

Search

Version 10.0.2

Query Guide

Oracle ATG
One Main Street
Cambridge, MA 02142
USA

ATG Search Query Guide

Document Version
Search10.0.2 SEARCHQUERYv1 4/15/2011

Copyright
Copyright © 1997, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are “commercial
computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures
to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services.

For information about Oracle’s commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/support/contact.html or visit http://www.oracle.com/accessibility/support.html if you are hearing impaired.

A T G S e a r c h Q u e r y G u i d e

i i i

C o n t e n t s

μ

Contents

1 Introduction 1
Audience 1
Document Conventions 2
More Information 2

2 Query Processing Overview 3
User Enters Search Input 4
Natural Language Processing 4
Apply Constraints 5
Query Processing 5
Search Results Displayed 5

3 Search Form Handlers 7
Form Handler Classes and Architecture 7

Form Handler and Request Components 8
Configuring the Form Handler Component 8
Configuring the QueryRequest Component 8
Configuring the SearchContext Component 9
Sample Application 9

Specifying the Content Labels and Target Type for Queries 10
Understanding Content Labels and Target Types 10
Site-Specific Content 11

Determining the Environment to Search 11
DynamicTargetSpecifier 12
MultisiteConstraint 12

Setting Request Properties 13
Setting the responseNumberSettings Property 13
Setting the relQuestSettings Property 14
Setting the docProps and textProps Properties 14
Setting Grouping Options 15
Setting the Parser Options 15
Setting Constraint Properties 16

Processing the Request and Response 18
Catalog Constraints 18

Specifying a Price List in the Search Request 19
Creating the Property Mapping 19
Specifying a Default Price List 20

A T G S e a r c h Q u e r y G u i d e

i v

C o n t e n t s

μ
Invoking Multiple Form Handlers 21
Handling Results 21

Indicating the Number of Results 22
Handling Repository Items 22

4 Paging Search Results 25
Specifying the Page Size 25
Handling Page Requests 25
Types of Paging 26

Example of Normal Paging 26
Example of Fast Paging 27

Modifying and Resubmitting the Request 28
Example of Resubmitting the Form 29
Example of Saving the Request in the SearchSession 29

5 Implementing Type-Ahead for Searches 31
Creating the Type-Ahead Page 32
Creating the Search Page 32

6 User-Entered Operators 35
Literal Operator 35
Required Terms 36

Required in Statement 36
Required in Document 36

Excluded Terms 37
Excluded in Statement Results 37
Excluded in Document Results 37

Case Restriction 38
Wildcards 38
Regular Expressions 39
Number Ranges 40
Operator Combinations 40
Fielded Search Operators 41

7 Constraining Queries 43
Document Set Constraints 43
Collection Constraints 44
Property Constraints 44
Index Item Constraints 46

Index Item URL Constraints 46
Index Item Format Constraints 46
Index Item Language 46
Index Item File Extension 47
Index Item Modified Date 47

Combining Query Constraints 47
Weighted Metadata Preference Expressions 48

A T G S e a r c h Q u e r y G u i d e

v

C o n t e n t s

μ
Query Refinements 49

8 JMS Event Handling 51
Search Messaging Components 51
Suppressing Search Messages 52

Detecting Web Spiders 52
Filtering by IP Address or User Account 53

Patch Bay Configuration 53

9 Caching Search Query Data 55
Configuring Search Caching 55

Disabling Cache Invalidation 56
Controlling the Caching of Individual Queries 56

Queries that Include Timestamps 57
Using the Cache Administration Page 58

10 Faceted Search 59
Overview of Faceted Search 59
Building Pages that Include Facets 60
Issuing Faceted Search Queries 61

Specifying the Category for the Query 62
Restricting the Set of Facets and Selections 63

Using a Facet Trail 64
Supporting Multiple Selection Values 65
Working with the FacetTrail Object 66

Rendering the Facets 67
Ordering Facets by Priority 69
Filtering Facets 69
Skipping Facet Values in the Facet Trail 70
Removing Facet Selections 70
Rendering Multiple Selection Values 72
About Refinement Counts 72

Incorporating Search Text as a Facet 73
Constructing the Facet Trail String 73
Selecting the Refinement Configuration 74

Formatting Facet Values 75

11 Search Merchandising 79
Determining the Search Configuration for a Query 79

Determining the Language 81
Handling Redirects 81

12 Recording Events for Reporting 83
Using the GetClickThroughId Servlet Bean 83

Configuring the Cache 84
Configuring the SearchClickThroughServlet 84

A T G S e a r c h Q u e r y G u i d e

v i

C o n t e n t s

μ
Limiting the Pages to Examine 85

Appendix A: Commerce Search Servlet Beans 87
CommerceFacetTrailDroplet 87
GetClickThroughId 90
RefinementValueDroplet 92

Appendix B: Search XML Reference 95
answer 95
categories 97
category 97
context 98
debug 100
document 100
documentSets 101
envName 101
expandedStemming 101
language 102
parserOptions 102
priorinput 103
query 103

andFeedback 103
autocat 104
autocatPrune 105
autospell 105
debug 105
docSetSort 105
docFlags 106
docProps 107
docSort 107
docSortOrder 109
docSortCase 109
docSortProp 109
docSortPropVal 109
docSortPred 109
docSortPropDefault 109
feedback 109
maxRelatedSets 109
mergeSettings 110
minScore 112
mode 112
optimize 114
pageNum 114
pageSize 114
QUID 115
rankConfig 115

A T G S e a r c h Q u e r y G u i d e

v i i

C o n t e n t s

μ
recurseDocuments 115
refineConfig 115
refineConfigDefault 116
refineConfigMapKey 116
refineConfigMapProp 116
refineMax 116
refineTop 117
refineMin 117
relatedSets 117
relQuestSettings 117
requestMode 126
responseNumberSettings 126
ruleMode 129
sorting 129
sortProp 130
strategy 130
suggestCat 131
suggestCatPrune 131
textProps 131

queryAction 131
queryRule 131
queryTerms 132
question 132
refineConstraint 132
refinements 132
reportData 132
response 132
responseTree 133
securityRole 133
spellchecker 133
spelling 134
spellSplitWords 135
startCategory 135
targetLanguage 135
text 136
topicMaximum 136
userquestion 137
weightedProps 137
wildcardMax 137

Index 138

A T G S e a r c h Q u e r y G u i d e

v i i i

C o n t e n t s

μ

A T G S e a r c h Q u e r y G u i d e

1

1 - I n t r o d u c t i o n

μ
1 Introduction

The ATG Search product allows end-users to search indexed data on a site and receive useful answers.
Implementing ATG Search on your site involves the following steps:

1. Specify repository items and properties to index through an XML definition file.

2. Based on the information in the XML definition file, transform these repository items
into XHTML documents.

3. Index the XHTML documents in ATG Search.

4. Use search form handlers to allow site visitors to search the indexed documents.

The first three steps are described in the ATG Search Administration Guide. This book explains how to set
up search pages and form handlers to help your users achieve the search results they want from your site.
For most sites, the content searched is a product catalog; therefore most of the examples in this book are
geared toward this common situation, but you can adapt them for other purposes.

The ATG form handlers provide access to a wide number of options that can affect how searches are
processed and search results are displayed. These options are ultimately passed to the search engine in
XML form. In general, this book provides Java API-level information regarding these settings; however, at
times it may be necessary to explore the XML level, since this is the language understood by the engine.
In addition, an appendix reference on the XML is included to help in debugging search request and
response strings.

This chapter includes the following sections:

Audience

Document Conventions

More Information

Audience
This guide is intended for JSP developers and system integrators. Users should have a thorough
knowledge of the ATG platform, other ATG products they are planning to integrate ATG Search with, JSPs,
search technology, and XML syntax.

A T G S e a r c h Q u e r y G u i d e

2

1 - I n t r o d u c t i o n

μ
Document Conventions

This guide uses the following conventions:

 <ATG10dir> refers to your ATG installation directory.

 Server or ATG server refers to an ATG application instance that is deployed to your
application server in the form of an EAR file. See the ATG Installation and Configuration
Guide for information. ATG documentation commonly refers to the following server
types:

 Asset management server—Where ATG Content Administration, Search
Administration, and other such applications run. Sometimes called just the
management server.

 Agent-facing server—Used for ATG Knowledge and other agent-oriented
applications

 Customer-facing server or production server—Where your ATG application
runs.

More Information
In addition to this guide, you may also want to consult the resources mentioned below.

See the following documents for additional information on ATG Search and related products:

 ATG Search Installation and Configuration Guide

 ATG Search Administration Guide

A T G S e a r c h Q u e r y G u i d e

3

2 - Q u e r y P r o c e s s i n g O v e r v i e w

μ
2 Query Processing Overview

This chapter describes the process by which search queries are turned into responses, and highlights
some of the important parameters that you might want to address in your form handlers.

This diagram provides a high-level overview of the processes used in answering search requests:

Search Request Processing

The sections that follow provide detailed information on each request processing step:

User Enters Search Input

Natural Language Processing

Apply Constraints

Query Processing

Search Results Displayed

A T G S e a r c h Q u e r y G u i d e

4

2 - Q u e r y P r o c e s s i n g O v e r v i e w

μ
User Enters Search Input

ATG Search can accept several different types of search input. Two common types are:

 Text—The user enters one or more terms and clicks a submit button.

 Browse—The user clicks a link that contains search request information encoded in a
URL. This information could include a product category.

The examples in this chapter use text searches.

The search form handlers can also add parameters to the user input, for example to identify the language
the user is searching in, or to restrict the search to certain parts of the index. Most of this guide addresses
this subject, but see the Search Form Handlers chapter to get started.

The text the user enters is packaged up into a query request. The request is a Java object that is sent to
ATG Search when the user clicks a submit button, follows a link, etc. The request is then translated into
XML for processing by the search engine.

Natural Language Processing
Once it receives the submitted request, ATG Search analyzes it to determine what terms it has to search
for. To do this, it performs a series of analyses on the text the user entered. Note that it is the final result of
all of these steps that is used by the search engine to conduct the search.

This is similar to the process used to index content, and it relies on a combination of the core search
dictionary, any supplemental dictionaries Search Administration users have created, and language-
specific information.

This step includes the following processes:

1. Identify the words in the request.

2. Identify the root form of each of the identified words.

3. Map variant word forms and common misspellings to a single form of the word.

4. Identify synonyms for each of the words, if any are defined.

5. Apply a weight to each of the terms in the request. This is a proprietary process by
which ATG Search decides how important each term in the request is.

The final result of natural language processing is a list of terms that includes the spell-corrected root
forms of the original search terms, any synonyms for these terms, and weighting information.

A T G S e a r c h Q u e r y G u i d e

5

2 - Q u e r y P r o c e s s i n g O v e r v i e w

μ
Apply Constraints

The next step of search processing is to apply constraints that were entered along with the request.
Constraints can include the following:

 Site, catalog, category, or other property-based constraints—See the Constraining
Queries chapter of this guide

 Operators such as quote marks and the ! symbol—See the User-Entered Operators
chapter of this guide

 Query rules—See the ATG Search Administration Guide

 Search Merchandising rank configurations—See the Search Merchandising chapter of
this guide

The constraints are processed and added to the query information.

Query Processing
The compiled query information is compared against the index. The engine returns XML that includes the
resulting matching products or statements, taking constraints into account, along with categorization,
spelling, and query feedback information specified in the request.

The results are sorted in relevance order by default, but this behavior can be changed using request
parameters. The results can be grouped to reduce duplication, and you can apply paging to prevent
slowing down your site with large result lists. See the Paging Search Results chapter of this guide for
information.

Search Results Displayed
The final results are displayed to the user. See the Handling Results section of this guide for information.

A T G S e a r c h Q u e r y G u i d e

6

2 - Q u e r y P r o c e s s i n g O v e r v i e w

μ

A T G S e a r c h Q u e r y G u i d e

7

3 - S e a r c h F o r m H a n d l e r s

μ
3 Search Form Handlers

The ATG platform includes form handlers that you can use to build forms to issue queries for search data
indexed by ATG Search. You can use these form handlers to build a wide variety of user interfaces to ATG
Search, and to make the full power of the ATG platform available for working with ATG Search data.

This chapter discusses ATG platform and ATG Search classes and components. If you need more
information about a particular class, see the ATG API Reference.

This chapter includes the following sections:

Form Handler Classes and Architecture

Specifying the Content Labels and Target Type for Queries

Determining the Environment to Search

Setting Request Properties

Processing the Request and Response

Specifying a Price List in the Search Request

Invoking Multiple Form Handlers

Handling Results

Form Handler Classes and Architecture
The main form handler for submitting queries to ATG Search is
atg.search.formhandlers.QueryFormHandler. This form handler issues a search request of class
atg.search.routing.command.search.QueryRequest, which represents a query of type <query>.

QueryFormHandler has as an ancestor the atg.search.formhandlers.BaseSearchFormHandler
abstract class, which implements generic functionality: error handling, URL redirection, maintaining state
information, query submission, etc. QueryFormHandler subclasses PagedRequestFormHandler, which
is a subclass of BaseFormHandler that adds support for paging of results.

QueryFormHandler constructs search queries using the SearchClient API. This API uses an instance of
Routing to direct those queries to the search engine. This instance of Routing can be running locally (on
the same ATG instance as the SearchClient) or remotely (on a different ATG instance). Information about
the connection to Routing is maintained in a session-scoped component of class
atg.search.formhandlers.SearchContext. The form handler and request classes themselves are
designed to be request-scoped.

A T G S e a r c h Q u e r y G u i d e

8

3 - S e a r c h F o r m H a n d l e r s

μ
QueryFormHandler has a handleSearch method that issues the search query. Typically, you associate
this method with a form button, so the query is issued when the user clicks the button. For example:

<dsp:input type="submit" bean="QueryFormHandler.search" value=" Search "

 action="query.jsp"/>

QueryFormHandler includes a number of other handler methods that you may find useful in building
search forms. See the ATG API Reference for more information.

Form Handler and Request Components

The DAF.Search.Base module includes a /atg/search/formhandlers/QueryFormHandler
component and a corresponding request component,
/atg/search/routing/command/search/QueryRequest. The DCS.Search.Query module adds
QueryFormHandler and QueryRequest components that are preconfigured for querying the ATG
Commerce product catalog. These components are found in the /atg/commerce/search/catalog
Nucleus folder. You can use these components for creating search forms and displaying facets on
commerce sites.

Configuring the Form Handler Component

Each instance of QueryFormHandler must be configured by setting, at a minimum, these two properties:

searchRequest
The associated request component of class
atg.search.routing.command.search.QueryRequest.

searchContext
The session-scoped component (of class
atg.search.formhandlers.SearchContext) that maintains information about the
connection to ATG Search.

The form handler components mentioned in the previous section are preconfigured with settings for
these properties. You should not need to change these values. However, if you create your own form
handler components, be sure to set these properties on them.

In addition, the form handlers have properties that you can set to enable client-side processing of the
request and response objects. These properties are described in Processing the Request and Response.

Configuring the QueryRequest Component

The form handler’s searchRequest property points to a component of class
atg.search.routing.command.search.QueryRequest. This component, which should be request-
scoped, is the Java representation of the search query. The QueryRequest has a large number of
properties that correspond to elements and attributes of the query XML.

Several sections of this chapter describe how to set these properties on the QueryRequest component.
Note that the /atg/search/routing/command/search/QueryRequest component included in the
DCS.Search.Query module has many of these properties preconfigured for querying the ATG
Commerce catalog and performing faceted search.

A T G S e a r c h Q u e r y G u i d e

9

3 - S e a r c h F o r m H a n d l e r s

μ
Configuring the SearchContext Component

The form handler’s searchContext property points to a component of class
atg.search.formhandlers.SearchContext. This component, which should be session-scoped,
maintains information about the connection to Routing. By default, the searchContext property of each
form handler component is set to /atg/search/formhandlers/SearchContext.

Routing

The SearchContext component’s primaryConnection property specifies the location of the
DAF.Search.Routing module that the search client is accessing. Accessing this module on the same
ATG instance as the search client is called local Routing; accessing it on a different ATG instance called
remote Routing. If you are using local Routing, primaryConnection should be set to local (the default).
If you are using remote Routing, set primaryConnection to:

rmi://hostname:port/atg/search/routing/SearchService

port is the RMI port used by ATG (typically 8860). For example:

primaryConnection=rmi://myHost1:8860/atg/search/routing/SearchService

For remote Routing, you can use the SearchContext component’s failoverConnections property to
specify an array of additional Routing instances to use if the primary instance fails. For example:

failoverConnections=rmi://myHost2:8860/atg/search/routing/SearchService,\

 rmi://myHost3:8860/atg/search/routing/SearchService

The maxAttemptsBeforeFailover property specifies the maximum number of times to attempt to
access a specific Routing instance before failover. The default value is 2.

The SearchContext component also has properties that control the firing of JMS messages when results
are returned from a query. See JMS Event Handling for information.

SearchSession Object

The SearchContext component has a searchSession property that is set automatically to an object of
class atg.search.client.SearchSession. This object is used to store information that needs to
persist between search requests. For example, for paging of results, the SearchSession can keep track of
the current page so that a subsequent request can determine what the next page is. The SearchSession
can even store the entire previous request, which is useful for contexts (such as faceted search and some
paging options) where you might want to reissue a request with only minor changes.

Sample Application

The ATG platform includes a sample Web application that demonstrates search query options. You can
use the application for submitting test queries, or use the JSPs as starting points for building your own
search pages.

To run the sample application, you need to assemble an EAR file that includes the
DAF.Search.Base.QueryConsole module, and deploy this application on your application server. You
can then access the application at:

A T G S e a r c h Q u e r y G u i d e

1 0

3 - S e a r c h F o r m H a n d l e r s

μ
http://hostname:port/atg/qc

See the ATG Installation and Configuration Guide for more information about the port number to use. For
information about assembling applications, see the ATG Programming Guide.

Once the application is open in your browser, click the link for one of the query types. This opens a page
that contains a form for constructing a query of that type. Fill in the form, and then click the Search
button. The results of the search are displayed at the bottom of the page.

Note that neither the search forms nor the result displays are intended to be realistic examples of how
you would use the form handlers on an actual site. The forms enable you set search attributes that are
rarely set by individual queries. In addition, the forms allow you to set attributes directly that would
typically be determined by logic implemented in the page or in methods of the form handler itself. For
the results, each page simply displays a table of the fields of the results object and their values. On an
actual site, the results would typically be displayed in a more usable (and selective) format.

Specifying the Content Labels and Target Type for Queries
ATG Search is organized by projects, as discussed in the ATG Search Administration Guide. There are two
main types of relationships between projects:

 Independent projects have separate groupings of content for indexing. Two or more
independent projects can index the same content or different content, but the
indexes are totally separate and independent. A project’s content sets are grouped
and identified for querying by one or more content labels.

 Linked projects have identical content labels, but they differ by target type, which
specifies the instance of the index that queries are directed to. In a set of linked
projects, there is a main project whose target type is Production. Other projects are
created as links to this project, and have different target types, such as Staging or
Testing.

Each search project produces an index that comprises one or more logical partitions. The index has a
separate logical partition for each content set in the project.

Understanding Content Labels and Target Types

Content labels are used in search projects as a way of grouping content sets for querying. A content label
can refer to one or more content sets. So, for example:

Catalog content label --> Products content set

Articles content label --> Brochures content set, Manuals content set

Each content label must be unique to a single set of linked projects. Two independent projects cannot use
the same content label (though they can use the same content and have different content labels to refer
to it), because content labels are used to differentiate independent projects for querying.

A T G S e a r c h Q u e r y G u i d e

1 1

3 - S e a r c h F o r m H a n d l e r s

μ
Linked projects, on the other hand, must share content labels. Linked projects differ only in the target
type (Production, Staging, etc.). Each target type must be unique to one project within a set of linked
projects. Two linked projects cannot use the same target type, because the target type is used to
determine which search environment within a set of linked projects to direct queries to.

To specify the content labels and target type for a query, you set the contentLabels and targetType
properties on the QueryRequest component in a properties file or JSP. For example:

contentLabels=Catalog,Articles

targetType=Staging

By default, the /atg/commerce/search/catalog/QueryRequest component has the following
configuration:

contentLabels=Catalog

targetType=Production

Site-Specific Content

In a multisite environment, you associate specific sites with specific content sets as a way of constraining
indexing and querying. For example, suppose you have three sites, A, B, and C, and a content set that you
want to make available for searching on sites A and C, but not on site B. To do this, you could associate
sites A and C with this content set in ATG Site Administration. When the index is generated, the logical
partition associated with this content set does not include data for site B.

When a query is issued, rather than directing it to all of the logical partitions of the index, Routing looks at
the sites the query applies to, determines which content sets are associated with those sites, and directs
the query only to the partitions for those content sets. So in this example, if a customer is searching site B,
Routing will not direct the query to the logical partition for this content set. This restriction makes
searching more efficient, because it reduces the number of logical partitions that need to be searched.

There may be times when you do not want to return data for a specific site, even though that data is
included in the index. For example, if a site is disabled or otherwise unavailable, it is generally undesirable
to return search results for that site. Therefore, ATG Search does not return results for sites that are
currently unavailable.

Determining the Environment to Search
When a search request is submitted, Routing uses the
/atg/search/routing/DynamicTargetGenerator component to determine the search environment,
the set of logical partitions, and possible constraints for the request. The DynamicTargetGenerator
takes into account the following properties of the QueryRequest component:

 contentLabels -- An array of the content labels to direct the request to. These
content labels must all be associated with the same search project.

 targetType -- The target type to direct the request to.

A T G S e a r c h Q u e r y G u i d e

1 2

3 - S e a r c h F o r m H a n d l e r s

μ
 dynamicTargetSpecifier -- A component of class

atg.search.routing.command.search.DynamicTargetSpecifier, which is
used to specify site information; by default,
/atg/search/routing/command/search/DynamicTargetSpecifier. If this
property is not set, a DynamicTargetSpecifier is created automatically.

 siteConstraints -- A component of class
atg.search.routing.command.search.MultisiteConstraint; by default,
/atg/search/routing/command/search/MultisiteConstraint.

DynamicTargetSpecifier and MultisiteConstraint are described below.

DynamicTargetSpecifier

The DynamicTargetSpecifier component specifies the sites that the query should be applied to. This
component has two main ways to specify the sites:

 To explicitly specify the sites, set the siteIdsArray property to an array of site IDs.

 If siteIdsArray is not set, DynamicTargetSpecifier uses the current site from the
SiteContext object. In addition, if the useContextAdditionalSites property is
true, DynamicTargetSpecifier also uses the sites specified in the SiteContext
object’s additionalSites property.

DynamicTargetSpecifier also has its own additionalSites property for specifying sites in addition
to the ones specified in siteIdsArray or obtained from the SiteContext object.

MultisiteConstraint

Based on the properties set on the QueryRequest and the DynamicTargetSpecifier, the
DynamicTargetGenerator may determine that the query should return results only from certain sites. If
so, it can generate a constraint and set the value of the MultisiteConstraint component’s
siteConstraints property to the generated constraint. Note that DynamicTargetGenerator
generates a site constraint only if necessary; in some cases, sites may already be excluded based on the
content sets being searched, so they don’t need to be excluded through a constraint.

MultisiteConstraint has a siteConstraintsOperation property for specifying whether the sites in
the generated constraint should be combined using AND or OR Boolean operators. The default value of
this property is or, so sites are combined using Boolean OR. This means that results will be returned from
any site listed in the constraint. For example, this constraint means “return results that are associated with
site A or site C”:

<or>

 <strprop name="$siteId">A</strprop>

 <strprop name="$siteId">C</strprop>

</or>

If you set siteConstraintsOperation to and, the query returns only results that are associated with
both site A and site C.

A T G S e a r c h Q u e r y G u i d e

1 3

3 - S e a r c h F o r m H a n d l e r s

μ
In addition to the generated site constraint, MultisiteConstraint has an additionalConstraints
property that can be set to a DocumentSetConstraint component, which you can use to specify
additional site constraints. For example, you could create a constraint that restricts unstructured content
such as articles from being returned on a certain site.

MultisiteConstraint has an additionalConstraintsOperation property for specifying whether
the generated constraint and the constraint specified through additionalConstraints should be
combined using AND or OR Boolean operators. The default for this property is and.

Setting Request Properties
The QueryRequest class has properties that store the values that are used to construct the queries sent
to ATG Search. Typically, these properties are set in JSPs (or have defaults set in properties files that can
then optionally be overridden in JSPs), as their values may vary from query to query. Most of the
properties of the request components correspond to attributes of the query XML understood by the
search engine.

The XML query attributes are described in detail in the ATG Search Query Reference Guide. You can also find
information about these attributes in the Javadoc for the request classes, in the ATG API Reference. This
section describes how to set some of the more complex query attributes.

Setting the responseNumberSettings Property

The <query> query type has a responseNumberSettings attribute that comprises many subattributes.
In the query XML, this attribute is a single long delimited String that encodes the values of all of the
subattributes.

In the QueryRequest class, the corresponding responseNumberSettings property is a Map that stores
these subattributes as a series of key/value pairs. This makes it possible to set the values of these
subattributes individually. When the query is submitted, the values in the responseNumberSettings
Map property are used to construct the String used in the query XML.

You can specify the values of all or some of the responseNumberSettings subattributes in a properties
file. For example:

responseNumberSettings=\

 prop=10,\

 doc=100

You can also set these values individually in JSPs, overriding the values in the properties file. For example:

<dsp:input bean="${FH}.searchRequest.responseNumberSettings.doc"

 value="125"/>

A T G S e a r c h Q u e r y G u i d e

1 4

3 - S e a r c h F o r m H a n d l e r s

μ
Setting the relQuestSettings Property

The <query> query type has a relQuestSettings attribute that, like responseNumberSettings, is a
delimited String that encodes the values of a number of subattributes.

In the QueryRequest class, the corresponding relQuestSettings property is an
atg.nucleus.ResolvingMap that stores these subattributes as a series of key/value pairs. (The
atg.nucleus.ResolvingMap class is a special type of Map that allows you to use the Nucleus ^= syntax
to link the value of an individual map key to the value of a property of another component.) When the
query is submitted, the values in the relQuestSettings property are used to construct the String used
in the query XML.

Setting activeSolutionsZones

The activeSolutionZones subattribute of relQuestSettings is a String containing a comma-
separated list of the text properties in the index that are available for searching. Typically, you’ll want to
set this to a list of all of the text properties in the index (after all, that’s why you included them). Rather
than specifying the entire list explicitly, you can make all of the text properties available for searching by
setting activeSolutionZones to an asterisk (*). For example, you might set this in the
QueryRequest.properties file:

relQuestSettings=\

 activeSolutionZones=*

In some cases, however, you may want to make only a subset of the indexed text properties available for
searching. For example, suppose your site has a Books section, and when customers search in this area,
you want to search only the title and author properties. Rather than having two different indexes with
different properties in them, you create a single index with the full set of desired properties for the overall
site, but then override the value of activeSolutionZones in the pages of the Books section to restrict
searches from those pages:

<dsp:input bean="${FH}.searchRequest.relQuestSettings.activeSolutionZones"

 value="role:author,role:title"/>

When a customer enters a search query in this part of the site, ATG Search searches only these two
properties. The search is faster, returning fewer but more relevant results.

Setting the docProps and textProps Properties

The QueryRequest class has docProps and textProps properties that specify lists of the metadata and
text properties to include in the response. If a property is specified in one of these lists, its values are
included in the search results that are returned. This simplifies displaying these values in JSPs, since
otherwise you’d need to retrieve them from the indexed repository.

The textProps property is an array listing the text properties to return. The names must include the
role: prefix. For example, you might set textProps like this:

textProps+=role:longDescription,role:parentCategory.displayName

A T G S e a r c h Q u e r y G u i d e

1 5

3 - S e a r c h F o r m H a n d l e r s

μ
The docProps property is an array listing the metadata properties to return. For example, you might set
docProps like this:

docProps+=childSKUs.color,childSKUs.salePrice

If you want to return all of the metadata properties in the index, you can set docProps to the special
keyword all, rather than specifying the properties individually. For example:

docProps=all

Setting Grouping Options

If you index your product catalog by SKU, each result returned from a query represents an individual SKU.
This means some products may appear multiple times, because the query may match multiple SKUs for
an individual product.

If you want to return each product only once, you can group the results by product ID. ATG Search will
return a single result for each unique product ID.

To enable grouping, you set the sorting property of the QueryRequest component to property (to
enable grouping by property), and set the sortProperty to the index property to group by. For
example:

sorting=property

sortProperty=string:$repositoryId:1

Note that in spite of their names, these QueryRequest properties control grouping, not sorting.

The format for the value of sortProperty is:

data-type:index-property:default-value

In the example above, the property is $repositoryId, which means the repository ID of the top-level
item type in the IndexingOutputConfig definition file. The top-level item type is the product item, so
the product ID is used as the grouping property. If a product ID value cannot be found for an item in the
index, the default value (in this example, 1) is used for that item instead.

If you are using faceted search, you should also set the refineCount property to group, so the
refinement counts reflect the number of products in each facet selection, rather than the number of SKUs:

refineCount=group

For more information about refinement counts in faceted search, see About Refinement Counts.

Setting the Parser Options

The QueryRequest class has a parserOptions property for specifying natural language processing
options. These options are encoded as XML in the search request. To simplify the coding of your pages,
the parserOptions property is set to a component of class

A T G S e a r c h Q u e r y G u i d e

1 6

3 - S e a r c h F o r m H a n d l e r s

μ
atg.search.routing.command.search.ParserOptions; rather than constructing the XML directly,
you specify the options by setting properties on this component, in either a properties file or a JSP. When
a query is issued, the ParserOptions component takes care of constructing the XML and including it in
the input sent to ATG Search.

The following is an example of setting a property of the ParserOptions component in a JSP:

<p>Maximum expansions: <dsp:input type="text"

 bean="${FH}.searchRequest.parserOptions.wildcardMax"/>

You can also specify the XML directly by setting the xml property of the ParserOptions component. This
is useful if you want to initialize the XML in a properties file. For example:

xml=<parserOptions><language>en_US</language></parserOptions>

For information about the natural language processing options and their possible values, see the ATG
Search Query Reference Guide.

Setting Constraint Properties

The QueryRequest object has several properties that point to components of class
atg.search.routing.command.search.DocumentSetConstraint (or one of its subclasses). These
components represent query constraints, which are encoded as XML in the search request. The XML can
be quite complex , often with many levels of nested tags.

For example, suppose you want to specify the following constraint through the
QueryRequest.documentSetConstraints property:

<and>

 <strprop op="equal" name="childSKU.color">

 rose

 </strprop>

 <numprop op="lesseq" name="childSKU.price">

 30.00

 </numprop>

</and>

This constraint limits search results to products whose childSKU.color property has a value of rose
and whose childSKU.price property has a value less than or equal to 30.00. (These properties may have
multiple values, since products can have multiple SKUs, but as long as one of the values of
childSKU.color is rose and one of the values of childSKU.price is less than or equal to 30.00, the
constraint is satisfied.)

To specify this constraint, you could create a component of class
atg.search.routing.command.search.XmlDocumentSetConstraint and set its xmlConstraint
property to:

A T G S e a r c h Q u e r y G u i d e

1 7

3 - S e a r c h F o r m H a n d l e r s

μ
<and>\

 <strprop op="equal" name="childSKU.color">\

 rose\

 </strprop>\

 <numprop op="lesseq" name="childSKU.price">\

 30.00\

 </numprop>\

</and>

Then set QueryRequest.documentSetConstraints to this component. For example.:

documentSetConstraints=/MyStuff/MyConstraints

Assembling the Constraint using Components

Specifying the XML directly is useful for initializing constraints, but it is not very flexible, because it doesn’t
allow you to modify the XML dynamically in JSPs. Therefore, the ATG platform also includes a number of
subclasses of DocumentSetConstraint that allow you to specify elements of the XML as individual
properties. When a query is issued, these constraint classes take care of constructing the XML and
including it in the input sent to ATG Search.

To construct the constraint shown above, you’d create components of the DocumentSetConstraint
subclasses StringConstraint, NumericConstraint, and ConstraintsGroup, from the
atg.search.routing.command.search package.

To specify the first part of the constraint, create a StringConstraint component named
/MyStuff/MyStringConstraint and set these properties:

property=childSKU.color

operation=equal

value=rose

To specify the second part, create a NumericConstraint component named
/MyStuff/MyNumericConstraint and set these properties:

property=childSKU.price

operation=lesseq

value1=30

Now combine the two parts by creating a ConstraintsGroup component named
MyConstraintsGroup and setting these properties:

operation=and

constraints=/MyStuff/MyStringConstraint,/MyStuff/MyNumericConstraint

Set the QueryRequest.documentSetConstraints property to MyConstraintsGroup:

documentSetConstraints=/MyStuff/MyConstraintsGroup

A T G S e a r c h Q u e r y G u i d e

1 8

3 - S e a r c h F o r m H a n d l e r s

μ
This approach makes it possible to modify the constraints dynamically in JSPs. For example:

<dsp:select bean="/MyStuff/MyStringConstraint.value">

 <dsp:option value="rose">rose</dsp:option>

 <dsp:option value="mauve">mauve</dsp:option>

 <dsp:option value="gray">gray</dsp:option>

 <dsp:option value="purple">purple</dsp:option>

 <dsp:option value="cobalt">cobalt</dsp:option>

</dsp:select>

Processing the Request and Response
The form handlers include three properties for specifying components for preprocessing the search
request and postprocessing the response:

searchRequestProcessors
An array of Nucleus components for preprocessing the search request before it is
submitted. Each component in the array must be of a class that implements the
atg.search.formhandlers.SearchRequestProcessor interface.

searchResponseProcessors
An array of Nucleus components for postprocessing the search response after it is
received. Each component in the array must be of a class that implements the
atg.search.formhandlers.SearchResponseProcessor interface.

searchRedirectProcessors
An array of Nucleus components for determining the URL to redirect to, depending on
the search results. Each component in the array must be of a class that implements the
atg.search.formhandlers.SearchRedirectProcessor interface.

Note that the /atg/commerce/search/catalog/QueryFormHandler component is configured to use
the /atg/search/repository/FacetSearchTools component as a request preprocessor and
postprocessor. This component is of class
atg.commerce.search.refinement.custom.CustomCatalogFacetSearchTools, which
implements all three interfaces listed above.

Catalog Constraints

As mentioned above, /atg/commerce/search/catalog/QueryFormHandler component is configured
to use the /atg/search/repository/FacetSearchTools component as a request preprocessor and
postprocessor. In addition to faceted search-related processing (described in Issuing Faceted Search
Queries), the FacetSearchTools component manages catalog constraints for all queries, not just
faceted search queries.

By default, when a user enters a search query, FacetSearchTools checks the user’s profile to see if he or
she is assigned a catalog. If so, FacetSearchTools constrains the search to include only items in this
catalog.

A T G S e a r c h Q u e r y G u i d e

1 9

3 - S e a r c h F o r m H a n d l e r s

μ
This behavior may not be desirable in certain situations. In a multisite environment that has a separate
catalog for each site, this logic may interfere with cross-site searches, because the search will be
constrained to a single catalog (and thus a single site). To prevent applying a constraint based on the
catalog assigned to the user, set the queryByCatalog property of the FacetSearchTools component
to false.

If queryByCatalog is false, you can still have FacetSearchTools constrain queries to specific catalogs
by setting its catalogIds property to an array of the catalog IDs of the catalogs to include in the search.
For example:

catalogIds=masterCatalog,homeStoreCatalog

Note that if catalogIds is not null, the value of queryByCatalog is ignored. In this case, even if
queryByCatalog is true, the catalog assigned to the user is ignored and the catalogs in the catalogIds
property are used for the catalog constraint.

Specifying a Price List in the Search Request
If your ATG Commerce catalog uses price lists, a single item may have multiple prices. A customer is
assigned a price list, and when that customer accesses a product or SKU, ATG Commerce looks up the
item’s price in that price list. Another customer looking at that same item might see a different price, if
that customer is assigned a different price list.

The Indexing Price Data in Price Lists section of the ATG Search Administration Guide describes how to create
a special price property to represent the price data stored in price lists, using the
/atg/commerce/search/PriceListPropertyProvider component. When you index your catalog,
the item prices are read from the price lists and used to construct meta tags in the XHTML documents. A
separate meta tag is created for each price list, and the property name in the tag identifies the price list
the tag is associated with.

When the index is queried, the search client must determine which price list is assigned to the customer
issuing the query, and map the price property to the meta tag associated with that price list. To do this,
the search client determines which user profile properties identify the assigned price lists, and checks the
value of those properties to determine the price lists to use. It then creates a property mapping between
the price property in the indexing definition file and the price properties in the index associated with
those price lists.

Creating the Property Mapping

When a search query is issued, the /atg/commerce/search/PriceListPropertyMapping component
creates the property mapping dynamically, based on the user’s profile and other settings that you specify
through the following properties of the component:

price
The name of the price property created in the PriceListPropertyProvider
component. The default is price.

A T G S e a r c h Q u e r y G u i d e

2 0

3 - S e a r c h F o r m H a n d l e r s

μ
priceLists
An ordered array of the profile properties that specify price lists assigned to the user.
The order of the properties determines the order of precedence when querying the
search index. The default is priceList.

pricePropertyPrefix
The prefix for the price property in the XHTML document. This must match the prefix
specified in the pricePropertyPrefix property of the
PriceListMapPropertyAccessor component. The default is childSKUs.price@.

The PriceListPropertyMapping component constructs the propertyMapping tag and sets the value
of the PriceListPropertyMapping .priceMapping property to this tag. For example,
PriceListPropertyMapping might set priceMapping to:

<propertyMapping>

 price,childSKUs.price@pl90002,childSKUs.price@pl90004

</propertyMapping>

To include the propertyMapping tag in the search request, set the propertyMappings property of the
/atg/commerce/search/ProductCatalogParserOptions component by linking to the value of the
PriceListPropertyMapping .priceMapping property:

propertyMappings^=\

 /atg/commerce/search/PriceListPropertyMapping.priceMapping

This maps the price property in the query to the childSKUs.price@pl90002 and
childSKUs.price@pl90004 properties in the index. The index properties are listed in order of
precedence. When the query is executed, ATG Search looks for the childSKUs.price@pl90002 property
for an item. If there is a property by that name, ATG Search uses the value of that property. If there is no
childSKUs.price@pl90002 property (which means that price list pl90002 does not have a price for the
item), it uses the price from the childSKUs.price@pl90004 property. So for example, if pl90002
contains sale prices and pl90004 contains list prices, ATG Search uses the sale price if there is one, and
otherwise uses the list price.

Specifying a Default Price List

If a user is not assigned a price list, constraints and facets based on price will not work properly for that
user. This is generally not an issue for actual site customers, who should all have price lists assigned to
them in their profiles, but it may affect internal users testing the site.

You can specify a default price list for users who are not assigned price lists in their profiles. To do this, set
the defaultPriceListId property of the PriceListPropertyMapping component to the price list ID
of the price list you want to use as the default. For example:

defaultPrice=pl90002

A T G S e a r c h Q u e r y G u i d e

2 1

3 - S e a r c h F o r m H a n d l e r s

μ
Invoking Multiple Form Handlers

Some sites may need to make multiple repositories available for searching. For example, suppose your
site has, in addition to a product catalog, a repository with informational articles about the products.
When a user searches for, say, mountain bikes, you want to return both products and articles. You could
enable this by creating a single index that includes items from both repositories, and returning both types
of items in the same set of results.

If, however, you want products and articles to appear as separate sets of results, displayed on different
areas of the page, then including them in the same index is not desirable. Instead, you can create separate
indexes for the two repositories, and use two form handler instances that submit the same query text
simultaneously to the two indexes.

To invoke multiple form handlers simultaneously, you use a component of class
atg.search.formhandlers.MultipleSubmitHelper. This is a special form handler class that invokes
multiple QueryFormHandler components, using the same query text for all of them.

You configure a MultipleSubmitHelper component by setting its queryFormHandlers property to an
array of the QueryFormHander components you want to invoke. For example, the
/atg/search/formhandlers/MultipleSubmitHelper component (used by the QueryConsole
sample application) is configured like this:

queryFormHandlers=/atg/search/formhandlers/QueryFormHandler1,\

 /atg/search/formhandlers/QueryFormHandler2

In your JSP, you create the search form as shown in the following example:

<%-- create the query text input field and associate it with the --%>

<%-- handleQuestion method of the MultipleSubmitHelper component --%>

<dsp:input type="text" id="question" size="30" converter="nullable"

 name="question" bean="MultipleSubmitHelper.question"/>

<%-- create the submit button and associate it with the handleSearch --%>

<%-- method of one of the QueryFormHandler components --%>

<dsp:input type="submit" bean="QueryFormHandler1.search" value=" Search "

 action="multiquerysubmit.jsp" priority ="-100"/>

<%-- create a hidden field on the other QueryFormHandler components --%>

<dsp:input type="hidden" bean="QueryFormHandler2.search" value=" Search "

 action="multiquerysubmit.jsp" priority ="-100"/>

Handling Results
The QueryRequest class has an inner Response class that stores the results returned for the query. The
value of the searchResponse property of the form handler that issued the query is set to this Response
object, so you can display the query results in JSPs. For example, the following JSP fragment creates a

A T G S e a r c h Q u e r y G u i d e

2 2

3 - S e a r c h F o r m H a n d l e r s

μ
table that displays several properties of each category in the suggestedCategories List property of the
Response object:

<dsp:getvalueof bean="QueryFormHandler.searchResponse" var="queryResponse"

 scope="request"/>

<table class=data style="width:100%" border=1 cellPadding=5 cellSpacing=0>

 <tr class="alt">

 <td>path</td>

 <td>id</td>

 <td>score</td>

 <td>label</td>

 </tr>

 <c:forEach items="${queryResponse.suggestedCategories}" var="cat">

 <tr>

 <td><c:out value="${cat.path}"/></td>

 <td><c:out value="${cat.id}"/></td>

 <td><c:out value="${cat.score}"/></td>

 <td><c:out value="${cat.label}"/></td>

 </tr>

 </c:forEach>

</table>

Notice that most of the JSP tags in this example are standard JSTL tags, rather than DSP tags, because the
Response object is not a Nucleus component.

Indicating the Number of Results

You can indicate the number of results returned by rendering the value of the search response object’s
groupCount property. For example:

<c:out value="${queryResponse.groupCount}"/>

Note that this value is not affected by paging. It represents the total number of result groups returned by
the search, regardless of the number on any given page. Note that if you are grouping results by property
(see Setting Grouping Options), this number may be smaller than the number of documents returned,
since a group can contain multiple documents.

Handling Repository Items

If the documents being searched represent repository items (such as products or SKUs in a product
catalog), each result returned will contain the URL for the corresponding item. You can use the URL to
display the repository item. For example:

<dsp:getvalueof bean="QueryFormHandler.searchResponse" var="queryResponse"

 scope="request"/>

A T G S e a r c h Q u e r y G u i d e

2 3

3 - S e a r c h F o r m H a n d l e r s

μ
<c:forEach items="${queryResponse.results}" var="result">

 <c:out value="${result.document.url}"/>

 <dsp:droplet name="/atg/targeting/RepositoryLookup">

 <dsp:param name="url" param="${result.document.url}"/>

 <dsp:oparam name="output">

 <dsp:valueof param="element.displayName"/>

 </dsp:oparam>

 </dsp:droplet>

</c:forEach>

Note, however, these URLs will not be recognized unless the repository is registered. To register a
repository, add it to the list of repositories in the initialRepositories property of the
/atg/registry/ContentRepositories component.

A T G S e a r c h Q u e r y G u i d e

2 4

3 - S e a r c h F o r m H a n d l e r s

μ

A T G S e a r c h Q u e r y G u i d e

2 5

4 - P a g i n g S e a r c h R e s u l t s

μ
4 Paging Search Results

An individual search query can return a large number of results. Rather than displaying all of the results on
a single page, you will typically want to break them up into multiple pages, with a certain number of
items per page. Therefore, the query includes properties that you can use to specify the number of items
to include per page and which page to display.

This chapter describes these pagination properties and their effects. It includes the following topics:

Specifying the Page Size

Handling Page Requests

Types of Paging

Modifying and Resubmitting the Request

Specifying the Page Size
You use the pageSize request attributes to specify the number of items per page. For example, if
pageSize=10, the results will include ten items per page.

The following JSP fragment creates a drop-down for selecting a value for the pageSize attribute:

Page Size

<dsp:select bean="${FH}.searchRequest.pageSize">

 <dsp:option value="100">100</dsp:option>

 <c:forEach begin="5" end="35" step="5" var="pageSize">

 <dsp:option value="${pageSize}">

 <c:out value="${pageSize}"/>

 </dsp:option>

 </c:forEach>

</dsp:select>

Handling Page Requests
When you render the initial page of results, you typically want to render links to other pages of results.
Each of these links actually issues a new search query that in most respects is identical to the original

A T G S e a r c h Q u e r y G u i d e

2 6

4 - P a g i n g S e a r c h R e s u l t s

μ
query, but which specifies a different page of results. So paging involves a sequence of connected
requests and responses.

To display a specific page of results, you set the form handler’s goToPage property to a 1-based page
number. The goToPage property has an associated handler method, handleGoToPage. When a user
clicks a link that sets the value of goToPage, the handleGoToPage method issues the search for the
specified page.

To ensure that all of the requests and responses in a sequence of page requests are associated with each
other, the initial query generates a unique String identifier called a request chain token. This identifier is
included in each query in the sequence of requests, and is returned in each response.

There are various paging options available, and the ones you use depend on the needs or your site. The
following options are explained below:

 The type of paging to use: normal paging or fast paging

 Whether to save the request in the search session or not

Types of Paging
ATG Search supports two types of paging, normal paging and fast paging. The key differences between
them relate to the information you get back from the search engine about the number of pages of results,
and the navigation you can build into your pages:

 Normal paging is the default. In this mode, the search engine returns (in the form
handler’s pagesAvailable property) the total number of pages of results. You can
create links that enable the customer to go directly to any page.

 Fast paging is specified by setting the fastPaging property of the search request to
true. In this mode, the search engine does not return information about the total
number of pages of results; pagesAvailable is set to the highest-numbered page
that has been rendered so far. You can enable customers to go to the next page or to
any page previously rendered.

For a single-partition index, normal paging is always enabled (the fastPaging property is ignored). For a
multi-partition index, you can choose between normal paging and fast paging, but fast paging is
recommended. Fast paging is much less resource-intensive than normal paging. On multi-partition
indexes, normal paging can be very memory- and CPU-intensive, because results from the partitions must
be merged.

Example of Normal Paging

The following example renders a list of the page numbers of all pages of results. Each page number is a
link to the corresponding results page, except for the current page number, which is displayed without a
link. For example, if pagesAvailable is 43 and the current page is page 10, this code will render the
integers from 1 to 43, and all of these except 10 will be links. If the user clicks 22, for example, a request to
display page 22 will be issued.

A T G S e a r c h Q u e r y G u i d e

2 7

4 - P a g i n g S e a r c h R e s u l t s

μ
<!-- Indicate that the request should be saved in the search

 session so that initial request data, such as the question

 text, is available to subseqent paged requests. -->

<dsp:input bean="QueryFormHandler.searchRequest.saveRequest"

 value="true" type="hidden"/>

<!-- Display page numbers with links to take user to specified

 page -->

Go to Page:

<c:forEach var="page" begin="1" end="${formHandler.pagesAvailable}">

 <c:choose>

 <c:when test="${page == (1+formHandler.searchResponse.pageNum)}">

 ${page} <!-- The current page, don't display a link -->

 </c:when>

 <c:otherwise>

 <dsp:a href="normal-paging.jsp">

 ${page}

 <dsp:property bean="QueryFormHandler.searchRequest.requestChainToken"

 value="${formHandler.searchResponse.requestChainToken}"/>

 <dsp:property bean="QueryFormHandler.searchRequest.saveRequest"

 value="true"/>

 <dsp:property bean="QueryFormHandler.goToPage" value="${page}"/>

 </dsp:a>

 </c:otherwise>

 </c:choose>

</c:forEach>

Example of Fast Paging

The following example renders a list of the page numbers of the results pages that have been rendered so
far. Each page number is a link to the corresponding results page, except for the current page number,
which is displayed without a link. In addition, the example renders the word “more” as a link to the page
following the current one.

<!-- Turn on fast paging -->

<dsp:input type="hidden" value="true"

 bean="QueryFormHandler.searchRequest.fastPaging"/>

<!-- Indicate that the request should be saved in the search

 session so that initial request data, such as the question

 text, is available to subseqent paged requests. -->

<dsp:input bean="QueryFormHandler.searchRequest.saveRequest"

 value="true" type="hidden"/>

<!-- Shortcut to the response object, which may be null -->

<c:set var="response" value="${formHandler.searchResponse}"/>

A T G S e a r c h Q u e r y G u i d e

2 8

4 - P a g i n g S e a r c h R e s u l t s

μ
<!-- Display page numbers with links to take user to specified

 page -->

<c:if test="${response != null}">

 on page: ${1+response.pageNum}

 Go to Page:

 <c:forEach var="page" begin="1" end="${1+formHandler.pagesAvailable}">

 <c:choose>

 <c:when test="${page == (1+response.pageNum)}">

 ${page} <!-- current page -->

 </c:when>

 <c:otherwise>

 <dsp:a href="fast-paging.jsp">

 <c:choose>

 <c:when test="${page == (1+formHandler.pagesAvailable) &&

 response.multiPartitionSearch &&

 formHandler.searchRequest.fastPaging}">

 more

 </c:when>

 <c:otherwise>

 ${page}

 </c:otherwise>

 </c:choose>

 <dsp:property bean="QueryFormHandler.searchRequest.requestChainToken"

 value="${formHandler.searchResponse.requestChainToken}"/>

 <dsp:property bean="QueryFormHandler.searchRequest.saveRequest"

 value="true"/>

 <dsp:property bean="QueryFormHandler.goToPage" value="${page}"/>

 </dsp:a>

 </c:otherwise>

 </c:choose>

 </c:forEach>

</c:if>

Modifying and Resubmitting the Request
Since subsequent requests differ only in the requested page of results, it is most efficient just to retrieve
the most recent search request, change the value of the goToPage property, and resubmit the request.
There are two ways to do this:

 Modify properties on the form, and resubmit it. This avoids the memory use required
to save the request in the SearchSession. The downside is that resubmitting the
form is difficult if you are creating your links through anchor tags. In that case, it is
generally easiest to write a JavaScript function that makes the necessary changes and
submits the form.

 Save the request in the SearchSession. This allows you to retrieve the request,
modify it, and reissue it; no JavaScript is necessary. The downside is that this approach

A T G S e a r c h Q u e r y G u i d e

2 9

4 - P a g i n g S e a r c h R e s u l t s

μ
can use a lot of memory, especially if there are many users at your site issuing search
queries.

Note that resubmitting a modified request is useful for faceted search as well as for paging.

Example of Resubmitting the Form

If you do not want to save the request in the SearchSession, you will need to resubmit the form. Create
a JavaScript function like this:

function nextPage(pageNum, requestChainToken)

{

 document.searchForm.requestChainToken.value = requestChainToken;

 document.searchForm.goToPage.value = pageNum;

 document.searchForm.submit();

 return false;

}

You can then invoke the function when the user clicks on a link for a specific page:

<a href="#" onclick="return nextPage('<%=pageValue.toString()%>',

 '${formHandler.searchResponse.requestChainToken}');">

 <dsp:valueof param="count"/>

When the link is clicked, the page number associated with the link and the requestChainToken of the
current search response are passed to the function. The function uses these values to set the goToPage
property and the requestChainToken property of the form, which it then submits. In addition to
specifying the results page to display, this ensures that the same requestChainToken value is associated
with each subsequent search request.

Example of Saving the Request in the SearchSession

If you save the request in the SearchSession, you can avoid the use of JavaScript. Instead, when a user
clicks on a link for a page, you set the necessary properties (including the saveRequest property) on the
saved request through dsp:property tags, and then resubmit the request:

<dsp:a href="queryExampleFastSave.jsp#Paging">

 <dsp:valueof param="count"/>

 <dsp:property bean="QueryFormHandler.goToPage" paramvalue="count"

 name="fh_gtp" priority="29"/>

 <dsp:property bean="QueryFormHandler.searchRequest.saveRequest"

 value="true" name="fh_sr" priority="30"/>

 <dsp:property

 bean="QueryFormHandler.searchRequest.requestChainToken"

A T G S e a r c h Q u e r y G u i d e

3 0

4 - P a g i n g S e a r c h R e s u l t s

μ
 value="${formHandler.searchResponse.requestChainToken}"

 name="fh_rct" priority="30"/>

</dsp:a>

The examples of normal paging and fast paging in the Types of Paging section use this approach.

A T G S e a r c h Q u e r y G u i d e

3 1

5 - I m p l e m e n t i n g T y p e - A h e a d f o r S e a r c h e s

μ
5 Implementing Type-Ahead for

Searches

ATG Search supports a type-ahead feature that attempts to automatically complete the query text as the
user enters it in a search form. As the user types in the text box, a drop-down list is displayed listing
possible query text that matches the characters entered. For example, if the user types “bla”, the
dropdown may display “black”, “bland”, and “blank”. If the user then types “n”, the dropdown now
displays only “bland” and “blank”, because the typed substring no longer matches “black”. At any point,
the user can select a text string from the dropdown, and it will be entered in the text box. The user can
then click the submit button to issue a query with the selected text, or can ignore the dropdown and type
in the complete text to search for.

Implementing type-ahead involves creating two pages:

 A type-ahead page for submitting type-ahead queries and rendering the returned
autocomplete strings.

 A search page containing an instance of QueryFormHandler, which is used to
construct the search form and issue queries against (typically) catalog data. This page
also includes a JavaScript autocompleter function that uses AJAX to render the type-
ahead page, populate the drop-down list with the results, and fill in the text box with
the user’s selection.

Note that the type-ahead data and the catalog data are included in the same index, so an additional
search engine instance is not required. However, using separate indexes (and therefore separate search
engine instances) is highly recommended for performance reasons.

The examples in this section use the Ajax.Autocompleter function from the script.aculo.us open source
JavaScript library. For information about this library, see:

http://script.aculo.us

You can use an autocompleter function from a different JavaScript library instead, though you might then
need to implement a different servlet bean or form handler to use on the type-ahead page.

The WAR file for the QueryConsole sample application includes the script.aculo.us JavaScript files. The
WAR file is located at:

<ATG10dir>/DAF/Search/Base/QueryConsole/web-apps/queryconsole.war

This chapter includes the following sections:

A T G S e a r c h Q u e r y G u i d e

3 2

5 - I m p l e m e n t i n g T y p e - A h e a d f o r S e a r c h e s

μ
Creating the Type-Ahead Page

Creating the Search Page

For information about configuring ATG Search to use type-ahead data, see the ATG Search Administration
Guide.

Creating the Type-Ahead Page
The type-ahead page is a JSP that is rendered periodically as the user types text in the search box. The
frequency of rendering the page is controlled by the JavaScript autocompleter function, which typically
polls for changes several times a second.

The following is an example of a type-ahead page that uses the
atg.search.formhandlers.TypeAheadDroplet. This servlet bean submits a request of class
atg.search.routing.command.search.TypeAheadRequest and then renders the results. Most of the
input parameters for the servlet bean are passed into the page as query parameters when the page is
posted by the JavaScript function.

<dsp:page>

<dsp:droplet name="/atg/search/formhandlers/TypeAheadDroplet">

 <dsp:param bean="/atg/search/formhandlers/SearchContext" name="context"/>

 <dsp:param name="text" param="q"/>

 <dsp:param name="environment" param="environment"/>

 <dsp:param name="language" param="language"/>

 <dsp:oparam name="itemformat">

 <dsp:valueof param="match"/>

 </dsp:oparam>

</dsp:droplet>

</dsp:page>

Creating the Search Page
On the search page, you include a <div> element in the search form to provide a hook for associating the
type-ahead drop-down list with the search text input:

<p>Search for: </p>

<dsp:input type="text" id="question" size="30" converter="nullable"

 name="question" bean="QueryFormHandler.searchRequest.question"/>

<div id="autocomplete_choices" class="autocomplete"></div>

A T G S e a r c h Q u e r y G u i d e

3 3

5 - I m p l e m e n t i n g T y p e - A h e a d f o r S e a r c h e s

μ
The page also needs JavaScript to call the autocompleter function. The example below creates a
JavaScript function called buildQueryCallback, which constructs the URL (including query parameters)
for rendering the type-ahead page. The example also creates a JavaScript function called AutoComp,
which is executed when the page loads. The AutoComp function:

 Calls the Ajax.Autocompleter function with arguments that associate it with the
text field and <div> element in the search form shown above.

 Renders the type-ahead page using the URL constructed by the
buildQueryCallback function, adding a query parameter q whose value is the string
currently in the text box.

<script language="Javascript">

function buildQueryCallback(element, entry) {

 entry += "&environment=commerce";

 entry += "&language=english";

 return entry;

}

function AutoComp() {

 var myAutoCompleter1 = new Ajax.Autocompleter('question',

 'autocomplete_choices', 'testtypeget.jsp' , {frequency: 0.2,

 callback: buildQueryCallback, paramName: "q" });

}

document.onload = AutoComp();

</script>

For example, if the user types “fla”, the URL constructed is:

testtypeget.jsp?q=fla&environment=commerce&language=english

The query parameters are used to set the input parameters of the TypeAheadDroplet on the type-ahead
page.

A T G S e a r c h Q u e r y G u i d e

3 4

5 - I m p l e m e n t i n g T y p e - A h e a d f o r S e a r c h e s

μ

A T G S e a r c h Q u e r y G u i d e

3 5

6 - U s e r - E n t e r e d O p e r a t o r s

μ
6 User-Entered Operators

Customers using your search page can by default include operators that can modify how ATG Search
interprets query terms. Depending on your customers’ level of knowledge, you may want to provide them
with information on how to use these operators, or prevent them from using the operators.

This chapter includes the following sections:

Literal Operator

Required Terms

Excluded Terms

Case Restriction

Wildcards

Regular Expressions

Number Ranges

Operator Combinations

Fielded Search Operators

Literal Operator
If a single word is surrounded by double-quotes (for example, “books”), ATG Search interprets this as a
literal constraint, meaning that the user wants the query term to match that word form and nothing else.
Note that double-quotes do not enforce an alphabetic case match.

Double-quotes disable term expansion for the quoted term, meaning that the term can only match the
same index term. Double-quotes also require that the morphological information of the query term be
identical to the retrieved index term. For example, the term “books” is the index term book plus a +s suffix,
so the query will retrieve results with the index term book, but it will filter those that do not have the +s
suffix.

If a sequence of terms is quoted (for instance, “book clubs”), the terms are required to appear in the same
order in the retrieved result as they do in the query, and to be adjacent to each other. For example, the
quoted string “book clubs” would mean the following:

 book must not be expanded and must match only this form of book, equivalent to the
double-quoted query of “book”

A T G S e a r c h Q u e r y G u i d e

3 6

6 - U s e r - E n t e r e d O p e r a t o r s

μ
 clubs must not be expanded and must match only this form of club, equivalent to the

double-quoted query of “clubs”

 book and clubs must appear in that order in the retrieved result

 book and clubs must be next to each other

For the adjacency constraint, intervening stop-words or punctuation do not count. For example, book –
clubs and book a clubs would satisfy the example query.

Required Terms
The operators described in the following sections can be used to require a search term to appear in the
sentence or document result.

Required in Statement

By default, not all of the terms in a query are required to be in the statement result (Boolean OR). To
require that a search term appear in the statement result, users can use the operator +. The + operator
must immediately precede the query term, with no intervening white space, and there must be white
space before the + operator, as in:

book +clubs

Note that since ATG Search applies morphology and term expansion by default, the + operator applies to
the explicit query index term plus all of its expansions. In order to require a literal term in the statement
results, use the double-quote operator with the + operator, as in the following example:

book +"clubs"

If the query includes multiple terms with the + operator, all of them must appear in each statement result.

Required in Document

The special operator ++ requires a term to appear in the document results, but not necessarily the
sentence results. This is useful if a user wants to constrain the search to documents about a term, yet not
require that the sentence results from those documents contain the term. The ++ operator must
immediately precede the query term, with no intervening white space, and there must be white space
before the ++ operator, as in:

book ++clubs

Note that since ATG Search applies morphology and term expansion by default, the ++ operator applies
to the query index term plus all of its expansions. To require a literal term in the document results, the
query can use the double-quote operator with the ++ operator, as in:

book ++"clubs"

A T G S e a r c h Q u e r y G u i d e

3 7

6 - U s e r - E n t e r e d O p e r a t o r s

μ
Multiple terms with the ++ operator form a Boolean AND of those terms; all of them must appear in the
documents of each result.

The operator +| requires a term to appear in the document results, but not necessarily the sentence
results, in the same way as the ++ operator. Unlike the ++ operator, however, multiple terms with the +|
operator form a Boolean OR; at least one of them must appear in the documents of each result. This is
useful for situations where there are alternative terms that reflect the overall content that the user wishes
to search within.

Note that a single query can have terms that use each of these operators. First, the terms with the ++
operator are used to constrain the document candidates to those which contain all of these terms. Next,
the terms with the +| operator are also used to further constrain the document candidates to those which
contain one of these terms. Finally, the terms with the + operator are used to restrict the sentence results
to those that contain these terms.

Excluded Terms
Users can eliminate undesired search results by using ! and !! to exclude terms, in effect a Boolean NOT.

Excluded in Statement Results

The operator ! requires that a term not appear in the statement results. The ! operator must immediately
precede the query term, with no intervening white space, and there must be white space before the !
operator, as in:

clubs !book

Because ATG Search applies morphology and term expansion by default, the ! operator applies to the
query index term plus all of its expansions. To require a literal term not to appear in the statement results,
use the double-quote operator with the ! operator, such as

clubs !"book"

Note: Other search engines use the - operator, but this operator can be mistaken for a hyphen; therefore
ATG Search uses the exclamation mark, also a common symbol for a NOT operator.

Excluded in Document Results

The operator !! requires a term not to appear in the document results, and therefore all of the sentence
results. This is useful if a user wants to exclude documents with a term from the search, no matter where
they appear in those documents. The !! operator must immediately precede the query term, with no
intervening white space, and there must be white space before the !! operator, as in:

clubs !!book

A T G S e a r c h Q u e r y G u i d e

3 8

6 - U s e r - E n t e r e d O p e r a t o r s

μ
Since ATG Search applies morphology and term expansion by default, the !! operator applies to the
original query index term plus all of its expansions. To exclude a literal term from the document results,
use the double-quote operator with the !! operator, as in:

clubs !!"book"

Case Restriction
ATG Search interprets single quotes as a constraint on the case of the terms inside the quotes. ATG Search
characterizes each query term into three types of case:

 Upper—All upper-case letters

 Lower—All lower-case letters

 Mixed—Both upper and lower-case letters

Mixed includes the common title case (for example, The) as well as non-standard case forms, such as iPod
and NeXT. If a query term is single-quoted, then it is constrained to retrieve only index terms that match
its case. For example, a query with ‘IT’ will only retrieve results with the index term it in upper case.

Wildcards
A wildcard (*) is treated as a character pattern that matches many index terms at once. ATG Search uses
asterisks in a term to denote a wildcard, where the asterisk can match zero or more other characters. At
least one other non-asterisk character must appear in the query term. The wildcard can be used in the
following ways:

 At the end of the term. For example, book* matches any index term that begins with
the substring book, such as book, books, booking, and bookshelf.

 At the beginning of the term, such as with *desk, which matches terms such as desk,
workdesk, and computerdesk.

 Within a term, such as inst*ion, which matches index terms such as installation and
institution.

 Multiple wildcards, such as *install*, match any index term with install in the middle.

Wildcards are a form of term expansion, because a single query term is replaced with alternative terms.
But in this case, the expansions are not from a thesaurus, but based solely on the characters of the terms
in the index and the wildcard pattern.

Note: Wildcard patterns expand to index terms, not to morphological forms of words, so the results are
not always obvious. For example, *desk expands to workdesk, which retrieves all forms of workdesk,
including workdesks, which doesn’t really match the wildcard pattern due to the trailing s. This behavior is
by design and consistent with the rest of ATG Search’s query handling and search results. Users should
understand that the wildcards are matching against the dictionary of index terms, not literally across the
document text.

A T G S e a r c h Q u e r y G u i d e

3 9

6 - U s e r - E n t e r e d O p e r a t o r s

μ
Wildcards can expand to hundreds or thousands of index terms with patterns like s*. To prevent
slowdowns and poor search results, ATG Search limits the number of expansions a wildcard can produce.
This limit is configurable, as described in the wildCardMax section of Appendix B: Search XML Reference.
The limit defaults to 20.

Regular Expressions
ATG Search uses a common regular expression pattern syntax consisting of the following operand types:

Operand Description

. Match any character

x Match character x

\x Match character x, which might otherwise have special meaning to the syntax, such as
+, *, ?, (,), and /.

[set] Match any character belonging to the given set, where hyphens denote a range

[^set] Match any character that does not belong to the given set, where hyphens denote a
range

The language allows each operand to have an optional operator immediately following it:

Syntax Description

operand? Match zero or one of the operand

operand* Match zero or more of the operand

operand+ Match one or more of the operand

The language allows operands and operators to be grouped by parentheses to form a larger operand,
which also can take operators.

To use a regular expression in a query, it must be denoted as shown:

re/regexp/

For efficiency, ATG Search requires that the regexp pattern must contain at least one non-optional, non-
negative operand, which means either a literal (non-.) character or a [set] operand without a * or ?
operator.

A T G S e a r c h Q u e r y G u i d e

4 0

6 - U s e r - E n t e r e d O p e r a t o r s

μ
For example, book.* is a wildcard term that matches any index term that starts with the sub-string book,
such as book, books, booking, and bookshelf. An example of a set operand, the pattern r[oa]m will match
the index terms rom and ram only.

Regular expressions are a form of term expansion, because a single query term is replaced with a
disjunction of alternative terms. But in this case, the expansions are not from a thesaurus, but based solely
on the characters of the terms in the index and the regexp pattern.

Note: The regexp patterns expand to index terms, not to morphological forms of words, so the results
are not always intuitively obvious. For example, .*desk expands to workdesk, but this could retrieve all
forms of workdesk, including workdesks, which doesn’t really match the regexp pattern due to the trailing
s. This behavior is by design, since it makes it consistent with the rest of ATG Search’s query handling and
search results. Users must understand that the regular expressions are matching against the ATG Search
dictionary of index terms, not literally across the text of the collection.

Regular expressions can expand to hundreds or thousands of index terms with patterns like s.*. To
prevent slow searching and poor results, ATG Search limits the number of expansions a regular expression
can produce. This limit is configured by the wildCardMax described in Appendix B: Search XML
Reference. The default is 20.

Number Ranges
A number range is a query term that is treated as a numeric pattern that matches many index terms at
once. ATG Search defines a number range as two numbers, separated by two periods, with no spaces (i..j).
The first number is the minimum value, and the second number is the maximum value of the range. Any
numeric index term that falls between the first and second numbers inclusively is retrieved. Integers and
real numbers are not distinguished. For example, the number range 5..8 returns 6, 5.7, and 8.0.

Number ranges can be viewed as a form of term expansion, because a single query term is replaced with a
disjunction of alternative terms. Note that only numbers that appear in the collection are considered for
these ranges. There is no limit to the number of included numbers.

Operator Combinations
Some query operators can be combined on a single term; others cannot, while some must be combined
in a certain order. This section explains how to combine operators.

Natural language query terms can use the Boolean operators plus both quoted strings, as shown below.
The Boolean operators must appear first, with no white space after them. Only one Boolean operator is
allowed per term. The single quote operator can appear next, surrounding the term and optional double-
quote operators. The double-quote operators are innermost.

[+,!,++,+|,!!][']["]term["][']

A T G S e a r c h Q u e r y G u i d e

4 1

6 - U s e r - E n t e r e d O p e r a t o r s

μ
A wildcard query term can use the Boolean operators and only the single quote operator, as shown
below. The double quote operator denotes a literal match constraint and therefore conflicts with the
wildcard pattern operator.

[+,!,++,+|,!!][']wildcard[']

A number range query term can use only the Boolean operators, as shown below. The number range is a
pattern and conflicts with the double quote operator. Because numbers do not have case, the single
quote operator is not applicable.

[+,!,++,+|,!!]i..j

Fielded Search Operators
ATG Search stores features on each sentence term vector which represent different regions, also called
zones or fields, of the text content. The search can be restricted to certain fields, therefore this
functionality is called fielded search. Normally, the user interface would expose the controls for fielded
search, which are passed as parameters. However, ATG Search also provides special query operators for
specifying the fields within the query input. The operator syntax is:

zones:field,field,...

fields:field,field,...

The zones operator controls which fields are searched for normal unstructured content, and corresponds
to the /activeSentenceZones setting (see the Search Fields section). By default, ATG Search searches
only the body of the unstructured content, which has a field name of doc. However, unstructured content
also has two other fields: a title field (named role:title) and a URL field (named role:url). The title
field typically represents the metadata title element, such as the <title> element of HTML. The URL field
is a special field that contains the words of the URL of the index item. The following shows how to search
all three fields, plus each of the special fields individually:

zones:doc,role:title,role:url rest_of_query

zones:role:title rest_of_query

zones:role:url rest_of_query

The fields operator controls which fields are searched for structured content, and corresponds to the
/activeSolutionZones setting (see the Search Fields section). By default, ATG Search searches only the
goal, symptom, and id fields of the structured solution content, which have field names of
role:goal,role:symptom,role:id.

However, structured content can have an unlimited number of fields, depending on the extracted
structured content. Structured content does not necessarily have a title or URL field like unstructured
content, but it can if its structured representation contains them. The following shows how to search on
six fields for typical solution content, plus a search on just the goal and just the ID:

A T G S e a r c h Q u e r y G u i d e

4 2

6 - U s e r - E n t e r e d O p e r a t o r s

μ
fields:role:goal,role:symptom,role:fact,role:fix,role:cause,role:change,

rest_of_query

fields:role:goal rest_of_query

fields:role:id rest_of_query

A T G S e a r c h Q u e r y G u i d e

4 3

7 - C o n s t r a i n i n g Q u e r i e s

μ
7 Constraining Queries

ATG Search queries can include constraints, which limit the search space within the index. This chapter
describes the following topics:

Document Set Constraints

Collection Constraints

Property Constraints

Index Item Constraints

Combining Query Constraints

Weighted Metadata Preference Expressions

Query Refinements

Document set and item constraints can be arbitrarily combined into a single Boolean expression of
individual constraints. Documents that satisfy the Boolean expression are accessible for searching;
documents that do not satisfy the expression are inaccessible.

ATG Search uses XML to represent the query constraint expressions. Constraints are included in a query
through the expression tag and its subtags (see the Combining Query Constraints section of this
chapter for XML details). If you want to give your customers access to this feature, you must include the
appropriate controls in the form handler.

The XML is constructed programmatically. Constraints can also be configured using metadata or query
rules; see the ATG Search Administration Guide for information on these methods.

Document Set Constraints
A document set is a collection of source index items that are indexed and deployed together. Document
sets can represent directories, metadata, or item categorization. During a query, ATG Search can restrict
its search to a particular document set or a document set and all its child sets.

The subdirs attribute determines whether child sets are included (true) or excluded (false). The
docset_path is the pathname for the document set, beginning with an initial forward slash denoting the
root.

The XML representation for this constraint is:

A T G S e a r c h Q u e r y G u i d e

4 4

7 - C o n s t r a i n i n g Q u e r i e s

μ
<set subdirs="true|false">docset_path</set>

For example, the following XML constrains the search to documents that are included in the
/Meta/fall_styles/shoes document set and its subdirectories:

<set subdirs="true">/Meta/fall_styles/shoes</set>

In ATG Search, there are four root paths:

 /Documents – Physical directories of unstructured content

 /Solutions – Physical directories of structured content

 /Topics – Virtual directories for categorization results

 /Meta – Virtual directories for metadata

Collection Constraints
Collection constraints function much like document sets, and are ideal for use in B2B environments,
where catalog-based document sets can be numerous enough to slow searching. Collections do not
include hierarchies and cannot be browsed, but are a simple switch that indicates whether a given
document is part of the collection.

<collection>/Meta/name/value</collection>

In order to use collection constraints, index your content with store-as-collection=true in the
IndexingOutputConfig component.

Property Constraints
ATG Search represents index item metadata as properties stored with the index item. During a query, ATG
Search can restrict its search to items with certain property values. Numeric property values can be tested
for equality, less-than, and greater-than; string property values can test for sub-string matches; and both
types can be tested for range matches. The XML representation for these constraints is:

<prop type="type" name="name" op="str_op|num_op" case="true|false">value

</prop>

<strprop name="name" op="str_op" case="true|false">value</strprop>

<numprop name="name" op="num_op" >value</numprop>

The constraints are:

A T G S e a r c h Q u e r y G u i d e

4 5

7 - C o n s t r a i n i n g Q u e r i e s

μ
 type—One of six possible property types, enum, string, float, integer, boolean

and date. Note that for properties of type boolean, the value must be provided as a 1
or 0. For example:

<prop type="boolean" name="onSale">1</prop>

The strprop constraint is equivalent to the type values of enum and string, and the
numprop constraint is equivalent to the other four type values.

 name —The name of the property.

 value —The operand value for the constraint.

 op —Contains the comparative operator for the constraint, which defaults to equal.

All constraints allow the following operators:

 equal—The index item must have a property value equal to the operand

 greater—The index item must have a property value greater than the operand

 greatereq—The index item must have a property value greater than or equal to the
operand

 less—The index item must have a property value less than the operand

 lesseq—The index item must have a property value less than or equal to the operand

 greater-less—The index item must have a property value greater than the initial
range value and less than the final range value, where the range operand is expressed
as initial-final.

 greatereq-lesseq—The index item must have a property value greater than or
equal the initial range value and less than or equal the final range value, where the
range operand is expressed as initial-final.

 greatereq-less—The index item must have a property value greater than or equal
the initial range value and less than the final range value, expressed as initial-final.

 greater-lesseq—The index item must have a property value greater than the initial
range value and less than or equal to the final range, where the range operand is
expressed as initial-final.

For string and enum property constraints, the comparisons are character byte comparisons. In addition,
the enum and string property constraints allow three more operators:

 contains—The index item must have a property value that contains the operand

 starts—The index item must have a property value that starts with the operand

 ends—The index item must have a property value that ends with the operand

For string property constraints, the additional case attribute controls whether the operator should be
case-sensitive (true) or case-insensitive (false). If the operator is a range operator, then the value is a
range of values expressed as initial-final.

A T G S e a r c h Q u e r y G u i d e

4 6

7 - C o n s t r a i n i n g Q u e r i e s

μ
Index Item Constraints

This section discusses various types of index item constraints.

Index Item URL Constraints

Index items require a URL identifier, even if they are not physical files or accessible by Web URLs. This
identifier is stored in the index, and queries can constrain against this URL, which means that only a single
index item will satisfy this constraint. Typically, a set of these constraints are grouped into a Boolean OR to
limit the search to a small subset of index items. The XML for this constraint is shown below:

<doc>URL</doc>

Index Item Format Constraints

Queries can be constrained to items of a particular format. The XML representation for these constraints
is:

<format>format</format>

The format operand can be one any of the following:

 HTML – Simple HTML of any style

 Text – Raw text format

 PDF – Adobe format

 XHTML – w3.org XML schema for HTML

 XML – XML format

 Other – Any other format, typically from word or data processing software, such as
Word, Power Point, or Excel

 All – Any type

Index Item Language

Content is analyzed and indexed with respect to a specified language, and this language is recorded in
the index. Therefore, queries can be constrained to items of a certain language. The XML representation
for these constraints is shown below:

<language>lang</language>

The lang operand can be any valid language name or code, such as English or en.

A T G S e a r c h Q u e r y G u i d e

4 7

7 - C o n s t r a i n i n g Q u e r i e s

μ
Index Item File Extension

Index items require a URL identifier, even if they are not actually physical files or accessible by Web URLs.
This identifier is stored in the index, and queries can constrain against the file extension. For example, the
URL http://www.oracle.com/index.htm has a file extension of htm. The XML for this constraint is:

<type>file_suffix</type>

The file_suffix operand is the file extension characters, not including the period.

Index Item Modified Date

Index items typically have a last modified date associated with them. Queries can be constrained to items
with a certain date or a range of dates. The XML representation of this constraint is:

<date op="num_op">date_string</date>

This constraint has the same comparative operator values as the number property constraint (see
Property Constraints). The date_string is either a valid date value or a range of valid values, expressed
as initial_date-final_date. The valid forms of data values are:

 YYYY – A four digit year

 YY – A two digit year, assumes 1900.

 MM YY – Month number followed by two digit year

 MM YYYY – Month number followed by four digit year

 MM DD YY – Month number followed by day number followed by two digit year

 MM DD YYYY – Month number followed by day number followed by four digit year

 month DD YY – Month name followed by day number followed by two digit year

 month DD YYYY – Month name followed by day number followed by four digit year

For all forms, the month, day, and year components must be separated by one of the following delimiters:
space, hyphen, period, comma, slash, or backslash.

Combining Query Constraints
ATG Search allows you to express arbitrary Boolean combinations of the index item constraints described
previously. For example, to constrain a query to one of three document sets, you can construct a Boolean
OR of three document set constraints; to constrain a query to documents with two property values, create
a Boolean AND of two property constraints. To constrain a query to documents without a property value
or not within a document set, a Boolean NOT of those constraints would be used.

The Backus Naur Form for the XML representation of the query constraint expressions is shown below.

expression := or_exp | and_exp | not_exp | set_exp | format_exp | type_exp

| doc_exp | date_exp | prop_exp | strprop_exp | numprop_exp ;

A T G S e a r c h Q u e r y G u i d e

4 8

7 - C o n s t r a i n i n g Q u e r i e s

μ
or_exp := "<or>" expression+ "</or>" ;

and_exp := "<and>" expression+ "</and>" ;

not_exp := "<not>" expression+ "</not>" ;

set_exp := "<set subdirs=\"true|false\">" docset_path "</set>"

format_exp := "<format>" format "</format>"

type_exp := "<type>" file_suffix "</type>"

doc_exp := "<doc>" URL "</doc>"

date_exp := "<date op=\"num_op\" >" date_string "</date>"

prop_exp := "<prop type=\"type\" name=\"name\" op=\"str_op\" >" value

"</prop>"

strprop_exp := "<strprop name=\"name\" op=\"str_op\" >" value "</strprop>"

numprop_exp := "<numprop name=\"name\" op=\"num_op\" >" value "</numprop>"

format := html|text|pdf|other|xhtml|xml|all

date_string := YYYY|YY|MMYY|MMYYYY|MMDDYY|MMDDYYYY

date_string := month DD YY|YYYY

num_op := greater|greatereq|less|lesseq|equal|between|within

str_op :=

greater|greatereq|less|lesseq|equal|between|within|contains|starts|ends

An <or> element represents a Boolean OR. The statement is true if one of its contained expressions is
true, and otherwise evaluates to false.

The <and> element represents a Boolean AND, which is true if all of its contained expressions are true,
and otherwise evaluates to false.

The <not> element represents a Boolean NOT, which is true if none of its contained expressions are
true, and otherwise evaluates to FALSE.

Weighted Metadata Preference Expressions
The previous sections described query constraint expressions that represent arbitrarily complex Boolean
expressions of metadata constraints, including document sets, properties and URL constraints. In some
circumstances, a hard constraint is not appropriate, and a preference for certain content is desired. For

A T G S e a r c h Q u e r y G u i d e

4 9

7 - C o n s t r a i n i n g Q u e r i e s

μ
example, to support personalization, an application might prefer certain content depending on the user’s
profile.

ATG Search supports this functionality by allowing a second expression to be included in the request
XML. This second expression includes weights which will affect the relevancy calculation of the results.
Results that satisfy the expression receive extra weight, and results that do not, receive no extra weight.

The metadata expressions use the same XML format as the query constraints, except that each basic
element requires a weight attribute, such as:

<set subdirs="bool" weight="N"

<strprop name="name" weight="N"

The N value is arbitrary and will be relative to the maximum weight for any given expression. The three
Boolean expressions do not use the weight attribute, for their weight is based on the weight of their
operands, as follows:

 Boolean <and> expression has a weight equal to the sum of its operands

 Boolean <or> expression has a weight equal to the maximum weight of its operands

 Boolean <not> expression has a weight equal to zero minus the sum of its operands

Thus, the entire metadata expression results in a total weight using the mathematical combination of the
individual weights. This total weight is normalized into a relevancy value and factored into total relevancy.

Query Refinements
Another type of user feedback involves metadata properties of the retrieved index items. ATG Search can
return properties and values which can segment the retrieval results. This refinement is controlled by
configuration data defined by the administrator. Note that this feature is referred to as refinement
configuration in ATG Merchandising; see the ATG Merchandising User Guide for information.

The configuration data specifies which properties to use in refinement, the order in which they should be
used, and various settings to control how to construct the refinement. For example, the configuration
data might specify that manufacturer, product type, and price should be used, where price should be
returned in ranges and the other two in enumerated lists, limited to the top three values.

A T G S e a r c h Q u e r y G u i d e

5 0

7 - C o n s t r a i n i n g Q u e r i e s

μ

Query Refinement

As another example, the configuration data can specify that the country property will be used initially
until all results are from the same country, then state, then county, and so on. The property refinement is
dynamic depending on the result set.

A T G S e a r c h Q u e r y G u i d e

5 1

8 - J M S E v e n t H a n d l i n g

μ
8 JMS Event Handling

When a QueryRequest is issued by QueryFormHandler and a response is received, a JMS event
(message) of class atg.search.events.QueryMessage is fired. Search events are used to create logs for
reporting purposes. You can also add configuration to use them for other purposes, such as triggering
scenarios.

This chapter discusses search events and how to configure them. It includes these sections:

Search Messaging Components

Suppressing Search Messages

Patch Bay Configuration

For information about the properties of the QueryMessage class, see the ATG API Reference.

Search Messaging Components
The /atg/search/formhandlers/SearchContext component has two properties that control the
firing of search messages:

Property Description

firingSearchEvents A Boolean which specifies whether firing of search events is enabled. If
false, no search events are fired; if true, search events are enabled
and are managed by the component specified in the
searchMessageService property.

searchMessageService A component of class atg.search.events.SearchMessageTools,
which manages the firing of the search events. By default, the
SearchMessageService property is set to
/atg/search/events/SearchMessageService.

The /atg/search/events/SearchMessageService component is responsible for constructing and
sending search messages. It has a number of properties that configure the firing of messages:

A T G S e a r c h Q u e r y G u i d e

5 2

8 - J M S E v e n t H a n d l i n g

μ
Property Description

spiderlikeTypes An array of atg.servlet.BrowserType components for which search
events are not fired.

browserTyper The browserTyper component used to determine the browser type the
request is coming from.

messageFilter A component of class atg.search.events.MessageFilter that is
configured with a list of IP addresses and a list of login names for which
search events are not fired. By default, the messageFilter property is
set to /atg/search/events/MessageFilter.

searchMessageSource The Patch Bay message source, of class
atg.search.messages.SearchMessageSource, that fires JMS
messages when results are received from ATG Search. The
SearchMessageService component uses the data in the Response
object to construct a message object, which is then sent off by the
SearchMessageSource component.

Suppressing Search Messages
The SearchMessageService component includes logic for determining, when a response is received,
whether to send a JMS message. The purpose of this logic is to prevent sending of messages that will
distort the search reporting results. For example, if a query has been initiated by a Web spider or by the
Search Testing feature in ATG Merchandising rather than by a site visitor, you typically will not want to
take this query into account in reports.

SearchMessageService suppresses messages in the following situations:

 If the request is determined to come from browser type that is considered a Web
spider

 If the request comes from a specified IP address or user account

Detecting Web Spiders

Web spiders (also called robots) crawl the Web and create indexes for Web search services such as
Google. This activity is generally benign, but it can skew reporting results. For example, if a spider issues a
search query, that query will be reflected in search reports you run. This is generally undesirable, since you
typically want the reports to reflect only queries issued by actual site visitors. Therefore, the
SearchMessageService has a mechanism for determining whether a search query is being issued by a
spider, and if it is, suppressing the firing of search events.

To enable this mechanism, you set the SearchMessageService component’s spiderlikeTypes
property to an array of the atg.servlet.BrowserType components that you consider to be spiders.
When a search query is issued, the SearchMessageService examines the userAgent property of the
QueryRequest component. SearchMessageService compares the value of the userAgent property

A T G S e a r c h Q u e r y G u i d e

5 3

8 - J M S E v e n t H a n d l i n g

μ
with the values of the patterns properties of the spiderlikeTypes components, and if it finds a match,
suppresses the events.

Typically, the search request’s userAgent property is set to the value of the User-Agent property of the
HTTP request. You can override this value by explicitly setting the userAgent property in the properties
file of the search request component. This is what happens in the ATG Merchandising Search Testing
environment. When you use Search Testing, the userAgent property of the QueryRequest component is
set to SearchTesting. By default, one of the spiderlikeTypes components is
/atg/dynamo/servletpipeline/BrowserTypes/Robot, and one of the entries in this component’s
patterns array is SearchTesting, so events are not fired.

Filtering by IP Address or User Account

The SearchMessageService has a messageFilter property that points to a component of class
atg.search.events.MessageFilter. The MessageFilter component determines whether to
suppress search messages, based on the IP address or the user account associated with the request. By
default, the SearchMessageService component’s messageFilter property is set to
/atg/search/events/MessageFilter.

To configure this component, set the following properties:

Property Description

IPAddressList A array of the IP addresses that search messages should not be fired for. Note
that the entries can include wildcards (e.g., 10.1.4.*).

loginList A list of usernames that search messages should not be fired for.

Patch Bay Configuration
The DAF.Search.Base module includes a dynamoMessagingSystem.xml (Patch Bay configuration) file
that declares the /atg/search/events/SearchMessageSource component as a message source, and
also defines a number of message sinks.

If you want other message sinks to listen for search events, you can add your own
dynamoMessagingSystem.xml file to your CONFIGPATH. You can also configure the ScenarioManager
to listen for search events, if you want to use search events to trigger scenario actions. For more
information about configuring Patch Bay, see the ATG Programming Guide.

A T G S e a r c h Q u e r y G u i d e

5 4

8 - J M S E v e n t H a n d l i n g

μ

A T G S e a r c h Q u e r y G u i d e

5 5

9 - C a c h i n g S e a r c h Q u e r y D a t a

μ
9 Caching Search Query Data

You can configure ATG Search to cache entire user queries and their responses. This can improve
performance by removing load from the search engines, and is most useful when many users are doing
browse-type searches (such as faceted navigation) that result in repeated identical queries.

The cache stores the environment name, the query XML, and the response XML. By default, the cache
stores most recently used queries and their responses in memory, while older responses are stored on
disk.

Any ATG instance running the DAF.Search.Routing module can cache search data; caches are created
as needed, with one cache per search environment.

This chapter includes these sections:

Configuring Search Caching

Controlling the Caching of Individual Queries

Using the Cache Administration Page

Search caching is implemented through the
atg.service.cache.persistent.ehcache.EHCacheService class, which invokes the Ehcache open
source library. For more information about the EHCacheService class, see the ATG API Reference. For
information about the Ehcache library, see http://ehcache.sourceforge.net/.

Configuring Search Caching
Search caching is enabled by default. You can disable caching by setting the cacheService property of
the RoutingSearchService component to null. Note that if you disable caching, ATG Search does not
clear out any existing cached queries, but it no longer retrieves existing cached queries or caches new
queries.

If caching is enabled, you can configure its behavior by setting properties of the
/atg/search/routing/CacheService component, which is of class EHCacheService. By default, this
component includes these settings:

defaultMaxElementsInMemory=100

defaultOverflowToDisk=true

defaultMemoryStoreEvictionPolicy=LRU

A T G S e a r c h Q u e r y G u i d e

5 6

9 - C a c h i n g S e a r c h Q u e r y D a t a

μ
defaultMaxElementsOnDisk=10000000

defaultDiskPersistent=true

These setting configure the cache to store a maximum of 100 queries in memory. When this number is
exceeded, the least recently used queries are moved to disk, up to a total of 10,000,000. Cache contents
are maintained on disk during ATG server restarts.

Disabling Cache Invalidation

By default, a search cache is invalidated each time the index is deployed. This ensures that out-of-date
queries are removed from the cache.

Unfortunately, this results in valid queries being flushed as well. As a result, load on the search engines
tends to spike after a deployment, then decrease over time as more and more queries are cached. This
pattern is repeated after each deployment, resulting in large fluctuations in the load.

To avoid these fluctuations, you can disable cache invalidation, and instead have individual queries
evicted based on how long they have been in the cache. If you do this, it is a good idea to also disable
storing any queries on disk, because looking for queries to evict on disk is very slow. You will also need to
increase the maximum number of queries to keep in memory (since none will be stored on disk), and
specify how long to keep a query before evicting it from the cache. So you might configure the
CacheService component like this:

defaultDisableInvalidation=true

defaultTimeToLiveSeconds=3600

defaultMaxElementsInMemory=10000

defaultOverflowToDisk=false

defaultMemoryStoreEvictionPolicy=LRU

defaultMaxElementsOnDisk=0

defaultDiskPersistent=false

Note that if query invalidation is disabled, the setting for defaultTimeToLiveSeconds involves a
tradeoff between keeping queries in the cache that are no longer valid (because the index has changed
and has been redeployed) and evicting ones that still are (because they have been present longer than
the configured value).

Controlling the Caching of Individual Queries
Caching queries is most useful if the same queries are used repeatedly. Faceted search queries are
particularly good candidates for caching, because the same query is likely to be issued by different users
selecting the same facet values. Searches that include search text are less likely to be repeated exactly, so
they may benefit less from caching.

If you know in advance that certain queries are unique, it is a good idea to disable caching of them.
Otherwise your cache will grow quickly and provide little performance benefit. To disable caching of a
query, you set the cacheable property of the QueryRequest component to false. For example:

A T G S e a r c h Q u e r y G u i d e

5 7

9 - C a c h i n g S e a r c h Q u e r y D a t a

μ
<dsp:property bean="QueryFormHandler.searchRequest.cacheable"

 value="false"/>

Queries that Include Timestamps

Queries are especially likely to be unique if they have constraints that include timestamps. For example,
suppose you configure queries to include a constraint that removes items whose start date is in the future
(i.e., items that are not yet available). To do this, you might create a component of class
atg.search.routing.command.search.PropConstraint and configure it so that an item is returned
only if the value of its startDate property is less than or equal to the current date and time.
Unfortunately, this constraint results in every query being unique, because the time changes
continuously. So no benefit can be realized by caching the queries.

To prevent these kinds of queries from being unique, the ATG platform includes the class
atg.service.util.ChunkedTimeInterval. This class divides up time into discrete intervals of a
specified length, and during an individual interval always returns the same time. If you use this class to
include timestamps in search queries, all queries created during an individual interval will have identical
timestamps, so queries that are otherwise identical will remain identical. At the end of one interval, a new
interval begins and the timestamp changes, but then remains constant for the duration of the new
interval.

ChunkedTimeInterval has intervalUnitName and intervalCount properties for specifying the
length of the interval. For example, to specify an interval of 4 hours:

intervalUnitName=hour

intervalCount=4

ChunkedTimeInterval has startTime and endTime properties that it sets to the time at the beginning
and end of the interval (in milliseconds, using Coordinated Universal Time). So, for example, if an interval
is 4 hours long and begins at 4:00 am on July 3, 2010, then startTime is set to 4:00 am of that day and
endTime is set to 8:00 am. ChunkedTimeInterval also has a number of other properties that it sets to
the interval start and end times in different formats. For search constraints, use either the
startTimeSecondsAsString or the endTimeSecondsAsString property, as these properties return
the time in a format that is most suited to inclusion in search queries.

The DCS.Search.Query module includes a ChunkedTimeInterval component named
/atg/commerce/search/catalog/ProductAvailabilityTimeWindow which is configured to use
intervals of one day. You can change this interval or create your own component of this class. The
following example shows a PropConstraint properties file that uses this component to include a
timestamp in a constraint:

type=integer

name=startDate

operation=lesseq

value^=/atg/commerce/search/catalog/\

 ProductAvailabilityTimeWindow.startTimeSecondsAsString

For more information about the ChunkedTimeInterval class, see the ATG API Reference.

A T G S e a r c h Q u e r y G u i d e

5 8

9 - C a c h i n g S e a r c h Q u e r y D a t a

μ
Using the Cache Administration Page

To administer search caching, navigate to /atg/search/routing/CacheService in the Component
Browser of the ATG Dynamo Server Admin. The Cache Statistics section provides information on current
cache configuration and effectiveness.

Note that the accuracy of many of these statistics may be affected by the value of the
statisticsAccuracy property of EHCacheService. There is tradeoff between the accuracy of the
values and the goal of minimizing the system resources required to gather the values. You can increase
the accuracy by changing the setting of this property, as described in the ATG API Reference.

The page also provides buttons for the following actions:

 Clear Statistics -- Resets to zero the statistics that appear in the CacheService charts
(see below).

 Disable/Enable -- Turns the caching service off or on. (Note that this does not disable
searching.)

 Flush to Disk -- Saves the portion of the cache currently in memory to disk.

 Clear Cache -- Deletes all cached information.

 Disable Invalidation -- Disables cache invalidation.

The page includes the following charts, which show how caching affects your site:

 Hit Rates -- The percentage of queries that have been satisfied by cached data. A high
hit rate means that caching is working well.

 Maintenance Time -- The percentage of time the cache spent purging itself vs. serving
requests. If this number is more than a few percent, try increasing the value of
defaultMaxElementsInMemory to decrease the amount of time the system spends
moving items between disk and memory.

 Requests/Hits per Second -- The number of search requests, the number of those
requests that were served by cached data, and the number of items evicted from the
cache.

Note: If you are using the QueryConsole sample application to test search behavior, the Cache
Responses setting is false by default; change this value before testing.

A T G S e a r c h Q u e r y G u i d e

5 9

1 0 - F a c e t e d S e a r c h

μ
10 Faceted Search

The Faceted Search feature enables ATG Commerce sites to provide a navigational structure that is not
strictly based on the catalog hierarchy. Facets are like virtual categories that are populated by the results
of search queries. Facets are implemented as search refinements, which are used to narrow down search
results by searching within those results for only the items that fulfill a certain constraint. For example, a
search might return men’s shirts, and then the customer might select a facet value that narrows the
results to men’s shirts that are made of cotton.

This chapter describes how to write pages that implement Faceted Search on an ATG Commerce site. It
includes the following sections:

Overview of Faceted Search

Building Pages that Include Facets

Issuing Faceted Search Queries

Using a Facet Trail

Rendering the Facets

Incorporating Search Text as a Facet

Formatting Facet Values

Note that Faceted Search extends the Search querying and response-handling mechanisms described in
the Search Form Handlers chapter. Be sure to familiarize yourself with the information in that chapter
before reading this chapter.

Overview of Faceted Search
A facet is a search refinement element that corresponds to a property of a product or SKU. The property is
referred to as a faceting property. The values of this property are broken down into selections that can be
either ranges or specific values. For example, you might define a price facet whose faceting property is
the salePrice property of a product’s SKUs. The selection ranges, which can either be determined
dynamically or specified explicitly, might be $100 to $200, $200 to $500, $500 to $1000, etc. Or you might
define a manufacturer facet with selection values of Acme, Cogswell, and Spacely.

You specify facets and the logic for determining the selections in ATG Merchandising as part of creating
your product catalog. Each facet corresponds to a property of a commerce item, and can be associated
with one or more categories or catalogs. Each facet is stored in the RefinementRepository as a separate
refineElement repository item. When you deploy your catalog to your production site, the

A T G S e a r c h Q u e r y G u i d e

6 0

1 0 - F a c e t e d S e a r c h

μ
RefinementRepository is deployed as well. When you index your catalog, the data in the
RefinementRepository is used to create the refinement configuration files used by ATG Search. These
are the XML files that define sets of facets and the facet values or ranges. These files are generated and
submitted to ATG Search after an indexing operation. When ATG Commerce issues a query to ATG Search,
it determines which refinement configuration file should be applied, and specifies it in the query.

When you write JSPs for displaying facets, you render the facet selection values as hyperlinks. When a
customer clicks one of these links, a query is issued to ATG Search, using the selection range or value as a
refinement criterion. For example, a customer might issue a text query that returns a set of products that
are displayed on the page. If the customer then clicks the Sale Price facet’s “$100 to $200” link, a new
query is issued that specifies “return only the products in this set whose sale price is between $100 and
$200.” The results of this query are then displayed on the page, and the facet selections are updated.

See the ATG Merchandising Guide for Business Users for information about creating facets.

Building Pages that Include Facets
To use facets on your site, you create JSP pages that display the facet selections as hyperlinks. When a
customer clicks one of these links, a query is issued to ATG Search. The search results returned are then
displayed on the page. These results include only those items whose faceting property value is the
selected value or falls within the selected range. The available facet selections are also updated to reflect
the selections previously made. This process continues as the customer clicks further links.

To create pages that enable Faceted Search, you use the following classes:

 The form handler atg.search.formhandlers.QueryFormHandler issues the
search queries that include the refinement information, and receives the responses
that include the refinements. The
/atg/commerce/search/catalog/QueryFormHandler component of this class is
configured to work with faceted search.

 The
atg.commerce.search.refinement.custom.CustomCatalogFacetSearchTools
class processes the refinement data in the search request and response objects. The
/atg/commerce/search/catalog/QueryFormHandler component is configured to
use a component of this class, /atg/search/repository/FacetSearchTools.

 The atg.repository.search.refinement.FacetTrail class keeps track of the
facet selections made by the customer.

The pages you write should not be associated with specific facets or selections. Instead, they should be
written in a generic way, to be able to handle any set of facets defined in ATG Merchandising. Typically
you write one primary page that deals with displaying the facets and manipulating the facet trail, and that
page is re-rendered each time new results are returned. The remaining sections in this chapter describe
how to do this.

Note: In ATG 2007.1 and earlier, faceted search queries and responses were handled through the
atg.repository.search.refinement.FacetSearchDroplet and
atg.commerce.search.refinement.CommerceFacetSearchService classes. These classes were

A T G S e a r c h Q u e r y G u i d e

6 1

1 0 - F a c e t e d S e a r c h

μ
deprecated in ATG 9.0, and atg.search.formhandlers.QueryFormHandler was modified to support
faceted search queries and responses. As of ATG 10, the FacetSearchDroplet,
CommerceFacetSearchService, and related classes have been removed from the ATG distribution. If
your faceted search implementation is based on these classes, you must rewrite your JSPs to use
QueryFormHandler instead.

Issuing Faceted Search Queries
You issue faceted search queries with the QueryFormHandler, which takes the FacetTrail object and
various ATG Search query attributes and constructs a search query that specifies:

 Constraints created based on the facets and categories in the facet trail

 A refinement configuration, which is determined based on the entries in the facet trail

 Search refinement query attributes

 Pagination query attributes

The QueryFormHandler submits the search request to ATG Search and receives back a search response.
The FacetSearchTools class handles the processing of the search request by creating constraints and
specifying the refinement configuration to use, based on the entries in the facet trail. FacetSearchTools
also processes the search response by converting the Refinements object into an array of facets that can
be manipulated individually. The page developer can then use servlet beans or JSP tags to iterate through
the response and display the resulting facets and selections and the products returned. The selection
ranges or values can be displayed as hyperlinks which, when clicked, pass the new facet trail String and
modification instructions as query parameters to the linked page.

To configure the request and response processing, a component of class FacetSearchTools is added to
the QueryFormHandler component’s searchRequestProcessors and searchResponseProcessors
array properties. For example:

searchRequestProcessors+=/atg/search/repository/FacetSearchTools

searchResponseProcessors+=/atg/search/repository/FacetSearchTools

Note that the /atg/commerce/search/catalog/QueryFormHandler component is configured to use
/atg/search/repository/FacetSearchTools.

The following example creates a search form where a user can enter text and then click a button to
submit the query. The results are returned as a QueryRequest.Response object (stored in the
QueryRequest.searchResponse property). The FacetSearchTools component converts the raw facet
data (found in the Refinements object stored in the
QueryFormHandler.searchResponse.refinements property) and stores the converted data in the
FacetSearchTools.facets property for use on the page.

<dsp:form id="searchForm" name="searchForm" formid="searchForm"

 method="post" action="simpleFacet.jsp">

A T G S e a r c h Q u e r y G u i d e

6 2

1 0 - F a c e t e d S e a r c h

μ
 <!-- the text field is linked to the searchRequest's question property -->

 <p>question: <dsp:input type="text" id="question" size="60"

 name="question" bean="QueryFormHandler.searchRequest.question"/>

 <!-- submit button invokes the handleSearch method on the QueryFormHandler -->

 <p><dsp:input type="submit" bean="QueryFormHandler.search" value="Search"/>

 <!-- get the search response, facets, and facet trail string -->

 <!-- from the initial request -->

 <dsp:getvalueof bean="QueryFormHandler.searchResponse"

 var="queryResponse" scope="request"/>

 <dsp:getvalueof bean="FacetSearchTools.facets" var="facetHolders"

 scope="request"/>

 <dsp:getvalueof param="trail" var="trailString"/>

. . .

</dsp:form>

Specifying the Category for the Query

When a customer navigates a site, facets are not returned until a search query is issued. If you want facets
to appear without a customer explicitly entering a search query, you can silently issue a textless query
when the customer selects a category. This is sometimes referred to as category navigation.

For example, suppose a site has top-level categories of Shoes, Hats, and Gloves. When the customer clicks
the link for the Hats category, the products or SKUs in that category are displayed along with the
appropriate facets for the category. The products or SKUs can be obtained using standard ATG Commerce
catalog navigation or through a search query, but a search query must be issued to return the facets. The
query is submitted when the page for the category is loaded, and specifies the category to return results
and facets for.

To specify the category, you set the startCategory property of the QueryRequest component. For
example:

<dsp:setvalue bean="QueryFormHandler.searchRequest.startCategory"

 param="/Meta/ancestorCategories.catalogSpecificId/${categoryId}"/>

<dsp:setvalue bean="QueryFormHandler.search" value="submit"/>

This code assumes the category ID has been passed to the page through a query parameter on the
selected link. For example, the anchor tag for the link to the Hats category might look like this:

Note that setting startCategory this way requires that the
ancestorCategories.catalogSpecificId property be included in the index. This property is an array
of the catalog-specific category IDs of a product’s ancestor categories, which are determined by the
/atg/commerce/search/CustomCatalogCategoriesPropertyAccessor component. The definition
file of the /atg/commerce/search/ProductCatalogOutputConfig component includes this property
by default:

A T G S e a r c h Q u e r y G u i d e

6 3

1 0 - F a c e t e d S e a r c h

μ
<item is-multi="true" property-name="ancestorCategories">

 <meta-properties>

 <property store-as-docset="true" name="catalogSpecificId" type="string"

 property-accessor=\

 "/atg/commerce/search/CustomCatalogCategoriesPropertyAccessor"

 output-name="ancestorCategories.catalogSpecificId"

 is-non-repository-property="true" filter="unique"/>

 </meta-properties>

</item>

Restricting the Set of Facets and Selections

In some situations, you may not want your sites to display all available facets and selections. For example:

 If you have a large number of facets, you may want to display only the most important
ones.

 If a facet has a large number of selection values or ranges, you may not want to display
all of them. For example, if a Color facet has 20 values, you could display only the ones
with the most results.

 If a facet returns only one selection value, you may not want to display that facet. For
example, if the value of the color property for every result returned is red, you could
suppress display of the Color facet, since it would have only a single selection value
that would return the same set of results already being displayed.

You can restrict the set of facets and selection values that ATG Search returns by setting the following
properties on the /atg/commerce/search/catalog/QueryRequest component:

refineMax
The maximum number of facets to return (configured value: 5). If the number of facets
in the refinement configuration is greater than this number, only the top n facets
(where refineMax=n) in terms of priority order are returned. (See Ordering Facets by
Priority.) Note that if two or more facets have a nesting relationship, ATG Search
returns only one facet in that nesting hierarchy.

refineTop
The maximum number of values or ranges to return for a facet (configured value: 5). If
the number of available values is greater than this number, only the top n values
(where refineTop=n) in terms of sort order are returned. The sort order for a facet’s
selection values is specified when the facet is defined in ATG Merchandising; you can
choose to sort in descending order of the number of results in the selection, so that
only the facet selections with the fewest results are eliminated.

refineMin
The minimum number of results that a facet value or range must have for that value or
range to be returned. The configured value is 0, which means even facet values with
no results are returned. For example, if a Size facet has values of Small, Medium, and
Large, selections are displayed for all three values, even if the results include no items
whose size is Small. Set the value of this property to 1 to return only facet values that
include results.

A T G S e a r c h Q u e r y G u i d e

6 4

1 0 - F a c e t e d S e a r c h

μ
refineMinVal
The minimum number of selection values or ranges that a facet must have in order for
that facet to be returned. The default value is 1, which means all facets are returned,
since a facet always has at least one selection value or range. Set the value of this
property to 2 eliminate facets for which all results have the same value. For example, if
every result has color=red, setting refineMinVal to 2 prevents ATG Search from
returning the Color facet.

Using a Facet Trail
Because facet selections are cumulative, it is necessary to keep track of each facet selection a customer
has made so far. This is done through a facet trail, which is stored as an object of class
atg.repository.search.refinement.FacetTrail.

A facet trail is similar to a navigational breadcrumb trail, where each entry consists of a facet and a
selection value or range for that facet. For example, a facet trail might be rendered on the page like this:

Manufacturer:Cogswell > Price:$300-$500 > Voltage:12-24

The first time the page is displayed, you can set the facet trail explicitly, or leave it empty. When the user
makes a facet selection, you append entries to or delete entries from the facet trail, and include the
updated facet trail in the new search query.

You can update the facet trail using the CommerceFacetTrailDroplet. This servlet bean takes as input a
String representation of the current FacetTrail object plus instructions for modifying the facet trail
based on selections chosen by the customer. (Typically these inputs are passed through HTTP request
query parameters.) From these inputs, the CommerceFacetTrailDroplet constructs a new FacetTrail
object.

For example, suppose a site visitor navigates by first selecting the Televisions category, and then selecting
the LCD Televisions subcategory. (This assumes that a property whose values are categories is defined as
a facet; see the ATG Merchandising documentation.) Next, she chooses the $1000 to $2000 selection
range for the price facet, and then chooses Acme as the selection value for the manufacturer facet. The
facet trail String would now look something like this:

1:cat444323:1:cat333222:2:1000-2000:32:Acme

In this example, cat444323 is the repository ID of the Televisions category, and cat333222 is the
repository ID of the LCD Televisions category. The example also assumes the following facets have been
defined in ATG Merchandising:

1 = category

2 = price

32 = manufacturer

The number identifying the facet is the repository ID of the corresponding refinementElement in the
refinement repository, which is also used as the ID of the refinementElement XML attribute in the
refinement configuration.

A T G S e a r c h Q u e r y G u i d e

6 5

1 0 - F a c e t e d S e a r c h

μ
Your pages should display the current facets and selections, along with links for removing the selections.
(Typically a link for removing a facet is an image of an X, or the word “remove.”) Suppose the site visitor
now clicks the link to remove the Televisions facet. When a category selection value is removed from the
facet trail, all of that category’s subcategories are also removed, so in this case the LCD Televisions
category is removed as well. (In addition, any category-specific facets and selection values that no longer
apply are also removed. For example, if the Televisions category has a Screen Size facet associated with it,
removing the Televisions facet from the trail also removes the Screen Size facet and selections.)

The new facet trail String is therefore:

2:1000-2000:32:Acme

The displayed search results now consist of all products priced between $1000 and $2000 whose
manufacturer is Acme. So if Acme also manufactures stereo systems, the ones in this price range will now
be displayed.

Last Range Indicator

The constraint generated for a facet’s last selection range is slightly different from the constraints for the
other ranges. For example, suppose you have a price facet with three selection ranges: $1000 to $2000,
$2000 to $3000, and $3000 to $4000. The first range includes items whose price is great than or equal to
$1000 and less than $2000. The second range includes items whose price is great than or equal to $2000
and less than $3000. But the last range includes items whose price is great than or equal to $3000 and less
than or equal to $4000.

If a site visitor chooses the last selection range for a facet, the facet trail must indicate this, so that the
correct constraint can be constructed. The last range is indicated by appending |LAST to the entry for the
range in the trail. In this example, if the site visitor selects the $3000 to $4000 range, the facet trail String
would look something like this:

1:cat444323:2:3000-4000

Note that although |LAST is included in the facet trail String (and therefore may appear in URLs), it is not
part of the label for the selection range, and therefore does not appear on the page itself. Also, you do not
need to code your JSPs in any special way to deal with this selection range.

For more information about the CommerceFacetTrailDroplet, see Appendix A: Commerce Search
Servlet Beans.

Supporting Multiple Selection Values

Many sites that use faceted search support selecting only a single value or range for a given facet. When a
user clicks a link to make a selection, a search query is issued that specifies that selection as a constraint.
So, for example, for a Color facet, when a customer clicks the link for the Red selection value, a search
query is issued that returns only items whose color property is red.

Some sites allow users to make multiple selections for certain facets. For these facets, rather than
encoding the selections as hyperlinks, each selection typically has an associated checkbox, so the user can
choose multiple selections by checking their checkboxes; a separate button is provided to issue the query

A T G S e a r c h Q u e r y G u i d e

6 6

1 0 - F a c e t e d S e a r c h

μ
once the selections are chosen. (Encoding the individual selections as hyperlinks is also possible, but
results in more queries being issued.)

Multiple selections can be combined either with Boolean OR or Boolean AND logic:

 Combining with Boolean OR returns results that match any of the selected values. For
example, for a Color facet, if the user selects Yellow and Orange, a given item is
returned if its color property is yellow or if it is orange.

 Combining with Boolean AND returns results that match all of the selected values. For
example, suppose a product representing a laser printer has a paperSizes property
that is an array of the paper sizes the printer accepts, and you have a Paper Sizes facet
based on this property. If the user selects A4 and Letter for this facet, a given item is
returned only if its paperSizes property includes letter and a4.

If multiple facet values are selected, you need a way to encode them in the facet trail. To specify multiple
selections combined with Boolean OR, use the pipe (|) character. For example, to encode the Yellow and
Orange selections for a Color facet, the facet trail entry for this facet would look something like this:

3:Yellow|Orange

To specify multiple selections combined with Boolean AND, use the dollar sign ($) character. For example,
to encode the Letter and A4 selections for a Paper Size facet, the facet trail entry for this facet would look
something like this:

3:Letter$A4

You can use the /atg/commerce/search/refinement/FacetTrailString component to construct
facet trails that include facets with multiple selection values. This component, which is of class
atg.repository.search.refinement.FacetTrailString, provides methods for adding facet
values, including multiple selection values combined with Boolean OR or Boolean AND, to the facet trail
string.

Working with the FacetTrail Object

The FacetTrail object stores information about the facets in its facetValues property, which holds an
array of atg.repository.search.refinement.FacetValue objects. Each FacetValue object
represents a single entry in the facet trail – a facet and its value. To render the facet trail on a page, you
will typically need to access the following properties of the FacetValue objects:

facet
An object of class atg.repository.search.refinement.Facet. This is an abstract
base class whose subclasses represent various types of refinement elements. A Facet
object has id and label properties that hold the ID of the refinement element and
some associated text. For standard facets, these value are the repository ID and the
display name of the refinementElement in the Refinement Repository. For the
special SRCH search text facet, id is SRCH and label defaults to Search. See
Incorporating Search Text as a Facet.

value
The facet selection value. Depending on the facet type, this can be text or numeric,

A T G S e a r c h Q u e r y G u i d e

6 7

1 0 - F a c e t e d S e a r c h

μ
and either a single value or a range. If the facet has multiple selection values, then this
property is an array of values or ranges.

matchingDocsCount
The number of items with this facet value or in this range.

The examples in the Rendering the Facets section illustrate using these properties in JSPs.

Rendering the Facets
When a faceted search query is issued, ATG Search returns the facets as part of the
QueryRequest.Response object. The FacetSearchTools component converts the raw facet data and
stores the converted data in the FacetSearchTools.facets property as an array of objects of class
atg.repository.search.refinement.FacetHolder. Each FacetHolder object represents a single
facet and its values.

The facet is stored in the FacetHolder.facet property as an object of class
atg.repository.search.refinement.Facet. (See Working with the FacetTrail Object.) The facet
values are stored in the FacetHolder.facetValueNodes property as an array of
atg.repository.search.refinement.FacetValueNode objects.

The following example illustrates rendering the facets and facet values. It accesses the
FacetSearchTools object and iterates through the facets in its facets property. For each facet, it
displays the available selections and indicates the number of results for each selection value or range.

Each value or range is rendered as a hyperlink. When a user clicks one of these links, the JSP:

 Adds the facet and selection value to the facet trail.

 Retrieves the current search request object (which has been saved in the
SearchSession object), updates it, and resubmits the request. (See Modifying and
Resubmitting the Request for more information.)

 Re-renders the page with the facets and selections returned in the new search
response. (This fragment does not include the code for rendering the search results
themselves.)

<dsp:getvalueof bean="QueryFormHandler.searchResponse" var="queryResponse"

 scope="request"/>

<dsp:getvalueof bean="FacetSearchTools.facets" var="facetHolders"

 scope="request"/>

<dsp:getvalueof param="trail" var="trailString"/>

<!-- iterate through the returned facets -->

<c:forEach items="${facetHolders}" var="facetHolder">

 <tr>

 <!-- display the name of the facet -->

 <td><c:out value="${facetHolder.facet.label}"/></td>

A T G S e a r c h Q u e r y G u i d e

6 8

1 0 - F a c e t e d S e a r c h

μ
 <!-- iterate through the values of the current facet -->

 <td><c:forEach items="${facetHolder.facetValueNodes}" var="facetValueNode">

 <!-- use the CommerceFacetTrailDroplet to construct the facet trail -->

 <dsp:droplet name="CommerceFacetTrailDroplet">

 <!-- pass in facet trail from previous request -->

 <dsp:setvalue param="trail" value="${trailString}"/>

 <!-- add the facet selection to the trail; also include the SRCH facet -->

 <!-- if there is search text and the SRCH facet hasn't been added yet -->

 <c:if test="${ empty trailString and ! empty queryResponse.question }">

 <dsp:setvalue param="addFacet"

 value="SRCH:${queryResponse.question}:${facetValueNode.facetValue}"/>

 </c:if>

 <c:if test="${ ! empty trailString or empty queryResponse.question }">

 <dsp:setvalue param="addFacet" value="${facetValueNode.facetValue}"/>

 </c:if>

 <dsp:oparam name="output">

 <!-- expose the facetTrail string as a jstl variable -->

 <dsp:getvalueof param="facetTrail" var="facetTrail"/>

 <!-- display facet value as link that issues a new search when -->

 <!-- clicked and re-renders this page -->

 <dsp:a href="simpleFacet.jsp">

 <!-- re-use the previously saved search request -->

 <dsp:property bean="QueryFormHandler.searchRequest.requestChainToken

 value="${queryResponse.requestChainToken}"

 name="qfh_rct" priority="30"/>

 <!—- save this request so it can be re-used -->

 <dsp:property bean="QueryFormHandler.searchRequest.saveRequest"

 value="true" name="fh_sr" priority="30"/>

 <!—- specify that this is a faceted search request -->

 <dsp:property bean="QueryFormHandler.searchRequest.facetSearchRequest"

 value="true" name="qfh_fsr" priority="31"/>

 <!-- set the facetTrail property on the FacetSearchTools component -->

 <dsp:property bean="FacetSearchTools.facetTrail"

 value="${facetTrail.trailString}" name="qfh_ft" priority="27"/>

 <!-- set the facet trail as a query parameter -->

 <dsp:param name="trail" param="facetTrail.trailString"/>

 <!-— submit the request by invoking the handleSearch method -->

 <!—- on the QueryFormHandler when the link is clicked -->

A T G S e a r c h Q u e r y G u i d e

6 9

1 0 - F a c e t e d S e a r c h

μ
 <dsp:property bean="QueryFormHandler.search" value="submit"

 name="qfh_s_s"/>

 <!-- display each facet value and the number of results -->

 <c:out value="${facetValueNode.facetValue.value}"/>

 (<c:out value="${facetValueNode.facetValue.matchingDocsCount}"/>)

 </dsp:a>

. . .

Ordering Facets by Priority

When defining a facet in ATG Merchandising, a merchandiser can optionally specify a priority value for the
facet. The facet priority value must be zero (0) or a positive integer. The higher the value is, the lower the
priority.

The priority values determine the order in which the facets appear in refinement configurations, which
determines the order in which facets are returned by ATG Search. So, for example, if a refinement
configuration has a Color facet with priority 0 and a Size facet with priority 3, the Color facet is returned
before the Size facet. If the page doesn’t do any reordering of the facets, the Color facet is displayed
above the Size facet.

If a facet is not assigned a priority value in ATG Merchandising, its priority is set to the value of the
FacetSearchTools component’s defaultFacetPriority property. The default value of this property
is 100, so that facets whose priority value is null are assigned a low priority. You can change this value in
the FacetSearchTools component’s properties file. For example:

defaultFacetPriority=50

Filtering Facets

When a user selects a facet value, a new query is issued with this selection applied as a constraint. The
search engine returns the results of this query and a new set of facets. By default, the new facet set does
not include the other selection values for the selected facet. So, for example, if the selection values for the
Color facet are Red, Green, and Blue, and the user selects Red, the facet set returned does not include the
Green and Blue selection values, because the green and blue items have already been removed from the
search results. Removing these selection values is called filtering the facet.

There are a certain cases where filtering the facet may not be the desired behavior:

 If you have a facet based on the product item’s ancestorCategories property,
when a user selects a category, you typically will want lower-level category selections
to still be available for further navigation. See Skipping Facet Values in the Facet Trail
for information about removing the higher-level category selections.

 If your faceted search implementation supports multiple selection values, you may
want the unselected facet values to be returned, so the user can further refine on the
same facet. This is particularly true if the facet values are combined using Boolean

A T G S e a r c h Q u e r y G u i d e

7 0

1 0 - F a c e t e d S e a r c h

μ
AND, so you can allow the user to further restrict the current result set. See Supporting
Multiple Selection Values for more information.

The search engine filters all facets unless the refinement configuration specifies otherwise. To disable
filtering of an individual facet, you add the faceting property to the filterProperties array property of
the /atg/commerce/search/refinement/RefinementConfigurationXMLGenerator component.
By default, this property is set to:

filterProperties=\

 ancestorCategories.$repositoryId,\

 ancestorCategories.displayName

If you have additional facets that you do not want to be filtered, add the faceting properties to this array.
For example:

filterProperties+=paperSizes

Skipping Facet Values in the Facet Trail

As mentioned above, when a faceted search query is issued, ATG Search returns the facets as part of the
QueryRequest.Response object, and the FacetSearchTools component converts the raw facet data
into the appropriate format for display. The facets and values returned by ATG Search include ones that
the user has already selected, as well as ones that are available for selection.

Most faceted search implementations do not need the already-selected facet values, since these values
are typically not displayed, except as part of the facet trail. Therefore, the FacetSearchTools
component omits these values by default.

This behavior is controlled through the following FacetSearchTools properties:

 skipValuesAlreadyInTrail -- When set to true (the default), omits any facet
values that are already present in the facet trail.

 skipAncestorsToCategoriesInTrail -- When set to true (the default), omits any
facet values that represent categories that are ancestors of categories present in the
facet trail.

You should leave these properties set to true unless your faceted search implementation requires
otherwise. If you change the values of these properties, you may see unexpected facet values displayed.
For example, if you have a facet based on the product item’s ancestorCategories property, the
available facet selections will include the current category and categories above it in the catalog
hierarchy, rather than just categories below it in the hierarchy.

Note that the values of these properties have no effect on the facet trail itself. The trail still includes all of
the selected values, so the appropriate constraints can be applied when a query is submitted.

Removing Facet Selections

The example in Rendering the Facets creates links for facet selection values. When an user clicks a link, the
selection is added to the facet trail and a new search request is issued.

A T G S e a r c h Q u e r y G u i d e

7 1

1 0 - F a c e t e d S e a r c h

μ
Your pages should also include links for removing facet selections. For example, if a customer chooses a
“$100 to $200” selection range for the price facet, only items in that price range are displayed. To display
all items regardless of price, the customer can click a link that removes this facet selection.

The following example creates a “remove” link for each facet selection. When a user clicks one of these
links, the JSP removes the facet and selection value from the facet trail, along with any dependent facet
selections. It also retrieves, updates, and resubmits the current search request.

<!-- use CommerceFacetTrailDroplet to transform the -->

<!-- facet trail string into a FacetTrail object -->

<dsp:droplet name="CommerceFacetTrailDroplet">

 <!-- expose the facet values as a jstl variable -->

 <dsp:getvalueof param="facetTrail.facetValues" var="facetValues"/>

 <dsp:oparam name="output">

 <c:forEach items="${facetValues}" var="currentFacetValue">

 <!-- Output the facet name and selection value separated by a colon; -->

 <!-- skip over the facet value containing the search question text -->

 <c:set var="srchFacetLabel" value="SRCH"/>

 <c:if test="${currentFacetValue.facet.id != srchFacetLabel}">

 <c:out value="${currentFacetValue.facet.label}:"/>

 <c:out value="${currentFacetValue.value}"/>

 <!-- create a remove link for each facet value; use the -->

 <!-- CommerceFacetTrailDroplet to construct a new facet trail -->

 <dsp:droplet name="CommerceFacetTrailDroplet">

 <dsp:setvalue param="trail" value="${trailString}"/>

 <dsp:setvalue param="removeFacet" value="${currentFacetValue}"/>

 <!-- expose the facetTrail string as a jstl variable -->

 <dsp:getvalueof param="facetTrail" var="facetTrail"/>

 <dsp:oparam name="output">

 <!-- create a link back to this page that submits a -->

 <!-- search request using the updated facet trail -->

 <dsp:a href="simpleFacet.jsp">

 <dsp:property bean="QueryFormHandler.searchRequest.requestChainToken"

 value="${queryResponse.requestChainToken}"

 name="qfh_rct" priority="30"/>

 <dsp:property bean="QueryFormHandler.searchRequest.saveRequest"

 value="true" name="fh_sr" priority="30"/>

 <dsp:property bean="QueryFormHandler.searchRequest.facetSearchRequest"

 value="true" name="qfh_fsr" priority="31"/>

 <dsp:property bean="FacetSearchTools.facetTrail"

 value="${facetTrail.trailString}" name="qfh_ft" priority="27"/>

 <dsp:param name="trail" param="facetTrail.trailString"/>

A T G S e a r c h Q u e r y G u i d e

7 2

1 0 - F a c e t e d S e a r c h

μ
 <dsp:property bean="QueryFormHandler.search" value="submit"

 name="qfh_s_s"/>

 remove

 </dsp:a>

 </dsp:oparam>

 </dsp:droplet>

 </c:if>

 </c:forEach>

 </dsp:oparam>

</dsp:droplet>

Rendering Multiple Selection Values

If your site supports multiple selection values for facets, you need to code your JSPs accordingly. For
example, consider these lines that display a facet and its selection value:

<c:out value="${currentFacetValue.facet.label}:"/>

<c:out value=" ${currentFacetValue.value}"/>

This code assumes that the value property of a FacetValue object is a single value. If a facet actually has
multiple selection values, the code will display only one value. So, for example, if the current selections for
the Color facet are Blue, Green, and Red, this code would display:

Color: Blue

To display all of the selection values, your JSP code should treat the FacetValue.value property as an
array. For example:

<c:out value="${currentFacetValue.facet.label}:"/>

<c:forEach items="${currentFacetValue.value}" var="currentMultiValue">

 <c:out value=" ${currentMultiValue}"/>

</c:forEach>

For the Color facet, this will display:

Color: Blue Green Red

Note that code for handling multiple selection values will work even when there is only a single selection
value for a facet, so it is not necessary to write separate code to handle each case.

About Refinement Counts

Pages that display facets typically include refinement counts, which show the number of items in each
selection. For example, the selection values displayed for a color facet might look like this:

A T G S e a r c h Q u e r y G u i d e

7 3

1 0 - F a c e t e d S e a r c h

μ

The values in parentheses are the refinement counts. If the user clicks on the Black selection value, for
example, 2 items will be displayed.

Note that these refinement counts may not always match the number of search results. For example, in
this figure, the number of search results is 3, but if you add up the refinement counts, you get 5. This is
because some search results appear in multiple facet selections, because the index is based on products
but SKU properties are used for faceting. In this example, one of the products is available in Black, Grey,
and Khaki, so it is included in the counts for all three of those colors.

There are various other situations where refinement counts won’t match the number of search results. For
example, if you use SKU-based indexing but group results by product, the refinement counts will reflect
the number of SKUs returned, but the items displayed when a facet value is selected will be products. To
make the refinement counts reflect the number of products, set the following property on the
/atg/commerce/search/catalog/QueryRequest component:

refineCount=group

For more information about grouping results by product, see Setting Grouping Options.

Incorporating Search Text as a Facet
Using a search form created with the QueryFormHandler class, you can constrain the set of items
accessed through facet selections to ones that also match the search query text. For example, suppose a
site visitor at a clothing store begins by searching for “belt,” and then chooses the “Brown” selection value
for the color facet. The site would now display only brown belts, not all brown items in the store.

To enable this behavior in your pages, Faceted Search allows you to use a special SRCH facet whose
selection value is the search term entered by the site visitor. In this example, the facet trail String would
look something like this:

SRCH:belt:12:Brown

Constructing the Facet Trail String

When a customer submits a text query through the QueryFormHandler, the search text is stored in the
question property of the QueryRequest component, and returned (with possible modifications) in the

A T G S e a r c h Q u e r y G u i d e

7 4

1 0 - F a c e t e d S e a r c h

μ
question property of the QueryRequest.Response object. Submitting search text creates a new search
request with an empty facet trail. When the customer makes a facet selection, it is added to the facet trail
that is included in the subsequent search request.

The following JSP code implements the logic for building up the facet trail. If the facet trail is empty and
the question property of the response object is not empty, this means that the user has entered search
text as the most recent search request. In this case, the code sets the facet trail to SRCH:text plus
whatever facet selection the customer makes.

If, however, there is already a non-empty facet trail or the question property of the response object is
empty, this means that either the SRCH facet has already been added to trail, or there is no SRCH facet
(because there is no search text). So in either of these cases only the facet selection the customer makes is
added to the trail.

<dsp:droplet name="CommerceFacetTrailDroplet">

 <dsp:setvalue param="trail" value="${trailString}"/>

 <c:if test="${ empty trailString and ! empty queryResponse.question }">

 <dsp:setvalue param="addFacet"

 value="SRCH:${queryResponse.question}:${facetValueNode.facetValue}"/>

 </c:if>

 <c:if test="${ ! empty trailString or empty queryResponse.question }">

 <dsp:setvalue param="addFacet" value="${facetValueNode.facetValue}"/>

 </c:if>

. . .

Selecting the Refinement Configuration

When a customer submits a text query, the QueryFormHandler has no information for selecting a
refinement configuration. In this situation, ATG Search can determine the refinement configuration based
on the items that are returned from the query. This behavior is configured in the
/atg/commerce/search/catalog/QueryRequest component through the following settings:

refineConfig=$map

refineConfigMapProperty=ancestorCategories.catalogSpecificId

Setting the refineConfig property to $map instructs ATG Search to select the refinement configuration
by finding a metadata property value common to all of the results; refineConfigMapProperty specifies
which metadata property to use. The value of the specified property,
ancestorCategories.catalogSpecificId, is an array of the catalog-specific category IDs of a
product’s ancestor categories. (Each ID is formed by combining the category ID with the catalog ID.) The
value of ancestorCategories.catalogSpecificId is determined by the
/atg/commerce/search/CustomCatalogCategoriesPropertyAccessor component, which is a
property accessor of class
atg.commerce.search.producer.CustomCatalogCategoriesPropertyAccessor.

A T G S e a r c h Q u e r y G u i d e

7 5

1 0 - F a c e t e d S e a r c h

μ
These settings specify that ATG Search should use the refinement configuration associated with the
lowest-level catalog-specific ancestor category that is common to all of the returned items. This
refinement configuration includes the global facets plus any facets specific to that category. If there is no
ancestor category common to all of the results, a refinement configuration that includes only global
facets is used.

For example, suppose your site has several root categories, including Electronics, Shoes, Books, etc. The
hierarchy of the Electronics category looks like this:

Let’s say a customer searches for “Acme”. The search results consist only of TVs and stereos manufactured
by Acme Audiovisual. So the lowest-level ancestor category that is common to all of the returned items is
Home Theater. ATG Search uses the refinement configuration associated with this category.

Another customer searches for “Cogswell”. This time, the results consist of TVs and stereos manufactured
by Cogswell Inc., but also books written by an author named Russell Cogswell. The results therefore do
not have a common ancestor category, so ATG Search uses only the global facets.

Formatting Facet Values
In many cases, when you display a facet value on a page, it is desirable to reformat the value, because the
format used to store the values in the index is not optimized for display purposes. For example:

 Boolean values are stored in the index as 0 (false) or 1 (true).

 Dates are encoded as long integers.

 Price data is stored as raw numbers with no currency symbol or other formatting. For
example, the value representing $87,109.00 might be stored in the index as 87109.0.

To reformat these values for displaying on pages, the ATG platform includes a servlet bean,
atg.repository.search.refinement.RefinementValueDroplet. This servlet bean takes as input a

A T G S e a r c h Q u e r y G u i d e

7 6

1 0 - F a c e t e d S e a r c h

μ
facet selection value and the repository ID of the refinementElement that represents the facet, and
outputs the value in a more human-readable form.

ATG Commerce includes a component of this class, which you can use in your pages like this:

<dsp:droplet name="/atg/commerce/search/refinement/RefinementValueDroplet">

 <dsp:param name="refinementId" value="${facetHolder.facet.id}"/>

 <dsp:param name="refinementValue" value="${facetValueNode.facetValue.value}"/>

 <dsp:oparam name="output">

 <dsp:valueof param="displayValue"/>

 </dsp:oparam>

</dsp:droplet>

To perform the formatting, RefinementValueDroplet uses a class that implements the
atg.repository.search.MetaPropertyValueFormatter interface. By default, this class is
atg.repository.search.DefaultMetaPropertyValueFormatter. The RefinementValueDroplet
component has a defaultValueFormatter property that points to a component of this class,
/atg/commerce/search/refinement/DefaultMetaPropertyValueFormatter.

DefaultMetaPropertyValueFormatter can reformat a variety of data types:

 For a repository ID property (e.g., childSKUs.$repositoryId), it returns the item
display name.

 For a date property (e.g., creationDate), it returns a locale-specific date string.

 For an enumerated property (e.g. stockAvailabilityStatus), it returns the display
name of the enumerated value.

 For a Boolean property (e.g., onSale) it looks in a resource bundle for a key of the
format property-name_0 (for false) or property-name_1 (for true), and returns
the string associated with that key. For example, for an onSale property, the keys
would be onSale_0 and onSale_1. If the key is not found, the value is returned
unchanged. The resource bundle is specified by the resourceBundle property of the
DefaultMetaPropertyValueFormatter component.

You can write a custom implementation of the MetaPropertyValueFormatter interface to use for
specific faceting properties. ATG Commerce includes one such class,
atg.commerce.search.PriceMetaPropertyValueFormatter, for formatting price data. It also
includes a component of this class, /atg/commerce/search/PriceMetaPropertyValueFormatter.

To specify a custom formatter for a property, you create a component of your class and then register the
component with the /atg/search/repository/MetaPropertyValueFormatterRegistry
component. MetaPropertyValueFormatterRegistry has a valueFormatterMap property which
maps property names to their associated formatter components. For example, to specify that the
PriceMetaPropertyValueFormatter should be applied to the price property, ATG Commerce adds
this configuration:

valueFormatterMap+=\

 price=/atg/commerce/search/PriceMetaPropertyValueFormatter

A T G S e a r c h Q u e r y G u i d e

7 7

1 0 - F a c e t e d S e a r c h

μ
When it formats a value, RefinementValueDroplet first checks the
MetaPropertyValueFormatterRegistry to see if there is a custom MetaPropertyValueFormatter
registered for the property name, and if there is, uses that formatter. If there no custom formatter
registered for the property, it uses the DefaultMetaPropertyValueFormatter.

A T G S e a r c h Q u e r y G u i d e

7 8

1 0 - F a c e t e d S e a r c h

μ

A T G S e a r c h Q u e r y G u i d e

7 9

1 1 - S e a r c h M e r c h a n d i s i n g

μ
11 Search Merchandising

The Search Merchandising feature enables commerce sites to customize search results based on site
initiatives and customer purchasing patterns. A merchandiser uses ATG Merchandising to create search
configurations, which are sets of rules that determine the order of search results and which items are
excluded from the results.

Search configurations are stored in the RefinementRepository (along with the refinement
configurations used for Faceted Search), and are included by ATG Search when the product catalog is
indexed. When a site visitor issues a search query, ATG platform components determine which search
configuration to use, and include this information with the query. When ATG Search returns the results
from the query, it applies the rules in the search configuration to those results.

This chapter describes the query-side services involved in Search Merchandising. It includes the following
sections:

Determining the Search Configuration to Use

Handling Redirects

For more information about Search Merchandising, including details about creating search
configurations, see the ATG Merchandising Guide for Business Users and the ATG Merchandising
Administration Guide.

Determining the Search Configuration for a Query
When a visitor enters a search term on a site that uses Search Merchandising, the software determines
which search configuration to apply, and includes this information in the query it sends to ATG Search.
The logic used to select the search configuration is based on the tree structure created in ATG
Merchandising. This structure can take into account three dimensions: user segment, site, and locale
(referred to in ATG Merchandising as language).

The dimension tree structure is stored as repository items in the RefinementRepository. When the
product catalog is deployed from the ATG Merchandising environment to the target site, this repository is
deployed as well.

The dimension services that create the tree structure in ATG Merchandising,
/atg/search/config/LanguageDimensionService,
/atg/commerce/search/config/SiteDimensionService, and
/atg/commerce/search/config/SegmentDimensionService, are also present on the search client
environment. When a site visitor submits a query entered in a search form, the form handler invokes the

A T G S e a r c h Q u e r y G u i d e

8 0

1 1 - S e a r c h M e r c h a n d i s i n g

μ
/atg/commerce/search/config/SearchConfigNameService component, which uses these services
to traverse the decision tree based on the visitor’s language (locale) , the user segments he or she is a
member of, and the current site. It proceeds through the tree until it finds the first search configuration
that matches these values. It then adds a reference to this search configuration to the query. The search
configuration rules are applied to the results returned. If there is no matching search configuration, then
no search configuration rules are applied.

For example, suppose the dimension tree created in ATG Merchandising looks like this:

In this example, English is the only language defined, and there are only two segments available, Big
Spenders and Californians, and site is not used as a dimension.

To determine the search configuration to use, the software would proceed like this:

 Determine the visitor’s language, as described in Determining the Language.

 If the language is English:

 Determine if the visitor is a member of the Big Spenders segment. If so, use the
Segment: Big Spenders search configuration.

 If the visitor is not a member of the Big Spenders segment, determine if the
visitor is a member of the Californians segment. If so, use the Segment:
Californians search configuration.

 If the visitor is not a member of the Californians segment, use the Segment: All
Others search configuration.

 If the language is not English:

 Determine if the visitor is a member of the Big Spenders segment. If so, use the
Segment: Big Spenders 2 search configuration.

 If the visitor is not a member of the Big Spenders segment, do not use any
search configuration.

Some things to note in this example:

 The ordering of the items in the tree is important. If the visitor’s language is English,
and he or she is a member of both the Big Spenders and the Californians segments,
the Segment: Big Spenders search configuration is selected, because its position in the
tree is above the Segment: Californians search configuration.

 In a group of dimension folders or search configurations at the same position in the
hierarchy, the folder or search configuration whose dimension value is All Others is

A T G S e a r c h Q u e r y G u i d e

8 1

1 1 - S e a r c h M e r c h a n d i s i n g

μ
always the last item in that group of folders or search configurations. In the example
above, the Language: All Others folder comes after Language: English, and the
Segment: All Others search configuration comes after Segment: Big Spenders and
Segment: Californians. ATG Merchandising enforces this ordering to ensure that a
folder or search configuration whose dimension value is All Others is used only if the
visitor’s value for that dimension doesn’t match any other folder or configuration.

Determining the Language

When a merchandiser defines a search configuration in the ATG Merchandising UI, he or she selects a
language from a preconfigured list. Though the term “language” is used throughout the Merchandising
UI, the values selected actually represent Java locales. So, for example, the list of available languages
might include both British English (representing the locale en_GB) and US English (representing the locale
en_US).

When a site visitor enters a search query, the software determines the visitor’s locale, and uses this value
in the process of selecting a search configuration. Different sites may use different logic for determining a
visitor’s locale. The following steps describe one common approach:

1. If the URL in the request includes a query parameter that specifies a locale, use that
locale.

2. If the locale is not specified in the URL, examine the current profile’s locale property.
If this property is set (typically the case only if the user is logged in), use the value of
that property.

3. If the locale property of the profile is not set, examine the HTTP headers of the
request for a locale setting. This is set by the browser based either on a preference
setting in the browser itself, or on a value derived from an operating-system setting.

Handling Redirects
A merchandiser can create a rule in ATG Merchandising that specifies a URL to redirect to if the search
query contains certain terms. For example, if a certain product is highly anticipated but has not yet been
released, the merchandiser may want to create a redirection rule specifying that if a site visitor searches
for this product, the site should display a page where the visitor can sign up to be notified when the
product is available. If this redirection rule is executed, the results returned by ATG Search are not
displayed.

The search form handlers have an redirectEnabled property that specifies whether the form handler
should check the search results for a redirect URL. If this property is set to true, the form handler
examines the search results for a redirect URL, and if it finds one, displays the page specified by that URL.
If this property is set to false, the form handler ignores any redirect URL and displays the results returned
by ATG Search. The redirectEnabled property is set to false by default in the ATG Merchandising
Search Testing environment, but is set to true by default otherwise.

A T G S e a r c h Q u e r y G u i d e

8 2

1 1 - S e a r c h M e r c h a n d i s i n g

μ

A T G S e a r c h Q u e r y G u i d e

8 3

1 2 - R e c o r d i n g E v e n t s f o r R e p o r t i n g

μ
12 Recording Events for Reporting

If your ATG installation includes ATG Customer Intelligence (ACI), you can use it to generate Commerce
Search reports. In particular, you can generate reports that associate search terms with items that are
viewed or purchased.

To do this, your site must record “click-through” events. These occur when a customer clicks on a product
or SKU returned by a search, to view it or purchase it. The recording of these events works like this:

 For each search result, the GetClickThroughId servlet bean generates a click-
through ID, which you append to the URL for that result using a query parameter. The
servlet bean also adds the result document to a cache.

 When a customer clicks a link to view a search result, the
SearchClickThroughServlet examines the request URL, finds the click-through ID,
and uses it to look up the document in the cache. If it finds the document, the servlet
fires a JMS event containing the search request and response objects and the selected
document. This event is logged to be used for reporting.

This chapter describes how to code your pages and configure your site to log the events used for
Commerce Search reporting. See the ATG Commerce Programming Guide for information about loading
this data into ACI. For more information about reporting in general, see the ACI documentation.

Using the GetClickThroughId Servlet Bean
The /atg/search/droplet/GetClickThroughId servlet bean is typically used in a loop that renders a
list of search results. For each result, it adds the item to a cache, and generates a click-through ID to be
included in the URL for viewing that item. The click-through ID consists of a query identifier and a
document identifier, separated by a delimiter.

You use this servlet bean in pages that render a listing of search results. For example, the following JSP
code creates a hyperlink to a product page and appends the searchClickId query parameter to the
URL:

<dsp:droplet name="/atg/search/droplet/GetClickThroughId">

 <dsp:param name="result" value="${searchResult}" />

 <dsp:oparam name="output">

 <dsp:a href="/myapp/en/product.jsp">

 <dsp:param name="searchClickId" param="${searchClickId}"

A T G S e a r c h Q u e r y G u i d e

8 4

1 2 - R e c o r d i n g E v e n t s f o r R e p o r t i n g

μ
 </dsp:a>

 </dsp:oparam>

</dsp:droplet>

The resulting URL looks something like this:

http://www.mycompany.com/myapp/en/product.jsp?searchClickId=0000020003,25

For more information, see GetClickThroughId.

Configuring the Cache

GetClickThroughId uses a session-based cache component,
/atg/search/cache/SearchQueryCache, to store results returned by ATG Search. This cache uses a
Least Recently Used (LRU) storage algorithm. This means that if the cache is full, whenever a new item is
added to the cache, the oldest item is discarded.

Discarding items can make reporting less accurate, but prevents the cache from becoming too large and
consuming too much memory. To optimize the tradeoff between accuracy and resource use, you can set
the following properties of the SearchQueryCache component:

 queryCount -- Specifies the maximum number of search request/response objects to
store. Default is 10. To specify no maximum, set this value to -1.

 documentCount -- Specifies the maximum number of documents to store per search
request/response. A document is stored in the cache if the page of results it is on is
displayed. So, for example, if 10 results are displayed per page, and the user views the
first 3 pages of results, 30 documents are stored in the cache for that response. Default
is 1000. To specify no maximum, set this value to -1.

Note that the LRU caching algorithm is applied independently to the number of search queries and the
number of documents per search query. So, for example, if queryCount is set to 5, and a user enters 6
search queries, the results from the first query are discarded from the cache, regardless of how many
documents are returned for the other stored queries. Similarly, if documentCount is set to 100, and the
user pages through the first 12 pages of results for a query (with 10 results displayed per page), then the
cache will store documents 21 through 120, and the first 20 documents will be discarded; but none of the
other stored queries will be affected.

Configuring the SearchClickThroughServlet
The /atg/search/servlet/pipeline/SearchClickThroughServlet is inserted into the DAF servlet
pipeline after the ProfileRequestServlet. When a user clicks a link to view a search result,
SearchClickThroughServlet reads the click-through ID from the request URL and looks up the
document in the SearchQueryCache. If it finds the document, it triggers a
SearchClickThroughMessage JMS event, which is logged for loading into the ACI Data Warehouse.

To configure this servlet, set the following properties:

A T G S e a r c h Q u e r y G u i d e

8 5

1 2 - R e c o r d i n g E v e n t s f o r R e p o r t i n g

μ
enabled
If true, the servlet processes the request. Default is false.

searchClickIdQueryArgs
An array of the query arguments to read to find the click-through ID for a viewed item.
One of the values in this array must match the name of the output parameter set by
GetClickThroughId. Default is searchClickId.

Limiting the Pages to Examine

By default, this servlet examines all URLs to look for click-through IDs. This process can be inefficient,
because only product detail pages will typically have these IDs. Therefore SearchClickThroughServlet
has a clickThroughPages property that you can use to limit the pages to examine. This property is an
array of URLs; these URLs can include asterisk (*) characters as wildcards. If clickThroughPages is not
null, SearchClickThroughServlet will examine only the URLs that match one of the
clickThroughPages entries. For example, you could set clickThroughPages to:

/myapp/*/product*.jsp,\

/myapp/*/sku*.jsp

A T G S e a r c h Q u e r y G u i d e

8 6

1 2 - R e c o r d i n g E v e n t s f o r R e p o r t i n g

μ

A T G S e a r c h Q u e r y G u i d e

8 7

A p p e n d i x A : C o m m e r c e S e a r c h S e r v l e t B e a n s

μ
Appendix A: Commerce Search Servlet
Beans

This appendix provides reference entries for the following Commerce Search servlet beans:

CommerceFacetTrailDroplet

GetClickThroughId

RefinementValueDroplet

CommerceFacetTrailDroplet

Class Name atg.commerce.search.refinement.CommerceFacetTrailDroplet

Component /atg/commerce/search/refinement/CommerceFacetTrailDroplet

This servlet bean takes as input a String representing a facet trail, plus additional input parameters
specifying modifications to the facet trail. It outputs the modified facet trail as a FacetTrail object,
which can then be rendered on the page or used to construct a subsequent search request.

The input parameters can be set explicitly or they can be set by the page’s URL query parameters. For
example, when a customer clicks a link for a selection value, the query parameter corresponding to the
servlet bean’s addFacet parameter can be set to this selection value. When the new page is displayed,
the chosen value will appear at the end of the facet trail. Similarly, another link could be used to remove a
selection value or range from the facet trail.

Properties

The following table describes the properties of the CommerceFacetTrailDroplet component and their
default settings. Note that each property whose name ends with “ParameterName” specifies the name of
the query parameter that supplies the value to use for the corresponding input parameter if the input
parameter is not supplied.

A T G S e a r c h Q u e r y G u i d e

8 8

A p p e n d i x A : C o m m e r c e S e a r c h S e r v l e t B e a n s

μ
Property Description

facetManager Specifies the component used to retrieve items from the
refinement repository. Default:
/atg/commerce/search/refinement/CommerceFacetManager

facetTrailSeparator The character used as a separator between the facets and the
faceting property values in the facet trail. Default: the colon
character (:)

lastRangeValueIndicator A String appended to a selection range in the facet trail if the
range is the last one for a particular facet. Default: LAST

valueIndicatorSeparator Separator placed between a selection range and the
lastRangeValueIndicator String if the range is the last one for
a particular facet. Default: the vertical bar character (|)

categoryRefineConfigPropertyName The name of the property of the category repository item that
contains a reference to the refinement configuration for the
category. Default: refineConfig

trailParameterName The name of the query parameter that specifies the value to use
for the trail input parameter, if the input parameter is not
supplied. Default: trail

addFacetParameterName The name of the query parameter that specifies the value to use
for the addFacet input parameter, if the input parameter is not
supplied. Default: addFacet

removeFacetParameterName The name of the query parameter that specifies the value to use
for the removeFacet input parameter, if the input parameter is
not supplied. Default: removeFacet

removeAllFacetsParameterName The name of the query parameter that specifies the value to use
for the removeAllFacets input parameter, if the input parameter
is not supplied. Default: removeAllFacets

removeFacetTypeParameterName The name of the query parameter that specifies the value to use
for the removeFacetType input parameter, if the input parameter
is not supplied. Default: removeFacetType

Input Parameters

trail
String that represents the current facet trail. This parameter’s value is typically specified through a query
parameter in the URL for the page. The name of the query parameter that sets the value of this input
parameter is configured through the trailParameterName property.

refineConfig
The refineConfig repository item to use for querying ATG Search. If this value is not specified, the
refinement configuration will be chosen automatically.

A T G S e a r c h Q u e r y G u i d e

8 9

A p p e n d i x A : C o m m e r c e S e a r c h S e r v l e t B e a n s

μ
addFacet
String that represents an entry (consisting of a facet and an associated selection value or range) to add to
the facet trail. This parameter’s value is typically specified through a query parameter in the URL for the
page. The name of the query parameter that sets the value of this input parameter is configured through
the addFacetParameterName property.

removeFacet
String that represents an entry to remove from the trail. This parameter’s value is typically specified
through a query parameter in the URL for the page. The name of the query parameter that sets the value
of this input parameter is configured through the removeFacetParameterName property.

removeAllFacets
If this parameter is set to true, the facet trail is cleared. This parameter’s value is typically specified
through a query parameter in the URL for the page. The name of the query parameter that sets the value
of this input parameter is configured through the removeAllFacetsParameterName property.

removeFacetType
The item ID of a refinement element repository item (i.e., a facet); specifies that all facet values or ranges
for this facet should be removed from the facet trail. This parameter’s value is typically specified through a
query parameter in the URL for the page. The name of the query parameter that sets the value of this
input parameter is configured through the removeFacetTypeParameterName property.

Output Parameters

facetTrail
The FacetTrail object generated from the input or query parameters.

errorMessage
The message generated if an error occurs when creating the FacetTrail object.

Open Parameters

output
This open parameter is rendered if no errors occur when creating the FacetTrail object.

error
This open parameter is rendered if any errors occur when creating the FacetTrail object.

Examples

For examples of using the CommerceFacetTrailDroplet, see the Faceted Search chapter.

A T G S e a r c h Q u e r y G u i d e

9 0

A p p e n d i x A : C o m m e r c e S e a r c h S e r v l e t B e a n s

μ

GetClickThroughId

Class Name atg.search.cache.droplet.GetClickThroughId

Component /atg/search/droplet/GetClickThroughId

This servlet bean takes as input a single search result, stores it in a document cache, and returns a click-
through ID associated with the result. This ID can subsequently be used by the
SearchClickThroughServlet to retrieve the result from the cache.

GetClickThroughId is typically used in a loop that renders a list of search results as hyperlinks to pages
displaying those items. For each result, the click-through ID is set as the value of a query parameter that is
appended to the URL.

Properties

The following table describes the properties of the GetClickThroughId component and their default
settings.

Property Description

searchResultParameter Name of the input parameter that specifies the search result.
Default: result

searchClickIdParameter Name of the output parameter that holds the click-through ID.
Default: searchClickId

searchQueryCachePath String specifying the Nucleus pathname of the cache component.
Default: /atg/search/cache/SearchQueryCache

searchClickIdDelimiter Delimiter separating the query identifier and the document
identifier in the click-through ID. Default: the comma character (,)

Input Parameter

result
The current search result.

Output Parameter

searchClickId
The click-though ID for retrieving the current search result from the cache.

A T G S e a r c h Q u e r y G u i d e

9 1

A p p e n d i x A : C o m m e r c e S e a r c h S e r v l e t B e a n s

μ
Open Parameter

output
The open parameter for rendering the click-through ID.

Example

<dsp:droplet name="/atg/search/droplet/GetClickThroughId">

 <dsp:param name="result" value="${searchResult}" />

 <dsp:oparam name="output">

 <dsp:a href="/myapp/en/product.jsp">

 <dsp:param name="searchClickId" param="${searchClickId}"

 </dsp:a>

 </dsp:oparam>

</dsp:droplet>

A T G S e a r c h Q u e r y G u i d e

9 2

A p p e n d i x A : C o m m e r c e S e a r c h S e r v l e t B e a n s

μ

RefinementValueDroplet

Class Name atg.repository.search.refinement.RefinementValueDroplet

Component /atg/commerce/search/refinement/RefinementValueDroplet

This servlet bean takes as input a facet selection value and the repository ID of the refinementElement
that represents the facet, and outputs the value in a more human-readable form. The value is formatted
by the /atg/commerce/search/refinement/DefaultMetaPropertyValueFormatter component,
which is specified by the defaultValueFormatter property of the servlet bean.

The DefaultMetaPropertyValueFormatter formats the following data types:

 For a repository ID property (e.g., childSKUs.$repositoryId), it returns the item
display name.

 For a date property (e.g., creationDate), it returns a locale-specific date string.

 For an enumerated property (e.g., stockAvailabilityStatus), it returns the display
name of the enumerated value.

 For a Boolean property (e.g., onSale) it looks in a resource bundle for a key of the
format property-name_0 (for false) or property-name_1 (for true), and returns
the string associated with that key. For example, for an onSale property, the keys
would be onSale_0 and onSale_1. If the key is not found, the value is returned
unchanged. The resource bundle is specified by the resourceBundle property of the
DefaultMetaPropertyValueFormatter component.

You can also write custom formatters for specific properties. For more information, see the Faceted
Search chapter.

Input Parameters

refinementId
The repository ID of the refinementElement that represents the facet in the refinement repository.

refinementValue
The facet value returned by the search engine.

Output Parameter

displayValue
The formatted value.

A T G S e a r c h Q u e r y G u i d e

9 3

A p p e n d i x A : C o m m e r c e S e a r c h S e r v l e t B e a n s

μ
Open Parameters

output
This open parameter is rendered if no errors occur when formatting the value.

error
This open parameter is rendered if any errors occur when formatting the value.

Example

<dsp:droplet name="/atg/commerce/search/refinement/RefinementValueDroplet">

 <dsp:param name="refinementId" value="${facetHolder.facet.id}"/>

 <dsp:param name="refinementValue" value="${facetValueNode.facetValue.value}"/>

 <dsp:oparam name="output">

 <dsp:valueof param="displayValue"/>

 </dsp:oparam>

</dsp:droplet>

A T G S e a r c h Q u e r y G u i d e

9 4

A p p e n d i x A : C o m m e r c e S e a r c h S e r v l e t B e a n s

μ

A T G S e a r c h Q u e r y G u i d e

9 5

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
Appendix B: Search XML Reference

This appendix provides information on the XML used by ATG Search queries and responses. This
information can be useful for troubleshooting.

answer
The answer element is the root response element for a query request. Based on the query string entered
by the end-user and the search environment’s configuration, ATG Search returns a response containing
the results retrieved. The results can then be displayed in the user interface or subjected to further
processing. The search results include:

 The matching statement

 The index item that contains that statement

 Secondary information about the results, such as where they fall in the category
taxonomy

 Feedback about the query, such as spelling suggestions or refinements

Each document object contains the list of document sets and categories of which it is a member. This
information includes the size of the document set, and for categories, the relevance of the document to
that category.

Attribute Description

contentID Content ID of the index item.

QUID Value of the query’s QUID attribute.

sorting Value of the query’s sorting attribute.

sortProp For grouping by property, the type, name, and default value.

docSetSort Value of the query’s docSetSort attribute.

mode Value of the query’s mode attribute.

strategy Value of the query’s strategy attribute.

debug Value of the query’s debug attribute.

A T G S e a r c h Q u e r y G u i d e

9 6

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
refineDebug Value of the query’s refineDebug attribute.

refineMax Value of the query’s refineMax attribute.

refineMin Value of the query’s refineMin attribute.

refineTop Value of the query’s refineTop attribute.

autospell Value of the query’s autospell attribute.

highlight Value of the query’s highlight attribute.

minScore Value of the query’s minScore attribute.

pageNum Value of the query’s pageNum attribute.

pageSize Value of the query’s pageSize attribute.

docSort Value of the query’s docSort attribute.

docSortPred Value of the query’s docSortPred attribute.

docSortProp Value of the query’s docSortProps attribute.

docSortPropDefault Value of the query’s docSortPropDefault attribute.

docSortOrder Value of the query’s docSortOrder attribute.

docSortCase Value of the query’s docSortCase attribute.

relQuestSettings Value of the query’s relQuestSettings attribute.

responseNumberSettings Value of the query’s responseNumberSettings attribute.

topicSettings Reserved for future use.

responseCount Total number of results returned.

groupCount Total number of groups returned.

docCand Number of document candidates considered during retrieval.

docMax Estimate of how many documents are retrievable using the current
query.

docMin Minimum number of documents that could be returned, if all query
terms were in the same documents.

ansCand Number of sentence candidates considered during retrieval.

ansMax Estimate of how many sentences are retrievable with the current
query.

ansMin Minimum number of sentences that could be considered, if all query
terms were in the same sentence.

ansPool Number of sentence results before grouping and paging.

A T G S e a r c h Q u e r y G u i d e

9 7

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
pageOffsetInfo Value of the query’s pageOffsetInfo attribute.

maxRelatedSets Value of the query’s maxRelatedSets attribute.

responseTimeMs Amount of time taken to process the query.

The answer element contains the following child elements:

 categories

 debug

 documentSets

 parserOptions

 priorInput

 queryAction

 queryRule

 queryTerms

 question

 response

 responseTree

 refinements

 spelling

 startCategory

 userquestion

 weightedProps

categories
This element is a child of the answer element, and contains category child elements. For this element, a
category is equivalent to a document set.

category
The category provides document count information, and contains query refinements, documents, and
additional categories. For this element, a category is equivalent to a document set.

A T G S e a r c h Q u e r y G u i d e

9 8

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
Attributes Description

_path Path name of document set.

label Optional display label for document set.

_id Topic ID, if the document set represents a topic.

nUniqueDocuments Total number of unique documents under this document set and all
descendents.

nTotalDocuments Total number of documents under this document set and all descendents.

nDisplayedDocuments Total documents returned under this document set, with respect to
constraints and settings.

nDocuments Total documents immediately under this document set.

nChildren Number of child sets immediately under this document set.

nTotalChildren Total number of descendent sets under this document set and its child
sets.

nDisplayedChildren Number of returned descendents with respect to constraints and settings.

Child elements of a category are collections of simple single elements:

 refinements—Has refinement elements as children.

 documents—Has document elements as children.

A category can also contain additional category elements.

context
The context element is a child of the parserOptions element. It has no child elements.

ATG Search contains a large general-purpose dictionary which represents all of the knowledge about a
language that it processes. The dictionaries for each language can be loaded separately, or in
combinations. For each language, the dictionary contains index terms (also called stems), part-of-speech
data, syntactic and semantic features, morphological rules, compound and phrase data, term
normalization data, term weights, thesaurus entries, text patterns, and various other pieces of data.

The adaptor components are extensions to the general purpose dictionary. Adaptors typically reflect
domains, such as financial, computer, and manufacturing. Each domain requires specialized information
in the dictionary, which may or may not be applicable to other domains. Administrators determine which
adaptors are loaded (see the Term Dictionaries chapter of the ATG Search Administration Guide). Adaptors
include the following:

 index terms

A T G S e a r c h Q u e r y G u i d e

9 9

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
 compound terms

 term normalizations

 additional thesaurus entries

 modifications to thesaurus entries in the core dictionary

ATG Search offers the following adaptors for English:

 aerospace

 airlines

 apparel

 appliances

 automotive

 business

 computer

 cooking

 crafts

 ecommerce

 financial

 food

 healthcare

 hotels

 housewares

 HR

 insurance

 jewelry

 legal

 manufacturing

 media

 personal_care

 pets

 sports_outdoors

 telecommunications

 tools

 toys

 yard_garden

A T G S e a r c h Q u e r y G u i d e

1 0 0

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
During indexing, the adaptors are loaded based on the languages selected in Search Administration (see
the ATG Search Administration Guide).

To use a dictionary adapter, the adapter must be loaded when the content is indexed, and it must be
included as a context in parserOptions. For example, to use the healthcare adaptor, it must be selected
as a pre-indexing customization in the search project via Search Administration. Additionally, each query
must include the context in its parserOptions:

<context>healthcare</context>

Multiple instances of this element are allowed. If an adapter is specified at index time but not as a query-
time context, the loaded adapter is not used for the query.

Adaptors can affect which strings are considered tokens for indexing purposes, and this effect is
independent of the context setting at query time. Therefore, you should usually include all adapters as
contexts in the query. The exception would be if a site has mixed content indexed in a single partition;
then, different adaptors may be enabled at query time, depending on the context of the query. This
allows different thesaurus entries to be used depending on the query context; for example, in one context
for healthcare, and in another context for pets.

debug
This element contains debugging information. It is a child of the answer element and has no child
elements.

document
For query requests, the document element represents a single document within the response element.

Attributes Description

contextID View context information in the form:

hdoc:start-final,start-final…

Start and final refer to the text offset positions of a matching statement.

hdoc Document identifier.

goto Jump to off-set of this result in the document text.

size Size of source of document.

docset Physical document set of the document.

type Major format of document.

A T G S e a r c h Q u e r y G u i d e

1 0 1

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
lang Language of document.

filename File name (excluding path).

relevance Relevance score of document.

The document element has the following child elements:

 documentSets—See the documentSets element.

 title—Title of document. No child elements.

 summary—Summary of the document. No child elements.

 _url—URL of the document. No child elements.

 timestamp—Last modified date and time of the document. No child elements.

 question—See the question element.

 answer—See the answer element.

 properties—List of metadata properties for this document, contained by meta child
elements.

documentSets
This element consists of a constraint expression. It is a child of the query element. See Document Set
Constraints in the Constraining Queries chapter for information.

envName
The envName element is a child of the query element. It has no child elements.

This element contains the name of the search environment against which the query is directed, if one has
been specified. See the ATG Search Administration Guide for information on environments.

expandedStemming
The expandedStemming element is a child of the parserOptions element. It has no child elements.

ATG Search performs morphological analysis on both indexed content and input queries. For most word
forms, a single index term is derived; however, for some forms, multiple index terms are possible. For
example, the form spoke is both a noun root and a past tense form of the verb root speak.

A T G S e a r c h Q u e r y G u i d e

1 0 2

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
During indexing, if multiple index terms are possible, ATG Search chooses the most common term (as
defined in the dictionary). At query time, ATG Search uses all root terms for each query term. Part-of-
speech tagging can help determine if the terms should be limited, such as choosing the noun spoke for a
phrase like the spoke, but is not always able to correctly interpret queries. This tag determines what sort of
stem expansion is used:

<expandedStemming>val</expandedStemming>

If val is false, expansion is performed only on a single index term. If val is all, all index terms are used
during expansion. A value of untagged means that query terms that could not be part-of-speech tagged
use all index terms for expansion.

language
The language element is a child of the parserOptions element. It has no child elements.

The query language determines which dictionary to use for processing. Only languages that have been
loaded when the content was indexed are valid. The format is:

<language>lang</language>

The lang value is the name of any valid language, and defaults to English.

parserOptions
The parserOptions element is a child of the query element. It contains the following child elements:

 language

 targetLanguage

 spellchecker

 expandedStemming

 wildcardMax

 securityRole

 context

 topicMaximum

 spellSplitWords

ATG Search uses its natural language components to process the query during search. The natural
language components provide options that affect this processing. This section describes the major
options, which are passed in as XML elements in the query as part of the parserOptions element.

A T G S e a r c h Q u e r y G u i d e

1 0 3

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
It is important to keep in mind that any parser options you set in the query XML must agree with the text
processing option set selections you have made in Search Administration. For example, if you have
indexed content in French, and the language and targetLanguage settings specify English, the search
will return no results.

See the ATG Search Administration Guide for information on creating text processing option sets through
Search Administration.

priorinput
This element contains prior or secondary user input. It is a child of the query element and has no child
elements. See the requestMode attribute of the query element for information.

query
The query element is the standard means of communicating end-user questions to the search engine.
The query element has no parent element, and contains the following child elements:

 envName

 question

 startCategory

 priorInput

 parserOptions

 documentSets

 refineConstraint

 weightedProps

 reportData

The response to a query request is an answer element. The query element attributes are described in
the sections that follow.

andFeedback

This request attribute allows you to include feedback in the search response on searches that are
performed using the and mode (see the mode attribute). If the full “and” of the search terms the user
entered does not provide enough results, you can use the andFeedback results to arrive at a subset of
terms that does provide results, and use that information in your results page to suggest alternate
searches.

<query andFeedback="N">

A T G S e a r c h Q u e r y G u i d e

1 0 4

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
N can have the following values:

 N=0
No feedback is returned.

 N=1
Only searches with 0 results generate feedback.

 N>1
Searches with fewer than the specified number of results generate feedback.

The feedback consists of alternate queries that provide all possible combinations of the terms from the
original query that satisfy the Boolean and mode. An example of the response feedback follows:

<andFeedback>

<altQuery size="1" results="1808" text="women">

 <term exclude="false">women</term>

 <term exclude="true">of</term>

 <term exclude="true">apparel</term>

</altQuery>

<altQuery size="1" results="1329" text="apparel">

 <term exclude="true">women</term>

 <term exclude="true">of</term>

 <term exclude="false">apparel</term>

</altQuery>

</andFeedback>

The altquery child element includes the following attributes:

 size—Number of non-excluded terms included in that subset of the query.

 results—Approximate number of search results returned by that subset of the
query.

 text—Text of the non-excluded terms that comprise that subset of the query.

The altquery element includes one term child element for each of the original query terms. This makes
it easy for you to display the original query and the excluded terms in a different format, if desired; to
display only the included terms, refer to the text attribute.

The exclude attribute of the term element indicates whether the term has been excluded from that
version of the query. In the above example, notice that “of” is automatically excluded in all and searches,
due to its low value as a search term.

Note that if you are grouping by property and the refineCount=group attribute is in use (see Setting
Grouping Options), the result counts returned reflect groups, not items.

autocat

ATG Search applies rules to determine what categories are relevant to a user queries. One use of this
functionality is to automatically add the most relevant categories as constraints on the query itself, thus

A T G S e a r c h Q u e r y G u i d e

1 0 5

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
narrowing the search to the more appropriate content. These automatic constraints are controlled by the
following attribute:

<query autocat="max"

<query autocat="maxp"

The max value is the maximum number of categories to add as constraints. Multiple categories are added
as a Boolean OR of document set constraints, joined (that is, ANDed) to the pre-existing constraints. If the
max value is appended with a p, then the optional taxonomy pruning post-processing algorithm is used
during categorization.

autocatPrune

When used with the autocat attribute, autocatPrune="true" indicates that taxonomy pruning should
be used during categorization.

<query autocat="max" autocatPrune="prune"

This process eliminates any category assignments in which content is assigned to a child category where
it should also be assigned to the parent. For example, a taxonomy has a category for Product X and
subcategories containing topics, such as Installation, Service, Support, Help, etc. Without pruning, the
taxonomy rules would be forced to require X in the rules throughout the sub-tree, such as “support for X”
and “install X”. This might be possible, but often X won’t be in the same sentence as the other terms
required for the sub-categories. With pruning, the taxonomy rules could simply define rules for X under
the root product X category, then define generic rules for the sub-tree, like “support” and “install”.
Content that matched these generic rules and was assigned to the categories would be pruned if it was
not also assigned to the product X category. Taxonomy pruning works globally across all categories,
effectively pruning content down the tree that has not been assigned above it.

autospell

ATG Search always returns spelling feedback in the response. It can optionally automatically correct
spelling before issuing the query, using the following attribute:

<query autospell="true"

The bool value must be either true or false, and defaults to true.

debug

If this attribute is set to true, the returned answer includes the query XML for debugging.

docSetSort

ATG Search can return categorization feedback about the returned results in the form of a tree. This
functionality is controlled by the following attribute:

A T G S e a r c h Q u e r y G u i d e

1 0 6

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
<query docSetSort="mode"

The mode value can be:

 none—No categorization feedback tree is constructed.

 fulltree—A full categorization tree is returned, with all intervening levels, even if
they have no direct connection to the results.

 sparsetree—A categorization tree is returned, but intervening levels that have no
direct connection to the results are omitted.

The default value is none.

docFlags

This attribute allows full control over how much document information to return, with the potential to
greatly affect the size of the returned response. The default is “url,docsets,properties” plus
“contextid” if optimize is set to a value greater than 1.

<query docFlags="flag1,flag2,flag3…"

The possible flags that can be included are:

 summary—Document summary, normally just for browse*

 docsets—Item set information

 title—Index item title*

 properties—Metadata properties, limited by docProps

 timestamp—Index item timestamp*

 date—Index item timestamp*

 contextid—Item view request highlight information

 size—Size of index item source*

 type—Major format type of index item (HTML, PDF, etc.)

 language—Language of index item

 url—Index item URL

 document—Same as url

 all—All flags are set

The url (or document) flag must be included to get any index item information at all. The default value is
“url,properties,docsets”.

Items marked with an asterisk must retrieve information from the disk; those have the most impact on
query speed, and should be eliminated if the information is not needed.

A T G S e a r c h Q u e r y G u i d e

1 0 7

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
docProps

ATG Search returns the metadata properties associated with the index item of each statement result.
These returned properties can be used for user interface functionality, such as customized result pages. By
default, ATG Search returns all stored metadata properties, but the list of returned properties can be
controlled by this attribute:

<query docProps="all"

<query docProps="prop,prop,..."

The first example is the default, and indicates that all properties are returned. The second form lists the
property names to return in a comma-delimited list. If the attribute is empty (docProps= "") no
properties are returned.

docSort

ATG Search returns a list of result groups in its query response. Normally, the result groups are sorted in
relevance order, but you may want to allow users to sort the final results by some secondary criteria, such
as date. This secondary sort does not affect what results are in the result groups, just the order of the
returned groups. Secondary sorting is performed before paging, and is controlled by the following
attributes:

<query docSort="mode" docSortOrder="order" docSortProp="prop"

dcSortPropDefault="def" docSortPropVal="val" docSortPred="predicate"

docSortCase="bool"

The mode value specifies how the index items will be sorted, and can be one of the following:

 relevance—The default value, return items in relevance order, assuming the item set
is a category

 alpha—Sort index items by filename (such as index.htm)

 address—Sort index items by the beginning of the full URL (for example,
http://www.oracle.com)

 url—Sort index items by full URL

 date —Sort index items by last modified date

 strprop —Sort index item by a metadata string property, requires docSortProp
attribute

 numprop —Sort index items by a metadata number property, requires docSortProp
attribute

 title —Sort index items by title

 type —Sort index items by the type, such as HTML or PDF

 docset—Sort index items by physical document set

 index—Leave index items unsorted, in index order

A T G S e a r c h Q u e r y G u i d e

1 0 8

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
 predicate – Sort groups by combination of the modes specified in the docSortPred

attribute (see below).

The order value determines whether the sort is ascending or descending, either alphabetically or
numerically, depending on the sort mode. The order value can be either ascending or descending.

The prop value specifies the property name to use for the strprop or numprop modes. The property
name must be a valid property of the given type; for example, for strprop, either string or enum, and
for numprop, either integer, float, boolean or date. Index items that don’t have this property will be
excluded from the sort. To prevent that, the def value can specify the default property value to use for
these exceptional cases. The def value should agree with the type of the property.

When grouping by property, it is common to have multiple values for a property within an item as well as
across a group. The val value controls which value of the result group’s properties to use. The val can be
one of the following values:

 first—The first value of the first item in the group is used.

 last—The last value of the last item in the group is used.

 high—The highest (greatest) value of the property from any of the items in the group.

 low—The lowest (smallest) value of the property from any of the items in the group.

The default is first. As an example, if the items should be sorted by the lowest price and there are
multiple price values per item or the items are grouped by some property, the low value for
docSortPropVal should be used.

The predicate value specifies a sequence of sorting modes and orders to apply when
mode="predicate", forming a complex sort criterion. The value has the following form:

docSort="predicate" docSortPred="mode:order:prop:def:bool|…"

The five colon-delimited fields correspond to the five docSort attribute values. Note that for modes other
than strprop and numprop, the prop and def fields are irrelevant and can be omitted. The order value
should specify the logical precedence of the mode, that is, how the results would be placed in order by
that individual mode. The bool represents the docSortCase value.

The overall sort order is controlled using the docSortOrder attribute. For example:

docSortPred="numprop:descending:popularity:0|numprop:ascending:cost"

docSortOrder="ascending"

In this example, search results are first sorted descending by popularity, then ascending by cost (for
results where popularity is the same).

The docSortCase attribute determines whether any string secondary sorting is case-sensitive (true) or
not (false). This attribute affects the docSort mode values of strprop, alpha, url, address, and
title. The sort predicate specifies its case-sensitivity within its fielded format.

A T G S e a r c h Q u e r y G u i d e

1 0 9

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
docSortOrder

See the docSort attribute.

docSortCase

See the docSort attribute.

docSortProp

See the docSort attribute.

docSortPropVal

See the docSort attribute.

docSortPred

See the docSort attribute.

docSortPropDefault

See the docSort attribute.

feedback

ATG Search returns feedback about related terms and phrases for the query. This functionality is enabled
by the following attribute:

<query feedback="bool"

The bool value must be either true or false, and defaults to false.

maxRelatedSets

ATG Search returns information associated with the index item of each statement result. This information
includes the related document sets of the index item. By default, ATG Search returns all related document
sets, but the number and type of the returned item sets can be controlled by this attribute:

<query maxRelatedSets="max" relatedSets="path,path,..."

The max value is the maximum number of related sets to return. A value of 0 means no related item set
information is returned in the response. The default is 0.

Note that even if the value is 0, the physical document set is always returned:

<document docset="">

A T G S e a r c h Q u e r y G u i d e

1 1 0

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
The path values are item set paths (for example, /Topics/Product) which act as constraints on what
type of related sets to return. Only related sets that are descendents of one of the path values are
returned. The default value is an empty string, which means that the related sets are unconstrained.

mergeSettings

Extremely large indexes require more than one physical partition. If more than one partition exists, each
partition is queried individually and the results merged for presentation to the end-user. The
mergeSettings attribute works together with responseNumberSettings to control the number of
results returned from a merged result set.

The responseNumberSettings attribute determines how many results are returned from each partition.
The mergeSettings attribute determines how many of those total results are returned to the end user. If
you use mergeSettings, be sure to set it to a number higher than the individual partition results set in
responseNumberSettings. For example, if you return 50 results from each of four partitions, you may
use mergeSettings to trim the combined result list to the top 100 results, but not the top 20 results. It is
more efficient to trim the responseNumberSettings to begin with than to do so after merging.

The mergeSettings attribute takes the same options as responseNumberSettings. If mergeSettings
is not set, responseNumberSettings is used instead. The syntax for mergeSettings is:

mergeSettings=doc50,prop50,…

Grouping Type Description

Group-by-document Groups the raw search results by document, returning up to some
maximum number of groups of a certain size, as defined by these
parameters, with the default values shown:

doc10,perDoc3,perSol1,

- doc–Maximum number of document result groups to return

- perDoc–Maximum size of a group from an unstructured index item

- perSol–Maximum size of a group from a structured index item.

Note: An additional mode, docrank, is the same as document, but it also
uses the relevancy of the document instead of the relevancy of the
statement to rank results.

A T G S e a r c h Q u e r y G u i d e

1 1 1

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
Grouping Type Description

Group-by-property Groups the raw search results by a metadata property value, returning up
to some maximum number of groups of a certain size, as defined by these
parameters, with the default values shown:

prop10,perProp3,

The prop parameter is the maximum number of property result groups to
return, and the perProp parameter establishes the maximum size of a
group.

To group by property, the mode value requires a sortProp attribute with
the type, name, and default value for the grouping property. See the
sortProp section in this guide.

Result Type Weights Normally, all statement results receive the same treatment in the relevancy
calculation. However, you may want certain statement types to be
weighted higher or lower in the search results. For example, two identical
statements from two similar documents usually receive near identical
relevancy, with minor differences in the context and document weight
factors. However, if the statements are from two different text fields (such
as role:goal and role:fact), and these fields were weighted differently,
then their relevancy could vary greatly. ATG Search supports these
weighting factors with the following parameters:

f*1.0,o*1.0,s*1.0,ROLE:ID*2.0

f*—The weight (or multiplier) of preferred answer statement relevance.

o*—The weight of structured statement results.

s*—The weight of unstructured statement results.

A weight of 1.0 means the original (pure) relevancy is used.

Individual structured types (or fields) can be defined separately, as shown:

role:goal*1.2,role:symptom*1.1,role:fact*0.5

Whole Field Result
Text

Normally, the result text is the matching statement text plus some
additional context for small sentences. However, for structured content,
which contains potentially multi-sentence fields of text, you might want to
return the entire text of the field as the result. This behavior is controlled by
the following parameter:

wholefield0

The wholefield parameter holds a Boolean value which, if non-zero,
means that the entire enveloping field text for the result’s matching
statement is returned as the text.

A T G S e a r c h Q u e r y G u i d e

1 1 2

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
Grouping Type Description

Suppress Similar
Statements

When using ATG Search with ATG Knowledge, you may want to retrieve
documents that have unique matching text. ATG Search allows you to
suppress documents from the current page if they share a matching text
statement. This behavior is controlled by the following parameter:

suppress0

The suppress parameter holds an integer value that determines the
number of matching statements to compare for suppression. For example,
if the value is 2, then the top-2 matching statements for each document
result are compared. If two documents share a matching statement, the
first one on the page is returned, the other is suppressed. Note that the
comparison is case-sensitive and ignores whitespace and punctuation.

Note that the total number of results that is reported from the engine does
not take into account this suppression.

minScore

ATG Search uses a relevancy score to rank results. The relevancy score is calculated based on how well the
statement matches the query, plus how related the retrieved index item of that statement is to the query.

During the collection of the final results, before grouping and secondary sorting, ATG Search applies a
minimum threshold on the relevancy score, using the following attribute:

<query minScore="min"

The min value must range from 0 to 1000, and defaults to 0. Results that do not meet the minimum
threshold are discarded.

mode

ATG Search handles natural language and Boolean queries. Simple Boolean syntax is handled
automatically as part of the natural language processing, but complex Boolean expressions require a
special mode of processing. Furthermore, ATG Search can support simple keyword search behavior in
several additional modes. These modes are controlled by this attribute:

<query mode="mode"

The mode value can be any one of the following:

 nlp—Natural-language and simple Boolean queries. This is the default value, but
should not be used for ATG Commerce installations.

 boolean—Deprecated.

 booleanDoc—This mode performs a Boolean match at the document level. See below
for details on Boolean expressions.

A T G S e a r c h Q u e r y G u i d e

1 1 3

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
 booleanStmt—Complex Boolean expressions; see below for details. This mode

operates at the statement level, and should therefore not be used for ATG Commerce
integrations; for example, “red” and “shoes” would be indexed as separate statements,
and a search that includes both would return no results. See below for details on
Boolean expressions.

 keyword—Handles natural language queries in a simplistic keyword search model.
ATG Search parses the query as normal, but each query term is double-quoted and
required to appear in the index items of the results. For example, a query of install
procedures in keyword mode would be interpreted as ++”install” ++”procedures”.

 and—Handles natural language queries in an expanded keyword search model. ATG
Search parses the query as normal, but each query term is required to appear in the
index items of the results. This is similar to the keyword mode, but without the
double-quotes, which means the query terms could match morphological variants and
use term expansions. For example, a query of install procedures in and mode would be
interpreted as ++install ++procedures.

This mode is strongly recommended for use with ATG Commerce.

 matchall—Natural language queries as a Boolean AND of terms, as opposed to the
default Boolean OR. ATG Search parses the query as normal, but each query term is
required to appear in the result statements. For example, a query of install procedures
in keyword mode would be interpreted as +install +procedures.

As described in the User-Entered Operators chapter, the required term and excluded term operators
represent simple approximations of true Boolean operators, and can be entered as part of the query, with
no special user interface. In addition to these simple operators, ATG Search supports a special query
syntax for Boolean expressions which are parsed in a special mode of query handling. The Boolean syntax
is shown here in Backus Naur Form:

expr := <expr> AND <expr>

expr := <expr> OR <expr>

expr := NOT <expr>

expr := (<expr>)

expr := [']["]term["][']

expr := [']wildcard[']

expr := i..j

The first three statements show the syntax for the three Boolean operator expressions, whose operands
can themselves be other expressions. The precedence for these operators is: NOT, AND, OR. The fourth
statement shows that parentheses can be used to delimit an expression in order to override operator
precedence. For example, x AND y OR z is interpreted by default as (x AND y) OR z, but using explicit
parentheses, it could be interpreted as x AND (y OR z).

The last three statements show the three types of simple term expressions: normal term, with optional
quote operators; wildcard pattern, with optional single quote operator; and a number range pattern.
Thus, full Boolean expressions can utilize all the simple query operators described in this section except
for the simple Boolean operators (+, !, ++, !!, +|).

ATG Search handles full Boolean expressions specially, but it shares much of the natural language query
handling. ATG Search parses the Boolean expression, building up an operator-operand tree. During this

A T G S e a r c h Q u e r y G u i d e

1 1 4

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
parsing, it processes the terms in the same way as a natural language query, including tokenization,
morphology and term expansion. In addition, it also has to process the special query operators that may
modify the terms. At the end of this process, ATG Search has a vector of query items that can execute
normally, plus a Boolean expression tree that can filter the retrieved sentence results.

optimize

ATG Search can optimize its algorithms for faster speed with little effect on the search results. ATG Search
accomplishes this by skipping the statement level relevancy evaluation for each of the candidate index
items, resulting in faster query speed. The relevancy is based on the document weighting and rank
configuration formula.

You may want to use this option if you are unsatisfied with the query speed on your installation. To
enable optimization, use the following attribute:

<query optimize="level"

A level of 0 is the default, and means no optimization. Level 1 performs part of the statement level
retrieval, but just in order to better rank the index item candidates. Level 2 avoids all statement level
retrieval and relevancy computations, and achieves the fastest query speed.

Note that with optimization, the search results contain no matching statement text, only the index item
(document) information. This means that no statement highlighting is possible for the index item view
request.

Note: For even faster query speeds, set the indexScheme Text Processing Option to “uncompressed” in
Search Administration. This creates larger indexes, but faster queries, and could be useful if you have a
small index. Changing the indexScheme setting requires reindexing your content. A combination of
indexScheme=uncompressed and optimize=2 results in the fastest query speed.

pageNum

ATG Search supports result paging, controlled by the following attributes:

<query pageNum="num" pageSize="size"

The size value specifies how many results are returned, in number of response groups as described in
the sorting attribute information. If pageSize is empty, no paging is performing. If paging is used, and
the results do not fit on a single page, resubmit the query with pageNum="1", pageNum="2", etc., to
access the additional results (the first result page is page 0).

ATG strongly recommends that you do not use a pageSize value greater than 100, as this can lead to
performance problems or even search engine failure.

pageSize

See pageNum.

A T G S e a r c h Q u e r y G u i d e

1 1 5

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
QUID

Automatically generated request ID.

rankConfig

As described in the ATG Merchandising Guide for Business Users, ATG Search can perform customized
rankings and other adjustments to the search using rank configuration. This process can also be
performed for the item results. At query time, ATG Search can control which configuration to use with the
following attribute:

<query rankConfig="name"

The name value must be the name of a ranking configuration loaded into the index. If no value is given, no
ranking adjustments are made.

recurseDocuments

The query algorithm begins at the starting item set, and recursively descends to its children and their
children. At each item set, the algorithm collects index items according to other parameters and returns
some number of those. The collection of index items is controlled by the following attribute:

<query recurseDocuments="mode"

A mode value of on or true means that index items may be collected from child item sets. A mode value
of off or false means that index items may only be collected from the immediate item set, excluding
any from child sets. A mode value of empty means the same as off, unless the immediate item set has no
documents. The default value is off.

refineConfig

Facet sets allow users to refine a query by searching within an existing result set. For example, an end-user
conducts a search for luggage on a commerce site, then refines their search by color, price, or material.
ATG Search returns refinement results based on settings in a refineConfig.xml file. This file defines
which properties of the indexed products to return as possible facets. Before returning results, ATG Search
retrieves the possible values for the properties configured in refineConfig.xml. Thus, the existing
query can be resubmitted with an additional constraint that limits the results to one of the enumerated
property values.

At query time, ATG Search can control which configuration to use and global parameters for the
calculation, using the following attributes:

<query refineConfig="name" refineConfigDefault="default"

refineConfigMapKey="key" refineConfigMapProp="prop" refineMax="max"

refineTop="top" refineMin="min"

The name value must be a valid name of a facet set loaded into the index. If no value is given, no
calculation is made.

A T G S e a r c h Q u e r y G u i d e

1 1 6

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
refineConfigDefault

As described in the refineConfig section, ATG Search can calculate refinements based on the query
results, in order to offer the end-user a quick way of narrowing the search. The default value specifies
the optional name of a configuration to use in case no configuration can be determined based on the
search results.

<query refineConfig="name" refineConfigDefault="default"

refineConfigMapKey

As described in the refineConfig section, ATG Search can calculate refinements based on the query
results, in order to offer the end-user a quick way of narrowing the search.

The key value is a value of the refineConfigMapProp property to try to use first to pre-empt the
determination of a value from the search results. For example, if the property is
ancestorCategories.repositoryId, the key value should be a valid value of this property, such as
cat1009.

<query refineConfig="$map" refineConfigDefault="default"

refineConfigMapProp="ancestorCategories.repositoryId"

refineConfigMapKey="cat1009"

refineConfigMapProp

As described in the refineConfig section, ATG Search can calculate refinements based on the query
results, in order to offer the end-user a quick way of narrowing the search.

The prop value is the name of a property to use for automatically selecting a refinement configuration
based on the search results. This value must be accompanied by a refineConfig value of $map.

<query refineConfig="$map" refineConfigDefault="default"

refineConfigMapProp="ancestorCategories.repositoryId"

refineConfigMapKey="cat1009"

refineMax

As described in the refineConfig section, ATG Search can calculate refinements based on the query
results, in order to offer the end-user a quick way of narrowing the search.

The max value specifies the maximum number of facet properties to return, even if the facet set could
generate more. The default value is 0, which means no calculation is made.

<query refineConfig="name" refineConfigDefault="default"

refineConfigMapKey="key" refineConfigMapProp="prop" refineMax="max"

refineTop="top" refineMin="min"

A T G S e a r c h Q u e r y G u i d e

1 1 7

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
refineTop

As described in the refineConfig section, ATG Search can calculate refinements based on the query
results, in order to offer the end-user a quick way of narrowing the search.

The top value specifies the maximum number of facet property values (per property). The values are
selected in sort order, which usually is in terms of the number of index items that has each value. The
default value is 5.

refineMin

As described in the refineConfig section, ATG Search can calculate refinements based on the query
results, in order to offer the end-user a quick way of narrowing the search.

The min value specifies the minimum size of a facet property value, in terms of the number of index items
with that value. The default value is 0.

relatedSets

See maxRelatedSets.

relQuestSettings

The relQuestSettings attribute represents low-level numeric variables that control the search and
relevancy processing. These settings can be declared in the XML using the format:

relQuestSettings="/param=value;/param=value;..."

They can also be changed in the <RelQuestSettings> tag in the global ATG Search configuration file
<ATG10dir>\Search10.0.1\SearchEngine\platform\bin\AEConfig.xml.

<RelQuestSettings>/param=value;/param=value;...</RelQuestSettings>

Query XML attributes override settings in the AEConfig.xml file. The param string is the name of the
parameter, and the value is an appropriate value for that parameter. Some parameters take a list of values,
separated by commas. The remainder of this section describes the parameters. See also the strategy
attribute, which allows you to set a number of parameters simultaneously.

Matching Statement Parameters

ATG Search constructs a candidate list of matching statements, sorted by an estimated relevancy metric.
From the candidate list, the top candidates are matched in detail and have their final relevancy
computed. The parameters described in this section apply to these candidate statements.

Note: The defaults are optimized to balance processing speed with result quality. Be cautious in making
changes.

A T G S e a r c h Q u e r y G u i d e

1 1 8

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
Parameter Name Syntax and Default Parameter Description

Statement matching
maximum

/retMax=5000; Limits the number of top candidates.

Statement matching cut-
off

/retLimit=3000; Detailed matching will end before the
maximum of top candidates is reached
if the number of relevant statements
reaches this parameter value.

In this context, a relevant statement is
one whose relevancy exceeds the
Statement Minimum Relevance (see
next row). The value of this parameter
should be less than or equal to the
retMax value.

Statement minimum
relevance

/relevMinFAQ=10;

/relevMinSent=10;

Candidates that have a relevancy
score less than this parameter are
eliminated from the results. The
relevMinFAQ parameter is used for
preferred answer statement matches,
relevMinSent for all other statement
matches.

Statement relevance cut-
off

/relevCutoff=0; Candidates that have a relevancy
score less than a percentage of the
most relevant statement are
eliminated from the results; the
percentage is controlled by this
parameter.

For example, if the highest relevancy
score is 80 and the relevancy cut-off
percentage is 70%, then all candidates
that have score less than 56 are
eliminated. The default is 0, which
disables this mechanism.

Estimation minimum
relevance

/estimateMin=10; Only candidates that have an
estimated relevancy that is greater
than or equal to this parameter are
matched in more detail. Normally, this
value is less than or equal to the
Statement Minimum Relevance
threshold.

A T G S e a r c h Q u e r y G u i d e

1 1 9

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
Parameter Name Syntax and Default Parameter Description

Statement candidate
maximum

/estimateMax=50000; The number of total candidates is
limited by this parameter. Since this
parameter takes effect before the
statements are sorted, the candidate
statements are collected on a first
come, first served basis. However, the
query terms are processed in inverse
frequency order, guaranteeing the
most highly weighted terms will fill in
the statement candidates first.

Matching Document Parameters

ATG Search constructs a candidate list of retrieved documents, sorted by a term frequency (TF-IDF) metric.
From this list, the top candidates are inspected for matching statements.

Parameter Name Syntax and Default Parameter Description

Document retrieval
maximum

/maxDocuments=1000; The number of top candidates is
limited by the parameter.

Document candidate
maximum

/estimateDocMax=10000; The number of total candidates is
limited by the parameter.

Since this parameter takes effect before
the documents are sorted, the
candidate documents are collected on
a first come, first served basis.
However, the query terms are
processed in inverse frequency order,
guaranteeing the most highly
weighted terms will fill in the
document candidates first.

Filtering by Thesaurus Link Strength

ATG Search expands query terms using a thesaurus. Thesaurus entries are characterized by link strength,
ranging from equality to weak. By default, ATG Search uses all link types during retrieval, but this behavior
is controlled by the following parameter:

/link=none;/link=equality;/link=strong;/link=medium;/link=weak;

The value of none clears out any previous values, which would result in no term expansions being used
during search. Any subsequent values are appended to the list of link types to use. Normally, only the
following four setting combinations should be used:

A T G S e a r c h Q u e r y G u i d e

1 2 0

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
/link=none;/link=equality;/link=strong;/link=medium;

/link=none;/link=equality;/link=strong;

/link=none;/link=equality;

/link=none;

The first example excludes weak links, the second excludes weak and medium links, the third excludes all
but equal links, and the fourth disables all term expansion.

Extending Statement Result Text

By default, ATG Search retrieves a sentence term vector and constructs a statement result with the text of
the sentence as the result string. However, some statements can be very small fragments, such as a
section header, and lack enough context to be useful as a search result. ATG Search can extend the
statement text with subsequent statement text that is also retrieved by the query. This functionality is
controlled by three parameters.

Parameter Name Syntax and Default Description

Minimum Answer
Length

/minAnswerLength=75; The maximum size of a statement text that
can be extended, in number of characters.
Any statement text that is greater than or
equal this value will not be extended.

Maximum Answer
Length

/maxAnswerLength=250; The maximum size of an extended statement,
in number of characters. If the extended
statement size would exceed this value, the
statement is not extended. The statement
text is extended with successive statements
until this limit is reached.

Maximum
Intervening
Characters

/maxIntervening=5; The maximum intervening characters that
can appear between the statement and its
extension. Normally, only white space
appears between statements, and large white
space tends to indicate a separation of
content which should not be joined together.

Statement Relevance Parameters

The parameters described in this section all act according to the computed weight of a statement. ATG
Search relevancy computation uses a weighted sum of factors for a main score and a tie-breaker score,
together forming the final relevancy value or weight.

A T G S e a r c h Q u e r y G u i d e

1 2 1

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
Parameter Name Syntax and Default Parameter Description

Literal weight relevancy
factor

/literalWgt=25;

/literalMain=1;

Quantifies how closely the surface query
terms match the statement terms,
discounting indirect matches through
term expansions.

literalWgt must be a non-negative
integer from 0 to 100.

literalMain is a Boolean variable. If
true, this factor is main; if not, this is a
tie-breaker factor.

Exact weight relevancy
factor

/exactWgt=0;

/exactMain=1;

Quantifies if the query text matches
exactly within the statement text,
without regard to case and white space.
The weight of this factor and whether it is
a main factor are controlled by the
parameters.

exactWgt must be a non-negative
integer from 0 to 100.

exactMain is a Boolean variable. If true,
this factor is main; it not, this is a tie-
breaker factor.

This factor is disabled by default, but can
be enabled as part of a search strategy
(see the strategy attribute).

Proximity weight relevancy
factor

/proxWgt=8;

/proxMain=1;

Quantifies how close in proximity do the
query terms match the statement terms.
The weight of this factor and whether it is
a main factor are controlled by the
following parameters.

proxWgt must be a non-negative integer
from 0 to 100.

proxMain is a Boolean variable. If true,
this factor is main; it not, this is a tie-
breaker factor.

A T G S e a r c h Q u e r y G u i d e

1 2 2

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
Parameter Name Syntax and Default Parameter Description

Document weight relevancy
factor

/docWgt=8;

/docMain=0;

Quantifies how well the document
pertains to the query, using the term
frequency calculation. The weight of this
factor and whether it is a main factor are
controlled by the parameters.

docWgt must be a non-negative integer
from 0 to 100.

docMain is a Boolean variable. If true, this
factor is main; it not, this is a tie-breaker
factor.

Context relevancy factor /contextWgt=17;

/contextMain=0;

/contextSize=2;

Quantifies how well the surrounding
statements also match the query. The
weight of this factor and whether it is a
main factor are controlled by the
parameters.

contextWgt must be a non-negative
integer from 0 to 100.

contextMain is a Boolean variable. If
true, this factor is main; it not, this is a
tie-breaker factor.

contextSize controls the size of the
context, in number of statements, and
must be a positive integer.

Metadata relevancy factor /metaWgt=25;

/metaMain=1;

/metaWgtMax=100;

Quantifies how well the metadata of the
statement’s index item match the
weighted properties passed in with the
query. The weight of this factor and
whether it is a main factor are controlled
by the parameters.

metaWgt must be a non-negative integer
from 0 to 100.

metaMain is a Boolean variable. If true,
this factor is main; it not, this is a tie-
breaker factor.

metaWgtMax specifies the maximum
weighted property weight.

A T G S e a r c h Q u e r y G u i d e

1 2 3

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
Parameter Name Syntax and Default Parameter Description

Match denominator /matchDenom=0; The recall factor is the percentage of
statement term weight that the query
matched. This calculation is biased
towards small statements, which have
small total term weights. Use this
parameter to force all statements to have
the same total weight in terms of this
recall calculation.

A value of 0 means the normal recall
calculation is performed. A positive
integer value means that that value is
used as the recall denominator, in place
of the statement’s total term weight.

Duplicate term factor /dupTermFactor=2; The recall factor is the percentage of
statement term weight that the query
matched. This calculation is biased
towards statements with repeated terms,
since each instance of a term is counted
separately. Use this parameter to limit the
number of occurrences that are
significant in the recall calculation.

A value of 0 means the normal recall
calculation is performed. A value of 1
means that only 1 occurrence of each
term is used. An integer value greater
than 1 means that up to that number of
occurrences are used in the calculation.

Exclude unknown terms /exUnk=1; A query term that does not exist in the
dictionary and has not occurred in the
index items provides no information to
the system and it cannot retrieve
anything.

A value of 1 means that the unknown
terms are excluded from the query
processing and do not effect the
relevancy.

A value of 0 means that unknown terms
are included in the query processing and
will hurt the relevancy of the results
(since they cannot retrieve anything).

A T G S e a r c h Q u e r y G u i d e

1 2 4

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
Parameter Name Syntax and Default Parameter Description

Special treatment for all-
caps terms

/autoAllCapsMode=0; In a mixed case query, often terms in all
capital letters refer to the most important
information.

A 0 value means that no special
treatment is given to these terms.

A 1 value means that these terms are
required to appear in the statement
results, the equivalent of the single +
query operator.

A value greater than 1 means that these
terms are required to appear in the
document results, the equivalent of the
double ++ query operator.

Document Relevance Parameters

ATG Search constructs a candidate list of retrieved documents, sorted by a term frequency (TF-IDF) metric.
The parameters described in this section all act according to the computed weight of a document. ATG
Search relevancy computation uses a weighted sum of factors for a main score and a tie-breaker score,
together forming the final relevancy value or weight.

All terms are used in the statement matching algorithm, giving them some effect on the final results.

Parameter Name Syntax and Default Parameter Description

Document Weight Term
Threshold

/docWgtTermThresh=20; Terms whose weight is less
than this parameter are
excluded from retrieval.

Document Weight Link
Threshold

/docWgtExpansion=equal; ATG Search uses term
expansions for candidate
retrieval, but excludes terms
expansions whose link
strength is less than this
parameter.

The default value of equal
restricts the retrieval to only
equally-linked terms,
retrieving results that are most
similar to the original query
terms. The other valid values
are: strong, medium, and
weak.

A T G S e a r c h Q u e r y G u i d e

1 2 5

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ

Search Fields

ATG Search indexes structured content and records the fields from which each sentence term vector was
created. Queries can then be constrained to a limited set of those fields, also called a fielded search. The
following parameter establishes which fields are included in a search of structured content such as ATG
Knowledge solutions or an ATG Commerce catalog:

/activeSolutionZones=role:id,role:goal,role:symptom,role:question;

This parameter can also take a special value to denote all fields should be searched:

/activeSolutionZones=*;

This is the default value.

ATG Search also indexes unstructured content and records the fields from which each sentence term
vector was created. However, in this case, all sentences from the body of the unstructured content reside
in a single field, called doc. The title of the content is stored in a role:title field and the URL is stored in
a role:url field. The following parameter establishes which fields are included in search of unstructured
content; all other fields are excluded from the search:

/activeSentenceZones=doc;

This parameter can also take a special value to denote all fields should be searched:

/activeSentenceZones=*;

To include the title and URL fields in the search, use the following:

/activeSentenceZones=doc,role:title,role:url;

Conditional Keyword Interpretation

If the query’s mode is nlp, ATG Search can treat user queries differently depending on the content of the
query.

If the user query consists of N terms or fewer and the query is a simple list of content terms, then the
engine will treat the query as a boolean AND on the documents. If the AND of the terms fails to return any
results, the normal nlp mode is used instead. If the AND of terms succeeds, only those documents with all
of the terms are returned.

The interpretation depends on the form of the user query. It must be a simple list of content terms, such
as “book garden summer”, rather than a statement, such as “a book about gardening in the summer”. ATG
Search treats the simple list as an AND, but not the more complex statements or questions.

/implicitAndSize=N

The default value is 4. To disable this feature, set the value to 0.

A T G S e a r c h Q u e r y G u i d e

1 2 6

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
requestMode

Normally, ATG Search treats each user query as a separate isolated request, with no pre-existing state or
context. However, many user searches are interrelated, and you may want to provide context. ATG Search
captures several types of search context in its query request XML, and it is controlled by the following
special element and attribute:

<query requestMode="mode"

<priorInput>context</priorInput>

The mode value specifies how the context string in the priorInput element is interpreted, and can be
one of the following values:

 normal – The default value, no search context processing.

 subtractDoc – Using the context as a preliminary query, eliminate from the current
search results any that are from index items also returned by the context query.

 subtractAns – Using the context as a preliminary query, eliminate from the current
search results any that are statements also returned by the context query.

 penalizeDoc – Using the context as a preliminary query, penalize any current search
results that are from index items also returned by the context query. If the penalty
exceeds the relevancy, the result is eliminated.

 penalizeAns – Using the context as a preliminary query, penalize any current search
results that are statements also returned by the context query. If the penalty exceeds
the relevancy, the result is eliminated.

 withinDoc – Using the context as a preliminary query, restrict the current search
results to index items also returned by the context query.

 withinAns – Using the context as a preliminary query, restrict the current search
results to statements also returned by the context query.

The subtract modes represent the search scenario known as not like this, where the end-user does a
search that returns relevant but poor results, and then directs the system to find results not like the poor
results.

The penalize modes represent the search scenario known as less like this, where the end-user does a
search that returns relevant but poor results, and then directs the system to find results less like the poor
results, but not necessarily eliminating them.

The within modes represent the search scenario known as search within, where the end-user does a
search that returns generally relevant results, and then directs the system to find results of a new query
within those initial results.

responseNumberSettings

If grouping is in use (see the sorting attribute), these settings controls control how grouping is
performed. The values can be set in two ways:

 Through the AEConfig.xml global ATG Search configuration file:

A T G S e a r c h Q u e r y G u i d e

1 2 7

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
<ResponseNumberSettings>paramValue,paramValue,...</ResponseNumberSettings>

 Per-query as an attribute to the browse XML:

responseNumberSettings="paramValue,paramValue,..."

The XML attributes override settings in the AEConfig.xml file. The param is the name of the parameter,
which is prepended to the numeric value Value, as described in the following table:

Grouping Type Description

Group-by-document Groups the raw search results by document, returning up to some
maximum number of groups of a certain size, as defined by these
parameters, with the default values shown:

doc10,perDoc3,perSol1,

- doc–Maximum number of document result groups to return.

- perDoc–Maximum size of a group from an unstructured index item.

- perSol–Maximum size of a group from a structured index item.

Note: An additional mode, docrank, is the same as document, but it also
uses the relevancy of the document instead of the relevancy of the
statement to rank results.

Group-by-property Groups the raw search results by a metadata property value, returning up
to some maximum number of groups of a certain size, as defined by these
parameters, with the default values shown:

prop10,perProp3,

The prop parameter is the maximum number of property result groups to
return, and the perProp parameter establishes the maximum size of a
group.

To group by property, the mode value requires a sortProp attribute with
the type, name, and default value for the grouping property. See the
sortProp section in this guide.

A T G S e a r c h Q u e r y G u i d e

1 2 8

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
Grouping Type Description

Result Type Weights Normally, all statement results receive the same treatment in the relevancy
calculation. However, you may want certain statement types to be
weighted higher or lower in the search results. For example, two identical
statements from two similar documents usually receive nearly identical
relevancy, with minor differences in the context and document weight
factors. However, if the statements are from two different text fields (such
as role:goal and role:fact), and these fields were weighted differently,
then their relevancy could vary greatly. ATG Search supports these
weighting factors with the following parameters:

f*1.0,o*1.0,s*1.0,ROLE:ID*2.0

f*—The weight (or multiplier) of preferred answer statement relevance.

o*—The weight of structured statement results.

s*—The weight of unstructured statement results.

A weight of 1.0 means the original (pure) relevancy is used.

Individual structured types (or fields) can be defined separately, as shown:

role:goal*1.2,role:symptom*1.1,role:fact*0.5

Whole Field Result
Text

Normally, the result text is the matching statement text plus some
additional context for small sentences. However, for structured content,
which contains potentially multi-sentence fields of text, you might want to
return the entire text of the field as the result. This behavior is controlled by
the following parameter:

wholefield0

The wholefield parameter holds a Boolean value which, if non-zero,
means that the entire enveloping field text for the result’s matching
statement is returned as the text.

Suppress Similar
Statements

When using ATG Search with ATG Knowledge, you may want to retrieve
documents that have unique matching text. ATG Search allows you to
suppress documents from the current page if they share a matching text
statement. This behavior is controlled by the following parameter:

suppress0

The suppress parameter holds an integer value that determines the
number of matching statements to compare for suppression. For example,
if the value is 2, then the top-2 matching statements for each document
result are compared. If two documents share a matching statement, the
first one on the page is returned, the other is suppressed. Note that the
comparison is case-sensitive and ignores whitespace and punctuation.

Note that the total number of results that is reported from the engine does
not take into account this suppression.

A T G S e a r c h Q u e r y G u i d e

1 2 9

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ

ruleMode

ATG Search includes a query module that analyzes user queries and executes special actions which can
modify the search behavior (see the Query Rules chapter in the ATG Search Administration Guide. This
functionality is controlled by the following parameter:

<query ruleMode="mode"

The mode value must be one of the following:

 ignore – No query analysis will be performed.

 display – Perform the query analysis, but simply return feedback about the results in
the response.

 exec – Perform the query analysis and execute the actions, returning feedback about
what was executed.

The default value is display, although only an index that contains query rules will return results.

sorting

 Search results contain a ranked list of matching statements, sorted by relevancy. These raw results could
contain duplicate or similar statements or come from a limited set of documents, offering little variety of
information for the end-user. To prevent these problems, ATG Search offers two grouping levels.

In grouping by document, ATG Search reviews the list of matching statements and collapses those that
come from the same index item, forming groups of document results. Parameters control the size of result
groups and the number of the result groups to return. Individual results that belong to a group that
exceeds the size limit are eliminated from the response.

For example, if the query requests the first 20 result groups by document, but restricts the number of the
groups to 1, then ATG Search returns the 20 most relevant statements from 20 unique documents,
eliminating less relevant statements from the same documents. If the query restricts the number of
groups to 3, then ATG Search returns the 60 most relevant results in groups of 3, one group for each
unique document. The result objects of the response denote which group they belong to.

Grouping by document allows the user to make a quick survey of the kinds of answers available in the
returned documents, but less relevant statements can end up higher on the results list than more relevant
statements.

In grouping by property, ATG Search groups matching statements according to a metadata property of
their documents. Thus, the grouped results may not share the same document or the same text. The
typical scenario for this is a commerce application where you index SKUs as searchable items, but want to
return results at the product level. The results can be grouped by a product ID metadata property, so that
all SKUs with the same product ID value are in the same group.

The sorting attribute determines which grouping mode is used for browse results:

A T G S e a r c h Q u e r y G u i d e

1 3 0

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
<browse sorting="mode"

The mode value can be document or property.

sortProp

If the mode identified in the sorting attribute of the query element is property (see sorting), additional
information is required by the query.

<query sorting="property" sortProp="type:name:default"

The sortProp includes:

 type—One of the six valid property types: enum, string, integer, float, boolean,
and date.

 Name—A valid property name of the given type.

 Default—A valid value for the property of the given type; this value is used for results
that do not contain the given property.

strategy

ATG Search has a large number of parameters that control searching. To simplify the adjustment of these
settings, ATG Search provides five search strategies that implement sets of parameter values. The search
strategy is selected by the following attribute:

<query strategy="strat"

The strat can be one of the following five values:

 everything – Try unlimited search, without any parameter values that can restrict the
search algorithm; also try all term expansions during document candidate retrieval.

 expand – Try an expanded search, increasing the default parameter values that can
restrict the search algorithm.

 normal – Default system settings, optimized for fast search with good search quality;
this is the default value.

 restrict – Try a restricted search, decreasing the default parameter values which will
further restrict the search algorithm; disable non-equal term expansions; adjust
relevancy calculation to prefer literal matches.

 exact – Try an exact search, which is the same as restrict plus a heavy increase in
the /exactWgt setting. This forces results to contain the literal query string.

If there is a conflict, the strategy selection overrides any other preset values.

A T G S e a r c h Q u e r y G u i d e

1 3 1

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
suggestCat

ATG Search applies rules to determine what categories of a taxonomy are relevant to the user queries.
This allows the end-user to manually refine the search. This categorization feedback is controlled by the
following attribute:

<query suggestcat="max" suggestcatPrune="prune"

<query suggestcat="maxp"

The max value is the maximum number of categories to return in the feedback. If the max value is
appended with a p or the suggestCatPrune value is true, then the optional taxonomy pruning post-
processing algorithm is used during categorization.

suggestCatPrune

See suggestCat.

textProps

ATG Search returns metadata properties associated with the index item of each result. Since ATG
Commerce views text fields such as displayName as properties too, a way is needed to specify which text
fields should be returned as if they were metadata. The textProps attribute specifies these properties as
shown:

<query textProps="prop,prop,…"

Each prop value is the name of a text field. For structured content such as catalogs and solution
knowledge bases, these names begin with role:, such as role:product.displayName. These names
will appear alongside any metadata properties for use in the presentation of results.

queryAction
This element contains action arguments and a rule child element. See query rules in the ATG Search
Administration Guide for information on rules. It is a child of the answer element.

queryRule
This element contains query analysis rule results, and an operation child element. See query rules in the
ATG Search Administration Guide. It is a child of the answer element.

A T G S e a r c h Q u e r y G u i d e

1 3 2

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
queryTerms

This element contains advanced query term vector data, and term child elements. It is a child of the
answer element.

question
This element contains the text of the user query after auto-correction has been applied. It is a child of the
query and answer elements. See also the userquestion element.

refineConstraint
This element consists of a constraint expression, and is a child of the query element.

refinements
This element contains query refinement data in the form of child elements representing different data
types for refinement. It is a child of the answer element.

reportData
This element contains a subset of information used for search reports (see the ATG Search Administration
Guide for information on reports), and is a child of the query element.

response
This element contains a single search result.

Attributes Description

score Relevancy score of the result.

id Result index in this response.

answerGroup Result group identifier.

type Type of result.

A T G S e a r c h Q u e r y G u i d e

1 3 3

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
Attributes Description

viewable Whether or not the document or preferred answer is viewable.

field The text field name.

sortprop Value of the docSort property.

The response element has the following child elements:

 text

 document

 debug

responseTree
This element provides a categorization of the query results. It contains a responseGroup child element,
which is the document set of returned results, and is a child of the answer element.

securityRole
The securityRole element is a child of the parserOptions element. It has no child elements.

For statement-level security, ATG Search requires a processing option to specify which roles are accessible
for the current query:

<securityRole>role</securityRole>

The role is the name of a security region, as expressed in the XHTML. Multiple elements of this type
represent a logical OR of accessible regions. These role values are converted into statement features and
act as a filter on the candidate statements.

spellchecker
The spellchecker element is a child of the parserOptions element. It has no child elements.

ATG Search includes two spelling checkers, which are used with natural language processing. The first is
an internal module, which uses the indexed content to analyze spelling errors. The second is a third-party
library called Wintertree, which uses a dictionary of common terms to guide its analysis.

A T G S e a r c h Q u e r y G u i d e

1 3 4

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
The internal module does not correct terms that exist in the content, including proper names and other
special terms, and it only suggests corrections that exist in the content. Conversely, the third-party
module does not correct terms that appear in its common term list, whether they appear in the content or
not, and does suggest corrections from its common term list, even if they do not appear in the content.

By default, ATG Search uses both spelling modules to achieve spelling suggestions that reflect the
content but are not hampered if the content is limited. The following option controls how these modules
interact:

<spellChecker>value</spellChecker>

The value can be any one of the following:

 internal—Use only the internal module.

 wintertree—Use only the third-party spelling checker.

 internal-wintertree—Use both modules (the default); prefer the internal
module’s suggestions.

 wintertree-internal—Use both modules, prefer the Wintertree module’s
suggestions.

 none—Perform no spelling correction.

Additional options allow you to control how spelling suggestions are returned:

 spellMaxSuggestions—Controls how many suggestions are made for misspelled
words.

<spellMaxSuggestions>4</spellMaxSuggestions>

 spellSuggestionCutoff—Controls when to stop suggestion corrections.

<spellSuggestionCutoff>60</spellSuggestionCutoff>

 spellSuggestionFactor—Controls spelling suggestions for query terms that
appear in the index and therefore are not considered misspelled. Normally, no spelling
suggestions are returned for such terms. If spellSuggestionFactor is set,
suggestable terms are returned if their frequency is greater than the original query
term’s frequency multiplied by the spellSuggestionFactor. Set to 0 to disable.

<spellSuggestionFactor>10</spellSuggestionFactor>

spelling
This element contains spelling suggestions and feedback in the form of term child elements. It is a child
of the answer element.

A T G S e a r c h Q u e r y G u i d e

1 3 5

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
spellSplitWords

The spellSplitWords element is a child of the parserOptions element. It has no child elements.

This option determines whether the search engine attempts to split unknown words longer than five
letters into two known words, and if it does so, whether it does this before or after applying spelling
correction. This feature can compensate for simple user errors such as a missing space between two
search terms.

The possible values are:

 false—Unknown terms are not split.

 before—Unknown terms are subject to splitting before applying spelling correction.
This is the default behavior.

 after—Unknown words are not subject to splitting until after spelling correction has
been applied, and only if the term is still unknown.

For example:

<spellSplitWords>after</spellSplitWords>

startCategory
This element contains the category used as a starting point for category navigation, if applicable. It is a
child of the query element, and contains question, userquestion, and priorInput elements.

targetLanguage
The targetLanguage element is a child of the parserOptions element. It has no child elements.

ATG Search supports multiple languages within the same index, to support separate language-specific
searches on different document collections. However, ATG Search also supports cross-language searches,
which involve searching in one language and retrieving results in one or more different languages.

A use case for this functionality is shopping sites, where customers might not speak or write the site
language but can read prices and sizes. In this scenario, users could query in Spanish and get English
results and still achieve satisfactory results. In order to perform cross-language searches, both query and
target languages must be loaded into the index, as well as special cross-language bridge data (see the
ATG Search Administration Guide). At query time, the target language is specified with the following
option:

<targetLanguage>lang</targetLanguage>

The lang value is the name of any valid language, or one of two special values:

A T G S e a r c h Q u e r y G u i d e

1 3 6

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
 All means that all languages with indexed content are target languages.

 Same means that the same language as the query is the target, and is the default.
Multiple instances of this option are allowed, which will establish target languages.

text
The text element is a child of the response element, and contains the matching statement. A response
can include one or more of these elements in the form:

<text score="number" name="field">string</text>

If the textSort attribute on the query is true, text statements are sorted in document order. You can see
the starting position of the <text> statements in the goto="N" attribute.

Highlighting surrounds the matching terms with {beginHighlight} and {endHighlight}, as shown:

"{beginHighlight}filter{endHighlight}, oil lubrication

car maintenance {beginHighlight}Air{endHighlight} and Fuel."

You can use this information in the Format droplet, as shown in this example:

<dsp:droplet name="/atg/dynamo/droplet/Format">

 <!-- this parameter is the text with the curly brace highlight info -->

 <dsp:param name="format" value="${result.text}"/>

 <!-- the following two dsp:param tags supply the replacement text for

 the {Xhighlight} encodings -->

 <dsp:param name="beginHighlight" value="<div class='highlight'>"/>

 <dsp:param name="endHighlight" value="</div>"/>

 <dsp:oparam name="output">

 <!-- converted text is output here -->

 <dsp:valueof param="message"/>

 </dsp:oparam>

</dsp:droplet>

topicMaximum
The topixMaximum element is a child of the parserOptions element. It has no child elements.

ATG Search can perform categorization on the query text for automatic category constraints or category
feedback. The number of categories used by these processes is controlled by the following options:

A T G S e a r c h Q u e r y G u i d e

1 3 7

A p p e n d i x B : S e a r c h X M L R e f e r e n c e

μ
<topicMaximum>max</topicMaximum>

<topicConfidence>conf</topicConfidence>

<topicRelevance>relev</topicRelevance>

The max value specifies the maximum categories to return per request. A value of 0 means there is no
limit. The default value is 10.

The conf value is the confidence threshold for any assigned categories, ranging from 0 to 100. The
default is 0.

The relev value is the relevance threshold for any assigned categories, ranging from 0 to 100. The default
is 1.

userquestion
The userquestion element contains the raw user search string, unmodified. It is a child of
startCategory, and has no child elements.

weightedProps
The weightedProps element is a child of the query element. See Weighted Metadata Preference
Expressions.

wildcardMax
The wildcardMax element is a child of the parserOptions element. It has no child elements.

ATG Search can handle wildcard and regular expressions in the user’s query, as described in the User-
Entered Operators chapter. These patterns are expanded to a set of index terms which are then used
during retrieval. ATG Search limits the number of expansions to prevent an explosion of terms that could
greatly degrade performance, such as s*. The maximum expansions per pattern are specified by the
following option:

<wildcardMax>max</wildcardMax>

The value defaults to 20. Setting this option to 0 disables the interpretation of wild card and regular
expressions in user queries.

A T G S e a r c h Q u e r y G u i d e

1 3 8

I n d e x

μ
Index

A
activeSentenceZones, 41
activeSolutionZones, 41
adaptors, 98
AEConfig.xml, 126
alphabetic matching, 35
andFeedback attribute, 103
answer element, 95
ATG Customer Intelligence (ACI), 83
ATG server, 2
ATG10dir, 2
audience, 1
autocat attribute, 104
autoCatPrune attribute, 105
autospell attribute, 105

B
Boolean syntax, 113

C
caching queries, 55

Cache Administration page, 58
configuring, 55
disabling cache invalidation, 56
queries with timestamps, 57

case
restricting matches, 38

catalog constraints, 18
categories element, 97
categorization feedback, 105
category element, 97
category navigation, 62
ChunkedTimeInterval, 57
click-through events

reporting on, 83
collection constraints, 44
Commerce Search

reporting, 83
CommerceFacetTrailDroplet, 64, 87

configuring, 87
configuring

CommerceFacetTrailDroplet, 87
GetClickThroughId, 90
Patch Bay, 53
reporting, 83

constraints, 16
catalog, 18
constructing, 17

constraints, on queries, 43
content labels, 10
context element, 98
contextMain parameter, 122
contextSize parameter, 122
contextWgt parameter, 122
conventions, 2

D
date element, 47
debug attribute, 105
debug element, 100
dimensions

configuring dimension services, 79
Search Merchandising, 79

A T G S e a r c h Q u e r y G u i d e

1 3 9

I n d e x

μ
displaying results, 21
doc element, 46
doc parameter, 110, 127
docFlags attribute, 106
docMain parameter, 122
docProps attribute, 107
docSetSort attribute, 105
docSort attribute, 107
docSortCase, 109
docSortOrder, 109
docSortPred, 109
docSortProp, 109
docSortPropDefault, 109
docSortPropVal, 109
document set constraints, 43
document sets, 43
documentSets element, 101
docWgt parameter, 122
docWgtExpansion parameter, 124
docWgtTermThresh parameter, 124
double quotes, 35
dupTermFactor parameter, 123
DynamicTargetGenerator, 11
DynamicTargetSpecifier, 12

E
envName element, 101
estimateDocMax parameter, 119
estimateMax parameter, 119
estimateMin parameter, 118
exactWgt parameter, 121

exactMain parameter, 121
exclude in document operator, 37
exclude in statement operator, 37
exclusion operator, 37
expandedStemming element, 101

F
facet sets. See query refinement
facet trails, 64

facet trail string, 73
FacetTrail object, 66
FacetTrailString, 66
last range indicator, 65

Faceted Search, 59
facet trails, 64
facets, 59
formatting facet values, 75
queries, 61
rendering facets, 67
selecting refinement configurations, 74
specifying the category, 62

facets, 59
CommerceFacetTrailDroplet, 64
facet trails, 64
filtering, 69
formatting values, 75
in JSPs, 60, 67
incorporating search results, 73

multiple selection values, 65, 72
priority, 69
refinement counts, 72
removing selections, 70
skipping values already in trail, 70

FacetTrailString, 66
feedback, 134
feedback attribute, 109
fielded search

operators, 41
fields operator, 41
filtering facets, 69
form handlers. See search form handlers
format element, 46

G
GetClickThroughId, 83, 90

configuring, 90
configuring the cache, 84

grouping options, 15

I
index item file extension constraint, 47
index item format constraint, 46
index item language constraint, 46
index item modified date constraint, 47
index item URL constraints, 46

J
JMS events, 51

Patch Bay configuration, 53
suppressing, 52

L
language

of query, 102
of result, 135

language element, 46, 102
LanguageDimensionService, 79
link parameter, 119
literalMain parameter, 121
literalWgt parameter, 121
local Routing, 9

M
matchDenom parameter, 123
maxAnswerLength parameter, 120
maxDocuments parameter, 119
maxIntervening parameter, 120
maxRelatedSets attribute, 109
metadata, 44, 107

weighted preference expressions, 48

A T G S e a r c h Q u e r y G u i d e

1 4 0

I n d e x

μ
metaMain parameter, 122
metaWgt parameter, 122
metaWgtMax parameter, 122
minAnswerLength parameter, 120
minScore attribute, 112
mode attribute, 112
MultisiteConstraint, 12

N
natural language processing options. See parserOptions
number ranges, 40
numprop element, 44

O
operators, 35

and fielded search, 41
Boolean, 113
case restriction, 38
combining, 40
exclude in document, 37
exclude in statement, 37
exclusion, 37
literal, 35
required in document, 36
required in statement, 36

optimize attribute, 114

P
pageNum attribute, 114
pageSize attribute, 114
paging of results, 25

page requests, 25
page size, 25
paging types, 26
resubmitting requests, 28

parser options, 15
parserOptions element, 102
Patch Bay configuration, 53
perDoc parameter, 110, 127
perProp parameter, 111, 127
perSol parameter, 110, 127
prerequisites, 1
price lists

indexing data in, 19
specifying default, 20

PriceListPropertyMapping, 19
priorInput element, 126
priorinput elment, 103
priority of facets, 69
prop element, 44
prop parameter, 111, 127
property constraints, 44
property mappings, 19
proxMain parameter, 121
proxWgt parameter, 121

Q
queries

constraints, 16
constructing, 13
docProps, 14
Faceted Search, 61
parser options, 15
relQuestSettings attributes, 14
responseNumberSettings attributes, 13
textProps, 14

query analysis, 129
query constraints, 43

combining, 47
query language, 102
query refinement, 115
query refinements, 49
query request, 103

categorizing, 104, 131
debugging, 105
feedback, 109
optimizing, 114
rank configurations, 115
result groups. See result groups
results, 95, 100
spelling, 105

queryAction element, 131
queryRule element, 131
queryTerms element, 132
question element, 132
QUID attribute, 115

R
ranges

numeric, 40

A T G S e a r c h Q u e r y G u i d e

1 4 1

I n d e x

μ
rankConfig attribute, 115
recurseDocuments attribute, 115
redirection rules, 81
refineConfig attribute, 115
refineConfig.xml, 115
refineConfigDefault attribute, 116
refineConfigMapKey, 116
refineConfigMapProp attribute, 116
refineConstraint element, 132
refineMax attribute, 116
refinement counts, 72
refinements element, 132
RefinementValueDroplet, 92
refineMin attribute, 117
refineTop attribute, 117
regular expressions, 39
relatedSets attribute, 109, 117
relevancy threshold, 112
relevCutoff parameter, 118
relevMinFAQ parameter, 118
relevMinSent parameter, 118
relQuestSettings

parameters, 117
relQuestSettings attributes, 14
remote Routing, 9
reportData element, 132
reporting, 83
request objects

constraints, 16
docProps, 14
parser options, 15
processing, 18
properties, 13
relQuestSettings attributes, 14
responseNumberSettings attributes, 13
textProps, 14

requestMode attribute, 126
required in document operator, 36
required in statement operator, 36
response element, 132
response objects, 21

processing, 18
responseNumber settings, 126
responseNumberSettings attributes, 13
responseTree element, 133
result groups, 129

by document, 110, 127, 129
by property, 111, 127, 129

result language, 135
results

displaying, 21
grouping, 15
paging, 25
query, 95

results objects
number of results, 22
repository items, 22

retLimit parameter, 117
retMax parameter, 117
Routing, 9
ruleMode attribute, 129

S
sample search application, 9
search configurations

determining which to use, 79
dimension tree, 79

search environments, 11
search form handlers, 7

classes, 7
configuring, 8
invoking multiple, 21
JMS events, 51
request properties, 13
sample application, 9
SearchContext component, 9
using with facets, 73

Search Merchandising
determining language, 81
redirection rules, 81
selecting search configurations, 79

search results
incorporating in facets, 73
page requests, 25
page size, 25
paging, 25
paging types, 26

SearchClickThroughServlet, 84
SearchContext component, 9
SearchSession object, 9
securityRole element, 133
ServiceDimensionService, 79
servlet beans, 87

CommerceFacetTrailDroplet, 87
GetClickThroughId, 83, 90
RefinementValueDroplet, 92

set element, 43, 48
SiteDimensionService, 79
site-specific content, 11
sorting

by secondary criteria, 107

A T G S e a r c h Q u e r y G u i d e

1 4 2

I n d e x

μ
sorting attribute, 129
sortProp attribute, 130
spellchecker element, 133
spelling element, 134
spelling feedback, 105, 133
startCategory element, 135
stemming, 101
strategy attribute, 130
strprop element, 44, 48
subdirs attribute, 43
suggestcat attribute, 131
suggestCatPrune attribute, 131

T
target types, 10
targetLanguage element, 135
term element, 134
term expansion

disabling, 35
text element, 136
text processing options. See parserOptions
textProps attribute, 131
thesaurus, 119
topicMaximum element, 136
type element, 47
type-ahead, 31

autocompleter function, 31

search page, 32
type-ahead page, 32

U
userquestion element, 137

W
Web spiders

suppressing events for, 52
weightedProps tag

in standard query, 137
wildcardMax element, 137
wildcards, 137

in queries, 38
Wintertree, 133

Z
zones operator, 41

	1 Introduction
	Audience
	Document Conventions
	More Information

	2 Query Processing Overview
	User Enters Search Input
	Natural Language Processing
	Apply Constraints
	Query Processing
	Search Results Displayed

	3 Search Form Handlers
	Form Handler Classes and Architecture
	Form Handler and Request Components
	Configuring the Form Handler Component
	Configuring the QueryRequest Component
	Configuring the SearchContext Component
	Sample Application

	Specifying the Content Labels and Target Type for Queries
	Understanding Content Labels and Target Types
	Site-Specific Content

	Determining the Environment to Search
	DynamicTargetSpecifier
	MultisiteConstraint

	Setting Request Properties
	Setting the responseNumberSettings Property
	Setting the relQuestSettings Property
	Setting the docProps and textProps Properties
	Setting Grouping Options
	Setting the Parser Options
	Setting Constraint Properties

	Processing the Request and Response
	Catalog Constraints

	Specifying a Price List in the Search Request
	Creating the Property Mapping
	Specifying a Default Price List

	Invoking Multiple Form Handlers
	Handling Results
	Indicating the Number of Results
	Handling Repository Items

	4 Paging Search Results
	Specifying the Page Size
	Handling Page Requests
	Types of Paging
	Example of Normal Paging
	Example of Fast Paging

	Modifying and Resubmitting the Request
	Example of Resubmitting the Form
	Example of Saving the Request in the SearchSession

	5 Implementing Type-Ahead for Searches
	Creating the Type-Ahead Page
	Creating the Search Page

	6 User-Entered Operators
	Literal Operator
	Required Terms
	Required in Statement
	Required in Document

	Excluded Terms
	Excluded in Statement Results
	Excluded in Document Results

	Case Restriction
	Wildcards
	Regular Expressions
	Number Ranges
	Operator Combinations
	Fielded Search Operators

	7 Constraining Queries
	Document Set Constraints
	Collection Constraints
	Property Constraints
	Index Item Constraints
	Index Item URL Constraints
	Index Item Format Constraints
	Index Item Language
	Index Item File Extension
	Index Item Modified Date

	Combining Query Constraints
	Weighted Metadata Preference Expressions
	Query Refinements

	8 JMS Event Handling
	Search Messaging Components
	Suppressing Search Messages
	Detecting Web Spiders
	Filtering by IP Address or User Account

	Patch Bay Configuration

	9 Caching Search Query Data
	Configuring Search Caching
	Disabling Cache Invalidation

	Controlling the Caching of Individual Queries
	Queries that Include Timestamps

	Using the Cache Administration Page

	10 Faceted Search
	Overview of Faceted Search
	Building Pages that Include Facets
	Issuing Faceted Search Queries
	Specifying the Category for the Query
	Restricting the Set of Facets and Selections

	Using a Facet Trail
	Supporting Multiple Selection Values
	Working with the FacetTrail Object

	Rendering the Facets
	Ordering Facets by Priority
	Filtering Facets
	Skipping Facet Values in the Facet Trail
	Removing Facet Selections
	Rendering Multiple Selection Values
	About Refinement Counts

	Incorporating Search Text as a Facet
	Constructing the Facet Trail String
	Selecting the Refinement Configuration

	Formatting Facet Values

	11 Search Merchandising
	Determining the Search Configuration for a Query
	Determining the Language

	Handling Redirects

	12 Recording Events for Reporting
	Using the GetClickThroughId Servlet Bean
	Configuring the Cache

	Configuring the SearchClickThroughServlet
	Limiting the Pages to Examine

	Appendix A: Commerce Search Servlet Beans
	CommerceFacetTrailDroplet
	GetClickThroughId
	RefinementValueDroplet

	Appendix B: Search XML Reference
	answer
	categories
	category
	context
	debug
	document
	documentSets
	envName
	expandedStemming
	language
	parserOptions
	priorinput
	query
	andFeedback
	autocat
	autocatPrune
	autospell
	debug
	docSetSort
	docFlags
	docProps
	docSort
	docSortOrder
	docSortCase
	docSortProp
	docSortPropVal
	docSortPred
	docSortPropDefault
	feedback
	maxRelatedSets
	mergeSettings
	minScore
	mode
	optimize
	pageNum
	pageSize
	QUID
	rankConfig
	recurseDocuments
	refineConfig
	refineConfigDefault
	refineConfigMapKey
	refineConfigMapProp
	refineMax
	refineTop
	refineMin
	relatedSets
	relQuestSettings
	requestMode
	responseNumberSettings
	ruleMode
	sorting
	sortProp
	strategy
	suggestCat
	suggestCatPrune
	textProps

	queryAction
	queryRule
	queryTerms
	question
	refineConstraint
	refinements
	reportData
	response
	responseTree
	securityRole
	spellchecker
	spelling
	spellSplitWords
	startCategory
	targetLanguage
	text
	topicMaximum
	userquestion
	weightedProps
	wildcardMax

