
Oracle® Service Architecture Leveraging Tuxedo (SALT)
Programming Guide

11g Release 1 (11.1.1.2)

April 2011

Oracle Service Architecture Leveraging Tuxedo (SALT) Programming Guide, 11g Release 1 (11.1.1.2)

Copyright © 2006, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Introduction to Oracle SALT Programming
Oracle SALT Web Services Programming. 1-1

Oracle SALT Proxy Service . 1-1

Oracle SALT Message Conversion . 1-2

Oracle SALT Programming Tasks Quick Index . 1-2

Oracle SALT SCA Programming . 1-3

Data Type Mapping and Message Conversion
Overview of Data Type Mapping and Message Conversion . 2-1

Understanding Oracle SALT Message Conversion . 2-2

Inbound Message Conversion . 2-2

Outbound Message Conversion. 2-2

Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services 2-3

Oracle Tuxedo STRING Typed Buffers . 2-15

Oracle Tuxedo CARRAY Typed Buffers . 2-16

Oracle Tuxedo MBSTRING Typed Buffers . 2-18

Oracle Tuxedo XML Typed Buffers . 2-19

Oracle Tuxedo VIEW/VIEW32 Typed Buffers. 2-22

Oracle Tuxedo FML/FML32 Typed Buffers . 2-24

Oracle Tuxedo X_C_TYPE Typed Buffers . 2-28

Oracle Tuxedo X_COMMON Typed Buffers . 2-29

Oracle Tuxedo X_OCTET Typed Buffers. 2-29

Custom Typed Buffers. 2-29

XML-to-Tuxedo Data Type Mapping for External Web Services 2-29

XML Schema Built-In Simple Data Type Mapping . 2-30

XML Schema User Defined Data Type Mapping . 2-34

WSDL Message Mapping . 2-37
Oracle SALT Programming Guide i

Web Service Client Programming
Overview. 3-1

Oracle SALT Web Service Client Programming Tips . 3-2

Web Service Client Programming References . 3-7

Online References . 3-7

Web Application Server Programming
Overview. 4-1

Developing Native Oracle Tuxedo Web Applications . 4-2

Developing Python Web Applications . 4-7

Prerequisites. 4-7

Usage . 4-7

Example(s). 4-9

Developing Ruby Web Applications . 4-11

Prerequisites. 4-11

Usage . 4-12

Example(s). 4-13

Developing PHP Web Applications . 4-15

Prerequisites. 4-15

Usage . 4-16

Example(s). 4-16

See Also . 4-16

Oracle Tuxedo ATMI Programming for Web Services
Overview. 5-1

Converting WSDL Model Into Oracle Tuxedo Model. 5-2

WSDL-to-Tuxedo Object Mapping. 5-2

Invoking SALT Proxy Services . 5-3
Oracle SALT Programming Guide ii

Oracle SALT Supported Communication Pattern . 5-3

Oracle Tuxedo Outbound Call Programming: Main Steps 5-4

Managing Error Code Returned from GWWS . 5-5

Handling Fault Messages in an Oracle Tuxedo Outbound Application 5-6

Using Oracle SALT Plug-Ins
Understanding Oracle SALT Plug-Ins . 6-1

Plug-In Elements . 6-1

Programming Message Conversion Plug-ins . 6-7

How Message Conversion Plug-ins Work. 6-7

When Do We Need Message Conversion Plug-in. 6-10

Developing a Message Conversion Plug-in Instance . 6-12

SALT 1.1 Custom Buffer Type Conversion Plug-in Compatibility 6-16

Programming Outbound Authentication Plug-Ins . 6-17

How Outbound Authentication Plug-Ins Work . 6-17

Implementing a Credential Mapping Interface Plug-In. 6-18

Mapping the Oracle Tuxedo UID and HTTP Username . 6-19

Oracle SALT SCA Programming
Overview. 7-2

SCA Utilities. 7-2

SCA Client Programming. 7-2

SCA Client Programming Steps . 7-3

SCA Component Programming . 7-11

SCA Component Programming Steps . 7-13

SCA Python, Ruby, and PHP Programming . 7-18

SCA Python, Ruby, and PHP Programming Overview. 7-19

Python, Ruby, and PHP Client Programming . 7-20
Oracle SALT Programming Guide iii

Python, Ruby, and PHP Component Programming . 7-22

SCA Structure Support. 7-28

SCA Structure Support Overview. 7-28

Using SCA Structure Description Files . 7-30

Using tuxscagen to Generate Structures . 7-32

SCA Remote Protocol Support . 7-32

/WS . 7-32

/Domains . 7-33

SCA Binding . 7-33

ATMI Binding . 7-33

Java ATMI (JATMI) Binding . 7-35

Python, Ruby, and PHP Binding . 7-38

Web Services Binding . 7-40

SCA Data Type Mapping . 7-44

Run-Time Data Type Mapping . 7-45

SCA Utility Data Type Mapping. 7-54

Python, Ruby, and PHP Data Type Mapping . 7-63

SCA Structure Data Type Mapping . 7-71

SCA and Oracle Tuxedo Interoperability. 7-74

SCA Transactions. 7-74

SCA Security . 7-75

See Also . 7-75
iv Oracle SALT Programming Guide

Oracle SALT Programming Guide v

vi Oracle SALT Programming Guide

C H A P T E R 1
Introduction to Oracle SALT
Programming
This section includes the following topics:

Oracle SALT Web Services Programming

Oracle SALT SCA Programming

Oracle SALT Web Services Programming
Oracle SALT provides bi-directional connectivity between Oracle Tuxedo applications and Web
service applications. Existing Oracle Tuxedo services can be easily exposed as Web Services
without requiring additional programming tasks. Oracle SALT generates a WSDL file that
describes the Oracle Tuxedo Web service contract so that any standard Web service client toolkit
can be used to access Oracle Tuxedo services.

Web service applications (described using a WSDL document) can be imported as if they are
standard Oracle Tuxedo services and invoked using Oracle Tuxedo ATMIs from various Oracle
Tuxedo applications (for example, Oracle Tuxedo ATMI clients, ATMI servers, Jolt clients,
COBOL clients, .NET wrapper clients and so on).

Oracle SALT Proxy Service
Oracle SALT proxy services are Oracle Tuxedo service entries advertised by the Oracle SALT
Gateway, GWWS. The proxy services are converted from the Web service application WSDL
file. Each WSDL file wsdl:operation object is mapped as one SALT proxy service.
Oracle SALT Programming Guide 1-1

The Oracle SALT proxy service is defined using the Service Metadata Repository service
definition syntax. These service definitions must be loaded into the Service Metadata Repository.
To invoke an proxy service from an Oracle Tuxedo application, you must refer to the Oracle
Tuxedo Service Metadata Repository to get the service contract description.

For more information, see “Oracle Tuxedo ATMI Programming for Web Services”.

Oracle SALT Message Conversion
To support Oracle Tuxedo application and Web service application integration, the Oracle SALT
gateway converts SOAP messages into Oracle Tuxedo typed buffers, and vice versa. The
message conversion between SOAP messages and Oracle Tuxedo typed buffers is subject to a set
of SALT pre-defined basic data type mapping rules.

When exposing Oracle Tuxedo services as Web services, a set of Tuxedo-to-XML data type
mapping rules are defined. The message conversion process conforms to Tuxedo-to-XML data
type mapping rules is called “Inbound Message Conversion”.

When importing external Web services as SALT proxy services, a set of XML-to-Tuxedo data
type mapping rules are defined. The message conversion process conforms to XML-to-Tuxedo
data type mapping rules is called “Outbound Message Conversion”.

For more information about SALT message conversion and data type mapping, see
“Understanding Oracle SALT Message Conversion”.

Oracle SALT Programming Tasks Quick Index
Table 1-1 lists a quick index of Oracle SALT programming tasks. You can locate your
programming tasks first and then click on the corresponding link for detailed description.
1-2 Oracle SALT Programming Guide

Orac le SALT SCA Prog ramming
Oracle SALT SCA Programming
SCA components run on top of the Oracle Tuxedo infrastructure using ATMI binding allowing
you to better blend high-output, high-availability and scalable applications in your SOA
environment. The Oracle Tuxedo SCA container is built on top of Tuscany SCA Native and
Tuscany SDO C++ ((Assembly: 0.96, Client and Implementation Model 0.95) and SDO (2.01)).

The ATMI binding implementation provides native Oracle Tuxedo communications between
SCA components as well as SCA components and Oracle Tuxedo programs (clients and servers).
Runtime checks are encapsulated in an exception defined in a header (tuxsca.h) provided with
the ATMI binding. This exception (ATMIBindingException), is derived from

Table 1-1 Oracle SALT Programming Tasks Quick Index

Tasks Refer to ...

Invoking Oracle
Tuxedo services
(inbound) through
Oracle SALT

Develop Web service client programs for
Oracle Tuxedo services invocation

“Oracle SALT Web Service Client
Programming Tips” on page 3-2

Understand inbound message conversion
and data type mapping rules

“Understanding Oracle SALT Message
Conversion” on page 2-2

“Tuxedo-to-XML Data Type Mapping for
Oracle Tuxedo Services” on page 2-3

Develop inbound message conversion
plug-in

“Programming Message Conversion
Plug-ins” on page 6-7

Invoking external
Web services
(outbound) through
Oracle SALT

Understand the general outbound service
programming concepts

“Oracle Tuxedo ATMI Programming for
Web Services” on page 5-1

Understand outbound message conversion
and data type mapping rules

“Understanding Oracle SALT Message
Conversion” on page 2-2

“XML-to-Tuxedo Data Type Mapping for
External Web Services” on page 2-29

Develop outbound message conversion
plug-in

“Programming Message Conversion
Plug-ins” on page 6-7

Develop your own plug-in to map Oracle
Tuxedo user name with user name for
outbound HTTP basic authentication

“Programming Outbound Authentication
Plug-Ins” on page 6-17
Oracle SALT Programming Guide 1-3

ServiceRuntimeException (so that programs not aware of the ATMI binding can still catch
ServiceRuntimeException) and thrown back to the caller.

SCA deployment is handled by the following build commands:

buildscaclient

buildscacomponent

buildscaserver

SCA clients can be stand-alone or part of a server, similar to Oracle Tuxedo ATMI clients.
Components are first built using buildscacomponent and then Oracle Tuxedo-enabled using
buildscaserver. SCA administration is performed using common Oracle Tuxedo commands
(for example, tmadmin), and the scaadmin command for SCA-specific tasks.

For more information, see:

Oracle SALT Administration Guide

Oracle SALT Reference Guide

SCA Service Component Architecture Client and Implementation Model Specification for
C++
1-4 Oracle SALT Programming Guide

http://e-docs.bea.com/salt/docs11gr1ps1/ref/comref.html
http://e-docs.bea.com/salt/docs11gr1ps1/ref/comref.html
http://e-docs.bea.com/salt/docs11gr1ps1/ref/comref.html
http://e-docs.bea.com/salt/docs11gr1ps1/admin/index.html
http://e-docs.bea.com/salt/docs11gr1ps1/ref/index.html
http://www.osoa.org/download/attachments/35/SCA_ClientAndImplementationModelforCpp_V0.95.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_ClientAndImplementationModelforCpp_V0.95.pdf?version=1

C H A P T E R 2
Data Type Mapping and Message
Conversion
This topic contains the following sections:

Overview of Data Type Mapping and Message Conversion

Understanding Oracle SALT Message Conversion

Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

XML-to-Tuxedo Data Type Mapping for External Web Services

Overview of Data Type Mapping and Message Conversion
Oracle SALT supports bi-directional data type mapping between WSDL messages and Oracle
Tuxedo typed buffers. For each service invocation, GWWS server converts each message
between Oracle Tuxedo typed buffer and SOAP message payload. SOAP message payload is the
XML effective data encapsulated within the <soap:body> element. For more information, see
“Understanding Oracle SALT Message Conversion”.

For native Oracle Tuxedo services, each Oracle Tuxedo buffer type is described using an XML
Schema in the SALT generated WSDL document. Oracle Tuxedo service request/response
buffers are represented in regular XML format. For more information, see “Tuxedo-to-XML Data
Type Mapping for Oracle Tuxedo Services”.

For external Web services, each WSDL message is mapped as an Oracle Tuxedo FML32 buffer
structure. An Oracle Tuxedo application invokes SALT proxy service using FML32 buffers as
input/output. For more information see, “XML-to-Tuxedo Data Type Mapping for External Web
Services”.
Oracle SALT Programming Guide 2-1

Understanding Oracle SALT Message Conversion
Oracle SALT message conversion is the message transformation process between SOAP XML
data and Oracle Tuxedo typed buffer. Oracle SALT introduces two types message conversion
rules: Inbound Message Conversion and Outbound Message Conversion.

Inbound Message Conversion
Inbound message conversion process is the SOAP XML Payload and Oracle Tuxedo typed buffer
conversion process conforms to the “Tuxedo-to-XML data type mapping rules”. Inbound
message conversion process happens in the following two phases:

When GWWS accepts SOAP requests for legacy Oracle Tuxedo services;

When GWWS accepts response typed buffer from legacy Oracle Tuxedo service.

Oracle SALT encloses Oracle Tuxedo buffer content with element <inbuf>, <outbuf> and/or
<errbuf> in the SOAP message, the content included within element <inbuf>, <outbuf>
and/or <errbuf> is called “Inbound XML Payload”.

Outbound Message Conversion
Outbound message conversion process is the SOAP XML Payload and Oracle Tuxedo typed
buffer conversion process conforms to the “Tuxedo-to-XML data type mapping rules”. Outbound
message conferring process happens in the following two phases:

When GWWS accepts request typed buffer sent from an Oracle Tuxedo application;

When GWWS accepts SOAP response message from external Web service.

Table 2-1 compares an inbound message conversion process and an outbound message
conversion process.

Table 2-1 Inbound Message Conversion vs. Outbound Message Conversion

Inbound Message Conversion Outbound Message Conversion

SOAP message payload is encapsulated with
<inbuf>, <outbuf> or <errbuf>

SOAP message payload is the entire
<soap:body>
2-2 Oracle SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo
Services

Oracle SALT provides a set of rules for describing Oracle Tuxedo typed buffers in an XML
document as shown in Table 2-2. These rules are exported as XML Schema definitions in SALT
WSDL documents. This simplifies buffer conversion and does not require previous Oracle
Tuxedo buffer type knowledge.

Transformation according to
“Tuxedo-to-XML data type mapping rules”

Transformation according to
“XML-to-Tuxedo data type mapping rules”

All Oracle Tuxedo buffer types are involved Only Oracle Tuxedo FML32 buffer type is
involved

Table 2-1 Inbound Message Conversion vs. Outbound Message Conversion

Inbound Message Conversion Outbound Message Conversion
Oracle SALT Programming Guide 2-3

2-4 Oracle SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message

STRING Oracle Tuxedo STRING typed
buffers are used to store character
strings that terminate with a NULL
character. Oracle Tuxedo STRING
typed buffers are self-describing.

xsd:string

In the SOAP message, the XML element
that encapsulates the actual string data,
must be defined using xsd:string
directly.

Notes:
• The STRING data type can be

specified with a max data length in
the Oracle Tuxedo Service Metadata
Repository. If defined in Oracle
Tuxedo, the corresponding SOAP
message also enforces this
maximum. The GWWS server
validates the actual message byte
length against the definition in
Oracle Tuxedo Service Metadata
Repository. A SOAP fault message
is returned if the message byte
length exceeds supported
maximums.

• If GWWS server receives a SOAP
message other than “UTF-8”, the
corresponding string value is in the
same encoding.
Oracle SALT Programming Guide 2-5

CARRAY
(Mapping with
SOAP Message
plus
Attachments)

Oracle Tuxedo CARRAY typed buffers
store character arrays, any of which
can be NULL. CARRAY buffers are
used to handle data opaquely and are
not self-describing.

The CARRAY buffer raw data is carried
within a MIME multipart/related
message, which is defined in the “SOAP
Messages with Attachments’
specification.

The two data formats supported for
MIME Content-Type attachments are:
• application/octet-stream

– For Apache Axis
• text/xml

– For Oracle WebLogic
Server

The format depends on which Web
service client-side toolkit is used.

Note: The SOAP with Attachment
rule is only interoperable with
Oracle WebLogic Server and
Apache Axis.

Note: CARRAY data types can be
specified with a max byte
length. If defined in Oracle
Tuxedo, the corresponding
SOAP message is enforced with
this limitation. The GWWS
server validates the actual
message byte length against the
definition in the Oracle Tuxedo
Service Metadata Repository.

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message
2-6 Oracle SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
CARRAY
(Mapping with
base64Binary)

Oracle Tuxedo CARRAY typed buffers
store character arrays, any of which
can be NULL. CARRAY buffers are
used to handle data opaquely and are
not self-describing.

xsd:base64Binary

The CARRAY data bytes must be
encoded with base64Binary before it
can be embedded in a SOAP message.
Using base64Binary encoding with
this opaque data stream saves the
original data and makes the embedded
data well-formed and readable.

In the SOAP message, the XML element
that encapsulates the actual CARRAY
data, must be defined with
xsd:base64Binary directly.

Note: CARRAY data type can be
specified with a max byte
length. If defined in Oracle
Tuxedo, the corresponding
SOAP message is enforced with
this limitation. The GWWS
server validates the actual
message byte length against the
definition in the Oracle Tuxedo
Service Metadata Repository.

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message
Oracle SALT Programming Guide 2-7

MBSTRING Oracle Tuxedo MBSTRING typed
buffers are used for multibyte
character arrays. Oracle Tuxedo
MBSTRING buffers consist of the
following three elements:
• Code-set character encoding
• Data length
• Character array of the encoding.

xsd:string

The XML Schema built-in type,
xsd:string, represents the
corresponding type for buffer data
stored in a SOAP message.

The GWWS server only accepts
“UTF-8” encoded XML documents. If
the Web service client wants to access
Oracle Tuxedo services with MBSTRING
buffer, the mbstring payload must be
represented as “UTF-8” encoding in the
SOAP request message.

Note: The GWWS server
transparently passes the
“UTF-8” character set string to
the Oracle Tuxedo service using
MBSTRING Typed buffer
format.The actual Oracle
Tuxedo services handles the
UTF-8 string.

For any Oracle Tuxedo response
MBSTRING typed buffer (with any
encoding character set), The GWWS
server automatically transforms the
string into “UTF-8” encoding and sends
it back to the Web service client.

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message
2-8 Oracle SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
MBSTRING
(cont.)

Limitation:

Oracle Tuxedo MBSTRING data type can
be specified with a max byte length in
the Oracle Tuxedo Service Metadata
Repository. The GWWS server checks
the byte length of the converted
MBSTRING buffer value.

Note: Max byte length value is not
used to enforce the character
number contained in the SOAP
message.

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message
Oracle SALT Programming Guide 2-9

XML Oracle Tuxedo XML typed buffers
store XML documents.

xsd:anyType

The XML Schema built-in type,
xsd:anyType, is the corresponding
type for XML documents stored in a
SOAP message. It allows you to
encapsulate any well-formed XML data
within the SOAP message.

Limitation:

The GWWS server validates that the
actual XML data is well-formed. It will
not do any other enforcement validation,
such as Schema validation.

Only a single root XML buffer is
allowed to be stored in the SOAP body;
the GWWS server checks for this.

The actual XML data must be encoded
using the “UTF-8” character set. Any
original XML document prolog
information cannot be carried within the
SOAP message.

XML data type can specify a max byte
data length. If defined in Oracle Tuxedo,
the corresponding SOAP message must
also enforce this limitation.

Note: The Oracle SALT WSDL
generator will not have
xsd:maxLength restrictions
in the generated WSDL
document, but the GWWS
server will validate the byte
length according to the Oracle
Tuxedo Service Metadata
Repository definition.

X_C_TYPE X_C_TYPE buffer types are
equivalent to VIEW buffer types.

See VIEW/VIEW32

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message
2-10 Oracle SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
X_COMMON X_COMMON buffer types are
equivalent to VIEW buffer types, but
are used for compatibility between
COBOL and C programs. Field types
should be limited to short, long, and
string

See VIEW/VIEW32

X_OCTET X_OCTET buffer types are equivalent
to CARRAY buffer types

See CARRAY xsd:base64Binary

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message
Oracle SALT Programming Guide 2-11

VIEW/VIEW32 Oracle Tuxedo VIEW and VIEW32
typed buffers store C structures
defined by Oracle Tuxedo
applications.

VIEW structures are defined by using
VIEW definition files. A VIEW
buffer type can define multiple fields.

VIEW supports the following
field types:
• short

• int

• long

• float

• double

• char

• string

• carray

VIEW32 supports all the VIEW
field types and mbstring.

Each VIEW or VIEW32 data type is
defined as an XML Schema complex
type. Each VIEW field should be one or
more sub-elements of the XML Schema
complex type. The name of the
sub-element is the VIEW field name.
The occurrence of the sub-element
depends on the count attribute of the
VIEW field definition. The value of the
sub-element should be in the VIEW field
data type corresponding XML Schema
type.

The the field types and the
corresponding XML Schema type are
listed as follows:
• short maps to xsd:short
• int maps to xsd:int
• long maps to xsd:long
• float maps to xsd:float
• double maps to xsd:double
• char (defined as byte in Oracle

Tuxedo Service Metadata
Repository definition) maps to
xsd:byte

• char (defined as char in Oracle
Tuxedo Service Metadata
Repository definition) maps to
xsd:string (with restrictions
maxlength=1)

• string maps to xsd:string
• carray maps to

xsd:base64Binary

• mbstring maps to xsd:string

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message
2-12 Oracle SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
VIEW/VIEW32
(cont.)

For more information, see
“VIEW/VIEW32 Considerations” on
page 2-23.

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message
Oracle SALT Programming Guide 2-13

FML/FML32 Oracle Tuxedo FML and FML32 type
buffers are proprietary Oracle Oracle
Tuxedo system self-describing
buffers. Each data field carries its own
identifier, an occurrence number, and
possibly a length indicator.

FML supports the following field
types:
• FLD_CHAR

• FLD_SHORT

• FLD_LONG

• FLD_FLOAT

• FLD_DOUBLE

• FLD_STRING

• FLD_CARRAY

FML32 supports all the FML field
types and FLD_PTR,
FLD_MBSTRING, FLD_FML32, and
FLD_VIEW32.

FML/FML32 buffers can only have
basic data-dictionary-like definitions for
each basic field data. A particular
FML/FML32 buffer definition should be
applied for each FML/FML32 buffer
with a different type name.

Each FML/FML32 field should be one
or more sub-elements within the
FML/FML32 buffer XML Schema type.
The name of the sub-element is the FML
field name. The occurrence of the
sub-element depends on the count and
required count attribute of the
FML/FML32 field definition.

The e field types and the corresponding
XML Schema type are listed below:
• short maps to xsd:short
• int maps to xsd:int
• long maps to xsd:long
• float maps to xsd:float
• double maps to xsd:double
• char (defined as byte in Oracle

Tuxedo Service Metadata
Repository definition) maps to
xsd:byte

• char (defined as char in Oracle
Tuxedo Service Metadata
Repository definition) maps to
xsd:string

• string maps to xsd:string
• carray maps to

xsd:base64Binary

• mbstring maps to xsd:string

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message
2-14 Oracle SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
Oracle Tuxedo STRING Typed Buffers
Oracle Tuxedo STRING typed buffers are used to store character strings that end with a NULL
character. Oracle Tuxedo STRING typed buffers are self-describing.

Listing 2-1 shows a SOAP message for a TOUPPER Oracle Tuxedo service example that accepts
a STRING typed buffer.

Listing 2-1 Soap Message for a String Typed Buffer in TOUPPER Service

<?xml … encoding=”UTF-8” ?>
 ……
 <SOAP:body>
 <m:TOUPPER xmlns:m=”urn:......”>
 <inbuf>abcdefg</inbuf>
 </m:TOUPPER>
 </SOAP:body>

FML/FML32

(cont.)
• view32 maps to tuxtype:view

<viewname>

• fml32 maps to tuxtype:fml32
<svcname>_p<SeqNum>

To avoid multiple embedded
FML32 buffers in an FML32 buffer,
a unique sequence number
(<SeqNum>) is used to distinguish
the embedded FML32 buffers.

Note: ptr is not supported.

For limitations and considerations
regarding mapping FML/FML32
buffers, refer to “FML/FML32
Considerations” on page 2-27.

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message
Oracle SALT Programming Guide 2-15

The XML Schema for <inbuf> is:

<xsd:element name=”inbuf” type=”xsd:string” />

Oracle Tuxedo CARRAY Typed Buffers
Oracle Tuxedo CARRAY typed buffers are used to store character arrays, any of which can be
NULL. They are used to handle data opaquely and are not self-describing. Oracle Tuxedo CARRAY
typed buffers can map to xsd:base64Binary or MIME attachments. The default is
xsd:base64Binary.

Mapping Example Using base64Binary
Listing 2-2 shows the SOAP message for the TOUPPER Oracle Tuxedo service, which accepts a
CARRAY typed buffer using base64Binary mapping.

Listing 2-2 Soap Message for a CARRAY Typed Buffer Using base64Binary Mapping

<SOAP:body>
 <m:TOUPPER xmlns:m=”urn:......”>
 <inbuf>QWxhZGRpbjpvcGVuIHNlc2FtZQ==</inbuf>
 </m:TOUPPER>
</SOAP:body>

The XML Schema for <inbuf> is:

<xsd:element name=”inbuf” type=”xsd:base64Binary” />

Mapping Example Using MIME Attachment
Listing 2-3 shows the SOAP message for the TOUPPER Oracle Tuxedo service, which accepts a
CARRAY typed buffer as a MIME attachment.

Listing 2-3 Soap Message for a CARRAY Typed Buffer Using MIME Attachment

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
 start="<claim061400a.xml@example.com>"
2-16 Oracle SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
Content-Description: This is the optional message description.

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <claim061400a.xml@ example.com>

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
..
<m:TOUPPER xmlns:m=”urn:…”>
<inbuf href="cid:claim061400a.carray@example.com"/>
</m:TOUPPER>
..
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: text/xml
Content-Transfer-Encoding: binary
Content-ID: <claim061400a. carray @example.com>

...binary carray data…
--MIME_boundary--
The WSDL for carray typed buffer will look like the following:
<wsdl:definitions …>
<wsdl:types …>

<xsd:schema …>
<xsd:element name=”inbuf” type=”xsd:base64Binary” />

</xsd:schema>
</wsdl:types>

……

<wsdl:binding …>
 <wsdl:operation name=”TOUPPER”>
Oracle SALT Programming Guide 2-17

 <soap:operation …>
 <input>
 <mime:multipartRelated>
 <mime:part>
 <soap:body parts=”…” use=”…”/>
 </mime:part>
 <mime:part>
 <mime:content part=”…” type=”text/xml”/>
 </mime:part>
 </mime:multipartRelated>
 </input
 ……
 </wsdl:operation>
</wsdl:binding>

</wsdl:definitions>

Oracle Tuxedo MBSTRING Typed Buffers
Oracle Tuxedo MBSTRING typed buffers are used for multibyte character arrays. Oracle Tuxedo
MBSTRING typed buffers consist of the following three elements:

code-set character encoding

data length

character array encoding.

Note: You cannot embed multibyte characters with non “UTF-8” code sets in the SOAP
message directly.

Listing 2-4 shows the SOAP message for the MBSERVICE Oracle Tuxedo service, which accepts
an MBSTRING typed buffer.

Listing 2-4 SOAP Message for an MBSIRING Buffer

<?xml encoding=”UFT-8”?>

 <SOAP:body>
2-18 Oracle SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
 <m:MBSERVICE xmlns:m=”http://......”>

 <inbuf>こんにちは </infuf>

 </m:MBSERVICE>

The XML Schema for <inbuf> is:

<xsd:element name=”inbuf” type=”xsd:string” />

WARNING: Oracle SALT converts the Japanese character "—" (EUC-JP 0xa1bd, Shift-JIS
0x815c) into UTF-16 0x2015.

If you use another character set conversion engine, the EUC-JP or Shift-JIS
multibyte output for this character may be different. For example, the Java il8n
character conversion engine, converts this symbol to UTF-16 0x2014. The result
is the also same when converting to UTF-8, which is the Oracle SALT default.

If you use another character conversion engine and Japanese "—" is included in
MBSTRING, Oracle Tuxedo server-side MBSTRING auto-conversion cannot convert
it back into Shift-JIS or EUC-JP.

Oracle Tuxedo XML Typed Buffers
Oracle Tuxedo XML typed buffers store XML documents.

Listing 2-5 shows the Stock Quote XML document.

Listing 2-6 shows the SOAP message for the STOCKINQ Oracle Tuxedo service, which accepts an
XML typed buffer.

Listing 2-5 Stock Quote XML Document

<?xml version="1.0" encoding="UTF-8"?>
<!-- "Stock Quotes". -->
<stockquotes>
 <stock_quote>
 <symbol>BEAS</symbol>
 <when>
 <date>01/27/2001</date>
 <time>3:40PM</time>
Oracle SALT Programming Guide 2-19

 </when>
 <change>+2.1875</change>
 <volume>7050200</volume>
 </stock_quote>
</stockquotes>

Then part of the SOAP message will look like the following:

Listing 2-6 SOAP Message for an XML Buffer

<SOAP:body>
 <m: STOCKINQ xmlns:m=”urn:......”>
 <inbuf>
 <stockquotes>
 <stock_quote>
 <symbol>BEAS</symbol>
 <when>
 <date>01/27/2001</date>
 <time>3:40PM</time>
 </when>
 <change>+2.1875</change>
 <volume>7050200</volume>
 </stock_quote>
 </stockquotes>
 </inbuf>
 </m: STOCKINQ >
</SOAP:body>

The XML Schema for <inbuf> is:

<xsd:element name=”inbuf” type=”xsd:anyType” />

Note: If a default namespace is contained in a Oracle Tuxedo XML typed buffer and returned
to the GWWS server, the GWWS server converts the default namespace to a regular
name. Each element is then prefixed with this name.
2-20 Oracle SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
For example, if an Oracle Tuxedo service returns a buffer having a default namespace to
the GWWS server as shown in Listing 2-7, the GWWS server converts the default
namespace to a regular name as shown in Listing 2-8.

Listing 2-7 Default Namespace Before Sending to GWWS Server

<Configuration xmlns="http://www.bea.com/Tuxedo/Salt/200606">
 <Servicelist id="simpapp">
 <Service name="toupper"/>
 </Servicelist>
 <Policy/>
 <System/>
 <WSGateway>
 <GWInstance id="GWWS1">
 <HTTP address="//myhost:8080"/>
 </GWInstance>
 </WSGateway>
</Configuration>

Listing 2-8 GWWS Server Converts Default Namespace to Regular Name

 <dom0:Configuration
 xmlns:dom0="http://www.bea.com/Tuxedo/Salt/200606">
 <dom0:Servicelist dom0:id="simpapp">
 <dom0:Service dom0:name="toupper"/>
 </dom0:Servicelist>
 <dom0:Policy></<dom0:Policy>
 <dom0:System></<dom0:System>
 <dom0:WSGateway>
 <dom0:GWInstance dom0:id="GWWS1">
 <dom0:HTTP dom0:address="//myhost:8080"/>
 </dom0:GWInstance>
 </dom0:WSGateway>
 </dom0:Configuration>
Oracle SALT Programming Guide 2-21

Oracle Tuxedo VIEW/VIEW32 Typed Buffers
Oracle Tuxedo VIEW and VIEW32 typed buffers are used to store C structures defined by Oracle
Tuxedo applications. You must define the VIEW structure with the VIEW definition files. A
VIEW buffer type can define multiple fields.

Listing 2-9 shows the MYVIEW VIEW definition file.

Listing 2-10 shows the SOAP message for the MYVIEW Oracle Tuxedo service, which accepts a
VIEW typed buffer.

Listing 2-9 VIEW Definition File for MYVIEW Service

VIEW MYVIEW
#type cname fbname count flag size null
float float1 - 1 - - 0.0
double double1 - 1 - - 0.0
long long1 - 3 - - 0
string string1 - 2 - 20 '\0'
END

Listing 2-10 SOAP Message for a VIEW Typed Buffer

<SOAP:body>
 <m: STOCKINQ xmlns:m=”http://......”>
 <inbuf>
 <float1>12.5633</float1>
 <double1>1.3522E+5</double1>
 <long1>1000</long1>
 <long1>2000</long1>
 <long1>3000</long1>
 <string1>abcd</string1>
 <string1>ubook</string1>
 </inbuf>
 </m: STOCKINQ >
</SOAP:body>
2-22 Oracle SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
The XML Schema for <inbuf> is shown in Listing 2-11.

Listing 2-11 XML Schema for a VIEW Typed Buffer

<xsd:complexType name=” view_MYVIEW”>
 <xsd:sequence>
 <xsd:element name=”float1” type=”xsd:float” />
 <xsd:xsd:element name=”double1” type=”xsd:double” />
 <xsd:element name=”long1” type=”xsd:long” minOccurs=”3” />
 <xsd:element name=”string1” type=”xsd:string minOccurs=”3” />
 </xsd:sequence>
</xsd: complexType >
<xsd:element name=”inbuf” type=”tuxtype:view_MYVIEW” />

VIEW/VIEW32 Considerations
The following considerations apply when converting Oracle Tuxedo VIEW/VIEW32 buffers to
and from XML.

You must create an environment for converting XML to and from VIEW/VIEW32. This
includes setting up a VIEW directory and system VIEW definition files. These definitions
are automatically loaded by the GWWS server.

The GWWS server provides strong consistency checking between the Oracle Tuxedo
Service Metadata Repository VIEW/VIEW32 parameter definition and the VIEW/VIEW32
definition file at start up.

If an inconsistency is found, the GWWS server cannot start. Inconsistency messages are
printed in the ULOG file.

tmwsdlgen also provides strong consistency checking between the Oracle Tuxedo Service
Metadata Repository VIEW/VIEW32 parameter definition and the VIEW/VIEW32 definition
file at start up. If an inconsistency is found, the GWWS server will not start. Inconsistency
messages are printed in the ULOG file.

If the VIEW definition file cannot be loaded, tmwsdlgen attempts to use the Oracle
Tuxedo Service Metadata Repository definitions to compose the WSDL document.
Oracle SALT Programming Guide 2-23

Because dec_t is not supported, if you define VIEW fields with type dec_t, the service
cannot be exported as a Web service and an error message is generated when the Oracle
SALT configuration file is loading.

Although the Oracle Tuxedo Service Metadata Repository may define a size attribute for
“string/ mbstring” typed parameters (which represents the maximum byte length that is
allowed in the Oracle Tuxedo typed buffer), Oracle SALT does not expose such restriction
in the generated WSDL document.

When a VIEW32 embedded MBString buffer is requested and returned to the GWWS
server, the GWWS miscalculates the required MBString length and reports that the input
string exceeds the VIEW32 maxlength. This is because the header is included in the
transfer encoding information. You must include the header size when defining the
VIEW32 field length.

The Oracle Tuxedo primary data type “long” is indefinite between 32-bit and 64-bit scope,
depending on the platform. However, the corresponding xsd:long schema type is used to
describe 64-bit numeric values.

If the GWWS server runs in 32-bit mode, and the Web service client sends xsd:long
typed data that exceeds the 32-bit value range, you may get a SOAP fault.

Oracle Tuxedo FML/FML32 Typed Buffers
Oracle Tuxedo FML and FML32 typed buffer are proprietary Oracle Tuxedo system
self-describing buffers. Each data field carries its own identifier, an occurrence number, and
possibly a length indicator.

FML Data Mapping Example
Listing 2-12 shows the SOAP message for the TRANSFER Tuxedo service, which accepts an FML
typed buffer.

The request fields for service LOGIN are:

ACCOUNT_ID 1 long /* 2 occurrences, The withdrawal

account is 1st, and the deposit account is 2nd */
AMOUNT 2 float /* The amount to transfer */

Part of the SOAP message is as follows:
2-24 Oracle SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
Listing 2-12 SOAP Message for an FML Typed Buffer

<SOAP:body>
 <m:TRANSFER xmlns:m=”urn:......”>
 <inbuf>
 <ACCOUNT_ID>40069901</ACCOUNT_ID>
 <ACCOUNT_ID>40069901</ACCOUNT_ID>
 <AMOUNT>200.15</AMOUNT>
 </inbuf>
 </m:TRANSFER >
</SOAP:body>

The XML Schema for <inbuf> is shown in Listing 2-13.

Listing 2-13 XML Schema for an FML Typed Buffer

<xsd:complexType name=” fml_TRANSFER_In”>
 <xsd:sequence>
 <xsd:element name=”ACCOUNT_ID” type=”xsd:long” minOccurs=”2”/>
 <xsd:element name=” AMOUNT” type=”xsd:float” />
 </xsd:sequence>
</xsd: complexType >
<xsd:element name=”inbuf” type=”tuxtype: fml_TRANSFER_In” />

FML32 Data Mapping Example
Listing 2-14 shows the SOAP message for the TRANSFER Oracle Tuxedo service, which accepts
an FML32 typed buffer.

The request fields for service LOGIN are:

CUST_INFO 1 fml32 /* 2 occurrences, The withdrawal

customer is 1st, and the deposit customer is 2nd */
ACCOUNT_INFO 2 fml32 /* 2 occurrences, The withdrawal

account is 1st, and the deposit account is 2nd */
AMOUNT 3 float /* The amount to transfer */
Oracle SALT Programming Guide 2-25

Each embedded CUST_INFO includes the following fields:

CUST_NAME 10 string
CUST_ADDRESS 11 carray
CUST_PHONE 12 long

Each embedded ACCOUNT_INFO includes the following fields:

ACCOUNT_ID 20 long
ACCOUNT_PW 21 carray

Part of the SOAP message will look as follows:

Listing 2-14 SOAP Message for Service with FML32 Buffer

<SOAP:body>
 <m:STOCKINQ xmlns:m=”urn:......”>
 <inbuf>
 <CUST_INFO>
 <CUST_NAME>John</CUST_NAME>
 <CUST_ADDRESS>Building 15</CUST_ADDRESS>
 <CUST_PHONE>1321</CUST_PHONE>
 </CUST_INFO>
 <CUST_INFO>
 <CUST_NAME>Tom</CUST_NAME>
 <CUST_ADDRESS>Building 11</CUST_ADDRESS>
 <CUST_PHONE>1521</CUST_PHONE>
 </CUST_INFO>
 <ACCOUNT_INFO>
 <ACCOUNT_ID>40069901</ACCOUNT_ID>
 <ACCOUNT_PW>abc</ACCOUNT_PW>
 </ACCOUNT_INFO>
 <ACCOUNT_INFO>
 <ACCOUNT_ID>40069901</ACCOUNT_ID>
 <ACCOUNT_PW>zyx</ACCOUNT_PW>
 </ACCOUNT_INFO>

 <AMOUNT>200.15</AMOUNT>
 </inbuf>
2-26 Oracle SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
 </m: STOCKINQ >
</SOAP:body>

The XML Schema for <inbuf> is shown in Listing 2-15.

Listing 2-15 XML Schema for an FML32 Buffer

<xsd:complexType name=”fml32_TRANSFER_In”>
 <xsd:sequence>
 <xsd:element name=”CUST_INFO” type=”tuxtype:fml32_TRANSFER_p1”

minOccurs=”2”/>
 <xsd:element name=”ACCOUNT_INFO” type=”tuxtype:fml32_TRANSFER_p2”

minOccurs=”2”/>
 <xsd:element name=”AMOUNT” type=”xsd:float” />
 /xsd:sequence>
</xsd:complexType >

<xsd:complexType name=”fml32_TRANSFER_p1”>
 <xsd:element name=”CUST_NAME” type=”xsd:string” />
 <xsd:element name=”CUST_ADDRESS” type=”xsd:base64Binary” />
 <xsd:element name=”CUST_PHONE” type=”xsd:long” />
</xsd:complexType>

<xsd:complexType name=”fml32_TRANSFER_p2”>
 <xsd:element name=”ACCOUNT_ID” type=”xsd:long” />
 <xsd:element name=”ACCOUNT_PW” type=”xsd:base64Binary” />
</xsd:complexType>

<xsd:element name=”inbuf” type=”tuxtype: fml32_TRANSFER_In” />

FML/FML32 Considerations
The following considerations apply to converting Oracle Tuxedo FML/FML32 buffers to and from
XML.
Oracle SALT Programming Guide 2-27

You must create an environment for converting XML to and from FML/FML32. This
includes an FML field table file directory and system FML field definition files. These
definitions are automatically loaded by the GWWS. FML typed buffers can be handled
only if the environment is set up correctly.

FML32 Field type FLD_PTR is not supported.

The GWWS server provides strong consistency checking between the Oracle Tuxedo
Service Metadata Repository FML/FML32 parameter definition and FML/FML32 definition
file during start up.

If an FML/32 field is found that is not in accordance with the environment setting, or the
field table field data type definition is different from the parameter data type definition in
the Oracle Tuxedo Service Metadata Repository, the GWWS cannot start. Inconsistency
messages are printed in the ULOG file.

The tmwsdlgen command checks for consistency between the Oracle Tuxedo Service
Metadata Repository FML/FML32 parameter definition and FML/FML32 definition file. If
inconsistencies are found, it issue a warning and allow inconsistencies.

If an FML/32 field is found that is not in accordance with the environment setting, or the
field table field data type definition is different from the parameter data type definition in
the Oracle Tuxedo Service Metadata Repository, tmwsdlgen attempts to use Oracle
Tuxedo Service Metadata Repository definitions to compose the WSDL document.

Although the Oracle Tuxedo Service Metadata Repository may define a size attribute for
“string/ mbstring” typed parameters, which represents the maximum byte length that is
allowed in the Oracle Tuxedo typed buffer, Oracle SALT does not expose such restriction
in the generated WSDL document.

Oracle Tuxedo primary data type “long” is indefinite between 32-bit and 64-bit scope
according to different platforms. But the corresponding xsd:long schema type is used to
describe 64-bit numeric value. The following scenario generates a SOAP fault:

The GWWS runs in 32-bit mode, and a Web service client sends a xsd:long typed data
which exceeds the 32-bit value range.

Oracle Tuxedo X_C_TYPE Typed Buffers
Oracle Tuxedo X_C_TYPE typed buffers are equivalent, and have a similar WSDL format to,
Oracle Tuxedo VIEW typed buffers.They are transparent for SOAP clients. However, even
though usage is similar to the Oracle Tuxedo VIEW buffer type, SALT administrators must
configure the Oracle Tuxedo Service Metadata Repository for any particular Oracle Tuxedo
service that uses this buffer type.
2-28 Oracle SALT Programming Guide

XML-to-Tuxedo Data Type Mapp ing fo r Ex te rna l Web Serv ices
Note: All View related considerations also take effect for X_C_TYPE typed buffer.

Oracle Tuxedo X_COMMON Typed Buffers
Oracle Tuxedo X_COMMON typed buffers are equivalent to Oracle Tuxedo VIEW typed
buffers. However, they are used for compatibility between COBOL and C programs. Field types
should be limited to short, long, and string.

Oracle Tuxedo X_OCTET Typed Buffers
Oracle Tuxedo X_OCTET typed buffers are equivalent to CARRAY.

Note: Oracle Tuxedo X_OCTET typed buffers can only map to xsd:base64Binary type. SALT
1.1 does not support MIME attachment binding for Oracle Tuxedo X_OCTET typed buffers.

Custom Typed Buffers
Oracle SALT provides a plug-in mechanism that supports custom typed buffers. You can validate
the SOAP message against your own XML Schema definition, allocate custom typed buffers, and
parse data into the buffers and other operations.

XML Schema built-in type xsd:anyType is the corresponding type for XML documents stored
in a SOAP message. While using custom typed buffers, you should define and represent the
actual data into an XML format and transfer between the Web service client and Oracle Tuxedo
Web service stack. As with XML typed buffers, only a single root XML buffer can be stored in
the SOAP body. The GWWS checks this for consistency.

For more plug-in information, see “Using Oracle SALT Plug-Ins” on page 6-1.

XML-to-Tuxedo Data Type Mapping for External Web
Services

Oracle SALT maps each wsdl:message as an Oracle Tuxedo FML32 buffer structure. Oracle
SALT defines a set of rules for representing the XML Schema definition using FML32. To invoke
external Web Services, customers need to understand the exact FML32 structure that converted
from the external Web Service XML Schema definition of the corresponding message.

The following sections describe detailed WSDL message to Oracle Tuxedo FML32 buffer
mapping rules:

XML Schema Built-In Simple Data Type Mapping
Oracle SALT Programming Guide 2-29

XML Schema User Defined Data Type Mapping

WSDL Message Mapping

XML Schema Built-In Simple Data Type Mapping
Table 2-3 shows the supported XML Schema Built-In Simple Data Type and the corresponding
Oracle Tuxedo FML32 Field Data Type.

Table 2-3 Supported XML Schema Built-In Simple Data Type

XML Schema Built-In
Simple Type

Oracle Tuxedo FML32
Field Data Type

C/C++ Primitive Type
In Oracle Tuxedo
Program

Note

xsd:byte FLD_CHAR char

xsd:unsignedByte FLD_CHAR unsigned char

xsd:boolean FLD_CHAR char Value Pattern
[‘T’ | ‘F’]

xsd:short FLD_SHORT short

xsd:unsignedShort FLD_SHORT unsigned short

xsd:int FLD_LONG long

xsd:unsignedInt FLD_LONG unsigned long

xsd:long FLD_LONG long In a 32-bit Oracle
Tuxedo program, the C
primitive type long
cannot represent all
xsd:long valid value.

xsd:unsignedLong FLD_LONG unsigned long In a 32-bit Oracle
Tuxedo program, the C
primitive type
unsigned long
cannot represent all
xsd:long valid value.

xsd:float FLD_FLOAT float
2-30 Oracle SALT Programming Guide

XML-to-Tuxedo Data Type Mapp ing fo r Ex te rna l Web Serv ices
The following samples demonstrate how to prepare data in a Oracle Tuxedo program for XML
Schema Built-In Simple Types.

XML Schema Built-In Type Sample - xsd:boolean

XML Schema Built-In Type Sample - xsd:unsignedInt

XML Schema Built-In Type Sample - xsd:string

XML Schema Built-In Type Sample - xsd:hexBinary

XML Schema Built-In Type Sample - xsd:date

xsd:double FLD_DOUBLE double

xsd:string

(and all xsd:string
derived built-in type, such as
xsd:token, xsd:Name,
etc.)

FLD_STRING

FLD_MBSTRING

char []

(Null-terminated string)
xsd:string can be
optionally mapped as
FLD_STRING or
FLD_MBSTRING using
wsdlcvt.

xsd:base64Binary FLD_CARRAY char []

xsd:hexBinary FLD_CARRAY char []

All other built-in data types

(Data / Time related,
decimal / Integer related,
any URI, QName,
NOTATION)

FLD_STRING char [] You should comply with
the value pattern of the
corresponding XML
built-in data type.
Otherwise, server-side
Web service will reject
the request.

Table 2-3 Supported XML Schema Built-In Simple Data Type

XML Schema Built-In
Simple Type

Oracle Tuxedo FML32
Field Data Type

C/C++ Primitive Type
In Oracle Tuxedo
Program

Note

Table 2-4 XML Schema Built-In Type Sample - xsd:boolean

XML Schema Definition

<xsd:element name=”flag” type=”xsd:boolean” />
Oracle SALT Programming Guide 2-31

../ref/comref.html#wp1112274

Corresponding FML32 Field Definition (FLD_CHAR)

Field_name Field_type Field_flag Field_comments
flag char -

C Pseudo Code

char c_flag;
FBFR32 * request;
...
c_flag = ‘T’; /* Set True for boolean data */
Fadd32(request, flag, (char *)&c_flag, 0);

Table 2-4 XML Schema Built-In Type Sample - xsd:boolean

Table 2-5 XML Schema Built-In Type Sample - xsd:unsignedInt

XML Schema Definition

<xsd:element name=”account” type=”xsd:unsignedInt” />

Corresponding FML32 Field Definition (FLD_LONG)

Field_name Field_type Field_flag Field_comments
account long -

C Pseudo Code

unsigned long acc;
FBFR32 * request;
...
acc = 102377; /* Value should not exceed value scope of unsigned int*/
Fadd32(request, account, (char *)&acc, 0);

Table 2-6 XML Schema Built-In Type Sample - xsd:string

XML Schema Definition

<xsd:element name=”message” type=”xsd:string” />

Corresponding FML32 Field Definition (FLD_MBSTRING)
2-32 Oracle SALT Programming Guide

XML-to-Tuxedo Data Type Mapp ing fo r Ex te rna l Web Serv ices
Field_name Field_type Field_flag Field_comments
message mbstring -

C Pseudo Code

FBFR32 * request;
FLDLEN32 len, mbsize = 1024;
char * msg, * mbmsg;
msg = calloc(...); mbmsg = malloc(mbsize);
...
strncpy(msg, “...”, len); /* The string is UTF-8 encoding */
Fmbpack32(“utf-8”, msg, len, mbmsg, &mbsize, 0); /* prepare mbstring*/
Fadd32(request, message, mbmsg, mbsize);

Table 2-6 XML Schema Built-In Type Sample - xsd:string

Table 2-7 XML Schema Built-In Type Sample - xsd:hexBinary

XML Schema Definition

<xsd:element name=”mem_snapshot” type=”xsd:hexBinary” />

Corresponding FML32 Field Definition (FLD_MBSTRING)

Field_name Field_type Field_flag Field_comments
mem_snapshot carray -

C Pseudo Code

FBFR32 * request;
FLDLEN32 len;
char * buf;
buf = calloc(...);
...
memcpy(buf, “...”, len); /* copy the original memory */
Fadd32(request, mem_snapshot, buf, len);
Oracle SALT Programming Guide 2-33

XML Schema User Defined Data Type Mapping
Table 2-9 lists the supported XML Schema User Defined Simple Data Type and the
corresponding Oracle Tuxedo FML32 Field Data Type.

Table 2-8 XML Schema Built-In Type Sample - xsd:date

XML Schema Definition

<xsd:element name=”IssueDate” type=”xsd:date” />

Corresponding FML32 Field Definition (FLD_STRING)

Field_name Field_type Field_flag Field_comments
IssueDate string -

C Pseudo Code

FBFR32 * request;
char date[32];
...
strcpy(date, “2007-06-04+8:00”); /* Set the date value correctly */
Fadd32(request, IssueDate, date, 0);

Table 2-9 Supported XML Schema User Defined Data Type

XML Schema User Defined
Data Type

Oracle Tuxedo FML32
Field Data Type

C/C++ Primitive Type
In Oracle Tuxedo
Program

Note

<xsd:anyType> FLD_MBSTRING char [] Oracle Tuxedo
Programmer should
prepare entire XML
document enclosing with
the element tag.

<xsd:simpleType>
derived from built-in
primitive simple data types

Equivalent FML32
Field Type of the
primitive simple type
(see Table 2-3)

Equivalent C Primitive
Data Type of the
primitive simple type
(see Table 2-3)

Facets defined with
<xsd:restriction>
are not enforced at
Oracle Tuxedo side.
2-34 Oracle SALT Programming Guide

XML-to-Tuxedo Data Type Mapp ing fo r Ex te rna l Web Serv ices
<xsd:simpleType>
defined with <xsd:list>

FLD_MBSTRING char [] Same as
<xsd:anyType>. The
Schema compliancy is
not enforced at Oracle
Tuxedo side.

<xsd:simpleType>
defined with
<xsd:union>

FLD_MBSTRING char [] Same as
<xsd:anyType>. The
Schema compliancy is
not enforced at Oracle
Tuxedo side.

<xsd:complexType>
defined with
<xsd:simpleContent>

FLD_MBSTRING char [] Same as
<xsd:anyType>. The
Schema compliancy is
not enforced at Oracle
Tuxedo side.

<xsd:complexType>
defined with
<xsd:complexContent
>

FLD_MBSTRING char [] Same as
<xsd:anyType>. The
Schema compliancy is
not enforced at Oracle
Tuxedo side.

<xsd:complexType>
defined with shorthand
<xsd:complexContent
>, sub-elements composited
with sequence or all

FLD_FML32 FBFR32 * embedded
fml32 buffer

Each sub-element of the
complex type is defined
as an embedded FML32
field.

<xsd:complexType>
defined with shorthand
<xsd:complexContent
>, sub-elements composited
with choice

FML_FML32 FBFR32 * embedded
fml32 buffer

Each sub-element of the
complex type is defined
as an embedded FML32
field.

Oracle Tuxedo
programmer should only
add one sub field into the
fml32 buffer.

Table 2-9 Supported XML Schema User Defined Data Type

XML Schema User Defined
Data Type

Oracle Tuxedo FML32
Field Data Type

C/C++ Primitive Type
In Oracle Tuxedo
Program

Note
Oracle SALT Programming Guide 2-35

The following samples demonstrate how to prepare data in an Oracle Tuxedo program for XML
Schema User Defined Data Types:

XML Schema User Defined Type Sample - xsd:simpleType Derived from Primitive Simple
Type

XML Schema User Defined Type Sample - xsd:simpleType Defined with xsd:list

Table 2-10 XML Schema User Defined Type Sample - xsd:simpleType Derived from Primitive Simple Type

XML Schema Definition

<xsd:element name=”Grade” type=”Alphabet” />
<xsd:simpleType name=”Alphabet”>

<xsd:restriction base=”xsd:string”>
<xsd:maxLength value=”1” />
<xsd:pattern value=”[A-Z]” />

</xsd:restriction>
</xsd:simpleType>

Corresponding FML32 Field Definition (FLD_STRING)

Field_name Field_type Field_flag Field_comments
Grade string -

C Pseudo Code

char grade[2];
FBFR32 * request;
...
grade[0] = ‘A’; grade[1] = ‘\0’;
Fadd32(request, Grade, (char *)grade, 0);

Table 2-11 XML Schema User Defined Type Sample - xsd:simpleType Defined with xsd:list

XML Schema Definition (Target Namespace “urn:sample.org”)

<xsd:element name=”Users” type=”namelist” />
<xsd:simpleType name=”namelist”>

<xsd:list itemType=”xsd:NMTOKEN”>
</xsd:simpleType>
2-36 Oracle SALT Programming Guide

XML-to-Tuxedo Data Type Mapp ing fo r Ex te rna l Web Serv ices
WSDL Message Mapping
Oracle Tuxedo FML32 buffer type is always used in mapping WSDL messages.

Table 2-12 lists the WSDL message mapping rules defined by Oracle SALT.

Corresponding FML32 Field Definition (FLD_MBSTRING)

Field_name Field_type Field_flag Field_comments
Users mbstring -

C Pseudo Code

char * user[5];
char users[...];
char * mbpacked;
FLDLEN32 mbsize = 1024;
FBFR32 * request;
...
sprintf(users, “<n1:Users xmlns:n1=\”urn:sample.org\”>”);
for (i = 0 ; i < 5 ; i++) {

strcat(users, user[i]);
strcat(users, “ “);

}
strcat(users, “</n1:Users>“);
...
mbpacked = malloc(mbsize);
/* prepare mbstring*/
Fmbpack32(“utf-8”, users, strlen(users), mbpacked, &mbsize, 0);
Fadd32(request, Users, mbpacked, mbsize);

Table 2-11 XML Schema User Defined Type Sample - xsd:simpleType Defined with xsd:list

Table 2-12 WSDL Message Mapping Rules

WSDL Message Definition Oracle Tuxedo Buffer/Field Definition Note

<wsdl:input> message Oracle Tuxedo Request Buffer (Input buffer)

<wsdl:output> message Oracle Tuxedo Response Buffer with
TPSUCCESS (Output buffer)
Oracle SALT Programming Guide 2-37

<wsdl:fault> message Oracle Tuxedo Response Buffer with
TPFAIL (error buffer)

Each message part defined
in <wsdl:input> or
<wsdl:output>

Mapped as top level field in the Oracle
Tuxedo FML32 buffer. Field type is the
equivalent FML32 field type of the message
part XML data type. (See Table 2-3 and
Table 2-9)

<faultcode> in SOAP
1.1 fault message

Mapped as a fixed top level FLD_STRING
field (faultcode) in the Oracle Tuxedo
error buffer:

faultcode string - -

This mapping rule
applies for SOAP 1.1
only.

<faultstring> in SOAP
1.1 fault message

Mapped as a fixed top level FLD_STRING
field (faultstring) in the Oracle Tuxedo
error buffer:
faultstring string - -

This mapping rule
applies for SOAP 1.1
only.

<faultactor> in SOAP
1.1 fault message

Mapped as a fixed top level FLD_STRING
field (faultactor) in the Oracle Tuxedo
error buffer:
faultactor string - -

This mapping rule
applies for SOAP 1.1
only.

<Code> in SOAP 1.2 fault
message

Mapped as a fixed top level FLD_FML32
field (Code) in the Oracle Tuxedo error
buffer, which containing two fixed sub
FLD_STRING fields (Value and
Subcode):
Code fml32 - -
Value string - -
Subcode string - -

This mapping rule
applies for SOAP 1.2
only.

<Reason> in SOAP 1.2
fault message

Mapped as a fixed top level FLD_FML32
field (Reason) in the Oracle Tuxedo error
buffer, which containing zero or more fixed
sub FLD_STRING field (Text):
Reason fml32 - -
Text string - -

This mapping rule
applies for SOAP 1.2
only.

Table 2-12 WSDL Message Mapping Rules

WSDL Message Definition Oracle Tuxedo Buffer/Field Definition Note
2-38 Oracle SALT Programming Guide

XML-to-Tuxedo Data Type Mapp ing fo r Ex te rna l Web Serv ices
<Node> in SOAP 1.2 fault
message

Mapped as a fixed top level FLD_STRING
field (Node) in the Oracle Tuxedo error
buffer:
Node string - -

This mapping rule
applies for SOAP 1.2
only.

<Role> in SOAP 1.2 fault
message

Mapped as a fixed top level FLD_STRING
field (Role) in the Oracle Tuxedo error
buffer:
Role string - -

This mapping rule
applies for SOAP 1.2
only.

<detail> in SOAP fault
message

Mapped as a fixed top level FLD_FML32
field in the Oracle Tuxedo error buffer:
detail fml32 - -

This mapping rule
applies for both SOAP
1.1 and SOAP 1.2.

Each message part defined
in <wsdl:fault>

Mapped as a sub field of “detail” field in
the Oracle Tuxedo FML32 buffer. Field type
is the equivalent FML32 field type of the
message part XML data type. (See Table 2-3
and Table 2-9)

This mapping rule
applies for both SOAP
1.1 and SOAP 1.2.

Table 2-12 WSDL Message Mapping Rules

WSDL Message Definition Oracle Tuxedo Buffer/Field Definition Note
Oracle SALT Programming Guide 2-39

2-40 Oracle SALT Programming Guide

C H A P T E R 3
Web Service Client Programming
This section contains the following topics:

Overview

Oracle SALT Web Service Client Programming Tips

Web Service Client Programming References

Overview
Oracle SALT is a configuration-driven product that publishes existing Oracle Tuxedo application
services as industry-standard Web services. From a Web services client-side programming
perspective, Oracle SALT used in conjunction with the Oracle Tuxedo framework is a standard
Web service provider. You only need to use the Oracle SALT WSDL file to develop a Web
service client program.

To develop a Web service client program, do the following steps:

1. Generate or download the Oracle SALT WSDL file. For more information, see Configuring
Oracle SALT in the Oracle SALT Administration Guide.

2. Use a Web service client-side toolkit to parse the SALT WSDL document and generate client
stub code. For more information, see Oracle SALT Web Service Client Programming Tips.

3. Write client-side application code to invoke a Oracle SALT Web service using the functions
defined in the client-generated stub code.

4. Compile and run your client application.
Oracle SALT Programming Guide 3-1

../admin/config.html
../admin/config.html

Oracle SALT Web Service Client Programming Tips
This section provides some useful client-side programming tips for developing Web service
client programs using the following Oracle SALT-tested programming toolkits:

Oracle WebLogic Web Service Client Programming Toolkit

Apache Axis for Java Web Service Client Programming Toolkit

Microsoft .NET Web Service Client Programming Toolkit

For more information, see Interoperability Considerations in the Oracle SALT Administration
Guide.

Notes: You can use any SOAP toolkit to develop client software.

The sample directories for the listed toolkits can be found after Oracle SALT is installed.

Oracle WebLogic Web Service Client Programming Toolkit
WebLogic Server provides the clientgen utility which is a built-in application server
component used to develop Web service client-side java programs. The invocation can be issued
from standalone java program and server instances. For more information, see
http://edocs.bea.com/wls/docs91/webserv/client.html#standalone_invoke.

Besides traditional synchronous message exchange mode, Oracle SALT also supports
asynchronous and reliable Web service invocation using WebLogic Server. Asynchronous
communication is defined by the WS-Addressing specification. Reliable message exchange
conforms to the WS-ReliableMessaging specification.

Tip: Use the WebLogic specific WSDL document for HTTP MIME attachment support.

Oracle SALT can map Oracle Tuxedo CARRAY data to SOAP request MIME attachments.
This is beneficial when the binary data stream is large since MIME binding does not need
additional encoding wrapping. This can help save CPU cycles and network bandwidth.

Another consideration, in an enterprise service oriented environment, is that binary data
might be used to guide high-level data routing and transformation work. Encoded data
can be problematic. To enable the MIME data binding for Oracle Tuxedo CARRAY data, a
special flag must be specified in the WSDL document generation options; both for online
downloading and using the tmwsdlgen command utility.

3-2 Oracle SALT Programming Guide

../interop/interop.html
http://edocs.bea.com/wls/docs91/webserv/client.html#standalone_invoke

Runn ing H/F 2
Online Download:
http://salt.host:portnumber//wsdl?mappolicy=raw&toolkit=wls

tmwsdlgen Utility
tmwsdlgen -c WSDF_FILE -m raw -t wls

Apache Axis for Java Web Service Client Programming Toolkit
Oracle SALT supports the AXIS wsdl2java utility which generates java stub code from the
WSDL document. The AXIS Web service programming model is similar to WebLogic.

Tip: 1. Use the AXIS specific WSDL document for HTTP MIME attachment support.

Oracle SALT supports HTTP MIME transportation for Oracle Tuxedo CARRAY data. A
special option must be specified for WSDL online downloading and the tmwsdlgen
utility.

Online Download:
http://salt.host:portnumber//wsdl?mappolicy=raw&toolkit=axis

tmwsdlgen Utility
tmwsdlgen -c WSDF_FILE -m raw -t axis

Tip: 2. Disable multiple-reference format in AXIS when RPC/encoded style is used.

AXIS may send a multi-reference format SOAP message when RPC/encoded style is
specified for the WSDL document. Oracle SALT does not support multiple-reference
format. You can disable AXIS multiple-reference format as shown in Listing 3-1:

Listing 3-1 Disabling AXIS Multiple-Reference Format

TuxedoWebServiceLocator service = new TuxedoWebServiceLocator();
service.getEngine().setOption("sendMultiRefs", false);¦

Tip: 3. Use Apache Sandensha project with Oracle SALT for WS-ReliableMessaging
communication.

Oracle SALT Programming Guide 3-3

Interoperability was tested for WS-ReliableMessaging between Oracle SALT and the
Apache Sandensha project. The Sandensha asynchronous mode and send offer must
be set in the code.

A sample Apache Sandensha asynchronous mode and send offer code example is
shown in Listing 3-2:

Listing 3-2 Sample Apache Sandensha Asynchronous Mode and “send offer” Code Example

/* Call the service */
 TuxedoWebService service = new TuxedoWebServiceLocator();

 Call call = (Call) service.createCall();
 SandeshaContext ctx = new SandeshaContext();

 ctx.setAcksToURL("http://127.0.0.1:" + defaultClientPort +

"/axis/services/RMService");
 ctx.setReplyToURL("http://127.0.0.1:" + defaultClientPort +

"/axis/services/RMService");
 ctx.setSendOffer(true);
 ctx.initCall(call, targetURL, "urn:wsrm:simpapp",

Constants.ClientProperties.IN_OUT);

 call.setUseSOAPAction(true);
 call.setSOAPActionURI("ToUpperWS");
 call.setOperationName(new

javax.xml.namespace.QName("urn:pack.simpappsimpapp_typedef.salt11",

"ToUpperWS"));
 call.addParameter("inbuf", XMLType.XSD_STRING, ParameterMode.IN);
 call.setReturnType(org.apache.axis.encoding.XMLType.XSD_STRING);

 String input = new String();
 String output = new String();
 int i;
 for (i = 0; i < 3; i++) {
 input = "request" + "_" + String.valueOf(i);
3-4 Oracle SALT Programming Guide

Runn ing H/F 2

 System.out.println("Request:"+input);
 output = (String) call.invoke(new Object[]{input});
 System.out.println("Reply:" + output);

 }

ctx.setLastMessage(call);
 input = "request" + "_" + String.valueOf(i);
 System.out.println("Request:"+input);
 output = (String) call.invoke(new Object[]{input});

Microsoft .NET Web Service Client Programming Toolkit
Microsoft .Net 1.1/2.0 provides wsdl.exe in the .Net SDK package. It is a free development
Microsoft toolkit. In the Oracle SALT simpapp sample, a .Net program is provided in the
simpapp/dnetclient directory.

.Net Web service programming is easy and straightforward. Use the wsdl.exe utility and the
Oracle SALT WSDL document to generate the stub code, and then reference the .Net object
contained in the stub code/binary in business logic implementations.

Tip: 1. Do not use .Net program MIME attachment binding for CARRAY.

Microsoft does not support SOAP communication MIME binding. Avoid using the
WSDL document with MIME binding for CARRAY in .Net development.

Oracle SALT supports base64Binary encoding for CARRAY data (the default WSDL
document generation.)

Tip: 2. Some RPC/encoded style SOAP messages are not understood by the GWWS
server.

When the Oracle SALT WSDL document is generated using RPC/encoded style, .Net
sends out SOAP messages containing soapenc:arrayType. Oracle SALT does not
support soapenc:arrayType using RPC/encoded style. A sample RPC/encoded
style-generated WSDL document is shown in Listing 3-3.
Oracle SALT Programming Guide 3-5

Listing 3-3 Sample RPC/encoded Style-Generated WSDL Document

<wsdl:types>

 <xsd:schema attributeFormDefault="unqualified"

elementFormDefault="qualified"

targetNamespace="urn:pack.TuxAll_typedef.salt11">
 <xsd:complexType name="fml_TFML_In">
 <xsd:sequence>
 <xsd:element maxOccurs="60"

minOccurs="60" name="tflong" type="xsd:long"></xsd:element>
 <xsd:element maxOccurs="80"

minOccurs="80" name="tffloat" type="xsd:float"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="fml_TFML_Out">
 …

</xsd:complexType>

 </xsd:schema>

 </wsdl:types>

Workaround: Use Document/literal encoded style for .Net client as recommended by Microsoft.

Tip: 3. Error message regarding xsd:base64Binary in RPC/encoded style.

If xsd:base64Binary is used in the Oracle SALT WSDL document in RPC/encoded
style, wsdl.exe can generate stub code, but the client program might report a runtime
error as follows:

System.InvalidOperationException:'base64Binary' is an invalid value for the
SoapElementAttribute.DataType property. The property may only be specified for
primitive types.

Workaround: This is a .Net framework issue.
Use Document/literal encoded style for .Net client as recommended by Microsoft.
3-6 Oracle SALT Programming Guide

Runn ing H/F 2
Web Service Client Programming References

Online References
Oracle WebLogic 10.0 Web Service Client Programming References

Invoking a Web service from a Stand-alone Client: Main Steps

Apache Axis 1.3 Web Service Client Programming References

Consuming Web Services with Axis

Using WSDL with Axis

Microsoft .NET Web Service Programming References

Building Web Services
Oracle SALT Programming Guide 3-7

http://edocs.bea.com/wls/docs100/webserv/client.html#standalone_invoke
http://ws.apache.org/axis/java/user-guide.html#ConsumingWebServicesWithAxis
http://ws.apache.org/axis/java/user-guide.html#UsingWSDLWithAxis
http://msdn.microsoft.com/webservices/webservices/building/default.aspx

3-8 Oracle SALT Programming Guide

C H A P T E R 4
Web Application Server Programming
This section contains the following topics:

Overview

Developing Native Oracle Tuxedo Web Applications

Developing Python Web Applications

Developing Ruby Web Applications

Developing PHP Web Applications

Overview
Oracle SALT adds features that enable Web Applications to run in Oracle Tuxedo and be
accessed easily through HTTP server plug-ins. Using HTTP servers such as Apache 2, Oracle
HTTP Server and iPlanet, you can directly expose applications to the World Wide Web. HTTP
servers must use Oracle Tuxedo-specific plug-ins (referred to as mod_tuxedo) that translates
HTTP requests into Oracle Tuxedo requests, and translates Oracle Tuxedo responses into HTTP
responses.

Applications can be written in C or C++ using a Gateway Interface similar to CGI but specific to
Oracle Tuxedo servers and their mode of communication, or in dynamic languages such as PHP,
Python and Ruby. Using dynamic languages, programs are not aware that they are running in
Oracle Tuxedo, which allows re-using application frameworks such as Symfony (PHP), Django
(Python) or Rails (Ruby) directly into an Oracle Tuxedo-based environment.
Oracle SALT Programming Guide 4-1

Developing Native Oracle Tuxedo Web Applications
While mod_tuxedo provides the Oracle Tuxedo client part of Web requests serving, on the
Oracle Tuxedo side one of the methods of processing the requests is to access them directly. This
is permitted by documenting the format of the received buffer, which is an Oracle Tuxedo FML32
typed buffer.

This method allows you to generate dynamic HTTP content by developing Oracle Tuxedo
services and leverage Oracle Tuxedo RASP and integration capabilities in doing so.

The relevant elements of an HTTP request are exposed (Method name, Query string URL, File
name, POST data, etc.). As well as the return data to mod_tuxedo (HTTP Response Headers (if
necessary), HTML document).

For more information, see Appendix H: Oracle SALT HTTP FML32 Buffer Format in the Oracle
SALT reference Guide.

The development process is similar to developing a regular Oracle Tuxedo service that generates
HTML code, the difference being that developing RESTful services adheres to a set of
conventions or rules governing the behavior of the service (a service processing GET should
behave differently than when processing PUT). RESTful services are generally not designed to
be accessed using an HTML browser (that is, similar to SOAP services).

The data flow is as follows:

An Apache2 or OHS process is configured to handle certain URLs using the mod_tuxedo
module.

mod_tuxedo intercepts the request.

mod_tuxedo formats the request and sends it to an Oracle Tuxedo service, which name is
derived from the SCRIPT_NAME value. In the examples that follow, the service in question
is named TUXSVC.

The Oracle Tuxedo service receives the data and processes it accordingly:

– REQUEST_METHOD contains the REST operation: GET, PUT, POST or DELETE.

– PATH_INFO may contain the resource accessed. In this example, it contains "/1234".
The program can parse this value according to a documented convention between client
and server to obtain the account number.

– QUERY_STRING or POST_DATA (for GET or POST) may contain additional parameters.
Pre-determined conventions govern what the parameters look like and what they
contain. This is determined by service developers and published as application
4-2 Oracle SALT Programming Guide

../ref/httpfml32/httpfml32.html

Runn ing H/F 2
documentation so client programs can be developed to communicate with these
services.

The Oracle Tuxedo service composes a response which is implicitly sent back to
mod_tuxedo.

– The format of the response is up to you:

• "XML

• "CSV (comma-separated values)

• JSON

• …

mod_tuxedo sends the response back to the client program.

The different components are shown in Listing 4-1 through Listing 4-4

Listing 4-1 Configure OHS or Apache2 (httpd.conf excerpt)

<Location "/ACCOUNT">

 <IfModule mod_tuxedo.c>

 SetHandler tuxedo-script

 Tuxconfig "/home/maurice/src/tests/secsapp/work/tuxconfig"

 </IfModule>

</Location>

Write the Oracle Tuxedo service as shown in Listing 4-2

Listing 4-2 Oracle Tuxedo Service

void

ACCOUNT(TPSVCINFO *rqst)
Oracle SALT Programming Guide 4-3

{

 char val[1024]; /* TODO: query size first */

 long len;

 int rc;

 /* Fetch PATH_INFO value, which contains the resource */

 len = sizeof(val);

 rc = Fget32((FBFR32 *)inbuf, PATH_INFO, 0, (char *)val, &len);

 if (rc < 0) {

 /* Handle error */

 }

 /* Variable 'val' contains resource name, process it */

 ...

 /* Fetch QUERY_STRING, which optionally contains

 additional parameters */

 len = sizeof(val);

 rc = Fget32((FBFR32 *)inbuf, QUERY_STRING, 0, (char *)val, &len);

 if (rc < 0) {

 /* Handle error */

 }

 /* Depending on method, do processing */

 len = sizeof(val);

 rc = Fget32((FBFR32 *)inbuf, REQUEST_METHOD, 0, (char *)val, &len);

 if (rc < 0) {
4-4 Oracle SALT Programming Guide

Runn ing H/F 2
 /* Handle error */

 }

 if (strcmp(val, "GET") == 0) {

 ...

 } else if (strcmp(val, "PUT") == 0) {

 ...

 } else if (strcmp(val, "POST") == 0) {

 /* Get POST_DATA, parse it */

 ...

 } else if (strcmp(val, "DELETE") == 0) {

 ...

 }

 /* Compose return document, using xml or JSON */

 ...

 /* Return result document */

 tpreturn(TPSUCCESS, 0, result, 0L, 0);

}

Example URL/response:

Method: GET

Request URL: http://myhost/ACCOUNT/1234

Response (XML) as shown in Listing 4-3.

Note: XML generation can be done using existing libtxml.
Oracle SALT Programming Guide 4-5

Listing 4-3 XML Response

<account id="1234">

 <balance value="10000"/>

 <customer name="John Smith"/>

</account>

Response (JSON) as shown in Listing 4-4.

Note: JSON generation can be done using JSON-C, a free and redistributable JSON
implementation in C (MIT license), provided as source code. Many libraries exist in
a number of languages including PHP, Perl, Python, Ruby, Java, etc.

Listing 4-4 JSON Response

[

 "account": {

 "id": "1234",

 "balance": {

 "value": "10000"

 },

 "customer": {

 "name": "John Smith"

 }

 }

]

4-6 Oracle SALT Programming Guide

Runn ing H/F 2
Developing Python Web Applications
Similar to how PHP applications can run inside the WEBHNDLR Oracle Tuxedo System Server,
Oracle SALT allows writing applications for the Web in Python.Unlike PHP (where all scripts
are designed to run in a CGI-like model), Python require running using a specific Web layer.

This layer is designated as WSGI (Web Server Gateway Interface) and is built into the language.
It actually is a Python specification (PEP 333). In Python, although applications may be written
for WSGI, complete application frameworks are available (conforming to WSGI. Django seems
to be the most popular).

The following sections describe how to configure WEBHNDLR to run Python WSGI applications
(including using the Django framework).

Prerequisites

Usage

Example(s)

Prerequisites
A Python 2.5.5 or higher installation.

Python must be built with shared-libraries enabled. This is usually the case for
out-of-the-box installations. If you are building from source, the --enable-shared
options must be used in the configure step.

There are no known database or third-party library support restrictions.

Usage
A simple WSGI application example is shown in Listing 4-5

Listing 4-5 WSGI Application Example

import cgi

def application(environ, start_response):

 form = cgi.FieldStorage(fp=environ['wsgi.input'],
Oracle SALT Programming Guide 4-7

 environ=environ,

 keep_blank_values=1)

 write = start_response('200 OK', [('Content-type', 'text/html')])

 if form.getvalue('name'):

 write('<html><head><title>Hello!</title></head>\n')

 write('<body>\n')

 write('<h1>Hello %s!</h1>\n' % form['name'].value)

 else:

 write('<html><head><title>Who is there?</title></head>\n')

 write('<body>\n')

 write('<h1>Who is there?</h1>\n')

 write('<form action="%s" method="POST">\n' % environ['SCRIPT_NAME'])

 write('What is your name?
\n')

 write('<input type="text" name="name" value="%s">
\n'

 % cgi.escape(form.getvalue('name', ''), 1))

 write('<input type="submit" value="That is my name"></form>\n')

 write('</body></html>\n')

 return None

With frameworks such as Django, this is performed in a handler script that is not seen by the
application developer.

Any Python WSGI application may run inside the WEBHNDLR System Server by performing the
following steps:

1. Configure Apache (or OHS) to forward requests to WEBHNDLR. This may require additional
configuration to indicate the path to necessary static files (for example, images, CSS
stylesheets or javascript files).

2. Add the application path to the PYTHONPATH environment variable.
4-8 Oracle SALT Programming Guide

Runn ing H/F 2
3. Set APP_CONFIG for WEBHNDLR to load the application or middleware handler (for
frameworks like Django).

For more information, see WEBHNDLR(5) in the Oracle SALT Reference Guide.

Example(s)

Stand-Alone Script/Application
Listing 4-6 shows an Apache configuration for a WSGI application example.

Listing 4-6 Stand-Alone Script/Application Example

<VirtualHost 10.143.7.223:2280>

DocumentRoot "/media/src/tests"

<Directory "/media/src/tests">

<IfModule mod_tuxedo.c>

 SetHandler tuxedo-script

 Tuxconfig "/media/src/TUX11g/web/tests/tuxconfig"

 TuxService PYWEB

</IfModule>

</Directory>

</VirtualHost>

The ubbconfig file and setting for a standalone WSGI application are located in a script named
test_app.py (==module), in the /media/src/tests directory (PYTHONPATH must contain
/media/src/tests):

WEBHNDLR SRVGRP=PHPGRP SRVID=1 MIN=5 MAX=8
 CLOPT="-A -- -l Python -S PYWEB "

Before booting WEBHNDLR, you must either

set APP_CONFIG to test_app ('export APP_CONFIG=test_app' on Unix), or
Oracle SALT Programming Guide 4-9

../ref/comref.html

use an ENVFILE with the value APP_CONFIG=test_app.

Django-Based Application
For an Apache Django-based application you must note the RewriteEngine rules and Alias. These
are there to indicate the location of static files (for example, CSS, images or javascript), and also
map the root URL to the application (see last RewriteRule) as shown in Listing 4-7.

Listing 4-7 Django-Based Application

<VirtualHost 10.143.7.223:2280>

DocumentRoot "/media/src/test_django/mysite"

Alias /media /usr/lib/python2.5/site-packages/django/contrib/admin/media

<Directory "/media/src/test_django/mysite">

 <IfModule mod_tuxedo.c>

 SetHandler tuxedo-script

 Tuxconfig "/media/src/TUX11g/web/tests/tuxconfig"

 TuxService PYWEB

 </IfModule>

</Directory>

 RewriteEngine On

 RewriteRule ^/(media.*)$ /$1 [QSA,L,PT]

 RewriteCond %{REQUEST_FILENAME} !-f

 RewriteRule ^/(.*)$ /mysite/$1 [QSA,L]

</VirtualHost>

The environment variable DJANGO_SETTINGS_MODULE must be set before booting WEBHNDLR.
For example, for an application named mysite:

DJANGO_SETTINGS_MODULE=mysite.settings
4-10 Oracle SALT Programming Guide

Runn ing H/F 2
The PYTHONPATH setting for a Django example, called mysite and located in the
/media/src/test_django directory:

PYTHONPATH=/media/src/test_django

The ubbconfig setting for the Django example mentioned here:

WEBHNDLR SRVGRP=PHPGRP SRVID=1 MIN=5 MAX=8

 CLOPT="-A -- -l Python -S PYWEB"

Before booting WEBHNDLR, you must either:

set APP_CONFIG to django.core.handlers.wsgi (WSGIHandler) ('export
APP_CONFIG="django.core.handlers.wsgi (WSGIHandler)"' on Unix), or

use an ENVFILE with the value APP_CONFIG=" django.core.handlers.wsgi
(WSGIHandler)".

Developing Ruby Web Applications
Similar to how PHP applications can run inside the WEBHNDLR Oracle Tuxedo System Server,
Oracle SALT allows writing applications for the Web in Ruby.Unlike PHP (where all scripts are
designed to run in a CGI-like model), Ruby requires running using a specific Web layer.

There is an equivalent to WSGI (called Rack), which is done in the form of a library that installs
separately. In Ruby, although applications may be written on top of Rack directly, complete
application frameworks are available such as Rails. A rack application is an interface between
application and servers for Ruby (similar to WSGI). It is usually installed as an add-on to the
language, and is a pre-requisite to application server environments such as Rails. The sections
below describe how to configure WEBHNDLR to run Ruby Rack-conformant applications,
including using the Rails framework.

Prerequisites

Usage

Example(s)

Prerequisites
A Ruby 1.9.x installation.
Oracle SALT Programming Guide 4-11

Ruby must be built with shared-libraries enabled. This is usually the case for
out-of-the-box installations. If building from source the '--enable-shared' options must
be used in the configuration.

Rails 2.x or 3.0.x libraries.

There are no known database or third-party library support restrictions.

Usage
Listing 4-8 shows a simple Rack application example.

Listing 4-8 Simple Rack Application Example

class HelloWorld

 def call(env)

 [200, {"Content-Type" => "text/plain"}, ["Hello world!"]]

 end

end

With frameworks like Ruby, this is performed in a handler script that is not seen by the
application developer.

The script in Listing 4-8 is passed to the handler using a RackUp script that allows adding more
functionality (such as pretty exceptions, LINT wrappers, etc.) to the application.

A RackUp script example loading the application is shown in Listing 4-9.

Listing 4-9 RackUp Script Example

require 'hello'

use Rack::ShowExceptions

run HelloWorld.new
4-12 Oracle SALT Programming Guide

Runn ing H/F 2
Any Ruby Rack-compliant application may run inside the WEBHNDLR system server by
performing the following steps:

1. Configure Apache (or OHS) to forward requests to WEBHNDLR. This may require additional
configuration to indicate the path to necessary static files (for example, CSS stylesheets or
javascript files).

2. Configure WEBHNDLR to load the application or middleware handler (for frameworks like
Rails).

Example(s)
Ruby Rack Lobster
Listing 4-10 shows an Apache (or OHS) configuration example.

Listing 4-10 Apache (or OHS) Configuration Example

<VirtualHost 10.143.7.223:2380>

 DocumentRoot "/media/src/tests"

 <Directory "/media/src/tests">

 <IfModule mod_tuxedo.c>

 SetHandler tuxedo-script

 Tuxconfig "/media/src/TUX11g/web/tests/tuxconfig"

 TuxService RBWEB

 </IfModule>

 </Directory>

</VirtualHost>

The ubbconfig file WEBHNDLR setting is as follows:

WEBHNDLR SRVGRP=PHPGRP SRVID=1 MIN=5 MAX=8

 CLOPT="-A -- -l Ruby -S RBWEB"

Set APP_CONFIG.
Oracle SALT Programming Guide 4-13

Ruby Rails Application
For an Apache (or OHS) configuration, you must note e the RewriteEngine rules and
AddHandler directive (as opposed to SetHandler). These are there to re-direct the HTTP server
to static files (CSS, images, javascript, etc.) as shown in Listing 4-11.

Listing 4-11 Ruby Rails Application

<VirtualHost 10.143.7.223:2380>

SetEnv RAILS_RELATIVE_URL_ROOT /media/src/rails_test

DocumentRoot "/media/src/rails_test/public"

RewriteEngine On

RewriteRule ^(/stylesheets/.*)$ - [L]

RewriteRule ^(/javascripts/.*)$ - [L]

RewriteRule ^(/images/.*)$ - [L]

RewriteRule ^$ index.html [QSA]

RewriteRule ^([^.]+)$ $1.html [QSA]

RewriteCond %{REQUEST_FILENAME} !-f

RewriteRule ^/(.*)$ /rails3.tuxrb [QSA,L]

<Directory "/media/src/rails_test/public">

Allow from All

<IfModule mod_tuxedo.c>

 AddHandler tuxedo-script .tuxrb

 Tuxconfig "/media/src/TUX11g/web/tests/tuxconfig"

 TuxService RBWEB
4-14 Oracle SALT Programming Guide

Runn ing H/F 2
</IfModule>

</Directory>

</VirtualHost>

The ubbconfig file WEBHNDLR setting (assuming the Rails application has been set up in the
/media/src/rails_test directory and is named RailsTest) is as follows:

WEBHNDLR SRVGRP=PHPGRP SRVID=1 MIN=5 MAX=8

CLOPT="-A -- -l Ruby -S RBWEB'. That is, remove the "-a /media..."
portion

Before booting WEBHNDLR, you must either:

set APP_CONFIG to path to rack up script ('export APP_CONFIG="
/media/src/rails_test/config.ru"' on Unix), or use an ENVFILE with the value
APP_CONFIG=" /media/src/rails_test/config.ru".

Developing PHP Web Applications
PHP scripts are directly supported by WEBHNDLR and no specific changes are required for
applications to run in an Oracle Tuxedo environment. Configuring the location of PHP scripts in
the HTTP server is sufficient. Once the framework is configured to run PHP scripts in WEBHNDLR,
PHP applications are automatically supported.

For more information, see WEBHNDLR(5) in the Oracle SALT Command Reference Guide.

Prerequisites

Usage

Example(s)

Prerequisites
PHP 5.3.2 or higher installation.

PHP must be built using the --enable-embed configure option.

There are no known database or third-party library support restrictions.
Oracle SALT Programming Guide 4-15

../ref/comref.html

Usage
PHP scripts are directly supported by WEBHNDLR; no specific changes are required for
applications to run in an Oracle Tuxedo environment. Configuring the location of PHP scripts in
the HTTP server is sufficient. Once the framework is configured to run PHP scripts in WEBHNDLR,
PHP applications are automatically supported.

Example(s)
Place a script named "test.php" (as shown in Listing 4-12) in the document root folder of the
HTTP server:

Listing 4-12 test. php Script

-- listing x-x test.php script

<?php

phpinfo();

?>

--

Point your browser to: http://<your_host>:<port>/test.php.

See Also
Oracle SALT Administration Guide

Oracle SALT Reference Guide
4-16 Oracle SALT Programming Guide

../admin/index.html
../ref/index.html

C H A P T E R 5
Oracle Tuxedo ATMI Programming for
Web Services
This chapter contains the following topics:

Overview

Converting WSDL Model Into Oracle Tuxedo Model

Invoking SALT Proxy Services

Overview
Oracle SALT allows you to import external Web Services into Oracle Tuxedo Domains. To
import external Web services into Oracle Tuxedo application, a WSDL file must first be loaded
and converted. The Oracle SALT WSDL conversion utility, wsdlcvt, translates each
wsdl:operation into a Oracle SALT proxy service. The translated SALT proxy service can be
invoked directly through standard Oracle Tuxedo ATMI functions.

Oracle SALT proxy service calls are sent to the GWWS server. The request is translated from
Oracle Tuxedo typed buffers into the SOAP message, and then sent to the corresponding external
Web Service. The response from an external Web Service is translated into Oracle Tuxedo typed
buffers and returned to the Oracle Tuxedo application. The GWWS acts as the proxy
intermediary.

If an error occurs during the service call, the GWWS server sets the error status using tperrno,
which can be retrieved by Oracle Tuxedo applications. This enables you to detect and handle the
SALT proxy service call error status.
5-1 Oracle SALT Programming Guide

Converting WSDL Model Into Oracle Tuxedo Model
Oracle SALT provides a WSDL conversion utility, wsdlcvt, that converts external WSDL files
into Oracle Tuxedo specific definition files so that you can develop Oracle Tuxedo ATMI
programs to access services defined in the WSDL file.

WSDL-to-Tuxedo Object Mapping
Oracle SALT converts WSDL object models into Oracle Tuxedo models using the following
rules:

Only SOAP over HTTP binding are supported, each binding is defined and saved as a
WSBinding object in the WSDF file.

Each operation in the SOAP bindings is mapped as one Oracle Tuxedo style service, which
is also called a SALT proxy service. The operation name is used as the Oracle Tuxedo
service name and indexed in the Oracle Tuxedo Service Metadata Repository.

Note: If the operation name exceeds the Oracle Tuxedo service name length limitation (15
characters), you must manually set a unique short Oracle Tuxedo service name in the
metadata respository and set the <Service> tuxedoRef attribute in the WSDF file.

For more information, see Oracle SALT Web Service Definition File Reference in the
Oracle SALT Reference Guide.

Other Web service external application protocol information is saved in the generated
WSDF file (including SOAP protocol version, SOAP message encoding style, accessing
endpoints, and so).

XML Schema definitions embedded in the WSDL file are copied and saved in separate
.xsd files.

Each wsdl:operation object and its input/output message details are converted as an
Oracle Tuxedo service definition conforms to the Oracle Tuxedo Service Metadata
Repository input syntax.

Table 5-1 lists detailed mapping relationships between the WSDL file and Oracle Tuxedo
definition files.
5-2 Oracle SALT Programming Guide

../ref/comref.html#wp1112274
../ref/wsdf.html

Runn ing H/F 1
Invoking SALT Proxy Services
The following sections include information on how to invoke the converted SALT proxy service
from an Oracle Tuxedo application:

Oracle SALT Supported Communication Pattern

Oracle Tuxedo Outbound Call Programming: Main Steps

Managing Error Code Returned from GWWS

Handling Fault Messages in an Oracle Tuxedo Outbound Application

Oracle SALT Supported Communication Pattern
Oracle SALT only supports the Oracle Tuxedo Request/Response communication patterns for
outbound service calls. An Oracle Tuxedo application can request the SALT proxy service using
the following communication Oracle Tuxedo ATMIs:

tpcall(1) / tpacall(1) / tpgetreply(1)

These basic ATMI functions can be called with an Oracle Tuxedo typed buffer as input
parameter. The return of the call will also carry an Oracle Tuxedo typed buffer. All these
buffers will conform to the converted outside Web service interface. tpacall/tpgetreply
is not related to SOAP async communication.

Table 5-1 WSDL Model / Oracle Tuxedo Model Mapping Rules

WSDL Object Oracle Tuxedo/SALT Definition File Oracle Tuxedo/SALT Definition
Object

/wsdl:binding SALT Web Service Definition File
(WSDF)

/WSBinding

/wsdl:portType /WSBinding/Servicegroup

/wsdl:binding/soap:
binding

/WSBinding/SOAP

/wsdl:portType/oper
ation

Metadata Input File (MIF) /WSBinding/service

/wsdl:types/xsd:sch
ema

FML32 Field Defintion Table Field name type
5-3 Oracle SALT Programming Guide

tpforward(1)

Oracle Tuxedo server applications can use this function to forward an Oracle Tuxedo
request to a specified SALT proxy service. The response buffer is sent directly to client
application’s response queue as if it’s a traditional native Oracle Tuxedo service.

TMQFORWARD enabled queue-based communication.

Oracle Tuxedo system server TMQFORWARD can accept queued requests and send them
to Oracle SALT proxy services that have the same name as the queue.

Oracle SALT does not support the following Oracle Tuxedo communication patterns:

Conversational communication

Event-based communication

Oracle Tuxedo Outbound Call Programming: Main Steps
When the GWWS is booted and Oracle SALT proxy services are advertised, you can create an
Oracle Tuxedo application to call them. To develop a program to access SALT proxy services,
do the following:

Check the Oracle Tuxedo Service Metadata Repository definition to see what the SALT
proxy service interface is.

Locate the generated FML32 field table files. Modify the FML32 field table to eliminate
conflicting field names and assign a valid base number for the index.

Note: The wsdlcvt generated FML32 field table files are always used by GWWS. you must
make sure the field name is unique at the system level. If two or more fields are
associated with the same field name, change the field name. Do not forget to change
Oracle Tuxedo Service Metadata Repository definition accordingly.

The base number of field index in the generated FML32 field table must be changed
from the invalid default value to a correct number to ensure all field index in the table
is unique at the entire system level.

Generate FML32 header files with mkfldhdr32(1).

Boot the GWWS with correct FML32 environment variable settings.

Write a skeleton C source file for the client to call the outbound service (refer to Oracle
Tuxedo documentation and the Oracle Tuxedo Service Metadata Repository generated
5-4 Oracle SALT Programming Guide

../../../tuxedo/docs11gr1/rfcm/rfcmd.html

Runn ing H/F 1
pseudo-code if necessary). You can use tpcall(1) or tpacall(1) for synchronous or
asynchronous communication, depending on the requirement.

For FML32 buffers, you need to add each FML32 field (conforming to the corresponding
Oracle SALT proxy service input buffer details) defined in the Oracle Tuxedo Service
Metadata Repository, including FML32 field sequence and occurrence. The client source
may include the generated header file to facilitate referencing the field name.

Get input buffer ready, user can handle the returned buffer, which should be of the type
defined in Metadata.

Compile the source to generate executable.

Test the executable.

Managing Error Code Returned from GWWS
If the GWWS server encounters an error accessing external Web services, tperrno is set
accordingly so the Oracle Tuxedo application can diagnose the failure. Table 5-2 lists possible
Oracle SALT proxy service tperrno values.

Table 5-2 Error Code Returned From GWWS/Tuxedo Framework

TPERRNO Possible Failure Reason

TPENOENT Requested SALT proxy service is not advertised by GWWS

TPESVCERR The HTTP response message returned from external Web service
application is not valid

The SOAP response message returned from external Web service
application is not well-formed.

TPEPERM Authentication failure.

TPEITYPE Message conversion failure when converting Oracle Tuxedo request typed
buffer into XML payload of the SOAP request message.

TPEOTYPE Message conversion failure when converting XML payload of the SOAP
response message into Oracle Tuxedo response typed buffer.

TPEOS Request is rejected because of system resource limitation

TPETIME Timeout occurred. This timeout can either be a BBL blocktime, or a SALT
outbound call timeout.
5-5 Oracle SALT Programming Guide

Handling Fault Messages in an Oracle Tuxedo Outbound
Application
All rules listed in used to map WSDL input/output message into Oracle Tuxedo Metadata
inbuf/outbuf definition. WSDL file default message can also be mapped into Oracle Tuxedo
Metadata errbuf, with some amendments to the rules:

Rules for fault mapping:

There are two modes for mapping Metadata errbuf into SOAP Fault messages: Tux Mode and
XSD Mode.

Tux Mode is used to convert Oracle Tuxedo original error buffers returned with TPFAIL.
The error buffers are converted into XML payload in the SOAP fault <detail> element.

XSD Mode is used to represent SOAP fault and WSDL file fault messages defined with
Oracle Tuxedo buffers. The mapping rule includes:

– Each service in XSD mode (servicemode=webservice) always has an errbuf in
Metadata, with type=FML32.

– errbuf is a FML32 buffer. It is a complete descriptionof the SOAP:Fault message that
may appear in correspondence (which is different for SOAP 1.1 and 1.2). The errbuf
definition content is determined by the SOAP version and WSDL fault message both.

– Parameter detail/Detail (1.1/1.2) is an FML32 field that represents the wsdl:part
defined in a wsdl:fault message (when wsdl:fault is present). Each part is defined
as a param(field) in the FML32 field. The mapping rules are the same as for
input/output buffer. The difference is that each param requiredcount is 0, which
means it may not appear in the SOAP fault message.

– Other elements that appear in soap:fault message are always defined as a filed in
errbuf, with requiredcount equal to 1 or 0 (depending on whether the element is
required or optional).

TPSVCFAIL External Web service returns SOAP fault message

TPESYSTEM GWWS internal errors. Check ULOG for more information.

Table 5-2 Error Code Returned From GWWS/Tuxedo Framework

TPERRNO Possible Failure Reason
5-6 Oracle SALT Programming Guide

Runn ing H/F 1
– Each part definition in the Metadata controls converting a <detail> element in the
soap fault message into a field in the error buffer.

Table 5-3 lists the outbound SOAP fault errbuf definitions.

Table 5-3 Outbound SOAP Fault Errbuf Definition

Meta Parameter SOAP Version Type Required Memo

faultcode 1.1 string Yes

faultstring 1.1 string Yes

faultactor 1.1 string No

detail 1.1 fml32 No If no wsdl:fault is
defined, this field
will contain an
XML field.

Code 1.2 fml32 Yes Contain Value
and optional
Subcode

Reason 1.2 fml32 Yes Contains
multiple Text

Node 1.2 string No

Role 1.2 string No

Detail 1.2 fml32 No same as detail
field
5-7 Oracle SALT Programming Guide

5-8 Oracle SALT Programming Guide

C H A P T E R 6
Using Oracle SALT Plug-Ins
This chapter contains the following topics:

Understanding Oracle SALT Plug-Ins

Programming Message Conversion Plug-ins

Programming Outbound Authentication Plug-Ins

Understanding Oracle SALT Plug-Ins
The Oracle SALT GWWS server is a configuration-driven process which, for most basic Web
service applications, does not require any programming tasks. However, Oracle SALT
functionality can be enhanced by developing plug-in interfaces which utilize custom typed buffer
data and customized shared libraries to extend the GWWS server.

A plug-in interface is a set of functions exported by a shared library that can be loaded and
invoked by GWWS processes to achieve special functionality. Oracle SALT provides a plug-in
framework as a common interface for defining and implementing a plug-in interface. Plug-in
implementation is carried out by a shared library which contains the actual functions. The plug-in
implementation library is configured in the SALT Deployment file and is loaded dynamically
during GWWS server startup.

Plug-In Elements
Four plug-in elements are required to define a plug-in interface:

Plug-In ID
Oracle SALT Programming Guide 6-1

../ref/comref.html#wp1111835
../ref/deploy.html

Plug-In Name

Plug-In Implementation Functions

Plug-In Register Functions

Plug-In ID
The plug-in ID element is a string used to identify a particular plug-in interface function. Multiple
plug-in interfaces can be grouped with the same Plug-in ID for a similar function. Plug-in ID
values are predefined by Oracle SALT. Arbitrary string values are not permitted.

Oracle SALT 10gR3 supports the P_CUSTOM_TYPE and P_CREDENMAP plug-in ID, which is used
to define plug-in interfaces for custom typed buffer data handling, and map Oracle Tuxedo user
ID and group ID into username/password that HTTP Basic Authentication needs.

Plug-In Name
The plug-in Name differentiates one plug-in implementation from another within the same
Plug-in ID category.

For the P_CUSTOM_TYPE Plug-in ID, the plug-in name is used to indicate the actual custom buffer
type name. When the GWWS server attempts to convert data between Oracle Tuxedo custom
typed buffers and an XML document, the plug-in name is the key element that searches for the
proper plug-in interface.

Plug-In Implementation Functions
Actual business logic should reflect the necessary functions defined in a plug-in vtable structure.
Necessary functions may be different for different plug-in ID categories.

For the P_CREDENMAP ID category, one function needs to be implemented:

int (* gwws_pi_map_http_basic) (char * domain, char * realm, char *
t_userid, char * t_grpid, Cred_UserPass * credential);

For more information, see “Programming Outbound Authentication Plug-Ins”.

Plug-In Register Functions
Plug-in Register functions are a set of common functions (or rules) that a plug-in interface must
implement so that the GWWS server can invoke the plug-in implementation. Each plug-in
interface must implement three register function These functions are:
6-2 Oracle SALT Programming Guide

Unders tand ing Orac le SALT P lug- Ins
Information Providing Function

Initiating Function

Exiting Function

vtable Setting Function

Information Providing Function
This function is optional. If it is used, it is first invoked after the plug-in shared library is loaded
during GWWS server startup. If you want to implement more than one interface in one plug-in
library, you must implement this function and return the counts, IDs, and names of the interfaces
in the library.

Returning a 0 value indicates the function has executed successfully. Returning a value other than
0 indicates failure. If this functions fails, the plug-in is not loaded and the GWWS server will not
start.

The function uses the following syntax:

int _ws_pi_get_Id_and_Names(int * count, char **ids, char **names);

You must return the total count of implementation in the library in arguments count. The
arguments IDs and names should contains all implemented interface IDs and names, separated
by a semicolon “;”.

Initiating Function
The initiating function is invoked after all the implemented interfaces in the plug-in shared library
are determined. You can initialize data structures and set up global environments that can be used
by the plug-ins.

Returning a 0 value indicates the initiating function has executed successfully. Returning a value
other than 0 indicates initiation has failed. If plug-in interface initiation fails, the GWWS server
will not start.

The initiating function uses the following syntax:

int _ws_pi_init_@ID@_@Name@(char * params, void **priv_ptr);

@ID@ indicates the actual plug-in ID value. @Name@ indicates the actual plug-in name value. For
example, the initiating function of a plug-in with P_CUSTOM_TYPE as a plug-in ID and MyType as
a plug-in name is: _ws_pi_init_P_CUSTOM_TYPE_MyType (char * params, void
**priv_ptr).
Oracle SALT Programming Guide 6-3

Exiting Function
The exiting function is called before closing the plug-in shared library when the GWWS server
shuts down. You should release all reserved plug-in resources.

The exiting function uses the following syntax:

int _ws_pi_exit_@ID@_@Name@(void * priv);

@ID@ indicates the actual plug-in ID value. @Name@ indicates the actual plug-in name value. For
example, the initiating exiting function name of a plug-in with P_CUSTOM_TYPE as a plug-in ID
and MyType as a plug-in name is: _ws_pi_exit_P_CUSTOM_TYPE_MyType(void * priv).

vtable Setting Function
vtable is a particular C structure that stores the necessary function pointers for the actual
businesss logic of a plug-in interface. In other words, a valid plug-in interface must implement
all the functions defined by the corresponding vtable.

The vtable setting function uses the following syntax:
int _ws_pi_set_vtbl_@ID@_@Name@(void * priv);

@ID@ indicates the actual plug-in ID value. @Name@ indicates the actual plug-in name value. For
example, the vtable setting function of a plug-in with P_CUSTOM_TYPE as a plug-in ID and
MyType as a plug-in name is: _ws_pi_set_vtbl_P_CUSTOM_TYPE_MyType(void * priv).

The vtable structures may be different for different plug-in ID categories. For the Oracle SALT
10gR3 release, P_CUSTOM_TYPE and P_CREDENMAP are the only valid plug-in IDs.

The vtable structures for available plug-in interfaces are shown in Listing 6-1.

Listing 6-1 VTable Structure

struct credmap_vtable {
 int (* gwws_pi_map_http_basic) (char * domain, char * realm, char *

t_userid, char * t_grpid, Cred_UserPass * credential); /* used for HTTP

Basic Authentication */
 /* for future use */
 void * unused_1;
 void * unused_2;
 void * unused_3;
};
6-4 Oracle SALT Programming Guide

Unders tand ing Orac le SALT P lug- Ins
struct credmap_vtable indicates that one function need to be implemented for a P_CREDENMAP
plug-in interface. For more information, see “Programming Outbound Authentication Plug-Ins”.

The function input parameter void * priv points to a concrete vtable instance. You should set
the vtable structure with the actual functions within the vtable setting function.

An example of setting the vtable structure with the actual functions within the vtable setting
function is shown in Listing 6-2.

Listing 6-2 Setting the vtable Structure with Actual Functions within the vtable Setting Function

int _DLLEXPORT_ _ws_pi_set_vtbl_P_CREDENMAP_TEST (void * vtbl)

{
 struct credmap_vtable * vtable;
 if (! vtbl)
 return -1;

 vtable = (struct credmap_vtable *) vtbl;

 vtable->gwws_pi_map_http_basic = Credmap_HTTP_Basic;
 return 0;
}

Developing a Plug-In Interface
To develop a comprehensive plug-in interface, do the following steps:

1. Develop a shared library to implement the plug-in interface

2. Define the plug-in interface in the SALT configuration file

Developing a Plug-In Shared Library
To develop a plug-in shared library, do the following steps:
Oracle SALT Programming Guide 6-5

1. Write C language plug-in implementation functions for the actual business logic. These
functions are not required to be exposed from the shared library. For more information, see
“Plug-In Implementation Functions”.

2. Write C language plug-in register functions that include: the initiating function, the exiting
function, the vtable setting function, and the information providing function if necessary.
These register functions need to be exported so that they can be invoked from the GWWS
server. For more information, see “Plug-In Register Functions”.

3. Compile all the above functions into one shared library.

Defining a Plug-In Interface in SALT Configuration File
To define a plug-in shared library that is loaded by the GWWS server, the corresponding plug-in
library path must be configured in the SALT deployment file. For more information, see Setting
Up a Oracle SALT Application in the Oracle SALT Administration Guide.

An example of how to define plug-in information in the Oracle SALT deployment file is shown
in Listing 6-3.

Listing 6-3 Defined Plug-In in the Oracle SALT Deployment File

<?xml version="1.0" encoding="UTF-8"?>
<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

 <System>
 <Plugin>
 <Interface
 id=”P_CREDENMAP”
 name=”TEST”
 library=”credmap_plugin.dll” />
 </Plugin>
 </System>
</Deployment>
6-6 Oracle SALT Programming Guide

../admin/config.html
../admin/config.html

Programming Message Convers ion P lug- ins
Notes: To define multiple plug-in interfaces, multiple <Interface> elements must be
specified. Each <Interface> element indicates one plug-in interface.

Multiple plug-in interfaces can be built into one shared library file.

Programming Message Conversion Plug-ins
Oracle SALT defines a complete set of default data type conversion rules to convert between
Oracle Tuxedo buffers and SOAP message payloads. However, the default data type conversion
rules may not meet all your needs in transforming SOAP messages into Oracle Tuxedo typed
buffers or vice versa. To accommodate special application requirements, Oracle SALT supports
customized message level conversion plug-in development to extend the default message
conversion.

Note: The SALT 10gR3 Message Conversion Plug-in is an enhanced successor of the SALT
1.1 Custom Buffer Type Conversion Plug-in.

The following topics are included in this section:

“How Message Conversion Plug-ins Work” on page 6-7

“When Do We Need Message Conversion Plug-in” on page 6-10

“Developing a Message Conversion Plug-in Instance” on page 6-12

“SALT 1.1 Custom Buffer Type Conversion Plug-in Compatibility” on page 6-16

How Message Conversion Plug-ins Work
Message Conversion Plug-in is a SALT supported Plug-in defined within the SALT plug-in
framework. All Message Conversion Plug-in instances have the same Plug-In ID,
“P_CUSTOM_TYPE“. Each particular Message Conversion Plug-in instance may implement two
functions, one is used to convert SOAP message payloads to Oracle Tuxedo buffers, and the other
is used to convert Oracle Tuxedo buffers to SOAP message payloads. These two function
prototypes are defined in Listing 6-4.

Listing 6-4 vtable structure for SALT Plug-in “P_CUSTOM_TYPE” (C Language)

/* custtype_pi_ex.h */
struct custtype_vtable {
 CustomerBuffer * (* soap_in_tuxedo__CUSTBUF) (void * xercesDOMTree,
Oracle SALT Programming Guide 6-7

CustomerBuffer * tuxbuf, CustType_Ext * extinfo)
 int (* soap_out_tuxedo__CUSTBUF) (void ** xercesDOMTree,

CustomerBuffer * tuxbuf, CustType_Ext * extinfo)

}

The function pointer (* soap_in_tuxedo__CUSTBUF) points to the customized function that
converts the SOAP message payload to Oracle Tuxedo typed buffer.

The function pointer (* soap_out_tuxedo__CUSTBUF) points to the customized function that
converts the Oracle Tuxedo typed buffer to SOAP message payload.

You may implement both functions defined in the message conversion plug-in vtable structure if
needed. You may also implement one function and set the other function with a NULL pointer.

How Message Conversion Plug-in Works in an Inbound Call Scenario
An inbound call scenario is an external Web service program that invokes an Oracle Tuxedo
service through the Oracle SALT gateway. Figure 6-1 depicts message streaming between a Web
service client and an Oracle Tuxedo domain.

Figure 6-1 Message Conversion Plug-in Works in an Inbound Call Scenario

When a SOAP request message is delivered to the GWWS server, GWWS tries to find if there is
a message conversion plug-in instance associated with the input message conversion of the target
6-8 Oracle SALT Programming Guide

Programming Message Convers ion P lug- ins
service. If there is an associated instance, the GWWS invokes the customized
(*soap_in_tuxedo__CUSTBUF) function implemented in the plug-in instance.

When an Oracle Tuxedo response buffer is returned from the Oracle Tuxedo service, GWWS
tries to find if there is a message conversion plug-in instance associated with the output message
conversion of the target service. If there is an associated instance, GWWS invokes the customized
(*soap_out_tuxedo__CUSTBUF) function implemented in the plug-in instance.

How Message Conversion Plug-in Works in an Outbound Call Scenario
An outbound call scenario is an Oracle Tuxedo program that invokes an external Web service
through the Oracle SALT gateway. Figure 6-2 depicts message streaming between an Oracle
Tuxedo domain and a Web service application.

Figure 6-2 Message Conversion Plug-in Works in an Outbound Call Scenario

When an Oracle Tuxedo request buffer is delivered to the GWWS server, GWWS tries to find if
there is a message conversion plug-in instance associated with the input message conversion of
the target service. If there is an associated instance, GWWS invokes the customized
(*soap_out_tuxedo__CUSTBUF) function implemented in the plug-in instance.

When a SOAP response message is returned from the external Web service application, GWWS
tries to find if there is a message conversion plug-in instance associated with the output message
conversion of the target service. If there is an associated instance, GWWS invokes the customized
(*soap_in_tuxedo__CUSTBUF) function implemented in the plug-in instance.
Oracle SALT Programming Guide 6-9

When Do We Need Message Conversion Plug-in
Table 6-1 lists several message conversion plug-in use cases.

Table 6-1 Message Conversion Plug-in Use Cases

Scenario Description soap_in_tuxedo_CUSTBUF soap_out_tuxedo_CUSTBUF

Oracle
Tuxedo
Originated
Service

A SOAP message payload is being
transformed into a custom typed
buffer

Required N/A

A custom typed buffer is being
transformed into a SOAP message
payload

N/A Required

An Oracle Tuxedo service input
and/or output buffer is associated
with a customized XML schema
definition, when a SOAP message
payload is being transformed into
this buffer

Non XML typed buffer:
Required

XML typed buffer:
Optional

N/A

An Oracle Tuxedo service input
and/or output buffer is associated
with a customized XML schema
definition, when this buffer is
being transformed into a SOAP
message payload

N/A Non XML typed buffer:
Required

XML typed buffer:Optional

All other general cases when a
SOAP message payload is being
transformed to an Oracle Tuxedo
buffer

Optional N/A

All other general cases when an
Oracle Tuxedo buffer is being
transformed into a SOAP message
payload

N/A Optional
6-10 Oracle SALT Programming Guide

Programming Message Convers ion P lug- ins
From Table 6-1, the following message conversion plug-ins general rules are applied.

If an Oracle Tuxedo originated service consumes custom typed buffer, the message
conversion plug-in is required. Oracle Tuxedo framework does not understand the detailed
data structure of the custom typed buffer, therefore SALT default data type conversion
rules cannot be applied.

If the input and/or output (no matter returned with TPSUCCESS or TPFAIL) buffer of an
Oracle Tuxedo originated service is associated with an external XML Schema, you should
develop the message conversion plug-ins to handle the transformation manually, unless you
are sure that the SALT default buffer type-based conversion rules can handle it correctly.

– For example, if you associate your own XML Schema with an Oracle Tuxedo service
FML32 typed buffer, you must provide a message conversion plug-in since SALT
default data mapping routines may not understand the SOAP message payload structure
when trying to convert into the FML typed buffer. Contrarily, the SOAP message
payload structure converted from the FML typed buffer may be tremendously different
from the XML shape defined via your own XML Schema.

– If you associate your own XML Schema with an Oracle Tuxedo service XML typed
buffer, most of time you do not have to provide a message conversion plug-in. This is
because SALT just passes the XML data as is in both message conversion directions.

For more information about how to associate external XML Schema definition with the
input, output and error buffer of an Oracle Tuxedo Service, see “Defining Tuxedo
Service Contract with Service Metadata Repository” in the Oracle SALT Administration
Guide.

You can develop message conversion plug-ins for any message level conversion to replace
SALT default message conversion routines as needed.

Web Service
Originated
Service

All cases when an Oracle Tuxedo
buffer is being transformed to a
SOAP message payload

N/A Optional

All cases when a SOAP message
payload is being transformed into
an Oracle Tuxedo buffer

Optional N/A

Table 6-1 Message Conversion Plug-in Use Cases

Scenario Description soap_in_tuxedo_CUSTBUF soap_out_tuxedo_CUSTBUF
Oracle SALT Programming Guide 6-11

../ref/comref.html#wp1106727
../ref/comref.html#wp1106727

Developing a Message Conversion Plug-in Instance

Converting a SOAP Message Payload to an Oracle Tuxedo Buffer
The following function should be implemented in order to convert a SOAP XML payload to an
Oracle Tuxedo buffer:
CustomerBuffer * (* soap_in_tuxedo__CUSTBUF) (void * xercesDOM,
CustomerBuffer *a, CustType_Ext * extinfo);

Synopsis
#include <custtype_pi_ex.h>

CustomerBuffer * myxml2buffer (void * xercesDOM, CustomerBuffer *a,
CustType_Ext * extinfo);

myxml2buffer is an arbitrary customized function name.

Description
The implemented function should have the capability to parse the given XML buffer and convert
concrete data items to an Oracle Tuxedo custom typed buffer instance.

The input parameter, char * xmlbuf, indicates a NULL terminated string with the XML format
data stream. Please note that the XML data is the actual XML payload for the custom typed
buffer, not the whole SOAP envelop document or the whole SOAP body document.

The input parameter, char * type, indicates the custom typed buffer type name, this parameter
is used to verify that the GWWS server expected custom typed buffer handler matches the current
plug-in function.

The output parameter, CustomerBuffer *a, is used to store the allocated custom typed buffer
instance. An Oracle Tuxedo custom typed buffer must be allocated by this plug-in function via
the ATMI function tpalloc(). Plug-in code is not responsible to free the allocated custom
typed buffer, it is automatically destroyed by the GWWS server if it is not used.

Diagnostics
If successful, this function must return the pointer value of input parameter CustomerBuffer *
a.

If it fails, this function returns NULL as shown in Listing 6-5.
6-12 Oracle SALT Programming Guide

Programming Message Convers ion P lug- ins
Listing 6-5 Converting XML Effective Payload to Oracle Tuxedo Custom Typed Buffer Pseudo Code

CustomerBuffer * myxml2buffer (void * xercesDOM, CustomerBuffer *a,

CustType_Ext * extinfo)
{
 // casting the input void * xercesDOM to class DOMDocument object
 DOMDocument * DOMTree =

 // allocate custom typed buffer via tpalloc
 a->buf = tpalloc("MYTYPE", "MYSUBTYPE", 1024);
 a->len = 1024;

 // fetch data from DOMTree and set it into custom typed buffer
 DOMTree ==> a->buf;
 if (error) {
 release (DOMTree);
 tpfree(a->buf);
 a->buf = NULL;
 a->len = 0;
 return NULL;
 }

 release (DOMTree);

 return a;
}

Tip: Oracle Tuxedo bundled Xerces library can be used for XML parsing. Tuxedo 8.1 bundles
Xerces 1.7 and Tuxedo 9.1 bundles Xerces 2.5

Converting an Oracle Tuxedo Buffer to a SOAP Message Payload
The following function should be implemented in order to convert a custom typed buffer to
SOAP XML payload:
Oracle SALT Programming Guide 6-13

int (*soap_out_tuxedo__CUSTBUF)(char ** xmlbuf, CustomerBuffer * a, char *
type);

Synopsis
#include <custtype_pi_ex.h>

int * mybuffer2xml (char ** xmlbuf, CustomerBuffer *a, char * type);

"mybuffer2xml" is the function name can be specified with any valid string upon your need.

Description
The implemented function has the capability to convert the given custom typed buffer instance
to the single root XML document used by the SOAP message.

The input parameter, CustomerBuffer *a, is used to store the custom typed buffer response
instance. Plug-in code is not responsible to free the allocated custom typed buffer, it is
automatically destroyed by the GWWS server if it is not used.

The input parameter, char * type, indicates the custom typed buffer type name, this parameter
can be used to verify if the SALT GWWS server expected custom typed buffer handler matches
the current plug-in function.

The output parameter, char ** xmlbuf, is a pointer that indicates the newly converted XML
payload. The XML payload buffer must be allocated by this function and use the malloc ()
system API. Plug-in code is not responsible to free the allocated XML payload buffer, it is
automatically destroyed by the GWWS server if it is not used.

Diagnostics
If successful, this function must returns 0.

If it fails, this function must return -1 as shown in Listing 6-6.

Listing 6-6 Converting Oracle Tuxedo Custom Typed Buffer to SOAP XML Pseudo Code

int mybuffer2xml (void ** xercesDom, CustomerBuffer *a, CustType_Ext *

extinfo)
{
 // Use DOM implementation to create the xml payload
 DOMTree = CreateDOMTree();

 if (error)
 return -1;
6-14 Oracle SALT Programming Guide

Programming Message Convers ion P lug- ins

 // fetch data from custom typed buffer instance,
 // and add data to DOMTree according to the client side needed
 // XML format

 a->buf ==> DOMTree;

 // allocate xmlbuf buffer via malloc

* xmlbuf = malloc(expected_len(DOMTree));
 if (error) {
 release (DOMTree);
 return -1;
 }

 // casting the DOMDocument to void * pointer and returned
 DOMTree >> (* xmlbuf);
 if (error) {
 release (DOMTree);
 free ((* xmlbuf));
 return -1;
 }

 return 0;
}

WARNING: GWWS framework is responsible to release the DOMDocument created inside
the plug-in function. To avoid double release, programmers must pay attention to
the following Xerces API usage:

If the DOMDocument is constructed from an XML string through
XercesDOMParser::parse() API. You must use
XercesDOMParser::adoptDocument() to get the pointer of the
DOMDocument object. You must not use XercesDOMParser::getDocument()
to get the pointer of the DOMDocument object because the DOMDocument
object is maintained by the XercesDOMParser object and is released when
deleting the XercesDOMParser object if you do not de-couple the
Oracle SALT Programming Guide 6-15

DOMDocument from the XercesDOMParser via the
XercesDOMParser::getDocument() function.

SALT 1.1 Custom Buffer Type Conversion Plug-in
Compatibility
SALT 1.1 Custom Buffer Type Conversion Plug-in provides the customized message conversion
mechanism only for Oracle Tuxedo custom buffer types.

Table 6-2 compares the SALT Message Conversion Plug-in and the SALT 1.1 Custom Buffer
Type Conversion Plug-in.

Please note that the SALT 1.1 Custom Buffer Type Plug-in shared library cannot be used directly
in SALT 10gR3. You must perform the following tasks to upgrade it to a SALT 10gR3 message
conversion plug-in:

Table 6-2 SALT 10gR3 Message Conversion Plug-in / SALT 1.1 Custom Buffer Type Conversion Plug-in
Comparison

SALT 1.1 Custom Buffer Type Plug-in SALT 10gR3 Message Conversion Plug-in

Plug-in ID is “P_CUSTOM_TYPE” Plug-in ID is “P_CUSTOM_TYPE”

Plug-in Name must be the same as the supported
custom buffer type name

Plug-in Name can be any meaningful value,
which is only used to distinguish from other
plug-in instances.

Only supports message conversion between
SOAP message payload and Oracle Tuxedo
custom buffer types

Supports message conversion between SOAP
message payload and any kind of Oracle Tuxedo
buffer type

Buffer type level association.

Each plug-in instance must be named the same
as the supported custom buffer type name. Each
custom buffer type can only have one plug-in
implementation.

One custom buffer type can associate with a
plug-in instance, and used by all the services

Message level association.

Each Oracle Tuxedo service can associate
plug-in instances with its input and/or output
buffers respectively through the plug-in instance
name.

SOAP message payload is saved as a NULL
terminated string for plug-in programming

SOAP message payload is saved as a Xerces
DOM Document for plug-in programming
6-16 Oracle SALT Programming Guide

Programming Outbound Authent i cat ion P lug- Ins
1. Re-implement function (*soap_in_tuxedo__CUSTBUF) and
(*soap_out_tuxedo__CUSTBUF) according to new SALT 10gR3 message conversion
plug-in vtable function prototype API. The major change is that SOAP message payload is
saved as an Xerces class DOMDocument object instead of the old string value.

2. Re-compile your functions as the shared library and configure this shared library in the SALT
Deployment file so that it can be loaded by GWWS servers.

Tip: You do not have to manually associate the upgraded message conversion plug-ins with
service buffers. If a custom typed buffer is involved in the message conversion at
runtime, GWWS can automatically search a message conversion plug-in that has the
same name as the buffer type name if no explicit message conversion plug-in interface is
configured.

Programming Outbound Authentication Plug-Ins
When an Oracle Tuxedo client accesses Web services via SOAP/HTTP, the client may be
required to send a username and password to the server to perform HTTP Basic Authentication.
The Oracle Tuxedo clients uses tpinit() to send a username and password when registering to
the Oracle Tuxedo domain. However, this username is used by Oracle Tuxedo and is not the same
as the one used by the Web service (the password may be different as well).

To map the usernames, Oracle SALT provides a plug-in interface (Credential-Mapping Interface)
that allows you to choose which username and password is sent to the Web service.

How Outbound Authentication Plug-Ins Work
When an Oracle Tuxedo client calls a Web service, it actually calls the GWWS server that
declares the Web service as an Oracle Tuxedo service. The user id and group id (defined in tpusr
and tpgrp files) are sent to the GWWS. The GWWS then checks whether the Web service has a
configuration item <Realm>. If it does, the GWWS:

tries to invoke the vtable gwws_pi_map_http_basic function to map the Oracle Tuxedo userid
into the username and password for the HTTP Realm of the server.

for successful calls, encodes the returned username and password with Base64 and sends
it in the HTTP header field “Authorization: Basic” if the call is successful

for failed calls, returns a failure to the Oracle Tuxedo Client without invoking the Web
service.
Oracle SALT Programming Guide 6-17

Implementing a Credential Mapping Interface Plug-In
Using the following scenario:

An existing Web service, myservice, sited on http://www.abc.com/webservice, requires
HTTP Basic Authentication. The username is “test”, the password is “1234,” and the realm
is “myrealm”.

After converting the Web service WSDL into the SALT configuration file (using
wsdlcvt), add the <Realm>myrealm</Ream> element to the endpoint definition in the
WSDF file.

Perform the following steps to implement a Oracle SALT plug-in interface:

1. Write the functions to map the “myrealm” Oracle Tuxedo UID/GID to username/password
on www.abc.com.

Use Credmap_HTTP_Basic();

This function is used to return the HTTP username/password. The function prototype
defined in credmap_pi_ex.h

2. Write the following three plug-in register functions. For more information, see “Plug-In
Register Functions”.

_ws_pi_init_P_CREDENMAP_TEST(char * params, void ** priv_ptr);

This function is invoked when the GWWS server attempts to load the plug-in shared
library during startup.

_ws_pi_exit_P_CREDENMAP_TEST(void * priv);

This function is invoked when the GWWS server unloads the plug-in shared library during
the shutdown phase.

_ws_pi_set_vtbl_P_CREDENMAP_TEST(void * vtbl);

Set the gwws_pi_map_http_basic entry in vtable structure credmap_vtable with the
Credmap_HTTP_Basic() function implemented in step 1.

3. You can also write the optional function

_ws_pi_get_Id_and_Names(int * params, char ** ids, char ** names);

This function is invoked when the GWWS server attempts to load the plug-in shared
library during startup to determine what library interfaces are implemented. For more
information, see “Plug-In Register Functions”.
6-18 Oracle SALT Programming Guide

Programming Outbound Authent i cat ion P lug- Ins
4. Compile the previous four or five functions into one shared library, credmap_plugin.so.

5. Configure the plug-in interface in the SALT deployment file.

Configure the plug-in interface as shown in Listing 6-7.

Listing 6-7 Custom Typed Buffer Plug-In Interface

<?xml version="1.0" encoding="UTF-8"?>

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

 <System>
 <Plugin>
 <Interface
 id=”P_CREDENMAP”
 name=”TEST”
 library=”credmap_plugin.dll” />
 </Plugin>
 </System>
</Deployment>

Mapping the Oracle Tuxedo UID and HTTP Username
The following function should be implemented in order to return username/password for HTTP
Basic Authentication:
typedef int (* GWWS_PI_CREDMAP_PASSTEXT) (char * domain, char * realm, char
* t_userid, char * t_grpid, Cred_UserPass * credential);

Synopsis
#include <credmap_pi_ex.h>
typedef struct Cred_UserPass_s {

 char username[UP_USERNAME_LEN];

 char password[UP_PASSWORD_LEN];

} Cred_UserPass;

int gwws_pi_map_http_basic (char * domain, char * realm, char * t_uid, char
* t_gid, Cred_UserPass * credential);
Oracle SALT Programming Guide 6-19

The "gwws_pi_map_http_basic" function name can be specified with any valid string as
needed.

Description
The implemented function has the capability to determine authorization credentials (usernames
and passwords) used for authorizing users with a given Oracle Tuxedo uid and gid for a given
domain and realm.

The input parameters, char * domain and char * realm, represent the domain name and
HTTP Realm that the Web service belongs to. The plug-in code must use them to determine the
scope to find appropriate credentials.

The input parameters, char * t_uid and char * t_gid, are strings that contain Oracle Tuxedo
user ID and group ID number values respectively. These two parameters may be used to find the
username.

The output parameter, Cred_UserPass * credential, is a pointer that indicates a pre-allocated
buffer storing the returned username/password. The plug-in code is not responsible to allocate the
buffer.

Notes: Oracle Tuxedo user ID is available only when *SECURITY is set as USER_AUTH or higher
in the UBBCONFIG file. Group ID is available when *SECURITY is set as ACL or higher.
The default is “0”.

Diagnostics
If successful, this function returns 0. If it fails, it returns -1 as shown in Listing 6-8.

Listing 6-8 Credential Mapping for HTTP Basic Authentication Pseudo Code

int Credmap_HTTP_Basic(char * domain, char * realm, char * t_uid, char *

t_gid, Cred_UserPass * credential)
{
 // Use domain and realm to determine scope
 credentialList = FindAllCredentialForDomainAndRealm(domain, realm);

 if (error happens)
 return -1;

 // find appropriate credential in the scope
6-20 Oracle SALT Programming Guide

Programming Outbound Authent i cat ion P lug- Ins

 foreach cred in credentialList {
 if (t_uid and t_gid match) {
 *credential = cred;
 return 0;
 }
 }
 if (not found and no default credential) {
 return -1;
 }

 *credential = default_credential;
 return 0;
}

Tip: The credentials can be stored in the database with domain and realm as the key or index.
Oracle SALT Programming Guide 6-21

6-22 Oracle SALT Programming Guide

C H A P T E R 7
Oracle SALT SCA Programming
This chapter contains the following topics:

Overview

SCA Utilities

SCA Client Programming

SCA Component Programming

SCA Python, Ruby, and PHP Programming

SCA Structure Support

SCA Remote Protocol Support

SCA Binding

SCA Data Type Mapping

SCA and Oracle Tuxedo Interoperability

SCA Transactions

SCA Security
Oracle SALT Programming Guide 7-1

tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)
tpconvvmb32(3fml)

Orac le SALT SCA Prog ramming
Overview
One important aspect of Service Component Architecture (SCA) is the introduction of a new
programming model. As part of the Oracle Tuxedo architecture, SCA allows you to better blend
high-output, high-availability and scalable applications in an SOA environment.

SCA components run on top of the Oracle Tuxedo infrastructure using ATMI binding. The ATMI
binding implementation provides native Oracle Tuxedo communications between SCA
components, as well as SCA components and Oracle Tuxedo programs (clients and servers).

In addition to the programming model, the Service Component Definition Language (SCDL)
describes what components can perform in terms of interactions between each other, and instructs
the framework to set-up necessary links (wires).

SCA Utilities
The following utilities are used in conjunction with Oracle SALT SCA programming:

buildscaclient: Builds client processes that call SCA components.

buildscacomponent: Builds SCA components.

buildscaserver: Builds an Oracle Tuxedo server containing SCA components.

SCAHOST: Generic server for Python, Ruby or PHP SCA components.

scatuxgen: Generates Oracle Tuxedo Service Metadata Repository interface information
from an SCA interface.

scastructc32,scastructc: Structure description file compiler.

scastructdis32, scastructdis: Binary structure and view files disassembler.

tuxscagen: Generates SCA, SCDL, and server-side interface files for Oracle Tuxedo
services.

For more information, see the Oracle SALT Command Reference.

SCA Client Programming
The runtime reference binding extension is the implementation of the client-side aspect of the
SCA container. It encapsulates the necessary code used to call other services, SCA components,
Oracle Tuxedo servers or even Web services, transparently from an SCA-based component.
7-2 Oracle SALT Programming Guide

../ref/comref.html

SCA C l i en t P rogramming
SCA Client Programming Steps
Developing SCA client programs requires the following steps:

1. Setting Up the Client Directory Structure

2. Developing the Client Application

3. Composing the SCDL Descriptor

4. Building the Client Application

5. Running the Client Application

6. Handling TPFAIL Data

Setting Up the Client Directory Structure
You must define the applications physical representation. Strict SCA client applications are SCA
component types. Listing 7-1shows the directory structure used to place SCA components in an
application.

Listing 7-1 SCA Component Directory Structure

myApplication/ (top-level directory, designated by the APPDIR environment

variable)
 root.composite (SCDL top-level composite, contains the list of

components in this application)
 myClient/ (directory containing actual client component described in

this section)
 myClient.composite (SCDL for the client component)

 myClient.cpp (client program source file)
 TuxService.h (interface of component called by client program)

Listing 7-2 shows an example of typical root.composite content.
Oracle SALT Programming Guide 7-3

Orac le SALT SCA Prog ramming
Listing 7-2 root.composite Content

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="simple.app">
 <component name="myClientComponent">
 <implementation.composite name="myClient"/>
 </component>
</composite>

The implementation.composite@name parameter references the directory that contains the
component named 'myClientComponent'. This value is required at runtime. For more
information, see Running the Client Application.

Developing the Client Application
Client programs are required to implement a call to a single API. This following call is required
in order to set up the SCA runtime:

...
 CompositeContext theContext = CompositeContext::getCurrent();
...
Actual calls are based on an interface. This interface is usually developed along with the
component being called. In the case of existing Oracle Tuxedo ATMI services, this interface can
be generated by accessing the Oracle Tuxedo METADATA repository. For more information,
see the Oracle SALT Administration Guide and tuxscagen, scatuxgen in the Oracle SALT
Reference Guide.

In the case of calling external Web services, an interface matching the service WSDL must be
provided. For more information, see SCA Data Type Mapping for the correspondence between
WSDL types and C++ types.

Listing 7-3 shows an interface example.

Listing 7-3 Interface Example

#include <string>
/**
 * Tuxedo service business interface
7-4 Oracle SALT Programming Guide

../admin/index.html
http://e-docs.bea.com/salt/docs11gr1ps1/ref/comref.html
http://e-docs.bea.com/salt/docs11gr1ps1/ref/comref.html

SCA C l i en t P rogramming
 */
 class TuxService
 {
 public:
 virtual std::string TOUPPER(const std::string inputString) = 0;
 };

In the interface shown in Listing 7-3, a single method TOUPPER is defined. It takes a single
parameter of type std::string, and returns a value of type std::string. This interface needs
to be located in its own .h file, and is referenced by the client program by including the .h file.

Listing 7-4 shows an example of a succession of calls required to perform an invocation.

Listing 7-4 Invocation Call Example

// SCA definitions
// These also include a Tuxedo-specific exception definition:

ATMIBindingException
#include "tuxsca.h"
// Include interface
#include "TuxService.h"
...
 // A client program uses the CompositeContext class
 CompositeContext theContext = CompositeContext::getCurrent();
...
 // Locate Service
 TuxService* toupperService =
 (TuxService *)theContext.locateService("TOUPPER");
...
 // Perform invocation
 const std::string result = toupperService->TOUPPER("somestring");
...
Oracle SALT Programming Guide 7-5

Orac le SALT SCA Prog ramming
Notes: The invocation itself is equivalent to making a local call (as if the class were in another
file linked in the program itself).

For detailed code examples, see the SCA samples located in following directories:

UNIX samples: $TUXDIR/samples/salt/sca

Windows samples: %TUXDIR%\samples\salt\sca

Composing the SCDL Descriptor
The link between the local call and the actual component is made by defining a binding in the
SCDL side-file. For example, Listing 7-4 shows a call to an existing Oracle Tuxedo ATMI
service, the SCDL descriptor shown in Listing 7-5 should be used. This SCDL is contained in a
file called <componentname>.composite.

Listing 7-5 SCDL Descriptor

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="simpapp.client">
 <reference name="TOUPPER">
 <interface.cpp header="TuxService.h"/>
 <binding.atmi requires="legacy">
 <inputBufferType target="TOUPPER">STRING</inputBufferType>
 <outputBufferType target="TOUPPER">STRING</outputBufferType>
 </binding.atmi>
 </reference>
</composite>

This composite file indicates that a client component may perform a call to the TOUPPER
reference, and that this call is performed using the ATMI binding. In effect, this results in a
tpcall() to the "TOUPPER" Oracle Tuxedo service. This Oracle Tuxedo service may be an actual
existing Oracle Tuxedo ATMI service, or another SCA component exposed using the ATMI
binding. For more information, see SCA Component Programming.

The inputBufferType and outputBufferType elements are used to determine the type of
Oracle Tuxedo buffer used to exchange data. For more information, see SCA Data Type Mapping
and the ATMI Binding Element Reference for a description of all possible values that can be used
in the binding.atmi element.
7-6 Oracle SALT Programming Guide

http://e-docs.bea.com/salt/docs11gr1ps1/ref/sca_bindschema.html

SCA C l i en t P rogramming
Building the Client Application
Once all the elements are in place, the client program is built using the buildscaclient
command. You must do the following steps:

1. Navigate to the directory containing the client source and SCDL composite files

2. Execute the following command:

$ buildscaclient -c myClientComponent -s . -f myClient.cpp

This command verifies the SCDL code, and builds the following required elements:

A shared library (or DLL on Windows) containing generated proxy code

The client program itself

If no syntax or compilation error is found, the client program is ready to use.

Running the Client Application
To execute the client program, the following environment variables are required:

APPDIR - designates the application directory; in the case of SCA this typically contains
the top-level SCDL composite.

SCA_COMPONENT - the default SCA component (the value 'myClientComponent' in the
example shown in Listing 7-2). It tells the SCA runtime where to start when looking for
services in the locateService() call.

Invoking Existing Oracle Tuxedo Services
Access to existing Oracle Tuxedo ATMI services from an SCA client program can be simplified
using the examples shown in Listing 7-6, Listing 7-7, and Listing 7-8.

Note: These examples can also be used for server-side SCA components.

Starting from a Oracle Tuxedo METADATA repository entry as shown in Listing 7-6, the
tuxscagen command can be used to generate interface and SCDL.

Listing 7-6 SCA Components Calling an Existing Oracle Tuxedo Service

service=TestString
tuxservice=ECHO
servicetype=service
Oracle SALT Programming Guide 7-7

http://e-docs.bea.com/salt/docs11gr1ps1/ref/comref.html
http://e-docs.bea.com/salt/docs11gr1ps1/ref/comref.html

Orac le SALT SCA Prog ramming
inbuf=STRING
outbuf=STRING

service=TestCarray
tuxservice=ECHO
servicetype=service
inbuf=CARRAY
outbuf=CARRAY

Listing 7-7 Generated Header

#ifndef ECHO_h
#define ECHO_h
#include <string>
#include <tuxsca.h>
class ECHO
{
public:
 virtual std::string TestString(const std::string arg) = 0;
 virtual std::string TestCarray(const struct carray_t * arg) = 0; };
#endif /* ECHO_h */

Listing 7-8 Generated SCDL Reference

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
name="ECHO">
 <reference name="ECHO">
 <interface.cpp header="ECHO.h"/>
 <binding.atmi requires="legacy">
 <serviceType target="TestString">RequestResponse</serviceType>
 <inputBufferType target="TestString">STRING</inputBufferType>
 <outputBufferType target="TestString">STRING</outputBufferType>
 <serviceType target="TestCarray">RequestResponse</serviceType>
 <inputBufferType target="TestCarray">CARRAY</inputBufferType>
 <outputBufferType target="TestCarray">CARRAY</outputBufferType>
7-8 Oracle SALT Programming Guide

SCA C l i en t P rogramming
 </binding.atmi>
 </reference>
</composite>

The steps used to invoke these services are identical to the examples shown in Listing 7-6 through
Listing 7-8.

Handling TPFAIL Data
Invoking a non-SCA Oracle Tuxedo ATMI service may return an error, but still send back data
by using tpreturn(TPFAIL, …). When this happens, an SCA client or component is interrupted
by the ATMIBindingException type.

The data returned by the service, if present, can be obtained by using the
ATMIBindingException.getData()API. For more information see, TPFAIL Return Data.

The example in Listing 7-9 corresponds to a binding.atmi definition as shown in Listing 7-10.

Listing 7-9 Invocation Interruption Example

...
 try {
 const char* result = toupperService->charToup("someInput");
 } catch (tuscany::sca::atmi::ATMIBindingException& abe) {
 // Returns a pointer to data corresponding to
 // mapping defined in <errorBufferType> element
 // in SCDL
 const char* *result = (const char **)abe.getData();
 if (abe.getData() == NULL) {
 // No data was returned
 } else {
 // Process data returned
 ...
 }
 } catch (tuscany::sca::ServiceInvocationException& sie) {
 // Other type of exception is returned
Oracle SALT Programming Guide 7-9

Orac le SALT SCA Prog ramming
 }
...

Listing 7-10 /binding.atmi Definition

...
 <binding.atmi requires="legacy">
 <inputBufferType target="charToup">STRING</inputBufferType>
 <outputBufferType

target="charToup">STRING</outputBufferType>
 <errorBufferType target="charToup">STRING</errorBufferType>
<binding.atmi/>
...

Other returned data types must be cast to the corresponding type. For example, an invocation
returning a commonj::sdo::DataObjectPtr as shown in Listing 7-11.

Listing 7-11 SCDL Invocation Example

...
 <errorBufferType target="myMethod">FML32/myType</errorBufferType>
...

The ATMIBindingException.getData() result is shown in Listing 7-12.

Listing 7-12 ATMIBindingException.getData() Results

...
 catch (tuscany::sca::atmi::ATMIBindingException& abe) {
 const commonj::sdo::DataObjectPtr *result =
 (const commonj::sdo::DataObjectPtr *)abe.getData();
...
7-10 Oracle SALT Programming Guide

SCA Component P rogramming
The rules for returning TPFAIL data to the calling application are as follows:

For each <errorBufferType>, a canonical type is defined, where <errorBufferType> is
converted. When the <errorBufferType> is equal to the <outputBufferType>, the
canonical type is the same C++ type that is returned in a successful service
implementation.

When the <errorBufferType> is different from the <outputBufferType>, the canonical
type is as follows:

– For STRING buffers, a C++ char* or char[]data type.

– For MBSTRING buffers, a C++ wchar_t* or wchar_t[].

– For CARRAY buffers, a C++ CARRAY_PTR.

– For X_OCTET buffers, a C++ X_OCTET_PTR.

– For XML buffers, a C++ XML_PTR.

– For FML, FML32, VIEW, VIEW32, X_COMMON, and X_C_TYPE buffers, a C++
commonj::sdo::DataObjectPtr.

In each case, the value returned by getData() is a pointer to one of the types listed above.

For more conversion rules between Oracle Tuxedo buffer types and C++ data information, see
SCA Data Type Mapping.

SCA Component Programming
The SCA Component terminology designates SCA runtime artifacts that can be invoked by other
SCA or non-SCA runtime components. In turn, these SCA Components can perform calls to other
SCA or non-SCA components. This is different from strict SCA clients which can only make
calls to other SCA or non-SCA components, but cannot be invoked.

The Oracle SALT SCA container provides the capability of hosting SCA components in an
Oracle Tuxedo server environment. This allows you to take full advantage of proven Oracle
Tuxedo qualities: reliability, scalability and performance.

Figure 7-1 summarizes SCA components and Oracle Tuxedo server mapping rules.
Oracle SALT Programming Guide 7-11

Orac le SALT SCA Prog ramming
Figure 7-1 SCA Component and Oracle Tuxedo Server Mapping Rules

While SCA components using Oracle Tuxedo references do not require special processing, SCA
components offering services must still be handled in an Oracle Tuxedo environment.

The mapping is as follows:

An SCA composite declaring one or more services with a <binding.atmi> definition
maps to a single Oracle Tuxedo server advertising the same number of services as the SCA
composite.

There can be more than one composite.

Composites can be nested.

Promotion handling:

– A composite promoting a service contained in a nested component results in the
promoted service being advertised as an Oracle Tuxedo service.

– A service declared in a component, but not promoted, is not advertised.

The resulting Oracle Tuxedo server advertises as many services as there are
binding.atmi sections in the SCDL definition
7-12 Oracle SALT Programming Guide

SCA Component P rogramming
Interfaces may declare multiple methods. Each method is linked to an Oracle Tuxedo
native service using the /binding.atmi/@map attribute. A method not declared via the
/binding.atmi/@map attribute is not accessible through Oracle Tuxedo. The use of
duplicate service names are detected at server generation time, so that Oracle Tuxedo
service names-to-interface method mapping in a single Oracle Tuxedo server instance is
1:1.

A generated Oracle Tuxedo server acts as a proxy for SCA components. An instance of
this generated server corresponds to an SCA composite as defined in the SCDL
configuration. Such servers are deployed as necessary by the Oracle Tuxedo administrator.

SCA composites are deployed in an Oracle Tuxedo application by configuring instances of
generated SCA servers in the UBBCONFIG file. Multiple instances are allowed. Multi-threading
capabilities are also allowed and controllable using already-existing Oracle Tuxedo features.

SCA Component Programming Steps
The steps required for developing SCA component programs are as follows:

1. Setting Up the Component Directory

2. Developing the Component Implementation

3. Composing the SCDL Descriptor

4. Compiling and Linking the Components

5. Building the Oracle Tuxedo Server Host

Setting Up the Component Directory
You must first define the applications physical representation. Listing 7-13 shows the directory
structure used to place SCA components in an application:

Listing 7-13 SCA Component Directory Structure

myApplication/ (top-level directory, designated by the APPDIR environment

variable)
 root.composite (SCDL top-level composite, contains the list of

components in this application)
 myComponent/ (directory containing actual component described in this

section)
Oracle SALT Programming Guide 7-13

Orac le SALT SCA Prog ramming
 myComponent.composite (SCDL for the component)
 myComponent.componentType
 myComponentImpl.cpp (component implementation source file)
 TuxService.h (interface of component being exposed)
 TuxServiceImpl.h (component implementation definitions)

Listing 7-14 shows typical root.composite content.

Listing 7-14 root.composite Content

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="simple.app">
 <component name="myComponent">
 <implementation.composite name="myComponent"/>
 </component>
</composite>

The implementation.composite@name parameter references the directory that contains the
'myComponent' component.

Developing the Component Implementation
Components designed to be called by other components do not need to be aware of the SCA
runtime. There are, however, limitations in terms of interface capabilities, such as:

C++ classes (other than std::string and commonj::sdo::DataObjectPtr) cannot be
used as parameters or return values

Parameter arrays are not supported

For more information, see SCA Data Type Mapping.

Listing 7-15 shows an example of an interface implemented for a client program.
7-14 Oracle SALT Programming Guide

SCA Component P rogramming
Listing 7-15 Component Implementation Interface

#include <string>
/**
 * Tuxedo service business interface
 */
 class TuxService
 {
 public:
 virtual std::string TOUPPER(const std::string inputString) = 0;
 };

The component implementation then generally consists of two source files (as shown
Listing 7-16 and Listing 7-17 respectively):

component implementation definitions, contained in a <servicename>Impl.h file, and

component implementation, contained in a <servicename>Impl.cpp file

Listing 7-16 Example (TuxServiceImpl.h):

#include "TuxService.h"

 /**
 * TuxServiceImpl component implementation class
 */
 class TuxServiceImpl: public TuxService
 {
 public:
 virtual std::string toupper(const std::string inputString);
 };
Oracle SALT Programming Guide 7-15

Orac le SALT SCA Prog ramming
Listing 7-17 Example (TuxServiceImpl.cpp):

#include "TuxServiceImpl.h"
 #include "tuxsca.h"

using namespace std;
using namespace osoa::sca;

/**
* TuxServiceImpl component implementation
*/
std::string TuxServiceImpl::toupper(const string inputString)
{
 string result = inputString;

 int len = inputString.size();

 for (int i = 0; i < len; i++) {
 result[i] = std::toupper(inputString[i]);
 }

 return result;
}

Additionally, a side-file (componentType), is required. It contains the necessary information for
the SCA wrapper generation and possibly proxy code (if this component calls another
component).

This componentType file (<componentname>Impl.componentType)is an SCDL file type.
Listing 7-18 shows an example of a componentType file (TuxServiceImpl.componentType).

Listing 7-18 componentType File Example

<?xml version="1.0" encoding="UTF-8"?>
 <componentType xmlns="http://www.osoa.org/xmlns/sca/1.0" >
 <service name="TuxService">
7-16 Oracle SALT Programming Guide

SCA Component P rogramming
 <interface.cpp header="TuxService.h"/>
 </service>
 </componentType>

Composing the SCDL Descriptor
The link between the local implementation and the actual component is made by defining a
binding in the SCDL side-file. For example, for the file type in Listing 7-18 to be exposed as an
Oracle Tuxedo ATMI service, the SCDL in Listing 7-19 should be used. This SCDL is contained
in a file called <componentname>.composite (for example, myComponent.composite).

Listing 7-19 Example SCDL Descriptor

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="myComponent">

 <service name="TuxService">

 <interface.cpp header="TuxService.h"/>

 <binding.atmi requires="legacy"/>

 <map target="toupper">TUXSVC</map>

 <inputBufferType target="toupper">STRING</inputBufferType>

 <outputBufferType target="toupper">STRING</outputBufferType>

 <reference>MYComponent</reference>

 </service>

 <component name="MYComponent">

 <implementation.cpp library="TuxService" header="TuxServiceImpl.h"/>

 </component>

</composite>
Oracle SALT Programming Guide 7-17

Orac le SALT SCA Prog ramming
This composite file indicates that the service, mySVC, can be invoked via the Oracle Tuxedo
infrastructure. It further indicates that the toupper() method is advertised as the TUXSVC service
in the Oracle Tuxedo system. Once initialized, another SCA component may now call this
service, as well as a non-SCA Oracle Tuxedo ATMI client.

The inputBufferType and outputBufferType elements are used to determine the type of
Oracle Tuxedo buffer used to exchange data. For more information, see SCA Data Type Mapping
and the ATMI Binding Element Reference for a description of all possible values that can be used
in the binding.atmi element.

Note: The mycomponent.componentType service name should be same as the composite file,
otherwise an exception is thrown.

Compiling and Linking the Components
Once all the elements are in place, the component is built using the buildscacomponent
command. The steps are as follows:

1. Navigate to the APPDIR directory. The component and side files should be in its own directory
one level down

2. Execute the following command:

$ buildscacomponent -c myComponent -s . -f TuxServiceImpl.cpp

This command verifies the SCDL code, and builds the following required elements:

A shared library (or DLL on Windows) containing generated proxy code

Building the Oracle Tuxedo Server Host
In order for components to be supported in an Oracle Tuxedo environment, a host Oracle Tuxedo
server must be built. This is achieved using the buildscaserver command.

For example: $ buildscaserver -c myComponent -s . -o mySCAServer

When the command is executed, mySCAServer is ready to be used. It automatically locates the
component(s) to be deployed according to the SCDL, and performs the appropriate Oracle
Tuxedo/SCA associations.

SCA Python, Ruby, and PHP Programming
This section contains the following topics:

SCA Python, Ruby, and PHP Programming Overview
7-18 Oracle SALT Programming Guide

http://e-docs.bea.com/salt/docs11gr1ps1/ref/sca_bindschema.html
http://e-docs.bea.com/salt/docs11gr1ps1/ref/comref.html
../ref/comref.html

SCA Py thon , Ruby , and PHP Prog ramming
Python, Ruby, and PHP Client Programming

Python, Ruby, and PHP Component Programming

Python, Ruby, and PHP Data Type Mapping

Python, Ruby, and PHP Binding

SCA Python, Ruby, and PHP Programming Overview
Integration of Python, Ruby or PHP scripts in an environment such as Oracle Tuxedo via SALT,
is intended for providing additional flexibility in terms of program development.

Python, Ruby, and PHP are comparable object-oriented scripting languages that offer many
advantages over C/C++:

No compilation

Dynamic data typing

Garbage collection

Existing libraries of utility functions and objects

SALT SCA Python, Ruby, and PHP support provides a set of APIs to perform SCA calls from
Python, Ruby or PHP client programs, and language extensions to call Python, Ruby or PHP
components. For more information, see Python, Ruby, and PHP Client Programming and Python,
Ruby, and PHP Component Programming.

The buildscaclient, buildscaserver and buildscacomponent commands do not need
adapting for use with Python, Ruby or PHP programs, as they are not be required to produce
executables or component libraries.

Note: A system server, SCAHOST, is provided to correctly marshal requests and responses to and
from Python, Ruby or PHP scripts. It contains Python, Ruby, and PHP scripts exposed as
SCA services (via the Oracle Tuxedo Metadata Repository). The definitions describe the
parameters and return types of the corresponding exposed Python, Ruby or PHP
functions.

For more information, see Python, Ruby, and PHP Data Type Mappingfor Service
Metadata Repository entry examples.

Available bindings are used from Python, Ruby or PHP programs, or are used to invoke Python,
Ruby or PHP components. Like C++, the Python, Ruby, and PHP language extension is
binding-independent.
Oracle SALT Programming Guide 7-19

Orac le SALT SCA Prog ramming
Figure 7-2 provides an overview of the SALT SCA environment Python, Ruby, and PHP support
architecture.

Figure 7-2 SALT SCA Python, Ruby, and PHP Programming Support Architecture

Python, Ruby, and PHP Client Programming
SCDL Clients

Python Clients

Ruby Clients

PHP Clients

SCDL Clients
From a client component perspective, the SCDL code only has to mention the referenced
component and possibly the binding used (that is, no interface element is required).

For example, the following snippet allows a Python, Ruby or PHP client to make an invocation
to an SCA component via ATMI binding, and using the default buffer type (STRING input,
STRING output):

<reference name="CalculatorComponent">
7-20 Oracle SALT Programming Guide

SCA Py thon , Ruby , and PHP Prog ramming
 <binding.atmi/>

</reference>

Python Clients
To invoke an SCA component from a Python program, you must do the following:

1. Import the SCA library using the following command:

import sca

2. Use the following API to locate the service:

calc = sca.locateservice("CalculatorComponent")

The calc object is used to invoke the “add” operation (for example, result =
calc.add(val1, val2)).

Ruby Clients
To invoke an SCA component from a Ruby program, you must do the following:

1. Load the Ruby proxy extension:

require("sca_ruby")

2. Use the following API to locate the service:

calculator = SCA::locateService("CalculatorComponent")

The calculator object is used to invoke the “add” operation (for example, x =
calculator.add(3, 2)).

PHP Clients
To invoke an SCA component from a PHP program, you must do the following:

1. users will have to first load the SCA library as follows:

<?php

dl('sca.so');

2. Use the following API to locate the service:

$svc = Sca::locateService("uBikeService");

At this point the svc object can be used to invoke the searchBike operation, for instance:
Oracle SALT Programming Guide 7-21

Orac le SALT SCA Prog ramming
$ret = $svc->searchBike('YELLOW');

Python, Ruby, and PHP Component Programming
SCDL Components

Python Components

Ruby Components

PHP Components

SCDL Components
In order to use Python, Ruby or PHP scripts in SCA as components, you must use the
implementation.python, implementation.ruby and implementation.php parameters.

Note: implementation.python implementation.ruby and implementation.php usage
is similar to the implementation.cpp element (see Listing 7-19 and Listing 7-31); the
difference is that the interface.python and interface.ruby elements, or
.componentType are not required.

Their syntax and attributes are as follows:

implementation.python

<implementation.python
 module="string"
 scope="scope"? >
<implementation.python/>

The implementation.python element has the following attributes:

– module: string (1..1)

Name of the Python module (.py file) containing the operation(s) that this component
offers in the form of module-level function(s).

– scope: PythonImplementationScope(0..1)

Identifies the scope of the component implementation. The default is stateless,
indicating that there is no correlation between implementation instances used to
dispatch service requests. A composite value indicates that all service requests are
dispatched to the same implementation instance for the lifetime of the containing
composite.

implementation.ruby
7-22 Oracle SALT Programming Guide

SCA Py thon , Ruby , and PHP Prog ramming
<implementation.ruby
 script="string"
 class="string"
 scope="scope"? >
<implementation.ruby/>

The implementation.ruby element has the following attributes:

– script: string(1..1)

Name of the Ruby script (.rb file) containing the operation(s) that the component
offers in the form of methods of a class contained in the script file. The name of the
script is its full name (that is, it also includes the .rb extension).

– class: string(1..1)

Name of the Ruby class (.rb file) containing the operation(s) that the component
offers.

– scope: RubyImplementationScope(0..1)

Identifies the scope of the component implementation. The default is stateless,
indicating that there is no correlation between implementation instances used to
dispatch service requests. A composite value indicates that all service requests are
dispatched to the same implementation instance for the lifetime of the containing
composite.

implementation.php

<implementation.php
 script="string"
 class="string"
 scope="scope"? >
<implementation.php/>

The implementation.php element has the following attributes:

– script: string(1..1)

Name of the PHP script (.php file) containing the operation(s) that this component will
offer, in the form of methods of a class contained in the script file. The name of the
script is its full name, i.e. it also includes the .php extension.

– class: string(1..1)

Name of the PHP class (.php file) containing the operation(s) that this component will
offer.

– scope: PHPImplementationScope(0..1)
Oracle SALT Programming Guide 7-23

Orac le SALT SCA Prog ramming
Identifies the scope of the component implementation. The default is stateless,
indicating that there is no correlation between implementation instances used to
dispatch service requests. A value of composite indicates that all service requests are
dispatched to the same implementation instance for the lifetime of the containing
composite.

Listing 7-20 shows an example of a Python component in an SCA composite accessible using the
ATMI binding. In this example, runtime looks for a Python component located in a file named
ToupperService.py in the same location as the composite file.

Similarly, a Ruby component is required in a file named ToupperService.rb, in the same
location as the composite file.

Listing 7-20 Python Component in an SCA Composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="simpapp.server">

 <service name="SCASVC">
 <binding.atmi/>
 <reference>ToupperServiceComponent</reference>
</service>

<component name="ToupperServiceComponent">
 <implementation.python module="ToupperService"
 scope="composite"/>
</component>

</composite>

Listing 7-21 shows an example of a PHPcomponent in an SCA composite accessible using the
ATMI binding
7-24 Oracle SALT Programming Guide

SCA Py thon , Ruby , and PHP Prog ramming
Listing 7-21 PHP Component in an SCA Composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="simpapp.PHP">

<service name="TESTPHP">

 <!-- No interface, it is contained in TMMETADATA -->

 <binding.atmi>

 <map target="charToup">TOUPPHP</map>

 <inputBufferType target="charToup">STRING</inputBufferType>

 <outputBufferType target="charToup">STRING</outputBufferType>

 </binding.atmi>

 <reference>ToupperServiceComponent</reference>

</service>

<component name="ToupperServiceComponent">

<implementation.php script="toupper.php"

class="Toupper"/>

scope="composite"/>

</component>

</composite>
Oracle SALT Programming Guide 7-25

Orac le SALT SCA Prog ramming
Python Components
Python operations are exposed as module-level functions contained in a Python module file. For
example, a ToupperService.py file would contain the code shown in Listing 7-22.

Listing 7-22 Python Module File

def charToup(val1):
 print "input: " + val1
 result = "result"
 print "Python - toupper"
 return result

Parameter and return values types are dynamically determined at runtime. Application exceptions
are caught by the extension runtime and re-thrown as
tuscany::sca::ServiceInvocationException.

During input, unsupported types or an error processing an input DataObject results in the
following exception:
a tuscany::sca::ServiceDataException.

During output, simple return types are always processed. An error generating a DataObject (from
XML data) results in the following exception:
tuscany::sca::ServiceDataException.

For more information, see Python, Ruby, and PHP Data Type Mapping.

Ruby Components
Ruby operations are exposed as methods of an implementation class contained in a Ruby script
file (.rb extension). For example, a ToupperService.rb file would contain the code shown in
Listing 7-23.

Listing 7-23 Ruby Script File

class ToupperService

 def initialize()
7-26 Oracle SALT Programming Guide

SCA Py thon , Ruby , and PHP Prog ramming
 print "Ruby - ToupperService.initialize\n"
 end

 def charToup(arg1)
 print "Ruby - ToupperService.div\n"
 arg1.ToUpper()
 end

end

Parameter and return values types are dynamically determined at runtime. Application exceptions
are caught by the extension runtime and re-thrown as
tuscany::sca::ServiceInvocationException.

During input, unsupported types or an error processing an input DataObject results in the
following exception:
a tuscany::sca::ServiceDataException.

During output, simple return types are always processed. An error generating a DataObject (from
XML data) results in the following exception: tuscany::sca::ServiceDataException.

For more information, see Python, Ruby, and PHP Data Type Mapping.

PHP Components
PHP operations are exposed as functions contained in a PHP class. For example, a toupper.php
file would contain the code shown in Listing 7-24

Listing 7-24 PHP Class

<?php

class MyClass {

 public static function toupper(val) {

 print "PHP - toupper";

 return val.toupper();

 }
Oracle SALT Programming Guide 7-27

Orac le SALT SCA Prog ramming
}

?>

Parameter and return values types are dynamically determined at runtime. Application exceptions
are caught by the extension runtime and re-thrown as
tuscany::sca::ServiceInvocationException.

During input, unsupported types or an error processing an input DataObject results in the
following exception:
a tuscany::sca::ServiceDataException.

During output, simple return types are always processed. An error generating a DataObject (from
XML data) results in the following exception: tuscany::sca::ServiceDataException.

For more information, see Python, Ruby, and PHP Data Type Mapping.

SCA Structure Support
This section contains the following topics:

SCA Structure Support Overview

Using SCA Structure Description Files

Using tuxscagen to Generate Structures

Note: This section applies to application defined structures only. For information on Oracle
SALT SCA defined structures, see SCA Data Type Mapping.

SCA Structure Support Overview
SCA Structure support provides:

Additional C++ structure functionality

Improved performance for applications processing data that can be placed in a structure
without significant wasted space

You must use the struct data type specified in the SCA method parameter definition or in the
definition of a return value from an SCA method as follows:

struct structurename *
7-28 Oracle SALT Programming Guide

SCA St ruc ture Suppor t
struct structurename &

Elements within the structure can be any of the following simple data types/arrays that are
supported as an SCA parameter:

bool

char, unsigned char, signed char

wchar_t

short, unsigned short

int, unsigned int

long, unsigned long

long long, unsigned long long

float

double

long double

struct nestedstructurename

typedef

Note: The scagen utility parses typedef and struct keywords. For more information, see
the Oracle SALT Command Reference Guide.

SCA Structure Limitations

The following cannot be specified as part of a structure”

– DataObjectPtr

– Point data types

– std::string or a std::wstring

– A union

– struct carray_t, struct_x_octet_t, or struct xml_t

CARRAY data is supported in the same way that it is supported for views

.h and .cpp files referencing the use of structures are required to include a definition for
the structure being used and for any nested structures contained within that structure.
Oracle SALT Programming Guide 7-29

http://e-docs.bea.com/salt/docs11gr1ps1/ref/index.html

Orac le SALT SCA Prog ramming
Using SCA Structure Description Files
A structure description file may be used to describe the format of an SCA structure parameter.
Structure description files are very similar to Oracle Tuxedo viewfiles, with additional
capabilities added for SCA.

Note: The use of structure description files is optional, and is needed only when FML field
names corresponding to structure elements are different from the names of the structure
elements, or when some other non-default structure related feature is required. If an
application wants to make use of an Associated Length Member, an Associated Count
Member, or an application-specified default value for a structure element, it may choose
to make use of a structure description file.

If no structure description file is provided for a particular structure, then the structure definition
used in application code is used, and FML field names in SCA-ATMI mode are the same as
structure element names. Since field numbers are generated automatically for SCA-SCA
applications, these applications do not need to specify a structure description file.

The structure description file format is identical to the Oracle Tuxedo viewfile format, with the
following exceptions:

The type parameter in column 1 allows the additional values bool, unsignedchar,
signedchar, wchar_t, unsignedint, unsignedlong, longlong, unsignedlonglong,
longdouble, and struct.

If the value in column1 is struct, then the cname value in column 2 is the name of a
previously defined VIEW that describes a nested structure. In this case, the count value in
column 4 may optionally be specified to specify the number of occurrences of the nested
structure.

If a structure described in a structure description file is converted to (or from) an FML32 or FML
buffer at runtime in an SCA-ATMI application, then the name of the corresponding FML field is
the fbname value specified in column 3, if any, and is the cname value specified in column 2 (if
no value is specified in column 3). When compiled, the structure description file produces a
binary structure description file as shown in Listing 7-25. The binary structure header file is
shown in shown in Listing 7-26.

Note: In an SCA-SCA application, FML32 field numbers are generated automatically.
7-30 Oracle SALT Programming Guide

SCA St ruc ture Suppor t
Listing 7-25 SCA Structure Description File

VIEW empname
#TYPE CNAME FBNAME COUNT FLAG SIZE NULL
string fname EMP_FNAME 1 - 25 -
char minit EMP_MINI 1 - - -
string lname EMP LNAME 1 - 25 -
END

VIEW emp
struct empname ename 1 - - -
unsignedlong id EMP_ID 1 - - -
long ssn EMP_SSN 1 - - -
double salaryhist EMP_SAL 10 - - -
END

Listing 7-26 Binary Structure Header File

struct empname {
 char fname[25];
 char minit;
 char lname[25];
};

struct emp {
 struct empname ename;
 unsigned long id;
 long ssn;
 double salaryhist[10];
}

The scastructc32 and scastructc commands are used to convert a source structure
description file into a binary structure description file and to generate a header file describing the
structure(s) in the structure description file. The scastructdis32 and scastructdis
Oracle SALT Programming Guide 7-31

Orac le SALT SCA Prog ramming
commands accept the same arguments as viewdis32 and viewdis. For more information, see
the Oracle SALT Command Reference.

Notes: scastructc32 and scastructc generate a binary file with suffix .V on Unix and suffix
.VV on Windows.

If the structure description file contains no SCA extensions that are not available in
Oracle Tuxedo views, then the magic value for the binary structure description file shall
be the same as the magic value used by viewc32. If any SCA specific extensions are used,
then a different magic value shall be used for the binary structure description file.

Using tuxscagen to Generate Structures
When invoked with the option -S, tuxscagen generates a structure for any function parameter
or return value that would otherwise have been passed using DataObjectPtr.

Note: If tuxscagen -S is run, then simple data types are generated just as they would have
been if tuxscagen were run without the -S option. It is possible to mix simple data types,
structures, and other complex data types within a single metadata repository. In order to
use simple data types in an application that also uses structures, it is not necessary to run
tuxscagen without -S.

SCA Remote Protocol Support
SCA Oracle Tuxedo invocation supports the following remote protocols:

/WS

/Domains

/WS
SCA invocations made using the SCA container have the capability of being performed using the
Oracle Tuxedo WorkStation protocol (/WS). This is accomplished by specifying the value
WorkStation (not abbreviated so as not to confuse it with WebServices) in the
<remoteAccess> element of the <binding.atmi> element.

Only reference-type invocations are be available in this mode. Service-type invocations may be
performed using the /WS transparently (there is no difference in behavior or configuration, and
setting the <remoteAccess> element to WorkStation for an SCA service has no effect).

Since native and WorkStation libraries cannot be mixed within the same process, client
processes must be built differently depending on the type of remote access chosen.
7-32 Oracle SALT Programming Guide

../ref/comref/comref.html
../ref/comref.html

SCA B ind ing
Note: When using the value propagatesTransaction in /binding.atmi/@requires, the
behavior of the ATMI binding does not actually perform any transaction propagation. It
actually starts a transaction, since the use of this protocol is reserved for client-side access
to Oracle Tuxedo (SCA or non-SCA) applications only. For more information, see ATMI
Binding.

/Domains
SCA invocations made using the SCA container have the capability of being performed using the
Oracle Tuxedo /Domains protocol. No additional configurations are necessary on
<binding.atmi> declarations in SCDL files.

Note: /Domains interoperability configuration is controlled by the Oracle Tuxedo
administrator.

The SCA service name configured for Oracle Tuxedo /Domains is as follows:

SCA -> SCA mode - /binding.atmi/service/@name attribute followed by a '/'
and method name

Legacy mode (SCA -> Tux interop mode) - /binding.atmi/service/@name
attribute.

For more information, see SCA and Oracle Tuxedo Interoperability.

SCA Binding
Oracle SALT supports

ATMI Binding

Java ATMI (JATMI) Binding

Python, Ruby, and PHP Binding

Web Services Binding

ATMI Binding
Oracle Tuxedo communications are configured in SCDL using a <binding.atmi> element. This
allows you to specify configuration elements specific to the ATMI transport, such as the location
of the TUXCONFIG file, the native Oracle Tuxedo buffer types used, Oracle Tuxedo-specific
authentication or /WS (WorkStation) configuration elements, etc.
Oracle SALT Programming Guide 7-33

Orac le SALT SCA Prog ramming
Listing 7-27 shows a summary of the <binding.atmi> element.

Note: ? refers to a parameter that can be specified 0 or 1 times.

* refers to a parameter that can be specified 0 or more times.

For more information, see Appendix F: Oracle SALT SCA ATMI Binding Reference in the
Oracle SALT Reference Guide.

Listing 7-27 ATMI Binding Pseudoschema

<binding.atmi requires="transactionalintent legacyintent"?>
 <tuxconfig>...</tuxconfig>?
 <map target="name">...</map>*
 <serviceType target="name">...</serviceType>*
 <inputBufferType target="name">...</inputBufferType>*
 <outputBufferType target="name">...</outputBufferType>*
 <errorBufferType target="name">...</errorBufferType>*
 <workStationParameters>?
 <networkAddress>...</networkAddress>?
 <secPrincipalName>...</secPrincipalName>?
 <secPrincipalLocation>...</secPrincipalLocation>?
 <secPrincipalPassId>...</secPrincipalPassId>?
 <encryptBits>...</encryptBits>?
 </workStationParameters>
 <authentication>?
 <userName>...</userName>?
 <clientName>...</clientName>?
 <groupName>...</groupName>?
 <passwordIdentifier>...</passwordIdentifier>?
 <userPasswordIdentifier>...
 </userPasswordIdentifier>?
 </authentication>
 <fieldTablesLocation>...</fieldTablesLocation>?
 <fieldTables>...</fieldTables>?
 <fieldTablesLocation32>...</fieldTablesLocation32>?
 <fieldTables32>...</fieldTables32>?
 <viewFilesLocation>...</viewFilesLocation>?
 <viewFiles>...</viewFiles>?
7-34 Oracle SALT Programming Guide

http://e-docs.bea.com/salt/docs11gr1ps1/ref/sca_bindschema.html

SCA B ind ing
 <viewFilesLocation32>...</viewFilesLocation32>?
 <viewFiles32>...</viewFiles32>?
 <remoteAccess>...</remoteAccess>?
 <transaction timeout="xsd:long"/>?
</binding.atmi>

Java ATMI (JATMI) Binding
Java ATMI (JATMI) binding allows SCA clients written in Java to call Oracle Tuxedo services
or SCA components. It provides one-way invocation of Oracle Tuxedo services based on the
Oracle Tuxedo WorkStation protocol (/WS). The invocation is for outbound communication only
from a Java environment to Oracle Tuxedo application acting as a server. Apart from a composite
file for SCDL binding declarations, no external configuration is necessary. The service name,
workstation address and authentication data are provided in the binding declaration.

Note: SSL is supported through the Oracle 11gR1 JCA Adapter. LLE is not currently
supported.

Most of the Oracle Tuxedo CPP ATMI binding elements support JATMI binding and have the
same usage. However, due to different underlying technology and running environment
differences, some elements are not supported and some that are supported but have different
element names.

The following Oracle Tuxedo CPP ATMI binding elements are not supported:

binding.atmi/tuxconfig

binding.atmi/fieldTablesLocation

binding.atmi/fieldTablesLocation32

binding.atmi/viewFilesLocation

binding.atmi/viewFilesLocation32

binding.atmi/transaction

The following Oracle Tuxedo CPP ATMI binding workStationParameters elements are not
supported:

binding.atmi/workStationParameters/secPrincipalName

binding.atmi/workStationParameters/secPrincipalLocation

binding.atmi/workStationParameters/secPrincipalPassId
Oracle SALT Programming Guide 7-35

../../../jca/docs11gr1ps1/index.html

Orac le SALT SCA Prog ramming
binding.atmi/workStationParameters/encryptBits

The following Oracle Tuxedo CPP ATMI binding element is supported in a limited fashion.

binding.atmi/remoteAccess

Note: Only the value "WorkStation" is allowed. If not specified, "WorkStation" is
assumed.

All the classes in the elements mentioned below must be specified in Java CLASSPATH:

binding.atmi/fieldTables - Specifies a comma-separated list of Java classes that are
extended from the weblogic.wtc.jatmi.TypedFML base class.

binding.atmi/fieldTables32 - Specifies a comma-separated list of Java classes that
are extended from the weblogic.wtc.jatmi.TypedFML32 base class.

binding.atmi/viewFiles - Specifies a comma-separated list of Java classes that are
extended from the weblogic.wtc.jatmi.TypedView base class. These derived classes
usually are generated from an Oracle Tuxedo VIEW file using the
weblogic.wtc.jatmi.viewj compiler. These also includes derived from
weblogic.wtc.jatmi.TypedXCType and weblogic.wtc.jatmi.TypedXCommon.

 For more information, see How to Use the viewj Compiler in the Oracle Tuxedo
WebLogic Tuxedo Connector Programmer's Guide.

binding.atmi/viewFiles32 - Specifies a comma-separated list of Java classes that are
extended from the webogic.wtc.jatmi.TypedView32 base class. These derived classes
usually are aslo generated from an Oracle Tuxedo VIEW file using the
weblogic.wtc.jatmi.viewj32 compiler.

Listing 7-28 shows an example of composite file for binding declaration of an Oracle Tuxedo
service named "ECHO“.

Listing 7-28 ECHO Composite File

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:f="binding-atmi.xsd"
name="ECHO">
 <reference name="ECHO" promote="EchoComponent/ECHO">
 <interface.java interface="com.abc.sca.jclient.Echo" />
 <f:binding.atmi requires="legacy">
7-36 Oracle SALT Programming Guide

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wtc_atmi/Views.html#wp1113817

SCA B ind ing
 <f:inputBufferType target="echoStr">STRING</f:inputBufferType>
 <f:outputBufferType target="echoStr">STRING</f:outputBufferType>

 <f:errorBufferType target="echoStr">STRING</f:errorBufferType>

 <f:workStationParameters>

<f:networkAddress>//STRIATUM:9999,//STRIATUM:1881</f:networkAddr
ess>
 </f:workStationParameters>
 <f:remoteAccess>WorkStation</f:remoteAccess>
 </f:binding.atmi>
 </reference>
 <component name="EchoComponent">
 <implementation.java class="com.abc.sca.jclient.EchoComponentImpl"

/>
 </component>
</component>

Listing 7-29 shows the interface for the example mentioned in Listing 7-28.

Listing 7-29 ECHO Interface

package com.abc.sca.jclient;

import com.oracle.jatmi.AtmiBindingException;

public interface Echo {
 String echoStr(String requestString) throws AtmiBindingException;

}

Listing 7-30 shows an example of an SCA client implementation.
Oracle SALT Programming Guide 7-37

Orac le SALT SCA Prog ramming
Listing 7-30 SCA Client Implementation

package com.abc.sca.jclient;

import org.osoa.sca.annotations.Constructor;
import org.osoa.sca.annotations.Reference;
import com.oracle.jatmi.AtmiBindingException;

/**
* A simple client component that uses a reference with a JATMI binding.
*/
public class EchoComponentImpl implements Echo {

 private Echo echoReference;

 @Constructor
 public EchoComponentImpl(@Reference(name = "ECHO", required = true)

Echo
 echoReference) {
 this.echoReference = echoReference;
 }

 public String echoStr(String requestString) throws

AtmiBindingException {
 return echoReference.echoStr(requestString);
 }
}

Python, Ruby, and PHP Binding
The Python, Ruby, and PHP language extensions are binding-independent, meaning that binding
extensions are not aware of the language of clients or components. Language extensions are not
aware of the binding used.

Binding extensions are not modified to comply with Python, Ruby, and PHP program support.
Note the following:
7-38 Oracle SALT Programming Guide

SCA B ind ing
If the data types defined in Python, Ruby or PHP binding do not match the Python, Ruby
or PHP source files, then Oracle SALT will throw an exception.

If a binding is configured with a data type that does not match what the Python, Ruby or
PHP component is designed to handle, an exception is thrown by the Python, Ruby or PHP
runtime (for example, binding.atmi configured with STRING Oracle Tuxedo buffers and
a Python function handling numerical data).

For a Python, Ruby or PHP client code mismatch with what binding is configured with, an
exception occurs originating from the binding code.

Since Python, Ruby, and PHP code is not compiled, any configuration mismatch between
binding and component/client can only be detected at runtime.

Python, Ruby or PHP programs with a composite scope require an Oracle Tuxedo server
reload when the script is modified. A stateless scope allows dynamic reloading of modified
scripts.

In order to expose Python, Ruby or PHP scripts as Web services, the SCAHOST command
must use the -w option in order to load the correct service binding during initialization.

Note: SCAHOST does not allow mixing both ATMI and Web services binding types in one
SCAHOST instance.

For more information, see the Oracle SALT Command Reference.

TMMETADATA server is required in order to expose Python, Ruby, and PHP components.

Python, Ruby, and PHP Binding Limitations
Using Python, Ruby, and PHP bindings have the following limitations:

When using the ATMI binding for interoperability calls (that is, when
requires="legacy" is set), mixing named and non-named parameters is not allowed (for
example, Python: def func(a, *b, **c), Ruby: def func(a, *b, hash)), since
there is no mechanism to restore the parameter names.

The names of the parameters must be configured in FML32 tables (ATMI binding), or by
way of WSDL (Web services binding). It is not possible to interoperate with lists of
non-named parameters because such calls cannot be accurately mapped to C++ or WSDL
interfaces due to the lack of guaranteed ordering of FML/FML32 Oracle Tuxedo buffers.

The supported modes are:

– Multiple parameters: def func(a, b, c) (same syntax for Python, Ruby, and PHP)
Oracle SALT Programming Guide 7-39

../ref/comref.html

Orac le SALT SCA Prog ramming
– Multiple parameters and list of parameters: def func(a, *b) (same syntax for
Python and Ruby)

– Named parameters: PHP - $svc->searchBike(array('COLOR' => 'RED', 'TYPE'
=> 'MTB')). For more information, see PHP Data Type Mapping.

– Dictionary or hash: Python: def func(**a), Ruby: def func(hash)

Note: Python parameters defined with ** are considered named parameters. Ruby
parameters defined with hash are considered named parameters. For more
information, see Python Parameters and Ruby Parameters.

In SCA to SCA mode, the above limitation still concerns named parameters since the order
of elements in a Python dictionary or Ruby hash is not guaranteed. To transmit a Python
dictionary or Ruby hash, you must work in "legacy" mode.

In SCA to SCA mode, using lists of parameters (excluding dictionaries or hashes) are
supported since Oracle Tuxedo Service Metadata interfaces describe service-side lists of
parameters/types (on the reference side parameters/types are self-described at runtime).

Unicode strings are not supported; accordingly MBSTRING buffers or FLD_MBSTRING fields
are not supported.

Web Services Binding
The Web services binding (binding.ws) leverages previously existing Oracle SALT capabilities
by funneling Web service traffic through the GWWS gateway. SCA components are hosted in
Oracle Tuxedo servers, and communications to and from those servers are performed using the
GWWS gateway.

SCA clients using a Web services binding remain unchanged whether the server is running in an
Oracle Tuxedo environment or a native Tuscany environment (for example, exposing the
component using the Axis2 Web services binding).

Note: HTTPS is not currently supported.

When SCA components are exposed using the Web services binding (binding.ws), tooling
performs the generation of WSDF information, metadata entries and FML32 field definitions.

When SCDL code of SCA components to be hosted in an Oracle Tuxedo domain (for example,
service elements) contains <binding.ws> elements, the buildscaserver command generates
an WSDF entry in a file named service.wsdf where 'service' is the name of the service
exposed. An accompanying service.mif and service.fml32 field table files are also generated,
7-40 Oracle SALT Programming Guide

SCA B ind ing
based on the contents of the WSDL interface associated with the Web service. You must compose
a WSDL interface. If no WSDL interface is found, an error message is generated.

Web services accessed from an Oracle Tuxedo domain using a Web services binding (for
example, reference elements found in SCDL) require the following manual configuration steps:

1. Convert the WSDL file into a WSDF entry by using the wsdlcvt tool. Simultaneously, a
Service Metadata Entry file (.mif), and fml32 mapping file are generated.

2. Make sure that the UBB source has the TMMETADATA and GWWS servers configured

3. Import the WSDF file into the SALTDEPLOY file

4. Convert the SALTDEPLOY file into binary using wsloadcf.

5. Load the Service Metadata Entry file (.mif) into the Service Metadata Repository using the
tmloadrepos command.

6. Boot (or re-boot) the GWWS process to initiate the new deployment.

The Web services binding reference extension initiates the Web services call.

Listing 7-31 shows an SCA component service exposed as a Web service.

Listing 7-31 Example SCA Component Service Exposed as a Web Service

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="bigbank.account">
...
 <service name="AccountService">
 <interface.wsdl interface="http://www.bigbank.com/AccountService
 #wsdl.interface(AccountService)"/>
 <binding.ws/>
 <reference>AccountServiceComponent</reference>
 </service>

 <component name="AccountServiceComponent">
 <implementation.cpp
 library="Account" header="AccountServiceImpl.h"/>
 <reference name="accountDataService">
 AccountDataServiceComponent
 </reference>
Oracle SALT Programming Guide 7-41

../../../tuxedo/docs11gr1ps1/rfcm/index.html

Orac le SALT SCA Prog ramming
 </component>
...
</composite>

The steps required to expose the corresponding service are as follows:

1. Compose a WSDL interface matching the component interface.

2. Use buildscacomponent to build the application component runtime, similar to building a
regular SCA component.

3. buildscaserver -w is used to convert SCDL code into a WSDF entry, and produce a
deployable server (Oracle Tuxedo server + library + SCDL).

The service from the above SCDL creates a WSDF entry as shown in Listing 7-32.

Listing 7-32 WSDF Entry

<Definition>
 <WSBinding id="AccountService_binding">
 <ServiceGroup id="AccountService">
 <Service name="TuxAccountService"/>
 </ServiceGroup>
 </WSBinding>
</Definition>

4. buildscaserver -w also constructs a Service Metadata Repository entry based by parsing
the SCDL and interface. The interface needs to be in WSDL form, and manually-composed
in this release.

5. Make sure that the UBB source has the TMMETADATA and GWWS servers configured.

6. The Service Metadata Repository entry is loaded into the Service Metadata Repository using
the tmloadrepos command.

7. The WSDF file must be imported into the SALTDEPLOY file and SALTDEPLOY converted into
binary using wsloadcf.
7-42 Oracle SALT Programming Guide

../../../tuxedo/docs11gr1ps1/rfcm/index.html

SCA B ind ing
8. The Service Metadata Entry file (.mif) is loaded into the Service Metadata Repository.

9. The Oracle Tuxedo server hosting the Web service is booted and made available.

10. The GWWS is rebooted to take into account the new deployment.

These steps are required, in addition to the SALTDEPLOY configuration, in order to set up the
GWWS gateway for Web services processing (for example, configuration of GWInstance,
Server Level Properties, etc.). When completed, Web service clients (SCA or other) have access
to the Web service.

Listing 7-33 shows a reference accessing a Web service.

Listing 7-33 Example Reference Accessing a Web Service

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="bigbank.account">
...
 <reference name="StockQuoteWebService">
 <interface.wsdl interface="http://www.webserviceX.NET/#
 wsdl.interface(StockQuoteSoap)"/>
 <binding.ws endpoint="http://www.webserviceX.NET/#
 wsdl.endpoint(StockQuote/StockQuoteSoap)"/>
 </reference>
...
</composite>

The steps required to access the Web service are as follows:

1. A WSDL file is necessary. This is usually published by the Web Service provider.

2. The WSDL file must be converted into a WSDF entry using the wsdlcvt tool. At the same
time a Service Metadata Entry file (.mif), and fml32 mapping file is generated.

3. The WSDF file must be imported into the SALTDEPLOY file and SALTDEPLOY converted into
binary using wsloadcf.

4. The Service Metadata Entry file (.mif) is loaded into the Service Metadata Repository using
the tmloadrepos command.
Oracle SALT Programming Guide 7-43

../../../tuxedo/docs11gr1ps1/rfcm/index.html

Orac le SALT SCA Prog ramming
5. The GWWS process is rebooted to take into account the new deployment.

These steps are required, in addition to the SALTDEPLOY configuration, in order to set up the
GWWS gateway for Web services processing (for example, configuration of GWInstance,
Server Level Properties, etc.). When completed, the SCA client has access to the Web service.

The process is the same, whether the client is stand-alone SCA program or an SCA component
(already a server) referencing another SCA component via the Web service binding.

SCA Data Type Mapping
Using ATMI binding leverages the Oracle Tuxedo infrastructure. Data exchanged between SCA
components, or Oracle Tuxedo clients/services and SCA clients/components is performed using
Oracle Tuxedo typed buffers. Table 7-1 through Table 7-10 summarize the correspondence
between native types and Oracle Tuxedo buffers/types, as well as SOAP types when applicable.

In the example shown in Listing 7-34, implementations send and receive an Oracle Tuxedo
STRING buffer. To the software (binding and reference extension implementations), the
determination of the actual Oracle Tuxedo buffer to be used is provided by the contents of the
/binding.atmi/inputBufferType, /binding.atmi/outputBufferType, or
/binding.atmi/errorBufferType elements in the SCDL configuration, and the type of buffer
returned (or sent) by a server (or client). It does not matter whether client or server is an ATMI
program or an SCA component.

Notice that the Oracle Tuxedo simpapp service has its own namespace within namespace
services. A C++ method toupper is associated with this service.

Listing 7-34 C++ Interface Example

#include <string>
namespace services
{
 namespace simpapp
 {
 /**
 * business interface
 */
 class ToupperService
 {
 public:
7-44 Oracle SALT Programming Guide

SCA Data Type Mapp ing

 virtual std::string
 toupper(const std::string inputString) = 0;
 };

 } // End simpapp
} // End services

The following data type mapping rules apply:

Run-Time Data Type Mapping

SCA Utility Data Type Mapping

Run-Time Data Type Mapping
Simple Oracle Tuxedo Buffer Data Mapping

Complex Return Type Mapping

Complex Oracle Tuxedo Buffer Data Mapping

Simple Oracle Tuxedo Buffer Data Mapping
The following are considered to be simple Oracle Tuxedo buffers:

STRING

CARRAY (and X_OCTET)

MBSTRING

XML

Table 7-1 lists simple Oracle Tuxedo buffer types that are mapped to SCA binding.
Oracle SALT Programming Guide 7-45

Orac le SALT SCA Prog ramming
When a service called by an SCA client returns successfully, a pointer to the service return data
is passed back to the Proxy stub generated by buildscaclient. The Proxy stub then
de-references this pointer and returns the data to the application.

Table 7-1 can be interpreted as follows:

When the reference or service binding extension runtime sees an Oracle Tuxedo STRING
buffer, it looks for either a char*, char array, std::string parameter or return type
(depending on the direction). If a different type is found, an exception is thrown with a
message explaining what happened.

When the reference or service binding extension runtime sees a char* (for example) as a
single parameter or return type, it looks for STRING as the buffer type in the
binding.atmi element. If a different Oracle Tuxedo buffer type is found, an exception is
thrown with a message explaining what happened.

Table 7-1 Simple Oracle Tuxedo Buffer Type Data Mapping

C++ or STL Type Java Type Oracle Tuxedo Buffer
Type

Notes

char*, char array
or std::string

 java.lang.String STRING

CARRAY_T byte[] or
java.lang.Byte[]

CARRAY

X_OCTET_T byte[] or
java.lang.Byte[]

X_OCTET

XML_T byte[] or
java.lang.Byte[]

XML This type is passed as a
C++ array within the data
element of struct XML or
as an array of java bytes.
It is transformed to SDO.

wchar_t * or
wchar_t array

N/A MBSTRING See Multibyte String
Data Mapping

std::wstring java.lang.String MBSTRING See Multibyte String
Data Mapping
7-46 Oracle SALT Programming Guide

SCA Data Type Mapp ing
Multibyte String Data Mapping
Oracle Tuxedo uses multibyte strings to represent multibyte character data with encoding names
based on iconv (as defined by Oracle Tuxedo). C++ uses a wstring, wchar_t*, or wchar_t[]
data type to represent multibyte character data with encoding names (as defined by the C++
library).

Oracle Tuxedo and C++ sometimes use different names to represent a particular multibyte
encoding. Mapping between Oracle Tuxedo encoding names and C++ encoding names is as
follows:

Receiving a Multibyte String Buffer

When an SCA client or server receives an MBSTRING buffer or an FML32 buffer with a
FLD_MBSTRING field, it considers the encoding for that multibyte string to be the first
locale from the following cases:

a. Locale associated with the FLD_MBSTRING field, if present.

Note: For more information, see Table 7-2.

b. Locale associated with the MBSTRING or FML32 buffer.

c. Locale set in the environment of the SCA client or server.

If case a or b is matched, Oracle Tuxedo invokes the setlocale() function for locale type
LC_CTYPE with the locale for the received buffer. If setlocale() fails (indicating there is
no such locale) and an alternate name has been associated with this locale in the optional
$TUXDIR/locale/setlocale_alias file, Oracle Tuxedo attempts to set the LC_CTYPE
locale to the alternate locale.

The $TUXDIR/locale/setlocale_alias file may be optionally created by the Oracle
Tuxedo administrator. If present, it contains a mapping of Oracle Tuxedo MBSTRING
codeset names to an equivalent operating system locale accepted by the setlocale()
function.

Lines consist of an Oracle Tuxedo MBSTRING codeset name followed by whitespace and
an OS locale name. Only the first line in the file corresponding to a particular MBSTRING
codeset name are considered. Comment lines begin with #.

The $TUXDIR/locale/setlocale_alias file is used by the SALT SCA software when
converting MBSTRING data into C++ wstring or wchar_t[] data. If setlocale() fails
when using the Oracle Tuxedo MBSTRING codeset name, then the SALT SCA software
attempts to use the alias name, if present. For example, if the file contains a line 'GB2312
zh_CN.GB2312' then if setlocale(LC_CTYPE, 'GB2312') fails, the SALT SCA
software attempts setlocale(LC_CTYPE, 'zh_CN.GB2312').
Oracle SALT Programming Guide 7-47

Orac le SALT SCA Prog ramming
Sending a Multibyte String Buffer

When an SCA client or server converts a wstring, wchar_t[], or wchar_t* to an
MBSTRING buffer or a FLD_MBSTRING field, it uses the TPMBENC environment variable
value as the locale to set when converting from C++ wide characters to a multibyte string.
If the operating system does not recognize this locale, Oracle Tuxedo uses the alternate
locale from the $TUXDIR/locale/setlocale_alias file, if any.

Note: It is possible to transmit multibyte data retrieved from an MBSTRING buffer, an FML32
FLD_MBSTRING field, or a VIEW32 mbstring field. It is also possible to transmit
multibyte data entered using the SDO setString() method.

However, it is not possible to enter multibyte characters directly into an XML
document and transmit this data via SALT. This is because multibyte characters
entered in XML documents are transcoded into multibyte strings, and SDO uses
wchar_t arrays to represent multibyte characters.

Complex Return Type Mapping
The following C++ built-in types (used as return types) are considered complex and
automatically encapsulated in an FML/FML32 buffer as a single generic field following the
complex buffer mapping rules described in Complex Oracle Tuxedo Buffer Data Mapping. This
mechanism addresses the need for returning types where a corresponding Oracle Tuxedo buffer
cannot be used.

Note: Interfaces returning any of the built-in types assume that FML/FML32 is the output buffer
type. The name of this generic field is TUX_RTNdatatype based on the type of data being
returned. TUX_RTNdatatype fields are defined in the Usysflds.h/Usysfl32.h and
Usysflds/Usysfl32 shipped with Oracle Tuxedo.

bool : maps to TUX_RTNCHAR field

char: maps to TUX_RTNCHAR field

signed char: maps to TUX_RTNCHAR field

unsigned char: maps to TUX_RTNCHAR field

short: maps to TUX_RTNSHORT field

unsigned short: maps to TUX_RTNSHORT field

int: maps to TUX_RTNLONG field

unsigned int: maps to TUX_RTNLONG field
7-48 Oracle SALT Programming Guide

SCA Data Type Mapp ing
long: maps to TUX_RTNLONG field

unsigned long: maps to TUX_RTNLONG field

long long: (maps to TUX_RTNLONG field

unsigned long long: maps to TUX_RTNLONG field

float: maps to TUX_RTNFLOAT field

double: maps to TUX_RTNDOUBLE field

long double: maps to TUX_RTNDOUBLE field

Complex Oracle Tuxedo Buffer Data Mapping
The following are considered to be complex Oracle Tuxedo buffers:

FML

FML32

VIEW (and X_* equivalents)

VIEW32

Table 7-2 lists the complex Oracle Tuxedo buffer types that are mapped to SCA binding.

For FML and FML32 buffers, parameter names in interfaces must correspond to field names, and
follow the restrictions that apply to Oracle Tuxedo fields (length, characters allowed). When
these interfaces are generated from metadata using tuxscagen(1), the generated code contains
the properly formatted parameter names.

If an application manually develops interfaces without parameter names, manually develops
interfaces that are otherwise incorrect, or makes incompatible changes to SALT generated
interfaces, then incorrect results are likely to occur.

VIEW (and X_* equivalents) and VIEW32 buffers require the use of SDO DataObject
wrappers.

Listing 7-35 shows an interface example. The associated field definitions (following the
interface) must be present in the process environment.
Oracle SALT Programming Guide 7-49

../ref/comref.html

Orac le SALT SCA Prog ramming
Table 7-2 Complex Oracle Tuxedo Buffer Type Data Mapping

C++, STL, or SDO
type

Java Type Oracle Tuxedo
field type

Oracle Tuxedo
view type

Notes

bool boolean or
java.lang.Bo
olean

FLD_CHAR char Maps to 'T' or 'F'. (This
matches the mapping used
elsewhere in SALT.)

char, signed
char, or
unsigned char

byte or
java.lang.By
te

FLD_CHAR char

short or
unsigned short

short or
java.lang.Sh
ort

FLD_SHORT short An unsigned short is cast to
a short before being
converted to FLD_SHORT
or short.

int or unsigned
int

int or
java.lang.In
teger

FLD_LONG int An unsigned int being
converted to FML or
FML32 is cast to a long
before being converted to
FLD_LONG or long. An
unsigned int being
converted to a VIEW or
VIEW32 member is cast to
an int.

long or
unsigned long

long or
java.lang.Lo
ng

FLD_LONG long An exception is thrown if
the value of a 64-bit
long does not fit into a
FLD_LONG or long on a
32-bit platform. An
unsigned long is cast to
long before being
converted to FLD_LONG or
long.
7-50 Oracle SALT Programming Guide

SCA Data Type Mapp ing
long long or
unsigned long
long

N/A FLD_LONG long An exception is thrown if
the data value does not fit
within a FLD_LONG or
long. An unsigned long
long is cast to long
long before being
converted to FLD_LONG or
long.

float float or
java.lang.Fl
oat

FLD_FLOAT float

double double or
java.lang.Do
uble

FLD_DOUBLE double

long double N/A FLD_DOUBLE double

char* or char
array

N/A FLD_STRING string

std::string java.lang.St
ring

FLD_STRING string

CARRAY_T or
X_OCTET_T

 class
CARRAY

FLD_CARRAY carray Will map externally
following GWWS rules.
This departs from the
OSOA spec. (which does
not support them), and
should be considered an
improvement.

Bytes N/A FLD_CARRAY Carray This mapping is used when
part of a DataObject

wchar_t* or
wchar_t array

N/A FLD_MBSTRING
(FML32 only)

mbstring
(VIEW32
only)

(Java char is Unicode and
can range from -32768 to
+32767.)

See also Multibyte String
Data Mapping

Table 7-2 Complex Oracle Tuxedo Buffer Type Data Mapping

C++, STL, or SDO
type

Java Type Oracle Tuxedo
field type

Oracle Tuxedo
view type

Notes
Oracle SALT Programming Guide 7-51

Orac le SALT SCA Prog ramming
Listing 7-35 Interface Example

...
int myService(int param1, float param2); ...
Field table definitions
#name number type flag comment
#---
param1 20 int - Parameter 1
param2 30 float - Parameter 2
...

std::wstring java.lang.St
ring

FLD_MBSTRING
(FML32 only)

mbstring
(VIEW32
only)

See also Multibyte String
Data Mapping

commonj::sdo::
DataObjectPtr

TypedFML32 FLD_FML32
(FML32 only)

N/A Generate a data
transformation exception,
which is translated to an
ATMIBindingExceptio
n before being returned to
the application, when:
• Attempting to add such

a field in an Oracle
Tuxedo buffer other
than FML32

• The data object is not
typed (i.e., there is no
corresponding schema
describing it).

See also Multibyte String
Data Mapping

commonj::sdo::
DataObjectPtr

TypedView32 FLD_VIEW32
(FML32 only)

N/A See also Multibyte String
Data Mapping

struct
structurename

N/A FLD_FML32
(FML32 only)

structurenam
e

See also SCA Structure
Support

Table 7-2 Complex Oracle Tuxedo Buffer Type Data Mapping

C++, STL, or SDO
type

Java Type Oracle Tuxedo
field type

Oracle Tuxedo
view type

Notes
7-52 Oracle SALT Programming Guide

SCA Data Type Mapp ing
SDO Mapping
C++ method prototypes that use commonj::sdo::DataObjectPtr objects as parameter or
return types are mapped to an FML, FML32, VIEW, or VIEW32 buffer.

You must provide an XML schema that describes the SDO object. The schema is made available
to the service or reference extension runtime by placing the schema file (.xsd file) in the same
location as the SCDL composite file that contains the reference or service definition affected. The
schema is used internally to associate element names and field names.

Note: When using view or view32, a schema type (for example, complexType) which name
matches the view or view32 used is required.

For more information, see mkfldfromschema and mkfld32fromschema in the SALT 11g
Release 1 (11.1.1.0) Command Reference.

For example, a C++ method prototype defined in a header such as:
long myMethod(commonj::sdo::DataObjectPtr data);

Listing 7-36 shows the associated schema.

Listing 7-36 Schema

<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema
 xmlns="http://www.example.com/myExample"
 targetNamespace="http://www.example.com/myExample">

 <xsd:element name="bike" type="BikeType"/>
 <xsd:element name="comment" type="xsd:string"/>

 <xsd:complexType name="BikeType">
 <xsd:sequence>
 <xsd:element name="serialNO" type="xsd:string"/>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="type" type="xsd:string"/>
 <xsd:element name="price" type="xsd:float"/>
 </xsd:sequence>
Oracle SALT Programming Guide 7-53

http://e-docs.bea.com/salt/docs11gr1ps1/ref/comref.html
http://e-docs.bea.com/salt/docs11gr1ps1/ref/comref.html

Orac le SALT SCA Prog ramming
 </xsd:complexType>
</xsd:schema>

Table 7-3 shows the generated field table.

The following restrictions in XML schemas apply:

Attributes cannot be specified and are ignored if specified

Values in restrictions are ignored (their meaning is application-related), only the field name
and type are generated

When using XML schema types, only signed integral types are supported.
See "SDO C++ Specification" for a list of available SDO primitive types.

SCA Utility Data Type Mapping
The scatuxgen and tuxscagen utilities are used to generate manual SCA data type mapping.
The scatuxgen mapping rules are as follows:

C++ Parameter/Return Type and Oracle Tuxedo Buffer Type Mapping

C++ Parameter Type and Oracle Tuxedo Parameter Type Mapping

C++ Parameter Type and Oracle Tuxedo Complex Type Mapping

Parameter and Return Types to Parameter-Level Keyword Restrictions

Table 7-3 Generated Field Tables

NAME NUMBER TYPE FLAG Comment

bike 20 fml32 -

comment 30 string -

serialNO 40 string -

name 50 string -

type 60 string -

price 70 float -
7-54 Oracle SALT Programming Guide

SCA Data Type Mapp ing
Note: The mapping rules for tuxscagen are executed in the reverse direction (Oracle Tuxedo
Buffer Type -> C++ Parameter Type).

C++ Parameter/Return Type and Oracle Tuxedo Buffer Type Mapping
Table 7-4 shows the correspondence between parameter/return types and Oracle Tuxedo buffer
types (inbuf service-level keyword).

Table 7-4 'inbuf' Keyword Buffer Type Mapping Table

C++ Parameter Type Oracle Tuxedo Buffer Type

std::string or char* STRING

struct carray_t CARRAY

char FML32

short FML32

int FML32

long FML32

float FML32

double FML32

wchar_t[] MBSTRING

struct xml_t XML

struct x_octet_t X_OCTET

commonj::sdo::DataOb
jectPtr

X_COMMON, X_C_TYPE, VIEW, VIEW32, FML, or FML32 depending
on intputBufferType setting
Oracle SALT Programming Guide 7-55

Orac le SALT SCA Prog ramming
Table 7-5shows the correspondence between parameter/return types and Oracle Tuxedo buffer
types (outbuf or err buf service-level keywords).

struct structurename X_COMMON, X_C_TYPE, VIEW, VIEW32, FML, or FML32 depending
on intputBufferType setting

multiple parameters, or one
commonj::sdo::DataObjectPt
r or struct structurename and
no binding.atmi or no
corresponding
inputBufferType and the
input buffer is not specified
using a command line option

FML32

Table 7-4 'inbuf' Keyword Buffer Type Mapping Table

C++ Parameter Type Oracle Tuxedo Buffer Type

Table 7-5 outbuf' or 'errbuf' Keyword Buffer Type Mapping Table

C++ Return Type Oracle Tuxedo Buffer Type

std::string or char* STRING

struct carray_t CARRAY

char FML32

short FML32

int FML32

long FML32

float FML33

double FML32

wchar_t[], wstring MBSTRING

struct xml_t XML

struct x_octet_t X_OCTET
7-56 Oracle SALT Programming Guide

SCA Data Type Mapp ing
C++ Parameter Type and Oracle Tuxedo Parameter Type Mapping
Table 7-7 shows how scatuxgen handles interface parameter types and converts them to an
Oracle Tuxedo Service Metadata Repository parameter-level keyword value when more than one
parameter is used in the method signature.

commonj::sdo::DataOb
jectPtr

X_COMMON, X_C_TYPE, VIEW, VIEW32, FML or FML32 depending on
the binding.atmi/outputBufferType or
binding.atmi/errorBufferType setting.

commonj::sdo::DataOb
jectPtr

FML32 if no binding.atmi is set, or binding.atmi is set and
binding.atmi/outputBufferType or binding.atmi/errorBufferType aren't
specified.

struct structurename X_COMMON, X_C_TYPE, VIEW, VIEW32, FML or FML32 depending on
the binding.atmi/outputBufferType or binding.atmi/errorBufferType setting.

struct structurename FML32 if no binding.atmi is set, or binding.atmi is set and
binding.atmi/outputBufferType or binding.atmi/errorBufferType are not
specified.

Table 7-5 outbuf' or 'errbuf' Keyword Buffer Type Mapping Table

C++ Return Type Oracle Tuxedo Buffer Type

Table 7-6 Parameter-Level/Field Type Mapping Table

C++ Parameter Data Type Oracle Tuxedo Parameter-Level Keyword (FML FIELD Type)

char byte(FLD_CHAR)

short short(FLD_SHORT)

int integer(FLD_LONG)

long integer(FLD_LONG)

float float(FLD_FLOAT)

double double(FLD_DOUBLE)

std::string or char * string(FLD_STRING)

struct carray_t carray(FLD_CARRAY)

std::wstring mbstring(FLD_MBSTRING)
Oracle SALT Programming Guide 7-57

Orac le SALT SCA Prog ramming
C++ Parameter Type and Oracle Tuxedo Complex Type Mapping
This section contains the following topics:

SDO Mapping

C Struct Mapping

SDO Mapping
When a method takes an SDO object as an argument, or returns an SDO object, for example as
follows: commonj::sdo::DataObjectPtr myMethod(commonj::sdo::DataObjectPtr
input).

The corresponding runtime type may be described by an XML schema as shown in Listing 7-37
and then referenced in the binding as shown in Listing 7-38.

Listing 7-37 XML Schema

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="tuxedo"

targetNamespace="tuxedo">

 <xsd:complexType name="BikeInventory">
 <xsd:sequence>
 <xsd:element name="BIKES" type="Bike"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="STATUS" type="xsd:string" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="Bike">
 <xsd:sequence>

commonj::sdo::DataOb
jectPtr

fml32(FLD_FML32)

struct structurename fml32(FLD_FML32)

Table 7-6 Parameter-Level/Field Type Mapping Table

C++ Parameter Data Type Oracle Tuxedo Parameter-Level Keyword (FML FIELD Type)
7-58 Oracle SALT Programming Guide

SCA Data Type Mapp ing
 <xsd:element name="SERIALNO" type="xsd:string"/>
 <xsd:element name="SKU" type="xsd:string"/>
 <xsd:element name="NAME" type="xsd:string"/>
 <xsd:element name="TYPE" type="xsd:string"/>
 <xsd:element name="PRICE" type="xsd:float"/>
 <xsd:element name="SIZE" type="xsd:int"/>
 <xsd:element name="INSTOCK" type="xsd:string"/>
 <xsd:element name="ORDERDATE" type="xsd:string"/>
 <xsd:element name="COLOR" type="xsd:string"/>
 <xsd:element name="CURSERIALNO" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

</xsd:schema>

Listing 7-38 Binding

...
 <reference name="UBIK">
 <interface.cpp header="uBikeService.h"/>
 <binding.atmi>
 <inputBufferType>FML32/Bike</inputBufferType>
 <outputBufferType>FML32/BikeInventory</outputBufferType>
 </binding.atmi>
 </reference>
 ...

When such a schema is present, scatuxgen parses it and generates the corresponding
parameter-level mapping entries as listed in Table 7-7.
Oracle SALT Programming Guide 7-59

Orac le SALT SCA Prog ramming
C Struct Mapping
When a method takes a C struct as an argument, or returns a C struct (for example, as shown in
Listing 7-39), scatuxgen parses it and generates the corresponding parameter-level mapping
entries listed in Table 7-8.

Listing 7-39 C Struct

struct customer {
 char firstname[80];
 char lastname[80];
 char address[240];
};

struct id {

Table 7-7 Parameter-level/Field Type Mapping

XML Schema element type Oracle Tuxedo Parameter-Level Keyword (FML FIELD Type)

xsd:byte byte(FLD_CHAR)

xsd:short short(FLD_SHORT)

xsd:int integer(FLD_LONG)

xsd:long integer(FLD_LONG)

xsd:float float(FLD_FLOAT)

xsd:double double(FLD_DOUBLE)

xsd:string string(FLD_STRING)

xsd:string mbstring(FLD_MBSTRING) when -t option is specified

xsd:base64binary carray(FLD_CARRAY)

xsd:complexType fml32(FLD_FML32)

xsd:minOccurs requiredcount

xsd:maxOccurs count
7-60 Oracle SALT Programming Guide

SCA Data Type Mapp ing
 int SSN;
 int zipCode;
};

struct customer* myMethod(struct *id input);

Table 7-8 Parameter-Level/Field Type Mapping

Struct Member Type Oracle Tuxedo Parameter-Level Keyword (FML FIELD Type)

char, unsigned char,
signed char

byte(FLD_CHAR)

char [] string(FLD_STRING)

wchar_t [] mbstring(FLD_MBSTRING)

short, unsigned
short

short(FLD_SHORT)

int, unsigned int integer(FLD_LONG)

long, unsigned long,
long long, unsigned
long long

integer(FLD_LONG)

float float(FLD_FLOAT)

double, long double double(FLD_DOUBLE)

struct
nestedstructname
(for more
information, see SCA
Structure Support)

fml32 (FLD_FML32)

array type count=requiredcount=array specifier
Oracle SALT Programming Guide 7-61

Orac le SALT SCA Prog ramming
Parameter and Return Types to Parameter-Level Keyword Restrictions
For parameter-level keywords, the Oracle Tuxedo buffer type/parameter type restrictions are
consistent with the contents expected by tmloadrepos. An error message is returned when an
attempt to match any combinations that are not listed in Table 7-9 and Table 7-10.

Table 7-9 Oracle Tuxedo Buffer Type/Parameter Type Restrictions (Part 1)

Parameter Type /
Oracle Tuxedo Buffer

byte(char) short integer float double String

CARRAY

FML X X X X X X

FML32 X X X X X X

VIEW X X X X X X

VIEW32 X X X X X X

X_COMMON X X X

X_C_TYPE X X X X X X

X_OCTET

STRING X

XML X

MBSTRING

Table 7-10 Oracle Tuxedo Buffer Type/Parameter Type Restrictions (Part 2)

Parameter Type /
Oracle Tuxedo Buffer

carray xml view32 fml32 mbstring

CARRAY X

FML X

FML32 X X X X X
7-62 Oracle SALT Programming Guide

../../../tuxedo/docs11gr1ps1/rfcm/index.html

SCA Data Type Mapp ing
Python, Ruby, and PHP Data Type Mapping
The following sections describe the supported data types in Python, Ruby, and PHP clients or
components with respect to the native, C/C++ based environment, and in order to give the
correspondence for writing the Oracle Tuxedo Service Metadata Repository interface required by
the ATMI binding. Corresponding Oracle Tuxedo buffer and field type are also indicated for uses
with the ATMI or Web Services binding.

Python Data Type Mapping

Ruby Data Type Mapping

PHP Data Type Mapping

Python Data Type Mapping
In Python, clients or components only use parameters and return values which types are listed in
Table 7-11. Multiple parameters are supported (in the same way that multiple parameters are
supported in C++), using FML32 Oracle Tuxedo buffers.

Note: Arrays are not supported as they are not supported by bindings or the C++ language
extension.

VIEW X

VIEW32 X X

X_COMMON

X_C_TYPE

X_OCTET X

STRING

XML X

MBSTRING X X

Table 7-10 Oracle Tuxedo Buffer Type/Parameter Type Restrictions (Part 2)

Parameter Type /
Oracle Tuxedo Buffer

carray xml view32 fml32 mbstring
Oracle SALT Programming Guide 7-63

Orac le SALT SCA Prog ramming
Notes: int (short), long, int (long), float (float) are allowed in the C++ to Python direction only.
The Python runtime catches any overflow situation (e.g.: when copying a C++ long into
a Python int).

In order to map a string of length 1 to a char*/std::string/STRING, the originating
Python variable will have to have 2 ending zeroes (for example, 't = "a\x00").

Supported XML objects in Python must be xml.etree.ElementTree objects, (that is, the
language extension converts xml.etree.ElementTree objects into
commonj::sdo::DataObjectPtr objects, and commonj::sdo::DataObjectPtr objects into
xml.etree.ElementTree objects.

Using lists and dictionaries are also supported, as detailed in Python Parameters and Dictionaries.

Note: Lists and dictionaries are allowed as parameters, but are not allowed to be returned.

Some limitations concerning multiple parameters and lists will stand with respect to using
bindings. For more information, see Python, Ruby, and PHP Binding.

Table 7-11 Supported Python, C++ and Oracle Tuxedo Buffer Types

Python parameter(s) or Return Type C/C++ Native Type
ATMI Binding Type
Buffer type/Field Type

int short, unsigned short FML32/FLD_SHORT

long short, unsigned short FML32/FLD_SHORT

int long, unsigned long FML32/FLD_LONG

long long, unsigned long FML32/FLD_LONG

bool bool FML32/FLD_CHAR

float float FML32/FLD_FLOAT

float double, long double FML32/FLD_DOUBLE

string of length 1 char FML32/FLD_CHAR

string char *, std::string STRING

xml commonj::sdo::DataObject
Ptr

FML32, VIEW, VIEW32
7-64 Oracle SALT Programming Guide

SCA Data Type Mapp ing
Python Parameters
You can use the list notation (*) to pass an undetermined number of parameters to/from a Python
program. For example:
def test(*params)

 for p in params:

 print "parameter:", p

and an example of call: test(1, 2, 3, 4, 5)

This notation is equivalent to having an actual list of parameters, such as:
def test(parm1, parm2, parm3, parm4, parm5)

 ...

Individual supported types are limited to the types listed in Table 7-11.

Exposing a Python function as an SCA service with ATMI or Web services binding requires an
interface. This interface is stored in the Oracle Tuxedo Service Metadata Repository as outlined
in Python, Ruby, and PHP Component Programming.

When called, the Python function receives a list of parameters corresponding exactly to what the
interface specifies. Any extra parameters passed by the client are ignored, and any type mismatch
results in a data mapping exception.

Note: Using this notation is limited to local calls (no binding), or using ATMI binding between
SCA components (that is, the <binding.atmi> element with no requires="legacy"
attribute).

For local calls (no binding specified), or references, no interface is required.

Dictionaries
You can use the named parameters notation (**) to pass name/value pairs, also known as
dictionaries, to/from Python programs. For example:
def test(**params):

 for p in params.keys():

 print "key:", p, " parameter:", params[p]

and an example of call: test(a=1, b=2)

Individual supported types are limited to the types listed in Table 7-11.
Oracle SALT Programming Guide 7-65

Orac le SALT SCA Prog ramming
Exposing a Python function as an SCA service with the ATMI or Web Services binding requires
an interface. This interface is stored in the Oracle Tuxedo Service Metadata Repository as
outlined in Python, Ruby, and PHP Component Programming.

For example, consider the Oracle Tuxedo Service Metadata Repository entry shown in
Listing 7-40

Listing 7-40 Oracle Tuxedo Service Metadata Repository Entry for Python

service=testPython2
tuxservice=TESTPT
inbuf=FML32
outbuf=FML32

param=NUMBER
type=long
access=in

param=TEXT
type=string
access=in

param=FNUMBER
type=double
access=in
##

When called, the Python function receives a list of parameters corresponding exactly to what the
interface specifies. Any extra parameters passed by the client are ignored, and any type mismatch
results in a data mapping exception.

The names of the parameters match the key names passed to the Python function. The interface
is obtained by making an internal call to the TMMETADATA server. The TMMETADATA server must
be running in order to make calls to Python, Ruby or PHP functions.

A Python function called with the interface is equivalent to the following Python call:
7-66 Oracle SALT Programming Guide

SCA Data Type Mapp ing
test(a=1, b=2)

Ruby Data Type Mapping
Table 7-12 lists supported Ruby, C/C++ and Oracle Tuxedo buffer types. Multiple parameters are
supported (in the same way that multiple parameters are supported in C++), using FML32 Oracle
Tuxedo buffers.

Arrays are not supported as they are not supported by bindings or the C++ language extension.

Notes: Ruby runtime may catch an overflow exception.

Possible loss of precision when the Ruby Bignum is bigger than a C++ double.

Float (float) is allowed in C++ to Ruby direction only.

There is no mapping to single character (char/FLD_CHAR) possible in Ruby.

Supported XML objects in Ruby must be REXML (that is, the language extension converts
REXML::Document objects into commonj::sdo::DataObect objects, and
commonj::sdo::DataObjectPtr objects into REXML::Document objects.

Using variable argument lists and hashes are also be supported, as detailed in the following
paragraphs.

Table 7-12 Supported Ruby, C++ and Oracle Tuxedo Buffer Types

Ruby parameter or return type C/C++ native type
ATMI binding type
Buffer type/Field type

Fixnum short, unsigned short FML32/FLD_SHORT

Fixnum long, unsigned long FML32/FLD_LONG

Bignum double, long double FML32/FLD_DOUBLE

True/false bool FML32/FLD_CHAR

Float float FML32/FLD_FLOAT

Float double, long double FML32/FLD_DOUBLE

String char *, std::string STRING

REXML Object commonj::sdo::DataObject
Ptr

FML32, VIEW, VIEW32
Oracle SALT Programming Guide 7-67

Orac le SALT SCA Prog ramming
Note: Variable argument lists and hashes are allowed as parameters, but are not allowed to be
returned.

Some limitations concerning multiple parameters and lists will stand with respect to using
bindings. For more information, see Python, Ruby, and PHP Binding.

Ruby Parameters
You can use the list notation (*) to pass an undetermined number of parameters to/from a Ruby
script. For example:
def func(a, b, *otherargs)

 puts a

 puts b

 otherargs.each { |arg| puts arg }

end

which can be called like this: func(1, 2, 3, 4, 5)

Individual supported types are limited to the types listed in Table 7-12.

Exposing a Ruby function as an SCA service with the ATMI or Web Services binding requires
an interface. This interface is stored in the Oracle Tuxedo Service Metadata Repository as
outlined in Python, Ruby, and PHP Component Programming.

For example, consider the Oracle Tuxedo Service Metadata Repository entry shown in
Listing 7-41

Listing 7-41 Oracle Tuxedo Service Metadata Repository Entry for Ruby

service=testRuby
tuxservice=TESTRU
inbuf=FML32
outbuf=FML32

param=first
type=char
access=in

param=next
7-68 Oracle SALT Programming Guide

SCA Data Type Mapp ing
type=long
access=in

param=last
type=string
access=in

##

When called, the Ruby function receives a list of parameters corresponding exactly to what the
interface specifies. Any extra parameters passed by the client are ignored, and any type mismatch
results in a data mapping exception.

Notes: Using this notation is limited to local calls (no binding), or with using the ATMI binding
between SCA components (that is, the <binding.atmi> element with no
requires="legacy" attribute).

Local calls (no binding specified), or references, do not require an interface.

Hash
You can use named parameters in the form of hash type parameters to pass name/value pairs
to/from Ruby scripts. For example:
def func2(hash)

 hash.each_pair do |key, val|

 puts "#{key} -> #{val}"

 end

end

which can be called like this: func2("first" => true, "next" => 5, "last" => "hi")

Individual supported types are limited to the types listed inTable 7-12.

When exposing a Ruby function as an SCA service with the ATMI or Web Services binding, an
interface is required. This interface is stored in the Oracle Tuxedo Service Metadata Repository
as outlined in Python, Ruby, and PHP Component Programming.

When called, the Ruby function receives a list of parameters corresponding exactly to what the
interface specifies. Any extra parameters passed by the client are ignored, and any type mismatch
results in a data mapping exception.
Oracle SALT Programming Guide 7-69

Orac le SALT SCA Prog ramming
The names of the parameters match the key names passed to the Ruby function (that is, a Ruby
function called with the above interface is equivalent to the following Ruby client call:
func2("first" => true, "next" => 5, "last" => "hi")

where the values 'true', 5 and 'hi' are arbitrary, not the keys.

PHP Data Type Mapping
Table 7-13 lists supported Ruby, C/C++ and Oracle Tuxedo buffer types. Multiple parameters are
supported (in the same way that multiple parameters are supported in C++), using FML32 Oracle
Tuxedo buffers.

Arrays are not supported as they are not supported by bindings or the C++ language extension.

Returning XML data in PHP is done by returning a STRING object which is then converted into
a SimpleXMLElement as follows:

Table 7-13 Supported PHP, C++ and Oracle Tuxedo Buffer Types

PHP parameter(s) or return type C/C++ native type
ATMI binding type
Buffer type/Field type

integer short, unsigned short FML32/FLD_SHORT

integer long, unsigned long FML32/FLD_LONG

boolean bool FML32/FLD_CHAR

float1

float FML32/FLD_FLOAT

float double, long double FML32/FLD_DOUBLE

string of length 1 char FML32/FLD_CHAR

string char *, std::string STRING

string (return type, see
below)

commonj::sdo::DataObject
Ptr

FML32, VIEW, VIEW32

object of type
SimpleXMLElement
(parameter, see below)

commonj::sdo::DataObject
Ptr

FML32, VIEW, VIEW32
7-70 Oracle SALT Programming Guide

SCA Data Type Mapp ing
$ret = $svc->searchBike('YELLOW');

$xml = new SimpleXMLElement($ret, LIBXML_NOWARNING);

Once the XML object constructed, it will be accessed as follows:

echo "First serialno:".$xml->BIKES[0]->SERIALNO."\n";

echo "Second serialno:".$xml->BIKES[1]->SERIALNO."\n";

List of Parameters
You are permitted to pass an undetermined number of parameters when making an SCA reference
using the PHP extension. For example:

test(1, 2, 3, 4, 5);

Individual supported types are limited to the types listed in Listing 7-13, with the exception of
types originating from or becoming commonj::sdo::DataObjectPtr objects.

Note: Using this notation is limited to:

local calls (no binding), or

using the ATMI binding between SCA components (i.e., <binding.atmi> element
with no requires="legacy" attribute). For local calls (no binding specified), or

references

No interface is required.

Named Parameters
You can use named parameters to pass name/value pairs using the PHP SCA extension. For
example:

$svc->searchBike(array('COLOR' => 'RED', 'TYPE' => 'MTB'));

Individual supported types are limited to the types listed in Table 7-13.

SCA Structure Data Type Mapping
In SCA-ATMI applications, an SCA structure parameter can be mapped to an ATMI FML32,
FML, VIEW32, VIEW, X_COMMON, or X_C_TYPE data type, and this is the data type that is
specified in the SCA composite file.

If a VIEW32, VIEW, X_COMMON, or X_C_TYPE data type is specified, then this view must
exactly match the structure used as an SCA parameter or return type.
Oracle SALT Programming Guide 7-71

Orac le SALT SCA Prog ramming
Note: In order for the view to exactly match the structure, the compilation of the view needs to
produce the same structure with the same fields and same offsets as the structure used in
the application.

SCA Structure and FML32 or FML Mapping
If the SCA structure parameter is mapped to FML32 or FML, then the field type of the associated
FML32 or FML field is a type that can be converted to and from the SCA structure data type For
more informations, see SCA Data Type Mapping.

FML Field Naming Requirements
In SCA-SCA applications, fields are identified by field number, and FML32 field numbers are
automatically generated. In the case of nested structures, field numbers are assigned as if the
fields in the inner structure had occurred as flat fields in the outer structure in the place where the
inner structure is defined in the outer structure.

In SCA-ATMI applications, the FML32 or FML field name associated with a structure element
shall be obtained from the structure description file. For more information, see Using SCA
Structure Description Files.

Long Element Truncation
When converting an FML32 or FML string, carray, or mbstring field to a structure element, any
data that does not fit in the structure element is truncated (without warning) to the provided
length.

For example, if a structure element is char COMPANY_NAME[20]; and FML field COMPANY_NAME
with value "International Business Machines" is mapped to this structure element, then
"International Busine" is copied to the structure element with no trailing null character.

SCA Structure and VIEW32, VIEW, X_OCTET, or X_C_TYPE Mapping
If an SCA structure is mapped to a VIEW32, VIEW, X_OCTET, or X_C_TYPE data type, then
the structure used for the Oracle Tuxedo view-based type must exactly match the SCA structure,
and is copied byte-by-byte. In other words, no marshalling of data is done when converting
between an SCA structure, and a view. FML32 or FML should be used if data marshalling is
required.

When an SCA structure is mapped to a view-based Oracle Tuxedo type, you cannot specify bool,
wchar_t, long long, unsigned long long, long double, or nested structure data types
within the SCA structure since corresponding data types do not exist within Oracle Tuxedo
7-72 Oracle SALT Programming Guide

SCA Data Type Mapp ing
views. Elements corresponding to any Oracle Tuxedo Associated Count Member or Associated
Length Member fields must be provided. Appropriate values for any such elements must also be
provided by the application if converting an SCA structure to an Oracle Tuxedo view.

SCA Structure and Mbstring Mapping
An mbstring field type currently exists in VIEW32 (for more information, see tpconvvmb32).
SCA structures treat the mbstring field type in the same way as in VIEW32. The encoding
information is part of an mbstring structure element, and Fmbunpack32() and Fmbpack32()
must be used in application programs using mbstring data in structures.

TPFAIL Return Data
You can specify a structure pointer as data returned on TPFAIL if the same structure pointer is
also returned on successful output. Since SCA must store internal information describing the
returned structure along with the application data, <tuxsca.h> is used to define the structure and
typedef as shown in Listing 7-42.

Listing 7-42 <tuxsca.h> SCA Structure and Typedef Definition

struct scastruct_t {
 void *data;
 void *internalinfo;
};
typedef struct scastruct_t *SCASTRUCT_PTR;

If an application normally returns "struct mystruct *" data, it accesses TPFAIL data as shown
in Listing 7-42.

Listing 7-43 TPFAIL Example

… catch (Tuscany::sca::atmi::ATMIBindingException& abe) {
 SCASTRUCT_PTR *scap = (SCASTRUCT_PTR *)abe.getData();
 struct mystruct *result = (struct mystruct *)scap->data;
}

Oracle SALT Programming Guide 7-73

../../../tuxedo/docs11gr1ps1/rf3fml/index.html
../../../tuxedo/docs11gr1ps1/rf3fml/index.html
../../../tuxedo/docs11gr1ps1/rf3fml/index.html

Orac le SALT SCA Prog ramming
SCA and Oracle Tuxedo Interoperability
Existing Oracle Tuxedo service interoperability is performed by using the
/binding.atmi/@requires attribute with the legacy value. When a legacy value is specified,
invocations are performed using the following behavior:

If a <map> element is present in either a <reference> or a <service>, that value is used
to determine which Oracle Tuxedo service is associated with the specified method name to
call or advertise.

Otherwise:

In a <reference> element: the value specified in the /reference/@name element is used
to perform the Oracle Tuxedo call, with semantics according to the interface method used.

In a <service> element: the Oracle Tuxedo service specified in the /binding.atmi/map
element is advertised, and mapped to the method specified in the
/binding.atmi/map/@target attribute.

Additionally, the /binding.atmi/@requires attribute is used to internally control data
mapping, such that FML32 or FML field tables are not required.

Note: When not specified, communications are assumed to have SCA -> SCA semantics where
the actual Oracle Tuxedo service name is constructed from /service/@name or
/reference/@name and actual method name (see the pseudo schema shown
Listing 7-27).

SCA Transactions
The ATMI binding schema supports SCA transaction policies by using the
/binding.atmi/@requires attribute and three transaction values. These transaction values
specify the transactional behavior that the binding extension follows when ATMI binding is used
(see the pseudo schema shown Listing 7-27).

The transaction values are as follows:

Not specified (no value)

All transactional behavior is left up to the Oracle Tuxedo configuration. If the Oracle
Tuxedo configuration supports transactions, then a transaction can be propagated if it
exists.

If the Oracle Tuxedo configuration does not support transactions and a transaction exists,
then an error occurs.
7-74 Oracle SALT Programming Guide

SCA Secur i t y
Note: A transaction is not started if a transaction does not already exist.

suspendsTransaction

When specified, the transaction context is not propagated to the service called. For a
<service>, the transaction (if present), is automatically suspended before invoking the
application code, and resumed afterwards, regardless of the outcome of the invocation. For
a <reference>, equivalent to making a tpcall() with the TPNOTRAN flag.

propagatesTransaction

Only applicable to <reference> elements, ignored for <service> elements. Starts a new
transaction if one does not already exist, otherwise participate in existing transaction. Such
a behavior can be obtained in a component or composite <service> by configuring it
AUTOTRAN in the UBBCONFIG. An error is generated if an Oracle Tuxedo server hosts the
SCA component implementation and is not configured in a transactional group in the
UBBCONFIG.

SCA Security
SCA references pass credentials using the <authentication> element of the binding.atmi
SCDL element.

SCA services can be ACL protected by referencing their internal name:
/binding.atmi/service/@name attribute followed by a '/' and method name in SCA -> SCA
mode, /binding.atmi/service/@name attribute in legacy mode (SCA -> Tux interop mode).

For more information, see SCA and Oracle Tuxedo Interoperability.

See Also
Oracle SALT Administration Guide

Oracle SALT Command Reference Guide

SDO for C++ Specification V2.1

http://www.osoa.org/download/attachments/36/CPP-SDO-Spec-v2.1.0-FINAL.pdf?version
=2

SCA Assembly Model V0.96:

http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V096.pdf?version=1

SCA Client and Implementation for C++ (V0.95):
Oracle SALT Programming Guide 7-75

http://e-docs.bea.com/salt/docs11gr1ps1/admin/index.html
http://e-docs.bea.com/salt/docs11gr1ps1/ref/index.html
http://www.osoa.org/download/attachments/36/CPP-SDO-Spec-v2.1.0-FINAL.pdf?version=2
http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V096.pdf?version=1

Orac le SALT SCA Prog ramming
http://www.osoa.org/download/attachments/35/SCA_ClientAndImplementationModelforCp
p_V0.95.pdf?version=1
7-76 Oracle SALT Programming Guide

http://www.osoa.org/download/attachments/35/SCA_ClientAndImplementationModelforCpp_V0.95.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_ClientAndImplementationModelforCpp_V0.95.pdf?version=1

	Oracle® Service Architecture Leveraging Tuxedo (SALT)
	11g Release 1 (11.1.1.2)

	Oracle Service Architecture Leveraging Tuxedo (SALT) Programming Guide, 11g Release 1 (11.1.1.2)
	Introduction to Oracle SALT Programming
	Oracle SALT Web Services Programming
	Oracle SALT Proxy Service
	Oracle SALT Message Conversion
	Oracle SALT Programming Tasks Quick Index

	Oracle SALT SCA Programming

	Data Type Mapping and Message Conversion
	Overview of Data Type Mapping and Message Conversion
	Understanding Oracle SALT Message Conversion
	Inbound Message Conversion
	Outbound Message Conversion

	Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services
	Oracle Tuxedo STRING Typed Buffers
	Oracle Tuxedo CARRAY Typed Buffers
	Mapping Example Using base64Binary
	Mapping Example Using MIME Attachment

	Oracle Tuxedo MBSTRING Typed Buffers
	Oracle Tuxedo XML Typed Buffers
	Oracle Tuxedo VIEW/VIEW32 Typed Buffers
	VIEW/VIEW32 Considerations

	Oracle Tuxedo FML/FML32 Typed Buffers
	FML Data Mapping Example
	FML32 Data Mapping Example
	FML/FML32 Considerations

	Oracle Tuxedo X_C_TYPE Typed Buffers
	Oracle Tuxedo X_COMMON Typed Buffers
	Oracle Tuxedo X_OCTET Typed Buffers
	Custom Typed Buffers

	XML-to-Tuxedo Data Type Mapping for External Web Services
	XML Schema Built-In Simple Data Type Mapping
	XML Schema User Defined Data Type Mapping
	WSDL Message Mapping

	Web Service Client Programming
	Overview
	Oracle SALT Web Service Client Programming Tips
	Oracle WebLogic Web Service Client Programming Toolkit
	Apache Axis for Java Web Service Client Programming Toolkit
	Microsoft .NET Web Service Client Programming Toolkit

	Web Service Client Programming References
	Online References

	Web Application Server Programming
	Overview
	Developing Native Oracle Tuxedo Web Applications
	Developing Python Web Applications
	Prerequisites
	Usage
	Example(s)
	Stand-Alone Script/Application
	Django-Based Application

	Developing Ruby Web Applications
	Prerequisites
	Usage
	Example(s)

	Developing PHP Web Applications
	Prerequisites
	Usage
	Example(s)

	See Also

	Oracle Tuxedo ATMI Programming for Web Services
	Overview
	Converting WSDL Model Into Oracle Tuxedo Model
	WSDL-to-Tuxedo Object Mapping

	Invoking SALT Proxy Services
	Oracle SALT Supported Communication Pattern
	Oracle Tuxedo Outbound Call Programming: Main Steps
	Managing Error Code Returned from GWWS
	Handling Fault Messages in an Oracle Tuxedo Outbound Application

	Using Oracle SALT Plug-Ins
	Understanding Oracle SALT Plug-Ins
	Plug-In Elements
	Plug-In ID
	Plug-In Name
	Plug-In Implementation Functions
	Plug-In Register Functions
	Developing a Plug-In Interface

	Programming Message Conversion Plug-ins
	How Message Conversion Plug-ins Work
	How Message Conversion Plug-in Works in an Inbound Call Scenario
	How Message Conversion Plug-in Works in an Outbound Call Scenario

	When Do We Need Message Conversion Plug-in
	Developing a Message Conversion Plug-in Instance
	Converting a SOAP Message Payload to an Oracle Tuxedo Buffer
	Converting an Oracle Tuxedo Buffer to a SOAP Message Payload

	SALT 1.1 Custom Buffer Type Conversion Plug-in Compatibility

	Programming Outbound Authentication Plug-Ins
	How Outbound Authentication Plug-Ins Work
	Implementing a Credential Mapping Interface Plug-In
	Mapping the Oracle Tuxedo UID and HTTP Username

	Oracle SALT SCA Programming
	Overview
	SCA Utilities
	SCA Client Programming
	SCA Client Programming Steps
	Setting Up the Client Directory Structure
	Developing the Client Application
	Composing the SCDL Descriptor
	Building the Client Application
	Running the Client Application
	Handling TPFAIL Data

	SCA Component Programming
	SCA Component Programming Steps
	Setting Up the Component Directory
	Developing the Component Implementation
	Composing the SCDL Descriptor
	Compiling and Linking the Components
	Building the Oracle Tuxedo Server Host

	SCA Python, Ruby, and PHP Programming
	SCA Python, Ruby, and PHP Programming Overview
	Python, Ruby, and PHP Client Programming
	SCDL Clients
	Python Clients
	Ruby Clients
	PHP Clients

	Python, Ruby, and PHP Component Programming
	SCDL Components
	Python Components
	Ruby Components
	PHP Components

	SCA Structure Support
	SCA Structure Support Overview
	Using SCA Structure Description Files
	Using tuxscagen to Generate Structures

	SCA Remote Protocol Support
	/WS
	/Domains

	SCA Binding
	ATMI Binding
	Java ATMI (JATMI) Binding
	Python, Ruby, and PHP Binding
	Python, Ruby, and PHP Binding Limitations

	Web Services Binding

	SCA Data Type Mapping
	Run-Time Data Type Mapping
	Simple Oracle Tuxedo Buffer Data Mapping
	Complex Return Type Mapping
	Complex Oracle Tuxedo Buffer Data Mapping

	SCA Utility Data Type Mapping
	C++ Parameter/Return Type and Oracle Tuxedo Buffer Type Mapping
	C++ Parameter Type and Oracle Tuxedo Parameter Type Mapping
	C++ Parameter Type and Oracle Tuxedo Complex Type Mapping
	Parameter and Return Types to Parameter-Level Keyword Restrictions

	Python, Ruby, and PHP Data Type Mapping
	Python Data Type Mapping
	Ruby Data Type Mapping
	PHP Data Type Mapping

	SCA Structure Data Type Mapping
	SCA Structure and FML32 or FML Mapping
	SCA Structure and VIEW32, VIEW, X_OCTET, or X_C_TYPE Mapping
	SCA Structure and Mbstring Mapping
	TPFAIL Return Data

	SCA and Oracle Tuxedo Interoperability
	SCA Transactions
	SCA Security
	See Also

