

 It renders the page given by the TemplateEmailInfo’s templateURL for each of the
profiles or e-mail addresses provided.

 It invokes the TemplateEmailInfo’s createMessage method to obtain the
corresponding JavaMail message.

 It sends the resulting message to each corresponding user (by way of the
EmailMessageSender component).

The actual sending of the messages is handled by an atg.service.email.EmailMessageSender
component (for example, /atg/dynamo/service/SMTPEmail), which is specified by
TemplateEmailSender’s emailMessageSender property.

The Page is rendered once for each user by creating a DynamoHttpServletRequest and sending it
down the ATG servlet pipeline. (In the default configuration; it is also possible to implement other content
rendering schemes by specifying different values for the service’s templateRendererServlet property.)
That is, the template page is rendered simply as if it were a normal ATG page requested through a
browser. See the Request Handling and the Servlet Pipeline chapter in the ATG Programming Guide for more
information about how the servlet pipeline handles requests.

The default instance of DynamoHttpServletRequest associates the recipient profile object with the
current session. In other words, it binds the profile object to the session-scoped
/atg/userprofiling/Profile, and allows the page to refer to the profile’s attributes, as well as to
include targeting servlet beans that display content targeted to the current profile. Note that the profile

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 8 0

1 0 - U s i n g T a r g e t e d E - m a i l

μ
must have attributes for the user’s e-mail address and locale (although the locale property value can be
null). In addition, the profile must have an attribute named receiveEmail, and the value of this attribute
must be yes or null.

The following table describes key properties of the TemplateEmailSender class:

Property Function

batchEmailPeriodicService The name of the component that performs a number of periodic
tasks as part of a performing a distributed mailing. For more
information, see Distributing a Mailing Across Multiple Servers.

batchIfPossible Property that enables distributed mailing automatically as long as
a given mailing does not include transient profiles. For more
information, see Distributing a Mailing Across Multiple Servers.

emailAddressPropertyName Name of the e-mail address property in the profile.

Default: /atg/userprofiling/PropertyManager
.emailAddressPropertyName

emailEncodingMap List of mappings between character sets used in e-mail templates
and in messages (see Setting the E-mail Encoding in the
Internationalizing a Dynamo Web Site chapter of the ATG
Programming Guide.)

Default: SJIS=iso-2022-jp,EUC=iso-2022-jp

emailMessageSender EmailMessageSender component responsible for sending the e-
mail.

Default: /atg/dynamo/service/SMTPEmail

emailStatusInvalidOptionV

alue

The String value for the emailStatus profile property, used to
flag the status as invalid. Default: invalid.

emailStatusValidOptionVal

ue

The String value for the emailStatus profile property, used to
flag the status as valid. Default: valid.

enabledAsTemplateMailServ

er

Determines whether this server should participate in a distributed
mailing. For more information, see Distributing a Mailing Across
Multiple Servers.

encodingTyper PageEncodingTyper object that determines the encoding used
in the e-mail.

Default:
/atg/dynamo/servlet/pagecompile/EncodingTyper

localePropertyName Name of the locale property in the profile.

Default: locale

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 8 1

1 0 - U s i n g T a r g e t e d E - m a i l

μ
profilePath Session-scoped Profile object.

Default: /atg/userprofiling/Profile

requestSetupServlet HeadPipelineServlet responsible for setting up the request.

Default: /atg/dynamo/servlet/pipeline/DynamoHandler

templateEmailListeners List of listeners notified of any targeted e-mail events.

Default: There is no existing component for this class

templateEmailPersister TemplateEmailPersisterImpl component responsible for
recording information about a mailing so that the mailing can be
restarted if necessary.

Default:
/atg/userprofiling/email/TemplateEmailPersister

templateRendererServlet Servlet responsible for rendering the template page.

Default: /atg/dynamo/servlet/pipeline/DynamoHandler

Sending E-mail to Users Without Profiles

In some situations, you may want to send e-mail to a user or a group of users who have not yet registered
and who do not have profiles. For example, you might want to send a gift certificate to a group of e-mail
addresses promising a promotion if the recipients register at your Web site. To send e-mail to a user
without a profile, use the TemplateEmailInfoImpl.messageTo property. You can set the messageTo
property globally, or in a JSP or JHTML file. If you set it globally, messageTo overrides the emailAddress
property specified in the e-mail template. To set messageTo in a JSP file, add the following lines to the JSP
template:

<dsp:setvalue paramvalue="message.profile.giftEmailAddress"

 param="messageTo"/>

<setvalue param="fillfromTemplate" value="true">

Here is the same example in JHTML:

<setvalue param="messageTo"

 value="param:message.profile.giftEmailAddress">

<setvalue param="fillfromTemplate" value="true">

This setting is local to a specific template and does not affect other mailings. The fillfromTemplate
parameter forces the sender to override any property set in the template file.

Using the TemplateEmailSender Class

You can also send e-mail to e-mail addresses that do not have matching profiles by specifying the e-mail
addresses as an array of Strings. In the same way that you can send e-mail to a profile group, you can
programmatically specify a list of e-mail addresses:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 8 2

1 0 - U s i n g T a r g e t e d E - m a i l

μ
Object []recipients = {"bill@example.com", "sam@example.com"};

TemplateEmailSender.sendEmailMessage(TemplateEmailInfo, recipients);

In this example, the TemplateEmailSender component checks each element in the recipients [] and
if the element is of type String , the TemplateEmailSender sends e-mail to the e-mail address.

You can also mix and match Profile objects with String based e-mail addresses when calling
TemplateEmailSender.sendEmailMessage:

Object[] profileRecipients = profileGroup.getGroupMembers();

Object[] emailRecipients = {"bill@example.com", "sam@example.com"};

Object[] recipients = addArrays(profileRecipients, emailRecipients);

TemplateEmailSender.sendEmailMessage(TemplateEmailInfo, recipients);

For more information on working with users who don’t have profiles, see Tracking Guest Users in the
Working with User Profiles chapter.

Viewing, Canceling or Resuming a Mailing

The targeted e-mail system includes ATG Dynamo Server Admin features that you can use to examine or
cancel mailings. In addition, you can use the Admin to view individual batches of a distributed mailing or
resume a distributed mailing that you previously canceled.

1. Start the ATG Dynamo Server Admin as described in the ATG Installation and
Configuration Guide.

2. Click the Component Browser link and navigate to the
/atg/userprofiling/email/TemplateEmailSender/ page.

The Mailings by Status display shows information similar to the following:

Mailing Type # Local
Mailings

Distributed Mailings Action

All 3 18 Show/Remove Local/Remove
Distributed

Failed 0 0 Show/Remove Local/Remove
Distributed

In Progress 1 4 Show/Remove Local/Remove
Distributed

Canceled 0 0 Show/Remove Local/Remove
Distributed

Pending 0 5 Show/Remove Local/Remove
Distributed

Completed 2 9 Show/Remove Local/Remove
Distributed

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 8 3

1 0 - U s i n g T a r g e t e d E - m a i l

μ

In all cases, the numbers are the instances of each mailing type that have occurred since the
TemplateEmailSender component was started.

Notes:

 Mailings you send through scenarios are automatically batched by the Scenario
Manager, and each batch appears as a separate mailing.

 Only the mailings sent by this instance of the TemplateEmailSender appear in the
list. In a multiple server environment, therefore, many more mailings may exist than
are shown in this display.

Use the Show link to display a list of individual instances of a mailing type. Use the Remove link to delete
all instances of that mailing type from the database.

After you click Show for a particular mailing type, you can choose to cancel or pause an individual mailing
by clicking the Cancel link for that mailing. For distributed mailings, a Resume link then appears. You can
use Resume to start the mailing from the point at which it was stopped (note that the mailing is not
restarted from the beginning). When you select Resume, the batches are returned to the pool so that they
can be reclaimed by the distributed mail servers (see Distributing a Mailing across Multiple Servers for
more information).

Important: Be aware that it may take a few minutes for canceling a mailing to take effect. It is not
recommended that you resume a mailing immediately after canceling it; this behavior can generate
exceptions and cause deadlocks to occur. Wait until the cancellation is complete before resuming. (To
check whether a cancellation is complete, look at the database and ensure that the Status entries for the
mailing are set to 2.)

For distributed mailings, you can also view specific batches of the mailing by clicking View Batches after
you use the Show link.

Use the Remove Local link to remove mailings from this sender.

Use the Remove Distributed link to remove distributed mailings from all senders in this cluster. Use this
option with caution. As noted above, the display shows only the mailings that were generated by this
instance of the TemplateEmailSender. If you click Remove Distributed, you remove all mailings from
any instance that uses the same database as the sender on the server where you are viewing this list.

Avoiding E-Mail Fatigue

In some cases you may want to limit the frequency with which e-mails are sent to users. You can do so by
setting the daysContactFatigue or hoursContactFatigue property in the TemplateEmailSender
component. These properties specify an amount of time that must pass between mailings to any user. For
example, if you set the daysContactFatigue property to 5, a user is excluded from a mailing if five days
have not passed since a mailing was sent to him or her. The TemplateEmailSender uses the value of the
lastEmailed property in the user profile to determine if the required amount of time has passed.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 8 4

1 0 - U s i n g T a r g e t e d E - m a i l

μ
Note that the daysContactFatigue and hoursContactFatigue properties eliminate all e-mails. If you
want to override the setting for an essential e-mail such as receipt or order confirmation, set the
ignoreContactFatigue property in the TemplateEmailInfoImpl object to true for the given mailing.

Improving Performance for SQL JMS Mailings

When targeted e-mail senders initiate a mailing, the EmailManager fires an OutboundEmailMessage
that includes the javax.mail Message object. If your sites use SQL JMS for mailings, and you send out a
large number of e-mails, mailings can take a long time to complete because the javax.mail Message
object needs to be written to the SQL database that is used for message persistence.

If your mailings do not require the javax.mail Message object, you can improve performance by setting
the serializeOutboundEmailContent property in the /atg/userprofiling/DPSMessageSource
component to false. This setting omits the javax.mail Message object from the message.

Handling E-mail Problems
The Personalization module includes several services that you can use in your application to handle
situations when a mailing fails. Common situations the application may encounter include:

 Failed E-mail

 Bounced E-mail

 Stopped E-mail Campaigns

Failed E-mail

Each time TemplateEmailSender sends an e-mail message, it generates an event of class
atg.userprofiling.email.TemplateEmailEvent, which indicates whether or not the message was
successfully sent. For example, suppose you create a mailing with 10 recipients, and 1 message does not
get sent because the recipient has an invalid e-mail address. TemplateEmailSender generates 10
template e-mail events, 9 indicating success and 1 indicating failure.

When a message fails, TemplateEmailSender looks at the e-mail address of the failed message, finds all
profiles that use that address, and marks those profiles as being ineligible for receiving e-mail by setting
the emailStatus property to invalid.

You can have your application perform specific actions depending on whether a message is successfully
sent. For example, you could keep track of the messages that failed and delete the corresponding profiles.
To facilitate this type of tracking, the TemplateEmailSender component has a
templateEmailListeners property, which is a standard list of listeners notified of any template e-mail
events. Any service that you add to this property is notified of each template e-mail event, which your
application can then handle appropriately.

Note that if a message is sent successfully, this means only that the message was sent to a legal address
(that is, an address that has a legal form, such as someone@some.example.com). A message sent
successfully may still bounce if the address is not the actual address of any mailbox.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 8 5

1 0 - U s i n g T a r g e t e d E - m a i l

μ
Bounced E-mail

To detect bounced e-mail, ATG provides the atg.service.email.pop.POP3Service class. This service
implements a standard POP3 e-mail client. It periodically checks for incoming mail on a specified POP3
server, and it determines which messages are bounced-back messages. For each bounced message, it
generates an event of class atg.service.email.pop.MailBounceEvent, which contains information
about the bounced message.

The Personalization module includes an atg.userprofiling.email.EmailManager class which
handles these events. An EmailManager component registers itself with the POP3Service as a listener.
When the POP3Service generates a mail bounce event, the EmailManager looks at the e-mail address of
the bounced message, finds all profiles that use that address, and marks those profiles as being ineligible
for receiving e-mail by setting the emailStatus property to invalid.

Once a user’s profile is marked as ineligible to receive e-mail, future mailings will skip this user. This cuts
down on the number of bounced messages and provides a mechanism for flagging users with invalid e-
mail addresses. For example, when a user logs into a site, you could check if the user’s e-mail address is
marked as invalid, and if it is, prompt the user to enter a new address. When the new address is submitted,
your application should then set the emailStatus property to valid to include this user in future
mailings.

Note also that the InboundEmail event in the Scenarios module is fired whenever the POP3Service
receives an e-mail, and it contains various properties that you can use to create scenarios triggered by the
arrival of bounced e-mails. For example, you could set up a scenario that notifies your customer service
department when a bounced e-mail is received. For more information, refer to InboundEmail Event.

Enabling Bounced E-mail Detection

To enable bounced e-mail detection, you must configure the /atg/dynamo/service/POP3Service
component to retrieve mail from a POP3 e-mail server. The following table summarizes the key properties
of this component:

Property Function

username User name for the e-mail account.

Default: dynasend

password Password for the e-mail account.

Default: dynasend

host Name of the POP server, for example pop.mydomain.com.

schedule Interval at which the component checks the POP server for new e-mail.

Default: every 15 seconds

scheduler The name of the service that the component uses to schedule the task of
checking for new e-mail.

Default: /atg/dynamo/service/Scheduler

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 8 6

1 0 - U s i n g T a r g e t e d E - m a i l

μ
attachmentDir Directory for the POP client to store e-mail attachments.

Default: /tmp

removeBouncedEMail Indicates whether to delete bounced-back e-mail messages from the
server after retrieving them.

Default: true

removeEmail Indicates whether to delete e-mail messages (other than bounced-back
messages) from the server after retrieving them.

Default: false

emailExaminers An array of EmailExaminer components that you want the
POP3Service to use when determining if an email is bounced. (See
below.)

Default:

/atg/dynamo/service/SendmailExaminer
/atg/dynamo/service/EximExaminer

/atg/dynamo/service/MSExchange6Examiner

/atg/dynamo/service/MSExchange5Examiner

In addition to the POP3Service component, you must also have an EmailManager component running.
To ensure that both of these services start up when your ATG application starts, add them to the
initialServices property of an atg.nucleus.InitialService component, such as the
/atg/dynamo/service/Initial component.

Note that there must be only one instance of each of these services on a site. In other words, if an
application has a single database but multiple servers running ATG products, only one of the ATG servers
should run these services.

You must also configure and enable the specific emailExaminer components that you want the
POP3Service to use to identify bounced e-mail messages. See the next section, Detecting Bounced E-mail
Messages from Different MTAs.

Detecting Bounced E-mail Messages from Different MTAs

The format of each bounced message that the POP3Service receives can vary depending on the type of
MTA (Mail Transfer Agent) that sent it. The POP3Service handles these different formats by means of one
or more implementations of the atg.service.email.examiner.EmailExaminer interface. Several
classes that implement this interface are supplied by default with the Personalization module:

 atg.service.email.examiner.SendmailEmailExaminer. See SendmailExaminer
Component for more information.

 atg.service.email.examiner.EximEmailExaminer. See EximExaminer
Component.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 8 7

1 0 - U s i n g T a r g e t e d E - m a i l

μ
 atg.service.email.examiner.RegExEmailExaminer. You can use this class to

detect bounced messages from other MTAs by configuring regular expressions. (The
examiner looks for configurable string expressions inside the text of the bounced
message to determine the various properties of the e-mail.) Two default
implementations are provided for interpreting bounced Microsoft Exchange Server
messages: /atg/dynamo/service/MSExchange5Examiner and
/atg/dynamo/service/MSExchange6Examiner.

You specify the examiner component or components you want to use to check bounced e-mail messages
in the emailExaminers property of the POP3Service component.

SendmailExaminer Component

The /atg/dynamo/service/SendmailExaminer component is an implementation of the
atg.service.email.examiner.SendmailEmailExaminer class that you can use to detect bounced e-
mail messages returned by sendmail MTA systems.

The component determines whether a message is bounced by looking for specific String expressions
within the message text. For example, the following text would allow this component to determine that
the message is bounced:

<<< 550 5.1.1 <noone@example.com>... User unknown

The SendmailExaminer component looks for the String <<< n, where n is any of the reply codes
specified in the component’s monitoredBounceReplyCodes property (550, in this example). If the String
exists, the message is considered bounced.

In addition, it checks for any reply codes that are specified in the monitoredBounceReplyCodes
property (see below).

An RFC 1893 enhanced status code appears after the bounce indicator String. In this example, the value is
5.1.1. This implementation assumes a space character after the reply code followed by a status code that
is 5 characters long. The bounced e-mail address (here, noone@example.com) appears between the < and
> characters after the bounced indicator. The error message appears after the first ... that is found after
the bounce indicator. In this example, the error message is User unknown. Note that the text of the error
message is a mail server-specific interpretation of the status code, and therefore the error message varies
from one mail server to another.

The SendmailExaminer component is not enabled by default. It contains the following key properties:

Property Description

MTAName The MTA format to which this examiner corresponds.

Default: sendmail

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 8 8

1 0 - U s i n g T a r g e t e d E - m a i l

μ
monitoredBounceReplyCodes An array of Strings that represent RFC 821 reply codes from

bounced e-mail messages. When an examiner checks an e-mail
message to see if it is bounced, it looks for specific text and a
reply code.

If the monitoredBounceReplyCodes property is not set, a
message is considered bounced if its text includes the characters
<<< followed by any reply code that starts with 5.

If the monitoredBounceReplyCodes property is set, the same
characters are looked for, but the component performs an
additional check to ensure that the reply code for the message
matches one in this property. If it does not, the message is not
considered bounced.

EximExaminer Component

The /atg/dynamo/service/EximExaminer component is an implementation of the
atg.service.email.examiner.EximEmailExaminer class that you can use to detect bounced e-mail
messages returned by exim MTA systems.

The component determines whether a message is bounced by looking for the following header in the
message:

X-failed-recipients

In addition, it checks for any reply codes that are specified in the monitoredBounceReplyCodes
property (see below).

This component is not enabled by default. It contains the following key properties:

Property Description

MTAName The MTA format to which this examiner corresponds.

Default: exim

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 8 9

1 0 - U s i n g T a r g e t e d E - m a i l

μ
monitoredBounceReplyCodes An array of Strings that represent RFC 821 reply codes from

bounced e-mail messages. When an examiner checks an e-mail
message to see if it is bounced, it looks for specific text and a
reply code.

If the monitoredBounceReplyCodes property is not set, a
message is considered bounced if it includes a specific message
header (X-failed-recipients).

If the monitoredBounceReplyCodes property is set, the
component performs an additional check to ensure that the
reply code for the message matches one in this property. If it
does not, the message is not considered bounced.

Identifying Soft-Bounced Messages

A “soft bounce” can be defined as a transient delivery failure, one where a message is bounced for reasons
that are usually temporary, for example the user’s mailbox is full or a server is too busy to handle the
request. In such cases you may want to resend the mailing at a later time or otherwise identify the
bounced e-mail recipient as only temporarily unavailable. The softBounceReplyCodes and
softBounceEnhancedStatusCodes properties in the EmailExaminer implementations described
above can be used to track soft bounce messages, which are identified by their RFC 821 and 1893 error
codes.

Retrieving Tracking Data from a Bounced E-mail

You can send tracking data with a mailing for subsequent retrieval from a bounced message. To add
tracking data to a mailing, add name/value pairs to the trackingData Map property in the
TemplateEmailInfoImpl object. Alternatively, call the appropriate methods in the
atg.service.email.TrackableEmailSender interface, which is implemented by the
atg.service.email.SMTPEmailSender class (/atg/dynamo/service/SMTPEmail or
/atg/dynamo/service/EmailListenerQueue components). As described earlier, when the
POP3Service receives a bounced e-mail, it sends out bounce events to any configured listeners. The
trackingData Map property in the bounce events contains any tracking data that could be retrieved
from the bounced message.

Stopped E-mail Campaigns

If a mailing is stopped for any reason (for example, if the server sending out the mailing crashes), you can
rerun the mailing when the server restarts. However, if any of the mail messages were sent successfully,
some users might receive multiple copies of the mail. The Personalization module includes services you
can use to handle this situation. These services record information about the users to whom the mailing
was sent and whether or not the mailing completed successfully. When you restart the server, the system
can check for any incomplete mailings and restart them from the point where the failure occurred. This
behavior ensures that each user receives only one copy of a mailing.

There are two services in atg.userprofiling.email that handle restarting stopped e-mail campaigns,
TemplateEmailRestarter and TemplateEmailPersisterImpl. When the
TemplateEmailRestarter service starts up, it checks the database for incomplete mailings and restarts

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 9 0

1 0 - U s i n g T a r g e t e d E - m a i l

μ
any that it finds. Typically, you want to invoke TemplateEmailRestarter when the server starts up, so
you should add this service to the initialServices property of an atg.nucleus.InitialService
component, for example the /atg/dynamo/service/Initial component.

There should be one instance of the TemplateEmailRestarter service running on each ATG server on a
site. Each ATG server must have a unique DRP port number so the TemplateEmailRestarter service
can determine which server created a given mailing. Configure the migrationList property to point to
the list of UniqServerIds of the mailing that should be migrated to that server. For example:

migrationList=64.69.0.100:8851

This setting moves all mailings on host 64.69.0.100 at DRP port 8851 to the current server. To test that this
migration works, you can create a set of mailings on one server, change the DRP port number, and then
edit the TemplateEmailRestarter component to migrate from the old DRP port to the new one. You
can verify the change by looking in the database.

The TemplateEmailPersisterImpl service does the actual work of recording information about a
mailing as it is being sent out and checking the status of mailings when the ATG system starts up. The
dps_mailing table has a property called num_profiles that is the number of profiles to which a
particular mailing should be sent, and another property, num_sent, which is the number of e-mails sent in
that mailing. Two more properties, num_errors and num_skipped, record respectively the number of
messages that could not be sent because of errors that occurred during the mailing, and the number of
recipients to whom message could not be sent, for example because the emailStatus profile property
was set to invalid.

E-mails are sent in order, and each one is assigned a unique ID, which is the mailing_id property of the
dps_mailing and dps_email_address tables. The TemplateEmailPersisterImpl service takes the
list of recipients from the dps_user_mailing and the dps_email_address tables and begins resending
e-mails from the number recorded as the sum of the num_sent, num_errors, and num_skipped
properties.

This service is a property of both the TemplateEmailSender service (which uses it to record information
about mailings) and TemplateEmailRestarter (which uses it to check the status of mailings). When you
configure the TemplateEmailSender and TemplateEmailRestarter components, be sure to set their
templateEmailPersister properties to the Nucleus pathname of a TemplateEmailPersisterImpl
component, such as /atg/userprofiling/email/TemplateEmailPersister.

For information on setting up persistent targeted e-mail with a composite repository that uses an LDAP
repository as its primary view, see Configuring Targeted E-mail for a Composite Repository.

For distributed mailings, information about the batches within a mailing is persisted to the
dps_mail_batch table by the /atg/userprofiling/email/TemplateEmailBatchPersister
component. Information about the servers used to perform a distributed mailing is persisted to the
dps_mail_server table by the
/atg/userprofiling/email/TemplateEmailBatchServerPersister component. See Distributing a
Mailing Across Multiple Servers for more information.

Note that, if you use the Scenarios module, mailings sent through the Scenario window of the ACC
automatically handle persistence. However, if you are creating mailings programmatically, you must use a
TemplateEmailSender.sendEmailMessage() method that includes an argument for enabling

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 9 1

1 0 - U s i n g T a r g e t e d E - m a i l

μ
persistence. For example, if you are sending targeted e-mail that contains a promotion, the e-mail is
handled in a separate thread and you have to ensure that the slot that holds the promotion is persistent,
otherwise the promotion will not be sent with the e-mail. A persistence argument could look like this:

sendEmailMessage(TemplateEmailInfo pEmailInfo,

 Enumeration pRecipients,

 boolean pRunInSeparateThread,

 boolean pPersist);

If either RunInSeparateThread or Persist evaluates to true, the e-mail has the potential to run in a
separate thread, and the slots associated with the e-mail must be persistent. For more information on
slots, see Using Slots in the Creating Scenarios chapter of the ATG Personalization Guide for Business Users.

Distributing a Mailing across Multiple Servers
The distributed e-mail feature, also called “batched e-mail,” allows you to manage a large mailing
efficiently by splitting it into multiple batches or ranges. Rendering threads running on participating
machines (or on multiple processors on a single machine) take batches from the queue. They then
generate and send the messages in essentially the same way as single threads do for a non-distributed
mailing.

Note that you can use distributed e-mail only for mailings to registered users; you cannot use it for
mailings whose recipient list includes any transient profiles. This limitation exists because distributed e-
mail works with the template e-mail system’s persistence mechanism, and transient profiles are not
persisted to the database. (You can, however, use distributed e-mail for anonymous profiles if you use the
persistentAnonymousProfiles feature. See Tracking Guest Users for more information.)

Configuring a Distributed E-mail Server

To configure a machine to participate as a distributed e-mail server:

1. Set up targeted e-mail as described earlier in this chapter.

2. Set the enabledAsTemplateMailServer property in the
atg/userprofiling/email/TemplateEmailSender component to true.

3. Make sure that the TemplateEmailSender is in the initialServices list so that it
will be started when the server is launched.

4. Check that caching is configured as shown for the following repository item
descriptors in the userProfile.xml file.

<item-descriptor name="mailing" cache-mode="locked" />

<item-descriptor name="mailBatch" cache-mode="locked" />

<item-descriptor name="mailServer" cache-mode="disabled" />

Note the cache mode is set automatically in the liveconfig configuration layer, so if
you are deploying a live site, you can simply add the liveconfig configuration layer
to the environment for all the distributed e-mail servers. See the Configuring Dynamo

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 9 2

1 0 - U s i n g T a r g e t e d E - m a i l

μ
chapter of your application server’s ATG Installation and Configuration Guide for
information about the liveconfig configuration layer.

However, if you are working in a non-production environment that does not include
the liveconfig configuration, you must set the cache mode manually as shown
above.

5. Check that lock managers are configured to prevent conflicts among threads.
Specifically, check that you have a ServerLockManager enabled on the machine that
acts as the lock server. On each machine that will render e-mail threads, make sure you
have a ClientLockManager pointing to the ServerLockManager. For more
information, see Locked Caching in the ATG Repository Guide.

6. If you are sending mailings programmatically, make sure that the template e-mail
system is set up to perform persistent mailings. See Stopped E-mail Campaigns for
more information. (If you are using scenarios to send the mailings, persistence is
handled automatically.)

Setting Up a Mailing to Use Distributed E-mail Features

If you are using a scenario to send the distributed mailing, you do not need to carry out any configuration
steps for the mailing itself. If you are sending the mailing programmatically, perform the following steps:

1. Set the batched property in the TemplateEmailInfoImpl object to true on the
machine that will initiate the mailing. Do not set this property to true if the mailing’s
recipient list includes transient profiles.

2. Optionally, you can also set the batchIfPossible property of the
TemplateEmailSender component on each machine to true. With this property
enabled, the batched property is set to true automatically if a mailing’s recipient list
contains no transient profiles.

How Distributed Mailings Work

A distributed mailing is handled as follows: a request to start sending a mailing is received by one of the
machines that you have designated as a distributed e-mail server. The machine (the send owner) creates
entries in the dps_mailing and dps_user_mailing tables as it would for a non-distributed mailing. In
addition, it separates the mailing into batches, creating entries for them in a dps_mail_batch table. Each
batch entry specifies the ID of the parent mailing, the starting index of the first recipient in the batch, and
the number of recipients in the batch. The dps_mail_batch table also includes a unique_server_id
column, which contains the ID of the server that has claimed the batch for rendering.

When another machine that you have designated as a distributed e-mail server is started, it creates or
updates a time entry in the dps_mail_server table. Then, at set intervals, the
TemplateEmailPeriodicService component on that server does the following:

1. Updates the timestamp in the dps_mail_server table.

2. Checks to make sure that the previous machine shown in the dps_mail_server list
has not timed out.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 9 3

1 0 - U s i n g T a r g e t e d E - m a i l

μ
3. If the previous machine has timed out, it clears the uniq_server_id from all of that

machine’s in-progress batch mailings, thereby returning them to the pool of
unclaimed batches.

4. Checks the dps_mail_batch table for available batch jobs. If jobs are available, it
spawns threads to execute them (unless the threads already exist). You can control the
number of threads that are spawned; for more information, see Performance Tuning
Considerations for Distributed E-mail.

The rendering threads use a lock in the ClientLockManager to avoid having two
threads claim the same batch (which would trigger a concurrent update exception).

Each thread then does the following:

1. Claims the first job in the dps_mail_batch table by entering a value in the
uniq_server_id column of that table.

2. Executes the job as it would in a non-distributed mailing, except that it updates the
count in the dps_mail_batch table instead of in the dps_mailing table. (This
behavior allows the system to avoid conflict over the dps_mailing row representing
the mailing.)

3. When the batch is complete, it merges the counts for the batch into the entry in the
dps_mailing table that represents the parent mailing. Once again, it uses a lock to
prevent concurrent updates.

4. Changes the status in the dps_mail_batch entry to “complete.”

5. Checks for another job.

Performance Tuning Considerations for Distributed E-mail

This section describes some recommendations for tuning your system to achieve and maintain optimal
performance of distributed e-mail. Note that performance varies inevitably from case to case; therefore
you should consider these values as a starting point only and experiment with the parameters listed to
determine the values that best suit your configuration.

Note also that distributed e-mail is resource intensive. In addition to configuring the parameters
described here, ensure that your database, network, and SMTP servers can handle the volume of traffic
generated by distributed e-mail. It may be necessary to scale your hardware at each level of the targeted
e-mail architecture to achieve the level of performance you require.

 VM heap size: Increasing the heap size can yield a measurable performance
improvement. Suggested initial value: 1024MB per server.

 Instance count: ATG recommends having one distributed e-mail server per available
CPU. ATG also suggests that the CPUs reside on a machine dedicated to distributed e-
mail.

 CPU binding: Leaving all processes and processors unbound may provide the highest
throughput for distributed mailings. For more information, refer to the documentation
for your application server.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 9 4

1 0 - U s i n g T a r g e t e d E - m a i l

μ
 Thread handler count on distributed e-mail server

numBatchThreads property in the
/atg/userprofiling/email/BatchEmailPeriodicService component

The numBatchThreads property sets the number of threads that render e-mail.
Suggested initial value: 20.

 E-mail batch size
emailsPerBatch property in the
/atg/userprofiling/email/TemplateEmailBatchPersister component

This property specifies the number of recipient addresses that can be claimed at one
time for e-mail rendering. Suggested initial value: 100.

 E-mail chunking for SMTP server communication
createMessagesBatchSize property in the
/atg/userprofiling/email/TemplateEmailSender component

The e-mail handlers send messages to the SMTP server in chunks, and the
createMessagesBatchSize property specifies the size of the chunk. ATG suggests
setting this value to at least 4 (each rendered e-mail batch sent to the SMTP server
contains four outbound messages).

 Distributed e-mail status updates
updateBatchCountsEveryNMessages and
updateProfileStatusesEveryNMessages properties in the
/atg/userprofiling/email/TemplateEmailSender component

These properties control the frequency of status updates to the database. Suggested
initial value: the size of the e-mail chunks that are sent to the SMTP server.

 Scenario maximum batch size
maxBatchSize property in the /atg/scenario/ScenarioManager component

For very large mailings, tuning the maxBatchSize property helps control the size of
the e-mail recipient list, which must be retrieved from the database. Suggested initial
value: 1000 (the default setting). For more information, see Minimizing the Number of
Collective Elements. Note that it is not necessary to change this setting if you are
creating and sending mailing programmatically rather than through scenarios.

Deleting Mailings
Once an e-mail campaign is complete, you may want to delete it from the database. You can delete
mailings manually through the ATG Dynamo Server Admin (see Viewing, Canceling or Resuming a
Mailing), but you can also use either of the mechanisms described in this section to delete completed
mailings automatically.

The TemplateEmailPersisterImpl class has a deleteWhenComplete property. If the value of this
property is true, the TemplateEmailPersisterImpl service deletes the mailing immediately after it
completes successfully. If the mailing does not complete successfully, or if the deleteWhenComplete
property is set to false, the mailing is not deleted. The property is set to false by default.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 9 5

1 0 - U s i n g T a r g e t e d E - m a i l

μ
In addition, the Personalization module includes an
atg.userprofiling.email.TemplateEmailDeleter class that can delete mailings at scheduled
intervals. You can use the mailingsToDelete property of the TemplateEmailDeleter service to
specify the type of mailings to delete: completed, canceled, or failed mailings, or any combination of
these.

The TemplateEmailDeleter service actually invokes the TemplateEmailPersisterImpl service to
delete mailings, but the two deletion mechanisms operate independently. You can use the
TemplateEmailDeleter service to schedule e-mail deletions even if the deleteWhenComplete
property of TemplateEmailPersisterImpl service is set to false. Or you can set
deleteWhenComplete to true (so that completed mailings are deleted immediately), and set up
TemplateEmailDeleter to periodically clean up after failed or canceled mailings.

Typically, you want to invoke TemplateEmailDeleter when the server starts up, so you should add this
service to the initialServices property of an atg.nucleus.InitialService component, such as
the /atg/dynamo/service/Initial component.

The following table summarizes the properties of TemplateEmailDeleter:

Property Function

templateEmailPersister TemplateEmailPersisterImpl service that is invoked to delete
the mailings.

Default:
/atg/userprofiling/email/TemplateEmailPersister

mailingsToDelete List of status values for mailings eligible for deletion; can be any
combination of completed, canceled, and failed.

Default: completed

thisServerOnly Indicates whether to delete only the mailings that are run from the
server that this TemplateEmailDeleter is running on.

Default: true

scheduler Scheduler service used to schedule deletion of mailings.

Default: /atg/dynamo/service/Scheduler

schedule The interval at which mailings are deleted.

Default: every 60 minutes

If your installation has multiple ATG servers connected to the same database, you must set the
thisServerOnly property to the appropriate value. If you want to use TemplateEmailDeleter on a
single server to delete mailings run from all of the servers connected to the database, set the
thisServerOnly property to false. If you want to have one instance of TemplateEmailDeleter per
server to delete only the mailings run from that server, set the thisServerOnly property to true.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 9 6

1 0 - U s i n g T a r g e t e d E - m a i l

μ
Targeted E-mail Demo

The Scenarios module includes a demonstration Targeted E-mail application for evaluation purposes. This
demo provides a working example of how you can use the Targeted E-mail API to create and send
targeted e-mail. It comes with some pre-defined example mailings, and has an HTML interface to let you
create your own. You can view the demo at http://localhost:port/QuincyFunds/EmailDemo. (The
default port numbers on JBoss, Oracle WebLogic, and IBM WebSphere are 8080, 7001, and 9080,
respectively. For more information, see the ATG Quincy Funds Demo Documentation.)

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 9 7

1 1 - P e r s o n a l i z a t i o n M o d u l e T r a c k i n g

μ
11 Personalization Module Tracking

Running a Web site on the Personalization module creates any number of events that the system can
recognize and act upon. You can use events to change component properties and to implement logging
and reporting on the performance of your sites. For example, you could trigger an event each time a user
logs in. You could use this event to log and report on the number of people logging in. You could also
have a profile attribute named lastActivity, and use the login event to reset the value of the
lastActivity property in all users’ profiles each time they log in.

The ACC’s Targeting >Tracking Sensors window provides an interface for creating actions that are
implemented in response to specific events. This chapter describes the Personalization module
components that exist in the ACC’s Tracking area. It includes the following sections:

Personalization Events

Action Handlers

Note: The tracking mechanisms described in this chapter are disabled by default, because scenarios and
scenario recorders provide a more comprehensive means for performing event tracking (see Using
Scenario Recorders). However, if you have existing ATG applications that use tracking sensors, you can
enable tracking sensors by setting the Nucleus property sendD4StyleEvents to true. For more
information, see Implementing Events in the Converting DPS Code chapter of the Dynamo 4.5-5.0 Migration
Guide.

Correspondingly, the Tracking Sensors window does not appear by default in the ACC. To display the
Targeting > Tracking Sensors window, go to the People and Organizations > Control Center Groups
window and enable the Targeting: Tracking Sensors Group UI Access Privilege for the appropriate
group of users. If you do not have administrator privileges in the ACC you may not be able to modify this
setting.

Personalization Events
To implement Personalization events you need to understand three main concepts:

 The Event Registry

The event registry component is located in Nucleus at
/atg/registry/EventHandlers. The event registry scans a directory in the config
path that is specified in its handlerPath property. It loads any handlers in this
directory that extend GenericHandler. The event registry points each handler
component to listen to its default event channel.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 9 8

1 1 - P e r s o n a l i z a t i o n M o d u l e T r a c k i n g

μ
The event registry also includes a pointer to an EventDistributor component.

 The Event Distributor

The EventDistributor component is located in Nucleus at
/atg/dynamo/service/event/Distributor. The EventDistributor recognizes a
tree of registered event sources. Each path in the event source tree is referred to as an
event channel. An event channel is a list of event sources, starting with the root
source (/). You can register an event handler to listen to any node in the event source
hierarchy. The Personalization module is configured to recognize the following event
channels:

 session

 page

 content

 content type

 Event Triggers

Event Triggers are servlets that trigger events based on your specifications. The
Personalization module comes with some event triggers that are already configured.
You can also create your own event triggers and configure them to trigger events in
several different ways. See the Event Triggers and Setting up Event Triggers sections in
this chapter for more information.

Event Triggers

The Personalization module has eight types of events that are configured and available out-of-the-box:

Event Channel Event Name Triggered when . . .

session login User logs in

session logout User logs out

session register User registers

session new session Set by SessionEventTrigger servlet

session expire session Set by SessionEventTrigger servlet when session
expiration event is received from SessionManager

page page view A page is displayed to the user; triggered by
PageViewServletTrigger pipeline servlet, or by a
SendPageEvent servlet bean

content content view A content item is displayed to the user; triggered by
targeting servlet beans

content-type content-type view A content item of a particular content type is displayed to
the user; triggered by targeting servlet beans

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

1 9 9

1 1 - P e r s o n a l i z a t i o n M o d u l e T r a c k i n g

μ

Setting Up Event Triggers

You can trigger each type of event in one or more ways.

Triggering Session Login, Logout, or Register Events

A session login, logout, or register event is triggered by default whenever a user successfully submits a
form created with the Profile Form Handler methods. See the Working with Forms and Form Handlers
chapter in the ATG Programming Guide for more information about how the Profile Form Handler handles
login, logout, and registration events.

Triggering New Session Events

The Personalization module adds a new servlet, SessionEventTrigger, to the ATG servlet pipeline. This
pipeline servlet checks each request to see if it represents the start of a new session. If so, it triggers a new
session event, which is sent to the Event Distributor’s session channel.

Triggering Page View Events

The PageViewServletTrigger is another pipeline servlet. This servlet triggers a page view event for
each page that is served.

Triggering an event for every page viewed could adversely affect performance on a large site. Instead, you
may want to trigger page view events only for particular pages. To do this you can disable the
PageViewServletTrigger by setting its broadcastPageViewedEvents property to false. Then, set
the page view event trigger in each Page, using an ATG Servlet Bean with the Nucleus path
/atg/userprofiling/SendPageEvent, as in this example:

<droplet bean="/atg/userprofiling/SendPageEvent"></droplet>

Any time a page with this tag is rendered, the SendPageEvent component triggers a page view event
and sends it to the Event Distributor’s page channel.

You can configure the SendPageEvent component with an optional parameter named pageviewed. The
value of pageviewed sets a name for the page being viewed in the path property of the
PageViewedEvent. If you do not set a value for the pageviewed parameter, then this value defaults to
the requestURI property of the request object.

By default, the PageViewServletTrigger pipeline servlet and SendPageEvent servlet bean strip out
any query arguments from the URI in the page event. If you want to retain the query arguments in the
URI, set the removeURIArguments property of /atg/userprofiling/PageEventTrigger to false.

Page view events are triggered each time the ATG server downloads a page. They are not repeatedly
triggered in the following instances unless a user deliberately decides to reload a page:

 when a user views a page that was cached by their browser,

 when the page has an HTML rather than a JHTML or JSP extension,

 if the user allows setting cookies instead of using a session ID.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 0 0

1 1 - P e r s o n a l i z a t i o n M o d u l e T r a c k i n g

μ
Triggering View Item Events

Each of the targeting servlet beans described in the Serving Targeted Content with ATG Servlet Beans
chapter of the ATG Page Developer’s Guide can trigger a JMS ViewItem event for each repository item
returned by the targeter. For example, suppose a page with a TargetingForEach servlet bean returns an
array of seven content items. When the system serves this page, seven ViewItem events are sent.

You can enable this behavior for any targeting servlet by setting the following parameters in the servlet:

<param name="fireViewItemEvent" value="true">

For more information on the JMS ViewItem event, see ViewItem Event in the part of this manual that
describes scenario features.

Note: Earlier versions of ATG products used fireContentEvent and fireContentTypeEvent servlet
bean parameters instead of the fireViewItemEvent parameter. These earlier parameters were triggered
when the targeter returned content repository items (but not items from other repositories). They sent
content view and content-type view events to the Event Distributor’s content channel and content-type
channel, respectively. Although these parameters still work as intended in any existing targeters, they
have been deprecated in favor of the more flexible fireViewItemEvent parameter, which is triggered
when an item from any repository (including, for example, the profile repository) is viewed.

If an existing targeter uses the fireContentEvent and fireContentTypeEvent parameters, and you
want to prevent the targeter from firing any events, you must set the parameters as follows in addition to
turning off the fireViewEvent parameter described above:

<param name="fireContentEvent" value="false">

<param name="fireContentTypeEvent" value="false">

TargetedContentTrigger Servlet Bean

The atg.targeting.TargetedContentTrigger servlet bean is designed to be nested in the <oparam>
tag of another targeting servlet. You can use it to enable or disable an event trigger in a particular
targeting servlet bean instance.

The TargetedContentTrigger expects the following parameters to be available from the servlet bean
that contains it:

targeter

a RepositoryTargeter serving the content

element

a RepositoryItem representing the viewed content

The TargetedContentTrigger by default fires both a content event and a content type event. If you
don’t want to fire one of the events, you can set one of the following parameters to false:

fireContentEvent—set to false to prevent the content event from firing

fireContentTypeEvent—set to false to prevent the content type event from firing

For example, if you want to set the TargetedContentTrigger servlet bean to trigger a content view
event, and not a content type event, use the following code.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 0 1

1 1 - P e r s o n a l i z a t i o n M o d u l e T r a c k i n g

μ
JSP example:

<dsp:droplet name="/atg/targeting/RepositoryLookup">

 <dsp:param bean="/atg/userprofiling/SendPageEvent" name="targeter"/>

 <dsp:param value="viewedContent" name="element"/>

 <dsp:oparam name="output">

 <dsp:droplet name="/atg/targeting/TargetedContentTrigger">

 <dsp:param value="false" name="fireContentTypeEvent"/>

 </dsp:droplet>

 </dsp:oparam>

</dsp:droplet>

JHTML example:

<droplet bean="/atg/targeting/RepositoryLookup">

 <param name="targeter" value="bean:/atg/userprofiling/SendPageEvent">

 <param name="element" value="viewedContent">

 <oparam name="output">

 <droplet bean=/atg/targeting/TargetedContentTrigger>

 <param name="fireContentTypeEvent" value="false">

 </droplet>

 </oparam>

</droplet>

For more information, see Nesting Servlet Beans in the Using ATG Servlet Beans chapter of the ATG Page
Developer’s Guide.

Note, however, that the fireContentEvent and fireContentTypeEvent parameters used by the
TargetedContentTrigger have been deprecated. Refer to the previous section, Triggering View Item
Events, for more information.

Event Action Queue

If an event is logged to a file or a database with every request, and the events are handled synchronously,
the file can become a performance bottleneck. To make the events asynchronous, you must create a
queue between the event source and the event sink. By default, Personalization module events are sent
to the event Action Queue component, located at
/atg/dynamo/service/event/handlers/ActionQueue. These events are handled either when the
queue fills up or at a time that you can schedule.

You can configure events to trigger immediately, without passing to the Action Queue, by setting the
queueActions property in the Action Handler to false.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 0 2

1 1 - P e r s o n a l i z a t i o n M o d u l e T r a c k i n g

μ
Action Handlers

One primary use for events is changing properties of components in response to an event. The easiest
way to implement this is with the Targeting > Tracking Sensors task area of the ACC. See Tracking Visitor
Behavior in the ATG Personalization Guide for Business Users. The Personalization module implements
tracking sensors through action handlers. An action handler component implements
atg.service.event.ConfigurableActionHandler. Action handler components have an actions
property that lists an array of the actions (atg.service.event.ConfigurableAction) to take in
response to an event.

Event Properties

An event’s properties depend on its event channel. These properties represent objects available to action
handler components when the event is triggered. The available properties are:

Event Channel Properties

session profile, request, session

page profile, request, path

content profile, request, content
item

content-type profile, request, content
item

ConfigurableAction Properties

Each ConfigurableAction component has the following properties that define the action:

Property Function

modifiedPropertyName The name of the property to modify. The value of this property should
specify both the component and the property to modify. The only
properties that can be modified are those of the event that was fired.
For example, to modify the member property of a Profile component,
use modifiedPropertyName=Profile.member.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 0 3

1 1 - P e r s o n a l i z a t i o n M o d u l e T r a c k i n g

μ
operator How to modify the property. The following operators are available:

APPEND edits the property value by appending a string to the existing
value
APPEND ONCE appends a value to an array only if the value doesn’t
exist already in the array
ADD changes numerical property values
SUBTRACT changes numerical property values
ASSIGN replaces the old property value with a new one

modifierPropertyName The modifier property (i.e. what to add, subtract, append, etc. to the
modified property). Use this for a dynamic modifier that is a property
of a bean. The property can be any of the properties of any of the
beans that are properties of the event. For instance, a page event has
profile, request, and path properties. You can use any of the
properties of the profile, request or path objects as modifiers. The
data type of the modifier property should match that of the modified
property.

modifierStaticValue The modifier value, i.e. what to add, subtract, append, etc to the
modified property. Use this for a static value. The Personalization
module accepts a string value for this property and converts it to the
appropriate data type of the modifiedPropertyName.

For example, suppose you have a gardening news page and a profile attribute named likesGardens.
You can set an event trigger on your gardening news page to send a page view event. Then, create an
Action Handler that refers to a ConfigurableAction component with the following properties:

modifiedPropertyName=Profile.likesGardens

operator=ASSIGN

modifierStaticValue=true

This ConfigurableAction sets the likesGardens property to true when a page view event is fired by
the gardening news page. In the alternative, if the likesGardens property were an integer type, rather
than a Boolean, you could use these properties:

modifiedPropertyName=Profile.likesGardens

operator=ADD

modifierStaticValue=1

to increment the likesGardens property in response to the event.

For another example, suppose you want to keep track of the last page a visitor saw, so that you can return
him to the same page on his next visit. You might have a lastPageView attribute in your profile
template. You can have a ConfigurableAction that uses page event to set this attribute:

modifiedPropertyName=Profile.lastPageView

operator=ASSIGN

modifierPropertyName=URLPath

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 0 4

1 1 - P e r s o n a l i z a t i o n M o d u l e T r a c k i n g

μ
If you want a profile property that tracks each page a visitor sees, you might use the APPEND ONCE
operator to keep a list of pages viewed:

modifiedPropertyName=Profile.pageViewed

operator=APPEND ONCE

modifierPropertyName=URLPath

Default Action Handlers

By default, the Personalization module comes with two action handlers configured:

 /atg/registry/EventHandlers/actions/AssignLastActivityAction, which
automatically sets a value of the lastActivity profile attribute on login

 /atg/registry/EventHandlers/actions/AssignRegistrationDateAction,
which automatically sets a value of the registrationDate profile attribute on
registration

If your profile template does not include the lastActivity and registrationDate attributes, then the
presence of these action handlers can cause errors. To disable these action handlers, set the
registerAtStartup property to false on the /atg/registry/EventHandlers/LoginHandler and
/atg/registry/EventHandlers/RegisterHandler components.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 0 5

1 2 - P e r s o n a l i z a t i o n M o d u l e L o g g i n g

μ
12 Personalization Module Logging

When you send events to the ATG logging system, you can record useful information about the operation
of your Web application. The Personalization module’s logging system handles three categories of log
entries:

 page requests (from URLs)

 user events (such as new session, login, etc)

 content viewed from Content Repositories.

Each of these three categories of log entries has its own components to generate raw log entries. Each log
entry is then passed through instances of Data Collection services, which store the entries in flat files or in
SQL database tables. To understand how the logging services manage log entries after creation, see the
Logging and Data Collection chapter of the ATG Programming Guide.

This chapter includes the following topics:

Logging Events

Logging Services

Data Listeners and Queues

Log Files

Configuring Log Operations

Logging to a Database

Generating Reports

Note: The logging mechanisms described in this chapter are disabled by default because scenario
recorders provide a more comprehensive means for performing logging tasks (see Using Scenario
Recorders). However, if you have existing ATG applications that use logging, you can enable the logging
mechanisms described in this chapter by setting the Nucleus property sendD4StyleEvents to true. For
more information, see Implementing Events in the Converting DPS Code chapter of the Dynamo 4.5-5.0
Migration Guide.

Logging Events
Logging events are handled by an Action Handler located at
/atg/registry/EventHandlers/LoggingEventHandler. This logging handler is configured to listen
for events on the page, session, and content event channels with a property like this:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 0 6

1 2 - P e r s o n a l i z a t i o n M o d u l e L o g g i n g

μ
channels=/page/,\

 /session/,\

 /content/

For each event channel, the LoggingEventHandler has a property that points to a logging service:

Event Channel Property Name Logging Service

page requestLogger /atg/reporting/RequestLogging

session userEventLogger /atg/reporting/UserEventLogging

content contentViewedLogger /atg/reporting/ContentViewedLoggi

ng

Logging Services
All logging and reporting components live in the Nucleus folder /atg/reporting/. There are three log
generators that define three different logging events. These events are distributed through standard Java
Event Listeners and are contained in seven different logging sinks. Each of the raw log entries are
uniquely identified in their category (i.e. request, user event and content viewed log entries).

The three main logging services are:

 /atg/reporting/RequestLogging

 /atg/reporting/UserEventLogging

 /atg/reporting/ContentViewedLogging

Request Logging

The RequestLogging service is an instance of atg.reporting.datacollection.RequestLogging.
This interface defines methods that generate a request log entry and send it to an assigned set of Data
Collection listeners. In addition, the ID of the log entry is returned and associated with the request by the
get/setRequestId methods. This request ID allows content viewed log events to associate what
content is extracted from a Content Management System with a specific request. A centralized event
handler listens for Page Events and then generates the request log entry. These Page Events are, by
default, fired for every HTTP request that is serviced by the ATG server. Obviously this may generate more
data than is required. You can reconfigure the RequestLogging service to generate page events only for
the pages in which you are interested. For more information, see the Personalization Module Tracking
chapter in this manual.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 0 7

1 2 - P e r s o n a l i z a t i o n M o d u l e L o g g i n g

μ
User Event Logging

The UserEventLogging service tracks the events generated by a user’s typical life cycle on a Web site.
These include:

 creating a new session

 ending a session

 logging in

 registering

 logging out of the site

The UserEventLogging service is an instance of
atg.reporting.datacollection.UserEventLogging. The UserEventLogging service provides
methods that generate different log event types when a user creates a session, logs into a site, or does
any of the other actions described above. The RequestLogging event handler also listens for Session
Events and generates a log entry associated with each type of event using the UserEventLogging
component.

Content Viewed Logging

The ContentViewedLogging service is similar to the RequestLogging service. It generates log events
created when a user accesses content pulled from an Open Content Adapter (OCA). These actions usually
occur when a targeter is configured to fire Content Viewed events for each piece of content returned from
the targeting operation. The ContentViewedLogging service requires the current request ID to generate
a content viewed log entry. It uses the RequestLogging service to extract this ID from the
HttpServletRequest object. The ContentViewedLogging service is invoked from the same event
listener as the RequestLogging service, but it looks for Content Events and generates the appropriate
log entries associated with the content request.

Log Entry IDs

All logging services use a log entry ID generator service to generate unique IDs for each logging entry
type. This component uses a database table (dps_logging_id_counter) to keep track of current log
entry IDs. These ids are generated in batches for each ATG server to minimize the amount of database
contention. The batch size can be configured through the logging service’s idBurnFactor property. The
default value is 100, but servers that are in a production environment might want to increase this value
(e.g. to 1000) depending on load.

Data Listeners and Queues
Every logging service extends the GenericDataListenerService class and has a dataListeners
property. This property defines which Data Collection services operate on the log entry objects generated
from the logging services. The DataListenerQueue component configures each logging service to send
logging events to its own unique listeners.

For example, the UserEventLogging service has this property:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 0 8

1 2 - P e r s o n a l i z a t i o n M o d u l e L o g g i n g

μ
dataListeners=userevents/QueueSink

Each QueueSink has a dataListeners property that specifies how to log events. By default, the system
sends all log entries directly to the FileSink, as specified by this property:

dataListeners=FileSink

To send all log entries to a database instead, configure the dataListeners property as follows:

dataListeners=SQLSink

See Logging to a Database for more information about changing the Personalization module’s
configuration to use SQLSinks rather than FileSinks.

Each event channel is logged separately, so each of the following sinks are available:

userevent/SQLSink

userevent/FileSink

requests/SQLSink

requests/FileSink

contentviewed/SQLSink

contentviewed/FileSink

If a site generates a very large load of log entries, you may not be able to put all log entries into the
database fast enough. This could result in the queue backing up and the potential loss of data. One way
to avoid this problem is to use a flat file as your logging queue sink. You can create a routine to import the
data from the flat file into your database at appropriate intervals for use in reporting.

The purpose of the queues in the logging system is to optimize the request handling time for the user.
Storing the logged data in the scope of a request can be a relatively time consuming operation. Each
queue has its own thread management that allows it to issue log entries to the various output sinks
outside the scope of the request thread. This allows the request to hand off the log entry very quickly and
it does not get slowed down by the data store of the logging data.

The discrete log entries are stored persistently in:

 a flat file, through an instance of
atg.service.datacollection.FormattingFileLogger or

 a relational database, through an instance of
atg.service.datacollection.SQLTableLogger.

By default, the queue forwards the log entries to a file sink. SQL sinks have been pre-configured in the
Personalization module’s installation, but have not been activated.

Once the log entry reaches the file or SQL sink, the Data Collection formatting syntax is used to determine
how to represent the log entry. Each logging service uses a specific JavaBean to represent the log entry.
The properties of the JavaBeans can be used in the formatting syntax. For more information on the
properties available for logging, see the ATG API Reference.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 0 9

1 2 - P e r s o n a l i z a t i o n M o d u l e L o g g i n g

μ
Configuring QueueSinks

You can configure the behavior of each QueueSink with the schedule and dataItemThreshold
properties. The schedule property sets a time schedule for flushing the queue and writing all the events
in the queue to a log. The dataItemThreshold sets a maximum number of events to accumulate in the
queue before writing all the events in the queue to a log. The queue is flushed when it either meets the
schedule or reaches the item threshold. Both of these properties are set centrally for all QueueSinks in the
SQLFlushSchedule and dataItemThreshold properties of the /atg/reporting/Configuration
component. You can also customize each QueueSink with its own properties.

FileSinks

The FileSink components are atg.service.datacollection.FormattingFileLogger class
components that log events to a flat file. A FileSink has properties that specify the directory and file
name prefix of the event log. For example, the requests/FileSink component has these properties:

logFileDir^=../Configuration/dataLogFileDir

logFileName=request_

Other properties of the FileSink components refer to the /atg/reporting/Configuration
component to specify the exact format of the log file and log file name and the log’s rotation schedule. By
default, the log files include timestamps in their file names, so you may see a user events log file name like
this:

userevents_02-09-2001_18-36-03-55.data

For more information about logging services, see the Logging and Data Collection chapter in the ATG
Programming Guide.

SQLSinks

The SQLSink components are atg.service.datacollection.SQLTableLogger class components
that log events to a SQL database table. A SQLSink has two properties that specify the database table
and column mapping to use when logging events to the database. For example, the requests/SQLSink
component has these properties:

tableName=dps_requests

SQLColumnMappings=id:id,timestampAsDate:timestamp,\

 sessionId:sessionid,name:name,memberAsDBValue:member

The SQLSink also has a read-only property that sets the SQL INSERT statement to use when writing log
events to the database.

Log Files
By default, the Personalization module sends all logging data into flat files to optimize performance for
large sites. Depending on the load of a Web site, you may or may not want to store all logging data
directly in a database. Typically, large sites perform nightly bulk copy operations from the flat file logs into

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 1 0

1 2 - P e r s o n a l i z a t i o n M o d u l e L o g g i n g

μ
databases if they want their data available for querying. The Personalization module’s log file names are
time-stamped down to the millisecond, to make them more or less unique on server restarts.

All aspects of the file names for the logs can be configured. This is especially useful if you want to uniquely
identify each log file per ATG server. In addition, you can set a file sink’s schedule property to
automatically flush and close files currently being used and rotate to a new log file. By default, this
schedule is set in the logFileRotationSchedule property of /atg/reporting/Configuration to
perform this operation at 1 AM every night. See the Logging and Data Collection chapter in the ATG
Programming Guide for more information about formatting and scheduling logs.

Configuring Log Operations
You may want to modify some of the configuration properties in production environments to optimize
performance. To help aid in this across all the logging services there is a global component at
/atg/reporting/Configuration, which has a set of properties that the different logging services link
to. This lets you change logging behavior for logging services globally, rather than changing the
configuration of each logging service separately. The following table describes the properties that you
can globally configure:

Property Name Function

enableLogging Flag to determine if the logging operations should be enabled. To
disable all logging for the server set this to false.

Default: true

dataItemThreshold The number of items to log at once (in a batch).

Default: 10

SQLFlushSchedule The schedule that the SQL loggers should use to periodically flush
their data to the database.

Default: every 10 minutes in 10 minutes

summarizationThreshold The number of log entries to collect before generating a
summarized log entry.

Default: 100

summarizationFlush

Schedule

The schedule that the summarizers should use to output their
current statistics.

Default: every 10 minutes in 10 minutes

logFileRotation

Schedule

Schedule to determine when the log files should be rotated. (See
the Core Dynamo Services chapter in the ATG Programming Guide.)
The default setting has the logs rotated every day at 1am.

Default: calendar * * * 1 0

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 1 1

1 2 - P e r s o n a l i z a t i o n M o d u l e L o g g i n g

μ
idBurnFactor How many log entry IDs should be reserved in one batch.

Default: 100

dataLogFileDir The directory in which to place all the log data files.

Default: logs

scheduler The centralized ATG scheduler service.

Default: /atg/dynamo/service/Scheduler

timestampLogFileName Adds a time-stamp to all the names of the log files.

Default: true

logFileExtension Uses this extension for the log file.

Default: data

timestampDateFormat Format for the time stamp, based on
java.text.SimpleDateFormat. The default value formats dates
by month-day-year_hour-minute_second-millisecond.

Default: MM-dd-yyyy_HH-mm-ss-SS

Enabling and Disabling Logging

The Personalization module is configured to log all events in the page, session, and content event
channels. This means logging every page request and every content item for every user. You may or may
not want to log every such event. You can configure logging to limit the events that are captured in the
logging system, which may improve performance at the cost of losing some information.

For example, you may to log only the page view events triggered by certain specific pages. To implement
this behavior:

1. Disable the PageViewServletTrigger, which triggers page view events for all pages
served.

2. Embed the /atg/userprofiling/SendPageEvent servlet bean in each page that
you want to trigger a page view event.

You can also disable logging of an event channel by deleting that channel from the channels property of
the /atg/registry/EventHandlers/LoggingEventHandler component.

You can disable all logging at startup by setting the enableLogging property in the
/atg/reporting/Configuration component to false.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 1 2

1 2 - P e r s o n a l i z a t i o n M o d u l e L o g g i n g

μ
Logging to a Database

The default logging configuration logs to flat files. If you want to change the default setup and have
everything logged into a database instead, there a few simple configuration changes required.

1. Make sure the appropriate database tables are defined. The DDL for these tables are
defined in the
<ATG10dir>/DPS/sql/db_components/<DB_PLATFORM>/logging.ddl file.

2. If this is the first time you are creating all the logging tables, you need to initialize the
appropriate user event and ID tables with the logging_init.sql file located in the
same directory as the logging.ddl file. If you used the file
<ATG10dir>/DPS/sql/install_dps/<DB_PLATFORM>/init_db.sql to initialize
the database, then you do not need to separately create the logging tables.

3. Set the dataListeners property of the following components to change the
destination from the file sinks to the SQL sinks:

Component Name Value

/atg/reporting/requests/QueueSink /atg/reporting/requests/SQLSink

/atg/reporting/requests/

RequestNameSummarizerQueueSink

/atg/reporting/requests/

RequestNameSummarizerSQLSink

/atg/reporting/requests/

SessionSummarizerQueueSink

/atg/reporting/requests/

SessionSummarizerSQLSink

/atg/reporting/userevents/QueueSink /atg/reporting/userevents/SQLSink

/atg/reporting/userevents/

EventTypeSummarizerQueueSink

/atg/reporting/userevents/

EventTypeSummarizerSQLSink

/atg/reporting/contentviewed/QueueSink /atg/reporting/contentviewed/SQLSi

nk

/atg/reporting/contentviewed/

ContentIdSummarizerQueueSink

/atg/reporting/contentviewed/

ContentIdSummarizerSQLSink

As an alternative, you can create a properties file for the component in the localconfig directory or
another appropriate directory in your configuration path and set the dataListeners property to the
value from the table above.

Limiting Input to the Database

The amount of data generated and processed through each non-summarized QueueSink is much greater
than the summarized QueueSinks. Therefore, in production environments, the load might preclude
sending all of the QueueSink's logging events directly to the database, but the summarized logging
events could be sent directly to the database. You can choose to configure each QueueSink individually
as needed.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 1 3

1 2 - P e r s o n a l i z a t i o n M o d u l e L o g g i n g

μ
By default, the summarizer components are disabled. You can enable the summarizer components and
disable the non-summarized loggers by setting the dataListeners property for the RequestLogging,
UserEventLogging and ContentViewedLogging components. For example, the following
configuration would only log summarized data:

Component Name dataListeners Property Value

/atg/reporting/RequestLogging requests/RequestNameSummarizer,
requests/SessionSummarizer

/atg/reporting/UserEventLogging userevents/EventTypeSummarizer

/atg/reporting/ContentViewedLogging contentviewed/ContentIdSummariz

er

You can modify the dataListeners property by editing the value of the data event set in the Events tab
of the Component Editor. You can enable the summarizers while retaining the non-summarized loggers
by adding the values in the table above to the respective dataListeners properties.

Generating Reports
You can generate reports on your Web application activity from SQL table data. This SQL table data can
be generated from one or both of the following sources:

 Data coming from and manipulated by the Personalization module

 Data generated by the Batch Reporting Service

The Batch Reporting Service takes content information out of a repository and places it into a dynamically
generated SQL table. It also generates a table of content groups, a table mapping content to content
groups, and a table mapping profiles to profile groups. These tables are necessary for any content or
profile related reports.

Batch Reporting Service

The Batch Reporting Service makes it possible to correlate information from Personalization module
applications to SQL database tables. You run the Batch Reporting Service at intervals to allow new
information to be gathered from a repository into a dynamically generated database table. This service
formats information into tables as follows:

 Collects content from repository

 Generates content groups

 Maps content to content groups

 Maps profiles to profile groups

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 1 4

1 2 - P e r s o n a l i z a t i o n M o d u l e L o g g i n g

μ
These tables are necessary for content or profile related reports to be generated with up-to-date
information. The Batch Reporting Service is a Dynamo service, so you can schedule it to run at convenient
times.

The Batch Reporting Service component is located at:

/atg/reporting/tools/BatchReportingService

The Batch Reporting Service is initially turned off. You can turn on the Batch Reporting Service by setting
the following property:

enableBatchReporting=true

Also, you need to add the Batch Reporting Service to Initial Services.

You can configure the Batch Reporting Service to do the following:

 set the schedule on which the Batch Reporting Service gathers information

 point to a repository

 point to a registry service

Note: You should not run the Batch Reporting Service on an ATG instance that serves a live site.

Setting the Schedule

The schedule property of the Batch Reporting Service determines when and how often it queries the
system for reporting information. The default setting of this property is:

schedule=calendar * . * 4 0

This calendar frequency is every morning at 4:00 am. Calendar takes frequency in the following order:

month day weekday hour (military) minute

In the above example: the first asterisk (*) means every month. The period (.) means no day specified. The
second asterisk (*) means all weekdays. The 4 means 4:00. The 0 is for no minutes.

Note: When you set the Batch Reporting Service to run periodically, keep in mind that it puts a load on
the system. You should consider running it at off-peak hours (like the middle of the night). Also, you
should not run the Batch Reporting Service on a server that manages your public Web site.

Pointing to a Repository (Content)

The repository property specifies the Nucleus address of the content repository whose activity you
want to report on. For example:

repository=/atg/adapter/html/TargetedContent

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 1 5

1 2 - P e r s o n a l i z a t i o n M o d u l e L o g g i n g

μ
Pointing to a Registry Service

The registry property specifies the Personalization module component that registers content groups
and profile groups. By default, this property is set as follows:

registry=/atg/registry/RepositoryGroups

Fine Tuning Updates

You can configure the Batch Reporting Service to fine tune updates on content, content traits, content
groups, and profile groups so that only a limited percentage of content is copied over from the repository.
This reduces load on the system and speeds up Batch Reporting Service updates.

By default, all Content information is transferred from the repository by the following property setting:

transferAllContent=true

To limit the transfer of content so that only content pieces that have been requested by site visitors are
transferred, set transferAllContent to false.

By default, all Content Traits information is transferred from the repository by the following property
setting:

transferAllContentTraits=true

To specify content traits to report on, set them as values of the contentTraitList property:

contentTraitList=

By default, all Content Groups information is transferred from the repository by the following line:

transferAllContentGroups=true

To specify the content groups to transfer, set them as values of the contentGroups property:

contentGroups=

By default, all Profile Groups information is transferred from the repository by the following line:

transferAllProfileGroups=true

To specify profile groups to transfer, set them as values of the profileGroups property:

profileGroups=

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 1 6

1 2 - P e r s o n a l i z a t i o n M o d u l e L o g g i n g

μ

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 1 7

P a r t I I : S c e n a r i o s M o d u l e P r o g r a m m i n g

μ
Part II: Scenarios Module Programming

The Scenarios module extends the content targeting capabilities of the Personalization module,
providing a set of advanced targeting features that you can use to plan and manage personalized
customer relationships. You use the Scenarios module to do the following:

 Create scenarios, which are event-driven campaigns designed to manage interactions
between site visitors and content over a long period of time.

 Create workflows, which are similar to scenarios, but can be customized to model a
wide variety of business processes.

Note that the Scenarios module is included with the ATG platform.

The Scenarios module section of this guide contains the following chapters:

Overview of the Scenarios Module
Describes how scenarios work and explains how the Scenarios module processes
them.

Configuring Scenarios
Shows the steps you need to follow to prepare the Scenarios module for use, such as
setting up global and individual servers; configure appropriate components; and
setting up effective caching. Also includes information on monitoring and debugging
scenarios.

Setting Up Security Access for Scenarios
Describes how to give and deny ACC access to scenario features.

Designing Effective Scenarios
Describes how to design scenarios for efficient site performance.

Using Scenario Events
Lists the standard set of scenario events and gives detailed information about each
one.

Using Scenario Actions
Describes the standard set of scenario actions and their associated configuration
components.

Using Slots
Explains the purpose of slots and shows how to set them up.

Using Scenario Recorders
Describes how to configure scenario recorders, which you use to create reports in the
Scenarios module.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 1 8

P a r t I I : S c e n a r i o s M o d u l e P r o g r a m m i n g

μ
Adding Custom Events, Actions, and Conditions to Scenarios
Shows how to add custom scenario elements.

Filtering Collections
Describes how to filter objects in a collection and cache the resultant content. Also
describes how to create custom collection filters.

Using Profile Markers
Explains how to set up and use markers on profiles.

Defining and Tracking Business Processes
Describes how to define a business process as a series of stages, track activity within
the business process, and report on the activity for a specified time frame.

Creating and Configuring Workflows
Describes how to use the Workflow API to create new workflow types for modeling
business processes.

Managing Workflows on Multiple Servers
Shows how to set up a process editor server, global servers, and individual servers for
workflows. Also includes a list of the workflow repository item descriptors that you
should configure to use locked caching.

Setting Up Security Access for Workflows
Describes the levels of workflow access control you can set up for both ACC users and
site users.

Configuring the ATG Expression Editor
Describes how to define or modify the grammar that makes up part of the ACC such as
the targeting rules editor or the scenario editor.

Note: You (or your business users) create scenarios, reports, and workflows in the ACC. This manual does
not cover these tasks but focuses instead on the configuration aspects of the Scenarios module. For
detailed information on creating scenarios, reports, and workflows, please refer to the ATG Personalization
Guide for Business Users.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 1 9

1 3 - O v e r v i e w o f t h e S c e n a r i o s M o d u l e

μ
13 Overview of the Scenarios Module

This chapter describes the features and implementation of the scenario server (also referred to as the
scenario engine), which is the server component responsible for processing and executing scenarios.

You create scenarios in the ACC. For detailed information, refer to Creating Scenarios in the ATG
Personalization Guide for Business Users. Important: If you want to edit scenarios through the ACC on the
management server (the server where ATG Content Administration and the ATG Business Control Center
are installed), you must run the ATG platform with the Preview layer. For more information, see the ATG
Business Control Center Administration and Development Guide.

You cannot create scenarios through the ATG Business Control Center.

Scenario Basics
Consider the following simple example of a scenario:

This scenario gives a one-time promotion to newly registered users of a bike store. Young people will get
25% off BMX bikes if they visit any bike-related pages in the store; female users will get 20% off their order
if they view any clothing items.

One can think of a scenario as a channel or pipe through which subjects (users) flow. At the start of the
scenario, the set of all users (whether currently active or not) are in the pipe. As subjects move down the
channel, they encounter scenario elements that affect their progress in various ways. Events (such as
“Registers”) prevent the subject from proceeding further until the event occurs. Condition elements (such
as “in group Young”) narrow the set of subjects passing through the pipe; only those subjects who satisfy
the condition can proceed further. Action elements (such as “Give Promotion”) carry out some action
(usually relative to the subject). Finally, the pipe may fork, in which case subjects flow down multiple
branches in the fork, which diverge and then rejoin. There are two kinds of forks: regular (the subject
leaves the fork as soon as it arrives at the join point via one or more paths), and synchronized (the subject
leaves the fork only when all paths in the fork arrive at the join point).

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 2 0

1 3 - O v e r v i e w o f t h e S c e n a r i o s M o d u l e

μ
In the example, if the user doesn’t qualify as either young or female, he does not proceed past the
“Registers” element in the scenario. A young male proceeds via the upper branch in the fork, where the
scenario must wait for him to visit an appropriate page before giving him the promotion; likewise, an old
female proceeds via the lower branch. A user who is both young and female proceeds via both branches;
the promotion she gets depends on which of the two events (“Visits a page” or “Views an item”) happens
first. Because the fork is regular, once she does receive one of the promotions, she will exit the fork and
exit the scenario.

Scenario Processing
The scenario server executes scenarios as follows. Note first of all that scenarios are event driven. Once an
event occurs, users can quickly proceed through all the consecutive conditions and actions until they
either encounter another event, or exit the scenario. Thus, the scenario server itself is event driven; events
in the ATG system are JMS messages, and the scenario server acts as a MessageSink. You can configure it
(through Patch Bay) to listen to various events (by default, it receives all the standard ATG events). As each
event arrives, the scenario server determines, for each scenario, which user or users are affected, and
advances those individuals through the scenario until the next wait is encountered. It then waits for the
next event to arrive, and so on.

In order to keep track of where in the scenario the users are, the scenario server must maintain some state
for every individual going through the scenario—most notably, it must maintain the individual’s location
in the scenario. (Another piece of state is a user-specific map of scenario variables, which can be set via
the “Set variable” scenario action; for more information, refer to the ATG Personalization Guide for Business
Users.)

Maintaining the per-user scenario state is complicated by forking. The example above shows that,
because of forking, a user can be in two different places in the scenario at once, waiting for two different
events to occur. A much more complicated scenario might have many forks, and forks inside forks, so that
keeping track of all the states associated with just a single user could become quite problematic. To
simplify the matter, the scenario server does not actually attempt to execute scenarios the way they are
defined. Instead, it transforms each scenario into an equivalent scenario state machine (SSM). This
behavior requires an additional processing step when the scenario is first created and started, but it
provides some important advantages.

The main virtue of the scenario state machine is that a given individual is always in exactly one SSM state,
and progresses through a strictly linear sequence of states with no forking. In addition, the state machine
is constructed in a way that provides various useful guarantees concerning its structure.

The state machine for our promotion example can be described as follows. An SSM has two kinds of
states: waiting (shown in yellow) and intermediate (green). Waiting states are where the scenario
execution must stop in order to wait for the next event (or several events, as is the case with state 4
below).

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 2 1

1 3 - O v e r v i e w o f t h e S c e n a r i o s M o d u l e

μ

Intermediate states are used to channel users to different paths through the state machine. For instance,
users who arrive at state 2 in the example proceed to either state 3 or state 8, depending on whether they
are young or old and female (old males don’t proceed beyond state 2, since there is no transition for them
to take). Note that the conditions (or filters) leading out of the intermediate state are always mutually
exclusive; thus, any individual user follows a single linear path through the SSM. Scenario actions take
place as part of the SSM transitions; for example, a user is given a bike promotion as part of the transition
from state 4 to state 5, and so on.

Scenario Definition Files

When a scenario is created or modified in the ACC, its definition is saved in the scenario registry (located
at the Nucleus path /atg/registry/data/scenarios) as a file with the extension .sdl. Scenarios are
defined using the XML-based Process Definition Language. The Process Definition Language DTD
(pdl.dtd) describes the formal syntax of the language. (The PDL DTD is located in
<ATG10dir>\DSS\lib\classes.jar. For an example of a scenario definition file, look at one of the
.sdl files in your scenario registry.) The scenario server reads the .sdl files from the registry and parses
them into scenario objects.

After the scenario is parsed, each segment of the scenario is converted into an SSM.

Scenario Execution
This section describes how the scenario server handles the progression of site visitors through a scenario.

Individual Scenario Instances

As noted earlier, the scenario server has to maintain some amount of state information for every
individual going through each scenario segment. This state is stored in the profile repository. Specifically,
the user item descriptor in the /atg/userprofiling/ProfileAdapterRepository component (and
the associated /atg/userprofiling/userProfile.xml template file) has a scenarioInstances
property, which contains a set of individual scenario instances (repository items of type
individualScenario) currently associated with that user.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 2 2

1 3 - O v e r v i e w o f t h e S c e n a r i o s M o d u l e

μ
Each individual scenario instance maintains the state associated with a particular scenario segment
through which the user is progressing. Individual scenario instances have the following properties:

 id: the repository ID of this individual scenario instance.

 processName: the name of the scenario.

 modificationTime: the time the scenario was last modified (see the next section).

 segmentName: the name of the scenario segment.

 creatorId: the repository ID of the scenario instance which created this instance (see
below).

 state: the ID of the SSM state this scenario instance is currently in.

 subject: the pointer back to the “user” repository item.

 contextStrings, contextBooleans, contextLongs, contextDoubles,
contextDates: each of these properties is a map of scenario variables of the specified
type; for example, contextBooleans is a map of boolean context variables which
have been set for this scenario instance.

Collective Scenario Instances

In addition to per-user state, a scenario segment has some global, or collective, states—that is, states
associated with the segment as a whole. Consider the following example:

Here, the scenario waits for a particular date and time and then sends an e-mail invitation to all the site’s
female users. The state machine for this scenario looks like this:

Notice that, unlike in the promotion example, there are no user-specific events here. Up until the
transition to state 3, where the scenario sends e-mail to all women, there is no mention of users at all.
Thus, the scenario server cannot use individual scenario instances to maintain the scenario state while
scenario execution moves through states 0, 1, and 2. Instead, it uses a collective scenario instance, which
is simply another repository item, of type collectiveScenario. The properties of collective instances
are a subset of the individual instance properties:

 id: the repository ID of this collective scenario instance

 processName: the name of the scenario

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 2 3

1 3 - O v e r v i e w o f t h e S c e n a r i o s M o d u l e

μ
 modificationTime: the time the scenario was last modified (see the next section)

 segmentName: the name of the scenario segment

 creatorId: the repository ID of the scenario instance which created this instance (see
below)

 state: the ID of the SSM state this scenario instance is currently in

When a scenario segment is first started, a single collective scenario instance, called the root instance, is
always created and placed in the initial SSM state (in the example, state 0). After 1 second goes by, the
root instance moves on to the next state, and so on, until the entire scenario state can no longer be
represented by the collective instance, and individual instances must be created to hold per-user state. In
the promotion example, the collective instance only proceeds as far as state 1 - after a user registers, an
individual instance is created for him, and is subsequently responsible for maintaining that user’s scenario
state. In the invitation example, however, the root instance proceeds as far as state 2; when taking the
transition to state 3, it is replaced with individual instances, one for each of the female users.

In addition, collective scenario instances allow for scenarios which apply to anonymous, as well as
registered, users.

Note that, because of database query overhead, individual scenario instances are generally more efficient
than collective ones in terms of site performance. For more information, refer to Designing Effective
Scenarios.

Scenario Initialization

When a scenario is created in the ACC, the corresponding SDL file is created in the scenario registry, and
the updateProcess method is called on the /atg/scenario/ScenarioManager component. At this
point, the scenario is registered with the Scenario Manager, and (assuming the scenario has been
enabled) it starts running. Scenario registration basically amounts to transforming each scenario segment
into an SSM, adding the resultant scenario/SSM information to the Scenario Manager, and updating the
Scenario Manager’s internal message map to include the new event information.

The message map is used by the Scenario Manager to efficiently determine the following:

 Which scenario segments are waiting for a particular event type

 Where in the segment the scenario instance must be in order to be affected by the
event

 Whether the instance must be individual or collective

 What event filter must be satisfied for the event to trigger the transition to the next
SSM state

For example, suppose that our two scenario examples (promotion and invitation) are the only two
scenarios registered with the server. When a “Registers” event is received by the Scenario Manager, the
message map can be used to determine that the only segment waiting for it is the Promotion segment;
the only instances affected by the event are the collective scenario instances in state 1. On the other hand,
if a “Visits page” event comes in, the message map will reveal that only individual scenario instances in
states 4 and 6 of the Promotion SSM are affected by the event; in addition, the event must satisfy the filter
“in folder ‘/products/bikes/’” for the transition to be triggered.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 2 4

1 3 - O v e r v i e w o f t h e S c e n a r i o s M o d u l e

μ
Scenario Event Handling

The Scenarios module distinguishes between the following event types:

 Individual event: an event specific to an individual user, such as “Visits page” or “Views
item”

 Global event: an event that applies to all users, such as “Dynamo starts” or “Items
requested by slot”

 Individual timer: an event that completes a time wait for an individual scenario
instance

 Collective timer: an event that completes a time wait for a collective scenario instance

 Batch timer: an event that completes a time wait for a batch of individual scenario
instances

The ScenarioManager component is an instance of class atg.scenario.ScenarioManagerService,
which implements the atg.dms.patchbay.MessageSink interface. The Scenario Manager is configured
via Patch Bay to receive all standard JMS messages sent out during ATG product operation. Each of the
event types listed above comes in on a different input port.

For more information on default scenario events, refer to Using Scenario Events.

For information on how to add your own event elements, refer to Adding Custom Events, Actions, and
Conditions to Scenarios.

Workflows
In addition to scenarios, the Scenarios module includes another mechanism for modeling processes,
called a workflow. Workflows are similar to scenarios, but can be applied to a wider range of processes.
The workflow API enables you to create new custom types of workflows that are tailored to specific
processes, and which include their own unique actions and tasks. When you edit a workflow in the ACC,
the editor is automatically configured to reflect the specific type of workflow you are editing.

Many different types of business processes can be exposed as workflows, with examples ranging from
commerce order fulfillment to management of customer support calls. The tools for creating new
workflow types are included in the Scenarios module, although the module is not preconfigured with any
workflow types. ATG Content Administration provides a default workflow that manages the lifecycle of a
publishing project. It might be helpful to examine this workflows as an example.

For more information about workflows, see Creating and Configuring Workflows.

Internal Scenario Manager
You can create and maintain distinct sets of scenarios for internal users, such as customer service
representatives, and external users (customers or other external site visitors). Doing so requires the

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 2 5

1 3 - O v e r v i e w o f t h e S c e n a r i o s M o d u l e

μ
configuration of an internal scenario manager that runs against the internal user profile repository. The
internal scenario manager is started by the DSS.InternalUsers module, which is provided with the ATG
platform and some ATG applications.

Setting up the internal scenario manager is very similar to setting up the scenario manager that is started
by the standard DSS module. Unless you specify otherwise, the first server that is started is assumed to be
the process editor server. See Configuring the Scenario Manager for more information.

The component that represents the internal scenario manager is
/atg/scenario/InternalScenarioManager, and the subject for its scenarios is a User item from the
internal profile repository The internal scenario manager configuration file is
internalScenarioManager.xml, which is located by default in
<ATG10dir>\DSS\InternalUsers\config.jar.

Scenarios that you create while the internal scenario manager is running are stored in the following
directory: <ATG10dir>\home\localconfig\atg\registry\data\internalscenarios.

Note that the scenario manager and the internal scenario manager listen for message events on different
ports. This behavior ensures that events that reference the external user profile repository are sent to the
external scenario manager, and events that reference the internal profile repository are sent to the
internal scenario manager.

Note also that the ACC is configured by default to point to the external user profile repository. If you want
to create scenarios that run against internal user profiles, you must start your application with the
DSS.InternalUsers.ACC module. This module requires the DSS.InternalUsers module.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 2 6

1 3 - O v e r v i e w o f t h e S c e n a r i o s M o d u l e

μ

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 2 7

1 4 - C o n f i g u r i n g S c e n a r i o s

μ
14 Configuring Scenarios

This chapter describes the steps you must perform to configure scenarios for use in an ATG application.
The steps are as follows:

1. Configure the Scenario Manager, the Nucleus component that controls many aspects
of scenario behavior in the Scenarios module. As well as defining settings in the
Scenario Manager itself, this task includes configuring related components, and for
multiple server environments it also includes determining which server will acts as the
process editor server.

2. Configure SQL repository caching for the Scenarios module. This task involves setting
up Lock Managers for use in the Scenarios module and setting the cache mode for
appropriate item descriptors in the userProfile.xml file.

Both these steps are required for the Scenarios module to work correctly.

In addition, if you want your ATG application to send e-mail messages to specific recipients, you must set
up scenario E-mail Sender components.

This chapter contains the following sections:

Configuring the Scenario Manager

Configuring SQL Repository Caching for Scenarios

Setting Up Scenario E-mail Sender Components

In addition, this chapter contains the section Monitoring and Debugging Scenarios, which shows how to
log and view scenario-related activities.

Configuring the Scenario Manager
Scenarios are managed and run by the Scenario Manager service. The following sections describe how the
Scenario Manager works and explain how to configure it.

Scenario Manager Configuration File

The configuration file scenarioManager.xml is the place where information common to all scenario
servers is specified. This file uses the Process Manager DTD, located in
<ATG10dir>\DSS\lib\classes.jar. The scenarioManager.xml file defines the configuration of the
process editor server, the global server, and individual servers as described below. In addition, it contains

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 2 8

1 4 - C o n f i g u r i n g S c e n a r i o s

μ
the specification for the event, action, and condition registries, including custom elements. The registries
are described in more detail in Adding Custom Events, Actions, and Conditions to Scenarios.

Global, Individual, and Process Editor Servers

A cluster of ATG servers must always contain the following:

 exactly one process editor server

 zero or more global scenario servers

 zero or more individual scenario servers

Each individual server handles all the individual, or visitor-specific, events (such as “Visits Page”) for the
profiles whose sessions are on that server. For example, suppose you have a simple scenario that records
all the page visit events to a dataset. When someone visits a page, the corresponding individual server
receives the page visit event and performs the scenario action that records the data.

Global scenario servers, in addition to handling the individual events for any of their own sessions, handle
global events (such as “Dynamo Starts”), and timer events (such as “Wait 3 hours”). In general, they handle
any operations that are not visitor-specific. For example, if you have a scenario that sends e-mail to all
your visitors, the scenario action to send the e-mail is executed on a global server.

The process editor server is a specific instance of a global server. In addition to handling global events and
the individual events for any of its own sessions, it is also responsible for starting and stopping scenarios.
You can create and edit scenarios only in the ACC that is connected to the process editor server.

Important Note About Creating and Viewing Scenarios in the ACC

As stated above, you can create and edit scenarios only in the ACC that is connected to the process editor
server. However, your scenarios are not automatically visible in an ACC connected to another server
(individual or global). To make them visible, make sure that your standard deployment procedure for
scenarios copies your entire configuration (including all scenario XML files) across all scenario servers in
your system. If you follow this procedure, scenarios created on the process editor server do appear with
read-only access in an ACC connected to another server.

Using the Same Instance of ATG 10.0.2 for More than One Cluster of Servers

You can use the same instance of ATG 10.0.2 for a single cluster of scenario servers, but do not use the
same instance for more than one cluster. In other words, you can have a cluster of scenario servers
running on one or more machines that all use the same installation of ATG 10.0.2, but additional clusters,
including those that you use for production or staging, should be set up to run on separate installations of
ATG 10.0.2. This configuration is required because any changes you make to a scenario on a server in one
cluster are written to the top-level localconfig directory for that installation. Those changes are
propagated to all other servers using that installation, including servers in other clusters. This behavior is
desirable among servers in a single cluster, but it is undesirable in other situations—for example, between
servers in your development and production environments. This caveat also applies to servers that you
use to run workflows.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 2 9

1 4 - C o n f i g u r i n g S c e n a r i o s

μ
Configuring the Process Editor Server

The default Scenario Manager configuration does not specify a process editor server. The first server that
is started is assumed to be the process editor server. This behavior works well in a single-server
environment, where one ATG server is responsible for handling all scenario events and actions, both
individual and global.

Once you move to a multiple ATG server configuration, however, it is highly recommended that you
designate one of your servers as the process editor server. Again, if none is specified, the first server that is
started is assumed to be the process editor server. However, designating a server in advance is preferable
because it gives you greater control over your ATG environment.

The identity of the process editor server is specified in the Scenario Manager’s XML configuration file,
which is located in the /atg/scenario/scenarioManager.xml file in
<ATG10dir>/DSS/config/config.jar. (Note that this file uses the Process Manager DTD located in
<ATG10dir>\DSS\lib\classes.jar.) To override the default server configuration, create a file with the
same name and the same path in top-level localconfig directory for your cluster of servers. The
following shows an example of the file:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<process-manager-configuration>

 <process-editor-server>

 <server-name>dyn1:8850</server-name>

 </process-editor-server>

</process-manager-configuration>

Specify the name of the ATG process editor server in the server-name tag. Use the name returned by the
/atg/dynamo/service/ServerName component’s serverName() method (typically, the name is of the
form hostname:drp-port). For more information about the atg.service.ServerName class, see
Referring to Dynamo Servers in the Nucleus: Using Nucleus section of the ATG Programming Guide.

Note the following important points about specifying the DRP port number:

 The process editor server must the use the DRP port so that it can be accessed by the
ServerName component. You do not have to enable DRP (Dynamo Request Protocol)
itself; in this case, the Scenarios module just uses it to create a ServerName for the
process editor server.

 For situations where you have more than one ATG product instance running on the
same server, you must specify a unique DRP port for each instance to guarantee that
each hostname:drp-port combination will be unique. This step is required even if
the servers do not use DRP.

 Non-DAS application servers, such as Oracle WebLogic, do not use DRP. However,
even if you are running the Scenarios module on a non-DAS application server, you
must specify a DRP port so that the Scenarios module can create a unique name for
the process editor server. For more information, refer to the ATG Installation and
Configuration Guide.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 3 0

1 4 - C o n f i g u r i n g S c e n a r i o s

μ
To verify that your process editor server has been configured correctly, start both the process editor
server and all other global and individual scenario servers (see below). As each server starts up, an
appropriate message appears in the ATG console window; for example, “Initializing process editor server
dyn1:8850,” “Initializing global scenario server dyn2:8850,” or “Initializing individual scenario server
dyn3:8850.” Make sure that there is exactly one process editor server running and that all other scenario
servers are designated as global or individual.

See The Scenario Registry and Scenario Definition Files for information on changing the process editor
server from one server to another.

Configuring Global Scenario Servers

In a multiple ATG server configuration, it is recommended that you have at least one global server in
addition to the process editor server (see above).

You define the identity of the global server in the scenarioManager.xml file that you created in your
localconfig directory and used to configure the process editor server (see above). The following shows
an example of the file with the addition of the <global-server> tag. Here, two servers, dyn2:8850 and
dyn8:8850, have been defined as global.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE process-manager-configuration

 PUBLIC "-//Art Technology Group, Inc.//DTD Process Manager//EN"

 'http://www.atg.com/dtds/processmanager/processmanager_1.0.dtd'>

<process-manager-configuration>

 <process-editor-server>

 <server-name>dyn1:8850</server-name>

 </process-editor-server>

 <global-server>

 <server-name>dyn2:8850</server-name>

 </global-server>

 <global-server>

 <server-name>dyn8:8850</server-name>

 </global-server>

</process-manager-configuration>

Specify the name of the global ATG server in the server-name element within the global-server tag.
Use the name returned by the /atg/dynamo/service/ServerName component’s serverName()
method (typically, the name is of the form hostname:drp-port). For more information about the
atg.service.ServerName class, see Referring to Dynamo Servers in the Using Nucleus section of the ATG
Programming Guide.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 3 1

1 4 - C o n f i g u r i n g S c e n a r i o s

μ
You can define as many global servers as you require.

Note: Because running global scenario servers places an additional burden on your ATG server, consider
configuring global servers to not accept any user sessions. Do this by setting the drpEnabled property to
false in the server’s /atg/dynamo/Configuration component. Specifically, this may be a good idea if
you anticipate creating a lot of scenarios that will run primarily on global servers – for example, scenarios
that send e-mail to a large number of visitors at a predetermined time. For more information on session
management, refer to the ATG Installation and Configuration Guide.

Configuring Individual Scenario Servers

No additional steps are necessary. By default, all servers handle individual scenario events and actions;
therefore, any server that is not specified as either the process editor server or a global server is
automatically an individual server.

The Scenario Registry and Scenario Definition Files

When you create scenarios in the ACC, the system writes the scenarios out to definition files in the
scenario registry, which exists on the process editor server. The definition files are in XML format and have
the extension .sdl. The process editor server reads these scenario definitions at startup and whenever
you modify any scenario through the ACC.

The scenario registry is located at /atg/registry/data/scenarios in your config path. (It may be
located across several config path layers depending on how you package your applications; for example,
the scenarios that come with the Quincy Funds demo are located in the Quincy Funds config layer.) By
default, however, any scenarios that you create or edit in the ACC are saved as SDL files in the
localconfig layer. If you want the ACC to write SDL files to a layer other than localconfig, you must
manually edit the defaultForUpdates property in the /CONFIG.properties files in each config layer.
Set the property to false in the localconfig layer and to true in the layer where you want the files to
be written.

Under normal circumstances, you do not have to edit the .sdl files in any way. However, if you change
your process editor server from one ATG server to another, you must copy the entire scenario registry
from the old process editor server to the new one. (If you do not perform this step, the new process editor
server will not have access to the scenario definition files. Consequently it will be unable to recognize any
existing scenarios and will disable any that may be currently running.)

Configuring the ScenarioManager Component

The main Nucleus component responsible for scenario operations on each scenario server is
/atg/scenario/ScenarioManager. The following table lists the properties of the ScenarioManager
component:

Property Description

$class Class name

Default: atg.scenario.ScenarioManagerService

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 3 2

1 4 - C o n f i g u r i n g S c e n a r i o s

μ
configurationFile The location of the scenario configuration XML file

Default: /atg/scenario/scenarioManager.xml

editOnlyMode Specifies that this scenario server should not run any scenarios
or process any events. This property is ignored if it is set on the
ScenarioManager component of a process editor server.

To disable the component entirely, see Disabling the Scenario
Manager Component.

enabled Determines whether the component will start along with a
server. See Disabling the Scenario Manager Component.

globalConfigurationFile The location of the Dynamo Messaging System file that contains
message-source and message-sink definitions for global
events.

Default: /atg/dynamo/messaging/
dynamoMessagingSystemDSSGlobal.xml

globalServer Read-only flag that indicates whether this scenario server is a
global server (see Global, Individual, and Process Editor Servers).

Default: false. Set to true at runtime for global servers and for
the process editor server.

loggingDebug Writes debug information about scenarios to the debug.log
file and to the ATG console window.

Default: false

For more information on this property and the other debugging
properties in this component, see Monitoring and Debugging
Scenarios.

loudMissingElementMessages Displays an informative message rather than a long series of
errors in cases where a server attempts to run scenario created
by another server. See Monitoring and Debugging Scenarios for
more information.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 3 3

1 4 - C o n f i g u r i n g S c e n a r i o s

μ
maxBatchSize The maximum batch size to use when performing batch

operations on scenario instances. Batch operations come into
play when you perform scenario actions on a large number of
profiles (for example, sending an e-mail message to a large
group of users). It may not be possible to perform the entire
operation in a single transaction because databases have a fixed
size for their transaction logs. Thus, the action is executed in
batches over multiple transactions. The batch size needs to be
large enough to minimize the overhead of independent
queries, but small enough so that you do not fill up the
transaction log when processing changes for each of the items
in the batch. See also Minimizing the Number of Collective
Elements.

Default: 1000

maxMessageDeliveryAttempts The maximum number of times the system attempts to deliver
the same message if an error occurs during delivery. Set to -1 to
have the system try an unlimited number of times.

Default: 1

messageRegistryComponentNa

me

The Nucleus path of the MessagingManager component that is
used to obtain information about DMS messages

Default: /atg/dynamo/messaging/MessagingManager

subjectRepository The Nucleus path of the profile repository where profile and
scenario information is stored

Default: /atg/userprofiling/ProfileAdapterRepository

processEditorServer Read-only flag that indicates whether this server is the process
editor server (see Global, Individual, and Process Editor Servers).

Default: false. Set to true at runtime for the process editor
server.

processRegistry The Nucleus path of the registry that stores scenario definitions

Default: /atg/registry/Scenarios

PDLParser The Nucleus path of the SDLParser component, which
interprets the scenario definitions

Default: /atg/scenario/SDLParser

serverName The Nucleus path of the ServerName component that provides
this ATG server’s name

Default: /atg/dynamo/service/ServerName

transactionManager The Nucleus path of the TransactionManager component

Default: /atg/dynamo/transaction/TransactionManager

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 3 4

1 4 - C o n f i g u r i n g S c e n a r i o s

μ
useEventRegistry Determines whether the Scenarios module gets event

information from the scenario event registry (in the
scenarioManager.xml file) or the Dynamo Messaging System
registry. If true, the scenario event registry is used. This property
exists to allow compatibility with versions of ATG products
before 6.0.0. For more information, refer to Using Scenario
Events.

Default: False

In addition, the following properties of ScenarioManager specify the item descriptor and property
names that are used to store scenario-related information in the profile repository. These must
correspond to the names specified in the repository template. Do not change them unless you make the
corresponding changes in the repository template as well.

Property Description

subjectIdProperty Name of the profile repository property that contains the item’s repository
ID.

Default: id

subjectProcessInst

ancesProperty

Name of the profile repository item’s property that is used to store the set
of scenario instances associated with the profile.

Default: scenarioInstances

subjectType Name of the repository item descriptor that describes a user profile.

Default: user

Configuring the SDLParser Component

As well as the ScenarioManager component, configure the component /atg/scenario/SDLParser,
which the system uses to interpret the scenario definition files produced when you create scenarios in the
ACC.

This component, of class atg.scenario.definition.SDLParser, has the following key property:

Property Description

XMLToolsFactory The Nucleus path of the XMLToolsFactory component used to parse the
SDL files.

Default: /atg/dynamo/service/xml/XMLToolsFactory

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 3 5

1 4 - C o n f i g u r i n g S c e n a r i o s

μ
Configuring SQL Repository Caching for Scenarios

The default cache mode for all scenario item descriptors is simple. This setting is ideal for a single ATG
server environment, but if your installation is running more than one ATG server, you must set the SQL
repository cache mode to locked for the following item descriptors:

 individualScenario

 collectiveScenario

 scenarioInfo

 scenarioTemplateInfo

 scenarioMigrationInfo

 individualScenarioTransition

 collectiveScenarioTransition

The cache mode is set to locked automatically in the Scenario module’s liveconfig configuration layer,
so if you are deploying to a live site, you can simply add the liveconfig configuration layer to the
environment for all your ATG servers to guarantee that the cache mode will be set correctly for these item
descriptors. See the Configuring for Production chapter in the ATG Installation and Configuration Guide for
information about the liveconfig configuration layer.

However, if you are working in a non-production, multiple-server environment that does not include the
liveconfig configuration, you must set the cache mode manually as described below. If you do not set
the cache mode to locked for these item descriptors, several scenario servers could attempt to process
the same event, and serious errors will occur.

To complete this step manually, make the following changes to
/atg/userprofiling/userProfile.xml:

--- localconfig/atg/userprofiling/userProfile.xml:

<gsa-template>

 <item-descriptor name="individualScenario" cache-mode="locked"/>

 <item-descriptor name="collectiveScenario" cache-mode="locked"/>

 <item-descriptor name="scenarioInfo" cache-mode="locked"/>

 <item-descriptor name="scenarioTemplateInfo" cache-mode="locked"/>

 <item-descriptor name="scenarioMigrationInfo" cache-mode="locked"/>

 <item-descriptor name="individualScenarioTransition"

 cache-mode="locked"/>

 <item-descriptor name="collectiveScenarioTransition"

 cache-mode="locked"/>

</gsa-template>

In addition, in order for locked mode caching to work in a multiple server environment, you must
configure the following Lock Manager components, as described in the Enabling the Repository Cache Lock
Managers section of the ATG Installation and Configuration Guide.

 /atg/dynamo/service/ServerLockManager

 /atg/dynamo/service/ClientLockManager

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 3 6

1 4 - C o n f i g u r i n g S c e n a r i o s

μ
Be sure to set the useLockServer property of each ClientLockManager to true. (This property is set to
true automatically in the liveconfig layer, but if your environment does not include liveconfig, you
must set the property manually.)

In addition, verify that the lockManager property in the
atg/userprofiling/ProfileAdapterRepository component is set as follows:

lockManager=atg/dynamo/service/ClientLockManager

Scenario Caching with Session Federation

If your implementation uses session federation (see Session Federation Overview in the ATG Installation and
Configuration Guide) consider the following situation: a site visitor triggers a scenario by logging into
server A and then follows a link to server B. If session federation is enabled, the person will have a profile
object on both servers. If another scenario event (for example, a timer event) occurs, both servers will try
to advance the visitor to the next state in a scenario state machine. This behavior could cause conflict or
unexpected results.

If you use session federation on servers that process scenarios, you can prevent this type of conflict by
setting the SQL repository cache mode to locked for all scenario tables. See the previous section,
Configuring SQL Repository Caching for the Scenarios Module, for more information.

Setting Up Scenario E-mail Sender Components
As part of creating scenarios in the ACC, you can include Send Email elements that tell the system to send
e-mail messages to specific recipients (see SendEmail Action). To send these messages, the Scenarios
module uses two TemplateEmailSender components, which you can configure as part of setting up
your ATG site:

 The IndividualEmailSender component handles messages that you send to
individual site visitors (for example, a message that you send in response to a
customer placing an order). This component is located by default at
/atg/scenario/IndividualEmailSender.

 The CollectiveEmailSender component handles messages that you send to
groups of visitors (for example, a message that you send to a group of qualified
recipients inviting them to register for a seminar). By default, this component is a
GenericReference whose componentPath property is set to
/atg/userprofiling/email/TemplateEmailSender. You can, however, configure
it as a separate e-mail sender component if required.

This component is located by default at /atg/scenario/CollectiveEmailSender.

For more information, see the targeted e-mail chapters of this guide.

Setting Up TemplateEmailInfo Objects for Scenarios

In addition to configuring the two components described above, you must also create an instance of the
class atg.userprofiling.email.TemplateEmailInfoImpl for every e-mail that you send through a

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 3 7

1 4 - C o n f i g u r i n g S c e n a r i o s

μ
scenario. The Scenarios module contains a default instance of this class,
/atg/scenario/DefaultTemplateEmailInfo, that you can use as a model. Note that, when you
specify the URL of the e-mail template to use for the mailing, you do not need to specify the context root;
the SendEmail scenario action (see SendEmail Action) is designed to ensure that the template URL is
correctly formed.

For more information on the TemplateEmailInfoImpl class, refer to Creating Targeted E-mail in the
Personalization section of this guide.

Configuring BatchEmailListener and EmailListenerQueue Components

Note also that, when you set up your production site, it is recommended that you also configure and use
ATG’s BatchEmailListener and EmailListenerQueue components, which provide optimal
performance for e-mail handling. These components are described in the Email Sender chapter of the ATG
Programming Guide.

Monitoring and Debugging Scenarios
To help you monitor scenarios and debug them if necessary, enable the loggingDebug property in the
/atg/scenario/ScenarioManager component (set to false by default). If you set it to true, the
system logs information such as the events each scenario is capturing, the condition elements that are
being satisfied, and the action elements that are triggered. The information is stored in the debug.log
file and it also appears in the ATG console window.

Note that you might not want to keep this setting enabled for long periods of time, especially for live
sites, because tracking information on each scenario can affect performance.

The ScenarioManager component contains additional properties you can use for different levels of
scenario debugging as described below:

 debugProcessNames

Allows you to debug specific scenarios rather than all of them. Set this property to the
folder path of the scenario or scenarios that you want to debug, minus the part of the
registry where all scenarios are located. You can specify individual scenarios or all
scenarios in a given folder. For example:

debugProcessNames=/DSSDemo/InvestorRelations/MyScenario

logs information for the specified scenario. Note that the path comes from the location
of this scenario’s SDL file under the /atg/registry/data/scenarios directory. You
can determine the path by looking for the scenario in the ACC using the By Folders
view.

debugProcessNames=/scenario1, /scenario2

logs information only for scenarios called scenario1.sdl and scenario2.sdl

debugProcessNames=/recorders/*,/scenario1

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 3 8

1 4 - C o n f i g u r i n g S c e n a r i o s

μ
logs information for all scenarios in folder /recorders/, plus /scenario1.sdl.

The default setting is *, which logs information on all scenarios. Note that this
property is available only if both loggingDebug and loggingDebugProcesses are
enabled.

 loggingDebugMessages

Includes in the debug log file information about the Java Message Service (JMS)
messages sent and received by the Scenario Manager.

The default setting is true.

 loggingDebugProcesses

Includes additional scenario information in the debug log file such as the time that
individual instances are created, transitions between states, and filter checking.

The default setting is false.

 loggingDebugUpdates

Includes information about scenario updates in the debug log file.

The default setting is true.

 loudMissingElementMessages

In some circumstances, a server may read scenario definitions generated by another
server, attempt to run them, and be unable to do so because the required elements do
not exist in its configuration path. For example, an ATG Service agent server could
detect and attempt to run the campaign (scenario) definitions that ATG Outreach has
deployed to a production server. In this case, a long series of errors about unknown
elements is sent to the console when the agent server is started.

Setting the loudMissingElementMessages property to false displays an informative
message rather than the errors. Note that it is set to false in the DSS liveconfig layer.

For more information on configuring the ScenarioManager component, see Configuring Scenarios.

As an alternative to editing the ScenarioManager component directly, you can enable many of these
debugging properties through the Configure Server Debugging dialog box in the ACC. To access this
dialog box, display the Scenarios > Scenarios window, and then select Tools > Configure Server
Debugging. This dialog box contains the following options:

 Include debugging information in server log: Enables the loggingDebug property.

 Log JMS messages received by process manager: Enables the
loggingDebugMessages property.

 Log information related to process updates: Enables the loggingDebugUpdates
property.

 Enable logging of information about individual processes: Enables the
loggingDebugProcesses property.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 3 9

1 4 - C o n f i g u r i n g S c e n a r i o s

μ
Viewing Scenario Information in the ATG Dynamo Server Admin Page

In addition, you can use the Component Browser in the ATG Dynamo Server Admin page to see
information about your scenarios. The main Nucleus component responsible for scenario operations is
located at /atg/scenario/ScenarioManager. To examine the scenarios handled by this service, point
your Web browser to the ATG Dynamo Server Admin page at:

http://localhost:port/dyn/admin/nucleus/atg/scenario/ScenarioManager/

(The default port numbers on JBoss, Oracle WebLogic, and IBM WebSphere are 8080, 7001, and 9080,
respectively. For more information, see Connecting to the Dynamo Administration UI in the ATG Installation
and Configuration Guide.)

The Examine Scenarios table shows, for each scenario, its status; last modification time; number of
collective and individual instances; and debugging flags. A scenario’s status is displayed as “running” if it
is enabled or as “disabled” if it is disabled.

Click the List instances link in the table to view, for the given scenario, the repository items that maintain
the scenario state. Individual scenario instances maintain the scenario state for individual visitor profiles,
and collective scenario instances maintain the state for the scenario as a whole. The following shows an
example of the information you see for each scenario:

Scenario /QuincyFunds/InvestorRetention/WelcomeMail.sdl:

 Scenario info:

 1000020: class atg.adapter.gsa.GSAItem, item=scenarioInfo[id=1000020,

 creationTime=960937282000, pdl=[B@683bfc, stateMachineVersion=2,

 author=admin, processStatus=2, id=1000020,

 processName=/QuincyFunds/InvestorRetention/WelcomeMail.sdl, lastModifiedBy=,

 modificationTime=964051587174]

Segment New Members:

Collective scenario instances:

 1.1000009: class atg.adapter.gsa.GSAItem, item=collectiveScenario[id=1000009,

 segmentName=New Members, state=2, id=1000009,

 processName=/QuincyFunds/InvestorRetention/WelcomeMail.sdl,

 modificationTime=964051587174, creatorId=null]

Individual scenario instances:

 1.11000015: class atg.adapter.gsa.GSAItem, item=individualScenario

 [id=11000015, segmentName=New Members, contextLongs={},

 contextDates={}, state=3, createdByRecurringEvent=false, subject=(reference

 to item=user:210001), id=11000015,

 processName=/QuincyFunds/InvestorRetention/WelcomeMail.sdl,

 contextBooleans={}, modificationTime=964051587174, contextDoubles={},

 contextStrings={}, creatorId=1000009]

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 4 0

1 4 - C o n f i g u r i n g S c e n a r i o s

μ
Click the name of the scenario in the table to view an internal text-based representation of the elements
in the given scenario. You might find this version helpful if you need to include a description of a scenario
in an internal bug report, for example. The following shows the scenario definition information for the
New Members segment in the WelcomeMail scenario:

Scenario /QuincyFunds/InvestorRetention/WelcomeMail.sdl:

Process enabled=true modificationTime=1028236820204

 Segment New Members:

 0s: branch

 1: event atg.dps.Register

 2: time-wait in 5 mins

 3: condition (eq subject:investors true)

 4: condition (eq subject:receiveEmail yes)

 5: condition (eq subject:locale en_US)

 6: condition (isNotNull subject:email)

 7: action sendEmail[template=/QuincyFunds/en/email/welcome.jsp]

 8: fork

 8.1: branch

 8.1.1: event atg.dps.Login

 8.2: branch

 8.2.1: time-wait in 4 weeks 2 days

 8.2.2: action

 sendEmail[template=/QuincyFunds/en/email/newmemberoffer.jsp]

The link also shows you the possible states for people passing through each scenario (see Scenario Basics
for more information about scenario states). The following example shows the scenario states for the New
Members segment of the WelcomeMail scenario:

StateMachine New Members:

 1[start]

 (1) in 1 secs --> 2[1]:

 2[1]

 (1) atg.dps.Register --> 3[2]:

 3[2]

 (1) in 5 mins --> 4[8.2.1((eq subject:investors true)&(eq subject:receiveEmail

 yes)&(eq subject:locale en_US)&(isNotNull subject:email)),8.1.1((eq

 subject:investors true)&(eq subject:receiveEmail yes)&(eq subject:locale

 en_US)&(isNotNull subject:email))]:

 sendEmail[template=/QuincyFunds/en/email/welcome.jsp]((eq

 subject:investors true)&(eq subject:receiveEmail yes)&(eq subject:locale

 en_US)&(isNotNull subject:email))

 4[8.2.1((eq subject:investors true)&(eq subject:receiveEmail yes)&(eq

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 4 1

1 4 - C o n f i g u r i n g S c e n a r i o s

μ
 subject:locale en_US)&(isNotNull subject:email)),8.1.1((eq subject:investors

 true)&(eq subject:receiveEmail yes)&(eq subject:locale en_US)&(isNotNull

 subject:email))]

 (1) ((eq subject:investors true)&(eq subject:receiveEmail yes)&(eq

 subject:locale en_US)&(isNotNull subject:email)) --> 5[8.2.1,8.1.1]:

 5[8.2.1,8.1.1]

 (1) atg.dps.Login --> 6[8++]:

 (2) in 4 weeks 2 days --> 6[8++]:

 sendEmail[template=/QuincyFunds/en/email/newmemberoffer.jsp]

 6[8++]

Setting the Web Application Context Root for Scenarios
The context root for a J2EE Web application is set in the application’s application.xml file. In some
situations you may have more than one Web application deployed on the same server, which then
requires areas of ATG functionality such as the Scenarios module to be aware of more than one context
root. (Specifically, some scenario event and action elements contain references to pages or e-mail
templates that may be stored in multiple context roots.) To manage context roots in multiple Web
applications, the system maintains a registry called a WebAppRegistry.

The base class for this registry is atg.service.webappregistry.WebAppRegistry. Different
implementations of this class supply the settings that the registry requires. Two key implementations are
the StaticWebAppRegistry and the ServletContextWebAppRegistry, which are described below.
For information on other implementations, refer to the ATG API Reference.

Note that, as described in this section, the document picker in the ACC scenario editor uses the Web
application name (the value of the <display-name> tag in the web.xml file) to resolve the context root
for any documents that you add to scenarios. For this reason, you cannot add documents (for example,
email templates) from unnamed Web applications. These applications are shown in gray in the scenario
editor’s document picker, and they cannot be selected.

StaticWebAppRegistry

The atg/registry/webappregistry/StaticWebAppRegistry component (class
atg.service.webappregistry.StaticWebAppRegistry) configures the registry of deployed Web
applications by reading a Map of display-name=context-root mappings or a list of Web application
components from its properties file.

To use the display-name=context-root mappings to supply Web application information, simply set
the contextRootMap property inside the atg/registry/webappregistry/StaticWebAppRegistry
properties file. Example:

contextRootMap=\ Quincy Funds J2EE DAF Demo=QuincyFunds,

 \ MotorpriseJSP=Motorprise

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 4 2

1 4 - C o n f i g u r i n g S c e n a r i o s

μ
You set the ContextRootMap value to the value of the <display-name> and <context-root> tags in
the application’s web.xml file, usually located in the WEB-INF directory (for example, the web.xml file for
Quincy Funds is located at <ATG10dir>\DSSJ2EEDemo\j2ee-apps\QuincyFunds\web-app\WEB-INF).

To use the list of Web application components to configure the registry, you create a separate component
of class atg.service.webappregistry.WebApp for each application, and then you list the components
in the preConfiguredWebApps property in the StaticWebAppRegistry properties file, as shown here:

preConfiguredWebApps=\/atg/registry/webappregistry/QuincyFundsWebApp,

 \ /atg/registry/webappregistry/MotorpriseWebApp

The following example shows the properties file for the
/atg/registry/webappregistry/QuincyFundsWebApp component:

QuincyFundsWebApp.properties

$class=atg.service.webappregistry.WebApp

properties=\ display-name=QuincyFunds,\ appState=started,\

context-root=QuincyFunds,\ web-uri=web_app,\

path=d:/work/5.6/Dynamo/DSSJ2EEDemo/j2ee-apps/QuincyFunds

ServletContextWebAppRegistry

The atg/registry/webappregistry/ServletContextWebAppRegistry component (class
atg.service.webappregistry.ServletContextWebAppRegistry) registers Web applications
defined by a ServletContext. It is used by NucleusServlet (class
atg.nucleus.servlet.NucleusServlet) to register Dynamo-specific Web applications, which it does
by reading information from the Web applications started at runtime. For more information, refer to the
ATG Repository Guide.

Updating the Context Root for Scenarios

Occasionally it may be necessary to change an application’s context root after you have already created
and enabled scenarios for that application. You make the change by adjusting the context root setting in
the application.xml file for the given application. However, the WebAppRegistry described in the
previous section is not updated automatically, so the Scenarios module is not aware of any change you
make to this file. To avoid scenario execution errors, therefore, note that you must either manually update
the WebAppRegistry or manually update the context root value in the application’s web.xml file.

The following example shows the web.xml file setting for the Quincy Funds demo:

<context-param>

 <param-name>context-root</param-name>

 <param-value>QuincyFunds</param-value>

</context-param>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 4 3

1 4 - C o n f i g u r i n g S c e n a r i o s

μ
Disabling the Scenario Manager Component

To disable the scenario manager component for a server:

1. Create or edit the ScenarioManager.properties file for the server.

<ATG10dir>/home/servers/servername/localconfig/

atg/scenario/ScenarioManager.properties

If you are disabling the InternalScenarioManager component for an agent server,
make this configuration in the InternalScenarioManager.properties file.

2. Set the enabled property to false. If the enabled property is not present in the file,
add it.

enabled=false

3. Restart the server.

Verify that the server has started with the scenario manager component disabled by checking the server’s
log file for the following message.

2010-08-20 13:34:01,290 INFO [nucleusNamespace.atg.scenario.ScenarioManager]

(main) This ProcessManager is disabled and will not execute processes or handle

events

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 4 4

1 4 - C o n f i g u r i n g S c e n a r i o s

μ

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 4 5

1 5 - S e t t i n g U p S e c u r i t y A c c e s s f o r S c e n a r i o s

μ
15 Setting Up Security Access for

Scenarios

As you can for any product in the ATG suite, you can grant or deny access to the features of the Scenarios
module by displaying or hiding menu items in the main ACC window. You use the People and
Organizations > Control Center Groups option to configure access to menu items. For more information,
see the ATG Programming Guide.

For those groups of users who do have access to the Scenarios module menu items, you can set a more
granular layer of security by controlling access to scenario folders, individual scenarios, and scenario
templates. For example, suppose your company sets up scenarios that deliver separate sets of promotions
to customers in your East and West regions. You decide that you want business users to be able to edit
scenarios for their own region only. You set up two scenarios folders called East and West and copy
scenarios into their appropriate folder. Then you define access rights for each folder.

In addition, you can grant or deny access to individual repository items or to individual properties of a
repository item. Note, however, that you cannot do this through the ACC; you must do it by defining
access control lists (ACLs) manually as described in Secured Repositories in the ATG Repository Guide.

This chapter describes how to use the ACC to set up access control for scenario folders, scenarios, and
scenario templates. It includes the following sections:

Using the ACC to Set Scenario Access Rights

Defining Access Control for Scenario Folders

Defining Access Control for a Scenario

Using the ACC to Set Scenario Access Rights
As noted above, you can use the ACC to set access rights to scenarios and scenario templates. To see the
access control lists (ACLs) that are created through the ACC, look in
<ATG10dir>/home/localconfig/registry/data/ and locate the appropriate folder and .sec file (or
.tsc file for scenario templates). Open the file to view the ACL.

The following figure shows a sample .sec file for a scenario:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 4 6

1 5 - S e t t i n g U p S e c u r i t y A c c e s s f o r S c e n a r i o s

μ
acl=Admin$user$design:list;

Admin$user$developer:list,write_owner;

Admin$user$manager:read_acl;

For more information on ACLs, refer to Secured Repositories in the ATG Repository Guide.

Note that you can view only ACL information for Scenarios module features through the secure registry.
To view the repository- based ACLs, look at the secure repository definition file (by default, secured-
test-repository.xml, described in the ATG Repository Guide) and locate the acl-property for a given
item. The ACL for that item is stored in the table and column listed in the acl-property.

Defining Access Control for Scenario Folders
The following procedure shows how to set access rights to scenario folders.

1. Start the ACC and select Scenarios > Scenarios.

2. Select the scenario folder for which you want to define access.

3. Select File > Set Access Rights On Folder. The Set Access Rights dialog box appears.

The checkboxes show the different levels of access rights you can grant or remove:

 List: Controls whether a this folder will appear as the result of a query. Note that,
even if a user does not have List access, he or she could still access this folder by
requesting it specifically.

 Read: Controls the ability to view (but not add to or edit) this folder and its
contents.

 Write: Controls the ability to add or edit scenarios in this folder.

 Delete: Controls the ability to remove this folder and its contents from the
repository. This access right corresponds to the DESTROY access right in the
Access Control List. For more information, see Secured Repositories in the ATG
Repository Guide.

 View owner: Controls the ability to view the name of the person who owns this
folder, for example in the Author column of the Scenarios > Scenario window.
Corresponds to READ-OWNER in the Access Control List.

 Set owner: Controls the ability to change the owner of this folder. The owner
access right exists essentially as a way of identifying the person or group who
created the folder. Corresponds to WRITE-OWNER in the Access Control List.

 View access rights: Controls the ability to view the access control list for this
folder. (This access right is automatically granted to the owner of the folder.)
Corresponds to READ-ACL in the Access Control List.

 Set access rights: Controls the ability to change the access rights for this folder.
(This access right is automatically granted to the owner of the folder.)
Corresponds to WRITE-ACL in the Access Control List.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 4 7

1 5 - S e t t i n g U p S e c u r i t y A c c e s s f o r S c e n a r i o s

μ
The list on the left shows the people for whom you can define access rights. The list
can include individual users, organizations, roles, or profile groups. To add new items
to this list, click Add, and select the items that represent the people for whom you
want to define access. Remember that a member of an organization or a role inherits
its access rights.

4. Use the checkboxes to grant or deny appropriate access rights for each user,
organization, role, or profile group in the list on the left.

Important: Bear in mind a user’s access rights for content repositories as well as his or her access rights
for scenario folders. For example, you might give a user write access to a specific scenario folder, but does
he or she also need access to one or more content repositories? To create slot elements, for example, a
user may need read access to a repository that stores image files. Make sure that users have access to all
required content, and in particular, check that their access rights for different repositories do not conflict.

Defining Access Control for a Scenario
This procedure is similar to the previous one, except that the access rights you define here apply to a
specific scenario rather than to a scenario folder.

1. In the Scenarios window, select the name of the scenario for which you want to define
access. Note: Do not display the scenario itself; just highlight its row in the scenario list.
The easiest way to do this is to click in any column of data for the scenario except the
name column.

2. Display the right-click menu and select Set Access Rights On Scenario. The Set Access
Rights dialog box appears. (For scenario templates, the name of the menu item
changes appropriately.)

3. Use the checkboxes to grant or deny appropriate access rights for each user,
organization, role, or profile group in the list on the left. For more information, see
Defining Access Control for Scenario Folders.

Important: Bear in mind a user’s access rights for content repositories as well as his or her access rights
for scenarios. For example, you might give a user write access to a specific scenario, but does he or she
also need access to one or more content repositories? To create slot elements, for example, a user may
need read access to a repository that stores image files. Make sure that users have access to all required
content, and in particular, check that their access rights for different repositories do not conflict.

You can set access control for individual scenario templates in the same way that you can control access
to individual scenarios and scenario folders.

Making a Scenario Read Only
In addition to using the security measures described in this chapter to control access to scenarios, you can
make individual scenarios read only. Any user who has security access that allows him or her to open the

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 4 8

1 5 - S e t t i n g U p S e c u r i t y A c c e s s f o r S c e n a r i o s

μ
scenario will be able to do so but will not be able to make any changes to its contents. However, scenarios
marked as read only can still be enabled, disabled, or deleted by any user.

To make a scenario read only, perform the following steps:

1. Open the .sdl file for the scenario you want to make read only. These files are usually
located in
<ATG10dir>\home\localconfig\atg\registry\data\scenarios\DSS.

2. Add the following attribute to the <process> element:

readonly="true"

For example:

<process author="admin" creation-time="1070401076069" enabled="false"

last-modified-by="admin" modification-time="1070401076159"

readonly="true">

Note that you may need to restart the server to have this change take effect.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 4 9

1 6 - D e s i g n i n g E f f e c t i v e S c e n a r i o s

μ
16 Designing Effective Scenarios

Scenarios are a powerful personalization tool, and they have been designed to give you as much flexibility
as possible in the way you set them up. However, the performance that you get from your scenarios
depends greatly on their design; a scenario that appears to cause a site page to load slowly, for example,
can perform much better if you substitute or rearrange the elements that it contains.

This chapter makes some recommendations about the best way to position scenario elements for optimal
performance.

Excluding Anonymous Visitors
Scenarios that apply to all site visitors require changes to every profile in the profile repository, and this
behavior can be time consuming, especially if a site attracts a large number of visitors. If your scenario
does not apply to anonymous visitors, include a Logs In element at the beginning of the scenario so that
only those people who log in as members will be included.

Replace this scenario:

With this one:

Minimizing the Number of Visitors Included
Whether a scenario includes anonymous visitors or not, it is always best to minimize the number of
visitors to whom the scenario applies, especially if you have a large number of site visitors. Consider the
following example:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 5 0

1 6 - D e s i g n i n g E f f e c t i v e S c e n a r i o s

μ

Here, the e-mail message you want to send applies only to visitors who are students. You estimate that
almost all the people who are likely to respond to the mailing also belong to a profile group called Young,
which you have set up for anyone under 35 years of age. Therefore, rather than having the scenario apply
to anyone who logs in and visits the /Snowboards page, you can safely narrow its focus to people who
belong to the profile group Young, thereby reducing the number of profiles that the Scenarios module
must change as part of processing this scenario.

Bear in mind, however, that using profile groups to minimize the number of scenario participants does
not always make a scenario perform more efficiently. Depending on their position in a scenario, profile
group elements (“People in group X”) can behave as collective elements, and in this case they can have a
negative effect on performance. See the next section, Minimizing the Number of Collective Elements, for
more information.

Minimizing the Number of Collective Elements
Collective elements apply to all users in a scenario, and they require the Scenarios module to generate
line-by-line queries of the dps_user and dps_user_scenario tables. These queries can run slowly if the
number of profiles is high.

Consider the following example:

This scenario generates a query similar to the following:

SELECT DISTINCT t1.id,t1.id

FROM dps_user t1

WHERE ((t1.login IS NOT NULL)

AND NOT EXISTS (SELECT * FROM dps_user_scenario

WHERE id = t1.id AND ind_scenario_id IN

(SELECT tt1.id FROM dss_ind_scenario tt1

WHERE (tt1.creator_id = '4000001'))))

ORDER BY t1.id ASC;

The query searches the dps_user table for profiles that have a defined login name, and it also searches
the dps_user_scenario table to make sure none of those profiles already has a scenario instance
created for this scenario. As more profiles are found that match the query, more scenario instances are

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 5 1

1 6 - D e s i g n i n g E f f e c t i v e S c e n a r i o s

μ
created, which in turn adds more lines to the dps_user_scenario table. For sites with an unusually large
number of profiles, this process can eventually become very slow.

You can improve performance by checking that the maxBatchSize setting in the Scenario Manager
component is set to at least the default value, 1000, and adjusting it if necessary A higher setting enables
the Scenarios module to process more profiles with each iteration of the query.

To examine the profile queries that your scenarios generate, turn on the loggingDebug property for the
/atg/userprofiling/ProfileAdapterRepository component. The queries appear in the
<ATG10dir>\home\logs\debug.log file.

Avoiding Scenarios that Run Indefinitely
Scenarios are not restricted to one session only and will not stop simply because a visitor logs out or
otherwise ends her session. In the example shown above, if a visitor logs in but never displays the
/Snowboards page, information about her scenario state will remain indefinitely in the profile database.

To avoid this behavior, use Time elements to limit the amount of time for which a scenario is active. For
example, you could write this scenario as follows:

In general, limit a scenario’s lifespan wherever possible.

Combining Scenarios Wherever Practical
As expected, the number of scenarios you have enabled affects the performance of your sites. However, it
is important to note that performance is affected less by the total number of scenarios than by the
number of times a particular Event type occurs across all the scenarios you have defined. For example, if
you have 20 scenarios, each of which includes a Visits page element, you may notice that pages load more
slowly because the site must process 20 Visits page elements whenever anyone displays a page. To
improve performance, create a single scenario that contains one Visits page event followed by several
actions. The following images illustrate this idea:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 5 2

1 6 - D e s i g n i n g E f f e c t i v e S c e n a r i o s

μ

Consider combining these two segments into a single segment, as follows:

Minimizing the Number of Paths through a Fork
As described in the overview chapter, the Scenarios module creates transient states for every visitor
passing through a scenario and stores information about those states in the profile repository. In the case
of scenarios that contain fork elements, the Scenarios module creates a state for every possible path a
visitor could follow through a fork. If you have a large number of site visitors, and you create fork
elements that present many possible paths, out-of-memory errors can occasionally occur.

For this reason, design fork elements carefully so that you minimize the number of possible paths the fork
can contain. One way to do this is by reducing the number of branches that start with events. In the
following example, a series of branches start with a Visits element:

Rewrite scenarios such as this one by placing the event before the fork, and then specifying the page in a
series of condition elements after the fork:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 5 3

1 6 - D e s i g n i n g E f f e c t i v e S c e n a r i o s

μ

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 5 4

1 6 - D e s i g n i n g E f f e c t i v e S c e n a r i o s

μ

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 5 5

1 7 - U s i n g S c e n a r i o E v e n t s

μ
17 Using Scenario Events

This section describes the default event elements you can insert into a scenario segment (see Creating a
Scenario: Basic Steps in the ATG Personalization Guide for Business Users).

Scenario event elements are triggered when the Scenario Manager component receives events sent as
Dynamo Message System messages. The description of each event element below includes the name of
the message that triggers the event and the component or part of the system that is responsible for
sending the message. The optional parameters that appear in the scenario editor for a specific event
correspond to the properties of the message that represents that event, including properties inherited
from any parent classes. For example, the parameters that you can select in the scenario editor to further
define the Logs In event are the properties associated with the DPSMessageSource component. For
more information, refer to the Dynamo Message System chapter in the ATG Programming Guide.

All scenario events have corresponding entries in the Dynamo Message System registry. In addition, the
scenarioManager.xml file contains a scenario event registry, which serves to identify the events that
you want to associate with scenarios (in contrast to, for example, events that are associated with
workflows in ATG Content Administration). The event registry defines various configuration settings for
each scenario event, including the message context, which determines whether an event is individual (in
other words, it applies to individual users passing through the scenario, such as a PageVisits event) or
global (it applies to all users, such as a Startup event).

Note that for compatibility with ATG products before version 6.0, the event registry in the
scenarioManager.xml file is turned off by default, and the event information in the Dynamo Message
System registry is used instead. To use the scenarioManager.xml event registry, set the
useEventRegistry property to true in the ScenarioManager component.

For more information on both the Dynamo Message System registry and the event registry, refer to
Adding Custom Events, Actions, and Conditions to Scenarios.

Scenario events can be collective (they affect or are triggered by everyone progressing through the
scenario) or individual (they affect or are triggered only by individual users).

Many scenario events are site aware, meaning they can be configured to apply to specific Web sites in an
ATG environment that manages more than one site.

The remaining sections of this chapter describe the default collective and individual scenario events
available with the Scenarios module.

Collective events:

 InboundEmail Event

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 5 6

1 7 - U s i n g S c e n a r i o E v e n t s

μ
 Shutdown Event

 Startup Event

GSAInvalidation Event Individual events:

 ClickThrough Event

 FormSubmission Event

 SlotItemRequest Event

 Referrer Event

 Login Event

 Logout Event

 Register Event

 AdminRegister Event

 StartSession Event

 EndSession Event

 ProfilePropertyUpdate Event

 AdminProfilePropertyUpdate Event

 ProfileUpdate Event

 AdminProfileUpdate Event

 ViewItem Event

 PageVisit Event

 ScenarioEnd Event

 SiteChanged Event

 ProfileMarkerAdded Event

 ProfileMarkerRemoved Event

 ProfileMarkerReplaced Event

 Business Stage Reached Event

InboundEmail Event
This event is triggered whenever an e-mail message is received by the
atg/dynamo/service/POP3Service component.

Class name atg.userprofiling.dms.InboundEmailMessage

JMS name atg.dps.InboundEmail

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 5 7

1 7 - U s i n g S c e n a r i o E v e n t s

μ
Display name An email is received

Message scope Global (collective)

Message source Component: /atg/userprofiling/DPSMessageSource

Class: atg.userprofiling.dms.DPSMessageSource

Component that calls the
message source

/atg/userprofiling/email/EmailManager

How this event is triggered This event is triggered by the
/atg/dynamo/service/POP3Service component when an
email is received.

How to turn this event off Set to false the fireInboundEmailEvents property in the
/atg/dynamo/service/POP3Service component.

The message that triggers this event contains the following properties:

Property Type Scenario editor label

messageSubject java.lang.String messageSubject

 The subject line of the message.

Example: An e-mail is received where messageSubject is Enroll me!

originalSubject java.lang.String originalSubject

 The original subject line of the message. The original subject is the
subject line without the word “Re:” that may be added if this e-mail
message is a response to another.

Example: An e-mail is received where originalSubject is Come back, we
miss you!

In this case, an incoming message with the subject line Re: Come back, we
miss you! will trigger this event.

messageFrom java.lang.String messageFrom

 The e-mail address of the person who sent the message (the “From” field
in an e-mail).

Example: An e-mail is received where messageFrom includes atg.com

In this case, the system watches for incoming e-mail from the domain
atg.com.

messageTo java.lang.String[] messageTo

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 5 8

1 7 - U s i n g S c e n a r i o E v e n t s

μ
 An array containing the e-mail addresses of the recipients of the

message (the “To” field in an e-mail).

messageCc java.lang.String[] messageCc

 An array containing the e-mail addresses of the recipients included in
the “CC” field of the message.

messageRecipients java.lang.String[] messageRecipients

 An array containing all e-mail addresses in both the “To” and “CC” fields.

messageReplyTo java.lang.String messageReplyTo

 The Reply-To e-mail address of the message.

receivedDate java.util.Date receivedDate

 The date on which the message was received by the POP3 server.

bounced boolean bounced

 Indicates whether the e-mail message is one that was returned because
it was sent to an invalid address.

message javax.mail.Message message

 The javax.mail.Message object that represents the entire contents of
the e-mail message.

bouncedEmailAddress java.lang.String bouncedEmailAddress

 If an e-mail message is bounced, this property is set to the e-mail address
of the person to whom the message was sent.

This property is set only if the bounced property is set to true.

bouncedReplyCode java.lang.String bouncedReplyCode

 The RFC 821 reply code of the bounced e-mail. The reply code indicates
why the message was bounced.

This property is set only if the bounced property is set to true.

bouncedStatusCode java.lang.String bouncedStatusCode

 The enhanced RFC 1893 status code of the bounced e-mail. The status
code is similar to the reply code and can give more specific information
about the nature of the bounced email.

This property is set only if the bounced property is set to true.

bouncedErrorMessage java.lang.String bouncedErrorMessage

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 5 9

1 7 - U s i n g S c e n a r i o E v e n t s

μ
 A String property indicating why the message was bounced. The String

is a mail server-specific interpretation of the enhanced RFC 1893 status
code.

This property is set only if the bounced property is set to true.

The four bounced* properties described above can be null even if the bounced property is set. The values
of these properties are determined by specific EmailExaminer classes that parse the bounced e-mail
messages. Sometimes the values cannot be determined, and in these cases the properties do not get set.

For more information on how the Personalization module detects and handles bounced e-mail messages,
refer to Bounced E-mail.

Shutdown Event
This event is triggered whenever the Dynamo server shuts down.

Class name atg.nucleus.dms.DASMessage

JMS name atg.das.Shutdown

Display name Dynamo shuts down

Message scope Global (collective)

Message source Component:
/atg/dynamo/messaging/DynamoMessageSource

Class: atg.nucleus.dms.DASMessageSource

Component that calls the
message source

/Nucleus

How this event is triggered Nucleus itself sends this message when the Dynamo server shuts
down.

How to turn this event off This event is always fired; you cannot turn it off.

Startup Event
This event is triggered whenever the Dynamo server is started.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 6 0

1 7 - U s i n g S c e n a r i o E v e n t s

μ
Class name atg.nucleus.dms.DASMessage

JMS name atg.das.Startup

Display name Dynamo starts

Message scope Global (collective)

Message source Component:
/atg/dynamo/messaging/DynamoMessageSource

Class: atg.nucleus.dms.DASMessageSource

Component that calls the message
source

/Nucleus

How this event is triggered Nucleus itself sends this message when the Dynamo server is
started.

How to turn this event off This event is always fired; you cannot turn it off.

GSAInvalidation Event
This event is triggered when SQL repository items are flushed from the cache by the JMS Distributed
Cache Invalidator service, usually called as a result of the operation of an external content management
system’s deployment tools. For more information on distributed cache invalidation, refer to the ATG
Repository Guide.

Class name atg.adapter.gsa.invalidator.GSAInvalidationMessage

JMS name atg.das.GSAInvalidation

Display name GSA repository cache invalidation received

Message scope Global

Message source Component:
/atg/dynamo/service/GSAInvalidatorService

Class:
atg.adapter.gsa.invalidator.GSAInvalidatorService

Component that calls the
message source

It is called by a remotely executed RMI Client program,
/atg/adapter/gsa/invalidator/GSAInvalidatorClient.

How this event is triggered Triggered when an external content management system’s
content deployment tools update repository database tables with
new data, requiring a cache invalidation of the ATG repositories
that use these tables.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 6 1

1 7 - U s i n g S c e n a r i o E v e n t s

μ
How to turn this event off This event cannot be turned off; it is always fired if the JMS

Distributed Cache Invalidator service is enabled and a specified
cache invalidation occurs.

The message that triggers this event contains the following properties:

Property Type Scenario editor label

itemDescriptorName java.lang.String itemDescriptorName

 A specific item type. The invalidation of cached items of that type triggers
this event.

itemId java.lang.String itemId

 The ID of a specific cached repository item. Invalidation of that item
triggers this event.

repositoryPath java.lang.String repositoryPath

 The Nucleus address of a cached GSARepository component.
Invalidation of the entire repository triggers this event.

ClickThrough Event
This event is triggered whenever a site visitor clicks a link in a site page or an e-mail message.

Examples: Clicks link to page /promo.jsp

Clicks link from page /index.jsp [to page /promo.jsp]

Clicks link with sources BikePromo [from page /index.jsp] [to page /promo.jsp]

The ClickThrough event is similar to the PageVisit event, except that it is specifically designed to help
you track and report on the links that visitors follow. The message that corresponds to this event contains
detailed data about the link that the visitor clicked; for example, it contains information about both the
page where the link is located and the page to which it leads. For more information, see the description
later in this section of the properties that the message contains.

The ClickThrough event works only for links that include an anchor tag containing a dsource
parameter. The following shows an example of the JSP code for this type of link:

<dsp:a href="content/welcome.jsp">

 <dsp:param value="OnSale, MemberDiscount" name="dsource"/>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 6 2

1 7 - U s i n g S c e n a r i o E v e n t s

μ
 Click here to see this month's discounts!

</dsp:a>

The values that the page developer specifies for the dsource parameter (in the example, OnSale and
MemberDiscount) can be any string. The Scenarios module uses them to identify and distinguish the
links for purposes such as reporting. For example, the page developer might give several links the same
dsource value to identify that they belong to a similar group, such as links that point to a specific set of
content pages.

Note that at least one dsource value must be specified in the link for the event to be triggered.

The event is triggered only once for any clicked link, regardless of how many dsource values there are.
For example, if the dsource value is "OnSale, MemberDiscount", only one ClickThrough message is
sent.

In addition to the dsource parameter, you can optionally include a dreferrer parameter as shown in
the following JSP example:

<dsp:a href="destination/page.jsp">

 <dsp:param value="source/page.jsp" name="dreferrer"/>

 <dsp:param value="OnSale, MemberDiscount" name="dsource"/>

 Click here to see this month's discounts!

</dsp:a>

The dreferrer parameter defines the sourcePath of a ClickThrough event (see below for more
information about the sourcePath property). In normal circumstances, the sourcePath is determined
by getting the value of the “Referrer” HTTP header. If this header is unavailable, the system can use the
value of the dreferrer parameter instead.

You can also trigger the ClickThrough event from links that you embed in targeted e-mail messages.
Use the same JSP or JHTML code (in other words, dsource parameters in anchor tags) that you would use
for links in site pages. Note that the dreferrer feature is especially useful for links that you embed in
targeted e-mail messages because no “Referrer” header is sent when a visitor clicks this type of link.

The following table shows additional information about the ClickThrough event.

Class name atg.userprofiling.dms.ClickThroughMessage

JMS name atg.dps.ClickThrough

Display name Clicks a Link

Message context Request

Message scope Individual

Message source Component: /atg/userprofiling/DPSMessageSource

Class: atg.userprofiling.dms.DPSMessageSource

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 6 3

1 7 - U s i n g S c e n a r i o E v e n t s

μ
Component that calls the
message source

/atg/userprofiling/PageEventTrigger

How this event is triggered This event is triggered when a request containing a URL with a
dsource parameter passes through the ATG servlet pipeline and is
processed by the
/atg/dynamo/servlet/pipeline/PageViewServletTrigger,
which calls the PageEventTrigger.

See the important note at the bottom of this section.

How to turn this event off Set to false the broadcastClickThroughEvents property in
component
/atg/dynamo/servlet/pipeline/PageViewServletTrigger.

The message that triggers this event contains the following properties:

Property Type Scenario editor label

sourcePath java.lang.String [] to page…

 The pathname of the page that contained the clicked link. Note that the
pathname does not include the protocol or domain of the URL. For example,
if a visitor clicks a link on the page http://www.example.com/index.jsp,
and that link is set up to fire a ClickThrough event, the sourcePath will be
/index.jsp.

destinationPath java.lang.String from page…

 The pathname of the page that is represented by the clicked link. Again, the
protocol and domain are not included.

sourceNames java.lang.String where source name list…

 A user-defined, comma-separated list of keywords that signifies some sort of
information association with the clicked link. At least one keyword is required
in order for a ClickThrough message to be fired.

profileId java.lang.String Does not appear.

 The profile ID of the visitor who clicked the link.

siteId java.lang.String Does not appear.

 The ID of the current site. The value is provided by the Site Context Manager.

This parameter applies to multisite environments.

Important: As described above, this event is triggered when a URL containing a dsource parameter is
intercepted in the ATG servlet pipeline by the PageViewServletTrigger. This behavior means that the

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 6 4

1 7 - U s i n g S c e n a r i o E v e n t s

μ
event will be fired not only when a visitor clicks a given link but also when he or she reloads a page
containing that link. If you use the ClickThrough event for reporting purposes, and you want to track
the number of times it occurs, note that the total count will include page reloads as well as clicks.
Similarly, if you use this event to trigger scenario actions such as sending a targeted e-mail or populating
a slot with content, and you design the scenario so that the action can occur more than once for the same
site visitor, bear in mind that the action will also occur when a site visitor reloads a page containing a
dsource URL.

FormSubmission Event
This event is triggered whenever a visitor submits a form on a site page.

Example: A form is submitted where formName is decemberSurvey

When the page developer adds a form to a site page, he or she includes a formName parameter in the JSP
or JHTML code for the form. The Scenarios module uses the value of the formName parameter to identify
the form that the visitor submits. If the page developer does not specify a formName value, the value of
the absoluteName property is used instead; for example, the formName of the
/atg/userprofiling/ProfileFormHandler component defaults to
/atg/userprofiling/ProfileFormHandler.

Note that forms do not trigger this event by default; you must set the sendMessages property of the
form handler component to true to have this event work correctly.

Class name atg.nucleus.dms.formSubmissionMessage

JMS name atg.das.FormSubmission

Display name A form is submitted

Message context Request

Message scope Individual

Message source Component:
/atg/dynamo/messaging/DynamoMessageSource

Class: atg.nucleus.dms.DASMessageSource

Component that calls the
message source

An instance of /atg/droplet/GenericFormHandler

How this event is triggered Triggered by the form handler component after the visitor
submits the form.

How to turn this event off Set to false the SendMessages property of the form handler
component. Note, however, that this property is false by default.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 6 5

1 7 - U s i n g S c e n a r i o E v e n t s

μ
The message that triggers this event contains the following properties:

Property Type Scenario editor label

formName java.lang.String where formName is…

 The name of the form that the visitor submits.

siteId java.lang.String Does not appear.

 The ID of the current site. The value is provided by the Site Context Manager.

This parameter applies to multisite environments.

SlotItemRequest Event
This event is triggered whenever a visitor performs an action on the site (for example, displays a given
page) that causes an active slot to request content items. See Using Slots for more information (especially
note the differences between active and passive slots).

Class name atg.scenario.dms.SlotItemRequestMessage

JMS name atg.dss.SlotItemRequest

Display name Items requested

Message context Request

Message scope Individual

Message source Component: /atg/scenario/DSSMessageSource

Class: atg.scenario.dms.DSSMessageSource

Component that calls the
message source

None. The slot component calls the message source directly.

How this event is triggered The slot component itself generates the message when it is
called upon to provide content. It does so only if the slot is an
active slot and has no more items to show.

How to turn this event off Make the slot component passive instead of active by setting
the generation property in the component to passive.

The message that triggers this event contains the following properties:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 6 6

1 7 - U s i n g S c e n a r i o E v e n t s

μ

Property Type Scenario editor label

slotName java.lang.String by slot <slot_name>

 The name of the slot that requests content items.

siteId java.lang.String Does not appear.

 The ID of the current site. The value is provided by the Site Context Manager.

This parameter applies to multisite environments.

Referrer Event
This event is triggered whenever a visitor arrives at the site or at a specific page on the site by clicking a
link from a site or page with given attributes (for example, a specific URL).

Class name atg.userprofiling.dms.ReferrerMessage

JMS name atg.dps.Referrer

Display name Is referred by external site

Message context request

Message scope individual

Message source Component: /atg/userprofiling/DPSMessageSource

Class: atg.userprofiling.dms.DPSMessageSource

Component that calls the
message source

/atg/dynamo/servlet/sessiontracking/SessionEventT

rigger

How this event is triggered The SessionEventTrigger sits in the pipeline after the
/atg/userprofiling/ProfileRequestServlet and waits
for new sessions.

How to turn this event off Set to false the broadcastReferrerEvents property in the
/atg/dynamo/servlet/sessiontracking/SessionEventT

rigger component.

The message that triggers this event contains the following properties:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 6 7

1 7 - U s i n g S c e n a r i o E v e n t s

μ
Property Type Scenario editor label

referrerURL java.lang.String referrerURL

 A fully qualified URL. Example: http://myhost:8080/test.jsp

referrerPath java.lang.String referrerPath

 The path relative to the Web application (or document root). Example:
test.jsp

referrerSite java.lang.String referrerSite

 The URL minus the protocol and the referrerPath. Example: myhost:8080

siteId java.lang.String Does not appear.

 The ID of the current site. The value is provided by the Site Context Manager.

This parameter applies to multisite environments.

Login Event
This event is triggered whenever a visitor logs into the site. For more information on the Personalization
module’s login features, refer to Tracking Users.

Class name atg.userprofiling.dms.DPSMessage

JMS name atg.dps.Login

Display name Logs in

Message context Request

Message scope Individual

Message source Component: /atg/userprofiling/DPSMessageSource

Class: atg.userprofiling.dms.DPSMessageSource

Component that calls the
message source

/atg/userprofiling/ProfileEventTrigger

How this event is triggered Triggered by the postLoginUser() method of the
ProfileFormHandler.

How to turn this event off Set to false the broadcastLoginEvents property in the
/atg/userprofiling/ProfileEventTrigger component.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 6 8

1 7 - U s i n g S c e n a r i o E v e n t s

μ
The message that triggers this event contains the following properties:

Property Type Scenario editor label

profileId java.lang.String profileId

 The profile ID of the visitor who logs in.

siteId java.lang.String Does not appear.

 The ID of the current site. The value is provided by the Site Context Manager.

This parameter applies to multisite environments.

Logout Event
The Scenarios module watches for a visitor to log out of the site.

Class name atg.userprofiling.dms.DPSMessage

JMS name atg.dps.Logout

Display name Logs out

Message context Request

Message scope Individual

Message source Component: /atg/userprofiling/DPSMessageSource

Class: atg.userprofiling.dms.DPSMessageSource

Component that calls the
message source

/atg/userprofiling/ProfileEventTrigger

How this event is triggered Triggered by the preLogoutUser() method of the
ProfileFormHandler.

How to turn this event off Set to false the broadcastLogoutEvents property in the
/atg/userprofiling/ProfileEventTrigger component.

The message that triggers this event contains the following properties:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 6 9

1 7 - U s i n g S c e n a r i o E v e n t s

μ
Property Type Scenario editor label

profileId java.lang.String profileId

 The profile ID of the visitor who logs out.

siteId java.lang.String Does not appear.

 The ID of the current site. The value is provided by the Site Context Manager.

This parameter applies to multisite environments.

Register Event
This event is triggered whenever a previously anonymous visitor registers at the site.

Class name atg.userprofiling.dms.DPSMessage

JMS name atg.dps.Register

Display name Registers

Message context Request

Message scope Individual

Message source Component: /atg/userprofiling/DPSMessageSource

Class: atg.userprofiling.dms.DPSMessageSource

Component that calls the
message source

/atg/userprofiling/ProfileEventTrigger

How this event is triggered Triggered by the postCreateUser().method of the
ProfileFormHandler.

How to turn this event off Set to false the broadcastRegisterEvents property in the
/atg/userprofiling/ProfileEventTrigger component.

The message that triggers this event contains the following properties:

Property Type Scenario editor label

profileId java.lang.String profileId

 The profile ID of the visitor who registers.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 7 0

1 7 - U s i n g S c e n a r i o E v e n t s

μ
Property Type Scenario editor label

siteId java.lang.String Does not appear.

 The ID of the current site. The value is provided by the Site Context Manager.

This parameter applies to multisite environments.

AdminRegister Event
This event is triggered whenever an administrator registers users at the site by way of a multi profile form
handler.

Class name atg.userprofiling.dms.AdminRegisterMessage

JMS name atg.dps.AdminRegister

Display name Profile registered by admin

Message context Session

Message scope Individual

Message source Component: /atg/userprofiling/DPSMessageSource

Class: atg.userprofiling.dms.DPSMessageSource

Component that calls the
message source

/atg/userprofiling/ProfileEventTrigger

How this event is triggered Triggered by the postCreateUser().method of the
MultiProfileAddForm class.

How to turn this event off Set to false the broadcastAdminRegisterEvents property in
the /atg/userprofiling/ProfileEventTrigger
component.

The message that triggers this event contains the following properties:

Property Type Scenario editor label

adminProfileId java.lang.String adminProfileId

 The profile ID of the administrator who performs the batch registration.

siteId java.lang.String Does not appear.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 7 1

1 7 - U s i n g S c e n a r i o E v e n t s

μ
Property Type Scenario editor label

 The ID of the current site. The value is provided by the Site Context Manager.

This parameter applies to multisite environments.

StartSession Event
This event is triggered when a site visitor starts a new session.

Class name atg.userprofiling.dms.DPSMessage

JMS name atg.dps.StartSession

Display name Session Starts

Message context Request

Message scope Individual

Message source Component: /atg/userprofiling/DPSMessageSource

Class: atg.userprofiling.dms.DPSMessageSource

Component that calls the
message source

/atg/dynamo/servlet/sessiontracking/SessionEventT

rigger

How this event is triggered The SessionEventTrigger sits in the pipeline after the
/atg/userprofiling/ProfileRequestServlet and waits
for new sessions.

How to turn this event off Set to false the broadcastNewSessionEvents property in the
/atg/dynamo/servlet/sessiontracking/SessionEventT

rigger component.

The message that triggers this event contains the following properties:

Property Type Scenario editor label

profileId java.lang.String profileId

 The profile ID of the visitor who starts a session.

siteId java.lang.String Does not appear.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 7 2

1 7 - U s i n g S c e n a r i o E v e n t s

μ
Property Type Scenario editor label

 The ID of the current site. The value is provided by the Site Context Manager.

This parameter applies to multisite environments.

EndSession Event
This event is triggered whenever a visitor’s session ends or expires.

Class name atg.userprofiling.dms.EndSessionMessage

JMS name atg.dps.EndSession

Display name Session ends

Message context Session

Message scope Individual

Message source Component: /atg/userprofiling/DPSMessageSource

Class: atg.userprofiling.dms.DPSMessageSource

Component that calls the
message source

/atg/dynamo/servlet/sessiontracking/SessionEventTrig

ger

How this event is triggered This event is triggered by the SessionEventTrigger, which sits
in the pipeline after the
/atg/userprofiling/ProfileRequestServlet.

How to turn this event off Set to false the broadcastExpiredSessionEvents property in
/atg/dynamo/servlet/sessiontracking/SessionEventTrig

ger.

The message that triggers this event contains the following properties:

Property Type Scenario editor label

profile atg.repository.RepositoryIt

em

profile's…

 The profile repository item corresponding to the visitor whose session is
expiring.

profileId java.lang.String profileId

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 7 3

1 7 - U s i n g S c e n a r i o E v e n t s

μ
Property Type Scenario editor label

 The profile ID of the visitor whose session is expiring.

sessionId java.lang.String sessionId

 The ID of the session that is expiring.

siteId java.lang.String Does not appear.

 The ID of the current site. The value is provided by the Site Context Manager.

This parameter applies to multisite environments.

Note: In some previous versions of the Scenarios module, this message did not contain a sessionId
property. To determine the session for an EndSession event, the Scenarios module used instead the
session ID from the request (context.request.session.id). However, in some circumstances, it is
possible for the session to expire before the EndSession message is sent, which means that the session
ID is lost, the Scenarios module cannot identify it, and scenarios that use it will not be triggered. For this
reason, it is highly recommended that you use the sessionId property in this message
(context.message.sessionId) whenever you need to identify a session for an EndSession event. For
example, use this property in data mappers that you are using to record EndSession event data.

ProfilePropertyUpdate Event
This event is triggered when a site visitor changes the value of a specific profile property by way of an
implementation of the profile form handler.

Examples:

Changes Marital status from single to married
Changes Home address’s city to Boston
Changes Interests by removing dancing

You can define the properties that trigger the event through the propertiesToSendUpdateEvents
property of the ProfileUpdateTrigger component. By default, a change to any profile property
triggers this event. See /atg/userprofiling/ProfileUpdateTrigger for more information.

The Personalization module sends a separate instance of the ProfilePropertyUpdate message for
every value that is changed. For example, if a visitor changes five property values during the same form
submission, the Personalization module sends five messages to the Scenario Manager.

See also the description of the Update User Profile element.

Class name atg.userprofiling.dms.ProfilePropertyUpdateMessage

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 7 4

1 7 - U s i n g S c e n a r i o E v e n t s

μ
JMS name atg.dps.ProfilePropertyUpdate

Display name Profile property updated by user

Message context Request

Message scope Individual

Message source Component: /atg/userprofiling/DPSMessageSource

Class: atg.userprofiling.dms.DPSMessageSource

Component that calls the
message source

/atg/userprofiling/ProfileUpdateTrigger

How this event is triggered Triggered by the postUpdateUser() methods in the
ProfileFormHandler and MultiProfileUpdateFormHandler.

How to turn this event off Set to false the generateProfileUpdateEvents property in the
/atg/userprofiling/ProfileUpdateTrigger component.

The message that triggers this event contains the following properties:

Property Type Scenario editor label

propertyPath java.lang.String by changing <property list>

 The name of the property that has changed, for example
maritalStatus or homeAddress.city

oldValue java.lang.Object where old value

 The old value of the property, before it was changed.

newValue java.lang.Object where new value

 The new value of the property, after it was changed.

changeSign int Does not appear.

 An integer representing whether the new value is greater than,
less than, or equal to the old value. A positive changeSign value
indicates that the new property value is greater than the old, a
negative value indicates that it is less than the old, and zero
indicates that they are equal or not comparable.

changePercentage double Does not appear.

 For number type properties only, the absolute value of the
percent difference between the old and new values.

changeAmount double Does not appear.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 7 5

1 7 - U s i n g S c e n a r i o E v e n t s

μ
Property Type Scenario editor label

 For number type properties only, the absolute difference
between the old value and the new value

elementsAdded java.lang.Object[] Does not appear.

 If the changed property is an array or Collection, elementsAdded
is the array of items that are members of the new value but not
members of the old value.

elementsRemoved java.lang.Object[] Does not appear.

 If the changed property is an array or Collection,
elementsRemoved is the array of items that are members of the
old value but not members of the new value.

profileId java.lang.String Does not appear.

 The profile ID of the visitor whose profile property has changed.

reportingOldValue java.lang.String Does not appear.

 A text representation of the value of the oldValue property. This
property is used for reporting.

reportingNewValue java.lang.String Does not appear.

 A text representation of the value of the newValue property. This
property is used for reporting.

reportingChangeSign java.lang.String Does not appear.

 A text representation of the value of the changeSign property.
This property is used for reporting.

reportingChangeAmount double Does not appear.

 A Double representation of the value of the changeAmount
property. This property is used for reporting.

reportingChangePercentage double Does not appear.

 A Double representation of the value of the changePercentage
property. This property is used for reporting.

reportingElementsAdded java.lang.String Does not appear.

 A comma-separated representation of the contents of the
elementsAdded property. This property is used for reporting.

reportingElementsRemoved java.lang.String Does not appear.

 A comma-separated representation of the contents of the
elementsRemoved property. This property is used for reporting.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 7 6

1 7 - U s i n g S c e n a r i o E v e n t s

μ
Property Type Scenario editor label

siteId java.lang.String Does not appear.

 The ID of the current site. The value is provided by the Site
Context Manager.

This parameter applies to multisite environments.

AdminProfilePropertyUpdate Event
This event is triggered when an administrator changes the value of a specific profile property in a user’s
profile (or in a batch of profiles) by way of an implementation of the multi profile form handler.

You can define the properties that trigger the event through the
propertiesToSendAdminUpdateEvents property of the ProfileUpdateTrigger component. By
default, a change to any profile property triggers this event. See
/atg/userprofiling/ProfileUpdateTrigger for more information.

Class name atg.userprofiling.dms.AdminProfilePropertyUpdateMessag

e

JMS name atg.dps.AdminProfilePropertyUpdate

Display name Profile property updated by admin

Message context Session

Message scope Individual

Message source Component: /atg/userprofiling/DPSMessageSource

Class: atg.userprofiling.dms.DPSMessageSource

Component that calls the
message source

/atg/userprofiling/ProfileUpdateTrigger

How this event is triggered Triggered by the postUpdateUser() methods in the
MultiProfileUpdateFormHandler.

How to turn this event off Set to false the generateAdminProfileUpdateEvents property in
the /atg/userprofiling/ProfileUpdateTrigger component.

This event has the same properties as the ProfilePropertyUpdate event described earlier, with the
addition of the following property:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 7 7

1 7 - U s i n g S c e n a r i o E v e n t s

μ
Property Type Scenario editor label

adminProfileId java.lang.String adminProfileId

 The profile ID of the administrator who performs the update.

siteId java.lang.String Does not appear.

 The ID of the current site. The value is provided by the Site Context Manager.

This parameter applies to multisite environments.

ProfileUpdate Event
This event is triggered when a site visitor changes his or her profile by way of an implementation of the
profile form handler. It is similar to the ProfilePropertyUpdate event, except that it applies to any
change to a profile rather than to a change to a single property.

Class name atg.userprofiling.dms.ProfileUpdateMessage

JMS name atg.dps.ProfileUpdate

Display name Profile updated by user

Message context Request

Message scope Individual

Message source Component: /atg/userprofiling/DPSMessageSource

Class: atg.userprofiling.dms.DPSMessageSource

Component that calls the
message source

/atg/userprofiling/ProfileUpdateTrigger

How this event is triggered Triggered by the postUpdateUser() methods in the
ProfileFormHandler and MultiProfileUpdateFormHandler.

How to turn this event off Set to false the generateProfileUpdateEvents property in the
/atg/userprofiling/ProfileUpdateTrigger component.

The message that triggers this event contains the following properties:

Property Type Scenario editor label

changedProperties java.util.List where changedProperties

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 7 8

1 7 - U s i n g S c e n a r i o E v e n t s

μ
Property Type Scenario editor label

 A List showing the path of each property that has changed.

oldValues java.util.Map oldValues

 A Map where the map keys are the profile property paths, and
the map values are the old property values before they were
changed.

newValues java.lang.Object newValues

 A Map where the map keys are the profile property paths, and
the map values are the new property values after they were
changed.

profileId java.lang.String profileId

 The profile ID of the visitor whose profile has changed.

reportingChangedProperties java.lang.String reportingChangedProperties

 A text representation of the value of the changedProperties
property. This property is used for reporting.

reportingOldValues java.lang.String reportingOldValues

 A text representation of the contents of the oldValues
property. This property is used for reporting.

reportingNewValues java.lang.String reportingNewValues

 A text representation of the contents of the NewValues
property. This property is used for reporting.

siteId java.lang.String Does not appear.

 The ID of the current site. The value is provided by the Site
Context Manager.

This parameter applies to multisite environments.

AdminProfileUpdate Event
This event is triggered when an administrator changes or deletes a user profile or group of profiles by way
of an implementation of the multi profile form handler. It is similar to the
AdminProfilePropertyUpdate event, except that it applies to any change to a profile rather than to a
change to a specific property.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 7 9

1 7 - U s i n g S c e n a r i o E v e n t s

μ
Class name atg.userprofiling.dms.AdminProfileUpdateMessage

JMS name atg.dps.AdminProfileUpdate

Display name Profile updated by admin

Message context Session

Message scope Individual

Message source Component: /atg/userprofiling/DPSMessageSource

Class: atg.userprofiling.dms.DPSMessageSource

Component that calls the
message source

/atg/userprofiling/ProfileUpdateTrigger

How this event is triggered Triggered by the postUpdateUser() methods in the
MultiProfileUpdateFormHandler.

How to turn this event off Set to false the generateAdminProfileUpdateEvents property
in the /atg/userprofiling/ProfileUpdateTrigger
component.

This event has the same properties as the ProfileUpdate event described earlier, with the addition of the
following property:

Property Type Scenario editor label

adminProfileId java.lang.String adminProfileId

 The profile ID of the administrator who performs the update.

siteId java.lang.String Does not appear.

 The ID of the current site. The value is provided by the Site Context Manager.

This parameter applies to multisite environments.

ViewItem Event
This event is triggered when a site visitor views an item from any repository (any RepositoryItem).

Examples: Views any item

Views an item from Funds whose Aggressive Index is 3.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 8 0

1 7 - U s i n g S c e n a r i o E v e n t s

μ

Class name atg.userprofiling.dms.ViewItemMessage

JMS name atg.dps.ViewItem

Display name Views

Message context Request

Message scope Individual

Message source Component: /atg/userprofiling/DPSMessageSource

Class: atg.userprofiling.dms.DPSMessageSource

Component that calls the
message source

/atg/targeting/TargetedContentTrigger

How this event is triggered Triggered by the fireViewItemEvents servlet bean parameter
in the following targeters:

TargetingForEach

TargetingFirst
TargetingRandom
TargetingRange

Also triggered by the same parameter in the RepositoryLookup
servlet bean.

The parameter is set to false by default. See also the note below.

How to turn this event off Set to false the fireViewItemEvents servlet bean parameter.

Note: The fireContentEvent and fireContentTypeEvent servlet bean parameters included in earlier
versions of ATG products (Dynamo 4 and later) were designed to fire events only if the item that the
visitor viewed was stored in a content repository (a ContentRepositoryItem). These parameters have
been deprecated in favor of the more flexible fireViewItemEvents parameter, which is triggered when
an item from any repository (including, for example, the profile repository) is viewed.

Any existing targeters that use the fireContentEvent and fireContentTypeEvent parameters will
still work as expected; in other words, they will fire a Dynamo 4-style ContentEvent or
ContentTypeEvent if the visitor views a content repository item.

The message that triggers this event contains the following properties:

Property Type Scenario editor label

repositoryName java.lang.String an item from

<repository_name>

 The name of the repository that contains the viewed item.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 8 1

1 7 - U s i n g S c e n a r i o E v e n t s

μ
Property Type Scenario editor label

itemType java.lang.String of type

 The name of the item type (itemDescriptorName) to which this item
belongs.

repositoryId java.lang.String Does not appear . The “named”
keyword is used to specify the
appropriate item.

 The repository ID of the viewed item.

profileId java.lang.String Does not appear.

 The profile ID of the visitor who viewed the item.

item atg.repository.RepositoryItem Does not appear.

 The actual RepositoryItem object that the visitor viewed.

targeter atg.targeting.Targeter Does not appear.

 The targeter that was used to get this item, if available.

path java.lang.String Does not appear.

 The path of the page that contains the item.

siteId java.lang.String Does not appear.

 The ID of the current site. The value is provided by the Site Context Manager.

This parameter applies to multisite environments.

PageVisit Event
This event is triggered when a site visitor displays a page.

Examples: Visits any page

Visits a page named welcome.jsp

Visits a page in folder /Dynamo/Solutions/Pioneer Cycling

Note that, although the effect of this event is to fire when a specified page is displayed, the event is
actually triggered when the Personalization module issues the request for the page; no checking is
performed to see whether the page exists.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 8 2

1 7 - U s i n g S c e n a r i o E v e n t s

μ
Class name atg.userprofiling.dms.PageVisitMessage

JMS name atg.dps.PageVisit

Display name Visits

Message context Request

Message scope Individual

Message source Component: /atg/userprofiling/DPSMessageSource

Class: atg.userprofiling.dms.DPSMessageSource

Component that calls the
message source

/atg/userprofiling/PageEventTrigger, or
/atg/userprofiling/SendPageEvent (servlet bean in a JSP)

How this event is triggered The pipeline servlet
/atg/dynamo/servlet/pipeline/PageViewServletTrigger
sits in the pipeline and calls the PageEventTrigger component
when a page is viewed. Alternatively, page developers can trigger
this event by embedding the
/atg/userprofiling/SendPageEvent component in a JSP.

How to turn this event off Set to false the broadcastPageViewedEvents property in either
the
/atg/dynamo/servlet/pipeline/PageViewServletTrigger
component or the /atg/userprofiling/SendPageEvent
component (see above).

The message that triggers this event contains the following properties:

Property Type Scenario editor label

profileId java.lang.String whose profileId…

 The profile ID of the visitor who visited the page.

scenarioPathInfo java.lang.String in folder…

named…

 The path of the page that triggers the event, including the application name
and context root (or the Dynamo document root). Example: Quincy Funds
J2EE DAF Demo:/index.jsp

path java.lang.String in Dynamo folder

with Dynamo path

 The Dynamo document root path of the page that triggers this event, for
example, /demo/home/index.jhtm

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 8 3

1 7 - U s i n g S c e n a r i o E v e n t s

μ
Property Type Scenario editor label

folder java.lang.String whose folder…

 The Dynamo document root folder containing the page that triggers this
event, for example /demo/home.

siteId java.lang.String Does not appear.

 The ID of the current site. The value is provided by the Site Context Manager.

This parameter applies to multisite environments.

ScenarioEnd Event
This event is fired when a scenario is terminated for any of the following reasons:

 The scenario is deleted or disabled by an ACC user.

 The scenario is disabled by a DisableScenario action.

Note that the scenario editor does display a Scenario Ends event as an element that users can include in a
scenario, but the event does not of course have to be used explicitly in a scenario in order to be fired.

Class name atg.process.dms.ProcessEndMessage

JMS name atg.dss.ScenarioEnd

Display name Scenario Ends

Message scope Global

Message source Component: /atg/scenario/DSSMessageSource

Class: atg.scenario.dms.DSSMessageSource

Component that calls the
message source

/atg/process/ScenarioUpdateTrigger (class
atg.process.ProcessUpdateTrigger)

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 8 4

1 7 - U s i n g S c e n a r i o E v e n t s

μ
How this event is triggered The Scenario Manager generates and sends a

ProcessUpdateEvent to any configured
ProcessUpdateListeners, including the
ScenarioUpdateTrigger component. When it receives the
event, the ScenarioUpdateTrigger component determines
whether the event indicates that a scenario has been terminated,
and if so, it generates and sends the corresponding JMS message
of the type specified by its ProcessEndMessageType property
(by default, atg.dss.ScenarioEnd).

Note that only the ScenarioUpateTrigger component located
on the process editor server performs these steps. The
components on other servers receive the event but do not send
the JMS message.

How to turn this event off Set to false the sendProcessEndMessages property in the
/atg/process/ScenarioUpdateTrigger component.

The ScenarioEnd message contains the following properties:

Property Type Scenario editor label

endType int endType

 Indicates the way the scenario was terminated. The value can be REMOVE
(indicating the scenario was deleted by an ACC user), DISABLE (disabled by
an ACC user), or DISABLE_SELF (disabled as a result of a DisableScenario
action)

processName java.lang.String processName

 The name of the scenario that was terminated.

SiteChanged Event
This event is fired when a user navigates from one registered Web site to another, thus causing the site
context to change. Note that the event is designed only for use with sites supported by a multisite ATG
installation (sites registered and deployed through Site Administration).

Class name atg.multisite.dms.SiteChangedMessage

JMS name atg.multisite.SiteChanged

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 8 5

1 7 - U s i n g S c e n a r i o E v e n t s

μ
Display name Switches Site Context

Message scope Individual

Message source Component: /atg/multisite/SiteSessionEventSender

Class: atg.multisite.SiteSessionEventSender

Component that calls the
message source

/atg/dynamo/servlet/dafpipeline/SiteSessionEventTri

gger or

/atg/dynamo/servlet/pipeline/SiteSessionEventTrigge

r

How this event is triggered A SiteChanged message is fired when the value of the last visited
site in the current site context is different from the current site.

How to turn this event off Set to false the sendSiteChangedEvents property in the
/atg/dynamo/servlet/dafpipeline/SiteSessionEventTri

gger or
/atg/dynamo/servlet/pipeline/SiteSessionEventTrigge

r components

The SiteChanged message contains the following properties:

Property Type Scenario editor label

newSiteID java.lang.String Site is switched to

 The site ID of the current site.

oldSiteID java.lang.String Site is switched from

 The site ID of the last visited site (the site that triggered the event).

ProfileMarkerAdded Event
This event is triggered when a marker is added to a profile.

Class name atg.markers.MarkerAddedEventMessage

JMS name atg.profile.marker.added

Display name Profile marker added

Message context Session

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 8 6

1 7 - U s i n g S c e n a r i o E v e n t s

μ
Message scope Individual

Message source /atg/markers/RepositoryMarkerMessageSource

Component that
calls the message
source

/atg/markers/userprofiling/ProfileMarkerManager

How this event is
triggered

The ProfileMarkerManager adds a marker to a profile.

How to turn this
event off

Set the
/atg/markers/userprofiling/ProfileMarkerManager.generateEvents
property to false. When you turn off this event, you disable the
ProfileMarkerRemoved and ProfileMarkerReplaced events as well.

The event message contains the following properties that pertain to the event itself:

Property Type Scenario editor label

eventDate java.sql.Timestamp eventDate

 The date and time at which the event was generated.

markerAddedData atg.markers.MarkerData markerAddedData

 An object representing the profile marker that was
added.

markedItemId java.lang.String markedItemId

 The ID for the profile that received the marker. The
value in this property is the same as the value in the
profileId property. When a user causes a profile
marker to be added to his or her own profile, this
property is set to the active profile ID.

markedItemType java.lang.String markedItemType

 The type of repository item to which the marker was
added.

markerPropertyName Java.lang.String markerPropertyName

 The name of the profile property that stores markers.

repositoryName java.lang.String repositoryName

 The name of the repository with an item that was
marked.

parentSessionId java.lang.String parentSessionId

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 8 7

1 7 - U s i n g S c e n a r i o E v e n t s

μ
 The session ID for the session during which the event

is generated.

profileId java.lang.String profileId

 The ID for the profile that received the marker. The
value in this property is the same as the value in the
markedItemId property. When a user causes a profile
marker to be added to his or her own profile, this
property is set to the active profile ID.

sessionId java.lang.String sessionId

 The session ID for the session during which the marker
is added.

The event message contains the following properties that pertain to the marker created by the event:

Property Type Scenario editor label

Key java.lang.String Key

 The value in the marker’s key property.

Value java.lang.String Value

 The value in the marker’s value property.

Data java.lang.String Data

 The value in marker’s the data property.

createDate java.sql.Timestamp createDate

 The date and time when the marker was created.

markerItemId Java.lang.String markerItemId

 The marker’s ID.

markerItemType Java.lang.String markerItemType

 The marker’s repository item type.

ProfileMarkerRemoved Event
This event is triggered when a marker is removed from a profile.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 8 8

1 7 - U s i n g S c e n a r i o E v e n t s

μ

Class name atg.markers.MarkerRemovedEventMessage

JMS name atg.profile.marker.removed

Display name Profile marker removed

Message context Session

Message scope Individual

Message source /atg/markers/RepositoryMarkerMessageSource

Component that
calls the message
source

/atg/markers/userprofiling/ProfileMarkerManager

How this event is
triggered

The ProfileMarkerManager removes a marker from a profile.

How to turn this
event off

Set the
/atg/markers/userprofiling/ProfileMarkerManager.generateEvents
property to false. When you turn off this event, you disable the
ProfileMarkerAdded and ProfileMarkerReplaced events as well.

The event message contains the following properties:

Property Type Scenario editor label

eventDate java.sql.Timestamp eventDate

 The date and time when the event was generated.

markerRemovedData atg.markers.MarkerData markerRemovedData

 An object representing the marker that was removed.

markedItemId java.lang.String markedItemId

 The ID for the profile from which the marker was
removed. The value in this property is the same as the
value in the profileId property. When a user causes
a profile marker to be removed from his or her own
profile, this property is set to the active profile ID.

markedItemType java.lang.String markedItemType

 The type of repository item from which the marker
was removed.

markerPropertyName Java.lang.String markerPropertyName

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 8 9

1 7 - U s i n g S c e n a r i o E v e n t s

μ
 The name of the profile property that held the marker

that was removed.

repositoryName java.lang.String repositoryName

 The name of the repository name with the item that
held the marker.

parentSessionId java.lang.String parentSessionId

 The session ID for the session during which the event
was generated.

profileId java.lang.String profileId

 The ID for the profile from which the marker was
removed. The value in this property is the same as the
value in the markedItemId property. When a user
causes a profile marker to be removed from his or her
own profile, this property is set to the active profile ID.

sessionId java.lang.String sessionId

 The session ID for the session during which the marker
was removed.

The event message contains the following properties that pertain to the marker removed by the event. If
more than one marker is removed, a separate message is generated for each removed marker.

Property Type Scenario editor label

key java.lang.String Key

 The key property value of the marker being
removed.

value java.lang.String Value

 The value property value of the marker being
removed.

data java.lang.String Data

 The data property value of the marker being
removed.

createDate java.sql.Timestamp createDate

 The date and time when the marker was created.

markerItemId java.lang.String markerItemId

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 9 0

1 7 - U s i n g S c e n a r i o E v e n t s

μ
 The repository ID for the marker being removed.

markerItemType java.lang.String markerItemType

 The repository item type of the marker being
removed.

ProfileMarkerReplaced Event
This event is triggered when one profile marker is replaced by another.

Class name atg.markers.MarkerReplacedEventMessage

JMS name atg.profile.marker.replaced

Display name Profile marker replaced

Message context Session

Message scope Individual

Message source /atg/markers/RepositoryMarkerMessageSource

Component that
calls the message
source

/atg/markers/userprofiling/ProfileMarkerManager

How this event is
triggered

The ProfileMarkerManager replaces one or more markers with another
marker.

How to turn this
event off

Set the
/atg/markers/userprofiling/ProfileMarkerManager.generateEvents
property to false. When you turn off this event, you disable the
ProfileAddedMarker and ProfileRemovedMarker events as well.

The event message contains the following properties that pertain to the event itself:

Property Type Scenario editor label

eventDate java.sql.Timestamp eventDate

 The date on which the event was generated.

markerAddData atg.markers.MarkerData markerAddData

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 9 1

1 7 - U s i n g S c e n a r i o E v e n t s

μ
 An object representing the marker that was added.

markerReplacedData atg.markers.MarkerData markerReplacedData

 An object representing the marker that was replaced.

markedItemId java.lang.String markedItemId

 The ID for the profile from which the marker was
replaced. The value in this property is the same as the
value in the profileId property. When a user causes
a profile marker to be replaced on his or her own
profile, this property is set to the active profile ID.

markedItemType java.lang.String markedItemType

 The type of repository item from which the marker
was replaced.

markerPropertyName Java.lang.String markerPropertyName

 The name of the profile property that holds the
marker being replaced.

repositoryName java.lang.String repositoryName

 The repository name of Profile item that held the
marker.

parentSessionId java.lang.String parentSessionId

 The session ID for the session during which the event
was generated.

profileId java.lang.String profileId

 The ID for the profile on which a marker is being
replaced. The value in this property is the same as the
value in the markedItemId property. When a user
causes a profile marker to be replaced on his or her
own profile, this property is set to the active profile ID.

sessionId java.lang.String sessionId

 The session ID for the session during which the marker
is replaced.

The event message contains two objects, one of which describes the new, replacement marker and the
other describes the marker being replaced. The following section describes the properties on these
objects:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 9 2

1 7 - U s i n g S c e n a r i o E v e n t s

μ
Property Type Scenario editor label

key java.lang.String key

 The key property value of the marker.

value java.lang.String value

 The value property value of the marker.

data java.lang.String data

 The data property value of the marker.

createDate java.sql.Timestamp createDate

 The date and time when the marker was created.

markerItemId java.lang.String markerItemId

 The repository ID of the marker.

markerItemType java.lang.String markerItemType

 The repository item type of the marker.

Business Stage Reached Event
This event is triggered when an object reaches a stage in a business process. For more information, see
the Defining and Tracking Business Processes chapter.

Class name atg.markers.bp.BusinessProcessEventMessage

JMS name atg.business.process.stage.reached

Display name Business Process Stage Reached

Message context session

Message scope individual

Message source Component:
/atg/markers/RepositoryMarkerMessageSource

Class: atg.markers.MarkerMessageSource

Component that calls the message
source

/atg/markers/bp/BusinessProcessManager

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 9 3

1 7 - U s i n g S c e n a r i o E v e n t s

μ
How this event is triggered This event is triggered by the BusinessProcessManager

when an object is marked with a new business process
stage.

How to turn this event off Set to false the generateEvents property in the
BusinessProcessConfiguration or
BusinessProcessManager component.

The message that triggers this event contains the following properties:

Property Type Description

businessProcessName String The name of the business process in which the
stage has been reached.

businessProcessStage String The name of the stage in the business process
that has been reached

businessProcessStageSequence int The sequence number of the stage.

processStartTime Timestamp The time the first stage in the business process
was reached.

Scenario Events and Transient Properties
As explained in the SQL Repositories chapter of the ATG Repository Guide, you can set up repository items
to have transient attributes, which are readable and writable but are neither stored in nor read from the
persistent data store.

For a scenario to access transient profile properties, it must include an event element that establishes a
session has begun (for example, a Session Starts or Views event). The event must occur before any
subsequent scenario actions that use the transient properties.

Bear in mind also that the scenario can evaluate transient properties as long as the user’s session is active.
When the session expires, the Personalization module sets the transient property value to null, and the
Scenarios module can no longer use it as a criterion for scenario evaluation.

Scenarios and Anonymous Users
In some cases, you may have scenarios that are specifically designed to handle visitors who start as
anonymous users and then either log in or register to become site members while they are progressing
through the scenario.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 9 4

1 7 - U s i n g S c e n a r i o E v e n t s

μ
The Scenarios module manages the transition from anonymous to registered visitor by means of an
instance of atg.scenario.userprofiling.ScenarioProfileFormHandler, which is a subclass of
atg.userprofiling.ProfileFormHandler. The ScenarioProfileFormHandler takes the scenario
instances associated with an anonymous visitor and attaches them to the persistent visitor when he or
she registers or logs in. With this behavior, guest users can progress through a scenario and then, when
they become persistent users, the Scenarios module does not lose track of their scenario states.

For the Scenarios module, the /atg/userprofiling/ProfileFormHandler component is
automatically overridden to point to the default ScenarioProfileFormHandler, so there are no
configuration steps to perform. However, if you want to extend the ProfileFormHandler class and keep
the ScenarioProfileFormHandler functionality described here, you must subclass
ScenarioProfileFormHandler instead of ProfileFormHandler.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 9 5

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
18 Using Scenario Actions

This section describes the default action elements you can insert into a scenario segment. Note that, as for
all scenario elements, you create actions through the scenario editor in the ACC (see Creating a Scenario:
Basic Steps in the ATG Personalization Guide for Business Users).

Scenario actions are implementations of the atg.process.action.Action interface. In general terms,
they represent actions that you want the Scenarios module to perform as a response to some form of user
behavior (represented by scenario events) – for example, you might want the system to send a “Welcome”
email to anyone who registers at one of your sites. You would create a scenario that includes a Registers
event followed by a Send Email action; when the Registers event is triggered by the site visitor, the Send
Email action is performed by the Scenarios module.

All scenario actions have corresponding entries in the action registry within the Scenario Manager
configuration file (scenarioManager.xml). The action registry tags define various settings for each
action, including information that determines whether an action is individual or collective, and how you
want the system to respond to any errors that occur while an action is being executed.

The following table describes the action registry tags that apply to all action elements. See also the
Process Manager document type definition (DTD) located in <ATG10dir>\DSS\lib\classes.jar.

Tag Required Description

<action-name>

</action-name>

Yes The logical name of the action as passed to an
action handler.

<action-class>

</action-class>

Yes A Java class that is an implementation of the
atg.process.action.Action interface.

<action-configuration>

</action-configuration>

No The Nucleus path of the action’s configuration
file.

<icon-resource>

</icon-resource>

No A CLASSPATH-relative path to a 24x24 icon
resource for a descriptor. Note that, for reasons
of backwards compatibility, this is not a
resource bundle key.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 9 6

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
Tag Required Description

<action-terminal>

</action-terminal>

No Boolean. Terminal actions are those that cannot
be followed by other elements in a scenario,
usually for reasons of logic. For example, the
Disable Scenario action by definition cannot
have any subsequent elements. The scenario
editor indicates an action is terminal by
showing no connecting line after it and by
displaying in red any elements that a user
attempts to add.

<action-execution-policy>

</action-execution-policy>

No Determines whether an action applies to
individual users in a scenario (individual) or to
all users in a scenario (collective). The default
value is individual. For more information, see
Specifying the <action-execution-policy> Tag.

<action-error-response>

</action-error-response>

No Specifies what to do if an error occurs while the
action is being executed. You can specify
delete, continue, or retry as the value. For
descriptions of these options, see Specifying the
<action-error-response> Tag.

<action-parameter>

</action-parameter>

At least one A named parameter passed to an action. Its
value is an expression, one that might be used,
for example, as the component of a filter. By
default, action parameters are Strings.

The following list shows the possible child tags for an <action-parameter> tag:

Tag Required Description

<action-parameter-name>

</action-parameter-name>

Yes The PDL name of the
parameter.

<action-parameter-class>

</action-parameter-class>

No An optional type for the
parameter used to constrain it
in the ACC user interface. The
default type is String.

<action-parameter-repository-name>

</action-parameter-repository-name>

No If the parameter is a repository
ID or an array of repository IDs,
this tag supplies the name of
the repository.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 9 7

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
Tag Required Description

<action-parameter-repository-item-type>

</action-parameter-repository-item-type>

No If the parameter is a repository
ID or an array of repository IDs,
this tag supplies the repository
item type. In the ACC, users can
select any item of this type or
its subtypes for this action.

<action-parameter-expression-construct>

</action-parameter-expression-construct>

No An expression editor grammar
construct name that can be
used to edit the value of this
parameter. If specified, this tag
permits the construct to
control custom editing of an
individual parameter.

For information on the <resource-bundle>, <display-name-resource>, <required>, <expert>,
<description>, and <description-resource> tags, refer to the DTD for a standard SQL repository in
the ATG Repository Guide.

The following example shows the action registry tags for the EmailNotify action:

<action>

 <action-name>

 emailNotify

 </action-name>

 <action-class>

 atg.process.action.EmailNotify

 </action-class>

 <action-configuration>

 /atg/scenario/configuration/EmailNotifyConfiguration

 </action-configuration>

 <resource-bundle>

 atg.ui.scenario.TemplateResources

 </resource-bundle>

 <display-name-resource>

 emailNotify.displayName

 </display-name-resource>

 <icon-resource>

 emailNotify.icon

 </icon-resource>

 <description-resource>

 emailNotify.description

 </description-resource>

 <action-execution-policy>

 collective

 </action-execution-policy>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 9 8

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
 <action-error-response>

 delete

 </action-error-response>

 <action-parameter>

 <action-parameter-name>

 recipientIds

 </action-parameter-name>

 <required>

 false

 </required>

 <description-resource>

 emailNotify.recipientIds.description

 </description-resource>

 </action-parameter>

 <action-parameter>

 <action-parameter-name>

 recipientAddresses

 </action-parameter-name>

 <required>

 false

 </required>

 <description-resource>

 emailNotify.recipientAddresses.description

 </description-resource>

 </action-parameter>

 <action-parameter>

 <action-parameter-name>

 recipientAddress

 </action-parameter-name>

 <required>

 false

 </required>

 <description-resource>

 emailNotify.recipientAddress.description

 </description-resource>

 </action-parameter>

 <action-parameter>

 <action-parameter-name>

 template

 </action-parameter-name>

 <required>

 true

 </required>

 <description-resource>

 emailNotify.template.description

 </description-resource>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

2 9 9

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
 </action-parameter>

 <action-parameter>

 <action-parameter-name>

 application-name

 </action-parameter-name>

 <required>

 false

 </required>

 <description-resource>

 emailNotify.application-name.description

 </description-resource>

 </action-parameter>

</action>

The remaining sections of this chapter describe the following default scenario actions:

 Modify Action

 Set Random Action

 Redirect Action

 FillSlot Action

 EmptySlot Action

 Disable Scenario Action

 Record Event Action

 Record Audit Trail Action

 Filter Slot Contents Action

 Add Marker To Profile Action

 Remove All Markers From Profile Action

 Remove Markers From Profile Action

 Add Stage Reached Action

 Remove Stage Reached Action

 E-mail-Related Actions: EmailNotify and SendEmail

Modify Action
The Modify action does any of the following:

 Changes a specified property in the visitor’s profile, for example: Change Person's
interests to skating.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 0 0

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
 Sets the value of a scenario variable (the Set Variable action in the scenario editor).

 Changes the value of a scenario variable.

 Changes a person’s parent organization or set of roles.

Display name in the scenario editor: Change

Action Registry Tag Value

action name modify

configuration component none

action execution policy individu
al

action error response delete

The Modify action has the following parameters:

Parameter Required Description

modified yes The property, variable, roles, or organization to change

modifier yes The value to set

operator yes The type of change (for example, append, assign, or
subtract)

Set Variable Action

Note that the Set Variable action in the scenario editor is a variant of the Modify action. You can use the
Set Variable action to define a value that you can use, for example, to trigger an action later in the same
scenario segment (scenario variables apply only to the segment in which you set them).

Example:

Set variable LateNightShopper to Yes

The following example from an SDL file shows a Set Variable action that creates a variable called
LateNightShopper and sets it to the value VeryLate.

<action-name construct="variable-declaration-action">modify</action-name>

 <action-param name="modified">

 <variable type="java.lang.String">LateNightShopper</variable>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 0 1

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
 </action-param>

 <action-param name="operator">

 <constant>assign</constant>

 </action-param>

 <action-param name="modifier">

 <constant>Yes</constant>

 </action-param>

Scenario variables can be any of the following types:

 String

 Long

 Double

 Flag

 Date

SetRandom Action
The SetRandom action assigns a random value between 0.0 and 1.0 to the given expression. The
expression must be a MutableExpression that evaluates to a Double. Note that this action does not
appear in the scenario editor; it is used by the Scenarios module during the process of creating a
randomizing fork element.

Action Registry Tag Value

action name setRand

om

configuration component none

action execution policy individual

action error response delete

The SetRandom action has the following parameters:

Parameter Required Description

modified yes The expression to
modify.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 0 2

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
Redirect Action

The Redirect action redirects the current HTTP request to the specified URL.

Example: Redirect to page with Dynamo path
http://myhost:8080/QuincyFunds/en/RegistrationError.jsp

Action Registry Tag Value

action name redirect

configuration component /atg/scenario/configuration/RedirectActionConfigurati

on

action execution policy individual

action error response continue

The Redirect action has the following parameters:

Parameter Required Description

path yes The path of the page to which you want to redirect users.
Corresponds to the ACC option Redirect to page with
Dynamo path…

Users specify the fully qualified path of the e-mail template to
send. If the document is outside the Dynamo document root
because it is part of a non-DAS J2EE application, they must
specify the application context root manually.

This parameter reflects the way that users specified document
paths in versions of Dynamo earlier than 6.0.0 and exists
mostly for compatibility with those versions.

scenarioPathInfo yes The path of the page to which you want to redirect users.
Corresponds to the ACC option Redirect to page with
path….

Users specify the path by selecting the page in a document
picker dialog box. The path is automatically prepended with
either the application context root (if the template is part of a
J2EE application) or a flag indicating that the template is
located in the Dynamo document root.

Note: When you add a Redirect action to a scenario, make sure that the action does not conflict with any
other redirect activity that may be occurring on the site. For example, if you design a scenario that

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 0 3

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
redirects users after a Login event, make sure your login pages do not perform their own redirect as well.
Conflicting redirects could cause unexpected behavior to occur.

RedirectActionConfiguration Component

The following example shows the default properties file for the RedirectActionConfiguration
component, which you use to define settings for the Redirect action.

Version: $Change: 244651 $$DateTime: 2002/06/24 09:19:29 $

$class=atg.scenario.action.RedirectRequestConfiguration

webAppRegistry=/atg/registry/WebApplicationRegistry

The webAppRegistry property points to the registry of all Web applications that are on the J2EE server
where Dynamo is running.

FillSlot Action
Use to display content (or any other repository) items in a given slot. Specify the slot to use and the
repository items to show in it.

Example: Add Items to Slot ProductSlot named Springtrak Shatterproof Helmet,
Arribia Bike Shorts, Springtrak Insulated Water Bottle

You can also specify an existing targeter instead of a list of content items. In this case, the system uses the
criteria in the targeter to define the content items to display.

For more information, see Using Slots.

Scenario editor display name: Add Items to Slot

Action Registry Tag Value

action name fillSlot

configuration component /atg/scenario/configuration/SlotActionConfigurati

on

action execution policy collective

action error response continue

The FillSlot action has the following parameters:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 0 4

1 8 - U s i n g S c e n a r i o A c t i o n s

μ

Parameter Required Description

slot yes The slot to fill. Can be an instance of
atg.scenario.targeting.RepositoryItemSlot or
atg.scenario.targeting.Slot. Example:

<nucleus-property>

 <nucleus-path>/atg/registry/Slots

 /QFHomePageSlot</nucleus-path>

</nucleus-property>

values no If the slot is of type atg.scenario.targeting.Slot (but not
RepositoryItemSlot), this parameter holds the array of objects that
will be added to the slot.

ids no The set of repository items to include in this slot. Example:

<array type="java.lang.String[]">

 <constant>/repositories/

 Images/promo-signup.html</constant>

</array>

targeter no The targeter to use (if any) to populate the slot. Example:

<nucleus-property>

 <nucleus-path>/atg/

 registry/RepositoryTargeters/

 Images/aggressivePromo</nucleus-path>

</nucleus-property>

priority no The relative priority of display for items in this slot. Note that for slots, 0
is the lowest priority and the default setting.

SlotActionConfiguration Component

The following example shows the properties file for the SlotActionConfiguration component, which
you can use to define various settings for the FillSlot and EmptySlot actions (see the next section for
information on the EmptySlot action).

Version: $Change: 233510 $$DateTime: 2002/03/25 20:52:27 $

$class=atg.scenario.action.SlotActionConfiguration

targetingSourceMap=/atg/targeting/TargetingSourceMap

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 0 5

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
EmptySlot Action

Use to clear items that you previously included in a slot. For more information, see Using Slots.

Example: Remove items from HomePageSlot named helmet.gif

Scenario editor display name: Remove Items from Slot

Action Registry Tag Value

action name emptySlot

configuration component /atg/scenario/configuration/SlotActionConfigurati

on

action execution policy collective

action error response continue

The EmptySlot action has the following parameters:

Parameter Required Description

slot yes The slot to empty. Example:

<nucleus-property>

 <nucleus-path>/atg/registry/Slots

 /QFHomePageSlot</nucleus-path>

</nucleus-property>

values no If the slot is of type atg.scenario.targeting.Slot (but not
RepositoryItemSlot), this parameter holds the array of objects that
will be removed from the slot.

ids no The set of repository items to remove from this slot.

targeter no The targeter to use (if any) to remove items from the slot. Example:

<nucleus-property>

 <nucleus-path>/atg/

 registry/RepositoryTargeters/

 Images/aggressivePromo</nucleus-path>

</nucleus-property>

See the previous section for information on the SlotActionConfiguration component.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 0 6

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
DisableScenario Action

Use this action to disable a scenario for all users who are passing through it when the action occurs. The
action has the same effect as manually disabling a scenario through the ACC; for more information, refer
to the ATG Personalization Guide for Business Users.

Example: On Dec 31, 2004 at 12:00:00 AM --– Disable Scenario

Scenario editor display name: Disable scenario

Action Registry Tag Value

action name disableScenario

configuration component /atg/scenario/configuration/DisableScenarioConfigurati

on

action terminal true

action execution policy collective

action error response delete

This action has no parameters.

Note that this action disables only the scenario in which it occurs; you cannot disable a scenario from
within another scenario.

The action does not disable the scenario itself, because this behavior requires making a change to the
scenario’s definition file, which can be done only by the process editor server. Instead, the
DisableScenario action sends an atg.dss.DisableProcess message on a SQL JMS topic to all global
servers. The message is ignored by all servers except the process editor server, which makes the following
changes to the scenario’s definition file:

 The enabled attribute is set to false.

 The modification-time attribute is set to the current time.

 The last-modified-by attribute is set to the string system to indicate that the
scenario was disabled automatically rather than by an ACC user.

 The modified-by-server attribute is set to true. This setting allows the process
update and process end messages sent by all servers in response to this action to
include appropriate update and end code values.

DisableScenarioConfiguration Component

The following example shows the properties file for the DisableScenarioConfiguration component,
which you can use to define various settings for the DisableScenario action:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 0 7

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
Version: $Change: 289519 $$DateTime: 2003/09/26 13:51:21 $

$class = atg.process.action.DisableProcessConfiguration

processMessageSource=/atg/scenario/DSSMessageSource

RecordEvent Action
Use to track data for inclusion in reports. Allows you to track a scenario event or action and store
information about it in a specified dataset.

Example: Record event Logs In in dataset /logins.xml

For more information, see Using Scenario Recorders.

Scenario editor display name: Record Event

Action Registry Tag Value

action name recordEvent

configuration component /atg/scenario/configuration/RecordActionConfigurati

on

action execution policy collective

action error response continue

The RecordEvent action has the following parameters:

Parameter Required Description

dataset yes The XML file that defines the dataset where you want to record the
event. Example:

<constant>/clickthrough.xml</constant>

RecordActionConfiguration Component

The following example shows the properties file for the RecordActionConfiguration component,
which you can use to define various settings for the RecordEvent and RecordAuditTrail actions (see
the next section for information on the RecordAuditTrail action).

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 0 8

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
Version: $Change: 233510 $$DateTime: 2002/03/25 20:52:27 $

$class=atg.process.action.RecordActionConfiguration

recorderManager=/atg/reporting/DatasetRecorderManager

Record Audit Trail Action
Use this action to track data that monitors scenario activities. For more information, see Recording
Scenario Activity in the ATG Personalization Guide for Business Users.

Action Registry Tag Value

action name recordAuditTrail

configuration component /atg/scenario/configuration/RecordActionConfigurati

on

action execution policy collective

action error response continue

The RecordAuditTrail action has the following parameters:

Parameter Required Description

label yes The label you want to use to identify this data in the dataset.

<constant>FirstTimeBuyer</constant>

dataset yes The XML file that defines the dataset where you want to record the
event. Example:

<constant>/audittrail.xml</constant>

See the previous section for information on the RecordActionConfiguration component.

Filter Slot Contents Action
 Use filerSlot to remove items from a slot using a collection filter. When you use this action, you
specify the slot name and the component that implements the filtering conditions you want to use.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 0 9

1 8 - U s i n g S c e n a r i o A c t i o n s

μ

Action Registry Tag Value

action name filterSlot

configuration
component

/atg/collections/filter/scenario/FilterActionConfigurati

on

action execution policy collective

action error response continue

The filterSlot action has the following parameters:

Parameter Required Description

slot yes The slot holding objects that will be filtered.

filter yes The collection filtering component that defines the filtering
conditions.

Add Marker To Profile Action
The AddMarkerToProfile action creates a marker and adds it to a specified property on the active user
profile.

Action Registry Tag Value

action name atg.markers.userprofiling.AddMarkerToProfile

configuration component /atg/markers/userprofiling/ProfileScenarioMarkerConfig

action execution policy Individual

action error response Continue

The AddMarkerToProfile action has the following parameters:

Parameter Required Description

key yes The value given to the key property on the marker being
created.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 1 0

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
value no The value given to the value property on the marker being

created.

data no The value given to the data property on the marker being
created.

duplicationMode no The duplication mode used for the marker being created.

Remove All Markers From Profile Action
The RemoveAllMarkersFromProfile action removes all markers from a specified property on the active
user profile.

Action Registry Tag Value

action name atg.markers.userprofiling.RemoveAllMarkersFromProfile

configuration component /atg/markers/userprofiling/ProfileScenarioMarkerConfig

action execution policy Individual

action error response Continue

Remove Markers From Profile Action
The RemoveMarkersFromProfile action removes, from the active user profile, all markers in a specific
property that have the particular key, value, and data values you indicate.

Action Registry Tag Value

action name atg.markers.userprofiling.RemoveMarkersFromProfile

configuration component /atg/markers/userprofiling/ProfileScenarioMarkerConfig

action execution policy Individual

action error response Continue

The RemoveMarkersFromProfile action has the following parameters:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 1 1

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
Parameter Required Description

key yes The key property value that a marker must have in order to be
removed from the profile.

value no The value property value that a marker must have in order to be
removed from the profile.

data no The data property value that a marker must have in order to be
removed from the profile.

Add Stage Reached Action
Use to add a stage in a business process to an object. Specify the name of the business process and the
stage. For more information, see the Defining and Tracking Business Processes chapter.

Example: Add stage reached with process name Shopping Process and stage =
AddedToCart

Action Registry Tag Value

action name addBusinessProcessStage

configuration
component

/atg/markers/bp/scenario/BusinessProcessScenarioConfigurat

ion

action execution
policy

individual

action error response continue

The Add Stage Reached action has the following parameters:

Parameter Required Description

business process

name

yes The name of the business process to which a stage is
being added.

stage yes The name for the stage being added.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 1 2

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
Remove Stage Reached Action

Use to remove a business process stage or stages from an object. Specify the name of the business
process and the stage or stages to be removed. For more information, see the Defining and Tracking
Business Processes chapter.

Example: Remove stage(s) reached with process name Shopping Process and stage =
AddedToCart

Action Registry Tag Value

action name removeBusinessProcessStage

configuration
component

/atg/markers/bp/scenario/BusinessProcessScenarioConfigurat

ion

action execution
policy

individual

action error response continue

The Remove Stage Reached action has the following parameters:

Parameter Required Description

business process

name

yes The name of the business process to which a stage is
being removed.

stage yes The name for the stage being removed.

E-mail-Related Actions: EmailNotify and SendEmail
The actions described in this section allow you to send a targeted e-mail as part of a scenario. The first,
EmailNotify, is designed for workflow situations in which you want to alert other users in the
organization that a specific scenario event has occurred. The second, SendEmail, allows you to send e-
mail messages to site visitors, for example as part of a targeted e-mail campaign. With both actions, you
specify a JSP or JHTML page that serves as the template for the body of the message.

Both actions are site aware, allowing you to send e-mails or notifications with content that is specific to
one or more Web sites supported by your system. To enable this behavior, the classes for these actions
include an optional site property, which they set on the TemplateEmailInfo object. This object in turn
passes the value to the TemplateEmailSender, which retrieves the site context, creates the message,
and uses the site context to customize the template (for example by supplying the applicable Web site

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 1 3

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
name in a “Thank you for registering at…” message). See the examples for each action. For more
information about setting the site context, refer to the ATG Multisite Administration Guide.

 EmailNotify Action

 SendEmail Action

EmailNotify Action

Sends a specified e-mail message to a given recipient or group of recipients. You can define the recipients
as users (people with user profiles in the Profile repository) or e-mail addresses.

Scenario editor display name: Send Notification

Examples:

Send notification with path My Web App:/en/email/complaint.jsp to address

mgarcia@example.com

Send notification with path My Web App:/en/email/complaint.jsp to address

mgarcia@example.com with site Budget Pet Supplies

Registers where Site is MyStore > Send notification with path Example

Corps Web App:/en/newMember.jsp to people Amy Stevens with site

Event's Site

Note that the site can be set by the preceding event, as shown in the last example above.

This element is designed for situations in which you want to notify a person or group in response to an
earlier event in the scenario. For example, you might want to notify your Sales department if a site visitor
displays a page showing pricing information about a new product. By contrast, the Send E-mail action
(see below) is designed for situations in which you want to send a message as part of an e-mail campaign
to a targeted group of site visitors.

Note that the EmailNotify action is persisted to the database only if the recipient is a user profile.
Actions whose recipients are specified as e-mail addresses are not persisted.

Action Registry Tag Value

action name emailNotify

configuration component /atg/scenario/configuration/EmailNotifyConfigurati

on

action execution policy collective

action error response delete

The EmailNotify action has the following parameters:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 1 4

1 8 - U s i n g S c e n a r i o A c t i o n s

μ

Parameter Required Description

recipientIds no The profile IDs of the people to whom this notification is
sent.

recipientAddresses no The e-mail addresses to which this notification is sent.
(Used in cases where there are multiple recipients).

recipientAddress no The e-mail address to which this notification is sent.

template no The path of the template to send. Corresponds to the ACC
option Send notification with Dynamo path…

Users specify the fully qualified path of the e-mail template
to send. If the document is outside the Dynamo document
root because it is part of a non-DAS J2EE application, they
must specify the application context root manually.

This parameter reflects the way that users specified
document paths in versions of ATG products before 6.0.0
and exists mostly for compatibility with those versions.

scenarioPathInfo no The path of the template to send. Corresponds to the ACC
option Send notification with path….

Users specify the path of the e-mail template to send by
selecting the template in a document picker dialog box.
The path is automatically prepended with either the
application context root (if the template is part of a J2EE
application) or a flag indicating that the template is located
in the Dynamo document root.

site no (Multisite environments) The Web site to use as the context
for the template. Corresponds to the ACC option Send
notification with path… to people… with site….

EmailNotifyConfiguration Component

The following example shows the properties file for the EmailNotifyConfiguration component,
which you can use to define various settings for the EmailNotify action.

Version: $Change: 246405 $$DateTime: 2002/07/10 17:43:59 $

$class = atg.process.action.EmailNotifyConfiguration

defaultEmailInfo=/atg/scenario/DefaultTemplateEmailInfo

emailSender=/atg/scenario/IndividualEmailSender

profileRepository=/atg/userprofiling/ProfileAdapterRepository

webAppRegistry=/atg/registry/WebApplicationRegistry

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 1 5

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
set to true if you want to render an email with the scenario subject's profile

but send the email to someone other than the scenario subject

renderTemplateWithProcessSubject=false

By default, the profile you can associate with an EmailNotify message is the profile of the person to
whom it is sent, not the profile of the person passing through the scenario. This behavior means that any
profile-related dynamic content that you include in the body of the message will reference the recipient’s
profile. However, suppose you want to design a scenario that alerts your customer support department
whenever a customer makes an unusually large purchase. You want to send the message to a support
rep, but you want to include information from the customer’s profile in the body of the message (her
login, order number, and order total, for example). To do this, you can set the
renderTemplateWithProcessSubject property of the EmailNotifyConfiguration component to
true. This setting uses the profile of the person going through the scenario to resolve any content in the
body of the message, but sends the message to the person you specify when you create the
EmailNotify action in the scenario editor.

Note that you can maintain two versions of the EmailNotify action, one with the
renderTemplateWithProcessSubject property set to true and one with the property set to false.

SendEmail Action

Sends a specified e-mail message to the visitors who have reached this point in the scenario. (See also the
EmailNotify action.)

Examples:

Send e-mail with path My Web App:/en/email/ordershipped.jsp

Send e-mail with path My Web App:/en/email/welcome.jsp with Site

Gourmet Sausages

Logs In with Site Gourmet Sausages > Send Send e-mail with path

My Web App:/en/email/welcomeback.jsp with Site Event's Site

Note that the site can be set by the preceding event, as shown in the last example above.

Action Registry Tag Value

action name sendEmail

configuration component /atg/scenario/configuration/SendEmailConfigurati

on

action execution policy individual

action error response delete

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 1 6

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
The SendEmail action has the following parameters:

Parameter Required Description

template no The path of the template to send. Corresponds to the ACC
option Send email with Dynamo path…

Users specify the fully qualified path of the e-mail template
to send. If the document is outside the Dynamo document
root because it is part of a non-DAS J2EE application, they
must specify the application context root manually.

This parameter reflects the way that users specified
document paths in versions of ATG products before 6.0.0
and exists mostly for compatibility with those versions.

scenarioPathInfo no The path of the template to send. Corresponds to the ACC
option Send email with path….

Users specify the path of the e-mail template to send by
selecting the template in a document picker dialog box.
The path is automatically prepended with either the
application context root (if the template is part of a J2EE
application) or a flag indicating that the template is located
in the Dynamo document root.

ignoringContactFat

igue

no Allows you to override any daysContactFatigue or
hoursContactFatigue settings in the
TemplateEmailSender. These settings are used to
prevent overexposure to mailings, but they can be
overridden for important messages. See Avoiding E-mail
Fatigue.

site no (Multisite environments) The Web site to use as the context
for the template. Corresponds to the ACC option Send
email with path … with site…

SendEmail Configuration Component

The following example shows the default properties file for the SendEmailConfiguration component,
which you use to define various settings for the SendEmail action.

Version: $Change: 244651 $$DateTime: 2002/06/24 09:19:29 $

$class=atg.scenario.action.SendEmailConfiguration

defaultEmailInfo=/atg/scenario/DefaultTemplateEmailInfo

individualEmailSender=/atg/scenario/IndividualEmailSender

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 1 7

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
collectiveEmailSender=/atg/scenario/CollectiveEmailSender

webAppRegistry=/atg/registry/WebApplicationRegistry

These properties are described below.

Property Description

defaultEmailInfo The TemplateEmailInfo object that supplies the default
information for all emails sent out by this action.

individualEmailSender The TemplateEmailSender component used to send email in an
individual context.

collectiveEmailSender The TemplateEmailSender component used to send email in a
collective context.

webAppRegistry The registry of all Web applications that are on the J2EE server where
Dynamo is running.

For information on configuring the TemplateEmailSender components for use with the SendEmail
action, refer to Setting Up Scenario E-mail Sender Components.

Identifying Mailings Sent by a Single SendEmail Action

The batch_exec_id entry in the dps_mailing table contains a unique ID that corresponds to the
SendEmail action responsible for initiating the mailing. You can use the batch_exec_id to group all
mailings sent by the same SendEmail action, allowing you to identify them easily through the View
Grouped display in the ATG Dynamo Server Admin Component Browser.

Accessing Scenario Variables in an E-mail Template

In some cases, you may want to set a variable in a scenario and then reference the variable in the body of
an e-mail message that the scenario sends out (using either the EmailNotify or the SendEmail action).
In the following example, you set up a scenario that watches for a customer to make a purchase, tracks
the order ID in a variable called orderNumber and the date the order was placed in a variable called
orderDate, and then sends the customer an e-mail that includes both pieces of information. The scenario
includes the following elements:

You could then add the following lines to the email template orderreceived.jsp:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 1 8

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
<p>Order number

<dsp:valueof param="context.processInstance.contextStrings.orderNumber"/>

<p>was received on

<dsp:valueof param="context.processInstance.contextDates.orderDate"/>

(Note: The context variable is bound to the template at runtime, so the value of the variable does not
appear if you simply preview the template in a Web browser, for example by using the preview features in
the ACC. If you want to make sure that the correct values appear, set up a test e-mail address and send the
message to it.)

The valueof tag references the process execution context, an implementation of the interface
processExecutionContext that extends the atg.process package. The following properties of the
context component are available for use in the e-mail template:

 processInstance. An instance of an individualScenario repository item
descriptor. (The definition of this repository item is contained in the default
userProfile.xml file.)

 subject. An instance of the user repository item descriptor.

 messageType. A String that represents the JMS type of the message that triggered the
scenario.

 individual. A Boolean property that indicates whether the scenario context is
collective (false), which means it applies to all users passing through the scenario, or
individual (true), which means it applies only to individual users. Note that, although
you can use either value of this boolean property in the body of an e-mail, only
individual process instances (see processInstance above) will contain a context that
can be used to extract the value of a variable set during the scenario.

The page compiler uses Dynamic Beans to reference subproperties of these context elements. In the
example above, contextStrings and contextDate are subproperties of the processInstance. Other
processInstance subproperties that you can reference in this way are as follows:

 contextBooleans

 contextLongs

 contextDoubles

For more information on Dynamic Beans, refer to the ATG Programming Guide.

Sending Attachments with Scenario-Based E-mail Messages

You can attach files to an e-mail message that you send with the EmailNotify or SendEmail scenario
action. To do so, edit the associated JSP e-mail template (for example, DSSJ2EEDemo/j2ee-
apps/QuincyFunds/web-app/en/email/newfund.jsp) , adding a line similar to the following:

<dsp:setvalue value="C:/meetings/agenda.doc,

C:/meetings/minutes.txt" param="messageAttachments"/>

For a JHTML template, add a line similar to the following:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 1 9

1 8 - U s i n g S c e n a r i o A c t i o n s

μ
<setvalue param="messageAttachments"

value="C:/meetings/agenda.doc,C:/meetings/minutes.txt">

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 2 0

1 8 - U s i n g S c e n a r i o A c t i o n s

μ

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 2 1

1 9 - U s i n g S l o t s

μ
19 Using Slots

Slots are containers that you can use to display and manage dynamic items on your Web sites. You use
targeting servlet beans to include slots in site pages, and you use scenarios to fill them with content.

Note that you can use targeting servlet beans without slots to display dynamic content. However, slots
provide more power and flexibility than targeters. Slots have better caching capabilities, which can make
displaying content faster. In addition, because you use scenarios to display items in your slots, you can
take advantage of scenario features to help you manage the delivery of dynamic content. For example,
scenarios allow you to set up an empty slot that generates its own request for content when a site visitor
displays the page. With slots, you can also display content other than repository items.

You can set up slots as components that you register with Nucleus, or you can send them as properties of
JMS messages.

The process of creating and setting up a slot has the following steps:

1. Create the slot component.

2. Add an appropriate targeting servlet bean (for example, TargetingForEach) to the
page or pages where you want the slot to appear. In the Targeter property of the
bean, specify the slot component. See the ATG Page Developer’s Guide for information
on how to do this.

3. Create a scenario that specifies the content you want to display in the slot and defines
the circumstances in which the content appears. See the ATG Personalization Guide for
Business Users for information on this step.

This chapter contains the following sections:

Creating a Slot as a Nucleus Component

Editing Slot Components

Deleting Slot Components

Creating a Slot as a Property of a JMS Message

Using Slots in a Multisite Environment

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 2 2

1 9 - U s i n g S l o t s

μ
Creating a Slot as a Nucleus Component

Slots are components of class atg.scenario.targeting.RepositoryItemSlot or
atg.scenario.targeting.Slot. A slot component must have a Nucleus address in the folder
/atg/registry/Slots/. You can create slot components in two ways:

 By manually creating a .properties file

 Through the slot wizard in the ACC

The following is an example of a .properties file for a slot component of class
atg.scenario.targeting.RepositoryItemSlot:

$class=atg.scenario.targeting.RepositoryItemSlot

$description=displays fund news to brokers

$scope=session

generation=0

itemDescriptorName=news

maxRenderSize=3

ordering=1

persistent=true

repositoryName=News

retrieval=1

For an example of a .properties file for a slot of class atg.scenario.targeting.Slot, refer to
Creating a Slot Component for Objects other than Repository Items.

The following steps show how to create a repository item slot component using the slot wizard in the
ACC. Note that you can access this wizard through the Scenarios > Slots window, as described below, or
through the Component Editor (Pages and Components > Components by Module > New Component >
Scenario Server > Slot). The screens in the wizard are the same regardless of how you access it.

1. Start the ACC.

2. Select Scenarios > Slots.

3. Click New Slot. The slot wizard appears and displays the Specify Slot Name screen.

4. Type a name for this slot. Do not include spaces in the name.

5. Type a brief description of this slot. The description appears in the Description column
in the Slots window. You can edit it later if necessary.

6. Click Next, and use the remaining screens in the wizard to configure the slot. The rest
of this section describes the properties you can set.

Important: By default, all slots that you create through the slot wizard are instances of the class
atg.scenario.targeting.RepositoryItemSlot. If you set up your own subclass of
RepositoryItemSlot, and you want to use the wizard to create a slot from that subclass, you must
make a configuration change to the ACC to have it recognize your subclass. Add a string property called
repositoryItemSlotClass to the /atg/devtools/ScenarioAgent.properties file, and set it equal
to the name of your class. Your class must be a subclass of RepositoryItemSlot.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 2 3

1 9 - U s i n g S l o t s

μ
Content Source

Specify the name of the repository that contains the items you want to show in a slot. (A slot can contain
items from only one repository.)

The content source entry in the slot wizard corresponds to the RepositoryName property in the slot
component’s .properties file.

In some previous versions of the Scenarios module it was necessary to specify a repository path rather
than a name if your application used secure repositories. Specifically, if you specified a secure repository
as the content source for the slot, but you stored the content in the corresponding insecure repository,
you could not subsequently specify any content items for the slot when you added it to a scenario. Note
that it is no longer necessary to specify a repository path in this situation; the Scenarios module can use
the repositoryName property regardless of whether the slot content is stored in a secure repository or
its underlying insecure version. In addition, any slot properties files from older versions that do include a
repositoryPath property will work without modification.

Content Type

Specify the type of item that you want to display in this slot. When you set up a repository, you define the
various item types that it can contain. The setting is important here because a slot can contain items of
one type only.

When you add a slot element to a scenario, the ACC presents a menu showing all the items of this type
from the repository you specify for the Content Source (see above).

This option corresponds to itemDescriptorName (property of type String) in the slot component
.properties file.

Event Generation

The Event Generation setting determines whether an empty slot can issue a request for content items.

If you select Never (the default), the slot displays any items that contributing scenarios have currently
defined for it. The slot itself does not issue a request for content items. This type of slot is sometimes
referred to as a passive slot. The model for passive slots can be summed up as follows:

1. You create one or more contributing scenarios containing Add Item to Slot elements.
These elements specify content items that will fill the passive slot in step 3.

2. A visitor displays a page containing the slot.

3. The slot displays the items that are currently defined for it.

If you select When Empty, the slot component can act as a scenario event, which allows it to issue its own
requests for items. This type of slot is sometimes referred to as an active slot. When a site visitor views a
page containing an active slot, the slot component triggers a scenario that tells the system which content
items to display. The model for active slots looks like this:

1. A visitor displays a page containing the active slot.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 2 4

1 9 - U s i n g S l o t s

μ
2. The slot generates a scenario event, triggering one or more scenarios that fill it with

items for display.

This behavior means that an empty slot can fill itself with content on demand, which can have advantages
for larger sites. For example, suppose you have 50 pages on which you want to display the same slot. With
the passive model, you would have to specify a page visit to each page as a triggering event in the
contributing scenario, or run the scenario for all pages in the site. With the active model, you do not have
to specify pages within the scenario because the slot requests its own items when any of those 50 pages
is displayed.

For information on creating an active slot, see Creating a Scenario for an Active Slot in the ATG
Personalization Guide for Business Users.

The Event Generation option corresponds to generation (property of type int) in the slot component
.properties file. For Never, specify 1. For When Empty, specify 0.

Scope

All Nucleus components have a scope property that you can set to global, session, or request. In the
case of slot components, the way you set the scope affects the results of the item retrieval mode and,
indirectly, the order in which visitors see items in the slot.

Scope Effect

Per Session Each visitor has a separate list of items, and the order of display persists as the visitor
moves from page to page. Session-scoped slots are the most common.

This is the default setting.

Global All site visitors share the same list of items.

Per Request As with session-scoped slots, each visitor has a separate list of items. However, the
order of display does not persist among pages. Each time the visitor requests a page
containing the slot, the system starts the cycle of display again.

For more information on the scope property, see the Nucleus: Organizing JavaBean Components chapter in
the ATG Programming Guide.

Item Retrieval

The Item Retrieval setting defines how the system cycles through the content items in the slot.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 2 5

1 9 - U s i n g S l o t s

μ
Item Retrieval Effect

Destructive

(int value 2)

Items display once each. When an item has been displayed, the system removes it
from the list of items in the slot. After the system has displayed all items on the
list, the slot is empty, unless contributing scenarios add new items.

Rotating

(int value 1)

Items display multiple times in rotation. When an item is displayed, the system
moves it to the end of the list. The system does not remove items from the list, so
the slot never becomes empty. Other contributing scenarios can add content
items to the rotation, but to remove any items, you must explicitly clear the slot
by adding a Remove Items from Slot element to a scenario.

Static

(int value 0)

Similar to destructive mode, except that items are not removed from the list, and
the order of the list does not change.

This option corresponds to retrieval (property of type int) in the slot component .properties file.

Ordering

Use the Ordering setting to change the order in which items appear in the slot. Note that this setting
works closely with the At Priority option that you set within the slot element in the scenario.

Ordering Effect

Show Items in Order
They Were Added

(int value 0)

The Scenarios module uses the At Priority option from the slot element
to define the order.

This is the default setting. It corresponds to sequential in the
.properties file.

Show Items in Randomly
Shuffled Order

(int value 1)

The Scenarios module shuffles the items in the slot and displays them in
a random order. It shuffles together only items of the same priority,
preserving the priority among groupings.

Items are shuffled only once during each instance of the slot’s scope.
However, if another scenario adds items to the slot during an instance of
its display, all the items are shuffled again.

This setting corresponds to random in the .properties file.

This option corresponds to ordering (property of type int) in the slot component .properties file.

For more information on other settings that affect the order of display within a slot, refer to Using Slot
Components in the ATG Personalization Guide for Business Users.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 2 6

1 9 - U s i n g S l o t s

μ
Limit Number of Items Rendered by Slot

Use the Limit Number of Items Rendered by Slot option to define the number of items that can appear in
the slot at once. The default value is 2147483647, a deliberately large number that effectively makes the
slot show all specified items at the same time. If you changed this value to 1, for example, the Scenarios
module would serve only one item to the slot at a time.

Note that the page developer uses a targeting servlet bean to display slots on a page, and the servlet
bean also contains settings (the howMany and maxNumber parameters) that affect the number of items
that appear at once. The smallest value defined among the three settings takes precedence. For more
information on these parameters, see the ATG Page Developer’s Guide.

The Limit Number of Items Rendered by Slot option corresponds to maxRenderSize (property of type
int) in the slot component .properties file.

Permit Duplicate Content Items

This setting is important if you have multiple scenarios contributing items to the same slot. By default, a
content item cannot be added more than once to a single slot. If multiple scenarios do attempt to add an
item that already exists in a slot, the item is not duplicated, but its priority is set to the highest of all
priorities specified for that item.

Select Permit Duplicate Content Items to change this behavior and allow items to be added more than
once. In this case, each instance of the item maintains its own priority.

This option corresponds to allowDuplicates (property of type boolean) in the slot component
.properties file.

Note that this option applies to the number of instances of a given item in the list of items for a slot; it
does not affect the Item Retrieval setting, which determines the display cycle for all items in the slot.

Store Slot Persistently in Repository

By default, the system initializes slots every time their corresponding scenario is triggered. For example,
assume you have a scenario that watches for a visitor to log into the site, and then displays a “Welcome
back!” image. Every time the visitor logs in during the period for which the scenario is active, the slot is
initialized and the content is displayed.

In some circumstances, however, you might have a scenario that is triggered once only. For example, you
might have a scenario that watches for a visitor to register and then populates a slot with an image
containing a link to a promotion. The scenario is intended to wait for the visitor to click the link and then
remove the link from the slot. Registration happens only once, so, in this case, the slot is only initialized
once. However, the visitor may not click on the link during the first session after he or she registers.
Unfortunately the link is displayed during the first session only because the scenario itself is not triggered
for each session.

To change this behavior, check the Store Slot Persistently in Repository option. The system stores
information about the slot in the profile repository (specifically, in the slotInstances property) so that
its contents can be displayed to a visitor across multiple sessions.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 2 7

1 9 - U s i n g S l o t s

μ
This option corresponds to the persistent property in the slot component .properties file.

Important: As described above, persistent slots are particularly useful when you want to display content
from session to session until a specific event occurs. However, persistent slots can have a negative effect
on performance because their contents must be maintained by interfacing to the profile repository. For
this reason, use them very sparingly and only when persistence is absolutely required.

Do not use this option for globally scoped slots. Persistent slots are associated with a specific user, and the
ATG Scenarios code expects them to be session scoped. Array index exceptions occur if you try to display
a page that contains a persistent slot that is configured as global.

Creating a Slot Component for Objects other than Repository Items

Slot components can contain repository items, as described previously, or they can contain objects of
types String, Date, Long, or Double. Slots that are designed to display these objects are of class
atg.scenario.targeting.Slot. The following .properties file shows a component instance of this
class:

$class=atg.scenario.targeting.Slot

$description=displays dates

$scope=session

generation=0

maxRenderSize=2

ordering=1

retrieval=1

valueType=java.util.Date

The valueType property specifies the Class object of the type of values that the slot will display.

The process for creating a slot of this type is almost identical to the process for creating a repository item
slot; see the previous section for details. The exceptions are as follows:

 Options specific to repository item slots, for example Content Source, do not appear in
the slot wizard.

 atg.scenario.targeting.Slot slots cannot be persisted across visitor sessions, so
the Store Slot Persistently in Repository option does not appear in the slot wizard.

Editing Slot Components
The Scenarios > Slots window in the ACC gives you a convenient way to edit the settings of any existing
slot. From the list of slots in the left pane of the window, select the slot whose settings you want to
change. Save the changes when they are complete.

You can also use the Slots window to locate the pages and scenarios that reference a given slot. This
feature can be very useful for debugging purposes. To use it, select the slot in the list in the left pane of
the Scenarios > Slots window, then display either the Pages or Scenarios tab as needed.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 2 8

1 9 - U s i n g S l o t s

μ
Note: If you create a slot through the Pages and Components area of the ACC, you must restart the ACC
to make the slot appear in the list in the Scenarios > Slots window.

Deleting Slot Components
To delete a slot component, use the Pages and Components > Components by Path option in the ACC.
Slot components have the path /atg/registry/Slots. Locate the slot component to delete and then
select Edit > Delete.

Creating a Slot as a Property of a JMS Message
As an alternative to registering slots as Nucleus components, you can create them on the fly and send
them as properties of JMS event messages. In the scenario editor, you include an Add Items to Slot
element that is filled by extracting the slot property from the preceding event. Note that you can also
remove slot items in this way.

This type of slot is temporary and cannot be persisted across sessions. In addition, this technique for
creating slots cannot be used for slots that contain repository items (RepositoryItemSlot); it can be
used only for slots that contain Strings, Dates, Longs, or Doubles (class Slot).

The ACC cannot detect the type of content a slot holds if the slot is created as part of a JMS message; for
this reason, the person who sets up the slot element within the scenario editor must specify the type of
content that the slot is designed to display.

For more information on creating scenarios that include slots created as JMS messages, refer to the ATG
Personalization Guide for Business Users.

Using Slots in a Multisite Environment
In a multisite environment, all Web sites supported by your ATG instance typically use the same pages (for
example, all sites have the same login page, possibly called login.jsp). The pages contain code that
controls the display of content, making it appropriate for each site. Be aware that any slot you add to a
page will therefore display the same content on all your sites unless you configure it otherwise.

There are several methods for configuring slots to display site-specific content.

 One efficient way is to use a single slot component on all sites and add content to it
through a targeter that has site-specific rules. Create a scenario that uses the site-
specific targeter to fill the slot. For a description of site-specific targeters, refer to the
ATG Business Control Center User’s Guide. For more information on creating scenarios,
refer to the ATG Personalization Guide for Business Users.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 2 9

1 9 - U s i n g S l o t s

μ
 You can create a different slot for each site and write page logic that checks the site

context and determines which slot to render for the current site. This approach is less
efficient than the single slot method if you have many sites to maintain.

Note: For slots that are filled by a multisite targeter, be aware of the following behavior with session-
scoped slots. A session-scoped slot is filled with the items on the current site when the slot is first
requested. Subsequent requests will use the items that were filled on the first request, regardless of the
current site. The following situation is therefore possible: a user logs into Site A and views items from the
current site via a session-scoped slot. When the user switches to Site B, the slot still displays items from
Site A.

For more information on site context and working with pages in a multisite environment, refer to the ATG
Multisite Administration Guide.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 3 0

1 9 - U s i n g S l o t s

μ

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 3 1

2 0 - U s i n g S c e n a r i o R e c o r d e r s

μ
20 Using Scenario Recorders

The recorders that are provided with the Scenarios module give you a way to collect the visitor- and site-
related data that you can use for analysis and display in business reports.

Recorders are based on scenario events. (For more information on scenarios, see Creating Scenarios in the
ATG Personalization Guide for Business Users.) Events are JavaBeans, and you can collect data from any
JavaBean property that represents a single entry. For example, you can collect data from properties that
contain strings or integers but you cannot collect arrays, sets, or hashes.

Each recorder has four required components, as follows:

 A Data Collection object that collects the data before it is logged.

 An mapper that maps the columns in the SQL database to Java data-types.

 A dataset, which bundles groups of data together and filters it based upon sampling
criteria.

 A scenario that personalizes the data collection, defining the circumstances under
which it takes place. (Note: read-only reports do not require a scenario.)

The Scenarios module provides several standard recorders for performing common data collection tasks.
For example, it provides a Page Visit recorder that tracks a range of activities related to personalized site
visits. The rest of this chapter describes the process of creating your own recorders.

Creating a Custom Recorder
In this example, a company called SmallCorp has very limited space in its database and wants to track
only the names of the pages that customers visit and the time that the visits occur. In addition, SmallCorp
wants to sample this data to save space in its database.

SmallCorp’s database administrator has already set up the database columns that will hold the recorded
data. The column names and descriptions are shown below.

Table: Dynamo_Recorder

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 3 2

2 0 - U s i n g S c e n a r i o R e c o r d e r s

μ
Column Description

datasetId The dataset name that records the data. Different datasets can share the same
mapper. It is this dataset identification that allows reporting to show actual totals
in coordination with sampling.

PageVisited The name of the page that is visited by the customer.

timestamp The date and time when the page was visited.

SmallCorp would take the following steps to create the custom recorder:

1. Create a new Data Collection object of
class=$atg.reporting.dataset.DatasetSQLLogger.

2. Create a new mapper to listen for the Data Collection event.

3. Create a new dataset to reference the new mapper.

4. Create a new scenario to record data to this table using this dataset.

SmallCorp can then use the data that the recorder collected in reports. The following sections show how
to perform the steps outlined above.

Note: If you plan to add new tables to your database for the data you want to log, perform this step
before you create the recorder.

Creating a New Data Collection Object

Create an appropriate component of class atg.reporting.dataset.DatasetSQLLogger. In this
example, SmallCorp would create an /atg/reporting/dataset/RecordVisitsSQLLogger
component as shown below:

/atg/reporting/dataset/RecordVisitsSQLLogger

#Tue Jul 18 11:37:45 EDT 2000

$class=atg.reporting.dataset.DatasetSQLLogger

schedule=every\ 1\ minute\ in\ 1\ minute

scheduler=/atg/dynamo/service/Scheduler

Place the component .properties file in the
<ATG10dir>/home/localconfig/atg/reporting/dataset directory.

Important: Set the scope property for this component to global.

Creating the New Mapper

Manually create a new mapper (an XML file) that describes the table and the listener for the table. Place
the file in the <ATG10dir>/home/localconfig/atg/registry/data/mappers directory. The file that
SmallCorp creates in this example (called dynamo_recorder.xml) is shown below:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 3 3

2 0 - U s i n g S c e n a r i o R e c o r d e r s

μ
<mapper >

 <registry-descriptor>

 <id>dynamo_recorder.xml</id>

 <displayname>Example Page Visit SQL Mapper</displayname>

 <description>Example Page Visit Mapper</description>

 </registry-descriptor>

 <input-filter context="jms">

 <value>atg.dps.PageVisit</value>

 </input-filter>

 <data-listener>/atg/reporting/dataset/RecordVisitsSQLLogger</data-listener>

 <database>

 <transaction-manager>/atg/dynamo/transaction/TransactionManager

 </transaction-manager>

 <datasource>dynamo:/atg/dynamo/service/jdbc/JTDataSource</datasource>

 <table>

 <name>DYNAMO_RECORDER</name>

 <display-name>Refined Page Visits</display-name>

 <mappings>

 <dataset-mapping>

 <display-name>Visitor</display-name>

 <column>datasetId</column>

 <type>java.lang.String</type>

 <property>datasetId</property>

 </dataset-mapping>

 <timestamp-mapping>

 <display-name>Timestamp</display-name>

 <column>timestamp</column>

 <type>java.sql.Timestamp</type>

 <property>timestamp</property>

 </timestamp-mapping>

 <property-mapping>

 <display-name>Path Qa</display-name>

 <column>PageVisited</column>

 <type>java.lang.String</type>

 <property>context.message.path</property>

 </property-mapping>

 </mappings>

 </table>

 </database>

</mapper>

Optionally, you can turn on mapper validation, which checks on application startup for the existence of
the custom mappers identified in your code. To turn on validation:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 3 4

2 0 - U s i n g S c e n a r i o R e c o r d e r s

μ
1. In the atg.reporting.DatasetRecorderManager component, set the

validateOnStart property to true.

2. Add the DatasetRecorderManager to the initial.properties file as one of the
InitialServices entries.

Creating a New Dataset for a Custom Recorder

The next step in the process of setting up a custom recorder is to create a dataset that references the new
mapper and specifies the sampling rate for recording the data.

The dataset that SmallCorp creates looks like this:

Note that the name of the mapper as it appears in the Event Mapper list is defined by the <display-
name> tag in the mapper file.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 3 5

2 0 - U s i n g S c e n a r i o R e c o r d e r s

μ
Creating a Scenario for a Custom Recorder

Using the ACC, create and enable a new scenario to record events to this dataset. The following example
shows the scenario that SmallCorp would create for its new recorder:

This scenario tells the system to watch for any page visit event and then record it to the specified dataset.

For detailed information on scenarios, see the ATG Personalization Guide for Business Users.

Mapper XML Definition Language
This section describes the XML syntax you can include in event mappers that you create for reports in the
Scenarios module.

<mapper>

The <mapper> tag (required) is the root tag for defining a mapper object.

It can contain the following child tags:

 <registry-descriptor> (required)

 <input-filter> (required)

 <data-listener> (required)

 <database> (required)

<registry-descriptor>

The <registry-descriptor> tag (required) is a wrapper for information that identifies this event
mapper to the registry.

It can contain the following child tags:

 <id> (required). Unique ID for the mapper (used for external reference).

 <display-name> (optional). Text that defines the display name of the mapper as it
will appear in the ACC (the text appears in the Event Mapper field in the Dataset
window).

 <description> (optional).

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 3 6

2 0 - U s i n g S c e n a r i o R e c o r d e r s

μ
<input-filter>

The <input-filter> tag (required) has one attribute, context, that determines the purpose of the
event mapper.

The context attribute (required) can be set to one of the following three values:

 "jms" – use for mappers that you want to accept data from JMS messages.

 "read-only" – use for mappers that do not record data through scenarios but are
used instead for reporting on existing repository data.

 "audit" – use for mappers that you want to accept data from audit trail events that
you have included in recorder scenarios. For more information, refer to Creating an
Audit Trail in the ATG Personalization Guide for Business Users.

The <input-filter> tag has the following child tags:

 <value> – Required only if you set the context attribute to "jms". It identifies the
JMS message to use to collect data. For "read-only" and "audit" context attribute
settings, no <value> tag is required.

Example:

<input-filter context="jms">

 <value>atg.dps.ProfilePropertyUpdate</value>

</input-filter>

<data-listener>

The <data-listener> tag (required) specifies the Nucleus path for the component of class
atg.reporting.dataset.DatasetSQLLogger that you created to collect data (see Creating a New
Data Collection Object for more information).

Example:

<data-listener>/atg/reporting/dataset/ProfileUpdateLoggerQueue

</data-listener>

<database>

The <database> tag (required) is a wrapper that describes the destination database for the data you
want to record.

It can contain the following child tags:

 <transaction-manager> (required)

 <datasource> (required)

 <table> (required)

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 3 7

2 0 - U s i n g S c e n a r i o R e c o r d e r s

μ
<transaction-manager>

The <transaction-manager> tag (required) specifies the Nucleus address of the Transaction Manager
service to use to track transaction activity for this event mapper.

Example:

<transaction-manager>/atg/dynamo/transaction/TransactionManager

</transaction-manager>

For more information, see Transaction Management in the ATG Programming Guide.

<datasource>

The <datasource> tag (required) specifies the JDBC connection pool to use to create connections to the
database where this event mapper stores the data it records. For more information, refer to the ATG
Installation and Configuration Guide.

Example:

<datasource>dynamo:/atg/dynamo/jdbc/JTDataSource</datasource>

<table>

The <table> wrapper (required) defines the database table that will be used to store the data that this
mapper records. It can contain the following child tags:

 <name> (required). The name of the table to use.

 <display-name> (optional). Text that defines the display name of the table as it will
appear in the ACC (the text appears in the description of the mapper in the Dataset
window).

 <mappings> (required) . The database columns to which you want to map the
properties you are recording.

<mappings>

The <mappings> tag is a wrapper that contains one or more dataset mappings that map the property or
properties you are recording to appropriate database columns.

It can contain the following child tags:

 <dataset-mapping>

 <timestamp-mapping>

 <property-mapping>

 <repository-item-mapping>

<dataset-mapping>

The <dataset-mapping> tag contains information that specifies the column to use to identify this
dataset within the database. This mapping is required.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 3 8

2 0 - U s i n g S c e n a r i o R e c o r d e r s

μ
This tag can have the following child tags:

 <display-name> (optional) Text that defines the name of this property in the Choose
the Axis Items dropdown list (see above).

 <column> (required) The name of the database column to which you want to record
this data.

 <type> (required) The Java type of the property to record to the specified column.

 <property> (required) The data to record.

Example:

<dataset-mapping hidden="true">

 <display-name>Dataset Id</display-name>

 <column>id</column>

 <type>java.lang.String</type>

 <property>datasetId</property>

</dataset-mapping>

The hidden attribute is no longer used by ATG products.

<timestamp-mapping>

The <timestamp-mapping> tag specifies the column to use within this dataset to store information
about the time that data is recorded. This mapping is required.

The <timestamp-mapping> tag can have the following child tags:

 <display-name> (optional). <display-name> (optional) Text that defines the name
of this property in the Choose the Axis Items dropdown list (see above).

 <column> (required). The name of the database column to which you want to record
this data.

 <type> (required). Specifies the Java type for this data. Note that
java.sql.Timestamp is the only Java type you can use in a <timestamp-mapping>
tag for an Scenarios module event mapper.

 <property> (required). The data to record.

Example:

<timestamp-mapping hidden="true">

 <display-name>Time Stamp</display-name>

 <column>clocktime</column>

 <type>java.sql.Timestamp</type>

 <property>timestamp</property>

</timestamp-mapping>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 3 9

2 0 - U s i n g S c e n a r i o R e c o r d e r s

μ
The hidden attribute is no longer used by ATG products.

<property-mapping>

The <property-mapping> tag specifies the column to use to store the given piece of data as well as the
actual data to record.

This tag can have the following child tags:

 <display-name> (optional). Text that defines the name of this property in the Choose
the Axis Items dropdown list (see above).

 <column> (required). The name of the database column to which you want to record
this data.

 <type> (required). The Java type of the data:

 java.lang.String

 java.lang.Number (and its subclasses)

 java.sql.Timestamp

 <property> (required). The data to record. Refers to the
atg.process.ProcessExecutionContext object, which is the object that gets
passed to the mapper. Use the following attributes to specify the object and the
property you are recording:

 context.request – a property of the current HTTP request object if the
scenario segment is being executed in the context of an HTTP request. Example:
<property>context.request.session.id</property>

 context.response – a property of the current HTTP response, if the scenario
segment is being executed in the context of an HTTP request.

Example: <property>context.response.SC_NOT_FOUND</property>

 context.message – a property of the JMS message that triggered the recorder
scenario. Example: <property>context.message.reportingOldValues
</property>

Note that many of the JMS messages that come with the ATG system contain
properties designed to make reporting easier. These properties are typically
String representations of data that could not normally be recorded because of
type restrictions for Scenarios module data collection (java.lang.String,
java.lang.Number, and java.sql.Timestamp only). The property shown
above, reportingOldValues, is an example; it allows you to record a List
property, oldValues, as a String.

Usually the names of these properties start with reporting, which gives you an
easy way to identify them in the API.

 context.profile – a profile property of the user going through the scenario
segment if the segment is being executed in the context of an individual user.
Example: <property>context.profile.repositoryid</property>.

 context.label – for use in event mappers where you set the <input-
filter> tag context attribute to "audit". The label is a String that is mapped

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 4 0

2 0 - U s i n g S c e n a r i o R e c o r d e r s

μ
by default to the label column in the dss_audit_trail table. The data that is
recorded is the Label value that you specify within the Record Audit Trail
scenario action.
Example: <property>context.label</property>

Example 1:

<property-mapping>

 <display-name>Old Values</display-name>

 <column>oldvalues</column>

 <type>java.lang.String</type>

 <property>context.message.reportingOldValues</property>

</property-mapping>

Example 2:

<property-mapping>

 <display-name>Label</display-name>

 <column>label</column>

 <type>java.lang.String</type>

 <property>context.label</property>

</property-mapping>

The hidden attribute is no longer used by ATG products.

<repository-item-mapping>

The <repository-item-mapping> tag specifies the column to use to store the given piece of data as
well as the actual data to record. Use this tag for data that is stored as a repository item (for example,
profile data).

This tag can have the following child tags:

 <display-name> (optional). Text that defines the name of this property in the Choose
the Axis Items dropdown list (see above).

 <column> (required). The name of the database column to which you want to record
this data.

 <type> (required). The Java type of the data.

 <property> (required). The data to record. See the description of the <property-
mapping> tag for information about the context attribute.

 <component> (required). The Nucleus component that represents the repository that
stores the data. Example:
<component>/atg/userprofiling/ProfileAdapterRepository</component>

Example:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 4 1

2 0 - U s i n g S c e n a r i o R e c o r d e r s

μ
<repository-item-mapping>

 <display-name>Profile Id</display-name>

 <column>profileid</column>

 <type>java.lang.String</type>

 <property>context.profile.repositoryid</property>

 <component>/atg/userprofiling/ProfileAdapterRepository</component>

</repository-item-mapping>

The hidden attribute is no longer used by ATG products.

Sample Mapper XML File

The following example shows the Profile Update SQL Mapper
(<ATG10dir>/DSS/config/atg/registry/data/mappers/profileupdatemapper.xml), which is
included by default with the Scenarios module. This mapper maps the properties of a Personalization
module ProfileUpdateEvent to the specified database table.

For additional examples, look at the mapper XML files located in the
<ATG10dir>/DSS/config/atg/registry/data/mappers directory.

<mapper>

 <registry-descriptor>

 <id>/profileupdatemapper.xml</id>

 <display-name>Profile Update SQL Mapper</display-name>

 <description> This maps the properties of a DPS ProfileUpdateEvent

 to a table in a database

 </description>

 </registry-descriptor>

 <input-filter context="jms">

 <value>atg.dps.ProfileUpdate</value>

 </input-filter>

 <data-listener>/atg/reporting/dataset/ProfileUpdateLoggerQueue</data-listener>

 <database>

 <transaction-manager>/atg/dynamo/transaction/TransactionManager

 </transaction-manager>

 <datasource>dynamo:/atg/dynamo/service/jdbc/JTDataSource</datasource>

 <table>

 <name>dss_dps_update</name>

 <display-name>

 DPS Profile Update Event Dataset Table

 </display-name>

 <mappings>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 4 2

2 0 - U s i n g S c e n a r i o R e c o r d e r s

μ
 <dataset-mapping hidden="true">

 <display-name>Dataset Id</display-name>

 <column>id</column>

 <type>java.lang.String</type>

 <property>datasetId</property>

 </dataset-mapping>

 <timestamp-mapping hidden="true">

 <display-name>Time Stamp</display-name>

 <column>clocktime</column>

 <type>java.sql.Timestamp</type>

 <property>timestamp</property>

 </timestamp-mapping>

 <property-mapping>

 <display-name>Session Id</display-name>

 <column>sessionid</column>

 <type>java.lang.String</type>

 <property>context.request.session.id</property>

 </property-mapping>

 <property-mapping>

 <display-name>Changed Properties</display-name>

 <column>changedproperties</column>

 <type>java.lang.String</type>

 <property>context.message.reportingChangedProperties</property>

 </property-mapping>

 <property-mapping>

 <display-name>Old Values</display-name>

 <column>oldvalues</column>

 <type>java.lang.String</type>

 <property>context.message.reportingOldValues</property>

 </property-mapping>

 <property-mapping>

 <display-name>New Values</display-name>

 <column>newvalues</column>

 <type>java.lang.String</type>

 <property>context.message.reportingNewValues</property>

 </property-mapping>

 <repository-item-mapping>

 <display-name>Profile Id</display-name>

 <column>profileid</column>

 <type>java.lang.String</type>

 <property>context.profile.repositoryid</property>

 <component>/atg/userprofiling/ProfileAdapterRepository</component>

 </repository-item-mapping>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 4 3

2 0 - U s i n g S c e n a r i o R e c o r d e r s

μ
 </mappings>

 </table>

 </database>

</mapper>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 4 4

2 0 - U s i n g S c e n a r i o R e c o r d e r s

μ

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 4 5

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
21 Adding Custom Events, Actions, and

Conditions to Scenarios

When business managers create scenarios in the ACC, they build the scenarios from a range of elements
that include events and actions. Events are instances of site visitor behavior that the business manager
wants the scenario to watch for; for example, he or she can create a scenario that watches for a visitor to
register at the site or to go to a specific page. “Registers” and “Visits page” are both examples of scenario
events. Actions, on the other hand, are instances of system behavior - often what the system does in
response to an event. For example, a scenario might watch for visitors to register, and then send an e-
mail. “Send E-mail” is an example of a scenario action. Conditions are filters that qualify the previous event
element in a scenario; for example, you could follow the event “Views any item” with the condition
“Browser’s type is Netscape Navigator.”

If the events, actions, and conditions that come with the Scenarios module do not meet your
requirements, you can add your own. This section explains the process of creating custom elements so
that they appear in the ACC for your business managers to use:

Adding Custom Events

Adding Custom Actions

Adding Custom Conditions

Exposing Nucleus Components for Use in Custom Bean Expressions

Note: As described in this chapter, scenario events are instances of JMS messages, and the procedure for
creating a custom event therefore involves editing various files that configure the sending and receiving
of messages. The examples in this chapter assume your application uses SQL JMS as the JMS provider. For
information on the code to add to these files if you use other JMS providers (for example, for applications
running on IBM WebSphere), refer to Dynamo Messaging System in the ATG Programming Guide.

Adding Custom Events
By default, all the standard JMS messages for DAF and the Personalization module appear as event
elements in the Scenario area of the ACC. (If your product suite includes ATG Commerce, additional
commerce-related events appear.) If the standard events do not meet all your company’s needs, you can
configure the Scenario Manager to recognize custom events. To add your custom event (in other words,
your custom JMS message) to the Scenarios module, do the following:

1. Create a JavaBean class that represents your custom JMS message.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 4 6

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
2. Create a Nucleus component implementing MessageSource that will generate your

custom JMS message.

3. Add your custom event to the scenario event registry.

4. Add your message and message source to the appropriate Dynamo Message System
(DMS) configuration file.

5. Configure the Scenario Manager to receive your message.

Example: Adding Clickthrough Tracking To Your Application

This example shows how to add an event to the system that will be fired whenever a user clicks on a
particular link in a Web page. For instance, there might be several different links on a site that all lead to
the same page, but you want to trigger different scenario actions depending on which of these links is
clicked. Alternatively, you might simply want to record all clickthrough events to a dataset for later
analysis.

To do this, we will create a JMS message called test.scenario.LinkMessage to represent a
clickthrough. The message contains the logical name of the location that was clicked. Scenarios can then
be created which intercept these clickthrough events and detect their locations. We will also create a
Nucleus component named /test/scenario/LinkMessageSource that can be instructed to fire a
LinkMessage by using a special <A> tag to set its location property. This permits any link in a page to
selectively fire messages, as in this JHTML example:

<A HREF="PromotionDetail.jhtml"

 BEAN="/test/scenario/LinkMessageSource.location"

 VALUE="Teaser">See details now!

The example above provides a link to PromotionDetail.jhtml that, when clicked, fires a LinkMessage
that carries the location Teaser.

Here is the same example in JSP code:

<dsp:a bean="/test/scenario/LinkMessageSource.location"

 value="Teaser" href="PromotionDetail.jsp">See details now!</dsp:a>

Note: This section was originally written for version 5.0 of the Scenarios module. A similar clickthrough
event has since been added to the product as a standard scenario element. We have kept the example,
however, because the basic procedure you follow is the same regardless of the event you are adding.

Creating the LinkMessage class

A JMS object message class is very simple: it is a serializable JavaBean that carries the message properties.
Our LinkMessage class will have only one property: location.

package test.scenario;

/**

 * JMS message that conveys data about a link clickthrough event.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 4 7

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
 *

 **/

 public class LinkMessage implements java.io.Serializable

 {

 //--

 // CONSTRUCTORS

 //--

 public LinkMessage(String pLocation)

 {

 setLocation(pLocation);

 }

 //--

 // PROPERTY ACCESSORS

 //--

 String mLocation;

 //-------------------------------------

 /**

 * Sets the logical name of the clickthrough location.

 **/

 public void setLocation(String pLocation) {

 mLocation = pLocation;

 }

 //-------------------------------------

 /**

 * Returns the logical name of the clickthrough location.

 **/

 public String getLocation() {

 return mLocation;

 }

 }

Creating the LinkMessageSource Component

The next step is to create a MessageSource implementation that fires our new message and can be
triggered by setting its location property from a JSP or a JHTML page. It will use a fixed Patch Bay port
named Link and a message type of test.scenario.Link. (For more information, see Patch Bay:
Configuring the Dynamo Message System in the ATG Programming Guide.)

package test.scenario;

import javax.jms.*;

import javax.transaction.*;

import java.io.Serializable;

import atg.dms.patchbay.MessageSource;

import atg.dms.patchbay.MessageSourceContext;

import atg.nucleus.GenericService;

/**

 * A Nucleus component used for firing LinkMessages.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 4 8

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
 */

public

class LinkMessageSource extends GenericService implements MessageSource

{

 //-------------------------------------

 // Constants

 //-------------------------------------

 public static final String PORT_NAME = "Link";

 public static final String MESSAGE_TYPE = "test.scenario.Link";

 //-------------------------------------

 // Member Variables

 //-------------------------------------

 /** Message source context for message creation */

 MessageSourceContext mMessageSourceContext;

 /** Flag gating whether this message source is active or not. */

 boolean mSendingMessages = false;

 //-------------------------------------

 // Properties

 //-------------------------------------

 public MessageSourceContext getMessageSourceContext ()

 {

 return mMessageSourceContext;

 }

 //--

 // MessageSource Interface Implementation

 //--

 public void setMessageSourceContext (MessageSourceContext pContext)

 {

 mMessageSourceContext = pContext;

 }

 public void startMessageSource ()

 {

 mSendingMessages = true;

 }

 public void stopMessageSource ()

 {

 mSendingMessages = false;

 }

 //--

 // Public Methods

 //--

 //--

 /**

 * Called by Dynamo when a link of the form <A HREF="..."

 * BEAN="/test/scenario/LinkMessageSource.location" VALUE="...">>

 * is clicked.

 *

 * @param pLocation the symbolic name of the link location being

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 4 9

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
 * fired, as given in the value tag above.

 */

 public void setLocation (String pLocation)

 {

 fireLinkMessage(pLocation);

 }

 /**

 * Fires a LinkMessage reporting a clickthrough location.

 */

 public void fireLinkMessage(String pLocation)

 {

 try {

 ObjectMessage message;

 message = mMessageSourceContext.createObjectMessage(PORT_NAME);

 message.setJMSType(MESSAGE_TYPE);

 message.setObject(new LinkMessage(pLocation));

 mMessageSourceContext.sendMessage(PORT_NAME, message);

 }

 catch (JMSException jmse) {

 if (isLoggingError())

 logError(jmse);

 }

 }

}

We also need to configure the above class as a Nucleus component by creating a file named
test/scenario/LinkMessageSource.properties in the localconfig directory. There are no
properties to configure; just specify the component’s class:

$class=test.scenario.LinkMessageSource

Adding Your Message to the Appropriate DMS Configuration File

There are two Dynamo Message System configuration files that you may have to edit as part of setting up
a custom event:

 The dynamoMessagingSystem.xml file, located in your configuration path at
/atg/dynamo/messaging/dynamoMessagingSystem.xml. Each product in the ATG
suite adds its own message definitions to this file. The default contents of the
Scenarios module version of this file are shown below.

 The dynamoMessagingSystemDSSGlobal.xml file, which is specifically used to
define message source and message sinks for global scenario events. The default file is
located in your configuration path at
/atg/dynamo/messaging/dynamoMessagingSystemDSSGlobal.xml. Note that the
name of the file is specified by the globalConfigurationFile property of the
ScenarioManager component.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 5 0

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
For information on how the system combines the contents of these files, refer to the Dynamo Message
System chapter in the ATG Programming Guide.

By default, the Scenarios module adds the following to the dynamoMessagingSystem.xml file:

 message-registry definitions for all JMS messages that come with the Scenarios
module, including global JMS messages.

 message-source definitions for the following ports:

 IndividualTimers

 SlotItemRequest port

 message-sink definitions for the following ports:

 IndividualEvents

ProcessUpdates The default dynamoMessagingSystemDSSGlobal.xml file contains the following:

 message-source definitions for the following ports:

 CollectiveTimers

 BatchTimers

 ProcessUpdates

 SegmentStartTimers

 message-sink definitions for the following ports:

 GlobalEvents

 IndividualTimers

 CollectiveTimers

 BatchTimers

 SegmentStartTimers

You can extend either configuration by creating a file with the same name in your localconfig directory
or within your custom application module.

If you are adding a global event, do the following:

 Add a message-source definition for this event. If you want this event to be listened
to by the Scenario Manager, you must add the definition to the
dynamoMessagingSystemDSSGlobal.xml file (see Configuring the Message Source).
If you want the event to be listened to by other message sinks (for example, custom
applications that you have set up to use the contents of Scenarios module messages),
add the definition to the dynamoMessagingSystem.xml file.

 Add a message-registry definition for this event to the
dynamoMessagingSystem.xml file (see Configuring the Scenario Manager to Receive
Your Message).

For an individual event, add both the message-source and message-registry definitions to the
dynamoMessagingSystem.xml file.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 5 1

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
Configuring the Message Source

As part of adding your custom message, you have to create and configure a message source (using the
<message-source> tag in the DMS configuration file), which will be responsible for generating your
messages. The <output-port> specifies the destination topic or queue where your message will be
placed. For more information, refer to the Dynamo Message System chapter in the ATG Programming
Guide.

Both global and individual event messages can be sent to queues or to topics as appropriate. However,
global events to which you want the Scenario Manager to listen must be sent to queues.

Typically you make up a new name to go with a new message type that you create. Ours will be called
localdms:/local/test/Link.

The following example shows how to configure the LinkMessageSource component to send messages
to the destination topic localdms:/local/test/Link. If you are creating a custom global event, and
you want to use the Scenario Manager as the message sink for this event, add the code to your extension
of the file dynamoMessagingSystemDSSGlobal.xml. If you are creating a custom individual event, or a
global event for use by message sinks other than the Scenario Manager, add the code to your extension
of the dynamoMessagingSystem.xml file. (See Adding Your Message to the Appropriate DMS
Configuration File for more information.)

<message-source>

 <nucleus-name>

 /test/scenario/LinkMessageSource

 </nucleus-name>

 <output-port>

 <port-name>

 Link

 </port-name>

 <output-destination>

 <provider-name>

 local

 </provider-name>

 <destination-name>

 localdms:/local/test/Link

 </destination-name>

 <destination-type>

 Topic

 </destination-type>

 </output-destination>

 </output-port>

</message-source>

Configuring the Scenario Manager to Receive Your Message

You also use the DMS configuration files to configure the Scenario Manager to receive your custom
messages.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 5 2

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
The Scenario Manager acts as a message sink for messages that can occur in scenarios. It has two different
input ports to which your messages can be sent: GlobalEvents and IndividualEvents. Our Link
example is an individual event. The following, taken from the dynamoMessagingSystem.xml file, shows
how to configure the Scenario Manager to receive events from our destination topic,
localdms:/local/test/Link:

 <message-sink>

 <nucleus-name>

 /atg/scenario/ScenarioManager

 </nucleus-name>

 <input-port>

 <port-name>

 IndividualEvents

 </port-name>

 <input-destination>

 <provider-name>

 local

 </provider-name>

 <destination-name>

 localdms:/local/test/Link

 </destination-name>

 <destination-type>

 Topic

 </destination-type>

 </input-destination>

 </input-port>

 </message-sink>

If you are creating a global event that you want the Scenario Manager to listen for, you would add the
same code to the dynamoMessagingSystemDSSGlobal.xml file instead, replacing IndividualEvents
with GlobalEvents in the <port-name> tag. You would also specify Queue rather than Topic here as
the destination type.

Note: For information on how to determine whether your event is global or individual, see Adding Your
Message to the Scenario Event Registry.

Adding Your Message to the Scenario Event Registry

The Scenario Manager definition file, scenarioManager.xml, contains an event registry that specifies
various pieces of configuration information for the scenario events in your system. You add your custom
message to this registry as part of the creation process.

Note that, for compatibility with ATG products before version 6.0, the event registry in the
scenarioManager.xml file is turned off by default. To enable the scenario event registry, set the
useEventRegistry property to true in the ScenarioManager component. If you do not enable the
scenario event registry, add the custom message to the DMS message registry instead (see the next
section).

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 5 3

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
The following example shows the event registry entries for the clickthrough event we are adding:

<event-registry>

<event>

 <jms-type>

 test.scenario.Link

 </jms-type>

 <message-class>

 test.scenario.LinkMessage

 </message-class>

 <message-context>

 request

 </message-context>

 <message-scope>

 individual

 </message-scope>

 <display-name>

 Link clicked

 </display-name>

 <description>

 Message generated when user clicks a link

 </description>

</event>

</event-registry>

The <message-context> tag defines the nature of the message’s originating context. The following
values are recognized:

 request: the message originates in a request thread, and request- or session-specific
values (for example, request, response, profile) may be resolved via JNDI.

 session: the message originates in a session-specific context, and session-specific
values (for example, profile) may be resolved via JNDI.

If the <message-context> tag is omitted, no assumptions are made concerning the message’s context.
For example, the “Dynamo Starts” event does not specify a message context, while the “Visits Page” event
has the request context, because it occurs in the context of a user request. Our custom message has a
request context, since it clearly occurs in the context of a request.

The <message-scope> tag defines whether the event you are adding is a global event or an individual
event. Global events (for example, the Dynamo Starts event) apply to all visitors who have reached that
stage of the scenario. Individual events (for example, the Visits Page event) apply to specific visitors only.
Thus, if a Dynamo Starts event occurs in a scenario, all visitors at the corresponding place in the scenario
are affected by the event. On the other hand, if a Visits Page event occurs, only the people who visit the
page are affected. Effectively, individual events act as filters that narrow the number of people who
progress through the scenario.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 5 4

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
Typically, a message with a request or session context represents an individual event, while a message
with no context specified represents a global event. The default value for the <message-scope> tag is
individual.

The <display-name>tag is used by the scenario editor interface in the ACC. It determines the label that
appears for the event in the Events dropdown menu. Any message you add to the registry in this way
appears by default in the events menu. If there are messages appearing as events that you would rather
not show, you can include a <hidden> element, set to true, that prevents them from appearing.

Adding the Message to the DMS Message Registry

Add the custom message to the DMS message registry (the <message-registry> section of the DMS
configuration file). For both individual and global events, add the message to the
dynamoMessagingSystem.xml file.

(Note: If the scenario event registry is enabled, as described in the previous section, you must add the
message to both the event registry and the DMS message registry. If you add the message to the event
registry only, the event appears in the ACC, but its properties do not appear in scenario condition
elements.)

For example, the LinkMessage message would be configured as follows:

<message-registry>

 <message-family>

 <message-family-name>

 test

 </message-family-name>

 <message-type>

 <jms-type>

 test.scenario.Link

 </jms-type>

 <message-class>

 test.scenario.LinkMessage

 </message-class>

 <message-context>

 request

 </message-context>

 <display-name>

 Link clicked

 </display-name>

 <description>

 Message generated when user clicks a link

 </description>

 </message-type>

 </message-family>

</message-registry>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 5 5

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
For more information, refer to DMS Configuration File Document Type Definition in the ATG Programming
Guide.

Note that the steps described so far are not specific to the Scenario Manager. This procedure is the same
for adding any message to DMS.

Declaring the Local DMS Topic

If you are creating a custom individual event that uses a Local DMS topic as its destination, the final piece
of required DMS configuration is to inform the Local DMS system of our new topic name. This is done by
adding a <topic-name> element as follows to the dynamoMessagingSystem.xml file:

<local-jms>

 <jndi-prefix>

 /local

 </jndi-prefix>

 <topic-name>

 /test/Link

 </topic-name>

</local-jms>

Declaring the SQLDMS Topic or Queue

If you are creating a custom individual or custom global event that uses a SQLDMS topic or queue as its
destination, the final step in the configuration process is to add the new queue to the
/atg/dynamo/messaging/SqlJmsProvider.properties file in your configuration path. The following
example shows the default SqlJmsProvider.properties file for the Scenarios module.

requiredTopicNames+=\

 sqldms/DSSTopic/ScenarioUpdateEvents,\

 sqldms/DSSTopic/IndividualTimerEvents,\

 sqldms/DSSTopic/CollectiveTimerEvents,\

 sqldms/DSSTopic/BatchTimerEvents

requiredQueueNames+=\

 sqldms/DSSQueue/IndividualTimerEvents,\

 sqldms/DSSQueue/CollectiveTimerEvents,\

 sqldms/DSSQueue/BatchTimerEvents

Putting It All Together

The following complete dynamoMessagingSystem.xml configuration file uses a <message-source>
element to hook up our /test/scenario/LinkMessageSource component to the Local DMS topic
localdms:/local/test/Link. It uses a <message-sink> element to enable the Scenario Manager to
receive messages on this topic. A <message-type> element provides descriptive information about the
LinkMessage message, and finally a <topic-name> element declares the topic to Local JMS:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 5 6

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
<dynamo-message-system>

 <patchbay>

 <message-source>

 <nucleus-name>

 /test/scenario/LinkMessageSource

 </nucleus-name>

 <output-port>

 <port-name>

 Link

 </port-name>

 <output-destination>

 <provider-name>

 local

 </provider-name>

 <destination-name>

 localdms:/local/test/Link

 </destination-name>

 <destination-type>

 Topic

 </destination-type>

 </output-destination>

 </output-port>

 </message-source>

 <message-sink>

 <nucleus-name>

 /atg/scenario/ScenarioManager

 </nucleus-name>

 <input-port>

 <port-name>

 IndividualEvents

 </port-name>

 <input-destination>

 <provider-name>

 local

 </provider-name>

 <destination-name>

 localdms:/local/test/Link

 </destination-name>

 <destination-type>

 Topic

 </destination-type>

 </input-destination>

 </input-port>

 </message-sink>

 </patchbay>

 <message-registry>

 <message-family>

 <message-family-name>

 test

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 5 7

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
 </message-family-name>

 <message-type>

 <jms-type>

 test.scenario.Link

 </jms-type>

 <message-class>

 test.scenario.LinkMessage

 </message-class>

 <message-context>

 request

 </message-context>

 <display-name>

 Link clicked

 </display-name>

 <description>

 Message generated when user clicks a link

 </description>

 </message-type>

 </message-family>

 </message-registry>

 <local-jms>

 <jndi-prefix>

 /local

 </jndi-prefix>

 <topic-name>

 /test/Link

 </topic-name>

 </local-jms>

</dynamo-message-system>

Associating Profiles with Individual Custom Events

If you want to use an individual user’s profile properties as qualifiers for triggering a custom scenario
event, and the event occurs outside a request thread, the message that represents the event must include
a getSubject() method (to allow access to the profile) and contain any of the following properties, of
type RepositoryItem:

 profile

 profileId

 subject

 subjectId

These properties enable both the scenario engine and the ACC to recognize that the event is associated
with individual users. As a result, the People Whose condition element, which you can insert into the
scenario after the custom event, will pick up and display all dynamic properties in the user’s profile,
allowing you to use them to qualify the custom event.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 5 8

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
For more information on accessing properties of Nucleus components from with a scenario event, refer to
Exposing Nucleus Components for Use in Custom Bean Expressions.

Adding Custom Actions
You can extend the Scenario Manager to support custom scenario actions. The procedure has the
following steps:

1. Add the new action to the Scenario Manager configuration file.

2. Implement the action interface (atg.process.action.Action).

The example in this section adds an action that simply logs some information about its parameters and its
evaluation context to the Dynamo information log. Such an action is very handy for debugging purposes,
among other things, and it illustrates some of the general principles of custom scenario actions.

Adding the Action to the Scenario Manager Configuration File

The Scenario Manager’s configuration file is located in your config path at
/atg/scenario/scenarioManager.xml. You can add a new action to this configuration by creating a
file with the same name in your localconfig directory. Below is an example of a
scenarioManager.xml file that you would have to define in order to add the test action.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE process-manager-configuration

 PUBLIC "-//Art Technology Group, Inc.//DTD Process Manager//EN"

 'http://www.atg.com/dtds/processmanager/processmanager_1.0.dtd'>

<process-manager-configuration>

 <action-registry>

 <action>

 <action-name>

 Log Info

 </action-name>

 <action-class>

 test.scenario.LogAction

 </action-class>

 <description>

 prints out information about the action's context and parameters

 </description>

 <action-execution-policy>

 individual

 </action-execution-policy>

 <action-error-response>

 continue

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 5 9

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
 </action-error-response>

 <action-parameter>

 <action-parameter-name>

 logString

 </action-parameter-name>

 <action-parameter-class>

 java.lang.String

 </action-parameter-class>

 <required>

 true

 </required>

 <description>

 a string value to evaluate and display

 </description>

 </action-parameter>

 <action-parameter>

 <action-parameter-name>

 logInteger

 </action-parameter-name>

 <action-parameter-class>

 java.lang.Integer

 </action-parameter-class>

 <required>

 true

 </required>

 <description>

 an integer value to evaluate and display

 </description>

 </action-parameter>

 </action>

 </action-registry>

</process-manager-configuration>

The action specification contains the action’s name, its class (which must implement the
atg.process.action.Action interface), and its description. In addition, you must set two other
important properties for your action in these tags:

 <action-execution-policy>

 <action-error-response>

Specifying the <action-execution-policy> Tag

For <action-execution-policy>, you can specify individual or collective as the value. It determines
whether an action must be executed in the context of a specific visitor or visitors (individual), or if it can
be executed once for an entire collection of visitors participating in a scenario (collective). For example,
the SendEmail action is marked as individual because it must have a person to whom the e-mail is sent.
On the other hand, the RecordEvent action is collective, because it simply records event information to a
dataset, regardless of who is going through the scenario.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 6 0

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
Specifying the <action-error-response> Tag

The tag <action-error-response> specifies what to do if an error occurs during the action’s execution.
You can specify delete, continue, or retry as the value.

 If the value is continue, the error is logged, but the scenario continues to the next
element.

 If the value is delete, the error is logged, and the scenario stops executing for the
user in question (the scenario instance is deleted). For example, the Send Email action
causes the scenario instance to be deleted when an error occurs, while the Record
Event action doesn’t, because a failure to record an event is not considered fatal.

 If the value is retry, the scenario instance does not continue but stays in its original
state. (If the error occurs while the scenario is in an intermediate state, the scenario
reverts to the original waiting state.) The next time the triggering event occurs, the
transition is taken and the action is executed again. This cycle continues until the
action is executed without an error.

Adding Parameters to a Scenario Action

You can also specify any number of action parameters for an action. Each parameter declares a name and
the parameter value type. Our test action, for example, has two parameters, one of type String (with name
“logString”), and another of type Integer (with name “logInteger”).

To require users to specify a given parameter, include a <required> tag for that parameter and set it to
true (see the example above). This tag is optional. If you include it, the ACC displays an error message if
users do not specify the parameter.

Users can specify action parameters as either explicit values or expressions when they create scenarios in
the ACC. For example, for a parameter of type Integer, they can type an explicit integer value, such as
“249,” or select an expression that evaluates to an integer, such as “Person’s age.” When the system
executes the action, it evaluates the parameter expressions in the current scenario context; thus the
expression “Person’s age” is evaluated to the age in the profile of the person going through the scenario.

For action parameters of type String or String[], you can include the optional tags <action-
parameter-repository-name> and <action-parameter-repository-item-type>. Without these
tags, users must manually type the repository ID for the item they want when they fill in a parameter. With
these tags, however, the ACC displays a dialog box from which users can choose the appropriate item by
its display name. The system then passes the repository ID to the action. The following example is from
the Give Promotions action in ATG Commerce; it shows how the Promotions action parameter is set up to
use these tags:

<action>

 <action-name>

 promotion

 </action-name>

 <action-class>

 atg.commerce.promotion.PromotionAction

 </action-class>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 6 1

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
 <display-name>

 Give Promotion

 </display-name>

 <description>

 gives a profile a promotion

 </description>

 <action-execution-policy>

 individual

 </action-execution-policy>

 <action-error-response>

 continue

 </action-error-response>

 <action-parameter>

 <action-parameter-name>

 promotions

 </action-parameter-name>

 <action-parameter-class>

 java.lang.String[]

 </action-parameter-class>

 <action-parameter-repository-name>

 ProductCatalog

 </action-parameter-repository-name>

 <action-parameter-repository-item-type>

 promotion

 </action-parameter-repository-item-type>

 <description>

 the promotions to be added to the profile

 </description>

 </action-parameter>

 </action>

Implementing the Action Interface

The <action-class> tag above contains the class name of the atg.process.action.Action
implementation that is invoked when your custom action occurs in a scenario. The Action interface refers
to several other classes and interfaces. At a minimum, familiarize yourself with the following
interfaces/classes before implementing your action:

 atg.process.expression.Expression

 atg.process.action.Action

 atg.process.action.ActionImpl

 atg.process.ProcessExecutionContext

The Expression interface represents an expression as described above (for example, “Person’s age,” or the
value “249”). An Expression can be evaluated using a ProcessExecutionContext. Thus, the expression
“Person’s age” returns the age in the current profile when evaluated against the current scenario
execution context. You can also query the ProcessExecutionContext explicitly for the current user
profile, request, and so on (see an example of this below).

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 6 2

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
The Action interface has an initialize method that is called when the action is first created. This method
takes a Map of parameters. The keys in the Map are the String parameter names; the values are the
Expression objects representing parameter values. The initialize method should store these parameter
expressions for later evaluation. For example, suppose you create a scenario that contains a LogAction,
with parameters configured as follows: logString is simply the string “this is a test,” and logInteger is
the expression “Person’s age.” When the scenario is created, the action’s initialize method is called with a
Map which contains two key/value pairs: "logString"/Expression, representing the string “this is a
test,” and "logInteger"/Expression, representing “Person’s age.”

When the action is executed on a particular user or collection of users, one of its execute methods gets
called. The first version of the execute method takes a ProcessExecutionContext. The action may use
this context object to evaluate its parameter Expressions, or it may obtain information directly from the
context (for example, the context contains the current DynamoHttpServletRequest, which can be used
to evaluate any Nucleus expression, among other things).

The second version of the execute method takes an array of ProcessExecutionContext objects. It is
called when several scenario instances are traveling through the scenario at the same time; typically, it
just calls the first version of the method for each of the given context objects.

The class atg.process.action.ActionImpl is an abstract Action implementation that is provided to
make implementing simple actions easier. It provides methods for storing, retrieving, and evaluating
parameter Expressions so you do not have to re-implement the same logic for each action. It also
implements both versions of the execute method in terms of an abstract method, executeAction, which
takes a single ProcessExecutionContext. Thus, to implement your action, you need to implement only
the methods initialize and executeAction.

The LogAction example below inherits from ActionImpl and demonstrates its use. In its initialize
method, it uses the method storeRequiredParameter to store the Expressions for parameters
logString and logInteger. Then, in the executeAction method, it uses the method
getParameterValue to evaluate the parameter expressions and print them out. In addition, the test
action prints out all of the values available from the context.

package test.scenario;

import java.util.Map;

import atg.servlet.DynamoHttpServletRequest;

import atg.process.ProcessExecutionContext;

import atg.process.ProcessException;

import atg.process.action.ActionImpl;

/**

 * Custom scenario action that logs its parameters.

 *

 * @version $Revision$

 **/

public class LogAction extends ActionImpl {

 //-------------------------------------

 // Constants

 //-------------------------------------

 /** parameter: logString **/

 public static final String PARAM_LOG_STRING = "logString";

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 6 3

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
 /** parameter: logInteger **/

 public static final String PARAM_LOG_INTEGER = "logInteger";

 //-------------------------------------

 // ActionImpl overrides

 //-------------------------------------

 //-------------------------------------

 /**

 * Initializes the action with the given parameters. The keys in

 * the parameter Map are the String parameter names; the values are

 * the Expression objects representing parameter values.

 *

 * @exception ProcessException if the action could not be properly

 * initialized - for example, if not all of the required parameters

 * are present in the Map

 **/

 public void initialize(Map pParameters)

 throws ProcessException

 {

 storeRequiredParameter(pParameters, PARAM_LOG_STRING, String.class);

 storeRequiredParameter(pParameters, PARAM_LOG_INTEGER, Integer.class);

 }

 //-------------------------------------

 /**

 * Executes this action in the given single process execution

 * context. Called by both of the execute methods.

 *

 * @exception ProcessException if the action can not be executed

 **/

 protected void executeAction(ProcessExecutionContext pContext)

 throws ProcessException

 {

 // Get our request so that we can log stuff.

 DynamoHttpServletRequest request = pContext.getRequest();

 // use the context to evaluate the action's parameters

 String str = (String) getParameterValue(PARAM_LOG_STRING, pContext);

 Integer num = (Integer) getParameterValue(PARAM_LOG_INTEGER, pContext);

 request.logInfo("string value = " + str);

 request.logInfo("integer value = " + num);

 // the following objects are available from the context

 request.logInfo("scenario instance = " + pContext.getProcessInstance());

 request.logInfo("subject = " + pContext.getSubject());

 request.logInfo("message = " + pContext.getMessage());

 request.logInfo("request = " + request);

 request.logInfo("response = " + pContext.getResponse());

 }

 //-------------------------------------

}

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 6 4

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
Putting It All Together

After your action is implemented, and you update the configuration file to include it, the action appears in
the Scenarios area of the ACC. Your business managers can then add it to scenarios just like any other
action.

Here is an example scenario that includes both the custom LinkMessage event and the custom
LogAction action:

This scenario waits for a clickthrough with a location of either One or Two to occur. Whenever this
happens, it logs the event’s location code to the info.log file using our custom log action. The following
test page can be created with the name link.jsp to test this scenario:

<%@ taglib uri="/dspTaglib" prefix="dsp" %>

<dsp:page>

<HTML> <HEAD>

<TITLE>Link Event Test</TITLE>

</HEAD>

<BODY BGCOLOR="#FFFFFF">

<H1>Link Event Test</H1>

<P>Actions:

 <dsp:a bean="/test/scenario/LinkMessageSource.location" value="One"

 href="link.jsp">One</dsp:a>

 <dsp:a bean="/test/scenario/LinkMessageSource.location" value="Two"

 href="link.jsp">Two</dsp:a>

 <dsp:a bean="/test/scenario/LinkMessageSource.location" value="Three"

 href="link.jsp">Three</dsp:a>

</BODY> </HTML>

<%/* Version: $Change: 224215 $$DateTime: 2001/12/27 14:00:56 $*/%>

</dsp:page>

Here is the same example in JHTML:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 6 5

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
<HTML> <HEAD>

<TITLE>Link Event Test</TITLE>

</HEAD>

<BODY BGCOLOR="#FFFFFF">

<H1>Link Event Test</H1>

<P>Actions:

 <A HREF="link.jhtml" BEAN="/test/scenario/LinkMessageSource.location"

 VALUE="One">One

 <A HREF="link.jhtml" BEAN="/test/scenario/LinkMessageSource.location"

 VALUE="Two">Two

 <A HREF="link.jhtml" BEAN="/test/scenario/LinkMessageSource.location"

 VALUE="Three">Three

</BODY> </HTML>

Click any of the links and then examine the info.log file (<ATG10dir>\home\logs). Clicking link One or
Two generates the output specified by the custom action. Clicking link Three produces no output.

Adding Custom Conditions
In the Scenarios module, condition elements serve as filters that further qualify the previous scenario
event or action. For example, if you include a Views event that is triggered when a visitor displays any
page, you can follow it with a condition that further qualifies the event according to the type of browser
the visitor uses to generate the request:

This section describes how to add your own custom condition elements if the default set does not meet
your requirements. In the previous section of this chapter, the example showed how to add a custom
action, LogAction, that printed out the contents of its parameters. This section develops that example
and shows how to add a condition called moonPhase that performs the print action only if the moon is in
a given phase on a particular date.

The procedure for adding a custom condition is similar to the procedure for adding a custom action
element as described earlier. It can be summarized as follows:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 6 6

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
1. Add the new condition to the condition registry in the Scenario Manager

configuration file.

2. Extend the abstract class atg.process.filter.ExpressionFilter for your new
condition.

Adding the New Condition to the Scenario Manager Configuration File

The Scenario Manager configuration file is located in your config path at
/atg/scenario/scenarioManager.xml. You can add a new condition to this configuration by creating
a file with the same name in your localconfig directory
(<ATG10dir>/home/localconfig/atg/scenario/scenarioManager.xml).

Below is an example of a scenarioManager.xml file showing the condition registry entries that you
would define in order to add the new condition. (Note that sample also shows the action definition, which
is essentially the same as the example from the previous section of this chapter except that it uses the
Resources.properties file shown later to determine display names for the ACC.)

The first operand of the condition is a String code of “1”, “2”, “3” or “4” that determines the phase to be
checked for (new, waxing, full, or waning, respectively). The second operand is a scenario expression of
type Date that determines the date on which the moon’s phase will be evaluated and checked. If the
moon was, is, or will be in the specified phase on the specified date, the condition evaluates to true;
otherwise, it is false.

Note that the order of the operands is important. The filter class that evaluates the condition (see
Extending the ExpressionFilter Class for the New Condition) processes the operands in the order in which
you define them here.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE process-manager-configuration

 PUBLIC "-//Art Technology Group, Inc.//DTD Process Manager//EN"

 'http://www.atg.com/dtds/processmanager/processmanager_1.0.dtd'>

<process-manager-configuration>

 <action-registry>

 <action>

 <action-name>

 logInfo

 </action-name>

 <action-class>

 astroweb.LogAction

 </action-class>

 <resource-bundle>

 astroweb.Resources

 </resource-bundle>

 <display-name-resource>

 logAction.displayName

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 6 7

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
 </display-name-resource>

 <description-resource>

 logAction.decription

 </description-resource>

 <action-execution-policy>

 individual

 </action-execution-policy>

 <action-error-response>

 continue

 </action-error-response>

 <action-parameter>

 <action-parameter-name>

 logString

 </action-parameter-name>

 <action-parameter-class>

 java.lang.String

 </action-parameter-class>

 <required>

 true

 </required>

 <display-name-resource>

 logAction.logString.displayName

 </display-name-resource>

 <description-resource>

 logAction.logString.description

 </description-resource>

 </action-parameter>

 <action-parameter>

 <action-parameter-name>

 logInteger

 </action-parameter-name>

 <action-parameter-class>

 java.lang.Integer

 </action-parameter-class>

 <required>

 true

 </required>

 <display-name-resource>

 logAction.logInteger.displayName

 </display-name-resource>

 <description-resource>

 logAction.logInteger.description

 </description-resource>

 </action-parameter>

 </action>

 </action-registry>

 <!--

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 6 8

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
 Register a custom condition named "moonPhase" that determines

 whether the moon is in a given phase on a particular date.

-->

 <condition-registry>

 <condition>

 <condition-name>

 moonPhase

 </condition-name>

 <filter-class>

 astroweb.MoonFilter

 </filter-class>

 <resource-bundle>

 astroweb.Resources

 </resource-bundle>

 <display-name-resource>

 moonPhase.displayName

 </display-name-resource>

 <description-resource>

 moonPhase.description

 </description-resource>

 <icon-resource>

 moonPhase.icon

 </icon-resource>

 <action-parameter>

 <action-parameter-name>

 phase

 </action-parameter-name>

 <display-name-resource>

 moonPhase.phase.displayName

 </display-name-resource>

 <action-parameter-class>

 java.lang.String

 </action-parameter-class>

 <required>

 true

 </required>

 <description-resource>

 moonPhase.phase.description

 </description-resource>

 </action-parameter>

 <action-parameter>

 <action-parameter-name>

 date

 </action-parameter-name>

 <display-name-resource>

 moonPhase.date.displayName

 </display-name-resource>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 6 9

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
 <action-parameter-class>

 java.util.Date

 </action-parameter-class>

 <required>

 true

 </required>

 <description-resource>

 moonPhase.date.description

 </description-resource>

 </action-parameter>

 </condition>

 </condition-registry>

</process-manager-configuration>

Adding an Icon to a Custom Element

Optionally, you can create an icon that will appear next to your custom condition in the ACC. In the
example above, the <icon-resource> tags reference the file astroweb/moon-phase.gif, specified
along with other display elements in the resource file shown in the next section.

Using a Resource Bundle Properties File to Define Display Elements

To ease the process of internationalizing the ACC, the custom condition uses a resource bundle properties
file to determine display names for this condition. The file created for this condition, which is called
Resources.properties, has the following contents:

Resource bundle properties used by example custom scenario elements

logAction.displayName=Log data

logAction.description=test action to log values

logAction.logString.displayName=with string value

logAction.logString.description=a string value to evaluate and display

logAction.logInteger.displayName=and integer value

logAction.logInteger.description=an integer value to evaluate and display

moonPhase.displayName=Moon

moonPhase.description=lunar calendar condition

moonPhase.icon=astroweb/moon-phase.gif

moonPhase.phase.displayName=in phase

moonPhase.phase.description=1:new, 2:waxing, 3:full, 4:waning

moonPhase.date.displayName=on date

moonPhase.date.description=the date for which the phase is checked

vmSystem.displayName=Virtual Machine

(Note that the vmSystem.displayName=Virtual Machine line is included here only for the purposes of
the custom bean expression example later in this chapter.)

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 7 0

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
For more information, refer to Resource Bundles in the ATG Programming Guide.

Extending the ExpressionFilter Class for the New Condition

After you have added the condition to the scenarioManager.xml file, you extend the abstract class
atg.process.filter.ExpressionFilter for your new condition. The ExpressionFilter class
evaluates the arguments in the condition and returns true or false.

The following code sample shows how you would extend this class for the custom condition in our
example:

package astroweb;

import atg.process.ProcessException;

import atg.process.ProcessExecutionContext;

import atg.process.filter.Filter;

import atg.process.filter.ExpressionFilter;

import atg.process.expression.Expression;

import atg.beans.*;

import java.text.*;

import java.util.*;

/**

 * Filter example for testing the moon's phase as of a specific date.

 */

public class MoonFilter extends ExpressionFilter

{

 //-------------------------------------

 // Constants

 //-------------------------------------

 // calendar test type enumeration

 public static final int NEW = 0;

 public static final int WAXING = 1;

 public static final int FULL = 2;

 public static final int WANING = 3;

 //-------------------------------------

 // Fields

 //-------------------------------------

 /** The type of calendar test being performed, as per above constants */

 private int mTestType;

 //-------------------------------------

 // ExpressionFilter overrides

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 7 1

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
 //-------------------------------------

 //-------------------------------------

 /**

 * Initializes this ExpressionFilter, given its operator and

 * operands. The default implementation of this method simply sets

 * the operator and operands properties.

 *

 * @param pOperator the filter operator, not needed in this example

 * @param pOperands the operands to the filter. pOperands[0] is an

 * Integer giving the test type, and pOperands[1] is a Date-typed

 * expression giving the date on which the moon's phase is to be

 * tested.

 *

 * @exception ProcessException if the operands argument is invalid

 **/

 public void initialize(String pOperator, Expression[] pOperands)

 throws ProcessException

 {

 super.initialize(pOperator, pOperands);

 // Verify that we have the expected number of operands: two

 int nOperands = (pOperands == null ? 0 : pOperands.length);

 if (nOperands != 2) {

 throw new ProcessException("Wrong number of operands: " + nOperands);

 }

 // Precompute our test type operand for efficiency, since it's a

 // constant. First verify that we can get the values without an

 // execution context

 Expression exTestType = pOperands[0];

 if (!exTestType.canGetValue(null))

 throw new ProcessException("Unable to precompute test type");

 // Now look up the values, cast them to the correct types, and

 // cache values in data members.

 //

 // The rigorous type checking isn't strictly necessary since the

 // scenario editor grammar should constrain the types of our operands,

 // but a little extra sanity checking never hurts.

 Object value = null;

 try

 {

 value = exTestType.getValue(null);

 Integer testType = (Integer)value;

 if (testType == null)

 throw new ProcessException("Test type is null");

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 7 2

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
 mTestType = testType.intValue();

 }

 catch (ClassCastException cce) {

 throw new ProcessException("Test type had unexpected type: " +

 value.getClass().getName());

 }

 System.out.println("Cached mTestType = " + mTestType);

 }

 //-------------------------------------

 /**

 * Evaluates this filter in the given process execution context.

 * The context may not yet contain all of the information necessary

 * to evaluate the filter - specifically, it may be missing the

 * particular scenario instance and/or profile that the scenario is

 * being executed on. If that is the case, the filter is evaluated

 * as much as possible, and the simplified filter is returned.

 *

 * <p>The possible return values of this method are as follows:

 *

 * <code>Filter.TRUE</code> - if the filter can be fully

 * evaluated, and is satisfied in the given context

 * <code>Filter.FALSE</code> - if the filter can be fully

 * evaluated, and is not satisfied in the given context

 * <code>null</code> - if the filter cannot be evaluated because

 * of a null expression encountered during evaluation (e.g., filter

 * refers to a profile property which evaluates to null)

 *

 *

 * @exception ProcessException if there is a problem evaluating the

 * filter (other than information missing from the context)

 **/

 protected Filter evaluate(ProcessExecutionContext pContext)

 throws ProcessException

 {

 Expression[] operands = getOperands();

 // Verify that all variable operand values are available

 Expression exDate = operands[1];

 if (!exDate.canGetValue(pContext))

 return this;

 // Get dynamic operand values and convert them to the expected

 // types, as above.

 Object value;

 Date dateValue;

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 7 3

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
 if ((value = exDate.getValue(pContext)) == null)

 return null;

 try {

 dateValue = (Date) value;

 }

 catch (ClassCastException cce) {

 throw new ProcessException("Date value was of wrong type: " +

 value.getClass().getName());

 }

 MoonCalendar mc = new MoonCalendar(dateValue);

 boolean result = false;

 System.out.println("Age of moon = " + mc.getAge());

 switch(mTestType)

 {

 case NEW:

 result = mc.isNew();

 break;

 case WAXING:

 result = mc.isWaxing();

 break;

 case FULL:

 result = mc.isFull();

 break;

 case WANING:

 result = mc.isWaning();

 break;

 default:

 throw new ProcessException("Unknown test type value: " + mTestType);

 }

 return result ? Filter.TRUE : Filter.FALSE;

 }

}

The next code sample is included for completeness. It constructs a JavaBean representing the calculator
that determines the phase of the moon for any given date.

package astroweb;

import java.util.Date;

/**

 * A simple calendar calculator that determines lunar phase

 * information.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 7 4

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
 **/

public class MoonCalendar

{

 // Calendrical and astronomical constants

 private static final long MILLIS_PER_DAY = 86400000;

 private static final long JULIAN_EPOCH = 2440588; // Jaunary 1, 1970

 private static final double LUNAR_PERIOD = 29.530588853;

 private static final double NEW_MOON_BASELINE = 2451550.1;

 /**

 * The age of the moon, expressed as a number of days, based on the

 * given date, normalized to lie in the range 0..LUNAR_PERIOD.

 **/

 private double mAge;

 //--

 /**

 * Construct a MoonCalendar for some given date, precalculating the

 * moon's age.

 */

 public MoonCalendar(Date date)

 {

 long julianDate = JULIAN_EPOCH + (date.getTime() / MILLIS_PER_DAY);

 double tempVal = (julianDate - NEW_MOON_BASELINE) / LUNAR_PERIOD;

 tempVal -= Math.floor(tempVal);

 if (tempVal < 0)

 tempVal += 1;

 mAge = tempVal * LUNAR_PERIOD;

 }

 //--

 /**

 * Construct a MoonCalendar for the current time

 */

 public MoonCalendar()

 {

 this(new Date());

 }

 //--

 /**

 * Return the age of the moon in days.

 */

 public double getAge()

 {

 return mAge;

 }

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 7 5

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
 //--

 /**

 * Determine if the moon is waxing

 */

 public boolean isWaxing()

 {

 return mAge > 0.5 && mAge < 14.0;

 }

 //--

 /**

 * Determine if the moon is waning

 */

 public boolean isWaning()

 {

 return mAge > 15.0 && mAge < 29.0;

 }

 //--

 /**

 * Determine if the moon is full

 */

 public boolean isFull()

 {

 return mAge > 14.0 && mAge < 15.0;

 }

 //--

 /**

 * Determine if the moon is new

 */

 public boolean isNew()

 {

 return mAge > 29.0 || mAge < 0.5;

 }

}

Extending the Expression Editor

At this point, the custom condition is ready for use by your business managers. Optionally, however, you
could extend the Scenarios module’s grammar expression editor to provide more elegant handling of the
new custom condition in the ACC. This process involves two steps:

1. Create an XML file that defines the custom expression grammar. In our example, the
file is astroweb/astroweb-grammar.xml.

2. Add a grammar registry entry specifying the location of the expression grammar XML
file to the scenarioManager.xml file.

The next sections in this chapter describe these steps.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 7 6

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
For detailed information on options for extending the expression editor for use in the Scenarios module
and other ATG products, refer to the next chapter, Configuring the ATG Expression Editor.

Creating an Expression Grammar Definition File

The following sample shows the file astroweb/astroweb-grammar.xml.

 <?xml version="1.0" encoding="UTF-8" standalone="no" ?>

 <?xcl-stylesheet resource="atg/ui/scenario/expression/scenario-grammar.xsl"?>

 <?xcl-stylesheet resource="atg/ui/expreditor/xcl/grammar.xsl"?>

- <!--

This grammar definition supplies the details of how our example's

custom action and custom condition will be treated in the UI.

 -->

<context>

 <!--

 Define the grammar of action "logInfo". Our intention is to

 constrain both operands to literals, rather than general scenario

 expressions, and to require the logInteger to be unsigned.

 -->

<sequence id="action-logInfo">

 <!--

 Attach an XML template to this grammar node, specifying the

 SDL that it will emit. This template will generate an <action-name>

 tag inside the enclosing <action> tag, followed by SDL emitted by

 children of this node.

 -->

<xml-template>

 <action-name>logInfo</action-name>

 <apply-xml-templates />

 </xml-template>

 <!--

 Provide a leading token that will show up as a choice in the

 Actions menu of the scenario editor.

 -->

<token>

 <description>Log test data</description>

 </token>

 <!-- include a token describing the string to be logged

 -->

<token>

 <description>with label</description>

 </token>

 <!-- then, a literal supplying the logString parameter

 -->

<literal>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 7 7

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
<xml-template>

 <action-param name="logString">

 <constant>

 <apply-xml-templates />

 </constant>

 </action-param>

 </xml-template>

 <required />

 </literal>

 <!-- then a token describing the int to be logged

 -->

 <token>

 <description>and value</description>

 </token>

 <!--

 then, a literal supplying the integer parameter. The

 <default> tag is required for all non-String literals as it

 determines the data type.

 -->

<literal>

<xml-template>

<action-param name="logInteger">

<constant>

 <apply-xml-templates />

 </constant>

 </action-param>

 </xml-template>

 <unsigned-integer-editor />

 <required />

<default>

 <value type="java.lang.Integer">1</value>

 </default>

 </literal>

 </sequence>

<!--

 Define the grammar of condition "moonPhase". Note that the id

 of this grammar element is the prefix "condition-", followed by the

 condition name given in scenarioManager.xml. We would like to

 support the following syntax:

 Moon's phase is (new | waxing | full | waning) (on DATE-EXPR | now)

 The MoonFilter class expects two operands; the first operand is a

 stringified integer relating to the choice of phase (new, waxing,

 ...), while the second is an arbitrary expression of type Date.

 -->

<sequence id="condition-moonPhase">

<!--

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 7 8

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
 Attach an XML template to this grammar node, specifying the

 SDL that it will emit inside an enclosing <condition> tag. This

 template says that a <filter operator="moonPhase"> tag should

 enclose all XML generated by children of this grammar node.

 -->

<xml-template>

<filter operator="moonPhase">

 <apply-xml-templates />

 </filter>

 </xml-template>

<!--

 Provide a leading token that will show up as a choice in the

 Conditions menu of the scenario editor.

 -->

<token>

 <description>Moon's phase is</description>

 </token>

<!--

 Provide a choice of tokens for the moon phase, the first

 condition operand. Each token's <description> governs how it is

 presented in the scenario editor choice list, while each token's

 XML template supplies an SDL fragment defining a constant value,

 to be generated when that token is the current choice.

 -->

<choice>

<!-- (new | waxing | full | waning)

 -->

<token>

 <xml-template>

 <constant type="java.lang.Integer">0</constant>

 </xml-template>

 <description>new</description>

</token>

<token>

 <xml-template>

 <constant type="java.lang.Integer">1</constant>

 </xml-template>

 <description>waxing</description>

</token>

<token>

 <xml-template>

 <constant type="java.lang.Integer">2</constant>

 </xml-template>

 <description>full</description>

</token>

<token>

 <xml-template>

 <constant type="java.lang.Integer">3</constant>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 7 9

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
 </xml-template>

 <description>waning</description>

</token>

</choice>

<!--

 Provide a choice of two possible values for the second

 operand of the condition. The first choice is a token whose

 displayed description is "now", which is a short hand for an SDL

 expression equivalent to "Today's timeAsDate". The second choice

 is an arbitrary scenario expression of type java.util.Date.

 Note that the "now" choice must come first, because the SDL for

 "now" can match either of the two choices' templates; we want it

 to match the more specific of the two.

 -->

<choice>

<!-- (on DATE-EXPR | now)

 -->

<token>

<!-- now

 -->

 <xml-template>

 <jndi-property>

 <jndi-url>dynamo:/atg/dynamo/service/CurrentDate</jndi-url>

 <property-name>timeAsDate</property-name>

 </jndi-property>

 </xml-template>

 <description>now</description>

<!-- only show the word "now" in the dropdown choice list

 -->

<hidden />

</token>

<sequence>

<!-- on DATE-EXPR

 -->

<token>

 <editor-text>on</editor-text>

<!-- show ellipsis in dropdown choice list only

 -->

 <description>on...</description>

 </token>

 <scenario-expression type="java.util.Date" />

 </sequence>

 </choice>

 </sequence>

 </context>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 8 0

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
Extending the Grammar Extension Class

Create an extension of the class atg.ui.scenario.expression.DefaultGrammarExtension that
simply identifies how to locate the grammar extension XML file, which in our example is
astroweb/astroweb-grammar.xml. The following sample shows the extension created for our custom
condition:

package astroweb;

import atg.ui.scenario.expression.*;

public class AstrowebGrammarExtension extends DefaultGrammarExtension

{

 //--

 /**

 * Construct a grammar extension that references our example custom

 * expression grammar definition.

 */

 public AstrowebGrammarExtension()

 {

 // Specify the grammar file.

 super("astroweb.astroweb-grammar");

 // Note: the grammar file is specified with no suffix and with a

 // dot-qualified package name, since it is localized in a

 // ResourceBundle-like way. If the user's locale is en_US, for

 // instance, the following files will be searched for, in this

 // order:

 //

 // astroweb/astroweb-grammar_en_US.xml

 // astroweb/astroweb-grammar_en.xml

 // astroweb/astroweb-grammar.xml

 }

}

Specifying the Location of the Expression Grammar XML File

The final step is to add a grammar registry entry to the scenarioManager.xml file that specifies the
location of the expression grammar XML file. The following sample shows the additions you would make
to the scenarioManager.xml file:

<grammar-registry>

 <grammar-extension-file>astroweb.astroweb-grammar

 </grammar-extension-file>

</grammar-registry>

Note that the grammar file is specified with no suffix and with a dot-qualified package name to make
localization easier. If the user’s locale is en_US, for instance, the following files will be searched for, in this
order:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 8 1

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
astroweb/astroweb-grammar_en_US.xml

astroweb/astroweb-grammar_en.xml

astroweb/astroweb-grammar.xml

Configuring Actions and Conditions through Properties
Files

The action registry in the scenarioManager.xml file contains an optional tag called <action-
configuration> that allows you to configure an action through the .properties file of a Nucleus
component. The following example shows the <action-configuration> entry for the standard
SendEmail action:

<action-configuration>

 /atg/scenario/configuration/SendEmailConfiguration

</action-configuration>

The following example shows the .properties file of the SendEmailConfiguration component:

Version: $Change: 244651 $$DateTime: 2002/06/24 09:19:29 $

$class=atg.scenario.action.SendEmailConfiguration

defaultEmailInfo=/atg/scenario/DefaultTemplateEmailInfo

individualEmailSender=/atg/scenario/IndividualEmailSender

collectiveEmailSender=/atg/scenario/CollectiveEmailSender

webAppRegistry=/atg/registry/WebApplicationRegistry

The individulaEmailSender property, for example, allows you to specify the email sender component
to use (here, /atg/scenario/IndividualEmailSender).

If you create a custom action and you want it to be configurable, override the configure method in your
implementation of the atg.process.action.Action interface to extract the required information from
the configuration object that you create. Note that the method must cast the object to the expected type.
If you create a custom action and it does not need a flexible configuration, you can omit the <action-
configuration> tag and specify the names and paths of any necessary components directly in the
action registry. The configure method, in this case, throws an UnsupportedObjectException. For more
information on this method, refer to the ATG API Reference.

A similar technique exists for configuring scenario conditions. The condition registry in the
scenarioManager.xml file contains an optional tag called <filter-configuration> that you can use
to specify the name and path of a component that contains configuration properties for a scenario
condition. The atg.process.filter.ExpressionFilter class contains a configure method that you
can override to use the settings in the configuration component. Again, the default implementation
throws an UnsupportedObjectExpression so that you can choose to omit the <filter-
configuration> tag if your condition does not need to be configurable through a .properties file.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 8 2

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
Exposing Nucleus Components for Use in Custom Bean
Expressions

This section describes how to expose a JNDI-accessible JavaBean so that you can use its properties within
any scenario expression. The example below shows how to configure a custom expression that exposes
the standard Nucleus component /VMSystem. (This component provides access to global properties of
the JVM such as the freeMemory bean property, which shows the amount of free memory exposed.)

You can then use that component in any scenario element, allowing you to create expressions such as the
following:

Set variable foo to Virtual Machine's freeMemory

Virtual Machine's freeMemory is greater than 3000000

To expose a component for use in scenario elements, add it to the bean expression registry in the
scenarioManager.xml file, located in your config path at /atg/scenario/scenarioManager.xml.
The following code sample shows the bean expression registry entries you would make for the
/VMSystem component.

The JNDI path of any Nucleus component is its path preceded by a “dynamo:” prefix.

 <?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE process-manager-configuration

 PUBLIC "-//Art Technology Group, Inc.//DTD Process Manager//EN"

 'http://www.atg.com/dtds/processmanager/processmanager_1.0.dtd'>

 <process-manager-configuration>

 <bean-expression-registry>

 <bean-expression>

 <bean-expression-name>

 VMSystem

 </bean-expression-name>

 <jndi-url>

 dynamo:/VMSystem

 </jndi-url>

 <bean-info-provider-path>

 /VMSystem

 </bean-info-provider-path>

 <resource-bundle>

 astroweb.Resources

 </resource-bundle>

 <display-name-resource>

 vmSystem.displayName

 </display-name-resource>

 </bean-expression>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 8 3

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ
 </bean-expression-registry>

 </process-manager-configuration>

Note this example uses the same Resources.properties file as the custom condition example to
define the component’s name for display in the scenario editor. The relevant line is as follows:

vmSystem.displayName=Virtual Machine

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 8 4

2 1 - A d d i n g C u s t o m E v e n t s , A c t i o n s , a n d C o n d i t i o n s t o S c e n a r i o s

μ

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 8 5

2 2 - F i l t e r i n g C o l l e c t i o n s

μ
22 Filtering Collections

Collection filtering is the process of reducing objects in a collection based on some condition. Each
collection filtering component defines a condition (for example, start date) and, when necessary, a criteria
value (5/19/2010). When a collection filtering component receives a collection, it determines which
objects satisfy the condition by having matching criteria (objects that have a start date on or before
5/19/2010). All matching objects become part of the result set collection while the remaining objects are
“filtered out” or discarded.

When you want to filter a collection based on several conditions, you can create one complex filter.
Another approach is to define one collection filtering component per condition and a filter chain
component to organize the filters into a sequence chain. The chain produces one result set that satisfies
all of the conditions specified by the filters within it.

A collection used in collection filtering can be made up of any grouping of objects. This grouping is
passed to a collection filtering component by a scenario or a servlet bean in a JSP that is defined
specifically for this purpose. Once the collection filter processes the collection, it returns the resultant
collection to the invoking resource. When that resource is a servlet bean, you have the option of caching
the resultant content in order to optimize performance for repeat collections accessed multiple times.

You can also access the collection filtering classes in the atg.service.collections.filter package
using the API. See ATG API Reference for information.

ATG Commerce provides additional collection filtering components to ATG Commerce customers. See the
ATG Commerce Guide to Setting Up a Store for more information.

This chapter describes collection filtering in the following sections:

How Collection Filtering Works

Using Collection Filtering Classes

Caching Filtered Content

Implementing Custom Collection Filters

Passing Additional Parameters to a Filter (Filtering in a Multisite Environment)

How Collection Filtering Works
This example describes how a collection filter limits the contents in a slot using a scenario. Consider a
Web site that provides articles about various topics. To ensure that only current articles are displayed to

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 8 6

2 2 - F i l t e r i n g C o l l e c t i o n s

μ
users, each article has a start and end date property. Articles that are active on the current day are added
to a slot.

The scenario begins with an event that adds all News RepositoryItems to the Articles slot. The next
action, Filter Slot Contents, passes the items in Articles to StartEndDateFilter. To learn more
about this action, see Filter Slot Contents Action.

Rather than use a scenario to filter a slot, you can use a JSP to access a filled slot and filter the contents
within it. The StartEndDateFilterDroplet accesses the StartEndDateFilter component, which
performs the filtering task and adds the resultant collection to the Articles slot:

<dsp:droplet name="/atg/collections/filter/droplet/StartEndDateDroplet">

 <dsp:param name="collection" beanvalue="Articles"/>

 <dsp:param name="collectionIdentifierKey" value="date"/>

 <dsp:oparam name="output">

 Featured Articles:<p>

 <dsp:droplet name="/atg/targeting/TargetingForEach">

 <dsp:param bean="/atg/registry/Slots/Articles" name="targeter"/>

 <dsp:oparam name="output">

 <dsp:valueof param="filteredCollection"/>

 </dsp:oparam>

 </dsp:droplet>

 </dsp:oparam>

 <dsp:oparam name="empty">

 There are no articles today.

 </dsp:oparam>

</dsp:droplet>

Each article has a start and end date, which StartEndDateFilter compares to the current date. All
articles that are “started” and have not yet “ended” remain in the slot. All others are removed by the filter
from the slot.

Using Collection Filtering Classes
Each collection filtering class relies on the base abstract class
atg.service.collections.filter.CachedCollectionFilter for the ability to filter collections.
This class is designed to receive a collection, remove items from the collection, and create a result set. It’s
possible to pass a Profile to this class so that subclasses can use Profile property values as filter conditions.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 8 7

2 2 - F i l t e r i n g C o l l e c t i o n s

μ
Other objects and properties may also be passed and used as filter conditions (see Passing Additional
Parameters to a Filter (Filtering in a Multisite Environment) for more details). Finally, this class is capable of
caching the filtered collection.

When you want to filter objects in a collection, you use a subclass of CachedCollectionFilter. ATG
comes with several subclasses already implemented:

 atg.service.collections.filter.StartEndDateFilter limits a collection by
removing objects that are inactive. You can find an instance of it in
/atg/registry/CollectionFilters/StartEndDateFilter and a servlet bean for
accessing it from a JSP in
/atg/collections/filter/droplet/StartEndDateFilterDroplet.

 atg.service.collections.filter.ChainedFilter lets you chain several filters
together so the resultant collection contains items that meet the conditions of all
filters in the chain. There are no sample components in ATG Relationship
Management, but ATG Commerce includes a sample filtering component and servlet
bean. See the Filtering Collections of Products chapter of the ATG Commerce Guide to
Setting Up a Store for details about this and other components of
CachedCollectionFilter.

 atg.commerce.gifts.GiftlistSiteFilter filters gift lists and gift items in a
multisite environment. You can find an instance of this class in
/atg/registry/CollectionFilters/GiftlistSiteFilter and a servlet bean for
accessing it in
/atg/commerce/collections/filter/droplet/GiftlistSiteFilterDroplet.
For more information, see Passing Additional Parameters to a Filter (Filtering in a
Multisite Environment).

Using StartEndDateFilter

The atg.service.collections.filter.StartEndDateFilter class is used to evaluate the objects in
a collection based on start and end date properties. ATG Relationship Management includes one
component of this class: /atg/registry/CollectionFilters/StartEndDateFilter.

StartEndDateFilter has two properties, startDatePropertyName and endDatePropertyName that
map to Date properties on the objects in the collection. By default, these properties are set to startDate
and endDate respectively, anticipating that the objects in the collection have properties with these
names. Filtering is based on whether objects are “started” or have “ended,” relative to the date the
collection filter is executed.

For example, an object remains in the result set collection when the following are both true:

 The object’s startDate value is a date that occurs before the day the page is
requested or is null. Objects without a startDate property also remain.

 The object’s endDate value is a date that occurs after the day the page is requested or
is null. Objects without an endDate property also remain.

You can access the StartEndDateFilter component through the
/atg/collections/filter/droplet/StartEndDateFilterDroplet servlet bean. When you use the

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 8 8

2 2 - F i l t e r i n g C o l l e c t i o n s

μ
servlet bean, the resultant content is cached by default. For more information on caching, see Caching
Filtered Content.

Using ChainedFilter

The atg.service.collections.filter.ChainedFilter is used to create a chain of collection filters
that apply their conditions to a collection of objects. There are no instances of ChainedFilter included
with ATG Relationship Management.

The ChainedFilter class passes the objects to the first collection filtering component defined in
filters property for processing. The resultant collection is then passed on to the next collection filter
defined in filters and so on until all collection filters are executed and a final result set collection is
produced.

Caching Filtered Content
When you filter a collection in a JSP, you can cache the filtered results so that future executions of that
page need not run the collection filter to produce an identical result set. A filter that uses caching
attempts to reuse content cached by a previous invocation that filtered an identical collection. When no
cached content can be reused, the filter executes and saves its resultant collection to the cache.

To enable caching, you need to set five properties. For example, to cache content from
StartEndDateFilter, the following properties require these values:

1. StartEndDateFilter.cacheEnabled= true

2. StartEndDateFilter.cache= /atg/collections/filter/FilterCache

Note that this property can be set to any Cache component designed to work with
collection filters.

3. FilterCache.cacheAdapter=/atg/collections/filter/FilterCacheAdapter

4. StartEndDateFilterDroplet.consultCache=true

5. StartEndDateFilterDroplet.updateCache=true

Note: The values described in this list are the default settings for the StartEndDateFilter
implementation.

FilterCache is a component of class atg.service.cache.Cache designed to handle caching for
collection filtering components. You can use FilterCache to configure the caching settings.

FilterCache has a Map object that uses a key (CollectionCacheKey) to describe the filtering
conditions and a value to hold the filtered results. Specifically, the CollectionCacheKey is an object that
consists of:

 A reference to the collection filtering component

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 8 9

2 2 - F i l t e r i n g C o l l e c t i o n s

μ
 A unique string that represents the unfiltered collection identifier key. All references to

a specific collection should use the same key. When you use a collection filtering
servlet bean, you specify this key as an input parameter.

 A context object created by the collection filter to hold context criteria used by a filter
instance. For example, a Date context object holding the current day’s date is used by
the StartEndDateFilter to determine whether a collection of objects are active on
a specific day. Not all collection filtering components have context objects.

Here’s an example of how caching could work in the StartEndDateFilter. The first call to a JSP that
uses the StartEndDateFilterDroplet servlet bean relies on StartEndDateFilter to generate a
collection of active objects. When caching is enabled, FilterCache saves the following information in
the Map key: the StartEndDateFilter component, the catid-53009-curtains string, and a Date
object that specifies the date the filter was executed. The “active” objects, those being the objects that
remain after filtering, are saved to the Map as a value.

Subsequent renderings of that JSP will cause ATG 10.0.2 to compare the cached CacheCollectionKey
key to the newly generated one. When the keys match, the filter returns the cached collection. By default,
a cache is flushed once a day, which is appropriate for the StartEndDateFilter since the cached
content it generates is only relevant for one day.

Caching For Chained Filters

Caching for chained collection filters is slightly more complex because there are two opportunities for
caching: caching for the first collection filter in the chain and caching for the chain itself.

Consider a filter chain that chains together three filters: StartEndDateFilter, AFilter, and BFilter.
The filter chain passes the collection to StartEndDateFilter, which, in turn, passes a reduced collection
to AFilter, and so on from AFilter to BFilter. The final collection is returned to filter chain instance.

Caching the content produced by each collection filter that’s part of a chain is inefficient because the
context largely influences the output produced be a collection filter. A change to the context might
change the output of one collection filter, which would alter the output of all collection filters that follow
it in the chain. For example assume that on March 15, StartEndDateFilter returns a collection that
includes objects A, B, C, and D. AFilter processes this collection and produces a subset, which BFilter
reduces further to produce a final collection set. Caching the content for each individual filter is wasteful if
you consider that March 16 could cause StartEndDateFilter to return a completely different set of
objects, such as G, H, T, and R. Cached content produced by downstream collection filters would not
apply.

As a result, caching is available at two points during the chained filter lifecycle: for the first collection
filter’s output collection and the chained filter’s final output collection. In order to cache the chain results,
the cached Map is constructed in a slightly different way. The CacheCollectionKey has an array of
context objects, one for each collection filter in the chain. Since the array must have a context object that
represents each collection filter, but not all collection filters have a context keys, the array contains the
following:

 A context key for each collection filter that produces a context key while filtering the
collection

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 9 0

2 2 - F i l t e r i n g C o l l e c t i o n s

μ
 A null placeholder for each collection filter that filters the collection, but doesn’t have

a context object

 A reference to the filter itself for each collection filter that can’t filter the collection

To determine whether cached content can be reused, the current CacheCollectionKey is compared to
previously generated ones.

In this example, cached content would be saved for StartEndDateFilter and the ChainedFilter
instance, assuming that caching is enabled for both of them. However, regardless of the caching settings
on the remaining collection filters in the chain, they will never be cached because when they are
executed, their consultCache and updateCache servlet bean properties are explicitly set to false.

Determining When To Cache Filter Content

Caching is most effective for content that requires expensive, re-usable resources or computations to
generate it. Some collection filtering components, such as StartEndDateFilter, are ideal for caching
because the content they produce applies to a broad spectrum of users for a sizable period of time. It is
more efficient for StartEndDateFilter to cache its result once a day rather than compute the same
collection of objects for each request.

Caching is a waste of resources for collection filtering components when the input collection changes
frequently. A site wide search, for example, would render a list of results, the contents of which would not
likely be identical to other result sets. Another poor candidate is a collection filter that takes a user’s
birthday as a criterion because the cached content is only reused for users with the exact same birthday.
In this instance, too many resources are spent to store content in the cache and too few users access it for
caching to be worthwhile. Consider that balance when you are deciding when to use filter caching.

Although caching isn’t appropriate for some collection filters that use Profile conditions such as a zip code
or items on a wish list because such content is too specific, caching is appropriate for other Profile-related
conditions, such as those that use state or gender.

Configuring FilterCache

Use the following FilterCache properties to configure caching for your collection filters. FilterCache
is a global component that applies for all collection filters. If you’d like different cache settings for each
collection filter, create other components based on the atg.service.cache.Cache class and configure
them appropriately.

When you are setting these properties, keep in mind that each cached item is a collection. The
accumulation of many, large cached items can degrade performance.

Property Description

cacheAdapter The component that handles modifications to cached content, when
such modifications are necessary.

This property must be set to
/atg/collections/filer/FilterCacheAdapter.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 9 1

2 2 - F i l t e r i n g C o l l e c t i o n s

μ
maximumCacheEntries The maximum number of entries in the cache.

0 = Cache nothing.

-1 = Unlimited (Default)

maximumEntryLifetime The maximum time, in milliseconds, that an entry can exist in the
cache.

0 = Cache nothing.

-1 = Cached entries never expire (Default)

Note: To empty the cache immediately, invoke the flush() method by locating FilterCache in the
Admin UI and clicking the flush link in the Methods section. You can also invoke this method directly
through the API.

Implementing Custom Collection Filters
It is likely that you will want to create custom collection filters that filter objects based on the conditions
that meet the specific needs of your Web application. When creating collection filters, you may want to
keep them simple and modular by limiting them to work with one or two conditions only. Remember that
you can link as many filters together as you like in a chain.

To create custom collection filters, complete the following tasks:

1. Create a collection filtering component. See Creating Custom Collection Filters.

2. Configure your collection filtering component. See Configuring Custom Collection
Filters.

3. Create a resource that can access the collection filtering component. See Accessing a
Collection Filtering Component.

To demonstrate how to create a custom collection filter, this discussion walks you through implementing
a fictitious filter called MembershipFilter. Consider that a site has two levels of membership: basic and
premier. This filter ensures that members only see articles suited for their level of membership by
removing all articles from a slot that are marked as appropriate for another membership level . Assume
that the articles and user Profiles have a enumerated property named membershipLevel with values 0
(basic) and 1 (premier)

Creating Custom Collection Filters

Keep in mind that when you define a collection filter, you specify a type of object to which it should be
applied. Any objects in a collection that have a type other than the specified type will be ignored by the
collection filter and included in the result set.

To create a collection filtering component, do the following:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 9 2

2 2 - F i l t e r i n g C o l l e c t i o n s

μ
1. Create a class that is a subclass of

atg.service.collections.filter.CachedCollectionFilter

2. Implement the shouldApplyFilter() method, which is used to determine whether
a collection filter should be applied given the execution context. For example, the
MembershipFilter would access a user’s membership level and decide if the filter is
relevant for that user. Since MembershipFilter supports basic and premier
members, which are the only kinds of membership permitted by the site, this method
will always return true. If, in the future, the site permits additional membership levels,
you would need to revise this method.

3. Implement the generateFilteredCollection() method, which is a method used
to create an output collection and add the objects that meet the filter condition to it.
You need to code this method to specify the data type of the output collection.

It is recommended that you use the generateNewCollectionObject() method to
configure the output collection data type to be the same as the input collection,
barring certain restrictions: an input type of atg.adapter.gsa.ChangeAwareList
creates an output type of ArrayList, and an input type of atg.adapter.gsa.
ChangeAwareSet creates an output type of HashSet.

4. Implement the generateContextKey() method, which is a method used to create a
context key object that holds the criteria value for a particular filtering instance. For
example, the object created by MembershipFilter could be an Integer object that
represents values 0 (when a user is a basic member) or 1 (when a user is a premier
member). For collections that don’t have context specific values, this method should
return null.

5. Add other methods and properties as necessary. There are no other necessary
properties or methods required for the MembershipFilter example.

6. Create a component for that class, such as
/atg/registry/CollectionFilters/MembershipFilter. See the ATG
Programming Guide for instructions on creating components.

The shouldApplyFilter(), generateFilteredCollection(), and generateContextKey()
methods, along with several other CachedCollectionFilter methods, are all overloaded methods
with two signatures, one that includes a pExtraParameters map and another that doesn’t. The
pExtraParameters map allows you to pass additional parameters to a filter so it can do its work. The
version of the method that uses pExtraParameters contains the logic required to perform the given
tasks. The method that doesn’t include pExtraParameters simply calls the method that does and passes
in a null map. This use of overloading allows code that calls the original methods to continue to function
properly while providing the flexibility to include additional filter parameters when needed. When writing
your own implementations, you should implement the version of each method that includes the
pExtraPameters map, so as not to break this logic. For more information, see Passing Additional
Parameters to a Filter (Filtering in a Multisite Environment).

Configuring Custom Collection Filters

Configure the properties on your custom collection filter as follows:

1. If you want your component to cache its content, see Caching Filtered Content for
information on which properties to set.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 9 3

2 2 - F i l t e r i n g C o l l e c t i o n s

μ
2. In the component, specify values to properties that determine the filtering conditions

as well as any other properties for which the default values are insufficient for your
filter. Here’s the default values for MembershipFilter:

#/atg/registry/CollectionFilters/MembershipFilter

$class=atg.service.collections.filter.MembershipFilter

$scope=global

cache=/atg/collections/filter/FilterCache

cacheEnabled=true

Accessing a Collection Filtering Component

There are two ways to access a collection filtering component. You can create a scenario that has a
Filter Slot Contents action element using your custom filter component. By default, your collection
filtering component is visible to Filter Slot Contents as long as it lives in the
/atg/registry/CollectionFilters directory.

The other option is to access the custom collection filter in a JSP using a servlet bean. To do this, create a
servlet bean that is an instance of atg.service.collections.filter.droplet.CollectionFilter
(MembershipFilterDroplet) and implement it in a JSP. By setting
MembershipFilterDroplet.filter to /atg/registry/CollectionFilters/MembershipFilter,
you make it the default filter so that you need not specify the filter input parameter in your JSP
MembershipFilter implementation. Refer to the ATG API Reference for more information about the
atg.service.collections.filter.droplet.CollectionFilter class.

Passing Additional Parameters to a Filter (Filtering in a
Multisite Environment)

There may be occasions when you need to pass additional parameters to a filter in order for the filter to
do its work. For example, when filtering collections in a multisite environment, you must specify which
sites’ items should be evaluated. To do this, the filtering classes in a multisite environment require two
additional pieces of information:

 A list of site IDs that defines the set of sites whose items should be evaluated.

 A site scope setting that controls whether filtering activity is limited to the specified
site(s), limited to sites in a sharing group, or not limited at all.

To facilitate the passing of additional parameters, many of the methods in the
atg.service.collections.filter.CachedCollectionFilter and
atg.service.collections.filter.ChainedFilter filtering classes accept a pExtraParameters
map. pExtraParameters is just a map that allows you to pass additional information to a filter so that it
can do its work. All of these methods are overloaded with two signatures, one that uses the
pExtraParameters map and another that doesn’t. The method that uses pExtraParameters contains
the logic required to perform the given tasks. The method that doesn’t include pExtraParameters
simply calls the method that does and passes in a null map. This use of overloading allows code that calls

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 9 4

2 2 - F i l t e r i n g C o l l e c t i o n s

μ
the original methods to continue to function properly while providing the flexibility to include additional
filter parameters when needed.

You can choose to populate the pExtraParameters map in any way that makes sense for your
implementation, although typically it is done through a combination of servlet bean properties and JSP
settings. The example below describes how to pass site ID and site scope parameters to
/atg/registry/CollectionFilters/GiftlistSiteFilter, a component that filters gift lists and
gift items in a multisite environment. A servlet bean,
/atg/registry/CollectionFilters/GiftlistSiteFilterDroplet, creates the
pExtraParameters map with the site ID and site scope, and passes it along when it calls
GiftlistSiteFilter.

 The keys of the map are specified by configuring an extraParametersName property
in the servlet bean’s .properties file. For example, the
GiftlistSiteFilterDroplet.properties file defines two keys in the
pExtraParameters map, siteIds and siteScope:

$class=atg.service.collections.filter.droplet.CollectionFilter

$scope=global

updateCache=true

consultCache=true

extraParameterNames=siteIds,siteScope

filter=/atg/registry/CollectionFilters/GiftlistSiteFilter

 The values for each key are set in the JSP. The following example sets values for the
siteIds and siteScope keys defined by the GiftlistSiteFilterDroplet servlet
bean (note that the GiftlistSiteFilter uses default values when siteIds or
siteScope are not explicitly set by the servlet bean):

<dsp:droplet name="/atg/commerce/collections

/filter/droplet/GiftlistSiteFilterDroplet">

 <&-- Specify the collection to filter, the site context, and the

 site scope. --%>

 <dsp:param name="collection" bean="Profile.giftlists"/>

 <dsp:param name="siteIds" value="siteA,siteB"/>

 <dsp:param name="siteScope" value="current"/>

 <dsp:oparam name="output">

 <%-- The droplet stores the filtered list it in the JSP parameter

 filteredCollection. The getvalueof tag transfers that value

 to the JSTL variable filteredGiftlists. --%>

 <dsp:getvalueof var="filteredGiftLists" param="filteredCollection" />

 <%-- See if the new collection is empty. If not, iterate

through it. --%>

 <c:if test="${not empty filteredGiftLists}">

 <c:forEach var="giftlist" items="${filteredGiftLists}">

 <%-- Do whatever you want to do with each giftlist in here. --%>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 9 5

2 2 - F i l t e r i n g C o l l e c t i o n s

μ
 </c:forEach>

 </c:if>

 </dsp:oparam>

</dsp:droplet>

 Using this key and value information, the servlet bean’s service() method builds the
pExtraParameters map and passes the map when it calls the filter. In cases where
there are no extra parameters in the request, the service() method calls the original
version of the method that doesn’t use the pExtraParameters map.

Out of the box, the only filter ATG Commerce includes that uses the pExtraParameters map is the
GiftlistSiteFilter filter, mentioned above. You can find additional information on this filter, and the
servlet bean that calls it, in the Filtering Gift Lists section of the ATG Commerce Programming Guide. Keep in
mind that, while the pExtraParameters map was initially developed to support site-aware filters, it can
be used to pass any additional parameters that your filters require.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 9 6

2 2 - F i l t e r i n g C o l l e c t i o n s

μ

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 9 7

2 3 - U s i n g P r o f i l e M a r k e r s

μ
23 Using Profile Markers

A profile marker is a marker RepositoryItem that attaches to a user profile. Use profile markers when
you want to “mark” a user’s profile with some information. A user might perform some action, for example
navigate to one of your sites by way of an advertisement on another site. If you were to create a
mechanism that extracts the site name and advertisement ID from the URL, when the user browses to
your site, that information could be stored in a marker on the user’s profile. Any markers added to a user’s
transient profile will be copied to his or her permanent profile automatically when he or she registers or
logs in. You can design your sites to change their appearance or behavior based on the profile markers in
a user profile. You can also gather data that could be used for comparing the number of users diverted to
your sites from specific partner sites in order to determine which partner is most helpful to you.

Another use of profile markers is demonstrated in the business process tracking feature. Each business
process is made up of stages. When a user reaches a stage, a marker is assigned to his or her profile. For
more information, see Defining and Tracking Business Processes.

This chapter describes how to work with profile markers, which are markers assigned to profiles. Markers
can be assigned to any RepositoryItem as long as that RepositoryItem has a property for holding
markers, a Marker Manager component configured appropriately, and mechanisms are in place for
adding, removing and locating markers.

You can store any information in a profile marker that’s relevant to your application. Each profile marker
has several properties, the most important of which are key, value and data. You should use these
properties to hold string values that define the marker or represent the particular circumstances in which
the marker is assigned.

The key property distinguishes one kind of profile marker from another. Consider the example described
above about the user who browses to a site from a partner site. In this instance, a key might be set to
partner and value to travelSiteA. It’s a good idea to think of the key as a marker type, which will be
used as an organizing principle for the marker data you are collecting. The key property might be a
superset of the value.

Similarly, the data property might be a subset of value. The data property might hold a request
parameter specifying the particular banner link on travel site A that directed the user to your site. To find a
particular marker on a profile, you provide its key (partner), value (travelSiteA) and data
(image2399), although if you are looking for any marker with a specific key, you need only provide that
key.

Assigning a marker to a profile is one way to store non-standard information in a profile; the other way is
to create custom profile properties. Custom properties typically hold one piece of data, meaning you’ll
need one custom property for each type of data you want to store. When you use markers, several can be
stored in one profile property. Markers have keys, each of which can signify a specific application purpose

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 9 8

2 3 - U s i n g P r o f i l e M a r k e r s

μ
and are used when sorting markers Also, there are several conditions, actions, events, and servlet beans
designed to create, locate, and remove markers from profiles in an efficient process. Unless the
information you gather is simple and limited to one purpose, in most cases you should use markers
instead of creating custom properties.

Here’s how profile markers work:

1. Configure a Profile Marker Manager. When a scenario determines that a profile marker
needs to be created, the scenario prompts a Profile Marker Manager to create a marker
instance and assign it to a particular profile. The Profile Marker Manager facilitates all
interaction between markers and profiles, such as creating markers and removing
them from profiles as well as querying profiles for specific markers.

See Configuring the Profile Marker Manager.

2. Create one or more scenarios that define when markers will be created and attached
to a profile. Rather than creating a scenario for this purpose, you can code a JSP to use
a servlet bean that accomplishes the same task.

See Marking a User Profile.

3. Once you have marked profiles, your application can check profiles for specific
markers or use scenarios that respond based on the markers in a profile. Create
scenarios (or use servlet beans) for this purpose.

See Using Marked Profiles.

4. To ensure optimal performance, it’s a good idea to create scenarios (or use servlet
beans) that remove markers when you no longer need them.

See Removing Profile Markers.

For information on how to accomplish these tasks directly through the API, see the atg.markers
package in the ATG API Reference.

Configuring the Profile Marker Manager
The Profile Marker Manager is a component that manages how markers interact with profiles. When your
application adds a new marker, removes an existing one, or queries for information about the markers on
a profile, the Profile Marker Manager coordinates these actions by identifying the marked item(profile),
the property on that item that holds markers (markers), and the type of item that will act as a marker
(marker).

When adding markers to a profile, the Profile Marker Manager applies the marker duplication and
validation rules you configure it to use. These settings and others specified in the Profile Marker Manager
are considered to be default values and are overridden when contrary values are provided in a scenario or
servlet bean.

By default, one Profile Marker Manager called atg/markers/userprofiling/ProfileMarkerManager
manages all activities relating to profile markers. You may choose to create additional Profile Marker
Manager components each of which would be designed to use the particular validation and duplication
rules necessary for a particular type of profile marker. Another reason for having multiple Profile Marker

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

3 9 9

2 3 - U s i n g P r o f i l e M a r k e r s

μ
Managers is so markers can be saved to more than one profile property. Each Profile Marker Manager
works with one particular profile property.

To configure the Profile Marker Manager, see the following sections:

Setting a Duplication Mode

Setting up Marker Validation

Defining Profile Marker Manager Properties

Setting a Duplication Mode

The Profile Marker Manager specifies a default duplication mode that is used for the markers it creates
when the scenario (or servlet bean) used to add the marker doesn’t provide an alternate mode. The Profile
Marker Manager accepts three values for the defaultDuplicationMode property:

 ALLOW_DUPLICATES

 REPLACE_DUPLICATES

 NO_DUPLICATES

When a Profile Marker Manager is prompted to create a marker that is identical to one that already exists
in a given profile, the Profile Marker Manager can discard the new marker (NO_DUPLICATES), replace the
original with the duplicate (REPLACE_DUPLICATES),or accept the new marker in addition to the original
(ALLOW_DUPLICATES). Fewer markers cause quicker response in queries for a particular marker in a
profile, but may slow the marker creation and removal processes.

You can change your duplication mode at any time. If the Profile Marker Manager previously permitted
duplicate markers (ALLOW_DUPLICATES), you can adjust it to replace all old markers with a new duplicate
(REPLACE_DUPLICATES).

When you specify a preference for unique markers (NO_DUPLICATES or REPLACE_DUPLICATES), the
Profile Marker Manager relies on a compare component to determine whether a new marker is a
duplicate of any existing ones. By default, the defaultMarkerDuplicateComparator property is set to
/atg/markers/CompareByDefaultProperties, which identifies two markers as identical when they
have the same values in their key, value, and data properties respectively. ATG 10.0.2 comes with
another component, /atg/markers/userprofiling/CompareByKeyAndValue that judges duplication
based on the values in the key and value properties.

Defining Uniqueness

You can create your own components that judge uniqueness based on the marker properties you identify
or the business logic you define. One approach is to provide multiple compare components, each of
which is tailored to the uniqueness criteria required for a particular type of profile marker (as identified by
marker key).

To create a compare component that determines equality based on marker property values:

1. Create a component of class atg.markers.CompareByProperties.

2. Set the propertiesTocompare property to the marker property or properties that
will be compared to determine equality.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 0 0

2 3 - U s i n g P r o f i l e M a r k e r s

μ
3. If you have multiple compare components, update the

markerDuplicateComparators map property to use each one: set the key to the
profile marker key value and the value to a compare component.

To create a compare component that determines equality based on the business logic you define:

1. Create a subclass of atg.markers.MarkerDuplicateComparator and create a
component of that class.

2. If you have multiple compare components, update the
markerDuplicateComparators map property to use each one: set the key to the
profile marker key value and the value to a compare component.

Setting up Marker Validation

When your application creates a profile marker, the only information you are required to provide is a
value to the key property. You may prefer that your profile markers conform to stricter standards, for
example: all markers must have a key value that’s at least six characters. Or, your validation requirements
may be based on application-specific business logic that is unrelated to marker properties. Create a
validation class that enforces the validation standards appropriate for your profile markers.

The validation standards you define might vary based on the type of profile marker: profile markers with
key X must have a value for key and value where as profile markers with key Y must have a Date value
for expirationDate, which is a custom property you defined. You must match each validation
component to a key; there is no way to create one validation component for all profile markers created by
a given Profile Marker Manager.

Follow these steps to define new validation standards:

1. Create a class for each set of validation standards. This class should implement the
atg.markers.MarkerValidatorContainer interface. Create a component of each
class.

2. Update the Profile Marker Manager markerValidators map property to use each
validation component you defined: set the key to the profile marker key value and the
value to a validation component. For example:

markerValidators=X=/atg/KeyXValidator,Y=/atg/KeyYValidator

1. Toggle the Profile Marker Manager alwaysValidate property to true only if you
have defined a validation component for each possible key. If not, keep this set to
false: those profile markers that are mapped to validation components will use them
regardless.

2. If your validation standards require profile marker properties in addition to key,
value, and data to be populated, add those property names to the Profile Marker
Manager component requiredExtendedProperties property.

Defining Profile Marker Manager Properties

The Profile Marker Manager has the following configurable properties:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 0 1

2 3 - U s i n g P r o f i l e M a r k e r s

μ

Property Description

addMessageJMSType

Default value: atg.profile.marker.added

The type of JMS message that is sent
when a marker is attached to a profile.

alwaysValidate

Default value: false

Indicates whether validation standards
are defined for all marker keys. When set
to false, profile markers use validation
components when their key is mapped
to a validation component. Set this
property to true only if all profile
markers are mapped to use validation
components. These mappings are
specified in the markerValidatiors
property.

defaultDuplicationMode

Default value: ALLOW_DUPLICATES

The mode that specifies whether
duplicate markers can exist on a profile.
Options include:
- ALLOW_DUPLICATES
- REPLACE_DUPLICATES (new marker
replaces original marker)
- NO_DUPLICATES (original marker
remains)

defaultMarkedItemType

Default value: /atg/userprofiling/
ProfileTools.defaultProfileType

The type of RepositoryItem to which
this Profile Marker Manager attaches
markers.

defaultMarkerDuplicateComparator

Default value: /atg/markers/
CompareByDefaultProperties

The component used to determine if one
marker is the same as any other on a
given profile.

defaultMarkerItemType

Default value: marker

The type of marker RepositoryItem to
attach to a profile.

defaultMarkerPropertyName

Default value: markers

The name of the Profile property that
holds markers managed by this Profile
Marker Manager.

defaultMarkerSortPropertyName

Default value: creationDate

The marker property whose value is used
to sort the markers on a profile when the
profile property that holds markers is a
Set and the markers it contains need to
be ordered.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 0 2

2 3 - U s i n g P r o f i l e M a r k e r s

μ
generateEvents

Default value: false

Indicates whether the Profile Marker
Manager generates
ProfileMarkerAdded,
ProfileMarkerRemoved, and
ProfileMarkerReplaced events.

markerDuplicateComparators

No default value

The map that specifies each profile
marker key and the component used to
determine marker uniqueness for
markers with that key.

markerMessageSource

Default value: /atg/markers/
RepositoryMarkerMessageSource

The component that sends messages
generated by the Profile Marker
Manager.

markerValidators

No default value

The map that specifies each profile
marker key and the component used to
validate markers with that key.

profilePropertyNames

Default value: markers, businessProcessMarkers

The names of the profile properties that
can hold markers. When a user logs in,
markers in these properties are copied
from a transient profile to a permanent
one.

removeMessageJMSType

Default value: atg.profile.marker.removed

The type of JMS message sent when a
profile marker is removed from a profile.

replaceMessageJMSType

Default value: atg.profile.marker.replaced

The type of JMS message sent when one
marker replaces another on a profile.

repository

Default value: /atg/userprofiling/
ProfileAdapterRepository

The repository that contains both profiles
and markers.

requiredExtendedProperties

No default value

The extended profile marker properties
to which values must be provided in
order for new markers to be created. Use
this property only if you extend the
marker repository item to include new
properties for which you require values
upon creation.

transactionManager

Default value: /atg/dynmo/TransactionManager

The Transaction Manager that controls
the transactions used by the Profile
Marker Manager.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 0 3

2 3 - U s i n g P r o f i l e M a r k e r s

μ
Note: The Profile Marker Manager has one event listener property called swapEventListener that holds
the listeners that will detect a ProfileSwapEvent after one is sent by a Profile Form Handler and
detected by the Profile Marker Manager.

Marking a User Profile
To use the profile marker feature, you need to define the circumstances under which a user profile will be
marked. You can create a scenario that uses an AddMarkerToProfile action to mark a profile as follows:

In this example, a profile marker is added to a profile when a user submits a request for information. For
more information on the AddMarkerToProfile action, see the Using Action Elements in Scenarios section
in the Creating Scenarios chapter of the ATG Personalization Guide for Business Users.

Another way to accomplish the same task is by using the AddMarkerToProfileDroplet servlet bean on
a form success page, which is the page that displays after a form has been submitted without error. Your
code would look like this:

<dsp:droplet

 name="/atg/markers/userprofiling/droplet/AddMarkerToProfileDroplet">

 <dsp:param name="key" value="form"/>

 <dsp:param name="value" value="information"/>

 <dsp:param name="duplicationMode" value="NO_DUPLICATES"/>

</dsp:droplet>

For more information on the AddMarkerToProfileDroplet servlet bean, see the ATG Page Developer’s
Guide.

Using Marked Profiles
Once profiles have markers, you can use them in a number of ways. You can design a JSP to display text or
initiate some action depending on whether a user has a particular profile marker. Or, you can cause a
scenario to advance only if some profile marker activity has occurred. Refer to the following topics for
implementation instructions:

 Using Servlet Beans to Find Markers on Profiles

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 0 4

2 3 - U s i n g P r o f i l e M a r k e r s

μ
 Advancing a Scenario If a Profile Has Markers

 Advancing a Scenario Based on Profile Marker Events

Using Servlet Beans to Find Markers on Profiles

There are several servlet beans you can use to look up the markers on a given user profile. When you use
these servlet beans, you can specify an input parameter that indicates the profile you want to work with. If
you choose not to, the active user profile is used.

You can check a profile for a particular marker by specifying the marker’s key, value, or data property
values:

<dsp:droplet name="/atg/markers/userprofiling/droplet/ProfileHasMarkerDroplet">

 <dsp:param name="key" value="partner"/>

 <dsp:param name="value" value="travelSiteA"/>

 <dsp:param name="data" bean="ProfileHasMarkerDroplet.ANY_VALUE"/>

 <dsp:oparam name="false">

 Check out our partner sites!

 </dsp:oparam>

</dsp:droplet>

The ProfileHasLastMarkerDroplet servlet bean locates the last marker attached to a given profile. If
you’d like, you can indicate that the last marker should be returned only if it has the particular key, value,
data, or other marker property value you specify. This servlet bean lets you access the marker itself. For
example:

<dsp:droplet

 name="/atg/markers/userprofiling/droplet/ProfileHasLastMarkerDroplet">

 <dsp:param name="key" value="partner"/>

 <dsp:param name="value" bean="ProfileHasLastMarkerDroplet.ANY_VALUE"/>

 <dsp:param name="data" bean="ProfileHasLastMarkerDroplet.ANY_VALUE"/>

 <dsp:oparam name="true">

 <dsp:valueof paramvalue="marker.value">

 is one of our favorite affiliates. Learn why!

 </dsp:oparam>

</dsp:droplet>

Finally, the ProfileHasLastMarkerWithKey lets you find the last marker added to a profile that has a
particular key. Other marker property values can act as parameters for this servlet bean as well.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 0 5

2 3 - U s i n g P r o f i l e M a r k e r s

μ
<dsp:droplet

 name="/atg/markers/userprofiling/droplet/ProfileHasLastMarkerWithKeyDroplet">

 <dsp:param name="key" value="partner"/>

 <dsp:param name="value" value="travelSiteA"/>

 <dsp:param name="data" bean="ProfileHasLastMarkerWithKeyDroplet.ANY_VALUE"/>

 <dsp:oparam name="true">

 When you book your hotel room with us, you'll receive a discount on air fare

 if you book your flight with travel site A!

 </dsp:oparam>

</dsp:droplet>

For more information on the servlet beans described here, see Appendix B: ATG Servlet Beans of the ATG
Page Developer’s Guide.

Advancing a Scenario If a Profile has Markers

Use profile marker conditions in scenarios when you want the scenario to advance only if the active user
has specific markers. There are three profile marker-related conditions available to you.

When you want a scenario to respond based on the existence of profile markers on a profile, use the
Profile has a marker condition:

In this example, users who have a profile marker with a key of partner will receive an email. You are
given the option to set value and data to any value so that the values in these properties aren’t used
to narrow the scope of the condition.

The Profile's last marker condition lets you indicate that only users whose last marker has the key,
value, and data values you specify should advance to the next scenario element. For example:

A third condition called Profile's last marker with key determines that only users whose last
marker with a particular key has the value and data values specified here may advance to the next

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 0 6

2 3 - U s i n g P r o f i l e M a r k e r s

μ
scenario element. This example demonstrates that users whose last partner profile marker has a value of
travelSiteA will see an advertisement for that travel site:

For more information on the actions described here, see the Using Condition Elements in Scenarios section
in the Creating Scenarios chapter of the ATG Personalization Guide for Business Users.

Advancing a Scenario Based on Profile Marker Events

ATG 10.0.2 includes three scenario elements that listen for the following events:

 a marker being added to a profile (Profile Marker Added)

 a marker being removed from a profile (Profile Marker Removed)

 one marker being replaced on a profile with another marker (Profile Marker
Replaced)

You create a scenario that advances when it hears a profile marker event. Here’s a scenario that listens for
a profile added event and when it detects one, sends an email:

For more information on the events described here, see the Using Event Elements in Scenarios section in
the Creating Scenarios chapter of the ATG Personalization Guide for Business Users.

Removing Profile Markers
It’s a good idea to set up a mechanism that removes profile markers when they are no longer relevant to
your application. You may use markers to monitor some user behavior, but once you’ve gathered the data
you need, flush markers from the profiles in one of the ways described here.

In general, you remove markers from a given profile either by removing specific markers or all of them at
once. If, instead, you want to remove markers from all profiles simultaneously, invoke the
deleteMarkers method on the atg.markers.userprofiling.ProfileMarkerManager class. See
ATG API Reference for more information.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 0 7

2 3 - U s i n g P r o f i l e M a r k e r s

μ
Specific Profile Markers From a Profile

In order to remove specific markers from an active user profile, create a scenario that uses the Remove
markers from profile action and specify the key used by the markers you want to remove. You can
provide additional information such as a value or data value: markers that have the values for the
properties you provide will be removed from the active user profile. For example, remove all partner
profile markers that have a value of travelSiteA:

For more information on the Remove markers from profile action, see the Using Action Elements in
Scenarios section in the Creating Scenarios chapter of the ATG Personalization Guide for Business Users.

You can also delete particular markers from a profile using the RemoveMarkersFromProfileDroplet:

<dsp:droplet

 name="/atg/markers/userprofiling/droplet/RemoveMarkersFromProfileDroplet">

 <dsp: param name="key" value="partner"/>

 <dsp: param name="value" value="travelSiteA"/>

 <dsp:param name="data" bean="RemoveMarkersFromProfileDroplet.ANY_VALUE"/>

 <dsp:oparam name="output">

 Book your flight with travel site B!

 </dsp:oparam>

</dsp:droplet>

When you remove markers using the servlet bean, you choose the profile from which you want to remove
markers. Although the default is the active user profile, it’s possible to specify a different one. Also, in
addition to using the key, value, and data property values to identify the marker you want to remove,
you can further define the marker by including other marker properties and their values.

For more information on the RemoveMarkersFromProfileDroplet servlet bean, see Appendix B: ATG
Servlet Beans of the ATG Page Developer’s Guide.

All Profile Markers on a Profile

The quickest way to flush markers from a profile is to remove all at once. In order to remove all markers
from an active user profile, design a scenario that uses the Remove all markers from the profile
action:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 0 8

2 3 - U s i n g P r o f i l e M a r k e r s

μ

For more information on the Remove all markers from the profile action, see the Using Action
Elements in Scenarios section in the Creating Scenarios chapter of the ATG Personalization Guide for Business
Users.

You can also remove all markers from a profile using the RemoveAllMarkersFromProfileDroplet:

<dsp:droplet

 name="/atg/markers/userprofiling/droplet/RemoveAllMarkersFromProfileDroplet">

 <dsp:param name="output">

 There were <dsp:param name="markerCount"/> markers on your

 profile.

 </dsp:param>

</dsp:droplet>

Using this servlet bean to remove markers gives you more control over the items you remove than the
corresponding scenario action. As demonstrated in the servlet bean example, you can find out the
number of markers that are removed and display it to users. You can also specify the ID for the profile
containing markers you want removed or rely on the default value, which causes markers from the active
user profile to be removed.

For more information on the RemoveAllMarkersFromProfileDroplet servlet bean, see Appendix B:
ATG Servlet Beans of the ATG Page Developer’s Guide.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 0 9

2 4 - D e f i n i n g a n d T r a c k i n g B u s i n e s s P r o c e s s e s

μ
24 Defining and Tracking Business

Processes

ATG’s Adaptive Customer Engine includes a business tracking feature that lets you define a business
process as a series of stages, track activity within the business process, and report on the activity for a
specified time frame. This enables you to track progress or failure to progress in the business process and
to personalize a user’s experience based on where they are in a business process.

How Business Process Tracking Works

A business process should be defined as a series of stages applied to business object. The business object
is defined as a repository item type (for example, a profile or an order). As the business object reaches a
new stage, the corresponding repository item is marked to indicate the process and stage reached, and a
message is sent, identifying the business process, the repository item, and the new business process stage
being reached.

Defining a Business Process
To define a business process and track the progress of items through the business process:

1. Identify the object of the business process (a profile, order, or other type of repository
item).

2. Create and configure a BusinessProcessConfiguration component to define the
business process. See Creating a BusinessProcessConfiguration Component.

3. Add the BusinessProcessConfiguration component to the
businessProcessConfigurations property of the BusinessProcessManager. See
Configuring the BusinessProcessManager Component.

4. Set up a process for adding business process stage markers to your business process
object. You can do this using scenarios, servlet beans in JSPs, or directly through the
API. See Marking Business Process Stages.

5. Create a scenario recorder to record business process stage reached events, together
with reports derived from the dataset. See Reporting on Business Processes.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 1 0

2 4 - D e f i n i n g a n d T r a c k i n g B u s i n e s s P r o c e s s e s

μ
Creating a BusinessProcessConfiguration Component

Each business process is defined by a configuration component that extends the
atg.markers.bp.BusinessProcessConfiguration abstract class. Two subclasses of the
BusinessProcessConfiguration class already exist:

 atg.markers.bp.ProfileBasedProcessConfiguration tracks a profile through a
business process. By default, a process of this type tracks the session’s profile.

 atg.commerce.markers.bp.OrderBasedProcessConfiguration tracks an order
through a business process. By default, a process of this type tracks the shopping cart’s
current order. This class is only available to ATG Commerce customers.

The configuration component defines the business process using the following properties:

Property Name Description

businessProcessName The name of the business process

duplicationMode How to handle attempts to add duplicate markers. Valid values are:
- ALLOW_DUPLICATES - no duplication check
- REPLACE_DUPLICATES - delete all duplicate markers, and add the new
marker
- NO_DUPLICATES - if the marker already exists, discard the new one. This
is the default value.

Keeping the default (NO_DUPLICATES) means that once a business stage
has been reached, no change is made if that stage is reached again.

enabled Boolean used to indicate whether a business process is active. Disabling
an active business process causes all associated tasks to halt. For
example, the achievement of new stages in a disabled business process
will not be tracked. When you re-enable a business process, it begins at
the point to which it had stopped. Default is true.

generateEvents Boolean used to determine whether a business process is able to process
events. Default is true.

markedItemType The type of RepositoryItem to which the markers are attached. This
property is used for deleting all markers attached by a given business
process. The default value is derived from the value of another
component property:

- For ProfileBasedProcessConfiguration, the value is provided by
the ProfileRepositoryMarkerManager.markedItemType property.
Typically, the value is user.

- For OrderBasedProcessConfiguration, the value is provided by the
OrderTools.defaultOrderType property. Typically, the value is order
for Consumer Commerce, and b2border for Business Commerce.

stageNames An array of the names of the stages that make up the business process.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 1 1

2 4 - D e f i n i n g a n d T r a c k i n g B u s i n e s s P r o c e s s e s

μ

The two important properties here are stageNames and duplicationMode. You need to define the
stages of the business process that you might want to track. Make sure that your application design will
allow you to mark these stages using a scenario, a servlet bean in a JSP, or directly using the business
process tracking API. See Marking Business Process Stages and the atg.markers.bp package in the ATG
API Reference for more information.

Configuring the BusinessProcessManager Component

Business processes are managed by a component of class
atg.markers.bp.BusinessProcessManager. The BusinessProcessManager acts as a registry of
business processes and handles creating, querying, and removing business process markers. It also sends
business process event messages. A BusinessProcessManager component is configured out of the box
at /atg/markers/bp/BusinessProcessManager. The BusinessProcessManager has the following
configurable properties:

Property Name Description

businessProcessConfigurations An array of business process configuration components.
There should be one for each business process managed by
this component.

generateEvents Boolean. Should we generate business process events?
Default is true.

If you create a new business process, you need to add the BusinessProcessConfiguration
component to the businessProcessConfigurations property of the BusinessProcessManager
component.

Marking Business Process Stages
ATG includes page-based and scenario-based tools that let you add, remove, and check for business
process stages. These include the following servlet beans and scenario elements:

Task Servlet Bean Scenario Element

Add a business process stage AddBusinessProcessStage Servlet
Bean

Add Stage Reached
Action

Remove a business process
stage

RemoveBusinessProcessStage
Servlet Bean

Remove Stage Reached
Action

Check if a business process
stage has been reached

HasBusinessProcessStage Servlet
Bean

Has Reached Stage

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 1 2

2 4 - D e f i n i n g a n d T r a c k i n g B u s i n e s s P r o c e s s e s

μ
Check the most recent
business process stage that
has been reached

MostRecentBusinessProcessStage
Servlet Bean

Most Recent Stage
Reached

For reference information about the business process servlet beans, see Appendix B: ATG Servlet Beans in
the ATG Page Developer’s Guide. For information about the business process scenario elements, see Using
Scenario Events and Using Scenario Actions chapters.

For example, you could create a scenario that uses the Add Stage Reached action to add the
AddedToCart process stage when the user adds an item to an order:

You could accomplish the same thing by including the AddBusinessProcessStage servlet bean to a
commerce page:

<dsp:droplet name="AddBusinessProcessStage">

 <dsp:param name="businessProcessName" value="ShoppingProcess"/>

 <dsp:param name="businessProcessStage" value="AddedToCart"/>

</dsp:droplet>

Each business process stage servlet bean has a businessProcessName property. This property lets you
create instances of the servlet bean that are specific to a single business process. If you so this, you can
use elements like this:

<dsp:droplet name="AddRegistrationStage">

 <dsp:param name="businessProcessStage" value="ViewedTermsAndConditions"/>

</dsp:droplet>

This makes your pages easier to read and avoids the need to specify the business process each time.

Deleting Business Process Content
When you are no longer using a business process or content derived from it, you should delete the
associated content. ATG 10.0.2 provides two API methods in the
atg.markers.bp.BusinessProcessManager class for business process content deletion. The
BusinessProcessManager has access to both the individual RepositoryItems involved in the

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 1 3

2 4 - D e f i n i n g a n d T r a c k i n g B u s i n e s s P r o c e s s e s

μ
business process as well as the governing business process itself so you can delete business process
content from both contexts:

 removeBusinessProcessStage deletes business process content from a particular
RepositoryItem

 deleteBusinessProcessMarkers deletes content provided by a given business
process

Both methods take arguments

(pBusinessProcessName, pBusinessProcessStage)

where pBusinessProcessName is the name of a business process and pBusinessProcessStage is a
business process stage. See atg.markers.bp.BusinessProcessManager in the ATG API Reference for
more information.

RepositoryItem-Based Deletion

To delete business process content from a specific RepositoryItem, use
removeBusinessProcessStage. For example, the following call would remove content provided to a
RepositoryItem by StageA of a business process called MyBusinessProcess:

removeBusinessProcessStage("MyBusinessProcess","StageA")

It’s also possible to remove content provided by all stages of MyBusinessProcess from a particular
RepositoryItem using this call:

removeBusinessProcessStage("MyBusinessProcess",

"MarkerConstants.ANY_VALUE")

Business Process-Based Deletion

Alternatively, you can approach business process content deletion from the perspective of the business
process. You can delete content associated with stages from a given business process on every affected
RepositoryItem. The BusinessProcessManager refers to the
BusinessProcessConfiguration.markedItemType property to assist in deleting business process
content using this method.

Eliminate content added by a particular stage, such as StageB of MyBusinessProcess, from all
RepositoryItems, as follows:

deleteBusinessProcessMarkers("MyBusinessProcess","StageB")

To delete content supplied by all stages of MyBusinessProcess from all RepositoryItems, use this
code:

deleteBusinessProcessMarkers("MyBusinessProcess",

"MarkerConstants.ANY_VALUE")

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 1 4

2 4 - D e f i n i n g a n d T r a c k i n g B u s i n e s s P r o c e s s e s

μ
Reporting on Business Processes

Tracking business processes allows you to generate, study, and learn from reports about what happens at
different stages of the business process. You can detect when users are dropping out of a business
process and take steps to encourage them to resume the business process.

To generate reports about business processes, you should:

1. Create a scenario recorder, including a scenario, data mapper, and dataset to store
business process information. See Using Scenario Recorders.

2. Create reports based on the dataset.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 1 5

2 5 - C r e a t i n g a n d C o n f i g u r i n g W o r k f l o w s

μ
25 Creating and Configuring Workflows

The Scenarios module includes a mechanism for modeling business processes called a workflow.
Workflows are similar to scenarios, but can be applied to a wider range of processes. One key difference
between scenarios and workflows is the capability for creating new types of workflows that are tailored to
specific processes, and that include their own unique actions and tasks.

The tools for creating new workflow types are included in the Scenarios module, although the module is
not preconfigured with any workflow types. ATG Content Administration provides a workflow that
manages the lifecycle of a publishing project. You might find it helpful to use this workflow as an
example.

Many different types of business processes can be exposed as workflows, with examples ranging from
commerce order fulfillment to management of customer support calls. This chapter discusses the various
aspects of creating a workflow type.

Overview of Workflows
Workflows, like scenarios, are based on ATG’s process engine architecture. Most workflow classes are
analogous to scenario classes.

A major difference, however, is that while you can create custom events and actions for scenarios, there is
only a single scenario type. With the workflow classes, you can create any number of different workflow
types, each with its own actions and tasks, repository items, and database tables. When you edit a
workflow in the ACC, the editor is automatically configured to reflect the specific type of workflow you are
editing.

Creating a Workflow Type

You create a workflow type as follows:

1. Choose the workflow subject type.

The subject type is a repository item that represents the main element in the process
that will be modeled by the workflow. For example, an expense report could be a
workflow subject type, with the workflow modeling the steps involved in processing
the report.

2. Create the repository items and database schema.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 1 6

2 5 - C r e a t i n g a n d C o n f i g u r i n g W o r k f l o w s

μ
Each workflow type must define its own database schema and repository items. This
provides isolation between the data stored for different types of processes, allowing
for independent deployment and management of data associated with any given
workflow type. For example, the data associated with registration workflows is stored
in one set of tables, while the data for ATG Content Administration workflows resides
in a different set of tables. The two sets of data can be managed independently (for
example, you could clean out one set of tables completely without affecting the
other).

When you create a new type of workflow, you create several new database tables, as
well as the associated repository item descriptors. See the Registration Workflow
section for information about the tables and repository items used by registration
workflows.

3. Configure the workflow components.

Each workflow type requires you to configure a number of Nucleus components and
XML files, as discussed throughout this chapter.

4. Create the workflow definition in the ACC.

For each workflow type, the workflow editor is customized to expose the relevant item
type and its properties, and to display only those custom expressions and actions that
have been configured for the corresponding subject type.

To accomplish this, ATG 10.0.2 maintains a global registry of ACC workflow agent
components at /atg/registry/WorkflowAgents. When you create and configure a
new type of workflow, you must add the corresponding workflow agent component
to this global registry. From the workflow agent, the ACC can determine the
corresponding workflow subject type and all the custom process configuration
information. Because the agent component also points to the registry in which the
workflows themselves are stored, the ACC can load all of the existing workflow
definitions corresponding to each subject type, and write out new workflow
definitions to the appropriate registries.

For information about editing workflows in the ACC, see the ATG Personalization Guide
for Business Users.

Workflow Classes
The following are the classes and interfaces that you use to work with workflows:

atg.workflow.WorkflowManager

The primary interface that exposes features of the workflow system. The WorkflowManager can be
queried to obtain global workflow status information as well as the underlying workflow process
information (via the associated ProcessManager). It also supports creation of workflow views that expose
user-specific features of the workflow system.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 1 7

2 5 - C r e a t i n g a n d C o n f i g u r i n g W o r k f l o w s

μ
atg.workflow.WorkflowView

This interface exposes workflow features to a notional user of the workflow system, such as a specific user
or Persona. A workflow view provides status information about workflow instances, tasks, and outcomes,
allows new workflow instances to be started, and permits task outcomes to be fired to existing workflow
instances. All of these operations are implicitly performed from the point of view of the user, and the view
exposes only those workflow objects that are accessible to the user. It is also possible for a WorkflowView
to be global, that is, not associated with any user. A global view performs no access control, thereby
providing an unconstrained view of the workflow system.

atg.workflow classes and interfaces

Used to expose various workflow-related information. The descriptor classes (WorkflowDescriptor,
TaskDescriptor, OutcomeDescriptor) describe workflows, their tasks, and outcomes. The TaskInfo
class keeps track of the runtime information associated with workflow tasks. TaskQueryOptions is a
helper class used by both WorkflowManager and WorkflowView when querying for tasks. The
WorkflowAccessRights and TaskAccessRights interfaces expose the access rights associated with
workflows and tasks. The WorkflowConfiguration class stores configuration information that is shared
by multiple workflow components.

atg.workflow.servlet classes

Include the workflow servlet bean and form handler classes. These are described in more detail in the
Workflow Servlet Beans and Workflow Task Form Handler sections.

atg.process.ProcessManager

This interface includes several methods that provide workflow support. Specifically, these are the
getProcessInstanceInfos methods, which can be used to obtain runtime information about the
process instances currently going through a process.

atg.process classes

Support ProcessManager methods and their use by the workflow system: ProcessInstanceInfo,
ProcessElementInfo, and ProcessWaitState.

For more information about these classes and interfaces, see the ATG API Reference.

Shared Components
Creating a workflow type involves creating and configuring many components and XML files that are
specific to the workflow type, as shown in the Configuring the Registration Workflow Type section. In
addition, there are several workflow-related Nucleus components that are used by all custom workflow
types. These components require no additional configuration, but are available for other components to
make reference to as part of their configuration:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 1 8

2 5 - C r e a t i n g a n d C o n f i g u r i n g W o r k f l o w s

μ
/atg/registry/factories/WorkflowFactory

A UI-related component that is shared by all workflow types. The factory property of each workflow
registry must point to this component (for example, the /atg/registry/RegistrationWorkflows
component shown in the Registration Workflow section).

/atg/registry/filters/WdlFilter

A filter for .wdl files. The filter property of each workflow registry must point to this component (for
example, the /atg/registry/RegistrationWorkflows component shown in the Registration
Workflow section).

/atg/workflow/process/ components

An e-mail sending component (WorkflowEmailSender) and the associated template e-mail information
(DefaultTemplateEmailInfo). These are used by the emailNotify and emailNotifyTaskActors
standard workflow actions.

/atg/workflow/process/configuration/ components

These supply the default configurations for some of the standard workflow actions. There are five
standard actions that come with the Scenarios module and that can be included in the workflow process
manager configuration for any workflow type: emailNotify, emailNotifyTaskActors, recordEvent,
recordAuditTrail, and deleteSubject. The EmailNotifyConfiguration component configures
the emailNotify action; the RecordActionConfiguration component configures the recordEvent
and recordAuditTrail actions. Note that the emailNotifyTaskActors and deleteSubject actions
do not have default configurations shared by all workflow types, because they must be configured
separately for each workflow type, as demonstrated in the Registration Workflow section.

Registration Workflow
This section uses the EcoVida registration workflow type to show how to create and configure a workflow
type. The EcoVida demo application was provided with earlier versions of some ATG products. Although
the demo is not included in the ATG 10.0.2 installation, you can download the configuration files for its
workflow module (EcoVida.workflow) from the Developer Network on ATG’s Web site. Be aware that
the module was designed to work with ATG 6 products, so running it against later ATG environments is
not supported. However, the way a workflow type is configured has not changed substantially in ATG
10.0.2, so looking at the registration workflow’s configuration files can still be very helpful for
understanding and debugging workflow setup.

This workflow type models the process of registering a new partner (builder or reseller) in a portal
community:

1. The prospective reseller comes to the EcoVida partner portal and submits an
application.

2. The EcoVida portal initiates an approval workflow.

3. Because the partner is in the east region, the application is routed to the Eastern
regional channel manager for review. Mandy, the channel manager, claims the task.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 1 9

2 5 - C r e a t i n g a n d C o n f i g u r i n g W o r k f l o w s

μ
4. Mandy completes the reseller approval task.

5. The workflow then routes the registration request to a finance manager to perform a
credit check. Frank, a finance manager, claims the task and does a credit check.

6. Frank approves the reseller.

7. Mandy is notified that the partner has passed the credit check and been approved.

8. A personalized e-mail is sent to the partner informing them of their approval.

9. The workflow ends.

To implement this use case, EcoVida includes a company registration page, where a prospective partner
can specify the company’s name, address, region, and contact information, as well as bank account
information. A registration approval workflow is initiated upon the completion of the registration form.
The subject of the registration workflow is the registration request, which is a repository item (of type
company-registration-request) created upon the form submission.

The workflow consists of two tasks, and the associated outcomes and actions. The first task is the channel
review, initially assigned to the channel-manager role. Upon approval, the workflow progresses to the
credit check task, which is assigned to the finance-manager role. If the company passes the credit
check, a series of custom actions are executed, which create all the necessary partner accounts, including
the new organization and organizational roles, a portal community, and a user account for the company’s
contact.

Various e-mail messages are sent to the user or the channel manager depending on the outcomes of the
two tasks. Finally, the registration request is deleted, and the workflow ends.

In order for the channel review task to be executed by the channel manager associated with the
appropriate region, EcoVida defines three profile groups: ChannelManagerEast,
ChannelManagerCentral, and ChannelManagerWest. The registration request is dynamically routed to
the appropriate profile group depending on the zip code submitted during registration.

EcoVida also includes a registration_approval gear that allows EcoVida employees to perform tasks
along the registration approval workflow. This gear is accessible only to channel managers and Finance. It
allows the user to display all of the active workflow tasks that are accessible to him or her, claim and
release tasks, and execute task outcomes. In this simple UI, once a task has been claimed by the user, only
he or she can execute the task. The user can also release the task back into the pool, to allow others to
claim and execute it.

Configuring the Registration Workflow Type

The EcoVida.workflow module, obtainable from the ATG Developer Network, includes all the
configuration files necessary to define a new workflow type. The following is the list of these files:

/atg/

 dynamo/

 messaging/

 MessagingManager.properties

 SqlJmsProvider.properties

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 2 0

2 5 - C r e a t i n g a n d C o n f i g u r i n g W o r k f l o w s

μ
 dmsRegistrationWorkflowGlobal.xml

 dynamoMessagingSystem.xml

 security/

 admin-accounts.xml

 registry/

 RegistrationWorkflows.properties

 WorkflowAgents.properties

 data/

 workflows/

 registration/

 Registration.wdl

 workflow/

 registration/

 WorkflowConfiguration.properties

 WorkflowManager.properties

 WorkflowMessageSource.properties

 WorkflowSubjectAccess.properties

 WorkflowSubjectLookup.properties

 WorkflowTaskFormHandler.properties

 WorkflowTaskQuery.properties

 WorkflowView.properties

 process/

 WDLParser.properties

 WorkflowAgent.properties

 WorkflowClusterManager.properties

 WorkflowDefinitionRegistry.properties

 WorkflowProcessManager.properties

 WorkflowSubjectFinder.properties

 workflowProcessManager.xml

 configuration/

 AddUserToCommunityConfiguration.properties

 CreateAccountsConfiguration.properties

 CreateCommunityConfiguration.properties

 CreateOrganizationConfiguration.properties

 DeleteResgistrationConfiguration.properties

 EmailNotifyTaskActorsConfiguration.properties

 SetHomeCommunityConfiguration.properties

 userprofiling/

 userprofile.xml

 ecovida/

 commerce/

 b2b/

 profile/

 CompanyRegistrationFormHandler.properties

You can use the registration workflow configuration files as a template for creating your own workflow
types. Most of the properties configured by these files are the same for all workflow types. The properties
you may need to modify are discussed below.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 2 1

2 5 - C r e a t i n g a n d C o n f i g u r i n g W o r k f l o w s

μ
/atg/dynamo/messaging/

The MessagingManager.properties file adds the workflow process manager for the registration
workflow type to the fileCombiners property:

filecombiners+=/atg/workflow/registration/process/WorkflowProcessManager

The SqlJmsProvider.properties file adds the SQL JMS topics and queues used by the registration
workflow type to the requiredTopicNames and requiredQueueNames properties:

requiredTopicNames+=\

 sqldms/RegistrationWorkflowTopic/WorkflowUpdateEvents,\

 sqldms/RegistrationWorkflowTopic/WorkflowMigrationUpdateEvents

requiredQueueNames+=\

 sqldms/RegistrationWorkflowQueue/IndividualTimerEvents,\

 sqldms/RegistrationWorkflowQueue/CollectiveTimerEvents,\

 sqldms/RegistrationWorkflowQueue/BatchTimerEvents

The XML files in /atg/dynamo/messaging/ are the Patch Bay configuration files necessary for hooking
up the WorkflowProcessManager and WorkflowMessageSource components as message sources and
sinks. The standard Patch Bay configuration file, dynamoMessagingSystem.xml, is used on all process
servers. The other Patch Bay configuration file is used on global process servers only, and is XML-
combined with the standard configuration file on startup. For the registration workflow type, this file is
named dmsRegistrationWorkflowGlobal.xml.

/atg/dynamo/security/

The admin-accounts.xml file specifies security privilege information for the ACC task that is used for
editing workflows.

/atg/registry/

RegistrationWorkflows.properties creates a component of class
atg.service.registry.SimpleRegistry that sets the root path for storing registry files for the
workflow type:

configurationRootPath=/atg/registry/data/workflows/registration

The WorkflowAgents component is the registry (used by the ACC) of all workflow agents. You add the
agent components of your custom workflow types to the workflowAgentPaths property of this
component. (By default, this list is empty.) The WorkflowAgent.properties file includes this line:

workflowAgentPaths+=/atg/workflow/registration/process/WorkflowAgent

/atg/registry/data/workflows/registration/

The Registration.wdl file stores information used by the ACC. It is created automatically by the ACC.

/atg/workflow/registration/

The /atg/workflow/registration/ components include the WorkflowManager itself and the
associated helper components.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 2 2

2 5 - C r e a t i n g a n d C o n f i g u r i n g W o r k f l o w s

μ
The WorkflowConfiguration component has a number of properties that other components make
reference to. The WorkflowConfiguration.properties file includes:

subjectRepository=/atg/userprofiling/ProfileAdapterRepository

subjectType=company-registration-request

processRegistry=/atg/registry/RegistrationWorkflows

workflowViewPath=/atg/workflow/registration/WorkflowView

processManagerConfigurationFile=

 /atg/workflow/registration/process/workflowProcessManager.xml

dmsGlobalConfigurationFile=

 /atg/dynamo/messaging/dmsRegistrationWorkflowGlobal.xml

WorkflowMessageSource is a message source that fires all workflow-related JMS messages for
registration workflows.

The WorkflowSubjectAccess component provides access to the workflow’s task information data. The
component is configured to point to the workflow subject type and the repository it is stored in:

subjectRepository^=WorkflowConfiguration.subjectRepository

subjectType^=WorkflowConfiguration.subjectType

The WorkflowView component implements the atg.workflow.WorkflowView interface described in
the Workflow Classes section; it provides session-scoped access to workflow features. This component is
optional, as it is also possible to create workflow views programmatically using the WorkflowManager
API, but it provides a convenient way to access workflow information from the point of view of the current
user.

The WorkflowTaskQuery and WorkflowSubjectLookup servlet beans, and the request-scoped
WorkflowTaskFormHandler, are optional as well; they can be used to construct custom workflow UIs.
The registration approval gear uses the WorkflowTaskQueryDroplet to display active tasks accessible
to the current user. It then uses the WorkflowTaskFormHandler to operate on these tasks: claim and
release tasks, and fire outcomes. All of this is done in JSPs, with no need for the direct use of the workflow
API, or custom code. See the Workflow Servlet Beans and Workflow Task Form Handler sections for more
information about these components.

/atg/workflow/registration/process/

The /atg/workflow/registration/process/ components include the WorkflowProcessManager
and the associated helper components.

The WorkflowAgent component is configured to point to the registry component for the workflow type:

processRegistry=/atg/registry/RegistrationWorkflows

The process manager XML configuration file, workflowProcessManager.xml, defines all of the standard
workflow events and actions, plus the custom actions specific to registration workflows. It also contains
configuration information for customizing the registration workflow editor in the ACC.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 2 3

2 5 - C r e a t i n g a n d C o n f i g u r i n g W o r k f l o w s

μ
/atg/workflow/registration/process/configuration/

The /atg/workflow/registration/process/configuration/ components configure the
emailNotifyTaskActors and deleteRegistration standard workflow actions, plus the custom
actions createAccounts, createOrganization, createCommunityFromTemplate,
addUserToCommunity, and setHomeCommunity. Note that you can find the source code for these
custom actions, along with other Java source files, in the src/ subdirectory of the Ecovida.workflow
module.

/atg/userprofiling/

The registration repository item types are part of the user profile repository, and are therefore defined in
the file /atg/userprofiling/userProfile.xml. (Other workflow types may use other repositories.)
This file is XML-combined with the other user profile configuration files, and defines all the necessary
workflow-related item types. In addition, it defines two new properties for the company-registration-
request item type: workflowInstances (pointing to a set of individual workflow instances), and
workflowTaskInfos (pointing to a set of WorkflowTaskInfo items). A third property, id, is also
required for workflows, but is not defined in this file because the company-registration-request
item type already has an id property. All these properties must be defined for a subject type in order for
the workflow and process engines to function correctly.

In addition to the process-related item descriptors, the workflow repository schema also defines several
additional item types that are required for all workflow types. One of these is the workflowTaskInfo
item descriptor, whose purpose is to store workflow task-related information on a per-subject basis. The
intent is for generalized workflow subjects to have a workflowTaskInfos property pointing to a set of
workflowTaskInfo items. The other item types are as follows:

individualWorkflow

collectiveWorkflow

workflowInfo

workflowMigrationInfo

collectiveWorkflowTransition

individualWorkflowTransition

workflowDeletion

workflowMigration

workflowServerId

For information about the properties of these item types, see the
/atg/userprofiling/userProfile.xml file in the Ecovida.workflow module.

The names for these item types are specified by the WorkflowProcessManager component. If you want
to use different names in your repository, you must change the corresponding properties of that
component.

As mentioned above, each workflow type must have its own set of database tables. The script for creating
the tables for the registration workflow is <ATG10dir>/EcoVida/sql/db_components/<database-
vendor>/registration_workflow_ddl.sql.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 2 4

2 5 - C r e a t i n g a n d C o n f i g u r i n g W o r k f l o w s

μ
/atg/ecovida/commerce/b2b/profile/

The CompanyRegistrationFormHandler.properties file creates a component of class
atg.ecovida.commerce.b2b.profile.CompanyRegistrationFormHandler. This class contains the
code that initiates the workflow and performs dynamic routing of the channel review task by region. This
code is executed after the registration request item has been created, in the form handler’s
postCreateItem method. It demonstrates how the workflow API can be used both to start the workflow
and to affect its tasks.

Workflow Servlet Beans
The workflow API includes two servlet beans that you can use to create custom UIs for manipulating
workflows, atg.workflow.servlet.WorkflowTaskQueryDroplet and
atg.workflow.servlet.WorkflowInstanceQueryDroplet. Note that the Scenarios module includes
these classes but does not include any Nucleus components of these classes. Each component of one of
these classes is typically customized (by setting certain properties) to work with a specific workflow type.
For example, the registration workflow type uses a customized version of WorkFlowTaskQueryDroplet.

The configuration for each new workflow type typically includes some of the workflow-related servlet
bean components. This section describes the two workflow servlet beans, plus two other servlet beans
that may be used to facilitate the development of custom workflow UIs. For more information about
these servlet beans, see the ATG Page Developer’s Guide.

WorkflowTaskQueryDroplet

The WorkflowTaskQuery component in the registration workflow is a servlet bean of class
atg.workflow.servlet.WorkflowTaskQueryDroplet. You can use this servlet bean to perform
workflow task queries; for example, you could create a UI that displays the ID of the workflow subject and
the names of all tasks (including completed and inactive tasks), with links from each task to a page where
the task can be viewed in more detail, and where operations can be performed on the task. The task’s
identifying information (its process name, segment name, subject ID, and task element ID) can be
extracted from the TaskInfo and passed to this page as parameters. These parameters can then be used
as inputs to the WorkflowTaskFormHandler, which can display task information and perform operations
on the task, including firing task outcomes. See the Workflow Task Form Handler section for more on
WorkflowTaskFormHandler.

WorkflowInstanceQueryDroplet

In some cases, rather than viewing all workflow tasks, you may to want to view all existing workflow
instances. The atg.workflow.servlet.WorkflowInstanceQueryDroplet servlet bean class provides
this capability. For example, suppose you have a workflow type for managing orders, and you want view
all the outstanding orders and their status. Suppose, also, that an order workflow involves several
simultaneously active tasks. A query made using the WorkflowTaskQueryDroplet might return multiple
active tasks for each order, but the WorkflowInstanceQueryDroplet will return a single entry for each
workflow instance. (The registration workflow does not use an instance of this servlet bean, because a
registration workflow can have only one active task at a time.)

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 2 5

2 5 - C r e a t i n g a n d C o n f i g u r i n g W o r k f l o w s

μ
ItemLookupDroplet

The WorkflowSubjectLookup component in the registration workflow is a servlet bean of class
atg.repository.servlet.ItemLookupDroplet that is configured to work with the workflow’s
repository and item type. This servlet bean is useful for looking up properties of the workflow subject
given the subject ID. In the following example, the taskInfo parameter points to a TaskInfo object
returned by a WorkflowTaskQueryDroplet:

<dsp:droplet name="WorkflowSubjectLookup">

 <dsp:param name="id" param="taskInfo.subjectId"/>

 <dsp:oparam name="output">

 <dsp:valueof param="element.employeeFirstName"/>

 <dsp:valueof param="element.employeeLastName"/>

 </dsp:oparam>

</dsp:droplet>

GetDirectoryPrincipal

The Personalization module includes a servlet bean of class
atg.userprofiling.GetDirectoryPrincipal, located at
/atg/dynamo/droplet/GetDirectoryPrincipal, which you can use for resolving user directory
principals. Although it is not specific to workflows, the GetDirectoryPrincipal servlet bean has some
workflow-related uses:

 You can use its principal output parameter as an input to the
WorkflowTaskQueryDroplet. For example, you could use these two servlet beans
together to find all active tasks that can be executed, claimed, and released by the
Approver role.

 You can use its persona output parameter to specify the newOwnerName property of
the WorkflowTaskFormHandler, which is described in detail in the next section. The
name to pass to the form handler can be accessed as the value of persona.name in
the servlet bean.

Workflow Task Form Handler
In addition to workflow servlet beans, the configuration for each new workflow type typically includes a
request-scoped component of class atg.workflow.servlet.WorkflowTaskFormHandler. This form
handler is used to perform workflow task operations such as setting a task’s owner and firing outcomes.

Read-only properties

The WorkflowTaskFormHandler class has four properties that together uniquely identify the task being
operated on by the form handler: processName, segmentName, subjectId, and taskElementId. It also
has the following read-only properties that can be accessed once the task’s identifying information has
been specified:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 2 6

2 5 - C r e a t i n g a n d C o n f i g u r i n g W o r k f l o w s

μ

Property Description

taskDescriptor TaskDescriptor object that describes the task

outcomeDescriptors list of OutcomeDescriptor objects that describe all the possible
outcomes of the task

taskInfo TaskInfo object that describes the given task instance

Submit methods

The form handler’s submit methods operate on the task on behalf of the WorkflowView associated with
the form. The following submit methods are supported:

Submit method Description

setTaskPriority Sets the task’s priority to the value of the newPriority property

setTaskOwner Sets the task’s owner to the atg.userdirectory.DirectoryPrincipal
corresponding to the atg.security.Persona name specified via the
newOwnerName property

claimTask Claims the task on behalf of the current user’s view

releaseTask Releases the task on behalf of the current user’s view

fireOutcome Fires the task outcome identified by the outcomeElementId property

The following properties of the WorkflowTaskFormHandler are typically set in the properties file for this
component:

Property Description

workflowManager WorkflowManager that provides access to the workflow system

workflowView Session-scoped WorkflowView on behalf of which the task is to be
manipulated

subjectRepository MutableRepository that stores workflow subjects

subjectType Workflow subject item type

subjectClassName Name of the class to use when instantiating the object to be returned by
the subject property; the default is
atg.workflow.servlet.WorkflowTaskFormSubject (see below for
details)

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 2 7

2 5 - C r e a t i n g a n d C o n f i g u r i n g W o r k f l o w s

μ

The following properties are typically set in the JSP:

Property Description

processName Name of the workflow process

segmentName Name of the workflow process segment

subjectId Repository ID of the workflow subject

taskElementId ID of the workflow element of the task

newPriority New priority value to be set by the setTaskPriority submit
method

newOwnerName Unique atg.security.Persona name of new owner, to be set by
the setTaskOwner submit method

outcomeElementId ID of the outcome element to be fired by the fireOutcome submit
method

updateSubjectOnSubmit flag indicating whether the workflow subject should be updated
when the submit methods are executed (see below for details)

Navigation properties

The WorkflowTaskFormHandler also has a set of properties that are used to control navigation after a
form operation has been completed. These properties specify the URLs to redirect to on certain error and
success conditions. If the value for a particular condition is not set, the form is left on the page defined as
the action for that form (in other words, no redirect takes place). Each operation has its own successURL
and errorURL properties. Thus the following properties are available:

 setTaskPrioritySuccessURL

 setTaskPriorityErrorURL

 setTaskOwnerSuccessURL

 setTaskOwnerErrorURL

 claimTaskSuccessURL

 claimTaskErrorURL

 releaseTaskSuccessURL

 releaseTaskErrorURL

 fireOutcomeSuccessURL

 fireOutcomeErrorURL

These properties can be set in the properties file of the form handler or by hidden tags in the JSP.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 2 8

2 5 - C r e a t i n g a n d C o n f i g u r i n g W o r k f l o w s

μ
Updating Subject Properties

When operating on tasks, it is common to want to update the workflow subject as it gets advanced
through the workflow. For example, a manager in an expense report workflow may be required to submit
a comment as part of approving or rejecting an expense report. The comment field is typically a property
of the workflow subject (the expense report).

To facilitate subject updates without the need for custom code, WorkflowTaskFormHandler exposes a
special subject property of class atg.workflow.servlet.WorkflowTaskFormSubject (or a subclass
specified via the subjectClassName property). WorkflowTaskFormSubject is a subclass of
atg.repository.RepositoryFormHandler and, like its parent class, exposes the subject’s properties
via a value dictionary. Using the subject property, you can set workflow subject values as follows:

<dsp:textarea bean="WorkflowTaskFormHandler.subject.value.comment"

 cols="35" rows="5" default=""></dsp:textarea>

When the updateSubjectOnSubmit property is set to true, the values set via the subject property are
copied over to the workflow subject when any of the submit methods are executed.

For maximum flexibility, the WorkflowTaskFormHandler class can also be overridden to perform
operations before and after the work done by the submit methods. Each submit method has a pair of
corresponding pre and post operations. Thus the following protected methods can be overridden:

 preSetTaskPriority

 postSetTaskPriority

 preSetTaskOwner

 postSetTaskOwner

 preClaimTask

 postClaimTask

 preReleaseTask

 postReleaseTask

 preFireOutcome

 postFireOutcome

In the default implementation, each pre method checks to see if the updateSubjectOnSubmit property
is set to true, and if so, updates the subject by calling handleUpdate on the
WorkflowTaskFormSubject object. The post methods do nothing by default.

Firing Task Outcomes

Most workflow tasks have several possible outcomes. Typically, a single form with multiple submit
buttons is used to fire one of those outcomes. In these situations, the outcomeElementId property
cannot be set via a hidden tag, since each submit button needs to specify its own outcome element ID.

Instead, the outcome element ID must be passed in as the submit value. For example, here is how you
might display multiple submit buttons using a ForEach servlet bean:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 2 9

2 5 - C r e a t i n g a n d C o n f i g u r i n g W o r k f l o w s

μ
<dsp:droplet name="/atg/dynamo/droplet/ForEach">

 <dsp:param name="array" bean="WorkflowTaskFormHandler.outcomeDescriptors"/>

 <dsp:oparam name="output">

 <dsp:getvalueof id="locale" bean="/OriginatingRequest.requestLocale.locale"

 idtype="java.util.Locale">

 <dsp:getvalueof id="outcomeDescriptor" param="element"

 idtype="atg.workflow.OutcomeDescriptor">

 <dsp:input type="submit" bean="WorkflowTaskFormHandler.fireOutcome"

 value="<%= outcomeDescriptor.getDisplayName(locale) %>"

 submitvalue="<%= outcomeDescriptor.getOutcomeElementId() %>"

 name="<%= outcomeDescriptor.getName() %>"/>

 </dsp:getvalueof>

 </dsp:getvalueof>

 </dsp:oparam>

</dsp:droplet>

To support this functionality, the WorkflowTaskFormHandler class defines a setFireOutcome method,
which is called immediately before handleFireOutcome when the form is submitted. This method
simply sets the outcomeElementId property using the submitted value.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 3 0

2 5 - C r e a t i n g a n d C o n f i g u r i n g W o r k f l o w s

μ

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 3 1

2 6 - M a n a g i n g W o r k f l o w s o n M u l t i p l e S e r v e r s

μ
26 Managing Workflows on Multiple

Servers

This chapter describes the configuration tasks necessary for using workflows on multiple ATG 10.0.2
servers. It contains the following sections:

Designating a Process Editor Server for Workflows

Designating Global and Individual Workflow Servers

Configuring Caching for Workflows

Designating a Process Editor Server for Workflows
If your environment includes more than one ATG 10.0.2 server running workflows, you must take steps to
ensure that the servers do not conflict with each other when they attempt to handle the sending and
receiving of workflow messages. The configuration process is the same as the process for scenarios: you
designate one server as the process editor server and then assign either global or individual workflow
editor status to the remaining servers.

Specify the identity of the process editor server in the Workflow Process Manager configuration file,
workflowProcessManager.xml. Create a file with the same name in the top-level
<ATG10dir>/home/localconfig/atg/epub/workflow/process directory (in other words, in the
directory that applies to the whole cluster). The following shows an example of the process editor server
setting you would add to this file:

<?xml version="1.0" encoding="UTF-8" ?>

<process-manager-configuration>

<process-editor-server>

 <server-name>dyn1:88500</server-name>

</process-editor-server>

</process-manager-configuration>

For detailed information, refer to Configuring the Scenario Manager.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 3 2

2 6 - M a n a g i n g W o r k f l o w s o n M u l t i p l e S e r v e r s

μ
Note that the same server can act as the process editor server for both workflows and scenarios. If you do
elect to use the same server for both purposes, specify the same <server-name> setting for the process
editor server in the workflowProcessManager.xml file and the scenarioManager.xml file.

Designating Global and Individual Workflow Servers
After you have designated one server as your process editor server for workflows (see the previous
section), you can then determine whether the remaining servers should act as global or individual servers.
You define a server as global or individual in the top-level localconfig copy of the
workflowProcessManager.xml file (see the previous section).

For detailed information on this configuration process, refer to Configuring the Scenario Manager.

Configuring Caching for Workflows
If you are running workflows on multiple servers, you must set the cache-mode property to locked for
the following workflow item descriptors on each server:

 individualWorkflow

 collectiveWorkflow

 workflowInfo

 workflowTemplateInfo

 workflowMigrationInfo

 individualWorkflowTransition

 collectiveWorkflowTransition

These repository item descriptors are contained in one of the custom repositories that you set up as part
of creating a workflow type. To set the cache mode, add the following settings to the XML file that you
use to define the repository that contains these items:

<gsa-template>

 <item-descriptor name="individualWorkflow" cache-mode="locked"/>

 <item-descriptor name="collectiveWorkflow" cache-mode="locked"/>

 <item-descriptor name="workflowInfo" cache-mode="locked"/>

 <item-descriptor name="workflowTemplateInfo" cache-mode="locked"/>

 <item-descriptor name="workflowMigrationInfo" cache-mode="locked"/>

 <item-descriptor name="individualWorkflowTransition" cache-mode="locked"/>

 <item-descriptor name="collectiveWorkflowTransition" cache-mode="locked"/>

</gsa-template>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 3 3

2 6 - M a n a g i n g W o r k f l o w s o n M u l t i p l e S e r v e r s

μ
In addition, in order for locked mode caching to work in a multiple server environment, you must
configure Lock Manager components as described in the Enabling the Repository Cache Lock Managers
section of the ATG Installation and Configuration Guide.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 3 4

2 6 - M a n a g i n g W o r k f l o w s o n M u l t i p l e S e r v e r s

μ

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 3 5

2 7 - S e t t i n g U p S e c u r i t y A c c e s s f o r W o r k f l o w s

μ
27 Setting Up Security Access for

Workflows

For workflows, you can define the following levels of security access:

 Access to the Workflow menu items in the ACC. This setting determines whether users
can create, edit, or view workflows in the workflow editor. See Allowing ACC Users to
Edit Workflows.

 The ability to execute a specific workflow, which determines whether a user can
initiating the project or process that contains the workflow. See Allowing Site Users to
Execute Workflows.

 The ability to complete specific tasks within a workflow, which determines whether a
user has access to buttons or other controls that would indicate a given task has been
initiated and thus advance the workflow to the next element. See Giving Site Users
Access to Workflow Tasks.

The mechanism that workflows use to handle security is the access control list, described in Secured
Repositories in the ATG Repository Guide. For workflows, access control entries are stored as strings in the
workflow definition XML file and then parsed by the atg.security package into an
AccessControlList object.

The following example shows an access control entry from the registration.wdl file, which is the
definition file for the EcoVida registration workflow:

<attribute name="atg.workflow.acl">

 <constant>Profile$role$2900189:execute</constant>

</attribute>

Allowing ACC Users to Edit Workflows
ACC users create, edit, and view workflows through the workflow editor. You can grant or deny access to
the workflow editor for any workflow type in your system by enabling or disabling the menu item that
corresponds to that workflow type. For example, to prevent users from editing or creating more instances
of the Registration workflow type in the EcoVida demo, you would simply disable the Workflow >
Registration item on the main ACC navigation menu.

As you do for any other ACC menu item, you enable or disable menu items for specific groups of ACC
users; the given items do not appear if users do not belong to a group that has explicit access to them. To

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 3 6

2 7 - S e t t i n g U p S e c u r i t y A c c e s s f o r W o r k f l o w s

μ
enable or disable the Workflow menu item that corresponds to a particular workflow type, complete the
following steps:

1. In the ACC, select People and Organizations > Control Center Groups.

2. Select the group of users whose access rights you want to change.

3. Edit the checkbox that corresponds to the Workflow menu item for which you want to
set access. For example, to deny access to the Registration workflow type in the
EcoVida demo, deselect Workflow:Registration.

For more information, see Configuring Access Privileges in the ATG Programming Guide.

Allowing Site Users to Execute Workflows
To “execute” a workflow means to complete the steps that cause the first element in a given workflow to
occur. For example, in ATG Content Administration, users execute a workflow by creating a project to
which that workflow is assigned. When a user creates a project, ATG Content Administration checks to
make sure the user has the proper access rights to execute the workflow associated with the project type.
If the user does not have the proper privileges, the project is not created.

You assign workflow execution rights by user directory principal – in other words, you can assign this
right to organizations, roles, profile groups, or individuals. For more information on user directory
principals, see Working with the Dynamo User Directory.

Follow these steps to assign workflow execution rights:

1. Open the workflow.

2. Right-click the first element in the workflow and select Edit Details from the pop-up
menu. The Workflow Attributes window opens.

3. Click the Set Access Rights button. The Set Access Rights window opens.

4. Uncheck the Use Default Security Policy Behavior checkbox, which indicates that no
user access list has been specified and therefore that all users can execute the
workflow.

5. Click on Add to add a new principal to the access rights list. The Add Principal box
opens.

6. Select the type of principal you want to add:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 3 7

2 7 - S e t t i n g U p S e c u r i t y A c c e s s f o r W o r k f l o w s

μ
Principal Description

Organizations Gives workflow execution rights to all members of the specified organization.

Note that a child organization automatically inherits the access rights of the parent
organization. You can override the inherited rights by explicitly setting the access
rights for the child organization. For more information about working with
organizations, see the Setting Up Visitor Profiles chapter of ATG Personalization
Guide for Business Users.

Roles Gives workflow execution rights to anyone assigned the specified role.

Groups Gives workflow execution rights to all members of the specified profile group.

Individuals Gives workflow execution rights to the specified individuals (user profiles).

You can list individual users according to the organizations to which they belong
(List Individuals by Organization), or you can search for users that match certain
criteria (List by Expression).

7. Grant access rights to the principal you chose by checking the Execute access right in
the list. To deny access rights, by clicking again so there is an X in the box. An empty
box indicates that no user access rights are set.

8. Click OK.

9. Select File > Save to save your changes to the workflow.

Giving Site Users Access to Workflow Tasks
For individual tasks within a workflow, you can give site users the following types of access privileges:

 You can allow a user to execute a task. For example, assume you have set up a site
page that lets all your technical support representatives see a list of pending customer
cases that require technical involvement. You can include a Claim button on the page
that allows a site user (a support representative, in this case) to assign herself a given
case. The Claim button is displayed only to those users who have Execute access rights
to the task element that is triggered when the button is clicked. In addition, you can
set up a Release button that allows users to return a task they previously claimed to
the list of available tasks.

To allow a user to execute a task (which includes the ability to claim and release it),
give him or her Execute access rights as described below.

 You can allow users to assign a task to other people. This process is the same as
allowing a user to claim a task, but it enables a user such as a manager to nominate
another user for a given task. Users who have Write access can assign tasks to other
users.

To implement this feature, you must perform the following steps:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 3 8

2 7 - S e t t i n g U p S e c u r i t y A c c e s s f o r W o r k f l o w s

μ
 Enable the task’s Assignable option as described below.

 Give Write access to the appropriate users as described below.

 Add an Assign button (or its equivalent) to an appropriate site page. When
users with Write access for this task click the Assign button, a list of users
appears to whom the task can be assigned. This list includes the principals that
have been granted Execution access rights to the task. For example, if you grant
Execution privileges to a profile group, all members of this group appear in the
list. The page developer should configure the Assign control to call
WorkflowView.setTaskOwner(processName, segmentName, subject

id, tasked, user) where user is an instance of
atg.userdirectory.User.

To give a user Execute or Write access for a task:

1. Display the appropriate workflow in the ACC.

2. Right-click the task whose security access you want to change.

3. Follow the procedure described in the previous section, Allowing Site Users to Execute
Workflows.

To make a task assignable:

1. Display the appropriate workflow in the ACC.

2. Right-click the task whose access you want to change.

3. Click Edit Details.

4. Check the Assignable option.

5. Close the task element.

6. Select File > Save to save your changes to the workflow.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 3 9

2 8 - C o n f i g u r i n g t h e A T G E x p r e s s i o n E d i t o r

μ
28 Configuring the ATG Expression

Editor

The ATG expression editor is a collection of code resources that together define the parts of the ACC
interface where users can manipulate grammar expressions within areas such as targeting rules and
scenarios. This section describes how to define or modify the grammar that drives the editor. It includes
the following sections:

Overview of the ATG Expression Editor

Grammar Template Files

Grammar Definition Fundamentals

Creating a Grammar by Composing Constructs

Structure and Presentation of Choices

Defining and Referring to Labeled Constructs

Advanced Features

Scenario UI Expression Grammar Configuration

Commerce-Related Grammar Configuration

Suggestions for Localization

Overview of the ATG Expression Editor
Each instance of the expression editor in the ATG user interface is configured at runtime by an XCL
template, which exposes the grammar as a graph of Java objects implementing the
atg.ui.expreditor.Construct interface. In this graph, each Construct represents one of the following
fundamental types of grammatical constructs:

 Token: a unitary word or phrase within the expression such as People whose, named,
or is not. The content of a token cannot be edited by the user directly, but tokens
can be selected from a list or from a dialog box. A token may have a visible
representation different from its intrinsic value, which is always of String type.

 Literal: a constant value that the user can supply and freely edit within an expression,
such as a number or a string. In the expression People whose name is Nate, the
term Nate would be a literal supplied by the user.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 4 0

2 8 - C o n f i g u r i n g t h e A T G E x p r e s s i o n E d i t o r

μ
 Choice: a set of alternative constructs, exactly one of which is allowed to occupy a

particular place in the expression. The user is permitted to select the member of the
choice set. For example, in the alternative expressions People whose name is Nate
and People whose name is not Nate, the tokens is and is not are members of
a choice.

 Sequence: a sequence of a fixed number of constructs that occur in a fixed order. For
example, the expression People whose name is Nate might be defined as a
sequence whose components are the token People whose, a choice of properties (of
which one is name), a choice of {is, is not} and a literal.

As XCL templates, expression grammars are defined by XML data files in the CLASSPATH, which in turn
can be compiled into .ser files by the XCL toolkit for greater efficiency and speed. The XCL stylesheet used
by expression grammar templates provides XML elements that can be used to define grammatical
concepts, including the basic construct types given above.

For example, the following XML file would serve to define the sequence mentioned above. It includes a
number of details that will be explained later in this section.

<?xcl-stylesheet resource="atg/ui/expreditor/xcl/grammar.xsl"?>

<sequence id="example-sequence">

 <token><description>People whose</description></token>

 <choice>

 <token value="name"/>

 <token value="email"/>

 <token value="gender"/>

 </choice>

 <choice>

 <token value="eq"><description>is</description></token>

 <token value="neq"><description>is not</description></token>

 </choice>

 <literal/>

</sequence>

Grammar Template Files
This section explains the basics of grammar template files in preparation for exploring the details of
grammar definition.

Templates, Filenames and Localization

An XCL expression grammar template is referenced within the code like a ResourceBundle: the code
specifies the template as if it were a class name, and XCL searches in the CLASSPATH for the
corresponding .ser or .xml file, looking for any localized variants that are present.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 4 1

2 8 - C o n f i g u r i n g t h e A T G E x p r e s s i o n E d i t o r

μ
XCL looks for .ser files before .xml files, and it also performs a most-specific-locale-first search. For
example, in the US English locale, if the code is looking for a template named
atg.ui.expreditor.targeting.query-grammar, the following files will be searched for in this order:

1. atg/ui/expreditor/targeting/query-grammar_en_US.ser

2. atg/ui/expreditor/targeting/query-grammar_en_US.xml

3. atg/ui/expreditor/targeting/query-grammar_en.ser

4. atg/ui/expreditor/targeting/query-grammar_en.xml

5. atg/ui/expreditor/targeting/query-grammar.ser

6. atg/ui/expreditor/targeting/query-grammar.xml

Unlike for a ResourceBundle, here there is no attempt to combine files. The first file found by the above
search logic will be used in its entirety, and any other matching files will be ignored.

Stylesheet Preamble

Each expression grammar must begin with the following XML processing instructions, which define the
textual encoding used by the file, and the XCL stylesheet to be used, defining such XML elements as
sequence, choice, and so on:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<?xcl-stylesheet resource="atg/ui/expreditor/xcl/grammar.xsl"?>

The encoding attribute of the XML instruction may take on any of the values shown in Supported
Character Encodings, permitting grammar definitions to be expressed in any desired textual encoding.

Textual Inclusion

A grammar definition file may textually include another grammar definition by use of the XCL include
element. For example, the following line includes the contents of the dynamo-grammar template
definition into the file in which it occurs:

<include template="atg.ui.expreditor.dynamo.dynamo-grammar"/>

Grammar Templates in the ATG Product Distribution

The following grammar templates are distributed with ATG products:

Distribution file Purpose Template Name

DPS/lib/classes.jar Query expressions in Content
Repository Admin UI

atg.ui.expreditor.targeting

.

query-grammar

DPS/lib/classes.jar Common definition of date-
related subexpressions

atg.ui.expreditor.dynamo.

date-grammar

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 4 2

2 8 - C o n f i g u r i n g t h e A T G E x p r e s s i o n E d i t o r

μ
Distribution file Purpose Template Name

DPS/lib/classes.jar Common definition of Dynamo-
related subexpressions

atg.ui.expreditor.dynamo.

dynamo-grammar

DSS/lib/classes.jar Scenario expressions supported
by the Scenarios module

atg.ui.scenario.expression.

expression-grammar

DCS/lib/classes.jar PMDL expression grammar for
ATG Commerce promotions
editor

atg.ui.commerce.pricing.

pricing-grammar

DCS/lib/classes.jar Scenario expression extensions
for ATG Commerce

atg.ui.commerce.scenario.

commerce-expression-grammar

Serialization of Templates

Templates can be serialized to .ser files to avoid the runtime overhead of parsing. To serialize a template,
use the following command:

java atg.ui.xuill.Xuill -serialize template-name

The input-file is the pathname of the template file (with a .xml suffix). A corresponding .ser file will be
created in the current directory.

To use this command, the ATG distribution’s DAS/lib/classes.jar and DAS-UI/lib/uiclasses.jar
files must be in your CLASSPATH.

Grammar Definition Fundamentals
This section describes how to use the four fundamental types of grammatical constructs outlined above:

 Tokens

 Literals

 Choices

 Sequences

Tokens

Tokens are non-editable words or phrases within an expression, specified by the token element in XML. A
token has two main properties: its value and its description. The relationship between these
properties is similar to the relationship between a property’s name and display name.

The value of a token is a String representing the token’s identity from the application’s point of view. It is
specified by an optional value="..." attribute of token. A value need not be supplied in the case of

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 4 3

2 8 - C o n f i g u r i n g t h e A T G E x p r e s s i o n E d i t o r

μ
noise words that merely pad out the expression or provide a linguistic handle for a choice. A value
should not be localized.

The description of a token is the text used to display the token in the expression editor user interface,
both in the body of the actual expression and in choice lists. The description is specified by the text
contained in a <description>...</description> child element of token. In general it should be
localized. If it is not provided, the token’s value will be used as the description.

The editor text of a token is optional descriptive text that will be displayed in the expression body, but
not in choice lists. It is specified by the text contained in a <editor-text>...</editor-text> child
element.

A <hidden/> child element, if present, denotes that the token is to be displayed only in choice lists and
hidden in the expression body. It is used for choice elements that affect the structure of subsequent parts
of the expression, but which would visually disrupt the expression if visible. It is often used for the first
element of a sequence that itself is one alternative of a choice.

Some examples:

<token value="1"/>

This example shows a token whose value and description are equal to the string “1”

<token value="US">

 <description>United States</description>

</token>

This example shows a token whose value is the ISO country code “US”, and whose description in the user
interface is “United States”. In a French locale, the description might be altered to “États-Unis”.

Literals

Literals are values that may be edited through the expression editor user interface. They are specified
by the literal XML element.

A literal has a default value, which can be specified by <default><value
type="class">...</value></default>. The type of this default value determines the data type that
the user is permitted to enter. If no default is given, the default is the empty string.

A literal’s description is identical in nature and specification to the description of a token: it determines
how the literal is presented in choice lists, and it also acts as a descriptive prompt whenever the literal is
selected for editing.

The following example shows a literal of type Integer whose default value is the number 1.

<literal>

 <default><value type="java.lang.Integer">1</value></default>

 <description>Enter a relative priority</description>

</literal>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 4 4

2 8 - C o n f i g u r i n g t h e A T G E x p r e s s i o n E d i t o r

μ
Choices

Choices are specified by the choice XML element, whose children may be any set of construct elements.

A choice always has a default child element that is initially selected. If not specified, this is the first
element, but it can be overridden by enclosing any desired child in a <default-
choice>...</default-choice> wrapper.

Choices must have at least one child.

Sequences

Sequences are specified by the sequence XML element, which can have any set of constructs as its
children.

A sequence must have at least one child.

Creating a Grammar by Composing Constructs
The basic technique of defining an expression editor grammar is to define individual tokens and literals
that represent building blocks of the desired expression language, and compose them into larger
structures made up of sequence and choice elements. These structures can in turn be composed into still
more complex sequences and choices, and so on.

Because tokens and literals cannot be decomposed into smaller pieces, they are called terminal constructs
(as in the terminal branches of a tree). Sequences and choices are nonterminals.

An expression grammar usually has a single top-level construct whose contained sequences and choices
represent all possible expressions in the grammar.

Let’s return to our earlier example grammar:

<?xcl-stylesheet resource="atg/ui/expreditor/xcl/grammar.xsl"?>

<sequence id="example-sequence">

 <token><description>People whose</description>

 <choice>

 <token value="name"/>

 <token value="email"/>

 <token value="gender"/>

 </choice>

 <choice>

 <token value="eq"><description>is</description></token>

 <token value="neq"><description>is not</description></token>

 </choice>

 <literal/>

</sequence>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 4 5

2 8 - C o n f i g u r i n g t h e A T G E x p r e s s i o n E d i t o r

μ
This grammar’s top level construct is given the name example-sequence, and it permits the following
expressions:

People whose name is ____

People whose email is ____

People whose gender is ____

People whose name is not ____

People whose email is not ____

People whose gender is not ____

The expression editor always displays a valid expression at all times; consequently, some element of a
choice must always be “chosen”. There is an initial default for each choice, which is normally the first
element of the choice, but this may be overridden. Thus, in our example, the first of the above possibilities
will be shown when the editor is initially displayed.

Structure and Presentation of Choices
In the expression editor user interface, a set of choices is represented by a list that has one entry for each
of the leading terminals of the choice. Whenever the user selects the leading terminal of some element of
a choice, the user interface will display a list of all other leading terminals that can occupy that particular
place in the expression. Each entry in the list shows the corresponding terminal’s description text, as
defined in the grammar.

In our example grammar given above, the leading terminals for a person’s property are name, email and
gender. Consequently, when the user selects name, all three of these alternatives will be displayed.

This concept seems trivial, but the set of choices can be determined in complex ways since one can have
choices of sequences, or choices of other choices. These are handled as follows:

 The leading terminals of a sequence are the leading terminals of the first element of
the sequence.

 The leading terminals of a choice are the union of the sets of leading terminals of each
element of the choice.

 Whenever the leading terminal of a sequence is selected, this automatically causes all
the subsequent elements of the sequence to be included in the expression.

To demonstrate these principles, let’s modify our example:

<?xcl-stylesheet resource="atg/ui/expreditor/xcl/grammar.xsl"?>

<sequence id="example-sequence">

 <token><description>People</description></token>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 4 6

2 8 - C o n f i g u r i n g t h e A T G E x p r e s s i o n E d i t o r

μ
 <choice id="filter-choice">

 <sequence id="property-filter">

 <token><description>whose</description></token>

 <choice>

 <token value="name"/>

 <token value="email"/>

 <token value="gender"/>

 </choice>

 <choice>

 <token value="eq"><description>is</description></token>

 <token value="neq"><description>is not</description></token>

 </choice>

 <literal/>

 </sequence>

 <choice id="location-or-food-choice">

 <sequence id="location-filter">

 <token><description>living in</description></token>

 <choice>

 <token value="US"><description>United States</description></token>

 <token value="JP"><description>Japan</description></token>

 </sequence>

 <sequence id="food-filter">

 <token><description>who eat</description></token>

 <choice>

 <token value="meat"/>

 <token value="vegetables"/>

 </sequence>

 </choice>

 </choice>

</sequence>

The first element of an expression in this grammar is, of course, People. The second element can be
chosen from any of the following:

 • whose (the leading terminal of property-filter)

 • living in (the leading terminal of location-filter)

 • who eat (the leading terminal of food-filter)

It is clear enough that whose is a valid choice: after People comes a construct named filter-choice,
the first of whose choices is a sequence that begins with the leading terminal whose. The selection of
whose automatically includes the other elements of property-filter in the expression—in other
words, picking whose includes the entire sequence whose name is ____ in the edited expression.

But note that living in and who eat are presented as alternatives to whose, even though location-
filter and food-filter are not direct alternatives to property-filter within the same choice. This
occurs because they are elements of location-or-food-choice, which is an alternative to property-
filter. The set of alternatives to property-filter must therefore expand to include all the leading
terminals of location-or-food-choice.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 4 7

2 8 - C o n f i g u r i n g t h e A T G E x p r e s s i o n E d i t o r

μ
If the alternative who eat is selected, it alters two different choices in the grammar: the current element
of filter-choice becomes location-or-food-choice, and the current element of location-or-
food-choice becomes food-filter.

Defining and Referring to Labeled Constructs
It is frequently the case that a particular construct will be a child of more than one parent construct. For
instance, consider our example grammar—it may be the case that a choice of people properties is needed
in multiple expressions within the same grammar.

The id="..." attribute may be attached to any construct in order to label the construct with a unique ID.
The presence or absence of an ID does not affect the nature of the labeled construct.

Once labeled, a construct can be referred to within any nonterminal construct (choice or sequence) using
the notation <rule name="..."/>. To rework our initial example so that it compares two different
people properties, we might do the following:

<?xcl-stylesheet resource="atg/ui/expreditor/xcl/grammar.xsl"?>

 <sequence id="example-sequence">

 <token><description>People whose</description></token>

 <rule name="people-property-choice"/>

 <choice>

 <token value="eq"><description>is</description></token>

 <token value="neq"><description>is not</description></token>

 </choice>

 <rule name="people-property-choice"/>

 </sequence>

 <choice id="people-property-choice">

 <token value="name"/>

 <token value="email"/>

 <token value="gender"/>

 </choice>

A labeled construct need not be defined in a “standalone” manner as in the above example; it can be
directly included in one parent construct as a regular child, but also referenced by other parent constructs
by the <rule name=".../> notation.

Circular reference chains between constructs are legal, and are in fact an important tool for grammars,
since the resulting recursion permits the user to form arbitrarily complex expressions. However, there are
two cases to avoid, since they would cause the user interface to enter infinite loops of one kind or
another:

 The leading element of a sequence must never refer to its parent, directly or indirectly.

 The default element of a choice must never refer to its parent, directly or indirectly.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 4 8

2 8 - C o n f i g u r i n g t h e A T G E x p r e s s i o n E d i t o r

μ
Important: Many constructs are labeled so that the application code itself can identify them. In general,
construct IDs should be assumed to be significant to the application and should not be changed.

Advanced Features
This section describes some additional features you can use to define an expression editor grammar.

Custom Expression Classes

You can label any construct with a <expression-class>...</expression-class> child to specify a
Java class for the construct’s runtime expression. The class must implement
atg.ui.expreditor.Expression. This feature is typically used to impose additional behaviors and
validity constraints for special constructs, such as choices that are automatically populated with bean
property-name tokens as their children.

Custom Editor Classes

You can label any literal with a <editor-class>...</editor-class> child to specify an actual AWT
component used to display the literal within the expression editor, implementing
atg.ui.expreditor.TerminalExpressionEditor. This feature permits special-purpose editing of
literal values.

Custom Assistant Classes

You can label any terminal with an <assistant-class>...</assistant-class> child to specify a
Java class for the literal’s runtime assistant, implementing atg.ui.expreditor.TerminalAssistant.
This feature permits special-purpose editing of literals or tokens via custom widgets that are displayed in
a popup window above or below the selected terminal.

Placeholders

Some applications may use the expression editor in a special mode in which placeholders may be
defined. A placeholder is a part of some expression that can be given a name by the user at runtime.
Placeholders are used to support user-defined “template” expressions in which named portions of the
template can be later changed.

In a grammar definition file, you can enclose any construct in a <placeholder>...</placeholder>
wrapper to indicate that it should be treated as a placeholder.

Required Terminals

A terminal construct may be marked as required by including the child XML expression <required/>.
This forces the expression editor to require the expression to have a non-null, non-empty value.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 4 9

2 8 - C o n f i g u r i n g t h e A T G E x p r e s s i o n E d i t o r

μ
Eliminating Spaces

Normally a space is displayed immediately after each terminal. To suppress this space, include the child
XML expression <nospace/>.

Verbose Terminals

Some verbose terminals should not be shown except when an expression is being actively edited. The
child XML expression <verbose/> is used to denote such terminals.

Unsigned Integer

A literal element may possess the child XML expression <unsigned-integer-editor> to indicate that
no sign should be permitted.

Scenario UI Expression Grammar Configuration
A grammar extension to the Scenarios module has special considerations. It specifies an XML file
containing an expression grammar definition just like those described above, with information specific to
this module, including:

 Grammar elements that correspond to custom scenario actions, events and conditions

 Additional information governing the generation of XML fragments that provide the
PDL (Process Description Language) corresponding to grammar elements

 Special-purpose tags for scenario-related grammatical expressions and attributes

Note that the chapter Adding Custom Events, Actions, and Conditions to Scenarios contains a detailed
example of extending the grammar editor for scenarios. It shows how to add a custom condition to the
grammar editor. The example is in the section Extending the Expression Editor.

Scenario Grammar Extension Header

All grammar extension definitions must include an additional processing instruction at their top. The
header of a grammar definition file for the Scenarios module looks like this:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<?xcl-stylesheet resource="atg/ui/scenario/expression/

 scenario-grammar.xsl"?>

<?xcl-stylesheet resource="atg/ui/expreditor/xcl/grammar.xsl"?>

Defining Expressions for Custom Events

The grammar element for a custom event must have a special id: the prefix event-message- followed
by the JMS message type string for the event. The <element-icon> and <declared-message-type>
tags must also be used to provide an icon (specified as a class loader resource path) and the message type
that will be associated with the event. The icon is optional; a generic icon will be used if none is specified.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 5 0

2 8 - C o n f i g u r i n g t h e A T G E x p r e s s i o n E d i t o r

μ
For instance, if you were defining an expression for the custom event MyProject.MyEvent, you would
define the event in the grammar as follows:

<sequence id="event-message-MyProject.MyEvent">

 <element-icon>icon-resource-path</element-icon>

 <declared-message-type>MyProject.MyEvent</declared-message-type>

 ...

</sequence>

Defining Expressions for Custom Actions

The grammar element for a custom action must have a special id: the prefix action- followed by the
action’s name, as specified in scenarioManager.xml. The optional <element-icon> tag may be used
to provide an icon (specified as a class loader resource path). For instance, if you were defining an
expression for the custom event MyAction, you would define the event in the grammar as follows:

<sequence id="action-MyAction">

 <element-icon>icon-resource-path</element-icon>

 ...

</sequence>

Defining Expressions for Custom Conditions

The grammar element for a custom condition must have a special id: the prefix condition- followed by
the condition’s name as specified in scenarioManager.xml. The optional <element-icon> tag may be
used to provide an icon (specified as a class loader resource path). For instance, if you were defining an
expression for the custom event MyCondition, you would define the event in the grammar as follows:

<sequence id="condition-MyCondition">

 <element-icon>icon-resource-path</element-icon>

 ...

</sequence>

Associating XML Templates with Grammar Elements

If you simply defined the expression grammar for custom elements, and nothing more, the system would
have no way of knowing what PDL (Process Description Language) is associated with the grammar
elements, and the extension would not work. Special XML template information must be associated with
grammar elements that correspond to PDL fragments. This information allows the editor to do the
following:

1. Parse an existing scenario element’s PDL and configure an expression appropriately to
reflect its contents. The DOM for a scenario element is traversed and recursively
matched against the fragments in the expression’s XML templates.

2. Generate the appropriate PDL for a scenario element given the choices and literal
values specified in the expression editor. The expression is traversed, and the XML

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 5 1

2 8 - C o n f i g u r i n g t h e A T G E x p r e s s i o n E d i t o r

μ
template information drives the recursive construction of a DOM for the scenario
element.

In general, an XML template for a grammar element consists of one or more literal fragments of XML, in
which an “attachment point” may be defined for the application of XML templates belonging to child
elements.

For parsing, a grammar element’s template is matched against the DOM element being parsed, to
determine whether the element is applicable. If the match succeeds, the attachment point determines a
descendant of the matched DOM element that will be recursively matched against the grammar
element’s children. For generation, the template’s XML is generated whenever the grammar element is
encountered in a traversal of the expression. The attachment point determines the place within the
generated DOM within where the grammar element’s children will attach their own generated XML. If a
grammar element has no XML template, the current DOM element being parsed or generated is simply
passed to the element’s children.

The XML templates of a sequence’s children are processed in the order in which the children are defined.
All templates of all the children must match, or the sequence is not considered to match as a whole.

The XML templates of a choice’s children are treated differently. On XML parsing, the choice’s currently
chosen child is determined by finding the first child whose XML template matches the DOM fragment
being parsed. On XML generation, only the currently chosen child’s XML templates will be processed.

The XML template for atomic constructs like literals and tokens is used to define only their associated
non-varying XML, if any. For parsing, the textual child of the current DOM fragment is taken as the value
of the construct, and the type attribute is taken as its type. On generation, the value of the literal or token
is emitted as a textual child of the construct and the type of the value is emitted as an attribute named
type.

Specification of XML templates

XML templates are specified for a grammar element by placing one of the following tags within it:

Tag Purpose

<xml-template> Encloses an XML fragment that is associated with
the grammar element. If the grammar element
has children with their own XML templates, then
an embedded <apply-xml-templates/>
element determines the location in the fragment
at which the children’s associated XML will be
spliced in.

<xml-empty-template/> Specifies that the grammar element is associated
with the absence of any parsed or emitted XML.
This is only meaningful when other alternative
constructs in a choice have non-empty XML
templates.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 5 2

2 8 - C o n f i g u r i n g t h e A T G E x p r e s s i o n E d i t o r

μ
Tag Purpose

<xml-template-attribute name="..."/> Specifies that the grammar element is associated
with an XML attribute.

Here is an example to clarify the use of XML templates. Suppose you have a custom scenario action whose
expression grammar takes the following form:

Perform action in (this way | that way) on [literal]

This action will be represented as a sequence beginning with the token Perform MyAction in,
followed by a choice of tokens this way and that way, followed by the on token, and finally a literal for
the user to supply a value. In the case where the token this way is chosen, the expression will
correspond to the following PDL fragment (all of which would be automatically enclosed in an <action>
element by the scenario editor):

<action-name>MyAction</action-name>

<action-param name="mode">

 <constant>this</constant>

</action-param>

<action-param name="value">

 <constant type="java.lang.Integer">value</constant>

</action-param>

(In the case where that way is chosen, the PDL would be identical but the value of the mode argument
would be that.)

The expression grammar for such a custom action could look like this:

<sequence id="action-MyAction">

 <!-- XML template specifying the action name. Child elements' XML will

 be processed following the <action-name> element. -->

 <xml-template>

 <action-name>myAction</action-name>

 <apply-xml-templates/>

 </xml-template>

 <!-- "noise" token that simply acts as a choice handle in the UI;

 it is not associated with any PDL. -->

 <token><description>Perform action</description></token>

 <!-- further "noise" token providing connective to choice. We

 separate it because "Perform action" is nicer in a dropdown

 list than "Perform action in". -->

 <token><description>in</description></token>

 <!-- choice of mode arguments -->

 <choice>

 <!-- XML template specifying the "mode" parameter. This XML

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 5 3

2 8 - C o n f i g u r i n g t h e A T G E x p r e s s i o n E d i t o r

μ
 template is processed where the <apply-xml-templates/>

 element occurred in the parent sequence's template, so the

 parameter will follow the <action-name> element. -->

 <xml-template>

 <action-param name="mode">

 <constant><apply-xml-templates/></constant>

 </action-param>

 </xml-template>

 <!-- mode tokens. Because these have values, the tokens are

 associated with XML text nodes at the point where the

 <apply-xml-templates/> element occurred in the parent

 choice's template, i.e. within the <constant> element. -->

 <token value="this"><description>this way</description></token>

 <token value="that"><description>that way</description></token>

 </choice>

 <token><description>on</description></token>

 <literal>

 <!-- XML template for the "value" parameter. Note that the

 value of the literal will be associated with an XML text

 node processed at the point of <apply-xml-templates/>. -->

 <xml-template>

 <action-param name="value">

 <constant><apply-xml-templates/></constant>

 </action-param>

 </xml-template>

 <required/>

 <default><value type="java.lang.Integer">1</value></default>

 </literal>

</sequence>

Standard XML Template Patterns

The following examples illustrate typical XML template patterns used in scenario grammar elements.

Actions

<sequence id="action-myAction">

 ...

 <xml-template>

 <action-name>myAction</action-name>

 <apply-xml-templates/>

 </xml-template>

 ...

</sequence>

The above XML template will cause the PDL fragment <action-name>myAction</action-name> to be
associated with this custom action. The embedded <apply-xml-templates/> element specifies that
the sequence’s children will parse and generate their own XML following the <action-name> element.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 5 4

2 8 - C o n f i g u r i n g t h e A T G E x p r e s s i o n E d i t o r

μ
(Note: the enclosing <action> element is automatically generated by the scenario editor and requires no
template).

Events

<sequence id="event-message-MyProject.MyEvent">

 ...

 <xml-template>

 <event-name>MyProject.MyEvent</event-name>

 <apply-xml-templates/>

 </xml-template>

 ...

</sequence>

Similarly to the action example, the XML template here provides an <event-name> element to be
generated with an enclosing <event> element.

Conditions

<sequence id="condition-myCondition">

 ...

 <xml-template>

 <filter operator="myCondition">

 <apply-xml-templates/>

 </filter>

 </xml-template>

 ...

</sequence>

The XML template here provides a <filter> element to be generated with an enclosing <condition>
element. Note that the operator attribute must correspond to the condition name, and that the
positioning of <apply-xml-templates/> causes the sequence’s children to be generated within the
<filter> PDL element, not after it.

Literal Constants and Token Constants

<literal>

 <xml-template>

 <action-param name="logInteger">

 <constant><apply-xml-templates/></constant>

 </action-param>

 </xml-template>

 <default><value type="java.lang.Integer">1</value></default>

</literal>

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 5 5

2 8 - C o n f i g u r i n g t h e A T G E x p r e s s i o n E d i t o r

μ
In this typical pattern, a literal is associated with an XML template that specifies a <constant> PDL
element. The <apply-xml-templates/> element is positioned such that the literal’s value will be
generated within the <constant> tag, and its type will be attached to that tag as an attribute.

A similar technique applies to tokens that represent constants.

Tokens for PDL Fragment Choices

<token>

 <xml-template>

 <jndi-property>

 <jndi-url>dynamo:/atg/dynamo/service/CurrentDate</jndi-url>

 <property-name>timeAsDate</property-name>

 </jndi-property>

 </xml-template>

 <description>now</description>

</token>

In this pattern, a token is not associated with any value, but its XML template serves to generate a
particular PDL fragment outright, without variation. Because the token has no value, the <apply-xml-
templates/> element is not used in the template.

Special-Purpose Grammar Extension Tags

This section describes additional tags that you can use within a grammar extension for the Scenarios
module.

Constraining a Sequence to a JMS Message Type

It is possible to constrain a sequence to a JMS message type. This effectively makes the sequence invisible
within the user interface unless it is used in a place in the scenario where the given JMS message is in
scope as the most recent event. This is done by providing the element <required-message-sequence
message-type="..."/> as a child of the grammar element. For instance, one can state that a custom
condition may only be used as an antecedent of a given event:

<required-message-sequence

 id="condition-MyCondition"

 message-type="MyProject.MyEvent">

 ...

</required-message-sequence>

Including a Generic Scenario Subexpression

Scenario user interface expressions incorporate the notion of a “generic subexpression.” Such an
expression may be a constant, or a variable, or a property of the current event, or of the subject, or of a
globally visible bean. To include a generic subexpression as a child of your custom grammar construct,
embed this tag:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 5 6

2 8 - C o n f i g u r i n g t h e A T G E x p r e s s i o n E d i t o r

μ
<scenario-expression type="..."/>

where the type attribute is a Java class name denoting the type to which the subexpression should be
constrained.

Including an Array of RepositoryItem IDs

A special tag can be used to provide a token whose value is an array of String IDs of repository items:

<repository-item-set

 repository-name="..."

 repository-item-type="..."

 />

This tag is automatically associated with an <array> element in PDL.

Commerce-Related Grammar Configuration
If you are extending the grammar of the Scenarios module for use with ATG Commerce scenario
elements, you can make use of some additional specialized tags.

The header for a grammar extension definition file that includes ATG Commerce scenario elements looks
like this:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<?xcl-stylesheet resource="atg/ui/commerce/scenario/commerce-grammar.xsl"?>

<?xcl-stylesheet resource="atg/ui/scenario/expression/scenario-grammar.xsl"?>

<?xcl-stylesheet resource="atg/ui/expreditor/xcl/grammar.xsl"?>

Constraining a Sequence to an Order-Related Event

You can specify a sequence whose contained nodes are invisible in the user interface unless the scenario
element that owns the sequence can see an event in its scope that has an order bean property of type
atg.commerce.order.Order. To specify this type of sequence, use the <required-order-
sequence/> element.

Constraining a Sequence to a Commerce-Item-Related Event

You can specify a sequence whose contained nodes are invisible in the user interface unless the scenario
element that owns the sequence can see an event in its scope that has an item bean property of type
atg.commerce.order.CommerceItem. To specify this type of sequence, use the <required-
commerce-item-sequence/> element.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 5 7

2 8 - C o n f i g u r i n g t h e A T G E x p r e s s i o n E d i t o r

μ
Suggestions for Localization

The following list shows the main tasks to perform when you localize extensions to the grammar editor:

1. Examine the XML files for the grammar templates that ship in the ATG product
distribution (the source .xml files are in the distribution along with the .ser files), and
consider their relationship to the behavior of the user interface.

2. Prepare locale-specific files that correspond to the ATG template names described
earlier in this document, using the language and optional country name to form the
filename according to the search rules.

3. Select a suitable character encoding and declare it in the grammar.

4. Translate all description and editor-text elements using the above encoding to
represent the translation.

5. Reorder the children of sequence elements where feasible—in general, this is only
permitted where the children are either noise words (value-less tokens) or constructs
labeled with unique IDs.

6. Eventually, after development and testing, serialize the XML files into correspondingly
named .ser files.

Supported Character Encodings

If a name is given in parentheses, this is the value that must be supplied in the encoding attribute in the
xml instruction on the first line of the file. For example to select Japanese Shift JIS, use this instruction:

<?xml version="1.0" encoding="Shift_JIS" standalone="no"?>

The full list of supported XML encodings can be found at:

ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

Note: Not all encodings may be supported by the XML tools provided with the ATG product suite.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 5 8

2 8 - C o n f i g u r i n g t h e A T G E x p r e s s i o n E d i t o r

μ

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 5 9

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
Part III: Web Services for Personalization
and Scenarios

The ATG product suite includes a set of Web services that you can use to make calls to Dynamo from non-
ATG applications. The services provided with ATG Personalization and ATG Scenarios allow you to retrieve
and change user profile information, perform content targeting operations, and send profile-related
messages to the Dynamo Messaging System. For example, users can log into an ATG application and
perform profile updates; you can retrieve the profile ID of a given user; you can display content items that
are tailored to the current user; and you can fire an event message if a user views a specific piece of
content.

Many of the se Web services were designed to have the same functionality as their non-Web service
counterparts. For example, standard Profile Form Handler operations have parallel Web service
operations. This behavior helps you reproduce any code extensions that you have made to non-Web
service classes.

This chapter contains the following information:

User Profiling Web Services

Content Targeting Web Services

Messaging Web Services

Example: Using the GetProfileId Web Service in an Axis Client

Returning RepositoryItems as Repo2Xml Items

Profile-Related Security Policies for Web Services

Using Client-Side Password Encryption

Web Services Module for ATG Personalization and Scenarios

The default Web services for Personalization and Scenarios are packaged in the DPS.WebServices
module in the ATG Personalization layer. The code that is called for these Web services is located in the
DAF, Personalization, or Scenarios layer, depending on the service.

For information on how to include this module in your application, refer to the ATG Installation and
Configuration Guide.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 6 0

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
User Profiling Web Services

The user profiling Web services provided with the ATG product suite allow you to access the ATG profile
repository from a non-ATG application. You can use these Web services to perform login and logout
operations, create new profiles and change existing ones, and manage passwords.

This section contains the following topics:

ProfileServices Component

GetProfileId Web Service

GetProfile Web Service

LoginUser Web Service

LogoutUser Web Service

CreateUser Web Service

UpdateUser Web Service

Set Password Web Service

SetContactInfo Web Service

SetLocale Web Service

CanClientEncryptPasswords Web Service

GetPassWordHashKey Web Service

GetPassWordHashAlgorithm Web Service

Note: In the sections that follow, some Web service descriptions include URLs with the variables
hostname:port. For hostname, use the name of the machine running your application. For port, enter
the number of the port that your application server uses to handle HTTP requests on that machine.

ProfileServices Component

The /atg/userprofiling/ProfileServices component (class
atg.userprofiling.ProfileServices) manages many of the Web service functions related to user
profiling. Note that some of these functions mimic the behavior of standard ATG profile form handlers;
this behavior is designed to help you reproduce any profile form handler custom code as extensions of
out-of-the-box Web services.

The following list shows the properties of the ProfileServices component.

 transactionManager

Type: javax.transaction.TransactionManager

The service that manages any transactions used to execute repository methods on this
instance.

Default: /atg/dynamo/transaction/TransactionManager (set in DPS module)

 mappingManager

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 6 1

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
Type: atg.repository.xml.ItemDescriptorMappingManager

The component that manages mapping files based on repository item descriptor
name combinations. Any methods that return repository items consult this service to
retrieve the mapping files to use when transforming these items into XML. Note that
this behavior assumes the useDefaultMappingFiles property is set to true.

Default: /atg/repository/xml/ItemDescriptorMappingManager (set in DPS
module)

 xmlGetService

Type: atg.repository.xml.GetService

The service that turns repository items into XML.

Default: /atg/repository/xml/GetService (set in DPS module)

 xmlAddService

Type: atg.repository.xml.AddService

The service that adds repository items in XML format to a repository.

Default: /atg/repository/xml/AddService (set in DPS module)

 xmlUpdateService

Type: atg.repository.xml.UpdateService

The service that takes repository items in XML format and updates them in their
corresponding repositories.

Default: /atg/repository/xml/UpdateService (set in DPS module)

 profileTools

Type: atg.userprofiling.ProfileTools

The profile tools service that provides access to common profiling functions, as well as
access to other profile components such as the PropertyManager and
ProfileRepository.

Default: /atg/userprofiling/ProfileTools (set in DPS module)

 updateEventListeners

Type: atg.userprofiling.ProfileUpdateListener[]

An array of ProfileUpdateListeners that are notified when a profile is updated.
Note that the generateUpdateEvents property must be set to true for this behavior
to occur.

Default: /atg/userprofiling/ProfileUpdateTrigger (set in DPS module)

 generateLoginEvents

Type: boolean

If true, the LoginUser Web service fires login events after a user has been successfully
logged in.

Default: true (set in DPS module)

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 6 2

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
 generateUpdateEvents

Type: boolean

If true, the UpdateUser Web service fires update events after a user profile has been
successfully updated.

Default: true (set in DPS module)

 generateRegisterEvents

Type: boolean

If true, the CreateUser Web service fires register events after a user profile has been
successfully created.

Default: true (set in DPS module)

 generateLogoutEvents

Type: boolean

If true, the logoutUser service fires logout events after a user has been successfully
logged out.

Default: true (set in DPS module)

 expireSessionOnLogout

Type: boolean

Behaves the same way as the expiresSessionOnLogout property in the
ProfileFormHandler class. See the description of the handleLogout method in
Profile Form Handlers.

Default: true (set in DPS module)

 usingLDAPProfile

Type: boolean

Behaves the same way as the usingLDAPProfile property in the
ProfileFormHandler class. It indicates whether the profile in use is stored in an
LDAP directory.

Default: false (set in DPS module)

 useDefaultMappings

Type: boolean

If true, methods that return Repo2Xml items map properties according to the default
mappings configured in the ItemDescriptorMappingManager (unless the Web
service calls a variation of a method that takes a mapping file location as an
argument).

Default: true (set in DPS module)

 logoutProfileType

Type: String

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 6 3

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
Behaves the same way as the logoutProfileType property in the
ProfileFormHandler class. It specifies the item descriptor type of the profile
defaulted to when the current user logs out.

Default: user (set in DPS module)

 createProfileType

Type: String

Behaves the same way as the createProfileType property in the
ProfileFormHandler class. It specifies the item descriptor type of the profile created
when a new profile is added to the repository.

Default: user (set in DPS module)

 loginProfileType

Type: String

Behaves the same way as the loginProfileType property in the
ProfileFormHandler class. It specifies the item descriptor type of the profile
accessed when a user logs in.

Default: user (set in DPS module)

 propertiesToCopyOnLogin

Type: String[]

Behaves the same way as the propertiesToCopyOnLogin property in the
ProfileFormHandler class. It specifies the property values to copy from the
anonymous profile to the persistent profile when a user logs in.

Default: null (set in DPS module)

 propertiesToAddOnLogin

Type: String[]

Behaves the same way as the propertiesToAddOnLogin property in the
ProfileFormHandler class. It specifies the properties to add from the anonymous
profile to the persistent profile when a user logs in.

Default: scenarioInstances, slotInstances (set in DSS module)

 maxAuthenticationWait

Type: long

Indicates how long a password encryption conversation is allowed to last, which is the
length of time between calls to getPasswordHashKey and loginUser. If the length
of time between these two calls exceeds the maxAuthenticationWait property
value, the login is invalid. Note that this behavior assumes the login attempt is
encrypted (in other words, that pIsPasswordEncrypted is true for the loginUser
call).

Default: 30000 (30 seconds) (set in DPS module)

 badPasswordDelay

Type: long

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 6 4

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
Behaves the same way as the badPasswordDelay property in the
ProfileFormHandler class. It specifies the number of milliseconds to wait before
proceeding after a user submits a password that fails authentication.

Default: 1000 (1 second) (set in DPS module)

 profilePath

Type: String

The component path of the Profile component.

Default: /atg/userprofiling/Profile (set in DPS module)

 requestLocalePath

Type: String

The component path of the RequestLocale component.

Default: /atg/dynamo/servlet/RequestLocale (set in DPS module)

 allowEncryptedPasswords

Type: boolean

If true, allows login attempts that use passwords encrypted on the client. Even if this
property is true, the canClientEncryptPasswords() method still needs to return
true to verify that the application itself can handle passwords encrypted in this way.

Default: true (set in DPS module)

GetProfileId Web Service

The GetProfileId Web service finds the profile that matches the login supplied by the method call and
returns its profile ID. For an example of how to invoke this Web service in a client application, see
Example: Using the GetProfileId Web Service in an Axis Client.

EAR file userprofilingWebServices.ear

WAR file usersession.war

Context root userprofiling/usersession

Servlet getProfileId

Web Service URL http://hostname:port/userprofiling/usersession/getProfileId

WSDL URL http://hostname:port/userprofiling/usersession/getProfileId

?WSDL

Web Service Class webservice.GetProfileIdSEIImpl

Input Parameters String Login

Output String ProfileId

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 6 5

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
Nucleus Component /atg/userprofiling/ProfileServices (class

atg.userprofiling.ProfileServices)

Method getProfileId(String pLogin)

Executes within a
session

Yes

Security
FunctionalName

profileInfoOperation

getProfileId Method

The GetProfileId Web service calls the getProfileId method in the underlying
atg.userprofiling.ProfileServices implementation.

The getProfileId method does the following:

1. Calls ProfileTools.getItem() with the given login.

2. Returns the ID of the found item or null if no item exists with that login.

Security Recommendation

It is recommended that you restrict the ability to call the GetProfileId Web service to administrative
users.

GetProfile Web Service

The GetProfile Web service finds the profile that matches the supplied profile ID and returns it as a
RepositoryItem in XML form (a Repo2Xml item). For more information, see Returning Repository Items
as Repo2Xml Items. You can configure a mapping file for this XML item on the component that contains
the getProfileId method. (It is recommended, for example, that you define the mapping file so that the
password property is omitted when the item is returned.)

By default, the profile repository that the GetProfile Web service accesses is the
/atg/userprofiling/ProfileAdapterRepository (specifically, the user item descriptor).

EAR file userprofilingWebServices.ear

WAR file usersession.war

Context root userprofiling/usersession

Servlet getProfile

Web Service URL http://hostname:port/userprofiling/usersession/getProfile

WSDL URL http://hostname:port/userprofiling/usersession/getProfile?W

SDL

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 6 6

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
Web Service Class webservice.GetProfileSEIImpl

Input Parameters String ProfileId

Output String ProfileAsXML

Nucleus Component /atg/userprofiling/ProfileServices (class
atg.userprofiling.ProfileServices)

Method getProfile(String pProfileId)

Executes within a
session

Yes

Security
FunctionalName

profileInfoOperation

getProfile Method

The GetProfile Web service calls the getProfile method in the underlying
atg.userprofiling.ProfileServices implementation. The method invokes getItem on the profile
repository and transforms the result into a Repo2Xml item. An HTTP request is not required for this
method.

Security Recommendation

It is recommended that you restrict the ability to call the GetProfileId Web service to administrative
users.

LoginUser Web Service

The LoginUser Web service authenticates the identity of the user for whom the service was called,
returning the user’s profile ID if authentication is successful.

EAR file userprofilingWebServices.ear

WAR file usersession.war

Context root userprofiling/usersession

Servlet loginUser

Web Service URL http://hostname:port/userprofiling/usersession/loginUser

WSDL URL http://hostname:port/userprofiling/usersession/loginUser?WS

DL

Web Service Class webservice.LoginUserSEIImpl

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 6 7

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
Input Parameters String Login

String Password
boolean IsPasswordEncrypted

Output String ProfileId

Nucleus Component /atg/userprofiling/ProfileServices (class
atg.userprofiling.ProfileServices)

Method loginUser(String pLogin, String pPassword, boolean

pIsPasswordEncrypted)

Executes within a
session

Yes

Security
FunctionalName

loginOperation.

loginUser Method

The LoginUser Web service calls the loginUser method in the underlying
atg.userprofiling.ProfileServices implementation. The loginUser method behaves the same
way as the handleLogin method in the ProfileFormHandler (see The ProfileForm Class). Note that
loginUser should be called only in the context of an HTTP request; otherwise an error occurs.

loginUser takes the supplied login name and password and uses them to locate a valid profile. To do
this, it calls the following methods:

 preLoginUser(DynamoHttpServletRequest pRequest,

DynamoHttpServletResponse pResponse)

 doLoginUser(DynamoHttpServletRequest pRequest,

DynamoHttpServletResponse pResponse)

 postLoginUser(DynamoHttpServletRequest pRequest,

DynamoHttpServletResponse pResponse)

The preLoginUser and postLoginUser methods are similar to the ProfileFormHandler’s
preLoginUser and postLoginUser methods, which are stubs designed to allow subclasses to control
login logic before and after the login process. You can write extensions to this code by overriding these
methods with your own custom subclasses.

Unlike the ProfileFormHandler, the loginUser Web service immediately propagates to the caller any
errors that occur during processing. Errors are not stored and shown to the user because the caller in this
case is an RPC client that does not have access to a request/response pair. (The ProfileFormHandler, by
contrast, expects to have its errors shown on an HTML page where the user can correct them and
resubmit.) This error-handling behavior is used by all profile-related Web services that mimic
ProfileFormHandler functionality.

The loginUser method acts as follows:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 6 8

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
1. If pIsPasswordEncrypted is true, the loginUser method checks to see if a valid

password encryption conversation has occurred in this session. If not, a
ServletException is thrown.

2. loginUser calls the preLoginUser method, which checks that the session associated
with the current profile is not transient and then does the following:

 If the current profile’s login does not match the login that was passed to the
Web service, the current profile is logged out, and its session is expired.

 If the login and password given to the Web service match those in the current
profile, it is assumed that the same user is logging in again. In this case, an
exception is thrown so that login events and profile cookies are not resent. In
addition, the securityStatus of the profile is reset to the login
securityStatus (if securityStatus is enabled).

 If the password passed to the Web service does not match the password stored
for the given login name, a ServletException is thrown.

3. loginUser calls doLoginUser, which attempts to authenticate the user based on the
given credentials. It forward-hashes the stored password for the given user with a
hashKey initialized during the password encryption conversation and compares it to
the password argument. If this check succeeds, the RepositoryItem for that user is
set as the current profile’s data source, and repository properties are copied and/or
added from the guest user’s profile to the authenticated user’s profile.

4. The profile ID is returned for the user who just logged in.

5. If the password encryption comparison fails, indicating that either the login name or
the password was invalid, null is returned by doLoginUser.

6. The loginUser method calls the postLoginUser method, which sends a login event
if configured to do so (set generateLoginEvents to true in the ProfileServices
component). It also sends profile cookies if necessary, sets the security status for the
logged-in profile, and changes the request locale to reflect the logged-in profile’s
locale.

Security Recommendation

Users are not authenticated before the LoginUser Web service is called, so there is no specific security
policy recommendation for this service.

LogoutUser Web Service

The LogoutUser Web service attempts to log out the user for whom the logoutUser method is called
(the user associated with the current session).

EAR file userprofilingWebServices.ear

WAR file usersession.war

Context root userprofiling/usersession

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 6 9

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
Servlet logoutUser

Web Service URL http://hostname:port/userprofiling/usersession/logoutUser

WSDL URL http://hostname:port/userprofiling/usersession/logoutUser?W

SDL

Web Service Class webservice.LogoutUserSEIImpl

Input Parameters None

Output None

Nucleus Component /atg/userprofiling/ProfileServices (class
atg.userprofiling.ProfileServices)

Method logoutUser()

Executes within a
session

Yes

Security
FunctionalName

logoutOperation.

logoutUser Method

The LogoutUser Web service calls the logoutUser method in the underlying
atg.userprofiling.ProfileServices implementation. The logoutUser method behaves the same
way as the handleLogout method in the ProfileFormHandler (see The ProfileForm Class). Note that
logoutUser should be called only in the context of an HTTP request; otherwise an error occurs.

logoutUser invokes the following methods:

 preLogoutUser(DynamoHttpServletRequest pRequest,

DynamoHttpServletResponse pResponse)

 doLogoutUser(DynamoHttpServletRequest pRequest,

DynamoHttpServletResponse pResponse)

 postLoginUser(DynamoHttpServletRequest pRequest,

DynamoHttpServletResponse pResponse)

These methods are similar to the ProfileFormHandler’s preLogoutUser, handleLogout, and
postLogoutUser methods.

The logoutUser method acts as follows:

1. Calls preLogoutUser, which sets up a logout event and revokes the current user’s
identity.

2. Calls doLogoutUser.

3. Calls postLogoutUser, which fires a logout event and expires the current session if
configured to do so. (You can control this behavior through the

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 7 0

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
generateLogoutEvents and expireSessionOnLogout properties in the
ProfileServices component.)

Security Recommendation

It is recommended that you restrict the ability to call the LogoutUser service to appropriate users. For
example, you would generally not want anonymous or guest users to be able to invoke LogoutUser.

CreateUser Web Service

The CreateUser Web service attempts to create a new profile from the information in the input
ProfileAsXML String, which is a Repo2XML item. The profile ID for the new profile is returned.

Any password present in the ProfileAsXML argument must be cleartext, so it is recommended you
always use a secure connection to call this service.

EAR file userprofilingWebServices.ear

WAR file usersession.war

Context root userprofiling/usersession

Servlet createUser

Web Service URL http://hostname:port/userprofiling/usersession/createUser

WSDL URL http://hostname:port/userprofiling/usersession/createUser?W

SDL

Web Service Class webservice.CreateUserSEIImpl

Input Parameters String ProfileAsXML

Output String ProfileId

Nucleus Component /atg/userprofiling/ProfileServices (class
atg.userprofiling.ProfileServices)

Method createUser(String pProfileAsXml)

Executes within a
session

Yes

Security
FunctionalName

createOperation

createUser Method

The createUser Web service calls the createUser method in the underlying
atg.userprofiling.ProfileServices implementation. The createUser method behaves the same

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 7 1

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
way as the handleCreate method in the ProfileFormHandler (see The ProfileForm Class). Note that
createUser should be called only in the context of an HTTP request; otherwise an error occurs.

createUser invokes the following methods:

 preCreateUser(DynamoHttpServletRequest pRequest,

DynamoHttpServletResponse pResponse)

 doCreateUser(DynamoHttpServletRequest pRequest,

DynamoHttpServletResponse pResponse)

 postCreateUser(DynamoHttpServletRequest pRequest,

DynamoHttpServletResponse pResponse)

These methods are similar to the ProfileFormHandler’s preCreateUser, createUser, and
postCreateUser methods.

The createUser method acts as follows:

1. Calls preCreateUser.

2. Calls doCreateUser, which uses a Repo2Xml AddService to add the given item to
the repository. If successful, the item is then set as the data source for the current
profile. Any password present in the given item is also encrypted for storage. (As
mentioned above, it is expected that passwords given in the pProfileAsXML are
cleartext.)

3. Calls postCreateUser, which sets profile cookies if required to do so.
postCreateUser also fires a register event if you set the generateRegisterEvents
to true in the ProfileServices component.

Security Recommendation

The user has no credentials before the CreateUser Web service is called, so there is no specific security
policy recommendation for it.

UpdateUser Web Service

The UpdateUser Web service attempts to change a profile using information passed in as the
ProfileAsXML argument (a Repo2XML item).

Note: Do not use this service for updating passwords. If a password property were included in the
Repo2Xml item for this ProfileAsXML argument, the value would be persisted as it appeared in the file;
the password string would not be encrypted, resulting in invalid login attempts for the user in the future.
To change a password, use the setPassword Web service instead.

EAR file userprofilingWebServices.ear

WAR file usersession.war

Context root userprofiling/usersession

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 7 2

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
Servlet updateUser

Web Service URL http://hostname:port/userprofiling/usersession/updateUser

WSDL URL http://hostname:port/userprofiling/usersession/updateUser?W

SDL

Web Service Class webservice.UpdateUserSEIImpl

Input Parameters String ProfileAsXML

Output None

Nucleus Component /atg/userprofiling/ProfileServices (class
atg.userprofiling.ProfileServices)

Method updateUser(String pProfileAsXml)

Executes within a
session

Yes

Security
FunctionalName

xmlProfileOwnerOperation

updateUser Method

The updateUser Web service calls the updateUser method in the underlying
atg.userprofiling.ProfileServices implementation. The updateUser method behaves the same
way as the handleUpdate method in the ProfileFormHandler (see The ProfileForm Class). Note that
updateUser should be called only in the context of an HTTP request; otherwise an error occurs.

updateUser invokes the following methods:

 preUpdateUser(DynamoHttpServletRequest pRequest,

DynamoHttpServletResponse pResponse)

 doUpdateUser(DynamoHttpServletRequest pRequest,

DynamoHttpServletResponse pResponse)

 postUpdateUser(DynamoHttpServletRequest pRequest,

DynamoHttpServletResponse pResponse)

These methods are similar to the ProfileFormHandler’s preUpdateUser, updateUser, and
postUpdateUser methods.

The updateUser method acts as follows:

1. Calls preUpdateUser, which sets up a ProfileUpdateEvent but does not fire it.

2. Calls doUpdateUser, which uses a Repo2Xml update service to update the given
pProfileAsXML.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 7 3

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
3. Calls postUpdateUser, which may revoke profile cookies if the user’s autoLogin

property changes from true to false. It also fires a ProfileUpdateEvent if configured
to do so (set generateUpdateEvents to true in the ProfileServices component).

Security Recommendation

Apply the atg.userprofiling.ProfileAsXMLOwnerPolicy to this service. This security policy verifies
that the user associated with the current session matches the user whose profile is being updated. The
functional name (xmlProfileOwnerOperation) differs from the profileOwnerOperation used by
other services that are based on profile ownership because the security argument in this service is a
Repo2Xml item rather than a profile ID. For more information, see ProfileAsXMLOwnerPolicy.

Set Password Web Service

The SetPassword Web service changes the password of the user specified by the ProfileId argument.
It requires the user’s current password for security reasons. The service checks the value of the supplied
password (OriginalPassword) against the value stored for this user in the profile repository. If the
values match, the password is changed to the new password.

Do not encrypt OriginalPassword or NewPassword. Both are expected to be cleartext as they are
forward-hashed for comparison with the stored password value.

EAR file userprofilingWebServices.ear

WAR file usersession.war

Context root userprofiling/usersession

Servlet setPassword

Web Service URL http://hostname:port/userprofiling/usersession/setPassword

WSDL URL http://hostname:port/userprofiling/usersession/setPassword?

WSDL

Web Service Class webservice.SetPasswordSEIImpl

Input Parameters String ProfileId
String OriginalPassword
String NewPassword

Output None

Nucleus Component /atg/userprofiling/ProfileServices (class
atg.userprofiling.ProfileServices)

Method setPassword(String pProfileId, String pOriginalPassword,

String pNewPassword)

Executes within a
session

Yes

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 7 4

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
Security
FunctionalName

profileOwnerOperation

setPassword Method

The SetPassword Web service calls the setPassword method in the underlying
atg.userprofiling.ProfileServices implementation. Note that setPassword should be called
only in the context of an HTTP request; otherwise an error occurs. The method does the following:

1. Calls preSetPassword.

2. Calls doSetPassword, which compares the password currently stored for the user
(specified by the supplied profile ID) with the given pOldPassword. If the check
succeeds, the user’s password is set to pNewPassword.

3. Calls postSetPassword.

Security Recommendation

Apply the atg.userprofiling.ProfileOwnerPolicy to this Web service. This policy requires that the
ProfileId argument match the profile ID of the user who is calling the method. This behavior ensures
that a password can be changed only by the person who owns the profile. For more information, see
ProfileOwnerPolicy.

SetContactInfo Web Service

The SetContactInfo Web service sets or changes the contact information of the user specified by the
ProfileId argument to the value of the supplied ContactInfoAsXML item. If the given
ContactInfoAsXML represents an item that does not yet exist in the repository, it is added. This service
assumes that the User item descriptor for your ProfileAdapterRepository component defines a
single-valued address property.

EAR file userprofilingWebServices.ear

WAR file usersession.war

Context root userprofiling/usersession

Servlet setContactInfo

Web Service URL http://hostname:port/userprofiling/usersession/setContactIn

fo

WSDL URL http://hostname:port/userprofiling/usersession/setContactIn

fo?WSDL

Web Service Class webservice.SetContactInfoSEIImpl

Input Parameters String ProfileId
String ContactInfoAsXML

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 7 5

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
Output None

Nucleus Component /atg/userprofiling/ProfileServices (class
atg.userprofiling.ProfileServices)

Method setContactInfo(String pProfileId, String pContactInfoAsXml)

Executes within a
session

Yes

Security
FunctionalName

profileOwnerOperation

setContactInfo Method

The SetContactInfo Web service calls the setContactInfo method in the underlying
atg.userprofiling.ProfileServices implementation. This method attempts to set the contact
information of the user who is specified by the profile ID to the given value, which is represented as a
Repo2Xml item. Use the PropertyManager.contactInfoPropertyName to specify the property where
contact information is stored in your profile repository configuration. This property should be of type
atg.repository.RepositoryItem.

The setContactInfo method acts as follows:

1. Checks that the given pProfileId resolves to a valid profile.

2. Takes the pContactInfoAsXML and uses it to get or create a RepositoryItem.

3. Sets the contact information property of the user represented by pProfileId to the
RepositoryItem returned by the previous step.

Security Recommendation

Apply the atg.userprofiling.ProfileOwnerPolicy to this Web service. This policy requires that the
ProfileId argument match the profile ID of the user who is calling the method. This behavior ensures
that contact information can be changed only by the person who owns the profile. For more information,
see ProfileOwnerPolicy.

SetLocale Web Service

The SetLocale Web service changes the locale property of the user represented by the specified profile
ID to the value of the LocaleName argument. If the profile ID matches the ID of the user associated with
the current session, the RequestLocale component is also changed appropriately.

EAR file userprofilingWebServices.ear

WAR file usersession.war

Context root userprofiling/usersession

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 7 6

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
Servlet setLocale

Web Service URL http://hostname:port/userprofiling/usersession/setLocale

WSDL URL http://hostname:port/userprofiling/usersession/setLocale?WS

DL

Web Service Class webservice.SetLocaleSEIImpl

Input Parameters String ProfileId
String LocaleName

Output None

Nucleus Component /atg/userprofiling/ProfileServices (class
atg.userprofiling.ProfileServices)

Method setLocale(String pProfileId, String pLocaleName)

Executes within a
session

Yes

Security
FunctionalName

profileOwnerOperation

setLocale Method

The SetLocale Web service calls the setLocale method in the underlying
atg.userprofiling.ProfileServices implementation. This method attempts to set the locale of the
user who is specified by the profile ID to the given value. Use the
PropertyManager.localePropertyName to specify the property where the locale is stored in your
profile repository configuration.

The setLocale method acts as follows:

1. Checks that the given pProfileId resolves to a valid profile.

2. If the locale property exists, sets the locale property of the given user to pLocaleName.

3. If the user whose locale is being changed is also the user associated with the current
session, the RequestLocale component is also changed to reflect the new locale.

Security Recommendation

Apply the atg.userprofiling.ProfileOwnerPolicy to this Web service. This policy requires that the
ProfileId argument match the profile ID of the user who is calling the method. This behavior ensures
that locale information can be changed only by the person who owns the profile. For more information,
see ProfileOwnerPolicy.

CanClientEncryptPasswords Web Service

The CanClientEncryptPasswords Web service is used as part of the optional client-side encryption
feature (see Using Client-Side Password Encryption) that you can use with the LoginUser Web service. It

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 7 7

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
is a utility service that checks to see if a client is configured and able to encrypt passwords for sending via
an ATG Web service. Currently, only the LoginUser Web service can handle passwords encrypted by the
client.

EAR file userprofilingWebServices.ear

WAR file usersession.war

Context root userprofiling/usersession

Servlet canClientEncryptPasswords

Web Service URL http://hostname:port/userprofiling/usersession/

canClientEncryptPasswords

WSDL URL http://hostname:port/userprofiling/usersession/

canClientEncryptPasswords?WSDL

Web Service Class webservice.CanClientEncryptPasswordsSEIImpl

Input Parameters None

Output boolean CanEncryptPasswords

Nucleus Component /atg/userprofiling/ProfileServices (class
atg.userprofiling.ProfileServices)

Method canClientEncryptPasswords()

Executes within a
session

Yes

Security
FunctionalName

loginOperation

canClientEncryptPasswords Method

The CanClientEncryptPasswords Web service calls the canClientEncryptPasswords method in the
underlying atg.userprofiling.ProfileServices implementation.

The canClientEncryptPasswords method checks that all of the following are true:

1. The allowEncryptedPasswords property of ProfileServices is set to true.

2. The password hasher configured for the application supports temporary encryption
keys.

3. The password hasher configured for the application is supported.

In all other cases, this method returns false.

For more information on the way this method is used, refer to Using Client-Side Password Encryption.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 7 8

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
Security Recommendation

You can apply any appropriate security policy to the CanClientEncryptPasswords Web service. As this
service is used in conjunction with the LoginUser service, it is suggested that you use the same security
policy for both.

GetPassWordHashKey Web Service

The GetPassWordHashKey Web service is used as part of the optional client-side encryption feature (see
Using Client-Side Password Encryption). It returns a temporary hashKey used by the client to encrypt a
password for a single authentication call. The client forward-encrypts the password with this hash key.
The server then stores the hash key in the current session so you do not have to return it to the
LoginUser service.

EAR file userprofilingWebServices.ear

WAR file usersession.war

Context root userprofiling/usersession

Servlet getPasswordHashKey

Web Service URL http://hostname:port/userprofiling/usersession/

getPasswordHashKey

WSDL URL http://hostname:port/userprofiling/usersession/

getPasswordHashKey?WSDL

Web Service Class webservice.GetPasswordHashKeySEIImpl

Input Parameters None

Output String PasswordHashKey

Nucleus Component /atg/userprofiling/ProfileServices (class
atg.userprofiling.ProfileServices)

Method getPasswordHashKey()

Executes within a
session

Yes

Security
FunctionalName

loginOperation

getPasswordHashKey Method

The GetPasswordHashKey Web service calls the getPasswordHashKey method in the underlying
atg.userprofiling.ProfileServices implementation.

The getPasswordHashKey method acts as follows:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 7 9

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
1. Returns null if not called in the context of a request.

2. Sets up session attributes to indicate that a password encryption conversation has
started.

3. If the password hasher does not support hash keys, this method returns null (in other
words, PasswordHasher.getPasswordHashKey() returns null). If hash keys are
supported, the method returns the value provided by the password hasher and sets
that hash key as a session attribute of the current session.

For more information on the way this method is used, refer to Using Client-Side Password Encryption.

Security Recommendation

You can apply any appropriate security policy to the GetPasswordHashKey Web service. As this service is
used in conjunction with the LoginUser service, it is suggested that you use the same security policy for
both.

GetPasswordHashAlgorithm Web Service

The GetPasswordHashAlgorithm Web service is used as part of the optional client-side encryption
feature (see Using Client-Side Password Encryption). It returns the name of the algorithm that the
containing application on the server uses to hash passwords, for example MD5, SHA, or SSHA. (Note that
only MD5 is currently supported.) Along with a hashKey, this service allows the client to encrypt the
password and pass it to the LoginUser or CreateUser Web service over unsecured transport
mechanisms.

EAR file userprofilingWebServices.ear

WAR file usersession.war

Context root userprofiling/usersession

Servlet getPasswordHashAlgorithm

Web Service URL http://hostname:port/userprofiling/usersession/

getPasswordHashAlgorithm

WSDL URL http://hostname:port/userprofiling/usersession/

getPasswordHashAlgorithm?WSDL

Web Service Class webservice.GetPasswordHashAlgorithmSEIImpl

Input Parameters None

Output String PasswordHashAlgorithm

Nucleus Component /atg/userprofiling/ProfileServices (class
atg.userprofiling.ProfileServices)

Method getPasswordHashAlgorithm()

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 8 0

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
Executes within a
session

Yes

Security
FunctionalName

loginOperation

getPasswordHashAlgorithm Method

The GetPasswordHashAlgorithm Web service calls the getPasswordHashAlgorithm method in the
underlying atg.userprofiling.ProfileServices implementation. It is assumed that you call
canClientEncryptPasswords() before calling this method, or that you know that this application can
encrypt passwords.

The getPasswordHashAlgorithm method acts as follows:

1. If the PasswordHasher used for this application is not supported, the
getPasswordHashAlgorithm method throws a ServletException. (Note that only
MD5 is currently supported.)

2. Returns the password-hashing algorithm used for this application. Each password
hasher has a unique way of encrypting passwords, so clients that attempt password
encryption need to know the procedure that their password hasher uses.

Security Recommendation

You can apply any appropriate security policy to the GetPasswordHashAlgorithm Web service. As this
service is used in conjunction with the LoginUser service, it is suggested that you use the same security
policy for both.

Content Targeting Web Services
One content targeting Web service, RecommendContent, is provided by default with the ATG product
suite. It allows you to use a content targeter (created using the Personalization module) or slot (created in
the Scenarios module) to display text or images that are appropriate for the person associated with the
current user profile.

This section contains the following topics:

TargetingServices Component

RecommendContent Web Service

Note: In the sections that follow, some Web service descriptions include URLs with the variables
hostname:port. For hostname, use the name of the machine running your application. For port, enter
the number of the port that your application server uses to handle HTTP requests on that machine.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 8 1

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
TargetingServices Component

The /atg/targeting/TargetingServices component (class atg.targeting.TargetingServices)
manages functions related to the Web services that perform targeting operations (by default, the
RecommendContent Web service). The component has the following properties:

 xmlGetService

Type: atg.repository.xml.GetService

The service that turns RepositoryItems into XML

Default: /atg/repository/xml/GetService (set in DPS module)

 mappingManager

Type: atg.repository.xml.ItemDescriptorMappingManager

The component that manages mapping files based on repository item descriptor
name combinations. Any methods that return repository items consult this service to
retrieve the mapping files to use when transforming these items into XML. Note that
this behavior assumes the useDefaultMappingFiles property is set to true.

Default: /atg/repository/xml/ItemDescriptorMappingManager (set in DPS
module)

 useDefaultMappings

Type: boolean

If true, methods that return Repo2Xml items use the default mappings configured in
the ItemDescriptorMappingManager (unless the Web service calls a variation of a
method that takes a mapping file location as an argument).

Default: true (set in DPS module)

For more information on using mapping files to manage Repo2Xml items, refer to Returning
RepositoryItems as Repo2Xml Items.

RecommendContent Web Service

The RecommendContent Web service performs a content targeting operation, taking a slot or targeter
path as input and returning n content items, where n is the value of the given howMany parameter. The
content is returned in XML form as an array of Repo2Xml items. A value of -1 for the howMany parameter
indicates that there is no limit to the number of returned results.

If called in the context of an HTTP request, this service can resolve both request- and session-scoped
targeter and slot components. If no HTTP request is present, the service can resolve only globally-scoped
components.

EAR file userprofilingWebServices.ear

WAR file usersession.war

Context root userprofiling/usersession

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 8 2

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
Servlet recommendContent

Web Service URL http://hostname:port/userprofiling/usersession/

recommendContent

WSDL URL http://hostname:port/userprofiling/usersession/

recommendContent?WSDL

Web Service Class webservice.ExecuteRepositoryTargeterSEIImpl

Input Parameters String PathToSlotOrTargeter. Represents the Nucleus component path of
the targeter or slot to execute.

int StartingIndex. Represents the 0-based index at which to start when
returning values. For example, passing in “3” here returns an array of items
starting with the fourth item that is returned from the targeting operation
(in other words, the first three items are skipped).

int HowMany. Indicates how many items should be returned in total from this
targeter. If this value is -1, all items are returned, starting from the
StartingIndex value.

Output String[] ContentAsXML

Nucleus Component /atg/targeting/TargetingServices (class
atg.targeting.TargetingServices)

Method executeRepositoryTargeter (String pPathToSlotOrTargeter,

int pStartingIndex, int pHowMany)

Executes within a
session

Yes

Security
FunctionalName

targetingOperation

executeRepositoryTargeter Method

The RecommendContent Web service calls the executeRepositoryTargeter method in the underlying
atg.targeting.TargetingServices implementation. This method does the following:

1. Resolves the given pTargeterPath by attempting to use the current request as a
NameResolver.

2. If a slot or targeter is found, the target() method is called. pStartingIndex and
pMaxResults are passed in as arguments.

3. Any results that are returned are changed into Repo2Xml items and passed back as a
String.

Security Recommendation

There is no specific security policy recommendation for the RecommendContent Web service; it is
assumed that you want all users to whom the targeter or slot applies to be able to call this service.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 8 3

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
Messaging Web Services

The ATG product suite includes some Web services that you can use to send JMS messages to the
Dynamo Messaging System. The default services send PageVisit and Clickthrough event messages,
which you can use in a number of ways in your ATG application – for example, you can set up a scenario
that is triggered whenever a PageVisit message with specific parameters is received.

This section contains the following topics:

MessagingImporter Component and ReceiveObjectMessage() Method

ContentViewed Web Service

ContentConsumed Web Service

Note: In the sections that follow, some Web service descriptions include URLs with the variables
hostname:port. For hostname, use the name of the machine running your application. For port, enter
the number of the port that your application server uses to handle HTTP requests on that machine.

MessagingImporter Component and ReceiveObjectMessage() Method

The default Web services that send JMS messages do so by calling the receiveObjectMessage()
method exposed by the /atg/dynamo/messaging/MessagingImporter component. The
MessagingImporter component is an instance of class atg.dms.patchbay.MessageImporter, which
is part of the Web service infrastructure in the DAF layer.

The receiveObjectMessage() method takes three parameters:

 the message object

 a String indicating the JMSType of the message

 a String indicating the Patch Bay port name to use

The Web services that call this method take a message object as their input parameter.

For more information, refer to JMS Web Services in the ATG Web Services and Integration Framework Guide.

ContentViewed Web Service

The ContentViewed Web service sends a PageVisitMessage to Patch Bay.

EAR file userprofilingWebServices.ear

WAR file messaging.war

Context root userprofiling/messaging

Servlet contentViewed

Web Service URL http://hostname:port/userprofiling/messaging/contentViewed

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 8 4

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
WSDL URL http://hostname:port/userprofiling/messaging/contentViewed?

WSDL

Web Service Class webservice.SendPageVisitSEIImpl

Input Parameters atg.userprofiling.dms.PageVisitMessage pMessage

Output None

Nucleus Component /atg/dynamo/messaging/MessagingImporter (class
atg.dms.patchbay.MessageImporter)

Method receiveObjectMessage (Object pMessage, String pJMSType,

String pInputPortName)

Note that for the default ContentViewed service:

JMSType = atg.dps.PageVisit

InputPortName = IndividualEvents

Executes within a
session

Yes

Security
FunctionalName

messagingOperation

Setting PageVisit Message Properties for a Web Service

When PageVisit JMS messages are sent within an ATG application rather than to an ATG application
from a Web service, the values of various message properties are determined by the PageEventTrigger
component on the ATG server. When you send these messages through a Web service, however, the
PageEventTrigger is not available, and you must set them explicitly on the PageVisit object created
by the client application.

Note that setting these values incorrectly will prevent any scenarios that are waiting for these messages
from being fired.

Use the same settings for the PageVisit message properties that you would use for a message sent
within an ATG application, with the following important exception: use the path property rather than
scenarioPathInfo property to specify the path of the page that was visited. This behavior is necessary
because only the PageEventTrigger contains the necessary logic for specifying the correct value for
scenarioInfoPath.

Important: When you set up a scenario to watch for this event, do not use the document picker (Choose
document…) to select the page to include in the Visits element; pages specified this way automatically use
the scenarioInfoPath property. Instead, use the whose path or with Dynamo path option in the
element to specify the path to the page, and make sure that the value you enter matches the value that
you send in the message from the Web service. Both of the following examples are valid ways to specify
the correct path in the scenario element:

Visits a page whose path is /en/index.jsp

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 8 5

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
Or

Visits a page with Dynamo path /en/index.jsp

For pages that are outside the Dynamo document root (the page is part of a non-DAS J2EE application)
make sure the path property includes the application context root.

For more information on the PageVisit message, refer to PageVisit Event.

ContentConsumed Web Service

The ContentConsumed Web service sends a ClickThroughMessage to Patch Bay.

EAR file userprofilingWebServices.ear

WAR file messaging.war

Context root userprofiling/messaging

Servlet contentConsumed

Web Service URL http://hostname:port/userprofiling/messaging/contentConsume

d

WSDL URL http://hostname:port/userprofiling/messaging/contentConsume

s?WSDL

Web Service Class webservice.SendClickThroughSEIImpl

Input Parameters atg.userprofiling.dms.ClickThroughMessage pMessage

Output None

Nucleus Component /atg/dynamo/messaging/MessagingImporter (class
atg.dms.patchbay.MessageImporter)

Method receiveObjectMessage (Object pMessage, String pJMSType,

String pInputPortName)

Note that for the default ContentConsumed service:

JMSType = atg.dps.ClickThrough

InputPortName = IndividualEvents

Executes within a
session

Yes

Security
FunctionalName

messagingOperation

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 8 6

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
Refer to ClickThrough Event for information on the properties to set in the ClickThrough message
object.

Example: Using the GetProfileId Web Service in an Axis
Client

The following example shows how you could retrieve a profile ID from the ATG system by using the
GetProfileId Web service in an Apache Axis client application. For more examples of client-side code,
refer to the ATG Web Services and Integration Framework Guide.

For more information on using Axis tools to build client applications, visit http://ws.apache.org/axis/.

The class that builds clients is org.apache.axis.wsdl.WSDL2Java, which takes a WSDL file as one of its
arguments. The Axis client generates classes that you can then use to make a call to the GetProfileId
Web service. For example:

java org.apache.axis.wsdl.WSDL2Java -o c:\my\client\classes

/path/to/getProfileId.wsdl

This command creates a class called com.atg.www.webservices.GetProfileIdSEIServiceLocator.
This class is responsible for locating and returning a handle to the service you want to invoke. It returns an
item of type com.atg.www.GetProfileIdSEI, which is an interface that contains the single method you
need. You can then call this method with the arguments that are appropriate.

The following example shows how you could use the generated classes as a standalone method within a
client application:

import com.atg.www.webservices.*;

public callGetProfileId(String pProfileId) {

 // This finds our Web service

 GetProfileIdServiceLocator locator = new GetProfileIdServiceLocator();

 try {

 // This represents the Web service that we want to act on

 GetProfileIdSEI getProfileService = locator.getGetProfileIdSEIPort();

 // Now we can invoke our method on it...we know the method name

 // and args by either looking at the WSDL, or at the

 // Axis-generated code

 return getProfileService.getProfileId(pProfileId);

 }

 catch(javax.xml.rpc.ServiceException exc) {}

 catch(java.rmi.RemoteException exc) {}

 catch(com.atg.www.javax_servlet.ServletException exc) {}

 catch(com.atg.www.atg_security.SecurityException exc) {} }

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 8 7

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
Note that the last two exceptions shown are generated by Axis, but you can just catch regular exceptions
if the type of exception being thrown is not important to your application.

Returning RepositoryItems as Repo2Xml Items
The Web services provided with the Personalization layer return repository items as Repo2Xml items. You
can manipulate the returned item by means of mapping files that allow you to do the following:

 Block certain properties from being returned.

 Change the property names in the resulting Repo2Xml item.

For example, assume you are returning a user item, but you do not want the client calling the method to
see the value of the scenarioInstances property. You could set up a mapping file for the user item
descriptor that omits the scenarioInstances property when Repo2Xml items are created The syntax for
these mapping files is defined in the ATG Web Services and Integration Framework Guide.

Applying Mapping Files to Repo2Xml Items

Each Web service method that returns Repo2Xml items has an additional method with an optional String
argument for a mapping file name. For example, the getProfile() method has two signatures:
getProfile(String pProfileId), and getProfile(String pProfileId, String
pMappingFile). However, only the former is generated by default. If you want to use the second String
and apply a mapping file, you must configure an ItemDescriptorMapping as described in the ATG Web
Services and Integration Framework Guide. In addition, ensure that the useDefaultMappings property is
set to true for the component that the Web service calls.

Profile-Related Security Policies for Web Services
The atg.security.StandardSecurityPolicy class, which is provided as part of the Dynamo
Application Framework layer, supplies the core logic for controlling access to objects secured using access
control lists (ACLs). For more information on the StandardSecurityPolicy, see the Managing Access
Control chapter of the ATG Programming Guide. The security policies used for profile-related Web services,
which are described in this section, extend the StandardSecurityPolicy, appending the ACL returned
by the StandardSecurityPolicy with additional access control entries (ACEs) that either grant or deny
access to specific personae. (Personae can be users, roles or organizations.)

For more information on how security policies work with Web services, refer to Web Service Security in the
ATG Web Services and Integration Framework Guide and Repository Web Service Security in the ATG
Repository Guide.

This section contains the following topics:

AppendACLPolicy

MethodParameterPolicy

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 8 8

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
ProfileOwnerPolicy

ProfileAsXMLOwnerPolicy

RelativeRoleByProfileOrgPolicy

Defining Security Functions and Policies

AppendACLPolicy

This class is abstract and provides the basis for appending entries to the StandardSecurityPolicy ACL.
It extends the getEffectiveAccessControlList method of the StandardSecurityPolicy class to
append entries to the ACL returned by the StandardSecurityPolicy instance.

The abstract methods for this class are detailed here.

getAdditionalACL

This abstract method returns the ACL that is appended to the StandardSecurityPolicy ACL. The
getAdditionalACL method is an extension of the getEffectiveAccessControlList method that
appends the ACL of the StandardSecurityPolicy instance with additional ACEs. The abstract
getAdditionalACL method returns the ACL to which this is appended. If the
StandardSecurityPolicy does not return an ACL, the return value of getAdditionalACL is used. If
both are null, null is returned and access is granted, which is the default behavior of the
StandardSecurityPolicy.

protected abstract AccessControlList getAdditionalACL(Object pSecuredObject) ;

Return Value

This abstract method returns the ACL that is appended to the StandardSecurityPolicy ACL.

MethodParameterPolicy

This is an abstract class that extends the AppendAclPolicy class. It provides the base implementation for
policies that depend on incoming parameter values to determine access rights to the secured object. In
the case of Web services, the secured object is always the Web service method. It provides a concrete
implementation of getAdditionalACL that appends all the Personae returned by the abstract
getPersonae method.

The abstract getPersonae method takes a map of parameter values created by the
getMethodParametersFromSecuredObject method and the incoming SecuredObject instance. You
can use the incoming parameter values, and the SecuredObject if necessary, to determine the
Personae that should have access to the SecuredObject.

For example, a Web service might provide the ability to edit a profile. If you want to allow both the profile
owner and users with the Admin role to make edits, the getPersonae method could return both
Personae, resulting in an ACL that looks something like the following:

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 8 9

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
Profile$user$1234:execute;Profile$role$Admin:execute

The access rights for each persona appended to the ACL are defined in the static variable
NEW_PERSONA_RIGHTS.

Important: If no Personae are returned from the getPersonae method, the ACL is appended with deny
access for everyone.

Refer to the ATG API Reference for information on the abstract methods for this class.

ProfileOwnerPolicy

The /atg/userprofiling/security/ProfileOwnerPolicy component (class
atg.userprofiling.security.ProfileOwnerPolicy) is a security policy designed for situations in
which you want only the owner of a profile to be able to perform operations on that profile. The
ProfileOwnerPolicy examines the supplied profile object to check that it matches the profile
associated with the current session; it then appends the ACL with the owner of the profile.

This policy takes a method argument containing a profile object of type String or RepositoryItem.

By default, the ProfileOwnerPolicy looks for profile objects named pProfileId, Profile,
profileId, and profile, in that order, and uses the first corresponding object that it finds. You can
change these names by editing the value of the profileParameterNames property in the
ProfileOwnerPolicy component.

ProfileAsXMLOwnerPolicy

The /atg/userprofiling/security/ProfileAsXMLOwnerPolicy component (class
atg.userprofiling.security.ProfileAsXMLOwnerPolicy) is a security policy that is provided with
the Personalization layer. It is similar to the ProfileOwnerPolicy, but it expects a method argument
that contains a profile in Repo2Xml form. It examines this Repo2Xml item to check that the profile
associated with the current session matches the profile in the method argument.

The behavior provided by this policy can be useful for the UpdateUser service, where you may want to
ensure that only the owner of a given profile is allowed to update it. For example, if a user whose ID is 700
attempts to call the updateUser method with a Repo2Xml item that represents a profile with ID 900, the
ProfileAsXMLOwnerPolicy prevents the method from being called. Specifically, the
ProfileAsXMLOwnerPolicy looks for method arguments named pProfileAsXML and ProfileAsXML
in that order. If either of those arguments is present, it uses the value for that argument to determine if
the method caller has permission to execute the method.

By default, the ProfileAsXMLOwnerPolicy looks for profile objects named pProfileAsXML,
ProfileAsXML, and profileAsXML, in that order, and uses the first corresponding object that it finds.
You can change these names by editing the value of the profileParameterNames property in the
ProfileAsXMLOwnerPolicy component.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 9 0

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
RelativeRoleByProfileOrgPolicy

The /atg/userprofiling/security/RelativeRoleByProfileOrgPolicy component (class
atg.userprofiling.security.RelativeRoleByProfileOrgPolicy) is a security policy
implementation that extends the abstract class
atg.userprofiling.security.RelativeRoleByOrganizationPolicy (see ATG API Reference for
more information). It allows you to grant access to users with specific relative roles (also called
organizational roles – for more information, see Working with the Dynamo User Directory). The roles
allowed access are those assigned to the parent organization of the profile supplied in the input
argument.

This policy takes a method argument containing a profile object of type String or RepositoryItem.

By default, the RelativeRoleByProfileOrgPolicy looks for profile objects named pProfileId,
Profile, profileId, and profile, in that order, and uses the first corresponding object that it finds.
You can change these names by editing the value of the profileParameterNames property in the
RelativeRoleByProfileOrgPolicy component.

Assume you have a Web service that you want to be used exclusively by supervisors. You create a security
policy for it called SupervisorsOnly that is an implementation of
RelativeRoleByProfileOrgPolicy.

You configure the SupervisorsOnly component with a roleFunctionName property set to a single
value:

roleFunctionNames=supervisor

When a user calls the Web service, the security policy creates an ACL that grants access to the supervisor
role in the user’s parent organization:

$Profile:role:supervisorRoleId

The security sub-system grants access if the calling user has an assigned relative role with the ID
supervisorRoleId; otherwise access is denied.

Defining Security Functions and Policies

Each default Web service includes a functionalName setting. You can use this setting to apply a single
security policy across many services at once; for example, you could apply the ProfileOwnerPolicy to
all Web services whose security function setting is profileOwnerOperation. You can define these
functional names and security policy relationships in the Web services administration interface.

ATG does not provide any security policy associations for the default Web services. You must determine
which security policy you want to associate with each functional name, and then use the Web services
administration interface to set up the relationship. Some suggestions for appropriate policies are
provided in the description of each Web service in this chapter. For more information on security policies,
refer to Creating and Editing Security Configurations in the ATG Web Services and Integration Framework
Guide.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 9 1

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
After you set up security policy associations, or if you change any of the default functional names, you
must regenerate and then redeploy the affected Web services. For more information on this procedure,
see the ATG Web Services and Integration Framework Guide.

The following list shows the functionalName setting for each Web service:

Web Service Functional Name

GetProfileId profileInfoOperation

GetProfile profileInfoOperation

LoginUser loginOperation

LogoutUser logoutOperation

UpdateUser xmlProfileOwnerOperati

on

CreateUser createOperation

SetContactInfo profileOwnerOperation

SetPassword profileOwnerOperation

SetLocale profileOwnerOperation

CanClientEncryptPasswords loginOperation

GetPasswordHashKey loginOperation

GetPasswordHashAlgorithm loginOperation

RecommendContent targetingOperation

ContentViewed messagingOperation

ContentConsumed messagingOperation

Using Client-Side Password Encryption
Standard practice for most applications that transmit passwords is to use a secure protocol such as HTTPS,
which handles password encryption internally. The LoginUser Web service, however, includes an option
that permits a client-side application to encrypt passwords and then log in a user without using a secure
protocol. Important: ATG strongly recommends using a secure protocol for all operations that transmit
confidential information, including logins. The client-side password encryption feature built into the
LoginUser service exists as an option for customers with unusual login requirements, and it is not
recommended for general use.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 9 2

P a r t I I I : W e b S e r v i c e s f o r P e r s o n a l i z a t i o n a n d S c e n a r i o s

μ
To use this feature, client applications must follow very specific ATG-defined rules for encrypting cleartext
passwords. If a password is encrypted in a way the ATG server does not understand, the login
authentication will fail. Note also that the rules for encryption vary according to the password hasher your
application uses; for example, the MD5PasswordHasher hashes passwords in a different way from the
SaltedDigestPasswordHasher.

Not all password hashers permit the client-side encryption of passwords. Applications whose password
hashers do not provide a temporary encryption key to be used for logins cannot use client-side
encryption. This temporary encryption key is needed so that the client does not send a password string
that is identical to the stored password in the database. The CanClientEncryptPasswords Web service
determines if the current application allows client-side encryption. Currently, only the
MD5PasswordHasher has well-defined rules for client-side encryption, and it is the only password hasher
supported for this feature.

The process of passing an encrypted password from a client application to the LoginUser Web service is
called a password encryption conversation. A restriction of this feature is that the entire password
encryption conversation must be completed within a certain time limit, defined by the
maxAuthenticationWait property of the ProfileServices component. This time limit starts the
moment a client calls GetPasswordHashKey and ends the moment that same client calls LoginUser.

The following procedure describes how to have your application use the client-side password encryption
feature to log in a user. Note that the procedure assumes your application uses the MD5PasswordHasher.

1. Call the CanClientEncryptPasswordsWeb service.

2. If CanClientEncryptPasswords returns false, use HTTPS and send the password as
cleartext. Call the LoginUser service using the following parameters:
loginUser(login, cleartext_password, false).

3. If CanClientEncryptPasswords returns true, call the getPasswordHashAlgorithm
service.

4. Use the returned algorithm to encrypt the user’s password.

5. Call the GetPasswordHashKey service. Note that the conversation timer is started
here. The client application has maxAuthenticationWait milliseconds to call the
LoginUser service. If LoginUser is not called quickly enough, an error is thrown
when the service is eventually called.

6. Encrypt a combination of the returned hashKey and the encrypted password from
step 4, again using the algorithm returned from step 3.

7. Call the LoginUser service using the following parameters: loginUser(login,
encrypted_password_from_step_6, true).

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 9 3

A p p e n d i x A : D a t a b a s e T a b l e s

μ
Appendix A: Database Tables

This appendix describes the default database schema used by the Personalization module and the
Scenarios module. The following sections describe the database tables:

Personalization Module Database Schema

Scenarios Module Database Schema

Personalization Module Database Schema
The Personalization module’s database schema includes the following types of tables:

User Data Tables

User Directory Tables

Logging and Reporting Tables

Targeted E-mail Tables

Personalization Module Scenario Tables

User Data Tables

The Personalization module uses the following tables to store user data. Note that the tables shown,
which have the prefix dps, apply to external profiles and are referenced by the
ProfileAdapterRepository. A parallel set of tables exists for internal users with the prefix dpi, for
example dpi_user. These tables are referenced by the InternalProfileRepository.

 dps_user

 dps_contact_info

 dps_user_address

 dps_other_addr

 dps_credit_card

 dps_usr_creditcard

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 9 4

A p p e n d i x A : D a t a b a s e T a b l e s

μ
dps_user

This table contains information associated with a Personalization module user.

Column Data Type Constraint

id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the user.

login WVARCHAR(20) NOT NULL UNIQUE

 The user’s login name.

auto_login NUMERIC(1) NULL
CHECK (auto_login in (0,1))

 Determines whether to perform autologin for this user. This value is
set by the autoLoginPropertyName property of the
/atg/userprofiling/PropertyManager component.

password VARCHAR(35) NULL

 The user’s password. Note that this field must be at least 35
characters long if the Personalization module stores a hash of the
password and not the actual value.

member NUMERIC(3) NULL
CHECK (member in (0,1))

 Whether or not the user is a member.

first_name WVARCHAR(40) NULL

 The user’s first name.

middle_name WVARCHAR(40) NULL

 The user’s middle name.

last_name WVARCHAR(40) NULL

 The user’s last name.

user_type INT NULL

 The user’s type, either (1) investor, (2) broker, or (3) guest.

locale INT NULL

 The user’s locale.

lastactivity_date TIMESTAMP NULL

 The time the user last accessed the Web site.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 9 5

A p p e n d i x A : D a t a b a s e T a b l e s

μ
registration_date TIMESTAMP NULL

 The time the user registered at the Web site.

email WVARCHAR(40) NULL

 The user’s e-mail address.

email_status INT NULL

 The status of the user’s e-mail address, for example whether valid or
invalid.

receive_email INT NULL

 Determines whether or not the user is to receive e-mails.

gender INT NULL

 The user’s gender.

date_of_birth TIMESTAMP NULL

 The user’s date of birth.

securityStatus INT NULL

 Indicates how a user was assigned to this site, either (0)
ANONYMOUS, (1) URL-PARAM, (2) AUTO-SIGNIN, (3) HTTP-BASIC-
AUTH, (4) EXPLICIT-SIGNIN, (5) SECURE_SIGNIN, or (6) CERTIFICATE.

dps_contact_info

This table contains information about a user’s contact info. There can be multiple contact infos for a single
user, and all this information is stored in this table.

Column Data Type Constraint

id VARCHAR(40) NOT NULL UNIQUE

(primary key) The unique identifier associated with the contact information.

user_id VARCHAR(40) NULL

 The unique identifier associated with the user who owns the contact
information.

prefix WVARCHAR(40) NULL

 The name prefix (for example, a title) of this user.

first_name WVARCHAR(40) NULL

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 9 6

A p p e n d i x A : D a t a b a s e T a b l e s

μ
 The first name of this user.

middle_name WVARCHAR(40) NULL

 The middle name of this user.

last_name WVARCHAR(40) NULL

 The last name of this user.

suffix WVARCHAR(40) NULL

 The name suffix of this user.

job_title WVARCHAR(100) NULL

 The job title of the user at this address.

company_name WVARCHAR(40) NULL

 The company name of the user at this address.

address1 WVARCHAR(50) NULL

 The street and number of this address.

address2 WVARCHAR(50) NULL

 The street and number of this address.

address3 WVARCHAR(50) NULL

 The street and number of this address.

city WVARCHAR(30) NULL

 The city of this address.

state WVARCHAR(20) NULL

 The state of this address.

postal_code WVARCHAR(10) NULL

 The postal code of this address.

county WVARCHAR(40) NULL

 The county of this address.

country WVARCHAR(40) NULL

 The country of this address.

phone_number WVARCHAR(15) NULL

 The phone number of the user at this address.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 9 7

A p p e n d i x A : D a t a b a s e T a b l e s

μ
fax_number WVARCHAR(15) NULL

 The fax number of the user at this address.

dps_user_address

This table contains information about a user’s address.

Column Data Type Constraint

id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the user. References
dps_user(id).

home_addr_id VARCHAR(40) NULL

 The unique identifier associated with the user’s home address.

billing_addr_id VARCHAR(40) NULL

 The unique identifier associated with the user’s billing address.

shipping_addr_id VARCHAR(40) NULL

 The unique identifier associated with the user’s shipping address.

dps_other_addr

This table contains addresses used by profiles. ATG Commerce applications use this table to store a list of
addresses in the table dps_contact_info. The Personalization module can also use this table to set up a
one-to-many relationship by adding a table similar to the table dps_contact_info and modifying the
userProfile.xml template.

Column Data Type Constraint

user_id VARCHAR(40) NOT NULL

(primary key) The unique identifier of the user who owns the address. References
dps_user(id).

tag WVARCHAR(42) NOT NULL

(primary key) The type of address, for example work or home.

address_id VARCHAR(40) NOT NULL

 The unique identifier associated with the address.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 9 8

A p p e n d i x A : D a t a b a s e T a b l e s

μ

dps_credit_card

(External profiles only.) This table contains information about a user’s credit card. There can be multiple
contact credit cards for a single user.

Column Data Type Constraint

id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with this credit card information.

credit_card_number VARCHAR(40) NULL

 The credit card number.

credit_card_type VARCHAR(40) NULL

 The type of credit card (MasterCard, Visa, etc.)

expiration_month VARCHAR(20) NULL

 The month the credit card expires.

exp_day_of_month VARCHAR(20) NULL

 The day of the month the credit card expires.

expiration_year VARCHAR(20) NULL

 The year the credit card expires.

billing_addr VARCHAR(40) NULL

 The billing address of the credit card.

dps_usr_creditcard

(External profiles only.) This table contains credit card information associated with a user.

Column Data Type Constraint

user_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the user.

tag WVARCHAR(42) NOT NULL

(primary key) The type of credit card, for example MasterCard, Visa, etc.

credit_card_id VARCHAR(40) NOT NULL

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

4 9 9

A p p e n d i x A : D a t a b a s e T a b l e s

μ
 The unique identifier associated with the credit card. REFERENCES

dps_credit_card(id).

User Directory Tables

The Personalization module uses the following tables to store information about the organizations and
roles that make up a user directory. The tables shown here correspond to external users. A parallel set of
tables, with the prefix dpi, exists for internal users.

 dps_child_folder

 dps_folder

 dps_organization

 dps_org_ancestors

 dps_org_chldorg

 dps_org_role

 dps_relativerole

 dps_role

 dps_rolefold_chld

 dps_role_rel_org

 dps_user_org

 dps_user_org_anc

 dps_user_roles

dps_child_folder

This table stores a list of a role folder’s child folders.

Column Data Type Constraint

folder_id VARCHAR(40) NOT NULL

(primary key) The unique identifier for this role folder. References
dps_folder(folder_id).

child_folder_id VARCHAR(40) NOT NULL

(primary key) The unique identifier for the child folder. References
dps_folder(folder_id).

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 0 0

A p p e n d i x A : D a t a b a s e T a b l e s

μ
dps_folder

This table stores information that defines a folder in the user directory.

Column Data Type Constraint

folder_id VARCHAR(40) NOT NULL

(primary key) The unique identifier for this folder.

type INT NOT NULL

 Identifies the type of folder. Values can be as follows: 2000
(genericFolder), 2001 (roleFolder), or 2002 (orgFolder)

name WVARCHAR(254) NOT NULL

 The user-specified name for this folder.

parent VARCHAR(40) NULL

 The ID of this folder’s parent folder. References
dps_folder(folder_id).

description WVARCHAR(254) NULL

 The user-specified description for this folder.

dps_organization

This table stores information that defines a user directory organization.

Column Data Type Constraint

org_id VARCHAR(40) NOT NULL

(primary key) The unique identifier for this organization.

name WVARCHAR(254) NOT NULL

 The user-specified name for this organization.

description WVARCHAR(254) NULL

 The user-specified description for this organization.

parent_org VARCHAR(40) NULL

 The ID of this organization’s parent organization. References
dps_organization(org_id).

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 0 1

A p p e n d i x A : D a t a b a s e T a b l e s

μ
dps_org_ancestors

This table stores a list of an organization’s ancestor organizations.

Column Data Type Constraint

org_Id VARCHAR(40) NOT NULL

(primary key) The unique identifier of this organization. References
dps_organization(org_id).

sequence_num INT NOT NULL

(primary key) The index of this ancestor organization in the list.

anc_org VARCHAR(40) NOT NULL

 The unique identifier of the ancestor organization. References
dps_organization(org_id)

dps_org_chldorg

This table stores a list of an organization’s child organizations.

Column Data Type Constraint

org_id VARCHAR(40) NOT NULL

(primary key) The unique identifier for this organization. References
dps_organization(org_id).

child_org_id VARCHAR(40) NOT NULL

(primary key) The unique identifier for the child organization. References
dps_organization(org_id).

dps_org_role

This table stores a list of roles assigned to an organization.

Column Data Type Constraint

org_id VARCHAR(40) NOT NULL

(primary key) The unique identifier for this organization. References
dps_organization(org_id).

atg_role VARCHAR(40) NOT NULL

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 0 2

A p p e n d i x A : D a t a b a s e T a b l e s

μ
(primary key) The unique identifier of the role. References dps_role(role_id).

dps_relativerole

This table stores information that defines an organizational role.

Column Data Type Constraint

role_id VARCHAR(40) NOT NULL

(primary key) The ID of this organizational role. References dps_role(role_id).

dps_function WVARCHAR(40) NOT NULL

 The value of the function property of this organizational role.

relative_to VARCHAR(40) NOT NULL

 The organization to which this role is relative. References
dps_organization(org_id).

dps_role

This table stores information that defines a global or organizational role.

Column Data Type Constraint

role_id VARCHAR(40) NOT NULL

(primary key) The ID of this role.

type INT NOT NULL

 The type of role. The value can be 2000 (global role) or 2001
(organizational role).

version INT NOT NULL

 The revision number for this role.

name WVARCHAR(254) NOT NULL)

 The user-specified name for this role.

description WVARCHAR(254) NULL

 The user-specified description for this role.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 0 3

A p p e n d i x A : D a t a b a s e T a b l e s

μ
dps_rolefold_chld

This table stores a list of the global roles in a role folder.

Column Data Type Constraint

rolefold_id VARCHAR(40) NOT NULL

(primary key) The ID of this role folder. References dps_folder(folder_id).

role_id VARCHAR(40 NOT NULL

(primary key) The ID of this role. References dps_role(role_id).

dps_role_rel_org

This table stores a list of the organizational roles assigned to an organization.

Column Data Type Constraint

organization VARCHAR(40) NOT NULL

(primary key) The unique identifier for this organization. References
dps_organization(org_id).

sequence_num INT NOT NULL

(primary key) The index of this organizational role in the list.

role_id VARCHAR(40) NOT NULL

 The unique identifier for this organizational role. References
dps_role(role_id).

dps_user_org

This table stores a list of the users who are assigned to an organization.

Column Data Type Constraint

organization VARCHAR(40) NOT NULL

(primary key) The unique identifier for this organization. References
dps_organization(org_id).

user_id VARCHAR(40) NOT NULL

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 0 4

A p p e n d i x A : D a t a b a s e T a b l e s

μ
(primary key) The unique identifier for the user assigned to the organization.

References dps_user(id).

dps_user_org_anc

This table stores a list of a user’s ancestor organizations.

Column Data Type Constraint

user_id VARCHAR(40) NOT NULL

(primary key) The unique identifier of this user. References dps_user(id).

sequence_num INT NOT NULL

(primary key) The index of this ancestor organization in the user’s list.

anc_org VARCHAR(40) NOT NULL

 The unique identifier of the ancestor organization. References
dps_organization(org_id).

dps_user_roles

This table extends the user profile to include references to roles assigned to this user.

Column Data Type Constraint

user_id VARCHAR(40) NOT NULL

(primary key) The unique identifier for this user. References dps_user(id).

atg_role VARCHAR(40) NOT NULL

(primary key) A role assigned to this user. References dps_role(role_id).

Logging and Reporting Tables

The Personalization module uses the following tables to store logging and reporting information. Note
that these tables exist for use with external user profiles only.

 dps_con_req

 dps_con_req_sum

 dps_group

 dps_log_id

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 0 5

A p p e n d i x A : D a t a b a s e T a b l e s

μ
 dps_pgrp_con_sum

 dps_pgrp_req_sum

 dps_request

 dps_reqname_sum

 dps_session_sum

 dps_user_event

 dps_user_event_sum

 dps_event_type

dps_con_req

This table contains reporting information about requests for content.

Column Data Type Constraint

id NUMERIC(19) NOT NULL

(primary key) The unique identifier associated with this content request.

timestamp TIMESTAMP NOT NULL

 The date the content is requested.

requestid NUMERIC(19) NULL

 The ID associated with the session in which the request
occurs.

contentid VARCHAR(255) NOT NULL

 The path name of the requested content.

dps_con_req_sum

This table contains reporting information about viewed content.

Column Data Type Constraint

contentid VARCHAR(255) NOT NULL

 The path of the requested content item.

member NUMERIC(1) NOT NULL
CHECK (member in (0,1))

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 0 6

A p p e n d i x A : D a t a b a s e T a b l e s

μ
 Indicates whether or not the user who will receive the

content is a member.

summarycount INT NOTNULL

 The number of requests for this content item.

fromtime TIMESTAMP NOT NULL

 The beginning of the time span that is summarized.

totime TIMESTAMP NOT NULL

 The end of the time span that is summarized.

dps_group

This table contains information about reporting groups.

Column Data Type Constraint

id INT NOT NULL

(primary key) The unique identifier of the group used in reporting.

name WVARCHAR(64) NOT NULL UNIQUE

 The name of the group used in reporting.

dps_log_id

This table provides the counters for the primary keys for each logging table.

Column Data Type Constraint

tablename VARCHAR(30) NOT NULL

(primary key) The name of the reporting table.

nextid NUMERIC(19) NOT NULL

 The next ID the logging table should use for a new row.

dps_pgrp_con_sum

This table contains a record of summarized profile groups and the content they accessed in a content
group.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 0 7

A p p e n d i x A : D a t a b a s e T a b l e s

μ

Column Data Type Constraint

groupname WVARCHAR(64) NOT NULL

 The name of the profile group.

contentname WVARCHAR(64) NOT NULL

 The name of the content group

summarycount INT NOT NULL

 The number of times between the fromtime and totime
records that the members of the named profile group
accessed the content in the named content group.

fromtime TIMESTAMP NOT NULL

 The beginning of the time span that is summarized.

totime TIMESTAMP NOT NULL

 The end of the time span that is summarized.

dps_pgrp_req_sum

This table contains a record of summarized profile groups and their requests for content from a content
group.

Column Data Type Constraint

groupname WVARCHAR(64) NOT NULL

 The name of the profile group.

contentname WVARCHAR(255) NOT NULL

 The name of the content item.

summarycount INT NOT NULL

 The number of times between the fromtime and totime
records that the members of the named profile group
accessed the content in the named content group.

fromtime TIMESTAMP NOT NULL

 The beginning of the time span that is summarized.

totime TIMESTAMP NOT NULL

 The end of the time span that is summarized.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 0 8

A p p e n d i x A : D a t a b a s e T a b l e s

μ

dps_request

This table contains all of the request log entries.

Column Data Type Constraint

id NUMERIC(19) NOT NULL

(primary key) The unique identifier associated with the request item.

timestamp TIMESTAMP NOT NULL

 The date on which the request was made.

sessionid VARCHAR(32) NULL

 The ID of the session that made the request.

name VARCHAR(255) NOT NULL

 The name of the user who made the request.

member NUMERIC(1) NOT NULL
CHECK (member in (0,1))

 Indicates whether a member or a guest made the request
that is logged.

dps_reqname_sum

This table contains records of summarized request names.

Column Data Type Constraint

name VARCHAR(255) NOT NULL

 The name of the request.

member NUMERIC(1) NOT NULL
CHECK (member in (0,1))

 Indicates whether the user is a member or a guest.

summarycount INT NOT NULL

 The number of times between the fromtime and totime
records that the members of the named profile group
accessed the content in the named content group.

fromtime TIMESTAMP NOT NULL

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 0 9

A p p e n d i x A : D a t a b a s e T a b l e s

μ
 The beginning of the time span that is summarized.

totime TIMESTAMP NOT NULL

 The end of the time span that is summarized.

dps_session_sum

This table contains records of summarized sessions.

Column Data Type Constraint

sessionid VARCHAR(32) NULL

 The session ID.

member NUMERIC(1) NOT NULL
CHECK (member in (0,1))

 The value of the member attribute of the session profile.

summarycount INT NOT NULL

 The total number of events that occurred during the session.

fromtime TIMESTAMP NOT NULL

 The beginning of the time span that is summarized.

totime TIMESTAMP NOT NULL

 The end of the time span that is summarized.

dps_user_event

This table contains a record of any user event.

Column Data Type Constraint

id NUMERIC(19) NOT NULL

(primary key) The primary key for this logged event.

timestamp TIMESTAMP NOT NULL

 The time that this event occurred.

sessionid VARCHAR(32) NULL

 The ID associated with the session that triggered this event.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 1 0

A p p e n d i x A : D a t a b a s e T a b l e s

μ
eventtype INT NOT NULL

 The type of event, for example, login, logout, registration,
content view, purchase, etc. References
dps_event_type(id).

profileid VARCHAR(25) NULL

 The ID associated with the user who triggered the event.

member NUMERIC(1) NOT NULL
CHECK (member in (0,1))

 Whether or not the user is a member or a guest.

dps_user_event_sum

This table contains records of summarized user event types.

Column Data Type Constraint

eventtype INT NOT NULL

 The type of event that is summarized, for example, login,
logout, registration, content view, purchase, etc. References
dps_event-type(id).

summarycount INT NOT NULL

 The number of times the event occurred.

fromtime TIMESTAMP NOT NULL

 The beginning of the time span that is summarized.

totime TIMESTAMP NOT NULL

 The end of the time span that is summarized.

dps_event_type

This table contains information about the default D4-style events.

Column Data Type Constraint

INTEGER NOT NULL id

(primary key) The ID associated with the event type.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 1 1

A p p e n d i x A : D a t a b a s e T a b l e s

μ
VARCHAR(32) NOT NULL UNIQUE name

The name of the event.

Targeted E-mail Tables

The Personalization module uses the following tables to store information about targeted e-mail. The
tables shown here correspond to external users. A parallel set of tables, with the prefix dpi, exists for
internal users.

 dps_mailing

 dps_mail_server

 dps_mail_batch

 dps_user_mailing

 dps_email_address

dps_mailing

This table contains information about any targeted e-mail campaigns that are sent to users.

Column Data Type Constraint

id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with this mailing campaign.

name WVARCHAR(80) NULL

 The name of the mailing campaign.

subject WVARCHAR(80) NULL

 The subject line of the e-mail.

uniq_server_id VARCHAR(255) NULL

 The unique ID of the ATG server (IP address: DRP port) that
sent out the e-mail.

from_address WVARCHAR(255) NULL

 The value of the “From” header in the e-mail.

replyto WVARCHAR(255) NULL

 The value of the “Reply To” header in the e-mail.

template_url VARCHAR(255) NULL

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 1 2

A p p e n d i x A : D a t a b a s e T a b l e s

μ
 The URL of the targeted e-mail template that is used for the e-

mails in this campaign.

alt_template_URL VARCHAR(255) NULL

 The URL of a template containing an alternative text version
of an HTML message.

batch_exec_id VARCHAR(40) NULL

 An ID that distinguishes all mailings created from the same
invocation of a SendEmail scenario action. See Identifying
Mailings Sent by a Single SendEmail Action.

cc LONG VARCHAR NULL

 The value of the “CC” header in this e-mail.

bcc LONG VARCHAR NULL

 The value of the “BCC” header in this e-mail.

send_as_html INT NULL

 Determines whether or not the e-mail was sent in HTML
format.

send_as_text INT NULL

 Determines whether or not the e-mail was sent in text format.

params LONG VARBINARY NULL

 Serialized map of template parameters used when rendering
the e-mail template for a specific campaign. This is the value
of the templateParameters property of the
atg.userprofiling.TemplateEmailInfo object.

start_time TIMESTAMP NULL

 The time at which the SMTP server started sending e-mails.

end_time TIMESTAMP NULL

 The time at which the SMTP server stopped sending e-mails.

status INT NULL

 The status of the e-mail campaign, whether PENDING,
INPROGRESS, CANCELED, COMPLETE, or FAILED.

num_profiles INT NULL

 The total number of profiles to which this e-mail was sent.

num_sent INT NULL

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 1 3

A p p e n d i x A : D a t a b a s e T a b l e s

μ
 The total number of e-mails sent.

num_bounces INT NULL

 The total number of e-mails that bounced back to the server.

num_errors INT NULL

 The number of errors that occurred while sending the e-mails.

num_skipped INT NULL

 The number of recipients to whom the mailing could not be
sent (for example, because their emailStatus profile
property was set to invalid).

fill_from_templ NUMERIC(1) NULL

 The value of the fillFromTemplate property of the
atg.userprofiling.TemplateEmailInfo object. This
value is true if information about the e-mail is extracted from
the parameter values set in the e-mail template.

is_batched TINYINT NULL

 Identifies this mailing as a distributed mailing.

batch_size INT NULL

 The number of messages in this batch.

dps_mail_server

This table is used to identify the servers participating in a distributed mailing.

Column Data Type Constraint

uniq_server_id VARCHAR(254) NOT NULL

(primary key) The unique identifier associated with each participating
server.

last_updated TIMESTAMP NULL

 The timestamp set by this server’s
batchEmailPeriodicService.

dps_mail_batch

This table is used by the distributed mailing feature.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 1 4

A p p e n d i x A : D a t a b a s e T a b l e s

μ

Column Data Type Constraint

mailing_id
(primary key)

VARCHAR(40) NOT NULL

 The unique identifier associated with the batch. References
dps_mailing(id).

start_idx

(primary key)
INT NOT NULL

 An index that identifies the first profile in this batch.

uniq_server_id VARCHAR(254) NULL

 The unique ID of the server (IP address: DRP port) that
claimed the batch.

start_time TIMESTAMP NULL

 The time at which the server started sending the e-mails in
this batch.

end_time TIMESTAMP NULL

 The time at which the server stopped sending the e-mails in
this batch.

status INT NULL

 The status of the batch mailing, whether PENDING,
INPROGRESS, CANCELED, COMPLETE, or FAILED.

num_profiles INT NULL

 The total number of profiles to which this mailing was sent.

num_sent INT NULL

 The total number of e-mails sent.

num_bounces INT NULL

 The total number of e-mails that bounced back to the server.

num_errors INT NULL

 The number of errors that occurred while sending the e-mails.

num_skipped INT NULL

 The number of recipients to whom the mailing could not be
sent (because, for example, their emailStatus profile
property was set to invalid).

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 1 5

A p p e n d i x A : D a t a b a s e T a b l e s

μ
is_summarized TINYINT NULL

 Indicates whether the counts for this batch have been
merged back into the parent mailing.

dps_user_mailing

This table contains information about users who are receiving e-mail as part of an e-mail campaign.

Column Data Type Constraint

mailing_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the e-mail campaign.
References dps_mailing(id).

user_id VARCHAR(40) NOT NULL

 The ID of a user who received an e-mail from the e-mail
campaign. References dps_user(id).

idx INT NOT NULL

(primary key) An index used to order the users in this campaign.

dps_email_address

This table stores information that allows you to send e-mail to specific e-mail addresses. A profile is not
required.

Column Data Type Constraint

mailing_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the e-mail campaign.
References dps_mailing(id).

email_address VARCHAR(255) NOT NULL

 The user’s e-mail address.

idx INT NOT NULL

(primary key) An index used to order the users in this campaign.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 1 6

A p p e n d i x A : D a t a b a s e T a b l e s

μ
Personalization Module Scenario Tables

The Personalization module uses the following tables to store user-related information about scenarios.
The tables shown here, with the prefix dps, apply to external users. A parallel set of tables exists with the
prefix dpi (for example, dpi_user_scenario) for internal users.

 dps_scenario_value

 dps_user_scenario

 dps_user_slot

dps_scenario_value

This table contains a map of values that can be used in scenarios to persist scenario-related per-user
information. For example, one segment in a scenario may store a value under a key in this map, and
another segment (or scenario) may look up or change that value. These values are similar to scenario
variables but are persisted across scenario segments. Both the keys and the values in this map are Strings.

Column Data Type Constraint

id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the user.

tag VARCHAR(42) NOT NULL

(primary key) The key for a value in the scenario map.

scenario_value VARCHAR(100) NULL

 The value for this key.

dps_user_scenario

This table associates a user with individual scenario instances.

Column Data Type Constraint

id VARCHAR(40) NOT NULL

 The unique identifier associated with the user. References
dps_user(id).

ind_scenario_id VARCHAR(25) NOT NULL

(primary key) The ID associated with the scenario instance. References
dss_ind_scenario(id).

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 1 7

A p p e n d i x A : D a t a b a s e T a b l e s

μ
dps_user_slot

This table stores information that associates a persistent slot with a user in the profile repository.
(Specifically, the data corresponds to the value of the slotInstances property in the user profile.)

Column Data Type Constraint

id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the user. References
dps_user(id).

profile_slot_id VARCHAR(25) NOT NULL

(primary key) The slot associated with the user. References
dss_profile_slot(id).

Scenarios Module Database Schema
The database schema for the Scenarios module includes the following types of tables:

Collective and Individual Scenario Instance Tables

Scenario Info Tables

Template Info Tables

Scenario Transition and Deletion Tables

Slot Tables

Server ID Tables

Scenario Xref Tables

Scenario Migration Tables

Event Message Tables

Business Process Tracking Tables

Collective and Individual Scenario Instance Tables
 dss_coll_scenario

 dss_ind_scenario

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 1 8

A p p e n d i x A : D a t a b a s e T a b l e s

μ
 dss_scenario_strs

 dss_scenario_bools

 dss_scenario_longs

 dss_scenario_dbls

 dss_scenario_dates

dss_coll_scenario

This table contains information about collective scenario instances. A collective scenario instance
maintains the state of any scenario segment that applies to all users (in other words, any that are not
specific to individual users). When the Scenarios module begins to execute a scenario segment, it creates
a single collective scenario instance, called the root instance, to handle the execution. It may create other
collective instances later during execution of that segment, for example to handle recurrent timer events
such as a scenario element that occurs every Monday at 2 PM.

Column Data Type Constraint

id VARCHAR(25) NOT NULL

(primary key) The ID associated with this collective scenario instance.

scenario_name WVARCHAR(255) NULL

 The name of the scenario.

modification_time NUMERIC(19) NULL

 The last time the scenario was modified.

segment_name WVARCHAR(255) NULL

 The name of the scenario segment.

creator_id VARCHAR(25) NULL

 The unique identifier for the scenario instance that created
this collective scenario instance. This value is null if this is the
root instance.

state VARCHAR(16) NULL

 The state of this collective scenario instance in the scenario
state machine.

dss_ind_scenario

This table contains information about individual scenario instances. Each scenario instance maintains the
state associated with a particular scenario segment that is currently processing a user. Individual scenario
instances are formed from collective scenario instances, typically when user-specific events occur, for
example when a user visits a particular page.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 1 9

A p p e n d i x A : D a t a b a s e T a b l e s

μ

Column Data Type Constraint

id VARCHAR(25) NOT NULL

(primary key) The ID associated with this individual scenario instance.

scenario_name WVARCHAR(255) NULL

 The name of the scenario.

modification_time NUMERIC(19) NULL

 The last time the scenario was modified.

segment_name WVARCHAR(255) NULL

 The name of the scenario segment.

creator_id VARCHAR(25) NULL

 The ID associated with the scenario that created this
individual scenario instance.

state VARCHAR(16) NULL

 The state of this individual scenario instance in the scenario
state machine.

user_id VARCHAR(25) NOT NULL

 The ID associated with the user to whom this scenario
instance belongs.

dss_scenario_strs

This table contains a map of any String variables that have been set for a given scenario instance.

Column Data Type Constraint

id VARCHAR(25) NOT NULL

(primary key) The ID associated with the individual scenario instance.
References dss_ind_scenario (id).

tag WVARCHAR(25) NOT NULL

(primary key) The name of the scenario variable.

context_str VARCHAR(255) NULL

 The string value of the scenario variable.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 2 0

A p p e n d i x A : D a t a b a s e T a b l e s

μ

dss_scenario_bools

This table contains a map of any Boolean scenario variables that have been set for a given scenario
instance.

Column Data Type Constraint

id VARCHAR(25) NOT NULL

(primary key) The ID associated with the individual scenario instance.
References dss_ind_scenario (id).

tag WVARCHAR(25) NOT NULL

(primary key) The name of the scenario variable.

context_bool NUMERIC(1) NULL

 The Boolean value of the scenario variable.

dss_scenario_longs

This table contains a map of any Long scenario variables that have been set for a given scenario instance.

Column Data Type Constraint

id VARCHAR(25) NOT NULL

(primary key) The ID associated with the individual scenario instance.
References dss_ind_scenario (id).

tag WVARCHAR(25) NOT NULL

(primary key) The name of the scenario variable.

context_long NUMERIC(19) NULL

 The long value of the scenario variable.

dss_scenario_dbls

This table contains a map of any Double scenario variables that have been set for a given scenario
instance.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 2 1

A p p e n d i x A : D a t a b a s e T a b l e s

μ
Column Data Type Constraint

id VARCHAR(25) NOT NULL

(primary key) The ID associated with the individual scenario instance.
References dss_ind_scenario (id).

tag WVARCHAR(25) NOT NULL

(primary key) The name of the scenario variable.

context_dbl NUMERIC(15, 4) NULL

 The double value of the scenario variable.

dss_scenario_dates

This table contains a map of any Date scenario variables that have been set for a given scenario instance.

Column Data Type Constraint

id VARCHAR(25) NOT NULL

(primary key) The ID associated with the individual scenario instance.
References dss_ind_scenario (id).

tag WVARCHAR(25) NOT NULL

(primary key) The name of the scenario variable.

context_date TIMESTAMP NULL

 The date value of the scenario variable.

Scenario Info Tables

This section describes the dss_scenario_info table.

dss_scenario_info

This table contains information about scenarios. A entry in this table corresponds to a single SDL
(Scenario Definition Language) file in the scenario registry.

Column Data Type Constraint

id
(primary key)

VARCHAR(25) NOT NULL

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 2 2

A p p e n d i x A : D a t a b a s e T a b l e s

μ
 The ID associated with this scenario information.

scenario_name WVARCHAR(255) NULL

 The name of the scenario.

scenario_status INT NULL

 The current scenario status, either (1) disabled, or (2) running.

modification_time NUMERIC(19) NULL

 The last time this scenario was modified.

creation_time NUMERIC(19) NULL

 The time at which this scenario was created.

author VARCHAR(25) NULL

 The login name of the ACC user who created this scenario.

last_modified_by VARCHAR(25) NULL

 The login name of the ACC user who last edited this scenario.

sdl LONG VARBINARY NULL

 The serialized contents of the scenario’s SDL file.

Template Info Tables

This section describes the dss_template_info table.

dss_template_info

This table stores information about scenario templates.

Column Data Type Constraint

id VARCHAR(25) NOT NULL

(primary key) The unique identifier of this scenario template.

template_name WVARCHAR(255) NULL

 The user-specified name for the template.

modification_time NUMERIC(19) NULL

 The time when the template was last modified.

creation_time NUMERIC(19) NULL

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 2 3

A p p e n d i x A : D a t a b a s e T a b l e s

μ
 The time when the template was originally created.

author VARCHAR(25) NULL

 The login name of the person who created the template.

last_modified_by VARCHAR(25) NULL

 The login name of the person who last edited the template.

sdl LONG VARBINARY NULL

 The scenario definition file that represents this template.

Scenario Transition and Deletion Tables
 dss_coll_trans

 dss_ind_trans

 dss_deletion

 dss_del_seg_name

dss_coll_trans

This table contains information about pending collective scenario transitions. A collective transition is a
transition that a collective scenario instance takes from one state in a scenario state machine to another.
When the Scenarios module cannot complete such a transition in a single transaction (for example, when
the transition initiates an e-mail campaign to a large number of users), it stores the pending transition in
the database and completes it over multiple transactions.

Column Data Type Constraint

id VARCHAR(25) NOT NULL

(Primary key) The ID associated with the pending collective transition.

scenario_name WVARCHAR(255) NULL

 The name of the scenario.

modification_time NUMERIC(19) NULL

 The last time this scenario was modified.

server_id VARCHAR(40) NULL

 The ID of the server handling the transition. The value is a
combination of a server name and drpPort number.

message_bean LONG VARBINARY NULL

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 2 4

A p p e n d i x A : D a t a b a s e T a b l e s

μ
 The serialized JMS message bean that caused this scenario

transition to occur.

event_type VARCHAR(255) NULL

 The type of the JMS event that caused this scenario transition
to occur.

segment_name WVARCHAR(255) NULL

 The name of the scenario segment.

state VARCHAR(16) NULL

 The state in the scenario state machine of the collective
scenario instance at the start of the transition.

coll_scenario_id VARCHAR(25) NULL

 The unique identifier for the collective scenario instance that
is taking the transition. References
dss_coll_scenario(id).

step INT NOT NULL

 Indicates where the transition is currently. The value can be
actions1 (1), actions2 (2), nextState1 (3), or nextState2 (4). This
value changes over multiple transactions as transition actions
execute and move to the next scenario state.

current_count INT NULL

 For a given transition step, indicates where the transition is
currently. For example, as multiple transition actions are
executed, this value changes to indicate the index of the
current action.

last_query_id VARCHAR(25) NULL

 The repository ID last used in a repository query. When a
transition action is executed, for example, it is executed on a
batch of individual scenario instances at a time. This value is
used to keep track of the location in the process of cycling
through the scenario instances.

dss_ind_trans

This table contains information about pending individual scenario transitions. An individual transition is a
transition taken from one scenario state machine state to another, by all the individual scenario instances
in the originating state. The Scenarios module cannot typically complete such a transition in a single
transaction because of the potentially large number of scenario instances involved, so it stores the
pending transition in the database and completes it over multiple transactions.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 2 5

A p p e n d i x A : D a t a b a s e T a b l e s

μ

Column Data Type Constraint

id VARCHAR(25) NOT NULL

(primary key) The ID associated with the pending individual transition.

scenario_name WVARCHAR(255) NULL

 The name of the scenario.

modification_time NUMERIC(19) NULL

 The last time this scenario was modified.

server_id VARCHAR(40) NULL

 The ID of the server handling the transition. The value is a
combination of a server name and drpPort number.

message_bean LONG VARBINARY NULL

 The serialized JMS message bean that caused this scenario
transition to occur.

event_type VARCHAR(255) NULL

 The type of the JMS event that caused this scenario transition
to occur.

segment_name WVARCHAR(255) NULL

 The name of the scenario segment.

state VARCHAR(16) NULL

 The state in the scenario state machine of the individual
scenario instances at the start of the transition.

last_query_id VARCHAR(25) NULL

 The repository ID last used in a repository query. When a
transition action is executed, for example, it is executed on a
batch of individual scenario instances at a time. This value is
used to keep track of the location in the process of cycling
through the scenario instances.

dss_deletion

This table contains information about pending scenario deletions. An entry is created in this table when a
scenario is marked as disabled, which means that all the scenario’s instances must be deleted. The
Scenarios module typically cannot complete this deletion in a single transaction because of the
potentially large number of scenario instances involved, so it stores the pending deletion in the database
and completes the operation over multiple transactions.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 2 6

A p p e n d i x A : D a t a b a s e T a b l e s

μ

Column Data Type Constraint

id VARCHAR(25) NOT NULL

(primary key) The ID associated with the pending deletion.

scenario_name WVARCHAR(255) NULL

 The name of the scenario.

modification_time NUMERIC(19) NULL

 The last time this scenario was modified.

dss_del_seg_name

This table stores a list of the names of scenario segments that are pending deletion.

Column Data Type Constraint

id VARCHAR(25) NOT NULL

(primary key) The unique identifier for the scenario that contains the
segment.

idx INT NOT NULL

(primary key) An index used to order the segments pending deletion.

segment_name VARCHAR(255) NULL

 The name of the segment pending deletion.

Slot Tables
 dss_profile_slot

 dss_slot_items

 dss_slot_priority

dss_profile_slot

This table stores information from the properties of the ProfileSlot item descriptor in the
userProfile.xml file.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 2 7

A p p e n d i x A : D a t a b a s e T a b l e s

μ
Column Data Type Constraint

id VARCHAR(25) NOT NULL

(primary key) The unique identifier of the persistent slot.

slot_name VARCHAR(255) NULL

 The pathname of the persistent slot.

item_offset NUMERIC(19) NULL

 Index into the list of slot repository items.

user_id VARCHAR(25) NOT NULL

 The ID of the user with whom this slot is associated.

dss_slot_items

This table stores a list of repository items contained in a persistent slot. It is populated from the
slotItems property in the userProfile.xml file.

Column Data Type Constraint

slot_id VARCHAR(25) NOT NULL REFERENCES
dss_profile_slot(id)

(primary key) The unique identifier of the persistent slot.

item_id VARCHAR(255) NULL

 The ID of the repository item contained by the slot.

idx INT NOT NULL

(primary key) An index used to order the repository items in the list.

dss_slot_priority

This table stores information about the priority of display for each repository item in a persistent slot. It is
populated from the slotItemPriorities property in the userProfile.xml file.

Column Data Type Constraint

slot_id VARCHAR(25) NOT NULL

(primary key) The unique identifier of the persistent slot. References
dss_profile_slot(id).

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 2 8

A p p e n d i x A : D a t a b a s e T a b l e s

μ
idx INTEGER NOT NULL

(primary key) An index used to order the priority entries in the list.

priority NUMERIC(19) NOT NULL

 The priority level of each repository item in the slot.

Server ID Tables

This section describes the dss_server_id table.

dss_server_id

This table stores information that the ScenarioClusterManager service uses to identify the process
editor server in a multiple server configuration.

Column Data Type Constraint

server_id VARCHAR(40) NOT NULL

(primary key) A combination of a server name and drpPort number that is
used to uniquely identify each scenario server. Example:
mymachine.example.com:8850.

server_type INT NOT NULL

 The scenario server type. Possible values are 0 for the process
editor server, 1 for a global server , and 2 for an individual
server.

Scenario Xref Tables

This section describes the dss_xref table.

dss_xref

This table stores information that the ACC uses to display scenarios according to a specific view (for
example, display all scenarios that were created on the same date or that contain a given event element).

Column Data Type Constraint

id VARCHAR(25) NOT NULL

(primary key) The unique identifier of the scenario.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 2 9

A p p e n d i x A : D a t a b a s e T a b l e s

μ
scenario_name VARCHAR(255) NULL

 The user-specified scenario name.

reference_type VARCHAR(30) NULL

 The data type of the scenario characteristic to use to match
against the display criteria.

reference_target VARCHAR(255) NULL

 The characteristic of the scenario to match against the display
criteria.

Scenario Migration Tables

These tables are used by the Scenarios module to allow changes to be made to a running scenario
without losing the status of any users progressing through it.

 dss_scen_mig_info

 dss_scen_mig_info_seg

 dss_migration

 dss_mig_seg_name

dss_scen_mig_info

This table stores migration information for each user progressing though a given scenario.

Column Data Type Constraint

id VARCHAR(25) NOT NULL

(primary key) The unique identifier of the scenario.

scenario_info_id VARCHAR(25) NOT NULL

 References dss_scenario_info(id)

scenario_name VARCHAR(255) NULL

 The user-specified scenario name.

modification_time NUMERIC(19) NULL

 The time the scenario was changed in the ACC.

psm_version INTEGER NULL

 The version number of the state machine.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 3 0

A p p e n d i x A : D a t a b a s e T a b l e s

μ
sdl LONG VARBINARY NULL

 The SDL file for the scenario being migrated.

migration_status INTEGER NULL

 Indicates whether the scenario migration is in progress (1) or
complete (2).

dss_scen_mig_info_seg

This table is stores information about scenario segments being migrated.

Column Data Type Constraint

id VARCHAR(25) NOT NULL

(primary key) The unique identifier of the scenario. References
dss_scen_mig_info(id).

idx INTEGER NOT NULL

(primary key) An index used to order the segment names.

segment_name VARCHAR(255) NULL

 The user-specified segment name

dss_migration

This table is used to store information about a pending scenario migration operation that changes the
modification time of all the individual scenario instances associated with an old version of a scenario
(indicated by the old modification time).

Column Data Type Constraint

id VARCHAR(25) NOT NULL

(primary key) The unique identifier of the scenario.

scenario_name WVARCHAR(255) NULL

 The user-specified scenario name.

old_mod_time NUMERIC(19) NULL

 The modification time from which the scenario is being
migrated.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 3 1

A p p e n d i x A : D a t a b a s e T a b l e s

μ
new_mod_time NUMERIC(19) NULL

 The modification time to which the scenario is being
migrated.

dss_mig_seg_name

This table is used to store information about scenario segments whose modification time is being
migrated.

Column Data Type Constraint

id VARCHAR(25) NOT NULL

(primary key) The unique identifier of the scenario. References
dss_migration(id).

idx INTEGER NOT NULL

(primary key) An index used to order the segment names.

segment_name VARCHAR(255) NULL

 The user-specified segment name.

Event Message Tables

The Scenarios module uses the following tables to store event messages:

 dss_das_event

 dss_audit_trail

 dss_dps_event

 dss_dps_page_visit

 dss_dps_view_item

 dss_dps_click

 dss_dps_referrer

 dss_dps_inbound

 dss_dps_admin_reg

 dss_dps_property

 dss_dps_admin_prop

 dss_dps_update

 dss_dps_admin_up

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 3 2

A p p e n d i x A : D a t a b a s e T a b l e s

μ
dss_das_event

This table contains information used by the DAS Event SQL mapper to capture atg.das.Startup and
atg.das.Shutdown messages.

Column Data Type Constraint

id VARCHAR(32) NOT NULL

 The ID associated with the dataset.

timestamp TIMESTAMP NULL

 The time the event occurred.

sessionid VARCHAR(32) NULL

 The session ID of the session generating the event.

dss_audit_trail

This table contains information used by the DSS Audit Trail mapper to capture audit trail event messages.

Column Data Type Constraint

id VARCHAR(32) NOT NULL

 The ID associated with the dataset.

timestamp TIMESTAMP NULL

 The time the event occurred.

label WVARCHAR(255) NULL

 The audit trail label.

profileid VARCHAR(25) NULL

 The profile ID of the user generating the event.

dss_dps_event

This table contains information used by the DPS Event SQL mapper to capture atg.dps.Login,
atg.dps.Logout, atg.dps.Register, atg.dps.StartSession and atg.dps.EndSession messages.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 3 3

A p p e n d i x A : D a t a b a s e T a b l e s

μ
Column Data Type Constraint

id VARCHAR(32) NOT NULL

 The ID associated with the dataset.

timestamp TIMESTAMP NULL

 The time the event occurred.

sessionid VARCHAR(32) NULL

 The session ID of the session generating the event.

profileid VARCHAR(25) NULL

 The profile ID of the user generating the event.

dss_dps_page_visit

This table contains information used by the Page Visit SQL mapper to capture atg.dps.PageVisit
messages.

Column Data Type Constraint

id VARCHAR(32) NOT NULL

 The ID associated with the dataset.

timestamp TIMESTAMP NULL

 The time the event occurred.

sessionid VARCHAR(32) NULL

 The session ID of the session generating the event.

path VARCHAR(255) NULL

 The path of the page being viewed.

profileid VARCHAR(25) NULL

 The profile ID of the user generating the event.

dss_dps_view_item

This table is used by the View Item SQL mapper to capture atg.dps.ViewItem messages.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 3 4

A p p e n d i x A : D a t a b a s e T a b l e s

μ
Column Data Type Constraint

id VARCHAR(32) NOT NULL

 The ID associated with the dataset.

timestamp TIMESTAMP NULL

 The time the event occurred.

sessionid VARCHAR(32) NULL

 The session ID of the session generating the event.

repositoryname WVARCHAR(255) NULL

 The name of the repository that contains the item.

folder VARCHAR(255) NULL

 The repository folder that contains the item.

itemtype VARCHAR(255) NULL

 The type of the item.

repositoryid VARCHAR(255) NULL

 The repository ID of the item.

itemdescriptor VARCHAR(255) NULL

 The item descriptor type of the item.

page VARCHAR(255) NULL

 The path of the page that contains the item.

profileid VARCHAR(25) NULL

 The profile ID of the user generating the event.

dss_dps_click

This table is used by the ClickThrough SQL mapper to capture atg.dps.clickThrough messages.

Column Data Type Constraint

id VARCHAR(32) NOT NULL

 The ID associated with the dataset.

timestamp TIMESTAMP NULL

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 3 5

A p p e n d i x A : D a t a b a s e T a b l e s

μ
 The time the event occurred.

sessionid VARCHAR(32) NULL

 The session ID of the session generating the event.

destinationpath VARCHAR(255) NULL

 The path name of the page that contains the dsource
parameter.

sourcenames VARCHAR(255) NULL

 A string of all of the sourceName values separated by a
comma.

sourcepath VARCHAR(255) NULL

 The path name of the page that is requested when the link is
clicked.

profileid VARCHAR(25) NULL

 The profile ID of the user generating the event.

dss_dps_referrer

This table is used by the Referrer SQL mapper to capture atg.dps.Referrer messages.

Column Data Type Constraint

id VARCHAR(32) NOT NULL

 The ID associated with the dataset.

timestamp TIMESTAMP NULL

 The time the event occurred.

sessionid VARCHAR(32) NULL

 The session ID of the session generating the event.

referrerpath VARCHAR(255) NULL

 The path of the referring page relative to the Web application
(or document root).

referrersite VARCHAR(255) NULL

 The URL of the referring page minus the protocol and path.

referrerpage VARCHAR(255) NULL

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 3 6

A p p e n d i x A : D a t a b a s e T a b l e s

μ
 The fully qualified URL of the referring page.

profileid VARCHAR(25) NULL

 The profile ID of the user generating the event.

dss_dps_inbound

This table is used by the Inbound Email SQL mapper to capture atg.dps.InboundEmail messages.

Column Data Type Constraint

id VARCHAR(32) NOT NULL

 The name of the dataset that is recording the event.

timestamp TIMESTAMP NULL

 The time of the event.

messagesubject VARCHAR(255) NULL

 The text in the subject line of the email.

originalsubject VARCHAR(255) NULL

 The original subject of the email, without “Re:” if present.

messagefrom VARCHAR(64) NULL

 The email address of the sender.

messageto VARCHAR(255) NULL

 A comma-separated list of all of the recipients in the “To:”
field of the e-mail.

messagecc VARCHAR(255) NULL

 A comma-separated list of all of the recipients in the “Cc:”
field of the e-mail.

messagereplyto VARCHAR(64) NULL

 The email address in the “Reply-To:” header of the e-mail.

receiveddate NUMERIC(19) NULL

 The date that the email was received. This is set to the value
of the “Delivery-date:” header if it is present. Otherwise, it
uses the MimeMessage.getReceivedDate() method.

The date is represented in milliseconds since Jan 1, 1970.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 3 7

A p p e n d i x A : D a t a b a s e T a b l e s

μ
bounced VARCHAR(6) NULL

 True if the email was returned as undeliverable. False
otherwise.

bounceemailaddr VARCHAR(64) NULL

 The e-mail address of the bounced message.

bouncereplycode VARCHAR(10) NULL

 The RFC 821 reply code of the bounced email.

bounceerrormess VARCHAR(255) NULL

 A String property indicating why the message was bounced.

bouncestatuscode VARCHAR(10) NULL

 The enhanced RFC 1893 status code of the bounced email.

dss_dps_admin_reg

This table is used by the Admin Register SQL mapper to capture atg.dps.AdminRegister messages.

Column Data Type Constraint

id VARCHAR(32) NOT NULL

 The ID associated with the dataset.

clocktime TIMESTAMP NULL

 The time the batch registration event occurred.

sessionid VARCHAR(32) NULL

 The session ID of the session generating the batch
registration event.

adminprofileid VARCHAR(25) NULL

 The profile ID of the admin generating the batch registration
event.

profileid VARCHAR(25) NULL

 The profile IDs of the users who were registered.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 3 8

A p p e n d i x A : D a t a b a s e T a b l e s

μ
dss_dps_property

This table is used by the Profile Property Update SQL mapper to capture
atg.dps.ProfilePropertyUpdate messages.

Column Data Type Constraint

id VARCHAR(32) NOT NULL

 The ID associated with the dataset.

clocktime TIMESTAMP NULL

 The time the event occurred.

sessionid VARCHAR(32) NULL

 The session ID of the session generating the event.

propertypath VARCHAR(254) NULL

 The path of each property that has changed.

oldvalue VARCHAR(254) NULL

 The old property values before they were changed.

newvalue VARCHAR(254) NULL

 The new property values after they were changed.

changesign VARCHAR(16) NULL

 If the property is a Comparable type, this column indicates if
the value has increased or decreased. 0 indicates either “no
change” or “not comparable.” A positive value indicates an
increase. A negative value indicates a decrease.

changeamount NUMERIC(19, 7) NULL

 If the property is a Number type, this column indicates the
absolute value of the difference between the old value and
the new value.

changepercentage NUMERIC(19, 7) NULL

 If the property is a Number type, this column indicates the
absolute value of the percent difference between the old
value and the new value.

elementsadded VARCHAR(254) NULL

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 3 9

A p p e n d i x A : D a t a b a s e T a b l e s

μ
 If the property is an array or Collection type, this column

indicates the elements that were added as part of the profile
update (elements that are members of newvalue but not
members of oldvalue).

elementsremoved VARCHAR(254) NULL

 If the property is an array or Collection type, this column
indicates the elements that were removed as part of the
profile update (elements that are members of oldvalue but
not members of newvalue).

profileid VARCHAR(25) NULL

 The profile ID of the user whose profile was changed.

dss_dps_admin_prop

This table is used by the Admin Profile Property Update SQL mapper to capture
atg.dps.AdminProfilePropertyUpdate messages.

Column Data Type Constraint

id VARCHAR(32) NOT NULL

 The ID associated with the dataset.

clocktime TIMESTAMP NULL

 The time the event occurred.

sessionid VARCHAR(32) NULL

 The session ID of the session generating the event.

propertypath VARCHAR(254) NULL

 The path of each property that has changed.

oldvalue VARCHAR(254) NULL

 The old property values before they were changed.

newvalue VARCHAR(254) NULL

 The new property values after they were changed.

changesign VARCHAR(16) NULL

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 4 0

A p p e n d i x A : D a t a b a s e T a b l e s

μ
 If the property is a Comparable type, this column indicates if

the value has increased or decreased. 0 indicates either “no
change” or “not comparable.” A positive value indicates an
increase. A negative value indicates a decrease.

changeamount NUMERIC(19, 7) NULL

 If the property is a Number type, this column indicates the
absolute value of the difference between the old value and
the new value.

changepercentage NUMERIC(19, 7) NULL

 If the property is a Number type, this column indicates the
absolute value of the percent difference between the old
value and the new value.

elementsadded VARCHAR(254) NULL

 If the property is an array or Collection type, this column
indicates the elements that were added as part of the profile
update (elements that are members of newvalue but not
members of oldvalue).

elementsremoved VARCHAR(254) NULL

 If the property is an array or Collection type, this column
indicates the elements that were removed as part of the
profile update (elements that are members of oldvalue but
not members of newvalue).

adminprofileid VARCHAR(25) NULL

 The profile ID of the admin who made the change.

profileid VARCHAR(25) NULL

 The profile ID of the user whose profile was changed.

dss_dps_update

This table is used by the Profile Update SQL mapper to capture atg.dps.ProfileUpdate messages.

Column Data Type Constraint

id VARCHAR(32) NOT NULL

 The ID associated with the dataset.

clocktime TIMESTAMP NULL

 The time the event occurred.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 4 1

A p p e n d i x A : D a t a b a s e T a b l e s

μ
sessionid VARCHAR(32) NULL

 The session ID of the session generating the event.

changedproperties LONG VARCHAR NULL

 The properties that were changed.

oldvalues LONG VARCHAR NULL

 The old property values before they were changed.

newvalues LONG VARCHAR NULL

 The new property values after they were changed.

profileid VARCHAR(25) NULL

 The profile ID of the user who updated his or her profile.

dss_dps_admin_up

This table is used by the Admin Profile Update SQL mapper to capture atg.dps.AdminProfileUpdate
messages.

Column Data Type Constraint

id VARCHAR(32) NOT NULL

 The ID associated with the dataset.

clocktime TIMESTAMP NULL

 The time the event occurred.

sessionid VARCHAR(32) NULL

 The session ID of the session generating the event.

changedproperties LONG VARCHAR NULL

 The properties that were changed.

oldvalues LONG VARCHAR NULL

 The old property values before they were changed.

newvalues LONG VARCHAR NULL

 The new property values after they were changed.

adminprofileid VARCHAR(25) NULL

 The profile ID of the admin who updated the profiles.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 4 2

A p p e n d i x A : D a t a b a s e T a b l e s

μ
profileid VARCHAR(25) NULL

 The profile ID of the user whose profile was changed.

Business Process Tracking Tables

The Scenarios module uses the following tables to store information about business processes:

 drpt_stage_reached

 dss_user_bpmarkers

drpt_stage_reached

This table contains information associated with a business process stage.

Column Data Type Constraint

id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the business process stage
reached dataset.

owner_id VARCHAR(40) NOT NULL

 The ID of the RepositoryItem that is assigned a marker when
this stage is reached.

process_start_time TIMESTAMP NOT NULL

 The time a RepositoryItem obtains a marker for a business
process stage.

event_time TIMESTAMP NOT NULL

 The time the stage is reached.

bp_name VARCHAR(225) NOT NULL

 The business process name.

bp_stage VARCHAR(225) NULL

 The business process stage name.

is_transient NUMERIC (1,0) NOT NULL

 Indicates if the user who reached the business stage is logged in.

bp_stage_sequence INTEGER NOT NULL

 The index of this stage in the business process.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 4 3

A p p e n d i x A : D a t a b a s e T a b l e s

μ

dss_user_bpmarkers

This table contains information associated with markers used for business process tracking purposes.

Column Data Type Constraint

marker_id VARCHAR(40) NOT NULL

(primary key) The unique identifier associated with the marker.

profile_id VARCHAR(40) NOT NULL

(primary key) The ID of the Profile for that has a marker.

marker_key VARCHAR(100) NOT NULL

 The name of the business process associated with the marker.

marker_value VARCHAR(100) NULL

 The name of the business process stage associated with the
marker.

marker_data VARCHAR(100) NULL

 This column is not currently in use.

creation_date TIMESTAMP NULL

 The date the business process stage is reached and the marker is
assigned to the Profile.

version INTEGER NOT NULL

 The marker repository version number. This information is
managed and used internally by the repository.

marker_type INTEGER NULL

 This column is not currently in use.

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 4 4

A p p e n d i x A : D a t a b a s e T a b l e s

μ

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 4 5

I n d e x

μ
Index

A
access control

ACC users, 81
overview, 72
principals supported by user authority, 92
repository items, 85, 245
role-based, 86
scenarios, 245
using AccessRightsAccessController, 73
using GroupAccessController, 73
using RuleAccessController, 74
Web application, 86

Access Control List (ACL), 85
action elements

Filter Slot Contents, 308
action handlers, 202

using ConfigurableAction properties, 202
using defaults, 204
using event properties, 202

action registry, 295, 358
action-error-execution tag, 359
action-error-response tag, 360
actions. See scenario actions
Add Items to Slot scenario action, 303
Add Stage Reached scenario action, 311
AddMarkerToProfile scenario action, 309
Admin SQL repository, 81, 85
AdminProfilePropertyUpdate scenario event, 276
AdminProfileUpdate messages, triggering, 52
AdminProfileUpdate scenario event, 278
AdminRegister scenario event, 270
age of a user, computing, 75
annual event, calculating days before, 77
anonymous profiles

and scenarios, 293
using, 42

AppendACL security policy, 488
ATG Control Center

defining access control to Scenarios module features,
245

using with LDAP-based user directory, 115

atg.process.filter.ExpressionFilter, 370
atg.repository.linked, 126
atg.scenario.targeting.RepositoryItemSlot, 322
atg.scenario.targeting.Slot, 327
atg.service.email.examiner.EximEmailExaminer, 188
atg.service.email.examiner.RegExEmailExaminer, 186
atg.service.email.examiner.SendmailEmailExaminer, 187
atg.service.filter.ItemFilter, 168
atg.service.filter.TopicHistoryConflictFilter, 169
atg.ui.scenario.expression.DefaultGrammarExtension, 380
atg.userdirectory, 91
atg.userdirectory.droplet, 93
atg.userdirectory.repository, 93
atg.userprofiling.email.TemplateEmailInfoImpl, 171
atg.userprofiling.ScenarioProfileFormHandler, 293
attachments

sending with scenario e-mails, 318
sending with targeted e-mails, 172

auto-login feature
basic authentication method, 43
cookie method, 44
description, 43
profile method, 44

B
batched e-mail, 191
BatchEmailListener component, 237
bean expression registry, 382
business process tracking

stages, 411

C
CachedCollectionFilter, 386
caching for workflow repository items, 432
caching in the Scenarios module

configuring, 235
session federation, 236

caching, user directory
cache adapters, 104
description, 103
LDAP, 122
Nucleus components for, 103

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 4 6

I n d e x

μ
CanClientEncryptPasswords Web service, 476
case insensitive login, 60
ChainedFilter, 388
Change scenario action, 299
choices in expression editor, 439, 442
ClickThrough message sent through Web service, 485
ClickThrough scenario event, 261
client-side password encryption, 476, 491
collection filter chains

caching, 389
ChainedFilter, 388

collection filtering, 385
CachedCollectionFilter, 386
caching, 388
custom filters, 391
example, 385
filter chains, 388, 389
filter slot contents action, 385
GiftlistSiteFilter, 393
GiftlistSiteFilterDroplet, 393
in a multisite environment, 393
passing additional parameters to a filter, 393
StartEndDateFilter, 385, 387
StartEndDateFilterDroplet, 385

CollectiveEmailSender component, 236
composite profile repository

ACC, using with, 37
component, 37
definition file, 35
description of primary and contributing views, 30
excluding properties from, 34
linking primary and contributing views, 30
mapping properties explicitly in, 34
MutableCompositeRepository component, 37
overview, 29
Personalization module, using with, 37
ProfileTools component, configuring for, 38
PropertyManager component, configuring for, 38
querying against, 40
resolving property names in, 33
Scenarios module, using with, 39
setting up, 33

Configure Server Debugging dialog box, 238
conflict filter components, 168
conflict resolution in targeted content, 168
contact fatigue through e-mail, avoiding, 183
content events, firing, 280
content targeting rules. See targeting rules
ContentConsumed Web service, 485
ContentViewed Web service, 483
context root in scenario elements, 241
cookies, secure, 45
CreateUser Web service, 470
custom collection filters, 391

filter class, 391
filter component, 392
filter servlet bean, 393

D
data listeners, 207
database tables

Personalization module, 493
Scenarios module, 517

datasets
creating, 334

dates, calculating
from year, month, and day, 77
intervals between, 75, 77

DaysBeforeAnnualEvent derived property, 77
debugging

Profile repository definition files, 17
scenarios, 237

DefaultGrammarExtension class, 380
DefaultTemplateEmailInfo component, 236
definition file

LDAP repository, 27
Patch Bay, 349
Profile repository, 7

derived properties
DaysBeforeAnnualEvent, 77
in user directory, 95
TimeInterval, 75
YearMonthDay, 77

DisableScenario action, 306
DisableScenarioConfiguration component, 306
distributed cache invalidation event, 260
distributed e-mail, 191
DMS configuration file, 349
DPS.Versioned module, 167
DRP port, using for process editor server, 229
Dynamo Message System events, 255
Dynamo User Directory. See user directory
dynamoMessagingSystem.xml, 349
dynamoMessagingSystemDSSGlobal.xml, 349

E
EcoVida

registration workflow type, 418
e-mail. See targeted e-mail
e-mail sender components, configuring, 236
EmailListenerQueue component, 237
EmailNotify scenario action, 313
EmailNotifyConfiguration component, 314
EmptySlot scenario action, 305
EndSession scenario event, 272
event mappers. See mappers
event registry

adding custom scenario events to, 352
description, 255

events
logging, with Personalization module, 205
scenario, 224

EximExaminer component, 188
expression editor

circular references within, 447
creating building blocks within, 444, 445
extending, 439
extending for scenarios, 375, 449

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 4 7

I n d e x

μ
grammar definition files, 376, 440
localizing, 440, 457
overview, 439

ExpressionFilter class, 370
ExternalUsers modules, 15

F
FileSinks, 209
FillSlot scenario action, 303
filter slot contents action, 385
Filter Slot Contents action element, 308
FilterCache, 388, 390
filtering collections. See collection filtering
filters. See scenario conditions
fireContentEvent and fireContentTypeEvent, 280
form handlers, 53, 58, 93, 425
FormSubmission scenario event, 264
function property, in organizational roles, 82

G
genericFolder item-descriptor, 94
GetDirectoryPrincipal servlet bean, 425
GetPasswordHashAlgorithm Web service, 479
GetPassWordHashKey Web service, 478
GetProfile Web service, 465
GetProfileId Web service, 464
global process servers, defining, 432
global roles

adding properties, 94
creating, 84
description, 82
identifying root, 101
querying, 91, 93

global scenario server
configuring, 230
description, 228
performance, 231

grammar definition files
advanced features, 448
associating with SDL files, 450
basic constructions, 439
choices, 439, 442
circular references within, 447
configuring for ATG Commerce applications, 456
configuring for the Scenarios module, 375, 449
creating expression building blocks, 444, 445
default, distributed with system, 441
for scenario action elements, 450
for scenario condition elements, 450
for scenario event elements, 449
hiding verbose terminals, 449
including other definition files in, 441
including placeholders, 448
including XML templates in, 451
labeled constructs, 447
literals, 439, 442
localizing, 440, 457
nonterminal constructs, 444
overview, 440

requiring users to specify a value, 448
sequences, 439, 442
serializing, 442
spaces after elements, 449
specifying a custom editor class for a literal, 448
specifying a Java class for a runtime assistant, 448
specifying a Java class for a runtime expression, 448
specifying unsigned integers, 449
stylesheet preamble, 441
terminal constructs, 444
tokens, 439, 442
XML processing instructions, 441

grammar registry, 380
GSAInvalidation scenario event, 260

H
handleChangePassword method, 57
handleCreate method, 54
handleDelete method, 56
handleLogin method, 55
handleLogout method, 56
handleUpdate method, 56
HtmlContentProcessor component, 176
HtmlToTextConverter component, 177

I
icons, adding to scenario elements, 369
IdentityManager component, 60
implicit repository linking, 125
InboundEmail scenario event, 256
individual process servers, defining, 432
individual scenario server

configuring, 231
description, 228

IndividualEmailSender component, 236
inheritance, in user directory item-descriptors, 94
internal scenario manager, 224
InternalProfileRepository component, 19
Is Referred by External Site scenario event, 266
item-descriptors, in userProfile.xml, 94
ItemLookupDroplet servlet bean, 425

J
JavaBeans, exposing in scenario editor, 382
javax.mail.Message content, 176
JMS messages, adding custom, 345
JMS providers, using alternative, 345

L
LDAP profile repository, 25

and Scenarios module, 25
component, 26
configuring Personalization module components, 26
definition file, 27
password encryption, 27

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 4 8

I n d e x

μ
LDAP repositories

linking to SQL repositories, 125
LDAPOrganizationCache component, 123
LDAPOrganizationCacheAdapter component, 123
LDAPOrganizationFinder component, 117
LDAPUserCache component, 122
LDAPUserCacheAdapter component, 123
Lightweight Directory Access Protocol. See LDAP
literals in expression editor, 439, 442
liveconfig configuration layer, 235
locked cache mode, 432
logging

configuring log operations, 210
data listeners, 207
disabling, 211
enabling, 211
events, with Personalization module, 205
events, with Scenarios module, 331
generating reports, 213
log files, 209
queues, 207
using a database, 212

logging services, 206
content viewed logging, 207
log entry IDs, 207
request logging, 206
user event logging, 207

Login scenario event, 267
logins

authenticating, 54, 59
using case-insensitive names as, 60

LoginUser Web service, 466
LoginUserAuthority interface, 60
Logout scenario event, 268
LogoutUser Web service, 468

M
mappers

creating custom, 332
XML definition language, 335

markers
profile markers, 397

MessageContentProcessor component, 176
messages, adding custom JMS, 345
MethodParameterPolicy, 488
Microsoft Exchange Server bounced mail components,

186
Microsoft Exchange Server e-mail examiners, 186
MIME type, specifying for targeted e-mail, 176
Modify scenario action, 299
moon phase custom condition example, 365
multiple profile form handlers, 58

MultiProfileAddForm class, 58
MultiProfileForm class, 58
MultiProfileUpdateForm class, 59

multiple scenario servers
configuring, 228
installing, 228

multiple workflow servers, 431
multisite environment

profiles, 5
scenario event, 284

MutableCompositeRepository component, 37

N
Nucleus components, exposing in scenario editor, 382

O
organizational roles

adding properties, 94
creating, 84
description, 82
querying, 91, 93

organizations, user directory
adding properties, 94
creating, 84
creating through a form handler, 93
description, 82
identifying root, 101
querying, 91, 93
storing in an LDAP repository, 105

P
PageVisit message sent through Web service, 483
PageVisit scenario event, 281
passwords

changing through a profile form handler, 57
defining criteria for new, 66
encrypting in LDAP repositories, 27
encrypting on client (Web services), 476, 491
forcing to expire, 63
forgotten, 69
hashing, 27, 62
strong checking, 66

Patch Bay definition file, 349
persistent anonymous profiles, 42
personalization events

overview, 197
setting up event triggers, 199
using event action queues, 201
using event triggers, 198

Personalization module
events, in scenarios, 255
messages, triggering, 51
overview, 1

Personalization Repository, 167
pExtraParameters map, 393
preview user swapping, 78
PreviewProfileRequestProcessor component, 79
Process Definition Language, 221
process editor server

changing from one server to another, 231
configuring, 229
defining for workflows, 431
description, 228

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 4 9

I n d e x

μ
profile attributes in targeting rules, 140
profile cookies

configuring, 44
securing, 45
using persistent, 45

profile form handlers, 53
multiple. See multiple profile form handlers
ProfileForm class, 54
ProfileFormHandler class, 57
ScenarioProfileFormHandler, 293

profile groups
including roles in, 153

Profile Marker Manager, 398
configuring a duplication mode, 399
configuring marker validation, 400
properties, 400

profile markers, 397, 400
configuring a duplication mode, 399
configuring marker validation, 400
finding markers, 404
in scenarios, 405, 406
key, value, and data properties, 397
marking a profile, 403
removing markers, 406
using marked profiles, 403

Profile Migration Manager, 20
Profile Property Updated by Admin scenario event, 276
Profile Registered by Admin scenario event, 270
profile repository

accessing in custom scenario events, 357
Admin page, 6
caching, 9
component, 19
composite. See composite profile repository
debugging, 17
defining multiple sub-types, 7
definition file, 7, 18
editing, in ACC, 7
editing, in ATG Business Control Center, 6
extending, 14
LDAP. See LDAP profile repository
linking LDAP and SQL, 125
overview, 3
preview, 78
sorting properties, 13
standard repository definition, 7, 9
userProfile.xml, 7, 9, 94
XML file combination, 14

profile sub-types, defining, 7
profile update messages, triggering, 51
Profile Updated by Admin scenario event, 278
ProfileAdapterRepository component, 19
ProfileAsXMLOwnerPolicy, 489
ProfileEventTrigger component, 51
ProfileItemFinder component, LDAP, 119
ProfileMarkerAdded scenario event, 285
ProfileMarkerRemoved scenario event, 287
ProfileMarkerReplaced scenario event, 290
ProfileOwnerPolicy, 489
ProfilePropertyUpdate scenario event, 273
ProfileRequest component, 50
profiles

anonymous, and scenarios, 293
multisite, 5

ProfileServices component, 460
ProfileTools component

configuring, for composite profile repository, 38
configuring, for LDAP profile repository, 26
configuring, for SQL profile repository, 50

ProfileUpdate scenario event, 277
ProfileUpdateTrigger component, 51
ProfileUserAuthority component, 60, 85
ProfileUserDirectory component, 100
ProfileUserDirectory component, LDAP, 112
ProfileUserDirectoryProperties component, 102
ProfileUserDirectoryProperties component, LDAP, 121
ProfileUserDirectorySpider component, LDAP, 117
PropertyManager component

configuring, for composite profile repository, 38
configuring, for LDAP profile repository, 26
configuring, for SQL profile repository, 51

PropertyManager component, LDAP, 120

Q
queues, 207
QueueSinks, 209

R
RecommendContent Web service, 481
RecordActionConfiguration component, 307
RecordAuditTrail scenario action, 308
recorders for Scenarios module

creating custom, 331
overview, 331

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 5 0

I n d e x

μ
RecordEvent scenario action, 307
Redirect scenario action, 302
RedirectAction Configuration component, 303
Referrer scenario event, 266
Register scenario event, 269
registration workflow type, 418
relative roles. See organizational roles
RelativeRoleByProfileOrgPolicy, 490
Remove Items from Slot scenario action, 305
Remove Stage Reached scenario action, 312
RemoveAllMarkersFromProfile scenario action, 310
RemoveMarkersFromProfile scenario action, 310
Repo2XML items, 487
reports

generating logging, 213
repositories, secure, 85
repository definition file

LDAP, 27
SQL, 7

repository item groups, rule based, 162
repository linking, implicit, 125
repository views, 93, 101
RepositoryItemSlot class, subclassing, 322
resource bundle properties files, used in custom scenario

elements, 369
role folders, user directory

description, 82
identifying root, 101

roles, user directory
access control, 86
adding properties, 94
creating, 84
description, 82
including in content targeters, 153
including in profile groups, 153
querying, 91, 93

rule sets, creating, 133, 160
RuleBasedRepositoryTargeter component, 161
RuleSetService component, 160

S
scenario actions

Add Items to Slot, 303
Add Stage Reached, 311
adding custom, 345
adding parameters to custom, 360
AddMarkerToProfile, 309
Change, 299
changing the context root in, 241
configuring through properties files, 381
DisableScenario, 306
EmailNotify, 313
EmptySlot, 305
FillSlot, 303
Modify, 299
multisite, 312
overview, 295
RecordAuditTrail, 308
RecordEvent, 307
Redirect, 302

registry, 295
Remove Items from Slot, 305
Remove Stage Reached, 312
RemoveAllMarkersFromProfile, 310
RemoveMarkersFromProfile, 310
SendEmail, 315
Set Variable, 300
SetRandom, 301

scenario conditions
adding custom, 345, 365
adding icons to custom, 369
condition registry, 366
configuring through properties files, 381
extending expression editor for, 375
extending ExpressionFilter class, 370
grammar registry, 380

scenario definition files. See sdl files
scenario e-mail

accessing variables in templates, 317
attachments, 318
EmailNotify action, 313
SendEmail action, 315

scenario events
access profile properties in, 357
adding custom, 345
AdminProfilePropertyUpdate, 276
AdminProfileUpdate, 278
AdminRegister, 270
ClickThrough, 261
description, 255
displaying as options in scenario editor, 352
EndSession, 272
FormSubmission, 264
global, 224
GSAInvalidation, 260
InboundEmail, 256
individual, 224
Login, 267
Logout, 268
multisite, 284
PageVisit, 281
ProfileMarkerAdded, 285
ProfileMarkerRemoved, 287
ProfileMarkerReplaced, 290
ProfilePropertyUpdate, 273
ProfileUpdate, 277
Referrer, 266
Register, 269
registry, 255
ScenarioEnd, 283
Shutdown, 259
SiteChanged, 284
SlotItemRequest, 265
StartSession, 271
Startup, 259
timer, 224
ViewItem, 279

Scenario Manager
configuring, 227, 231
internal, 224
part in scenario initialization process, 223
scenarioManager.xml file, 227, 229

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 5 1

I n d e x

μ
viewing through Admin page, 239

scenario manager component
disabling, 243

scenario profile form handler, 293
scenario registry, 221, 231
scenario state machine, 220
scenario states

explanation of, 220
viewing, 239

ScenarioEnd event, 283
ScenarioManagerService, 224
scenarioPathInfo property and Web service, 484
scenarios

actions, 295
adding custom elements, 345
caching, 235
collective instances, 222
configuring servers, 228
creating, 219
debugging, 237
defining access control, 246, 247
designing effective, 249
e-mail sender components, 236
events, 224, 255
extending expression editor for, 375, 449
individual instances, 221
initialization, 223
LDAP repositories, 25
monitoring, 237
overview, 219
performance, 249
processing, 220
profile repository properties for, 234
read-only access, 247
recorders, 331
running against an LDAP repository, 25
sdl files, 231, 239
SDLParser component, 234
transient properties, 293
viewing in ACC, 228
viewing in Admin page, 239

Scenarios module
adding custom elements, 345
configuring, 227
introduction to development tasks, 217
security access, 245

sdl (scenario definition language) files, 221
sdl (scenario description language) files, 231, 239
SDLParser component, 234
sec files, 245
secure cookies, 45
secure repositories, 85
securityStatus property

disabling, 48
persisting after failover, 48
repository definition, 47
using in content pages, 48
using to indicate login method, 46

segment lists, 167
Send Notification scenario action, 313
sendD4StyleEvents property, 197, 205
SendEmail Configuration component, 316
SendEmail scenario action, 315
SendmailExaminer component, 187
sequences in expression editor, 439, 442
ServletContextWebAppRegistry, 242
session federation and scenario caching, 236
SessionEnumPropertyDescriptor, 47
Set Variable scenario action, 300
Set Variable scenario element, 293
SetContactInfo Web service, 474
SetLocale Web service, 475
SetPassword Web service, 473
SetRandom scenario action, 301
SGML tags in targeting rules, 137
Shutdown scenario event, 259
SimpleContentProcessor component, 176
SiteChanged event, 284
SlotActionConfiguration component, 304
SlotItemRequest scenario event, 265
slots

active, 323
allowing duplicate items, 326
as properties of JMS messages, 328
creating, 322
Dates, 327
deleting, 328
destructive, 324
Double, 327
Event Generation mode, 323
generation property, 323
Item Retrieval setting, 324
itemDescriptorName property, 323
limiting the number of items displayed, 326
locating in pages and scenarios, 327
Long, 327
maxRenderSize, 326
multisite, 328
order of display in, 325
passive, 323
persisting across sessions, 326
priority, 325
properties file, 322
repositoryName property, 323
repositoryPath property, 323
rotating, 324
Scope setting, 324
specifying content repository, 323
static, 324
Strings, 327
valueType property, 327

SQL profile repository
definition file, 7
overview, 3

SQL repositories
definition file, 128
linking to LDAP repositories, 125

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 5 2

I n d e x

μ
SQLSinks, 209
StartEndDateFilter, 385, 387
StartEndDateFilterDroplet, 385
StartSession scenario event, 271
Startup scenario event, 259
StaticWebAppRegistry, 241
sub-types in Profile repository, 7

T
targeted e-mail

avoiding overexposure to, 183
bounced e-mail, 185
canceling a mailing, 182
composite repository and, 39
configuring scenario components, 236
converting HTML to plain text, 176
creating, 171
creating templates, 173
deleting mailings, 194
demo, 196
distributed, 191
failed e-mail, 184
handling problems, 184
HTML and plain text content, 178
linking to URLs from within a template, 174
MIME type, 176
persistent, 190
sending, 179
sending to users without profiles, 181
specifiying e-mail fields in a template, 175
specifying recipients, 178
stopped e-mail campaigns, 189
using profile groups as recipients, 179
viewing a mailing, 182

targeting rules
<accepts> tag, 134, 138
<includes> tag, 139
<rejects> tag, 135, 139
<rule> tag, 139
<ruleset> tag, 138
<site> tag, 150
<sortby> tag, 135, 150
<sortbyvalue> tag, 150
<valueof> tag, 147
configuring components. See targeting services
evaluating to Boolean expression, 149
including existing rule sets, 155
including roles in, 153
indexed property values, 149
null values in, 152
operators, 133, 140
overview, 133
profile attributes in, 140
SGML tags allowed in, 137
structure, 136
syntax, 138

targeting services
accessing from a content page, 163
mapping references to user profiles, 162
setting up, 159

targeting servlet beans
accessing targeting rules, 163
conflict between content items, 168

TargetingServices component, 481
TargetingSourceMap component, 162
TemplateEmailInfoImpl object, 171, 236
TemplateEmailPersister component, 190
TemplateEmailSender component, 171, 179, 236
time interval, calculating with derived property, 75
tokens in expression editor, 439, 442
TopicHistoryConflictFilter, 169
tracking, 41

events, with Personalization module, 197
events, with Scenarios module, 331
guest users, 42
registered users, 43

Tracking Sensors window, displaying, 197
transient properties in scenarios, 293
tsc files, 245

U
UpdateUser Web service, 471
user authorities, 85
User Authority, 60
user directory

API, 91
architecture, 82
caching. See Caching, user directory
configuring Nucleus components for, 100
definition file, 94
derived properties, 95
extending, 91
item-descriptor inheritance, 94
item-descriptors, 94
LDAP. See user directory, LDAP
members, 82
organizations. See organizations, user directory
overview, 81
principals, 82
querying, 91, 93
roles. See roles, user directory
security, 85
used in the ACC, 81

user directory, LDAP
ACC interface and, 115
caching, 122
configuring Nucleus components for, 111
ldapUserProfile.xml example, 109
overview, 105
password encryption for, 107
primary keys and, 114
removing information from, 108
root organization, 106, 114
setting up a linked repository for, 105
useGSARepositoryIdAsPrimaryKey property, 106, 114
userProfile.xml example, 108
writing portable application code, 114

user profiling tools, 49
Profile object, 50
ProfileEventTrigger, 51

A T G P e r s o n a l i z a t i o n P r o g r a m m i n g G u i d e

5 5 3

I n d e x

μ
ProfileRequest component, 50
ProfileTools component, 50
ProfileUpdateTrigger component, 51
PropertyManager component, 51

user segments, 167
UserDirectoryUserAuthority, 92
UserLoginManager component, 60
userProfile.xml. See Profile repository
users

tracking guest, 42
tracking registered, 43

UserSegmentListManager component, 168
using profile markers, 397

V
Variable scenario element, 293
ViewItem scenario event, 279

W
Web applications, unnamed, 241
Web services

CanClientEncryptPasswords, 476
changing profile information, 471
content targeting, 480
ContentConsumed, 485
ContentViewed, 483
CreateUser, 470
example of calling, 486
functionalName setting, 490
GetPasswordHashAlgorithm, 479
GetPassWordHashKey, 478
GetProfile, 465
GetProfileId, 464
LoginUser, 466
LogoutUser, 468
messaging, 483
ProfileServcies component, 460
RecommendContent, 481

Repo2XML items, 487
security policies, 487
SetContactInfo, 474
SetLocale, 475
SetPassword, 473
TargetingServices component, 481
UpdateUser, 471
user profiling, 460

WebServices module, starting, 459
workflow task form handler, 425

firing task outcomes, 428
updating subject properties, 428

WorkflowInstanceQueryDroplet servlet bean, 424
workflows

classes and interfaces, 416
configuring, 415
configuring caching, 432
creating a new type, 415
custom actions, 423
form handlers, 425
introduction, 224
managing on multiple servers, 431
overview, 415
registration workflow type, 418
security access, 435
servlet beans, 424
shared components, 417

WorkflowTaskQueryDroplet servlet bean, 424

X
XML file combination and the Profile repository

definition, 14
XML templates used in scenario grammar expressions,

451

Y
YearMonthDay derived property, 77

	Contents
	Part I: Personalization Module Programming
	1 Setting Up a Profile Repository
	Introduction to Profile Repositories
	Internal and External User Profiles
	Profiles in a Multisite Environment
	Profile Repository Administration Interfaces

	Defining the Profile Repository
	Defining Profile Sub-Types
	Profile Repository Caching

	Standard User Profile Repository Definition
	Modifying Standard Profile Properties
	Configuring the Property Manager Component
	Configuring the Profile Tools Component
	ACC Sorting Attributes
	ACC Display Name Attribute

	Extending the Standard User Profile Repository Definition
	Adding Properties to a Database Table
	XML File Combination and the User Profile Repository Definition
	Moving Properties to a Different Database Table
	Debugging Repository Definition Files

	Replacing the Standard User Profile Repository Definition
	Using a Different Definition File
	Replacing userProfile.xml

	Configuring a Profile Repository Component
	Migrating Profiles for Use with an Internal Profile Repository
	Profile Migration Manager Properties

	2 Setting Up an LDAP Profile Repository
	Creating the LDAP Profile Repository Component
	Configuring the Personalization Module to use the LDAP Repository
	LDAP Password Encryption

	Sample LDAP Profile Repository Definition File

	3 Setting Up a Composite Profile Repository
	Introduction to Composite Profile Repositories
	Creating Composite Profile Items

	Basic Process for Setting Up a Composite Profile Repository
	Resolving Property Names in a Composite Repository

	Sample Definition File for a Composite Profile Repository
	Configuring Your Personalization Module for a Composite Profile Repository
	Overriding the ProfileAdapterRepository Component
	Creating a Separate Composite Profile Repository
	Updating the PropertyManager for a Composite Repository
	Configuring Targeted E-mail for a Composite Repository

	Configuring the Scenarios Module to Use a Composite Profile Repository
	Performing Queries against a Composite Profile Repository

	4 Working with User Profiles
	Tracking Users
	Tracking Guest Users
	Tracking Registered Users
	Profile Cookie Configuration
	Security Status
	Using Security Status in Content Pages

	User Profiling Tools
	/atg/userprofiling/Profile
	/atg/userprofiling/ProfileRequest
	/atg/userprofiling/ProfileTools
	/atg/userprofiling/PropertyManager
	/atg/userprofiling/ProfileEventTrigger
	/atg/userprofiling/ProfileUpdateTrigger

	Profile Form Handlers
	The ProfileForm Class
	The ProfileFormHandler Class
	Ensuring Transactions in Form Handlers

	Multiple Profile Form Handlers
	The MultiProfileForm class
	The MultiProfileAddForm class
	The MultiProfileUpdateForm class

	Managing User Logins
	Using Case Insensitive Login Names
	Password Hashing

	Password Management Features
	Using Password Expiration
	Using Strong Password Rule Checks
	Handling Forgotten Passwords

	Access Control
	Configuring the Access Control Servlet
	AccessRightAccessController
	GroupAccessController
	RuleAccessController
	Controlling Anonymous User Access

	Configuring Derived Properties that Calculate Time and Date
	TimeInterval
	YearMonthDay
	DaysBeforeAnnualEvent

	Managing Preview User Swapping
	PreviewProfileRequestProcessor Component
	Preventing Profile Swapping in Non-Preview Web Applications

	5 Working with the Dynamo User Directory
	User Directory Architecture
	Creating Organizations and Roles

	User Directory Security
	Configuring a User Authority
	Setting ACC and Object Access Rights through Access Control Lists
	Using Roles for Access Control

	User Directory API
	atg.userdirectory
	atg.userdirectory.droplet
	atg.userdirectory.repository

	Dynamo User Directory Implementation
	User Directory Repository Definition
	Standard User Directory Definition File
	Configuring User Directory Components
	Caching and the User Directory

	6 Setting Up an LDAP User Directory
	Setting Up a Linked Repository
	Removing Information from an LDAP User Directory
	Sample XML Files for an LDAP User Directory

	Configuring LDAP User Directory Components
	ProfileUserDirectory
	ProfileUserDirectorySpider
	LDAPOrganizationItemFinder
	ProfileItemFinder
	PropertyManager
	ProfileUserDirectoryProperties
	Caching an LDAP User Directory

	7 Linking SQL and LDAP Repositories
	Using Implicit Repository Linking
	Defining the SQL/LDAP Linked Repositories
	Sample SQL/LDAP Linked Repository Definitions
	Configuring Personalization Module Components for Linked Repositories
	PropertyManager Component
	ProfileItemFinder Component

	8 Creating Rules for Targeting Content
	Elements of Rule Sets
	Accept Rules
	Reject Rules
	Combining the Accept Rules and Reject Rules
	Sorting Directives
	Including Elements from Other Sources

	Rule Set Structure
	Rules Tag Syntax
	<ruleset> Tag
	<accepts> Tag
	<rejects> Tag
	<includes> Tag
	<rule> Tag
	Rule Tag Attributes
	Referring to Profile Attributes in Rules
	Rule Tag Operations
	<valueof> Tag
	valueof Types
	Using Indexed Property Values
	Target Nodes Inside Boolean Expressions
	<sortby> Tag
	<sortbyvalue> Tag
	<site> Tag
	Null Values in Rules
	Creating a Rule Set for a Profile Group that Includes Roles

	Including Rule Sets, Rules, and Sorting Directives
	Examples: src Attribute

	Complex Rules Example

	9 Setting Up Targeting Services
	Setting Up a RuleSetService
	Setting Up a RuleBasedRepositoryTargeter Service
	Setting Up a RuleBasedRepositoryItemGroup Service

	Setting Up a TargetingSourceMap Service
	Using TargetingResults
	Defining Profile and Content Groups
	Profile Groups
	Content Groups

	Managing User Segments
	How Segment Lists Are Used

	Conflict Resolution
	Programming Interface
	Architecture and Implementation
	Invoking in Servlet Beans

	Using Slots to Deliver Content

	10 Using Targeted E-mail
	Creating Targeted E-mail
	Creating a Targeted E-mail Template
	Specifying a MessageContentProcessor
	Sending Message Content as Both Text and HTML
	Creating the Recipient List

	Sending Targeted E-mail
	Sending E-mail to Users Without Profiles
	Viewing, Canceling or Resuming a Mailing
	Avoiding E-Mail Fatigue
	Improving Performance for SQL JMS Mailings

	Handling E-mail Problems
	Failed E-mail
	Bounced E-mail
	Stopped E-mail Campaigns

	Distributing a Mailing across Multiple Servers
	Configuring a Distributed E-mail Server
	Setting Up a Mailing to Use Distributed E-mail Features
	How Distributed Mailings Work
	Performance Tuning Considerations for Distributed E-mail

	Deleting Mailings
	Targeted E-mail Demo

	11 Personalization Module Tracking
	Personalization Events
	Event Triggers
	Setting Up Event Triggers
	Event Action Queue

	Action Handlers
	Event Properties
	ConfigurableAction Properties
	Default Action Handlers

	12 Personalization Module Logging
	Logging Events
	Logging Services
	Request Logging
	User Event Logging
	Content Viewed Logging
	Log Entry IDs

	Data Listeners and Queues
	Configuring QueueSinks

	Log Files
	Configuring Log Operations
	Enabling and Disabling Logging

	Logging to a Database
	Limiting Input to the Database

	Generating Reports
	Batch Reporting Service
	Setting the Schedule
	Pointing to a Repository (Content)
	Pointing to a Registry Service
	Fine Tuning Updates

	Part II: Scenarios Module Programming
	13 Overview of the Scenarios Module
	Scenario Basics
	Scenario Processing
	Scenario Definition Files

	Scenario Execution
	Individual Scenario Instances
	Collective Scenario Instances
	Scenario Initialization
	Scenario Event Handling

	Workflows
	Internal Scenario Manager

	14 Configuring Scenarios
	Configuring the Scenario Manager
	Scenario Manager Configuration File
	Global, Individual, and Process Editor Servers
	Configuring the Process Editor Server
	Configuring Global Scenario Servers
	Configuring Individual Scenario Servers
	The Scenario Registry and Scenario Definition Files
	Configuring the ScenarioManager Component
	Configuring the SDLParser Component

	Configuring SQL Repository Caching for Scenarios
	Scenario Caching with Session Federation

	Setting Up Scenario E-mail Sender Components
	Setting Up TemplateEmailInfo Objects for Scenarios
	Configuring BatchEmailListener and EmailListenerQueue Components

	Monitoring and Debugging Scenarios
	Viewing Scenario Information in the ATG Dynamo Server Admin Page

	Setting the Web Application Context Root for Scenarios
	StaticWebAppRegistry
	ServletContextWebAppRegistry
	Updating the Context Root for Scenarios

	Disabling the Scenario Manager Component

	15 Setting Up Security Access for Scenarios
	Using the ACC to Set Scenario Access Rights
	Defining Access Control for Scenario Folders
	Defining Access Control for a Scenario
	Making a Scenario Read Only

	16 Designing Effective Scenarios
	Excluding Anonymous Visitors
	Minimizing the Number of Visitors Included
	Minimizing the Number of Collective Elements
	Avoiding Scenarios that Run Indefinitely
	Combining Scenarios Wherever Practical
	Minimizing the Number of Paths through a Fork

	17 Using Scenario Events
	InboundEmail Event
	Shutdown Event
	Startup Event
	GSAInvalidation Event
	ClickThrough Event
	FormSubmission Event
	SlotItemRequest Event
	Referrer Event
	Login Event
	Logout Event
	Register Event
	AdminRegister Event
	StartSession Event
	EndSession Event
	ProfilePropertyUpdate Event
	AdminProfilePropertyUpdate Event
	ProfileUpdate Event
	AdminProfileUpdate Event
	ViewItem Event
	PageVisit Event
	ScenarioEnd Event
	SiteChanged Event
	ProfileMarkerAdded Event
	ProfileMarkerRemoved Event
	ProfileMarkerReplaced Event
	Business Stage Reached Event
	Scenario Events and Transient Properties
	Scenarios and Anonymous Users

	18 Using Scenario Actions
	Modify Action
	Set Variable Action

	SetRandom Action
	Redirect Action
	RedirectActionConfiguration Component

	FillSlot Action
	SlotActionConfiguration Component

	EmptySlot Action
	DisableScenario Action
	DisableScenarioConfiguration Component

	RecordEvent Action
	RecordActionConfiguration Component

	Record Audit Trail Action
	Filter Slot Contents Action
	Add Marker To Profile Action
	Remove All Markers From Profile Action
	Remove Markers From Profile Action
	Add Stage Reached Action
	Remove Stage Reached Action
	E-mail-Related Actions: EmailNotify and SendEmail
	EmailNotify Action
	SendEmail Action
	Accessing Scenario Variables in an E-mail Template
	Sending Attachments with Scenario-Based E-mail Messages

	19 Using Slots
	Creating a Slot as a Nucleus Component
	Content Source
	Content Type
	Event Generation
	Scope
	Item Retrieval
	Ordering
	Limit Number of Items Rendered by Slot
	Permit Duplicate Content Items
	Store Slot Persistently in Repository
	Creating a Slot Component for Objects other than Repository Items

	Editing Slot Components
	Deleting Slot Components
	Creating a Slot as a Property of a JMS Message
	Using Slots in a Multisite Environment

	20 Using Scenario Recorders
	Creating a Custom Recorder
	Creating a New Data Collection Object
	Creating the New Mapper
	Creating a New Dataset for a Custom Recorder
	Creating a Scenario for a Custom Recorder

	Mapper XML Definition Language
	Sample Mapper XML File

	21 Adding Custom Events, Actions, and Conditions to Scenarios
	Adding Custom Events
	Example: Adding Clickthrough Tracking To Your Application
	Creating the LinkMessage class
	Creating the LinkMessageSource Component
	Adding Your Message to the Appropriate DMS Configuration File
	Configuring the Message Source
	Configuring the Scenario Manager to Receive Your Message
	Adding Your Message to the Scenario Event Registry
	Adding the Message to the DMS Message Registry
	Declaring the Local DMS Topic
	Declaring the SQLDMS Topic or Queue
	Putting It All Together
	Associating Profiles with Individual Custom Events

	Adding Custom Actions
	Adding the Action to the Scenario Manager Configuration File
	Specifying the <action-execution-policy> Tag
	Specifying the <action-error-response> Tag
	Adding Parameters to a Scenario Action
	Implementing the Action Interface
	Putting It All Together

	Adding Custom Conditions
	Adding the New Condition to the Scenario Manager Configuration File
	Extending the ExpressionFilter Class for the New Condition
	Extending the Expression Editor

	Configuring Actions and Conditions through Properties Files
	Exposing Nucleus Components for Use in Custom Bean Expressions

	22 Filtering Collections
	How Collection Filtering Works
	Using Collection Filtering Classes
	Using StartEndDateFilter
	Using ChainedFilter

	Caching Filtered Content
	Caching For Chained Filters
	Determining When To Cache Filter Content
	Configuring FilterCache

	Implementing Custom Collection Filters
	Creating Custom Collection Filters
	Configuring Custom Collection Filters
	Accessing a Collection Filtering Component

	Passing Additional Parameters to a Filter (Filtering in a Multisite Environment)

	23 Using Profile Markers
	Configuring the Profile Marker Manager
	Setting a Duplication Mode
	Setting up Marker Validation
	Defining Profile Marker Manager Properties

	Marking a User Profile
	Using Marked Profiles
	Using Servlet Beans to Find Markers on Profiles
	Advancing a Scenario If a Profile has Markers
	Advancing a Scenario Based on Profile Marker Events

	Removing Profile Markers
	Specific Profile Markers From a Profile
	All Profile Markers on a Profile

	24 Defining and Tracking Business Processes
	How Business Process Tracking Works
	Defining a Business Process
	Creating a BusinessProcessConfiguration Component
	Configuring the BusinessProcessManager Component

	Marking Business Process Stages
	Deleting Business Process Content
	Reporting on Business Processes

	25 Creating and Configuring Workflows
	Overview of Workflows
	Creating a Workflow Type

	Workflow Classes
	Shared Components
	Registration Workflow
	Configuring the Registration Workflow Type

	Workflow Servlet Beans
	WorkflowTaskQueryDroplet
	WorkflowInstanceQueryDroplet
	ItemLookupDroplet
	GetDirectoryPrincipal

	Workflow Task Form Handler
	Updating Subject Properties
	Firing Task Outcomes

	26 Managing Workflows on Multiple Servers
	Designating a Process Editor Server for Workflows
	Designating Global and Individual Workflow Servers
	Configuring Caching for Workflows

	27 Setting Up Security Access for Workflows
	Allowing ACC Users to Edit Workflows
	Allowing Site Users to Execute Workflows
	Giving Site Users Access to Workflow Tasks

	28 Configuring the ATG Expression Editor
	Overview of the ATG Expression Editor
	Grammar Template Files
	Templates, Filenames and Localization
	Stylesheet Preamble
	Textual Inclusion
	Grammar Templates in the ATG Product Distribution
	Serialization of Templates

	Grammar Definition Fundamentals
	Tokens
	Literals
	Choices
	Sequences

	Creating a Grammar by Composing Constructs
	Structure and Presentation of Choices
	Defining and Referring to Labeled Constructs
	Advanced Features
	Custom Expression Classes
	Custom Editor Classes
	Custom Assistant Classes
	Placeholders
	Required Terminals
	Eliminating Spaces
	Verbose Terminals
	Unsigned Integer

	Scenario UI Expression Grammar Configuration
	Scenario Grammar Extension Header
	Defining Expressions for Custom Events
	Defining Expressions for Custom Actions
	Defining Expressions for Custom Conditions
	Associating XML Templates with Grammar Elements
	Specification of XML templates
	Standard XML Template Patterns
	Special-Purpose Grammar Extension Tags

	Commerce-Related Grammar Configuration
	Constraining a Sequence to an Order-Related Event
	Constraining a Sequence to a Commerce-Item-Related Event

	Suggestions for Localization
	Supported Character Encodings

	Part III: Web Services for Personalization and Scenarios
	Web Services Module for ATG Personalization and Scenarios
	User Profiling Web Services
	ProfileServices Component
	GetProfileId Web Service
	GetProfile Web Service
	LoginUser Web Service
	LogoutUser Web Service
	CreateUser Web Service
	UpdateUser Web Service
	Set Password Web Service
	SetContactInfo Web Service
	SetLocale Web Service
	CanClientEncryptPasswords Web Service
	GetPassWordHashKey Web Service
	GetPasswordHashAlgorithm Web Service

	Content Targeting Web Services
	TargetingServices Component
	RecommendContent Web Service

	Messaging Web Services
	MessagingImporter Component and ReceiveObjectMessage() Method
	ContentViewed Web Service
	ContentConsumed Web Service

	Example: Using the GetProfileId Web Service in an Axis Client
	Returning RepositoryItems as Repo2Xml Items
	Applying Mapping Files to Repo2Xml Items

	Profile-Related Security Policies for Web Services
	AppendACLPolicy
	MethodParameterPolicy
	ProfileOwnerPolicy
	ProfileAsXMLOwnerPolicy
	RelativeRoleByProfileOrgPolicy
	Defining Security Functions and Policies

	Using Client-Side Password Encryption

	Appendix A: Database Tables
	Personalization Module Database Schema
	User Data Tables
	User Directory Tables
	Logging and Reporting Tables
	Targeted E-mail Tables
	Personalization Module Scenario Tables

	Scenarios Module Database Schema
	Collective and Individual Scenario Instance Tables
	Scenario Info Tables
	Template Info Tables
	Scenario Transition and Deletion Tables
	Slot Tables
	Server ID Tables
	Scenario Xref Tables
	Scenario Migration Tables
	Event Message Tables
	Business Process Tracking Tables

	Index

