Cisco Router and Switch UIM Integration Cartridge Guide
Release 7.1
E23705-01
January 2012
Oracle Communications Network Integrity Cisco Router and Switch UIM Integration Cartridge Guide, Release 7.1
E23705-01
Copyright © 2010, 2012, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This guide describes the functionality and design of the Oracle Communications Network Integrity Cisco Router and Switch UIM Integration Cartridge.
This guide is intended for Network Integrity administrators who want to understand the design and evaluate the functionality of this cartridge and for Network Integrity developers who want either to build or to extend similar cartridges.
The developers should have a good working knowledge of SNMP and SNMP operations, specifications, Network Integrity, Unified Inventory Management (UIM), and Oracle Communications Design Studio for both UIM and Network Integrity.
You should be familiar with the following documents included with this release:
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
This chapter provides an overview of the Oracle Communications Network Integrity Cisco Router and Switch UIM (Unified Inventory Management) Integration Cartridge.
The Network Integrity Cisco Router and Switch UIM Integration Cartridge is an extension of the Network Integrity Cisco Router and Switch SNMP Cartridge, and provides Cisco-specific functionality including:
This cartridge produces both logical and physical device hierarchies that represent a discovered device. The logical hierarchy includes a logical device, child interfaces, subinterfaces (collectively called interfaces), and device interface configurations. The physical hierarchy includes physical device, equipment, equipment holders, and physical ports. In addition, this cartridge creates associations between the physical and logical hierarchies. The first association is at the device level, between the physical device and the logical device, and the second association is at the interface level between physical ports and Interfaces.
Figure 1-1 shows a sample discovered physical device hierarchy. This hierarchy is displayed in the Network Integrity user interface, in the Scan Result Detail page.
Figure 1-2 shows a sample discovered ATM logical device hierarchy.
Figure 1-3 shows a sample Frame Relay hierarchy.
Figure 1-4 shows a sample VLAN hierarchy.
The scan requires that devices support the following MIBs to acquire complete and meaningful results and to properly model both the physical and logical sides.
The discovery of a specific device fails if the target device does not support MIB II or the device is not of vendor type Cisco. This does not necessarily mean the scan in its entirety fails. For example, if you have a scan with a broad scope (for example, multiple IP addresses), only the devices that do not meet the required criteria fail to be rendered; other devices within the scan may succeed. You can inspect the failed device to determine the cause of the failure.
In addition to discovery, this cartridge provides discrepancy detection, discrepancy resolution, and import functionality for integration with UIM.
Discrepancy resolution allows the discovered logical and physical device tree to be created and updated in UIM.
Import allows a logical and physical device tree in UIM to be imported to Network Integrity to compare objects with what is discovered.
Discrepancy detection provides the mechanism to allow a filtered comparison of logical and physical device trees between what is discovered and what is imported from UIM. Filtering is required to set the boundaries of the comparator.
For more information, see the chapters on Discrepancy Detection Actions and Discrepancy Detection Processors in Oracle Communications Network Integrity Developer's Guide.
This chapter provides information on dependencies that the Oracle Communications Network Integrity - Cisco Router and Switch UIM Integration Cartridge has on other entities.
The project, Network_Integrity_Cartridge_Projects\Cisco_UIM_Cartridge\ is dependent on UIM_Cartridge_Projects\ora_ni_uim_webservice\ being available in Oracle Communications Design Studio for compilation if you intend to modify the Web service.
Cisco_UIM_Cartridge contains a file, buildUimClient.xml, that is dependent on the file, UIM_Cartridge_Projects\ora_ni_uim_webservice\wsdl\NI_Uim.wsdl.
The file, buildUimClient.xml, needs to have target ALL executed if you are modifying the Web service, and be successful, before you can compile the Cisco UIM cartridge. The target is building the Web service client JAR.
This cartridge requires that the following be installed:
The following components must be installed in UIM:
To load this cartridge into Design Studio, the following cartridges are required:
See Network Integrity Cisco Router and Switch SNMP Cartridge Guide for information about the operation of the cartridge and its dependencies.
See Network Integrity UIM Sample Web Service Guide for information about the operation of the Web service and its dependencies.
This chapter provides information about downloading and opening Oracle Communications Network Integrity Cisco UIM Cartridge files in Oracle Communications Design Studio. When you have opened the files, you can review and extend them.
To review and extend the Cisco UIM Integration cartridge, you must first download the Oracle Communications Cisco Router and Switch UIM Integration Cartridge media pack from the Oracle software delivery Web site:
The media pack contains the Cisco UIM Integration cartridge ZIP file, which has the following structure:
The Network_Integrity_Cartridge_Projects\Cisco_UIM_Cartridge\ project contains the extensible Design Studio files.
See Design Studio Help and Network Integrity Developer's Guide for information about opening files in Design Studio.
This chapter provides information about compiling and deploying the Oracle Communications Network Integrity Management Information Base (MIB) II Unified Inventory Management (UIM) Integration cartridge.
To compile and deploy the Cisco UIM cartridge, do the following:
For information about deploying and undeploying, see Network Integrity Developer's Guide.
This chapter provides information about the components that comprise the Oracle Communications Network Integrity Cisco Router and Switch UIM Integration Cartridge. The Cisco Router and Switch UIM Integration Cartridge is composed of a number of actions, each containing several processors:
The Discover Enhanced Cisco SNMP action scans a Cisco device and provides a physical and logical hierarchical model of what is discovered. This action also models the associations between the physical and logical hierarchies.
This cartridge is designed to discover Cisco devices only, and attempts to discover non-Cisco devices result in a scan failure.
Table 5-1 shows the processors that belong to the Discover Enhanced Cisco SNMP action.
Table 5-1 Discover Enhanced Cisco SNMP Action Processors
Component	Name
Processor	MIB II Properties Initializer
Processor	Cisco SNMP Properties Initializer
Processor	MIB II SNMP Collector
Processor	MIB II SNMP Modeler
Processor	Cisco SNMP Logical Collector
Processor	Cisco SNMP Physical Collector
Processor	Cisco SNMP Logical Modeler
Processor	Cisco SNMP Physical Modeler
Processor	Cisco Enhanced Modeler Processor
These processors are described in the following sections:	
The MIB II Properties Initializer processor outputs the following data sets:	
snmpVendorNameMap	
: contains a snapshot of industry enterprise numbers to help identify devices that may be found in the network. snmpIfTypeMap	
: contains a snapshot of ifTypes to help identify interface types that may be found in the network. Table 5-2 shows a fragment of each data set provided by the MIB II Properties Initializer:	
Table 5-2 Sample Output for MIB II Properties Initializer	
Sample snmpIfTypeMap	Sample snmpVendorNameMap
---	---
1: other (1)	0 = Reserved
2: regular1822 (2)	1 = NxNetworks
3: hdh1822 (3)	2 = IBM
4: ddnX25 (4)	3 = Carnegie Mellon
5: rfc877x25 (5)	4 = UNIX
6: ethernetCsmacd (6)	5 = ACC
7: iso88023Csmacd (7)	6 = TWG
8: iso88024TokenBus (8)	7 = CAYMAN
9: iso88025TokenRing (9)	8 = PSI
10: iso88026Man (10)	9 = ciscoSystems
251: vdsl2 (251)	34730 = FRANCILIENNE D'INGENIERIE ET DE SERVICES INFORMATIQUES SAS
The content of these property files changes occasionally, and they are maintained as part of cartridge revisions. SDK extensions to this cartridge can update the content of the property files. See About Design Studio Extension for more information.	
The Cisco SNMP Properties Initializer processor outputs the following data sets:	
ciscoProductsMap contains a mapping from the vendor-specific portion of the sysObjectId to Cisco device model name.	
Example 5-1 provides an example of the ciscoProductsMap file contents.	
Example 5-1 ciscoProductsMap File Content Sample	
ciscoVendorNumbers contains a list of supported Cisco vendor numbers.	
ciscoVendorTypesMap contains a mapping from entPhysicalVendorType to the Cisco equipment part name.	
Example 5-2 provides an example of the ciscoVendorTypesMap file contents	
Example 5-2 ciscoVendorTypesMap File Content Sample	
Table 5-3 shows a fragment of each data set provided by the Cisco SNMP Properties Initializer:	
Table 5-3 Sample Output for Cisco SNMP Properties Initializer	
Sample ciscoProductsMap	Sample ciscoVendorNumbers
---	---
1 = ciscoGatewayServer	9
2 = ciscoTerminalServer	4857
3 = ciscoTrouter	5771
4 = ciscoProtocolTranslator	5842
5 = ciscoIGS	7003
6 = cisco3000	N/A
7 = cisco4000	N/A
8 = cisco7000	N/A
9 = ciscoCS500	N/A
10 = cisco2000	N/A
1294 = ciscoCDScde250	N/A
The content of these property files changes occasionally, and they are maintained as part of cartridge revisions. SDK extensions to this cartridge can update the content of the property files. See "About Design Studio Extension ".	
The MIB II SNMP Collector is used to collect SNMP variables from a device. See "About Poll Lists".	
The MIB II SNMP Modeler processor is used to model the data collected from the MIB II SNMP Collector processor. Modeling includes building the hierarchical relationship of logical device and child Interfaces.	
The Cisco SNMP Logical Collector processor is used to collect Frame Relay, ATM and VLAN media data from the device. See "About Poll Lists".	
The Cisco SNMP Physical Collector processor is used to collect the physical aspects (such as Chassis, Container, Module, Port) of the device. See "About Poll Lists".	
The Cisco SNMP Logical Modeler processor is used to model the data collected from the Cisco SNMP Logical Collector.	
The Cisco SNMP Physical Modeler processor is used to model the data collected from the Cisco SNMP Physical Collector.	
The Cisco Enhanced Modeler processor is used to programmatically walk the physical device tree and replace the existing generic specification with a specification which makes it complicit with UIM. Predecessor modelers all apply generic specifications to the entities.	
Each physical entity has a field called modelName which is inspected for its value. The value is used as the specification name to be applied. The processor checks that the specification exists. If the specification exists, the processor applies that specification to the physical entity, overwriting the generic specification.	
If the specification is not found, the generic specification remains and the object does not become UIM complicit. It is not staged for resolution to UIM.	
When a physical entity does not have any value for modelName and its name starts with Artificial (a result of model correction invocation), a lookup table (remodeler.properties) is used to determine what specification to apply. See "Model Correction" for further information about model correction.	
The lookup table allows you to specify (as an example) the key as "nativeEmsName and parent specification name", and value as the "specification name" to be applied. Model correction can produce many artificial entities, so using nativeEmsName and parent specification name in combination generally allows you to uniquely identify the intended entity in the hierarchy. A specification is applied to the physical entity when its nativeEmsName and parent specification name match.	
Systems Integrators can control the content of modelName, and so control the re-applied specification. The process is outlined as follows:	
The suffix of discoveredModelNumber can have up to three tokens delimited by a "."	
If discoveredModelNumber contains 9.5.12, and the lookup table contains 9.5.12 cevCpuPSM1Gbps, this is yielded.	
If 9.5.12 is not found, and 9.5 is found, cevModuleCpuType is yielded.	
If 9.5.12 and 9.5 are not found, but 9 is found, cevModule is yielded.	
If 9.5.12 and 9.5 and 9 are not found, then modelName is populated with “Unknown”.	
The Discover Enhanced Cisco SNMP discovery action uses a generic remodeler to apply custom specifications to physical device results.	
The process is data driven through a remodeler.properties file. Each line describes a remodeling rule in this format:	
The possible actions and match criteria for each are listed below.	
<entity type> is a type like PhysicalDevice. The rule applies only to entities of this type.	
<attribute name>.<attribute match criteria> is optional. If present, the attribute with the specified name must match the attribute match criteria for the rule to apply. Match criteria has rudimentary substring matching. The '*' character can be used for basic wildcarding:	
<context> is optional. If present, the context describes the specification that must be present on the parent entity for the rule to apply. For example, cevContainerPowerSupplyBay/artificial6509PowerSupplyHolderCard only matches an entity if the entity's parent has the specification cevContainerPowerSupplyBay. The context can describe the specifications for multiple ancestors, and not just the parent. In this case, specifications for ancestors are separated by “/”.	
<specification> is the name of the specification to apply if the entity matches the rule.	
The remodeler walks the physical device tree. For each entity, it looks for a matching rule and applies that specification. Rules are processed in the order that they appear in the property file. Once a rule is applied, processing of that entity stops.	
Note: Standard Java property file format must be followed. In particular, spaces and some other special characters on the left side of the equals must be escaped. For a full description of the Java property file format, consult the java doc for the load() method of the java.util.Properties class.	
The Cisco Router and Switch UIM Integration Cartridge is built to support three devices for integration with UIM:	
It does not support a full library of specifications for all hardware permutations found on these devices. If you try to discover these device instances, you may find certain hardware is not supported. To resolve to UIM, you may have to build up a library of specifications on Network Integrity and UIM to model these devices.	
Cisco Switches sometimes run CAT OS not IOS, and entityPhysicalVendorType is sparingly populated, so it cannot serve as the mechanism to identify hardware. To model Cisco switches with specifications staged for UIM, Systems Integrators must make extensive use of the remodeler.properties file, creating a mapping between discovered SNMP values and desired specifications.	
Generally speaking, the recommended SNMP variable is entityPhysicalDesc populated into the description field for Equipment. However, different versions of CAT OS may yield varying values for entityPhysicalDesc for the same hardware, so multiple entries may be required if dealing with various OS versions.An example of the use of remodeler.properties is displayed in the following code. The class CiscoEnhancedModelerProcessorImpl contains code	
In this example, remodeler.properties is invoked for the Cisco 6509 to handle artificial objects created by model correction.To handle a particular Cisco switch, add another else if statement to identify it, and then invoke a custom remodeler.properties on it.The else statement invokes default properties to use the field modelName as the source for identifying the specification to apply via the mapping table ciscoVendorTypesMap.	
This section identifies a number of integration points.	
If you discover a new device or a version of the three devices the cartridge supports out of the box, the specifications are applied and are visible in the entityType column in the Physical Tree in the Network Integrity UI.	
If you see a generic specification in the entityType column in the Physical Tree as opposed to one that starts with “cev”, then you must create a specification for this entity in both Network Integrity and UIM to fully support the device and have it staged for UIM.	
For example, if you discover a new device, the modelName field is probably filled with a mapped value from ciscoVendorTypesMap, with a generic specification applied. Inspect modelName for each entity in the tree to ascertain what specification to create and what lineage (parent/child) must be set for UIM. When you execute discovery and you no longer see generic specifications in your Physical Tree, you are ready to resolve the tree to UIM.	
Specifications in Network Integrity and UIM must exist, and the names must be equivalent. UIM has more requirements on specifications, in that additional properties must be set including:	
The Network Integrity to UIM Web service does not consider that equipment could be modeled in UIM such that they are occupying multiple equipment holders (for example, a single equipment occupies two equipment holders).	
In cases such as this, the Web service operations treat the child of each equipment holder as having a unique equipment. Consequently, Network Integrity assumes that two unique equipment exist, when it fact there is only one.This is a theoretical issue because, in Network Integrity, you must model equipment specifications in UIM in accordance with how Network Integrity discovers a device. When executing Cisco SNMP discovery, if an equipment instance occupies two equipment holders, this is not discoverable, and the device reports that an equipment instance occupies one equipment holder while the other equipment holder appears empty, even though the equipment physically occupies two equipment holder.To modify discovery and modeling so that the true representation is rendered, custom handling is required in the cartridges and Web service.	
The Detect Enhanced Cisco Discrepancies action provides discrepancy capability between discovered and inventoried data in UIM.	
Table 5-4 shows the processors that belong to the Detect Enhanced Cisco Discrepancies action.	
Table 5-4 Detect Enhanced Cisco Discrepancies Action Processors	
Component	Name
---	---
Processor	MIB II UIM Filters Initializer
Processor	Cisco UIM Filters Initializer
Processor	Discrepancy Detector
These processors are described in the following sections:	
The MIB II UIM Filters Initializer processor is used to implement the following filters:	
The Cisco UIM Filters Initializer processor is used to implement the following filters:	
The Discrepancy Detector processor inherits base operations. See the chapter on the Base_Detection_Cartridge and the Default Comparison Algorithm in Network Integrity Developer's Guide.	
See also Network Integrity MIB-II UIM Integration Cartridge Guide.	
The Import Cisco from UIM action imports logical and physical device trees from UIM. Set filters in the Import scan to determine what can be imported.	
Table 5-5 shows the filters used with the Import Cisco from UIM action.	
Table 5-5 Filters Used with Import Cisco from UIM Action	
Filter	Filter Qualifier
---	---
LogicalDeviceId (UIM ID)	EQUALS (default) EQUALS_IGNORE_CASE BEGINS_WITH BEGINS_WITH_IGNORE_CASE ENDS_WITH ENDS_WITH_IGNORE_CASE CONTAINS CONTAINS_IGNORE_CASE
Name	EQUALS EQUALS_IGNORE_CASE BEGINS_WITH (default) BEGINS_WITH_IGNORE_CASE ENDS_WITH ENDS_WITH_IGNORE_CASE CONTAINS CONTAINS_IGNORE_CASE
Mgmt Ip Address	EQUALS (default) EQUALS_IGNORE_CASE BEGINS_WITH BEGINS_WITH_IGNORE_CASE ENDS_WITH ENDS_WITH_IGNORE_CASE CONTAINS CONTAINS_IGNORE_CASE
AssignmentState	EQUALS
AdminState	EQUALS
The import functionality is implemented to	
This action provides UI parameters that allow you to set filters when creating an import scan. The filters determine the set of entities included in the import scan.	
The Cisco UIM Initializer processor instantiates the cache used to hold physical devices Ids as they are retrieved.	
The Logical Device UIM Finder processor retrieves logical device Ids that match the filter criteria. Retrieval is done using ora_ni_uim_webservice operations.	
The implementation includes filtering for logical devices that are constructed with the specification “deviceGeneric”, and interfaces with the specification “interfaceGeneric”. Any logical device using another logical device specification cannot be imported without custom handling.	
A logical device with a specification other then “deviceGeneric” is not imported.	
A DeviceInterface with a specification other then interfaceGeneric is not imported.	
The interface branch is pruned at the parent object. An error indicator is displayed in the Network Integrity UI to indicate pruning has taken place. If interfaces with other specifications are required, you must implement custom handling.	
An example of the error indicator is seen below. Serial0/0 has a subInterface with a foreign specification and so was pruned	
Figure 5-1 shows an example of an error indicator. Serial0/0 has a subInterface with a foreign specification and was pruned.	
The MIB II UIM Importer processor retrieves and processes the logical device tree from UIM. Fetching is done using ora_ni_uim_webservice operations.	
See Network Integrity MIB-II UIM Integration Cartridge Guide.	
The Physical UIM Modeler processor retrieves and processes the physical device tree from UIM. Retrieval is done using ora_ni_uim_webservice operations.	
The MIB II UIM Persister processor stores the Device tree in Network Integrity.	
The Physical Device UIM Finder processor retrieves physical device Ids that match the filter criteria. Retrieval is done using the ora_ni_uim_webservice operations.	
The Physical Device UIM Importer processor retrieves and processes the physical device tree from UIM. Any physical device Ids that are found in the cache are disregarded. Fetching is done using the ora_ni_uim_webservice operations.A physical device with a foreign specification is not imported.A child object with a foreign specification is not imported. The child branch is pruned at the parent object. An error indicator is displayed in the Network Integrity UI to indicate pruning has occurred. If objects with other specifications are required, custom handling must be implemented.	
Note: Foreign specification means that this Network Integrity cartridge is not aware of the specification as it does not exist in the cartridge.	
The Physical UIM Persister processor stores the physical device tree in Network Integrity.	
The Resolve Cisco in UIM action resolves discrepancies between Network Integrity discovery and UIM Import. In other words, the action constructs and updates logical and physical device trees in UIM.	
The implementation instantiates a class called BaseResolutionElement, which acts as a “triage system”. Handlers registered into BaseResolutionElement deal with particular entities.	
When you submit one or more discrepancies to be resolved to UIM, the batch of discrepancies is sent to the BaseResolutionElement, which sets the order and priority of the discrepancies. BaseResolutionElement then calls entity handlers to dispatch the resolution to UIM. The entity handlers use the ora_ni_uim_webservice to communicate with UIM.	
Note: ora_ni_uim_device_sample and ora_ni_uim_cisco_device_sample cartridges must be installed in UIM for this action to function.	
Table 5-6 displays the handlers called by BaseResolutionElement and their corresponding discrepancy types and definitions.	
Table 5-6 Discrepancy Handling	
Handler	Discrepancy Type
---	---
Logical Device Handler	Entity+ (Entity is missing from UIM) Attribute Value Mismatch (Entity has field value that differs) Assoc+ (Peer entities are missing association between them) Assoc- (Peer entities not discovered to be peers in discovery)
Device Interface Handler	Entity+ Entity- (Entity is in UIM but not discovered) Attribute Value Mismatch Assoc+ Assoc-
Physical DeviceHandler	Entity+ Attribute Value Mismatch Assoc+ Assoc-
EquipmentHandler	Entity+ Entity- Attribute Value Mismatch Assoc+ Assoc-
EquipmentHolderHandler	Entity+ Entity- Attribute Value Mismatch Assoc+ Assoc-
PhysicalPortHandler	Entity+ Entity- Attribute Value Mismatch Assoc+ Assoc-
Table 5-7 shows the processors that belong to the Resolve Cisco in UIM action.	
Table 5-7 Resolve Cisco in UIM Action Processors	
Component	Name
---	---
Processor	Resolution Framework Initializer
Processor	MIB II UIM Resolution initializer
Processor	Cisco UIM Filters Initializer
Processor	Resolution Framework Dispatcher
These processors are described in the following sections:	
The Resolution Framework Initializer processor is used to instantiate the BaseResolutionElement and the Web service connection class.	
BaseResolutionElement evaluates discrepancies, which are then processed serially to UIM. Ordering is enforced to ensure that for example you create a LogicalDevice before you create a DeviceInterface. Ordering between logical and physical is random.	
Table 5-8 lists the order of execution of discrepancies.	
Table 5-8 Discrepancy Execution Order	
Discrepancy Type	Entity Type
---	---
Attribute Value Mismatch	All
Assoc-	DeviceInterface PhysicalPort
Assoc-	LogicalDevice PhysicalDevice
Entity-	DeviceInterface Equipment EquipmentHolder PhysicalPort
Entity-	LogicalDevice PhysicalDevice
Entity+	LogicalDevice PhysicalDevice
Entity+	DeviceInterface Equipment EquipmentHolder PhysicalPort
Assoc+	LogicalDevice PhysicalDevice
Assoc+	DeviceInterface PhysicalPort
The MIB II UIM Resolution Initializer processor registers Entity Handlers into BaseResolutionElement. The following handlers are registered by this processor:	
The Cisco UIM Resolution Initializer processor registers Entity Handlers into BaseResolutionElement. The following handlers are registered by this processor:	
The Resolution Framework Dispatcher processor is used to trigger BaseResolutionElement to evaluate and treat discrepancies using the registered entity handlers.	
The entity handler creates a Web service message and populates data into the body of the message. The connection to UIM is established if it does not exist. The Web service message is sent to UIM. The entity handler waits for the response. When the response is received, it is inspected to observe the outcome. If a success message is returned, the discrepancy is marked success, if the message returns fail, or Exception, the discrepancy is marked fail. See Oracle Communications Network Integrity UIM Sample Web Service Guide for more details and examples.	
Note: There is no transaction handling across the Web service. If a discrepancy resolution is successful, a subsequent discrepancy resolution failure in the batch does not roll back the successful discrepancy resolution.Each discrepancy resolution is an independent event.	
The position of the object being treated in the hierarchy is significant. For example, an Entity+ for a logical device means that a logical device and all children interfaces is to be created. If the creation of one of the child entities fails, the rest of the entities continue to be created, but a fail message is sent to the discrepancy resolution result. In effect, creation is a “best effort” mechanism.	
The same applies to device interfaces. For an Entity+ for a DeviceInterface, the handler attempts to create the device interface and all of its children subDeviceInterfaces where applicable.	
This section lists supported creation scenarios in UIM:	
The first scenario deals with the creation of a logical device and physical device (with Network Integrity IDs) in UIM.	
If there are no pre-existing logical device and physical device in UIM, you should see Entity+ for the root logical device and root physical device.Resolution of these two entities executes such that the entire logical device tree is created. The logical device tree attempts to create associations to the physical device tree (which does not exist yet), and association creation fails.	
This is followed by creation of the physical device tree. The physical device tree attempts to create associations to the logical device tree. This succeeds, and the tree is complete. The events could occur in the reverse order as well.	
Creation of the logical device tree includes logical device, and children device interfaces or subInterfaces.	
Creation of the physical device tree includes physical device, and children equipment, equipment holders, and physical ports.	
Creation of any object in the tree is dependent on the Id not being occupied. If the Id is occupied, object creation aborts, as it does for any children objects. If any objects fail to be created, the root object that initiated creation is marked fail or partial fail in the logs. However, parts of the tree may be fully created and available in UIM.	
Aborting does not roll back any successfully created objects. The next round of import, discovery, and discrepancy detection highlights which objects do, and which do not exist, allowing you to continue resolution operations.	
When objects are about to be created in UIM, no search is carried out to see if the object already exists in UIM with the same name/nativeEmsName. UIM does not guarantee name uniqueness.	
If you find an object with the desired name and no children objects, you could adopt it in place of creating it. If two objects are found with the same name, custom handling is required. If an object is found with children objects, custom handling is required. If an object is found already participating in a tree, custom handling is required.	
So in summary, the standard behavior is to create objects with the Network Integrity ID pattern. If the ID is occupied, creation aborts. Resolution does not search by name for existing objects; it creates them instead. Handling duplicate objects is usually carried out by a UIM administrator or system integrator to customize handling.	
If a physical device tree exists in UIM with Network Integrity IDs, but the logical device does not, you should see Entity+ for the logical device.	
Resolution of the entity executes such that the logical device and any children of the logical device are created. As each object is created, where applicable, it is associated to the physical device tree.	
If a logical device exists in UIM but is missing a child device interface, you should see Entity+ for the device interface.Resolution of this entity executes such that the device interface and any children of the device interface are created. As each object is created, where applicable, it is associated to the physical port object.	
If a logical device tree exists in UIM with Network Integrity IDs but the physical device does not, you should see Entity+ for the physical device.Resolution of this entity executes such that the physical device and any children of the physical device are created. As each object is created, where applicable, it is associated to the logical device tree.	
If a parent of an equipment exists in UIM with Network Integrity ID, but the equipment does not, you should see Entity+ for the equipment.Resolution of this entity executes such that the equipment and any children of the equipment are created. As each object is created, where applicable, it is associated to the logical device tree.	
If a parent of an equipment holder (that is, an equipment) exists in UIM with Network Integrity ID, but the equipment holder does not, you should see Entity+ for the equipment holder.Resolution of this entity executes such that the equipment holder and any children of the equipment holder are created. As each object is created, where applicable, it is associated to the logical device tree.	
If a parent of a physical port (that is, an equipment) exists in UIM with Network Integrity ID, but the physical port does not, you should see Entity+ for the physical port.Resolution of this entity executes such that the physical port is created. As each object is created, where applicable, it is associated to the device interface.	
If a logical device and physical device exist in UIM with Network Integrity IDs, but the association between them does not exist, you should see two Assoc+. Associations are bidirectional; but discrepancy detection interrogates each object in isolation resulting in two Assoc+, one from the physical device side and the other from the logical device side.Resolution of the Assoc+ executes such that the logical device to physical device association is created. Then, an attempt is made to create the physical device to logical device association. The Web service detects the association already exists and returns success. These events can also happen in reverse.	
If a device interface and physical port exist in UIM with Network Integrity IDs, but the association between them does not exist, you should see two Assoc+. Associations are bidirectional; but discrepancy detection interrogates each object in isolation resulting in two Assoc+, one from the device interface side and the other from the physical port side.Resolution of the Assoc+ executes such that the device interface to physical port association is created. Then, an attempt is made to create the physical port to device interface association. The Web service detects the association already exists and returns success. These events can also happen in reverse.	
This section lists supported teardown scenarios in UIM:	
If a device interface and physical port exist in UIM with incorrect associations between them, you should see two Assoc-. Associations are bidirectional; but discrepancy detection interrogates each object in isolation, resulting in two Assoc-, one from the device interface side and the other from the physical port side. Resolution of the Assoc- executes such that the device interface to physical port association is deleted. Then, an attempt is made to delete the physical port to device interface association. The Web service detects the association does not exist and returns success. The events can also happen in reverse.	
If a logical device and physical device exist in UIM with incorrect associations between them you should see two Assoc-. Associations are bidirectional; but discrepancy detection interrogates each object in isolation resulting in two Assoc-, one from the logical device side and the other from the physical device side.	
Resolution of the Assoc- executes such that the logical device to physical device association is deleted. Then an attempt is made to delete the physical device to logical device association. The Web service detects the association does not exist and returns success. The events can also happen in reverse.	
If a physical port, a child of an equipment, exists in UIM, but it is not discovered, you should see Entity-. Resolution of the Entity- executes such that the physical port is deleted.	
Note: The physical port does not exist in isolation. It must exist under a parent object.	
If an equipment holder, a child of an equipment, exists in UIM, but it is not discovered, you should see Entity-. Resolution of the Entity- executes such that the equipment holder is deleted.	
Note: The equipment holder does not exist in isolation. It must exist under a parent object.	
If a device interface, a child of a logical device or a device interface, exists in UIM, but it is not discovered, you should see Entity-. Resolution of the Entity- executes such that the device interface is deleted.	
Note: The device interface does not exist in isolation. It must exist under a parent object.	
If an equipment, child of another equipment or physical device, exists in UIM, but is not discovered, you should see Entity-. Resolution of the Entity- executes such that the equipment is unlinked from the parent.	
Note: Equipment do exist in isolation. This equipment continues to exist in UIM until an administrator manually deletes it.	
The following fields are ignored:	
The following sections describe mismatched data scenarios:	
If a logical device in UIM has data that does not match the data discovered, you should see Mismatch.	
Resolution updates the mismatched logical device attribute in UIM, setting the UIM value to the discovered value.	
If a device interface in UIM has data that does not match the data discovered, you should see Mismatch.	
Resolution updates the mismatched device interface attribute in UIM, setting the UIM value to the discovered value.	
If a logical device in UIM has data that does not match the data discovered, you should see Mismatch.	
Resolution updates the mismatched device interface attribute in UIM, setting the UIM value to the discovered value.	
If a physical device in UIM has data that does not match the data discovered, you should see Mismatch.	
Resolution updates the mismatched physical device attribute in UIM, setting the UIM value to the discovered value.	
If an equipment in UIM has data that does not match the data discovered, you should see Mismatch.	
Resolution updates the mismatched equipment attribute in UIM, setting the UIM value to the discovered value.	
If an equipment holder in UIM has data that does not match the data discovered, you should see Mismatch.	
Resolution updates the mismatched equipment holder attribute in UIM, setting the UIM value to the discovered value.	
If a physical port in UIM has data that does not match the data discovered, you should see Mismatch.	
Resolution updates the mismatched physical port attribute in UIM, setting the UIM value to the discovered value.	
Working with foreign IDs is almost the same as working with Network Integrity-generated IDs. However, there are a few caveats to resolution behavior.For mismatch scenarios, there is no distinction between working with foreign IDs or Network Integrity-generated IDs. For any teardown scenarios (Entity- or Assoc-), there is no distinction between working with foreign IDs or Network Integrity-generated IDs.For creation scenarios (Entity+, Assoc+), there are caveats to creating objects if those objects must have associations to preexisting objects in UIM with foreign IDs. The following sections highlight the caveats and resolution behavior.	
In this scenario, discovery discovers a logical device (LD) tree and physical device (PD) tree and builds the associations.	
Discovery assigns Network Integrity generated IDs to all objects (where E is equipment; DI is device interface; PP is physical port):	
LD (x) ------- PD (y)	
DI (x1) E (y1)	
DI (x2) ------- PP (y2)	
Import imports only the physical device tree; the logical device tree does not exist. The physical device tree uses foreign IDs.	
PD (z) E (z1) PP (z2)x and xN ID is generated by Network Integrityy and yN ID is generated by Network Integrityz and zN ID is generated by UIM (foreign ID)	
Discrepancy detection generates:	
Use Case 1:	
In this use case, if you submit Entity+ only for treatment, the following steps take place:	
Use Case 2:	
In this use case, if you submit Entity+ and Assoc+ together for treatment, the following steps take place:	
The same use cases are true if the logical device and physical device scenarios outlined in "Working with Foreign IDs: Scenario 1" are revered.	
In general, handling of foreign IDs is feasible, but may take up to two passes of import, discovery, and resolution to fully synchronize Network Integrity with UIM. If handling of foreign IDs in a single pass is required, resolution should be modified to take the auxiliary object (associated object) into account.	
This section outlines the swapping of cards on physical device tree. This is a super set of several events listed above.	
The following details show how this is observed in Network Integrity and UIM, and what you must be aware of. Generally speaking, this is not supported “out of the box”, but could be carried out with custom handling.	
Step 1:	
Two trees are discovered:A, (1) B, (2) F, (6)D, (4) E, (5) C (3):	
The trees are created in UIM.	
Step 2:	
A user swaps two cards on the device, C and F, such that a new discovery should look like:	
A, (1)	
B, (2)	
F, (6)	
D, (4)	
E, (5)	
C (3)	
Step 3:	
Step 4:	
Step 5:	
Step 6:	
At this point, custom handling is required. Typically, a systems integrator can modify the resolution handling to search for objects by name/nativeEmsName before they are created. If the objects are found, they can be adopted, instead of creating them.	
See "Creation of a Logical Device and Physical Device" for further information.	
All of the above scenarios depict individual discrepancies and how they are treated. In reality, you could have multiple discrepancies. If you selected all discrepancies for resolution, Network Integrity and UIM incorporate prioritization to ensure ordering is correct and execute all selected events in the following order:	
If you select a batch of discrepancies, you must ensure that dependencies between the discrepancies in the selected batch can be met. If a dependency is not met, then resolution may fail.For example, if an equipment exists in an equipment holder, but does not belong there, you must unlink it (Entity-) before you can create and link the correct one (Entity+). Attempting the latter action without doing the former results in failure.	
The name/nativeEmsName and Id field play pivotal roles in import and resolution. Table 5-9 summarizes the view of these fields from the discovery perspective.	
Table 5-9 View of nameEmsName and Id field from Discovery	
Entity	Name
---	---
Physical Device	sysName
Equipment	entPhysicalDescr
Equipment Holder	entPhysicalDescr and entPhysicalParentRelPos
Physical Port	entPhysicalDescr and entPhysicalParentRelPos
Logical Device	sysName
Device Interface	ifDescr
If you want to change this naming and ID convention, this convention can be modified by adding a new processor to the discovery chain and walking the tree, renaming or generating new IDs of the objects as required.	
This chapter provides poll lists for several Cisco Router and Switch SNMP cartridge processors.	
The following list shows the poll lists for the MIB-II SNMP Collector:	
The following list shows the poll lists for the Cisco SNMP Collector:	
The following list shows the poll lists for the Cisco SNMP Physical Collector:	
This chapter provides information on modeling the Cisco Router and Switch UIM Integration cartridge.	
Figure 7-1 displays a Unified Modeling Language (UML) diagram depicting the object relationship being rendered.	
The data sourced from RFC1213-MIB.mgmt.mib-2.system tables establishes and seeds the logical device object.	
The media interface encapsulates the common information about an interface as a device is discovered. The device interface configuration captures the media type information that decorates the interface with media-specific parameters. These media-specific parameters define the behavior of the interface (Generic, ATM, Frame Relay, or VLAN).	
The media interfaces are established and seeded with data sourced from the following:	
IF-MIB.mgmt.mib-2.ifMIB.ifMIBObjects.ifStackTable.ifStackEntry.ifStackStatus establishes the interface hierarchy.	
The generic media device interface configuration is established and seeded with data sourced from the following:	
The ATM media device interface configuration is established and seeded with data sourced from the ATM-MIB. See "About Poll Lists".	
The Frame Relay device interface configuration is established and seeded with data sourced from the CISCO-FRAME-RELAY-MIB and RFC1315-MIB. See "About Poll Lists".	
The VLAN device interface configuration is established and seeded with data sourced from the VLAN-CISCO-IFTABLE-RELATIONSHIP-MIB. See "About Poll Lists".	
All entities shown in Figure 7-1 (for example, physical device, logical device, media interface, and so on) are Oracle Communications Information Model 1.0-compliant for static fields. The dynamic fields (sometimes referred to as characteristics) are application-specific. You can customize application specific data with the device interface configuration mechanism.	
The Cisco Router and Switch SNMP cartridge supports the following configurations:	
For a listing of the Information Model fields, see "Logical Mapping" and "Physical Mapping".	
The Cisco Router and Switch SNMP cartridge supports the following field mappings:	
The Cisco Router and Switch SNMP cartridge support the following logical mappings:	
Table 7-1 shows characteristics for the LogicalDevice specification.	
Table 7-1 LogicalDevice Characteristics	
Characteristics (LogicalDevice)	Information Model Support
---	---
Id	static
Name	static
Description	static
Specification	static
nativeEmsAdminServiceState	static
Nothing available to source the field.	
nativeEmsName	static
nativeEmsServiceState	static
Nothing available to source the field.	
mgmtIpAddress	dynamic
sysObjectId	dynamic
Table 7-2 shows characteristics for the MediaInterface specification.	
Table 7-2 MediaInterface Characteristics	
Characteristics (MediaInterface)	Information Model Support
---	---
Id	static
Name	static
Description	static
Specification	static
interfaceNumber	static
customerInterfaceNumber	static
vendorInterfaceNumber	static
nativeEmsName	static
nativeEmsAdminServiceState	static
Mapped, see Table 7-12.	
nativeEmsServiceState	static
Mapped, see Table 7-12.	
ifType	dynamic
mtuSupported	static
mtuCurrent	static
physicalAddress	static
physicalLocation	static
minSpeed	static
maxSpeed	static
nominalSpeed	static
ifAlias	dynamic
ifName	dynamic
Table 7-3 shows characteristics for the DeviceInterfaceConfigurationItem (IPv4) specification.	
Table 7-3 DeviceInterfaceConfigurationItem (IPv4) Characteristics	
Characteristics (Generic Media)	Information Model Support
---	---
ipAddress	dynamic
prefix	dynamic
ipVersion	dynamic
Programmatically set to IPV4.	
Specification	static
Table 7-4 shows characteristics for the DeviceInterfaceConfigurationItem (IPv6) specification.	
Table 7-4 DeviceInterfaceConfigurationItem (IPv6) Characteristics	
Characteristics (Generic Media)	Information Model Support
---	---
ipAddress	dynamic
prefix	dynamic
ipVersion	dynamic
Programmatically set to IPV6.	
Specification	static
Table 7-5 shows characteristics for the DeviceInterfaceConfigurationItem Mapping (Frame Relay Media) specification.	
Table 7-5 DeviceInterfaceConfigurationItem (Frame Relay Media) Characteristics	
Characteristics (FrameRelayMedia)	Information Model Support
---	---
DLCI	dynamic
Table 7-6 shows characteristics for the DeviceInterfaceConfigurationItem Mapping (FrameRelayData) specification.	
Table 7-6 DeviceInterfaceConfigurationItem (FrameRelayData) Characteristics	
Characteristics (FrameRelayData)	Information Model Support
---	---
frCircuitIfIndex	dynamic
frCircuitDlci	dynamic
frCircuitState	dynamic
frCircuitCreationTime	dynamic
frCircuitLastTimeChange	dynamic
frCircuitCommittedBurst	dynamic
frCircuitExcessBurst	dynamic
frCircuitThroughput	dynamic
Table 7-7 shows characteristics for the DeviceInterfaceConfigurationItem Mapping (FrameRelayExtendedData) specification.	
Table 7-7 DeviceInterfaceConfigurationItem (FrameRelayExtendedData) Characteristics	
Characteristics (FrameRelayExtendedData)	Information Model Support
---	---
cfrCircuitType	dynamic
cfrExtCircuitSubIfIndex	dynamic
cfrSvcThroughputIn	dynamic
cfrSvcCommitBurstIn	dynamic
cfrSvcExcessBurstIn	dynamic
Table 7-8 shows characteristics for the DeviceInterfaceConfigurationItem mapping (ATM media) specification.	
Table 7-8 DeviceInterfaceConfigurationItem (ATM media) Characteristics	
Characteristics (ATM Media)	Information Model Support
---	---
VPI	dynamic
VCI	dynamic
Table 7-9 shows characteristics for the DeviceInterfaceConfigurationItem Mapping (VirtualChannelLinkData) specification.	
Table 7-9 DeviceInterfaceConfigurationItem (VirtualChannelLinkData) Characteristics	
Characteristics (VirtualChannelLinkData)	Information Model Support
---	---
atmVccAal5EncapsType	dynamic
atmVccAalType	dynamic
atmVclLastChange	dynamic
atmVclAdminStatus	dynamic
atmVclOperStatus	dynamic
Table 7-10 shows characteristics for the DeviceInterfaceConfigurationItem Mapping (AtmInterfaceConfigurationData) specification.	
Table 7-10 DeviceInterfaceConfigurationItem (AtmInterfaceConfigurationData) Characteristics	
Characteristics (AtmInterfaceConfigurationData)	Information Model Support
---	---
atmInterfaceMaxVpcs	dynamic
atmInterfaceMaxVccs	dynamic
atmInterfaceMaxActiveVpiBits	dynamic
atmInterfaceMaxActiveVciBits	dynamic
atmInterfaceIlmiVpi	dynamic
atmInterfaceIlmiVci	dynamic
atmInterfaceAddressType	dynamic
atmInterfaceAdminAddress	dynamic
Table 7-11 shows characteristics for the DeviceInterfaceConfigurationItem mapping (VLAN) specification.	
The Cisco Router and Switch UIM Integration cartridge supports the following physical mappings:	
Table 7-13 provides the mapping from Cisco to Information Model classification of physical components. For example, if a piece of discovered equipment is classified as “Power Supply,” this cartridge maps the SNMP data into the Information Model entity type Equipment.	
Table 7-13 Cisco to Information Model Physical Nomenclature Mappings	
entPhysicalClass	Information Model
---	---
root	Physical Device
Other (1)	Unsupported
Unknown (2)	Unsupported
Chassis (3)	Equipment-Shelf
Backplane (4)	Equipment-Shelf
Container (5)	Equipment-Holder
Power supply (6)	Equipment
Fan (7)	Equipment
Sensor (8)	Equipment
Module (9)	Equipment-Card
Port (10)	Physical Port
Stack (11)	Unsupported
Table 7-14 shows the characteristics for the PhysicalDevice specification.	
Table 7-14 PhysicalDevice Characteristics	
Characteristics (Physical Device)	Information Model Support
---	---
Id	static
Name	static
Description	static
Specification	static
discoveredModelNumber	dynamic
discoveredVendorName	dynamic
serialNumber	static
physicalLocation	static
discoveredPartNumber	dynamic
hardwareRev	dynamic
softwareRev	dynamic
modelName	dynamic
mgmtIpAddress	dynamic
nativeEmsName	static
Table 7-15 shows characteristics for the Equipment specification.	
Table 7-15 Equipment Characteristics	
Characteristics (Equipment)	Information Model Support
---	---
Id	static
Name	static
Description	static
Specification	static
discoveredModelNumber	dynamic
discoveredVendorName	dynamic
serialNumber	static
physicalLocation	static
discoveredPartNumber	dynamic
hardwareRev	dynamic
softwareRev	dynamic
modelName	dynamic
nativeEmsName	static
Table 7-16 shows characteristics for the EquipmentHolder specification.	
Table 7-16 EquipmentHolder Characteristics	
Characteristics (EquipmentHolder)	Information Model Support
---	---
Id	static
Name	static
Description	static
Specification	static
discoveredModelNumber	dynamic
discoveredVendorName	dynamic
serialNumber	static
physicalLocation	static
discoveredPartNumber	dynamic
hardwareRev	dynamic
softwareRev	dynamic
modelName	dynamic
nativeEmsName	static
Table 7-17 shows characteristics for the PhysicalPort specification.	
Table 7-17 PhysicalPort Characteristics	
Characteristics (PhysicalPort)	Information Model Support
---	---
Id	static
Name	static
Description	static
Specification	static
discoveredModelNumber	dynamic
portNumber	static
customerPortName	static
vendorPortName	static
discoveredVendorName	dynamic
serialNumber	static
physicalLocation	static
discoveredPartNumber	dynamic
hardwareRev	dynamic
softwareRev	dynamic
modelName	dynamic
nativeEmsName	static
This chapter provides SNMP to Oracle Communications Information Model correction information.	
Model correction occurs when the SNMP information received through discovery from a Cisco device does not conform to the Information Model and therefore cannot be persisted as is within Network Integrity.	
The Cisco Router and Switch UIM Integration cartridge applies the following model corrections:	
In this scenario, multiple equipment report the same relative position within the same parent. To correct this, the Cisco Router and Switch SNMP cartridge applies the algorithm detailed in Appendix B, "About the absRelativePosition Value". No hierarchical change is required.	
For a discovered Cisco device hierarchy, such as the following:	
Physical Device	
Equipment-Shelf	
EquipmentHolder	
Equipment	
Physical Port	
Equipment-Card	
the Cisco Router and Switch SNMP cartridge converts the PhysicalPort to an EquipmentHolder as follows:	
Physical Devices	
Equipment-Shelf	
EquipmentHolder	
Equipment	
EquipmentHolder	
Equipment-Card	
For a discovered Cisco device hierarchy, such as the following:	
Physical Device	
Equipment-Shelf	
EquipmentHolder	
Physical Port	
the Cisco Router and Switch SNMP cartridge inserts an artificial Equipment entity between the EquipmentHolder and the PhysicalPort as follows:	
Physical Device	
Equipment-Shelf	
EquipmentHolder	
Equipment	
Physical Port	
For a discovered Cisco device hierarchy, such as the following:	
Physical Device	
Equipment-Shelf	
EquipmentHolder	
EquipmentHolder	
the Cisco Router and Switch SNMP cartridge inserts an artificial Equipment entity between the two EquipmentHolders as follows:	
Physical Device	
Equipment-Shelf	
EquipmentHolder	
Equipment	
EquipmentHolder	
For a discovered Cisco device hierarchy, such as the following:	
Physical Device	
Equipment-Shelf	
EquipmentHolder	
Equipment	
Equipment	
the Cisco Router and Switch SNMP cartridge inserts an artificial Equipment entity as the parent to the two Equipment as follows:	
Physical Device	
Equipment-Shelf	
EquipmentHolder	
Equipment	
Equipment	
Equipment	
For a discovered Cisco device hierarchy, such as the following:	
Physical Device	
Equipment-Shelf	
EquipmentHolder	
Equipment	
Physical Port	
EquipmentHolder	
the Cisco Router and Switch SNMP cartridge converts the Physical Port to an Equipment as follows:	
Physical Devices	
Equipment-Shelf	
EquipmentHolder	
Equipment	
Equipment	
EquipmentHolder	
For a discovered Cisco device hierarchy, such as the following:	
Physical Device	
Equipment-Shelf	
EquipmentHolder	
Equipment	
-Card Physical Port	
Equipment	
Equipment	
the Cisco Router and Switch SNMP cartridge first converts the Physical Port to an EquipmentHolder, then inserts an artificial Equipment between the EquipmentHolder and the Equipment as follows:	
Physical Device	
Equipment-Shelf	
EquipmentHolder	
Equipment	
-Card EquipmentHolder	
Equipment	
Equipment	
Equipment	
Naming pattern for artificial entities are introduced through model corrections.	
Example 8-1 provides an example of the EquipmentHolder naming pattern.	
Example 8-2 provides an example of the Equipment naming pattern.	
This chapter provides information on the composition of the Network Integrity Cisco Router and Switch UIM Integration cartridge from the Oracle Communications Design Studio perspective.	
Table 9-1 shows the MIB II model collection.	
Table 9-1 MIB II Model Collection	
Specifications	Information Model Entity Type
---	---
deviceGeneric	LogicalDevice
interfaceGeneric	MediaInterface
GenericMedia	DeviceInterfaceConfigurationItem
IPAddresses	DeviceInterfaceConfigurationItem
IPAddress	DeviceInterfaceConfigurationItem
Table 9-2 shows the Cisco model collection.	
Table 9-2 Cisco Model Collection	
Specifications	Information Model Entity Type
---	---
physicalDeviceGeneric	PhysicalDevice
equipmentHolderGeneric	EquipmentHolder
equipmentGeneric	Equipment
physicalPortGeneric	PhysicalPort
AtmMedia	DeviceInterfaceConfigurationItem
VirtualChannelLink	DeviceInterfaceConfigurationItem
VPI	DeviceInterfaceConfigurationItem
VCI	DeviceInterfaceConfigurationItem
VirtualChannelLinkData	DeviceInterfaceConfigurationItem
AtmInterfaceConfigurationData	DeviceInterfaceConfigurationItem
FrameRelayMedia	DeviceInterfaceConfigurationItem
DLCI	DeviceInterfaceConfigurationItem
FrameRelayData	DeviceInterfaceConfigurationItem
FrameRelayExtendedData	DeviceInterfaceConfigurationItem
VlanMembership	DeviceInterfaceConfigurationItem
Vlan	DeviceInterfaceConfigurationItem
Table 9-3 shows Cisco_UIM_Model information.	
Table 9-3 Cisco_UIM_Model Information	
Specification	Information Model Entity Type
---	---
cisco3640	Physical Device
cevChassis3640	Equipment
cat6509	Physical Device
cevChassisCat6509	Equipment
artificial6509ContainerGbic	Equipment
artificial6509MSFCCard	Equipment
artificial6509PowerSupplyHolderCard	Equipment
artificial6509PowerSupplySlot	Equipment Holder
cisco7206VXR	Physical Device
cevChassis7206Vxr	Equipment
cevBackplaneCat6000	Equipment
cevBackplaneCat6500	Equipment
cevCat6kWsc6000cl	Equipment
cevCat6kWsc6kvtt	Equipment
cevCat6kWsf6kPfc	Equipment
cevCat6kWsx6248Rj45	Equipment
cevCat6kWsx6348Rj45	Equipment
cevCat6kWsxSup1a2ge	Equipment
cevContainerClock	Equipment Holder
cevContainerDaughterCard	Equipment Holder
cevContainerFanTraySlot	Equipment Holder
cevContainerGbic	Equipment Holder
cevContainerPowerSupplyBay	Equipment Holder
cevContainerSlot	Equipment Holder
cevContainerVtt	Equipment Holder
cevCpu7200Npe300	Equipment
cevCpuCat6kMsfc	Equipment
cevCpuCat6kWsxSup1a2ge	Equipment
cevFanWSC6k9SlotFan	Equipment
cevModuleCat6000Type	Equipment
cevModuleUnknownCard	Equipment
cevModuleVipPortAdapters	Equipment
cevPa8e	Equipment
cevPaAtmdxMmOc3	Equipment
cevPaE3MuxCbr120e1	Equipment
cevPmCpm2e2w	Equipment
cevPmM4t	Equipment
cevPortAMDP2	Physical Port
cevPortDCUATMPort	Physical Port
cevPortFe	Physical Port
cevPortFEIP	Physical Port
cevPortGigBaseLH	Physical Port
cevPortMueslix	Physical Port
cevPortQuiccSerial	Physical Port
cevPortUnknown	Physical Port
cevPowerSupplyAC1360W	Equipment
cevPowerSupplyC7200AC	Equipment
cevSensorClock	Equipment
cevSensorFanTrayStatus	Equipment
cevSensorModuleDeviceTemp	Equipment
cevSensorModuleInletTemp	Equipment
cevSensorModuleOutletTemp	Equipment
cevSensorModulePowerOutputFail	Equipment
cevSensorPSFan	Equipment
cevSensorPSInput	Equipment
cevSensorPSOutput	Equipment
cevSensorVtt	Equipment
cevWicSerial1t	Equipment
Example 9-1 shows a logical specification lineage. This lineage shows the intended relationship between specifications.	
Example 9-1 Logical Specification Lineage	
This section displays the specification lineages for the three out-of-the-box supported devices integrated with UIM:	
Example 9-2 shows a specification lineage for cisco3640. This lineage shows the intended relationship between specifications.	
Example 9-3 shows a specification lineage for cisco7206VXR. This lineage shows the intended relationship between specifications.	
Example 9-3 cisco7206VXR Specification Lineage	
Example 9-4 shows a specification lineage for cat6509. This lineage shows the intended relationship between specifications.	
Example 9-4 cat6509 Specification Lineage	
Table 9-4 shows the discovery action in the Cisco Router and Switch UIM Integration cartridge.	
Table 9-4 Discover Enhanced Cisco SNMP Action	
Result Category	AddressHandler
---	---
Device	IPAddressHandler
MIB II Model, Cisco Model, and Cisco UIM Model	
Figure 9-1 depicts the action chain for the discover action.	
Table 9-5 shows discovery actions for various discovery processors.	
Table 9-5 Discover Enhanced Cisco SNMP Action Processors	
Processor Name	Variable
---	---
MIB II Properties Initializer	Input: N/A Output:
Cisco SNMP Properties Initializer	Input: N/A Output:
MIB II SNMP Collector	Input: N/A Output:
MIB II SNMP Modeler	Input:
Output:	
Cisco SNMP Logical Collector	Input: N/A Output:
Cisco SNMP Physical Collector	Input: N/A Output:
Cisco SNMP Logical Modeler	Input:
Output:	
Cisco SNMP Physical Modeler	Input:
Output: N/A	
Cisco Enhanced Modeler	Input:
Output: N/A	
Table 9-6 shows the import action in the Cisco Router and Switch UIM Integration cartridge.	
Table 9-6 Import Cisco from UIM Action	
Result Category	AddressHandler
---	---
Device	N/A
Figure 9-2 depicts the action chain for the import action.	
Table 9-7 shows import actions for import discovery processors.	
Table 9-7 Actions For Import Processors	
Processor Name	Variable
---	---
Cisco UIM Initializer	Input: N/A Output:
Logical Device UIM Finder	Input: N/A Output:
Table 9-8 shows processors that are encompassed in a For Each that iterates through the uimLogicalDeviceIDs list produced by the “Logical Device UIM Finder”.	
Table 9-8 Actions For Import Processors (For Each)	
Processor Name	Variable
---	---
MIB II UIM Importer	Input:
Output:	
Physical UIM Modeler	Input:
Output:	
MIB II UIM Persister	Input: N/A Output: N/A
Table 9-9 shows actions for import processors.	
Table 9-9 Actions For Import Processors	
Processor Name	Variable
---	---
Physical Device UIM Finder	Input:
Output:	
Table 9-10 shows processors that are encompassed in a For Each that iterates through the standalonePhysicalDeviceIDList list produced by the “Physical Device UIM Finder”.	
Table 9-10 Actions For Import Processors (For Each)	
Processor Name	Variable
---	---
Physical Device UIM Importer	Input:
Output:	
Physical Device UIM Persister	Input: N/A Output: N/A
Table 9-11 shows the discrepancy detection action in the Cisco Router and Switch UIM Integration cartridge.	
Table 9-11 Detect Enhanced Cisco Discrepancies Action	
Result Category	AddressHandler
---	---
Device	N/A
Figure 9-3 depicts the action chain for the discrepancy action.	
Table 9-12 shows discrepancy detection processors.	
Table 9-13 shows the discrepancy resolution action in the Cisco Router and Switch UIM Integration cartridge.	
Table 9-13 Resolve Cisco in UIM Action	
Resolution Action Label	Result Source
---	---
Correct in UIM	Device
Figure 9-4 depicts the action chain for the discrepancy resolution action.	
Table 9-14 shows discrepancy resolution processors.	
Table 9-14 Discrepancy Resolution Processors	
Discovery Processor	Variable
---	---
Resolution Framework Initializer	Input: N/A Output:
MIB II UIM Resolution Initializer | Input:
Output: N/A |
Discrepancy Detector | Input:
Output: N/A |
Resolution Framework Dispatcher | Input:
Output: N/A |
This chapter provides information on the Oracle Communications Design Studio Extensions for Network Integrity.
For this example, Cisco introduces a new vendor type to represent a new equipment part. Currently, this cartridge defines a map called ciscoVendorTypesMap that contains the equipment part name indexed by the vendor type number, which is a portion of the entPhysicalVendorType OID. The Cisco SNMP Properties Initializer produces this map and makes it available for other processors. To update the map to include a new vendor type number and corresponding equipment part name, you can extend Discover Generic Cisco SNMP and add a new Cisco SNMP Post Properties Initializer processor. This initializer takes as input the map (for example, ciscoVendorTypesMap) produced by the Cisco SNMP Properties Initializer. The implementation can then update the map.
For more details regarding extensibility, see Network Integrity Developer's Guide.
The Cisco UIM Cartridge is extensible. The source code is provided and serves as the example.
This appendix describes how to use the following entity characteristics and attributes:
You determine the value of the modelName field for PhysicalDevice using the following algorithm:
You determine the value of the modelName field for Equipment, EquipmentHolder, and PhysicalPort using the following algorithm:
You determine the value of the discoveredVendorName field using the following algorithm:
This appendix explains how to generate the absRelativePosition variable value.
The field contains a variable called absRelativePosition. absRelativePosition is used to generate a unique value for an entity in a given tree. absRelativePosition is a programmatically generated value and is composed of a prefix and suffix. The suffix is always derived from entPhysicalParentRelPos.
The following is an example of a physical device tree: PD E1 PP1 E2 PP2
The prefix of each entity is derived from the absolute relative position from the root; for example:
PD takes the prefix 0
The child E1 takes the prefix 0:0
The child E2 takes the prefix 0:1, uniquely identifying itself from its sibling.
PP1 takes the prefix 0:0:0
PP2 takes the prefix 0:1:0
Some devices (due to a device reporting error) show that multiple equipment holders or physical ports have entPhysicalParentRelPos value that occupy the same relative position within the same parent.
At a high level, the algorithm works by resolving conflicts by increasing the relative position of the subsequent duplicates by 1. This is best described using an example.
Table B-1 shows the applicable SNMP attributes that are used in determining the correct relative position.
Table B-1 SNMP Attributes Used to Determine Correct Relative Position
Index | entPhysicalDesr | entPhysicalParentRelPos | entPhysicalContainedIn |
---|---|---|---|
1 | 3640 chassis, Hw Serial#: 621974280, Hw Revision: 00 | -1 | 0 |
2 | 3640 Chassis Slot | 0 | 1 |
3 | Ethernet/WAN | 0 | 2 |
12 | AmdP2 | 0 | 3 |
13 | AmdP2 | 0 | 3 |
14 | AmdP2 | 1 | 3 |
15 | AmdP2 | 1 | 3 |
Index: a numeric value used to represent a physical entity and must be unique.
entPhysicalDesr: a string description of the physical entity.
entPhysicalParentRelPos: the relative position within the parent.
entPhysicalContainedIn: the Index of the entity's parent denoting the current entity as a child. 0 indicates the root of the physical entity tree.
From Table B-1, notice that AmdP2 at index 12 and 13, and AmdP2 at index 14 and 15 have the same entPhysicalParentRelPos values (that is, 0 and 1 respectively) within the parent, which is Ethernet/WAN.
To correct this, the algorithm briefly described above is executed as follows:
The result is as shown in Table B-2.
 Copyright © 2010, 2012, Oracle and/or its affiliates. All rights reserved. |