CQL Language Reference for Oracle Complex Event Processing
11g Release 1 (11.1.1.6.3)
E12048-10
August 2012
Documentation for developers that provides a reference to Oracle Continuous Query Language (Oracle CQL), an SQL-like language for querying streaming data in Oracle Complex Event Processing (Oracle CEP) applications.
Oracle Fusion Middleware CQL Language Reference for Oracle Complex Event Processing, 11g Release 1 (11.1.1.6.3)
E12048-10
Copyright © 2006, 2012, Oracle and/or its affiliates. All rights reserved.
Primary Author: Steve Traut, Peter Purich
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This reference contains a complete description of the Oracle Continuous Query Language (Oracle CQL), a query language based on SQL with added constructs that support streaming data. Using Oracle CQL, you can express queries on data streams to perform complex event processing (CEP) using Oracle CEP. Oracle CQL is a new technology but it is based on a subset of SQL99.
Oracle CEP (formally known as the WebLogic Event Server) is a Java server for the development of high-performance event driven applications. It is a lightweight Java application container based on Equinox OSGi, with shared services, including the Oracle CEP Service Engine, which provides a rich, declarative environment based on Oracle Continuous Query Language (Oracle CQL) - a query language based on SQL with added constructs that support streaming data - to improve the efficiency and effectiveness of managing business operations. Oracle CEP supports ultra-high throughput and microsecond latency using JRockit Real Time and provides Oracle CEP Visualizer and Oracle CEP IDE for Eclipse developer tooling for a complete real time end-to-end Java Event-Driven Architecture (EDA) development platform.
This document is intended for all users of Oracle CQL.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following:
http://download.oracle.com/docs/cd/B28359_01/server.111/b28286/toc.htm
http://forums.oracle.com/forums/forum.jspa?forumID=820
http://www.oracle.com/technologies/soa/complex-event-processing.html
http://www.oracle.com/technology/sample_code/products/event-driven-architecture
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.	
Syntax descriptions are provided in this book for various Oracle CQL, SQL, PL/SQL, or other command-line constructs in graphic form or Backus Naur Form (BNF). See "How to Read Syntax Diagrams" in the Oracle Database SQL Language Reference for information about how to interpret these descriptions.
This chapter introduces Oracle Continuous Query Language (Oracle CQL), a query language based on SQL with added constructs that support streaming data. Using Oracle CQL, you can express queries on data streams with Oracle Complex Event Processing (Oracle CEP).
Oracle CEP (formally known as the WebLogic Event Server) is a Java server for the development of high-performance event driven applications. It is a lightweight Java application container based on Equinox OSGi, with shared services, including the Oracle CEP Service Engine, which provides a rich, declarative environment based on Oracle CQL to improve the efficiency and effectiveness of managing business operations. Oracle CEP supports ultra-high throughput and microsecond latency using JRockit Real Time and provides Oracle CEP Visualizer and Oracle CEP IDE for Eclipse developer tooling for a complete real time end-to-end Java Event-Driven Architecture (EDA) development platform.
Databases are best equipped to run queries over finite stored data sets. However, many modern applications require long-running queries over continuous unbounded sets of data. By design, a stored data set is appropriate when significant portions of the data are queried repeatedly and updates are relatively infrequent. In contrast, data streams represent data that is changing constantly, often exclusively through insertions of new elements. It is either unnecessary or impractical to operate on large portions of the data multiple times.
Many types of applications generate data streams as opposed to data sets, including sensor data applications, financial tickers, network performance measuring tools, network monitoring and traffic management applications, and clickstream analysis tools. Managing and processing data for these types of applications involves building data management and querying capabilities with a strong temporal focus.
To address this requirement, Oracle introduces Oracle CEP, a data management infrastructure that supports the notion of streams of structured data records together with stored relations.
To provide a uniform declarative framework, Oracle offers Oracle Continuous Query Language (Oracle CQL), a query language based on SQL with added constructs that support streaming data.
Oracle CQL is designed to be:
Figure 1-1 shows a simplified view of the Oracle CEP architecture. Oracle CEP server provides the light-weight Spring container for Oracle CEP applications. The Oracle CEP application shown is composed of an event adapter that provides event data to an input channel. The input channel is connected to an Oracle CQL processor associated with one or more Oracle CQL queries that operate on the events offered by the input channel. The Oracle CQL processor is connected to an output channel to which query results are written. The output channel is connected to an event Bean: a user-written Plain Old Java Object (POJO) that takes action based on the events it receives from the output channel.
Using Oracle CEP, you can define event adapters for a variety of data sources including JMS, relational database tables, and files in the local filesystem. You can connect multiple input channels to an Oracle CQL processor and you can connect an Oracle CQL processor to multiple output channels. You can connect an output channel to another Oracle CQL processor, to an adapter, to a cache, or an event Bean.
Using Oracle CEP IDE for Eclipse and Oracle CEP Visualizer, you:
Consider the typical Oracle CQL statements that Example 1-1 shows.
Example 1-1 Typical Oracle CQL Statements
This example defines multiples views (the Oracle CQL-equivalent of subqueries) to create multiple relations, each building on previous views. Views always act on an inbound channel such as inputChannel
. The first view, named lastEvents
, selects directly from inputChannel
. Subsequent views may select from inputChannel
directly or select from previously defined views. The results returned by a view's select statement remain in the view's relation: they are not forwarded to any outbound channel. That is the responsibility of a query. This example defines query BBAQuery
that selects from both the inputChannel
directly and from previously defined views. The results returned from a query's select clause are forwarded to the outbound channel associated with it: in this example, to outputChannel
. The BBAQuery
uses a tuple-based stream-to-relation operator (or sliding window).
For more information on these elements, see:
For more information on Oracle CEP server and tools, see:
This section introduces the two fundamental Oracle CEP objects that you manipulate using Oracle CQL:
Using Oracle CQL, you can perform the following operations with streams and relations:
A stream is the principle source of data that Oracle CQL queries act on.
Stream S
is a bag (or multi-set) of elements (s,T)
where s
is in the schema of S
and T
is in the time domain.
Stream elements are tuple-timestamp pairs, which can be represented as a sequence of timestamped tuple insertions. In other words, a stream is a sequence of timestamped tuples. There could be more than one tuple with the same timestamp. The tuples of an input stream are required to arrive at the system in the order of increasing timestamps. For more information, see Section 1.1.13, "Time".
A stream has an associated schema consisting of a set of named attributes, and all tuples of the stream conform to the schema.
The term "tuple of a stream" denotes the ordered list of data portion of a stream element, excluding timestamp data (the s
of <s,t>
). Example 1-2 shows how a stock ticker data stream might appear, where each stream element is made up of <timestamp value>
, <stock symbol>
, and <stock price>
:
Example 1-2 Stock Ticker Data Stream
In the stream element <timestampN+1> ORCL,62
, the tuple is ORCL,62
.
By definition, a stream is unbounded.
This section describes:
For more information, see:
Oracle CEP represents a stream as a channel as Figure 1-2 shows. Using Oracle CEP IDE for Eclipse, you connect the stream event source (PriceAdapter
) to a channel (priceStream
) and the channel to an Oracle CQL processor (filterFanoutProcessor
) to supply the processor with events. You connect the Oracle CQL processor to a channel (filteredStream
) to output Oracle CQL query results to down-stream components (not shown in Figure 1-2).
Note: In Oracle CEP, you must use a channel to connect an event source to an Oracle CQL processor and to connect an Oracle CQL processor to an event sink. A channel is optional with other Oracle CEP processor types. |
The event source you connect to a stream determines the stream's schema. In Figure 1-2, the PriceAdapter
adapter determines the priceStream
stream's schema. Example 1-3 shows the PriceAdapter
Event Processing Network (EPN) assembly file: the eventTypeName
property specifies event type PriceEvent
. The event-type-repository
defines the property names and types for this event.
Example 1-3 Channel Schema Definition
Once the event source, channel, and processor are connected as Figure 1-2 shows, you can write Oracle CQL statements that make use of the stream. Example 1-4 shows the component configuration file that defines the Oracle CQL statements for the filterFanoutProcessr
.
Example 1-4 filterFanoutProcessor Oracle CQL Query Using priceStream
If you specify more than one query for a processor as Example 1-4 shows, then all query results are output to the processor's out-bound channel (filteredStream
in Figure 1-2).
Optionally, in the component configuration file, you can use the channel
element selector
attribute to control which query's results are output as Example 1-5 shows. In this example, query results for query Yr3Sector
and Yr2Sector
are output to filteredStream but not query results for query Yr1Sector
. For more information, see "Channel Component Configuration" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.
Example 1-5 Using channel Element selector Child Element to Control Which Query Results are Output to a Channel
You may configure a channel
element with a selector
before creating the queries in the upstream processor. In this case, you must specify query names that match the names in the selector
.
For more information, see "Controlling Which Queries Output to a Downstream Channel" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.
Time varying relation R
is a mapping from the time domain to an unbounded bag of tuples to the schema of R
.
A relation is an unordered, time-varying bag of tuples: in other words, an instantaneous relation. At every instant of time, a relation is a bounded set. It can also be represented as a sequence of timestamped tuples that includes insertions, deletions, and updates to capture the changing state of the relation.
Like streams, relations have a fixed schema to which all tuples conform.
Oracle CEP supports both base and derived streams and relations. The external sources supply data to the base streams and relations.
A base (explicit) stream is a source data stream that arrives at an Oracle CEP adapter so that time is non-decreasing. That is, there could be events that carry same value of time.
A derived (implicit) stream/relation is an intermediate stream/relation that query operators produce. Note that these intermediate operators can be named (through views) and can therefore be specified in further queries.
A base relation is an input relation.
A derived relation is an intermediate relation that query operators produce. Note that these intermediate operators can be named (through views) and can therefore be specified in further queries.
In Oracle CEP, you do not create base relations yourself. The Oracle CEP server creates base relations for you as required.
When we say that a relation is a time-varying bag of tuples, time refers to an instant in the time domain. Input relations are presented to the system as a sequence of timestamped updates which capture how the relation changes over time. An update is either a tuple insertion or deletion. The updates are required to arrive at the system in the order of increasing timestamps.
For more information, see:
By default, Oracle CEP includes time stamp and an Oracle CEP tuple kind indicator in the relations it generates as Example 1-6 shows.
Example 1-6 Oracle CEP Tuple Kind Indicator in Relation Output
The Oracle CEP tuple kind indicators are:
+
for inserted tuple -
for deleted tuple U
for updated tuple indicated when invoking com.bea.wlevs.ede.api.RealtionSink
method onUpdateEvent
(for more information, see Oracle Complex Event Processing Java API Reference). The relation-to-relation operators in Oracle CQL are derived from traditional relational queries expressed in SQL.
Anywhere a traditional relation is referenced in a SQL query, a relation can be referenced in Oracle CQL.
Consider the following examples for a stream CarSegStr
with schema: car_id
integer
, speed integer
, exp_way integer
, lane integer
, dir integer
, and seg integer
.
In Example 1-7, at any time instant, the output relation of this query contains the set of vehicles having transmitted a position-speed measurement within the last 30 seconds.
Example 1-7 Relation-to-Relation Operation
The distinct
operator is the relation-to-relation operator. Using distinct
, Oracle CEP returns only one copy of each set of duplicate tuples selected. Duplicate tuples are those with matching values for each expression in the select list. You can use distinct in a select_clause
and with aggregate functions.
For more information on distinct
, see:
Oracle CQL supports stream-to-relation operations based on a sliding window. In general, S[W]
is a relation. At time T
the relation contains all tuples in window W
applied to stream S
up to T
.
Oracle CQL supports the following built-in window types:
S[Range T]
, or, optionally,
S[Range T1 Slide T2]
S[Range Unbounded]
S[Now]
S[Range C on ID]
S[Rows N]
, or, optionally,
S[Rows N1 Slide N2]
S[Partition By A1 ... Ak Rows N]
or, optionally,
S[Partition By A1 ... Ak Rows N Range T]
, or
S[Partition By A1 ... Ak Rows N Range T1 Slide T2]
This section describes the following stream-to-relation operator properties:
For more information, see:
The keywords Range
and Rows
specify how much data you want to query:
Range
specifies as many tuples as arrive in a given time period Rows
specifies a number of tuples The keyword Slide
refers to how often you want a result.
In Figure 1-3, the Range
specification indicates "I want to look at 5 seconds worth of data" and the Slide
specification indicates "I want a result every 5 seconds". In this case, the query returns a result at the end of each Range
specification (except for certain conditions, as "Range, Rows, and Slide at Query Start-Up and for Empty Relations" describes).
In Figure 1-4, the Range
specification indicates "I want to look at 10 seconds worth of data" and the Slide
specification indicates "I want a result every 5 seconds". In this case, the query returns a result twice during each Range
specification (except for certain conditions, as Section 1.1.3.1.1, "Range, Rows, and Slide at Query Start-Up and for Empty Relations" describes)
Table 1-1 lists the default Range
, Range
unit, and Slide
(where applicable) for range-based and tuple-based stream-to-relation window operators:
Table 1-1 Default Range and Tuple-Based Stream-to-Relation Operators
Window Operator	Default Range	Default Range Unit	Default Slide
Range-Based Stream-to-Relation Window Operators			
1 nanosecond			
Tuple-Based Stream-to-Relation Window Operators	N/A	N/A	1 tuple
The descriptions for Figure 1-3 and Figure 1-4 assume a steady-state condition, after the query has been running for some time. Table 1-2 lists the behavior of Range			
, Rows			
, and Slide			
for special cases such as query start-up time and for an empty relation.			
Table 1-2 Range, Rows, and Slide at Query Start-Up and Empty Relations			
Operator or Function	Result		
---	---		
Immediately returns 0 for an empty relation (when there is no			
Immediately returns null for an empty relation, before			
For more information and detailed examples, see:			
The keyword Partition By			
logically separates an event stream S			
into different substreams based on the equality of the attributes given in the Partition By			
specification. For example, the S[Partition By A,C Rows 2]			
partition specification creates a sub-stream for every unique combination of A			
and C			
value pairs and the Rows			
specification is applied on these sub-streams. The Rows			
specification indicates "I want to look at 2 tuples worth of data".			
For more information, see Section 1.1.3.1, "Range, Rows, and Slide".			
When you reference a stream in an Oracle CQL query where a relation is expected (most commonly in the from			
clause), a Range Unbounded			
window is applied to the stream by default. For example, the queries in Example 1-8 and Example 1-9 are identical:			
Example 1-8 Query Without Stream-to-Relation Operator			
Example 1-9 Equivalent Query			
For more information, see Section 1.1.4, "Relation-to-Stream Operators".			
You can convert the result of a stream-to-relation operation back into a stream for further processing.			
In Example 1-10, the select will output a stream of tuples satisfying the filter condition (viewq3.ACCT_INTRL_ID = ValidLoopCashForeignTxn.ACCT_INTRL_ID)			
. The now window converts the viewq3			
into a relation, which is kept as a relation by the filter condition. The IStream			
relation-to-stream operator converts the output of the filter back into a stream.			
Example 1-10 Relation-to-Stream Operation			
Oracle CQL supports the following relation-to-stream operators:			
IStream			
: insert stream. IStream(R)			
contains all (r,T)			
where r			
is in R			
at time T			
but r			
is not in R at time T-1			
.			
For more information, see "IStream Relation-to-Stream Operator".			
DSteam			
: delete stream. DStream(R)			
contains all (r,T)			
where r			
is in R			
at time T-1			
but r			
is not in R			
at time T			
.			
For more information, see "DStream Relation-to-Stream Operator".			
RStream			
: relation stream. RStream(R)			
contains all (r,T)			
where r			
is in R			
at time T			
.			
For more information, see "RStream Relation-to-Stream Operator".			
By default, Oracle CEP includes an operation indicator in the relations it generates so you can identify insertions, deletions, and, when using UPDATE SEMANTICS			
, updates. For more information, see Section 1.1.1.3, "Relations and Oracle CEP Tuple Kind Indicator".			
Whenever an Oracle CQL query produces a relation that is monotonic, Oracle CQL adds an IStream			
operator by default.			
A relation R			
is monotonic if and only if R(t1)			
is a subset of R(t2)			
whenever t1 <= t2			
.			
Oracle CQL use a conservative static monotonicity test. For example, a base relation is monotonic if it is known to be append-only: S[Range Unbounded]			
is monotonic for any stream S			
; and the join of two monotonic relations is also monotonic.			
If a relation is not monotonic (for example, it has a window like S[range 10 seconds]			
), it is impossible to determine what the query author intends (IStream			
, DStream			
, or RStream			
), so Oracle CQL does not add a relation-to-stream operator by default in this case.			
Typically, you perform stream to stream operations using the following:			
However, some relation-relation operators (like filter and project) can also act as stream-stream operators. Consider the query that Example 1-11 shows: assuming that the input S			
is a stream, the query will produce a stream as an output where stream element c1			
is greater than 50.			
Example 1-11 Stream-to-Stream Operation			
This is a consequence of the application of the default stream-to-relation and relation-to-stream operators. The stream S			
in Example 1-11 gets a default [Range Unbounded]			
window added to it. Since this query then evaluates to a relation that is monotonic, an IStream			
gets added to it.			
For more information, see:			
In addition, Oracle CQL supports the following direct stream-to-stream operators:			
MATCH_RECOGNIZE			
: use this clause to write various types of pattern recognition queries on the input stream. For more information, see Section 1.1.7, "Pattern Recognition". XMLTABLE			
: use this clause to parse data from the xmltype			
stream elements using XPath expressions. For more information, see Section 18.2.6, "XMLTable Query". An Oracle CQL query is an operation that you express in Oracle CQL syntax and execute on an Oracle CEP CQL processor to retrieve data from one or more streams, relations, or views. A top-level SELECT			
statement that you create in a <query>			
element is called a query. For more information, see Section 18.2, "Queries".			
An Oracle CQL view represents an alternative selection on a stream or relation. In Oracle CQL, you use a view instead of a subquery. A top-level SELECT			
statement that you create in a <view>			
element is called a view. For more information, see Section 18.3, "Views".			
Each query and view must have an identifier unique to the processor that contains it. Example 1-12 shows a query with an id			
of q0			
. The id			
value must conform with the specification given by identifier::=.			
Example 1-12 Query and View id Attribute			
A join is a query that combines rows from two or more streams, views, or relations. For more information, see Section 18.4, "Joins".			
For more information, see Chapter 18, "Oracle CQL Queries, Views, and Joins".			
The Oracle CQL MATCH_RECOGNIZE			
construct is the principle means of performing pattern recognition.			
A sequence of consecutive events or tuples in the input stream, each satisfying certain conditions constitutes a pattern. The pattern recognition functionality in Oracle CQL allows you to define conditions on the attributes of incoming events or tuples and to identify these conditions by using String			
names called correlation variables. The pattern to be matched is specified as a regular expression over these correlation variables and it determines the sequence or order in which conditions should be satisfied by different incoming tuples to be recognized as a valid match.			
For more information, see Chapter 19, "Pattern Recognition With MATCH_RECOGNIZE".			
An Oracle CEP event source identifies a producer of data that your Oracle CQL queries operate on. An Oracle CQL event sink identifies a consumer of query results.			
This section explains the types of event sources and sinks you can access in your Oracle CQL queries and how you connect event sources and event sinks.			
An Oracle CEP event source identifies a producer of data that your Oracle CQL queries operate on.			
In Oracle CEP, the following elements may be event sources:			
Note: In Oracle CEP, you must use a channel to connect an event source to an Oracle CQL processor and to connect an Oracle CQL processor to an event sink. A channel is optional with other Oracle CEP processor types. For more information, see Section 1.1.1, "Streams and Relations".			
Oracle CEP event sources are typically push data sources: that is, Oracle CEP expects the event source to notify it when the event source has data ready.			
Oracle CEP relational database table and cache event sources are pull data sources: that is, Oracle CEP polls the event source on arrival of an event on the data stream.			
For more information, see:			
An Oracle CQL event sink connected to a CQL processor is a consumer of query results.			
In Oracle CEP, the following elements may be event sinks:			
You can associate the same query with more than one event sink and with different types of event sink.			
In Oracle CEP, you define event sources and event sinks using Oracle CEP IDE for Eclipse to create the Event Processing Network (EPN) as Figure 1-5 shows. In this EPN, adapter PriceAdapter			
is the event source for channel priceStream			
; channel priceStream			
is the event source for Oracle CQL processor filterFanoutProcessor			
. Similarly, Oracle CQL processor filterFanoutProcessor			
is the event sink for channel priceStream			
.			
For more information, see:			
Using Oracle CQL, you can access tabular data, including:			
For more information, see Section 1.1.8, "Event Sources and Event Sinks"			
Using an Oracle CQL processor, you can specify a relational database table as an event source. You can query this event source, join it with other event sources, and so on.			
For more information, see Section 18.6, "Oracle CQL Queries and Relational Database Tables".			
Using the Oracle CQL XMLTABLE			
clause, you can parse data from an xmltype			
stream into columns using XPath expressions and conveniently access the data by column name.			
For more information, see Section 18.2.6, "XMLTable Query".			
Using an Oracle CQL processor, you can specify an Oracle CEP cache as an event source. You can query this event source and join it with other event sources using a now			
window only.			
For more information, see:			
Functions are similar to operators in that they manipulate data items and return a result. Functions differ from operators in the format of their arguments. This format enables them to operate on zero, one, two, or more arguments:			
A function without any arguments is similar to a pseudocolumn (refer to Chapter 3, "Pseudocolumns"). However, a pseudocolumn typically returns a different value for each tuple in a relation, whereas a function without any arguments typically returns the same value for each tuple.			
Oracle CQL provides a wide variety of built-in functions to perform operations on stream data, including:			
java.lang.Math			
class If Oracle CQL built-in functions do not provide the capabilities your application requires, you can easily create user-defined functions in Java by using the classes in the oracle.cep.extensibility.functions			
package. You can create aggregate and single-row user-defined functions. You can create overloaded functions and you can override built-in functions.			
If you call an Oracle CQL function with an argument of a datatype other than the datatype expected by the Oracle CQL function, then Oracle CEP attempts to convert the argument to the expected datatype before performing the Oracle CQL function.			
Note: Function names are case sensitive:			
For more information, see:			
The Oracle CQL data cartridge framework allows you to tightly integrate arbitrary domain objects with the Oracle CQL language and use domain object fields, methods, and constructors within Oracle CQL queries in the same way you use Oracle CQL native types.			
Currently, Oracle CEP provides the following data cartridges:			
For more information, see:			
Timestamps are an integral part of an Oracle CEP stream. However, timestamps do not necessarily equate to clock time. For example, time may be defined in the application domain where it is represented by a sequence number. Timestamps need only guarantee that updates arrive at the system in the order of increasing timestamp values.			
Note that the timestamp ordering requirement is specific to one stream or a relation. For example, tuples of different streams could be arbitrarily interleaved.			
Oracle CEP can observe application time or system time.			
To configure application timestamp or system timestamp operation, see child element application-timestamped			
in "wlevs:channel" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.			
For system timestamped relations or streams, time is dependent upon the arrival of data on the relation or stream data source. Oracle CEP generates a heartbeat on a system timestamped relation or stream if there is no activity (no data arriving on the stream or relation's source) for more than a specified time: for example, 1 minute. Either the relation or stream is populated by its specified source or Oracle CEP generates a heartbeat every minute. This way, the relation or stream can never be more than 1 minute behind.			
To configure a heartbeat, see "heartbeat" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.			
For system timestamped streams and relations, the system assigns time in such a way that no two events will have the same value of time. However, for application timestamped streams and relations, events could have same value of time.			
If you know that the application timestamp will be strictly increasing (as opposed to non-decreasing) you may set wlevs:channel			
attribute is-total-order			
to true			
. This enables the Oracle CEP engine to do certain optimizations and typically leads to reduction in processing latency.			
To configure is-total-order			
, see "wlevs:application-timestamped" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.			
The Oracle CEP scheduler is responsible for continuously executing each Oracle CQL query according to its scheduling algorithm and frequency.			
For more information on the scheduler, see "scheduler" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.			
Oracle CQL provides statements for creating queries and views.			
This section describes:			
For more information, see:			
Using Oracle CEP IDE for Eclipse or Oracle CEP Visualizer, you write Oracle CQL statements in the XML configuration file associated with an Oracle CEP CQL processor. This XML file is called the configuration source.			
The configuration source must conform with the wlevs_application_config.xsd			
schema and may contain only rule			
, view			
, or query			
elements as Example 1-13 shows.			
Example 1-13 Typical Oracle CQL Processor Configuration Source File			
When writing Oracle CQL queries in an Oracle CQL processor component configuration file, observe the following rules:			
view			
or query			
element. ;			
). <![CDATA[
and]]>			
as Example 1-13 shows. Example 1-14 Oracle CQL: Without Whitespace Formatting			
Example 1-15 Oracle CQL: With Whitespace Formatting			
For more information, see:			
Note: Throughout the Oracle Fusion Middleware CQL Language Reference for Oracle Complex Event Processing, Oracle CQL statements are shown only with their			
When writing Oracle CQL queries, views, and joins, consider the syntactic shortcuts and defaults that Oracle CQL provides to simplify your queries.			
For more information, see:			
All Oracle CQL statements in this reference (see Chapter 20, "Oracle CQL Statements") are organized into the following sections:			
Syntax The syntax diagrams show the keywords and parameters that make up the statement.			
Caution: Not all keywords and parameters are valid in all circumstances. Be sure to refer to the "Semantics" section of each statement and clause to learn about any restrictions on the syntax.			
Purpose The "Purpose" section describes the basic uses of the statement.			
Prerequisites The "Prerequisites" section lists privileges you must have and steps that you must take before using the statement.			
Semantics The "Semantics" section describes the purpose of the keywords, parameter, and clauses that make up the syntax, and restrictions and other usage notes that may apply to them. (The conventions for keywords and parameters used in this chapter are explained in the Preface of this reference.)			
Examples The "Examples" section shows how to use the various clauses and parameters of the statement.			
Oracle CQL is a new technology but it is based on a subset of SQL99.			
Oracle strives to comply with industry-accepted standards and participates actively in SQL standards committees. Oracle is actively pursuing Oracle CQL standardization.			
Using the Oracle CEP server and tools, you can efficiently create, package, deploy, debug, and manage Oracle CEP applications that use Oracle CQL.			
Oracle CEP server provides the light-weight Spring container for Oracle CEP applications and manages server and application lifecycle, provides a JRockit real-time JVM with deterministic garbage collection, and a wide variety of essential services such as security, Jetty, JMX, JDBC, HTTP publish-subscribe, and logging and debugging.			
For more information on Oracle CEP server, see Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.			
Oracle CEP provides the following tools to facilitate your Oracle CQL development process:			
Oracle CEP IDE for Eclipse is targeted specifically to programmers that want to develop Oracle CEP applications as Figure 1-6 shows.			
The Oracle CEP IDE for Eclipse is a set of plugins for the Eclipse IDE designed to help develop, deploy, and debug Oracle CEP applications.			
The key features of Oracle CEP IDE for Eclipse are:			
For details, see:			
Oracle provides an advanced run-time administration console called the Oracle CEP Visualizer as Figure 1-7 shows.			
Using Oracle CEP Visualizer, you can manage, tune, and monitor Oracle CEP server domains and the Oracle CEP applications you deploy to them all from a browser. Oracle CEP Visualizer provides a variety of sophisticated run-time administration tools, including support for Oracle CQL and EPL rule maintenance and creation.			
For details, see Oracle Fusion Middleware Visualizer User's Guide for Oracle Complex Event Processing			
This chapter provides a reference for fundamental parts of Oracle Continuous Query Language (Oracle CQL), including datatypes, literals, nulls, and more. Oracle CQL is the query language used in Oracle Complex Event Processing (Oracle CEP) applications.			
The basic elements of Oracle CQL include:			
Before using the statements described in Part IV, "Using Oracle CQL", you should familiarize yourself with the concepts covered in this chapter.			
Each value manipulated by Oracle CEP has a datatype. The datatype of a value associates a fixed set of properties with the value. These properties cause Oracle CEP to treat values of one datatype differently from values of another. For example, you can add values of INTEGER			
datatype, but not values of CHAR			
datatype.When you create a stream, you must specify a datatype for each of its elements. When you create a user-defined function, you must specify a datatype for each of its arguments. These datatypes define the domain of values that each element can contain or each argument can have. For example, attributes with TIMESTAMP			
as datatype cannot accept the value February 29 (except for a leap year) or the values 2 or 'SHOE'.Oracle CQL provides a number of built-in datatypes that you can use. The syntax of Oracle CQL datatypes appears in the diagrams that follow.			
If Oracle CQL does not support a datatype that your events use, you can use an Oracle CQL data cartridge or a user-defined function to evaluate that datatype in an Oracle CQL query.			
For more information, see:			
Table 2-1 summarizes Oracle CQL built-in datatypes. Refer to the syntax in the preceding sections for the syntactic elements.			
Consider these datatype and datatype literal restrictions when defining event types. For more information, see "Creating Oracle CEP Event Types" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.			
Table 2-1 Oracle CQL Built-in Datatype Summary			
Oracle CQL Datatype	Description		
---	---		
Fixed-length number equivalent to a Java For more information, see Section 2.3.2, "Numeric Literals".			
Fixed-length boolean equivalent to a Java			
Variable-length character data of length For more information, see Section 2.3.2, "Numeric Literals".			
Variable-length character data of length For more information, see Section 2.3.1, "Text Literals".			
Fixed-length number equivalent to a Java For more information, see Section 2.3.2, "Numeric Literals".			
Fixed-length number equivalent to a Java For more information, see Section 2.3.2, "Numeric Literals".			
Fixed-length number equivalent to a Java For more information, see Section 2.3.2, "Numeric Literals".			
Fixed-length For more information, see Section 2.3.4, "Interval Literals".			
Fixed-length For more information, see Section 2.3.3, "Datetime Literals".			
Use this datatype for stream elements that contain XML data. Maximum length is 4096 characters.			
For more information, see "SQL/XML (SQLX)".			
This stands for any Java object (that is, any subclass of We refer to this as opaque type support in Oracle CEP since the Oracle CEP engine does not understand the contents of an You typically use this type to pass values, from an adapter to its destination, as-is; these values need not be interpreted by the Oracle CEP engine (such as			
Footnote 1 Oracle CQL supports single-dimension arrays only.			
If your event uses a datatype that Oracle CQL does not support, you can use an Oracle CQL data cartridge to evaluate that datatype in an Oracle CQL query.			
Oracle CQL includes the following data cartridges:			
For more information, see Chapter 14, "Introduction to Data Cartridges".			
If your event uses a datatype that Oracle CQL does not support, you can create a user-defined function to evaluate that datatype in an Oracle CQL query.			
Consider the enum			
datatype that Example 2-1 shows. The event that Example 2-2 shows uses this enum			
datatype. Oracle CQL does not support enum			
datatypes.			
Example 2-1 Enum Datatype ProcessStatus			
Example 2-2 Event Using Enum Datatype ProcessStatus			
By creating the user-defined function that Example 2-3 shows and registering the function in your application assembly file as Example 2-4 shows, you can evaluate this enum			
datatype in an Oracle CQL query as Example 2-5 shows.			
Example 2-3 User-Defined Function to Evaluate Enum Datatype			
Example 2-4 Registering the User-Defined Function in Application Assembly File			
Example 2-5 Using the User-Defined Function to Evaluate Enum Datatype in an Oracle CQL Query			
For more information, see Chapter 13, "User-Defined Functions".			
This section describes how Oracle CEP compares values of each datatype.			
A larger value is considered greater than a smaller one. All negative numbers are less than zero and all positive numbers. Thus, -1 is less than 100; -100 is less than -1.			
A later date is considered greater than an earlier one. For example, the date equivalent of '29-MAR-2005'			
is less than that of '05-JAN-2006'			
and '05-JAN-2006 1:35pm'			
is greater than '05-JAN-2005 10:09am'			
.			
Oracle CQL supports Lexicographic sort based on dictionary order.			
Internally, Oracle CQL compares the numeric value of the char			
. Depending on the encoding used, the numeric values will differ, but in general, the comparison will remain the same. For example:			
Generally an expression cannot contain values of different datatypes. For example, an arithmetic expression cannot multiply 5 by 10 and then add 'JAMES'			
. However, Oracle CEP supports both implicit and explicit conversion of values from one datatype to another.			
Oracle recommends that you specify explicit conversions, rather than rely on implicit or automatic conversions, for these reasons:			
This section describes:			
Oracle CEP automatically converts a value from one datatype to another when such a conversion makes sense.			
Table 2-2 is a matrix of Oracle implicit conversions. The table shows all possible conversions (marked with an X			
). Unsupported conversions are marked with a --			
.			
Table 2-2 Implicit Type Conversion Matrix			
to CHAR	to BYTE	to BOOLEAN	to INTEGER
---	---	---	---
from CHAR			
from BYTE			
from BOOLEAN			
from INTEGER			
from DOUBLE			
from BIGINT			
from FLOAT			
from TIMESTAMP			
from INTERVAL			
The following rules govern the direction in which Oracle CEP makes implicit datatype conversions:
SELECT
FROM
operations, Oracle CEP converts the data from the stream to the type of the target variable if the select clause contains arithmetic expressions or condition evaluations. For example, implicit conversions occurs in the context of expression evaluation, such as c1+2.0
, or condition evaluation, such as c1 < 2.0
, where c1
is of type INTEGER
.
FLOAT
to BIGINT
are exact. BIGINT
to FLOAT
are inexact if the BIGINT
value uses more bits of precision that supported by the FLOAT
. TIMESTAMP
value, Oracle CEP converts the character data to TIMESTAMP
. =
) to the datatype of the target of the assignment on the left side. CHAR
. CHAR
as Table 2-2 shows. You can explicitly specify datatype conversions using Oracle CQL conversion functions. Table 2-3 shows Oracle CQL functions that explicitly convert a value from one datatype to another. Unsupported conversions are marked with a --
.
Table 2-3 Explicit Type Conversion Matrix
to CHAR | to BYTE | to BOOLEAN | to INTEGER | to DOUBLE | to BIGINT | to FLOAT | to TIMESTAMP | to INTERVAL | |
---|---|---|---|---|---|---|---|---|---|
from CHAR | -- | | -- | -- | -- | -- | -- | | -- |
from BYTE | -- | | -- | -- | -- | -- | -- | -- | -- |
from BOOLEAN | |||||||||
from INTEGER | | -- | | -- | | | | -- | -- |
from DOUBLE | | -- | -- | -- | -- | -- | -- | -- | -- |
from LONG | -- | -- | -- | -- | -- | -- | -- | | -- |
from BIGINT | | -- | | -- | | -- | | -- | -- |
from FLOAT | | -- | -- | -- | | -- | -- | -- | -- |
from TIMESTAMP | | -- | -- | -- | -- | -- | -- | -- | -- |
from INTERVAL | | -- | -- | -- | -- | -- | -- | -- | -- |
Using an Oracle CQL processor, you can specify a relational database table as an event source. You can query this event source, join it with other event sources, and so on. When doing so, you must observe the SQL and Oracle CEP data type equivalents that Oracle CEP supports.
For more information, see:
At run time, Oracle CEP maps between Oracle CQL and data cartridge datatypes according to the data cartridge's implementation.
For more information, see:
At run time, Oracle CEP maps between the Oracle CQL datatype you specify for a user-defined function's return type and its Java datatype equivalent.
For more information, see Section 13.1.2, "User-Defined Function Datatypes".
The terms literal and constant value are synonymous and refer to a fixed data value. For example, 'JACK'
, 'BLUE ISLAND'
, and '101'
are all text literals; 5001 is a numeric literal.
Oracle CEP supports the following types of literals in Oracle CQL statements:
Use the text literal notation to specify values whenever const_string
, quoted_string_double_quotes
, or quoted_string_single_quotes
appears in the syntax of expressions, conditions, Oracle CQL functions, and Oracle CQL statements in other parts of this reference. This reference uses the terms text literal, character literal, and string interchangeably.
Text literals are enclosed in single or double quotation marks so that Oracle CEP can distinguish them from schema object names.
You may use single quotation marks ('
) or double quotation marks ("
). Typically, you use double quotation marks. However, for certain expressions, conditions, functions, and statements, you must use the quotation marks as specified in the syntax given in other parts of this reference: either quoted_string_double_quotes
or quoted_string_single_quotes
.
If the syntax uses simply const_string
, then you can use either single or double quotation marks.
If the syntax uses the term char
, then you can specify either a text literal or another expression that resolves to character data. When char
appears in the syntax, the single quotation marks are not used.
Oracle CEP supports Java localization. You can specify text literals in the character set specified by your Java locale.
For more information, see:
Use numeric literal notation to specify fixed and floating-point numbers.
You must use the integer notation to specify an integer whenever integer
appears in expressions, conditions, Oracle CQL functions, and Oracle CQL statements described in other parts of this reference.
The syntax of integer
follows:
where digit
is one of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
An integer can store a maximum of 32 digits of precision.
Here are some valid integers:
You must use the number or floating-point notation to specify values whenever number
or n
appears in expressions, conditions, Oracle CQL functions, and Oracle CQL statements in other parts of this reference.
The syntax of number
follows:
where
digit
is one of 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9. f
or F
indicates that the number is a 64-bit binary floating point number of type FLOAT
. d
or D
indicates that the number is a 64-bit binary floating point number of type DOUBLE
. If you omit f
or F
and d
or D
, then the number is of type INTEGER
.
The suffixes f
or F
and d
or D
are supported only in floating-point number literals, not in character strings that are to be converted to INTEGER
. For example, if Oracle CEP is expecting an INTEGER
and it encounters the string '9'
, then it converts the string to the Java Integer
9. However, if Oracle CEP encounters the string '9f'
, then conversion fails and an error is returned.
A number of type INTEGER
can store a maximum of 32 digits of precision. If the literal requires more precision than provided by BIGINT
or FLOAT
, then Oracle CEP truncates the value. If the range of the literal exceeds the range supported by BIGINT
or FLOAT
, then Oracle CEP raises an error.
If your Java locale uses a decimal character other than a period (.
), then you must specify numeric literals with 'text'
notation. In these cases, Oracle CEP automatically converts the text literal to a numeric value.
Note: You cannot use this notation for floating-point number literals. |
For example, if your Java locale specifies a decimal character of comma (,), specify the number 5.123 as follows:
Here are some valid NUMBER
literals:
Here are some valid floating-point number literals:
Oracle CEP supports datetime datatype TIMESTAMP
.
Datetime literals must not exceed 64 bytes.
All datetime literals must conform to one of the java.text.SimpleDateFormat
format models that Oracle CQL supports. For more information, see Section 2.4.2, "Datetime Format Models".
Currently, the SimpleDateFormat
class does not support xsd:dateTime
. As a result, Oracle CQL does not support XML elements or attributes that use this type.
For example, if your XML event uses an XSD like Example 2-6, Oracle CQL cannot parse the MyTimestamp
element.
Example 2-6 Invalid Event XSD: xsd:dateTime is Not Supported
Oracle recommends that you define your XSD to replace xsd:dateTime
with xsd:string
as Example 2-7 shows.
Example 2-7 Valid Event XSD: Using xsd:string Instead of xsd:dateTime
Using the XSD from Example 2-7, Oracle CQL can process events such as that shown in Example 2-8 as long as the Timestamp
element's String
value conforms to the java.text.SimpleDateFormat
format models that Oracle CQL supports. For more information, see Section 2.4.2, "Datetime Format Models".
Example 2-8 XML Event Payload
For more information on using XML with Oracle CQL, see "SQL/XML (SQLX)".
An interval literal specifies a period of time. Oracle CEP supports interval literal DAY
TO
SECOND
. This literal contains a leading field and may contain a trailing field. The leading field defines the basic unit of date or time being measured. The trailing field defines the smallest increment of the basic unit being considered. Part ranges (such as only SECOND
or MINUTE to SECOND
) are not supported.
Interval literals must not exceed 64 bytes.
Specify DAY
TO
SECOND
interval literals using the following syntax:
where const_string
is a TIMESTAMP
value that conforms to the appropriate datetime format model (see Section 2.4.2, "Datetime Format Models").
Examples of the various forms of INTERVAL
DAY
TO
SECOND
literals follow:
Form of Interval Literal | Interpretation |
---|---|
| 4 days, 5 hours, 12 minutes, 10 seconds, and 222 thousandths of a second. |
You can add or subtract one DAY
TO
SECOND
interval literal from another DAY
TO
SECOND
literal and compare one interval literal to another as Example 2-9 shows. In this example, stream tkdata2_SIn1
has schema (c1 integer, c2 interval)
.
A format model is a character literal that describes the format of datetime or numeric data stored in a character string. When you convert a character string into a date or number, a format model determines how Oracle CEP interprets the string. The following format models are relevant to Oracle CQL queries:
Oracle CQL supports the format models that the java.text.SimpleDateFormat
specifies.
Table 2-4 lists the java.text.SimpleDateFormat
models that Oracle CQL uses to interpret TIMESTAMP
literals. For more information, see Section 2.3.3, "Datetime Literals".
Table 2-4 Datetime Format Models
Format Model | Example |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
You can use a datetime format model in the following functions:
to_timestamp
: to translate the value of a char
datatype to a TIMESTAMP
datatype. If a column in a row has no value, then the column is said to be null, or to contain null. Nulls can appear in tuples of any datatype that are not restricted by primary key integrity constraints. Use a null when the actual value is not known or when a value would not be meaningful.
Oracle CEP treats a character value with a length of zero as null. However, do not use null to represent a numeric value of zero, because they are not equivalent.
Note: Oracle CEP currently treats a character value with a length of zero as null. However, this may not continue to be true in future releases, and Oracle recommends that you do not treat empty strings the same as nulls. |
Any arithmetic expression containing a null always evaluates to null. For example, null added to 10 is null. In fact, all operators (except concatenation) return null when given a null operand.
For more information, see:
All scalar functions (except nvl
and concat
) return null when given a null argument. You can use the nvl
function to return a value when a null occurs. For example, the expression NVL(commission_pct,0)
returns 0 if commission_pct
is null or the value of commission_pct
if it is not null.
Most aggregate functions ignore nulls. For example, consider a query that averages the five values 1000
, null
, null
, null
, and 2000
. Such a query ignores the nulls and calculates the average to be (1000+2000)/2 = 1500
.
To test for nulls, use only the null comparison conditions (see null_conditions::=). If you use any other condition with nulls and the result depends on the value of the null, then the result is UNKNOWN
. Because null represents a lack of data, a null cannot be equal or unequal to any value or to another null. However, Oracle CEP considers two nulls to be equal when evaluating a decode expression. See decode::= for syntax and additional information.
A condition that evaluates to UNKNOWN
acts almost like FALSE
. For example, a SELECT
statement with a condition in the WHERE
clause that evaluates to UNKNOWN
returns no tuples. However, a condition evaluating to UNKNOWN
differs from FALSE
in that further operations on an UNKNOWN
condition evaluation will evaluate to UNKNOWN
. Thus, NOT
FALSE
evaluates to TRUE
, but NOT
UNKNOWN
evaluates to UNKNOWN
.
Table 2-5 shows examples of various evaluations involving nulls in conditions. If the conditions evaluating to UNKNOWN
were used in a WHERE
clause of a SELECT
statement, then no rows would be returned for that query.
Table 2-5 Conditions Containing Nulls
Condition | Value of A | Evaluation |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
For more information, see Section 6.6, "Null Conditions".
Oracle CQL allows you to define aliases (or synonyms) to simplify and improve the clarity of your queries.
This section describes:
Using the AS
operator, you can specify an alias in Oracle CQL for queries, relations, streams, and any items in the SELECT
list of a query.
This section describes:
For more information, see Chapter 18, "Oracle CQL Queries, Views, and Joins".
You can use the relation_variable
clause AS
operator to define an alias to label the immediately preceding expression in the select list so that you can reference the result by that name. The alias effectively renames the select list item for the duration of the query. You can use an alias in the ORDER
BY
clause (see Section 18.2.9, "Sorting Query Results"), but not other clauses in the query.
Example 2-10 shows how to define alias badItem
for a stream element its.itemId
in a SELECT
list and alias its
for a MATCH_RECOGNIZE
clause.
Example 2-10 Using the AS Operator in the SELECT Statement
For more information, see Section 18.2.1.3, "From Clause".
You can use the AS
operator to define an alias to label the immediately preceding window operator so that you can reference the result by that name.
You may not use the AS
operator within a window operator but you may use the AS
operator outside of the window operator.
Example 2-11 shows how to define aliases bid and ask after partitioned range window operators.
Example 2-11 Using the AS Operator After a Window Operator
For more information, see Section 1.1.3, "Stream-to-Relation Operators (Windows)".
Aliases are required to provide location transparency. Using the aliases
element, you can define an alias and then use it in an Oracle CQL query or view. You configure the aliases
element in the component configuration file of a processor as Figure 2-0 shows.
Example 2-12 aliases Element in a Processor Component Configuration File
The scope of the aliases
element is the queries and views defined in the rules
element of the processor to which the aliases
element belongs.
Note the following:
This section describes:
Using the aliases
element child element type-alias
, you can define an alias for a data type. You can create an alias for any built-in or data cartridge data type.
For more information, see Section 2.1, "Datatypes".
To define a type alias using the aliases element:
Example 2-13 Adding an aliases Element to a Processor
type-alias
child element to the aliases element as Example 2-14 shows. Example 2-14 Adding a type-alias Element to a Processor
source
and target
child element to the type-alias
element as Example 2-15 shows, where: source
specifies the alias. You can use any valid schema name. For more information, see Section 2.8, "Schema Object Names and Qualifiers"
target
specifies the data type the alias refers to. For Oracle CQL data cartridge types, use the fully qualified type name. For more information, see Chapter 14, "Introduction to Data Cartridges".
Example 2-15 Adding the source and target Elements
You can use the alias in exactly the same way you would use the data type it refers to. As Example 2-16 shows, you can access methods and fields of the aliased type.
Example 2-16 Accessing the Methods and Fields of an Aliased Type
Some schema objects are made up of parts that you can or must name, such as the stream elements in a stream or view, integrity constraints, streams, views, and user-defined functions. This section provides:
For more information, see Section 1.2.1, "Lexical Conventions".
Every Oracle CEP object has a name. In a Oracle CQL statement, you represent the name of an object with an nonquoted identifier, meaning an identifier that is not surrounded by any punctuation.
You must use nonquoted identifiers to name an Oracle CEP object.
The following list of rules applies to identifiers:
Depending on the Oracle product you plan to use to access an Oracle CEP object, names might be further restricted by other product-specific reserved words.
The Oracle CQL language contains other words that have special meanings. These words are not reserved. However, Oracle uses them internally in specific ways. Therefore, if you use these words as names for objects and object parts, then your Oracle CQL statements may be more difficult to read and may lead to unpredictable results.
For more information, see
For more information, see:
In general, you should choose names that are unique across an application for the following objects:
Specifically, a query and view cannot have the same name.
Identifier names are case sensitive.
If you register or create a user-defined function with the same name and signature as a built-in function, your function replaces that signature of the built-in function. Creating a function with the same name and signature as that of a built-in function is called overriding the function.
Built-in functions are public where as user-defined functions belong to a particular schema.
For more information, see:
Here are several guidelines for naming objects and their parts:
When naming objects, balance the goal of keeping names short and easy to use with the goal of making names as descriptive as possible. When in doubt, choose the more descriptive name, because the objects in Oracle CEP may be used by many people over a period of time. Your counterpart ten years from now may have difficulty understanding a stream element with a name like pmdd
instead of payment_due_date
.
Using consistent naming rules helps users understand the part that each stream plays in your application. One such rule might be to begin the names of all streams belonging to the FINANCE
application with fin_
.
Use the same names to describe the same things across streams. For example, the department number stream element of the employees
and departments
streams are both named department_id
.
The following examples are valid schema object names:
All of these examples adhere to the rules listed in Section 2.8.1, "Schema Object Naming Rules".
This chapter provides a reference for Oracle Continuous Query Language (Oracle CQL) pseudocolumns, which you can query for but which are not part of the data from which an event was created.
You can select from pseudocolumns, but you cannot modify their values. A pseudocolumn is also similar to a function without arguments (see Section 1.1.11, "Functions").
Oracle CQL supports the following pseudocolumns:
Every stream element of a base stream or derived stream (a view that evaluates to a stream) has an associated element time.The ELEMENT_TIME
pseudo column returns this time as an Oracle CQL native type bigint
.
Note:
|
This section describes:
For more information, see:
The value of the ELEMENT_TIME
pseudocolumn depends on whether or not you configure the stream element's channel as system- or application-timestamped.
In this case, the element time for a stream element is assigned by the Oracle CEP system in such a way that subtracting two values of system-assigned time will give a duration that roughly matches the elapsed wall clock time.
For more information, see "System-Timestamped Channels" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.
In this case, the associated element time is assigned by the application using the application assembly file wlevs:expression
element to specify a derived timestamp expression.
Oracle CEP processes the result of this expression as follows:
For more information, see "Application-Timestamped Channels" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.
If the dervied timestamp expression evaluates to an Oracle CQL native type of int
, then it is cast to and returned as a corresponding bigint
value. If the expression evaluates to an Oracle CQL native type of bigint
, that value is returned as is.
If the derived timestamp expression evaluates to an Oracle CQL native type of timestamp
, it is converted to a long
value by expressing this time value as the number of milliseconds since the standard base time known as "the epoch", namely January 1, 1970, 00:00:00 GMT.
This section describes how to use ELEMENT_TIME
in various queries, including:
Example 3-1 shows how you can use the ELEMENT_TIME
pseudocolumn in a select statement. Stream S1
has schema (c1 integer)
. Given the input stream that Example 3-2 shows, this query returns the results that Example 3-3 shows. Note that the function to_timestamp
is used to convert the Long
values to timestamp values.
Example 3-1 ELEMENT_TIME Pseudocolumn in a Select Statement
Example 3-3 Output Relation
If your query includes a GROUP BY
clause, you cannot use the ELEMENT_TIME
pseudocolumn in the SELECT
statement directly. Instead, use a view as Section 3.2.2.2, "Using ELEMENT_TIME With GROUP BY" describes.
Consider query Q1
that Example 3-4 shows. You cannot use ELEMENT_TIME
in the SELECT
statement of the query because of the GROUP BY
clause.
Example 3-4 Query With GROUP BY
Instead, create a view as Example 3-5 shows. The derived stream corresponding to V1
will contain a stream element each time (queryText
, queryCount
, maxTime
) changes for a specific queryText
group.
Example 3-5 View
Note that the element time associated with an output element of view V1 need not be the same as the value of the attribute maxTime for that output event. For example, as the window slides and an element from the queryEventChannel input stream expires from the window, the queryCount for that queryText group would change resulting in an output. However, since there was no new event from the input stream queryEventChannel entering the window, the maxTime among all events in the window has not changed, and the value of the maxTime attribute for this output event would be the same as the value of this attribute in the previous output event.
However, the ELEMENT_TIME of the output event corresponds to the instant where the event has expired from the window, which is different than the latest event from the input stream, making this is an example where ELEMENT_TIME of the output event is different from value of "maxTime" attribute of the output event.
To select the ELEMENT_TIME of the output events of view V1, create a query as Example 3-6 shows.
Example 3-7 shows how the ELEMENT_TIME
pseudocolumn can be used in a pattern query. Here a tuple or event matches correlation variable Nth
if the value of Nth.status
is >= F.status
and if the difference between the Nth.ELEMENT_TIME
value of that tuple and the tuple that last matched F
is less than the given interval as a java.lang.Math.Bigint(Long)
.
This chapter provides a reference for operators in Oracle Continuous Query Language (Oracle CQL). An operator manipulates data items and returns a result. Syntactically, an operator appears before or after an operand or between two operands.
Operators manipulate individual data items called operands or arguments. Operators are represented by special characters or by keywords. For example, the multiplication operator is represented by an asterisk (*
).
Oracle CQL provides the following operators:
The two general classes of operators are:
Other operators with special formats accept more than two operands. If an operator is given a null operand, then the result is always null. The only operator that does not follow this rule is concatenation (||).
Precedence is the order in which Oracle CEP evaluates different operators in the same expression. When evaluating an expression containing multiple operators, Oracle CEP evaluates operators with higher precedence before evaluating those with lower precedence. Oracle CEP evaluates operators with equal precedence from left to right within an expression.
Table 4-1 lists the levels of precedence among Oracle CQL operators from high to low. Operators listed on the same line have the same precedence.
Table 4-1 Oracle CQL Operator Precedence
Operator | Operation |
---|---|
| Identity, negation |
| Multiplication, division |
| Addition, subtraction, concatenation |
Oracle CQL conditions are evaluated after Oracle CQL operators |
Precedence Example In the following expression, multiplication has a higher precedence than addition, so Oracle first multiplies 2 by 3 and then adds the result to 1.
You can use parentheses in an expression to override operator precedence. Oracle evaluates expressions inside parentheses before evaluating those outside.
Table 4-2 lists arithmetic operators that Oracle CEP supports. You can use an arithmetic operator with one or two arguments to negate, add, subtract, multiply, and divide numeric values. Some of these operators are also used in datetime and interval arithmetic. The arguments to the operator must resolve to numeric datatypes or to any datatype that can be implicitly converted to a numeric datatype.
In certain cases, Oracle CEP converts the arguments to the datatype as required by the operation. For example, when an integer and a float are added, the integer argument is converted to a float. The datatype of the resulting expression is a float. For more information, see "Implicit Datatype Conversion".
Table 4-2 Arithmetic Operators
Do not use two consecutive minus signs (--) in arithmetic expressions to indicate double negation or the subtraction of a negative value. You should separate consecutive minus signs with a space or parentheses.
Oracle CEP supports arithmetic operations using numeric literals and using datetime and interval literals.
For more information, see:
The concatenation operator manipulates character strings. Table 4-3 describes the concatenation operator.
Table 4-3 Concatenation Operator
Operator | Purpose | Example |
---|---|---|
|| | Concatenates character strings. | <query id="q263"><![CDATA[select length(c2 || c2) + 1 from S10 where length(c2) = 2]]></query> |
The result of concatenating two character strings is another character string. If both character strings are of datatype CHAR
, then the result has datatype CHAR
and is limited to 2000 characters. Trailing blanks in character strings are preserved by concatenation, regardless of the datatypes of the string.
Although Oracle CEP treats zero-length character strings as nulls, concatenating a zero-length character string with another operand always results in the other operand, so null can result only from the concatenation of two null strings. However, this may not continue to be true in future versions of Oracle CEP. To concatenate an expression that might be null, use the NVL
function to explicitly convert the expression to a zero-length string.
Example 4-1 shows how to use the concatenation operator to append the String "xyz" to the value of c2
in a select statement.
The alternation operator allows you to refine the sense of a PATTERN
clause. Table 4-4 describes the concatenation operator.
Table 4-4 Alternation Operator
Operator | Purpose | Example |
---|---|---|
| | Changes the sense of a | <query id="q263"><![CDATA[select T.p1, T.p2, T.p3 from S MATCH_RECOGNIZE(MEASURES A.ELEMENT_TIME as p1, B.ELEMENT_TIME as p2 B.c2 as p3 PATTERN (A+ | B+) DEFINE A as A.c1 = 10, B as B.c1 = 20) as T]]></query> |
The alternation operator is applicable only within a PATTERN
clause.
Example 4-2 shows how to use the alternation operator to change the sense of the PATTERN
clause to mean "A one or more times followed by either B one or more times or C one or more times, whichever comes first".
Example 4-2 Alternation Operator (|)
For more information, see Section 19.3.2, "Grouping and Alternation in the PATTERN Clause".
Oracle CQL supports the following range-based stream-to-relation window operators:
For more information, see:
This time-based range window outputs an instantaneous relation. So at time t
the output of this now
window is all the tuples that arrive at that instant t
. The smallest granularity of time in Oracle CEP is nanoseconds and hence all these tuples expire 1 nanosecond later.
For an example, see "S [now] Example".
Examples
S [now] Example
Consider the query q1
in Example 4-3 and the data stream S
in Example 4-4. Timestamps are shown in nanoseconds (1 sec = 10^9 nanoseconds
). Example 4-5 shows the relation that the query returns at time 5000 ms
. At time 5002 ms
, the query would return an empty relation.
Example 4-4 S [now] Stream Input
Example 4-5 S [now] Relation Output at Time 5000000000 ns
This time-based range window defines its output relation over time by sliding an interval of size T
time units capturing the latest portion of an ordered stream.
For an example, see "S [range T] Example".
Examples
S [range T] Example
Consider the query q1
in Example 4-6. Given the data stream S
in Example 4-7, the query returns the relation in Example 4-8. By default, the range time unit is second
(see time_spec::=) so S[range 1]
is equivalent to S[range 1 second]
. Timestamps are shown in milliseconds (1 s = 1000 ms
). As many elements as there are in the first 1000 ms
interval enter the window, namely tuple (10,0.1)
. At time 1002 ms
, tuple (15,0.14)
enters the window. At time 2000 ms
, any tuples that have been in the window longer than the range interval are subject to deletion from the relation, namely tuple (10,0.1)
. Tuple (15,0.14)
is still in the relation at this time. At time 2002 ms
, tuple (15,0.14)
is subject to deletion because by that time, it has been in the window longer than 1000 ms
.
Note: In stream input examples, lines beginning with |
Example 4-7 S [range T] Stream Input
Example 4-8 S [range T] Relation Output
This time-based range window allows you to specify the time duration in the past up to which you want to retain the tuples (range) and also how frequently you want to see the output of the tuples (slide). So if two tuples arrive between the time period n*T2
and (n+1)*T2
, both of them will be visible (enter the window) only at (n+1)*T2
and will expire from the window at (n+1)*T2+T1
.
For an example, see "S [range T1 slide T2] Example".
Examples
S [range T1 slide T2] Example
Consider the query q1
in Example 4-9. Given the data stream S
in Example 4-10, the query returns the relation in Example 4-11. By default, the range time unit is second
(see time_spec::=) so S[range 10 slide 5]
is equivalent to S[range 10 seconds slide 5 seconds]
. Timestamps are shown in milliseconds (1 s = 1000 ms
). Tuples arriving at 1000
, 1002
, and 5000
all enter the window at time 5000
since the slide value is 5 sec
and that means the user is interested in looking at the output after every 5 sec
. Since these tuples enter at 5 sec=5000 ms
, they are expired at 15000 ms
as the range value is 10 sec = 10000 ms
.
Example 4-9 S [range T1 slide T2] Query
Example 4-10 S [range T1 slide T2] Stream Input
Example 4-11 S [range T1 slide T2] Relation Output
This time-based range window defines its output relation such that, when T = infinity
, the relation at time t
consists of tuples obtained from all elements of S
up to t
. Elements remain in the window indefinitely.
For an example, see "S [range unbounded] Example".
Examples
S [range unbounded] Example
Consider the query q1
in Example 4-12 and the data stream S
in Example 4-13. Timestamps are shown in milliseconds (1 s = 1000 ms
). Elements are inserted into the relation as they arrive. No elements are subject to deletion. Example 4-14 shows the relation that the query returns at time 5000 ms
and Example 4-15 shows the relation that the query returns at time 205000 ms
.
Example 4-12 S [range unbounded] Query
Example 4-13 S [range unbounded] Stream Input
Example 4-14 S [range unbounded] Relation Output at Time 5000 ms
Example 4-15 S [range unbounded] Relation Output at Time 205000 ms
This constant value-based range window defines its output relation by capturing the latest portion of a stream that is ordered on the identifier E
made up of tuples in which the values of stream element E
differ by less than C
. A tuple is subject to deletion when the difference between its stream element E
value and that of any tuple in the relation is greater than or equal to C
.
For examples, see:
Examples
S [range C on E] Example: Constant Value
Consider the query tkdata56_q0
in Example 4-16 and the data stream tkdata56_S0
in Example 4-17. Stream tkdata56_S0
has schema (c1 integer, c2 float)
. Example 4-18 shows the relation that the query returns. In this example, at time 200000, the output relation contains the following tuples: (5,0.1)
, (8,0.14)
, (10,0.2)
. The difference between the c1
value of each of these tuples is less than 10. At time 250000, when tuple (15,0.2)
is added, tuple (5,0.1)
is subject to deletion because the difference 15 - 5 = 10, which not less than 10. Tuple (8,0.14)
remains because 15 - 8 = 7, which is less than 10. Likewise, tuple (10,0.2)
remains because 15 - 10 = 5, which is less than 10. At time 300000, when tuple (18,0.22)
is added, tuple (8,0.14)
is subject to deletion because 18 - 8 = 10, which is not less than 10.
Example 4-16 S [range C on E] Constant Value: Query
Example 4-17 S [range C on E] Constant Value: Stream Input
Example 4-18 S [range C on E] Constant Value: Relation Output
S [range C on E] Example: INTERVAL and TIMESTAMP
Similarly, you can use the S[range C on ID]
window with INTERVAL
and TIMESTAMP
. Consider the query tkdata56_q2
in Example 4-19 and the data stream tkdata56_S1
in Example 4-20. Stream tkdata56_S1
has schema (c1 timestamp, c2 double)
. Example 4-21 shows the relation that the query returns.
Example 4-19 S [range C on E] INTERVAL Value: Query
Oracle CQL supports the following tuple-based stream-to-relation window operators:
For more information, see:
A tuple-based window defines its output relation over time by sliding a window of the last N
tuples of an ordered stream.
For the output relation R
of S [rows N]
, the relation at time t
consists of the N
tuples of S
with the largest timestamps <= t
(or all tuples if the length of S
up to t
is <= N
).
If more than one tuple has the same timestamp, Oracle CEP chooses one tuple in a non-deterministic way to ensure N
tuples are returned. For this reason, tuple-based windows may not be appropriate for streams in which timestamps are not unique.
By default, the slide is 1.
For examples, see "S [rows N] Example".
Examples
S [rows N] Example
Consider the query q1
in Example 4-22 and the data stream S
in Example 4-23. Timestamps are shown in milliseconds (1 s = 1000 ms
). Elements are inserted into and deleted from the relation as in the case of S [Range 1]
(see "S [range T] Example").
Example 4-24 shows the relation that the query returns at time 1002 ms
. Since the length of S
at this point is less than or equal to the rows
value (3), the query returns all the tuples of S
inserted by that time, namely tuples (10,0.1)
and (15,0.14)
.
Example 4-25 shows the relation that the query returns at time 1006 ms
. Since the length of S
at this point is greater than the rows
value (3), the query returns the 3 tuples of S
with the largest timestamps less than or equal to 1006 ms
, namely tuples (15,0.14)
, (33,4.4)
, and (23,56.33)
.
Example 4-26 shows the relation that the query returns at time 2000 ms
. At this time, the query returns the 3 tuples of S with the largest timestamps less than or equal to 2000 ms, namely tuples (45,23.44), (30,0.3), and (17,1.3).
Example 4-23 S [rows N] Stream Input
Example 4-24 S [rows N] Relation Output at Time 1003 ms
Example 4-25 S [rows N] Relation Output at Time 1007 ms
Example 4-26 S [rows N] Relation Output at Time 2001 ms
A tuple-based window that defines its output relation over time by sliding a window of the last N1
tuples of an ordered stream.
For the output relation R
of S [rows N1 slide N2]
, the relation at time t
consists of the N1
tuples of S
with the largest timestamps <= t
(or all tuples if the length of S
up to t
is <= N
).
If more than one tuple has the same timestamp, Oracle CEP chooses one tuple in a non-deterministic way to ensure N
tuples are returned. For this reason, tuple-based windows may not be appropriate for streams in which timestamps are not unique.
You can configure the slide N2
as an integer number of stream elements. Oracle CEP delays adding stream elements to the relation until it receives N2
number of elements.
For examples, see "S [rows N] Example".
Examples
S [rows N1 slide N2] Example
Consider the query tkdata55_q0
in Example 4-27 and the data stream tkdata55_S55
in Example 4-28. Stream tkdata55_S55
has schema (c1 integer, c2 float)
. The output relation is shown in Example 4-29.
As Example 4-29 shows, at time 100000, the output relation is empty because only one tuple (20,0.1)
has arrived on the stream. By time 150000, the number of tuples that the slide
value specifies (2) have arrived: at that time, the output relation contains tuples (20,0.1)
and (15,0.14)
. By time 250000, another slide
number of tuples have arrived and the output relation contains tuples (20,0.1)
, (15,0.14)
, (5,0.2)
, and (8,0.2)
. By time 350000, another slide number of tuples have arrived. At this time, the oldest tuple (20,0.1)
is subject to deletion to meet the constraint that the rows
value imposes: namely, that the output relation contain no more than 5 elements. At this time, the output relation contains tuples (15,0.14)
, (5,0.2)
, (8,0.2)
, (10,0.22)
, and (20,0.25)
. At time 600000, another slide
number of tuples have arrived. At this time, the oldest tuples (15,0.14)
and (5,0.2)
are subject to deletion to observe the rows
value constraint. At this time, the output relation contains tuples (8,0.2)
, (10,0.22)
, (20,0.25)
, (30,0.3)
, and (40,0.4)
.
Example 4-27 S [rows N1 slide N2] Query
Example 4-28 S [rows N1 slide N2] Stream Input
Example 4-29 S [rows N1 slide N2] Relation Output
Oracle CQL supports the following partitioned stream-to-relation window operators:
(time_spec::=, non_mt_attr_list::=)
For more information, see:
This partitioned sliding window on a stream S
takes a positive integer number of tuples N
and a subset {A1,... Ak}
of the stream's attributes as parameters and:
S
into different substreams based on equality of attributes A1,... Ak
(similar to SQL GROUP BY
). N
independently on each substream. For an example, see "S[partition by A1, ..., Ak rows N] Example".
Examples
S[partition by A1, ..., Ak rows N] Example
Consider the query qPart_row2
in Example 4-30 and the data stream SP1
in Example 4-31. Stream SP1
has schema (c1 integer, name char(10))
. The query returns the relation in Example 4-32. By default, the range (and slide) is 1 second. Timestamps are shown in milliseconds (1 s = 1000 ms
).
Note: In stream input examples, lines beginning with |
Example 4-30 S[partition by A1, ..., Ak rows N] Query
Example 4-31 S[partition by A1, ..., Ak rows N] Stream Input
Example 4-32 S[partition by A1, ..., Ak rows N] Relation Output
This partitioned sliding window on a stream S
takes a positive integer number of tuples N
and a subset {A1,... Ak}
of the stream's attributes as parameters and:
S
into different substreams based on equality of attributes A1,... Ak
(similar to SQL GROUP BY
). N
and range T
independently on each substream. For an example, see "S[partition by A1, ..., Ak rows N range T] Example".
Examples
S[partition by A1, ..., Ak rows N range T] Example
Consider the query qPart_range2
in Example 4-33 and the data stream SP5
in Example 4-34. Stream SP5
has schema (c1 integer, name char(10))
. The query returns the relation in Example 4-35. By default, the range time unit is second
(see time_spec::=) so range 2
is equivalent to range 2 seconds
. Timestamps are shown in milliseconds (1 s = 1000 ms
).
Example 4-33 S[partition by A1, ..., Ak rows N range T] Query
Example 4-34 S[partition by A1, ..., Ak rows N range T] Stream Input
Example 4-35 S[partition by A1, ..., Ak rows N range T] Relation Output
This partitioned sliding window on a stream S
takes a positive integer number of tuples N
and a subset {A1,... Ak}
of the stream's attributes as parameters and:
S
into different substreams based on equality of attributes A1,... Ak
(similar to SQL GROUP BY
). N
, range T1
, and slide T2
independently on each substream. For an example, see "S[partition by A1, ..., Ak rows N] Example".
Examples
S[partition by A1, ..., Ak rows N range T1 slide T2] Example
Consider the query qPart_rangeslide
in Example 4-36 and the data stream SP1
in Example 4-37. Stream SP1
has schema (c1 integer, name char(10))
. The query returns the relation in Example 4-38. By default, the range and slide time unit is second
(see time_spec::=) so range 1 slide 1
is equivalent to range 1 second slide 1 second
. Timestamps are shown in milliseconds (1 s = 1000 ms
).
Example 4-36 S[partition by A1, ..., Ak rows N range T1 slide T2] Query
Example 4-37 S[partition by A1, ..., Ak rows N range T1 slide T2] Stream Input
Example 4-38 S[partition by A1, ..., Ak rows N range T1 slide T2] Relation Output
Istream
(for "Insert stream") applied to a relation R
contains (s,t)
whenever tuple s
is in R(t) - R(t-1)
, that is, whenever s
is inserted into R
at time t
. If a tuple happens to be both inserted and deleted with the same timestamp then IStream
does not output the insertion.
In Example 4-39, the select will output a stream of tuples satisfying the filter condition (viewq3.ACCT_INTRL_ID = ValidLoopCashForeignTxn.ACCT_INTRL_ID)
. The now
window converts the viewq3
into a relation, which is kept as a relation by the filter condition. The IStream
relation-to-stream operator converts the output of the filter back into a stream.
Example 4-39 IStream
You can combine the Istream
operator with a DIFFERENCES USING
clause to succinctly detect differences in the Istream
.
For more information, see:
Dstream
(for "Delete stream") applied to a relation R
contains (s,t)
whenever tuple s
is in R(t-1) - R(t)
, that is, whenever s
is deleted from R
at time t
.
In Example 4-40, the query delays the input on stream S
by 10 minutes. The range window operator converts the stream S
into a relation, whereas the Dstream
converts it back to a stream.
Example 4-40 DStream
Assume that the granularity of time is minutes. Table 4-5 illustrates the contents of the range window operator's relation (S[Range 10 minutes]
) and the Dstream
stream for the following input stream TradeInputs
:
Table 4-5 DStream Example Output
Input Stream S | Relation Output | Relation Contents | DStream Output |
---|---|---|---|
|
|
| |
|
| + | |
|
|
| |
|
|
| |
|
|
| |
|
| + |
Note that at time 15, 35, and 60, the relation is empty {}
(the empty set).
You can combine the Dstream
operator with a DIFFERENCES USING
clause to succinctly detect differences in the Dstream
.
For more information, see:
The Rstream
operator maintains the entire current state of its input relation and outputs all of the tuples as insertions at each time step.
Since Rstream
outputs the entire state of the relation at every instant of time, it can be expensive if the relation set is not very small.
In Example 4-41, Rstream
outputs the entire state of the relation at time Now
and filtered by the where
clause.
Example 4-41 RStream
For more information, see idstream_clause::=.
This chapter provides a reference to expressions in Oracle Continuous Query Language (Oracle CQL). An expression is a combination of one or more values and one or more operations, including a constant having a definite value, a function that evaluates to a value, or an attribute containing a value.
Every expression maps to a datatype. This simple expression evaluates to 4 and has datatype NUMBER
(the same datatype as its components):
The following expression is an example of a more complex expression that uses both functions and operators. The expression adds seven days to the current date, removes the time component from the sum, and converts the result to CHAR
datatype:
Oracle CEP provides the following expressions:
You can use expressions in:
SELECT
statement WHERE
clause and HAVING
clause Oracle CEP does not accept all forms of expressions in all parts of all Oracle CQL statements. Refer to the individual Oracle CQL statements in Chapter 20, "Oracle CQL Statements" for information on restrictions on the expressions in that statement.
You must use appropriate expression notation whenever expr
appears in conditions, Oracle CQL functions, or Oracle CQL statements in other parts of this reference. The sections that follow describe and provide examples of the various forms of expressions.
Note: In stream input examples, lines beginning with |
Use an aggr_distinct_expr
aggregate expression when you want to use an aggregate built-in function with distinct
. When you want to use an aggregate built-in function without distinct
, see "aggr_expr".
You can specify an arith_distinct_expr
as the argument of an aggregate expression.
You can use an aggr_distinct_expr
in the following Oracle CQL statements:
For more information, see Chapter 9, "Built-In Aggregate Functions".
Examples
Example 5-2 shows how to use a COUNT
aggregate distinct expression.
Example 5-1 aggr_distinct_expr for COUNT
Use an aggr_expr
aggregate expression when you want to use aggregate built-in functions. When you want to use an aggregate built-in function with distinct
, see "aggr_distinct_expr"
(arith_expr::=, identifier::=, attr::=, xml_agg_expr::=)
You can specify an arith_expr
as the argument of an aggregate expression.
The count
aggregate built-in function takes a single argument made up of any of the values that Table 5-1 lists and returns the int
value indicated.
Table 5-1 Return Values for COUNT Aggregate Function
The first
and last
aggregate built-in functions take a single argument made up of the following period separated values:
identifier1
: the name of a pattern as specified in a DEFINE
clause. identifier2
: the name of a stream element as specified in a CREATE STREAM
statement. You can use an aggr_expr
in the following Oracle CQL statements:
For more information, see:
Examples
Example 5-2 shows how to use a COUNT
aggregate expression.
Use an arith_expr
arithmetic expression to define an arithmetic expression using any combination of stream element attribute values, constant values, the results of a function expression, aggregate built-in function, case expression, or decode. You can use all of the normal arithmetic operators (+
,-
,*
, and /
) and the concatenate operator (||
).
(attr::=, const_value::=, func_expr::=, aggr_expr::=, aggr_distinct_expr::=, case_expr::=, decode::=, arith_expr::=)
You can use an arith_expr
in the following Oracle CQL statements:
For more information, see "Arithmetic Operators".
Examples
Example 5-3 shows how to use a arith_expr
expression.
Use an arith_expr_list
arithmetic expression list to define one or more arithmetic expressions using any combination of stream element attribute values, constant values, the results of a function expression, aggregate built-in function, case expression, or decode. You can use all of the normal arithmetic operators (+
,-
,*
, and /
) and the concatenate operator (||
).
You can use an arith_expr_list
in the following Oracle CQL statements:
For more information, see "Arithmetic Operators".
Examples
Example 5-4 shows how to use a arith_expr_list
expression.
Use a case_expr
case expression to evaluate stream elements against multiple conditions.
(searched_case_list::=, arith_expr::=, simple_case_list::=)
(non_mt_cond_list::=, arith_expr::=)
The case_expr
is similar to the DECODE
clause of an arithmetic expression (see "decode").
In a searched_case
clause, when the non_mt_cond_list
evaluates to true, the searched_case
clause may return either an arithmetic expression or null.
In a simple_case
clause, when the arithmetic expression is true, the simple_case
clause may return either another arithmetic expression or null.
You can use an case_expr
in the following Oracle CQL statements:
Examples
This section describes the following case_expr
examples:
case_expr with SELECT *
Consider the query q97
in Example 5-5 and the data stream S0
in Example 5-6. Stream S1
has schema (c1 float, c2 integer)
. The query returns the relation in Example 5-7.
Example 5-5 CASE Expression: SELECT * Query
Example 5-6 CASE Expression: SELECT * Stream Input
Example 5-7 CASE Expression: SELECT * Relation Output
case_expr with SELECT
Consider the query q96
in Example 5-8 and the data streams S0
in Example 5-9 and S1
in Example 5-10. Stream S0
has schema (c1 float, c2 integer)
and stream S1
has schema (c1 float, c2 integer)
. The query returns the relation in Example 5-11.
Example 5-8 CASE Expression: SELECT Query
Example 5-9 CASE Expression: SELECT Stream S0 Input
Example 5-10 CASE Expression: SELECT Stream S1 Input
Example 5-11 CASE Expression: SELECT Relation Output
Use a decode
expression to evaluate stream elements against multiple conditions.
DECODE
expects its non_mt_arg_list to be of the form:
DECODE
compares expr
to each search
value one by one. If expr
equals a search
value, the DECODE
expressions returns the corresponding result
. If no match is found, the DECODE
expressions returns default
. If default
is omitted, the DECODE
expressions returns null.
The arguments can be any of the numeric (INTEGER
, BIGINT
, FLOAT
, or DOUBLE
) or character (CHAR
) datatypes. For more information, see Section 2.1, "Datatypes").
The search
, result
, and default
values can be derived from expressions. Oracle CEP uses short-circuit evaluation. It evaluates each search
value only before comparing it to expr
, rather than evaluating all search
values before comparing any of them with expr
. Consequently, Oracle CEP never evaluates a search i
, if a previous search j (0 < j < i)
equals expr
.
Oracle CEP automatically converts expr
and each search
value to the datatype of the first search
value before comparing. Oracle CEP automatically converts the return value to the same datatype as the first result
.
In a DECODE
expression, Oracle CEP considers two nulls to be equivalent. If expr
is null, then Oracle CEP returns the result
of the first search
that is also null.
The maximum number of components in the DECODE
expression, including expr
, searches
, results
, and default
, is 255.
The decode
expression is similar to the case_expr
(see case_expr::=).
You can use a decode
expression in the following Oracle CQL statements:
Examples
Consider the query q
in Example 5-12 and the input relation R
in Example 5-13. Relation R
has schema (c1 float, c2 integer)
. The query returns the relation in Example 5-14.
Example 5-12 Arithmetic Expression and DECODE Query
Example 5-13 Arithmetic Expression and DECODE Relation Input
Use the func_expr
function expression to define a function invocation using any Oracle CQL built-in, user-defined, or Oracle data cartridge function.
(identifier::=, const_int::=, const_bigint::=, const_string::=, xqryargs_list::=, non_mt_arg_list::=, xml_parse_expr::=, xmlelement_expr::=, xmlforest_expr::=, xmlcolattval_expr::=, func_name:=, link::=, arith_expr::=)
func_name
You can specify the identifier of a function explicitly:
link
, depending on the type of Oracle data cartridge function. For more information, see:
For more information, see aggr_distinct_expr.
PREV
The PREV
function takes a single argument made up of the following period-separated identifier arguments:
identifier1
: the name of a pattern as specified in a DEFINE
clause. identifier2
: the name of a stream element as specified in a CREATE STREAM
statement. The PREV
function also takes the following const_int arguments:
const_int
: the index of the stream element before the current stream element to compare against. Default: 1. const_bigint
: the timestamp of the stream element before the current stream element to compare against. To obtain the timestamp of a stream element, you can use the ELEMENT_TIME
pseudocolumn (see Section 3.2, "ELEMENT_TIME Pseudocolumn"). For more information, see "prev". For an example, see "func_expr PREV Function Example".
XQuery: XMLEXISTS and XMLQUERY
You can specify an XQuery that Oracle CEP applies to the XML stream element data that you bind in xqryargs_list. For more information, see:
An xqryargs_list is a comma separated list of one or more xqryarg instances made up of an arithmetic expression involving one or more stream elements from the select list, the AS
keyword, and a const_string that represents the XQuery variable or operator (such as the "." current node operator). For more information, see xqryargs_list::=.
For an example, see "func_expr XMLQUERY Function Example".
For more information, see "SQL/XML (SQLX)".
XMLCONCAT
The XMLCONCAT
function returns the concatenation of its comma-delimited xmltype
arguments as an xmltype
.
For more information, see:
SQL/XML (SQLX)
The SQLX specification extends SQL to support XML data.
Oracle CQL supports event types containing properties of type SQLX
. In this case, Oracle CEP server converts from SQLX
to String
when within Oracle CQL, and converts from String
to SQLX
on output.
Oracle CQL provides the following expressions (and functions) to manipulate data from an SQLX stream. For example, you can construct XML elements or attributes with SQLX stream elements, combine XML fragments into larger ones, and parse input into XML content or documents.
Note: Oracle CQL does not support external relations with columns of type |
For more information on Oracle CQL SQLX expressions, see:
For more information on Oracle CQL SQLX functions, see:
For more information on datatype restrictions when using Oracle CQL with XML, see:
For more information on SQLX, see the Oracle Database SQL Language Reference.
FIRST and LAST
The FIRST
and LAST
functions each take a single argument made up of the following period-separated values:
identifier1
: the name of a pattern as specified in a DEFINE
clause. identifier2
: the name of a stream element as specified in a CREATE STREAM
statement. For more information, see:
You can specify the identifier of a function explicitly with or without a non_mt_arg_list
: a list of arguments appropriate for the built-in or user-defined function being invoked. The list can have single or multiple arguments.
You can use a func_expr
in the following Oracle CQL statements:
For more information, see Section 1.1.11, "Functions".
Examples
This section describes the following func_expr
examples:
func_expr PREV Function Example
Example 5-15 shows how to compose a func_expr to invoke the PREV
function.
Example 5-15 func_expr for PREV
func_expr XMLQUERY Function Example
Example 5-16 shows how to compose a func_expr to invoke the XMLQUERY
function.
Example 5-16 func_expr for XMLQUERY
Example 5-17 shows how to compose a func_expr to invoke the SUM
function.
Use the object_expr
expression to reference the members of a data cartridge complex type.
You can use an object_expr
anywhere an arithmetic expression can be used. For more information, see "arith_expr".
For syntax, see:
Optionally, you can use a link (@
) in the object_expr
to specify the data cartridge name. Use a link
to specify the location of an Oracle CQL data cartridge complex type class, method, field, or constructor to disambiguate the reference, if necessary. The location must reference a data cartridge by its name. For example, if two data cartridges (myCartridge
and yourCartridge
) both define a complex type com.package.ThisClass
, then you must use the link
clause to explicitly identify which com.package.ThisClass
you want to use.
Note: A |
link::=
(methodname::=, data_cartridge_name::=, param_list::=, qualified_type_name::=)
data_cartridge_name
Each Oracle CQL data cartridge implementation is identified by a unique data cartridge name.
Data cartridge names include:
java
: identifies the Oracle CQL Java data cartridge. This is the default data cartridge name. If you omit a data cartridge name in field or constructor references, Oracle CQL will try to resolve the reference using the java
data cartridge name. This means the following statements are identical:
If you omit a data cartridge name in a method reference, Oracle CQL will try to resolve the reference against its built-in functions (see Section 1.1.11, "Functions").
spatial
: identifies the Oracle CQL Oracle Spatial. For syntax, see data_cartridge_name::= (parent: link::=).
Type Declaration
You declare an event property as a complex type using qualified_type_name
@
data_cartridge_name
.
For examples, see "Type Declaration Example: link"
Field Access
You cannot specify a link when accessing a complex type field because the type of the field already identifies its location. The following is not allowed:
For examples, see "Field Access Example: link".
Method Access
You cannot specify a link when accessing complex type method because the type of the method already identifies its location. The following is not allowed:
For examples, see "Method Access Example: link".
Constructor Invocation
You invoke a complex type constructor using qualified_type_name
@
data_cartridge_name
(
param_list
)
.
For examples, see "Constructor Invocation Example: link".
Examples
The following examples illustrate the various semantics that this statement supports:
Object Expression Example
Example 5-18 shows object_expr
:
This object_expr
uses a data cartridge TABLE
clause that invokes the Oracle Spatial method getContainingGeometries
, passing in one parameter (InputPoints.point
). The return value of this method, a Collection
of Oracle CEP IType
records, is aliased as validGeometries
. The table source itself is aliased as R2
.
Example 5-18 Data Cartridge TABLE Query
Type Declaration Example: link
Example 5-19 shows how to create an event type as a Java class that specifies an event property as an Oracle CQL data cartridge complex type MyType
defined in package com.mypackage
that belongs to the Oracle CQL data cartridge myCartridge
. If a com.myPackage.MyType
is defined in some other Oracle CQL data cartridge (with data cartridge name otherCatridge
), specifying the type for the a1 property using a link with the data cartridge name myCartridge
allows Oracle CQL to reference the correct complex type.
Example 5-19 Type Declaration Using an Oracle CQL Data Cartridge Link
Field Access Example: link
Example 5-20 shows how to instantiate complex type MyType
and access the static field MY_FIELD
. The link clause explicitly references the com.myPackage.MyType
class that belongs to the Oracle CQL data cartridge myCartridge
.
Example 5-20 Field Access Using an Oracle CQL Data Cartridge Link
Method Access Example: link
Example 5-21 shows how to instantiate complex type MyType
and access the method myMethod
. The link clause explicitly references the com.myPackage.MyType
class that belongs to the Oracle CQL data cartridge myCartridge
.
Example 5-21 Type Declaration Using an Oracle CQL Data Cartridge Link
Constructor Invocation Example: link
Example 5-22 shows how to instantiate complex type MyType
. The link clause explicitly references the com.myPackage.MyType
class that belongs to the Oracle CQL data cartridge myCartridge
.
Use the order_expr
expression to specify the sort order in which Oracle CEP returns tuples that a query selects.
You can specify a stream element by attr
name.
Alternatively, you can specify a stream element by its const_int
index where the index corresponds to the stream element position you specify at the time you register or create the stream.
You can use an order_expr
in the following Oracle CQL statements:
Examples
Consider Example 5-23. Stream S3
has schema (c1 bigint, c2 interval, c3 byte(10), c4 float)
. This example shows how to order the results of query q210
by c1
and then c2
and how to order the results of query q211
by c2
, then by the stream element at index 3 (c3
) and then by the stream element at index 4 (c4
).
Use an xml_agg_expr
expression to return a collection of XML fragments as an aggregated XML document. Arguments that return null are dropped from the result.
(arith_expr, order_by_clause::=)
You can specify an xml_agg_expr
as the argument of an aggregate expression.
You can use an xml_agg_expr
in the following Oracle CQL statements:
For more information, see:
Examples
Consider the query tkdata67_q1
in Example 5-24 and the input relation tkdata67_S0
in Example 5-25. Relation tkdata67_S0
has schema (c1 integer, c2 float)
. The query returns the relation in Example 5-26.
Example 5-24 xml_agg_expr Query
Use an xmlcolattval_expr
expression to create an XML fragment and then expand the resulting XML so that each XML fragment has the name column with the attribute name.
You can specify an xmlcolattval_expr
as the argument of a function expression. It is especially useful when processing SQLX streams. For more information, see "SQL/XML (SQLX)".
You can use an xmlcolattval_expr
in the following Oracle CQL statements:
For more information, see "XMLCOLATTVAL" in the Oracle Database SQL Language Reference.
Examples
Consider the query tkdata53_q1
in Example 5-24 and the input relation tkdata53_S0
in Example 5-25. Relation tkdata53_S0
has schema (c1 integer, c2 float)
. The query returns the relation in Example 5-26.
Example 5-27 xmlcolattval_expr Query
Example 5-28 xmlcolattval_expr Relation Input
Example 5-29 xmlcolattval_expr Relation Output
Use an xmlelement_expr
expression when you want to construct a well-formed XML element from stream elements.
(const_string::=, arith_expr::=, xml_attribute_list::=, arith_expr_list::=)
You can specify an xmlelement_expr
as the argument of a function expression. It is especially useful when processing SQLX streams. For more information, see "SQL/XML (SQLX)".
You can use an xmlelement_expr
in the following Oracle CQL statements:
For more information, see "XMLELEMENT" in the Oracle Database SQL Language Reference.
Examples
Consider the query tkdata51_q0
in Example 5-30 and the input relation tkdata51_S0
in Example 5-31. Relation tkdata51_S0
has schema (c1 integer, c2 float)
. The query returns the relation in Example 5-32.
Example 5-30 xmlelement_expr Query
Example 5-31 xmlelement_expr Relation Input
Example 5-32 xmlelement_expr Relation Output
Use an xmlforest_expr
to convert each of its argument parameters to XML, and then return an XML fragment that is the concatenation of these converted arguments.
You can specify an xmlforest_expr
as the argument of a function expression. It is especially useful when processing SQLX streams. For more information, see "SQL/XML (SQLX)".
You can use an xmlforest_expr
in the following Oracle CQL statements:
For more information, see " XMLFOREST" in the Oracle Database SQL Language Reference.
Examples
Consider the query tkdata52_q0
in Example 5-33 and the input relation tkdata52_S0
in Example 5-34. Relation tkdata52_S0
has schema (c1 integer, c2 float)
. The query returns the relation in Example 5-35.
Example 5-33 xmlforest_expr Query
Example 5-34 xmlforest_expr Relation Input
Example 5-35 xmlforest_expr Relation Output
Use an xml_parse_expr
expression to parse and generate an XML instance from the evaluated result of arith_expr
.
When using an xml_parse_expr
expression, note the following:
arith_expr
resolves to null, then the expression returns null. content
, then arith_expr
must resolve to a valid XML value. For an example, see "xml_parse_expr Document Example" document
, then arith_expr
must resolve to a singly rooted XML document. For an example, see "xml_parse_expr Content Example". wellformed
, you are guaranteeing that value_expr
resolves to a well-formed XML document, so the database does not perform validity checks to ensure that the input is well formed. For an example, see "xml_parse_expr Wellformed Example". You can specify an xml_parse_expr
as the argument of a function expression. It is especially useful when processing SQLX streams. For more information, see "SQL/XML (SQLX)".
You can use an xml_parse_expr
in the following Oracle CQL statements:
For more information, see " XMLPARSE" in the Oracle Database SQL Language Reference.
Examples
This section describes the following xml_parse_expr
examples:
xml_parse_expr Content Example
Consider the query tkdata62_q3
in Example 5-36 and the input relation tkdata62_S1
in Example 5-37. Relation tkdata62_S1
has schema (c1 char(30))
. The query returns the relation in Example 5-38.
Example 5-36 xml_parse_expr Content: Query
Example 5-37 xml_parse_expr Content: Relation Input
Example 5-38 xml_parse_expr Content: Relation Output
xml_parse_expr Document Example
Consider the query tkdata62_q4
in Example 5-39 and the input relation tkdata62_S1
in Example 5-40. Relation tkdata62_S1
has schema (c1 char(30))
. The query returns the relation in Example 5-41.
Example 5-39 xml_parse_expr Document: Query
Example 5-40 xml_parse_expr Document: Relation Input
Example 5-41 xml_parse_expr Document: Relation Output
xml_parse_expr Wellformed Example
Consider the query tkdata62_q2
in Example 5-42 and the input relation tkdata62_S
in Example 5-43. Relation tkdata62_S
has schema (c char(30))
. The query returns the relation in Example 5-44.
Example 5-42 xml_parse_expr Wellformed: Query
This chapter provides a reference to conditions in Oracle Continuous Query Language (Oracle CQL). A condition specifies a combination of one or more expressions and logical operators and returns a value of TRUE
, FALSE
, or UNKNOWN
.
You must use appropriate condition syntax whenever condition
appears in Oracle CQL statements.
You can use a condition in the WHERE
clause of these statements:
SELECT
You can use a condition in any of these clauses of the SELECT
statement:
WHERE
HAVING
A condition could be said to be of a logical datatype.
The following simple condition always evaluates to TRUE
:
The following more complex condition adds the salary
value to the commission_pct
value (substituting the value 0 for null using the nvl
function) and determines whether the sum is greater than the number constant 25000:
Logical conditions can combine multiple conditions into a single condition. For example, you can use the AND
condition to combine two conditions:
Here are some valid conditions:
Precedence is the order in which Oracle CEP evaluates different conditions in the same expression. When evaluating an expression containing multiple conditions, Oracle CEP evaluates conditions with higher precedence before evaluating those with lower precedence. Oracle CEP evaluates conditions with equal precedence from left to right within an expression.
Table 6-1 lists the levels of precedence among Oracle CQL condition from high to low. Conditions listed on the same line have the same precedence. As the table indicates, Oracle evaluates operators before conditions.
Table 6-1 Oracle CQL Condition Precedence
Type of Condition | Purpose |
---|---|
Oracle CQL operators are evaluated before Oracle CQL conditions | See Section 4.1.2, "What You May Need to Know About Operator Precedence". |
| comparison |
| comparison |
| exponentiation, logical negation |
| conjunction |
| disjunction |
| disjunction |
Comparison conditions compare one expression with another. The result of such a comparison can be TRUE
, FALSE
, or NULL
.
When comparing numeric expressions, Oracle CEP uses numeric precedence to determine whether the condition compares INTEGER
, FLOAT
, or BIGINT
values.
Two objects of nonscalar type are comparable if they are of the same named type and there is a one-to-one correspondence between their elements.
A comparison condition specifies a comparison with expressions or view results.
Table 6-2 lists comparison conditions.
Table 6-2 Comparison Conditions
Type of Condition | Purpose | Example |
---|---|---|
| Equality test. | <query id="Q1"><![CDATA[SELECT * FROM S0 WHERE salary = 2500]]></query> |
| Inequality test. | <query id="Q1"><![CDATA[SELECT * FROM S0 WHERE salary <> 2500]]></query> |
| Greater-than and less-than tests. | <query id="Q1"><![CDATA[SELECT * FROM S0 WHERE salary > 2500]]></query> <query id="Q1"><![CDATA[SELECT * FROM S0 WHERE salary < 2500]]></query> |
| Greater-than-or-equal-to and less-than-or-equal-to tests. | <query id="Q1"><![CDATA[SELECT * FROM S0 WHERE salary >= 2500]]></query> <query id="Q1"><![CDATA[SELECT * FROM S0 WHERE salary <= 2500]]></query> |
| Pattern matching tests on character data. For more information, see Section 6.4, "LIKE Condition". | <query id="q291"><![CDATA[select * from SLk1 where first1 like "^Ste(v|ph)en$"]]></query> |
| Null tests. For more information, see Section 6.6, "Null Conditions". | <query id="Q1"><![CDATA[SELECT last_name FROM S0 WHERE commission_pct IS NULL]]></query> <query id="Q2"><![CDATA[SELECT last_name FROM S0 WHERE commission_pct IS NOT NULL]]></query> |
| Set and membership tests. For more information, see Section 6.8, "IN Condition". | <query id="Q1"><![CDATA[SELECT * FROM S0 WHERE job_id NOT IN ('PU_CLERK','SH_CLERK')]]></query> <view id="V1" schema="salary"><![CDATA[SELECT salary FROM S0 WHERE department_id = 30]]></view> <view id="V2" schema="salary"><![CDATA[SELECT salary FROM S0 WHERE department_id = 20]]></view> <query id="Q2"><![CDATA[V1 IN V2]]></query> |
(arith_expr::=, const_string::=, non_mt_arg_list::=, non_mt_arg_list_set::=, sfw_block::=)
A logical condition combines the results of two component conditions to produce a single result based on them or to invert the result of a single condition. Table 6-3 lists logical conditions.
Type of Condition | Operation | Examples |
---|---|---|
NOT | Returns | <query id="Q1"><![CDATA[SELECT * FROM S0 WHERE NOT (job_id IS NULL)]]></query> |
AND | Returns | <query id="Q1"><![CDATA[SELECT * FROM S0 WHERE job_id = 'PU_CLERK' AND dept_id = 30]]></query> |
OR | Returns | <query id="Q1"><![CDATA[SELECT * FROM S0 WHERE job_id = 'PU_CLERK' OR department_id = 10]]></query> |
XOR | Returns | <query id="Q1"><![CDATA[SELECT * FROM S0 WHERE job_id = 'PU_CLERK' XOR department_id = 10]]></query> |
Table 6-4 shows the result of applying the NOT
condition to an expression.
Table 6-5 shows the results of combining the AND
condition to two expressions.
Table 6-5 AND Truth Table
AND | TRUE | FALSE | UNKNOWN |
---|---|---|---|
TRUE |
|
|
|
FALSE |
|
|
|
UNKNOWN |
|
|
|
For example, in the WHERE
clause of the following SELECT
statement, the AND
logical condition returns values only when both product.levelx is BRAND
and v1.prodkey
equals product.prodkey
:
Table 6-6 shows the results of applying OR
to two expressions.
Table 6-6 OR Truth Table
OR | TRUE | FALSE | UNKNOWN |
---|---|---|---|
TRUE |
|
|
|
FALSE |
|
|
|
UNKNOWN |
|
|
|
For example, the following query returns the internal account identifier for RBK
or RBR
accounts with a risk of type 2:
Table 6-7 shows the results of applying XOR
to two expressions.
Table 6-7 XOR Truth Table
XOR | TRUE | FALSE | UNKNOWN |
---|---|---|---|
TRUE |
|
|
|
FALSE |
|
|
|
UNKNOWN |
|
|
|
For example, the following query returns c1
and c2
when c1
is 15 and c2
is 0.14 or when c1
is 20 and c2
is 100.1, but not both:
The LIKE
condition specifies a test involving regular expression pattern matching. Whereas the equality operator (=) exactly matches one character value to another, the LIKE
conditions match a portion of one character value to another by searching the first value for the regular expression pattern specified by the second. LIKE
calculates strings using characters as defined by the input character set.
(arith_expr::=, const_string::=)
In this syntax:
arith_expr
is an arithmetic expression whose value is compared to const_string
. const_string
is a constant value regular expression to be compared against the arith_expr
. If any of arith_expr
or const_string
is null, then the result is unknown.
The const_string
can contain any of the regular expression assertions and quantifiers that java.util.regex
supports: that is, a regular expression that is specified in string form in a syntax similar to that used by Perl.
Table 6-8 describes the LIKE
conditions.
Table 6-8 LIKE Conditions
Type of Condition | Operation | Example |
---|---|---|
x LIKE y |
| <query id="q291"><![CDATA[select * from SLk1 where first1 like "^Ste(v|ph)en$"]]></query> <query id="q292"><![CDATA[select * from SLk1 where first1 like ".*intl.*"]]></query> |
For more information on Perl regular expressions, see http://perldoc.perl.org/perlre.html
.
This condition is true for all last_name
values beginning with Ma
:
All of these last_name
values make the condition true:
Case is significant, so last_name
values beginning with MA
, ma
, and mA
make the condition false.
Consider this condition:
This condition is true for these last_name
values:
This condition is false for SMITH
because the [A-Z]
must match exactly one character of the last_name
value.
Consider this condition:
This condition is false for SMITH
but true for these last_name
values because the [A-Z]+
must match 1 or more such characters at the end of the word.
For more information, see http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
.
A range condition tests for inclusion in a range.
Table 6-9 describes the range conditions.
A NULL
condition tests for nulls. This is the only condition that you should use to test for nulls.
Table 6-10 lists the null conditions.
Type of Condition | Operation | Example |
---|---|---|
IS [NOT] NULL | Tests for nulls. See Also: Section 2.5, "Nulls" | <query id="Q1"><![CDATA[SELECT last_name FROM S0 WHERE commission_pct IS NULL]]></query> <query id="Q2"><![CDATA[SELECT last_name FROM S0 WHERE commission_pct IS NOT NULL]]></query> |
You can use the IN
and NOT IN
condition in the following ways:
in_condition_set
: Section 6.8.1, "Using IN and NOT IN as a Set Operation" in_condition_membership
: Section 6.8.2, "Using IN and NOT IN as a Membership Condition" Note: You cannot combine these two usages. |
When using the NOT IN
condition, be aware of the effect of null values as Section 6.8.3, "NOT IN and Null Values" describes.
In this usage, the query will be a SELECT
-FROM
-WHERE
query that either tests whether or not one argument is a member of a list of arguments of the same type or tests whether or not a list of arguments is a member of a set of similar lists.
(arith_expr::=, non_mt_arg_list::=, non_mt_arg_list_set::=)
When you use IN
or NOT IN
to test whether or not a non_mt_arg_list
is a member of a set of similar lists, then you must use a non_mt_arg_list_set
. Each non_mt_arg_list
in the non_mt_arg_list_set
must match the non_mt_arg_list
to the left of the condition in number and type of arguments.
Note: You cannot combine this usage with |
Consider the query Q1
in Example 6-1 and the data stream S0
in Example 6-2. Stream S0
has schema (c1 integer, c2 integer)
. Example 6-3 shows the relation that the query returns. In Q1, the non_mt_arg_list_set
is ((50,4),(4,5))
. Note that each non_mt_arg_list
that it contains matches the number and type of arguments in the non_mt_arg_list
to the left of the condition, (c1, c2)
.
Example 6-1 S [range C on E] INTERVAL Value: Query
If any item in the list following a NOT
IN
operation evaluates to null, then all stream elements evaluate to FALSE
or UNKNOWN
, and no rows are returned. For example, the following statement returns c1
and c2
if c1
is neither 50 nor 30:
However, the following statement returns no stream elements:
The preceding example returns no stream elements because the WHERE
clause condition evaluates to:
Because the third condition compares c1
with a null, it results in an UNKNOWN
, so the entire expression results in FALSE
(for stream elements with c1
equal to 50 or 30). This behavior can easily be overlooked, especially when the NOT
IN
operator references a view.
Moreover, if a NOT
IN
condition references a view that returns no stream elements at all, then all stream elements will be returned, as shown in the following example. Since V1 returns no stream elements at all, Q1 will return
This chapter provides a reference to clauses in the data definition language (DDL) in Oracle Continuous Query Language (Oracle CQL).
Oracle CQL supports the following common DDL clauses:
For more information on Oracle CQL statements, see Chapter 20, "Oracle CQL Statements".
Purpose
Use the array_type
clause to specify an Oracle CQL data cartridge type composed of a sequence of complex_type
components, all of the same type.
Note: Oracle CQL supports single-dimension arrays only. That is, you can use |
Prerequisites
None.
Syntax
array_type::=
(l-value::=, qualified_type_name::=)
Semantics
Array Declaration
You declare an array type using the qualified_type_name
of the Oracle CQL data cartridge complex_type
. Only arrays of complextype
are supported: you cannot declare an array of Oracle CQL simple types unless there is an equivalent type defined in the Oracle CQL Java data cartridge.
For examples, see:
Array Access
You access a complex_type
array element by integer index. The index begins at 0 or 1 depending on the data cartridge implementation.
There is no support for the instantiation of new array type instances directly in Oracle CQL at the time you access an array. For example, the following is not allowed:
For examples, see "Array Access Examples".
Examples
The following examples illustrate the various semantics that this statement supports:
Array Declaration Example: complex_type
Example 7-1 shows how to create an event type as a Java class that specifies an event property as an array of Oracle CQL data cartridge complex type MyClass
defined in package com.mypackage
.
Example 7-1 Declaring an Oracle CQL Data Cartridge Array in an Event Type
Array Declaration Example: Oracle CQL Simple Type
Only arrays of Oracle CQL data cartridge types are supported: you cannot declare an array of Oracle CQL simple types.
However, you can work around this by using the Oracle CQL Java data cartridge and referencing the Java equivalent of the simple type, if one exists:
For more information on the @
syntax, see link::=.
Array Access Examples
Example 7-2 shows how to register the following queries that use Oracle CQL data cartridge complex type array access:
v1
accesses the third element of the array a1
. This array contains instances of Oracle CQL data cartridge complex type com.mypackage.MyClass
as defined in Example 7-1. q1
accesses the first element of the array field1
. This array is defined on Oracle CQL data cartridge complex type a1
. Purpose
Use the attr
clause to specify a stream element or pseudocolumn.
You can use the attr
clause in the following Oracle CQL statements:
Prerequisites
None.
Syntax
(identifier::=, pseudo_column::=)
Semantics
identifier
Specify the identifier of the stream element.
You can specify
StreamOrViewName
.
ElementName
ElementName
CorrelationName
.
PseudoColumn
PseudoColumn
For examples, see "Examples".
For syntax, see identifier::= (parent: attr::=).
pseudo_column
Specify the timestamp associated with a specific stream element, all stream elements, or the stream element associated with a correlation name in a MATCH_RECOGNIZE
clause.
For examples, see:
For more information, see Chapter 3, "Pseudocolumns".
For syntax, see pseudo_column::= (parent: attr::=).
Examples
Given the stream that Example 7-3 shows, valid attribute clauses are:
ItemTempStream
.temp
temp
B.element_time
element_time
Example 7-3 attr Clause
Purpose
Use the attrspec
clause to define the identifier and datatype of a stream element.
You can use the attrspec
clause in the following Oracle CQL statements:
Prerequisites
None.
Syntax
(identifier::=, fixed_length_datatype::=, variable_length_datatype::=)
Semantics
identifier
Specify the identifier of the stream element.
For syntax, see identifier::= (parent: attrspec::=).
fixed_length_datatype
Specify the stream element datatype as a fixed-length datatype.
For syntax, see fixed_length_datatype::= (parent: attrspec::=).
variable_length_datatype
Specify the stream element datatype as a variable-length datatype.
For syntax, see variable_length_datatype::= (parent: attrspec::=).
integer
Specify the length of the variable-length datatype.
For syntax, see attrspec::=.
Purpose
Use the complex_type
clause to specify an Oracle CQL data cartridge type that defines:
The type of a field, and the return type and parameter list of a method may be complex types or simple types.
A complex type is identified by its qualified type name (set of identifiers separated by a period ".
") and the optional name of the data cartridge to which it belongs (see link::=). If you do not specify a link name, then Oracle CEP assumes that the complex type is a Java class (that is, Oracle CEP assumes that the complex type belongs to the Java data cartridge).
Prerequisites
The Oracle CQL data cartridge that provides the complextype must be loaded by Oracle CEP server at runtime.
Syntax
complex_type::=
(attr::=, fieldname::=, methodname::=, param_list::=, qualified_type_name::=)
fieldname::=
Semantics
fieldname
Use the fieldname
clause to specify a static field of an Oracle CQL data cartridge complex type.
Syntax: fieldname::= (parent: complex_type::=).
Field Access
You cannot use a complex type l-value
generated in expressions within an ORDER BY
clause. Currently, only expressions within a SELECT
clause and a WHERE
clause may generate a complex type l-value
.
You may access only a static field using qualified_type_name
. To access a non-static field, you must first instantiate the complex type (see "Constructor Invocation").
For examples, see "Field Access Examples: complex_type".
Method Access
Accessing complex type setter methods may cause side effects. Side effects decrease the opportunities for concurrency and sharing. For example, if you invoke a setter method and change the value of a view attribute (such as an event property) shared by different queries that depend on the view, then the query results may change as a side effect of your method invocation.
You may access only a static method using qualified_type_name
. To access a non-static field, you must first instantiate the complex type (see "Constructor Invocation").
For examples, see "Method Access Examples: complex_type".
Constructor Invocation
You may access only a static fields and static methods using qualified_type_name
. To access a non-static field or non-static method, you must first instantiate the complex type by invoking one of its constructors.
For examples, see "Constructor Invocation Examples: complex_type".
Examples
The following examples illustrate the various semantics that this statement supports:
Field Access Examples: complex_type
Example 7-4 shows how to register the following queries that use Oracle CQL data cartridge complex type field access:
q1
accesses field myField
from Oracle CQL data cartridge complex type a1
. q2
accesses field myField
defined on the Oracle CQL data cartridge complex type returned by the method function-returning-object
. For more information on method access, see "Method Access". q3
accesses field myNestedField
defined on the Oracle CQL data cartridge complex type myField
which is defined on Oracle CQL data cartridge complex type a1
. q4
accesses the static field myStaticField
defined in the class MyType
in package com.myPackage
. Note that a link (@myCartridge
) is necessary in the case of a static field. Example 7-4 Data Cartridge Field Access
Method Access Examples: complex_type
Example 7-5 shows how to register the following queries that use Oracle CQL data cartridge complex type method access:
q1
accesses method myMethod
defined on Oracle CQL data cartridge complex type a1
. This query accesses the method with an empty parameter list. q2
accesses method myMethod
defined on Oracle CQL data cartridge complex type a1
with a different signature than in query q1
. In this case, the query accesses the method with a three-argument parameter list. q3
accesses static method myStaticMethod
defined on Oracle CQL data cartridge complex type MyType
. This query accesses the method with a single parameter. Note that a link (@myCartridge
) is necessary in the case of a static method. Example 7-5 Data Cartridge Method Access
Constructor Invocation Examples: complex_type
Example 7-6 shows how to register the following queries that use Oracle CQL data cartridge complex type constructor invocation:
q1
invokes the constructor String
defined in package java.lang
. In this case, the query invokes the constructor with an empty argument list. q2
invokes the constructor String
defined in package java.lang
. In this case, the query invokes the constructor with a single argument parameter list and invokes the non-static method substring
defined on the returned String
instance. Purpose
Use the const_bigint
clause to specify a big integer numeric literal.
You can use the const_bigint
clause in the following Oracle CQL statements:
For more information, see Section 2.3.2, "Numeric Literals".
Prerequisites
None.
Syntax
Purpose
Use the const_int
clause to specify an integer numeric literal.
You can use the const_int
clause in the following Oracle CQL statements:
For more information, see Section 2.3.2, "Numeric Literals".
Prerequisites
None.
Syntax
Purpose
Use the const_string
clause to specify a constant String
text literal.
You can use the const_string
clause in the following Oracle CQL statements:
For more information, see Section 2.3.1, "Text Literals".
Prerequisites
None.
Syntax
Purpose
Use the const_value
clause to specify a literal value.
You can use the const_value
clause in the following Oracle CQL statements:
For more information, see Section 2.3, "Literals".
Prerequisites
None.
Syntax
(interval_value::=, const_string::=, const_int::=, const_bigint::=)
Semantics
interval_value
Specify an interval constant value as a quoted string. For example:
For more information, see Section 2.3.4, "Interval Literals".
For syntax, see interval_value::= (parent: const_value::=).
const_string
Specify a quoted String
constant value.
For more information, see Section 2.3.1, "Text Literals".
For syntax, see const_string::= (parent: interval_value::= and const_value::=).
null
Specify a null constant value.
For more information, see Section 2.5, "Nulls".
const_int
Specify an int
constant value.
For more information, see Section 2.3.2, "Numeric Literals".
bigint
Specify a bigint
constant value.
For more information, see Section 2.3.2, "Numeric Literals".
float
Specify a float constant value.
For more information, see Section 2.3.2, "Numeric Literals".
Purpose
Use the identifier
clause to reference an existing Oracle CQL schema object.
You can use the identifier
clause in the following Oracle CQL statements:
Prerequisites
The schema object must already exist.
Syntax
(const_string::=, unreserved_keyword::=)
Semantics
const_string
Specify the identifier as a String.
For more information, see Section 2.8.1, "Schema Object Naming Rules".
For syntax, see identifier::=.
[A-Z]
Specify the identifier as a single uppercase letter.
For syntax, see identifier::=.
unreserved_keyword
These are names that you may use as identifiers.
For more information, see:
For syntax, see unreserved_keyword::= (parent: identifier::=).
reserved_keyword
These are names that you may not use as identifiers, because they are reserved keywords: add
, aggregate
, all
, alter
, and
, application
, as
, asc
, avg
, between
, bigint
, binding
, binjoin
, binstreamjoin
, boolean
, by
, byte
, callout
, case
, char
, clear
, columns
, constraint
, content
, count
, create
, day
, days
, decode
, define
, derived
, desc
, destination
, disable
, distinct
, document
, double
, drop
, dstream
, dump
, duration
, duration
, element_time
, else
, enable
, end
, evalname
, event
, events
, except
, external
, false
, first
, float
, from
, function
, group
, groupaggr
, having
, heartbeat
, hour
, hours
, identified
, implement
, in
, include
, index
, instance
, int
, integer
, intersect
, interval
, is
, istream
, java
, key
, language
, last
, level
, like
, lineage
, logging
, match_recognize
, matches
, max
, measures
, metadata_query
, metadata_system
, metadata_table
, metadata_userfunc
, metadata_view
, metadata_window
, microsecond
, microseconds
, millisecond
, milliseconds
, min
, minus
, minute
, minutes
, monitoring
, multiples
, nanosecond
, nanoseconds
, not
, now
, null
, nulls
, object
, of
, on
, operator
, or
, order
, orderbytop
, output
, partition
, partitionwin
, partnwin
, passing
, path
, pattern
, patternstrm
, patternstrmb
, prev
, primary
, project
, push
, query
, queue
, range
, rangewin
, real
, register
, relation
, relsrc
, remove
, return
, returning
, rows
, rowwin
, rstream
, run
, run_time
, sched_name
, sched_threaded
, schema
, second
, seconds
, select
, semantics
, set
, silent
, sink
, slide
, source
, spill
, start
, stop
, storage
, store
, stream
, strmsrc
, subset
, sum
, synopsis
, system
, systemstate
, then
, time
, time_slice
, timeout
, timer
, timestamp
, timestamped
, to
, true
, trusted
, type
, unbounded
, union
, update
, using
, value
, view
, viewrelnsrc
, viewstrmsrc
, wellformed
, when
, where
, window
, xmlagg
, xmlattributes
, xmlcolattval
, xmlconcat
, xmldata
, xmlelement
, xmlexists
, xmlforest
, xmlparse
, xmlquery
, xmltable
, xmltype
, or xor
.
Purpose
Use the l-value
clause to specify an integer literal.
You can use the l-value
clause in the following Oracle CQL data cartridge statements:
Prerequisites
None.
Syntax
l-value::=
Purpose
Use the methodname
clause to specify a method of an Oracle CQL data cartridge complex type.
You can use the methodname
clause in the following Oracle CQL data cartridge statements:
Prerequisites
None.
Syntax
methodname::=
Purpose
Use the non_mt_arg_list
clause to specify one or more arguments as arithmetic expressions involving stream elements. To specify one or more arguments as stream elements directly, see non_mt_attr_list::=.
You can use the non_mt_arg_list
clause in the following Oracle CQL statements:
Prerequisites
If any stream elements are referenced, the stream must already exist.
Syntax
Semantics
arith_expr
Specify the arithmetic expression that resolves to the argument value.
Purpose
Use the non_mt_attr_list
clause to specify one or more arguments as stream elements directly. To specify one or more arguments as arithmetic expressions involving stream elements, see non_mt_arg_list::=.
You can use the non_mt_attr_list
clause in the following Oracle CQL statements:
Prerequisites
If any stream elements are referenced, the stream must already exist.
Syntax
(attr::=)
Semantics
attr
Specify the argument as a stream element directly.
Purpose
Use the non_mt_attrname_list
clause to one or more stream elements by name.
You can use the non_mt_attrname_list
clause in the following Oracle CQL statements:
Prerequisites
If any stream elements are referenced, the stream must already exist.
Syntax
Semantics
identifier
Specify the stream element by name.
Purpose
Use the non_mt_attrspec_list
clause to specify one or more attribute specifications that define the identifier and datatype of stream elements.
You can use the non_mt_attrspec_list
clause in the following Oracle CQL statements:
Prerequisites
If any stream elements are referenced, the stream must already exist.
Syntax
Semantics
attrspec
Specify the attribute identifier and datatype.
Purpose
Use the non_mt_cond_list
clause to specify one or more conditions using any combination of logical operators AND
, OR
, XOR
and NOT
.
You can use the non_mt_cond_list
clause in the following Oracle CQL statements:
For more information, see Chapter 6, "Conditions".
Prerequisites
None.
Syntax
(non_mt_cond_list::=, condition::=, between_condition::=)
Semantics
condition
Specify a comparison condition.
For more information, see Section 6.2, "Comparison Conditions".
For syntax, see condition::= (parent: non_mt_cond_list::=).
between_condition
Specify a condition that tests for inclusion in a range.
For more information, see Section 6.5, "Range Conditions".
For syntax, see between_condition::= (parent: non_mt_cond_list::=).
Purpose
Use the param_list
clause to specify a comma-separated list of zero or more parameters, similar to a function parameter list, for an Oracle CQL data cartridge complex type method or constructor.
You can use the param_list
clause in the following Oracle CQL data cartridge statements:
Prerequisites
None.
Syntax
param_list::=
Purpose
Use the qualified_type_name
clause to specify a fully specified type name of an Oracle CQL data cartridge complex type, for example java.lang.String
. Use the qualified_type_name
when invoking Oracle CQL data cartridge static fields, static methods, or constructors.
There is no default package. For example, using the Java data cartridge, you must specify java.lang
when referencing the class String
. To be able to distinguish a reserved word from a qualified type, all qualified types must have at least two identifiers, that is, there must be at least one period (.
) in a qualified name.
You can use the qualified_type_name
clause in the following Oracle CQL data cartridge statements:
Prerequisites
None.
Syntax
qualified_type_name::=
(arith_expr::=, package_name::=, class_name::=, link::=)
package_name::=
class_name::=
Semantics
package_name
Use the package_name
clause to specify the name of an Oracle CQL data cartridge package.
Syntax: package_name::= (parent: qualified_type_name::=)
class_name
Use the class_name
clause to specify the name of an Oracle CQL data cartridge Class
.
Syntax: class_name::= (parent: qualified_type_name::=)
Purpose
Use the query_ref
clause to reference an existing Oracle CQL query by name.
You can reference a Oracle CQL query in the following Oracle CQL statements:
Prerequisites
The query must already exist (see "Query").
Syntax
Semantics
identifier
Specify the name of the query. This is the name you use to reference the query in subsequent Oracle CQL statements.
Purpose
Use the time_spec
clause to define a time duration in days, hours, minutes, seconds, milliseconds, or nanoseconds.
Default: if units are not specified, Oracle CEP assumes [second|seconds]
.
You can use the time_spec
clause in the following Oracle CQL statements:
Prerequisites
None.
Syntax
time_unit::=
Semantics
integer
Specify the number of time units.
time_unit
Specify the unit of time.
Purpose
Use the xml_attribute_list
clause to specify one or more XML attributes.
You can use the xml_attribute_list
clause in the following Oracle CQL statements:
Prerequisites
If any stream elements are referenced, the stream must already exist.
Syntax
Semantics
xml_attr_list
Specify one or more XML attributes as Example 7-7 shows.
Example 7-7 xml_attr_list
For syntax, see xml_attr_list::= (parent: xml_attribute_list::=).
Purpose
Use the xml_attr_list
clause to specify one or more XML attributes..
You can use the xml_attr_list
clause in the following Oracle CQL statements:
Prerequisites
If any stream elements are referenced, the stream must already exist.
Syntax
xml_attr::=
(const_string::=, arith_expr::=, attr::=)
Semantics
xml_attr
Specify an XML attribute.
For syntax, see xml_attr::= (parent: xml_attr_list::=).
Purpose
Use the xqryargs_list
clause to specify one or more arguments to an XML query.
You can use the non_mt_arg_list
clause in the following Oracle CQL statements:
Prerequisites
If any stream elements are referenced, the stream must already exist.
Syntax
xqryarg::=
(const_string::=, arith_expr::=)
Semantics
xqryarg
A clause that binds a stream element value to an XQuery variable or XPath operator.
You can bind any arithmetic expression that involves one or more stream elements (see arith_expr::=) to either a variable in a given XQuery or an XPath operator such as "."
as a quoted string.
For syntax, see xqryarg::= (parent: xqryargs_list::=).
This chapter provides a reference to single-row functions in Oracle Continuous Query Language (Oracle CQL). Single-row functions return a single result row for every row of a queried stream or view.
For more information, see Section 1.1.11, "Functions".
Table 8-1 lists the built-in single-row functions that Oracle CQL provides.
Table 8-1 Oracle CQL Built-in Single-Row Functions
Type | Function |
---|---|
Character (returning character values) | |
Character (returning numeric values) | |
Datetime | |
Conversion | |
| |
Encoding and Decoding | |
Null-related | |
Pattern Matching | |
Note: Built-in function names are case sensitive and you must use them in the case shown (in lower case). |
Note: In stream input examples, lines beginning with |
For more information, see:
Syntax
Purpose
concat
returns char1
concatenated with char2
as a char[]
or byte1
concatenated with byte2
as a byte[]
. The char
returned is in the same character set as char1
. Its datatype depends on the datatypes of the arguments.
Using concat
, you can concatenate any combination of character, byte, and numeric datatypes. The concat
performs automatic numeric to string conversion.
This function is equivalent to the concatenation operator (||). For more information, see "Concatenation Operator".
To concatenate xmltype
arguments, use xmlconcat
. For more information, see "xmlconcat".
Examples
concat Function
Consider the query chr_concat
in Example 8-1 and data stream S4
in Example 8-2. Stream S4
has schema (c1 char(10))
. The query returns the relation in Example 8-3.
Example 8-1 concat Function Query
Example 8-2 concat Function Stream Input
Example 8-3 concat Function Relation Output
Concatenation Operator (||)
Consider the query q264
in Example 8-4 and the data stream S10
in Example 8-5. Stream S10
has schema (c1 integer, c2 char(10))
. The query returns the relation in Example 8-6.
Example 8-4 Concatenation Operator (||) Query
Syntax
Purpose
hextoraw
converts char
containing hexadecimal digits in the char
character set to a raw value.
Examples
Consider the query q6
in Example 8-7 and the data stream SinpByte1
in Example 8-8. Stream SinpByte1
has schema (c1 byte(10), c2 integer)
. The query returns the relation in Example 8-9.
Example 8-7 hextoraw Function Query
Syntax
Purpose
The length
function returns the length of its char
or byte
expression as an int
. length
calculates length using characters as defined by the input character set.
For a char
expression, the length includes all trailing blanks. If the expression is null, this function returns null.
Examples
Consider the query chr_len
in Example 8-10 and the data stream S2
in Example 8-11. Stream S2
has schema (c1 integer, c2 integer)
. The query returns the relation that Example 8-12.
Example 8-10 length Function Query
Syntax
Purpose
lk
boolean true
if char1
matches the regular expression char2
, otherwise it returns false
.
This function is equivalent to the LIKE
condition. For more information, see Section 6.4, "LIKE Condition".
Examples
Consider the query q291
in Example 8-13 and the data stream SLk1
in Example 8-14. Stream SLk1
has schema (first1 char(20), last1 char(20))
. The query returns the relation in Example 8-15.
Example 8-13 lk Function Query
Syntax
Purpose
nvl
lets you replace null (returned as a blank) with a string in the results of a query. If expr1
is null, then NVL
returns expr2
. If expr1
is not null, then NVL
returns expr1
.
The arguments expr1
and expr2
can have any datatype. If their datatypes are different, then Oracle CEP implicitly converts one to the other. If they cannot be converted implicitly, Oracle CEP returns an error. The implicit conversion is implemented as follows:
expr1
is character data, then Oracle CEP converts expr2
to character data before comparing them and returns VARCHAR2
in the character set of expr1
. expr1
is numeric, then Oracle CEP determines which argument has the highest numeric precedence, implicitly converts the other argument to that datatype, and returns that datatype. Examples
Consider the query q281
in Example 8-16 and the data stream SNVL
in Example 8-17. Stream SNVL
has schema (c1 char(20), c2 integer)
. The query returns the relation in Example 8-18.
Syntax
Purpose
prev
returns the value of the stream attribute (function argument identifier2
) of the event that occurred previous to the current event and which belongs to the partition to which the current event belongs. It evaluates to NULL
if there is no such previous event.
The type of the specified stream element may be any of:
integer
bigint
float
double
byte
char
interval
timestamp
The return type of this function depends on the type of the specified stream attribute (function argument identifier2
).
This function takes the following arguments:
Where:
identifier1.identifier2
: identifier1
is the name of a correlation variable used in the PATTERN
clause and defined in the DEFINE
clause and identifier2
is the name of a stream attribute whose value in the previous event should be returned by prev
. const_int1
: if this argument has a value n, then it specifies the nth previous event in the partition to which the current event belongs. The value of the attribute (specified in argument identifier2
) in the nth previous event will be returned if such an event exists, NULL
otherwise. const_int2
: specifies a time range duration in nanoseconds and should be used if you are interested in previous events that occurred only within a certain range of time before the current event. Examples
prev(identifier1.identifier2)
Consider query q2
in Example 8-19 and the data stream S1
in Example 8-20. Stream S1
has schema (c1 integer)
. This example defines pattern A
as A.c1 = prev(A.c1)
. In other words, pattern A
matches when the value of c1
in the current stream element matches the value of c1
in the stream element immediately before the current stream element. The query returns the relation in Example 8-21.
Example 8-19 prev(identifier1.identifier2) Function Query
Example 8-20 prev(identifier1.identifier2) Function Stream Input
Example 8-21 prev(identifier1.identifier2) Function Relation Output
prev(identifier1.identifier2, const_int1)
Consider query q35
in Example 8-22 and the data stream S15
in Example 8-23. Stream S15
has schema (c1 integer, c2 integer)
. This example defines pattern A
as A.c1 = prev(A.c1,3)
. In other words, pattern A
matches when the value of c1
in the current stream element matches the value of c1
in the third stream element before the current stream element. The query returns the relation in Example 8-24.
Example 8-22 prev(identifier1.identifier2, const_int1) Function Query
Example 8-23 prev(identifier1.identifier2, const_int1) Function Stream Input
Example 8-24 prev(identifier1.identifier2, const_int1) Function Relation Output
prev(identifier1.identifier2, const_int1, const_int2)
Consider query q36
in Example 8-26 and the data stream S15
in Example 8-27. Stream S15
has schema (c1 integer, c2 integer)
. This example defines pattern A
as A.c1 = prev(A.c1,3,5000000000L)
. In other words, pattern A
matches when:
c1
in the current event equals the value of c1
in the third previous event of the partition to which the current event belongs, and 5000000000L
nanoseconds. The query returns the output relation that Example 8-28 shows. Notice that in the output relation, there is no output at 8000
. Example 8-25 shows the contents of the partition (partitioned by the value of the c2
attribute) to which the event at 8000
belongs.
Example 8-25 Partition Containing the Event at 8000
As Example 8-25 shows, even though the value of c1
in the third previous event (the event at 1000
) is the same as the value c1
in the current event (the event at 8000
), the range condition is not satisfied. This is because the difference in the timestamps of these two events is more than 5000000000
nanoseconds. So it is treated as if there is no previous tuple and prev
returns NULL
so the condition fails to match.
Example 8-26 prev(identifier1.identifier2, const_int1, const_int2) Function Query
Syntax
Purpose
rawtohex
converts byte
containing a raw value to hexadecimal digits in the CHAR
character set.
Examples
Consider the query byte_to_hex
in Example 8-29 and the data stream S5
in Example 8-30. Stream S5
has schema (c1 integer, c2 byte(10))
. This query uses the rawtohex
function to convert a ten byte raw value to the equivalent ten hexidecimal digits in the character set of your current locale. The query returns the relation in Example 8-31.
Example 8-29 rawtohex Function Query
Syntax
Purpose
systimestamp
returns the system date, including fractional seconds and time zone, of the system on which the Oracle CEP server resides. The return type is TIMESTAMP
WITH
TIME
ZONE
.
Examples
Consider the query q106
in Example 8-32 and the data stream S0
in Example 8-33. Stream S0
has schema (c1 float, c2 integer)
. The query returns the relation in Example 8-34. For more information about case
, see "case_expr".
Example 8-32 systimestamp Function Query
Syntax
Purpose
to_bigint
returns a bigint
number equivalent of its integer
argument.
For more information, see:
Examples
Consider the query q282
in Example 8-35 and the data stream S11
in Example 8-36. Stream S11
has schema (c1 integer, name char(10))
. The query returns the relation in Example 8-37.
Example 8-35 to_bigint Function Query
Syntax
Purpose
to_boolean
returns a value of true
or false
for its bigint
or integer
expression argument.
For more information, see:
Examples
Consider the query q282
in Example 8-35 and the data stream S11
in Example 8-36. Stream S11
has schema (c1 integer, name char(10))
. The query returns the relation in Example 8-37.
Example 8-38 to_boolean Function Query
Syntax
Purpose
to_char
returns a char
value for its integer
, double
, bigint
, float
, timestamp
, or interval
expression argument. If the bigint
argument exceeds the char
precision, Oracle CEP returns an error.
For more information, see:
Examples
Consider the query q282
in Example 8-35 and the data stream S11
in Example 8-36. Stream S11
has schema (c1 integer, name char(10))
. The query returns the relation in Example 8-37.
Example 8-41 to_char Function Query
Syntax
Purpose
to_double
returns a double
value for its bigint
, integer
, or float
expression argument. If the bigint
argument exceeds the double
precision, Oracle CEP returns an error.
For more information, see:
Examples
Consider the query q282
in Example 8-35 and the data stream S11
in Example 8-36. Stream S11
has schema (c1 integer, name char(10))
. The query returns the relation in Example 8-37.
Example 8-44 to_double Function Query
Syntax
Purpose
to_float
returns a float
number equivalent of its bigint
or integer
argument. If the bigint
argument exceeds the float
precision, Oracle CEP returns an error.
For more information, see:
Examples
Consider the query q1
in Example 8-47 and the data stream S11
in Example 8-48. Stream S1
has schema (c1 integer, name char(10))
. The query returns the relation in Example 8-49.
Example 8-47 to_float Function Query
Syntax
Purpose
to_timestamp
converts char
literals that conform to java.text.SimpleDateFormat
format models to timestamp
datatypes. There are two forms of the to_timestamp
function distinguished by the number of arguments:
char
: this form of the to_timestamp
function converts a single char
argument that contains a char
literal that conforms to the default java.text.SimpleDateFormat
format model (MM/dd/yyyy HH:mm:ss
) into the corresponding timestamp
datatype. char1, char2
: this form of the to_timestamp
function converts the char1
argument that contains a char
literal that conforms to the java.text.SimpleDateFormat
format model specified in the second char2
argument into the corresponding timestamp
datatype. long
: this form of the to_timestamp
function converts a single long
argument that represents the number of nanoseconds since the standard base time known as "the epoch", namely January 1, 1970, 00:00:00 GMT, into the corresponding timestamp
datatype represented as a number in milliseconds since "the epoch" with a date format that conforms to the default java.text.SimpleDateFormat
format model (MM/dd/yyyy HH:mm:ss
). For more information, see:
Examples
Consider the query q277
in Example 8-50 and the data stream STs2
in Example 8-51. Stream STs2
has schema (c1 integer, c2 char(20))
. The query returns the relation that Example 8-52.
Example 8-50 to_timestamp Function Query
Syntax
Purpose
xmlcomment
returns its double-quote delimited constant String
argument as an xmltype
.
Using xmlcomment
, you can add a well-formed XML comment to your query results.
This function takes the following arguments:
quoted_string_double_quotes
: a double-quote delimited String
constant. The return type of this function is xmltype
. The exact schema depends on that of the input stream of XML data.
Examples
Consider the query tkdata64_q1
in Example 8-53 and data stream tkdata64_S
in Example 8-54. Stream tkdata64_S
has schema (c1 char(30))
. The query returns the relation in Example 8-55.
Example 8-53 xmlcomment Function Query
Example 8-54 xmlcomment Function Stream Input
Example 8-55 xmlcomment Function Relation Output
Syntax
Purpose
xmlconcat
returns the concatenation of its comma-delimited xmltype
arguments as an xmltype
.
Using xmlconcat
, you can concatenate any combination of xmltype
arguments.
This function takes the following arguments:
non_mt_arg_list
: a comma-delimited list of xmltype
arguments. For more information, see non_mt_arg_list::=. The return type of this function is xmltype
. The exact schema depends on that of the input stream of XML data.
This function is especially useful when processing SQLX streams. For more information, see "SQL/XML (SQLX)".
To concatenate datatypes other than xmltype
, use CONCAT
. For more information, see "concat".
Examples
Consider the query tkdata64_q1
in Example 8-53 and the data stream tkdata64_S
in Example 8-54. Stream tkdata64_S
has schema (c1 char(30))
. The query returns the relation in Example 8-55.
Example 8-56 xmlconcat Function Query
Example 8-57 xmlconcat Function Stream Input
Example 8-58 xmlconcat Function Relation Output
Syntax
Purpose
xmlexists
creates a continuous query against a stream of XML data to return a boolean
that indicates whether or not the XML data satisfies the XQuery you specify.
This function takes the following arguments:
const_string
: An XQuery that Oracle CEP applies to the XML stream element data that you bind in xqryargs_list
. For more information, see const_string::=. xqryargs_list
: A list of one or more bindings between stream elements and XQuery variables or XPath operators. For more information, see xqryargs_list::=. The return type of this function is boolean
: true
if the XQuery is satisfied; false
otherwise.
This function is especially useful when processing SQLX streams. For more information, see "SQL/XML (SQLX)".
Examples
Consider the query q1
in Example 8-59 and the XML data stream S
in Example 8-60. Stream S
has schema (c1 integer, c2 xmltype)
. In this example, the value of stream element c2
is bound to the current node ("."
) and the value of stream element c1 + 1
is bound to XQuery variable x
. The query returns the relation in Example 8-61.
Example 8-59 xmlexists Function Query
Example 8-60 xmlexists Function Stream Input
Syntax
Purpose
xmlquery
creates a continuous query against a stream of XML data to return the XML data that satisfies the XQuery you specify.
This function takes the following arguments:
const_string
: An XQuery that Oracle CEP applies to the XML stream element data that you bind in xqryargs_list
. For more information, see const_string::=. xqryargs_list
: A list of one or more bindings between stream elements and XQuery variables or XPath operators. For more information, see xqryargs_list::=. The return type of this function is xmltype
. The exact schema depends on that of the input stream of XML data.
This function is especially useful when processing SQLX streams. For more information, see "SQL/XML (SQLX)".
Examples
Consider the query q1
in Example 8-62 and the XML data stream S
in Example 8-63. Stream S
has schema (c1 integer, c2 xmltype)
. In this example, the value of stream element c2 is bound to the current node ("."
) and the value of stream element c1 + 1
is bound to XQuery variable x
. The query returns the relation in Example 8-64.
Example 8-62 xmlquery Function Query
Example 8-63 xmlquery Function Stream Input
This chapter provides a reference to built-in aggregate functions included in Oracle Continuous Query Language (Oracle CQL). Built-in aggregate functions perform a summary operation on all the values that a query returns.
For more information, see Section 1.1.11, "Functions".
Table 9-1 lists the built-in aggregate functions that Oracle CQL provides:
Table 9-1 Oracle CQL Built-in Aggregate Functions
Type | Function |
---|---|
Aggregate | |
Aggregate (incremental computation) | |
Extended aggregate | |
Specify distinct
if you want Oracle CEP to return only one copy of each set of duplicate tuples selected. Duplicate tuples are those with matching values for each expression in the select list. For more information, see aggr_distinct_expr.
Oracle CEP does not support nested aggregations.
Note: Built-in function names are case sensitive and you must use them in the case shown (in lower case). |
Note: In stream input examples, lines beginning with |
For more information, see:
In Oracle CQL, the where
clause is applied before the group by
and having
clauses. This means the Oracle CQL statement in Example 9-1 is invalid:
Example 9-1 Invalid Use of count
Instead, you must use the Oracle CQL statement that Example 9-2 shows:
Example 9-2 Valid Use of count
For more information, see:
Syntax
Purpose
avg
returns average value of expr
.
This function takes as an argument any bigint
, float
, or int
datatype. The function returns a float
regardless of the numeric datatype of the argument.
Examples
Consider the query float_avg
in Example 9-3 and the data stream S3
in Example 9-4. Stream S3
has schema (c1 float)
. The query returns the relation in Example 9-5. Note that the avg
function returns a result of NaN
if the average value is not a number. For more information, see Section 2.3.2, "Numeric Literals".
Example 9-3 avg Function Query
Syntax
(arith_expr::=, attr::=, identifier::=)
Purpose
count
returns the number of tuples returned by the query as an int
value.
The return value depends on the argument as Table 9-2 shows.
Table 9-2 Return Values for COUNT Aggregate Function
count
never returns null.
Example
Consider the query q2
in Example 9-6 and the data stream S2
in Example 9-7. Stream S2
has schema (c1 integer, c2 integer)
. The query returns the relation in Example 9-8.
Example 9-6 count Function Query
Example 9-8 count Function Relation Output
For more information, see:
Syntax
Purpose
first
returns the value of the specified stream element the first time the specified pattern is matched.
The type of the specified stream element may be any of:
bigint
integer
byte
char
float
interval
timestamp
The return type of this function depends on the type of the specified stream element.
This function takes a single argument made up of the following period-separated values:
identifier1
: the name of a pattern as specified in a DEFINE
clause. identifier2
: the name of a stream element as specified in a CREATE STREAM
statement. Examples
Consider the query q9
in Example 9-9 and the data stream S0
in Example 9-10. Stream S0
has schema (c1 integer, c2 float)
. This example defines pattern C
as C.c1 = 7
. It defines firstc
as first(C.c2)
. In other words, firstc
will equal the value of c2
the first time c1 = 7
. The query returns the relation in Example 9-11.
Example 9-9 first Function Query
Syntax
Purpose
last
returns the value of the specified stream element the last time the specified pattern is matched.
The type of the specified stream element may be any of:
bigint
integer
byte
char
float
interval
timestamp
The return type of this function depends on the type of the specified stream element.
This function takes a single argument made up of the following period-separated values:
identifier1
: the name of a pattern as specified in a DEFINE
clause. identifier2
: the name of a stream element as specified in a CREATE STREAM
statement. Examples
Consider the query q9
in Example 9-12 and the data stream S0
in Example 9-13. Stream S1
has schema (c1 integer, c2 float)
. This example defines pattern C
as C.c1 = 7
. It defines lastc
as last(C.c2)
. In other words, lastc
will equal the value of c2
the last time c1 = 7
. The query returns the relation in Example 9-14.
Example 9-12 last Function Query
Syntax
Purpose
max
returns maximum value of expr
. Its datatype depends on the datatype of the argument.
Examples
Consider the query test_max_timestamp
in Example 9-15 and the data stream S15
in Example 9-16. Stream S15
has schema (c1 int, c2 timestamp)
. The query returns the relation in Example 9-17.
Example 9-15 max Function Query
Example 9-16 max Function Stream Input
Example 9-17 max Function Relation Output
Syntax
Purpose
min
returns minimum value of expr
. Its datatype depends on the datatype of its argument.
Examples
Consider the query test_min_timestamp
in Example 9-18 and the data stream S15
in Example 9-19. Stream S15
has schema (c1 int, c2 timestamp)
. The query returns the relation in Example 9-20.
Example 9-18 min Function Query
Example 9-19 min Function Stream Input
Example 9-20 min Function Relation Output
Syntax
Purpose
sum
returns the sum of values of expr
. This function takes as an argument any bigint
, float
, or integer
expression. The function returns the same datatype as the numeric datatype of the argument.
Examples
Consider the query q3
in Example 9-21 and the data stream S1
in Example 9-22. Stream S1
has schema (c1 integer, c2 bigint)
. The query returns the relation in Example 9-23. For more information on range
, see "Range-Based Stream-to-Relation Window Operators".
Syntax
Purpose
xmlagg
returns a collection of XML fragments as an aggregated XML document. Arguments that return null are dropped from the result.
You can control the order of fragments using an ORDER BY
clause. For more information, see Section 18.2.9, "Sorting Query Results".
Examples
This section describes the following xmlagg
examples:
xmlagg Function and the xmlelement Function
Consider the query tkdata67_q1
in Example 9-24 and the input relation in Example 9-25. Stream tkdata67_S0
has schema (c1 integer, c2 float)
. This query uses xmlelement
to create XML fragments from stream elements and then uses xmlagg
to aggregate these XML fragments into an XML document. The query returns the relation in Example 9-26.
For more information about xmlelement
, see "xmlelement_expr".
Example 9-24 xmlagg Query
Example 9-25 xmlagg Relation Input
Example 9-26 xmlagg Relation Output
xmlagg Function and the ORDER BY Clause
Consider the query tkxmlAgg_q5
in Example 9-27 and the input relation in Example 9-28. Stream tkxmlAgg_S1
has schema (c1 int, c2 xmltype)
. These query selects xmltype
stream elements and uses XMLAGG to aggregate them into an XML document. This query uses an ORDER BY
clause to order XML fragments. The query returns the relation in Example 9-29.
Example 9-27 xmlagg and ORDER BY Query
Example 9-28 xmlagg and ORDER BY Relation Input
Example 9-29 xmlagg and ORDER BY Relation Output
This chapter provides a reference to Colt single-row functions included in Oracle Continuous Query Language (Oracle CQL). Colt single-row functions are based on the Colt open source libraries for high performance scientific and technical computing.
For more information, see Section 1.1.11, "Functions".
Table 10-1 lists the built-in single-row Colt functions that Oracle CQL provides.
Table 10-1 Oracle CQL Built-in Single-Row Colt-Based Functions
Colt Package | Function |
---|---|
A set of basic polynomials, rounding, and calculus functions. |
|
A set of Bessel functions. | |
A table with good seeds for pseudo-random number generators. Each sequence in this table has a period of 10**9 numbers. | |
A set of Gamma and Beta functions. | |
A set of probability distributions. |
|
A set of non polymorphic, non bounds checking, low level bit-vector functions. | |
A set of hash functions. | |
Note: Built-in function names are case sensitive and you must use them in the case shown (in lower case). |
Note: In stream input examples, lines beginning with |
For more information, see:
Syntax
Purpose
beta
is based on cern.jet.stat.Gamma
. It returns the beta function (see Figure 10-1) of the input arguments as a double
.
This function takes the following arguments:
double1
: the x
value. double2
: the y
value. For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Gamma.html#beta(double,%20double)
.
Examples
Consider the query qColt28
in Example 10-1. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-2, the query returns the relation in Example 10-3.
Example 10-1 beta Function Query
Syntax
Purpose
beta1
is based on cern.jet.stat.Probability
. It returns the area P(x)
from 0
to x
under the beta density function (see Figure 10-2) as a double
.
This function takes the following arguments:
double1
: the alpha parameter of the beta distribution a
. double2
: the beta parameter of the beta distribution b
. double3
: the integration end point x
. For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Probability.html#beta(double,%20double,%20double)
.
Examples
Consider the query qColt35
in Example 10-4. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-5, the query returns the relation in Example 10-6.
Example 10-4 beta1 Function Query
Syntax
Purpose
betaComplemented
is based on cern.jet.stat.Probability
. It returns the area under the right hand tail (from x
to infinity) of the beta density function (see Figure 10-2) as a double
.
This function takes the following arguments:
double1
: the alpha parameter of the beta distribution a
. double2
: the beta parameter of the beta distribution b
. double3
: the integration end point x
. For more information, see:
http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Probability.html#betaComplemented(double,%20double,%20double)
Examples
Consider the query qColt37
in Example 10-7. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-8, the query returns the relation in Example 10-9.
Example 10-7 betaComplemented Function Query
Syntax
Purpose
binomial
is based on cern.jet.math.Arithmetic
. It returns the binomial coefficient n
over k
(see Figure 10-3) as a double
.
This function takes the following arguments:
double1
: the n
value. long2
: the k
value. Table 10-2 lists the binomial
function return values for various values of k
.
Table 10-2 cern.jet.math.Arithmetic binomial Return Values
Arguments | Return Value |
---|---|
| 0 |
| 1 |
|
|
Any other value of | Computed binomial coefficient as given in Figure 10-3. |
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/math/Arithmetic.html#binomial(double,%20long)
.
Examples
Consider the query qColt6
in Example 10-10. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 long)
in Example 10-11, the query returns the relation in Example 10-12.
Example 10-10 binomial Function Query
Syntax
Purpose
binomial1
is based on cern.jet.math.Arithmetic
. It returns the binomial coefficient n
over k
(see Figure 10-3) as a double
.
This function takes the following arguments:
long1
: the n
value. long2
: the k
value. Table 10-3 lists the BINOMIAL
function return values for various values of k
.
Table 10-3 cern.jet.math.Arithmetic Binomial1 Return Values
Arguments | Return Value |
---|---|
| 0 |
| 1 |
|
|
Any other value of | Computed binomial coefficient as given in Figure 10-3. |
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/math/Arithmetic.html#binomial(long,%20long)
.
Examples
Consider the query qColt7
in Example 10-13. Given the data stream SColtFunc
with schema (c1 integer, c2 float, c3 long)
in Example 10-14, the query returns the relation in Example 10-15.
Example 10-13 binomial1 Function Query
Syntax
Purpose
binomial2
is based on cern.jet.stat.Probability
. It returns the sum of the terms 0 through k
of the binomial probability density (see Figure 10-4) as a double
.
This function takes the following arguments (all arguments must be positive):
integer1
: the end term k
. integer2
: the number of trials n
. double3
: the probability of success p
in (0.0, 1.0) For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Probability.html#binomial(int,%20int,%20double)
.
Examples
Consider the query qColt34
in Example 10-16. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-17, the query returns the relation in Example 10-18.
Example 10-16 binomial2 Function Query
Purpose
binomialComplemented
is based on cern.jet.stat.Probability
. It returns the sum of the terms k+1
through n
of the binomial probability density (see Figure 10-5) as a double
.
This function takes the following arguments (all arguments must be positive):
integer1
: the end term k
. integer2
: the number of trials n
. double3
: the probability of success p
in (0.0, 1.0) For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Probability.html#binomialComplemented(int,%20int,%20double)
.
Examples
Consider the query qColt38
in Example 10-19. Given the data stream SColtFunc
with schema (integer, c2 double, c3 bigint)
in Example 10-20, the query returns the relation in Example 10-21.
Example 10-19 binomialComplemented Function Query
Syntax
Purpose
bitMaskWithBitsSetFromTo
is based on cern.colt.bitvector.QuickBitVector
. It returns a 64-bit wide bit mask as a long
with bits in the specified range set to 1 and all other bits set to 0.
This function takes the following arguments:
integer1
: the from
value; index of the start bit (inclusive). integer2
: the to
value; index of the end bit (inclusive). Precondition (not checked): to
- from
+ 1 >= 0 && to
- from
+ 1 <= 64.
If to
- from
+ 1 = 0 then returns a bit mask with all bits set to 0.
For more information, see:
http://dsd.lbl.gov/~hoschek/colt/api/cern/colt/bitvector/QuickBitVector.html#bitMaskWithBitsSetFromTo(int,%20int)
Examples
Consider the query qColt53
in Example 10-22. Given the data stream SColtFunc
with schema (c1 integer, c2 float, c3 bigint)
in Example 10-23, the query returns the relation in Example 10-24.
Example 10-22 bitMaskWithBitsSetFromTo Function Query
Syntax
Purpose
ceil
is based on cern.jet.math.Arithmetic
. It returns the smallest long
greater than or equal to its double
argument.
This method is safer than using (float) java.lang.Math.ceil(long)
because of possible rounding error.
For more information, see:
Examples
Consider the query qColt1
in Example 10-25. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-26, the query returns the relation in Example 10-27.
Example 10-25 ceil Function Query
Syntax
Purpose
chiSquare
is based on cern.jet.stat.Probability
. It returns the area under the left hand tail (from 0 to x
) of the Chi square probability density function with v
degrees of freedom (see Figure 10-6) as a double
.
This function takes the following arguments (all arguments must be positive):
double1
: the degrees of freedom v
. double2
: the integration end point x
. For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Probability.html#chiSquare(double,%20double)
.
Examples
Consider the query qColt39
in Example 10-28. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-29, the query returns the relation in Example 10-30.
Example 10-28 chiSquare Function Query
Syntax
Purpose
chiSquareComplemented
is based on cern.jet.stat.Probability
. It returns the area under the right hand tail (from x
to infinity) of the Chi square probability density function with v
degrees of freedom (see Figure 10-6) as a double
.
This function takes the following arguments (all arguments must be positive):
double1
: the degrees of freedom v
. double2
: the integration end point x
. For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Probability.html#chiSquareComplemented(double,%20double)
.
Examples
Consider the query qColt40
in Example 10-31. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-32, the query returns the relation in Example 10-33.
Example 10-31 chiSquareComplemented Function Query
Syntax
Purpose
errorFunction
is based on cern.jet.stat.Probability
. It returns the error function of the normal distribution of the double
argument as a double
, using the integral that Figure 10-7 shows.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Probability.html#errorFunction(double)
.
Examples
Consider the query qColt41
in Example 10-34. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-35, the query returns the relation in Example 10-36.
Example 10-34 errorFunction Function Query
Syntax
Purpose
errorFunctionComplemented
is based on cern.jet.stat.Probability
. It returns the complementary error function of the normal distribution of the double
argument as a double
, using the integral that Figure 10-8 shows.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Probability.html#errorFunctionComplemented(double)
.
Examples
Consider the query qColt42
in Example 10-37. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-38, the query returns the relation in Example 10-39.
Example 10-37 errorFunctionComplemented Function Query
Syntax
Purpose
factorial
is based on cern.jet.math.Arithmetic
. It returns the factorial of the positive integer
argument as a double
.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/math/Arithmetic.html#factorial(int)
.
Examples
Consider the query qColt8
in Example 10-40. Given the data stream SColtFunc
with schema (c1 integer, c2 float, c3 bigint)
in Example 10-41, the query returns the relation in Example 10-42.
Example 10-40 factorial Function Query
Syntax
Purpose
floor
is based on cern.jet.math.Arithmetic
. It returns the largest long
value less than or equal to the double
argument.
This method is safer than using (double) java.lang.Math.floor(double)
because of possible rounding error.
For more information, see:
Examples
Consider the query qColt2
in Example 10-43. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-44, the query returns the relation in Example 10-45.
Example 10-43 floor Function Query
Syntax
Purpose
gamma
is based on cern.jet.stat.Gamma
. It returns the Gamma function of the double
argument as a double
.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Gamma.html#gamma(double)
.
Examples
Consider the query qColt29
in Example 10-46. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-47, the query returns the relation in Example 10-48.
Example 10-46 gamma Function Query
Syntax
Purpose
gamma1
is based on cern.jet.stat.Probability
. It returns the integral from zero to x
of the gamma probability density function (see Figure 10-9) as a double
.
This function takes the following arguments:
double1
: the gamma distribution alpha value a
double2
: the gamma distribution beta or lambda value b
double3
: the integration end point x
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Probability.html#gamma(double,%20double,%20double)
.
Examples
Consider the query qColt36
in Example 10-49. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-50, the query returns the relation in Example 10-51.
Example 10-49 gamma1 Function Query
Syntax
Purpose
gammaComplemented
is based on cern.jet.stat.Probability
. It returns the integral from x
to infinity of the gamma probability density function (see Figure 10-10) as a double
.
This function takes the following arguments:
double1
: the gamma distribution alpha value a
double2
: the gamma distribution beta or lambda value b
double3
: the integration end point x
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Probability.html#gammaComplemented(double,%20double,%20double)
.
Examples
Consider the query qColt43
in Example 10-52. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-53, the query returns the relation in Example 10-54.
Example 10-52 gammaComplemented Function Query
Syntax
Purpose
getSeedAtRowColumn
is based on cern.jet.random.engine.RandomSeedTable
. It returns a deterministic seed as an integer
from a (seemingly gigantic) matrix of predefined seeds.
This function takes the following arguments:
integer1
: the row
value; should (but need not) be in [0,Integer.MAX_VALUE]
. integer2
: the column
value; should (but need not) be in [0,1]
. For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/random/engine/RandomSeedTable.html#getSeedAtRowColumn(int,%20int)
.
Examples
Consider the query qColt27
in Example 10-55. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-56, the query returns the relation in Example 10-57.
Example 10-55 getSeedAtRowColumn Function Query
Syntax
Purpose
hash
is based on cern.colt.map.HashFunctions
. It returns an integer
hashcode for the specified double
value.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/colt/map/HashFunctions.html#hash(double)
.
Examples
Consider the query qColt56
in Example 10-58. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-59, the query returns the relation in Example 10-60.
Example 10-58 hash Function Query
Syntax
Purpose
hash1
is based on cern.colt.map.HashFunctions
. It returns an integer
hashcode for the specified float
value.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/colt/map/HashFunctions.html#hash(float)
.
Examples
Consider the query qColt57
in Example 10-61. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-62, the query returns the relation in Example 10-63.
Example 10-61 hash1 Function Query
Syntax
Purpose
hash2
is based on cern.colt.map.HashFunctions
. It returns an integer
hashcode for the specified integer
value.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/colt/map/HashFunctions.html#hash(int)
.
Examples
Consider the query qColt58
in Example 10-64. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-65, the query returns the relation in Example 10-66.
Example 10-64 hash2 Function Query
Syntax
Purpose
hash3
is based on cern.colt.map.HashFunctions
. It returns an integer
hashcode for the specified long
value.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/colt/map/HashFunctions.html#hash(long)
.
Examples
Consider the query qColt59
in Example 10-67. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-68, the query returns the relation in Example 10-69.
Example 10-67 hash3 Function Query
Syntax
Purpose
i0
is based on cern.jet.math.Bessel
. It returns the modified Bessel function of order 0 of the double
argument as a double
.
The function is defined as i0(x) = j0(ix)
.
The range is partitioned into the two intervals [0,8]
and (8,infinity)
.
For more information, see:
Examples
Consider the query qColt12
in Example 10-70. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-71, the query returns the relation in Example 10-72.
Example 10-70 i0 Function Query
Syntax
Purpose
i0e
is based on cern.jet.math.Bessel
. It returns the exponentially scaled modified Bessel function of order 0 of the double
argument as a double
.
The function is defined as: i0e(x) = exp(-|x|) j0(ix)
.
For more information, see:
Examples
Consider the query qColt13
in Example 10-73. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-74, the query returns the relation in Example 10-75.
Example 10-73 i0e Function Query
Syntax
Purpose
i1
is based on cern.jet.math.Bessel
. It returns the modified Bessel function of order 1 of the double
argument as a double
.
The function is defined as: i1(x) = -i j1(ix)
.
The range is partitioned into the two intervals [0,8]
and (8,infinity)
. Chebyshev polynomial expansions are employed in each interval.
For more information, see:
Examples
Consider the query qColt14
in Example 10-76. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-77, the query returns the relation in Example 10-78.
Example 10-76 i1 Function Query
Syntax
Purpose
i1e
is based on cern.jet.math.Bessel
. It returns the exponentially scaled modified Bessel function of order 1 of the double
argument as a double
.
The function is defined as i1(x) = -i exp(-|x|) j1(ix)
.
For more information, see
Examples
Consider the query qColt15
in Example 10-79. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-80, the query returns the relation in Example 10-81.
Example 10-79 i1e Function Query
Syntax
Purpose
incompleteBeta
is based on cern.jet.stat.Gamma
. It returns the Incomplete Beta Function evaluated from zero to x
as a double
.
This function takes the following arguments:
double1
: the beta distribution alpha value a
double2
: the beta distribution beta value b
double3
: the integration end point x
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Gamma.html#incompleteBeta(double,%20double,%20double)
.
Examples
Consider the query qColt30
in Example 10-82. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-83, the query returns the relation in Example 10-84.
Example 10-82 incompleteBeta Function Query
Syntax
Purpose
incompleteGamma
is based on cern.jet.stat.Gamma
. It returns the Incomplete Gamma function of the arguments as a double
.
This function takes the following arguments:
double1
: the gamma distribution alpha value a
. double2
: the integration end point x
. For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Gamma.html#incompleteGamma(double,%20double)
.
Examples
Consider the query qColt31
in Example 10-85. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-86, the query returns the relation in Example 10-87.
Example 10-85 incompleteGamma Function Query
Syntax
Purpose
incompleteGammaComplement
is based on cern.jet.stat.Gamma
. It returns the Complemented Incomplete Gamma function of the arguments as a double
.
This function takes the following arguments:
double1
: the gamma distribution alpha value a
. double2
: the integration start point x
. For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Gamma.html#incompleteGammaComplement(double,%20double)
.
Examples
Consider the query qColt32
in Example 10-88. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-89, the query returns the relation in Example 10-90.
Example 10-88 incompleteGammaComplement Function Query
Syntax
Purpose
j0
is based on cern.jet.math.Bessel
. It returns the Bessel function of the first kind of order 0 of the double
argument as a double
.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/math/Bessel.html#j0(double)
.
Examples
Consider the query qColt16
in Example 10-91. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-92, the query returns the relation in Example 10-93.
Example 10-91 j0 Function Query
Syntax
Purpose
j1
is based on cern.jet.math.Bessel
. It returns the Bessel function of the first kind of order 1 of the double
argument as a double
.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/math/Bessel.html#j1(double)
.
Examples
Consider the query qColt17
in Example 10-94. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-95, the query returns the relation in Example 10-96.
Example 10-94 j1 Function Query
Syntax
Purpose
jn
is based on cern.jet.math.Bessel
. It returns the Bessel function of the first kind of order n
of the argument as a double
.
This function takes the following arguments:
integer1
: the order of the Bessel function n
. double2
: the value to compute the bessel function of x
. For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/math/Bessel.html#jn(int,%20double)
.
Examples
Consider the query qColt18
in Example 10-97. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-98, the query returns the relation in Example 10-99.
Example 10-97 jn Function Query
Syntax
Purpose
k0
is based on cern.jet.math.Bessel
. It returns the modified Bessel function of the third kind of order 0 of the double
argument as a double
.
The range is partitioned into the two intervals [0,8]
and (8, infinity)
. Chebyshev polynomial expansions are employed in each interval.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/math/Bessel.html#k0(double)
.
Examples
Consider the query qColt19
in Example 10-100. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-101, the query returns the relation in Example 10-102.
Example 10-100 k0 Function Query
Syntax
Purpose
k0e
is based on cern.jet.math.Bessel
. It returns the exponentially scaled modified Bessel function of the third kind of order 0 of the double
argument as a double
.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/math/Bessel.html#k0e(double)
.
Examples
Consider the query qColt20
in Example 10-103. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-104, the query returns the relation in Example 10-105.
Example 10-103 k0e Function Query
Syntax
Purpose
k1
is based on cern.jet.math.Bessel
. It returns the modified Bessel function of the third kind of order 1 of the double
argument as a double
.
The range is partitioned into the two intervals [0,2]
and (2, infinity)
. Chebyshev polynomial expansions are employed in each interval.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/math/Bessel.html#k1(double)
.
Examples
Consider the query qColt21
in Example 10-106. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-107, the query returns the relation in Example 10-108.
Example 10-106 k1 Function Query
Syntax
Purpose
k1e
is based on cern.jet.math.Bessel
. It returns the exponentially scaled modified Bessel function of the third kind of order 1 of the double
argument as a double
.
The function is defined as: k1e(x) = exp(x) * k1(x)
.
For more information, see:
Examples
Consider the query qColt22
in Example 10-109. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-110, the query returns the relation in Example 10-111.
Example 10-109 k1e Function Query
Syntax
Purpose
kn
is based on cern.jet.math.Bessel
. It returns the modified Bessel function of the third kind of order n
of the argument as a double
.
This function takes the following arguments:
integer1
: the n
value order of the Bessel function. double2
: the x
value to compute the bessel function of. The range is partitioned into the two intervals [0,9.55]
and (9.55, infinity)
. An ascending power series is used in the low range, and an asymptotic expansion in the high range.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/math/Bessel.html#kn(int,%20double)
.
Examples
Consider the query qColt23
in Example 10-112. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-113, the query returns the relation in Example 10-114.
Example 10-112 kn Function Query
Syntax
Purpose
leastSignificantBit
is based on cern.colt.bitvector.QuickBitVector
. It returns the index (as an integer
) of the least significant bit in state true
of the integer
argument. Returns 32 if no bit is in state true
.
For more information, see:
http://dsd.lbl.gov/~hoschek/colt/api/cern/colt/bitvector/QuickBitVector.html#leastSignificantBit(int)
Examples
Consider the query qColt54
in Example 10-115. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-116, the query returns the relation in Example 10-117.
Example 10-115 leastSignificantBit Function Query
Syntax
Purpose
log
is based on cern.jet.math.Arithmetic
. It returns the computation that Figure 10-11 shows as a double
.
This function takes the following arguments:
double1
: the base
. double2
: the value
. For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/math/Arithmetic.html#log(double,%20double)
.
Examples
Consider the query qColt3
in Example 10-118. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-119, the query returns the relation in Example 10-120.
Example 10-118 log Function Query
Syntax
Purpose
log10
is based on cern.jet.math.Arithmetic
. It returns the base 10 logarithm of a double
value as a double
.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/math/Arithmetic.html#log10(double)
.
Examples
Consider the query qColt4
in Example 10-121. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-122, the query returns the relation in Example 10-123.
Example 10-121 log10 Function Query
Syntax
Purpose
log2
is based on cern.jet.math.Arithmetic
. It returns the base 2 logarithm of a double
value as a double
.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/math/Arithmetic.html#log2(double)
.
Examples
Consider the query qColt9
in Example 10-124. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-125, the query returns the relation in Example 10-126.
Example 10-124 log2 Function Query
Syntax
Purpose
logFactorial
is based on cern.jet.math.Arithmetic
. It returns the natural logarithm (base e) of the factorial of its integer
argument as a double
For argument values k<30
, the function looks up the result in a table in O(1)
. For argument values k>=30
, the function uses Stirlings approximation.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/math/Arithmetic.html#logFactorial(int)
.
Examples
Consider the query qColt10
in Example 10-127. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-128, the query returns the relation in Example 10-129.
Example 10-127 logFactorial Function Query
Syntax
Purpose
logGamma
is based on cern.jet.stat.Gamma
. It returns the natural logarithm (base e) of the gamma function of the double
argument as a double
.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Gamma.html#logGamma(double)
.
Examples
Consider the query qColt33
in Example 10-130. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-131, the query returns the relation in Example 10-132.
Example 10-130 logGamma Function Query
Syntax
Purpose
longFactorial
is based on cern.jet.math.Arithmetic
. It returns the factorial of its integer
argument (in the range k >= 0 && k < 21
) as a long
.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/math/Arithmetic.html#longFactorial(int)
.
Examples
Consider the query qColt11
in Example 10-133. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-134, the query returns the relation in Example 10-135.
Example 10-133 longFactorial Function Query
Syntax
Purpose
mostSignificantBit
is based on cern.colt.bitvector.QuickBitVector
. It returns the index (as an integer
) of the most significant bit in state true
of the integer
argument. Returns -1
if no bit is in state true
For more information, see:
http://dsd.lbl.gov/~hoschek/colt/api/cern/colt/bitvector/QuickBitVector.html#mostSignificantBit(int)
Examples
Consider the query qColt55
in Example 10-136. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-137, the query returns the relation in Example 10-138.
Example 10-136 mostSignificantBit Function Query
Syntax
Purpose
negativeBinomial
is based on cern.jet.stat.Probability
. It returns the sum of the terms 0 through k
of the Negative Binomial Distribution (see Figure 10-12) as a double
.
This function takes the following arguments:
integer1
: the end term k
. integer2
: the number of trials n
. double3
: the probability of success p
in (0.0,1.0). For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Probability.html#negativeBinomial(int,%20int,%20double)
.
Examples
Consider the query qColt44
in Example 10-139. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-140, the query returns the relation in Example 10-141.
Example 10-139 negativeBinomial Function Query
Syntax
Purpose
negativeBinomialComplemented
is based on cern.jet.stat.Probability
. It returns the sum of the terms k+1
to infinity of the Negative Binomial distribution (see Figure 10-13) as a double
.
This function takes the following arguments:
integer1
: the end term k
. integer2
: the number of trials n
. double3
: the probability of success p
in (0.0,1.0). For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Probability.html#negativeBinomialComplemented(int,%20int,%20double)
.
Examples
Consider the query qColt45
in Example 10-142. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-143, the query returns the relation in Example 10-144.
Example 10-142 negativeBinomialComplemented Function Query
Syntax
Purpose
normal
is based on cern.jet.stat.Probability
. It returns the area under the Normal (Gaussian) probability density function, integrated from minus infinity to the double
argument x
(see Figure 10-14) as a double
.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Probability.html#normal(double)
.
Examples
Consider the query qColt46
in Example 10-145. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-146, the query returns the relation in Example 10-147.
Example 10-145 normal Function Query
Syntax
Purpose
normal1
is based on cern.jet.stat.Probability
. It returns the area under the Normal (Gaussian) probability density function, integrated from minus infinity to x
(see Figure 10-15) as a double
.
This function takes the following arguments:
double1
: the normal distribution mean
. double2
: the variance of the normal distribution v
. double3
: the integration limit x
. For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Probability.html#normal(double,%20double,%20double)
.
Examples
Consider the query qColt47
in Example 10-148. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-149, the query returns the relation in Example 10-150.
Example 10-148 normal1 Function Query
Syntax
Purpose
normalInverse
is based on cern.jet.stat.Probability
. It returns the double
value, x
, for which the area under the Normal (Gaussian) probability density function (integrated from minus infinity to x
) equals the double
argument y
(assumes mean is zero and variance is one).
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Probability.html#normalInverse(double)
.
Examples
Consider the query qColt48
in Example 10-151. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-152, the query returns the relation in Example 10-153.
Example 10-151 normalInverse Function Query
Syntax
Purpose
poisson
is based on cern.jet.stat.Probability
. It returns the sum of the first k
terms of the Poisson distribution (see Figure 10-16) as a double
.
This function takes the following arguments:
integer1
: the number of terms k
. double2
: the mean of the Poisson distribution m
. For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Probability.html#poisson(int,%20double)
.
Examples
Consider the query qColt49
in Example 10-154. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-155, the query returns the relation in Example 10-156.
Example 10-154 poisson Function Query
Syntax
Purpose
poissonComplemented
is based on cern.jet.stat.Probability
. It returns the sum of the terms k+1
to Infinity of the Poisson distribution (see Figure 10-17) as a double
.
This function takes the following arguments:
integer1
: the start term k
. double2
: the mean of the Poisson distribution m
. For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Probability.html#poissonComplemented(int,%20double)
.
Examples
Consider the query qColt50
in Example 10-157. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-158, the query returns the relation in Example 10-159.
Example 10-157 poissonComplemented Function Query
Syntax
Purpose
stirlingCorrection
is based on cern.jet.math.Arithmetic
. It returns the correction term of the Stirling approximation of the natural logarithm (base e) of the factorial of the integer
argument (see Figure 10-18) as a double
.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/math/Arithmetic.html#stirlingCorrection(int)
.
Examples
Consider the query qColt5
in Example 10-160. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-161, the query returns the relation in Example 10-162.
Example 10-160 stirlingCorrection Function Query
Syntax
Purpose
studentT
is based on cern.jet.stat.Probability
. It returns the integral from minus infinity to t
of the Student-t distribution with k
> 0 degrees of freedom (see Figure 10-19) as a double
.
This function takes the following arguments:
double1
: the degrees of freedom k
. double2
: the integration end point t
. For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Probability.html#studentT(double,%20double)
.
Examples
Consider the query qColt51
in Example 10-163. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-164, the query returns the relation in Example 10-165.
Example 10-163 studentT Function Query
Syntax
Purpose
studentTInverse
is based on cern.jet.stat.Probability
. It returns the double
value, t
, for which the area under the Student-t probability density function (integrated from minus infinity to t
) equals 1-alpha/2
. The value returned corresponds to the usual Student t-distribution lookup table for talpha[size]
. This function uses the studentt
function to determine the return value iteratively.
This function takes the following arguments:
double1
: the probability alpha
. integer2
: the data set size. For more information, see:
http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/stat/Probability.html#studentTInverse(double,%20int)
Examples
Consider the query qColt52
in Example 10-166. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-167, the query returns the relation in Example 10-168.
Example 10-166 studentTInverse Function Query
Syntax
Purpose
y0
is based on cern.jet.math.Bessel
. It returns the Bessel function of the second kind of order 0 of the double
argument as a double
.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/math/Bessel.html#y0(double)
.
Examples
Consider the query qColt24
in Example 10-169. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-170, the query returns the relation in Example 10-171.
Example 10-169 y0 Function Query
Syntax
Purpose
y1
is based on cern.jet.math.Bessel
. It returns the Bessel function of the second kind of order 1 of the float argument as a double
.
For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/math/Bessel.html#y1(double)
.
Examples
Consider the query qColt25
in Example 10-172. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-173, the query returns the relation in Example 10-174.
Example 10-172 y1 Function Query
Syntax
Purpose
yn
is based on cern.jet.math.Bessel
. It returns the Bessel function of the second kind of order n
of the double
argument as a double
.
This function takes the following arguments:
integer1
: the n
value order of the Bessel function. double2
: the x
value to compute the Bessel function of. For more information, see http://dsd.lbl.gov/~hoschek/colt/api/cern/jet/math/Bessel.html#yn(int,%20double)
.
Examples
Consider the query qColt26
in Example 10-175. Given the data stream SColtFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 10-176, the query returns the relation in Example 10-177.
Example 10-175 yn Function Query
This chapter provides a reference to Colt aggregate functions provided in Oracle Continuous Query Language (Oracle CQL). Colt aggregate functions are based on the Colt open source libraries for high performance scientific and technical computing.
For more information, see Section 1.1.11, "Functions".
Table 11-1 lists the built-in aggregate Colt functions that Oracle CQL provides.
Table 11-1 Oracle CQL Built-in Aggregate Colt-Based Functions
Colt Package | Function |
---|---|
A set of basic descriptive statistics functions. |
|
Note: Built-in function names are case sensitive and you must use them in the case shown (in lower case). |
Note: In stream input examples, lines beginning with In relation output examples, the first tuple output is: -9223372036854775808:+ This value is |
For more information, see:
http://dsd.lbl.gov/~hoschek/colt/
Note that the signatures of the Oracle CQL Colt aggregate functions do not match the signatures of the corresponding Colt aggregate functions.
Consider the following Colt aggregate function:
In this signature, data
is the Collection
over which aggregates will be calculated and mean
and variance
are the other two parameter aggregates which are required to calculate autoCorrelation
(where mean
and variance
aggregates are calculated on data
).
In Oracle CEP, data
will never come in the form of a Collection
. The Oracle CQL function receives input data in a stream of tuples.
So suppose our stream is defined as S:(double val, integer lag)
. On each input tuple, the Oracle CQL autoCorrelation
function will compute two intermediate aggregates, mean
and variance
, and one final aggregate, autoCorrelation
.
Since the function expects a stream of tuples having a double
data
value and an integer
lag
value only, the signature of the Oracle CQL autoCorrelation
function is:
In Oracle CQL, the where
clause is applied before the group by
and having
clauses. This means the Oracle CQL statement in Example 11-1 is invalid:
Example 11-1 Invalid Use of count
Instead, you must use the Oracle CQL statement that Example 11-2 shows:
Example 11-2 Valid Use of count
For more information, see:
Syntax
Purpose
autoCorrelation
is based on cern.jet.stat.Descriptive.autoCorrelation(DoubleArrayList data, int lag, double mean, double variance)
. It returns the auto-correlation of a data sequence of the input arguments as a double
.
This function takes the following tuple arguments:
double1
: data value. int1
: lag. For more information, see
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#autoCorrelation(cern.colt.list.DoubleArrayList,%20int,%20double,%20double)
Examples
Consider the query qColtAggr1
in Example 11-3. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-4, the query returns the relation in Example 11-5.
Example 11-3 autoCorrelation Function Query
Example 11-4 autoCorrelation Function Stream Input
Example 11-5 autoCorrelation Function Relation Output
Syntax
Purpose
correlation
is based on cern.jet.stat.Descriptive.correlation(DoubleArrayList data1, double standardDev1, DoubleArrayList data2, double standardDev2)
. It returns the correlation of two data sequences of the input arguments as a double
.
This function takes the following tuple arguments:
double1
: data value 1. double2
: data value 2. For more information, see
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#correlation(cern.colt.list.DoubleArrayList,%20double,%20cern.colt.list.DoubleArrayList,%20double)
Examples
Consider the query qColtAggr2
in Example 11-6. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-7, the query returns the relation in Example 11-8.
Example 11-6 correlation Function Query
Syntax
Purpose
covariance
is based on cern.jet.stat.Descriptive.covariance(DoubleArrayList data1, DoubleArrayList data2)
. It returns the correlation of two data sequences (see Figure 11-1) of the input arguments as a double
.
This function takes the following tuple arguments:
double1
: data value 1. double2
: data value 2. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#covariance(cern.colt.list.DoubleArrayList,%20cern.colt.list.DoubleArrayList)
Examples
Consider the query qColtAggr3
in Example 11-9. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-10, the query returns the relation in Example 11-11.
Example 11-9 covariance Function Query
Syntax
Purpose
geometricMean
is based on cern.jet.stat.Descriptive.geometricMean(DoubleArrayList data)
. It returns the geometric mean of a data sequence (see Figure 11-2) of the input argument as a double
.
This function takes the following tuple arguments:
double1
: data value. Note that for a geometric mean to be meaningful, the minimum of the data values must not be less than or equal to zero.
For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#geometricMean(cern.colt.list.DoubleArrayList)
Examples
Consider the query qColtAggr6
in Example 11-12. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-13, the query returns the relation in Example 11-14.
Example 11-12 geometricMean Function Query
Syntax
Purpose
geometricMean1
is based on cern.jet.stat.Descriptive.geometricMean(double sumOfLogarithms)
. It returns the geometric mean of a data sequence (see Figure 11-3) of the input arguments as a double
.
This function takes the following tuple arguments:
double1
: data value. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#geometricMean(cern.colt.list.DoubleArrayList)
Examples
Consider the query qColtAggr7
in Example 11-15. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-16, the query returns the relation in Example 11-17.
Example 11-15 geometricMean1 Function Query
Syntax
Purpose
harmonicMean
is based on cern.jet.stat.Descriptive.harmonicMean(int size, double sumOfInversions)
. It returns the harmonic mean of a data sequence as a double
.
This function takes the following tuple arguments:
double1
: data value. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#harmonicMean(int,%20double)
Examples
Consider the query qColtAggr8
in Example 11-18. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-19, the query returns the relation in Example 11-20.
Example 11-18 harmonicMean Function Query
Example 11-19 harmonicMean Function Stream Input
Example 11-20 harmonicMean Function Relation Output
Syntax
Purpose
kurtosis
is based on cern.jet.stat.Descriptive.kurtosis(DoubleArrayList data, double mean, double standardDeviation)
. It returns the kurtosis or excess (see Figure 11-4) of a data sequence as a double
.
Figure 11-4 cern.jet.stat.Descriptive.kurtosis(DoubleArrayList data, double mean, double standardDeviation)
This function takes the following tuple arguments:
double1
: data value. For more information, see
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#kurtosis(cern.colt.list.DoubleArrayList,%20double,%20double)
Examples
Consider the query qColtAggr12
in Example 11-21. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-22, the query returns the relation in Example 11-23.
Example 11-21 kurtosis Function Query
Syntax
Purpose
lag1
is based on cern.jet.stat.Descriptive.lag1(DoubleArrayList data, double mean)
. It returns the lag - 1
auto-correlation of a dataset as a double
.
This function takes the following tuple arguments:
double1
: data value. For more information, see
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#lag1(cern.colt.list.DoubleArrayList,%20double)
Examples
Consider the query qColtAggr14
in Example 11-24. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-25, the query returns the relation in Example 11-26.
Example 11-24 lag1 Function Query
Syntax
Purpose
mean
is based on cern.jet.stat.Descriptive.mean(DoubleArrayList data)
. It returns the arithmetic mean of a data sequence (see Figure 11-5) as a double
.
This function takes the following tuple arguments:
double1
: data value. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#mean(cern.colt.list.DoubleArrayList)
Examples
Consider the query qColtAggr16
in Example 11-27. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-28, the query returns the relation in Example 11-29.
Example 11-27 mean Function Query
Syntax
Purpose
meanDeviation
is based on cern.jet.stat.Descriptive.meanDeviation(DoubleArrayList data, double mean)
. It returns the mean deviation of a dataset (see Figure 11-6) as a double
.
This function takes the following tuple arguments:
double1
: data value. For more information, see
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#meanDeviation(cern.colt.list.DoubleArrayList,%20double)
Examples
Consider the query qColtAggr17
in Example 11-30. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-31, the query returns the relation in Example 11-32.
Example 11-30 meanDeviation Function Query
Syntax
Purpose
median
is based on cern.jet.stat.Descriptive.median(DoubleArrayList sortedData)
. It returns the median of a sorted data sequence as a double
.
This function takes the following tuple arguments:
double1
: data value. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#median(cern.colt.list.DoubleArrayList)
Examples
Consider the query qColtAggr18
in Example 11-33. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-34, the query returns the relation in Example 11-35.
Example 11-33 median Function Query
Syntax
Purpose
moment
is based on cern.jet.stat.Descriptive.moment(DoubleArrayList data, int k, double c)
. It returns the moment of the k
-th order with constant c
of a data sequence (see Figure 11-7) as a double
.
This function takes the following tuple arguments:
double1
: data value. int1
: k
. double2
: c
. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#moment(cern.colt.list.DoubleArrayList,%20int,%20double)
Examples
Consider the query qColtAggr21
in Example 11-36. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-37, the query returns the relation in Example 11-38.
Example 11-36 moment Function Query
Syntax
Purpose
pooledMean
is based on cern.jet.stat.Descriptive.pooledMean(int size1, double mean1, int size2, double mean2)
. It returns the pooled mean of two data sequences (see Figure 11-8) as a double
.
This function takes the following tuple arguments:
double1
: mean 1. double2
: mean 2. For more information, see
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#pooledMean(int,%20double,%20int,%20double)
Examples
Consider the query qColtAggr22
in Example 11-39. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-40, the query returns the relation in Example 11-41.
Example 11-39 pooledMean Function Query
Syntax
Purpose
pooledVariance
is based on cern.jet.stat.Descriptive.pooledVariance(int size1, double variance1, int size2, double variance2)
. It returns the pooled variance of two data sequences (see Figure 11-9) as a double
.
Figure 11-9 cern.jet.stat.Descriptive.pooledVariance(int size1, double variance1, int size2, double variance2)
This function takes the following tuple arguments:
double1
: variance 1. double2
: variance 2. For more information, see
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#pooledVariance(int,%20double,%20int,%20double)
Examples
Consider the query qColtAggr23
in Example 11-42. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-43, the query returns the relation in Example 11-44.
Example 11-42 pooledVariance Function Query
Syntax
Purpose
product
is based on cern.jet.stat.Descriptive.product(DoubleArrayList data)
. It returns the product of a data sequence (see Figure 11-10) as a double
.
This function takes the following tuple arguments:
double1
: data value. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#product(cern.colt.list.DoubleArrayList)
Examples
Consider the query qColtAggr24
in Example 11-45. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-46, the query returns the relation in Example 11-47.
Example 11-45 product Function Query
Syntax
Purpose
quantile
is based on cern.jet.stat.Descriptive.quantile(DoubleArrayList sortedData, double phi)
. It returns the phi-quantile as a double
; that is, an element elem
for which holds that phi percent of data elements are less than elem
.
This function takes the following tuple arguments:
double1
: data value. double2
: phi; the percentage; must satisfy 0 <= phi <= 1
. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#quantile(cern.colt.list.DoubleArrayList,%20double)
Examples
Consider the query qColtAggr26
in Example 11-48. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-49, the query returns the relation in Example 11-50.
Example 11-48 quantile Function Query
Syntax
Purpose
quantileInverse
is based on cern.jet.stat.Descriptive.quantileInverse(DoubleArrayList sortedList, double element)
. It returns the percentage phi of elements <= element
(0.0 <= phi <= 1.0
) as a double
. This function does linear interpolation if the element
is not contained but lies in between two contained elements.
This function takes the following tuple arguments:
double1
: data. double2
: element
. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#quantileInverse(cern.colt.list.DoubleArrayList,%20double)
Examples
Consider the query qColtAggr27
in Example 11-51. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-52, the query returns the relation in Example 11-53.
Example 11-51 quantileInverse Function Query
Syntax
Purpose
rankInterpolated
is based on cern.jet.stat.Descriptive.rankInterpolated(DoubleArrayList sortedList, double element)
. It returns the linearly interpolated number of elements in a list less or equal to a given element
as a double.
The rank is the number of elements <= element
. Ranks are of the form{0, 1, 2,..., sortedList.size()}
. If no element is <= element
, then the rank is zero. If the element lies in between two contained elements, then linear interpolation is used and a non-integer value is returned.
This function takes the following tuple arguments:
double1
: data value. double2
: element
. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#rankInterpolated(cern.colt.list.DoubleArrayList,%20double)
Examples
Consider the query qColtAggr29
in Example 11-54. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-55, the query returns the relation in Example 11-56.
Example 11-54 rankInterpolated Function Query
Syntax
Purpose
rms
is based on cern.jet.stat.Descriptive.rms(int size, double sumOfSquares)
. It returns the Root-Mean-Square (RMS) of a data sequence (see Figure 11-11) as a double
.
This function takes the following tuple arguments:
double1
: data value. For more information, see
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#rms(int,%20double)
Examples
Consider the query qColtAggr30
in Example 11-57. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-58, the query returns the relation in Example 11-59.
Example 11-57 rms Function Query
Syntax
Purpose
sampleKurtosis
is based on cern.jet.stat.Descriptive.sampleKurtosis(DoubleArrayList data, double mean, double sampleVariance)
. It returns the sample kurtosis (excess) of a data sequence as a double
.
This function takes the following tuple arguments:
double1
: data value. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#sampleKurtosis(cern.colt.list.DoubleArrayList,%20double,%20double)
Examples
Consider the query qColtAggr31
in Example 11-60. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-61, the query returns the relation in Example 11-62.
Example 11-60 sampleKurtosis Function Query
Syntax
Purpose
sampleKurtosisStandardError
is based on cern.jet.stat.Descriptive.sampleKurtosisStandardError(int size)
. It returns the standard error of the sample Kurtosis as a double
.
This function takes the following tuple arguments:
int1
: data value. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#sampleKurtosisStandardError(int)
Examples
Consider the query qColtAggr33
in Example 11-63. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-64, the query returns the relation in Example 11-65.
Example 11-63 sampleKurtosisStandardError Function Query
Syntax
Purpose
sampleSkew
is based on cern.jet.stat.Descriptive.sampleSkew(DoubleArrayList data, double mean, double sampleVariance)
. It returns the sample skew of a data sequence as a double
.
This function takes the following tuple arguments:
double1
: data value. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#sampleSkew(cern.colt.list.DoubleArrayList,%20double,%20double)
Examples
Consider the query qColtAggr34
in Example 11-66. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-67, the query returns the relation in Example 11-68.
Example 11-66 sampleSkew Function Query
Syntax
Purpose
sampleSkewStandardError
is based on cern.jet.stat.Descriptive.sampleSkewStandardError(int size)
. It returns the standard error of the sample skew as a double
.
This function takes the following tuple arguments:
double1
: data value. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#sampleSkewStandardError(int)
Examples
Consider the query qColtAggr36
in Example 11-69. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-70, the query returns the relation in Example 11-71.
Example 11-69 sampleSkewStandardError Function Query
Syntax
Purpose
sampleVariance
is based on cern.jet.stat.Descriptive.sampleVariance(DoubleArrayList data, double mean)
. It returns the sample variance of a data sequence (see Figure 11-12) as a double
.
This function takes the following tuple arguments:
double1
: data value. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#sampleVariance(cern.colt.list.DoubleArrayList,%20double)
Examples
Consider the query qColtAggr38
in Example 11-72. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-73, the query returns the relation in Example 11-74.
Example 11-72 sampleVariance Function Query
Syntax
Purpose
skew
is based on cern.jet.stat.Descriptive.skew(DoubleArrayList data, double mean, double standardDeviation)
. It returns the skew of a data sequence of a data sequence (see Figure 11-13) as a double
.
Figure 11-13 cern.jet.stat.Descriptive.skew(DoubleArrayList data, double mean, double standardDeviation)
This function takes the following tuple arguments:
double1
: data value. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#skew(cern.colt.list.DoubleArrayList,%20double,%20double)
Examples
Consider the query qColtAggr41
in Example 11-75. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-76, the query returns the relation in Example 11-77.
Example 11-75 skew Function Query
Syntax
Purpose
standardDeviation
is based on cern.jet.stat.Descriptive.standardDeviation(double variance)
. It returns the standard deviation from a variance as a double
.
This function takes the following tuple arguments:
double1
: data value. For more information, see
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#standardDeviation(double)
Examples
Consider the query qColtAggr44
in Example 11-78. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-79, the query returns the relation in Example 11-80.
Example 11-78 standardDeviation Function Query
Syntax
Purpose
standardError
is based on cern.jet.stat.Descriptive.standardError(int size, double variance)
. It returns the standard error of a data sequence (see Figure 11-14) as a double
.
Figure 11-14 cern.jet.stat.Descriptive.cern.jet.stat.Descriptive.standardError(int size, double variance)
This function takes the following tuple arguments:
double1
: data value. For more information, see
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#standardError(int,%20double)
Examples
Consider the query qColtAggr45
in Example 11-81. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-82, the query returns the relation in Example 11-83.
Example 11-81 standardError Function Query
Syntax
Purpose
sumOfInversions
is based on cern.jet.stat.Descriptive.sumOfInversions(DoubleArrayList data, int from, int to)
. It returns the sum of inversions of a data sequence (see Figure 11-15) as a double
.
This function takes the following tuple arguments:
double1
: data value. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#sumOfInversions(cern.colt.list.DoubleArrayList,%20int,%20int)
Examples
Consider the query qColtAggr48
in Example 11-84. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-85, the query returns the relation in Example 11-86.
Example 11-84 sumOfInversions Function Query
Syntax
Purpose
sumOfLogarithms
is based on cern.jet.stat.Descriptive.sumOfLogarithms(DoubleArrayList data, int from, int to)
. It returns the sum of logarithms of a data sequence (see Figure 11-16) as a double
.
This function takes the following tuple arguments:
double1
: data value. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#sumOfLogarithms(cern.colt.list.DoubleArrayList,%20int,%20int)
Examples
Consider the query qColtAggr49
in Example 11-87. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-88, the query returns the relation in Example 11-89.
Example 11-87 sumOfLogarithms Function Query
Syntax
Purpose
sumOfPowerDeviations
is based on cern.jet.stat.Descriptive.sumOfPowerDeviations(DoubleArrayList data, int k, double c)
. It returns sum of power deviations of a data sequence (see Figure 11-17) as a double
.
This function is optimized for common parameters like c == 0.0
, k == -2 .. 4
, or both.
This function takes the following tuple arguments:
double1
: data value. int1
: k
. double2
: c
. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#sumOfPowerDeviations(cern.colt.list.DoubleArrayList,%20int,%20double)
Examples
Consider the query qColtAggr50
in Example 11-90. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-91, the query returns the relation in Example 11-92.
Example 11-90 sumOfPowerDeviations Function Query
Syntax
Purpose
sumOfPowers
is based on cern.jet.stat.Descriptive.sumOfPowers(DoubleArrayList data, int k)
. It returns the sum of powers of a data sequence (see Figure 11-18) as a double
.
This function takes the following tuple arguments:
double1
: data value. int1
: k
. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#sumOfPowers(cern.colt.list.DoubleArrayList,%20int)
Examples
Consider the query qColtAggr52
in Example 11-93. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-94, the query returns the relation in Example 11-95.
Example 11-93 sumOfPowers Function Query
Syntax
Purpose
sumOfSquaredDeviations
is based on cern.jet.stat.Descriptive.sumOfSquaredDeviations(int size, double variance)
. It returns the sum of squared mean deviation of a data sequence (see Figure 11-19) as a double
.
This function takes the following tuple arguments:
double1
: data value. For more information, see
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#sumOfSquaredDeviations(int,%20double)
Examples
Consider the query qColtAggr53
in Example 11-96. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-97, the query returns the relation in Example 11-98.
Example 11-96 sumOfSquaredDeviations Function Query
Syntax
Purpose
sumOfSquares
is based on cern.jet.stat.Descriptive.sumOfSquares(DoubleArrayList data)
. It returns the sum of squares of a data sequence (see Figure 11-20) as a double
.
This function takes the following tuple arguments:
double1
: data value. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#sumOfSquares(cern.colt.list.DoubleArrayList)
Examples
Consider the query qColtAggr54
in Example 11-99. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-100, the query returns the relation in Example 11-101.
Example 11-99 sumOfSquares Function Query
Syntax
Purpose
trimmedMean
is based on cern.jet.stat.Descriptive.trimmedMean(DoubleArrayList sortedData, double mean, int left, int right)
. It returns the trimmed mean of an ascending sorted data sequence as a double
.
This function takes the following tuple arguments:
double1
: data value. int1
: left
. int2
: right
. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#trimmedMean(cern.colt.list.DoubleArrayList,%20double,%20int,%20int)
Examples
Consider the query qColtAggr55
in Example 11-102. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-103, the query returns the relation in Example 11-104.
Example 11-102 trimmedMean Function Query
Syntax
Purpose
variance
is based on cern.jet.stat.Descriptive.variance(int size, double sum, double sumOfSquares)
. It returns the variance of a data sequence (see Figure 11-21) as a double
.
This function takes the following tuple arguments:
double1
: data value. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#variance(int,%20double,%20double)
Examples
Consider the query qColtAggr57
in Example 11-105. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-106, the query returns the relation in Example 11-107.
Example 11-105 variance Function Query
Syntax
Purpose
weightedMean
is based on cern.jet.stat.Descriptive.weightedMean(DoubleArrayList data, DoubleArrayList weights)
. It returns the weighted mean of a data sequence (see Figure 11-22) as a double
.
This function takes the following tuple arguments:
double1
: data value. double2
: weight value. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#weightedMean(cern.colt.list.DoubleArrayList,%20cern.colt.list.DoubleArrayList)
Examples
Consider the query qColtAggr58
in Example 11-108. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-109, the query returns the relation in Example 11-110.
Example 11-108 weightedMean Function Query
Syntax
Purpose
winsorizedMean
is based on cern.jet.stat.Descriptive.winsorizedMean(DoubleArrayList sortedData, double mean, int left, int right)
. It returns the winsorized mean of a sorted data sequence as a double
.
This function takes the following tuple arguments:
double1
: data value. int1
: left
. int2
: right
. For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#winsorizedMean(cern.colt.list.DoubleArrayList,%20double,%20int,%20int)
Examples
Consider the query qColtAggr60
in Example 11-111. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 11-112, the query returns the relation in Example 11-113.
Example 11-111 winsorizedMean Function Query
This chapter provides a reference to the java.lang.Math
functions provided in Oracle Continuous Query Language (Oracle CQL).
For more information, see Section 1.1.11, "Functions".
Table 12-1 lists the built-in java.lang.Math
functions that Oracle CQL provides.
Table 12-1 Oracle CQL Built-in java.lang.Math Functions
Type | Function |
---|---|
Trigonometric | |
Logarithmic | |
Euler's Number | |
Roots | |
Signum Function | |
Unit of Least Precision | |
Other | |
Note: Built-in function names are case sensitive and you must use them in the case shown (in lower case). |
Note: In stream input examples, lines beginning with |
For more information, see:
Syntax
Purpose
abs
returns the absolute value of the input integer
argument as an integer
.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#abs(int)
.
Examples
Consider the query q66
in Example 12-1. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-2, the query returns the stream in Example 12-3.
Syntax
Purpose
abs1
returns the absolute value of the input long
argument as a long
.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#abs(long)
.
Examples
Consider the query q67
in Example 12-4. Given the data stream SFunc
with schema (c1 integer, c2 float, c3 long)
in Example 12-5, the query returns the stream in Example 12-6.
Syntax
Purpose
abs2
returns the absolute value of the input float
argument as a float
.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#abs(float)
.
Examples
Consider the query q68
in Example 12-7. Given the data stream SFunc
with schema (c1 integer, c2 float, c3 bigint)
in Example 12-8, the query returns the stream in Example 12-9.
Syntax
Purpose
abs3
returns the absolute value of the input double
argument as a double
.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#abs(double)
.
Examples
Consider the query q69
in Example 12-10. Given the data stream SFunc
with schema (c1 integer, c2 float, c3 bigint, c4 double)
in Example 12-11, the query returns the stream in Example 12-12.
Syntax
Purpose
acos
returns the arc cosine of a double
angle, in the range of 0.0
through pi
, as a double
.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#acos(double)
.
Examples
Consider the query q73
in Example 12-13. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-14, the query returns the stream in Example 12-15.
Syntax
Purpose
asin
returns the arc sine of a double
angle, in the range of -pi/2
through pi/2
, as a double
.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#asin(double)
.
Examples
Consider the query q74
in Example 12-16. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-17, the query returns the stream in Example 12-18.
Syntax
Purpose
atan
returns the arc tangent of a double
angle, in the range of -pi/2
through pi/2,
as a double
.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#atan(double)
.
Examples
Consider the query q75
in Example 12-19. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-20, the query returns the stream in Example 12-21.
Syntax
Purpose
atan2
converts rectangular coordinates (x,y
) to polar (r,theta
) coordinates.
This function takes the following arguments:
double1
: the ordinate coordinate. double2
: the abscissa coordinate. This function returns the theta component of the point (r,theta
) in polar coordinates that corresponds to the point (x,y
) in Cartesian coordinates as a double
.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#atan2(double,%20double)
.
Examples
Consider the query q63
in Example 12-22. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-23, the query returns the stream in Example 12-24.
Example 12-22 atan2 Function Query
Syntax
Purpose
cbrt
returns the cube root of the double
argument as a double
.
For positive finite a
, cbrt(-a) == -cbrt(a)
; that is, the cube root of a negative value is the negative of the cube root of that value's magnitude.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#cbrt(double)
.
Examples
Consider the query q76
in Example 12-25. Given the data stream SFunc
with schema (c1 integer, c2 float, c3 bigint)
in Example 12-26, the query returns the stream in Example 12-27.
Syntax
Purpose
ceil1
returns the smallest (closest to negative infinity) double
value that is greater than or equal to the double
argument and equals a mathematical integer.
To avoid possible rounding error, consider using (long) cern.jet.math.Arithmetic.ceil(double)
.
For more information, see:
Examples
Consider the query q77
in Example 12-28. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-29, the query returns the stream in Example 12-30.
Syntax
Purpose
cos
returns the trigonometric cosine of a double
angle as a double
.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#cos(double)
.
Examples
Consider the query q61
in Example 12-31. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-32, the query returns the stream in Example 12-33.
Syntax
Purpose
cosh
returns the hyperbolic cosine of a double
value as a double
.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#cosh(double)
.
Examples
Consider the query q78
in Example 12-34. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-35, the query returns the stream in Example 12-36.
Syntax
Purpose
exp
returns Euler's number e raised to the power of the double
argument as a double
.
Note that for values of x
near 0, the exact sum of expm1(x) + 1
is much closer to the true result of Euler's number e raised to the power of x
than EXP(x)
.
For more information, see:
Examples
Consider the query q79
in Example 12-37. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-38, the query returns the stream in Example 12-39.
Syntax
Purpose
expm1
returns the computation that Figure 12-1 shows as a double
, where x
is the double
argument and e is Euler's number.
Note that for values of x
near 0, the exact sum of expm1(x) + 1
is much closer to the true result of Euler's number e raised to the power of x
than exp(x)
.
For more information, see:
Examples
Consider the query q80
in Example 12-40. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-41, the query returns the stream in Example 12-42.
Syntax
Purpose
floor1
returns the largest (closest to positive infinity) double
value that is less than or equal to the double
argument and equals a mathematical integer.
To avoid possible rounding error, consider using (long) cern.jet.math.Arithmetic.floor(double)
.
For more information, see:
Examples
Consider the query q81
in Example 12-43. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-44, the query returns the stream in Example 12-45.
Example 12-43 floor1 Function Query
Syntax
Purpose
hypot
returns the hypotenuse (see Figure 12-2) of the double
arguments as a double
.
This function takes the following arguments:
double1
: the x
value. double2
: the y
value. The hypotenuse is computed without intermediate overflow or underflow.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#hypot(double,%20double)
.
Examples
Consider the query q82
in Example 12-46. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-47, the query returns the stream in Example 12-48.
Example 12-46 hypot Function Query
Syntax
Purpose
IEEERemainder
computes the remainder operation on two double
arguments as prescribed by the IEEE 754 standard and returns the result as a double
.
This function takes the following arguments:
double1
: the dividend. double2
: the divisor. The remainder value is mathematically equal to f1 - f2 × n
, where n
is the mathematical integer closest to the exact mathematical value of the quotient f1/f2
, and if two mathematical integers are equally close to f1/f2
, then n
is the integer that is even. If the remainder is zero, its sign is the same as the sign of the first argument.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#IEEEremainder(double,%20double)
.
Examples
Consider the query q72
in Example 12-49. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-50, the query returns the stream in Example 12-51.
Example 12-49 IEEERemainder Function Query
Syntax
Purpose
log1
returns the natural logarithm (base e) of a double
value as a double
.
Note that for small values x
, the result of log1p(x)
is much closer to the true result of ln(1 + x)
than the floating-point evaluation of log(1.0+x)
.
For more information, see:
Examples
Consider the query q83
in Example 12-52. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-53, the query returns the stream in Example 12-54.
Syntax
Purpose
log101
returns the base 10 logarithm of a double
value as a double
.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#log10(double)
.
Examples
Consider the query q84
in Example 12-55. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-56, the query returns the stream in Example 12-57.
Example 12-55 log101 Function Query
Syntax
Purpose
log1p
returns the natural logarithm of the sum of the double
argument and 1 as a double
.
Note that for small values x
, the result of log1p(x)
is much closer to the true result of ln(1 + x)
than the floating-point evaluation of log(1.0+x)
.
For more information, see:
Examples
Consider the query q85
in Example 12-58. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-59, the query returns the stream in Example 12-60.
Syntax
Purpose
pow
returns the value of the first double
argument (the base) raised to the power of the second double
argument (the exponent) as a double
.
This function takes the following arguments:
double1
: the base. double2
: the exponent. For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#pow(double,%20double)
.
Examples
Consider the query q65
in Example 12-61. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-62, the query returns the stream in Example 12-63.
Syntax
Purpose
rint
returns the double
value that is closest in value to the double
argument and equals a mathematical integer. If two double
values that are mathematical integers are equally close, the result is the integer value that is even.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#rint(double)
.
Examples
Consider the query q86
in Example 12-64. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-65, the query returns the stream in Example 12-66.
Syntax
Purpose
round
returns the closest integer
to the float
argument.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#round(float)
.
Examples
Consider the query q87
in Example 12-67. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-68, the query returns the stream in Example 12-69.
Syntax
Purpose
round1
returns the closest integer
to the float
argument.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#round(float)
.
Examples
Consider the query q88
in Example 12-70. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-71, the query returns the stream in Example 12-72.
Example 12-70 round1 Function Query
Syntax
Purpose
signum
returns the signum function of the double
argument as a double
:
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#signum(double)
.
Examples
Consider the query q70
in Example 12-73. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-74, the query returns the stream in Example 12-75.
Example 12-73 signum Function Query
Syntax
Purpose
signum1
returns the signum function of the float
argument as a float
:
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#signum(float)
.
Examples
Consider the query q71
in Example 12-76. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-77, the query returns the relation in Example 12-78.
Example 12-76 signum1 Function Query
Syntax
Purpose
sin
returns the trigonometric sine of a double
angle as a double
.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#sin(double)
.
Examples
Consider the query q60
in Example 12-79. Given the data stream SFunc
with schema (c1 integer
, c2 float
, c3 bigint
) in Example 12-80, the query returns the stream in Example 12-81.
Syntax
Purpose
sinh
returns the hyperbolic sine of a double
value as a double
.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#sinh(double)
.
Examples
Consider the query q89
in Example 12-82. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-83, the query returns the stream in Example 12-84.
Syntax
Purpose
sqrt
returns the correctly rounded positive square root of a double
value as a double
.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#sqrt(double)
.
Examples
Consider the query q64
in Example 12-85. Given the data stream SFunc
with schema (c1 integer
, c2 float
, c3 bigint
) in Example 12-86, the query returns the stream in Example 12-87.
Syntax
Purpose
tan
returns the trigonometric tangent of a double
angle as a double
.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#tan(double)
.
Examples
Consider the query q62
in Example 12-88. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-89, the query returns the stream in Example 12-90.
Syntax
Purpose
tanh
returns the hyperbolic tangent of a double
value as a double
.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#tanh(double)
.
Examples
Consider the query q90
in Example 12-91. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-92, the query returns the stream in Example 12-93.
Syntax
Purpose
todegrees
converts a double
angle measured in radians to an approximately equivalent angle measured in degrees as a double
.
The conversion from radians to degrees is generally inexact; do not expect COS(TORADIANS(90.0))
to exactly equal 0.0
.
For more information, see:
Examples
Consider the query q91
in Example 12-94. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-95, the query returns the stream in Example 12-96.
Example 12-94 todegrees Function Query
Syntax
Purpose
toradians
converts a double
angle measured in degrees to an approximately equivalent angle measured in radians as a double
.
For more information, see:
Examples
Consider the query q92
in Example 12-97. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-98, the query returns the stream in Example 12-99.
Example 12-97 toradians Function Query
Syntax
Purpose
ulp
returns the size of an ulp of the double
argument as a double
. In this case, an ulp of the argument value is the positive distance between this floating-point value and the double value next larger in magnitude.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#ulp(double)
.
Examples
Consider the query q93
in Example 12-100. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-101, the query returns the stream in Example 12-102.
Syntax
Purpose
ulp1
returns the size of an ulp of the float
argument as a float
. An ulp of a float value is the positive distance between this floating-point value and the float value next larger in magnitude.
For more information, see http://java.sun.com/javase/6/docs/api/java/lang/Math.html#ulp(float)
.
Examples
Consider the query q94
in Example 12-103. Given the data stream SFunc
with schema (c1 integer, c2 double, c3 bigint)
in Example 12-104, the query returns the relation in Example 12-105.
This chapter describes how you can write user-defined functions for use in Oracle Continuous Query Language (Oracle CQL) to perform more advanced or application-specific operations on stream data than is possible using built-in functions.
For more information, see Section 1.1.11, "Functions".
You can write user-defined functions in Java to provide functionality that is not available in Oracle CQL or Oracle CQL built-in functions. You can create a user-defined function that returns an aggregate value or a single (non-aggregate) value.
For example, you can use user-defined functions in the following:
SELECT
statement WHERE
clause To make your user-defined function available for use in Oracle CQL queries, the JAR file that contains the user-defined function implementation class must be in the Oracle CEP server classpath or the Oracle CEP server classpath must be modified to include the JAR file.
For more information, see:
Using the classes in the oracle.cep.extensibility.functions
package you can create the following types of user-defined functions:
You can create overloaded functions and you can override built-in functions.
A user-defined single-row function is a function that returns a single result row for every row of a queried stream or view (for example, like the concat
built-in function does).
For more information, see "How to Implement a User-Defined Single-Row Function".
A user-defined aggregate is a function that implements com.bea.wlevs.processor.AggregationFunctionFactory
and returns a single aggregate result based on group of tuples, rather than on a single tuple (for example, like the sum
built-in function does).
Consider implementing your aggregate function so that it performs incremental processing, if possible. This will improve scalability and performance because the cost of (re)computation on arrival of new events will be proportional to the number of new events as opposed to the total number of events seen thus far.
For more information, see "How to Implement a User-Defined Aggregate Function".
Table 13-1 lists the datatypes you can specify when you implement and register a user-defined function.
Table 13-1 User-Defined Function Datatypes
Oracle CQL Datatype | Equivalent Java Datatype |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
The Oracle CQL Datatype column lists the datatypes you can specify in the Oracle CQL statement you use to register your user-defined function and the Equivalent Java Datatype column lists the Java datatype equivalents you can use in your user-defined function implementation.
At run time, Oracle CEP maps between the Oracle CQL datatype and the Java datatype. If your user-defined function returns a datatype that is not in this list, Oracle CEP will throw a ClassCastException
.
For more information about data conversion, see Section 2.2.4, "Datatype Conversion".
You can access an Oracle CEP cache from an Oracle CQL statement or user-defined function.
For more information, see:
For more information, see Section 13.1, "Introduction to Oracle CQL User-Defined Functions".
You implement a user-defined single-row function by implementing a Java class that provides a public constructor and a public method that is invoked to execute the function.
To implement a user-defined single-row function:
Ensure that the data type of the return value corresponds to a supported data type as Section 13.1.2, "User-Defined Function Datatypes" describes.
For more information on accessing the Oracle CEP cache from a user-defined function, see Section 13.1.3, "User-Defined Functions and the Oracle CEP Server Cache".
Example 13-2 Single-Row User Defined Function for an Oracle CQL Processor
Specify the method that is invoked to execute the function using the wlevs:function
element exec-method
attribute. This method must be public and must be uniquely identifiable by its name (that is, the method cannot have been overridden).
For more information, see "wlevs:function" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.
SELECT
statement or the condition of a WHERE
clause as Example 13-3 shows. You implement a user-defined aggregate function by implementing a Java class that implements the com.bea.wlevs.processor.AggregationFunctionFactory
interface.
To implement a user-defined aggregate function:
Consider implementing your aggregate function so that it performs incremental processing, if possible. This will improve scalability and performance because the cost of (re)computation on arrival of new events will be proportional to the number of new events as opposed to the total number of events seen thus far. The user-defined aggregate function in Example 13-4 supports incremental processing.
Ensure that the data type of the return value corresponds to a supported data type as Section 13.1.2, "User-Defined Function Datatypes" describes.
For more information on accessing the Oracle CEP cache from a user-defined function, see Section 13.1.3, "User-Defined Functions and the Oracle CEP Server Cache".
Example 13-4 Variance.java User-Defined Aggregate Function
Example 13-5 Aggregate User Defined Function for an Oracle CQL Processor
For more information, see "wlevs:function" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.
SELECT
statement or the condition of a WHERE
clause as Example 13-6 shows. Example 13-6 Accessing a User-Defined Aggregate Function in Oracle CQL
At run-time, when the user-defined aggregate is executed, and a new event becomes active in the window of interest, the aggregations will have to be recomputed (since the set over which the aggregations are defined has a new member). To do so, Oracle CEP passes only the new event (rather than the entire active set) to the appropriate handler context by invoking the appropriate handlePlus*
method in Example 13-4. This state can now be updated to include the new event. Thus, the aggregations have been recomputed in an incremental fashion.
Similarly, when an event expires from the window of interest, the aggregations will have to be recomputed (since the set over which the aggregations are defined has lost a member). To do so, Oracle CEP passes only the expired event (rather than the entire active set) to the appropriate handler context by invoking the appropriate handleMinus
method in Example 13-4. As before, the state in the handler context can be incrementally updated to accommodate expiry of the event in an incremental fashion.
This chapter introduces data cartridges in Oracle Complex Event Processing (Oracle CEP). Data cartridges extend Oracle Continuous Query Language (Oracle CQL) to support domain-specific abstract data types of the following forms: simple types, complex types, array types, and domain-specific functions.
This chapter describes:
The Oracle CQL data cartridge framework allows you to tightly integrate arbitrary domain data types and functions with the Oracle CQL language, allowing the usage of these extensions within Oracle CQL queries in the same way you use Oracle CQL native types and built-in functions.
With regards to data types, the framework supports both simple and complex types, the latter allowing the usage of object-oriented programming.
Using Oracle CQL data cartridges, you can extend the Oracle CQL engine with domain-specific types that augment and interoperate with native Oracle CQL built-in types.
Each data cartridge is identified by a unique data cartridge name that defines a name space for the data cartridge implementation. You use the data cartridge name to disambiguate references to types, methods, fields, and constructors, if necessary (see link::=).
Depending on the data cartridge implementation, you may be able to define an application context that the Oracle CEP server propagates to the functions and types that an instance of the data cartridge provides.
For example, you might be able to configure an Oracle CEP server resource or a default data cartridge option and associate this application context information with a particular data cartridge instance.
For more information, see "Understanding Data Cartridge Application Context" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.
How you access data cartridge types, methods, fields, and constructors using Oracle CQL is the same for all data cartridge implementations.
You may reference a data-cartridge function by using the func_expr
, which may optionally take a link name.
To reference the members of a complex type, Oracle CQL provides the object_expr
production.
For more information, see:
What you access is, of course, unique to each data cartridge implementation. For more information, see:
Note: To simplify Oracle data cartridge type names, you can use aliases as Section 2.7.2, "Defining Aliases Using the Aliases Element" describes. |
This chapter describes how to use the Oracle Java Data Cartridge, an extension of Oracle Continuous Query Language (Oracle CQL) with which you can write CQL code that seamlessly interacts with Java classes in your Oracle CEP application.
This chapter describes the types, methods, fields, and constructors that the Oracle Java data cartridge exposes. You can use these types, methods, fields, and constructors in Oracle CQL queries and views as you would Oracle CQL native types.
This chapter describes:
For more information, see:
The Oracle Java data cartridge is a built-in Java cartridge which allows you to write Oracle CQL queries and views that seamlessly interact with the Java classes in your Oracle CEP application.
This section describes:
The Oracle Java data cartridge uses the cartridge ID com.oracle.cep.cartrdiges.java
.
The Oracle Java data cartridge is the default Oracle CEP data cartridge.
For types under the default Java package name or types under the system package of java.lang
, you may reference the Java type in an Oracle CQL query unqualified by package or data cartridge name:
Note: To simplify Oracle Java data cartridge type names, you can use aliases as Section 2.7.2, "Defining Aliases Using the Aliases Element" describes. |
For more information, see:
The Oracle Java data cartridge supports the following policies for loading the Java classes that your Oracle CQL queries reference:
For more information, see:
This is the default class loading policy.
In this mode, the Oracle Java data cartridge uses the class-space of the application in scope when searching for a Java class.
This is only applicable when a type is specified only by its local name, that is, there is a single identifier, and no other identifiers are being used for its package. That is:
And not:
In this case the procedure is as follows:
ID1
) using the application's class-space as usual; if this fails then: ID1
, independent of the package; if this fails then: Import-Package
MANIFEST
header statement which in conjunction with ID1
can be used to load a Java class. For an example, see Section 15.1.2.4, "Class Loading Example".
This is an optional class loading policy. To use this policy, you must include the following MANIFEST
header entry in your Oracle CEP application:
This mode is similar to the application class space policy except that Oracle CEP will not attempt to automatically import a package when a package is not specified.
For more information, see Section 15.1.2.1, "Application Class Space Policy".
This is an optional class loading policy. To use this policy, you must include the following MANIFEST
header entry in your Oracle CEP application:
An Oracle CQL query can reference any exported Java class, regardless of the application or module that is exporting it.
The query can also access all classes visible to the OSGi framework's parent class-loader, which includes the runtime JDK classes.
This means that an Oracle CQL application may contain an Oracle CQL query that references classes defined by other Oracle CEP applications, as long as they are exported. This behavior facilitates the creation of Java-based cartridges whose sole purpose is to provide new Java libraries.
Note: You may only reference a Java class that is part of the internal class-path of an Oracle CEP application if it is exported, even if a processor within this application defines the Oracle CQL query. |
For an example, see Section 15.1.2.4, "Class Loading Example".
Consider the example that Figure 15-1 shows: application B1
imports package mypackage3
that application B2
exports.
Table 15-1 summarizes which classes these two different applications can access depending on whether they are running in the application class space or server class space.
Table 15-1 Class Accessibility by Class Loading Policy
Class Loading Policy | Application B1 | Application B2 |
---|---|---|
Application Class Space |
|
|
Server Class Space |
|
|
In application B1, you can use any of the Java classes A, B, and C in your Oracle CQL queries:
However, in application B2, you cannot use Java classes A and B in your Oracle CQL queries. You can only use Java classes C and D:
An Oracle CQL expression that accesses a Java method uses the following algorithm to resolve the method:
For example, an Oracle CQL INTEGER
is converted to a Java primitive int
.
Note: Variable arity methods are not supported. For more information, see the Java Language Specification, Third Edition, Section 12.12.2.4. |
As an example, consider the following Oracle CQL expression:
Where attribute
is of type mypackage.MyType
which defines the following overloaded methods:
methodA(int)
methodA(Integer)
methodA(Object)
methodA(long)
As the literal 10 is of the primitive type int
, the order of precedence is:
methodA(int)
methodA(long)
methodA(Integer)
methodA(Object)
For more information, see Section 15.1.2, "Class Loading".
The Oracle Java data cartridge applies a fixed, asymmetrical mapping between Oracle CQL native datatypes and Java datatypes.
Table 15-2 Oracle Java Data Cartridge: Oracle CQL to Java Datatype Mapping
Oracle CQL Native Datatype | Java Datatype |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Footnote 1 primitive Java datatype
Table 15-3 Oracle Java Data Cartridge: Java Datatype to Oracle CQL Mapping
Java Datatype | Oracle CQL Native Datatype |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Footnote 1 primitive Java datatype
All other Java classes are mapped as a complex type.
For more information on these datatype mappings:
For more information on Oracle CQL native datatypes and their implicit and explicit datatype conversion, see Section 2.1, "Datatypes".
Oracle CQL datatype CHAR
is mapped to java.lang.String
and java.lang.String
is mapped to Oracle CQL datatype CHAR
. This means you can access java.lang.String
member fields and methods for an attribute defined as Oracle CQL CHAR
. For example, if a1
is declared as type Oracle CQL CHAR
, then you can write a query like this:
You cannot access member fields and methods on literals, even Oracle CQL CHAR
literals. For example, the following query is not allowed:
Java arrays are converted to Oracle CQL data cartridge arrays, and Oracle CQL data cartridge arrays are converted to Java arrays. This applies to both complex types and simple types.
You can use the data cartridge TABLE
clause to access the multiple rows returned by a data cartridge function in the FROM
clause of an Oracle CQL query.
For more information, see:
Typically, the Oracle Java data cartridge converts an instance that implements the java.util.Collection
interface to an Oracle CQL complex type.
An Oracle CQL query can iterate through the members of the java.util.Collection
.
You can use the data cartridge TABLE
clause to access the multiple rows returned by a data cartridge function in the FROM
clause of an Oracle CQL query.
For more information, see:
This section describes common use-cases that highlight how you can use the Oracle Java data cartridge in your Oracle CEP applications, including:
For more information, see:
This procedure describes how to use the Oracle Java data cartridge in an Oracle CEP application that uses one event type defined as a tuple (Student
) that has an event property type defined as a Java class (Address.java
).
To query with Java classes:
Address.java
class as Example 15-1 shows. Example 15-1 Address.java Class
In this example, assume that the Address.java
class belongs to this application.
If the Address.java
class belonged to another Oracle CEP application, it must be exported in its parent application. For more information, see Section 15.2.2, "How to Query Using Exported Java Classes".
Example 15-2 Event Type Repository
Because the test.Address
class belongs to this application, it can be declared in the event type repository. This automatically makes the class globally accessible within this application; its package does not need to be exported.
Student
events to channel StudentStream
as Example 15-3 shows StudentStream
is connected to a processor with the Oracle CQL query q1
that Example 15-4 shows. Example 15-4 Oracle CQL Query
The Oracle Java data cartridge allows you to access the address
event property from within the Oracle CQL query using normal Java API.
This procedure describes how to use the Oracle Java data cartridge in an Oracle CEP application that uses one event type defined as a tuple (Student
) that has an event property type defined as a Java class (Address.java
). In this procedure, the Address.java class belongs to a separate Oracle CEP application. It is exported in its parent application to make it accessible to other Oracle CEP applications deployed to the same Oracle CEP server.
To query with Java classes:
Address.java
class as Example 15-1 shows. test
package that contains the Address.java
class. For more information, see "How to Export a Package" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.
The test
package may be part of this Oracle CEP application or it may be part of some other Oracle CEP application deployed to the same Oracle CEP server as this application.
Student
events to channel StudentStream
as Example 15-3 shows StudentStream
is connected to a processor with the Oracle CQL query q1
that Example 15-4 shows. Example 15-8 Oracle CQL Query
The Oracle Java data cartridge allows you to access the address
event property from within the Oracle CQL query using normal Java API.
This chapter provides a reference and guide to using the Oracle Spatial cartridge, which extends Oracle Continuous Query Language (Oracle CQL) to provide advanced spatial features for location-enabled applications.
You can use Oracle Spatial types, methods, fields, and constructors in Oracle CQL queries and views as you would Oracle CQL native types when building Oracle CEP applications.
This chapter describes:
For more information, see:
Oracle Spatial is an option for Oracle Database that provides advanced spatial features to support high-end geographic information systems (GIS) and location-enabled business intelligence solutions (LBS).
Oracle Spatial is an optional data cartridge which allows you to write Oracle CQL queries and views that seamlessly interact with Oracle Spatial classes in your Oracle CEP application.
Using Oracle Spatial, you can configure Oracle CQL queries that perform the most important geographic domain operations such as storing spatial data, performing proximity and overlap comparisons on spatial data, and integrating spatial data with the Oracle CEP server by providing the ability to index on spatial data.
To use Oracle Spatial, you require a working knowledge of the Oracle Spatial API. For more information about Oracle Spatial, see:
http://www.oracle.com/technology/products/spatial/index.html
http://www.oracle.com/pls/db112/portal.portal_db?selected=7&frame=#oracle_spatial_and_location_information
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11829/toc.htm
This section describes:
Oracle Spatial uses the cartridge ID com.oracle.cep.cartrdiges.spatial
and registers the server-scoped reserved link name spatial
.
Use the spatial
link name to associate an Oracle Spatial method call with the Oracle Spatial application context.
For more information, see:
Oracle Spatial is based on the Oracle Spatial Java API. Oracle Spatial exposes Oracle Spatial functionality in the com.oracle.cep.cartridge.spatial.Geometry
class. Oracle Spatial functionality that is not in the Oracle Spatial Java API is not accessible from Oracle Spatial.
Using Oracle Spatial, your Oracle CQL queries may access the Oracle Spatial functionality that Table 16-1 describes.
Table 16-1 Oracle Spatial Scope
Oracle Spatial Feature | Scope |
---|---|
Geometry Types | The following geometry types from the Oracle Spatial Java API:
The following geometry operations:
For more information, see: |
Coordinate Systems |
For more information, see Section 16.1.2.3, "Ordinates and Coordinate Systems and the SDO_SRID". |
Geometric Index |
For more information, see Section 16.1.2.4, "Geometric Index". |
Geometric Relation Operators | For more information, see Section 16.1.2.5, "Geometric Relation Operators". |
Geometric Filter Operators | For more information, see Section 16.1.2.6, "Geometric Filter Operators". |
Geometry API | For a complete list of the methods that |
For more information on how to access these Oracle Spatial features using Oracle Spatial, see Section 16.2, "Using Oracle Spatial".
The Oracle Spatial data model consists of geometries. A geometry is an ordered sequence of vertices. The semantics of the geometry are determined by its type.
Oracle Spatial allows you to access the following Oracle Spatial types directly in Oracle CQL queries and views:
SDO_GTYPES
: Oracle Spatial supports the following geometry types: Table 16-2 describes the geometry types from the com.oracle.cep.cartridge.spatial.Geometry
class that you can use.
SDO_ELEMENT_INFO
: You can create the Element Info array using: com.oracle.cep.cartridge.spatial.Geometry.createElemInfo
static method einfogenerator
function For more information, see Section 16.1.2.2, "Element Info Array".
ORDINATES
: You can create the ordinates using the Oracle Spatial ordsgenerator
function. For more information, see Section 16.1.2.3, "Ordinates and Coordinate Systems and the SDO_SRID".
For more information, see:
The Element Info attribute is defined using a varying length array of numbers. This attribute specifies how to interpret the ordinates stored in the Ordinates attribute.
Oracle Spatial provides the following helper function for generating Element Info attribute values:
You can also use the einfogenerator
function.
For more information, see:
Table 16-3 lists the coordinate systems that Oracle Spatial supports by default and the SDO_SRID
value that identifies each coordinate system.
Table 16-3 Oracle Spatial Coordinate Systems
Coordinate System | SDO_SRID | Description |
---|---|---|
Cartesian | 0 | Cartesian coordinates are coordinates that measure the position of a point from a defined origin along axes that are perpendicular in the represented space. |
Geodetic (WGS84) | 8307 | Geodetic coordinates (sometimes called geographic coordinates) are angular coordinates (longitude and latitude), closely related to spherical polar coordinates, and are defined relative to a particular Earth geodetic datum. This is the default coordinate system in Oracle Spatial. |
You can specify the SDO_SRID
value as an argument to each Oracle Spatial method and constructor you call or you can configure the SDO_SRID
in the Oracle Spatial application context once and use com.oracle.cep.cartridge.spatial.Geometry
methods without having to set the SDO_SRID
as an argument each time. Using the application context, you can also specify any coordinate system that Oracle Spatial supports.
Note: If you use a com.oracle.cep.cartridge.spatial.Geometry.createPoint(lng, lat) Instead, you must use the com.oracle.cep.cartridge.spatial.Geometry.createPoint@spatial(lng, lat) If you use a com.oracle.cep.cartridge.spatial.Geometry.createPoint(8307, lng, lat) com.oracle.cep.cartridge.spatial.Geometry.createPoint@spatial(lng, lat) For more information, see Section 16.1.4, "Oracle Spatial Application Context". |
Ordinates define the array of coordinates for a geometry using a double array. Oracle Spatial provides the ordsgenerator
helper function for generating the array of coordinates. For syntax, see "ordsgenerator".
For more information, see:
Oracle Spatial uses a spatial index to implement the primary filter. The purpose of the spatial index is to quickly create a subset of the data and reduce the processing burden on the secondary filter.
A spatial index, like any other index, provides a mechanism to limit searches, but in this case the mechanism is based on spatial criteria such as intersection and containment.
Oracle Spatial uses R-Tree indexing for the default indexing mechanism. A spatial R-tree index can index spatial data of up to four dimensions. An R-tree index approximates each geometry by a single rectangle that minimally encloses the geometry (called the Minimum Bounding Rectangle, or MBR)
For more information, see:
Oracle Spatial supports the following Oracle Spatial geometric relation operators:
You can use any of these operators in either the Oracle CQL query projection clause or where clause.
When you use a geometric relation operator in the where clause of an Oracle CQL query, Oracle Spatial enables Rtree indexing on the relation specified in the where clause.
Oracle Spatial supports only geometric relations between point and other geometry types.
For more information, see Section 16.2.4, "How to Use Geometry Relation Operators".
Oracle Spatial supports the following Oracle Spatial geometric filter operators:
These filter operators perform primary filtering and so they may only appear in an Oracle CQL query where clause.
These filter operators use the spatial index to identify the set of spatial objects that are likely to interact spatially with the given object.
For more information, see:
Oracle Spatial is based on the Oracle Spatial Java API. Oracle Spatial exposes Oracle Spatial functionality in the com.oracle.cep.cartridge.spatial.Geometry
class. This Geometry
class also extends oracle.spatial.geometry.J3D_Geometry
.
Although Oracle Spatial supports only 2D geometries, for efficiency, the Geometry
class uses some J3D_Geometry
methods. The Geometry
class automatically zero-pads the Z coordinates for J3D_Geometry
methods.
Oracle Spatial functionality inaccessible from the Geometry
class (or not conforming to the scope and geometry types that Oracle Spatial supports) is inaccessible from Oracle Spatial.
This section describes:
For more information, see:
Note: To simplify Oracle Spatial type names, you can use aliases as Section 2.7.2, "Defining Aliases Using the Aliases Element" describes. |
Table 16-4 lists the public methods that the Geometry
class provides.
Table 16-4 Oracle Spatial Geometry Methods
Type | Method |
---|---|
Buffers | |
Distance | |
Element information | |
Geometries | |
Linear polygons | |
Minimum Bounding Rectangle (MBR) | |
Points | |
Rectangles | |
Type and type conversion | |
Note:
|
Note: If you use a com.oracle.cep.cartridge.spatial.Geometry.createPoint(lng, lat) Instead, you must use the com.oracle.cep.cartridge.spatial.Geometry.createPoint@spatial(lng, lat) If you use a com.oracle.cep.cartridge.spatial.Geometry.createPoint(8307, lng, lat) com.oracle.cep.cartridge.spatial.Geometry.createPoint@spatial(lng, lat) For more information, see Section 16.1.4, "Oracle Spatial Application Context". |
The following JGeometry
public methods are applicable to Oracle Spatial:
double area(double tolerance)
: returns the total planar surface area of a 2D geometry. double length(double tolerance)
: returns the perimeter of a 2D geometry. All edge lengths are added. double[] getMBR()
: returns the Minimum Bounding Rectangle (MBR) of this geometry. It returns a double array containing the minX
, minY
, maxX
, and maxY
value of the MBR for 2D. For more information, see:
The Oracle Spatial cartridge supports one data type: com.oracle.cep.cartridge.spatial.Geometry
.
For a complete list of the methods that com.oracle.cep.cartridge.spatial.Geometry
provides, see Section 16.1.2.7, "Geometry API".
You can define an application context for an instance of Oracle Spatial and propagate this application context at runtime. This allows you to associate specific Oracle Spatial application defaults (such as an SDO_SRID
) with a particular Oracle Spatial instance.
Before you can define an Oracle Spatial application context, edit your Oracle CEP application EPN assembly file to add the required namespace and schema location entries as Example 16-1 shows:
Example 16-1 EPN Assembly File: Oracle Spatial Namespace and Schema Location
Example 16-2 shows how to create a spatial context named SpatialGRS80
in an EPN assembly file using the Geodetic Reference System 1980 (GRS80) coordinate system.
Example 16-2 spatial:context Element in EPN Assembly File
Example 16-3 shows how to reference a spatial:context
in an Oracle CQL query. In this case, the query uses link name SpatialGRS80
(defined in Example 16-2) to propagate this application context to Oracle Spatial. The spatial:context
attribute settings of SpatialGRS80
are applied to the createPoint
method call.
Example 16-3 Referencing spatial:context in an Oracle CQL Query
For more information (including a complete list of all spatial:context
attributes), see "How to Configure Oracle Spatial Application Context" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.
Note: If you use a com.oracle.cep.cartridge.spatial.Geometry.createPoint(lng, lat) Instead, you must use the com.oracle.cep.cartridge.spatial.Geometry.createPoint@spatial(lng, lat) If you use a com.oracle.cep.cartridge.spatial.Geometry.createPoint(8307, lng, lat) com.oracle.cep.cartridge.spatial.Geometry.createPoint@spatial(lng, lat) For more information, see Section 16.1.2.7, "Geometry API". |
This section describes common use-cases that highlight how you can use Oracle Spatial in your Oracle CEP applications, including:
For more information, see Section 16.1.2.7, "Geometry API".
This procedure describes how to access Oracle Spatial geometry types SDO_GTYPE
, SDO_ELEMENT_INFO
, and ORDINATES
using Oracle Spatial in an Oracle CQL query.
To access the geometry types that the Oracle Spatial Java API supports:
com.oracle.cep.cartridge.spatial
into your Oracle CEP application's MANIFEST.MF
file. For more information, see "How to Import a Package" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.
Example 16-4 shows how to define event type MySpatialEvent
with two event properties x
and y
of type com.oracle.cep.cartridge.spatial.Geometry
.
Example 16-4 Oracle CEP Event Using Oracle Spatial Types
You can use these event properties in an Oracle CQL query like this:
For more information, see "Overview of Oracle CEP Events" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.
SDO_GTYPE
, for example, GTYPE_POLYGON
. For more information, see Section 16.1.2.1, "Geometry Types".
For more information, see Section 16.1.2.2, "Element Info Array"
For more information, see Section 16.1.2.3, "Ordinates and Coordinate Systems and the SDO_SRID".
Example 16-5 Oracle CQL Query Using Oracle Spatial Geometry Types
You can use Oracle Spatial to create a geometry in an Oracle CQL query by invoking:
com.oracle.cartridge.spatial.Geometry
oracle.spatial.geometry.JGeometry
that conform to the scope and geometry types that Oracle Spatial supports. For more information, see Section 16.1.2.7, "Geometry API".
Using a Static Method in the Oracle Spatial Geometry Class
Example 16-6 shows how to create a point geometry using a static method in com.oracle.cartridge.spatial.Geometry
. In this case, you must use a link (@spatial
) to identify the data cartridge that provides this class. The advantage of using this approach is that the Oracle Spatial application context is applied to set the SRID and other Oracle Spatial options, either by default or based on an application context you configure (see Section 16.1.4, "Oracle Spatial Application Context").
Example 16-6 Creating a Point Geometry Using a Geometry Static Method
For more information, see Section 16.1.2.1, "Geometry Types".
Using Oracle Spatial, you can access the public member functions and public member fields of Oracle Spatial classes directly in Oracle CQL.
Oracle Spatial functionality inaccessible from the Geometry
class (or not conforming to the scope and geometry types that Oracle Spatial supports) is inaccessible from Oracle Spatial.
In Example 16-7, the view ShopGeom
creates an Oracle Spatial geometry called geom
. The view shopMBR
calls JGeometry
static method getMBR
which returns a double[]
as stream element mbr
. The query qshopMBR
accesses this double[]
using regular Java API.
Example 16-7 Accessing Geometry Type Public Methods and Fields
For more information, see:
Using Oracle Spatial, you can access the following Oracle Spatial geometry relation operators in either the WHERE
or SELECT
clause of an Oracle CQL query:
In Example 16-8, the view op_in_where
uses the CONTAIN
geometry relation operator in the WHERE
clause: in this case, Oracle Spatial uses R-Tree indexing. The view op_in_proj
uses CONTAIN
in the SELECT
clause.
Example 16-8 Using Geometry Relation Operators
For more information, see Section 16.1.2.5, "Geometric Relation Operators".
Using Oracle Spatial, you can access the following Oracle Spatial geometry filter operators in the WHERE
clause of an Oracle CQL query:
In Example 16-9, the view filter
uses the FILTER
geometry filter operator in the WHERE
clause.
Example 16-9 Using Geometry Filter Operators
For more information, see Section 16.1.2.6, "Geometric Filter Operators".
When you create an Oracle CQL query using the default Oracle Spatial application context, the default SRID
will be set to CARTESIAN
.
As Example 16-10 shows, the createPoint
method call uses the default link (@spatial
). This guarantees that the default Oracle Spatial application context is applied.
Example 16-10 Using the Default Geodetic Coordinates in an Oracle CQL Query
For more information, see:
This procedure describes how to use the Oracle Spatial application context to specify a geodetic coordinate system other than the default Cartesian geodetic coordinate system in an Oracle CQL query:
For more information, see:
To use other geodetic coordinates:
srid
attribute for the geodetic coordinate system you want to use. Example 16-11 shows how to create a spatial context named SpatialGRS80
in an EPN assembly file using the Geodetic Reference System 1980 (GRS80) coordinate system.
spatial:context
in your links. Example 16-12 shows how to reference a spatial:context
in an Oracle CQL query. In this case, the query uses link name SpatialGRS80
(defined in Example 16-11) to propagate this application context to Oracle Spatial. The spatial:context
attribute settings of SpatialGRS80
are applied to the createPoint
method call.
Syntax
Note: This is an Oracle Spatial geometric relation operator and not a method of the ANYINTERACT@spatial |
Purpose
This operator returns true
if the GTYPE_POINT
interacts with the geometry, and false
otherwise.
This operator takes the following arguments:
geom
: any supported geometry type. key
: a GTYPE_POINT
geometry type. The geometry type of this geometry must be GTYPE_POINT
or a RUNTIME_EXCEPTION
will be thrown.
tol
: the tolerance as a double
value. For more information, see "SDO_ANYINTERACT" in the Oracle Spatial Developer's Guide.
Examples
Example 16-27 shows how to use the ANYINTERACT
Oracle Spatial geometric relation operator in an Oracle CQL query.
Example 16-13 Oracle CQL Query Using Geometric Relation Operator ANYINTERACT
Syntax
Purpose
This com.oracle.cep.cartridge.spatial.Geometry
method returns a new com.oracle.cep.cartridge.spatial.Geometry
object which is the buffered version of the input oracle.spatial.geometry.JGeometry
polygon.
This method takes the following arguments:
polygon
: an oracle.spatial.geometry.JGeometry
polygon. distance
: the distance value used for this buffer as a double
. This value is assumed to be in the same unit as the Unit of Projection for projected geometry. If the geometry is geodetic, this buffer width should be in meters.
This method obtains parameters from the Oracle Spatial application context. Consequently, you must use the spatial
link name to associate the method call with the Oracle Spatial application context:
For more information, see Section 16.1.4, "Oracle Spatial Application Context".
Examples
Example 16-14 shows how to use the bufferPolygon
method. Because this bufferPolygon
call depends on the Oracle Spatial application context, it uses the spatial
link name.
Syntax
Note: This is an Oracle Spatial geometric relation operator and not a method of the CONTAIN@spatial |
Purpose
This operator returns true
if the GTYPE_POINT
is contained by the geometry, and false
otherwise.
This operator takes the following arguments:
geom
: any supported geometry type. key
: a GTYPE_POINT
geometry type. The geometry type of this geometry must be GTYPE_POINT
or a RUNTIME_EXCEPTION
will be thrown.
tol
: the tolerance as a double
value. For more information, see "SDO_CONTAINS" in the Oracle Spatial Developer's Guide.
Examples
Example 16-27 shows how to use the CONTAIN
Oracle Spatial geometric relation operator in an Oracle CQL query.
Example 16-15 Oracle CQL Query Using Geometric Relation Operator CONTAIN
Syntax
Note: Alternatively, you can use the function |
Purpose
This com.oracle.cep.cartridge.spatial.Geometry
method returns a single element info value as an int[]
from the given arguments.
This method takes the following arguments:
soffset
: the offset, as an int
, within the ordinates array where the first ordinate for this element is stored. SDO_STARTING_OFFSET
values start at 1 and not at 0. Thus, the first ordinate for the first element will be at SDO_GEOMETRY.Ordinates(1)
. If there is a second element, its first ordinate will be at SDO_GEOMETRY.Ordinates(
n
* 3 + 2)
, where n
reflects the position within the SDO_ORDINATE_ARRAY
definition.
etype
: the type of the element as an int
. Oracle Spatial supports SDO_ETYPE
values 1, 1003, and 2003 are considered simple elements (not compound types). They are defined by a single triplet entry in the element info array. These types are:
These types are further qualified by the SDO_INTERPRETATION
.
Note: You cannot mix 1-digit and 4-digit |
interp
: the interpretation as an int
. For an SDO_ETYPE that is a simple element (1, 1003, or 2003) the SDO_INTERPRETATION
attribute determines how the sequence of ordinates for this element is interpreted. For example, a polygon boundary may be made up of a sequence of connected straight line segments.
If a geometry consists of more than one element, then the last ordinate for an element is always one less than the starting offset for the next element. The last element in the geometry is described by the ordinates from its starting offset to the end of the ordinates varying length array.
Table 16-5 describes the relationship between SDO_ETYPE
and SDO_INTERPREATION
.
Table 16-5 SDO_ETYPE and SDO_INTERPRETATION
SDO_ETYPE | SDO_INTERPRETATION | Description |
---|---|---|
0 | Any numeric value | Used to model geometry types not supported by Oracle Spatial. |
1 | 1 | Point type. |
1 | 0 | Orientation for an oriented point. |
1003 or 2003 | 1 | Simple polygon whose vertices are connected by straight line segments. You must specify a point for each vertex; and the last point specified must be exactly the same point as the first (within the tolerance value), to close the polygon. For example, for a 4-sided polygon, specify 5 points, with point 5 the same as point 1. |
Examples
Example 16-16 shows how to use the createElemInfo
method.
Example 16-16 Oracle CQL Query Using Geometry.createElemInfo
Syntax
Purpose
This com.oracle.cep.cartridge.spatial.Geometry
method returns a new 2D oracle.cep.cartridge.spatial.Geometry
object.
This method takes the following arguments:
gtype
: the geometry type as an int
. For more information, see Table 16-2.
eleminfo
: the geometry element info as an int[]
. For more information, see "createElemInfo".
ordinates
: the geometry ordinates as a double[]
. srid
: the optional SDO_SRID
of the geometry as an int
. If you omit the srid
parameter, then this method obtains parameters from the Oracle Spatial application context. Consequently, you must use the spatial
link name to associate the method call with the Oracle Spatial application context:
For more information, see Section 16.1.4, "Oracle Spatial Application Context".
Examples
Example 16-17 shows how to use the createGeometry
method. Because this createGeometry
call does not include the srid
argument, it uses the spatial
link name to associate the method call with the Oracle Spatial application context.
Example 16-17 Oracle CQL Query Using Geometry.createGeometry
Syntax
Purpose
This com.oracle.cep.cartridge.spatial.Geometry
method returns a new com.oracle.cep.cartridge.spatial.Geometry
object which is a 2D simple linear polygon without holes. If the coordinate array does not close itself (the last coordinate is not the same as the first) then this method copies the first coordinate and appends this coordinate value to the end of the input coordinates array.
To create a simple linear polygon without holes, use the following arguments:
coords
: the coordinates of the linear polygon as a double[]
. srid
: the optional SRID
of the geometry as an int
. If you omit the srid
parameter, then this method obtains parameters from the Oracle Spatial application context. Consequently, you must use the spatial
link name to associate the method call with the Oracle Spatial application context:
For more information, see Section 16.1.4, "Oracle Spatial Application Context".
Examples
Example 16-18 shows how to use the createLinearPolygon
method. Because this createLinearPolygon
method call does not include the srid
argument, it must use the spatial
link name to associate the method call with the Oracle Spatial application context.
Syntax
Purpose
This com.oracle.cep.cartridge.spatial.Geometry
method returns a new com.oracle.cep.cartridge.spatial.Geometry
object which is a 3D point.
This method takes the following arguments:
x
: the x coordinate of the lower left as a double
. y
: the y coordinate of the lower left as a double
. srid
: the optional SRID
of the geometry as an int
. If you omit the srid
parameter, then this method obtains parameters from the Oracle Spatial application context. Consequently, you must use the spatial
link name to associate the method call with the Oracle Spatial application context:
For more information, see Section 16.1.4, "Oracle Spatial Application Context".
Examples
Example 16-19 shows how to use the createPoint
method. Because this createPoint
call includes the srid
argument, it does not need to use the spatial
link name.
Syntax
Purpose
This com.oracle.cep.cartridge.spatial.Geometry
method returns a new com.oracle.cep.cartridge.spatial.Geometry
object which is a 2D rectangle.
This method takes the following arguments:
x1
: the x coordinate of the lower left as a double
. y1
: the y coordinate of the lower left as a double
. x2
: the x coordinate of the upper right as a double
. y2
: the y coordinate of the upper right as a double
. srid
: the optional SRID
of the geometry as an int
. If you omit the srid
parameter, then this method obtains parameters from the Oracle Spatial application context. Consequently, you must use the spatial
link name to associate the method call with the Oracle Spatial application context:
For more information, see Section 16.1.4, "Oracle Spatial Application Context".
Examples
Example 16-20 shows how to use the createRectangle
method. Because this createRectangle
method call does not include the srid
argument, it must use the spatial
link name to associate the method call with the Oracle Spatial application context.
Syntax
Purpose
This com.oracle.cep.cartridge.spatial.Geometry
method calculates the distance between two geometries as a double
.
To calculate the distance between a given com.oracle.cep.cartridge.spatial.Geometry
object and another, use the non-static distance
method of the current Geometry
object with the following arguments:
g
: the other com.oracle.cep.cartridge.spatial.Geometry
object. To calculate the distance between two com.oracle.cep.cartridge.spatial.Geometry
objects, use the static distance
method with the following arguments:
g1
: the first com.oracle.cep.cartridge.spatial.Geometry
object. g2
: the second com.oracle.cep.cartridge.spatial.Geometry
object. In both cases, this method obtains parameters from the Oracle Spatial application context. Consequently, you must use the spatial
link name to associate the method call with the Oracle Spatial application context:
For more information, see Section 16.1.4, "Oracle Spatial Application Context".
Examples
Example 16-21 shows how to use the distance
method. Because the distance
method depends on the Oracle Spatial application context, it must use the spatial
link name.
Example 16-21 Oracle CQL Query Using Geometry.distance
Syntax
Note: This is an Oracle CQL function and not a method of the einfogenerator@spatial Alternatively, you can use the |
Purpose
This function returns a single element info value as an int[]
from the given arguments.
This function takes the following arguments:
offset
: the offset, as an int
, within the ordinates array where the first ordinate for this element is stored. SDO_STARTING_OFFSET
values start at 1 and not at 0. Thus, the first ordinate for the first element will be at SDO_GEOMETRY.Ordinates(1)
. If there is a second element, its first ordinate will be at SDO_GEOMETRY.Ordinates(
n
* 3 + 2)
, where n
reflects the position within the SDO_ORDINATE_ARRAY
definition.
etype
: the type of the element as an int
. Oracle Spatial supports SDO_ETYPE
values 1, 1003, and 2003 are considered simple elements (not compound types). They are defined by a single triplet entry in the element info array. These types are:
These types are further qualified by the SDO_INTERPRETATION
.
Note: You cannot mix 1-digit and 4-digit |
interp
: the interpretation as an int
. For an SDO_ETYPE
that is a simple element (1, 1003, or 2003) the SDO_INTERPRETATION
attribute determines how the sequence of ordinates for this element is interpreted. For example, a polygon boundary may be made up of a sequence of connected straight line segments.
If a geometry consists of more than one element, then the last ordinate for an element is always one less than the starting offset for the next element. The last element in the geometry is described by the ordinates from its starting offset to the end of the ordinates varying length array.
Table 16-6 describes the relationship between SDO_ETYPE
and SDO_INTERPREATION
.
Table 16-6 SDO_ETYPE and SDO_INTERPRETATION
SDO_ETYPE | SDO_INTERPRETATION | Description |
---|---|---|
0 | Any numeric value | Used to model geometry types not supported by Oracle Spatial. |
1 | 1 | Point type. |
1 | 0 | Orientation for an oriented point. |
1003 or 2003 | 1 | Simple polygon whose vertices are connected by straight line segments. You must specify a point for each vertex; and the last point specified must be exactly the same point as the first (within the tolerance value), to close the polygon. For example, for a 4-sided polygon, specify 5 points, with point 5 the same as point 1. |
Examples
Example 16-22 shows how to use the oeinfogenerator
function to create the element information for a geometry.
Example 16-22 Oracle CQL Query Using Oracle Spatial Geometry Types
Syntax
Note: This is an Oracle Spatial geometric filter operator and not a method of the FILTER@spatial |
Purpose
This operator returns true
for object pairs that are non-disjoint, and false
otherwise.
This operator takes the following arguments:
key
: a GTYPE_POINT
geometry type. The geometry type of this geometry must be GTYPE_POINT
or a RUNTIME_EXCEPTION
will be thrown.
tol
: the tolerance as a double
value. For more information, see "SDO_FILTER" in the Oracle Spatial Developer's Guide.
Examples
Example 16-27 shows how to use the FILTER
Oracle Spatial geometric filter operator in an Oracle CQL query.
Syntax
Purpose
This com.oracle.cep.cartridge.spatial.Geometry
method returns the Minimum Bounding Rectangle (MBR) of a given Geometry
as a double[][]
that contains the following values:
[0][0]
: minX
[0][1]
: maxX
[1][0]
: minY
[1][1]
: maxY
This method takes the following arguments:
geom
: the com.oracle.cep.cartridge.spatial.Geometry
object. Examples
Example 16-24 shows how to use the get2dMbr
method.
Syntax
Note: This is an Oracle Spatial geometric relation operator and not a method of the INSIDE@spatial |
Purpose
This operator returns true
if the GTYPE_POINT
is inside the geometry, and false
otherwise.
This operator takes the following arguments:
geom
: any supported geometry type. key
: a GTYPE_POINT
geometry type. The geometry type of this geometry must be GTYPE_POINT
or a RUNTIME_EXCEPTION
will be thrown.
tol
: the tolerance as a double
value. For more information, see "SDO_INSIDE" in the Oracle Spatial Developer's Guide.
Examples
Example 16-27 shows how to use the INSIDE
Oracle Spatial geometric relation operator in an Oracle CQL query.
Example 16-25 Oracle CQL Query Using Geometric Relation Operator INSIDE
Syntax
Note: This is an Oracle Spatial geometric filter operator and not a method of the NN@spatial |
Purpose
This operator returns the objects (nearest neighbors) from geom
that are nearest to key
. In determining how near two geometry objects are, the shortest possible distance between any two points on the surface of each object is used.
This function takes the following arguments:
geom
: any supported geometry type. key
: a GTYPE_POINT
geometry type. The geometry type of this geometry must be GTYPE_POINT
or a RUNTIME_EXCEPTION
will be thrown.
tol
: the tolerance as a double
value. For more information, see "SDO_NN" in the Oracle Spatial Developer's Guide.
Examples
Example 16-27 shows how to use the NN
Oracle Spatial geometric filter operator in an Oracle CQL query.
Syntax
Note: This is an Oracle CQL function and not a method of the ordsgenerator@spatial |
Purpose
This function returns the double
array of 2D coordinates that Oracle Spatial requires.
This function takes the following arguments:
x1, y1, ... xN, yN
: a comma-separated list of double
coordinate values. Examples
Example 16-27 shows how to use the ordsgenerator
function to create an Oracle Spatial double array out of six double
coordinate values.
Example 16-27 Oracle CQL Query Using Oracle Spatial Geometry Types
Syntax
Purpose
This com.oracle.cep.cartridge.spatial.Geometry
method converts an oracle.spatial.geometry.JGeometry
type to a 3D com.oracle.cep.cartridge.spatial.Geometry
type. If the given geometry is already a Geometry
type and a 3D geometry, then no conversion is done. If the given geometry is a 2D geometry, then the given geometry is converted to 3D by padding z coordinates.
This method takes the following arguments:
geom
: the oracle.spatial.geometry.JGeometry
object to convert. Examples
Example 16-28 shows how to use the to_Geometry
method.
Syntax
Purpose
This com.oracle.cep.cartridge.spatial.Geometry
method converts a com.oracle.cep.cartridge.spatial.Geometry
object to an oracle.spatial.geometry.JGeometry
2D type.
This method takes the following arguments:
g
: the com.oracle.cep.cartridge.spatial.Geometry
object to convert. Examples
Example 16-29 shows how to use the to_JGeometry
method.
Syntax
Note: This is an Oracle Spatial geometric relation operator and not a method of the WITHINDISTANCE@spatial |
Purpose
This operator returns true
if the GTYPE_POINT
is within the given distance of the geometry, and false
otherwise.
This operator takes the following arguments:
geom
: any supported geometry type. key
: a GTYPE_POINT
geometry type. The geometry type of this geometry must be GTYPE_POINT
or a RUNTIME_EXCEPTION
will be thrown.
dist
: the distance as a double
value. For more information, see "SDO_WITHIN_DISTANCE" in the Oracle Spatial Developer's Guide.
Examples
Example 16-27 shows how to use the WITHINDISTANCE
Oracle Spatial geometric relation operator in an Oracle CQL query.
Example 16-30 Oracle CQL Query Using Geometric Relation Operator WITHINDISTANCE
This chapter describes the Oracle CEP JDBC data cartridge, an Oracle Continuous Query Language (Oracle CQL) extension through which you execute a SQL query against a database and use its returned results in a CQL query.
When using functionality provided by the cartridge, you are associating a SQL query with a JDBC cartridge function definition. Then, from a CQL query, you can call the JDBC cartridge function, which executes the associated SQL query against the database. The function call must be enclosed in the TABLE clause, which lets you use the SQL query results as a CQL relation in the CQL query making that function call.
For information the TABLE clause, see Section 17.2.2.2, "Using the TABLE Clause."
This chapter describes:
For more information, see:
Oracle CEP streams contain streaming data, and a database typically stores historical data. Use the Oracle CEP JDBC data cartridge to associate historical data (stored in one or more tables) with the streaming data coming from Oracle CEP streams. The Oracle CEP JDBC data cartridge executes arbitrary SQL query against a database and uses the results in the CQL query. This section describes how to associate streaming and historical data using the Oracle CEP JDBC data cartridge.
This section describes:
The Oracle CEP JDBC data cartridge uses the cartridge ID com.oracle.cep.cartrdige.jdbc
. This ID is reserved and cannot be used by any other cartridges.
For more information, see Section 17.1.4, "Oracle CEP JDBC Data Cartridge Application Context".
The Oracle CEP JDBC data cartridge supports arbitrarily complex SQL statements with the following restrictions:
SELECT
list of the SQL query. SELECT
list. SELECT
list column in the SQL query. For more information, see Section 17.1.3, "Datatype Mapping".
Note: To use the Oracle CEP JDBC data cartridge, your data source must use Oracle JDBC driver version 11.2 or higher. For more information, see "Configuring Access to a Different Database Driver or Driver Version" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing |
This section describes Oracle CEP JDBC data cartridge datatype mapping.
For reference, consider the Oracle CEP JDBC data cartridge context function that Example 17-1 shows.
Example 17-1 Oracle CEP JDBC Data Cartridge SQL Statement
For more information, see Section 17.1.2, "Scope".
To use the Oracle CEP JDBC data cartridge, you must declare and configure one or more application-scoped JDBC cartridge context while developing an application, as described in the following steps:
To declare a JDBC cartridge context in the EPN file:
jdbc-context
in the EPN file and specify the id
attribute, as shown in Example 17-3. The id
represents the name of this application-scoped context and is used in CQL queries that reference functions defined in this context. The id
is also used when this context is configured in the application configuration file. Example 17-2 EPN Assembly File: Oracle CEP JDBC Data Cartridge Namespace and Schema Location
Example 17-3 shows how to create an Oracle CEP JDBC data cartridge application context named JdbcCartridgeOne
in an EPN assembly file.
To configure the JDBC cartridge context, add the configuration details in the component configuration file that is typically placed under the application's /wlevs directory. This configuration is similar to configuring other EPN components such as channel and processor.
To configure the JDBC cartridge context in the application configuration file:
jdbc-ctx
. A context defines one or more functions, each of which is associated with a single SQL query. The configuration also specifies the data source representing the database against which the SQL queries are to be executed. Each function can have input parameters that are used to pass arguments to the SQL query defining the function, and each function specifies the return-component-type. Since the call to this function is always enclosed within a TABLE clause, the function always returns a Collection type. The return-component-type property indicates the type of the component of that collection. The value of the name
property must match the value used for the id
attribute in the EPN file, as shown in Example 17-3.
Example 17-4 shows how to reference the jdbc:jbdc-context
in an Oracle CQL query. In this case, the query uses link name JdbcCartridgeOne
(defined in Example 17-3) to propagate this application context to the Oracle CEP JDBC data cartridge. The Oracle CQL query in Example 17-4 invokes the function getDetailsByOrderIdName
associated with Oracle CEP JDBC data cartridge application context JdbcCartridgeOne
.
Example 17-4 jc:jdbc-ctx Element in Component Configuration File
For more information, see "How to Configure Oracle CEP JDBC Data Cartridge Application Context" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.
In general, you use the Oracle CEP JDBC data cartridge as follows:
For more information, see Section 17.1.4, "Oracle CEP JDBC Data Cartridge Application Context".
jc:jdbc-ctx
element in the component configuration file. For more information, see Section 17.2.1, "Defining SQL Statements: function Element."
function
element return-component-type
child element as a Java bean, implement the bean and ensure that the class is on your Oracle CEP application classpath. Example 17-5 shows a typical implementation.
Example 17-5 Example return-component-type Class
You must declare the fields as public.
The return-component-type class for a JDBC cartridge context function must have a one-to-one mapping for fields in the SELECT list of the SQL query that defines the function. In other words, every field in the SELECT list of the SQL query defining a function must have a corresponding field (matching name) in the Java class that is declared to be the return-component-type for that function; otherwise Oracle CEP throws an error. For example, note how the SELECT items in the function in Example 17-4 match the field names in Example 17-5.
For more information, see:
jc:jdbc-ctx
element using the Oracle CQL TABLE
clause and access the returned results by SQL SELECT
list alias names. For more information, see Section 17.2.2, "Defining Oracle CQL Queries With the Oracle CEP JDBC Data Cartridge."
Within the jc:jdbc-cxt
element in the component configuration file, you can define a JDBC cartridge context function using the function
child element as Example 17-6 shows.
Example 17-6 Oracle CEP JDBC Data Cartridge SQL Statement
You may define one or more function
elements within a given jc:jdbc-cxt
element.
This section describes:
Each function
element supports the attributes that Table 17-1 lists.
Table 17-1 function Element Attributes
Attribute | Description |
---|---|
| The name of the JDBC cartridge context function. The combination of name and signature must be unique within a given Oracle CEP JDBC data cartridge application context. For more information, see Section 17.2.1.3.4, "Overloading JDBC Cartridge Context Functions". |
Each function
element supports the following child elements:
The param
child element specifies an optional input parameter.
The SQL statement may take zero or more parameters. Each parameter is defined in a param
element.
The param
child element supports the attributes that Table 17-2 lists.
Table 17-2 param Element Attributes
Attribute | Description |
---|---|
| The name of the input parameter. A valid parameter name is formed by a combination of A-Z,a-z,0-9 and _ (underscore). |
| The data type of the parameter. |
Datatype Support – You may specify only Oracle CQL native com.bea.wlevs.ede.api.Type
data types for the input parameter param
element type
attribute.
Note: Datatype names are case sensitive. Use the case that the |
For more information, see Table 17-3.
The return-component-type
child element specifies the return type of the function. This child element is mandatory.
This represents the component type of the collection type returned by the JDBC data cartridge function. Because the function is always called from within an Oracle CQL TABLE
clause, it always returns a collection type.
For more information, see Section 17.2.2.2, "Using the TABLE Clause."
Datatype Support – You may specify any one of the following types as the value of the return-component-type
element:
com.bea.wlevs.ede.api.Type
datatype. For more information, see:
The sql
child element specifies a SQL statement. This child element is mandatory.
Each function
element may contain one and only one, single-line, SQL statement. You define the SQL statement itself within a <![CDATA[]]>
block.
Within the SQL statement, you specify input parameters by param
element name
attribute using a colon (:
) prefix as shown in Example 17-6.
Note: You must provide alias names for every |
Datatype Support – Table 17-3 lists the SQL types you may use in your Oracle CEP JDBC data cartridge context functions and their corresponding Oracle CEP Java type and com.bea.wlevs.ede.api.Type
type.
Table 17-3 SQL Column Types and Oracle CEP Type Equivalents
SQL Type | Oracle CEP Java Type | com.bea.wlevs.ede.api.Type |
---|---|---|
|
| bigdecimal |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Note: In cases where the size of the Java type exceeds that of the SQL type, your Oracle CEP application must restrict values to the maximum size of the SQL type. The choice of type to use on the CQL side should be driven by the range of values in the database column. For example, if the SQL column is a number that contains values in the range of integer, use the "int" type on CQL side. If you choose an incorrect type and encounter out-of-range values, Oracle CEP throws a numeric overflow error. |
Note: The Oracle CEP JDBC data cartridge does not support Oracle Spatial data types. |
For more information, see Section 17.2.1.3, "function Element Usage."
This section provides examples of different JDBC cartridge context functions you can define using the Oracle CEP JDBC data cartridge, including:
Using the Oracle CEP JDBC data cartridge, you can define JDBC cartridge context functions that take multiple input parameters.
Example 17-7 shows an Oracle CEP JDBC data cartridge application context that defines an JDBC cartridge context function that takes two input parameters.
Example 17-7 Oracle JDBC Data Cartridge Context Functions With Multiple Parameters
Using the Oracle CEP JDBC data cartridge, you can define JDBC cartridge context functions that invoke PL/SQL functions that the database defines.
Example 17-8 shows an Oracle CEP JDBC data cartridge application context that defines a JDBC cartridge context function that invokes PL/SQL function getOrderAmt
.
Example 17-8 Oracle JDBC Data Cartridge Context Function Invoking PL/SQL Functions
Using the Oracle CEP JDBC data cartridge, you can define arbitrarily complex JDBC cartridge context functions including subqueries, aggregation, GROUP BY
, ORDER BY
, and HAVING
.
Example 17-9 shows an Oracle CEP JDBC data cartridge application context that defines a complex JDBC cartridge context function.
Example 17-9 Oracle CEP JDBC Data Cartridge Complex JDBC Cartridge Context Function
Using the Oracle CEP JDBC data cartridge, you can define JDBC cartridge context functions with the same name in the same application context provided that each function has a unique signature.
Example 17-10 shows an Oracle CEP JDBC data cartridge application context that defines two JDBC cartridge context functions named getDetails
. Each function is distinguished by a unique signature.
Example 17-10 Oracle JDBC Data Cartridge Context Function Overloading
This section describes how to define Oracle CQL queries that invoke SQL statements using the Oracle CEP JDBC data cartridge, including:
For more information, see "Configuring Oracle CQL Processors" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.
Consider the Oracle CEP JDBC data cartridge context function that Example 17-11 shows.
Example 17-11 Oracle CEP JDBC Data Cartridge Context Function
You must assign an alias to each column in the SELECT
list. When you invoke the JDBC cartridge context function in an Oracle CQL query, you access the columns in the result set by their SQL SELECT
list aliases.
For more information, see Section 17.2.2.2, "Using the TABLE Clause".
Consider the Oracle CEP JDBC data cartridge SQL statement that Example 17-12 shows.
Example 17-12 Oracle CEP JDBC Data Cartridge SQL Statement
The Oracle CQL query in Example 17-13 invokes the JDBC cartridge context function that Example 17-12 defines.
Example 17-13 Oracle CQL Query Invoking an Oracle CEP JDBC Data Cartridge Context Function
You must wrap the Oracle CEP JDBC data cartridge context function invocation in an Oracle CQL query TABLE
clause.
You access the result set using:
TABLE_CLAUSE_ALIAS
.JDBC_CARTRIDGE_FUNCTION_ALIAS
.SQL_SELECT_LIST_ALIAS
TABLE_CLAUSE_ALIAS
.JDBC_CARTRIDGE_FUNCTION_ALIAS
.METHOD_NAME
Where:
TABLE_CLAUSE_ALIAS
: the outer AS
alias of the TABLE
clause. In Example 17-13, details
.
JDBC_CARTRIDGE_FUNCTION_ALIAS
: the inner AS
alias of the JDBC cartridge context function. In Example 17-13, orderInfo
.
SQL_SELECT_LIST_ALIAS
: the JDBC cartridge context function SELECT
list alias. In Example 17-12, employeeName
, employeeEmail
, and description
.
METHOD_NAME
: the name of the method that the return-component-type
class provides. In Example 17-13, getEmployeeNameLength()
.
As Example 17-13 shows, you access the JDBC cartridge context function result set in the Oracle CQL query using:
The component type of the collection type returned by the JDBC data cartridge function is defined by the function
element return-component-type
child element. Because the function is always called from within an Oracle CQL TABLE
clause, it always returns a collection type. If the getDetailsByORderIdName
JDBC cartridge context function called in Example 17-13 is defined as Example 17-12 shows, then orderInfo
is of type com.oracle.cep.example.jdbc_cartridge.RetEvent
.
You can access both fields and methods of the return-component-type
in an Oracle CQL query. In Example 17-12, the return-component-type
specifies a Java bean implemented as Example 17-14 shows.
Example 17-14 Example return-component-type Class
This class provides helper methods, like getEmployeeNameLength
, that you can invoke within the Oracle CQL query.
For more information, see:
Following is a JDBC cartridge context that defines a function that has a native CQL type bigint
as return-component-type.
Example 17-15 CQL Type bigint as a return-component-type
Example 17-16 shows how the getOrderAmt
function in Example 17-15 can be used in a CQL query.
Example 17-16 getOrderAmt Function in a CQL Query
Note that the alias orderInfo
itself is of type bigint
and can be accessed as details.orderInfo as orderAmt
in the select list of the CQL query.
The "of bigint" clause used inside the TABLE construct is optional. If specified, the type mentioned should match the return-component-type, which is bigint
in Example 17-15.
This chapter provides reference and usage guidelines for queries, views, and joins in Oracle Continuous Query Language (Oracle CQL). You select, process, and filter element data from streams and relations using Oracle CQL queries and views.
A top-level SELECT
statement that you create using the QUERY
statement is called a query.
A top-level VIEW
statement that you create using the VIEW
statement is called a view (the Oracle CQL equivalent of a subquery).
A join is a query that combines rows from two or more streams, views, or relations.
This chapter describes:
For more information, see:
An Oracle CQL query is an operation that you express in Oracle CQL syntax and execute on an Oracle CEP CQL Processor to process data from one or more streams or views. For more information, see Section 18.2, "Queries".
An Oracle CQL view represents an alternative selection on a stream or relation. In Oracle CQL, you use a view instead of a subquery. For more information, see Section 18.3, "Views".
Oracle CEP performs a join whenever multiple streams appear in the FROM
clause of the query. For more information, see Section 18.4, "Joins".
Example 18-1 shows typical Oracle CQL queries defined in an Oracle CQL processor component configuration file for the processor named proc
.
Example 18-1 Typical Oracle CQL Query
As Example 18-1 shows, the rules element contains each Oracle CQL statement in a view
or query
child element:
view
: contains Oracle CQL view statements (the Oracle CQL equivalent of subqueries). The view
element id
attribute defines the name of the view. In Example 18-1, the view
element specifies an Oracle CQL view
statement (the Oracle CQL equivalent of a subquery).
query
: contains Oracle CQL select statements. The query
element id
attribute defines the name of the query. In Example 18-1, the query
element specifies an Oracle CQL query statement. The query statement selects from the view. By default, the results of a query are output to a down-stream channel. You can control this behavior in the channel configuration using a selector
element.
For more information, see "Configuring a Channel" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.
Each Oracle CQL statement is contained in a <![CDATA[
...]]>
tag and does not end in a semicolon (;
).
For more information, see:
Typically, you create an Oracle CQL query or view using the Oracle CEP IDE for Eclipse. After deployment, you can add, change, and delete Oracle CQL queries using the Oracle CEP Visualizer.
To create an Oracle CQL query:
For more information, see:
The EPN Editor opens the corresponding component configuration file for this processor and positions the cursor in the appropriate processor
element as Figure 18-2 shows.
For examples, see
For more information, see "Assembling and Deploying Oracle CEP Applications" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.
For more information, see "Managing Oracle CQL Rules" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Complex Event Processing.
Queries are the principle means of extracting information from data streams and views.
The query
clause itself is made up of one of the following parts:
sfw_block
: use this select-from-where clause to express a CQL query. For more information, see Section 18.2.1.1, "Select, From, Where Block".
idstream_clause
: use this clause to specify an input IStream
or delete DStream
relation-to-stream operator that applies to the query. For more information, see Section 18.2.1.9, "IDStream Clause"
rstream
: use this clause to specify an RStream
relation-to-stream operator that applies to the query. For more information, see "RStream Relation-to-Stream Operator"
binary
: use this clause to perform set operations on the tuples that two queries or views return. For more information, see Section 18.2.1.8, "Binary Clause"
The following sections discuss the basic query types that you can create:
For more information, see:
This section summarizes the basic building blocks that you use to construct an Oracle CQL query, including:
Use the sfw_block
to specify the select, from, and optional where clauses of your Oracle CQL query.
The sfw_block
is made up of the following parts:
Use this clause to specify the stream elements you want in the query's result set. The select_clause
may specify all stream elements using the *
operator or a list of one or more stream elements.
The list of expressions that appears after the SELECT
keyword and before the from_clause
is called the select list. Within the select list, you specify one or more stream elements in the set of elements you want Oracle CEP to return from one or more streams or views. The number of stream elements, and their datatype and length, are determined by the elements of the select list.
Optionally, specify distinct
if you want Oracle CEP to return only one copy of each set of duplicate tuples selected. Duplicate tuples are those with matching values for each expression in the select list.
For more information, see select_clause::=
Use this clause to specify the streams and views that provide the stream elements you specify in the select_clause
(see Section 18.2.1.2, "Select Clause").
The from_clause
may specify one or more comma-delimited relation_variable
clauses.
For more information, see from_clause::=
You can select from any of the data sources that your relation_variable
clause specifies.
You can use the relation_variable
clause AS
operator to define an alias to label the immediately preceding expression in the select list so that you can reference the result by that (see Section 2.7.1.1, "Aliases in the relation_variable Clause").
If you create a join (see Section 18.4, "Joins") between two or more streams, view, or relations that have some stream element names in common, then you must qualify stream element names with the name of their stream, view, or relation. Example 18-2 shows how to use stream names to distinguish between the customerID
stream element in the OrderStream
and the customerID
stream element in the CustomerStream
.
Example 18-2 Fully Qualified Stream Element Names
Otherwise, fully qualified stream element names are optional. However, Oracle recommends that you always qualify stream element references explicitly. Oracle CEP often does less work with fully qualified stream element names.
For more information, see:
Use this optional clause to specify conditions that determine when the select_clause
returns results (see Section 18.2.1.2, "Select Clause").
Because Oracle CQL applies the WHERE
clause before GROUP BY
or HAVING
, if you specify an aggregate function in the SELECT
clause, you must test the aggregate function result in a HAVING
clause, not the WHERE
clause.
For more information, see:
Use this optional clause to group (partition) results. This clause does not guarantee the order of the result set. To order the groupings, use the order by clause.
Because Oracle CQL applies the WHERE
clause before GROUP BY
or HAVING
, if you specify an aggregate function in the SELECT
clause, you must test the aggregate function result in a HAVING
clause, not the WHERE
clause.
For more information, see:
Use this optional clause to order all results or the top-n
results.
For more information, see:
Use this optional clause to restrict the groups of returned stream elements to those groups for which the specified condition
is TRUE
. If you omit this clause, then Oracle CEP returns summary results for all groups.
Because Oracle CQL applies the WHERE
clause before GROUP BY
or HAVING
, if you specify an aggregate function in the SELECT
clause, you must test the aggregate function result in a HAVING
clause, not the WHERE
clause.
For more information, see:
Use the binary
clause to perform set operations on the tuples that two queries or views return, including:
EXCEPT
MINUS
INTERSECT
UNION
and UNION ALL
IN
and NOT IN
For more information, see binary::=.
Use this clause to take either a select-from-where clause or binary clause and return its results as one of IStream
or DStream
relation-to-stream operators.
You can succinctly detect differences in query output by combining an IStream
or Dstream
operator with the using_clause
.
For more information, see:
Example 18-3 shows a simple query that selects all stream elements from a single stream.
Example 18-3 Simple Query
For more information, see "Query".
Example 18-4 shows a query that selects all stream elements from stream S2
, with schema (c1 integer, c2 float)
, using a built-in tuple-based stream-to-relation window operator.
Example 18-4 Built-In Window Query
For more information, see:
Example 18-5 shows a query that uses the MATCH_RECOGNIZE
clause to express complex relationships among the stream elements of ItemTempStream
.
Example 18-5 MATCH_RECOGNIZE Query
For more information, see:
Using an Oracle CQL processor, you can specify a relational database table as an event source. You can query this event source, join it with other event sources, and so on.
For more information, see, Section 18.6, "Oracle CQL Queries and Relational Database Tables"
Example 18-6 shows a view v1
and a query q1
on that view. The view selects from a stream S1
of xmltype
stream elements. The view v1
uses the XMLTABLE
clause to parse data from the xmltype
stream elements using XPath expressions. Note that the data types in the view's schema match the datatypes of the parsed data in the COLUMNS
clause. The query q1
selects from this view as it would from any other data source. The XMLTABLE
clause also supports XML namespaces.
Example 18-6 XMLTABLE Query
For more information, see:
Use the TABLE
clause to access the multiple rows returned by a built-in or user-defined function in the FROM
clause of an Oracle CQL query. The TABLE
clause converts the set of returned rows into an Oracle CQL relation. Because this is an external relation, you must join the TABLE
function clause with a stream.
(object_expr::=, identifier::=, datatype::=)
Note the following:
Collection
type. TABLE
function clause with a stream. Example 18-7 shows a data cartridge TABLE
clause that invokes the Oracle Spatial method getContainingGeometries
, passing in one parameter (InputPoints.point
). The return value of this method, a Collection
, is aliased as validGeometries
. The relation that the TABLE
clause returns is aliased as R2
.
Example 18-7 Data Cartridge TABLE Query
Example 18-8 shows an invalid data cartridge TABLE
query that fails to join the data cartridge TABLE
clause with another stream because the function getAllGeometries@spatial
was called without any parameters. Oracle CEP invokes the data cartridge method only on the arrival of elements on the joined stream.
Example 18-8 Invalid Data Cartridge TABLE Query
For more examples, see:
For more information, see:
Using an Oracle CQL processor, you can specify a cache as an event source. You can query this event source and join it with other event sources using a Now
window only.
Oracle CEP cache event sources are pull data sources: that is, Oracle CEP polls the event source on arrival of an event on the data stream.
For more information, see Section 18.5, "Oracle CQL Queries and the Oracle CEP Server Cache".
Use the ORDER
BY
clause to order the rows selected by a query.
Sorting by position is useful in the following cases:
ORDER
BY
clause rather than duplicate the entire expression. UNION
, INTERSECT
, MINUS
, or UNION
ALL
, the ORDER
BY
clause must specify positions or aliases rather than explicit expressions. Also, the ORDER
BY
clause can appear only in the last component query. The ORDER
BY
clause orders all rows returned by the entire compound query. The mechanism by which Oracle CEP sorts values for the ORDER
BY
clause is specified by your Java locale.
Use the DIFFERENCE USING
clause to succinctly detect differences in the IStream
or DStream
of a query.
Consider the query that Example 18-9 shows.
Example 18-9 DIFFERENCE USING Clause
Table 18-1 shows sample input for this query. The Relation column shows the contents of the relation S [RANGE 1 NANOSECONDS]
and the Output column shows the query results after the DIFFERENCE USING
clause is applied. This clause allows you to succinctly detect only differences in the IStream
output.
Table 18-1 DIFFERENCE USING Clause Affect on IStream
Input | Relation | Output |
---|---|---|
|
|
|
|
|
|
|
|
|
|
| |
|
| |
|
| |
|
|
|
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
When you specify the usinglist
in the DIFFERENCE USING
clause, you may specify columns by:
Example 18-10 shows attribute name c1
in the DIFFERENCE USING
clause usinglist
.
Example 18-10 shows alias logval
in the DIFFERENCE USING
clause usinglist
.
Specify position as a constant, positive integer starting at 1, reading from left to right.
Example 18-10 specifies the result of expression funct(c2, c3)
by its position (3) in the DIFFERENCE USING
clause usinglist
.
Example 18-10 Specifying the usinglist in a DIFFERENCE USING Clause
You can use the DIFFERENCE USING
clause with both IStream
and DStream
operators.
For more information, see:
You can parameterize an Oracle CQL query and bind parameter values at run time using the :
n
character string as a placeholder, where n
is a positive integer that corresponds to the position of the replacement value in a params
element.
Example 18-11 shows a parameterized Oracle CQL query.
Example 18-11 Parameterized Oracle CQL Query
In this example, the:
MarketRule
query specifies two parameters: the third term in the SELECT
and the value of symbol
in the WHERE
clause SummarizeResultsRule
query specifies two parameters: the third term in the SELECT
and the value of the HAVING
clause. This section describes:
You may specify a placeholder anywhere an arithmetic expression or a String
literal is legal in an Oracle CQL statement. For example:
SELECT
list items WHERE
clause predicates WINDOW
constructs (such as RANGE
, SLIDE
, ROWS
, and PARTITION
BY
) PATTERN
duration clause For more information, see:
Parameter values are contained by a bindings
element. There may be one bindings
element per processor
element.
For each parameterized query, the bindings
element must contain a binding
element with the same id
as the query.
The binding
element must contain one or more params
elements. Each params
element must have a unique id
and must contain a comma separated list of parameter values equal in number to the number of placeholder characters (:
n
) in the corresponding query.
The order of the parameter values corresponds to placeholder characters (:
n
) in the parameterized query, such that :1
corresponds to the first parameter value, :2
corresponds to the second parameter value, and so on. You may use placeholder characters (:
n
) in any order. That is, :1
corresponds to the first parameter value whether it precedes or follows :2
in a query. A placeholder number can be used only once in a query.
For more information, see:
When a binding instantiates a parameterized query, Oracle CEP creates a new query at run time with the name queryId_paramId. For example, in Example 18-11, the run-time name of the first query instantiated by the MarketRule binding is MarketRule_nasORCL
.
To avoid run-time naming conflicts, be sure query ID and parameter ID combinations are unique.
Each params
element must have a unique id
and must contain a comma separated list of parameter values equal in number to the number of placeholder characters (:
n
) in the corresponding query.
Table 18-2 Parameterized Query Parameter Value Lexical Conventions
Convention | Example | Replacement Value |
---|---|---|
Primitive type literals | <params id="p1">NASDAQ, 200.0</params> |
|
Oracle CQL fragments | <params id="p1">count(*), avg(val) </params> |
|
Quotes | <params id="p1"> 'alert', "Seattle, WA", 'fun' || "house" , one "two" 3</params> |
|
In an Oracle CQL query, a placeholder within single or double quotes is a String
literal. The following query is not a parameterized query:
Oracle CEP parses this query as assigning the String
literal ":1"
to alias symbol
. To make this query into a parameterized query, use:
And define a params
element like this:
Because the parameter value (ORCL
) does not contain a comma, the quotes are not required. You could specify a params
element like this:
However, if the parameter value does contain a comma, then you must use quotes around the parameter value. Consider this parameterized query:
Where cityAndState
has values like "Seattle, WA"
or "Ottawa, ON"
. In this case, you must specify a params
element like this:
Commas are allowed only in quoted parameter values that signify string values. Commas are not allowed as a separator character in unquoted parameter values. For example:
"Seattle, WA"
is valid, because the comma is part of the string.
PARTITION BY fromRate,toRate ROWS 10
is invalid. Create the following two parameters instead:
Each params
element effectively causes a new Oracle CQL query to execute with the new parameters. At rule execution time, Oracle CQL substitutes parameter values for placeholder characters, from left to right. Example 18-11 is effectively equivalent to the queries that Example 18-12 shows.
Example 18-12 Equivalent Queries at Runtime
If you use the CQLProcessorMBean.replaceAllBoundParameters() method to programmatically replace parameters in a parameterized query, any existing parameters not replaced by the method are automatically removed from the query.
Queries are the principle means of extracting information from data streams and relations. A view represents an alternative selection on a stream or relation that you can use to create subqueries.
A view is only accessible by the queries that reside in the same processor and cannot be exposed beyond that boundary.
You can specify any query type in the definition of your view. For more information, see Section 18.2, "Queries".
For complete details on the view statement, see "View".
In Example 18-13, query BBAQuery
selects from view MAXBIDMINASK
which in turn selects from other views such as BIDMAX
which in turn selects from other views. Finally, views such as lastEvents
select from an actual event source: filteredStream
. Each such view represents a separate derived stream drawn from one or more base streams.
Example 18-13 Using Views Instead of Subqueries
Using this technique, you can achieve the same results as in the subquery case. However, using views you can better control the complexity of queries and reuse views by name in other queries.
If you create a join between two or more views that have some stream element names in common, then you must qualify stream element names with names of streams. Example 18-14 shows how to use view names to distinguish between the seq
stream element in the BIDMAX
view and the seq
stream element in the ASKMIN
view.
Example 18-14 Using View Names to Distinguish Between Stream Elements of the Same Name
Otherwise, fully qualified stream element names are optional. However, it is a best practice to always qualify stream element references explicitly. Oracle CEP often does less work with fully qualified stream element names.
For more information, see Section 18.4, "Joins".
You may define the optional schema of the view using a space delimited list of event attribute names as Example 18-15 shows.
A join is a query that combines rows from two or more streams, views, or relations. Oracle CEP performs a join whenever multiple streams appear in the FROM
clause of the query. The select list of the query can select any stream elements from any of these streams. If any two of these streams have a stream element name in common, then you must qualify all references to these stream elements throughout the query with stream names to avoid ambiguity.
If you create a join between two or more streams, view, or relations that have some stream element names in common, then you must qualify stream element names with the name of their stream, view, or relation. Example 18-16 shows how to use stream names to distinguish between the customerID
stream element in the OrderStream
stream and the customerID
stream element in the CustomerStream
stream.
Example 18-16 Fully Qualified Stream Element Names
Otherwise, fully qualified stream element names are optional. However, Oracle recommends that you always qualify stream element references explicitly. Oracle CEP often does less work with fully qualified stream element names.
Oracle CEP supports the following types of joins:
Note: When joining against a cache, you must observe additional query restrictions as Section 18.5.1, "Creating Joins Against the Cache" describes. |
By default, Oracle CEP performs an inner join (sometimes called a simple join): a join of two or more streams that returns only those stream elements that satisfy the join condition.
Example 18-17 shows how to create a query q4
that uses an inner join between streams S0
, with schema (c1 integer, c2 float)
, and S1
, with schema (c1 integer, c2 float)
.
An outer join extends the result of a simple join. An outer join returns all rows that satisfy the join condition and also returns some or all of those rows from one table for which no rows from the other satisfy the join condition.
You specify an outer join in the FROM
clause of a query using LEFT
or RIGHT OUTER JOIN ... ON
syntax.
(non_mt_relation_list::=, relation_variable::=, non_mt_cond_list::=)
Example 18-18 shows how to create a query q5
that uses a left outer join between streams S0
, with schema (c1 integer, c2 float)
, and S1
, with schema (c1 integer, c2 float)
.
Example 18-18 Outer Joins
Use the ON
clause to specify a join condition. Doing so lets you specify join conditions separate from any search or filter conditions in the WHERE
clause.
You can perform the following types of outer join:
To write a query that performs an outer join of streams A and B and returns all stream elements from A (a left outer join), use the LEFT OUTER JOIN
syntax in the FROM
clause as Example 18-19 shows. For all stream elements in A that have no matching stream elements in B, Oracle CEP returns null for any select list expressions containing stream elements of B.
To write a query that performs an outer join of streams A and B and returns all stream elements from B (a right outer join), use the RIGHT OUTER JOIN
syntax in the FROM
clause as Example 18-20 shows. For all stream elements in B that have no matching stream elements in A, Oracle CEP returns null for any select list expressions containing stream elements of A.
You can create an outer join that refers or looks-back to a previous outer join as Example 18-21 shows.
You can access an Oracle CEP cache from an Oracle CQL statement or user-defined function.
This section describes:
For more information, see:
When writing Oracle CQL queries that join against a cache, you must observe the following restrictions:
For more information, see Section 18.4, "Joins".
The complex predicate's first subclause (from the left) with a comparison operation over a cache key attribute may only be a simple equality predicate.
The following predicate is invalid because the predicate is not the first sub-clause (from the left) which refers to cache attributes:
However, the following predicate is valid:
The subclause may not have any arithmetic operations on a cache key attribute.
The following predicate is invalid because arithmetic operations are not allowed on cache key attributes:
The complex predicate must not require a full scan of the cache.
Assume that your cache has cache key C1
.
The following predicates are invalid. Because they do not use the cache key attribute in comparisons, they must scan through the whole cache which is not allowed.
The following predicates are also invalid. Although they do use the cache key attribute in comparisons, they use inequality operations that must scan through the whole cache which is not allowed.
The following predicate is also invalid. Although they do use the cache key attribute in comparisons, the first subclause referring to the cache attributes does not refer to the cache key attribute (in this example, C1
). That is, the first subclause refers to C2
which is not a cache key and the cache key comparison subclause (CACHE.C1 = S.C1
) appears after the non-key comparison subclause.
To support multiple conditions, inequality, or both, you must make the first sub-clause an equality predicate comparing a cache key value and specify the rest of the predicate subclauses separated by one AND
operator.
The following are valid predicates:
You can access a relational database table from an Oracle CQL query using:
NOW
window and only to a single database table. Note: Because changes in the table source are not coordinated in time with stream data, you may only join the table source to an event stream using a To integrate arbitrarily complex SQL queries and multiple tables with your Oracle CQL queries, consider using the Oracle JDBC data cartridge instead. |
For more information, see "Configuring an Oracle CQL Processor Table Source" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.
For more information, see Section 17.1, "Understanding the Oracle CEP JDBC Data Cartridge".
Note: Oracle recommends that you use the Oracle JDBC data cartridge to access relational database tables from an Oracle CQL statement. |
In all cases, you must define datasources in the Oracle CEP server config.xml
file. For more information, see "Configuring Access to a Relational Database" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.
Oracle CEP relational database table event sources are pull data sources: that is, Oracle CEP polls the event source on arrival of an event on the data stream.
This chapter provides reference and usage information about the MATCH_RECOGNIZE
clause in Oracle Continuous Query Language (Oracle CQL). This clause and its sub-clauses perform pattern recognition in Oracle CQL queries.
The MATCH_RECOGNIZE
clause performs pattern recognition in an Oracle CQL query as Example 19-1 shows. This query will export (make available for inclusion in the SELECT
) the MEASURES
clause values for events (tuples) that satisfy the PATTERN
clause regular expression over the DEFINE
clause conditions.
Example 19-1 Pattern Matching With MATCH_RECOGNIZE
(pattern_partition_clause::=, pattern_measures_clause::=, pattern_def_dur_clause::=)
(pattern_clause::=, pattern_skip_match_clause::=, pattern_definition_clause::=, duration_clause::=, subset_clause::=)
Using MATCH_RECOGNIZE
, you define conditions on the attributes of incoming events and identify these conditions by using identifiers
called correlation variables. Example 19-1 defines correlation variables A
, B
, and C
. A sequence of consecutive events in the input stream satisfying these conditions constitutes a pattern.
The output of a MATCH_RECOGNIZE
query is always a stream.
The principle MATCH_RECOGNIZE
sub-clauses are:
MEASURES
: exports (makes available for inclusion in the SELECT
) attribute values of events that successfully match the pattern you specify. PATTERN
: specifies the pattern to be matched as a regular expression over one ore more correlation variables. DEFINE
: specifies the condition for one or more correlation variables. To refine pattern recognition, you may use the optional MATCH_RECOGNIZE
sub-clauses, including:
For more information, see:
In Oracle CQL (as in SQL), the FROM
clause is evaluated before the WHERE
clause.
Consider the following Oracle CQL query:
In this query, the S MATCH_RECOGNIZE (....) as T
is like a subquery in the FROM
clause and is evaluated first, before the WHERE
clause.
Consequently, you rarely use both a MATCH_RECOGNIZE
clause and a WHERE
clause in the same Oracle CQL query. Instead, you typically use a view to apply the required WHERE
clause to a stream and then select from the view in a query that applies the MATCH_RECOGNIZE
clause.
Example 19-2 shows two views, e1p1
and e2p2
, each applying a WHERE
clause to stream S
to pre-filter the stream for the required events. The query q
then selects from these two views and applies the MATCH_RECOGNIZE
on this filtered stream of events.
Example 19-2 MATCH_RECOGNIZE and the WHERE Clause
For more information, see opt_where_clause::=
The MATCH_RECOGNIZE
clause identifies the following types of matches:
SUBSET
, is not in the scope of an alternation, and is not quantified by a pattern quantifier. References to such a correlation variable refer to this single event.
SUBSET
, is in the scope of an alternation, or is quantified by a pattern quantifier. References to such a correlation variable refer to this group of events.
When you reference singleton and group correlation variables in the MEASURES
and DEFINE
clauses, observe the following rules:
If the correlation variable is not yet matched, NULL
is returned. In the case of count(A.*)
, if the correlation variable A
is not yet matched, 0 is returned.
If the correlation variable is being referenced in a definition of the same variable (such as DEFINE A as A.balance > 1000
), then the value of the current event is returned.
For more information, see:
You can use any built-in, Colt, or user-defined aggregate function in the MEASURES
and DEFINE
clause of a MATCH_RECOGNIZE
query.
When using aggregate functions, consider the following:
For more information, see:
In the DEFINE
clause, any aggregate function on a correlation variable X
is a running aggregate: that is, the aggregate includes all preceding matches of X
up to and including the current match. If the correlation variable X
has been completely matched so far, then the aggregate is final, otherwise it is running.
In the MEASURES
clause, because it is evaluated after the match has been found, all aggregates are final because they are computed over the final match.
When using a SUBSET
clause, be aware of the fact that you may inadvertently imply a running aggregate as Example 19-3 shows.
Example 19-3 Implied Running Aggregate
Because correlation variable Z
involves Y
, the definition of Y
involves a running aggregate on Y
.
For more information, see:
In both the MEASURES
and DEFINE
clause, you may only apply an aggregate function to attributes of the same correlation variable.
For example: the use of aggregate function correlation
in Example 19-4 is invalid.
Example 19-4 Invalid Use of Aggregate Function
The correlation
aggregate function may not operate on more than one correlation variable.
In the DEFINE
clause, you may reference a correlation variable that has not been matched yet. However, you should use caution when doing so. Consider Example 19-5.
Example 19-5 Referencing a Variable That has not Been Matched Yet: Invalid
Although this syntax is legal, note that in this particular example, the pattern will never match because at the time X
is matched, Y
has not yet been matched, and count(Y.*)
is 0.
To implement the desired behavior ("Match when the price of Y
has been greater than 10, 3 or more times in a row"), implement this pattern as Example 19-6 shows.
Example 19-6 Referencing a Variable That has not Been Matched Yet: Valid
For more information, see Section 19.1.3.5, "Using count With *, identifier.*, and identifier.attr".
In the DEFINE
clause, if you apply an aggregate function to an event attribute not qualified by correlation variable, the aggregate is a running aggregate as Example 19-7 shows.
Example 19-7 Referencing Attributes not Qualified by Correlation Variable
This query detects a pattern in which a price alternately goes up and down, for as long as possible, but for at least more than 1000 matches.
For more information, see:
The built-in aggregate function count
has syntax:
(arith_expr::=, attr::=, identifier::=)
The return value of count
depends on the argument as Table 19-1 shows.
Table 19-1 Return Values for count Aggregate Function
Consider Example 19-8. Assume that the schema of S
includes attributes account
and balance
. This query returns an event for each account
that has not received 3 or more events in 60 minutes.
Example 19-8 MATCH_RECOGNIZE Query Using count(A.*)
The PATTERN (A+)
specifies the pattern "Match A
one or more times".
The DEFINE
clause specifies the condition:
This condition for A
places no restrictions on input tuples (such as A.balance > 1000
). The only restrictions are imposed by the PARTITION BY account
and DURATION 60 MINUTES
clauses. In the DEFINE
clause, the A.*
means, "Match all input tuples for the group A+
". This group includes the one or more input tuples with a particular account
received in the 60 minutes starting with the first input tuple. The count(A.*)
is a running aggregate that returns the total number of events in this group.
If the DEFINE
clause specifies the condition:
Then A.*
still means "Match all input tuples for the group A+
". In this case, this group includes the one or more input tuples with a particular account
received in the 60 minutes starting with the first input tuple and with balance > 1000
.
In contrast:
count(*)
means "The number of all tuples, including duplicates and nulls". That is, the number of all tuples received on S
, whether they satisfy the MATCH_RECOGNIZE
clause or not. count(A.balance)
means "The number of all tuples that match the correlation variable A
where the balance
is not NULL
". For more information, see:
Use the first
and last
built-in aggregate functions to access event attributes of the first or last event match, respectively:
first
returns the value of the first match of a group in the order defined by the ORDER BY
clause or the default order.
last
returns the value of the last match of a group in the order defined by the ORDER BY
clause or the default order.
The first
and last
functions accept an optional non-negative, constant integer argument (N
) that indicates the offset following the first and the offset preceding the last match of the variable, respectively. If you specify this offset, the first
function returns the N
-th matching event following the first match and the last
function returns the N
-th matching event preceding the last match. If the offset does not fall within the match of the variable, the first
and last
functions return NULL
.
For more information, see:
Use the prev
built-in single-row function to access event attributes of a previous event match. If there is no previous event match, the prev
function returns NULL
.
The prev
function accepts an optional non-negative, constant integer argument (N
) that indicates the offset to a previous match. If you specify this offset, the prev
function returns the N
-th matching event preceding the current match. If there is no such previous match, the prev
functions returns NULL
.
When you use the prev
function in the DEFINE
clause, this function may only access the currently defined correlation variable.
For example: the correlation variable definition in Example 19-9 is valid:
However, the correlation variable definition in Example 19-10 is invalid because while defining correlation variable Y
, it references correlation variable X
inside the prev
function.
For more information, see:
The MEASURES
clause exports (makes available for inclusion in the SELECT
) attribute values of events that successfully match the pattern you specify.
You may specify expressions over correlation variables that reference partition attributes, order by attributes, singleton variables and aggregates on group variables, and aggregates on the attributes of the stream that is the source of the MATCH_RECOGNIZE
clause.
You qualify attribute values by correlation variable to export the value of the attribute for the event that matches the correlation variable's condition. For example, within the MEASURES
clause, A.c1
refers to the value of event attribute c1
:
A
, if A
is specified in the DEFINE
clause. A
is not specified in the DEFINE
clause. This is because if A
is not specified in the DEFINE
clause, then A
is considered as TRUE
always. So effectively all the tuples in the input match to A
.
You may include in the SELECT
statement only attributes you specify in the MEASURES
clause.
(arith_expr::=, identifier::=)
In Example 19-1, the pattern_measures_clause
is:
This section describes:
For more information, see:
In the MEASURES
clause, you may apply any single-row or aggregate function to the attributes of events that match a condition.
Example 19-11 applies the last
function over correlation variable Z.c1
in the MEASURES
clause.
Example 19-11 Using Functions Over Correlation Variables
Note the following in the MEASURES
clause in Example 19-11:
A.c1
will export the value of c1
in the first and only the first event that the query processes because: A
is not specified in the DEFINE
clause, therefor it is always true. A
has no pattern quantifiers, therefor it will match exactly once. last
will export the value of c1
in the last event that matched Z
at the time the PATTERN
clause was satisfied. For more information, see:
The PATTERN
clause specifies the pattern to be matched as a regular expression over one ore more correlation variables.
Incoming events must match these conditions in the order given (from left to right).
The regular expression may contain correlation variables that are:
DEFINE
clause: such correlation variables are considered true only if their condition definition evaluates to TRUE
. DEFINE
clause: such correlation variables are considered as always TRUE
; that is, they match every input. This section describes:
For more information, see:
You express the pattern as a regular expression composed of correlation variables and pattern quantifiers.
(correlation_name::=, pattern_quantifier::=)
Table 19-2 lists the pattern quantifiers (pattern_quantifier::=) Oracle CQL supports.
Table 19-2 MATCH_RECOGNIZE Pattern Quantifiers
Maximal | Minimal | Description |
---|---|---|
0 or more times | ||
1 or more times. | ||
0 or 1 time. | ||
None | An unquantified pattern, such as |
Use the pattern quantifiers to specify the pattern as a regular expression, such as A*
or A+?
.
The one-character pattern quantifiers are maximal or "greedy"; they will attempt to match as many instances of the regular expression on which they are applied as possible.
The two-character pattern quantifiers are minimal or "reluctant"; they will attempt to match as few instances of the regular expression on which they are applied as possible.
Consider the following pattern_clause
:
This pattern clause means a pattern match will be recognized when the following conditions are met by consecutive incoming input tuples:
A
, followed by B
, followed by C
. While in state 2, if a tuple arrives that matches both the correlation variables B
and C
(since it satisfies the defining conditions of both of them) then as the quantifier *
for B
is greedy that tuple will be considered to have matched B
instead of C
. Thus due to the greedy property B
gets preference over C
and we match a greater number of B
. Had the pattern expression be A B*? C
, one that uses a lazy or reluctant quantifier over B
, then a tuple matching both B
and C
will be treated as matching C
only. Thus C
would get preference over B
and we will match fewer B
.
For more information, see:
As shown in the regexp_grp_alt
syntax, you can use:
(
and)
) to group correlation variables |
) to match either one correlation variable (or group of correlation variables) or another (correlation_name::=, pattern_quantifier::=, regexp::=)
Consider the following pattern_clause
:
This means "A one or more times followed by B one or more times".
You can group correlation variables. For example:
This means "A one or more times followed by zero or more occurrences of C one or more times and B one or more times".
Using the PATTERN
clause alternation operator (|
), you can refine the sense of the pattern_clause
. For example:
This means "A one or more times or B one or more times, whichever comes first".
Similarly, you can both group correlation variables and use the alternation operator. For example:
This means "A one or more times followed by either C one or more times or B one or more times, whichever comes first".
To match every permutation you can use:
This means "A followed by B or B followed by A, which ever comes first".
For more information, see:
The DEFINE
clause specifies the boolean condition for each correlation variable.
You may specify any logical or arithmetic expression and apply any single-row or aggregate function to the attributes of events that match a condition.
On receiving a new tuple from the base stream, the conditions of the correlation variables that are relevant at that point in time are evaluated. A tuple is said to have matched a correlation variable if it satisfies its defining condition. A particular input can match zero, one, or more correlation variables. The relevant conditions to be evaluated on receiving an input are determined by logic governed by the PATTERN
clause regular expression and the state in pattern recognition process that we have reached after processing the earlier inputs.
The condition can refer to any of the attributes of the schema of the stream or view that evaluates to a stream on which the MATCH_RECOGNIZE
clause is being applied.
A correlation variable in the PATTERN
clause need not be specified in the DEFINE
clause: the default for such a correlation variable is a predicate that is always true. Such a correlation variable matches every event. It is an error to specify a correlation variable in the DEFINE
clause which is not used in a PATTERN
clause
No correlation variable defined by a SUBSET
clause may be defined in the DEFINE
clause.
(non_mt_corrname_definition_list::=)
non_mt_corrname_definition_list::=
(correlation_name_definition::=)
correlation_name_definition::=
(correlation_name::=, non_mt_cond_list::=)
This section describes:
For more information, see:
You can use functions over the correlation variables while defining them.
Example 19-12 applies the to_timestamp
function to correlation variables.
Example 19-12 Using Functions Over Correlation Variables: to_timestamp
Example 19-13 applies the count
function to correlation variable B
to count the number of times its definition was satisfied. A match is recognized when totalCountValue
is less than 1000 two or more times in 30 minutes.
Example 19-13 Using Functions Over Correlation Variables: count
For more information, see:
You can refer to the attributes of a base stream:
c1 < 20
. A.c1 < 20
. When you refer to the attributes without a correlation variable, a tuple that last matched any of the correlation variables is consulted for evaluation.
Consider the following definitions:
DEFINE A as c1 < 20
DEFINE A as A.c1 < 20
Both refer to c1
in the same tuple which is the latest input tuple. This is because on receiving an input we evaluate the condition of a correlation variable assuming that the latest input matches that correlation variable.
If you specify a correlation name that is not defined in the DEFINE
clause, it is considered to be true for every input.
In Example 19-14, correlation variable A
appears in the PATTERN
clause but is not specified in the DEFINE
clause. This means the correlation name A
is true for every input. It is an error to define a correlation name which is not used in a PATTERN
clause.
Example 19-14 Undefined Correlation Name
For more information, see:
A definition of one correlation variable can refer to another correlation variable. Consider the query that Example 19-15 shows:
Example 19-15 Referencing One Correlation Variable From Another
Note the following:
A
defines a single attribute, B
can refer to this single attribute. B
defines more than one attribute, C
cannot reference a single attribute of B
. In this case, C
may only reference an aggregate of B
. D
is defined in terms of itself: in this case, you may refer to a single attribute or an aggregate. In this example, the prev
function is used to access the match of D
prior to the current match. For more information, see:
Use this optional clause to specify the stream attributes by which a MATCH_RECOGNIZE
clause should partition its results.
Without a PARTITION BY
clause, all stream attributes belong to the same partition.
In Example 19-1, the pattern_partition_clause
is:
The partition by clause in pattern means the input stream is logically divided based on the attributes mentioned in the partition list and pattern matching is done within a partition.
Consider a stream S
with schema (c1 integer, c2 integer)
with the input data that Example 19-16 shows.
Consider the MATCH_RECOGNIZE
query that Example 19-17 shows.
Example 19-17 MATCH_RECOGNIZE Query Using Input Stream S1
This query would output the following:
If we add PARTITION BY c2
to the query that Example 19-17 shows, then the output would change to:
This is because by adding the PARTITION BY
clause, matches are done within partition only. Tuples at 1000 and 4000 belong to one partition and tuples at 2000 and 3000 belong to another partition owing to the value of c2
attribute in them. In the first partition A
matches tuple at 1000 and B
matches tuple at 4000. Even though a tuple at 3000 matches the B
definition, it is not presented as a match for the first partition since that tuple belongs to different partition.
When you partition by more than one attribute, you can control the order of partitions using the ORDER BY
clause. For more information, see Section 19.6, "ORDER BY Clause".
Use this optional clause to specify the stream attributes by which a MATCH_RECOGNIZE
clause should order partitions when using a PARTITION BY
clause.
Without an ORDER BY
clause, the results of MATCH_RECOGNIZE
are nondeterministic.
pattern_order_by_top_clause::=
You may only use the ORDER BY
clause with a PARTITION BY
clause.
For more information, see Section 19.5, "PARTITION BY Clause,"pattern_partition_clause::=, and order_by_list::=.
Use this optional clause to configure Oracle CEP to match overlapping patterns.
With the ALL MATCHES
clause, Oracle CEP finds all possible matches. Matches may overlap and may start at the same event. In this case, there is no distinction between greedy and reluctant pattern quantifiers. For example, the following pattern:
produces the same result as:
Without the ALL MATCHES
clause, overlapping matches are not returned, and quantifiers such as the asterisk determine which among a set of candidate (and overlapping) matches is the preferred one for output. The rest of the overlapping matches are discarded.
Consider the query tkpattern_q41
in Example 19-18 that uses ALL MATCHES
and the data stream tkpattern_S11
in Example 19-19. Stream tkpattern_S11
has schema (c1 integer, c2 integer)
. The query returns the stream in Example 19-20.
The query tkpattern_q41
in Example 19-18 will report a match when the input stream values, when plotted, form the shape of the English letter W. The relation in Example 19-20 shows an example of overlapping instances of this W-pattern match.
There are two types of overlapping pattern instances:
ALL MATCHES
clause is not present. ALL MATCHES
clause is not present. This is because when ALL MATCHES
clause is omitted, we start looking for the next instance of pattern match at a tuple which is next to the last tuple in the previous matched instance of the pattern. Example 19-18 ALL MATCHES Clause Query
Example 19-19 ALL MATCHES Clause Stream Input
Example 19-20 ALL MATCHES Clause Stream Output
As Example 19-20 shows, the ALL MATCHES
clause reports all the matched pattern instances on receiving a particular input. For example, at time 20000, all of the tuples {12,20}
, {13,20}
, and {14,20}
are output.
For more information, see Section 19.3.1, "Pattern Quantifiers and Regular Expressions".
The WITHIN
clause is an optional clause that outputs a pattern_clause
match if and only if the match occurs within the specified time duration.
That is, if and only if:
Where:
TL
- Timestamp of last event matching the pattern. TF
- Timestamp of first event matching the pattern. WD
- Duration specified in the WITHIN
clause. The WITHIN INCLUSIVE
clause tries to match events at the boundary case as well. That is, it outputs a match if and only if:
If the match completes within the specified time duration, then the event is output as soon as it happens. That is, if the match can be output, it is output with the timestamp at which it completes. The WITHIN
clause does not wait for the time duration to expire as the DURATION
clause does.
When the WITHIN
clause duration expires, it discards any potential candidate matches which are incomplete.
For more information, see Section 19.12.4, "Pattern Detection With the WITHIN Clause".
Note: You cannot use a |
The DURATION
clause is an optional clause that you should use only when writing a query involving non-event detection. Non-event detection is the detection of a situation when a certain event which should have occurred in a particular time limit does not occur in that time frame.
Using this clause, a match is reported only when the regular expression in the PATTERN
clause is matched completely and no other event or input arrives until the duration specified in the DURATION
clause expires. The duration is measured from the time of arrival of the first event in the pattern match.
You must use the INCLUDE TIMER EVENTS
clause when using the DURATION
clause. For more information, see Section 19.10, "INCLUDE TIMER EVENTS Clause".
This section describes:
Note: You cannot use a |
The duration can be specified as a constant value, such as 10. Optionally, you may specify a time unit such as seconds or minutes (see time_unit::=); the default time unit is seconds.
Consider the query tkpattern_q59
in Example 19-21 that uses DURATION 10
to specify a delay of 10 s (10000 ms) and the data stream tkpattern_S19
in Example 19-22. Stream tkpattern_S19
has schema (c1 integer)
. The query returns the stream in Example 19-23.
Example 19-21 MATCH_RECOGNIZE with Fixed Duration DURATION Clause Query
Example 19-22 MATCH_RECOGNIZE with Fixed Duration DURATION Clause Stream Input
Example 19-23 MATCH_RECOGNIZE with Fixed DURATION Clause Stream Output
The tuple at time 1000 matches A
.
Since the duration is 10 we output a match as soon as input at time 1000+10000=11000
is received (the one with the value 12). Since the sequence of tuples from 1000 through 9000 match the pattern AB*
and nothing else a match is reported as soon as input at time 11000 is received.
The next match starts at 15000 with the tuple at that time matching A
. The next tuple that arrives is at 27000. So here also we have tuples satisfying pattern AB*
and nothing else and hence a match is reported at time 15000+10000=25000
. Further output is generated by following similar logic.
For more information, see "Fixed Duration Non-Event Detection".
When you specify a MULTIPLES OF
clause, it indicates recurring non-event detection. In this case an output is sent at the multiples of duration value as long as there is no event after the pattern matches completely.
Consider the query tkpattern_q75
in Example 19-24 that uses DURATION MULTIPLES OF 10
to specify a delay of 10 s (10000 ms) and the data stream tkpattern_S23
in Example 19-25. Stream tkpattern_S23
has schema (c1 integer)
. The query returns the stream in Example 19-26.
Example 19-24 MATCH_RECOGNIZE with Variable Duration DURATION MULTIPLES OF Clause Query
Example 19-25 MATCH_RECOGNIZE with Variable Duration DURATION MULTIPLES OF Clause Stream Input
Example 19-26 MATCH_RECOGNIZE with Variable Duration DURATION MULTIPLES OF Clause Stream Output
The execution here follows similar logic to that of the example above for just the DURATION
clause (see "Fixed Duration Non-Event Detection"). The difference comes for the later outputs. The tuple at 72000 matches A
and then there is nothing else after that. So the pattern AB*
is matched and we get output at 82000. Since we have the MULTIPLES OF
clause and duration 10 we see outputs at time 92000, 102000, and so on.
Use this clause in conjunction with the DURATION
clause for non-event detection queries.
Typically, in most pattern match queries, a pattern match output is always triggered by an input event on the input stream over which pattern is being matched. The only exception is non-event detection queries where there could be an output triggered by a timer expiry event (as opposed to an explicit input event on the input stream).
pattern_inc_timer_evs_clause::=
(pattern_clause::=, pattern_skip_match_clause::=, pattern_definition_clause::=, duration_clause::=, subset_clause::=)
For more information, see Section 19.9, "DURATION Clause".
Using this clause, you can group together one or more correlation variables that are defined in the DEFINE
clause. You can use this named subset in the MEASURES
and DEFINE
clauses just like any other correlation variable.
For example:
The right-hand side of the subset ((Z,X)
) is a comma-separated list of one or more correlation variables as defined in the PATTERN
clause.
The left-hand side of the subset (S1
) is the union of the correlation variables on the right-hand side.
You cannot include a subset variable in the right-hand side of a subset.
(non_mt_subset_definition_list::=)
non_mt_subset_definition_list::=
(subset_name::=, non_mt_corr_list::=)
Consider the query q55
in Example 19-27 and the data stream S11
in Example 19-28. Stream S11
has schema (c1 integer, c2 integer)
. This example defines subsets S1
through S6
. This query outputs a match if the c2
attribute values in the input stream form the shape of the English letter W. Now suppose we want to know the sum of the values of c2
for those tuples which form the incrementing arms of this W shape. The correlation variable X
represents tuples that are part of the first incrementing arm and Z
represent the tuples that are part of the second incrementing arm. So we need some way to group the tuples that match both. Such a requirement can be captured by defining a SUBSET
clause as the example shows.
Subset S4
is defined as (X,Z)
. It refers to the tuples in the input stream that match either X
or Z
. This subset is used in the MEASURES
clause statement sum(S4.c2) as sumIncrArm
. This computes the sum of the value of c2
attribute in the tuples that match either X
or Z
. A reference to S4.c2
in a DEFINE
clause like S4.c2 = 10
will refer to the value of c2
in the latest among the last tuple that matched X
and the last tuple that matched Z
.
Subset S6
is defined as (Y)
. It refers to all the tuples that match correlation variable Y
.
The query returns the stream in Example 19-29.
Example 19-27 MATCH_RECOGNIZE with SUBSET Clause Query
Example 19-28 MATCH_RECOGNIZE with SUBSET Clause Stream Input
Example 19-29 MATCH_RECOGNIZE with SUBSET Clause Stream Output
For more information, see:
The following examples illustrate basic MATCH_RECOGNIZE
practices:
For more examples, see Oracle Fusion Middleware Getting Started Guide for Oracle Complex Event Processing.
Consider the stock fluctuations that Figure 19-1 shows. This data can be represented as a stream of stock ticks (index number or time) and stock price. Figure 19-1 shows a common trading behavior known as a double bottom pattern between days 1 and 9 and between days 12 and 19. This pattern can be visualized as a W-shaped change in stock price: a fall (X
), a rise (Y
), a fall (W
), and another rise (Z
).
Example 19-30 shows a query q
on stream S2
of stock price events with schema symbol
, stockTick
, and price
. This query detects double bottom patterns on the incoming stock trades using the PATTERN
clause (A W+ X+ Y+ Z+
). The correlation names in this clause are:
A
: corresponds to the start point of the double bottom pattern. Because correlation name A
is true for every input, it is not defined in the DEFINE
clause. If you specify a correlation name that is not defined in the DEFINE
clause, it is considered to be true for every input.
W
+: corresponds to the first decreasing arm of the double bottom pattern. It is defined by W.price < prev(W.price)
. This definition implies that the current price is less than the previous one.
X+
: corresponds to the first increasing arm of the double bottom pattern. Y+
: corresponds to the second decreasing arm of the double bottom pattern. Z+
: corresponds to the second increasing arm of the double bottom pattern. Example 19-30 Simple Pattern Detection: Query
Consider the stock fluctuations that Figure 19-2 shows. This data can be represented as a stream of stock ticks (index number or time) and stock price. In this case, the stream contains data for more than one stock ticker symbol. Figure 19-2 shows a common trading behavior known as a double bottom pattern between days 1 and 9 and between days 12 and 19 for stock BOFA. This pattern can be visualized as a W-shaped change in stock price: a fall (X
), a rise (Y
), a fall (W
), and another rise (Z
).
Example 19-31 shows a query q
on stream S2
of stock price events with schema symbol
, stockTick
, and price
. This query detects double bottom patterns on the incoming stock trades using the PATTERN
clause (A W+ X+ Y+ Z+
). The correlation names in this clause are:
A
: corresponds to the start point of the double bottom pattern. W
+: corresponds to the first decreasing arm of the double bottom pattern as defined by W.price < prev(W.price)
, which implies that the current price is less than the previous one. X+
: corresponds to the first increasing arm of the double bottom pattern. Y+
: corresponds to the second decreasing arm of the double bottom pattern. Z+
: corresponds to the second increasing arm of the double bottom pattern. The query partitions the input stream by stock ticker symbol using the PARTITION BY
clause and applies this PATTERN
clause to each logical stream.
Example 19-31 Pattern Detection With PARTITION BY: Query
Consider the query q1
in Example 19-32 and the data stream S
in Example 19-33. Stream S
has schema (c1 integer)
. The query returns the stream in Example 19-34.
Example 19-32 Pattern Detection With Aggregates: Query
Consider the queries in Example 19-35 and Example 19-36 and the data stream S
in Example 19-37. Stream S
has schema (c1 integer, c2 integer)
. Table 19-3 compares the output of these queries.
Example 19-35 PATTERN Clause and WITHIN Clause
Example 19-36 PATTERN Clause and WITHIN INCLUSIVE Clause
Example 19-37 Pattern Detection With the WITHIN Clause: Stream Input
Table 19-3 WITHIN and WITHIN INCLUSIVE Query Output
Query queryWithin | Query queryWithinInclusive |
---|---|
Timestamp Tuple Kind Tuple 3000: + 100,300, 6000: + 400,600, 9000: + 800,900, | Timestamp Tuple Kind Tuple 4000: + 100,400, 11000: + 800,1000, |
As Table 19-3 shows for the queryWithin
query, the candidate match starts with the event at TimeStamp=1000
and since the WITHIN
clause duration is 3 seconds, the query will output the match only if it completes before the event at TimeStamp=4000
. When the query receives the event at TimeStampe=4000
, the longest match up to that point (since we are not using ALL MATCHES
) is output. Note that although the event at TimeStamp=4000
matches B
, it is not included in the match. The next match starts with the event at TimeStamp=4000
since that event also matches A
and the previous match ends at TimeStamp=3000
.
As Table 19-3 shows for the queryWithinInclusive
query, the candidate match starts with the event at TimeStamp=1000
. When the query receives the event at TimeStamp=4000
, that event is included in the match because the query uses WITHIN INCLUSIVE
and the event matches B
. Note that although the event at TimeStamp=5000
matches B
, the pattern is not grown further since it exceeds the duration (3 seconds) measured from the start of the match (TimeStamp=1000
). Since this match ends at TimeStamp=4000
and we are not using ALL MATCHES
, the next match does not start at TimeStamp=4000
, even though it matches A
.
For more information, see:
Consider an object that moves among five different rooms. Each time it starts from room 1, it must reach room 5 within 5 minutes. Figure 19-3 shows the object's performance. This data can be represented as a stream of time and room number. Note that when the object started from room 1 at time 1, it reached room 5 at time 5, as expected. However, when the object started from room 1 at time 6, it failed to reach room 5 at time 11; it reached room 5 at time 12. When the object started from room 1 at time 15, it was in room 5 at time 20, as expected. However, when the object started from room 1 at time 23, it failed to reach room 5 at time 28; it reached room 5 at time 30. The successes at times 5 and 20 are considered events: the arrival of the object in room 5 at the appropriate time. The failures at time 11 and 28 are considered non-events: the expected arrival event did not occur. Using Oracle CQL, you can query for such non-events.
Example 19-38 shows query q
on stream S
(with schema c1
integer representing room number) that detects these non-events. Each time the object fails to reach room 5 within 5 minutes of leaving room 1, the query returns the time of departure from room 1.
Example 19-38 Fixed Duration Non-Event Detection: Query
For more information, see Section 19.9, "DURATION Clause".
This chapter describes data definition language (DDL) statements in Oracle Continuous Query Language (Oracle CQL).
Oracle CQL supports the following DDL statements:
Note: In stream input examples, lines beginning with |
For more information, see:
Purpose
Use the query statement to define a Oracle CQL query that you reference by identifier
in subsequent Oracle CQL statements.
Prerequisites
If your query references a stream or view, then the stream or view must already exist.
If the query already exists, Oracle CEP server throws an exception.
For more information, see:
Syntax
You express a query in a <query></query>
element as Example 20-1 shows.
The query
element has one attribute:
id
: Specify the identifier
as the query
element id
attribute. The id
value must conform with the specification given by identifier::=.
Example 20-1 Query in a <query></query> Element
query::=
(sfw_block::=, idstream_clause::=, binary::=, using_clause::=)
sfw_block::=
(select_clause::=, from_clause::=, opt_where_clause::=, opt_group_by_clause::=, order_by_clause::=, order_by_top_clause::=, opt_having_clause::=)
projterm::=
from_clause::=
(non_mt_relation_list::=, relation_variable::=, non_mt_cond_list::=)
(identifier::=, window_type::=, pattern_recognition_clause::=, xmltable_clause::=, object_expr::=, datatype::=, table_clause::=)
window_type::=
(identifier::=, non_mt_attr_list::=, time_spec::=)
table_clause::=
(object_expr::=, identifier::=, datatype::=)
(pattern_partition_clause::=, order_by_list::=)
orderterm::=
(order_expr::=, null_spec::=, asc_desc::=)
null_spec::=
asc_desc::=
binary::=
using_clause::=
usinglist::=
(xmlnamespace_clause::=, const_string::=, xqryargs_list::=, xtbl_cols_list::=)
Semantics
named_query
Specify the Oracle CQL query statement itself (see "query").
For syntax, see "Query".
query
You can create an Oracle CQL query from any of the following clauses:
sfw_block
: a select, from, and other optional clauses (see "sfw_block"). binary
: an optional set operation clause (see "binary"). xstream_clause
: apply an optional relation-to-stream operator to your sfw_block
or binary
clause to control how the query returns its results (see "idstream_clause"). For syntax, see query::=.
sfw_block
Specify the select, from, and other optional clauses of the Oracle CQL query. You can specify any of the following clauses:
select_clause
: the stream elements to select from the stream or view you specify (see "select_clause"). from_clause
: the stream or view from which your query selects (see "from_clause"). opt_where_clause
: optional conditions your query applies to its selection (see "opt_where_clause") opt_group_by_clause
: optional grouping conditions your query applies to its results (see "opt_group_by_clause") order_by_clause
: optional ordering conditions your query applies to its results (see "order_by_clause") order_by_top_clause
: optional ordering conditions your query applies to the top-n
elements in its results (see "order_by_top_clause") opt_having_clause
: optional clause your query uses to restrict the groups of returned stream elements to those groups for which the specified condition
is TRUE
(see "opt_having_clause") For syntax, see sfw_block::= (parent: query::=).
select_clause
Specify the select clause of the Oracle CQL query statement.
If you specify the asterisk (*
), then this clause returns all tuples, including duplicates and nulls.
Otherwise, specify the individual stream elements you want (see "non_mt_projterm_list").
Optionally, specify distinct
if you want Oracle CEP to return only one copy of each set of duplicate tuples selected. Duplicate tuples are those with matching values for each expression in the select list. For an example, see "Select and Distinct Examples".
For syntax, see select_clause::= (parent: sfw_block::=).
non_mt_projterm_list
Specify the projection term ("projterm") or comma separated list of projection terms in the select clause of the Oracle CQL query statement.
For syntax, see non_mt_projterm_list::= (parent: select_clause::=).
projterm
Specify a projection term in the select clause of the Oracle CQL query statement. You can select any element from any of stream or view in the from_clause
(see "from_clause") using the identifier
of the element.
Optionally, you can specify an arithmetic expression on the projection term.
Optionally, use the AS
keyword to specify an alias for the projection term instead of using the stream element name as is.
For syntax, see projterm::= (parent: non_mt_projterm_list::=).
from_clause
Specify the from clause of the Oracle CQL query statement by specifying the individual streams or views from which your query selects (see "non_mt_relation_list").
To perform an outer join, use the LEFT
or RIGHT OUTER JOIN ... ON
syntax. To perform an inner join, use the WHERE
clause.
For more information, see:
For syntax, see from_clause::= (parent: sfw_block::=).
non_mt_relation_list
Specify the stream or view ("relation_variable") or comma separated list of streams or views in the from clause of the Oracle CQL query statement.
For syntax, see non_mt_relation_list::= (parent: from_clause::=).
relation_variable
Use the relation_variable
statement to specify a stream or view from which the Oracle CQL query statement selects.
You can specify a previously registered or created stream or view directly by its identifier
you used when you registered or created the stream or view. Optionally, use the AS
keyword to specify an alias for the stream or view instead of using its name as is.
To specify a built-in stream-to-relation operator, use a window_type
clause (see "window_type"). Optionally, use the AS
keyword to specify an alias for the stream or view instead of using its name as is.
To apply advanced comparisons optimized for data streams to the stream or view, use a pattern_recognition_clause
(see "pattern_recognition_clause"). Optionally, use the AS
keyword to specify an alias for the stream or view instead of using its name as is.
To process xmltype
stream elements using XPath and XQuery, use an xmltable_clause
(see "xmltable_clause"). Optionally, use the AS
keyword to specify an alias for the stream or view instead of using its name as is.
To access, as a relation, the multiple rows returned by a data cartridge function in the FROM
clause of an Oracle CQL query, use a table_clause
(see "table_clause").
For more information, see:
For syntax, see relation_variable::= (parent: non_mt_relation_list::=).
window_type
Specify a built-in stream-to-relation operator.
For more information, see Section 1.1.3, "Stream-to-Relation Operators (Windows)".
For syntax, see window_type::= (parent: relation_variable::=).
table_clause
Use the data cartridge TABLE
clause to access the multiple rows returned by a data cartridge function in the FROM
clause of an Oracle CQL query.
The TABLE
clause converts the set of returned rows into an Oracle CQL relation. Because this is an external relation, you must join the TABLE
function clause with a stream. Oracle CEP invokes the data cartridge method only on the arrival of elements on the joined stream.
Use the optional OF
keyword to specify the type contained by the returned array type or Collection
type.
Use the AS
keyword to specify an alias for the object_expr
and for the returned relation.
Note the following:
Collection
type. TABLE
function clause with a stream. For examples, see:
For more information, see:
For syntax, see table_clause::= (parent: relation_variable::=).
time_spec
Specify the time over which a range or partitioned range sliding window should slide.
Default: if units are not specified, Oracle CEP assumes [second|seconds]
.
For more information, see "Range-Based Stream-to-Relation Window Operators" and "Partitioned Stream-to-Relation Window Operators".
For syntax, see time_spec::= (parent: window_type::=).
opt_where_clause
Specify the (optional) where clause of the Oracle CQL query statement.
Because Oracle CQL applies the WHERE
clause before GROUP BY
or HAVING
, if you specify an aggregate function in the SELECT
clause, you must test the aggregate function result in a HAVING
clause, not the WHERE
clause.
In Oracle CQL (as in SQL), the FROM
clause is evaluated before the WHERE
clause. Consider the following Oracle CQL query:
In this query, the S MATCH_RECOGNIZE (....) as T
is like a subquery in the FROM
clause and is evaluated first, before the WHERE
clause. Consequently, you rarely use both a MATCH_RECOGNIZE
clause and a WHERE
clause in the same Oracle CQL query. Instead, you typically use views to apply the required WHERE
clause to a stream and then select from the views in a query that applies the MATCH_RECOGNIZE
clause.
For more information, see:
For syntax, see opt_where_clause::= (parent: sfw_block::=).
opt_group_by_clause
Specify the (optional) GROUP BY
clause of the Oracle CQL query statement. Use the GROUP
BY
clause if you want Oracle CEP to group the selected stream elements based on the value of expr
(s) and return a single (aggregate) summary result for each group.
Expressions in the GROUP
BY
clause can contain any stream elements or views in the FROM
clause, regardless of whether the stream elements appear in the select list.
The GROUP
BY
clause groups stream elements but does not guarantee the order of the result set. To order the groupings, use the ORDER
BY
clause.
Because Oracle CQL applies the WHERE
clause before GROUP BY
or HAVING
, if you specify an aggregate function in the SELECT
clause, you must test the aggregate function result in a HAVING
clause, not the WHERE
clause.
For more information, see:
For syntax, see opt_group_by_clause::= (parent: sfw_block::=).
order_by_clause
Specify the ORDER BY
clause of the Oracle CQL query statement as a comma-delimited list ("order_by_list") of one or more order terms (see "orderterm"). Use the ORDER
BY
clause to specify the order in which stream elements on the left-hand side of the rule are to be evaluated. The expr
must resolve to a dimension or measure column.
For more information, see Section 18.2.9, "Sorting Query Results".
For syntax, see order_by_clause::= (parent: sfw_block::=).
order_by_top_clause
Specify the ORDER BY
clause of the Oracle CQL query statement as a comma-delimited list ("order_by_list") of one or more order terms (see "orderterm") followed by a ROWS
keyword and integer number (n
) of elements. Use this form of the ORDER BY
clause to select the top-n
elements over a stream or relation. This clause always returns a relation.
Consider the following example queries:
For more information, see
For syntax, see order_by_top_clause::= (parent: sfw_block::=).
order_by_list
Specify a comma-delimited list of one ore more order terms (see "orderterm") in an (optional) ORDER BY
clause.
For syntax, see order_by_list::= (parent: order_by_clause::=).
orderterm
A stream element (attr::=) or positional index (constant int) to a stream element. Optionally, you can configure whether or not nulls are ordered first or last using the NULLS
keyword (see "null_spec").
order_expr (order_expr::=) can be an attr
or constant_int
. The attr
(attr::=) can be any stream element or pseudo column.
For syntax, see orderterm::= (parent: order_by_list::=).
null_spec
Specify whether or not nulls are ordered first (NULLS FIRST
) or last (NULLS LAST
) for a given order term (see "orderterm").
For syntax, see null_spec::= (parent: orderterm::=).
asc_desc
Specify whether an order term is ordered in ascending (ASC
) or descending (DESC
) order.
For syntax, see asc_desc::= (parent: orderterm::=).
opt_having_clause
Use the HAVING
clause to restrict the groups of returned stream elements to those groups for which the specified condition
is TRUE
. If you omit this clause, then Oracle CEP returns summary results for all groups.
Specify GROUP
BY
and HAVING
after the opt_where_clause
. If you specify both GROUP
BY
and HAVING
, then they can appear in either order.
Because Oracle CQL applies the WHERE
clause before GROUP BY
or HAVING
, if you specify an aggregate function in the SELECT
clause, you must test the aggregate function result in a HAVING
clause, not the WHERE
clause.
For more information, see:
For an example, see "HAVING Example".
For syntax, see opt_having_clause::= (parent: sfw_block::=).
binary
Use the binary
clause to perform set operations on the tuples that two streams or views return.
For examples, see:
For syntax, see binary::= (parent: query::=).
idstream_clause
Use an idstream_clause
to specify an IStream
or DStream
relation-to-stream operator that applies to the query.
For more information, see Section 1.1.4, "Relation-to-Stream Operators".
For syntax, see idstream_clause::= (parent: query::=).
using_clause
Use a DIFFERENCE USING
clause to succinctly detect differences in the IStream
or DStream
of a query.
For more information, see Section 18.2.10, "Detecting Differences in Query Results".
For syntax, see using_clause::= (parent: query::=).
usinglist
Use a usinglist
clause to specify the columns to use to detect differences in the IStream
or DStream
of a query. You may specify columns by:
Example 20-2 shows attribute name c1
in the DIFFERENCE USING
clause usinglist
.
Example 20-2 shows alias logval
in the DIFFERENCE USING
clause usinglist
.
Specify position as a constant, positive integer starting at 1, reading from left to right.
Example 20-2 specifies the result of expression funct(c2, c3)
by its position (3) in the DIFFERENCE USING
clause usinglist
.
Example 20-2 Specifying the usinglist in a DIFFERENCE USING Clause
For more information, see Section 18.2.10, "Detecting Differences in Query Results".
For syntax, see usinglist::= (parent: using_clause::=).
xmltable_clause
Use an xmltable_clause
to process xmltype
stream elements using XPath and XQuery. You can specify a comma separated list (see xtbl_cols_list::=) of one or more XML table columns (see xtbl_col::=), with or without an XML namespace.
For examples, see:
For syntax, see xmltable_clause::= (parent: relation_variable::=).
pattern_recognition_clause
Use a pattern_recognition_clause
to perform advanced comparisons optimized for data streams.
For more information and examples, see Chapter 19, "Pattern Recognition With MATCH_RECOGNIZE".
For syntax, see pattern_recognition_clause::= (parent: relation_variable::=).
Examples
The following examples illustrate the various semantics that this statement supports:
For more examples, see Chapter 18, "Oracle CQL Queries, Views, and Joins".
Simple Query Example
Example 20-3 shows how to register a simple query q0
that selects all (*
) tuples from stream OrderStream
where stream element orderAmount
is greater than 10000.
Example 20-3 REGISTER QUERY
HAVING Example
Consider the query q4
in Example 20-4 and the data stream S2
in Example 20-5. Stream S2
has schema (c1 integer, c2 integer)
. The query returns the relation in Example 20-6.
Example 20-4 HAVING Query
BINARY Example: UNION and UNION ALL
Given the relations R1
and R2
in Example 20-8 and Example 20-9, respectively, the UNION
query q1
in Example 20-7 returns the relation in Example 20-10 and the UNION ALL
query q2
in Example 20-7 returns the relation in Example 20-11.
Example 20-7 Set Operators: UNION Query
Example 20-8 Set Operators: UNION Relation Input R1
Example 20-9 Set Operators: UNION Relation Input R2
Example 20-10 Set Operators: UNION Relation Output
Example 20-11 Set Operators: UNION ALL Relation Output
BINARY Example: INTERSECT
Given the relations R1
and R2
in Example 20-13 and Example 20-14, respectively, the INTERSECT
query q1
in Example 20-12 returns the relation in Example 20-15.
Example 20-13 Set Operators: INTERSECT Relation Input R1
Example 20-14 Set Operators: INTERSECT Relation Input R2
Example 20-15 Set Operators: INTERSECT Relation Output
BINARY Example: MINUS
Given the relations R1
and R2
in Example 20-17 and Example 20-18, respectively, the MINUS
query q1
in Example 20-16 returns the relation in Example 20-19.
Example 20-17 Set Operators: MINUS Relation Input R1
Example 20-18 Set Operators: MINUS Relation Input R2
Example 20-19 Set Operators: MINUS Relation Output
BINARY Example: IN and NOT IN
In this usage, the query will be a binary query.
Note: You cannot combine this usage with |
Consider the views V3
and V4
and the query Q1
in Example 20-20 and the data streams S3
in Example 20-21 (with schema (c1 integer, c2 integer)
) and S4
in Example 20-22 (with schema (c1 integer, c2 integer)
). In this condition test, the numbers and data types of attributes in left relation should be same as number and types of attributes of the right relation. Example 20-23 shows the relation that the query returns.
Example 20-20 IN and NOT IN as a Set Operation: Query
Example 20-21 IN and NOT IN as a Set Operation: Stream S3 Input
Example 20-22 IN and NOT IN as a Set Operation: Stream S4 Input
Example 20-23 IN and NOT IN as a Set Operation: Relation Output
Select and Distinct Examples
Consider the query q1
in Example 20-24. Given the data stream S
in Example 20-25, the query returns the relation in Example 20-26.
Example 20-24 Select DISTINCT Query
Example 20-25 Select DISTINCT Stream Input
XMLTABLE Query Example
Consider the query q1
in Example 20-27 and the data stream S
in Example 20-28. Stream S
has schema (c1 xmltype)
. The query returns the relation in Example 20-29. For more information, see Section 18.2.6, "XMLTable Query".
Example 20-27 XMLTABLE Query
Example 20-28 XMLTABLE Stream Input
Example 20-29 XMLTABLE Relation Output
XMLTABLE With XML Namespaces Query Example
Consider the query q1
in Example 20-30 and the data stream S1
in Example 20-31. Stream S1
has schema (c1 xmltype)
. The query returns the relation in Example 20-32. For more information, see Section 18.2.6, "XMLTable Query".
Example 20-30 XMLTABLE With XML Namespaces Query
Example 20-31 XMLTABLE With XML Namespaces Stream Input
Example 20-32 XMLTABLE With XML Namespaces Relation Output
Data Cartridge TABLE Query Example: Iterator
Consider a data cartridge (MyCartridge
) with method getIterator
as Example 20-33 shows.
Example 20-33 MyCartridge Method getIterator
Consider the query q1
in Example 20-34. Given the data stream S0
in Example 20-35, the query returns the relation in Example 20-36.
Example 20-34 TABLE Query: Iterator
Example 20-35 TABLE Query Stream Input: Iterator
Example 20-36 TABLE Query Output: Iterator
Data Cartridge TABLE Query Example: Array
Consider a data cartridge (MyCartridge
) with method getArray
as Example 20-37 shows.
Example 20-37 MyCartridge Method getArray
Consider the query q1
in Example 20-38. Given the data stream S0
in Example 20-39, the query returns the relation in Example 20-40.
Example 20-38 TABLE Query: Array
Example 20-39 TABLE Query Stream Input: Array
Example 20-40 TABLE Query Output: Array
Data Cartridge TABLE Query Example: Collection
Consider a data cartridge (MyCartridge
) with method getCollection
as Example 20-41 shows.
Example 20-41 MyCartridge Method getCollection
Consider the query q1
in Example 20-42. Given the data stream S0
in Example 20-43, the query returns the relation in Example 20-44.
Example 20-42 TABLE Query: Collection
Example 20-43 TABLE Query Stream Input: Collection
Example 20-44 TABLE Query Output: Collection
ORDER BY ROWS Query Example
Consider the query q1
in Example 20-45. Given the data stream S0
in Example 20-46, the query returns the relation in Example 20-47.
Example 20-45 ORDER BY ROWS Query
Purpose
Use view statement to create a view over a base stream or relation that you reference by identifier
in subsequent Oracle CQL statements.
Prerequisites
For more information, see:
Syntax
You express the a view in a <view></view>
element as Example 20-48 shows.
The view
element has two attributes:
id
: Specify the identifier
as the view
element id
attribute. The id
value must conform with the specification given by identifier::=.
schema
: Optionally, specify the schema of the view as a space delimited list of attribute names. Oracle CEP server infers the types.
Example 20-48 View in a <view></view> Element
The body of the view has the same syntax as a query. For more information, see "Query".
Examples
The following examples illustrate the various semantics that this statement supports. For more examples, see Chapter 18, "Oracle CQL Queries, Views, and Joins".
Registering a View Example
Example 20-49 shows how to register view v2
.
count
in MATCH_RECOGNIZE
clause, 19.1.3.5first
in MATCH_RECOGNIZE
clause, 19.1.3.6last
in MATCH_RECOGNIZE
clause, 19.1.3.6prev
in MATCH_RECOGNIZE
clause, 19.1.4MATCH_RECOGNIZE
clause, 19.1.3AggregationFunctionFactory
, 13.2.2 aliases ALIASES
element, 2.7.2AS
operator, 2.7.1ALL MATCHES
clause ALL
operator, 6.2 alternation operator, 4.1.2 AND
condition, 6.3, 6.3 ANY
operator, 6.2 ANYINTERACT geometric relation operator, 16.2.7 API AggregationFunctionFactory
, 13.2.2APPLICATION_NO_AUTO_IMPORT_CLASS_SPACE
, 15.1.2.2 arguments of operators, 4 arith_expr syntax, 5.1 arith_expr_list syntax, 5.1 array_type AS
asc_desc syntax, 20.1 asin function, 12.1 atan function, 12.1 atan2 function, 12.1 attr attrspec autoCorrelation function, 11.1.2 avg function, 9.1.1 BETWEEN
conditions, 6.5BIGINT
datatype, 2.1.1BOOLEAN
datatype, 2.1.1 bufferPolygon Geometry method, 16.2.7 built-in datatypes, 2.1.1 built-in functions where
, group by
, and having
clause, 9.1.1, 9.1.1where
, group by
, and having
clause, 11.1.2java.lang.Math
, 1.1.11, 12 single-row BYTE
datatype, 2.1.1 CDATA
, 1.2.1 ceil function, 10.1 ceil1 function, 12.1 CEP DDL CHAR
datatype, 2.1.1 character sets and multibyte characters, 2.8.1 chiSquare function, 10.1 chiSquareComplemented function, 10.1 class_name classpath where
, group by
, and having
clause, 11.1.2.cqlx
files, 1.2.1 datatype comparison rules, 2.2 datatypes, 2.1 expressions, 5 format models, 2.4 joins, 18 lexical conventions, 1.2.1 literals, 2.3 MATCH_RECOGNIZE
, 19 naming rules, 2.8.1 nulls operators, 4 Oracle tools support of, 1.4 pattern recognition pseudocolumns queries, 18 syntax, 1.2.3 views, 18 CQL data cartridge statements IN
and NOT IN
, 20.1INTERSECT
, 20.1MINUS
, 20.1UNION
and UNION ALL
, 20.1.cqlx
CDATA
, 1.2.1TABLE
query, 18.2.7, 20.1 types view schema, 20.1 data destinations data sources BIGINT
, 2.1.1BOOLEAN
, 2.1.1BYTE
, 2.1.1CHAR
, 2.1.1DOUBLE
, 2.1.1 enum, 2.1.3 evaluating with functions, 2.1.3 FLOAT
, 2.1.1 format models INTEGER
, 2.1.1 INTERVAL
, 2.1.1 literals OBJECT
, 2.1.1 opaque, 2.1.1 Oracle JDBC data cartridge, 17.1.2 Oracle Spatial, 16.1.2.1 other, 2.1.2, 2.1.3 TIMESTAMP
, 2.1.1 type aliases, 2.7.2.1 unsupported, 2.1.2, 2.1.3 user-defined functions, 13.1.2 XMLTYPE
, 2.1.1 datetime literals day, 7.1 days, 7.1 DDL decimal characters, 2.3.2.2 decode decode syntax, 5.1 DEFINE
clause derived stream, 1.1.1.2, 1.1.1.2 distance Geometry method, 16.2.7 distinct DOUBLE
datatype, 2.1.1 double quotes, 2.3.1 Dstream
relation-to-stream operator, 4.1.2 DURATION
clause, 19.9 DURATION MULTIPLES OF
clause, 19.9 duration_clause syntax, 19.9 FLOAT
datatype, 2.1.1 floor function, 10.1 floor1 function, 12.1 format models from_clause syntax, 18.2.1.3, 18.4.2, 20.1 func_expr syntax, 5.1 func_name syntax, 5.1 functions AggregationFunctionFactory
, 13.2.2java.lang.Math
, 1.1.11ELEMENT_TIME
, 3.2.2.2GROUP BY
clause, 20.1ORDER BY
clause, 19.6PARTITION BY
clause, 19.5HAVING
clause, 20.1IN
clause, 20.1 in conditions, 6.8 in_condition_membership syntax, 6.8.2 in_condition_set syntax, 20.1 INCLUDE TIMER EVENTS
clause, 19.10 incompleteBeta function, 10.1 incompleteGamma function, 10.1 incompleteGammaComplement function, 10.1 incremental computation inequality test, 6.2 inner joins, 18.4.1 INSIDE geometric relation operator, 16.2.7 INTEGER
datatype, 2.1.1 integer syntax, 2.3.2.1 integers INTERSECT
clause, 20.1 INTERVAL
datatype, 2.1.1 interval_value syntax, 2.3.4.1, 7.1 IS NOT NULL
condition, 6.6 IS NULL
condition, 6.6 is-total-order, 1.1.13 Istream
relation-to-stream operator, 4.1.2 java.lang
package, 15.1.1 limitations, 15.1.5 method resolution, 15.1.3 Oracle CQL query support, 15.1.5 queries unqualified types, 15.1.1 java.lang.Math
built-in functions, 12 jc:jdbc-ctx
, 17.1.4.2 jdbc:jdbc-context
, 17.1.4.1 jn function, 10.1 joins CDATA
, 1.2.1, 1.2.1.cqlx
, 1.2.1LIKE
condition, 6.4, 8.1 like_condition syntax, 6.4 link ORDER BY
, 18.2.9RAWTOHEX
, 8.1MATCH_RECOGNIZE
clausecount
, 19.1.3.5count(*)
, 19.1.3.5count(identifier.*)
, 19.1.3.5count(identifier.attr)
, 19.1.3.5first
, 19.1.3.6last
, 19.1.3.6prev
, 19.1.4ALL MATCHES
clause correlation variables, 19.1 DEFINE
clause, 19.4 DURATION
clause, 19.9 DURATION MULTIPLES OF
clause, 19.9 examples WITHIN
clause, 19.12.4INCLUDE TIMER EVENTS
clause, 19.10 MEASURES
clause, 19.2 ORDER BY
clause, 19.6 PARTITION BY
clause, 19.5 PATTERN
clause SUBSET
clause, 19.11 WHERE
clause, 19.1.1 WITHIN
clause, 19.8 WITHIN INCLUSIVE
clause, 19.8 max function, 9.1.1 MBR MEASURES
clause, 19.2 median function, 11.1.2 methodname MINUS
clause, 20.1 minute, 7.1 minutes, 7.1 moment function, 11.1.2 mostSignificantBit function, 10.1 multibyte characters, 2.8.1 NOT
condition, 6.3, 6.3 NOT IN
clause, 20.1 null_conditions syntax, 6.6 null_spec syntax, 20.1 nulls IS NOT NULL
condition, 6.6IS NULL
condition, 6.6OBJECT
datatype, 2.1.1OCEP_JAVA_CARTRIDGE_CLASS_SPACE
, 15.1.2.2, 15.1.2.3ON
clause, 18.4.2Dstream
, 4.1.2Istream
, 4.1.2Rstream
, 4.1.2S[Partition By A1 ... Ak Rows N Range T]
, 4.1.2S[Partition By A1 ... Ak Rows N Range T1 Slide T2]
, 4.1.2S[Partition By A1 ... Ak Rows N]
, 4.1.2S[Now]
time-based, 4.1.2S[Range C on E]
constant value-based, 4.1.2S[Range T]
time-based, 4.1.2S[Range T1 Slide T2]
time-based, 4.1.2S[Range Unbounded]
time-based, 4.1.2S[Rows N]
tuple-based, 4.1.2S[Rows N1 slide N2]
tuple-based, 4.1.2OR
condition, 6.3, 6.3 Oracle JDBC data cartridge data cartridge name, 17.1.1 datatype mapping param
element, 17.2.1.2.1return-component-type
element, 17.2.1.2.2sql
element, 17.2.1.2.3ORDER BY
clause, 19.6 of SELECT
, 18.2.9 order by top, 20.1 rows, 20.1 ORDER BY ROWS
clause, 20.1 order_by_clause syntax, 18.2.9, 20.1 order_by_list syntax, 20.1 order_by_top_clause syntax, 20.1 order_expr syntax, 5.1 orderterm syntax, 20.1 ordsgenerator function, 16.2.7 outer join look-back, 18.4.2.3 outer joins, 18.4.2, 18.4.2.1, 18.4.2.2, 18.4.2.3 ON
clause, 18.4.2PARTITION BY
clause, 19.5 PATTERN
clause MATCH_RECOGNIZE
clause pattern_clause syntax, 19.3 pattern_def_dur_clause syntax, 19.1 pattern_definition_clause syntax, 19.4 pattern_inc_timer_evs_clause syntax, 19.10 pattern_measures_clause syntax, 19.2 pattern_partition_clause syntax, 19.5, 19.6 pattern_quantifier syntax, 19.3.1 pattern_recognition_clause syntax, 19.1 pattern_skip_match_clause syntax, 19.7 pattern-matching conditions poisson function, 10.1 poissonComplemented function, 10.1 pooledMean function, 11.1.2 pooledVariance function, 11.1.2 pow function, 12.1 precedence ELEMENT_TIME
GROUP BY
, 3.2.2.2PATTERN
, 3.2.2.3SELECT
, 3.2.2.1DIFFERENCE USING
, 18.2.10MATCH_RECOGNIZE
clause, 18.2.4ORDER_BY
, 18.2.9TABLE
, 18.2.7, 20.1XMLTABLE
, 18.2.6 query Rstream
relation-to-stream operator, 4.1.2 SERVER_CLASS_SPACE
, 15.1.2.3 set statements sfw_block syntax, 18.2.1.1, 20.1 signum function, 12.1 signum1 function, 12.1 simple comparison conditions, 6.2 simple joins, 18.4.1 simple queries, 18.2.2 simple_case syntax, 5.1 simple_case_list syntax, 5.1 sin function, 12.1 single quotes, 2.3.1 singleton match, 19.1.2 sinh function, 12.1 skew function, 11.1.2 slide SOME
operator, 6.2 sorting query results, 18.2.9 SQL99, 1.3 SQLX S[Partition By A1 ... Ak Rows N Range T]
, 4.1.2S[Partition By A1 ... Ak Rows N Range T1 Slide T2]
, 4.1.2S[Partition By A1 ... Ak Rows N]
, 4.1.2S[Now]
time-based, 4.1.2S[Range C on E]
constant value-based, 4.1.2S[Range T]
time-based, 4.1.2S[Range T1 Slide T2]
time-based, 4.1.2S[Range Unbounded]
time-based, 4.1.2S[Rows N]
tuple-based, 4.1.2S[Rows N1 slide N2]
tuple-based, 4.1.2SUBSET
clause, 19.11 subset_clause subset_definition syntax, 19.11 subset_name syntax, 19.11 sum function, 9.1.1 sumOfInversions function, 11.1.2 sumOfLogarithms function, 11.1.2 sumOfPowerDeviations function, 11.1.2 sumOfPowers function, 11.1.2 sumOfSquaredDeviations function, 11.1.2 sumOfSquares function, 11.1.2 synonyms. See aliases Syntax, 10.1 system time, 1.1.13 system timestamped, 1.1.13 systemtimestamp function, 8.1 TABLE
queries, 18.2.7, 20.1TIMESTAMP
TIMESTAMP
datatype, 2.1.1 timestamps to_bigint function, 8.1 to_boolean function, 8.1 to_char function, 8.1 to_double function, 8.1 to_float function, 8.1 to_Geometry Geometry method, 16.2.7 to_JGeometry Geometry method, 16.2.7 to_timestamp function, 8.1 todegrees function, 12.1 tools support UNION ALL
clause, 20.1 UNION
clause, 20.1 unreserved words, 7.1 unreserved_keyword syntax, 7.1 user-defined functions AggrFunctionImpl
, 13.2.2SingleElementFunction
, 13.2.1WHERE
clauseMATCH_RECOGNIZE
clause, 19.1.1Now
, 4.1.2S[Now]
time-based, 4.1.2 S[Partition By A1 ... Ak Rows N Range T]
, 4.1.2 S[Partition By A1 ... Ak Rows N Range T1 Slide T2]
, 4.1.2 S[Partition By A1 ... Ak Rows N]
, 4.1.2 S[Range C on E]
constant value-based, 4.1.2 S[Range T]
time-based, 4.1.2 S[Range T1 Slide T2]
time-based, 4.1.2 S[Range Unbounded]
time-based, 4.1.2 S[Rows N]
tuple-based, 4.1.2 S[Rows N1 slide N2]
tuple-based, 4.1.2 slide specification Unbounded
, 4.1.2 winsorizedMean function, 11.1.2 WITHIN
clause, 19.8 WITHIN INCLUSIVE
clause, 19.8 within_clause syntax, 19.8 WITHINDISTANCE geometric relation operator, 16.2.7 XMLTABLE
queries, 18.2.6 xmltable_clause syntax, 20.1 XMLTYPE
datatype, 2.1.1 XOR
condition, 6.3 xqryarg syntax, 7.1 xqryargs_list xsd dateTime
, 2.3.3Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.