Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est concédé sous licence au Gouvernement des États-Unis, ou à toute entité qui délivre la licence de ce logiciel ou l'utilise pour le compte du Gouvernement des États-Unis, la notice suivante s'applique :

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007), Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour ce type d'applications.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une marque déposée de The Open Group.

Ce logiciel ou matériel qui l'accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation.
Contents

A HA for Apache Extension Properties ... 35

Index .. 37
Preface

Oracle Solaris Cluster Data Service for Apache Guide explains how to install and configure Oracle Solaris Cluster data services.

Note – This Oracle Solaris Cluster release supports systems that use the SPARC and x86 families of processor architectures. In this document, “x86” refers to the larger family of x86 compatible products. Information in this document pertains to all platforms unless otherwise specified.

This document is intended for system administrators with extensive knowledge of Oracle software and hardware. Do not use this document as a planning or presales guide. Before reading this document, you should have already determined your system requirements and purchased the appropriate equipment and software.

The instructions in this book assume knowledge of the Oracle Solaris Operating System and expertise with the volume-manager software that is used with Oracle Solaris Cluster software.

Bash is the default shell for Oracle Solaris 11. Machine names shown with the Bash shell prompt are displayed for clarity.

Using UNIX Commands

This document contains information about commands that are specific to installing and configuring Oracle Solaris Cluster data services. The document does not contain comprehensive information about basic UNIX commands and procedures, such as shutting down the system, booting the system, and configuring devices. Information about basic UNIX commands and procedures is available from the following sources:

- Online documentation for the Oracle Solaris Operating System
- Oracle Solaris Operating System man pages
- Other software documentation that you received with your system
Typographic Conventions

The following table describes the typographic conventions that are used in this book.

<table>
<thead>
<tr>
<th>Typeface</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
</table>
| AaBbCc123 | The names of commands, files, and directories, and onscreen computer output | Edit your .login file.
Use ls -a to list all files.
machine_name% you have mail. |
| AaBbCc123 | What you type, contrasted with onscreen computer output | machine_name% su
Password: |
| aabbcc123 | Placeholder: replace with a real name or value | The command to remove a file is rm filename. |
| AaBbCc123 | Book titles, new terms, and terms to be emphasized | Read Chapter 6 in the User’s Guide.
A cache is a copy that is stored locally.
Do not save the file.
Note: Some emphasized items appear bold online. |

Shell Prompts in Command Examples

The following table shows the default UNIX system prompt and superuser prompt for shells that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed in command examples varies, depending on the Oracle Solaris release.

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bash shell, Korn shell, and Bourne shell</td>
<td>$</td>
</tr>
<tr>
<td>Bash shell, Korn shell, and Bourne shell for superuser</td>
<td>#</td>
</tr>
<tr>
<td>C shell</td>
<td>machine_name%</td>
</tr>
<tr>
<td>C shell for superuser</td>
<td>machine_name#</td>
</tr>
</tbody>
</table>
Related Documentation

Information about related Oracle Solaris Cluster topics is available in the documentation that is listed in the following table. All Oracle Solaris Cluster documentation is available at http://www.oracle.com/technetwork/indexes/documentation/index.html.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware installation and administration</td>
<td>Oracle Solaris Cluster 4.0 Hardware Administration Manual</td>
</tr>
<tr>
<td></td>
<td>Individual hardware administration guides</td>
</tr>
<tr>
<td>Concepts</td>
<td>Oracle Solaris Cluster Concepts Guide</td>
</tr>
<tr>
<td>Software installation</td>
<td>Oracle Solaris Cluster Software Installation Guide</td>
</tr>
<tr>
<td>Data service installation and administration</td>
<td>Oracle Solaris Cluster Data Services Planning and Administration Guide and individual data service guides</td>
</tr>
<tr>
<td>Data service development</td>
<td>Oracle Solaris Cluster Data Services Developer's Guide</td>
</tr>
<tr>
<td>System administration</td>
<td>Oracle Solaris Cluster System Administration Guide</td>
</tr>
<tr>
<td></td>
<td>Oracle Solaris Cluster Quick Reference</td>
</tr>
<tr>
<td>Software upgrade</td>
<td>Oracle Solaris Cluster Upgrade Guide</td>
</tr>
<tr>
<td>Error messages</td>
<td>Oracle Solaris Cluster Error Messages Guide</td>
</tr>
<tr>
<td>Command and function references</td>
<td>Oracle Solaris Cluster Reference Manual</td>
</tr>
<tr>
<td></td>
<td>Oracle Solaris Cluster Data Services Reference Manual</td>
</tr>
<tr>
<td></td>
<td>Oracle Solaris Cluster Quorum Server Reference Manual</td>
</tr>
</tbody>
</table>

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.
Getting Help

If you have problems installing or using Oracle Solaris Cluster, contact your service provider and provide the following information.

- Your name and email address (if available)
- Your company name, address, and phone number
- The model number and serial number of your systems
- The release number of the operating environment (for example, Oracle Solaris 11)
- The release number of Oracle Solaris Cluster (for example, Oracle Solaris Cluster 4.0)

Use the following commands to gather information about your system for your service provider.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>prtconf -v</code></td>
<td>Displays the size of the system memory and reports information about peripheral devices</td>
</tr>
<tr>
<td><code>psrinfo -v</code></td>
<td>Displays information about processors</td>
</tr>
<tr>
<td><code>pkg list</code></td>
<td>Reports which packages are installed</td>
</tr>
<tr>
<td><code>prtdiag -v</code></td>
<td>Displays system diagnostic information</td>
</tr>
<tr>
<td><code>/usr/cluster/bin/clnode show-rev</code></td>
<td>Displays Oracle Solaris Cluster release and package version information for each node</td>
</tr>
</tbody>
</table>

Also have available the contents of the `/var/adm/messages` file.
This chapter describes the steps to install and configure Oracle Solaris Cluster HA for Apache on your Oracle Solaris Cluster servers. You can also use the same steps to install and configure the Oracle Solaris Cluster HA for Apache Proxy Server.

This chapter contains the following sections:

- “Planning the Installation and Configuration” on page 9
- “Overview of the Installation and Configuration Process for Oracle Solaris Cluster HA for Apache” on page 14
- “Installing and Configuring Apache” on page 15
- “Installing the HA for Apache Package” on page 17
- “Registering and Configuring Oracle Solaris Cluster HA for Apache” on page 18
- “Tuning the Oracle Solaris Cluster HA for Apache Fault Monitor” on page 30
- “Upgrading the SUNW.apache Resource Type” on page 32

You can configure Oracle Solaris Cluster HA for Apache as a failover or a scalable data service. See Chapter 1, “Planning for Oracle Solaris Cluster Data Services,” in Oracle Solaris Cluster Data Services Planning and Administration Guide and the Oracle Solaris Cluster Concepts Guide document for an overview of failover and scalable data services.

Planning the Installation and Configuration

Before you install Oracle Solaris Cluster HA for Apache, update the following information in the Apache configuration file `httpd.conf`.
Note – The location of the httpd.conf file varies according to installation. System administrators typically install the httpd.conf file on the cluster file system. When installing the Apache package bundled with Oracle Solaris, the file is located in the /etc/apache2/2.2 directory.

- The ServerName directive that contains the hostname – For Oracle Solaris Cluster HA for Apache to be highly available, you must set this directive to the name of the network address (logical hostname or shared address) that is used to access the server. You should have set up the logical hostname or shared address when you installed the cluster. See the Oracle Solaris Cluster Concepts Guide for details on network resources.

- The BindAddress directive, which you must set to the logical host or shared address – You can configure Apache to bind to INADDR_ANY. However, each resource must bind to a unique combination of network resource and port number. For example, if you run multiple resources, you can use INADDR_ANY provided that the port number for each resource is different.

- The ServerType directive – This directive must be set to standalone, the default.

- Multiple instances of Apache – If you have multiple instances of Apache, you must manage each instance with a separate resource. Furthermore, each separate resource must have a unique Bin_dir setting. Under the specified Bin_dir property that starts the particular instance of Apache, an apachectl script must exist.

Note – Different Apache resources can share the same httpd binary, that is, the apachectl scripts for different resources can specify the path to the same httpd binary. However, you must modify each apachectl script to use a different configuration file for specific Apache resources. To do so, use the -f option of the httpd command to specify a specific httpd.conf file.

- The DocumentRoot directive that specifies the location of the documentation root directory – This directive is a pointer to a location on the cluster file system, where the HTML documents are installed.

- The ScriptAlias directive that contains the location on a cluster file system of the cgi-bin directory – This directive is a pointer to a location on the cluster file system, where the cgi-bin files are installed.
Note – You must follow certain conventions when you configure URL mappings for the web server. For example, when setting the CGI directory, locate the CGI directory on the cluster file system to preserve availability. For example, you might map your CGI directory to `/global/diskgroup/ServerRoot/cgi-bin`, where `diskgroup` is the disk device group that contains the Apache software. In situations where the CGI programs access "back-end" servers, such as an RDBMS, ensure that the Oracle Solaris Cluster software controls the "back-end" server. If the server is an RDBMS that the Oracle Solaris Cluster software supports, use one of the highly available RDBMS packages. Alternatively, you can use the APIs that the *Oracle Solaris Cluster Data Services Developer's Guide* explains to put the server under Oracle Solaris Cluster control.

- **The lock file** – If you use a lock file, set the value of the `LockFile` directive in your `httpd.conf` file to a local file.

- **The PidFile directive** – Point this directive to a local file, as in the following example:

  ```
  PidFile /local/apache/log/httpd.pid
  ```

Note – While using Apache 2.2 with HA for Apache, ensure that the directory to which the `PidFile` directive in the configuration file references exists and proper permissions are assigned. Before you install the HA for Apache package, verify that the Apache software is properly installed and configured to run on a cluster.

In Apache 2.2, the `PidFile` directive can be modified to point to `/local/apache/log/httpd.pid`. Since this directory does not exist by default, you are required to create it manually or the resource will not start.

- **The `Port` directive setting that the server port or ports access** – The defaults are set in each node's `httpd.conf` file. The `Port_list` resource property must include all of the ports that the `httpd.conf` files specify.

 The `Port_list` property assumes that the web server serves all combinations of ports and IP addresses from the network resources as defined in the `resource_dependencies` property.

  ```
  Port_list="80/tcp,443/tcp,8080/tcp"
  ```

 The preceding `Port_list` configuration, for example, probes the following IP-port combinations.

<table>
<thead>
<tr>
<th>Host</th>
<th>Port</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>phys-schost-1</td>
<td>80</td>
<td>tcp</td>
</tr>
<tr>
<td>phys-schost-1</td>
<td>443</td>
<td>tcp</td>
</tr>
</tbody>
</table>
However, if `phys-schost-1` serves ports 80 and 443 only and `phys-schost-2` serves ports 80 and 8080 only, you can configure the `Port_list` property for Apache as follows:

```
```

Consider the following rules.

- You must specify hostnames or IP addresses (not network resource names) for `phys-schost-1` and `phys-schost-2`.
- If Apache serves `phys-schost-N/port` for every `phys-schost-N` in the `resource_dependencies` property, you can use a short form to replace the combination of, for example, `phys-schost-1/port1, phys-schost-2/port2`, and so on. See the following examples.

Example One

```
Port_list="80/tcp, phys-schost-1/443/tcp, phys-schost-2/8080/tcp"
```

This example probes the following IP-port combinations.

<table>
<thead>
<tr>
<th>Host</th>
<th>Port</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>phys-schost-1</td>
<td>80</td>
<td>tcp</td>
</tr>
<tr>
<td>phys-schost-1</td>
<td>443</td>
<td>tcp</td>
</tr>
<tr>
<td>phys-schost-2</td>
<td>80</td>
<td>tcp</td>
</tr>
<tr>
<td>phys-schost-2</td>
<td>8080</td>
<td>tcp</td>
</tr>
</tbody>
</table>

Example Two

```
Port_list="phys-schost-1/80/tcp, phys-schost-2/80/tcp"
resource_dependencies=net-1, net-2
#net-1 contains phys-schost-1.
#net-2 contains phys-schost-2 and phys-schost-3.
```

This example probes the following IP-port combinations.

<table>
<thead>
<tr>
<th>Host</th>
<th>Port</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>phys-schost-1</td>
<td>80</td>
<td>tcp</td>
</tr>
<tr>
<td>phys-schost-2</td>
<td>80</td>
<td>tcp</td>
</tr>
</tbody>
</table>
All of the hostnames (IP addresses) that the Port_list property specifies must not belong to a network resource that is specified in any other scalable resource's Resource_dependencies property. Otherwise, as soon as a scalable service detects that another scalable resource already uses an IP address, creation of the Apache resource fails.

Note – The Apache resource can use an already created shared address resource provided they listen to a port or port list that is not being used on that shared address.

Apache Proxy Server – Add the following lines of code to the httpd.conf file if you choose to configure the Apache software as a proxy server.

```plaintext
# Proxy Server Directives.
<IfModule mod_proxy.c>
    ProxyRequests On
    <Directory proxy:*>
        Order deny,allow
        Deny from all
        Allow from IP_ADDRESS
    </Directory>
    ProxyVia On
</IfModule>
# End of Proxy Server Directives.
```

Note – If you run Oracle Solaris Cluster HA for Apache and another HTTP server, configure the HTTP servers to listen on different ports. Otherwise, a port conflict can occur between the two servers.

To register and configure Oracle Solaris Cluster HA for Apache, you must consider or provide information on the following points.

- Decide whether to run Oracle Solaris Cluster HA for Apache as a failover or scalable data service.
- Ensure that you are installing a non secure version of the Apache web server.
- Decide which fault monitoring resource properties to set. In most cases, the default values suffice. See the Oracle Solaris Cluster Data Services Planning and Administration Guide for information about the standard properties and Appendix A, “HA for Apache Extension Properties,” for information about the extension properties.
- Provide the name of the resource type for Oracle Solaris Cluster HA for Apache. This name is SUNW.apache.
Overview of the Installation and Configuration Process for Oracle Solaris Cluster HA for Apache

The table below lists the sections that describe the installation and configuration tasks.

<table>
<thead>
<tr>
<th>Task</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install the Apache software</td>
<td>“Installing and Configuring Apache” on page 15</td>
</tr>
<tr>
<td>Install the Oracle Solaris Cluster HA for Apache package</td>
<td>"How to Install the HA for Apache Package" on page 17</td>
</tr>
</tbody>
</table>

Overview of the Installation and Configuration Process for Oracle Solaris Cluster HA for Apache

The table below lists the sections that describe the installation and configuration tasks.
Installing and Configuring Apache

To install a non secure version of the Apache web server, see one of the following procedures.

- "How to Install and Configure the Apache Software From the Oracle Solaris CD-ROM" on page 15
- "How to Install and Configure the Apache Software from the Apache Web Site" on page 16

Oracle Solaris Cluster HA for Apache works with the Apache software configured as either a web server or a proxy server.

See Apache documentation at http://www.apache.org for standard installation instructions. Contact your Oracle sales representative for a complete list of Apache versions that are supported with the Oracle Solaris Cluster software.

Note – The Oracle Solaris Cluster HA for Apache software can be configured to run in a zone cluster.

Installing a Non Secure Apache Web Server

This section provides procedures for installing a non secure Apache web server.

▼ How to Install and Configure the Apache Software From the Oracle Solaris CD-ROM

This procedure installs a non secure version of the Apache web server.

The Apache binaries are included in the web/server/apache-22 package.

Place the binaries on the local file system on each of your cluster nodes or on a cluster file system.

- Run the pkg info command to determine if the Apache data service package, ha-cluster/data-service/apache, has been installed.

 If the package has not been installed, install it as follows.
How to Install and Configure the Apache Software from the Apache Web Site

This procedure installs a non secure version of the Apache web server.

Place the web server binaries on the local file system on each of your cluster nodes or on a cluster file system.

1. On a cluster member, become superuser or assume a role that provides solaris.cluster.admin RBAC authorization.

2. Install the Apache software using the installation procedures found in the Apache installation documentation.
 Install the Apache software using the Apache installation documentation you received with your Apache software or see the installation instructions at http://www.apache.org.

3. Update the httpd.conf configuration file.
 - Set the ServerName directive. (In Version 2.2 of Apache, the ServerName directive specifies the hostname and the port.)
 - Set the BindAddress directive (optional). (The BindAddress directive only exists in versions prior to Apache 2.2. For Apache 2.2, see the following bullet for the Listen directive.)
 - Set the Listen directive. The Listen directive must use the address of the logical host or shared address. (The Listen directive only exists in Apache 2.2 and beyond. For Apache versions prior to Apache 2.2, see the previous bullet for the BindAddress directive.)
 - Set the ServerType, ServerRoot, DocumentRoot, ScriptAlias, and LockFile directives.

Note – The ServerType directive does not exist in Apache 2.2.

- Set the Port directive to the same number as the Port_list standard resource property. See Step 4 for more information.
- Add the following lines of code to the httpd.conf configuration file if you choose to configure the Apache software as a proxy server.

```
# Proxy Server Directives.
<IfModule mod_proxy.c>
  ProxyRequests On
  <Directory proxy:/*>
    Order deny,allow
    Deny from all
    Allow from IP_ADDRESS
```
Note – If you configure the Apache software as a proxy server, the CacheRoot setting must point to a location on the cluster file system.

4 Verify that the port number or numbers in the httpd.conf file match those of the Port_list standard resource property.
 You can edit the httpd.conf configuration file to change its port number or numbers to match the standard Oracle Solaris Cluster resource property default (port 80). Alternatively, while you configure Oracle Solaris Cluster HA for Apache, you can set the Port_list standard property to match the setting in the httpd.conf file.

5 Update the paths in the Apache start/stop script file (Bin_dir/apachectl).
 You must change the paths from the Apache defaults to match your Apache directory structure. For example, change the line in the BIN_dir/apachectl script beginning with HTTPD= /usr/local/apache/bin/httpd to the following.

 HTTPD=' /usr/local/apache/bin/httpd -f /global/foo/apache/conf/httpd.conf'

6 Perform the following tasks to verify your configuration changes.
 a. Run apachectl configtest to check the Apache httpd.conf file for correct syntax.
 b. Ensure that any logical hostnames or shared addresses that Apache uses are configured and online.
 c. Issue apachectl start to manually start your Apache server.
 If Apache does not start up correctly, correct the problem.
 d. After Apache has started, stop it before moving to the next procedure.

Installing the HA for Apache Package

If you did not install the HA for Apache package during your initial Oracle Solaris Cluster installation, perform this procedure to install the package.

▼ How to Install the HA for Apache Package

Perform this procedure on each cluster node where you want the HA for Apache software to run.
1. On the cluster node where you are installing the data service package, become superuser.

2. Ensure that the solaris and ha-cluster publishers are valid.

   ```
   # pkg publisher
<table>
<thead>
<tr>
<th>PUBLISHER</th>
<th>TYPE</th>
<th>STATUS</th>
<th>URI</th>
</tr>
</thead>
<tbody>
<tr>
<td>solaris</td>
<td>origin</td>
<td>online</td>
<td>solaris-repository</td>
</tr>
<tr>
<td>ha-cluster</td>
<td>origin</td>
<td>online</td>
<td>ha-cluster-repository</td>
</tr>
</tbody>
</table>
   ```

 For information about setting the solaris publisher, see "Set the Publisher Origin To the File Repository URI" in Copying and Creating Oracle Solaris 11 Package Repositories.

3. Install the HA for Apache software package.

   ```
   # pkg install ha-cluster/data-service/apache
   ```

4. Verify that the package installed successfully.

   ```
   $ pkg info ha-cluster/data-service/apache
   ```

 Installation is successful if output shows that State is Installed.

5. Perform any necessary updates to the Oracle Solaris Cluster software.

 For instructions on updating single or multiple packages, see Chapter 11, “Updating Your Software,” in Oracle Solaris Cluster System Administration Guide.

Registering and Configuring Oracle Solaris Cluster HA for Apache

This section describes how to register and configure Oracle Solaris Cluster HA for Apache.

You can configure Apache as a failover service or as a scalable service, as follows.

- When you configure Apache as a failover service, you place the Apache application resources and the network resources in a single resource group.
- When you configure Apache as a scalable service, you create a scalable resource group for the Apache application resources and a failover resource group for the network resources.

The scalable resource group depends on the failover resource group. Additional steps are required to configure Apache as a scalable service. The leading text ”For scalable services only” in the following procedure identifies these steps. If you are not configuring Apache as a scalable service, skip the steps marked ”For scalable services only.”
Setting Oracle Solaris Cluster HA for Apache Extension Properties

The sections that follow contain instructions for registering and configuring Oracle Solaris Cluster HA for Apache resources. For information about the extension properties, see Appendix A, “HA for Apache Extension Properties.” The Tunable entry indicates when you can update a property.

See the `rt_properties(5)`, `r_properties(5)`, and `rg_properties(5)` man pages for details on all of the Oracle Solaris Cluster extension properties.

To set an extension property of a resource, include the following option in the `clresource` command that creates or modifies the resource:

```
-p property=value
```

- `p property` Identifies the extension property that you are setting.
- `value` Specifies the value to which you are setting the extension property.

You can also use the procedures in Chapter 2, “Administering Data Service Resources,” in Oracle Solaris Cluster Data Services Planning and Administration Guide to configure resources after the resources are created.

Monitoring Arbitrary URIs

Set the `Monitor_Uri_List` extension property if you want the web server fault monitor to probe an arbitrary list of applications (URIs) served by the web server. This extension property provides extended probing functionality and is useful if you are layering services in addition to your web server. If you do not set the `Monitor_Uri_List` extension property, the fault monitor will perform the basic probing. See “Tuning the Oracle Solaris Cluster HA for Apache Fault Monitor” on page 30 for details. The following examples show how to set the `Monitor_Uri_List` extension property when you add the HA for Apache instance to your configuration.

Example—Setting Monitor_Uri_List for Scalable HA for Apache Instance

(Add an insecure Apache instance with default load balancing.)

```
# clresource create -g resource-group-1 \
-t SUNW.apache -p Bin_dir=/opt/apache/bin -p Resource_dependencies=schost-1, ... \ 
-p Monitor_Uri_list=http://schost-1:8000/servlet/monitor \ 
-p Scalable=True \ 
-p Port_list=8000/tcp  apache-insecure-1
```
Example— Setting Monitor_Uri_List for Failover HA for Apache Instance

(Add an insecure Apache application resource instance.)

```bash
# clresource create -g resource-group-1 \
   -t SUNW.apache -p Bin_dir=/opt/apache/bin -p Resource_dependencies=schost-1 \
   -p Monitor_Uri_list=http://schost-1:80/servlet/monitor \n   -p Port_list=80/tcp  apache-insecure-1
```

Tools for Registering and Configuring HA for Apache

Oracle Solaris Cluster provides the following tools for registering and configuring HA for Apache:

- **The `clsetup` utility.** For more information, see “How to Register and Configure the Oracle Solaris Cluster HA for Apache by Using `clsetup`” on page 20 and the `clsetup(1CL)` man page.
- **Oracle Solaris Cluster maintenance commands.** For more information, see “How to Register and Configure Oracle Solaris Cluster HA for Apache Using Oracle Solaris Cluster Command Line Interface (CLI)” on page 23.

The `clsetup` utility provides a wizard for configuring HA for Apache. The wizard reduces the possibility for configuration errors that might result from command syntax errors or omissions. The wizard also ensures that all required resources are created and that all required dependencies between resources are set.

▼ How to Register and Configure the Oracle Solaris Cluster HA for Apache by Using `clsetup`

Perform this procedure during your initial setup of Oracle Solaris Cluster HA for Apache. Perform this procedure from one node only.

Note – The `clsetup` utility can be used to configure Apache versions 1.x, Apache 2.2, and 2.2.16.

Before You Begin

Before you start the Oracle Solaris Cluster HA for Apache wizard, ensure that the following prerequisites are met:

- You have decided whether to run Oracle Solaris Cluster HA for Apache as a failover service or a scalable service.
- Prerequisites for configuring the required type of network resource are met.
The type of network resource that is required depends on your configuration of Oracle Solaris Cluster HA for Apache:

- A failover service requires a logical hostname resource.
- A scalable service requires a shared address resource.
- The Apache software is installed and configured.
- The Apache configuration files are available on the node where you will start the wizard.
- The Oracle Solaris Cluster HA for Apache package is installed.

1. **Become superuser on any cluster node.**

2. **Start the clsetup utility.**

   ```
   # clsetup
   ```

 The clsetup main menu is displayed.

3. **Type the number that corresponds to the option for data services and press Return.**

 The Data Services menu is displayed.

4. **Type the number that corresponds to the option for configuring Oracle Solaris Cluster HA for Apache and press Return.**

 The clsetup utility displays information about Oracle Solaris Cluster HA for Apache.

5. **Press Return to continue.**

 The clsetup utility displays a list of configuration modes for Oracle Solaris Cluster HA for Apache.

6. **Type the number that corresponds to the configuration mode for Oracle Solaris Cluster HA for Apache and press Return.**

 The clsetup utility displays a list of available nodes.

7. **Select the nodes where you require Oracle Solaris Cluster HA for Apache to run.**

 - To accept the default selection of all listed nodes in an arbitrary order, type a and press Return.

 - To select a subset of the listed nodes, type a comma-separated or space-separated list of the numbers that correspond to the nodes. Then press Return.

 Ensure that the nodes are listed in the order in which the nodes are to appear in the resource group’s node list. The first node in the list is the primary node of this resource group.
To select all nodes in a particular order, type a comma-separated or space-separated ordered list of the numbers that correspond to the nodes. Then press Return.

Ensure that the nodes are listed in the order in which the nodes are to appear in the resource group’s node list.

8 To confirm your selection of nodes, type d and press Return.

The cl setup utility displays a screen where you can specify the location of the Oracle Solaris Cluster HA for Apache configuration file.

9 Type the numbers that correspond to the location of the configuration file and press Return.

Note – The configuration file that you select here is used as a template. A new configuration file will be created using this template configuration file.

The cl setup utility displays a screen where you can specify the Oracle Solaris Cluster HA for Apache document root directory.

10 Type the numbers that correspond to the location of the document root directory and press Return.

The cl setup utility displays a screen where you can specify the Oracle Solaris Cluster HA for Apache mount point.

11 To confirm your selection of the mount point, type d and press Return.

The cl setup utility displays a screen where you can specify the Oracle Solaris Cluster HA for Apache network resource.

12 To confirm your selection of the network resource, type d and press Return.

The cl setup utility displays information about the Oracle Solaris Cluster HA for Apache configuration that the utility will create.

13 To confirm your selection of the configuration, type d and press Return.

The cl setup utility displays information about the Oracle Solaris Cluster objects that the utility will create.

Note – The document root specified by you will be copied to the one that is mentioned in the screen. The configuration file specified by you will be edited and the edited file will be stored in the location mentioned in the screen.

14 To confirm your selection of the Oracle Solaris Cluster objects, type d and press Return.

The cl setup utility displays information about the Oracle Solaris Cluster configuration that the utility will create.
To create the configuration, type c and Press Return.
The clsetup utility displays a progress message to indicate that the utility is running
commands to create the configuration. When configuration is complete, the clsetup utility
displays the commands that the utility ran to create the configuration.

Note – The clsetup utility will roll back the changes if it fails to complete the Apache
collection process.

Press Return to continue.
The clsetup utility returns you to the list of options for configuring Oracle Solaris Cluster HA
for Apache.

(Optional) Type q and press Return repeatedly until you quit the clsetup utility.
If you prefer, you can leave the clsetup utility running while you perform other required tasks
before using the utility again. If you choose to quit clsetup, the utility recognizes your Oracle
Solaris Cluster HA for Apache resource group when you restart the utility.

Determine if the Oracle Solaris Cluster HA for Apache resource group and its resources are
online.
Use the clresourcegroup(1CL) command for this purpose. By default, the clsetup utility
assigns the name apache-server-rg to the Oracle Solaris Cluster HA for Apache resource
group.

clresourcegroup status apache-server-rg

If the Oracle Solaris Cluster HA for Apache resource group and its resources are not online, bring
them online.

clresourcegroup online -emM apache-server-rg

How to Register and Configure Oracle Solaris Cluster
HA for Apache Using Oracle Solaris Cluster Command
Line Interface (CLI)

Complete the registration and configuration on any cluster member.

Before You Begin
- Verify that all the network addresses that you use have been added to your name service
database.

You should have performed this verification during your initial Oracle Solaris Cluster
installation. See the planning chapter in the Oracle Solaris Cluster Software Installation
Guide for details.
Note – To avoid failures because of name service lookup, verify that all the network addresses are present in the /etc/inet/hosts file on all of the cluster nodes. Configure name service mapping on the servers to first check the local files before accessing NIS, NIS+, or DNS:

```
/usr/sbin/svccfg -s svc:/system/name-service/switch setprop config/host = astring: \"cluster files nis\"
```

1. **On a cluster member, become superuser or assume a role that provides solaris.cluster.admin RBAC authorization.**

2. **Register the SUNW.apache resource type for the data service.**

   ```
   # cresourcectype register SUNW.apache
   ```

3. **Create a failover resource group to hold the network and application resources.**

 This resource group is required for both failover and scalable services. For failover services, the resource group contains both network and failover application resources. For scalable services, the resource group contains network resources only. A dependency is created between this group and the resource group that contains the application resources.

 Optionally, you can select the set of nodes on which the data service can run with the -n option.

   ```
   # cresourcegroup create [-n node-list] resource-group
   ```

 resource-group

 Specifies the name of the failover resource group to add. This name can be your choice but must be unique for the resource groups within the cluster.

 [-n node-list]

 Specifies a comma-separated, ordered list of nodes that can master this resource group. In this format, node specifies the node name in a global zone.

 This list is optional. If you omit this list, the global zone of each cluster node can master the resource group.

4. **Add a network resource, such as logical hostname or shared address, to the failover resource group that you created in Step 3.**

   ```
   # cresourcesharedaddress create -g resource-group \
   -h hostname,... [-N netiflist] resource \
   -h hostname,...
   ```

 resource-group

 Specifies the name of the failover resource group that you created in Step 3.

 resource

 Specifies a resource name. If you do not supply your choice for a resource name, the name of the network resource defaults to the first name that is specified after the -h option.
-N netiflist
 Specifies an optional, comma-separated list that identifies the IPMP groups that are on each node or zone. The format of each entry in the list is netif@node. The replaceable items in this format are as follows:

 netif Specifies an IPMP group name, such as sc_ipmp0, or a public network interface card (NIC). If you specify a public NIC, Oracle Solaris Cluster attempts to create the required IPMP groups.

 node Specifies the name or ID of a node. To specify the global zone, specify only node.

 Note – If you require a fully qualified hostname, you must specify the fully qualified name with the -h option and you cannot use the fully qualified form in the resource name.

 Note – Oracle Solaris Cluster does not currently support using the adapter name for netif.

5 **For scalable services only** – Create a scalable resource group to run on all of the desired cluster nodes.

If you run Oracle Solaris Cluster HA for Apache as a failover data service, proceed to Step 7. Create a resource group to hold a data service application resource. You must specify the maximum and desired number of primary nodes.

 Note – If only a subset of nodes can be primaries for this resource group, you must use the -n option to specify the names of these potential primaries when you create the resource group.

You must also specify any dependency between this resource group and the failover resource group that you created in Step 3. This dependency ensures that when failover occurs, if the two resource groups are being brought online on the same node, the Resource Group Manager (RGM) starts up the network resource before any data services that depend on the network resource.

```
# cresourcegroup create [-n node-zone-list] \ 
-p Maximum_primaries=m -p Desired_primaries=n \ 
-p RG_dependencies=resource-group resource-group
resource-group
  Specifies the name of the scalable service resource group to add.

-p Maximum_primaries=m
  Specifies the maximum number of active primary nodes allowed for this resource group. If you do not assign a value to this property, the default is 1.
```
Desired_primaries=n
 Specifies the desired number of active primary nodes allowed for this resource group. If you
do not assign a value to this property, the default is 1.

RG_dependencies=resource-group
 Identifies the resource group that contains the shared address resource on which the
resource group being created depends, that is, the name of the failover resource group that
you created in Step 3.

node-list
 Specifies a comma-separated, ordered list of nodes that can master this resource group. The
format of each entry in the list is node. In this format, node specifies the node name. To
specify the global zone, specify only node.

 This list is optional. If you omit this list, the global zone of each cluster node can master the
resource group.

6 For scalable services only – Create an application resource in the scalable resource group.
 If you run Oracle Solaris Cluster HA for Apache as a failover data service, proceed to Step 7.

 # cresource create -g resource-group
 \t resource-type -p Bin_dir=bin-directory, ... \n \t Resource_dependencies=network-resource, ..., \n \t Port_list=port-number/protocol[, ...] \n \t Scalable=True resource

 resource
 Specifies your choice for the name of the resource to add.

 resource-group
 Specifies the name of the scalable resource group into which the resources are to be placed.

 resource-type
 Specifies the type of the resource to add.

 Resource_dependencies= network-resource, ...
 Specifies a comma-separated list of network resource names that identify the shared
addresses that the data service uses.

 Port_list=port-number/protocol, ...
 Specifies a comma-separated list of port numbers and protocol to be used, for example,
80/tcp,81/tcp.

 Scalable=
 Specifies a required parameter for scalable services. This parameter must be set to True.

 Bin_dir=bin-directory
 Specifies the location where the Apache binaries—in particular, apachectl—are installed.
Oracle Solaris Cluster HA for Apache requires this extension property.

The resource is created in the enabled state.
Note – Optionally, you can set additional extension properties that belong to the Apache data service to override their default values. See Appendix A, “HA for Apache Extension Properties,” for a list of extension properties.

7 For failover services only – Create an application resource in the failover resource group.
Perform this step only if you run Oracle Solaris Cluster HA for Apache as a failover data service. If you run Oracle Solaris Cluster HA for Apache as a scalable data service, you should have performed Step 5 and Step 6 and should now proceed to Step 9.

```bash
# clresource create -g resource-group \
-t resource-type -p Bin_dir=bin-directory \
-p Resource_dependencies=network-resource,... \
-p Port_list=port-number/protocol[,...] resource
```

resource
Specifies your choice for the name of the resource to add.

-g resource-group
Specifies the name of the resource group you created in Step 3 where the resources are to be placed.

-t resource-type
Specifies the type of the resource to add.

-p Resource_dependencies= network-resource,...
Specifies a comma-separated list of network resources that identify the shared addresses that the data service uses.

-p Port_list=port-number/protocol,...
Specifies a comma-separated list of port numbers and protocol to be used (for example, 80/tcp,81/tcp).

-p Scalable=
This property is required for scalable services only. Here the value is set to False or can be omitted.

-p Bin_dir=bin-directory
Specifies the location where the Apache binaries—in particular, apachectl—are installed. Oracle Solaris Cluster HA for Apache requires this extension property.

The resource is created in the enabled state.

8 Bring the failover resource group online.

```bash
# clresourcegroup online -eM resource-group
```

resource-group
Specifies the name of the failover resource group.
9 For scalable services only – Bring the scalable resource group online.
 # clresourcegroup online -emM resource-group
 resource-group
 Specifies the name of the scalable resource group.

Example 1–1 Registering Scalable Oracle Solaris Cluster HA for Apache

For scalable services, you create the following resource groups.

- A failover resource group that contains the network resources
- A scalable resource group that contains the application resources

The following example shows how to register a scalable Apache service on a two-node cluster.

Cluster Information
Node names: phys-schost-1, phys-schost-2
Shared address: schost-1
Resource groups: resource-group-1 (for shared addresses), resource-group-2 (for scalable Apache application resources)
Resources: schost-1 (shared address), apache-1 (Apache application resource)

(Add a failover resource group to contain shared addresses.)
clresourcegroup create resource-group-1

(Add the shared address resource to the failover resource group.)
clressharedaddress create -g resource-group-1 -h schost-1 schost-1

(Register the Apache resource type.)
clresourcetype register SUNW.apache

(Add a scalable resource group.)
clresourcegroup create -p Maximum_primaries=2 \
 -p Desired_primaries=2 -p RG_dependencies=resource-group-1 resource-group-2

(Add Apache application resources to the scalable resource group.)
cresource create -g resource-group-2 \
 -t SUNW.apache -p Bin_dir=/opt/apache/bin -p Resource_dependencies=schost-1 \
 -p Scalable=True \
 -p Port_list=80/tcp apache-1

(Bring the failover resource group online.)
clresourcegroup online -emM resource-group-1

(Bring the scalable resource group online on both nodes.)
clresourcegroup online -emM resource-group-2

Example 1–2 Registering Failover Oracle Solaris Cluster HA for Apache

The following example shows how to register a failover Apache service on a two-node cluster.
Cluster Information
Node names: phys-schost-1, phys-schost-2
Logical hostname: schost-1
Resource group: resource-group-1 (for all of the resources)
Resources: schost-1 (logical hostname),
 apache-1 (Apache application resource)

(Add a failover resource group to contain all of the resources.)
clresourcegroup create resource-group-1

(Add the logical hostname resource to the failover resource group.)
clreslogicalhostname create -g resource-group-1 -h schost-1 schost-1

(Register the Apache resource type.)
clresourcetype register SUNW.apache

(Add Apache application resources to the failover resource group.)
clresource create -g resource-group-1 \
 -t SUNW.apache -p Bin_dir=/opt/apache/bin -p Resource_dependencies=schost-1 \
 -p Port_list=80/tcp apache-1

(Bring the failover resource group online.)
clresourcegroup online -emM resource-group-1

How to Configure SUNW.HAStoragePlus Resource Type

See the SUNW.HAStoragePlus(5) man page and “Relationship Between Resource Groups and Device Groups” in Oracle Solaris Cluster Data Services Planning and Administration Guide for background information. See “Synchronizing the Startups Between Resource Groups and Device Groups” in Oracle Solaris Cluster Data Services Planning and Administration Guide for the procedure.

How to Verify Data Service Installation and Configuration

After you configure Oracle Solaris Cluster HA for Apache, verify that you can open a web page with the network resources (logical hostnames or shared addresses) and port number from a web browser. Perform a switchover with the clresourcegroup command to verify that the service continues to run on a secondary node and can be switched back to the original primary.
Tuning the Oracle Solaris Cluster HA for Apache Fault Monitor

The Oracle Solaris Cluster HA for Apache fault monitor is contained in a resource whose resource type is SUNW.apache.

System properties and extension properties of the resource control the behavior of the fault monitor. The default values of these properties determine the preset behavior of the fault monitor. The preset behavior should be suitable for most Oracle Solaris Cluster installations. Therefore, you should tune the Oracle Solaris Cluster HA for Apache fault monitor only if you need to modify this preset behavior.

Tuning the Oracle Solaris Cluster HA for Apache fault monitor involves the following tasks:

- Setting the interval between fault monitor probes
- Setting the timeout for fault monitor probes
- Defining the criteria for persistent faults
- Specifying the failover behavior of a resource

Information about the Oracle Solaris Cluster HA for Apache fault monitor that you need to perform these tasks is provided in the subsections that follow.

Tune the Oracle Solaris Cluster HA for Apache fault monitor when you register and configure Oracle Solaris Cluster HA for Apache. For more information, see “Registering and Configuring Oracle Solaris Cluster HA for Apache” on page 18.

For detailed information, see “Tuning Fault Monitors for Oracle Solaris Cluster Data Services” in Oracle Solaris Cluster Data Services Planning and Administration Guide.

Operations by the Oracle Solaris Cluster HA for Apache Fault Monitor

The Oracle Solaris Cluster HA for Apache probe sends a request to the server to query the health of the Apache server.

Operations by the Fault Monitor Before a Probe

Before querying the Apache server, the probe checks to confirm that network resources are configured for this Apache resource. If no network resources are configured, an error message (No network resources found for resource) is logged, and the probe exits with failure.

Operations for a Non Secure Web Server

For a non secure web server, the probe connects to the Apache server and performs an HTTP 1.0 HEAD check by sending the HTTP request and receiving a response. In turn, the probe connects to the Apache server on each IP address/port combination.
The result of this query can be either a failure or a success. If the probe successfully receives a reply from the Apache server, the probe returns to its infinite loop and continues the next cycle of probing and sleeping.

The query can fail for various reasons, such as heavy network traffic, heavy system load, and misconfiguration. Misconfiguration can occur if you did not configure the Apache server to listen on all of the IP address/port combinations that are being probed. The Apache server should service every port for every IP address that is specified for this resource.

The following probe failures are considered as complete failures.

- Failure to connect to the server, as the following error message flags, with %s indicating the hostname and %d the port number.

 Failed to connect to %s port %d %s

- Running out of time (exceeding the resource property timeout Probe_timeout) after trying to connect to the server.

- Failure to successfully send the probe string to the server, as the following error message flags, with the first %s indicating the hostname, %d the port number, and the second %s indicating further details about the error.

 Failed to communicate with server %s port %d: %s

When the monitor accumulates two partial failures within the resource property interval Retry_interval, it counts them as one complete failure.

The following probe failures are considered as partial failures:

- Running out of time (exceeding the resource property timeout Probe_timeout) while trying to read the reply from the server to the probe's query.

- Failing to read data from the server for other reasons, as the following error message flags, with the first %s indicating the hostname and %d the port number. The second %s indicates further details about the error.

 Failed to communicate with server %s port %d: %s

Operations for a Monitored URI List

If you have configured URIs in the Monitor_Uri_List extension property, then the probe connects to the Oracle Solaris Cluster HA for Apache server and performs an HTTP 1.1 GET check by sending a HTTP request and receiving a response to each of the URIs in Monitor_Uri_List. If the HTTP server return code is 500 (Internal Server Error) or if the connect fails, the probe will take action.

Note - The Monitor_Uri_List extension property supports HTTP requests only. It does not support HTTPS requests.
The result of the HTTP requests is either failure or success. If all of the requests successfully receive a reply from the Oracle Solaris Cluster HA for Apache server, the probe returns and continues the next cycle of probing and sleeping.

Heavy network traffic, heavy system load, and misconfiguration can cause the HTTP GET probe to fail. Misconfiguration of the Monitor_Uri_List property can cause a failure if a URI in the Monitor_Uri_List includes an incorrect port or hostname. For example, if the web server instance is listening on logical host schost-1 and the URI was specified as http://schost-2/servlet/monitor, the probe will try to contact schost-2 to request /servlet/monitor.

Actions in Response to Faults

Based on the history of failures, a failure can cause either a local restart or a failover of the data service. For detailed information, see “Tuning Fault Monitors for Oracle Solaris Cluster Data Services” in Oracle Solaris Cluster Data Services Planning and Administration Guide.

Upgrading the SUNW.apache Resource Type

Upgrade the SUNW.apache resource type if the following conditions apply:

- You are upgrading from an earlier version of the HA for Apache data service.
- You need to use the new features of this data service.

For general instructions that explain how to upgrade a resource type, see “Upgrading a Resource Type” in Oracle Solaris Cluster Data Services Planning and Administration Guide. The information that you require to complete the upgrade of the SUNW.apache resource type is provided in the subsections that follow.

Information for Registering the New Resource Type Version

The relationship between a resource type version and the release of Oracle Solaris Cluster data services is shown in the following table. The release of Oracle Solaris Cluster data services indicates the release in which the version of the resource type was introduced.

<table>
<thead>
<tr>
<th>Resource Type Version</th>
<th>Oracle Solaris Cluster Data Services Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>3.1</td>
<td>3.1 5/03</td>
</tr>
</tbody>
</table>
To determine the version of the resource type that is registered, use the `clresource` show command.

The resource type registration (RTR) file for this resource type is `/opt/SUNWscapc/etc/SUNW.apache`.

Information for Migrating Existing Instances of the Resource Type

The information that you require to edit each instance of the `SUNW.apache` resource type is as follows:

- You can perform the migration at any time.
- If you need to monitor deployed applications, set the `Monitor_Uri_List` extension property to a single URI or a list of URIs to specify the locations of the applications that are to be probed.

The following example shows a command for modifying an instance of the `SUNW.apache` resource type.

EXAMPLE 1-3 Migrating Instances of the SUNW.apache Resource Type

```
# clresource set -p Monitor_Uri_List=http://schost-1/test.html \
   -p Type_version=4.2 apache-rs
```

This command modifies the `SUNW.apache` resource named `apache-rs` as follows:

- The `Type_version` property of this resource is set to 4.2.
- The Fault Monitor probe will monitor the URL `http://schost-1/test.html`.

Table: Resource Type Version and Oracle Solaris Cluster Data Services Release

<table>
<thead>
<tr>
<th>Resource Type Version</th>
<th>Oracle Solaris Cluster Data Services Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3.1 10/03</td>
</tr>
<tr>
<td>4.1</td>
<td>3.2</td>
</tr>
<tr>
<td>4.2</td>
<td>4.0</td>
</tr>
</tbody>
</table>
This section describes the extension properties for the resource type SUNW.apache. This resource type represents the Apache application in a Oracle Solaris Cluster configuration.

For details about system-defined properties, see the r_properties(5) and rg_properties(5) man pages.

The extension properties of the SUNW.apache resource type are as follows:

Bin_dir
The path to the Apache binaries, in particular, apachectl. Oracle Solaris Cluster HA for Apache requires this extension property.

<table>
<thead>
<tr>
<th>Data type</th>
<th>String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>No default defined</td>
</tr>
<tr>
<td>Range</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Tunable</td>
<td>At creation</td>
</tr>
</tbody>
</table>

Monitor_retry_count
The number of times that the process monitor facility (PMF) restarts the fault monitor during the time window that the Monitor_retry_interval property specifies. This property refers to restarts of the fault monitor itself rather than to the resource. The system-defined properties Retry_interval and Retry_count control restarting of the resource.

<table>
<thead>
<tr>
<th>Data type</th>
<th>Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>4</td>
</tr>
<tr>
<td>Range</td>
<td>0 - 2,147,483,641</td>
</tr>
</tbody>
</table>

–1 indicates an infinite number of retry attempts.

| **Tunable** | At any time |
Monitor_retry_interval

The time (in minutes) over which failures of the fault monitor are counted. If the number of times that the fault monitor fails exceeds the value that is specified in the extension property Monitor_retry_count within this period, the PMF does not restart the fault monitor.

Data type: Integer

Default: 2

Range: 0 – 2,147,483,641

–1 indicates an infinite retry interval.

Tunable: At any time

Monitor_Uri_List

A single URI or a list of URIs that can be used by the fault monitor to probe any deployed applications on the HA for Apache Web Server. Probe deployed applications by setting the property to one or more URIs that are serviced by applications deployed on the HA for Apache Web Server.

Introduced in release 3.1 10/03.

Data type: String

Default: Null

Range: Not applicable

Tunable: At any time

Probe_timeout

The timeout value (in seconds) that the fault monitor uses to probe an Apache instance.

Data type: Integer

Default: 90

Range: 0 – 2,147,483,641

Tunable: At any time
Index

A
Apache
 See also Oracle Solaris Cluster HA for Apache installation
 installing non secure web server, 15
 installing software, 15

C
configuring, Oracle Solaris Cluster HA for Apache, 23–29

E
extension properties, SUNW.apache resource type, 35–36

F
fault monitor, Oracle Solaris Cluster HA for Apache, 30
files, RTR, 33

H
HA for Apache
 installing, 17–18
 resource type versions, 32
 software package, installing, 17–18

I
installing
 Apache, 15
 HA for Apache, 17–18

M
Monitor_Uri_List, 14, 33

N
non secure web server, installing Apache web server, 15

O
Oracle Solaris, publisher, 18
Oracle Solaris Cluster, publisher, 18
Oracle Solaris Cluster HA for Apache
 See also Apache
 BindAddress directive, 9
 configuration, planning, 9
 DocumentRoot directive, 9
 fault monitor, 30
 httpd.conf file, 9

help, 8
httpd.conf file, configuring, 9
Oracle Solaris Cluster HA for Apache (Continued)

installation
 planning, 9
 verifying, 29
lock file, 9
multiple instances, 9
Port directive, 9
registering and configuring, 23–29
ScriptAlias directive, 9
ServerName directive, 9
ServerType directive, 9
SUNW.HAStoragePlus resource type, 29
task map, 14

P
package, 17–18
properties
 See also extension properties
 Monitor_Uri_List, 33
 Type_version, 33
Proxy Server, installing and configuring, 9
publisher
 Oracle Solaris, 18
 Oracle Solaris Cluster, 18

R
registering, Oracle Solaris Cluster HA for Apache, 23–29
resource type registration (RTR) file, 33
RTR (resource type registration) file, 33

S
software package, 17–18
SUNW.apache resource type, extension
 properties, 35–36
SUNW.HAStoragePlus resource type, Oracle Solaris
 Cluster HA for Apache, 29
system properties, effect on fault monitors, 30

T
task map, Oracle Solaris Cluster HA for Apache, 14
 technical support, 8
Type_version property, 33

V
verifying, Oracle Solaris Cluster HA for Apache
 installation, 29
 versions, resource types, 32