

1 Introduction and Roadmap

This section describes the contents and organization of this guide.

	
Section 1.1, "Document Scope and Audience"

	
Section 1.2, "Guide to this Document"

	
Section 1.3, "Related Documentation"

1.1 Document Scope and Audience

Oracle Fusion Middleware Performance and Tuning Guide is for a target audience of Application developers, Oracle Fusion Middleware administrators, database administrators, and Web masters. This Guide assumes knowledge of Fusion Middleware Administration and hardware performance tuning fundamentals, WebLogic Server, XML, and the Java programming language.

1.2 Guide to this Document

	
This chapter, Chapter 1, "Introduction and Roadmap," introduces the objectives and organization of this guide.

	
Chapter 2, "Top Performance Areas," describes top tuning areas for Oracle Fusion Middleware and serves as a 'quick start' for tuning applications.

	
Chapter 3, "Performance Planning," describes the performance planning methodology and tuning concepts for Oracle Fusion Middleware.

	
Chapter 4, "Monitoring Oracle Fusion Middleware," describes how to monitor Oracle Fusion Middleware and its components to obtain performance data that can assist you in tuning the system and debugging applications with performance problems.

	
Chapter 5, "Oracle HTTP Server Performance Tuning," discusses the techniques for optimizing Oracle HTTP Server performance, the Web server component for Oracle Fusion Middleware. It provides a listener for Oracle WebLogic Server and the framework for hosting static pages, dynamic pages, and applications over the Web.

	
Chapter 6, "Oracle Dynamic Monitoring Service Performance Tuning" provides an overview and features available in the Oracle Dynamic Monitoring Service (DMS).

	
Chapter 7, "Oracle Metadata Service (MDS) Performance Tuning," provides tuning tips for Oracle Metadata Service (MDS). MDS is used by components such as Oracle WebCenter Framework and Oracle Application Development Framework to manage metadata.

	
Chapter 8, "Oracle Application Development Framework Performance Tuning," provides basic guidelines on how to maximize the performance and scalability of the ADF stack in applications. Oracle ADF is an end-to-end application framework that builds on Java Platform, Enterprise Edition (Java EE) standards and open-source technologies to simplify and accelerate implementing service-oriented applications. This chapter covers design time, configuration time, and deployment time performance considerations.

	
Chapter 9, "Oracle TopLink (EclipseLink) JPA Performance Tuning," provides some of the available performance options for Java Persistence API (JPA) entity architecture. Oracle TopLink includes EclipseLink as the JPA implementation.

	
Chapter 10, "Oracle Web Cache Performance Tuning," provides methods and guidelines for improving the performance of Oracle Application Server Web Cache (Oracle Web Cache). Oracle Web Cache is a content-aware server accelerator or reverse proxy that improves the performance, scalability, and availability of Web sites that run on Oracle Fusion Middleware.

	
Chapter 11, "General Tuning for SOA Suite Components," describes the common SOA infrastructure tuning parameters for configuring Oracle Service-Oriented Architecture (SOA) Suite components to improve performance. Oracle SOA Suite provides a complete set of service infrastructure components for designing, deploying, and managing SOA composite applications. Oracle SOA Suite enables services to be created, managed, and orchestrated into SOA composite applications. Composites enable you to easily assemble multiple technology components into one SOA composite application.

	
Chapter 12, "Oracle Business Rules Performance Tuning" describes the technology that enables automation of business rules; it also discusses the extraction of business rules from procedural logic such as Java code or BPEL processes.

	
Chapter 13, "Oracle BPEL Process Manager Performance Tuning," provides several BPEL property settings that can be configured to optimize performance at the process, domain, and application server levels. This chapter describes these property settings and provides recommendations on how to use them.

	
Chapter 14, "Oracle Mediator Performance Tuning," describes how to tune Oracle Mediator, a service engine within the Oracle SOA Service Infrastructure, for optimal performance. Oracle Mediator provides the framework to mediate between various providers and consumers of services and events. The Mediator service engine runs with the SOA Service Infrastructure Java EE application.

	
Chapter 15, "Oracle Business Process Management Performance Tuning" describes how to tune Oracle Service Bus (OSB) which provides connectivity, routing, mediation, management and also some process orchestration capabilities.

	
Chapter 16, "Oracle Human Workflow Performance Tuning," describes how to tune Oracle Human Workflow for optimal performance. Oracle Human Workflow is a service engine running in Oracle SOA Service Infrastructure that allows the execution of interactive human driven processes. A human workflow provides the human interaction support such as approve, reject, and reassign actions within a process or outside of any process. The Human Workflow service consists of a number of services that handle various aspects of human interaction with a business process.

	
Chapter 17, "Oracle Adapters Performance Tuning," describes how to tune Oracle Adapters for optimal performance. Oracle technology adapters integrate Oracle Application Server and Oracle Fusion Middleware components such as Oracle BPEL Process Manager (Oracle BPEL PM) or Oracle Mediator components to file systems, FTP servers, database queues (advanced queues, or AQ), Java Message Services (JMS), database tables, and message queues (MQ Series).

	
Chapter 18, "Oracle Business Activity Monitoring Performance Tuning," describes how to tune the Oracle Business Activity Monitoring dashboard application for optimal performance. Oracle Business Activity Monitoring (BAM) provides the tools for monitoring business services and processes in the enterprise.

	
Chapter 19, "User Messaging Service Performance Tuning," describes tips for tuning the User Messaging Service. Oracle User Messaging Service (Oracle UMS) enables two way communications between users and deployed applications. It has support for a variety of channels, such as E-mail, IM, SMS, and text-to-voice messages. Oracle UMS is integrated with Oracle Fusion Middleware components, such as Oracle BPEL PM, Oracle Human Workflow, Oracle BAM and Oracle WebCenter.

	
Chapter 20, "Oracle B2B Performance Tuning" provides tuning tips for Oracle B2B. Oracle B2B is an e-commerce gateway that enables the secure and reliable exchange of business documents between an enterprise and its trading partners. Oracle B2B supports business-to-business document standards, security, transports, messaging services, and trading partner management. With Oracle B2B used as a binding component within an Oracle SOA Suite composite application, end-to-end business processes can be implemented.

	
Chapter 21, "Oracle Service Bus Performance Tuning" provides basic and advanced tuning tips and design considerations for Oracle Service Bus.

	
Chapter 22, "Oracle Business Intelligence Performance Tuning" provides basic and advanced tuning tips for Oracle Business Intelligence.

	
Chapter 23, "Oracle Internet Directory Performance Tuning," provides guidelines on Oracle Internet Directory tuning and configuration requirements. Oracle Internet Directory is an LDAP Version 3-enabled service that enables fast retrieval and centralized management of information about dispersed users, network configuration, and other resources.

	
Chapter 24, "Oracle Virtual Directory Performance Tuning," provides tuning tips for Oracle Virtual Directory. Oracle Virtual Directory is an LDAP Version 3-enabled service that provides an abstracted view of one or more enterprise data sources. Oracle Virtual Directory consolidates multiple data sources into a single directory view, enabling you to integrate LDAP-aware applications with diverse directory server data stores.

	
Chapter 25, "Oracle Identity Federation Performance Tuning," provides tuning tips for Oracle Identity Federation, a standalone, self-contained federation server that enables single sign-on (SSO) and authentication in a multiple-domain identity network.

	
Chapter 26, "Oracle Fusion Middleware Security Performance Tuning," describes Oracle Platform Security for Java. Oracle Platform Security for Java is the Oracle Fusion Middleware security implementation for Java features such as Java Authentication and Authorization Service (JAAS) and Java EE security. This chapter describes how you can configure it for optimal performance.

	
Chapter 27, "Oracle WebCenter Portal Performance Tuning," provides suggested tuning tips for Oracle WebCenter including: Environment Configuration, Application Configuration and Back-End Services and Server Configuration.

	
Chapter 28, "Capacity Planning," discusses the process of determining what type of hardware and software configuration is required to meet application needs.

	
Chapter 29, "Using Clusters and High Availability Features," discusses the architecture, interaction, and dependencies of Oracle Fusion Middleware components, and explains how they can be deployed in a high availability architecture to maximize performance.

1.3 Related Documentation

For more information, see the following documents in the Oracle Fusion Middleware 11g Release 1 (11.1.1) documentation set:

	
Oracle Fusion Middleware Administrator's Guide

	
Oracle Fusion Middleware 2 Day Administration Guide

	
Oracle Fusion Middleware Concepts

	
­Oracle Fusion Middleware Application Security Guide

	
Oracle Fusion Middleware High Availability Guide

	
Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server

	
Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite

	
Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal

	
Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

	
Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

	
Oracle Fusion Middleware Security and Administrator's Guide for Web Services

	
Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory

	
Oracle Fusion Middleware Administrator's Guide for Oracle Virtual Directory

	
Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation

2 Top Performance Areas

This chapter describes the top tuning areas for Oracle Fusion Middleware. It covers critical Oracle Fusion Middleware performance areas and provides a quick start for tuning Java EE applications in the following sections:

	
Section 2.1, "About Identifying Top Performance Areas"

	
Section 2.2, "Securing Sufficient Hardware Resources"

	
Section 2.3, "Tuning the Operating System"

	
Section 2.4, "Tuning Java Virtual Machines (JVMs)"

	
Section 2.5, "Tuning the WebLogic Server"

	
Section 2.6, "Tuning Database Parameters"

	
Section 2.7, "Reusing Database Connections"

	
Section 2.8, "Enabling Data Source Statement Caching"

	
Section 2.9, "Controlling Concurrency"

	
Section 2.10, "Setting Logging Levels"

2.1 About Identifying Top Performance Areas

One of the most challenging aspects of performance tuning is knowing where to begin. This chapter serves as a 'quick start' guide to performance tuning your Oracle Fusion Middleware applications.

Table 2-1 provides a list of common performance considerations for Oracle Fusion Middleware. While the list is a useful tool in starting your performance tuning, it is not meant to be comprehensive list of areas to tune. You must monitor and track specific performance issues within your application to understand where tuning can improve performance. See Chapter 4, "Monitoring Oracle Fusion Middleware" for more information.

Table 2-1 Top Performance Areas for Oracle Fusion Middleware

	Performance Area	Description and Reference
	
Hardware Resources

	
Ensure that your hardware resources meet or exceed the application's resource requirements to maximize performance.

See Section 2.2, "Securing Sufficient Hardware Resources" for information on how to determine if your hardware resources are sufficient.

	
Operating System

	
Each operating system has native tools and utilities that can be useful for monitoring purposes.

See Section 2.3, "Tuning the Operating System"

	
Java Virtual Machines (JVMs)

	
This section discusses best practices and provides practical tips to tune the JVM and improve the performance of a Java EE application. It also discusses heap size and JVM garbage collection options.

See Section 2.4, "Tuning Java Virtual Machines (JVMs)".

	
Database

	
For applications that access a database, ensure that your database is properly configured to support your application's requirements.

See Section 2.6, "Tuning Database Parameters" for more information on garbage collection.

	
WebLogic Server

	
If your Oracle Fusion Middleware applications are using the WebLogic Server, see Section 2.5, "Tuning the WebLogic Server".

	
Database Connections

	
Pooling the connections so they are reused is an important tuning consideration.

See Section 2.7, "Reusing Database Connections"

	
Data Source Statement Caching

	
For applications that use a database, you can lower the performance impact of repeated statement parsing and creation by configuring statement caching properly.

See Section 2.8, "Enabling Data Source Statement Caching"

	
Oracle HTTP Server

	
Tune the Oracle HTTP Server directives to set the level of concurrency by specifying the number of HTTP connections.

See Section 2.9, "Controlling Concurrency".

	
Concurrency

	
This section discusses ways to control concurrency with Oracle Fusion Middleware components.

See Section 2.9, "Controlling Concurrency"

	
Logging Levels

	
Logging levels are thresholds that a system administrator sets to control how much information is logged. Performance can be impacted by the amount of information that applications log therefore it is important to set the logging levels appropriately.

See Section 2.10, "Setting Logging Levels".

2.2 Securing Sufficient Hardware Resources

A key component of managing the performance of Oracle Fusion Middleware applications is to ensure that there are sufficient CPU, memory, and network resources to support the user and application requirements for your installation.

No matter how well you tune your applications, if you do not have the appropriate hardware resources, your applications cannot reach optimal performance levels. Oracle Fusion Middleware has minimum hardware requirements for its applications and database tier. For details on Oracle Fusion Middleware supported configurations, see "System Requirements and Prerequisites" in the Oracle Fusion Middleware Installation Planning Guide for your platform.

Sufficient hardware resources should meet or exceed the acceptable response times and throughputs for applications without becoming saturated. To verify that you have sufficient hardware resources, you should monitor resource utilization over an extended period to determine if (or when) you have occasional peaks of usage or whether a resource is consistently saturated. For more information on monitoring, see Chapter 4, "Monitoring Oracle Fusion Middleware".

	
Tip:

Your target CPU usage should not reach 100% utilization. You should determine a target CPU utilization based on your application needs, including CPU cycles for peak usage.

If your CPU utilization is optimized at 100% during normal load hours, you have no capacity to handle a peak load. In applications that are latency sensitive and maintaining a fast response time is important, high CPU usage (approaching 100% utilization) can increase response times while throughput stays constant or even decreases. For such applications, a 70% - 80% CPU utilization is recommended. A good target for non-latency sensitive applications is about 90%.

If any of the hardware resources are saturated (consistently at or near 100% utilization), one or more of the following conditions may exist:

	
The hardware resources are insufficient to run the application.

	
The system is not properly configured.

	
The application or database must be tuned.

For a consistently saturated resource, the solutions are to reduce load or increase resources. For peak traffic periods when the increased response time is not acceptable, consider increasing resources or determine if there is traffic that can be rescheduled to reduce the peak load, such as scheduling batch or background operations during slower periods.

Oracle Fusion Middleware provides a variety of mechanisms to help you control resource concurrency; this can limit the impact of bursts of traffic. However, for a consistently saturated system, these mechanisms should be viewed as temporary solutions. For more information see Section 2.9, "Controlling Concurrency".

2.3 Tuning the Operating System

Each operating system has native tools and utilities that can be useful for monitoring and tuning purposes. Native operating system commands enable you to monitor CPU utilization, paging activity, swapping, and other system activity information.

For details on operating system commands, and guidelines for performance tuning of the network or operating system, refer to the documentation provided by the operating system vendor.

2.4 Tuning Java Virtual Machines (JVMs)

How you tune your JVM greatly affects the performance of Oracle Fusion Middleware and your applications.

	
Note:

To maximize performance from your JVM, be sure that you use only production JVMs on which your applications have been certified and that your operating system patches are up-to-date.

The Supported Configurations pages at http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html are frequently updated and contain the latest certification information on various platforms.

This section covers the following performance tuning areas for your JVM:

	
Configuring Garbage Collection

	
Logging Low Memory Conditions

	
Monitoring and Profiling the JVM

2.4.1 Configuring Garbage Collection

Garbage collection is the JVM process of freeing up unused Java objects in the Java heap. JVM garbage collection can be a resource-intensive operation and may effect application performance. In some cases, inefficient garbage collection can severely degrade application performance. Therefore, it is important to understand how applications create and destroy objects.

This section cover the following Garbage Collection tuning options:

	
Specifying Heap Size Values

	
Selecting a Garbage Collection Scheme

	
Disabling Explicit Garbage Collection

An acceptable rate for garbage collection is application-specific and should be adjusted after analyzing the actual time and frequency of garbage collections. If you set a large heap size, full garbage collection is slower, but it occurs less frequently. If you set your heap size in accordance with your memory needs, full garbage collection is faster, but occurs more frequently.

To tune the JVM garbage collection options you must analyze garbage collection data and check for the frequency and type of garbage collections, the size of the memory pools, and the time spent on garbage collection.

Before you configure JVM garbage collection, analyze the following data points:

	
How often is garbage collection taking place? Compare the time stamps around the garbage collection.

	
How long is a full garbage collection taking?

	
What is the heap size after each full garbage collection? If the heap is always 85 percent free, for example, you might set the heap size smaller.

	
Do the young generation heap sizes (Sun) or Nursery size (Jrockit) need tuning?

You can manually log garbage collection and memory pool sizes using verbose garbage collection logging:

	
Sun JVM command line options:

-verbose:gc
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps

Look for "Full GC" to identify major collections.

	
Additional Sun Tools:

	
JStat

	
JConsole

	
Visualgc

For more information on Sun's options, see http://java.sun.com/javase/technologies/hotspot/gc/index.jsp

	
Jrockit JVM command line options:

-XXverbose:gc

NOTE: Oracle provides other command-line options to improve the performance of your JRockit VM. For detailed information, see "JRockit JDK Command Line Options by Name" at http://download.oracle.com/docs/cd/E13150_01/jrockit_jvm/jrockit/webdocs/index.html

	
Additional JRockit Tools:

	
JRockit Runtime Analyzer (jra recording)

	
JRockit Management Console (jrmc)

	
JRockit Memory Leak Detector

2.4.1.1 Specifying Heap Size Values

The goal of tuning your heap size is to minimize the time that your JVM spends doing garbage collection while maximizing the number of clients that the Fusion Middleware stack can handle at a given time.

Specifically the Java heap is where the objects of a Java program live. It is a repository for live objects, dead objects, and free memory. When an object can no longer be reached from any pointer in the running program, it is considered "garbage" and ready for collection. A best practice is to tune the time spent doing garbage collection to within 5% of execution time.

The JVM heap size determines how often and how long the virtual machine spends collecting garbage. An acceptable rate for garbage collection is application-specific and should be adjusted after analyzing the actual time and frequency of garbage collections. If you set a large heap size, full garbage collection is slower, but it occurs less frequently. If you set your heap size in accordance with your memory needs, full garbage collection is faster, but occurs more frequently.

In production environments, set the minimum heap size and the maximum heap size to the same value to prevent wasting virtual machine resources used to constantly grow and shrink the heap. Ensure that the sum of the maximum heap size of all the JVMs running on your system does not exceed the amount of available physical RAM. If this value is exceeded, the Operating System starts paging and performance degrades significantly. The virtual machine always uses more memory than the heap size. The memory required for internal virtual machine functionality, native libraries outside of the virtual machine, and permanent generation memory (memory required to store classes and methods) is allocated in addition to the heap size settings.

For example, you can use the following JVM options to tune the heap:

	
If you run out of heap memory (not due to a memory leak), increase -Xmx.

	
If you run out of native memory, you may need to decrease -Xmx.

	
For Oracle JRockit, modify -Xns:<nursery size> to tune the size of the nursery.

	
For Sun JVM, modify -Xmn to tune the size of the heap for the young generation.

If you receive java.lang.OutOfMemoryError: PermGen space errors, you may also need to increase the permanent generation space.

	
See Also:

For more information on tuning the young generation see the "Young Generation" section of the Java SE 6 HotSpot Virtual Machine Garbage Collection Tuning at http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html#generation_sizing.young_gen

For more information on Oracle JRockit heap configurations, see "Setting the Heap and Nursery Size" in Diagnostics Guide at http://download.oracle.com/docs/cd/E13188_01/jrockit/geninfo/diagnos/memman.html

For the Sun java virtual machine see the "Insufficient Memory" section of "Monitoring and Managing Java SE 6 Platform Applications" at http://java.sun.com/developer/technicalArticles/J2SE/monitoring/index.html#Insufficient_Memory.

"Out of Memory" Frequently Asked Questions section at http://java.sun.com/docs/hotspot/HotSpotFAQ.html#gc_oom

2.4.1.2 Selecting a Garbage Collection Scheme

Depending on which JVM you are using, you can choose from several garbage collection schemes to manage your system memory. Some garbage collection schemes are more appropriate for a given type of application. Once you have an understanding of the workload of the application and the different garbage collection algorithms utilized by the JVM, you can optimize the configuration of the garbage collection.

Refer to the following links for garbage collection options for your JVM:

	
For an overview of the garbage collection schemes available with Sun's HotSpot VM, see "Java SE 6 HotSpot Virtual Machine Garbage Collection Tuning" at http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html.

	
For a comprehensive explanation of the collection schemes available, see "Memory Management in the Java HotSpot™ Virtual Machine" at http://java.sun.com/j2se/reference/whitepapers/memorymanagement_whitepaper.pdf.

	
For a discussion of the garbage collection schemes available with the JRockit JDK, see "Using the JRockit Memory Management System" at http://download.oracle.com/docs/cd/E13150_01/jrockit_jvm/jrockit/webdocs/index.html.

2.4.1.3 Disabling Explicit Garbage Collection

The following parameters are used to help diagnose whether explicit garbage collections are occurring. They can also be used to disable the explicit garbage collections if necessary until the code is fixed:

	
For Sun virtual machines use -XX:+DisableExplicitGC

For more information on using the explicit garbage collections, see "Java SE 6 HotSpot Virtual Machine Garbage Collection Tuning " at http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html.

	
For Oracle JRockit virtual machines use -XXnoSystemGC

For more information on tuning the Oracle JRockit, see at http://download.oracle.com/docs/cd/E13188_01/jrockit/geninfo/diagnos/bestpractices.html

These parameters disable explicit garbage collection. Applications should avoid the use of system.gc() calls. If you suspect an application may be explicitly triggering garbage collection, set this parameter and observe the differences in your garbage collection behavior. If you detect that performance is affected by explicit collections, check the code to determine where explicit garbage collections are used and why, and the impact of disabling the calls. Application developers sometimes use system.gc() calls to trigger finalizers. This is not a recommended practice and can yield indeterminate behavior.

2.4.2 Logging Low Memory Conditions

WebLogic Server enables you to automatically log low memory conditions observed by the server. WebLogic Server detects low memory by sampling the available free memory a set number of times during a time interval. At the end of each interval, an average of the free memory is recorded and compared to the average obtained at the next interval. If the average drops by a user-configured amount after any sample interval, the server logs a low memory warning message in the log file and sets the server health state to "warning."

	
See Also:

For more information on using WebLogic Server to detect low memory conditions refer to the following:

"Log low memory conditions" in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.

"Automatically Logging Low Memory Conditions" in Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server

2.4.3 Monitoring and Profiling the JVM

Monitoring the performance of your JVM is crucial to achieving optimal performance. Depending on your platform, the following tools can be used to monitor and profile your JVM:

	
Oracle JRockit® Mission Control

Oracle JRockit Mission Control is a suite of tools designed to monitor, manage, profile, and eliminate memory leaks in your Java application without the performance impacts normally associated with these types of tools.

For more information on the Oracle JRockit Mission Control see: http://download.oracle.com/docs/cd/E13188_01/jrockit/tools/index.html

	
Sun JVM

The Java™ Platform comes with the following monitoring facilities built-in:

	
Java Virtual Machine Monitoring and Management API

	
JConsole

	
Hprof Tools

	
Logging Monitoring and Management Interface

	
Java Management Extensions (JMX)

For more information on the Java platform monitoring tools, see: http://java.sun.com/developer/technicalArticles/J2SE/monitoring/

2.5 Tuning the WebLogic Server

If your Oracle Fusion Middleware applications are using the WebLogic Server, see "Tuning Java Virtual Machines (JVMs)" in Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server.

2.6 Tuning Database Parameters

To achieve optimal performance for applications that use the Oracle database, the database tables you access must be designed with performance in mind. Monitoring and tuning the database ensures that you get the best performance from your applications.

This section covers the following:

	
Tuning init.ora Database Parameters

	
Tuning Redo Logs Location and Sizing

	
Tuning Automatic Segment-Space Management (ASSM)

	
Note:

Always review the tuning guidelines in your database-specific vendor documentation. For more information on tuning the Oracle database, see the Oracle Database Performance Tuning Guide.

2.6.1 Tuning init.ora Database Parameters

The following tables provide common init.ora parameters and their descriptions. Consider following these guidelines to set the database parameters. Ultimately, however, the DBA should monitor the database health and tune parameters based on the need. See the following tables for more information:

	
Table 2-2, "Important init.ora Oracle 10g Database Tuning Parameters"

	
Table 2-3, "Important inti.ora Oracle 11g Database Tuning Parameters"

Consider applying Patch Set Release (PSR) 11.1.0.7 and upgrade the database prior to attempting the following modifications.

2.6.1.1 Initialization Parameters for Oracle 10g

The following table describes several performance-related database initialization parameters for Oracle 10g database. The tuning considerations listed below are applicable to most scenarios. Always set your database parameters based on your own use case scenarios.

Table 2-2 Important init.ora Oracle 10g Database Tuning Parameters

	Database Parameter	Description
	
_b_tree_bitmap_plans

	
Consider setting this parameter to FALSE to prevent optimizer from attempting bitmap operations as there are no bitmap indexes in Fusion Middleware.

	
DB_BLOCK_SIZE

	
DB_BLOCK_SIZE specifies (in bytes) the size of Oracle database blocks. The default block size of 8K is optimal for most systems. Set this parameter at the time of database creation.

	
NLS_SORT

	
Consider setting NLS_SORT to BINARY, otherwise sort will do full table scan and performance can be impacted.

	
OPEN_CURSORS

	
Consider using a value of 500 open cursors (handles to private SQL areas) a session can have at once.

	
SESSION_CACHED_CURSORS

	
Consider using a value of 500 session cursors to cache.

	
SESSION_MAX_OPEN_FILES

	
SESSION_MAX_OPEN_FILES specifies the maximum number of BFILEs that can be opened in any session. Once this number is reached, subsequent attempts to open more files in the session by using DBMS_LOB.FILEOPEN() or OCILobFileOpen() may fail. The maximum value for this parameter depends on the equivalent parameter defined for the underlying operating system.

	
JOB_QUEUE_PROCESSES

	
JOB_QUEUE_PROCESSES specifies the maximum number of processes that can be created for the execution of jobs. It specifies the number of job queue processes per instance.

	
LOG_BUFFER

	
LOG_BUFFER specifies the amount of memory (in bytes) that Oracle uses when buffering redo entries to a redo log file. Redo log entries contain a record of the changes that have been made to the database block buffers. The LGWR process writes redo log entries from the log buffer to a redo log file.

	
UNDO_MANAGEMENT

	
UNDO_MANAGEMENT specifies which undo space management mode the system should use. When set to AUTO, the instance starts in automatic undo management mode. In manual undo management mode, undo space is allocated externally as rollback segments.

	
PL_SQL_CODE_TYPE

	
Consider setting PL_SQL_CODE_TYPE to NATIVE

	
PROCESSES

	
Consider using a value of 5000 operating system processes to be connected to Oracle concurrently.

	
PGA_AGGREGATE_TARGET

	
Consider setting PGA_AGGREGATE_TARGET to 1G of PGA memory available to all server processes attached to the instance.

	
SGA_MAX_SIZE

	
Consider setting the SGA_MAX_SIZE to 2G initially and then monitor the production database on daily basis and adjust SGA and PGA accordingly.

	
SGA_TARGET

	
Consider setting the SGA_TARGET to 2G initially and then monitor the production database on daily basis and adjust SGA and PGA accordingly.

	
TRACE_ENABLED

	
TRACE_ENABLED controls tracing of the execution history, or code path, of Oracle. Oracle Support Services uses this information for debugging.

Although the performance impacts incurred from processing is not excessive, you may improve performance by setting TRACE_ENABLED to FALSE.

2.6.1.2 Initialization Parameters for Oracle 11g

The following table provides information on some important performance-related database initialization parameters for Oracle 11g database.

Table 2-3 Important inti.ora Oracle 11g Database Tuning Parameters

	Database Parameter	Description
	
AUDIT_TRAIL

	
If there is NO policy to audit db activity, consider setting this parameter to NONE. Enabling auditing can impact performance.

	
MEMORY_MAX_TARGET

	
MEMORY_MAX_TARGET specifies the maximum value to which a DBA can set the MEMORY_TARGET initialization parameter.

	
MEMORY_TARGET

	
Consider setting the MEMORY_TARGET to NONE. Set SGA and PGA separately as setting MEMORY_TARGET does not allocate sufficient memory to SGA and PGA as needed.

	
PGA_AGGREGATE_TARGET

	
Consider using a value of 1G for PGA initially and then monitor the production database on daily basis and adjust SGA and PGA accordingly.

If the database server has more memory, consider setting PGA_AGGREGATE_TARGET to a value higher than 1G based on usage needs.

	
SGA_MAX_SIZE

	
Consider setting MEMORY_TARGET instead of setting SGA and the PGA separately.

	
SGA_TARGET

	
Consider using a value of 2G for SGA is 2G to start with and initially and then monitor the production database on daily basis and adjust SGA and PGA accordingly.

If the database server has more memory, consider setting SGA_TARGET to a value higher than 2G based on usage needs.

2.6.2 Tuning Redo Logs Location and Sizing

Managing the database I/O load balancing is a non-trivial task. However, tuning the redo log options can provide performance improvement for applications running in an Oracle Fusion Middleware environment, and in some cases, you can significantly improve I/O throughput by moving the redo logs to a separate disk.

Consider having at least 3 redo log groups with 2G of size each. Redo log files should be placed on a disk separate from data files to improve I/O performance.

For more information see the Oracle Database Performance Tuning Guide.

2.6.3 Tuning Automatic Segment-Space Management (ASSM)

For permanent tablespaces, consider using automatic segment-space management. Such tablespaces, often referred to as bitmap tablespaces, are locally managed tablespaces with bitmap segment space management.

For backward compatibility, the default local tablespace segment-space management mode is MANUAL.

For more information, see "Free Space Management" in Oracle Database Concepts, and "Specifying Segment Space Management in Locally Managed Tablespaces" in Oracle Database Administrator's Guide.

2.7 Reusing Database Connections

Creating a database connection is a relatively resource intensive process in any environment. Typically, a connection pool starts with a small number of connections. As client demand for more connections grow, there may not be enough in the pool to satisfy the requests. WebLogic Server creates additional connections and adds them to the pool until the maximum pool size is reached.

One way to avoid connection creation delays is to initialize all connections at server startup, rather than on-demand as clients need them. This may be appropriate if your load is predictable and even. Set the initial number of connections equal to the maximum number of connections in the Connection Pool tab of your data source configuration. Determine the optimal value for the Maximum Capacity as part of your pre-production performance testing.

If your load is uneven, and has a much higher number of connections at peak load than at typical load, consider setting the initial number of connections equal to your typical load. In addition, consider setting the maximum number of connections based on your supported peak load. With these configurations, WebLogic server can free up some connections when they are not used for a period of time.

For more information, see "Tuning Data Source Connection Pool Options" in Oracle Fusion Middleware Configuring and Managing JDBC Data Sources for Oracle WebLogic Server.

2.8 Enabling Data Source Statement Caching

When you use a prepared statement or callable statement in an application or EJB, there may be a performance impact associated with the processing of the communication between the application server and the database server and on the database server. To minimize the processing impact, enable the data source to cache prepared and callable statements used in your applications. When an application or EJB calls any of the statements stored in the cache, the server reuses the statement stored in the cache. Reusing prepared and callable statements reduces CPU usage on the database server, improving performance for the current statement and leaving CPU cycles for other tasks.

Each connection in a data source has its own individual cache of prepared and callable statements used on the connection. However, you configure statement cache options per data source. That is, the statement cache for each connection in a data source uses the statement cache options specified for the data source, but each connection caches it's own statements. Statement cache configuration options include:

	
Statement Cache Type—The algorithm that determines which statements to store in the statement cache.

	
Statement Cache Size—The number of statements to store in the cache for each connection. The default value is 10. You should analyze your database's statement parse metrics to size the statement cache sufficiently for the number of statements you have in your application.

You can use the Administration Console to set statement cache options for a data source. See "Configure the statement cache for a JDBC data source" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.

For more information on using statement caching, see "Increasing Performance with the Statement Cache" in the Oracle Fusion Middleware Configuring and Managing JDBC Data Sources for Oracle WebLogic Server.

2.9 Controlling Concurrency

Limiting concurrency, at multiple layers of the system to match specific usage needs, can greatly improve performance. This section discusses a few of the areas within Oracle Fusion Middleware where concurrency can be controlled.

When system capacity is reached, and a web server or application server continues to accept requests, application performance and stability can deteriorate. There are several places within Oracle Fusion Middleware where you can throttle the requests to avoid overloading the mid-tier or database tier systems and tune for best performance.

	
Setting HTTP Connection Limits

	
Configuring Connection Pools

	
Tuning the WebLogic Sever Thread Pool

	
Tuning Oracle WebCenter Concurrency

	
Tuning BPEL Concurrency

2.9.1 Setting HTTP Connection Limits

Oracle HTTP Server uses directives in httpd.conf. This configuration file specifies the maximum number of HTTP requests that can be processed simultaneously, logging details, and certain limits and time outs.

For more information on modifying the httpd.conf file, see "Configuring Oracle HTTP Server" in Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server.

You can use the MaxClients and ThreadsPerChild directives to limit incoming requests to WebLogic instances from the Oracle HTTP Server based on your expected client load and system resources. The following sections describe some Oracle HTTP Server tuning parameters related to connection limits that you typically need to tune based on your expected client load. See Chapter 5, "Oracle HTTP Server Performance Tuning" for more information and a more complete list of tunable parameters.

2.9.1.1 MaxClients/ThreadsPerChild

	
Note:

The MaxClients parameter is applicable only to UNIX platforms and on Microsoft Windows (mpm_winnt), the same is achieved through the ThreadsPerChild and ThreadLimit parameters.

The MaxClients property specifies a limit on the total number of server threads running, that is, a limit on the number of clients who can simultaneously connect. If the number of client connections reaches this limit, then subsequent requests are queued in the TCP/IP system up to the limit specified (in the ListenBackLog directive).

You can configure the MaxClients directive in the httpd.conf file up to a maximum of 8K (the default value is 150). If your system is not resource-saturated and you have a user population of more than 150 concurrent HTTP connections, you can improve your performance by increasing MaxClients to increase server concurrency. Increase MaxClients until your system becomes fully utilized (85% is a good threshold).

When system resources are saturated, increasing MaxClients does not improve performance. In this case, the MaxClients value could be reduced as a throttle on the number of concurrent requests on the server.

If the server handles persistent connections, then it may require sufficient concurrent httpd server processes to handle both active and idle connections. When you specify MaxClients to act as a throttle for system concurrency, you need to consider that persistent idle httpd connections also consume httpd processes. Specifically, the number of connections includes the currently active persistent and non-persistent connections and the idle persistent connections. When there are no httpd server threads available, connection requests are queued in the TCP/IP system until a thread becomes available, and eventually clients terminate connections.

You can define a number of server processes and the threads per process (ThreadsPerChild) to handle the incoming connections to Oracle HTTP Server. The ThreadsPerChild property specifies the upper limit on the number of threads that can be created under a server (child) process.

	
Note:

ThreadsPerChild, StartServers, and ServerLimit properties are inter-related with the MaxClients setting. All of these properties must be set appropriately to achieve the number of connections as specified by MaxClients. See Table 5-1, "Oracle HTTP Server Configuration Properties" for a description of all the HTTP configuration properties.

2.9.1.2 KeepAlive

A persistent, KeepAlive, HTTP connection consumes an httpd child process, or thread, for the duration of the connection, even if no requests are currently being processed for the connection.

If you have sufficient capacity, KeepAlive should be enabled; using persistent connections improves performance and prevents wasting CPU resources re-establishing HTTP connections. Normally, you should not need to change KeepAlive parameters.

	
Note:

The default maximum requests for a persistent connection is 100, as specified with the MaxKeepAliveRequests directive in httpd.conf. By default, the server waits for 15 seconds between requests from a client before closing a connection, as specified with the KeepAliveTimeout directive in httpd.conf.

2.9.1.3 Tuning MOD_WL_OHS

The Oracle HTTP Server (OHS) uses the mod_wl_ohs module to route requests to the underlying Weblogic server or the Weblogic Server cluster. The configuration details for mod_wl_ohs are available in the mod_wl_ohs.conf file in the config directory.

For more information on the tuning parameters for mod_wl_ohs see, "Understanding Oracle HTTP Server Modules" in Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server.

2.9.2 Configuring Connection Pools

Connection pooling is configured and maintained per Java runtime. Connections are not shared across different runtimes. To use connection pooling, no configuration is required. Configuration is necessary only if you want to customize how pooling is done, such as to control the size of the pools and which types of connections are pooled.

You configure connection pooling by using a number of system properties at program startup time. Note that these are system properties, not environment properties and that they affect all connection pooling requests.

For applications that use a database, performance can improve when the connection pool associated with a data source limits the number of connections. You can use the MaxCapacity attribute to limit the database requests from Oracle Application Server so that incoming requests do not saturate the database, or to limit the database requests so that the database access does not overload the Oracle Application Server-tier resource.

The connection pool MaxCapacity attribute specifies the maximum number of connections that a connection pool allows. By default, the value of MaxCapacity is set to 15. For best performance, you should specify a value for MaxCapacity that matches the number appropriate to your database performance characteristics.

Limiting the total number of open database connections to a number your database can handle is an important tuning consideration. You should check to make sure that your database is configured to allow at least as large a number of open connections as the total of the values specified for all the data sources MaxCapacity option, as specified in all the applications that access the database.

	
See Also:

"JDBC Data Source: Configuration: Connection Pool" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.

"Tuning Data Source Connection Pool Options" in Oracle Fusion Middleware Configuring and Managing JDBC Data Sources for Oracle WebLogic Server.

2.9.3 Tuning the WebLogic Sever Thread Pool

By default WebLogic Server uses a single thread pool, in which all types of work are executed. WebLogic Server uses Work Managers to prioritize work based on rules you can define, and run-time metrics, including the actual time it takes to execute a request and the rate at which requests are entering and leaving the pool. There is a default work manager that manages the common thread pool.

The common thread pool changes its size automatically to maximize throughput. WebLogic Server monitors throughput over time and based on history, determines whether to adjust the thread count. For example, if historical throughput statistics indicate that a higher thread count increased throughput, WebLogic increases the thread count. Similarly, if statistics indicate that fewer threads did not reduce throughput, WebLogic decreases the thread count.

Since the WebLogic Server thread pool by default is sized automatically, in most situations you do not need to tune this. However, for special requirements, an administrator can configure custom Work Managers to manage the thread pool at a more granular level for sets of requests that have similar performance, availability, or reliability requirements. With custom work managers, you can define priorities and guidelines for how to assign pending work (including specifying a min threads or max threads constraint, or a constraint on the total number of requests that can be queued or executing before WebLogic Server begins rejecting requests).

Use the following guidelines to help you determine when to use Work Managers to customize thread management:

	
The default fair share is not sufficient.

This usually occurs in situations where one application needs to be given a higher priority over another.

	
A response time goal is required.

	
A minimum thread constraint needs to be specified to avoid server deadlock.

	
You use MDBs in your application.

To ensure MDBs use a well-defined share of server thread resources, and to tune MDB concurrency, most MDBs should be modified to reference a custom work manager that has a max-threads-constraint. In general, a custom work manager is useful when you have multiple MDB deployments, or if you determine that a particular MDB needs more threads.

	
See Also:

For more information on how to use custom Work Managers to customize thread management, and when to use custom work managers, see the following:

	
"Tune Pool Sizes" in Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server

	
"Thread Management" in Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server

	
"MDB Thread Management" in Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server

	
"Using Work Managers to Optimize Scheduled Work" in Oracle Fusion Middleware Configuring Server Environments for Oracle WebLogic Server

	
"Avoiding and Managing Overload" in Oracle Fusion Middleware Configuring Server Environments for Oracle WebLogic Server

You can use Oracle WebLogic Administration Console to view general information about the status of the thread pool (such as active thread count, total thread count, and queue length.) You can also use the Console to view each application's scoped work manager metrics from the Workload tab on the Monitoring page. The metrics provided include the number of pending requests and number of completed requests.

For more information, see "Servers: Monitoring: Threads" and "Deployments: Monitoring: Workload" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.

The work manager and thread pool metrics can also be viewed from the Oracle Fusion Middleware Control. For more information, see Section 4.2.1, "Viewing Performance Metrics Using Fusion Middleware Control".

2.9.4 Tuning Oracle WebCenter Concurrency

Oracle WebCenter has its own controls for managing concurrency. See "Configuring Concurrency Management" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.

2.9.5 Tuning BPEL Concurrency

The Oracle BPEL Process Manager has its own thread controls and specialized tuning. See Section 13.2.1, "BPEL Threading Model".

2.10 Setting Logging Levels

The amount of information that applications log depends on how the environment is configured and how the application code is instrumented. To maximize performance it is recommended that the logging level is not set higher than the default INFO level logging. If the logging setting does not match the default level, reset the logging level to the default for best performance.

Once the application and server logging levels are set appropriately, ensure that the debugging properties or other application level debugging flags are also set to appropriate levels or disabled. To avoid performance impacts, do not set log levels to levels that produce more diagnostic messages, including the FINE or TRACE levels.

3 Performance Planning

This chapter discusses performance and tuning concepts for Oracle Fusion Middleware. This chapter contains the following sections:

	
Section 3.1, "About Oracle Fusion Middleware Performance Planning"

	
Section 3.2, "Performance Planning Methodology"

3.1 About Oracle Fusion Middleware Performance Planning

To maximize Oracle Fusion Middleware performance, you must monitor, analyze, and tune all the components that are used by your applications. This guide describes the tools that you can use to monitor performance and the techniques for optimizing the performance of Oracle Fusion Middleware components.

Performance tuning usually involves a series of trade-offs. After you have determined what is causing the bottlenecks, you may have to modify performance in some other areas to achieve the expected results. However, if you have a clearly defined plan for achieving your performance objectives, the decision on what to trade for higher performance is easier because you have identified the most important areas.

3.2 Performance Planning Methodology

The Fusion Middleware components are built for performance and scalability. To maximize the performance capabilities of your applications, you must build performance and scalability into your design. The performance plan should address the current performance requirements, the existing issues (such as bottlenecks or insufficient hardware resources) and any anticipated variances in load, users or processes. The performance plan should also address how the components scale during peak usage without impacting performance.

The following sections of this chapter discuss the steps you should take to help create a plan to tune your application environment and optimize performance:

	
Step 1: Define Your Performance Objectives

	
Step 2: Design Applications for Performance and Scalability

	
Step 3: Monitor and Measure Your Performance Metrics

3.2.1 Define Your Performance Objectives

Before you can begin performance tuning your applications, you must first identify the performance objectives you hope to achieve. To determine your performance objectives, you must understand the applications deployed and the environmental constraints placed on the system.

To understand what your performance objectives are, you must complete the following steps:

	
Define Operational Requirements

	
Identify Performance Goals

	
Understand User Expectations

	
Conduct Performance Evaluations

Performance objectives are limited by constraints, such as:

	
The configuration of hardware and software such as CPU type, disk size, disk speed, and sufficient memory.

There is no single formula for determining your hardware requirements. The process of determining what type of hardware and software configuration is required to meet application needs adequately is called capacity planning.

Capacity planning requires assessment of your system performance goals and an understanding of your application. Capacity planning for server hardware should focus on maximum performance requirements. For more information on capacity planning, see Chapter 28, "Capacity Planning".

	
The configuration of high availability architecture to address peak usage and response times. For more information on implementing high availability features in Oracle Fusion Middleware applications, see Chapter 29, "Using Clusters and High Availability Features".

	
The ability to interoperate between domains, use legacy systems, support legacy data.

	
Development, implementation, and maintenance costs.

Understanding these constraints - and their impacts - ensure that you set realistic performance objectives for your application environment, such as response times, throughput, and load on specific hardware.

3.2.1.1 Define Operational Requirements

Before you begin to deploy and tune your application on Oracle Fusion Middleware, it is important to clearly define the operational environment. The operational environment is determined by high-level constraints and requirements such as:

	
Application Architecture

	
Security Requirements

	
Hardware Resources

3.2.1.2 Identify Performance Goals

Whether you are designing a new system or maintaining an existing system, you should set specific performance goals so that you know how and what to optimize. To determine your performance objectives, you must understand the application deployed and the environmental constraints placed on the system.

Gather information about the levels of activity that components of the application are expected to meet, such as:

	
Anticipated number of users

	
Number and size of requests

	
Amount of data and its consistency

	
Target CPU utilization

3.2.1.3 Understand User Expectations

Application developers, database administrators, and system administrators must be careful to set appropriate performance expectations for users. When the system carries out a particularly complicated operation, response time may be slower than when it is performing a simple operation. Users should be made aware of which operations might take longer.

For example, you might want to ensure that 90% of the users experience response times no greater than 5 seconds and the maximum response time for all users is 20 seconds. Usually, it's not that simple. Your application may include a variety of operations with differing characteristics and acceptable response times. You need to set measurable goals for each of these.

You also need to determine how variances in the load can affect the response time. For example, users might access the system heavily between 9:00am and 10:00am and then again between 1:00pm and 2:00pm, as illustrated by the graph in Figure 3-1. If your peak load occurs on a regular basis, for example, daily or weekly, the conventional wisdom is to configure and tune systems to meet your peak load requirements. The lucky users who access the application in off-time can experience better response times than your peak-time users. If your peak load is infrequent, you may be willing to tolerate higher response times at peak loads for the cost savings of smaller hardware configurations.

Figure 3-1 Adjusting Capacity and Functional Demand

[image: Description of Figure 3-1 follows]

3.2.1.4 Conduct Performance Evaluations

With clearly defined performance goals and performance expectations, you can readily determine when performance tuning has been successful. Success depends on the functional objectives you have established with the user community, your ability to measure whether the criteria are being met, and your ability to take corrective action to overcome any exceptions.

Ongoing performance monitoring enables you to maintain a well-tuned system. Keeping a history of the application's performance over time enables you to make useful comparisons. With data about actual resource consumption for a range of loads, you can conduct objective scalability studies and from these predict the resource requirements for anticipated load volumes. For more information on evaluating performance, see Chapter 4, "Monitoring Oracle Fusion Middleware".

3.2.2 Design Applications for Performance and Scalability

The key to good performance is good design. The design phase of the application development cycle should be an on-going process. Cycling through the planning, monitoring and tuning phases of the application development cycle is critical to achieving optimal performance across Fusion Middleware deployments. Using an iterative design methodology enables you to accommodate changes in your work loads without impacting your performance objectives.

See the following Oracle Fusion Middleware developer's documentation for more information on recommended design techniques:

	
Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

	
Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Portal

	
Oracle Fusion Middleware Developer's Guide for Oracle TopLink

	
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

	
Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

3.2.3 Monitor and Measure Your Performance Metrics

Oracle Fusion Middleware provides a variety of technologies and tools that can be used to monitor Server and Application performance. Monitoring enables you to evaluate Server activity, watch trends, diagnose system bottlenecks, debug applications with performance problems and gather data that can assist you in tuning the system. For more information, see Chapter 4, "Monitoring Oracle Fusion Middleware.".

Performance tuning is specific to the applications and resources that you have deployed on your system. Some common tuning areas are included in Chapter 2, "Top Performance Areas."

	
See Also:

Oracle Database Performance Tuning Guide

Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server

Oracle Fusion Middleware Administrator's Guide

4 Monitoring Oracle Fusion Middleware

Oracle Fusion Middleware provides a variety of technologies and tools that can be used to monitor Server and Application performance. Monitoring is an important step in performance tuning and enables you to evaluate server activity, watch trends, diagnose system bottlenecks, debug applications with performance problems and gather data that can assist you in tuning the system.

This chapter contains the following sections:

	
Section 4.1, "About Oracle Fusion Middleware Management Tools"

	
Section 4.2, "Oracle Enterprise Manager 11g Fusion Middleware Control"

	
Section 4.3, "Oracle WebLogic Server Administration Console"

	
Section 4.4, "WebLogic Diagnostics Framework (WLDF)"

	
Section 4.5, "WebLogic Scripting Tool (WLST)"

	
Section 4.6, "DMS Spy Servlet"

	
Section 4.7, "Oracle Process Manager and Notification Server"

	
Section 4.8, "Oracle Enterprise Manager 11g Grid Control"

	
Section 4.9, "Native Operating System Performance Commands"

	
Section 4.10, "Network Performance Monitoring Tools"

4.1 About Oracle Fusion Middleware Management Tools

After you install and configure Oracle Fusion Middleware, you can use the graphical user interfaces or command-line tools to manage your environment.

You can use the following tools to manage your Oracle Fusion Middleware installations:

	
Oracle Enterprise Manager Fusion Middleware Control. See Section 4.2.

	
Oracle WebLogic Server Administration Console. See Section 4.3.

	
Oracle WebLogic Diagnostics Framework (WLDF). See Section 4.4.

	
Oracle WebLogic Scripting Tool (WLST). See Section 4.5.

	
DMS Spy Servlet. See Section 4.6.

	
Oracle Process Manager and Notification Server. See Section 4.7.

	
Oracle Enterprise Manager 11g Grid Control. See Section 4.8.

	
Operating System Performance Commands. See Section 4.9.

	
Network Performance Monitoring Tools. See Section 4.10.

Use these tools, rather than directly editing configuration files, to perform all administrative tasks unless a specific procedure requires you to edit a file. Editing a file may cause the settings to be inconsistent and generate problems.

Both Fusion Middleware Control and Oracle WebLogic Server Administration Console are graphical user interfaces that you can use to monitor and administer your Oracle Fusion Middleware environment. You can perform some tasks with either tool, but, for other tasks, you can only use one of the tools.

For more information on using WebLogic Server Administration Console for monitoring your domain, see the Oracle Fusion Middleware Administrator's Guide.

4.1.1 Measuring Your Performance Metrics

Metrics are the criteria you use to measure your scenarios against your performance objectives. You can use performance metrics to help locate bottlenecks, identify resource availability issues, or help tune your components to improve throughput and response times. After you have determined your performance criteria, take measurements of the metrics used to quantify your performance objectives.

For example, you might use response time, throughput, and resource utilization as your metrics. The performance objective for each metric is the value that is acceptable. You match the actual value of the metrics to your objectives to verify that you are meeting, exceeding, or failing to meet your performance objectives.

When you manage or monitor an Oracle Fusion Middleware component or application with Fusion Middleware Control, you may see performance metrics that provide insight into the current performance of the component or application. In many cases, these metrics are shown in interactive charts; other times they are presented in tabular format. The best way to use and correlate the performance metrics is from the Performance Summary page for the component or application you are monitoring.

The next sections of this chapter provide an overview of the Oracle Fusion Middleware technologies and tools that can be used to monitor Server and Application performance. If you are new to Oracle Fusion Middleware or if you need additional information about monitoring your environment using the Performance Summary pages, see "Viewing the Performance of Oracle Fusion Middleware" in the Oracle Fusion Middleware Administrator's Guide. In addition, the Fusion Middleware Control online help provides definitions and other information about specific performance metrics that are available on its management and monitoring pages. See Section 4.2.1, "Viewing Performance Metrics Using Fusion Middleware Control".

4.2 Oracle Enterprise Manager 11g Fusion Middleware Control

Fusion Middleware Control is a Web browser-based, graphical user interface that you can use to monitor and administer a farm. Fusion Middleware Control organizes a wide variety of performance data and administrative functions into distinct, Web-based home pages for the farm, domain, servers, components, and applications. The Fusion Middleware Control home pages make it easy to locate the most important monitoring data and the most commonly used administrative functions—all from your Web browser.

In addition, Fusion Middleware Control provides a set of MBean browsers that allow you to browse the MBeans for a WebLogic Server or for a selected application and perform specific monitoring and configuration tasks from the MBean browser.

	
See Also:

"Getting Started Using Oracle Enterprise Manager Fusion Middleware Control" in Oracle Fusion Middleware Administrator's Guide

Use Fusion Middleware Control to:

	
Monitor and administer a single Fusion Middleware Farm

	
Monitor all elements of the farm - including deployed applications and Fusion Middleware components such as:

	
WebLogic Domain

	
Cluster and Managed Servers

	
SOA components

	
Web Center

	
Web Cache

	
Oracle HTTP Server

	
Oracle Identity Management

	
Monitor the state and performance of each of these targets by providing out-of-the-box performance metrics

	
Monitor CPU usage, heap usage, Work Manager, JMS servers, and JDBC and JTA usage for Oracle WebLogic Server

	
Monitor JVM performance in terms of heap versus non-heap usage, garbage collection, and threads performance

	
Monitor applications and Web services deployed to WebLogic Server

	
Monitor a wide range of application metrics for servlets, JSPs, and EJBs are available, as well as Web services metrics for faults, invocations, and violations. Such metrics are accessible from a target's home page.

	
Access customizable performance summary pages to help administrators monitor performance and diagnose problems. These charts can be modified to display content that is relevant to your domain. A target or component might be added to the chart so that you can compare the performance information for two targets in one chart.

	
See Also:

For more information about monitoring your environment using the Performance Summary pages, see "Viewing the Performance of Oracle Fusion Middleware" in Oracle Fusion Middleware Administrator's Guide.

4.2.1 Viewing Performance Metrics Using Fusion Middleware Control

When you manage or monitor an Oracle Fusion Middleware component or application with Fusion Middleware Control, you often see performance metrics that provide insight into the current performance of the component or application. In many cases, these metrics are shown in interactive charts; other times they are presented in tabular format. The best way to use and correlate the performance metrics is from the Performance Summary page for the component or application you are monitoring.

Use the Fusion Middleware Control online help to obtain a definition of a specific performance metric. There are two ways to access this information:

	
Browse or search for the metric in the Fusion Middleware Control online help.

	
Navigate to the Performance Summary page for your Oracle Fusion Middleware component or application and do the following:

	
Click Show Metric Palette.

	
Browse the list of metrics available for the component or application to locate a specific metric.

	
Right-click the name of the metric and select Help from the context menu.

If you encounter a problem, such as an application that is running slowly or is hanging, you can view more detailed performance information, including performance metrics for a particular target, to find out more information about the problem.

Oracle Fusion Middleware automatically and continuously measures run-time performance. The performance metrics are automatically enabled; you do not need to set options or perform any extra configuration to collect them. If you are interested in viewing historical data, consider using Oracle Enterprise Manager Grid Control. For more information see "Middleware Management" in Oracle Enterprise Manager Concepts.

4.3 Oracle WebLogic Server Administration Console

Oracle WebLogic Server Administration Console is a Web browser-based, graphical user interface that you use to manage an Oracle WebLogic Server domain. It is accessible from any supported Web browser with network access to the Administration Server.

	
See Also:

For general information on using the WebLogic Server console, see "Getting Started Using Oracle WebLogic Server Administration Console" in Oracle Fusion Middleware Administrator's Guide.

Use the WebLogic Server Administration Console to:

	
Configure, start, and stop WebLogic Server instances

	
Configure and Monitor WebLogic Server clusters

	
Configure and Monitor WebLogic Server services, such as database connectivity (JDBC) and messaging (JMS)

	
Configure security parameters, including creating and managing users, groups, and roles

	
Configure and deploy Java EE applications

	
Monitor server and application performance

	
View server and domain log files

	
View application deployment descriptors

	
Edit selected run-time application deployment descriptor elements

Oracle WebLogic Server contains a Java Management Extensions (JMX) server implementation and provides its own set of Management Beans (MBeans). Oracle management tools described in this chapter use the MBeans provided by WebLogic Server to allow you to configure, monitor, and manage WebLogic Server resources.

Additional WebLogic Server Console Resources:

For details on the content contained in each summary table, see "Monitor Servers" in WebLogic Administration Console Online Help.

For detailed information on using the WebLogic Server to monitor your domain, see the Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server.

The Oracle Technology Network at http://www.oracle.com/technology/index.html provides product downloads, articles, sample code, product documentation, tutorials, white papers, news groups, and other key content for WebLogic Server.

4.4 WebLogic Diagnostics Framework (WLDF)

The WebLogic Diagnostic Framework (WLDF) is a monitoring and diagnostic framework that can collect diagnostic data that servers and applications generate. The WLDF can be configured to collect the data and store it in various sources, including log records, data events, and harvested metrics.

WLDF includes several components for collecting and analyzing data:

	
Data Creators— data publishers and data providers that are distributed across WLDF components.

	
Diagnostic Image Capture—Creates a diagnostic snapshot from the server that can be used for post-failure analysis.

	
Archive—Captures and persists data events, log records, and metrics from server instances and applications.

	
Instrumentation—Adds diagnostic code to WebLogic Server instances and the applications running on them to execute diagnostic actions at specified locations in the code. The Instrumentation component provides the means for associating a diagnostic context with requests so they can be tracked as they flow through the system.

	
Harvester—Captures metrics from run-time MBeans, including WebLogic Server MBeans and custom MBeans, which can be archived and later accessed for viewing historical data.

	
Watches and Notifications—Provides the means for monitoring server and application states and sending notifications based on criteria set in the watches. (A watch rule can monitor log data, event data from the Instrumentation component, or metric data from a data provider that is harvested by the Harvester. The Watch Manager is capable of managing watches that are composed of several watch rules.)

	
Logging services—Manage logs for monitoring server, subsystem, and application events.

The relationship among these components is shown in Figure 4-1.

Figure 4-1 Major WLDF Components

[image: The image depicts the major components of the WLDF.]

All of the framework components operate at the server level and are only aware of server scope. All the components exist entirely within the server process and participate in the standard server lifecycle. All artifacts of the framework are configured and stored on a per server basis.

	
Note:

For more information on the WebLogic Diagnostics Framework and how it can be leveraged for monitoring Oracle Fusion Middleware components, see Oracle Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

4.5 WebLogic Scripting Tool (WLST)

The Oracle WebLogic Scripting Tool (WLST) is a command-line scripting environment that you can use to create, manage, and monitor Oracle WebLogic Server domains. It is based on the Java scripting interpreter, Jython. In addition to supporting standard Jython features such as local variables, conditional variables, and flow control statements, WLST provides a set of scripting functions (commands) that are specific to WebLogic Server. You can extend the WebLogic scripting language to suit your needs by following the Jython language syntax.

You can use any of the following techniques to invoke WLST commands:

	
Interactively, on the command line

	
In script mode, supplied in a file

	
Embedded in Java code

	
See Also:

	
Oracle Fusion Middleware WebLogic Scripting Tool Command Reference

	
"Using Custom WLST Commands" in Oracle Fusion Middleware Administrator's Guide

4.5.1 Using Custom WLST Commands

Many components, such as Oracle SOA Suite, Oracle Platform Security Services (OPSS), Oracle Fusion Middleware Audit Framework, and MDS, and services such as SSL and logging, supply custom WLST commands.

To use these custom WLST commands, you must invoke WLST from the Oracle home in which the component has been installed. See "Using Custom WLST Commands" in the Oracle Fusion Middleware Administrator's Guide for more information.

4.5.1.1 Using WLST Commands for System Components

In addition to the commands provided by WLST for Oracle WebLogic Server, WLST provides a subset of commands to monitor and manage system components. These commands are:

	
startproc(componentName [, componentType] [, componentSet): Starts the specified component.

	
stopproc(componentName [, componentType] [, componentSet): Stops the specified component.

	
status(componentName [, componentType] [, componentSet): Obtains the status of the specified component.

	
proclist(): Obtains the list of components.

	
dumpMetrics([servers,] [format]): Displays available metrics in the internal format, PDML, or in XML.

	
displayMetricTables([metricTable_1], [metricTable_2], [...,] [servers] [variables]): Displays the content of the DMS metric tables.

	
displayMetricTableNames([servers]): Displays the names of the available DMS metric tables. The returned value is a string array containing metric table names.

	
Note:

The dmstool command has been replaced with the following commands: dumpMetrics, displayMetricTables, displayMetricTableNames. For more information on DMS WLST commands, see "DMS Custom WLST Commands" in Oracle Fusion Middleware WebLogic Scripting Tool Command Reference

4.6 DMS Spy Servlet

The DMS Spy servlet provides access to DMS metric data from a web browser. Data that is created and updated by DMS-enabled applications and components is accessible through the DMS Spy Servlet.

4.6.1 Viewing Performance Metrics Using the Spy Servlet

The DMS Spy Servlet is part of the DMS web application. The DMS web application's web archive file is dms.war, and can be found in the same directory as dms.jar: <ORACLE_HOME>/modules/oracle.dms_11.1.1/dms.war.

The DMS web application is deployed by default as part of a JRF-enabled server instance. The URL is: http://host:port/dms/Spy.

Only users who have Administrator role access can view this URL as access is controlled by standard Java EE elements in web.xml.

4.6.2 Using the DMS Spy Servlet

Figure 4-2 shows the initial page of the Spy servlet: both sides show the same list of metric tables.

Figure 4-2 Spy Servlet Page - Metrics Tables

[image: Description of Figure 4-2 follows]

Note that the Spy servlet can display metric tables for WebLogic Server and also for non-Java EE components that are deployed.

For metric tables to appear in the Spy servlet, the component that creates and updates that table must be installed and running. Metric tables for components that are not running are not displayed. Metric tables with ":" in their name (for example, weblogic_j2eeserver:app_overview) are aggregated metric tables generated by metric rules.

To view the contents of a metric table, click the table name. For example, Figure 4-3 shows the MDS_Partition table.

Figure 4-3 MDS Partition Table

[image: Description of Figure 4-3 follows]

To get a description of the fields in a metric table, click the Metric Definitions link below the table.

4.7 Oracle Process Manager and Notification Server

Oracle Process Manager and Notification Server (OPMN) monitors the status of Oracle Fusion Middleware components. You can also start and stop system components, monitor system components, and perform many other tasks related to process management. For example, you can use OPMN to start and stop OPMN-managed processes, such as Oracle HTTP Server and Oracle Web Cache. For more information on OPMN commands, see "Section 5.5.5, "Monitoring Oracle HTTP Server".

	
Note:

For more information on using OPMN, refer to Oracle Fusion Middleware Oracle Process Manager and Notification Server Administrator's Guide.

4.8 Oracle Enterprise Manager 11g Grid Control

While Fusion Middleware Control provides real-time performance monitoring for a single Fusion Middleware Farm, Oracle Enterprise Manager 11g Grid Control enables you to centrally manage multiple farms, in addition to the rest of your data center (such as the underlying host and operating system, databases, packaged applications such as Oracle E-Business Suite and Siebel, and third party products such as F5 BIG_IP Local Traffic Manager).

	
Note:

Grid Control is not provided out-of-box with the Fusion Middleware installation; it requires a separate installation. Refer to the Oracle Enterprise Manager 11g Grid Control Installation and Advanced Configuration Guide for further details on how to install Grid Control.

Key features available from Grid Control that are applicable to and relevant in monitoring Fusion Middleware performance include the following:

	
Monitor multiple WebLogic Server Domains from a single console.

	
Out-of-the-box availability and performance monitoring

	
Monitor availability and performance in real-time as well as from an historical perspective

	
Specify warning versus critical thresholds for key performance metrics

	
Receive email and/or page notifications when metric thresholds are reached

	
Perform trend analysis on collected performance information

	
Application Diagnostics for Java (AD4J) which provides production diagnostics with no application instrumentation. The AD4J screen is shown below.

[image: Description of ad4j.gif follows]

Key features of AD4J include the following:

	
Full method, stack and thread state visibility

	
Quick ranking of high-cost code being executed for bottleneck identification

	
Line-of-code granularity

	
Cross-tier database and EJB/RMI correlation

	
Java thread lock and synchronization detection

	
Thread activity tracing

	
Heap snapshot and analysis

	
Differential heap analysis to quickly isolate memory leaks

	
Threshold based alerting

	
Alert actions through SNMP traps, SMTP, or HTTP request

	
Composite Application Monitor and Modeler (CAMM) provides application service management for complex composite services such as Portal, BPEL, ESB, OSB, and Web Services. The CAMM screen is shown below.

[image: Description of camm.gif follows]

Key features of CAMM include the following:

	
Automated discovery of complex services (Portal, BPEL, ESB, OSB, Web Services)

	
Automatic metadata analysis and monitoring instrumentation configuration

	
run time dependency analysis between SOA services and endpoints

	
Metadata model presents monitored targets using native terminology

	
Invocation metrics based on both arrival and completion of inbound request

	
Response time mean, max, and min metrics

	
Tiered data aggregation for long term storage and trending

	
Historical views into arbitrary date/time ranges

	
Comparative views to compare any two arbitrary date/time ranges with simultaneous scrolling

	
Custom views to combine arbitrary graphs, tables, and functional views

	
Customizable hierarchy of custom views

	
Threshold based alerting on any metric, both individual and aggregate

	
Alert actions through SNMP traps, SMTP, logging, or custom scripts

	
Real User Experience Insight (RUEI) provides insight into the real end-user experience for your applications. No application instrumentation is required. The RUEI screen is shown below.

Key features of RUEI include the following:

	
Replay of poor performance

	
Executive dashboards

	
Extensive KPI and SLA monitoring

	
Full alerting capabilities

	
Quick bottle-neck analyses

	
Transaction performance analyses

	
Customized reporting

	
Trend analyses

	
Full data integration through XML

[image: Description of reui.gif follows]

	
Note:

For more information on the monitoring features available in Oracle Enterprise Manager 10g Grid Control, refer to the Oracle Enterprise Manager 10g Grid Control documentation available on the Oracle Technology Network here: http://www.oracle.com/technology/documentation/oem.html.

4.9 Native Operating System Performance Commands

Each operating system has native tools and utilities that can be useful for monitoring purposes. Native operating system commands enable you to gather and monitor for example CPU utilization, paging activity, swapping, and other system activity information.

For details on operating system commands, refer to the documentation provided by the operating system vendor.

4.10 Network Performance Monitoring Tools

Your operating system's network monitoring tools can be used to monitor utilization, verify that the network is not becoming a bottleneck, or detect packet loss or other network performance issues. For details on network performance monitoring, refer to your operating system documentation.

5 Oracle HTTP Server Performance Tuning

This chapter discusses the techniques for optimizing Oracle HTTP Server performance. This chapter contains the following sections:

	
Section 5.1, "About Oracle HTTP Server"

	
Section 5.2, "Tuning Considerations for Oracle HTTP Server Directives"

	
Section 5.3, "Logging Options for Oracle HTTP Server"

	
Section 5.4, "Performance Considerations for Oracle HTTP Server Security"

	
Section 5.5, "Oracle HTTP Server Performance Considerations"

	
Note:

The configuration examples and recommended settings described in this chapter are for illustrative purposes only. Consult your own use case scenarios to determine which configuration options can provide performance improvements.

5.1 About Oracle HTTP Server

Oracle HTTP Server (OHS) is the Web server component for Oracle Fusion Middleware. It provides a listener for Oracle WebLogic Server and the framework for hosting static pages, dynamic pages, and applications over the Web. Oracle HTTP Server is based on the Apache 2.2.x infrastructure, and includes modules developed specifically by Oracle. The features of single sign-on, clustered deployment, and high availability enhance the operation of the Oracle HTTP Server.

For more information see Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server.

For more information on the Apache open-source software infrastructure, see the Apache Software Foundation web site at http://www.apache.org/.

5.2 Tuning Considerations for Oracle HTTP Server Directives

Oracle HTTP Server uses directives in httpd.conf. This configuration file specifies the maximum number of HTTP requests that can be processed simultaneously, logging details, and certain limits and time outs.

More information on configuring the Oracle HTTP Server, see "Management Tools for Oracle HTTP Server" in Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server.

Oracle HTTP Server supports three different Multi-Processing Modules (MPMs) by default. The MPMs supported are:

	
Worker - This uses Multi-Process-Multi-Threads model and is the default MPM on all platforms other than Microsoft Windows platforms. Multi-thread support makes it more scalable by using fewer system resources and multi-process support makes it more stable.

	
WinNT - This MPM is for Windows platforms only. It consists of a parent process and a child process. The parent process is the control process, and the child process creates threads to handle requests.

	
Prefork - This is Apache 1.3.x style and uses processes instead of threads. This is considered the least efficient MPM.

The directives for each MPM type are defined in the ORACLE_INSTANCE/config/OHSComponent/<ohsname>/httpd.conf file. The default MPM type is Worker MPM. To use a different MPM (such as Prefork MPM), edit the ORACLE_HOME/ohs/bin/apachectl file.

	
Note:

The information in this chapter is based on the use of Worker and WinNT MPMs, which use threads. The directives listed below may not be applicable if you are using the prefork MPM. If you are using Oracle HTTP Server based on Apache 1.3.x or Apache 2.2 with prefork MPM, refer to the Oracle Application Server 10g Release 3 documentation at http://www.oracle.com/technology/documentation/appserver10132.html.

Table 5-1 Oracle HTTP Server Configuration Properties

	Directive	Description
	
ListenBackLog

This directive maps to the Maximum Queue Length field on the Performance Directives screen.

	
Specifies the maximum length of the queue of pending connections. Generally no tuning is needed. Note that some operating systems do not use exactly what is specified as the backlog, but use a number based on, but normally larger than, what is set.

Default Value: 511

	
MaxClients

This directive maps to the Maximum Requests field on the Performance Directives screen.

Note that this parameter is not available in mod_winnt (Microsoft Windows). Winnt uses a single process, multi-threaded model and is controlled by ThreadLimit directive.

	
Specifies a limit on the total number of servers running, that is, a limit on the number of clients who can simultaneously connect. If the number of client connections reaches this limit, then subsequent requests are queued in the TCP/IP system up to the limit specified with the ListenBackLog directive (after the queue of pending connections is full, new requests generate connection errors until a thread becomes available).

You can configure the MaxClients directive in the httpd.conf file up to a maximum of 8000 (8K) (the default value is 150). If your system is not resource-saturated and you have a user population of more than 150 concurrent HTTP/Thread connections, you can improve your performance by increasing MaxClients to increase server concurrency. Increase MaxClients until your system becomes fully utilized (85% is a good threshold).

Conversely, when system resources are saturated, increasing MaxClients does not improve performance. In this case, the MaxClients value could be reduced as a throttle on the number of concurrent requests on the server.

If the server handles persistent connections, then it may require sufficient concurrent httpd or thread server processes to handle both active and idle connections. When you specify MaxClients to act as a throttle for system concurrency, you must consider that persistent idle httpd connections also consume httpd/thread processes. Specifically, the number of connections includes the currently active persistent and non-persistent connections and the idle persistent connections. A persistent, KeepAlive, http connection consumes an httpd child process, or thread, for the duration of the connection, even if no requests are currently being processed for the connection.

If you have sufficient capacity, KeepAlive should be enabled; using persistent connections improves performance and prevents wasting CPU resources reestablishing HTTP connections. Normally, you should not change KeepAlive parameters.

The maximum allowed value for MaxClients is 8192 (8K).

Default Value: 150

	
StartServers

This directive maps to the Initial Child Server Processes field on the Performance Directives screen.

	
Specifies the number of child server processes created on startup. If you expect a sudden load after restart, set this value based on the number child servers required.

Note that the following parameters are inter-related and applicable only on UNIX platforms (worker_mpm):

	
MaxClients

	
MaxSpareThreads and MinSpareThreads

	
ServerLimit and StartServers

On the Windows platform (mpm_winnt), as well as UNIX platforms, the following parameters are important to tune:

	
ThreadLimit

	
ThreadsPerChild

Note that each child process has a set of child threads defined for them and that can actually handle the requests. Use ThreadsPerChild in connection with this directive.

The values of ThreadLimit, ServerLimit, and MaxClients can indirectly affect this value. Read the notes for these directives and use them in conjunction with this directive.

Default Value: 2

	
ServerLimit

Note that this parameter is not available in mod_winnt (Microsoft Windows). Winnt uses a single process, multi-threaded model

	
Specifies an upper limit on the number of server (child) processes that can exist or be created. This value overrides the StartServers value if that value is greater than the ServerLimit value. This is used to control the maximum number of server processes that can be created.

Default Value: 16

	
ThreadLimit

	
Specifies the upper limit on the number of threads that can be created under a server (child) process. This value overrides the ThreadsPerChild value if that value is greater than the ThreadLimit value. This is used to control the maximum number of threads created per process to avoid conflicts/issues.

Default Values:

	
Windows Multi-Processing Module (mpm_winnt): 1920

	
All others: 64

	
ThreadsPerChild

This directive maps to the Threads Per Child Server Process field on the Performance Directives screen.

	
Sets the number of threads created by each server (child) process at startup.

Default Value: 64 when mpm_winnt is used and 25 when Worker MPM is used.

The ThreadsPerChild directive works with other directives, as follows:

At startup, Oracle HTTP Server creates a parent process, which creates several child (server) processes as defined by the StartServers directive. Each server process creates several threads (server/worker), as specified in ThreadsPerChild, and a listener thread which listens for requests and transfers the control to the worker/server threads.

After startup, based on load conditions, the number of server processes and server threads (children of server processes) in the system are controlled by MinSpareThreads (minimum number of idle threads in the system) and MaxSpareThreads (maximum number of idle threads in the system). If the number of idle threads in the system is more than MaxSpareThreads, Oracle HTTP Server terminates the threads and processes if there are no child threads for a process. If the number of idle threads is fewer than MinSpareThreads, it creates new threads and processes if the ThreadsPerChild value has already been reached in the running processes.

The following directives control the limit on the above directives. Note that the directives below should be defined before the directives above for them to take effect.

	
ServerLimit - Defines the upper limit on the number of servers that can be created. This affects MaxClients and StartServers.

	
ThreadLimit - Defines the upper limit on ThreadsPerChild. If ThreadsPerChild is greater than ThreadLimit, then it is automatically trimmed to the latter value.

	
MaxClients - Defines the upper limit on the number of server threads that can process requests simultaneously. This should be equal to the number of simultaneous connections that can be made. This value should be a multiple of ThreadsPerChild. If MaxClients is greater than ServerLimit multiplied by ThreadsPerChild, it is automatically be trimmed to the latter value.

	
MaxRequestsPerChild

This directive maps to the Max Requests Per Child Server Process field on the Performance Directives screen.

	
Specifies the number of requests each child process is allowed to process before the child process dies. The child process ends to avoid problems after prolonged use when Apache (and any other libraries it uses) leak memory or other resources. On most systems, this is not needed, but some UNIX systems have notable leaks in the libraries. For these platforms, set MaxRequestsPerChild to 10000; a setting of 0 means unlimited requests.

This value does not include KeepAlive requests after the initial request per connection. For example, if a child process handles an initial request and 10 subsequent "keep alive" requests, it would only count as 1 request toward this limit.

Default Value: 0

Note: On Windows systems MaxRequestsPerChild should always be set to 0 (unlimited) since there is only one server process.

	
MaxSpareThreads

MinSpareThreads

These directives map to the Maximum Idle Threads and Minimum Idle Threads fields on the Performance Directives screen.

Note that these parameters are not available in mod_winnt (Windows platform).

	
Controls the server-pool size. Rather than estimating how many server threads you need, Oracle HTTP Server dynamically adapts to the actual load. The server tries to maintain enough server threads to handle the current load, plus a few additional server threads to handle transient load increases such as multiple simultaneous requests from a single browser.

The server does this by periodically checking how many server threads are waiting for a request. If there are fewer than MinSpareThreads, it creates a new spare. If there are more than MaxSpareThreads, some of the spares are removed.

Default Values:

MaxSpareThreads: 75

MinSpareThreads: 25

	
Timeout

This directive maps to the Request Timeout field on the Performance Directives screen.

	
The number of seconds before incoming receives and outgoing sends time out.

Default Value: 300

	
KeepAlive

This directive maps to the Multiple Requests Per Connection field on the Performance Directives screen.

	
Whether or not to allow persistent connections (more than one request per connection). Set to Off to deactivate.

Default Value: On

	
MaxKeepAliveRequests

	
The maximum number of requests to allow during a persistent connection. Set to 0 to allow an unlimited amount.

If you have long client sessions, consider increasing this value.

Default Value: 100

	
KeepAliveTimeout

This directive maps to the Allow With Connection Timeout (seconds) field, which is located under the Multiple Requests Per Connection field, on the Performance Directives screen.

	
Number of seconds to wait for the next request from the same client on the same connection.

Default Value: 5 seconds

	
limit

ulimit

	
Number of objects that a program uses to read or write to an open file or open network sockets. A lack of available file descriptors can impact operating system performance.

Tuning the file descriptor limit can be accomplished by configuring the hard limit (ulimit) in a shell script which starts the OHS. Once the hard limit has been set the OHS will then adjust the soft limit (limit) to match.

Note that configuring file descriptor limits is platform specific. Refer to your operating system documentation for more information.

5.2.1 Reducing Httpd Process Availability with Persistent Connections

If your browser supports persistent connections, you can support them on the server using the KeepAlive directives in the Oracle HTTP Server. Persistent Connections can improve performance by reducing the work load on the server. With Persistent Connections enabled, the server does not have to repeat the work to set up the connections with a client.

The default settings for the KeepAlive directives are:

KeepAlive on
MaxKeepAliveRequests 100
KeepAliveTimeOut 5

These settings allow enough requests per connection and time between requests to reap the benefits of the persistent connections, while minimizing the drawbacks. You should consider the size and behavior of your own user population when setting these values. For example, if you have a large user population and the users make small infrequent requests, you may want to reduce the keepAlive directive default settings, or even set KeepAlive to off. If you have a small population of users that return to your site frequently, you may want to increase the settings.

KeepAlive option should be used judiciously along with MaxClients directive. KeepAlive option would tie a worker thread to an established connection until it times out or the number of requests reaches the limit specified by MaxKeepAliveRequests. This means that the connections or users in the ListenBacklog queue would be starving for a worker until the worker is relinquished by the keep-alive user. The starvation for resources happens on the KeepAlive user load with user population consistently higher than that specified in the MaxClients.

	
Note:

The Maxclients property is applicable only to UNIX platforms. On Windows, the same functionality is achieved through the ThreadLimit and ThreadsPerChild parameters.

Increasing MaxClients may impact performance in the following ways:

	
A high number of MaxClients can overload the system resources and may lead to poor performance.

	
For a high user population with fewer requests, consider increasing the MaxClients to support KeepAlive connections to avoid starvation. Note that this can impact overall performance if the user concurrency increases. System performance is impacted by increased concurrency and can possibly cause the system to fail.

MaxClients should always be set to a value where the system would be stable or performing optimally (~85% CPU).

Typically for high user population with less frequent requests, consider turning the KeepAlive option off or reduce it to a very low value to avoid starvation.

Disabling the KeepAlive connection may impact performance in the following ways:

	
Connection establishment for every request has a cost.

	
If the frequency of creating and closing connections is higher, then some system resources are used. The TCP connection has a time_wait interval before it can close the socket connection and open file descriptors for every connection. The default time_wait value is 60 seconds and each connection can take 60 seconds to close, even after it is relinquished by the server.

	
WARNING:

To avoid potential performance issues, values for any parameters should be set only after considering the nature of the workload and the system capacity.

5.3 Logging Options for Oracle HTTP Server

This section discusses types of logging, log levels, and the performance implications for using logging.

5.3.1 Access Logging

Access logs are generally enabled to track who accessed what. The access_log file, available in the ORACLE_INSTANCE/diagnostics/logs/OHS/ohsname directory, contains an entry for each request that is processed. This file grows as time passes and can consume disk space. Depending on the nature of the workload, the access_log has little impact on performance. If you notice that performance is becoming an issue, the file can be disabled if some other proxy or load balancer is used and gives the same information.

5.3.2 Configuring the HostNameLookups Directive

By default, the HostNameLookups directive is set to Off. The server writes the IP addresses of incoming requests to the log files. When HostNameLookups is set to On, the server queries the DNS system on the Internet to find the host name associated with the IP address of each request, then writes the host names to the log. Depending on the server load and the network connectivity to your DNS server, the performance impact of the DNS HostNameLookup may be high. When possible, consider logging only IP addresses. On UNIX systems, you can resolve IP addresses to host names off-line, with the logresolve utility found in the ORACLE_HOME/Apache/Apache/bin/ directory.

5.3.3 Error logging

The server notes unusual activity in an error log. The ohsname.log file, available in ORACLE_INSTANCE/diagnostics/logs/OHS/ohsname directory, contains errors, warnings, system information, and notifications (depending on the log-level setting).

The httpd.conf file contains the error log configuration for OHS. The logging mode is defined by the "OraLogMode" directive. The default is "odl-text", which produces the Oracle diagnostic logging format in a text file. Alternatively, change this to "odl-xml" to produce the Oracle diagnostic logging format in an XML file.

For Oracle diagnostic-style logging, "OraLogSeverity" directive is used for setting the log level.

For Apache-style logging, the ErrorLog and LogLevel directives identify the log file and the level of detail of the messages recorded. The default debug level is Warn.

Excessive logging can have some performance cost and may also fill disk space. The log level control should be used based on need. For requests that use dynamic resources, for example, requests that use mod_osso or mod_plsql, there is a performance cost associated with setting higher debugging levels, such as the debug level.

5.4 Performance Considerations for Oracle HTTP Server Security

This section covers the following topics:

	
Oracle HTTP Server Secure Sockets Layer (SSL) Performance Issues

	
Oracle HTTP Server Port Tunneling Performance Issues

5.4.1 Oracle HTTP Server Secure Sockets Layer (SSL) Performance Issues

Secure Sockets Layer (SSL) is a protocol developed by Netscape Communications Corporation that provides authentication and encrypted communication over the Internet. Conceptually, SSL resides between the application layer and the transport layer on the protocol stack. While SSL is technically an application-independent protocol, it has become a standard for providing security over HTTP, and all major web browsers support SSL.

SSL can become a bottleneck in both the responsiveness and the scalability of a web-based application. Where SSL is required, the performance challenges of the protocol should be carefully considered. Session management, in particular session creation and initialization, is generally the most costly part of using the SSL protocol, in terms of performance.

This section covers the following SSL performance-related information:

	
Section 5.4.1.1, "Caching SSL on Oracle HTTP Server"

	
Section 5.4.1.2, "Using SSL Application Level Data Encryption"

	
Section 5.4.1.3, "Tuning Considerations for SSL Performance"

	
See Also:

Oracle Fusion Middleware Application Security Guide

5.4.1.1 Caching SSL on Oracle HTTP Server

When an SSL connection is initialized, a session-based handshake between client and server occurs that involves the negotiation of a cipher suite, the exchange of a private key for data encryption, and server and, optionally, client, authentication through digitally-signed certificates.

After the SSL session state has been initiated between a client and a server, the server can avoid the session creation handshake in subsequent SSL requests by saving and reusing the session state. The Oracle HTTP Server caches a client's SSL session information by default. With session caching, only the first connection to the server incurs high latency.

The SSLSessionCacheTimeout directive in ssl.conf determines how long the server keeps a saved SSL session (the default is 300 seconds). Session state is discarded if it is not used after the specified time period, and any subsequent SSL request must establish a new SSL session and begin the handshake again. The SSLSessionCache directive specifies the location for saved SSL session information (the default location is the following directory):

$ORACLE_INSTANCE/diagnostics/logs/$COMPONENT_ TYPE/$COMPONENT_NAME

Note that multiple Oracle HTTP Server processes can use a saved session cache file.

Saving SSL session state can significantly improve performance for applications using SSL. For example, in a simple test to connect and disconnect to an SSL-enabled server, the elapsed time for 5 connections was 11.4 seconds without SSL session caching. With SSL session caching enabled, the elapsed time for 5 round trips was 1.9 seconds.

The reuse of saved SSL session state has some performance costs. When SSL session state is stored to disk, reuse of the saved state normally requires locating and retrieving the relevant state from disk. This cost can be reduced when using HTTP persistent connections. Oracle HTTP Server uses persistent HTTP connections by default, assuming they are supported on the client side. In HTTP over SSL as implemented by Oracle HTTP Server, SSL session state is kept in memory while the associated HTTP connection is persisted, a process which essentially eliminates the performance impacts associated with SSL session reuse (conceptually, the SSL connection is kept open along with the HTTP connection). For more information see Section 5.2.1, "Reducing Httpd Process Availability with Persistent Connections".

5.4.1.2 Using SSL Application Level Data Encryption

In most applications using SSL, the data encryption cost is small compared with the cost of SSL session management. Encryption costs can be significant where the volume of encrypted data is large, and in such cases the data encryption algorithm and key size chosen for an SSL session can be significant. In general there is a trade-off between security level and performance.

Oracle HTTP Server negotiates a cipher suite with a client based on the SSLCipherSuite attribute specified in ssl.conf. OHS 11g uses 128 bit Encryption algorithm by default and no longer supports lower encryption. Note that the previous release [10.1.3x] used 64 bit encryption for Windows. For UNIX, the 10.x releases had 128 bit encryption used by default.

	
See Also:

Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server for information on using supported cipher suites.

5.4.1.3 Tuning Considerations for SSL Performance

The following recommendations can assist you with determining performance requirements when working with Oracle HTTP Server and SSL.

	
The SSL handshake is an inherently resource intensive process in terms of both CPU usage and response time. Thus, use SSL only where needed. Determine the parts of the application that require the security, and the level of security required, and protect only those parts at the requisite security level. Attempt to minimize the need for the SSL handshake by using SSL sparingly, and by reusing session state as much as possible. For example, if a page contains a small amount of sensitive data and several non-sensitive graphic images, use SSL to transfer the sensitive data only, use normal HTTP to transfer the images. If the application requires server authentication only, do not use client authentication. If the performance goals of an application cannot be met by this method alone, additional hardware may be required.

	
Design the application to use SSL efficiently. Group secure operations to take advantage of SSL session reuse and SSL connection reuse.

	
Use persistent connections, if possible, to minimize cost of SSL session reuse.

	
Tune the session cache timeout value (the SSLSessionCacheTimeout directive in ssl.conf). A trade-off exists between the cost of maintaining an SSL session cache and the cost of establishing a new SSL session. As a rule, any secured business process, or conceptual grouping of SSL exchanges, should be completed without incurring session creation more than once. The default value for the SSLSessionCacheTimeout attribute is 300 seconds. It is a good idea to test an application's usability to help tune this setting.

	
If large volumes of data are being protected through SSL, pay close attention to the cipher suite being used. The SSLCipherSuite directive specified in ssl.conf controls the cipher suite. If lower levels of security are acceptable, use a less-secure protocol using a smaller key size (this may improve performance significantly). Finally, test the application using each available cipher suite for the specified security level to find the optimal suite.

	
If SSL remains a bottleneck to the performance and scalability of your application, after taking the preceding considerations into account, consider deploying multiple Oracle HTTP Server instances over a hardware cluster or consider the use of SSL accelerator cards.

5.4.2 Oracle HTTP Server Port Tunneling Performance Issues

When OracleAS Port Tunneling is configured, every request processed passes through the OracleAS Port Tunneling infrastructure. Thus, using OracleAS Port Tunneling can have an impact on the overall Oracle HTTP Server request handling performance and scalability.

With the exception of the number of OracleAS Port Tunneling processes to run, the performance of OracleAS Port Tunneling is self-tuning. The only performance control available is to start more OracleAS Port Tunneling processes; this increases the number of available connections and the scalability of the system.

The number of OracleAS Port Tunneling processes is based on the degree of availability required, and the number of anticipated connections. This number cannot be automatically determined because for each additional process a new port must be opened through the firewall between the DMZ and the intranet. You cannot start more processes than you have open ports, and you do not want less processes than open ports, since in this case ports would not have any process bound to them.

To measure the OracleAS Port Tunneling performance, determine the request time for servlet requests that pass through the OracleAS Port Tunneling infrastructure. The response time running with OracleAS Port Tunneling should be compared with a system without OracleAS Port Tunneling to determine whether your performance requirements can be met using OracleAS Port Tunneling.

	
See Also:

Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server for information on configuring OracleAS Port Tunneling

5.5 Oracle HTTP Server Performance Considerations

The following tips can enable you to avoid or debug potential Oracle HTTP Server performance problems:

	
Analyzing Static Versus Dynamic Requests

	
Managing PL/SQL Requests

	
Limiting the Number of Enabled Modules

	
Monitoring Oracle HTTP Server

5.5.1 Analyzing Static Versus Dynamic Requests

It is important to understand where your server is spending resources so you can focus your tuning efforts in the areas where the most stands to be gained. In configuring your system, it can be useful to know what percentage of the incoming requests are static and what percentage are dynamic.

Generally, you want to concentrate your tuning effort on dynamic pages because dynamic pages can be costly to generate. Also, by monitoring and tuning your application, you may find that much of the dynamically generated content, such as catalog data, can be cached, sparing significant resource usage.

5.5.2 Managing PL/SQL Requests

You can get unrepresentative results when data outliers appear. This can sometimes occur at start-up. To simulate a simple example, assume that you ran a PL/SQL "Hello, World" application for about 30 seconds. Examining the results, you can see that the work was all done in mod_plsql.c:

 /ohs_server/ohs_module/mod_plsql.c
 handle.maxTime: 859330
 handle.minTime: 17099
 handle.avg: 19531
 handle.active: 0
 handle.time: 24023499
 handle.completed: 1230

Note that handle.maxTime is much higher than handle.avg for this module. This is probably because when the first request is received, a database connection must be opened. Later requests can make use of the established connection. In this case, to obtain a better estimate of the average service time for a PL/SQL module, that does not include the database connection open time which causes the handle.maxTime to be very large, recalculate the average as in the following:

(time - maxTime)/(completed -1)

For example:

(24023499 - 859330)/(1230 - 1) = 18847.98

5.5.3 Limiting the Number of Enabled Modules

Oracle HTTP Server, which is now based on Apache 2.2, has a slight change in architecture in the way the requests are handled, compared to the previous release of Oracle HTTP Server, which was based on Apache 1.3.

In the new architecture, Oracle HTTP Server invokes the service function of each module that is loaded (in the order of definition in httpd.conf file) until the request is serviced. This indicates that there is some cost associated with invoking the service function of each module, to know if the service is accepted or declined.

Because of this change in architecture, consider placing the most frequently hit modules above the others in the httpd.conf file.

For the static page requests, which are directly deployed to Oracle HTTP Server and served by the default handler, the request has to go through all the modules before the default handler is invoked. This process can impact performance of the request so consider enabling only the modules that are required by the deployed application. Example, if "mod_plsql" is never used by the deployed application, disable it to maintain performance.

In addition, there are a few modules that register their hooks to do some work during the URL translation phase, which would add to the cost of request processing time. Example: mod_security, when enabled, has a cost of about 10% on CPU Cost per Transaction for the specweb benchmark. Again, enable only those modules that are required by your deployed applications to save CPU time.

5.5.4 Tuning the File Descriptor Limit

A lack of available file descriptors can cause a wide variety of symptoms which are not always easily traced back to the operating system's file descriptor limit. Tuning the file descriptor limit can be accomplished by configuring the operating system's hard limit for the user who starts the OHS. Once configured, the OHS will adjust the soft limit to match the operating system limit.

Configuring file descriptor limits is platform-specific. Refer to your operating system documentation for more information. The following code example shows the command for Linux:

 APACHECTL_ULIMIT=ulimit -S -n `ulimit -H -n`

Note that this limit must be reconfigured after applying a patch set.

5.5.5 Monitoring Oracle HTTP Server

Oracle Fusion Middleware automatically and continuously measures run-time performance for Oracle HTTP Server. The performance metrics are automatically enabled; you do not need to set options or perform any extra configuration to collect them. If you encounter a problem, such as an application that is running slowly or is hanging, you can view particular metrics to find out more information about the problem.

	
Note:

Fusion Middleware Control provides real-time data. For more information on using Fusion Middleware Control to view performance metrics for HTTP Server, see "Monitoring Oracle HTTP Server Performance" in Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server.

If you are interested in viewing historical data, consider using Grid Control. See Section 4.8, "Oracle Enterprise Manager 11g Grid Control".

In addition to the Fusion Middleware Control, Oracle HTTP Server also has Dynamic Monitoring Service (DMS), which collects metrics for every functional piece. You can review these metrics as needed to understand system behavior at a given point of time. This displays memory, CPU information and the minimum, maximum, and average times for the request processing at every layer in Oracle HTTP Server. The metrics also display details about load level, number of threads, number of active connections, and so on, which can help in tuning the system based on real usage.

You can use Oracle Enterprise Manager or SpyServlet to monitor the metrics. See Chapter 4, "Monitoring Oracle Fusion Middleware". Another way to view DMS metrics for OHS is shown in the following example:

	
cd $INSTANCE_HOME/bin

	
./opmnctl metric op=query COMPONENT_NAME=<component_name> dmsarg=[name=/OHS/Modules/<module_name>.c

Examples:

./opmnctl metric op=query COMPONENT_NAME=ohs1 dmsarg=[name=/OHS/Modules/mod_cgi.c

./opmnctl metric op=query COMPONENT_NAME=ohs1 dmsarg=[name=*]

6 Oracle Dynamic Monitoring Service Performance Tuning

This chapter provides an overview and features available in the Oracle Dynamic Monitoring Service (DMS).

	
Section 6.1, "About Dynamic Monitoring Service (DMS)"

	
Section 6.2, "DMS Availability"

	
Section 6.3, "DMS Architecture Overview"

	
Section 6.4, "Viewing DMS Metrics"

	
Section 6.5, "Accessing DMS Metrics with WLDF"

	
Section 6.6, "DMS Execution Context"

	
Section 6.7, "DMS Tracing and Events"

	
Section 6.8, "DMS Best Practices"

6.1 About Dynamic Monitoring Service (DMS)

The Oracle Dynamic Monitoring Service (DMS) enables Oracle Fusion Middleware components to provide administration tools, such as Oracle Enterprise Manager, with data regarding the component's performance, state and on-going behavior. Fusion Middleware Components push data to DMS and in turn DMS publishes that data through a range of different components. Specifically, DMS is used by Oracle WebCache, Oracle HTTP Server (OHS), Oracle Application Development Framework (ADF), WebLogic Diagnostic Framework (WLDF), and JDBC. DMS measures and reports metrics, trace events and system performance and provides a context correlation service for these components.

6.1.1 Common DMS Terms and Concepts

This section defines common DMS terms and concepts related to the following:

	
DMS Tracing and Events

	
DMS Nouns

	
DMS Sensors

6.1.1.1 DMS Tracing and Events

Table 6-1 provides a list of DMS tracing and event terminology.

Table 6-1 DMS Tracing and Event Terminology

	DMS Term	Definition
	
Condition

	
A condition is the logic behind a condition filter. It determines which events may pass through a filter, based on the rules defined in the condition. Every condition filter has zero or one root condition, but conditions may include AND or OR arguments together to create compound conditions. The single root condition can describe a relatively complex rule.

Two types of condition exist:

	
Noun Type Condition - operates on the name of the noun type associated with a sensor or noun event.

	
Context Condition - operates on the values currently set within the current Execution Context.

For more information on using conditions, see Section 6.7, "DMS Tracing and Events".

	
Destination

	
A destination implements a mechanism for reacting to events that are passed to it. For example, a destination could log events to a file, another could send transformed copies of event to the JRockit Flight Recorder, yet another might render information gleaned from incoming events as data in an MBean.

	
Event Route

	
An event route connects a filter to a destination. Event routes may be enabled or disabled. For event tracing to be activated for a specific filter, one or more event routes must exist for that filter and must be enabled.

	
Filter

	
An event tracing filter selectively passes a subset of all possible DMS runtime events. Filters can be configured with rules that determine which events are passed and which are blocked.

For example it is possible to define filters to:

	
Only pass sensor updates that are made when the execution context has a key-value pair of "role"-"admin"

	
Only pass sensor updates from nouns of type "JDBC_Statement"

For more information on using filters, see Section 6.7, "DMS Tracing and Events".

	
Listener

	
A DMS listener is also known as the destination. See Section 6.7.2, "Configuring Destinations" for more information.

6.1.1.2 DMS Nouns

DMS nouns organize performance data. Sensors, with their associated metrics, are organized in an hierarchy according to nouns. Nouns enable you to organize DMS metrics in a manner comparable to a directory structure in a file system. For example, nouns can represent classes, methods, objects, queues, connections, applications, databases, or other objects that you want to measure.

A noun type is a name that reflects the set of metrics being collected.

6.1.1.2.1 General DMS Naming

A noun name is a simple string, not including a delimiter. For example, BasicBinomial is a noun name. A noun full name consists of the noun name with the namespace and localpart. The noun name is preceded by the full name of its parent, and a delimiter. /dmsDemo/BasicBinomial/"{http://mynamespace/}JAXWSHelloService" is a noun full name.

A sensor name is a simple string, not including the "." or the derivation. For example, computeSeries, loops, and lastComputed are sensor names.

A sensor full name consists of the sensor name, preceded by the name of its associated noun, and a delimiter. Examples: /dmsDemo/BasicBinomial/computeSeries, /dmsDemo/BasicBinomial/loops, /dmsDemo/BasicBinomial/lastComputed.

A DMS metric name consists of a sensor name plus the "." character plus the metric. For example, computeSeries.time, loops.count, and lastComputed.value are valid DMS metric names.

	
Note:

The suffixes .time, .count, and .value are immutable. Sensor and noun names, however, can be modified as needed.

6.1.1.2.2 General DMS Naming Conventions and Character Sets

DMS names should be as compact as possible. When you define noun and sensor names, avoid special characters such as white space, slashes, periods, parenthesis, commas, and control characters.

Table 6-2 shows DMS replacement for special characters in names.

Table 6-2 Replacement for Special Characters in DMS Names

	Character	DMS Replacement Character
	
Space character

	
Underscore character: _

	
Period character: .

	
Underscore character: _

	
Control character

	
Underscore character: _

	
Less than character: <

	
Open parenthesis: (

	
Greater than character: >

	
Close parenthesis:)

	
Ampersand: &

	
Caret: ^

	
Double quote: "

	
Backquote: '

	
Single quote: '

	
Backquote: '

	
Note:

Oracle Fusion Middleware includes several built-in metrics. The Oracle Fusion Middleware built-in metrics do not always follow the DMS naming conventions.

6.1.1.2.3 Noun and Noun Type Naming Conventions

The following conventions are used when naming noun and noun types:

	
A noun name should be unique.

	
A noun name should identify a specific entity of interest.

	
Noun types should have names that clearly reflect the set of metrics being collected. For example, Servlet is the type for a noun under which the metrics that are specific to a given servlet fall.

	
Noun type names should start with a capital letter to distinguish them from other DMS names. All nouns of a given type should contain the same set of sensors.

	
The noun naming scheme uses a '/' as the root of the hierarchy, with each noun acting as a container under the root, or under its parent noun.

6.1.1.3 DMS Sensors

DMS sensors measure performance data and enable DMS to define and collect a set of metrics. Certain metrics are always included with a sensor and other metrics are optionally included with a sensor.

DMS has three different kinds of sensors:

	
Section 6.1.1.3.1, "DMS PhaseEvent Sensors"

	
Section 6.1.1.3.2, "DMS Event Sensors"

	
Section 6.1.1.3.3, "DMS State Sensors"

6.1.1.3.1 DMS PhaseEvent Sensors

A DMS PhaseEvent sensor measures the time spent in a specific section of code that has a beginning and an end. Use a PhaseEvent sensor to track time in a method or in a block of code.

DMS can calculate optional metrics associated with a PhaseEvent, including the average, maximum, and minimum time that is spent in the PhaseEvent sensor.

Table 6-3 lists the metrics available with PhaseEvent sensors.

Table 6-3 DMS PhaseEvent Sensor Metrics

	Metric	Description
	
sensor_name.time

	
Specifies the total time spent in the phase sensor_name.

Default metric: time is a default PhaseEvent sensor metric.

	
sensor_name.completed

	
Specifies the number of times the phase sensor_name has completed since the process was started.

Optional metric

	
sensor_name.minTime

	
Specifies the minimum time spent in the phase sensor_name, for all the times the sensor_name phase completed.

Optional metric

	
sensor_name.maxTime

	
Specifies the maximum time spent in the phase sensor_name, for all the times the sensor_name phase completed.

Optional metric

	
sensor_name.avg

	
Specifies the average time spent in the phase sensor_name, computed as the (total time)/(number of times the phase completed).

Optional metric

	
sensor_name.active

	
Specifies the number of threads in the phase sensor_name, at the time the DMS statistics are gathered (the value may change over time).

Optional metric

	
sensor_name.maxActive

	
Specifies the maximum number of concurrent threads in the phase sensor_name, since the process started.

Optional metric

6.1.1.3.2 DMS Event Sensors

A DMS event sensor counts system events. Use a DMS event sensor to track system events that have a short duration, or where the duration of the event is not of interest but the occurrence of the event is of interest.

Table 6-4 describes the metric that is associated with an event sensor.

Table 6-4 DMS Event Sensor Metrics

	Metric	Description
	
sensor_name.count

	
Specifies the number of times the event has occurred since the process started, where sensor_name is the name of the Event sensor as specified in the DMS instrumentation API.

Default: count is the default metric for an event sensor. No other metrics are available for an event sensor.

6.1.1.3.3 DMS State Sensors

A DMS state sensor tracks the value of Java primitives or the content of a Java object. Supported types include integer, double, long, and object. Use a state sensor when you want to track system status information or when you need a metric that is not associated with an event. For example, use state sensors to track queue lengths, pool sizes, buffer sizes, or host names. You assign a precomputed value to a state sensor.

Table 6-5 describes the state sensor metrics. State sensors support a default metric value, as well as optional metrics. The optional minValue and maxValue metrics only apply for state sensors if the state sensor represents a numeric Java primitive (of type integer, double, or long).

Table 6-5 DMS State Sensor Metrics

	Metric	Description
	
sensor_name.value

	
Specifies the metric value for sensor_name, using the type assigned when sensor_name is created.

Default: value is the default State metric.

	
sensor_name.count

	
Specifies the number of times sensor_name is updated.

Optional metric

	
sensor_name.minValue

	
Specifies the minimum value for sensor_name since startup.

Optional metric

	
sensor_name.maxValue

	
Specifies the maximum value this sensor_name since startup.

Optional metric

6.1.1.3.4 Sensor Naming Conventions

The following list describes DMS sensor naming conventions:

	
Sensor names should be descriptive, but not redundant. Sensor names should not contain any part of the noun name hierarchy, or type, as this is redundant.

	
Sensor names should avoid containing the value for the individual metrics.

	
Where multiple words are required to describe a sensor, the first word should start with a lowercase letter, and the following words should start with uppercase letters. Example: computeSeries

	
In general, avoid using a "/" character in a sensor name. However, there are cases where it makes sense to use a name that contains "/" . If a "/" is used in a noun or sensor name, then when you use the sensor in a string with DMS methods, you need to use an alternative delimiter, such as "," or "_", which does not appear anywhere in the path; this enables the "/" to be properly understood as part of the noun or sensor name rather than as a delimiter.

For example, a child noun can have a name such as:

examples/jsp/num/numguess.jsp

and you can look this up using the string:

,default,WEBs,defaultWebApp,JSPs,example/jsp/num/numguess.jsp,service

where the delimiter is the "," character.

	
Event sensor and PhaseEvent sensor names should have the form verbnoun. Examples: activateInstance and runMethod. When a PhaseEvent monitors a function, method, or code block, it should be named to reflect the task performed as clearly as possible.

	
The name of a state sensor should be a noun, possibly preceded by an adjective, which describes the semantics of the value which is tracked with this state sensor. Examples: lastComputed, totalMemory, port, availableThreads, activeInstances

	
To avoid confusion, do not name sensors with strings such as ".time", ".value", or ".avg", which are names of sensor metrics, as shown in Table 6-3, Table 6-4, and Table 6-5.

6.2 DMS Availability

DMS functionality is available on all certified Java EE servers. This includes both the runtime features and supporting commands. Also, several features of DMS will operate in JSE applications and standalone C applications.

For more information, see the Oracle Fusion Middleware Certification Matrix at http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html.

6.3 DMS Architecture Overview

DMS consists of the following features:

	
DMS Metrics - The DMS metrics feature provides Java and C APIs that are also used by other Oracle Fusion Middleware components for instrumenting code with performance measurements and other useful state metrics. In addition, the metrics feature provides an aggregation language for computing derived metrics and tools for accessing the metrics.

	
Execution Context - Execution Context supports the maintenance and propagation of a specific context structure throughout the Oracle stack. By making the context structure available consistently across all Oracle code, the potential for cross component and cross product correlation of diagnostic data increases. For more information see Section 6.6, "DMS Execution Context".

	
Events and Tracing - Event Tracing enables you to configure live tracing with no restarts. DMS metrics updated during the course of using Oracle Fusion Middleware products may be traced using the DMS Event Tracing feature. The system has been designed to facilitate not only tracing, but also to support other functionality that may be driven from DMS activity.

Figure 6-1 shows the components of DMS and how they interact with other Oracle Fusion Middleware components. Arrows show the direction in which information flows from one component to the next.

Figure 6-1 DMS Interactions with Oracle Fusion Middleware Components

[image: Description of Figure 6-1 follows]

6.4 Viewing DMS Metrics

Oracle Fusion Middleware components are instrumented with DMS metrics in order to collect information that developers, system administrators, and support analysts can use to analyze system performance or monitor system status. The Fusion Middleware Control online help provides information on each of the specific metrics. See Section 4.2.1, "Viewing Performance Metrics Using Fusion Middleware Control" for information on accessing metric information.

The Oracle Fusion Middleware metrics come from various sources and locations. They include MBean attributes and DMS metrics. They also come from non-Java EE servers, such as Oracle HTTP servers and Oracle WebCache.

The following sections describe how to use various tools to view the DMS metrics:

	
Viewing Metrics Using the Spy Servlet

	
Viewing Metrics with WLDF (WebLogic Diagnostic Framework)

	
Viewing metrics with WLST (Oracle WebLogic Server)

	
Viewing metrics with JConsole

	
Viewing metrics with Oracle Enterprise Manager

	
Viewing metrics using WSADMIN (IBM WebSphere)

6.4.1 Viewing Metrics Using the Spy Servlet

The Spy Servlet is part of the DMS Application that is deployed by default on JRF-extended installations. The Spy Servlet is launched from http://<host>:<port>/dms/Spy. The default port for WebLogic is 7001.

The DMS Application's web archive file is dms.war, and can be found in the same directory as dms.jar: oracle_common/modules/oracle.dms_11.1.1/dms.war.

For more information see Section 4.6, "DMS Spy Servlet".

	
Note:

The Spy Servlet is secured using standard Java EE declarative security in the web-application's web.xml file, and will only grant access to the Spy Servlet to members of the Administrator's group.

6.4.2 Viewing Metrics with WLDF (WebLogic Diagnostic Framework)

You can use WebLogic Diagnostic Framework (WLDF) to harvest DMS metrics from DMS metric MBeans. You can also use WLDF to monitor changes to the attribute value of an MBean. For more information see "Configuring the Harvester for Metric Collection" in Oracle Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

6.4.3 Viewing metrics with WLST (Oracle WebLogic Server)

DMS provides three commands to view metrics in WLST:

	Use this command...	To do this...
	
displayMetricTableNames

	
List the names of the available metric tables.

	
displayMetricTables

	
Show the content of the DMS metric tables.

	
dumpMetrics

	
Display metrics in the internal format. Valid formats for the dumpMetrics command include raw, xml and pdml.

As well as displaying textual output, theses commands also return a structured object or single value that you can use in a script to process.

For more information on using these commands, see the following:

	
Section 4.5.1.1, "Using WLST Commands for System Components"

	
"DMS Custom WLST Commands" in Oracle Fusion Middleware WebLogic Scripting Tool Command Reference

6.4.4 Viewing metrics with JConsole

To provide a standards-based way to access metrics, DMS exposes them through MBeans. An MBean will be created and registered for each typed noun with the runtime MBean Server. The DMS sensors contained by the noun are exposed as the attributes of the MBean. Exposing the DMS metrics as MBeans allows administrators to use tools such as JConsole (the Java monitoring and management console), and other Java Management Extension (JMX) clients, to access the DMS metrics.

MBeans also allow for integration with other Oracle diagnostics software such as WLDF (WebLogic Diagnostics Framework), which is described in Section 6.5. The noun name and noun type are exposed as the name and type properties of the metric MBean object name. The MBean domain name is "oracle.dms". The object name also reflects the DMS noun hierarchy.

	
Note:

You can use JConsole to view DMS generated MBeans on a Java EE server either locally or remotely. DMS generates an MBean for each Java DMS noun that has a valid noun type. It does not generate MBeans for the non-Java EE component's metrics and the DMS nouns that have no noun types. Each DMS metric contained under the noun is mapped to an attribute in the metric MBean.

6.4.5 Viewing metrics with Oracle Enterprise Manager

Oracle Fusion Middleware automatically and continuously measures data regarding the component's performance, state and on-going behavior. The metrics are automatically enabled; there is no need to set options or perform any extra configuration to collect them. For more information see Section 4.2.1, "Viewing Performance Metrics Using Fusion Middleware Control".

6.4.6 Viewing metrics using WSADMIN (IBM WebSphere)

The following commands can be used with IBM WebSphere to display the following:

	Use this command...	To do this...
	
OracleDMS.displayMetricTableNames()

	
List the names of the available metric tables.

	
OracleDMS.displayMetricTables()

	
Show the content of the DMS metric tables.

	
OracleDMS.dumpMetrics()

	
Display metrics in the internal format. Valid formats include raw, xml and pdml.

For more information on using IBM WebSphere, see "Managing Oracle Fusion Middleware on IBM WebSphere" in the Oracle Fusion Middleware Third-Party Application Server Guide.

6.5 Accessing DMS Metrics with WLDF

The WebLogic Diagnostics Framework (WLDF) provides a diagnostic feature that allows MBean attributes to be harvested and monitored for specific conditions. This provides a proactive way of monitoring activity in your environment and creating E-mail and JMX notifications when a condition is triggered.

The following steps describe how to configure WLDF to send an E-mail notification using the WebLogic Administration Console:

	
Select an existing or create a new Diagnostics Module from the Diagnostics screen.

	
Click on the Watches and Notifications tab.

	
Click New.

	
Enter a Watch Name and click Next.

	
Enter the text as the Watch Rule and click Next.

(${ServerRuntime//[NOUNTYPE]oracle.dms:name=/starWars/alliance,type=NounType//forceBalance_value} = 'BAD')

	
Select Use a manual reset alarm and click Next. The manual reset option means that once an E-mail is triggered, you must reset the watch using the WebLogic Administration Console.

	
Select the E-mail notification type and click Finish.

It is also possible to configure WLDF to collect the MBean data for offline storage and analysis. This is achieved by configuring a WLDF Diagnostic Module to collect specific MBean attributes, and can be done so using the WebLogic Administration Console.

For more information on using WLDF to harvest and monitor MBean data see Oracle Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

6.6 DMS Execution Context

The DMS execution context is the mechanism by which requests (such as HTTP or RMI requests) can be uniquely identified and thus tracked as they flow through the system. It also provides a means by which context information can be communicated between cooperating Fusion Middleware components involved in fulfilling requests.

6.6.1 DMS Execution Requests and Sub-Tasks

The DMS execution context has been developed with the understanding that a single request (or task) may form the root of a tree of sub-tasks that are coordinated to complete the request or root task. Consider the following examples of requests and their associated sub-tasks:

	
An HTTP request sent directly to Oracle WebLogic Server from a browser:

	
Root task only on Oracle WebLogic Server

	
An HTTP request sent through Oracle HTTP Server (acting as a reverse proxy) to Oracle WebLogic Server:

	
Root task on Oracle HTTP Server

	
Single sub-task on Oracle WebLogic Server

	
An HTTP request sent from Oracle HTTP Server (acting as a reverse proxy) to Oracle WebLogic Server that then requires invocation of two remote web services from Oracle WebLogic Server in order to fulfill the request:

	
Root task on Oracle HTTP Server

	
Single sub-task on Oracle WebLogic Server

	
Two sub-sub-tasks, one on each web service

A DMS execution context is composed of the following:

	
A unique identifier, the ECID

The Execution Context ID (ECID) is unique for each new root task and is shared across the tree of tasks associated with the root task.

	
A relationship identifier, the RID

The Relationship ID (RID) is an ordered set of numbers that describes the location of each task in the tree of tasks. The leading number is usually a zero. A leading number of 1 indicates that it has not been possible to track the location of the sub-task within the overall sub-task tree.

	
A set of name-value pairs by which globally relevant data can be shared among Oracle Fusion Middleware components.

The following three scenarios illustrate how ECID and RID are used when an HTTP request is sent from Oracle HTTP Server (acting as a reverse proxy) to an Oracle WebLogic Server and the server requires invocation of two remote web services from Oracle WebLogic Server.

	
Root task on Oracle HTTP Server:

	
New ECID = B5C094FA...BE4AE8

	
Root RID = 0

	
Single sub-task on Oracle WebLogic Server:

	
Same ECID = B5C094FA...BE4AE8

	
Sub-task RID = 0:1

	
Two Sub-tasks, one on each web service:

	
First web service invoked

Same ECID = B5C094FA...BE4AE8

Sub-task RID = 0:1:1

	
Second web service invoked

Same ECID = B5C094FA...BE4AE8

Sub-task RID = 0:1:2

6.6.2 DMS Execution Context Usage

The most immediate benefits of the DMS execution context are realized when attempting to correlate log messages between servers. The Oracle standard format for logging involves a field dedicated to the ECID. Once the ECID is known, when its read from an ERROR level log message for example, it is possible to locate all other log messages associated with that task by querying the log files for messages containing that ECID.

The following example shows a very specific case of using the command:

displayLogs(ecid="B5C094FA...BE4AE8");

In this example, any log files with messages that contain the ECID B5C094FA...BE4AE8 will be displayed.

6.6.3 DMS Execution Context Communication

Figure 6-2 shows the components that cooperate in order to communicate the DMS execution context between each other. Arrows pointing to a component indicate the protocols that are inspected for incoming context information. Outgoing arrows show protocols to which context information is added. It is possible for a single component to send requests to itself, passing context information in that request.

Figure 6-2 DMS Execution Context Communication Protocols

[image: Description of Figure 6-2 follows]

6.7 DMS Tracing and Events

Starting with Oracle Fusion Middleware 11g Release 1 (11.1.1.3.0), DMS can selectively trace the following:

	
DMS sensor lifecycle events (create, update, delete of state sensors, event sensors and phase sensors)

	
Context events (start, stop)

	
HTTP events (start, stop)

The configuration that controls which of these types of events are traced, and how those events are processed, is recorded in the dms_config.xml file. The DMS trace configuration is split into three parts:

	
Filter Configuration

Defines the rules that select the events that are of interest

	
Destination Configuration

Defines how the events are used

	
eventRoute Configuration

Defines which filters are wired to which destinations

A filter can be associated with one or more destinations thus granting the administrator the ability to define a filter rule once and have the resulting subset of all possible events processed on one or more different destinations.

The configuration can be modified using the DMS configuration MBean or WLST commands at runtime; this makes the DMS tracing feature invaluable for diagnosing issues within a specific time period or collecting specific data at a specific time for a specific set of criteria.

For more information, see "Configuring Selective Tracing Using WLST" in Oracle Fusion Middleware Administrator's Guide.

The following types of filter rules are supported:

	
Event Type Conditions

Used to identify if an event was triggered from the START or STOP of a PHASE_SENSOR

	
Context Type Conditions

Used to identify if the event was generated from a unit of work whose context contains a value (for example, "USER")

	
Noun Type Conditions

Used to identify if the event was triggered from a sensor whose noun is of a specific type (for example, JDBC_CONNECTION

	
Logical AND and OR combinations of the above conditions

6.7.1 Configuring the DMS Event System

Configuration is recorded in each server's dms_config.xml file. MBean updates can be made at runtime using command line interface (CLI) commands and through the Event Configuration Mbean. Configuration updates are applied to the running system in a thread safe, but non-atomic, manner.

The object name of the DMS Event configuration MBean is: oracle.dms.event.config:name=DMSEventConfigMBean,type=JMXEventConfig

To review the current state of your system's DMS event configuration, use the following command:

listDMSEventConfiguration([server=<server>])

The resulting output will look similar to this:

Event routes:
 FILTER : auto662515911
 DESTINATION : destination1
 ENABLED : true
 FILTER : filter0
 DESTINATION : q
 ENABLED : true
Filters with no event route:
 Fred

Destinations with no event route:
 des4

6.7.1.1 Adding and Editing Filters

Filters define the rules that select which events are considered for tracing.

The following example shows how to add a filter that selects all events related to JDBC operations:

addDMSEventFilter(id='myJDBCFilter', props={'condition': 'NOUNTYPE sw JDBC_'})

Or:

addDMSEventFilter(id='myJDBCFilter', props={'condition': 'NOUNTYPE startsWith JDBC_'})

This filter assumes that all DMS sensor updates associated with JDBC operations are performed on nouns of types whose names begin "JDBC_".

If the rule must be modified, the filter may be updated as shown in the following example:

updateDMSEventFilter(id="myJDBCFilter", props={'condition': 'NOUNTYPE startsWith JDBC_ OR NOUNTYPE startsWith MDS_'});

As of Oracle Fusion Middleware 11.1.1.6.0, the following shortened convenience operators have been added. Operators can be specified using either the shortened or longer name.

Note that operators with an underscore have been deprecated in favor of the ODL format, which is to use mixed case. For example, not_equals becomes notEquals or ne. The old format will still work, but is discouraged.

	Noun Type Operators
	
equals, eq

	
notEquals, ne

	
contains

	
in

	
startsWith, sw

	

	Context Operators
	
equals, eq

	
notequals, ne

	
isnull

	
isnotnull

	
startswith, sw

	
contains

	
lt

	
gt

Example:

addDMSEventFilter(id='mdsbruce', name='MyFilter', props={'condition':
'NOUNTYPE eq MDS_Connections AND CONTEXT user ne bruce'})

addDMSEventFilter(id='mdsbruce', name='MyFilter', props={'condition':
'NOUNTYPE equals MDS_Connections AND CONTEXT user notequals bruce'})

For more information about the syntax used to describe a filter's rule (the condition property), refer to the WebLogic Scripting Tool Command Reference or the command help.

6.7.1.2 Adding and Editing Destinations

Destinations encapsulate logic for responding to events. For example, a basic destination will log the event, a different destination may transform an event and pass it to another system for further processing.

The following example shows how to add a destination that will log events:

addDMSEventDestination(id="myLoggerDestination", class="oracle.dms.trace2.runtime.LoggerDestination", props={"loggerName":"myLogger"});

Note that merely adding the destination is not sufficient for events to be logged; to log the events, you must associate a filter with a destination using an eventRoute, and the eventRoute must be enabled (default).

The types of destination available, and their configuration options, are described in Section 6.7.2. The following example shows how to edit an existing destination:

updateDMSEventDestination(id="myLoggerDestination", props={"loggerName":"myTraceLogger"});

6.7.1.3 Adding and Editing Event Routes

The following example shows how to join the filter and destination created above:

addDMSEventRoute(filterid='myJDBCFilter', destinationid='myLoggerDestination')

Note that you can invoke addDMSEventRoute without an explicit filterId. In these scenarios, all events are passed to the destination without filtering.

To remove a filter or destination, you must first remove the event routes associated with the filter or destination (even if the event route is disabled). For example, if you wanted to remove myJDBCFilter, you would first need to remove the eventRoute created in the previous example, and then remove the filter as shown in the following example:

removeDMSEventRoute(filterid='myJDBCFilter', destinationid='myLoggerDestination')
removeDMSEventFilter(id='myJDBCFilter')

6.7.1.4 Compound Operations

It is possible to create a filter and an eventRoute based on that filter using a single command (rather than using two separate commands as shown in Section 6.7.1.3). Note, however, that the destination to be used by the event route must already be defined:

enableDMSEventTrace (destinationid='myLoggerDestination', condition='NOUNTYPE starts_with JDBC_')

In the example above, enableDMSEventTrace automatically creates a filter with the specified condition, and also creates and enables an event route using the new filter and the nominated destination. The output is shown in the following example:

Filter "auto605449842" using Destination "myLoggerDestination" added, and event-route enabled for server "AdminServer"

6.7.2 Configuring Destinations

DMS offers the following types of destinations:

	
LoggerDestination

	
MBean Creator Destination

	
HTTP Request Tracker Destination

	
JRockit Flight Recorder Destination

6.7.2.1 LoggerDestination

	
Description

	
The LoggerDestination writes each event to the associated logger.

	
Implementing Class

	
oracle.dms.trace2.runtime.LoggerDestination

	
Properties

	

	
loggerName

	
The name of the ODL logger to which events will be written.

Instances of logger destinations write events to the named logger at a log level of FINER.

The loggerName property specifies the name of a logger, but the logger does not necessarily have to be described in logging.xml, though it can be. If the logger name refers to a logger that is explicitly named in logging.xml, then the logger is referred to as a static logger (see Section 6.7.2.1.1). If the logger name refers to a logger that is not explicitly named in logging.xml, then the logger is referred to as a dynamic logger (see Section 6.7.2.1.2).

Use in the default configuration: the default configuration defines a logger destination, with an identification of LoggerDestination. This particular instance does not form part of any eventRoute and therefore is not active. It is provided for convenience, and uses a dynamic logger.

6.7.2.1.1 Static Loggers and Handlers

Loggers are the objects to which log records are presented. Log handlers are the objects through which log records are written to log files.

For complete control over the log file to which DMS trace data is written, define the logger named in the logger destination in logging.xml. Doing this allows you to explicitly define the name of the log file, the maximum size, format, file rotation and policies.

Oracle recommends using commands (like the example below) to update the configuration.

setLogLevel(logger="myTraceLogger", level="FINER", addLogger=1);

configureLogHandler(name="my-trace-handler", addToLogger=["myTraceLogger"], path="/tmp/myTraceLogFiles/trace", maxFileSize="10m", maxLogSize="50m", handlerType="oracle.core.ojdl.logging.ODLHandlerFactory", addHandler=1, useParentHandlers=0);

configureLogHandler(name="my-trace-handler", propertyName="useSourceClassandMethod", propertyValue="false", addProperty=1);

For more information on logging configuration, see "Managing Log Files and Diagnostic Data" in the Oracle Fusion Middleware Administrator's Guide.]

The use of the optional property useSourceClassandMethod set to FALSE prevents the 'SRC_CLASS' and "SRC_METHOD' from appearing in every message and will marginally improve performance by reducing file output times.

For static loggers, consider setting the useParentHandlers parameter to FALSE, otherwise duplicate event messages will be logged to [server]-diagnostics.log, and shown in a log query.

See Section 6.7.3, "Understanding DMS Event Output" for more information about interpreting logger output.

6.7.2.1.2 Dynamic Loggers and Handlers

If the named logger has no associated handler defined in logging.xml, then the logger destination will dynamically create a handler object that will write to a file in the server's default log output directory. (Instances of logger destinations write events to the named logger at a log level of FINER.) The file name will be the logger's name followed by "-event.log". For instance, in the example in Section 6.7.2.1.1, DMS events would be written to "myTraceLogger-event.log".

6.7.2.1.3 Default Locations of the logging.xml File

The logging.xml file can typically be found in one of the following platform locations:

	Platform	Server	Location
	
Oracle WebLogic Server

	
AdminServer

	
ORACLE_HOME/Middleware/user_projects/domains/base_domain/config/fmwconfig/servers/AdminServer/logging.xml

	
WAS ND

	
OracleAdminServer

	
ORACLE_HOME/Middleware/was_profiles/DefaultTopology/DefaultServer/config/cells/DefaultCell/nodes/<nodename>/servers/OracleAdminServer/fmwconfig/logging.xml

6.7.2.1.4 Using a CLI Command to Query the Trace Log File

If the logger destination's logger and handler are defined in logging.xml then you can take advantage of the displayLogs() command to conveniently access logged trace data without having to manually locate or search for it.

Examples:

	
To display all the log messages for the myTraceLogger:

displayLogs(query='MODULE equals myTraceLogger')

	
To display only the log messages for myTraceLogger which have an ECID of '0000HpmSpLWEkJQ6ub3FEH194kwB000004':

displayLogs(query='MODULE equals myTraceLogger and ECID equals 0000HpmSpLWEkJQ6ub3FEH194kwB000004')

	
To display only the log messages for myTraceLogger which have an ECID of '0000HpmSpLWEkJQ6ub3FEH194kwB000004' in the last 10 minutes:

displayLogs(query='MODULE equals myTraceLogger and ECID equals 0000HpmSpLWEkJQ6ub3FEH194kwB000004', last=10)

	
To display all the log messages from a dynamic logger the log's file name must be included:

displayLogs(disconnected=1, log=DOMAIN_ROOT+"/servers/AdminServer/logs/myTraceLogger-event.log")

6.7.2.2 MBean Creator Destination

	
Description

	
The MBean creator destination make nouns accessible as MBeans, exposing their metrics as attributes, for access via WLDF, JConsole, etc.

	
Implementing Class

	
oracle.dms.jmx.MetricMBeanFactory

Use in the default configuration: An instance of the MBean Creator destination is configured and active by default, and will create MBeans for all nouns created in the server.

By associating an instance of this destination type with a filter based on a noun-type rule, it is possible to expose (as MBeans) only those noun types that are of interest to the administrator.

Although it is possible to modify the configuration associated with an MBean creator destination at runtime, it must be understood that the reinitialization process for this type of destination may impact performance. Frequent runtime reconfiguration is therefore discouraged.

Note that WebLogic Diagnostic Framework (WLDF) can be used to harvest DMS metrics exposed by the MBean creator destination. For more information about WLDF, see Oracle Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

6.7.2.2.1 Metric MBean Object Name

The noun name and noun type are exposed as the name and type properties of the metric MBean object name. The MBean domain name is "oracle.dms". The object name also reflects the DMS noun hierarchy.

For example if the noun's full path name is:

/oracle/dfw/ofm/base_domain/AdminServer

and the noun type is DFW_Incident, the object name of the MBean representing the noun is

oracle.dms:Location=AdminServer,name=/oracle/dfw/ofm/base_domain/AdminServer,type=DFW_Incident.

6.7.2.3 HTTP Request Tracker Destination

	
Description

	
The HTTP Request Tracker destinations maintains a list of active HTTP requests, and makes the requests accessible to other Diagnostic Framework (DFW) components.

	
Implementing Class

	
oracle.dms.event.HTTPRequestTrackerDestination

	
Properties

	

	
excludeHeaderNames

	
Comma separated list of header names to exclude from tracking

Use in the default configuration: An instance of the HTTP request tracker destination is enable by default. In the case of a DFW incident being generated the active HTTP request list will be dumped automatically, allowing an administrator to correlate the failure with a specific request.

For each HTTP request the following information will be dumped:

	
URI (such as /webcenter/home)

	
Start time of the request

	
ECID

	
Query string

	
HTTP Headers

When the HTTP request tracker is not enabled the HTTP Request Dump will output the following:

HTTP Requests are not being tracked. To enable HTTP request tracking enable the DMS oracle.dms.event.HTTPRequestTrackerDestination in dms_config.xml

6.7.2.3.1 Executing the HTTP Request Tracker Dump

The information being maintained by the HTTP request tracker can be accessed manually. In order to execute the dump that reports the HTTP request information the WLST executeDump command can be used, when connected to a server, as follows:

> executeDump(name="http.requests")
Active Requests:

StartTime: 2009-12-14 02:24:41.870
ECID: 0000IMChyqEC8xT6uBf9EH1B9X9^000009,0
URI: /myApp/Welcome.jsp
QueryString:
Headers:
 Host: myHost.myDomain.com:7001
 Connection: keep-alive
 User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.5 (KHTML, like Gecko) Chrome/4.0.249.30 Safari/532.5
 Accept: application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5
 Accept-Encoding: gzip,deflate
 Cookie: ORA_MOS_LOCALE=en%7CGB; s_nr...
 Accept-Language: en-GB,en-US;q=0.8,en;q=0.6
 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

6.7.2.4 JRockit Flight Recorder Destination

The JRockit Flight Recorder (JFR) records information regarding the runtime status and behavior of the JRockit JVM. JFR also exposes an API through which third party events can be reported. JFR is available in JRockit R28 and beyond.

By themselves DMS traces and JFR traces only show part of the picture of the actions being performed in the server. DMS integration with JFR enhances the diagnostic information available to administrators and developers as follows:

	
Application level events and JVM level events can be reported as a single sequence therefore avoiding the need to combine such events from separate log files based only on timestamp (which may not tick over fast enough to accurately order events created at or around the same time).

	
Recent DMS activity can be dumped, retroactively, from the JVM at will.

	
Recent DMS and JVM events can be dumped to disk in the event of a fatal error that causes the JVM to exit gracefully.

	
The DMS ECID can be used to correlate activity relating to the same request, or unit of work, across the span of a JFR recording.

	
The DMS ECID can be used to collect diagnostic information from all systems involved with an event, or series of events, recorded by JFR.

6.7.2.4.1 Dynamically Derived JFR Event Types – Names, Values and Descriptions

A DMS noun type will be associated with a JFR InstantEvent event type:

	
The name of the JFR event type for a noun type will be the noun type's name with the suffix “ state”.

	
The path of the JFR event type for a noun type will be “dms/” followed by the producer-name, followed by the event type name.

	
Event sensors will not contribute any values to the noun type's JFR event type.

	
The values of the JFR event for a noun type are described in Table 6-6:

Table 6-6 Values of the JFR Event for a Noun Type

	Value Name	Description	Relational	Notes
	
ECID

	
The Execution Context ID (ECID) associated with the action.

	
Yes

	

	
RID

	
The RID associated with the action.

	
Yes

	

	
<noun type> name

	
The full path of the noun.

	
	
This field will be populated with the full path of the noun. The field's name assumes that the noun_type meaningfully categorizes all objects being measured by the nouns of that type.

	
<state-sensor-name>

	
The value of the state sensor.

	
No

	
Each state sensor belonging to the noun will contribute one of these values to the instant event. There may be more that one value in each noun.

	
event name

	
The name of the event sensor that was updated, left null otherwise.

	
No

	
The event name field is required for being able to count the number of times a DMS event sensor has been updated in a recording (event sensors do not contribute values to an event type).

A DMS phase sensor will be associated with a JFR DurationEvent event type:

	
The name of the JFR event type for a phase sensor belonging to a noun of a particular noun type will be the noun type's name following by the phase sensor's name.

	
The path of the JFR event for a noun type will be “dms/” followed by the producer-name, followed by the event type name.

	
The values of the duration event will be as above (except for the sensorName value). For example the “stop” of a phase event will result in a JFR duration event being reported to JFR that contains the state information of the phase event's parent noun.

Several DMS objects allow integrators to add descriptions. Descriptions from DMS objects will be used as follows:

	
Noun type description will be used in creation of the JFR event type

	
State and event sensor descriptions will not be applied – there is nowhere to apply them.

	
Phase sensor descriptions will be applied to their JFR event type.

6.7.2.4.2 Examples of Dynamically Derived Producers and Events

Table 6-7 provides examples for the rules described in Section 6.7.2.4.1:

Table 6-7 Examples of Dynamically Derived Producers and Events

	DMS	JRockit Flight Recorder (JFR)
	
Noun type:

JDBC_Connection

Noun path:

/JDBC/Driver/CONNECTION_7

Sensors:

CreateStatement (P)

CreateNewStatement (P)

DBWaitTime (P)

JDBC_Connection_Url (S)

JDBC_Connection_Username (S)

Where:

P: Phase Sensor

S : State Sensor

E : Event Sensor

	
Producer Name: JDBC

The Producer Name is based on the leading component of the noun path.

Event Type 1

Event Type Name: JDBC_Connection State

<noun type> State

Event Type Path: dms/JDBC/JDBC_Connection_State

dms/<leading component of noun path>/<noun type>/_State

Fields:

	
ECID

	
RID

	
JDBC_Connection name

Value will be the full path of the noun

	
JDBC_Connection_Url

Value will be that of the state sensor of this name at the time of the event

	
JDBC_Connection_Username

Value will be that of the state sensor of this name at the time of the event

	
Event Name

Value will be one of the following:

	
The name of the DMS event sensor whose activation caused this JFR event instance

	
Null if this JFR event instance was created for a state sensor update

	
	
Producer Name: JDBC

Event Type 2

Event Type Name: JDBC_Connection CreateStatement

Event Type Path:

dms/JDBC/JDBC_Connection_CreateStatement

Fields:

	
ECID

	
RID

	
JDBC_Connection name

	
JDBC_Connection_Url

	
JDBC_Connection_Username

	
	
Producer Name: JDBC

Event Type 3

Event Type Name: JDBC_Connection CreateNewStatement

Event Type Path:

dms/JDBC/JDBC_Connection_CreateNewStatement

Fields:

	
ECID

	
RID

	
JDBC_Connection name

	
JDBC_Connection_Url

	
JDBC_Connection_Username

	
	
Producer Name: JDBC

Event Type 4

Event Type Name: JDBC_Connection DBWaitTime

Event Type Path:

dms/JDBC/JDBC_Connection_DBWaitTime

Fields:

	
ECID

	
RID

	
JDBC_Connection name

	
JDBC_Connection_Url

	
JDBC_Connection_Username

	
Noun type:

webcenter_lifecycle

Noun path:

/oracle/webcenter/webcenter/lifecycle

Sensors:

ProcessingTime (P)

status (S)

successCount (E)

Where:

P: Phase Sensor

S : State Sensor

E : Event Sensor

	
Producer Name: webcenter

Event Type 1

Event Type Name: webcenter_lifecycle State

Fields:

	
ECID

	
RID

	
webcenter_lifecycle name

	
status

	
event name

	
Producer Name: webcenter

Event Type 2

Event Type Name: webcenter_lifecycle ProcessingTime

Fields:

	
ECID

	
RID

	
webcenter_lifecycle name

	
status

6.7.3 Understanding DMS Event Output

Table 6-8 describes the fields that make up a DMS event. Field elements are separated by ":" (with a few exceptions). Sample events are provided to illustrate the position of the field within an actual event string.

Table 6-8 Event Formatting Descriptions

	Applicable Events	Field Number	Name	Description
	
All

	
1

	
Version number

	
The version number of the event format

For example:

v1:1280737384058:HTTP_REQUEST:STOP:/MyWebApp/emp

	
All

	
2

	
Event time

	
The time at which the event occurred

For example:

v1:1280737384058:HTTP_REQUEST:STOP:/MyWebApp/emp

	
All

	
3

	
Source object type

	
The type of object on which an action was performed to produce the event including:

	
NOUN

	
EVENT_SENSOR

	
STATE_SENSOR

	
PHASE_SENSOR

	
EXECUTION_CONTEXT

	
HTTP_REQUEST

For example:

v1:1280737384058:HTTP_REQUEST:STOP:/MyWebApp/emp

	
All

	
4

	
Action type

	
The type of action that resulted in the generation of this event. A given source object type may not necessarily produce events for every action type:

	
CREATE

	
UPDATE

	
DELETE

	
START

	
STOP

	
ABORT

For example:

v1:1280737384058:HTTP_REQUEST:STOP:/MyWebApp/emp

	
Nouns

	
5

	
Noun type

	
The name of the noun type

For example:

v1:1281344803506:NOUN:CREATE:JDBC_Connection:/JDBC/JDBC Data Source-0/CONNECTION_1

	
6

	
Noun path

	
The full path identifying the noun to which the sensor belongs

For example:

v1:1281344803506:NOUN:CREATE:JDBC_Connection:/JDBC/JDBC Data Source-0/CONNECTION_1

	
All Sensor Types

	
5

	
Noun type

	
The name of the noun type to which this sensor belongs

For example:

v1:1280503318973:STATE_SENSOR:UPDATE:JDBC_Connection:LogicalConnection:/JDBC/JDBC Data Source-0/CONNECTION_1:State.ANY:LogicalConnection@13bed086

	
6

	
Sensor name

	
The name of the sensor

For example:

v1:1280737383069:PHASE_SENSOR:STOP:JDBC_Connection:DBWaitTime:/JDBC/JDBC Data Source-0/CONNECTION_1:1280737382950:1280737383069

	
7

	
Noun path

	
The full path identifying the noun to which the sensor belongs

For example:

v1:1280737383069:PHASE_SENSOR:STOP:JDBC_Connection:DBWaitTime:/JDBC/JDBC Data Source-0/CONNECTION_1:1280737382950:1280737383069

	
Phase Sensor Types

	
8

	
Start token

	
The start token of the phase.

For example:

v1:1280737383069:PHASE_SENSOR:STOP:JDBC_Connection:DBWaitTime:/JDBC/JDBC Data Source-0/CONNECTION_1:1280737382950:1280737383069

	
9

	
Stop token

	
The end token of the phase.

For example:

v1:1280737383069:PHASE_SENSOR:STOP:JDBC_Connection:DBWaitTime:/JDBC/JDBC Data Source-0/CONNECTION_1:1280737382950:1280737383069

	
State Sensor Types

	
8

	
State value type

	
The type of value held by the state sensor including:

	
State.DOUBLE

	
State.INTEGER

	
State.LONG

	
State.OBJECT

	
State.ANY

For example:

v1:1280503318973:STATE_SENSOR:UPDATE:JDBC_Connection:LogicalConnection:/JDBC/JDBC Data Source-0/CONNECTION_1:State.ANY:LogicalConnection@13bed086

	
9

	
State value

	
The value of the state represented in string form.

For example:

v1:1280503318973:STATE_SENSOR:UPDATE:JDBC_Connection:LogicalConnection:/JDBC/JDBC Data Source-0/CONNECTION_1:State.ANY:LogicalConnection@13bed086

	
HTTP Requests

	
5

	
URI

	
Uniform Resource Identifier (URI) identifies the resource upon which to apply the request.

For example:

v1:1280737382889:HTTP_REQUEST:START:/myWebApp/showEmployees

v1:1280737384058:HTTP_REQUEST:STOP:/myWebApp/showEmployees

	
Execution Context

	
5

	
ECID,RID

	
The context identifier (composed of ECID and RID separated by a comma).

For execution context events the complete substring starting at the first character after the fourth event field separator (":") records the ECID,RID identifiers - the context identifiers may contain ":" but these should not be interpreted as event field separators.

For example:

v1:1280737384058:EXECUTION_CONTEXT:STOP:bc4fd0668f79d507:367c127f:12a23f2013c:-8000-0000000000000f73,0

6.7.4 Understanding DMS Event Actions

Table 6-9 shows the action types that can be performed on source object types.

Table 6-9 Actions Performed on Source Object Types

	
	Create	Update	Delete	Start	Stop	Abort
	
Noun

	
Yes

	
-

	
Yes

	
-

	
-

	
-

	
Event Sensor

	
Yes

	
Yes

	
Yes

	
-

	
-

	
-

	
Phase Sensor

	
Yes

	
-

	
Yes

	
Yes

	
Yes

	
Yes

	
State Sensor

	
Yes

	
Yes

	
Yes

	
-

	
-

	
-

	
Execution Context

	
-

	
-

	
-

	
Yes

	
Yes

	
-

	
Http Request

	
-

	
-

	
-

	
Yes

	
Yes

	
-

6.8 DMS Best Practices

The use of DMS metrics can have an impact on application performance. When adding metrics, consider the following:

	
Use a High Resolution Clock to increase DMS Precision

By default DMS uses the system clock for measuring time intervals during a PhaseEvent. The default clock reports microsecond precision in C processes such as Apache and reports millisecond precision in Java processes. Optionally, DMS supports a high resolution clock to increase the precision of performance measurements and lets you select the values for reporting time intervals. You can use a high resolution clock when you need to time phase events more accurately than is possible using the default clock or when the system's default clock does not provide the resolution needed for your requirements.

System clocks are not necessarily as accurate as their precision implies. For example, a system clock that reports time in milliseconds may not tick (change) once per millisecond. Instead, it may take up to 15ms to tick as shown in the following example:

Table 6-10 Default System Clock Time versus Actual Time (in milliseconds)

	Actual Time	System Time
	
12:00:00.000

	
12:00:00.000

	
12:00:00.001

	
12:00:00.000

	
12:00:00.002

	
12:00:00.000

	
[...]

	

	
12:00:00.014

	
12:00:00.000

	
12:00:00.015

	
12:00:00.015

	
12:00:00.016

	
12:00:00.015

Table 6-10 shows a phase with a 12ms duration that runs from actual time 12:00:00.002 to 12:00:00.014 would be calculated in system time as having a duration of zero. Similarly, a phase with a 2ms duration running from 12:00:00.014 to 12:00:00.016 would be reported in system time as having a duration of 15ms.

	
Note:

These behaviors are more evident on some operating systems than others. Use caution when analyzing individual periods of time that are shorter than the tick period of the system clock. Configuring DMS to use a higher resolution clock will cause DMS to record phase sensor activations with higher resolution, but the accuracy will still be limited by the underlying system.

	
Configure DMS Clocks for Reporting Time for Java

Selecting the high resolution clock changes clocks for all applications running on the server where the clock is changed. You set the DMS clock and the reporting values globally using the oracle.dms.clock and oracle.dms.clock.units properties, which control process startup options.

For example, to use the high resolution clock with the default values, set the following property on the Java command line:

-Doracle.dms.clock=highres

	
Caution:

If you use the high resolution clock, the default values are different from the value that Fusion Middleware Control expects (msecs). If you need the Fusion Middleware Control displays to be correct when using the high resolution clock, then you need to set the units property as follows:

-Doracle.dms.clock.units=msecs

Table 6-11 shows supported values for the oracle.dms.clock property.

Table 6-12 shows supported values for the oracle.dms.clock.units property.

Table 6-11 oracle.dms.clock Property Values

	Value	Description
	
DEFAULT

	
Specifies that DMS use the default clock. With the default clock, DMS uses the Java call java.lang.System.currentTimeMillis to obtain times for PhaseEvents.

The default value for the units for the default clock is MSECS.

	
HIGHRES

	
The Java Highres clock uses System.nanoTime() (no JNI required).

Table 6-12 oracle.dms.clock.units Property Values

	Value	Description
	
MSECS

	
Specifies that the time be converted to milliseconds and reported as "msecs". A millisecond is 10-3 seconds.

Note: This is the default value for the default clock.

	
USECS

	
Specifies that the time be converted to microseconds and reported as "usecs". A microsecond is 10-6 seconds.

	
NSECS

	
Specifies that the time be converted to nanoseconds and reported as "nsecs". A nanosecond is 10-9 seconds.

Note: This is the default value for the high resolution clock.

Note the following when using the high resolution DMS clock:

	
When you set the oracle.dms.clock and the oracle.dms.clock.units properties, any combination of upper and lower case characters is valid for the value that you select (case is not significant). For example, any of the following values are valid to select the high resolution clock: highres, HIGHRES, HighRes.

	
DMS checks the property values at startup. When the clock property is set with a value not listed in Table 6-11, DMS uses the default clock. If the oracle.dms.clock property is not set, DMS uses the default clock.

	
When the clock units property is set to a value not listed in Table 6-12, DMS uses the default units for the specified clock.

7 Oracle Metadata Service (MDS) Performance Tuning

This chapter provides tuning tips for Oracle Metadata Service (MDS).

	
Section 7.1, "About Oracle Metadata Services (MDS)"

	
Section 7.2, "Tuning Database Repository"

	
Section 7.3, "Purging Document Version History"

	
Section 7.4, "Using Database Polling Interval for Change Detection"

	
Section 7.5, "Tuning Cache Configuration"

	
Section 7.6, "Analyzing Performance Impact from Customization"

	
Section 7.7, "Understanding DMS metrics and Characteristics"

7.1 About Oracle Metadata Services (MDS)

Oracle Metadata Services (MDS) is an application server and Oracle relational database that keeps metadata in these areas: a file-based repository data, dictionary tables (accessed by built-in functions) and a metadata registry. One of the primary uses of MDS is to store customizations and persisted personalization for Oracle applications. Oracle Metadata Services (MDS) is used by components such as Oracle WebCenter Framework and Oracle Application Development Framework (ADF) to manage metadata. Examples of metadata objects managed by MDS are: JSP pages and page fragments, ADF page definitions and task flows, and customized variants of those objects.

	
Note:

Most of the Oracle Metadata Service configuration parameters are immutable and cannot be changed at run time unless otherwise specified.

7.2 Tuning Database Repository

For optimal performance of MDS APIs, the database schema for the MDS repository must be monitored and tuned by the database administrator. This section lists some recommended actions to tune the database repository:

	
Collecting Schema Statistics

	
Increasing Redo Log Size

	
Reclaiming Disk Space

	
Monitoring the Database Performance

For additional information on tuning the database, see "Optimizing Instance Performance" in Oracle Database Performance Tuning Guide.

7.2.1 Collecting Schema Statistics

While MDS provides database indexes, they may not be used as expected due to a lack of schema statistics. If performance is an issue with MDS operations such as accessing or updating metadata in database repository, the database administrator must ensure that the statistics are available and current.

The following example shows one way that the Oracle database schema statistics can be collected:

execute dbms_stats.gather_schema_stats(ownname => <username>);
estimate_ percent => dbms_stats.auto_sample_size,
method_opt=> 'for all columns size auto',
cascade=>true);

If the performance does not improve after statistics collection, then try to flush the database shared pool to clear out the existing SQL plans by using the following command:

alter system flush shared_pool;

In general, the database should be configured with automatic statistics recollection. For additional information on gathering statistics, see 'Automatic Performance Statistics" in Oracle Database Performance Tuning Guide.

7.2.2 Increasing Redo Log Size

The size of the redo log files can influence performance because the behavior of the database writer and archiver processes depend on the redo log sizes. Generally, larger redo log files provide better performance. Undersized log files increase checkpoint activity and can reduce performance.

For more information see "Sizing Redo Log Files" in Oracle Database Performance Tuning Guide.

7.2.3 Reclaiming Disk Space

While manual and auto purge operations delete the metadata content from the repository, the database may not immediately reclaim the space held by tables and indexes. This may result in the disk space consumed by MDS schema growing. Database administrators can manually rebuild the indexes and shrink the tables to increase performance and to reclaim disk space.

For more information see "Reclaiming Unused Space" in Oracle Database Performance Tuning Guide.

7.2.4 Monitoring the Database Performance

Database administrators must monitor the database (for example, by generating automatic workload repository (AWR) reports for Oracle database) to observe lock contention, I/O usage and take appropriate action to address the issues.

For more information see:

	
"Generating Automatic Workload Repository Reports" in Oracle Database Performance Tuning Guide

	
"Monitoring Performance" in Oracle Database Administrator's Guide.

7.3 Purging Document Version History

MDS keeps document version history in the database's metadata store. As version history accumulates, it requires more disk space and degrades read/write performance. Assuming the document versions are not part of an active label, there are two ways to purge version history:

	
Auto Purge

	
Manual Purge

	
Note:

Purging version history manually may impact performance depending on the number of metadata updates that have been made since the last purge.

7.3.1 Auto Purge

The auto-purge interval can be configured or changed post deployment through MBeans. This element maps to the AutoPurgeTimeToLive attribute of the MDSAppConfig MBean. If your application uses the database store for MDS, you can set auto-purge by adding this entry in adf-config.xml prior to packaging the EAR:

<persistence-config>
 <auto-purge seconds-to-live="T"/>
</persistence-config>

In the example above, the auto-purge interval removes versions that are older than the specified time T (in seconds). For more information, see "Changing MDS Configuration Attributes for Deployed Applications" in Oracle Fusion Middleware Administrator's Guide.

	
Tip:

Adjust the auto-purge interval based on document versions created in your application. Purging can take longer based on number of versions created. See also "Setting MDS Cache Size and Purge Rate" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.

7.3.2 Manual Purge

When you suspect that the database is running out of space or performance is becoming slower, you can manually purge existing version history using WLST command or through Oracle Enterprise Manager. Manual purging may impact performance, so plan to purge in a maintenance window or when the system is not busy.

For more information about manually purging version history, see "Purging Metadata Version History" in Oracle Fusion Middleware Administrator's Guide.

7.4 Using Database Polling Interval for Change Detection

MDS employs a polling thread which queries the database to gauge if the data in the MDS in-memory cache is out of sync with data in the database. This can happen when metadata is updated in another JVM. If it is out of sync, MDS clears any out of date-cached data so subsequent operations see the latest versions of the metadata. MDS invalidates the document cache, as well as MDS cache, so subsequent operations have the latest version of the metadata.

The polling interval can be configured or changed post deployment through MBeans. The element maps to the ExternalChangeDetection and ExternalChangeDetectionInterval attributes of the MDSAppConfig MBean. Prior to packaging the Enterprise ARchive (EAR) file, you can configure the polling interval by adding this entry in adf-config.xml:

<mds-config>
 <persistence-config>
 <external-change-detection enabled="true" polling-interval-secs="T"/>
 </persistence-config>
</mds-config>

In the example above, 'T' specifies the polling interval in seconds. The minimum value is 1. Lower values cause metadata updates, that are made in other JVMs, to be seen more quickly. It is important to note, however, that a lower value can also create increased middle tier and database CPU consumption due to the frequent queries. By default, polling is enabled ('true') and the default value of 30 seconds should be suitable for most purposes. For more information, see "Changing MDS Configuration Attributes for Deployed Applications" in Oracle Fusion Middleware Administrator's Guide ".

	
Note:

When setting the polling interval, consider the following: if you poll too frequently, the database is queried for out-of-date versions; too infrequently, and those versions may stack up and polling can take longer to process.

7.5 Tuning Cache Configuration

MDS uses a cache to store metadata objects and related objects (such as XML content) in memory. MDS Cache is a shared cache that is accessible to all users of the application (on the same JVM). If a metadata object is requested repeatedly, with the same customizations, that object may be retrieved more quickly from the cache (a “warm” read). If the metadata object is not found in the cache (a “cold” read), then MDS may cache that object to facilitate subsequent read operations depending on the cache configuration, the type of metadata object and the frequency of access.

Cache can be configured or changed post deployment through MBeans. This element maps to the MaximumCacheSize attribute of the MDSAppConfig MBean. For more information see "Changing MDS Configuration Attributes for Deployed Applications" in Oracle Fusion Middleware Administrator's Guide.

	
Note:

MDS Metrics, visible in Enterprise Manager, are useful for tuning the MDS cache. In particular, "IOs Per MO Content Get" or "IOs Per Metadata Object Get" should be less than 1. If not, consider increasing the size of the MDS cache. For more information on viewing DMS metric information, see Section 7.7, "Understanding DMS metrics and Characteristics".

Having a correctly sized cache can significantly improve throughput for repeated reading of metadata objects. The optimal cache size depends on the number of metadata objects used and the individual sizes of these objects. Prior to packaging the Enterprise ARchive (EAR) file, you can manually update the cache-config in adf-config.xml, by adding the following entry:

<mds-config>
 <cache-config>
 <max-size-kb>200000</max-size-kb>
 </cache-config>
</mds-config>

	
Note:

MDS cache grows in size as metadata objects are accessed until it hits max-size-kb. After that, objects are removed from the cache to make room as needed on a least recently used (LRU) basis to make room for new objects. Unless time-to-live (TTL) is set, the MDS cache continues to occupy the max-size-kb of memory.

7.5.1 Enabling Document Cache

In addition to the main MDS cache, MDS uses a document cache in conjunction with each metadata store to store thumbnail information about metadata documents (base document and customization documents) in memory. The entry for each document is small (<100 bytes) and the cache size limit is specified in terms of the number of document entries. MDS calculates an appropriate default size limit for the document cache based on the configured maximum size of the MDS Cache, as follows:

	
If MDS cache is disabled, MDS defaults to having no document cache.

	
If MDS cache is enabled, MDS defaults the document cache size to one document entry per KB of document cache configured.

	
If cache-config is not specified, MDS defaults to 10000 document entries.

	
If MDS cache is set to a very small value, MDS uses a minimum size of 500 for document cache.

In general, the defaults should be sufficient in most cases. However, insufficient document cache size may impact performance. Prior to packaging the Enterprise ARchive (EAR) file, you can explicitly set document cache size by adding this entry to adf-config.xml:

<metadata-store-usage id="db1">
 <metadata-store …>
 <property name = …/>
 </metadata-store>
 <document-cache max-entries="10000"/>
</metadata-store-usage>

	
Note:

Document cache is cleared when it exceeds the document-cache max-entries value. To avoid performance issues, consider increasing the document cache size if you receive a notification like the following for example:

NOTIFICATION: Document cache DBMetadataStore : MDS Repository connection = <> exceeds its maximum number of entries <NNNN>, so the cache is cleared.

The DMS metric "IOs Per Document Get" (visible in Enterprise Manager, see Section 7.7) should be less than 1. If not, consider increasing the document cache size.

7.6 Analyzing Performance Impact from Customization

MDS customization may impact performance at run time.The impact from customization depends on many factors including:

	
The type of customization that has been created (shared or user level)

	
The percentage of metadata objects in the system which is customized. The lower this percentage the lower the impact of customization.

	
The number of configured customization layers, and the efficiency of the customization classes.

There are two main types of customization:

	
Shared Customizations: these are layers of customization corresponding to customization classes whose getCacheHint method returns ALL_USERS or MULTI_USER, meaning the layer applies to all or multiple users. Shared customizations are cached in the (shared) MDS cache.

	
User Level Customizations (also known as Personalizations): these are layers of customization corresponding to customization classes whose getCacheHint method returns SINGLE_USER, meaning the layer applies to just one user. User customizations are generally cached on the user's session (HttpSession) until the user logs out.

For more information about customization concepts, writing customization classes, and configuring customization classes, see "Customizing Applications with MDS" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

7.7 Understanding DMS metrics and Characteristics

MDS uses DMS sensors to provide tuning and diagnostic information which can be viewed using Enterprise Manager. This information is useful, for example, to see if the MDS caches are large enough.

Information on DMS metrics can be found in the Fusion Middleware Control Console. Click Help at the top of the page to get more information. In most cases, the Help window displays a help topic about the current page. Click Contents in the Help window to browse the list of help topics, or click Search to search for a particular word or phrase.

8 Oracle Application Development Framework Performance Tuning

This chapter provides basic guidelines on how to maximize the performance and scalability of the Oracle Application Development Framework (ADF). This chapter covers design, configuration, and deployment performance considerations in the following sections:

	
Section 8.1, "About Oracle ADF"

	
Section 8.2, "Oracle ADF View Performance"

	
Section 8.3, "ADF Server Performance"

This chapter assumes that you are familiar with building ADF applications. To learn about ADF, see the following guides:

	
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

	
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework

	
Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development Framework

8.1 About Oracle ADF

Oracle Application Development Framework (Oracle ADF) is an end-to-end application framework that builds on Java Platform, Enterprise Edition (Java EE) standards and open-source technologies to simplify and accelerate implementing service-oriented applications. Oracle ADF is suitable for enterprise developers who want to create applications that search, display, create, modify, and validate data using web, wireless, desktop, or web services interfaces. If you develop enterprise solutions that search, display, create, modify, and validate data using web, wireless, desktop, or web services interfaces, Oracle ADF can simplify your job. Used in tandem, Oracle JDeveloper 11g and Oracle ADF give you an environment that covers the full development lifecycle from design to deployment, with drag-and-drop data binding, visual UI design, and team development features built-in.

For more information see "Introduction to Oracle ADF" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

8.2 Oracle ADF View Performance

Oracle ADF Faces Rich Client (RC) is a set of standard JSF components that includes Ajax (Asynchronous JavaScript and XML) functionality.

While Ajax enables rich client-like applications to run on standard internet technologies, JSF provides server-side control, which reduces the dependency on an abundance of JavaScript often found in typical Ajax applications. Using Apache MyFaces Trinidad as the foundation, Oracle ADF Faces RC adds Ajax functionality, bringing rich Internet application (RIA) capabilities to JSF applications.

Before building, configuring, and deploying ADF applications, review the following topics to achieve optimal performance:

	
Oracle ADF Faces Configuration and Profiling

	
Performance Considerations for ADF Faces

	
Tuning ADF Faces Component Attributes

	
Performance Considerations for Table and Tree Components

	
Performance Considerations for autoSuggest

	
Data Delivery - Lazy versus Immediate

	
Performance Considerations for DVT Components

8.2.1 Oracle ADF Faces Configuration and Profiling

This section discusses the configuration and profiling concepts of the ADF Faces. Configuration options for Oracle ADF Faces are set in the web.xml file. Most of these have default values that are tuned for performance. Table 8-1 describes some of these configuration options.

Table 8-1 ADF Configuration Options

	Parameter	Description
	
org.apache.myfaces.trinidad.COMPRESS_VIEW_STATE

	
Controls whether or not the page state is compressed. Latency can be reduced if the size of the data is compressed. This parameter should be set to True.

	
org.apache.myfaces.trinidad.resource.DEBUG

	
Controls whether output should be enhanced for debugging or not. This parameter should be removed or set to False.

	
oracle.adf.view.rich.CHECK_FILE_MODIFICATION

	
Controls whether ADF faces check for modification date of JSP pages and discard any saved state if the file is changed. This parameter should be removed or set to False.

	
oracle.adf.view.rich.CLIENT_STATE_METHOD

	
Specifies which type of saving (all or token) should be used when client-side state saving is enabled. The default value is token.

	
oracle.adf.view.rich.LOGGER_LEVEL

	
Sets the log level on the client side. The default value is OFF. This parameter should be removed or set to False.

	
oracle.adf.view.rich.ASSERT_ENABLED

	
Specifies whether to process assertions on the client side. The default value is OFF. This parameter should be removed or set to False.

	
Note:

When you are profiling or measuring client response time using the Firefox browser, ensure that the Firebug plug-in is disabled. While this plug-in is very useful for getting information about the page and for debugging JavaScript code on the page, it can impact the total response time.

For more information on disabling the Firefox Firebug plug-in, see the Firefox Support Home Page at http://support.mozilla.com/en-US/kb/.

8.2.2 Performance Considerations for ADF Faces

Table 8-2 provides configuration recommendations that may improve performance of ADF Faces:

Table 8-2 Configuration Parameters for ADF Faces

	Configuration Recommendation	Description
	
Avoid inline JavaScript in pages.

	
Inline JavaScript can increase response payload size, will never be cached in browser, and can block browser rendering. Instead of using inline JavaScript, consider putting all scripts in .js files in JavaScript libraries and add scripts to the page using af:resource tag.

NOTE: Consider using af:resource rather than trh:script when possible.

	
Configure the JSP timeout parameter.

	
Using the JavaServer Pages (JSP) timeout parameter causes infrequently used pages to be flushed from the cache by the following setting in web.xml:

<servlet>
 <servlet-name>
 oraclejsp
 <init-param>
 <param-name>
 jsp_timeout
 </param-name>
 <param-value>
 600
 </param-value>
 </init-param>
 </servlet-name>
</servlet>

NOTE: Set this parameter based on your own use case scenarios.

	
Create a single toolbar item with a drop-down popup.

	
When the browser size is small because of the screen resolution, the menubar/toolbar overflow logic becomes expensive in Internet Explorer 7 and 8. It especially has problems with laying out DOM structures with input fields.

Create a single toolbar item with a drop-down popup and put all the input fields inside it. This popup should have deferred child creation and contentDelivery="lazy".

	
Remove unknown rowCount.

	
A table that has an unknown rowCount can impact performance because getting the last set of rows takes excessive scrolling from the user and the application can appear to be very slow.

Remove unknown rowCount by setting DeferEstimatedRowCountProperty="false" on the view object (VO).

	
Disable pop-ups that cannot be displayed by the user.

	
The fnd:attachment component, when stamped in a table, can generate an excessive amount of DOM and client component. The amount of DOM + Client component is ~8K per cell which impacts the performance of the entire page especially on slower browsers.

Most cells have no attachments initially and only one popup can be displayed by the user. Therefore, pop-ups that cannot be displayed by the user should have renderer="false". This will cut down the un-necessary DOM/client components sent to the browser. Similarly the DOM has a panelGroupLayout with a number of cells which are empty. There is no need to send DOM for empty cells.

	
Do not use hover pop-ups on navigation links.

	
A hover popup on a navigation link causes the navigation to wait for the hover to be fetched first.

Consider removing the hover popup on the compensate workforce table navigation link column and, instead, place it on a separate column or on an icon inside the cell.

	
Increase table scrolling timeout.

	
Tables send a fetch request to the server on a scroll after a timeout. The timeout, before the fetch is sent to the server, is typically only 20ms if the user scrolls a short distance, but can increase to 200ms if the user scrolls further. Therefore performance can be impacted when the user scrolls to the bottom of a page and the table sends multiple requests to the server.

To prevent the performance impact, consider increasing the timeout limit to 300ms.

	
Use a timeout to call _prepareForIncompleteImages.

	
During Partial Page Rendering (PPR) some images may not load completely. When this occurs, the parent component must be notified that the size of one of its descendants has changed. In the past this was done by using the "complete" attribute on the image tag. Now with Internet Explorer 8 the complete attribute is always false to alleviate performance issues with Internet Explorer 7 and 8. The attribute shows as false even for cached images immediately after the PPR content is fetched.

For Internet Explorer 8 use a timeout (10ms) to call _prepareForIncompleteImages so that the image tag called right after the .xml HTTP request is processed. Note that this is not an issue for Mozilla Firefox or Google Chrome.

	
Cache the GetFirstVisibleRowKeyandRow.

	
Performance can be improved by locally caching the first visible Rowkey and row. This cached value can be deleted on a scroll or a resize.

	
Use partial page navigation.

	
Partial Page Navigation is a feature of the ADF Faces framework that enables navigating from one ADF Faces page to another without a full page transition in the browser.The new page is sent to the client using Partial Page Rendering (PPR)/Ajax channel.

The main advantage of partial page navigation over traditional full page navigation is improved performance: the browser no longer re-interprets and re-executes Javascript libraries, and does not spend time for cleanup/initialization of the full page. The performance benefit from this optimization is very big; it should be enabled whenever possible.

Some known limitations of this feature are:

	
For the document's "metaContainer" facet (the HEAD section), only scripts are brought over with the new page. Any other content, such as icon links or style rules can be ignored.

	
Applications cannot use anchor (hash) URLs for their own purposes.

	
Use page templates.

	
Page templates enable developers to build reusable, data-bound templates that can be used as a shell for any page. A developer can build one or more templates that provide structure and consistency for other developers building web pages. The templates have both static areas on them that cannot be changed when they are used and dynamic areas on them where the developer can place content specific to the page they are building.

There are some important considerations when using templates:

	
Since templates are present in every application page, they have to be optimized so that common performance impacts are avoided. Adding round corners to the template, for example, can impact the performance for every page.

	
When building complex templates, sometimes it is easier to build them in multiple pieces and include them in the top-level template using <f:subview> tag. However, from a performance perspective, this is not typically recommended since it can impact memory usage on the server side. (<f:subview> introduces another level into the ID scoping hierarchy, which results in longer IDs. Long IDs have a negative impact on performance. Developers are advised to avoid using <f:subview> unless it is required. It is not necessary to use <f:subview> around <jsp:include> if you can ensure that all IDs are unique. For example, if you are using <jsp:include>, break a large page into multiple pieces for easier editing. And whenever possible, avoid using <f:subview>. If you are including content developed by someone else, use <f:subview> if you do not know which IDs the developer used. In addition, you do not have to put <f:subview> at the top of a region definition.

	
Avoid long IDs in all cases, especially on pageTemplates, subviews, subforms, and on tables or within tables. Long IDs can have a performance impact on the server side, network traffic, and client processing.

	
Enable ADF rich client geometry management.

	
ADF Rich Client supports geometry management of the browser layout where parent components are in the UI explicitly. The children components are sized to stretch and fill up available space in the browser. While this feature makes the UI look better, it has a cost. The impact is on the client side where the browser must spend time resizing the components. The components that have geometry management by default are:

PanelAccordion

PanelStretchLayout

PanelTabbed

BreadCrumbs

NavigationPane

PanelSplitter

Toolbar

Toolbox

Table

Train

Notes:

	
When using geometry management, try minimizing the number of child components that are under a parent geometry managed component.

	
The cost of geometry management is directly related to the complexity of child components.

	
The performance cost of geometry management can be smaller (as perceived by the user) for the pages with table or other data stamped components when table data streaming is used. The client-side geometry management can be executed while the browser is waiting for the data response from the server.

	
Use the ADF rich client overflow feature.

	
ADF Rich Client supports overflow feature. This feature moves the child components to the non-visible overflow area if they cannot fit the page. The components that have built-in support for overflow are: PanelTabbed, BreadCrumbs, NavigationPane, PanelAccordion, Toolbar, and Train. Toolbar should be contained in a Toolbox to handle the overflow.

While there were several optimizations done to reduce the cost of overflow, it is necessary to pay special attention to the number of child components and complexity of each of them in the overflow component. Sometimes it is a good practice to set a big enough initial size of the overflow component such that overflow does not happen in most cases.

	
Use ADF Rich Client Partial Page Rendering (PPR).

	
ADF Rich Client is based on Asynchronous JavaScript and XML (Ajax) development technique. Ajax is a web development technique for creating interactive web applications, where web pages feel more responsive by exchanging small amounts of data with the server behind the scenes, without the whole web page being reloaded. The effect is to improve a web page's interactivity, speed, and usability.

With ADF Faces, the feature that delivers the Ajax partial page refresh behavior is called partial page rendering (PPR). PPR enables small areas of a page to be refreshed without having to redraw the entire page. For example, an output component can display what a user has chosen or entered in an input component or a command link or button can cause another component on the page to be refreshed.

Two main Ajax patterns are implemented with partial page rendering (PPR):

	
native component refresh

	
cross-component refresh

While the framework builds in native component refresh, cross-component refresh has to be done by developers in certain cases.

Cross-component refresh is implemented declaratively or programmatically by the application developer defining which components are to trigger a partial update and which other components are to act as partial listeners, and so be updated. Using cross-component refresh and implementing it correctly is one of the best ways to improve client-side response time. While designing the UI page always think about what should happen when the use clicks a command button. Is it needed for the whole page to be refreshed or just an output text field? What should happen if the value in some field is updated? For more information, refer to Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework).

Consider a typical situation in which a page includes an af:inputText component, an af:commandButton component, and an af:outputText component. When the user enters a value for the af:inputText, then clicks the af:commandButton, the input value is reflected in the af:outputText. Without PPR, clicking the af:commandButton triggers a full-page refresh. Using PPR, you can limit the scale of the refresh to only those components you want to refresh, in this case the af:outputText component. To achieve this, you would do two things:

	
Set up the af:commandButton for partial submit by setting the partialSubmit attribute to true. Doing this causes the command component to start firing partial page requests each time it is clicked.

	
Define which components are to be refreshed when the partial submit takes place, in this example the af:outputText component, by setting the partialTriggers attribute for each of them to the id of the component triggering the refresh. In this example, this means setting the partialTriggers attribute of the af:outputText component to give the id of the af:commandButton component.

The steps above achieve PPR using a command button to trigger the partial page refresh.

The main reason why partial page rendering can significantly boost the performance is that full page refresh does not happen and the framework artifacts (such as ADF Rich Client JS library, and style sheets) are not reloaded and only a small part of page is refreshed. In several cases, this means no extra data is fetched or no geometry management.

The ADF Rich Client has shown that partial page rendering results in the best client-side performance. Besides the impact on the client side, server-side processing can be faster and can have better server-side throughput and scalability.

	
Use ADF rich client navigation.

	
ADF Rich Client has an extensive support for navigation. One of the common use cases is tabbed navigation. This is currently supported by components like navigationPane which can bind to xmlMenuModel to easily define navigation.

There is one drawback in this approach, however. It results in a full page refresh every time the user switches the tab. One option is to use panelTabbed instead. panelTabbed has built-in support for partial page rendering of the tabbed content without requiring any developer work. However, panelTabbed cannot bind to any navigational model and the content has to be available from within the page, so it has limited applicability.

	
Cache resources.

	
Developers are strongly encouraged to ensure that any resources that can be cached (images, CSS, JavaScript) have their cache headers specified appropriately. Also, client requests for missing resources on the server result in addition round trips to the server. To avoid this, make sure all the resources are present on the server.

Consider using the ResourceServlet to configure web.xml to enable resource caching:

<servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/js/*</url-pattern>
 </servlet-mapping>
<servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/images/*</url-pattern>
 </servlet-mapping>

	
Reduce the size of state token cache

	
Property defined in web.xml org.apache.myfaces.trinidad.CLIENT_STATE_MAX_TOKENS in "token"-based client-side state saving, chooses how many tokens should be preserved at any one time. The default value is 15. When this is exceeded, state will have effectively been "forgotten" for the least recently viewed pages, which can impact users that actively use the Back button or that have multiple windows open simultaneously. In order to reduce live memory per session, consider reducing this value to 2. Reducing the state token cache to 2 means one Back button click is supported. For applications without support for Back button this value should be set to 1.

	
Define custom styles at the top of the page.

	
A common developer task is to define custom styles inside a regular page or template page. Since most browsers use progressive scanning of the page, a late introduction of styles forces the browser to recompute the page. This impacts the page layout performance. For better performance, define styles at the top of the page and possibly wrap them inside the ADF group tag.

An HTML page basically has two parts, the "head" and the "body". When you put an af:document component on your page, this component creates both parts of the page for you. Any child component of the af:document is in the "body" part of the page. To get a component (or static CDATA content) to show up in the "head", use the "metaContainer" facet.

To get a component (or static CDATA content) to display in the "head", use the "metaContainer" facet as follows:

<af:document title="#{attrs.documentTitle}" theme="dark">
<f:facet name="metaContainer">
<af:group><![CDATA[
<style type="text/css">
.TabletNavigationGlobal {
text-align: right;
padding-left: 0px;
padding-right: 10px;
white-space: nowrap;
}
HTML[dir=rtl] .TabletNavigationGlobal {
text-align: left;
padding-left: 10px;
padding-right: 0px;
}
</style>
]]>
<af:facetRef facetName="metaContainer"/>
</af:group>
</f:facet>
<af:form ...>
<af:facetRef facetName="body"/>
</af:form>
</af:document>

If you use page templates, consider including af:document and af:form in the template definition and expose anything that you may want to customize in those tags through the page template attributes and page template af:facetRef. Your templates are then able to utilize the metaContainer facet if they have template-specific styling as shown above. Also, your usage pages do not have to repeat the same document and form tags on every page.

See the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework for details about af:facetRef.

	
Optimize custom JavaScript code.

	
ADF Rich Client uses JavaScript on the client side. The framework itself provides most of the functionality needed. However, you may have to write custom JavaScript code. To get the best performance, consider bundling the JavaScript code into one JS lib (one JavaScript file) and deliver it to the client. The easiest approach is to use the ADF tag: <af:resource type="javascript" source=" "/>.

If most pages require custom JavaScript code, the tag should be included in the application template. Otherwise, including it in particular pages can result in better performance. If custom the JavaScript code lib file becomes too big, then consider splitting it into meaningful pieces and include only the pieces needed by the page.Overall, this approach is faster since the browser cache is used and the html content of the page is smaller.

	
Disable debug output mode.

	
The debug-output element in the trinidad-config.xml file specifies whether output should be more verbose to help with debugging. When set to TRUE, the output debugging mechanism in Trinidad produces pretty-printed, commented HTML content. To improve performance by reducing the output size, you should disable the debug output mode in production environments.

Set the debug-output element to FALSE, or if necessary, remove it completely from the trinidad-config.xml file.

	
Disable test automation.

	
Enabling test automation parameter oracle.adf.view.rich.automation.ENABLED generates a client component for every component on the page which can negatively impact performance.

Set the oracle.adf.view.rich.automation.ENABLED parameter value to FALSE (the default value) in the web.xml file to improve performance.

	
Disable animation.

	
ADF Rich Client framework has client side animation enabled by default. Animation is introduced to provide an enhanced user experience. Some of the components, like popup table, have animation set for some of the operations. While using animation can improve the user experience, it can increase the response time when an action is executed. If speed is the biggest concern, then animation can be disabled by setting the flag in trinidad-config.xml

	
Disable client-side assertions.

	
Assertions on client-side code base can have a significant impact on client-side performance. Set the parameter value to FALSE (the default value) to disable client-side assertions. Also ensure that the oracle.adf.view.rich.ASSERT_ENABLED is not explicitly set to TRUE in the web.xml file.

	
Disable JavaScript Profiler.

	
When the JavaScript oracle.adf.view.rich.profiler.ENABLED profiler is enabled, an extra round-trip occurs on every page in order to fetch the profiler data. Disable the profiler in the web.xml file to avoid this extra round-trip.

	
Disable resource debug mode.

	
When resource debug mode is enabled, the HTTP response headers do not tell the browser (or WebCache) that resources (JS libraries, CSS style sheets, or images) can be cached.

Disable the org.apache.myfaces.trinidad.resource.DEBUG parameter in the web.xml file to ensure that caching is enabled.

	
Disable timestamp checking.

	
The org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION parameter controls whether jsp or jspx files are checked for modifications each time they are accessed.

Ensure that the parameter value org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION is set to FALSE (the default value) in the web.xml file.

	
Disable checking for CSS file modifications.

	
The org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION parameter controls when CSS file modification checks are made. To aid in performance, this configuration option defaults to false - do not check for css file modifications. Set this to TRUE if you want the skinning css file changes to be reflected without stopping or starting the server.

	
Enable content compression.

	
By default, style classes that are rendered are compressed to reduce page size. In production environments, make sure you remove the DISABLE_CONTENT_COMPRESSION parameter from the web.xml file or set it to FALSE.

For debugging, turn off the style class content compression. You can do this by setting the DISABLE_CONTENT_COMPRESSION property to TRUE.

	
Enable JavaScript obfuscation.

	
ADF Faces supports a run time option for providing a non-obfuscated version of the JavaScript library. The obfuscated version is supplied by default, but the non-obfuscated version is supplied for development builds. Obfuscation reduces the overall size of the JavaScript library by about 50%.

To provide an obfuscated ADF Faces build, set the org.apache.myfaces.trinidad.DEBUG_JAVASCRIPT parameter to FALSE in the web.xml file.

There are two ways to check that the code is obfuscated using Firefox with Firebug enabled:

Check the download size:

	
Ensure that "All" or "JS" is selected on the Net tab.

	
Locate the "all-11-version.js" entry.

	
Check the size of the column. It should be about 1.3 MB (as opposed to 2.8 MB).

Check the source:

	
From the Script tab select "all-11-version.js from the drop-down menu located above the tabs.

	
Examine the code. If there are comments and long variable names, the library is not obfuscated.

Note: Copyright comments are kept even in the obfuscated version of the JS files.

	
Enable library partitioning.

	
In the Oracle 11g Release, library partitioning is on by default. In previous versions library partitioning was off by default. Ensure that the library partitioning is on by validating the oracle.adf.view.rich.libraryPartitioning.DISABLED property is set to false in the web.xml file.

8.2.3 Tuning ADF Faces Component Attributes

Table 8-3 provides configuration recommendations for ADF Faces Component Attributes:

Table 8-3 ADF Faces Component Attributes

	Configuration Recommendation	Description
	
Use the "immediate" attribute.

	
ADF Rich Client components have an immediate attribute. If a component has its immediate attribute set to TRUE (immediate="true"), then the validation, conversion, and events associated with the component are processed during the applyRequestValues phase. These are some cases where setting immediate to TRUE can lead to better performance.

	
The commandNavigationItem in the navigationPane can use the immediate attribute set to TRUE to avoid processing the data from the current screen while navigating to the new page.

	
If the input component value has to be validated before the other values, immediate should be set to TRUE. In case of an error it be detected earlier in the cycle and additional processing be avoided.

ADF Rich Client is built on top of JSF and uses standard JSF lifecycle. See "Understanding the JSF and ADF Faces Lifecycles" in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.

There are some important issues associated with the immediate attribute. Refer to "Using the Immediate Attribute" in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework for more information.

Note that this is an advanced feature. Most of the performance improvements can be achieved using the af:subform component. Refer to Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework for af:subform details.

	
Use the "visible" and "rendered" attributes.

	
All ADF Faces Rich Client display components have two properties that dictate how the component is displayed on the page:

	
The visible property specifies simply whether the component is to be displayed on the page, or is to be hidden.

	
The rendered property specifies whether the component shall exist in the client page at all.

The EL expression is commonly used to control these properties. For better performance, consider setting the component to not rendered instead of not visible, assuming there is no client interaction with the component. Making a component not rendered can improve server performance and client response time since the component does not have client side representation.

	
Use client-side events.

	
ADF Rich Client framework provides the client-side event model based on component-level events rather than DOM level. The client-side event model is a very useful feature that can speed up the application. Review the following performance considerations:

	
Consider using client-side events for relatively simple event handling that can be done on the client side. This improves client side performance by reducing the number of server round trips. Also, it can increase server-side throughput and scalability since requests do not have to be handled by the server.

	
By default, the events generated on the client by the client components are propagated to the server. If a client-side event handler is provided, consider canceling the event at the end of processing so that the event does not propagate to the server.

	
Use the "id" attribute.

	
The "id" attribute should not be longer than 7 characters in length. This is particularly important for naming containers. A long id can impact performance as the amount of HTML that must be sent down to the client is impacted by the length of the ids.

	
Use client-side components.

	
ADF Rich Client framework has client-side components that play a role in client-side event handling and component behavior. The clientComponent attribute is used to configure when (or if) a client-side component should be generated. Setting clientComponent attribute to TRUE has a performance impact, so determine if its necessary to generate client-side components.

For more information, see "Client-side Components" in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.

	
Set the childCreation attribute on af:popup to deferred for a server-side performance enhancement

	
Setting childCreation to deferred postpones construction of the components under the popup until the content is delivered. A deferred setting can therefore reduce the footprint of server-side state in some cases.

CAUTION: This approach CANNOT be used if any of the following tags are present inside the popup:

	
f:attribute

	
af:setPropertyListener

	
af:clientListener

	
af:serverListener

It also CANNOT be used if you need to refer to any child components of the popup before the popup is displayed. Setting childCreation="deferred" will postpone creating any child components of the popup and you cannot refer to them until after the popup is shown.

8.2.4 Performance Considerations for Table and Tree Components

Table, Tree, and TreeTable are some of the most complex, and frequently used, components. Since these components can include large sets of data, they can be the common source of performance problems. Table 8-4 provides some performance recommendations.

Table 8-4 Table and Tree Component Configurations

	Configuration Recommendation	Description
	
Use editingMode="clickToEdit".

	
When using editingMode="editAll" all content of the editable values holders and their client components is sent. This can significantly increase the HTTP payload and the Document Object Model (DOM) content on the client.

Consider switching to editingMode="clickToEdit" to reduce the amount of transmitted data and potentially improve user interaction.

	
Reduce fetchSize when possible.

	
A larger fetch size attribute on af:table implies that more data needs to be processed, fetched from the server, and displayed on the client. This can also increase the amount of DOM displayed on the client.

	
Modify table fetch size.

	
Tables have a fetch size which defines the number of rows to be sent to the client in one round-trip. To get the best performance, keep this number low while still allowing enough rows to fulfill the initial table view port. This ensures the best performance while eliminating extra server requests.

In addition, consider keeping the table fetch size and iterator range size in sync. By default, the table fetch size is set to the EL expression #{bindings.<name>.rangeSize} and should be equal to the iterator size.

For more information see "Using Tables and Trees" in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.

	
Disable column stretching.

	
Columns in the table and treeTable components can be stretched so that there is no unused space between the end of the last column and the edge of the table or treeTable component. This feature is turned off by default due to potential performance impacts. Turning this feature on may have a performance impact on the client rendering time, so use caution when enabling this feature with complex tables.

For more information see "Use Column Stretching" in Oracle Fusion Applications Developer's Guide.

	
Consider using header rows and frozen columns only when necessary.

	
The table component provides features that enable you to set the row Header and frozen columns. These options can provide a well-designed interface which can lead to a good user experience. However, they can impact client-side performance. To get the best performance for table components, use these options only when they are needed.

8.2.5 Performance Considerations for autoSuggest

autoSuggest is a feature that can be enabled for inputText, inputListOfValues, and inputComboboxListOfValues components. When the user types characters in the input field, the component displays a list of suggested items. The feature performs a query in the database table to filter the results. In order to speed up database processing, a database index should be created on the column for which autosuggest is enabled. This improves the component's response times especially when the database table has a large number of rows.

8.2.6 Data Delivery - Lazy versus Immediate

Data for Table, Tree, and other stamped components can be delivered immediately or lazily. By default, lazy delivery is used. This means that data is not delivered in the initial response from the server. Rather, after the initial page is rendered, the client asks the server for the data and gets it as a response to the second request.

In the case of immediate delivery, data can be in line with the response to the page request. It is important to note that data delivery is per component and not per page. This means that these two can be mixed on the same page.

When choosing between these two options, consider the following:

	
Lazy Delivery (default)

	
Lazy delivery should be used for tables, or other stamped components, which are known to have slow fetch time. The examples are stamped components are the ones based on data controls using web services calls or other data controls with slow data fetch. Lazy delivery can also be used on pages where content is not immediately visible unless the user scrolls down to it. In this case the time to deliver the visible context to the client will be shorter, and the user perceives better performance.

Lazy delivery is implemented using data streaming technique. The advantage of this approach is that the server has the ability to execute data fetches in parallel and stream data back to the client as soon as the data is available. The technique performs very well for a page with two tables, one that returns data very quickly and one that returns data very slowly. Users see the data for the fast table as soon as the data is available.

Executing data fetches in parallel also speeds up the total time to fetch data. This gives an advantage to lazy loading in cases of multiple, and possibly slow, data fetches. While streaming is the default mechanisms to deliver data in lazy mode, parallel execution of data controls is not. In order to enable parallel execution, open the page definition and change RenderHint on the iterator to background.

In certain situations, the advantage of parallel execution is faster response time. Parallel execution could potentially use more resources due to multiple threads executing request in parallel and possibly more database connections will be opened.

Consider using parallel execution only when there are multiple slow components on the page and the stamped components belong to different data control frames (such as isolated taskflows). Since parallel execution synchronizes on the data control frame level, when there is a single data control frame parallel execution may not improve performance.

	
Immediate Delivery

	
Immediate delivery (contentDelivery="immediate") should be used if table data control is fast, or if it returns a small set of data. In these cases the response time be faster than using lazy delivery.

Another advantage of immediate delivery is less server resource usage, compared to lazy delivery. Immediate delivery sends only one request to the server, which results in lower CPU and memory usage on the server for the given user interaction.

8.2.7 Performance Considerations for DVT Components

DVT components are data visualization components built on top of ADF Rich Client components. DVT components include graphs, gauges, Gantt charts, pivot tables and maps. Table 8-5 provides some configuration recommendations for DVT components:

Table 8-5 DVT Component Configurations

	Configuration Recommendation	Description
	
Modify the RangeSize attribute.

	
The RangeSize attribute defines the number of rows to return simultaneously. A RangeSize value of -1 causes the iterator to return all the rows. Using a lower value may improve performance, but it may be harder to stop the data and any data beyond rangeSize is not available in the view.

	
Use horizontal text instead of vertical text.

	
By default, pivot tables use horizontal text for column headers. However, there is an option to use vertical text as well. Vertical text can be used by specifying a CSS style for the header format such as:

writing-mode:tb-rl;filter:flipV flipH;

While vertical text can look better in some cases, it has a performance impact when the Firefox browser is used.

The problem is that vertical text is not native in Firefox as it is in Internet Explorer. To show vertical text, the pivot table uses images produced by GaugeServlet. These images cannot be cached as the text is dynamic and depends on the binding value. Due to this, every rendering of the pivot table incurs extra round-trips to the server to fetch the images, which impact network traffic, server memory, and CPU.

To have the best performance, consider using horizontal text instead of vertical text.

8.3 ADF Server Performance

Oracle ADF Server components consist of the non-UI components within ADF. These include the ADF implementations of the model layer (ADFm), business services layer (ADFbc), and controller layer (ADFc). As the server components are highly configurable, it is important to choose the combination of configurations that best suits the available resources with the specified application performance and functionality.

8.3.1 HTTP Session Timeout Tuning

For ADF applications with a significant user community, the amount of memory held by sessions waiting to expire can negatively impact performance when the default HTTP session timeout of 45 minutes is used. The memory being held can be higher than what is physically available, causing the server to not be able to handle the load. For large numbers of users, such as those using a public facing website, the session timeout should be as short as possible.

To improve performance, consider modifying the default session timeout value (in minutes) in the web.xml file. Use a session timeout value that works with your use case scenario. The example below shows a session timeout of 10 minutes:

<session-config>
 <session-timeout>
 10
 </session-timeout>
 </session-config>

8.3.2 View Objects Tuning

View objects (VOs) provide many tuning options to enable a developer to tailor the View Object to the application's specific needs. View Objects should be configured to use the minimal feature set required to fulfill the functional requirement. The Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework provides detailed information on tuning View Objects. Provided here are some tips pertaining to View Object performance.

8.3.2.1 Creating View Objects

To maximize View Object performance, the View Object should match the intended usage. For instance, data retrieved for a list of values pick-list is typically read-only, so a read-only View Object should be used to query this data. Tailoring the View Object to the specific needs of the application can improve performance, memory usage, CPU usage, and network usage.

	View Object Type	Description
	
Read-only View Objects

	
Consider using a read-only View Object if the View Object does not have to insert or update data. There are two options for read-only View Objects:

	
Non-updatable EO-based View Objects

	
Expert-mode View Objects

Non-updatable EO-based View Objects offer the advantage of a customizable select list at run time which retrieve attributes needed in the UI, data reads from local cache (instead of re-executing a database query), and data consistency with other updatable View Objects based on the same EO.

Expert-mode View Objects have the ability to perform SQL operations not supported by EOs and avoid the small performance impact from coordinating View Object and EO rows. EO-based View Objects can be marked non-updatable by deselecting the "updatable" option in the selected EO for the View Object, which can also be done by adding the parameter ReadOnly="true" on the EntityUsage attribute in the View Object XML definition.

	
Insert-only View Objects

	
For View Objects that are used only for inserting records, you can prevent unnecessary select queries from being executed when using the View Object. To do this, set the option No Rows in the Retrieve from the Database group box in the View Objects Overview tab. This sets MaxFetchSize to 0 (zero) for the View Object definition.

	
run time-created View Objects

	
View Objects can be created at run time using the createViewObjectFromQueryStmt() API on the AM. However, avoid using run time-created View Objects unless absolutely necessary due to potential performance impacts and complexity of tuning.

8.3.2.2 Configuring View Object Data Fetching

View Object performance is largely dependent on how the view object is configured to fetch data. If the fetch options are not tuned correctly for the application, then the view object may fetch an excessive amount of data or may take too many round-trips to the database. Fetch options can be configured through the Retrieve from the Database group box in the View Object dialog Figure 8-1.

Figure 8-1 View Object Dialog

[image: Description of Figure 8-1 follows]

	Fetch Option	Description
	
Fetch Mode

	
The default fetch option is the All Rows option, which is retrieved as needed (FetchMode="FETCH_AS_NEEDED") or all at once (FetchMode="FETCH_ALL"), depending on which option is appropriate. The As Needed option ensures that an executeQuery() operation on the view object initially retrieves only as many rows as necessary to fill the first page of a display. The number of rows is set based on the view object's range size.

	
Fetch Size

	
In conjunction with the fetch mode option, the Batches field controls the number of records fetched simultaneously from the database (FetchSize in the View Object, XML). The default value is 1, which may impact performance unless only 1 row is fetched. The suggested configuration is to set this value to n+1 where n is the number of rows to be displayed in the user interface.

Note that for DVT objects, Fetch Size should be n+1 where n is either rangeSize or the likely maximum rowset size if rangeSize is -1.

	
Max Fetch Size

	
The default max fetch size for a View Object is -1, which means that there is no limit to the number of rows the View Object can fetch. Setting a max fetch size of 0 (zero) makes the View Object insert-only. In cases where the result set should only contain n rows of data, the option Only Up to Row Number should be selected and set or call setMaxFetchSize(N) to set this programmatically. To set this manually, add the parameter MaxFetchSize to the View Object XML.

For View Objects whose WHERE clause expects to retrieve a single row, set the option At Most One Row. This option ensures that the view object knows not to expect any more rows and skips its normal test for that situation. In this case no select query is issued and no rows are fetched.

Max fetch size can also be used to limit the impact from an non-selective query that may return hundreds (or thousands) of rows. In such cases, specifying the max fetch size limits the number of rows that can be fetched and stored into memory.

	
Forward-Only Mode

	
If a data set is only traversed going forward, then forward-only mode can help performance when iterating through the data set. This can be configured by programmatically calling setForwardOnly(true) on the View Object. Setting forward-only can also prevent caching previous sets of rows as the data set is traversed.

8.3.2.3 Additional View Object Configurations

Table 8-6 provides additional tuning considerations when using the View Object:

Table 8-6 Additional View Object Configurations

	Configuration Recommendation	Description
	
Optimize large data sets.

	
View Objects provide a mechanism to page through large data sets so that a user can jump to a specific page in the results. This is configured by calling setRangeSize(N) followed by setAccessMode(RowSet.RANGE_PAGING) on the View Object where N is the number of rows contained within 1 page. When navigating to a specific page in the data set, the application can call scrollToRangePage(P) on the View Object to navigate to page P. Range paging fetches and caches only the current page of rows in the View Object row cache at the cost of another query execution to retrieve each page of data. Range paging is not appropriate where it is beneficial to have all fetched rows in the View Object row cache (for example, when the application must read all rows in a data set for an LOV or page back and forth in records of a small data set).

	
Disable "spillover" configurations when possible.

	
You can use the data source as "virtual memory" when the JVM container runs out of memory. By default this is disabled and can be enabled (if needed) by setting jbo.use.pers.coll=true. Keep this option disabled (if possible) to avoid a potential performance impact.

	
Review SQL style configuration.

	
If the generic SQL92 SQL style is used to connect to generic SQL92-compliant database, then some View Object tuning options do not apply. The View Object fetch size is one such tuning option. When SQL92 SQL style is used, the fetch size defaults to 10 rows, regardless of what is configured for the View Object. The SQL style is set when defining the database connection. By default when defining an Oracle database connection, the SQL style can be Oracle. To manually override the SQL style, pass the parameter -Djbo.SQLBuilder="SQL92" to the JVM at startup.

	
Use bind variables for view object queries.

	
If the query associated with the View Object contains values that may change from execution to execution, consider using bind variables. This may help to avoid re-parsing the query on the database. Bind variables can be added to the View Object in the Query section of the View Object definition.

	
Use query optimizer hints for view object queries.

	
The View Object can pass hints to the database to influence which execution plan to use for the associated query. The optimizer hints can be specified in the Retrieve from the Database group box.

	
Use dynamic SQL generation.

	
View Objects can be configured to dynamically generate SQL statements at run time instead of defining the SQL at design time. A View Object instance, configured with generating SQL statements dynamically, can avoid re-querying a database. This is especially true during page navigation if a subset of all attributes with the same key Entity Object list is used in the subsequent page navigation. Performance can be improved by activating a superset of all the required attributes to eliminate a subsequent query execution.

8.3.3 Batch Processing

Batch processing enables multiple inserts, updates, and deletes to be processed together when sending the operations to the database. Enabling this feature is done on the Entity Object (EO) by either selecting the "Use Update Batching" check box in the Tuning section of the EO's General tab, or by directly modifying the EO's XML file and adding the parameter BatchThreshold with the specified batch size to the Entity attribute.

The BatchThreshold value is the threshold at which a group of operations can be batched instead of performing each operation one at a time. If the threshold is not exceeded, then rows may be affected one at a time. On the other hand, more rows than specified by the threshold can be batched into a single batch.

Note that the BatchThreshold configuration for the EO is not compatible if an attribute in the EO exists with the configuration to refresh after insert (RetrievedOnInsert="true") or update (RetrievedOnUpdate="true").

8.3.4 RangeSize Tuning

This parameter controls the number of records ADFm requests from the BC layer simultaneously. The default RangeSize is 25 records. Consider setting this value to the number of records to be displayed in the UI simultaneously for the View Object so that the number of round-trips between the model and BC layers is reduced to one. This is configured in the Iterator attribute of the corresponding page's page definition XML.

8.3.5 Application Module Design Considerations

Designing an application's module granularity is an important consideration that can significantly impact performance and scalability. It is important to note that each root application module generally holds its own database connection. If a user session consumes multiple root application modules, then that user session can potentially hold multiple database connections simultaneously. This can occur even if the connections are not actively being used, due to the general affinity maintained between an application module and a user session. To reduce the possibility that a user can hold multiple connections at once, consider the following options:

	
Design larger application modules to encompass all of the functionality that a user needs.

	
Nest smaller application modules under a single root application module so that the same database connection can be shared among the nested application modules.

	
Use lazy loading for application modules. In the Application Module tuning section, customize runtime instantiation behavior to use lazy loading. Lazy loading can also be set JVM-wide by adding the following JVM argument:

-Djbo.load.components.lazily=true

More information can be found in the "What You May Need to Know About Application Module Granularity" and "Defining Nested Application Modules" sections of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

8.3.6 Application Module Pooling

Application module (AM) pooling enables multiple users to share several application module instances. The configurations for the AM pool vary depending on the expected usage of the application. For detailed explanations of the different AM pool configurations, see " Tuning Application Module Pools" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Most of the AM pool parameters can be set through Oracle JDeveloper. The configurations are saved in bc4j.xcfg, which can be manually edited if needed. Parameters can also be set at the system level by specifying these as JVM parameters (-Dproperty=value). The bc4j.xcfg configuration takes precedence over the JVM configuration; this enables a generic system-level configuration to be overridden by an application-specific exception.

Table 8-7 Application Module (AM) Pool Tuning

	Configuration Recommendation	Description
	
Optimize the number of AM pools in the application.

	
Parameters applied at the system level are applied per AM pool. If the application uses more than 1 AM pool, then system-level values for the number of AM instances must be multiplied by the number of AM pools to realize the actual limits specified on the system as a whole. For instance, if an application uses 4 separate AM pools to service the application and a system-level configuration is used to limit the max AM pool size to 100, then this can result in a maximum of 400 AM instances (4 pools * 100 max pool size). If the intent is to limit the entire application to a max pool size of 100, then the system-level configuration should specify a max pool size of 25 (100 max pool size / 4 pools). Finer granularity for configuring each AM pool can be achieved by configuring each pool separately through JDev or directly in bc4j.xcfg.

	
Optimize the number of database connections.

	
By default AM instances retain their database connections even when checked back into the AM pool. There are many performance benefits to maintain this association. To maintain performance, consider configuring more AM instances than the maximum number of specified database connections.

NOTE: If you have an AM pool that needs to be used as root pool, consider tuning at the specific AM pool level. For pools that are infrequently used, consider tuning pool sizes on the pool level so that top-level application parameters are not used.

For more information see "Setting Pool Configuration Parameters" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

8.3.6.1 General AM Pool Configurations

The following guidelines can be used as a general starting point when tuning AM and AM pool behavior. Details for each parameter can be found in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. More specific tuning for memory or CPU usage can be found in Section 8.3.6.2, "AM Pool Sizing Configurations".

Table 8-8 AM Pool Tuning Parameters

	Parameter	Description
	
jbo.ampool.initpoolsize

	
Specifies the number of application module instances to create when the pool is initialized (default is zero). Setting a nonzero initial pool size increases the time to initialize the application, but improves subsequent performance for operations requiring an AM instance. A general guideline is to configure this to 10% more than the anticipated number of concurrent AM instances required to service all users.

	
jbo.ampool.maxpoolsize

	
Specifies the maximum number of application module instances that the pool can allocate (default is 4096). The pool can never create more application module instances than this limit imposes. A general guideline is to configure this to 20% more than the initial pool size to allow for some additional growth.

	
jbo.ampool.minavailablesize

	
Specifies the minimum number of available application module instances that the pool monitor should leave in the pool during a resource cleanup operation (default is 5). The ideal minimum value for this configuration should be at least 1 to avoid the costs of re-creating the AM pool. Setting this to zero (0) can cause the pool itself to be cleaned up when all instances have been idle for longer than the idle time out.

	
jbo.ampool.maxavailablesize

	
Specifies the ideal maximum number of application module instances in the pool when not under abnormal load (default is 25). When the pool monitor wakes up to do resource cleanup, it tries to remove available application module instances to bring the total number of available instances down to this ideal maximum. Instances that have not been used for a period longer than the idle instance time out is cleaned up at this time, and then additional available instances can be removed if necessary to bring the number of available instances down to this size.

	
jbo.recyclethreshold

	
Specifies the maximum number of application module instances in the pool that attempt to preserve session affinity for the next request made by the session that used them last before releasing them to the pool in managed-state mode (default is 10). The referenced pool size should always be less than or equal to the maximum pool size. This enables the configured number of available instances to try and remain "loyal" to the affinity they have with the most recent session that released them in managed state mode. A general guideline is to configure this to the expected number of concurrent users that perform multiple operations with short think times. If there are no users expected to use the application with short think times, then this can be configured to 0 (zero) to eliminate affinity.

	
jbo.ampool.timetolive

	
Specifies the number of milliseconds that an application module instance lives in the pool. After this time, the instance is a candidate for removal during the next resource cleanup regardless of whether it would bring the number of instances in the pool below minavailablesize The default is 3600000ms or 1 hour. The default value is sufficient for most applications.

	
jbo.ampool.maxinactiveage

	
Specifies the number of milliseconds after which to consider an inactive application module instance in the pool as a candidate for removal during the next resource cleanup (default is 600000ms = 10 minutes).

	
jbo.ampool.monitorsleepinterval

	
Specifies the length of time in milliseconds between pool resource cleanup (default is 600000ms = 10 minutes). While the number of application module instances in the pool should never exceed the maximum pool size, available instances that are candidates for removal from the pool do not get "cleaned up" until the next time the application module pool monitor wakes up to do its job.

	
jbo.dofailover

	
Specifies whether to disable or enable failover. By default, failover is disabled. To enable failover, set the parameter to true.

NOTE: When enabling application module state passivation, a failure can occur when Oracle WebLogic Server is configured to forcibly release connection back into the pool. A failure of this type produces a SQLException (Connection has already been closed) that is saved to the server log. The exception is not reported through the user interface. To ensure that state passivation occurs and changes are saved, set an appropriate value for the weblogic-application.xml deployment descriptor parameter inactive-connection-timeout-seconds on the <connection-check-params> pool-params element. Setting the deployment descriptor parameter to several minutes, in most cases, should avoid forcing the inactive connection timeout and the resulting passivation failure. Adjust the setting as needed for your environment.

	
jbo.locking.mode

	
Specifies the locking mode (optimistic or pessimistic). The default is pessimistic, which means that a pending transaction state can be created on the database with row-level locks. With pessimistic locking mode, each time an AM is recycled, a rollback is issued in the JDBC connection. Web applications should set the locking mode to optimistic to avoid creating the row-level locks.

	
jbo.doconnectionpooling

	
Specifies whether the AM instance can be disconnected from the database connection when the AM instance is returned to the AM pool. This enables an application to size the AM pool larger than the database connection pool. The default is false, which means that an AM instance can retain its database connection when the AM instance is returned to the AM pool. When set to true, the AM can release the database connection back to the database connection pool when the AM instance is returned to the AM pool. Note that before an AM is disconnected from the database connection, a rollback can be issued on that database connection to revert any pending database state.

	
jbo.txn.disconnect_level

	
When used in conjunction with jbo.doconnectionpooling=true, specifies BC4J behavior for maintaining JDBC ResultSets. By default jbo.txn.disconnect_level is 0, and passivation can be used to close any open ResultSets when the database connection is disconnected from the AM instance. Configuring jbo.txn.disconnect_level to 1 can prevent this behavior to avoid the passivation costs for this situation.

8.3.6.2 AM Pool Sizing Configurations

The following AM pool sizing parameters control the AM pool size. Consider adjusting these values to tune memory or CPU usage.

For parameters that can be configured for memory-constrained systems, see Table 8-9.

Table 8-9 AM Pool Sizing Configurations - Memory Considerations

	Parameter	Description
	
jbo.ampool.initpoolsize

	
Set this to a low value to conserve memory at the cost of slower performance when additional AM instances are required. The default value of 0 (zero) does not create any AM instances when the AM pool is initialized.

	
jbo.ampool.maxpoolsize

	
Configure this to prevent the number of AM instance from exceeding the determined value. However, if this is set too low, then some users may see an error accessing the application if no AM instances are available.

	
jbo.ampool.minavailablesize

	
Set to 0 (zero) to shrink the pool to contain no instances when all instances have been idle for longer than the idle time out after a resource cleanup. However, a setting of 1 is commonly used to avoid the costs of re-creating the AM pool.

	
jbo.ampool.maxavailablesize

	
Configure this to leave the maximum number of available instances specified after a resource cleanup.

For parameters that can be configured to reduce the load on the CPU to some extent through a few parameters, see Table 8-10.

Table 8-10 AM Pool Sizing Configurations - CPU Considerations

	Parameter	Description
	
jbo.ampool.initpoolsize

	
Set this value to the number of AM instances you want the application pool to start with. Creating AM instances during initialization takes the CPU processing costs of creating AM instances during the initialization instead of on-demand when additional AM instances are required.

	
jbo.recyclethreshold

	
Configure this value to maintain the AM instance's affinity to a user's session. Maintaining this affinity as much as possible save the CPU processing cost of needing to switch an AM instance from one user session to another.

8.3.6.3 AM Pool Resource Cleanup Configurations

These parameters affect the frequency and characteristics for AM pool resource cleanups. Details about resource cleanup can be found in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

For memory-constrained systems, configure the AM pool to clean up more AM instances more frequently so that the memory consumed by the AM instance can be freed for other purposes. However, reducing the number of available AM instances and increasing the frequency of cleanups can result in higher CPU usage and longer response times. See Table 8-11 for more information.

Table 8-11 AM Pool Resource Cleanup Configurations - Memory Considerations

	Parameter	Description
	
jbo.ampool.minavailablesize

	
A setting of 0 (zero) shrinks the pool to contain no instances when all instances have been idle for longer than the idle time out. However, a setting of 1 is commonly used to avoid the costs of re-creating the AM pool

	
jbo.ampool.maxavailablesize

	
A lower value generally results in more AM instances being removed from the pool on a cleanup.

	
jbo.ampool.timetolive

	
A lower value reduces the time an AM instance can exist before it must be removed at the next resource cleanup.

	
jbo.ampool.maxinactiveage

	
A low value results in more AM instances being marked as a candidate for removal at the next resource cleanup.

	
jbo.ampool.monitorsleepinterval

	
This controls how frequent resource cleanups can be triggered. Configuring a lower interval results in inactive AM instances being removed more frequently to save memory.

The AM pool can be configured to reduce the need for CPU processing by allowing more AM instances to exist in the pool for longer periods of time. This generally comes at the cost of consuming more memory.

Table 8-12 AM Pool Resource Cleanup Configurations - CPU Considerations

	Parameter	Description
	
jbo.ampool.minavailablesize and jbo.ampool.maxavailablesize

	
Setting these to a higher value leaves more idle instances in the pool, so that AM instances do not have to be recreated at a later time. However, the values should not be set excessively high to keep more AM instances than can be required at maximum load.

	
jbo.ampool.timetolive

	
A higher value increases the time an AM instance can exist before it must be removed at the next resource cleanup.

	
jbo.ampool.maxinactiveage

	
A higher value results in fewer AM instances being marked as a candidate for removal at the next resource cleanup.

	
jbo.ampool.monitorsleepinterval

	
Configuring a higher interval results in less frequent resource cleanups.

8.3.7 ADFc: Region Usage

Adding regions to a page can be a powerful addition to the application. However, regions can be a resource-intensive component on the page. For better performance, consider using regions only when the specific functionality is required.

8.3.8 Defer Task Flow Execution

By default, task flows are activated when the page is loaded, even when the task flow is not initially rendered. This causes unnecessary overhead if the task flow is never displayed.

8.3.9 Task Flow in a Popup

By default, the child components under a popup are created even when popup is not accessed. To avoid this overhead, consider the following:

	
Set childCreation to deferred

Set childCreation="deferred" on the popup

Set activation="deferred" on the taskflow

	
Caution:

This approach cannot be used if any of the following tags are present inside the popup:

	
f:attribute

	
af:setPropertyListener

	
af:clientListener

	
af:serverListener

t also cannot be used if you need to refer to any child components of the popup before the popup is displayed. Setting childCreation="deferred" will postpone creating any child components of the popup and you cannot refer to them until after the popup is shown. In that case, use Conditional Activation as described below:

	
Use Conditional Activation

Add property listener on the popup in the jsff to set a condition

Set activation="conditional" on the taskflow

Set activate=<condition> on the taskflow

8.3.10 Configuring the Task Flow Inside Switcher

By default, task flows under switchers are activated when the page is loaded, not when the switcher facet is displayed. To avoid this, use conditional activation and set "active" to an expression language (EL) expression that returns 'true' when the facet is displayed.

8.3.11 Reusing Static Data

If the application contains static data that can be reused across the application, the cache data can be collected using a shared application module. More information on creating and using shared application modules can be found in "Sharing Application Module View Instances" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

8.3.12 Conditional Validations

For resource-intensive validations on entity attributes, consider using preconditions to selectively apply the validations only when needed. The cost of validation must be weighted against the cost of the precondition to determine if the precondition is beneficial to the performance. More information on specifying preconditions for validation can be found in "How to Set Preconditions for Validation" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Part IV

SOA Suite Components

This part describes configuring Oracle Service-Oriented Architecture (SOA) Suite components to improve performance. Oracle SOA Suite is a component of Oracle Fusion Middleware. Oracle SOA Suite provides a complete set of service infrastructure components for designing, deploying, and managing SOA composite applications. The image below shows the Oracle SOA Platform.

[image: Description of soa_arch.gif follows]

Oracle SOA Suite enables services to be created, managed, and orchestrated into SOA composite applications. Composites enable you to easily assemble multiple technology components into one SOA composite application. SOA composite applications consist of:

	
Service components: Service components are the basic building blocks of SOA composite applications. Service components implement a part of the overall business logic of the SOA composite application. BPEL Process, Oracle Mediator, Human task flow and decision services are examples of the service components.

	
Binding components: Binding components connect SOA composite applications to external services, applications, and technologies. Binding components are organized into two groups:

	
Services: Provide the outside world with an entry point to the SOA composite application. The WSDL file of the service advertises its capabilities to external applications. The service bindings define how a SOA composite service can be invoked (for example, through SOAP).

	
References: Enable messages to be sent from the SOA composite application to external services (for example, the same functionality that partner links provide for BPEL processes, but at the higher SOA composite application level).

The SOA Suite Components are documented in the following chapters:

	
Chapter 11, "General Tuning for SOA Suite Components"

	
Chapter 12, "Oracle Business Rules Performance Tuning"

	
Chapter 13, "Oracle BPEL Process Manager Performance Tuning"

	
Chapter 14, "Oracle Mediator Performance Tuning"

	
Chapter 15, "Oracle Business Process Management Performance Tuning"

	
Chapter 16, "Oracle Human Workflow Performance Tuning"

	
Chapter 17, "Oracle Adapters Performance Tuning"

	
Chapter 18, "Oracle Business Activity Monitoring Performance Tuning"

	
Chapter 19, "User Messaging Service Performance Tuning"

	
Chapter 20, "Oracle B2B Performance Tuning"

13 Oracle BPEL Process Manager Performance Tuning

Oracle Business Process Execution Language (BPEL) Process Manager provides several property settings that can be configured to optimize performance at the composite, fabric, application and server levels. This chapter describes these property settings and provides recommendations on how to use them.

This chapter contains the following sections:

	
Section 13.1, "About BPEL Process Manager"

	
Section 13.2, "Basic Tuning Considerations"

	
Section 13.3, "BPEL Properties Set Inside a Composite"

	
Section 13.4, "Tables Impacted By Instance Data Growth"

13.1 About BPEL Process Manager

BPEL is the standard for assembling a set of discrete services into an end-to-end process flow, radically reducing the cost and complexity of process integration initiatives. Oracle BPEL Process Manager offers a comprehensive and easy-to-use infrastructure for creating, deploying and managing BPEL business processes.

For more information, see "Configuring BPEL Process Service Components and Engines" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite and "Using the BPEL Process Service Component" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

13.2 Basic Tuning Considerations

This section describes the performance tuning properties at the BPEL engine level. They can be configured using Oracle Enterprise Manager. For more information , see "Configuring BPEL Process Service Engine Properties" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

	
Note:

The configuration examples and recommended settings described in this chapter are for illustrative purposes only. Consult your own use case scenarios to determine which configuration options can provide performance improvements.

13.2.1 BPEL Threading Model

When the dispatcher must schedule a dispatch message for execution, it can enqueue the message into a thread pool. Each dispatch set can contain a thread pool (java.util.concurrent.ThreadPoolExecutor). The BPEL thread pool implementation notifies the threads when a message has been enqueued and ensures the appropriate number of threads are instantiated in the pool.

	
Note:

dspMinThreads, dspMaxThreads and dspInvokeAllocRatio configuration properties are deprecated in Oracle 11g. In addition, the invoke threads have their own pool in Oracle 11g so the dspInvokeAllocRatio is no longer required.

13.2.1.1 Dispatcher System Threads

The dspSystemThreads property specifies the total number of threads allocated to process system dispatcher messages. System dispatcher messages are general clean-up tasks that are typically processed quickly by the server (for example, releasing stateful message beans back to the pool). Typically, only a small number of threads are required to handle the number of system dispatch messages generated during run time.

The minimum number of threads for this thread pool is 1 and it cannot be set to 0 a or negative number.

The default value is 2. Any value less than 1 thread is changed to the default.

13.2.1.2 Dispatcher Invoke Threads

The dspInvokeThreads property specifies the total number of threads allocated to process invocation dispatcher messages. Invocation dispatcher messages are generated for each payload received and are meant to instantiate a new instance. If the majority of requests processed by the engine are instance invocations (as opposed to instance callbacks), greater performance may be achieved by increasing the number of invocation threads. Higher thread counts may cause greater CPU utilization due to higher context switching costs.

The minimum number of threads for this thread pool is 1 and it cannot be set to 0 a or negative number.

The default value is 20 threads. Any value less than 1 thread is changed to the default.

13.2.1.3 Dispatcher Engine Threads

The dspEngineThreads property specifies the total number of threads allocated to process engine dispatcher messages. Engine dispatcher messages are generated whenever an activity must be processed asynchronously. If the majority of processes deployed are durable with a large number of dehydration points (mid-process receive, onMessage, onAlarm, and wait activities), greater performance may be achieved by increasing the number of engine threads. Note that higher thread counts can cause greater CPU utilization due to higher context switching costs.

The minimum number of threads for this thread pool is 1 and it cannot be set to 0 a or negative number.

The default value is 30 threads. Any value less than 1 thread is changed to the default.

13.2.1.4 Dispatcher Maximum Request Depth

The dspMaxRequestDepth property sets the maximum number of in-memory activities to process within the same request. After processing an activity request, Oracle BPEL Process Manager attempts to process as many subsequent activities as possible without jeopardizing the validity of the request. Once the activity processing chain has reached this depth, the instance is dehydrated and the next activity is performed in a separate transaction.

If the request depth is too large, the total request time can exceed the application server transaction time out limit.This process is applicable to durable processes.

The default value is 600 activities.

	
Note:

Note that the minimum number of threads for each thread pool is 1. dsp*Threads can not be set to 0 or negative.

13.2.2 Audit

The following properties can be set to audit levels.

13.2.2.1 AuditLevel

The auditLevel property sets the audit trail logging level. This configuration property is applicable to both durable and transient processes. This property controls the amount of audit events that are logged by a process. Audit events result in more database inserts into the audit_trail table which may impact performance. Audit information is used only for viewing the state of the process from Oracle Enterprise Manager Console.

Use the Off value if you do not want to store any audit information. Always choose the audit level according to your business requirements and use cases. For more information on setting the audit level, see "Introduction to the Order of Precedence for Audit Level Settings" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

	Value	Description
	
Inherit

	
Inherits the audit level from infrastructure level.

	
Off

	
No audit events (activity execution information) are persisted and no logging is performed; this can result in a slight performance boost for processing instances.

	
Minimal

	
All events are logged; however, no audit details (variable content) are logged.

	
Error

	
Logs only serious problems that require immediate attention from the administrator and are not caused by a bug in the product. Using this level can help performance.

	
Production

	
All events are logged. The audit details for assign activities are not logged; the details for all other activities are logged.

	
Development

	
All events are logged; all audit details for all activities are logged.

13.2.2.2 AuditDetailThreshold

The auditdetailthreshold property sets the maximum size (in kilobytes) of an audit trail details string before it is stored separately from the audit trail. If an audit trail details string is larger than the threshold setting, it is not immediately loaded when the audit trail is initially retrieved; a link is displayed with the size of the details string. Strings larger than the threshold setting are stored in the audit_details table, instead of the audit_trail table.

The details string typically contains the contents of a BPEL variable. In cases where the variable is very large, performance can be severely impacted by logging it to the audit trail.

The default value is 50000 (50 kilobytes).

13.2.2.3 AuditStorePolicy

This property specifies the strategy to persist the BPEL audit data.

	Value	Description
	
syncSingleWrite (default)

	
AuditTrail and dehydration are persisted to DB in one transaction.

	
syncMultipleWrite

	
AuditTrail and dehydration are persisted in the same thread but separate transactions.

	
async

	
AuditTrail and dehydration are persisted by separate threads and separate transactions.

By default, audit messages are stored as part of the main BPEL transaction. A BPEL instance holds on to the audit messages until the flow reaches dehydration. In some use cases, for example when you have a large loop, and there is no dehydration point in the loop, a large number of audit logs are accumulated. This could lead to an out-of-memory issue and BPEL main transaction can experience timeout errors. You may consider using syncMultipleWrite or async to store the audit message separately from the main transaction.

When you use syncMultipleWrite and async auditStorePolicy, there are a few other properties that need to be considered. Please see the sections below.

13.2.2.4 AuditFlushByteThreshold

This property controls how often the engine should flush the audit events, basically after adding an event to the current batch, the engine checks to see if the current batch byte size is greater than this value or not.

Consider tuning this property when async or syncMultipleWrite audit strageties are used. This size needs to be tuned based on the application.

13.2.2.5 AuditFlushEventThreshold

This property controls how often the engine should flush the audit events, basically when it reaches this limit of the number of events, the engine would trigger the store call.

Consider tuning this property when async or syncMultipleWrite audit strageties are used. This size needs to be tuned based on the application.

13.2.3 OneWayDeliveryPolicy

The oneWayDeliveryPolicy is from the Oracle 10g configuration property deliveryPersistencePolicy.

The new configuration property name is bpel.config.oneWayDeliveryPolicy.

	
WARNING:

If you set this property to async.cache and your system fails, you may lose messages. For more information, refer to the Oracle BPEL Process Manager Administrator's Guide.

The oneWayDeliveryPolicy property controls database persistence of messages entering Oracle BPEL Server. By default, incoming requests are saved in the delivery service database table dlv_message. These requests are later acquired by Oracle BPEL Server worker threads and delivered to the targeted BPEL process. This property persists delivery messages and is applicable to durable processes.

When setting the oneWayDeliveryPolicy property to async.cache, if the rate at which one-way messages arrive is much higher than the rate at which Oracle BPEL Server delivers them, or if the server fails, messages may be lost. In addition, the system can become overloaded (messages become backlogged in the scheduled queue) and you may receive out-of-memory errors. Consult your own use case scenarios to determine if this setting is appropriate.

One-way invocation messages are stored in the delivery cache until delivered. If the rate at which one-way messages arrive is much higher than the rate at which Oracle BPEL Server delivers them, or if the server fails, messages may be lost.

	Value	Description
	
async.persist (Default)

	
Delivery messages are persisted in the database. With this setting, reliability is obtained with some performance impact on the database. In some cases, overall system performance can be impacted.

	
async.cache

	
Incoming delivery messages are kept only in the in-memory cache. If performance is preferred over reliability, this setting should be considered.

	
sync

	
Directs Oracle BPEL Server to bypass the scheduling of messages in the invoke queue, and invokes the BPEL instance synchronously. In some cases this setting can improve database performance.

13.2.4 MaximumNumberOfInvokeMessagesInCache

This property specifies the number of invoke messages that can be kept in the in-memory cache. Once the engine hits this limit, it would push the message to dispacther in-memory cache, instead it would save the message in the db and these saved messages can be recovered using recovery job. You can use value -1 to disable.

The default value is 100000 messages.

13.2.5 StatsLastN

The StatsLastN property sets the size of the most-recently processed request list. After each request is finished, statistics for the request are kept in a request list. A value less than or equal to 0 disables statistics gathering. To optimize performance, consider disabling statistics collection if you do not need them.

This property is applicable to both durable and transient processes.

The default value is -1.

13.2.6 LargeDocumentThreshold

The largedocumentthreshold property sets the large XML document persistence threshold. This is the maximum size (in kilobytes) of a BPEL variable before it is stored in a separate table from the rest of the instance scope data.

This property is applicable to both durable and transient processes.

Large XML documents impact the performance of the entire Oracle BPEL Server if they are constantly read in and written out whenever processing on an instance must be performed.

The default value is 10000 (100 kilobytes).

13.2.7 Validate XML

The validateXML property validates incoming and outgoing XML documents. If set to True, the Oracle BPEL Process Manager applies schema validation for incoming and outgoing XML documents. Nonschema-compliant payload data is intercepted and displayed as a fault.

This setting is independent of the SOA composite application and SOA Infrastructure payload validation level settings. If payload validation is enabled at both the service engine and SOA Infrastructure levels, data is checked twice: once when it enters the SOA Infrastructure, and again when it enters the service engine

CAUTION: Enabling XML payload validation can impact performance.

This property is applicable to both durable and transient processes.

The default value is False.

13.2.8 SyncMaxWaitTime

The SyncMaxWaitTime property sets the maximum time the process result receiver waits for a result before returning. Results from asynchronous BPEL processes are retrieved synchronously by a receiver that waits for a result from Oracle BPEL Server.

The default value is 45 seconds.

13.2.9 InstanceKeyBlockSize

The InstanceKeyBlockSize property controls the instance ID range size. Oracle BPEL Server creates instance keys (a range of process instance IDs) in batches using the value specified. After creating this range of in-memory IDs, the next range is updated and saved in the ci_id_range table.

For example, if instanceKeyBlockSize is set to 100, Oracle BPEL Server creates a range of instance keys in-memory (100 keys, which are later inserted into the cube_instance table as cikey). To maintain optimal performance, ensure that the block size is larger than the number of updates to the ci_id_range table.

The default value is 10000.

13.2.10 MaxRecoverAttempt

You can configure the number of automatic recovery attempts to submit in the same recoverable instance. The value you provide specifies the maximum number of times invoke and callback messages are recovered. Once the number of recovery attempts on a message exceeds the specified value, a message is marked as nonrecoverable.

When a BPEL instance makes a call to another server using invokeMessage, and that call fails due to a server down, validation error, or security exception, the invokeMessage is placed in a recovery queue and BPEL attempts to retry those messages. When there are many messages, and a majority of them are being sent to the same target, the target can become overloaded. Setting the appropriate value of MaxRecoveryAttempt will prevent excessive load on servers that are targeted from BPEL web service calls.

13.3 BPEL Properties Set Inside a Composite

This section lists the config properties of some sections of the deployment descriptor. For each configuration property parameter, a description is given, as well as the expected behavior of the engine when it is changed.

All the properties set in this section affect the behavior of the component containing the BPEL process only. Each BPEL process can be created as a component of a composite. These properties can be modified in composite.xml or in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control. For more information, see the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

13.3.1 Component Properties

The following component properties can be tuned for performance:

13.3.1.1 inMemoryOptimization

This property indicates to Oracle BPEL Server that this process is a transient process and dehydration of the instance is not required. When set to True, the completionPersistPolicy is used to determine persistence behavior. This property can only be set to True for transient processes or processes that do not contain any dehydration points such as receive, wait, onMessage and onAlarm activities. The inMemoryOptimization property is set at the BPEL component level. When set to False, dehydration is disabled which can improve performance in some use cases.

Values:

This property has the following values:

	
False (default): instances are persisted completely and recorded in the dehydration store database.

	
True: The completionPersist policy is used to determine persistence behavior. See Section 13.3.1.2.

13.3.1.2 completionPersistPolicy

This property configures how the instance data is saved. It can only be set at the BPEL component level. The completionPersistPolicy property can only be used when inMemoryOptimization is set to be True (transient processes). Note that this parameter may affect database growth and throughput (due to reduced I/O).

	Value	Description
	
On (default)

	
The completed instance is saved normally

	
Deferred

	
The completed instance is saved, but with a different thread and in another transaction.

	
Faulted

	
Only the faulted instances are saved.

Note: When an unhandled fault occurs, regardless of these flags, audit information of the instance is persisted within cube_instance table.

	
Off

	
No instances of this process are saved.

13.3.1.3 auditLevel

You can set the audit level for a BPEL process service component. This setting takes precedence over audit level settings at the SOA Infrastructure, service engine, and SOA composite application levels.

Set the bpel.config.auditLevel property to an appropriate value in the composite.xml file of your SOA project as shown in the example below:

<component name="BPELProcess">
<implementation.bpel src="BPELProcess.bpel" />
<property name="bpel.config.auditLevel">Off</property>
</component>

	Value	Description
	
Inherit

	
Inherits the audit level from infrastructure level.

	
Off

	
No audit events (activity execution information) are persisted and no logging is performed; this can result in a slight performance boost for processing instances.

	
Minimal

	
All events are logged; however, no audit details (variable content) are logged.

	
Error

	
Logs only serious problems that require immediate attention from the administrator and are not caused by a bug in the product. Using this level can help performance.

	
Production

	
All events are logged. The audit details for assign activities are not logged; the details for all other activities are logged.

	
Development

	
All events are logged; all audit details for all activities are logged.

13.3.2 Partner Link Property

You can dynamically configure a partner link at runtime in BPEL. This is useful for scenarios in which the target service that BPEL wants to invoke is not known until runtime. The following Partner Link properties can be tuned for performance:

13.3.2.1 idempotent

An idempotent activity is an activity that can be retried (for example, an assign activity or an invoke activity). Oracle BPEL Server saves the instance after a nonidempotent activity. This property is applicable to both durable and transient processes.

Values:

This property has the following values:

	
False: Activity is dehydrated immediately after execution and recorded in the dehydration store. When idempotent is set to False, it provides better failover protection, but may impact performance if the BPEL process accesses the dehydration store frequently.

	
True (default): If Oracle BPEL Server fails, it performs the activity again after restarting. This is because the server does not dehydrate immediately after the invoke and no record exists that the activity executed. Some examples of where this property can be set to True are: read-only services (for example, CreditRatingService) or local EJB/WSIF invocations that share the instance's transaction.

13.3.2.2 nonBlockingInvoke

By default, Oracle BPEL Process Manager executes in a single thread by executing the branches sequentially instead of in parallel. When this property is set to True, the process manager creates a new thread to perform each branch's invoke activity in parallel. This property is applicable to both durable and transient processes.

Consider setting this property to True if you have invoke activities in multiple flow or flow n branches. This is especially effective if the parallel invoke activities are two-way, but some benefits can be realized for parallel one-way invokes as well.

	
Note:

Invocations to the same partner link will happen in sequence and not in parallel. If you invoke different partner links each time with nonBlockingInvoke set to True, then each link will work in parallel even if all of the partner links point to the same source.

Values:

	
True: Oracle BPEL Server spawns a new thread to execute the invocation.

	
False (default): Oracle BPEL Server executes the invoke activity in the single process thread.

13.3.2.3 validateXML

Enables message boundary validation. Note that additional validation can impact performance by consuming extra CPU and memory resources.

Values:

	
True: When set to True the engine validates the XML message against the XML schema during <receive> and <invoke> for this partner link. If the XML message is invalid then bpelx:invalidVariables run time BPEL Fault is thrown. This overrides the domain level validateXML property.

	
False (default): Disables XML validation.

13.4 Tables Impacted By Instance Data Growth

Instance data occupies space in Oracle BPEL Process Manager schema tables. Data growth from auditing and dehydration can have a significant impact on database performance and throughput. See Section 13.2.2, "Audit" for audit configuration and Section 13.3.1.1, "inMemoryOptimization" for dehydration configuration. The table below describes the tables that are impacted by instance data growth. A brief description is provided of each table.

Table 13-1 Oracle BPEL Process Manager Tables Impacted by Instance Data Growth

	Table Name	Table Description
	
audit_trail

	
Stores the audit trail for instances. The audit trail viewed in Oracle BPEL Control is created from an XML document. As an instance is processed, each activity writes events to the audit trail as XML.

	
audit_details

	
Stores audit details that can be logged through the API. Activities such as an assign activity log the variables as audit details by default.

Audit details are separated from the audit_trail table due to their large size. If the size of a detail is larger than the value specified for this property, it is placed in this table. Otherwise, it is placed in the audit_trail table.

	
cube_instance

	
Stores process instance metadata (for example, the instance creation date, current state, title, and process identifier)

	
cube_scope

	
Stores the scope data for an instance (for example, all variables declared in the BPEL flow and some internal objects that help route logic throughout the flow).

	
dlv_message

	
Stores incoming (invocation) and callback messages upon receipt. This table only stores the metadata for a message (for example, current state, process identifier, and receive date).

	
dlv_subscription

	
Stores delivery subscriptions for an instance. Whenever an instance expects a message from a partner (for example, the receive or onMessage activity) a subscription is written out for that specific receive activity.

	
document_ci_ref

	
Stores cube instance references to data stored in the xml_document table.

	
document_dlv_msg_ref

	
Stores references to dlv_message documents stored in the xml_document table.

	
wftask

	
Stores tasks created for an instance. The TaskManager process keeps its current state in this table.

	
work_item

	
Stores activities created by an instance. All activities in a BPEL flow have a work_item table. This table includes the metadata for the activity (current state, label, and expiration date (used by wait activities)).

	
xml_document

	
Stores all large objects in the system (for example, dlv_message documents). This table stores the data as binary large objects (BLOBs). Separating the document storage from the metadata enables the metadata to change frequently without being impacted by the size of the documents.

	
Headers_properties

	
Stores headers and properties information.

15 Oracle Business Process Management Performance Tuning

The Oracle Business Process Management (BPM) Suite provides a seamless integration of all stages of the application development life cycle from design-time and implementation to run-time and application management.

This chapter contains the following sections:

	
Section 15.1, "About Oracle Business Process Management"

	
Section 15.2, "Basic Tuning Considerations"

	
Section 15.3, "Tuning Oracle Workspace and Worklist Applications"

	
Section 15.4, "Tuning Process Analytics"

15.1 About Oracle Business Process Management

The Oracle BPM Suite provides an integrated environment for developing, administering, and using business applications centered around business processes. BPM is layered on the Oracle SOA Suite and shares many of the same product components, including Business Rules, Human Workflow, and Oracle Adapter Framework for Integration.

For more information on on using BPM, see the Oracle Fusion Middleware User's Guide for Oracle Business Process Management.

For more information on tuning Oracle BPM with your other Oracle Fusion Middleware components, see Chapter 2, "Top Performance Areas".

15.2 Basic Tuning Considerations

This section describes the following basic BPM performance tuning properties:

	
Audit Level

	
LargeDocumentThreshold

	
Dispatcher System Threads

	
Dispatcher Engine Threads

	
Dispatcher Invoke Threads

	
Note:

The configuration examples and recommended settings described in this chapter are for illustrative purposes only. Consult your own use case scenarios to determine which configuration options can provide performance improvements.

15.2.1 Audit Level

The auditLevel property sets the audit trail logging level. This configuration property is applicable to both durable and transient processes. This property controls the amount of audit events that are logged by a process. Audit events result in more database inserts into the audit_trail table which may impact performance. Audit information is used only for viewing the state of the process from Oracle Enterprise Manager Console.

Use the Off value if you do not want to store any audit information. Always choose the audit level according to your business requirements and use cases. For more information on setting the audit level, see "Understanding the Order of Precedence for Audit Level Settings" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

	Value	Description
	
Inherit

	
Inherits the audit level from infrastructure level.

	
Off

	
No audit events (activity execution information) are persisted and no logging is performed; this can result in a slight performance boost for processing instances.

	
Minimal

	
All events are logged; however, no audit details (variable content) are logged.

	
Error

	
Logs only serious problems that require immediate attention from the administrator and are not caused by a bug in the product. Using this level can help performance.

	
Production

	
All events are logged. The audit details for assign activities are not logged; the details for all other activities are logged.

	
Development

	
All events are logged; all audit details for all activities are logged.

15.2.2 LargeDocumentThreshold

The largedocumentthreshold property sets the large XML document persistence threshold. This is the maximum size (in kilobytes) of a BPMN Data Object before it is stored in a separate location from the rest of the instance scope data.

This property is applicable to both durable and transient processes.

Large XML documents impact the performance of the entire Oracle BPM Runtime if they are constantly read in and written out whenever processing on an instance must be performed.

The default value is 10000 (100 kilobytes).

15.2.3 Dispatcher System Threads

The dspSystemThreads property specifies the total number of threads allocated to process system dispatcher messages. System dispatcher messages are general clean-up tasks that are typically processed quickly by the server (for example, releasing stateful message beans back to the pool). Typically, only a small number of threads are required to handle the number of system dispatch messages generated during run time.

The minimum number of threads for this thread pool is 1 and it cannot be set to 0 a or negative number.

The default value is 2. Any value less than 1 thread is changed to the default.

15.2.4 Dispatcher Engine Threads

The dspEngineThreads property specifies the total number of threads allocated to process engine dispatcher messages. Engine dispatcher messages are generated whenever an activity must be processed asynchronously. If the majority of processes deployed are durable with a large number of dehydration points (mid-process receive, onMessage, onAlarm, and wait activities), greater performance may be achieved by increasing the number of engine threads. Note that higher thread counts can cause greater CPU utilization due to higher context switching costs.

The minimum number of threads for this thread pool is 1 and it cannot be set to 0 a or negative number.

The default value is 30 threads. Any value less than 1 thread is changed to the default.

15.2.5 Dispatcher Invoke Threads

The dspInvokeThreads property specifies the total number of threads allocated to process invocation dispatcher messages. Invocation dispatcher messages are generated for each payload received and are meant to instantiate a new instance. If the majority of requests processed by the engine are instance invocations (as opposed to instance callbacks), greater performance may be achieved by increasing the number of invocation threads. Higher thread counts may cause greater CPU utilization due to higher context switching costs.

The minimum number of threads for this thread pool is 1 and it cannot be set to 0 a or negative number.

The default value is 20 threads. Any value less than 1 thread is changed to the default.

15.3 Tuning Oracle Workspace and Worklist Applications

The following settings can be used to tune Oracle Workspace and Worklist applications:

	Parameter	Description
	
HTTP Session Timeout

	
To manage over resource usage, adjust the session timeout value, in minutes, in the web.xml file.

The following is a sample snippet of web.xml:

<session-config>
 <session-timeout>
 5
 </session-timeout>
 </session-config>

NOTE: If you must modify this property, post deployment, you must edit web.xml manually. See "Editing web.xml Properties" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.

	
ADF Client State Token

	
Through this setting, you can control the number of pages users can navigate using the browser Back button without losing information. To reduce CPU and memory usage, you can decrease the value in the web.xml file.

The following is a sample snippet of web.xml:

<context-param>
 <param-name>
 org.apache.myfaces.trinidad.CLIENT_STATE_MAX_TOKENS
 </param-name>
 <param-value>
 3
 </param-value>
 </context-param>

NOTE: If you must modify this property, post deployment, you must edit web.xml manually. See "Editing web.xml Properties" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.

	
Compress_View_State Token

	
This setting controls whether or not the page state is compressed. Zipping greatly reduced the memory being taken up by page state in the session object.

The following is a snippet of the web.xml:

<param-name>org.apache.myfaces.trinidad.COMPRESS_VIEW_STATE</param-name>
 <param-value>true</param-value>

	
DISABLE_CONTENT_COMPRESSION

	
By default, style classes that are rendered are compressed to reduce page size. In production environments, make sure you remove the DISABLE_CONTENT_COMPRESSION parameter from the web.xml file or set it to FALSE.

The following is a snippet of the web.xml:

<param-name>org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION</param-name> <param-value>false</param-value>

15.4 Tuning Process Analytics

Tuning Process Analytics includes the following:

15.4.1 Process Measurement

Process Analytics uses measurement events to sample the process and publish measurements to registered consumers. These measurements can be disabled using the BPMN Configuration "Disable Sensors". Specific consumers for these measurements can be disabled by setting the BPMN Configuration "Disable Actions". For more information, see the Oracle Fusion Middleware Administrator's Guide.

	
Note:

Only data that is useful should be published. The process design specifies what data (dimensions, measure, counters) should be published and at what point(s). If data is being generated that is not useful, then it could be adding unnecessary load to the system.

Measurement events are published on the JMS Topic: MeasurementTopic, and consumed by registered Action MDBs. In order to tune JMS for Measurements, consider changing the following, as needed, in a high volume environment:

	
MeasurementTopic

Bytes Max 800 MB

Message Max 1000000

	
MeasurementTopicConnectionFactory

Send Timeout 240000

	
BPMJMSServer

MessageBuffer Size 100000

Note that the BPMJMSServer uses a Paging File and JMSFileStore.

15.4.2 Tuning Process Cubes

Process Cubes perform periodic aggregations to compute workload information. The frequency of these computations is determined by the CubeUpdateFrequency parameter of BPMNConfig mbean and can be changed from the Oracle Enterprise Manager console. In a high volume environment, consider changing this parameter to an appropriately higher value such as 12 hours, for example, to conserve computing resources.

	
Note:

The creation of workload snapshots can impact performance. Consider using the properties in Oracle Fusion Middleaware Control to tune the frequency and time to live (TTL) for workload snapshots. For more information on using Fusion Middleware Contol, see the Oracle Fusion Middleware Administrator's Guide.

Process Cube Aggregator uses the BPM_CUBE_AUDITINSTANCE table to compute workload and performance information. Unwanted records from the BPM_CUBE_AUDITINSTANCE table get purged as part of the SOA Purge script. Additionally, consider running the following delete script periodically to purge the unwanted records from BPM_CUBE_AUDITINSTANCE table for improving the performance of Process Cube computations.

DELETE FROM BPM_CUBE_AUDITINSTANCE A
WHERE EXISTS
(SELECT 1 FROM BPM_CUBE_AUDITINSTANCE B
WHERE A.COMPONENTINSTANCEID = B.COMPONENTINSTANCEID AND
B.OPERATION='INSTANCE_CREATED' AND
B.ACTIVITYSTATUS='PROCESSED')

16 Oracle Human Workflow Performance Tuning

This chapter describes how to tune Oracle Human Workflow for optimal performance. You can tune Oracle Human Workflow in these areas:

	
Section 16.1, "About Oracle Human Workflow"

	
Section 16.2, "Basic Tuning Considerations"

	
Section 16.3, "Improving Server Performance"

	
Section 16.4, "Completing Workflows Faster"

	
Section 16.5, "Tuning Identity Provider"

	
Section 16.6, "Tuning the Database"

16.1 About Oracle Human Workflow

Oracle Human Workflow is a service engine running in Oracle SOA Service Infrastructure that allows the execution of interactive human driven processes. A human workflow provides the human interaction support such as approve, reject, and reassign actions within a process or outside of any process. The Human Workflow service consists of a number of services that handle various aspects of human interaction with a business process.

For more information, see "Using the Human Workflow Service Component" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

See also the Oracle Human Workflow web site at http://www.oracle.com/technology/products/soa/hw/index.html.

16.2 Basic Tuning Considerations

This section discusses the various options available to address performance issues:

	
Minimize Client Response Time

	
Choose the Right Workflow Service Client

	
Narrow Qualifying Tasks Using Precise Filters

	
Retrieve Subset of Qualifying Tasks (Paging)

	
Fetch Only the Information That Is Needed for a Qualifying Task

	
Reduce the Number of Return Query Columns

	
Use the Aggregate API for Charting Task Statistics

	
Use the Count API Methods for Counting the Number of Tasks

	
Create Indexes On Demand for Flexfields

	
Use the doesTaskExist Method

16.2.1 Minimize Client Response Time

Since workflow client applications are interactive, it is important to have good response time at the client. Some of the factors that affect the response time include service call performance impacts, querying time to determine the set of qualifying tasks for the request, and the amount of additional information to be retrieved for each qualifying task.

16.2.2 Choose the Right Workflow Service Client

Workflow services support two major types of clients: SOAP and EJB clients. EJB clients can be further separated into local EJB clients and remote EJB clients.

If the client application is based on .Net technologies, then only the SOAP workflow services can be used. However, if the client application is based on Java EE technology, then consider which client should be used based on your use case scenarios. The options are listed below:

	
Remote client - This is the best option in terms of performance in most cases. If the client is running in the same JVM as the workflow services (soa-infra application), the API calls are optimized so that there is no remote method invocation (RMI) involved. If the client is on a different JVM, then RMI is used, which can impact performance due to the serialization and de-serialization of data between the API methods.

	
SOAP client - While this option is preferred for standardization (based on web services), there are additional performance considerations when compared to the remote method invocation (RMI) used in the remote client. Additional processing is performed by the web-services technology stack which causes the marshalling and unmarshalling of API method arguments between XML.

For more information, see Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

16.2.3 Narrow Qualifying Tasks Using Precise Filters

Using precise filters is one of the most important factors in improving response time. When a task list is retrieved, the query should be as precise as possible so the maximum filtering can be done at the database level.

For example, when the inbox view is requested for a user, the tasks are filtered mainly based on whether they are assigned to the current user or to the groups the user belongs to. By specifying additional predicate filters on the inbox view, the overall response time for the query can be reduced since lesser number of tasks qualify.

Alternatively, you can define views by specifying predicate filters and the overall response time for such views is reduced since lesser number of tasks qualify. All predicates passed to the query APIs (or defined in the views) are directly pushed to the database level SQL queries. With this information, the database optimizer can use the best indexes to create an optimal execution plan. The additional filters can be based on task attributes or promoted flex fields. For example, instead of listing all PO approval tasks, views can be defined to present tasks to the user based on priority, date, category, or amount range.

Example: To retrieve all assigned tasks for a user with priority = 1, you can use the following API call:

Predicate pred = new Predicate(TableConstants.WFTASK_STATE_COLUMN,
Predicate.OP_EQ,
IWorkflowConstants.TASK_STATE_ASSIGNED);
pred.addClause(Predicate.AND,
TableConstants.WFTASK_PRIORITY_COLUMN,
Predicate.OP_EQ,

1);
List tasks = querySvc.queryTasks(ctx,
queryColumns,
null,
ITaskQueryService.AssignmentFilter.MY ITaskQueryService.AssignmentFilter.MY,
null,
pred,
null,
startRow,
endRow);

16.2.4 Retrieve Subset of Qualifying Tasks (Paging)

Once the task list has been narrowed down to meet a specific criteria as discussed in the previous section, the next level of filtering is based on how many tasks are to be presented to the user. You want to avoid fetching too many rows, which not only increases the query time but also increases the application process time and the amount of data returned to client. The query API has paging parameters that control the number of qualifying rows returned to the user and the start row.

For example, in the queryTasks method:

List tasks = querySvc.queryTasks(ctx,
queryColumns,
null,
 ITaskQueryService.AssignmentFilter.MY,
null,
pred,
null,
startRow,
endRow);

Consider setting the startRow and endRow parameters to values that may limit the number of return matching records.

16.2.5 Fetch Only the Information That Is Needed for a Qualifying Task

When using the queryTask service, consider reducing the amount of optional information retrieved for each task returned in the list. This may reduce the performance impacts from additional SQL query and Java logic.

For example, in the following queryTasks method, only the group actions information is retrieved. You can also retrieve attachment and payload information directly in the listing, but you may encounter performance impacts.

List<ITaskQueryService.OptionalInfo> optionalInfo
= new ArrayList<ITaskQueryService.OptionalInfo>();
optionalInfo.add(ITaskQueryService.OptionalInfo.GROUP_ACTIONS);
// optionalInfo.add(ITaskQueryService.OptionalInfo.ATTACHMENTS);
// optionalInfo.add(ITaskQueryService.OptionalInfo.PAYLOAD);
List tasks = querySvc.queryTasks(ctx,
queryColumns,
optionalInfo,
ITaskQueryService.AssignmentFilter.MY,
null,
pred,
null,
startRow,
endRow);

In rare cases where the entire payload is needed, then the payload information can be requested. Typically only some of the payload fields are needed for displaying the task list. For example, for PO Tasks, the PO amount may be a column that must be displayed. Rather than fetching the payload as additional information and then retrieving the amount using an xpath expression and displaying it in the listing, consider mapping the amount column from the payload to a flex field. The flex field can then be directly retrieved during SQL querying which may significantly reduce the processing time.

Similarly, for attachments where the name of the attachment is to be displayed in the listing and the document itself is stored in an external repository, consider capturing the attachment name in the payload and mapping it to a flex field, so that processing time is optimized. While constructing the listing information, the link to the attachment can be constructed by fetching the appropriate flex field.

16.2.6 Reduce the Number of Return Query Columns

When using the queryTask service, consider reducing the number of query columns to improve the SQL time. Also, try to use the common columns as they are most likely indexed and the SQL can execute faster.

For example, in the following queryTasks method, only the TASKNUMBER and TITLE columns are returned:

List queryColumns = new ArrayList();
queryColumns.add("TASKNUMBER");
queryColumns.add("TITLE");
...
List tasks = querySvc.queryTasks(ctx,
null,
 ITaskQueryService.AssignmentFilter.MY,
null,
pred,
null,
startRow,
endRow);

16.2.7 Use the Aggregate API for Charting Task Statistics

Sometimes it is necessary to display charts or statistics to summarize task information. Rather than fetching all the tasks using the query API, and computing the statistics at the client layer, consider using the new aggregate APIs to compute the statistics at the database level.

For example, the following call illustrates the use of the API to get summarized statistics based on state for tasks assigned to a user:

List taskCounts = querySvc.queryAggregatedTasks(ctx,
Column.getColumn(WFTaskConstants.STATE_COLUMN),
 ITaskQueryService.AssignmentFilter.MY,
keyWordFilter,
filterPredicate,
false,
false);

16.2.8 Use the Count API Methods for Counting the Number of Tasks

Sometimes it is only necessary to count how many tasks exist that match certain criteria. Rather than calling the queryTasks API method, and determining the size of the returned list, call the countTasks API method, which returns only the number of matching tasks. The performance impact of returning a count of tasks is much lower than returning a list of task objects.

For example, the following call illustrates the use of the API to get the total number of tasks assigned to a user:

int numberOfTasks = querySvc.countTasks(ctx,
ITaskQueryService.AssignmentFilter.MY,
keyWordFilter,
filterPredicate);

16.2.9 Create Indexes On Demand for Flexfields

The workflow schema table WFTASK contains several flexfield attribute columns that can be used for storing task payload values in the workflow schema. Because there are numerous columns, and their use is optional, the installed schema does not contain indexes for these columns. In certain use-cases, for example, where certain mapped flexfield columns are frequently used in query predicates, performance can be improved if you create indexes on these columns.

For example, to create an index on the TEXTATTRIBUTE1 column, the following SQL command should be run:

create index WFTASKTEXTATTRIBUTE1_I on WFTASK(TEXTATTRIBUTE1);

	
Note:

The exact indexes required depend on the flexfield attribute columns being used, and the nature of the queries being executed. After creating the indexes, the statistics for the WFTASK table should be re-computed and flushed.

16.2.10 Use the doesTaskExist Method

Sometimes it is necessary to check whether any tasks exist that match particular query criteria. Rather than calling the countTasks method, and checking if the number returned is zero, consider using doesTaskExist. The doesTaskExist method performs an optimized query that simply checks if any rows exist that match the specified criteria. This method may achieve better results than calling the countTasks method.

For example, the following call illustrates the use of the API method to determine if a user owns any task instances:

boolean userOwnsTask = querySvc.doesTaskExist(ctx, ITaskQueryService.AssignmentFilter.OWNER,null,null);

16.3 Improving Server Performance

Server performance essentially determines the scalability of the system under heavily loaded conditions. Section 16.2.1, "Minimize Client Response Time" lists several ways in which client response times can be minimized by fetching the right of amount of information and reducing the potential performance impact associated with querying. These techniques also reduce the database and service logic performance impacts at the server and can improve server performance. In addition, a few other configuration changes can be made to improve server performance:

	
Archive Completed Instances Periodically

	
Select the Appropriate Workflow Callback Functionality

	
Minimize Performance Impacts from Notification

	
Deploy Clustered Nodes

16.3.1 Archive Completed Instances Periodically

The database scalability of a system is largely dependent on the amount of data in the system. Since business processes and workflows are temporal in nature, once they are processed, they are not queried frequently. Having numerous completed instances in the system can slow the system. Consider using an archival scheme to periodically move completed instances to another system that can be used to query historical data. Archival should be done carefully to avoid orphan task instances.

16.3.2 Select the Appropriate Workflow Callback Functionality

The workflow callback functionality can be used to query or update external systems after any significant workflow event, such as assignment or completion of task. While this functionality is very useful, it has to be implemented correctly to avoid impacting performance.

When performance is critical, ensure that there are sufficient resources to update the external system after the task is completed instead of after every workflow event. For example, instead of using a callback, the service can be invoked once after the completion of the task. If a callback cannot be avoided, then consider using a Java callback instead of a BPEL callback. Java callbacks do not have the performance impact associated with a BPEL callback since the callback method is executed in the same thread. In contrast, a BPEL callback may impact performance when sending a message to the BPEL engine, which in turn must be correlated so that it is delivered to the correct process instance. The workflow service has to be called by the BPEL engine after the invocation of the service.

16.3.3 Minimize Performance Impacts from Notification

Notifications are useful for alerting users that they have a task to execute. In environments where most approvals happen through email, actionable notifications are especially useful. This also implies that there is not much load in terms of worklist usage. However if most users interact through the Worklist, and notifications serve a secondary purpose, then notifications should be used judiciously. Consider minimizing the notification to just alert a user when a task is assigned instead of sending out notifications for each workflow event. Also, if the task content is also mailed in the notification there may be an impact to performance. To minimize the impact, consider making the notifications secure in which case only a link to the task is sent in the notification and not the task content itself.

16.3.4 Deploy Clustered Nodes

All workflow instances and state information are stored in the dehydration database. Workflow services are stateless which means they can be used concurrently on a cluster of nodes. When performance is critical and a highly scalable system is needed, a clustered environment can be used for supporting workflow. For more information on clustered architecture, see Section 29.2, "Using Clusters with Oracle Fusion Middleware".

16.4 Completing Workflows Faster

The time it takes for a workflow to complete depends on the routing type specified for the workflow. The workflow functionality provides some options that can be used to improve the amount of time it takes to complete workflows. Some of these options are discussed in this section:

	
Use Workflow Reports to Monitor Progress

	
Specify Escalation Rules

	
Specify User and Group Rules for Automated Assignment

	
Use Task Views to Prioritize Work

16.4.1 Use Workflow Reports to Monitor Progress

Several workflow reports (and corresponding views) are available that can make monitoring and proactively fixing problems easier. A few of these reports are listed below:

	
The Unattended Tasks Report provides a list of group tasks that need attention since they have not yet been acquired by any user to work on.

	
The Task Cycle Time Report gives an idea of how much time it takes for a particular type of workflow to complete.

	
The Task Productivity Report indicates the inflow and outflow of tasks for different users.

	
The Assignee Time Distribution Report provides a detailed drill-down of the time spent by each user during the task life cycle (including the idle time when the task was waiting to be picked up by a user.)

All of these reports can be used effectively to fix problems. By checking unattended tasks report, you can assign tasks that have been in the queue for a long time to specific users. By monitoring cycle time and other statistics, you can add staff to groups that are overloaded or take a longer time to complete. Thus reports can be used effectively to ensure workflows complete faster.

16.4.2 Specify Escalation Rules

To ensure that tasks do not get stuck at any user, you can specify escalation rules. For example, you can move a task to a manager if a certain amount of time passes without any action being taken on the task. Custom escalation rules can also be plugged in if the task must be escalated to some other user based on alternative routing logic. By specifying proper escalation rules, you can reduce workflow completion times.

16.4.3 Specify User and Group Rules for Automated Assignment

Instead of manually reassigning tasks to other users or members of a group, you can use user and group rules to perform automated reassignment. This ensures that workflows get timely attention. For example, a user can set up a user rule such that workflows of a specific type and matching a certain filter criteria are automatically reassigned to another user in a specified time window. Similarly, a group rule can be used to automatically reassign workflows to a member of the group based on different routing criteria such as round robin or most productive. Thus rules can help significantly reduce workflow waiting time, which results in faster workflow completion.

16.4.4 Use Task Views to Prioritize Work

A user's inbox can contain tasks of various types with various due dates. The user has to manually sift through the tasks or sort them to find out which one he or she should work on next. Instead, by creating task views where tasks are filtered based on due dates or priority, users can get their work prioritized automatically so they can focus on completing their tasks instead of wasting their time on deciding which tasks to work on. This also results in faster completion of workflows.

16.5 Tuning Identity Provider

The workflow service uses information from the identity provider in constructing the SQL query to determine the tasks qualifying for a user based on his or her role/group membership. The identity provider is also queried for determining role information to determine privileges of a user when fetching the details of a task and determining what actions can the user perform on a task. There are a few ways to speed up requests made to the identity provider.

	
Set the search base in the identity configuration file to node(s) as specific as possible. Ideally you should populate workflow-related groups under a single node to minimize traversal for search and lookup. This is not always possible; for example, you may need to use existing groups and grant membership to groups located in other nodes. If it is possible to specify filters that can narrow down the nodes to be searched, then you should specify them in the identity configuration file.

	
Index all critical attributes such as dn and cn in the identity provider. This ensures that when a search or a lookup is done, only a subset of the nodes are traversed instead of a full tree traversal.

	
Use an identity provider that supports caching. Not all LDAP providers support caching but Oracle Internet Directory supports caching which can make lookup and search queries faster.

16.6 Tuning the Database

The Human Workflow schema is shipped with several indexes defined on the most important columns for all the tables. Based on the type of request, different SQL queries are generated to fetch the task list for a user. The database optimizer evaluates the cost of different plan alternatives (for example, full table scan, access table by index) and decides on a plan that is lower in cost. For the optimizer to work correctly, the index statistics should be current at all times. As with any database usage, it is important to make sure the database statistics are updated at regular intervals and other tunable parameters such as memory, table space, and partitions are used effectively to get maximum performance.

For more information on tuning the database, see Section 2.6, "Tuning Database Parameters".

17 Oracle Adapters Performance Tuning

This chapter describes how to tune Oracle Adapters for optimal performance. Oracle Adapters, a component of the Oracle SOA Suite of Applications, provide an integrated view of data and allow multiple applications to be integrated.

This chapter contains the following sections:

	
Section 17.1, "About Oracle Adapters"

	
Section 17.2, "Oracle JCA Adapters for Files/FTP"

	
Section 17.3, "Oracle JCA Adapter for Database Tuning"

	
Section 17.4, "Oracle Socket Adapter Tuning"

	
Section 17.5, "Oracle SOA JMS Adapter Tuning"

	
Section 17.6, "Oracle AQ Adapter Tuning"

	
Section 17.7, "Oracle MQ Adapter Tuning"

17.1 About Oracle Adapters

Oracle technology adapters integrate Oracle Application Server and Oracle Fusion Middleware components such as Oracle BPEL Process Manager (Oracle BPEL PM) or Oracle Mediator components to file systems, FTP servers, database queues (advanced queues, or AQ), Java Message Services (JMS), database tables, and message queues (MQ Series).

For more information on Oracle Adapters, see Oracle Fusion Middleware User's Guide for Technology Adapters.

17.2 Oracle JCA Adapters for Files/FTP

This section describes the various features available for scalability and performance tuning of Oracle File and FTP Adapters.The Oracle File and FTP Adapters provide knobs to throttle the inbound and outbound operations. The Oracle File and FTP Adapters also provide knobs that can be used to tune the performance of outbound operations. The Oracle File and FTP Adapters knobs are described in the following sections:

	
Inbound Throttling Best Practices

	
Outbound Throttling Best Practices

	
Outbound Performance Best Practices

	
Note:

For composites with Oracle File and FTP Adapters, which are designed to consume very large number of concurrent messages, you must set the number of open files parameter for your operating system to a larger value. For example, to set the number of open files parameter to 8192 for Linux, use the ulimit -n 8192 command

17.2.1 Inbound Throttling Best Practices

The Oracle File and FTP Adapters provide parameters that can be used to throttle the inbound operations. The table below describes the inbound throttling practices:

	Parameter	Type	Values	Description
	
MaxRaiseSize

	
JCA

	
<property name="MaxRaiseSize" value="100"/>

Default: 10000 (ten thousand)

	
This parameter defines the maximum number of files that the inbound adapter would submit for processing on each polling cycle. For example, if your inbound directory has 1000 files and the MaxRaiseSize is set to 100, the adapter can increase to 100 files on each polling cycle.

Defined in the Inbound JCA File.

	
SingleThreadModel

	
JCA

	
<property name="SingleThreadModel" value="true"/>

Default: False (In this case, the global in-memory queue is used).

	
If the value is true, the poller lists, translates, or publishes files in the same thread. In other words, it does not use the global in-memory queue for publishing.

Defined in the Inbound JCA File.

	
ThreadCount

	
JCA

	
<property name="ThreadCount" value="10"/>

Default: -1 (In this case, the adapter uses the global thread pool and in-memory queue)

	
This parameter enables the Oracle File and FTP Adapters to create their own processor threads rather than depending on the global pool of processor worker threads for processing the enqueued files. This parameter partitions the in-memory queue and each composite application receives its own in-memory queue.

If the ThreadCount is set to 0, then the threading behavior is the same as that of the SingleThreadModel. If the ThreadCount is set to -1, then the global thread pool is activated, which is the same as the Default Threading Model. The maximum value that can be set for ThreadCount is 40.

Defined in the Inbound JCA File.

17.2.2 Outbound Throttling Best Practices

The Oracle File and FTP Adapters provide parameters that can be used to throttle the outbound operations. The table below describes the outbound throttling practices:

	Parameter	Type	Value	Description
	
ConcurrentThreshold

	
JCA

	
<property name="ConcurrentThreshold" value="100"/>

Default: 20 (In this case, not more than 20 translations occur for a particular outbound scenario.)

	
This parameter specifies the maximum number of translation activities that are allowed to start in parallel for a particular outbound scenario. The translation step during the outbound operation is CPU intensive and must be monitored as it might cause other applications or threads to starve. The maximum value is 100.

Defined in the Outbound JCA File.

17.2.3 Outbound Performance Best Practices

The Oracle File and FTP Adapters provide parameters that can be used to tune the performance of outbound operations. The table below describes the outbound performance parameters:

	Parameter	Type	Value	Description
	
UseStaging

	
JCA

	
<property name="UseStaging" value="true"/>

Default: True

	
If the parameter is set to true, then the outbound Oracle File or FTP Adapter writes translated data to a staging file and later streams the staging file to the target file. If the parameter is set to false, then the outbound Oracle File or FTP Adapter does not use an intermediate staging file.

Defined in Outbound JCA File.

	
serializeTranslation

	
Endpoint Property

	
<reference name="PurchaseOrderOut"> <interface.wsdl interface="...."/> <binding.jca config="PurchaseOrderOut_ftp.jca"/> <property name="serializeTranslation" type="xs:string" many="false" source="" override="may">true</property> </reference>

Defaults:

	
True (If the value of UseStaging is set to True)

	
False (If the value of UseStaging is set to False)

	
If True, then the translation step is serialized using a semaphore. The number of permits for semaphore (monitoring the translation step) comes from ConcurrentThreshold parameter (listed in the preceding table). The default value of True is used because the translation step is CPU intensive and you do not want to starve other applications or threads.

If False, then the translation step occurs outside the semaphore.

Defined in Binding property for reference in composite.xml.

	
inMemoryTranslation

	
Binding Property

	
<reference name="PurchaseOrderOut"> <interface.wsdl interface="...."/> <binding.jca config="PurchaseOrderOut_ftp.jca"/> <property name="inMemoryTranslation" type="xs:string" many="false" source=""override="may">false</property> </reference>

Default: False

	
This parameter is applicable only if UseStaging is False.

If True, then the translation step occurs in-memory (an in-memory byte array is created.)

If False, then the adapter creates an output stream to the target file (FTP, FTPS, and SFTP included) and allows the translator to translate and write directly to the stream.

Defined in Binding property for reference in composite.xml.

17.3 Oracle JCA Adapter for Database Tuning

The Oracle Database Adapter is pre-configured with many performance optimizations. You can, however, make some changes to reduce the number of round trips to the database, as described in the following sections:

	
JCA Adapter Basic Tuning Considerations

	
Existence Checking

	
Note:

The tuning considerations in this chapter are listed for example only. Tuning parameters are specific to each deployment. Review you current usage and performance issues to determine which tuning considerations can improve performance.

17.3.1 JCA Adapter Basic Tuning Considerations

Adapter performance is directly related to the number of round-trips to the database, and the network cost of each trip. If performance becomes an issue, and making modifications is appropriate for your deployment, consider tuning the following parameters:

	
Use Indexes

Indexes can improve performance of selects, updates and deletes. Index all queried fields, such as the primary key and the MarkReadField of the LogicalDeletePollingStrategy, when polling. For MarkReadField specify a non-null MarkUnreadValue. Caution: An index on a column containing many nulls may revert to full table scans.

	
Disable OptimizeMerge

The OptimizeMerge parameter allows the detection of XML elements for which no value was specified. The related columns are excluded from inserts and updates. Disabling this parameter generally improves performance, but there is one case where it could have a negative effect. If multiple rows are being passed in as a single XML, and each row has different columns set (user entered with many optional fields), there is no benefit from batch writing, as each insert or update is different.

	
Increase MaxRaiseSize

The MaxRaiseSize parameter indicates the maximum number of XML records that can be raised at a time to the BPEL engine. For example, if you set MaxRaiseSize = 10, then 10 database records are raised simultaneously. On an inbound read, for example, you can set MaxRaiseSize = 0 (unbounded) which means that if you read 1000 rows, you can create one XML with 1000 elements. These elements are passed through a single Oracle BPEL Process Manager instance. A merge on the outbound side can then take all 1000 in one group and write them all at once with batch writing. Use the MaxRaiseSize parameter for publishing large payloads.

	
Increase MaxTransactionSize

This property controls the number of records processed per transaction by each thread. If set to a large value such as 1000, turning on the UseBatchDestroy option could have a negative impact on performance. Setting a large MaxTransactionSize and a small MaxRaiseSize could also have negative impact on performance. Consider maintaining up to a 10:1 ratio in a synchronous scenario. Ideally, you should consider increasing MaxRaiseSize until it is a 1:1 ratio.

	
Enable UseBatchDestroy

This property controls how the processed records are updated (ex: Deleted for DeletePollingStrategy, MarkedProcessed for LogicalDeleteStrategy). If set, only one update/delete is executed for all the rows that are part of that transaction. The number of rows in a transaction is controlled by the MaxTransactionSize option. Note that this may not always offer an improvement because, by default, batch writing is used, which also ends up in a single round trip to the database.

	
Enable Batch Reading

Batch reading of one-to-many and one-to-one relationships is on by default. You can also use joined reading for one-to-one relationships instead, which may offer a slight improvement.

	
Disable Delete Polling Strategy

Avoid the delete polling strategy because it must individually delete each row. The sequencing polling strategy can destroy 1000 rows with a single update to a helper table. Note that a LogicalDelete is also better than Delete, as updates are typically faster than deletes. To maintain performance, however, ensure that you have indexed the table. If you have not indexed, you can keep the total number of rows small by using deletes. In some instances deletes may be faster as the cost of a full table scan is negligible.

	
Use Distributed Polling

Distributed polling enables you to configure polling for scalability. For more information, see "Scalability" in Oracle Fusion Middleware User's Guide for Technology Adapters.

	
Use Synchronous Processes

On BPEL you can configure Database Adapter processes to be synchronous. You can also create sequential routing rules in Mediator. This can improve throughput in database-to-database scenarios, as there is less instance processing impact.

	
Use Insert

The insert operation is the most performant because it uses no existence check and has no extra performance impact associated with it. There are no reads, only writes. If you know that you are inserting most of the time, use insert, and catch a unique key constraint SQL exception inside your BPEL process, which can then perform a merge or update instead. To monitor performance, you can enable debug logging and then watch the SQL for various inputs.

	
Disable Merge

Merge executes one extra SELECT per related table. The SELECT is used to determine whether each row should be inserted or updated. If the row is updated, the update performed is minimal. If no rows have changed, nothing is updated.

	
Use Connection Pooling

The adapter should also point to a tuned data source connection pool. Tuning the connection pool is important because creating and tearing down database connections can impact performance.

	
Use Attribute Filtering

On the Attribute Filtering page of the Adapter Configuration Wizard you can choose which fields to map to the XML and vice versa. You can improve performance by deselecting columns that are not needed for your particular business case, especially large columns like LOBs.

	
Use Native Sequencing

If you are using the XSL functions to assign primary keys to records, consider using the built-in native sequencing support in the adapter. Sequencing support obtains and caches 50 keys at a time by default. Caching improves performance by reducing the number of round trips. The chunk size can be controlled incrementally by modifying the sequencePreallocationSize connector property.

	
Do not use primary or foreign keys on the database

Using primary and foreign keys can impact performance. Avoid using them when possible.

	
JDBC Driver Class

The default JDBC driver class used to create the physical database connections in the connection pool is oracle.jdbc.xa.client.OracleXADataSource. Changing the driver to oracle.jdbc.OracleDriver may provide some performance improvement.

For more information on tuning the JDBC drivers, see "Third Party JDBC Driver and Database Connection Configuration" in Oracle Fusion Middleware User's Guide for Technology Adapters.

17.3.2 Existence Checking

One method of performance optimization for merge is to eliminate check database existence checking. The existence check is marginally better if the row is new, because only the primary key is returned, not the entire row. Due to the nature of merge, however, if the existence check passes, the entire row must be read to calculate what changed. Therefore, for every row to be updated, you see one extra round trip to the database during merge.Use check cache on the root descriptor/table and any child tables if A is master and B is a privately owned child. If A does not exist, B cannot exist. And if A exists, all of its child tables are loaded as part of reading A.

	
Note:

One way to prevent merge from performing an existence check for every record, when you know that an insert is required, is to set the primary key to null.

17.3.3 Throttling

It is possible to configure a speed limit on DbAdapter performance to protect down-stream components from message bursts. Consider leaving burst records unprocessed on the source database until SOA can process them efficiently. As of Oracle Adapters release 11.1.1.6.0 you can set the inbound DbAdapter property RowsPerPollingInterval. It acts as a limit on the number of records which can be processed in one polling interval. The default is unlimited.

The following sections describe the configuration options for RowsPerPollingInterval:

17.3.3.1 Formula

The formula for maximum rows per second is:

Number of active nodes in SOA cluster x NumberOfThreads x RowsPerPollingInterval / PollingInterval

17.3.3.2 RowsPerPollingInterval and MaxTransactionSize

MaxTransactionSize can be thought of as RowsPerDatabaseTransaction or DatabaseFetchSize. It does not affect how many rows can be processed in one polling interval period.

The one exception is the following configuration:

-distributed polling checked, usesSkipLocking="false"

In this one case RowsPerPollingInterval will default to MaxTransactionSize instead of unlimited.

If RowsPerPollingInterval is set to lower than MaxTransactionSize or MaxRaiseSize, they will be effectively lowered to RowsPerPollingInterval.

17.3.3.3 Configuration

There is no UI support for RowsPerPollingInterval. Instead find the db.jca file for the inbound polling service and add the property manually. Add it to the same section as the properties MaxRaiseSize, MaxTransactionSize, and PollingInterval, in any order.

17.4 Oracle Socket Adapter Tuning

This section describes performance tuning for Oracle Socket Adapter. Performance can be optimized for the Oracle Socket Adapter using Connection Pool if the socket server you are connecting to does not close the socket with each interaction. Connection pool lets you use a socket connection repeatedly, avoiding the overload of creating a new socket for each interaction.

	
Note:

The Connection Pool feature is applicable to outbound interactions only. For more information on Socket Adapters, see "Oracle JCA Adapter for Sockets" in Oracle Fusion Middleware User's Guide for Technology Adapters

In order to enable the connection pool feature for the Oracle Socket Adapter, the KeepAlive connection factory property must be set to True. This connection property can be modified using the Connection Pool tab of Oracle WebLogic Server Administration Console.

For instructions on modifying the Oracle Socket Adapter connection pooling, see "Configuring Oracle Socket Adapter Connection Pooling" in Oracle Fusion Middleware User's Guide for Technology Adapters.

17.5 Oracle SOA JMS Adapter Tuning

This section describes some of the properties that can be set for the Oracle SOA JMS Adapter to optimize performance. See "Introduction to the Oracle JMS Adapter" in the Oracle Fusion Middleware User's Guide for Technology Adapters for more information.

17.5.1 adapter.jms.receive.threads Property

To improve performance, the adapter.jms.receive.threads property can be tuned for an adapter service. The default value is 1, but multiple inbound threads can be used to improve performance. When specified, the value of adapter.jms.receive.threads is used to spawn multiple inbound poller threads.

For example:

<service name="dequeue" ui:wsdlLocation="dequeue.wsdl">
<interface.wsdl interface="http://xmlns.oracle.com/pcbpel/adapter/jms/textmessageusingqueues/textmessageusingqueues/dequeue%2F#wsdl.interface(Consume_Message_ptt)"/>
<binding.jca config="dequeue_jms.jca">
<property name="adapter.jms.receive.threads" type="xs:string" many="false">10</property>
</binding.jca">
</service>

17.6 Oracle AQ Adapter Tuning

This section describes Oracle AQ Adapter tuning configurations.

17.6.1 adapter.aq.dequeue.threads Property

To improve dequeue performance 'adapter.aq.dequeue.threads' property can be set for an adapter service. Default value is 1 but multiple inbound threads can be used to improve performance. The value of property 'adapter.aq.dequeue.threads' is used to spawn multiple inbound poller threads.

For example:

<service name="dequeue" ui:wsdlLocation="dequeue.wsdl">
<interface.wsdl interface="http://xmlns.oracle.com/pcbpel/adapter/aq/raw/raw/dequeue/#wsdl.interface(Dequeue_ptt)"/>
<binding.jca config="dequeue_aq.jca">
<property name="adapter.aq.dequeue.threads" type="xs:string" many="false">10</property>
</binding.jca>
</service>

17.7 Oracle MQ Adapter Tuning

The Oracle MQ Series Adapter supports the scalability feature for inbound operations only. Oracle MQ Series Adapter provides the parameter to control the number of threads that dequeue the messages from the inbound queue.You must specify the following property in the.jca file:

InboundThreadCount='N'

In the example above N is the number of threads that you want to span to dequeue the messages from the inbound queue.

18 Oracle Business Activity Monitoring Performance Tuning

This chapter describes how to tune the Oracle Business Activity Monitoring (BAM) dashboard application for optimal performance. Oracle BAM provides the tools for monitoring business services and processes in the enterprise.

This chapter discusses useful parameters that can be modified to enhance the overall performance of BAM:

	
Section 18.1, "About Oracle Business Activity Monitoring"

	
Section 18.2, "Basic Tuning Considerations"

18.1 About Oracle Business Activity Monitoring

Oracle Business Activity Monitoring (BAM) provides the tools for monitoring business services and processes in the enterprise. It allows correlating of market indicators to the actual business process and to changing business processes quickly or taking corrective actions if the business environment changes. Oracle BAM also provides the necessary tools and run-time services for creating dashboards that display real-time data inflow and define rules to send alerts under specified conditions.

For more information see Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring.

18.2 Basic Tuning Considerations

The following sections provide Oracle BAM tuning considerations that can be used to address performance issues:

	
BAM Server Tuning

	
BAM Dashboard Tuning

	
BAM Database Tuning

	
Internet Browser Tuning

	
Enterprise Message Source Tuning

18.2.1 BAM Server Tuning

The following tuning configurations can be used to improve performance of the BAM Server:

18.2.1.1 Set the ViewSetSharing and ElementCountLimit Parameters

The ViewSetSharing parameter can be set to TRUE or FALSE in the BAM server configuration file. This parameter enables view set sharing when possible. Typically a particular view set can be shared with other users if they are trying to access the same dashboard, if the view sets are not dissimilar due to factors like row level security or prompts/parameters tied to filters.

Consider setting the ViewSetSharing parameter to TRUE so that Active Data Cache (ADC) can reuse the same viewset and snapshot and avoid creating more viewsets. This reduces the BAM server resource usage and improves user response time.

If this parameter is turned on, it does not always guarantee that ADC can reuse the existing viewset. If there have been too many changes to the underlying snapshot for the existing viewset, ADC may choose to create new viewset instead.

The ReportCache parameter used to determine if there have been too many changes is ElementsCountLimit. This defines the number of changes to the snapshot used by Report Cache to do the determination. In cases where the active data comes in at a fast rate, try to set this parameter to a large number so that ADC can use view sharing at the expense of more server CPU usage. The default value of ElementsCountLimit is 50.

18.2.1.2 Enable the Async Servlet

During periods of higher active data rates, the browser uses more memory. To prevent potential impacts to performance, consider providing more memory on the client machine. To do this, set the UseAsynchServlet=TRUE for the BAM dashboard application.

The BAM dashboard application uses the Async servlet feature so that the BAM server does not bind a specific thread to a specific user request. This provides for better server-side system resource usage.

This parameter can be turned off by adding UseAsynchServlet=FALSE in the server configuration file. During debugging, consider turning it off to make the process easier.

Otherwise this should always be turned on, which is the default.

See "Creating the Dashboard View" in Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring.

18.2.2 BAM Dashboard Tuning

This section provides information on tuning the BAM dashboard for performance.

18.2.2.1 Tune the Active Data Retrieval Interval

The Active Data Retrieval Interval parameter controls the rate in milliseconds at which the Oracle BAM Active Data Cache (ADC) pushes events to the Oracle BAM Report Server. This is one of the factors that can affect the frequency of viewing active events on the dashboard page. Increasing this interval reduces the load on the Oracle BAM Server. Note that larger intervals increase the likelihood of multiple updates in the dashboard collapsing into a single update.

The default ADCPushInterval value is 1 second. You can override the default ADCPushInterval value within a particular report using the Active Data Retrieval Interval property in Active Studio.

For more information on using Active Studio, see "Getting Started With Oracle BAM Active Studio" in Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring.

18.2.3 BAM Database Tuning

To achieve the best performance for Oracle Business Activity Monitoring, consider maintaining a database on its own hardware dedicated to the Oracle Business Activity Monitoring system. General database administration practices, as described in the Oracle Database Performance Tuning Guide, also apply to a database dedicated to Oracle Business Activity Monitoring.

For more information on general database configurations, see Section 2.6, "Tuning Database Parameters".

18.2.4 Internet Browser Tuning

This section provides performance tuning configurations for Internet browsers:

18.2.4.1 Set iActiveDataScriptsCleanupFactor

BAM sends active data in <script> blocks to the browser over a persistent connection. In some cases, the browser does not free up the memory used by the <script> blocks. This can impact dashboard performance over time.

The iActiveDataScriptsCleanupFactor parameter provides a solution for these memory issues. A periodic browser refresh is forced after receiving the specified number of characters. The issue may become apparent when active data is being sent to the dashboard at a fast pace. You may need to increase this value further for particularly high rates of data such as when active data is coming to the dashboard at a rate of 25 events per second or greater. Ultimately the value you set depends on factors like your data, number of views, number of viewsets, ADCPushinterval, and so on). You can monitor the browser's memory consumption to help determine an appropriate value.

If performance continues to be an issue, consider increasing the value for this parameter. For example, set the value to 2 or 3 times the default value if active data is predicted to increase. The default value for this parameter is 1048576 bytes. The default value often prevents frequent reconnects and prevents CPU/memory on the client machine from creeping up too high.

18.2.4.2 Set Browser Cache Settings

If you are using Microsoft Internet Explorer, consider setting the Browsing History Settings to "Automatic." See the Microsoft Internet Explorer online help for more information.

18.2.5 Enterprise Message Source Tuning

BAM Enterprise Message Source (EMS) provides inbound JMS connectivity to BAM. After setup, a BAM EMS instance can monitor JMS queues/topics and read data from them. Each EMS instance is configured to publish data to a single Data Object in BAM Server. The Enterprise Message Source supports four types of operations: Insert, Update, Upsert, or Delete. Two types of JMS messages are supported: MapMessage and TextMessage.

18.2.5.1 Message Batching

The EMS batching process clubs messages into one single message before it is sent to BAM EMS. This feature enables the sender to send all messages in one batch over JMS. The batching process can improve network performance by limiting the number of round trips from the sender to JMS server to BAM EMS.

20 Oracle B2B Performance Tuning

This chapter describes tips for tuning Oracle B2B performance. It contains the following sections:

	
Section 20.1, "About Oracle B2B"

	
Section 20.3, "Number of Threads"

	
Section 20.4, "JMS Multiple Out Queues Setting"

20.1 About Oracle B2B

Oracle B2B (Business to Business) is an e-commerce gateway that enables the secure and reliable exchange of business documents between an enterprise and its trading partners. Oracle B2B supports business-to-business document standards, security, transports, messaging services, and trading partner management. With Oracle B2B used as a binding component within an Oracle SOA Suite composite application, end-to-end business processes can be implemented.

For more information about Oracle SOA Suite, see Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

20.2 MDS Cache Size

Changing the value of the Metadata Service (MDS) instance cache size can improve performance. A ratio of 5:1 is recommended for the xmx-to-mdsCache values. For example, if the xmx size is 1024, maintain mdsCache at 200 MB.

These settings can be modified using Oracle Enterprise Manager Fusion Middleware Control. For more information, see "Configuring Oracle B2B" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

20.3 Number of Threads

Changing the value of b2b.inboundThreadCount and b2b.outboundThreadCount can improve Oracle B2B message processing. The recommended value depends on your system. For a 2 GB computer, for example, a setting of 3 to 5 is recommended. The b2b.inboundThreadSleepTime and b2b.outboundThreadSleepTime properties put a thread to sleep after message processing. A setting between 10 and 1000 (milliseconds) is recommended.

These settings can be modified using Oracle Enterprise Manager Fusion Middleware Control. For more information, see "Configuring Oracle B2B" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

20.4 JMS Multiple Out Queues Setting

The JMS Out Queue component is the element that enables B2B to receive data from a JMS queue. To maximize performance, consider setting the Multiple JMSOUTQUEUES and create the corresponding listening channels in B2B.

21 Oracle Service Bus Performance Tuning

This chapter describes tips for tuning Oracle Service Bus performance. It contains the following sections:

	
Section 21.1, "About Oracle Service Bus"

	
Section 21.2, "Basic Tuning Considerations"

	
Section 21.3, "Tuning OSB Operational Settings"

	
Section 21.4, "Transport Tuning (Oracle WebLogic Server and Oracle Service Bus)"

	
Section 21.5, "Design Time Considerations for Proxy Applications"

	
Section 21.6, "Design Considerations for XQuery Tuning"

21.1 About Oracle Service Bus

Within a SOA framework, Oracle Service Bus (OSB) provides connectivity, routing, mediation, management and also some process orchestration capabilities. The design philosophy for OSB is to be a high performance and stateless (non-persistent state) intermediary between two or more applications. However, given the diversity in scale and functionality of SOA implementations, OSB applications are subject to large variety of usage patterns, message sizes and QOS requirements.

In most SOA deployments, OSB is part of a larger system where it plays the role of an intermediary between two or more applications (servers). A typical OSB configuration involves a client invoking an OSB proxy which may make one or more service callouts to intermediate back-end services and then route the request to the destination back end system before routing the response back to the client.

It is necessary, therefore, to understand that OSB is part of a larger system and the objective of tuning is the optimization of the overall system performance. This involves not only tuning OSB as a standalone application, but also using OSB to implement flow-control patterns such as throttling, request-buffering, caching, prioritization and parallelism.

For more information about Oracle Service Bus, see the Oracle Fusion Middleware Administrator's Guide for Oracle Service Bus.

21.2 Basic Tuning Considerations

Depending on your OSB usage and performance issues, you may consider tuning the following:

	
JVM Memory Tuning

	
WebLogic Server Tuning

21.2.1 JVM Memory Tuning

JVM parameters can have an impact on OSB performance. The two primary JVM tuning parameters to consider when optimizing OSB performance are heap size and garbage collection. For more information on tuning the JVM for performance, see Section 2.4, "Tuning Java Virtual Machines (JVMs)".

21.2.2 WebLogic Server Tuning

To optimize OSB, consider tuning the following WebLogic Server parameters:

21.2.2.1 Domain Mode

For production environments, create a domain in "Production" mode to maximize performance. The parameter is:

-Dweblogic.ProductionModeEnabled=true

To enable Weblogic server production mode through Weblogic Administration Console, see Oracle Fusion Middleware Understanding Domain Configuration for Oracle WebLogic Server.

21.2.2.2 WebLogic Server Logging Levels

For OSB performance testing and production environments, consider using the lowest acceptable logging level, such as "ERROR" or "WARNING" whenever possible. For more information, see Section 2.10, "Setting Logging Levels"

21.2.2.3 HTTP Access Logging

To optimize OSB perfomance, consider turning off the HTTP access logging. For more information, see Section 5.3.1, "Access Logging".

21.2.2.4 JMS Tuning

Ensure that the right persistence level is set for the Java Message Service (JMS) destinations. Consider the following scenarios:

	
For non-persistent JMS scenarios:

Explicitly turn off persistence at the JMS server level by un-checking the "Store Enabled" flag from the Advanced section of the General tab for the JMS server on the WebLogic Server console. It is also possible to override the persistence mode at the JMS destination level.

	
For persistent JMS scenarios:

There are two choices: file store and JDBC store. Typically operations on a File Store perform better than JDBC store. If there are multiple JMS servers involved, create each store on a separate disk to lower I/O contention.

For more information on JMS Server Tunings, see "Tuning WebLogic JMS" in the Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server.

21.2.2.5 Connection Backlog Buffering

You can tune the number of connection requests that a WebLogic Server instance will accept before refusing additional requests. The Accept Backlog parameter specifies how many Transmission Control Protocol (TCP) connections can be buffered in a wait queue. This fixed-size queue is populated with requests for connections that the TCP stack has received, but the application has not accepted yet. This parameter should be tuned when dealing a large number of concurrent clients. For more information, see "Tuning Connection Backlog Buffering" in Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server.

21.3 Tuning OSB Operational Settings

This section discusses the following Oracle Service Bus operational settings:

	
OSB Monitoring

	
OSB Tracing

	
Cache Tuning for Proxy Service Run-Time Data

21.3.1 OSB Monitoring

Though the out-of-the-box monitoring sub-system has a very low overhead and scales well to a large number of services as well as to multiple nodes in a cluster, when dealing with thousands of services or a large scale cluster deployment, being selective about enabling monitoring can help reduce network traffic. When a business or proxy service is created, monitoring is disabled by default for that particular service. For more information, see "Configuring Operational Settings for Proxy Services" or "Configuring Operational Settings for Business Services" in the Oracle Fusion Middleware Administrator's Guide for Oracle Service Bus.

To enable or disable monitoring of all services that have individually been enabled or disabled for monitoring, use the "Enable Monitoring" option on the Operations Global Settings page. For more information, see "Enabling Global Settings" in the Oracle Fusion Middleware Administrator's Guide for Oracle Service Bus.

21.3.2 OSB Tracing

Oracle Service Bus has the option to trace messages without having to shutdown the server. This is an extremely useful feature both in a development and production environment for debugging, diagnosing and troubleshooting problems involving message flows in one or more proxy services.

Tracing is disabled by default but can be enabled on a per service basis. When tracing is enabled, the entire message context is also printed including headers and message body. It is important to realize its impact for large message sizes and high throughput scenarios.

For more information, see "How to Enable or Disable Tracing" in the Oracle Fusion Middleware Administrator's Guide for Oracle Service Bus.

21.3.3 Cache Tuning for Proxy Service Run-Time Data

OSB caches proxy service runtime meta-data using a two-level cache with static and dynamic sections. The cache introduces a performance tradeoff between memory consumption and compilation cost. Note that caching proxy services may help throughput but could impact memory usage.

The static section is an upper-bound Least Recently Used (LRU) cache that is never garbage collected. When a proxy service is bumped from the static section, it is demoted to the dynamic section where the cache can be garbage collected when there is memory pressure.

The number of proxy services in the static portion of the cache can be tuned by setting its size using the system property com.bea.wli.sb.pipeline.RouterRuntimeCache.size. The default value is 100. This can be increased to a desired value provided there is sufficient memory for runtime data processing for large number of proxy services.

This property value can be set in the setDomainEnv.sh file as an extra java argument as follows:

-Dcom.bea.wli.sb.pipeline.RouterRuntimeCache.size={size}

Example:

EXTRA_JAVA_PROPERTIES="-Dcom.bea.wli.sb.pipeline.RouterRuntimeCache.size=3000 ${EXTRA_JAVA_PROPERTIES}"

21.4 Transport Tuning (Oracle WebLogic Server and Oracle Service Bus)

Latency and throughput of poller based transports depends on the frequency with which a source is polled and the number of files and messages read per polling sweep.

The following are the main transport configurations to tune:

21.4.1 Polling Interval

Consider using a smaller polling interval for high throughput scenarios where the message size is not very large and the CPU is not saturated. The primary polling interval defaults are listed below with links to additional information:

	Polling Intervals	Default Interval	Additional Information
	
File Transport

	
60 seconds

	
"File Transport Configuration Page" in the Oracle Fusion Middleware Administrator's Guide for Oracle Service Bus

	
FTP Transports

	
60 seconds

	
" FTP Transport Configuration Page" in the Oracle Fusion Middleware Administrator's Guide for Oracle Service Bus

	
MQ Transport

	
1000 milliseconds

	
"MQ Transport Configuration Page" in the Oracle Fusion Middleware Administrator's Guide for Oracle Service Bus

	
SFTP Transport

	
60 seconds

	
"SFTP Transport Configuration Page" in the Oracle Fusion Middleware Administrator's Guide for Oracle Service Bus

	
JCA Transport

	
60 seconds

	
"JCA Transport Configuration Page" in the Oracle Fusion Middleware Administrator's Guide for Oracle Service Bus

See also Section 17.3.1, "JCA Adapter Basic Tuning Considerations"

21.4.2 Read Limit

The read limit determines the number of files or messages that are read per polling sweep. This defaults to 10 for the File and FTP transports. It can be set to 0 to specify no limit. Set this value to the desired concurrency. For more information, see " File Transport Configuration Page" in the Oracle Fusion Middleware Administrator's Guide for Oracle Service Bus.

	
Note:

Setting the Read Limit to a high value and the Polling Interval to a small value may result in a large number of messages being simultaneously read into memory. This can lead to an OOM (out-of-memory error) if the message size is large.

21.5 Design Time Considerations for Proxy Applications

Consider the following design configurations for proxy applications based on your OSB usage and use case scenarios:

	
Avoid creating many OSB context variables that are used just once within another XQuery

Context variables created using an Assign action are converted to XmlBeans and then reverted to the native XQuery format for the next XQuery. Multiple "Assign" actions can be collapsed into a single Assign action using a FLWOR expression. Intermediate values can be created using "let" statements. Avoiding redundant context variable creation eliminates overheads associated with internal data format conversions. This benefit has to be balanced against visibility of the code and reuse of the variables.

	
Transforming contents of a context variable such as $body.

Use a Replace action to complete the transformation in a single step. If the entire content of $body is to be replaced, leave the XPath field blank and select "Replace node contents". This is faster than pointing to the child node of $body (e.g. $body/Order) and selecting "Replace entire node". Leaving the XPath field blank eliminates an extra XQuery evaluation.

	
Use $body/*[1] to represent the contents of $body as an input to a Transformation (XQuery / XSLT) resource.

OSB treats "$body/*[1]" as a special XPath that can be evaluated without invoking the XQuery engine. This is faster than specifying an absolute path pointing to the child of $body. A general XPath like "$body/Order" must be evaluated by the XQuery engine before the primary transformation resource is executed.

	
Enable Streaming for pure Content-Based Routing scenarios.

Read-only scenarios such as Content-Based Routing can derive better performance from enabling streaming. OSB leverages the partial parsing capabilities of the XQuery engine when streaming is used in conjunction with indexed XPaths. Thus, the payload is parsed and processed only to the field referred to in the XPath. Other than partial parsing, an additional benefit for read-only scenarios is that streaming eliminates the overhead associated with parsing and serialization of XmlBeans.

The gains from streaming can be negated if the payload is accessed a large number of times for reading multiple fields. If all fields read are located in a single subsection of the XML document, a hybrid approach provides the best performance. See Section 21.6, "Design Considerations for XQuery Tuning" for additional details.

The output of a transformation is stored in a compressed buffer format either in memory or on disk. Therefore, streaming should be avoided when running out of memory is not a concern.

	
Set the appropriate QOS level and transaction settings.

Do not set XA or Exactly-Once unless the reliability level required is once and only once and its possible to use the setting (it is not possible if the client is a HTTP client). If OSB initiates a transaction, it is possible to replace XA with LLR to achieve the same level of reliability.

OSB can invoke a back end HTTP service asynchronously if the QOS is "Best- Effort". Asynchronous invocation allows OSB to scale better with long running back-end services. It also allows Publish over HTTP to be truly fire-and-forget.

	
Disable or delete all log actions.

Log actions add an I/O overhead. Logging also involves an XQuery evaluation which can be expensive. Writing to a single device (resource or directory) can also result in lock contentions.

21.6 Design Considerations for XQuery Tuning

OSB uses XQuery and XPath extensively for various actions like Assign, Replace, and Routing Table. The following XML structure ($body) is used to explain XQuery and XPath tuning concepts:

<soap-env:Body>
<Order>
<CtrlArea>
<CustName>Mary</CustName>
</CtrlArea>
<ItemList>
<Item name="ACE_Car" >20000 </Item>
<Item name=" Ext_Warranty" >1500</Item>
…. a large number of items
</ItemList>
<Summary>
<Total>70000</Total>
<Status>Shipped</Status>
<Shipping>My Shipping Firm </Shipping>
</Summary>
</Order>
</soap-env:Body>

	
Avoid the use of double front slashes ("//") in XPaths.

$body//CustName while returning the same value as $body/Order/CtrlArea/CustName will perform a lot worse than the latter expression. "//" implies all occurrences of a node irrespective of the location in an XML tree. Thus, the entire depth and breadth of the XML tree has to be searched for the pattern specified after a "//". Use "//" only if the exact location of a node is not known at design time.

	
Index XPaths where applicable.

An XPath can be indexed by simply adding "[1]" after each node of the path. XQuery is a declarative language and an XPath can return more than one node; it can return an array of nodes. $body/Order/CtrlArea/CustName implies returning all instances Order under $body and all instances of CtrlArea under Order. Therefore, the entire document has to be read in order to correctly process the above XPath. If you know that there is a single instance of Order under $body and a single instance of CtrlArea under Order, we could rewrite the above XPath as $body/Order[1]/CtrlArea[1]/CustName[1].

The second XPath implies returning the first instances of the child nodes. Thus, only the top part of the document needs to be processed by the XQuery engine resulting in better performance. Indexing is key to processing only what is needed.

	
Note:

Indexing should not be used when the expected return value is an array of nodes. For example, $body/Order[1]/ItemList[1]/Item returns all "Item" nodes, but $body/Order[1]/ItemList[1]/Item[1] only returns the first item node. Another example is an XPath used to split a document in a "for" action.

	
Extract frequently used parts of a large XML document as intermediate variables within a FLWOR expression

An intermediate variable can be used to store the common context for multiple values. Sample XPaths with common context:

$body/Order[1]/Summary[1]/Total, $body/Order[1]/Summary[1]/Status,$body/Order[1]/Summary[1]/Shipping

The above XPaths can be changed to use an intermediate variable:

let $summary := $body/Order[1]/Summary[1]
$summary/Total, $ summary/Status, $summary/Shipping

Using intermediate variables consumes more memory but reduces redundant XPath processing.

	
Using a Hybrid Approach for read-only scenarios with Streaming

The gains from streaming can be negated if the payload is accessed a large number of times for reading multiple fields. If all fields read are located in a single subsection of the XML document, a hybrid approach provides the best performance. The hybrid approach includes enabling streaming at the proxy level and Assigning the relevant subsection to a context variable, The individual fields can then be accessed from this context variable.

The fields "Total" and "Status" can be retrieved using three Assign actions:

Assign "$body/Order[1]/Summary[1]" to "foo"
Assign "$foo/Total" to "total"
Assign "$foo/Status" to "total"

22 Oracle Business Intelligence Performance Tuning

This chapter describes tips for tuning Oracle Business Intelligence performance. It contains the following sections:

	
Section 22.1, "About Oracle Business Intelligence"

	
Section 22.2, "Oracle BI Server Query Performance Tuning"

	
Section 22.3, "Oracle BI Server Query Cache Performance Tuning"

	
Section 22.4, "Oracle BI Web Client Performance Tuning"

22.1 About Oracle Business Intelligence

Oracle Business Intelligence (BI) Enterprise Edition (or Oracle Business Intelligence) provides a full range of business intelligence capabilities that collects up-to-date data from the organization, presents the data in easy-to-understand formats (such as tables and graphs), and delivers the data quickly to the members of the organization.

These capabilities enable the organization to make better decisions, take informed actions, and implement more-efficient business processes.

22.2 Oracle BI Server Query Performance Tuning

This section describes some important considerations for improving query performance with the Oracle BI Server.

For detailed information on BI performance tuning, see "Managing Performance Tuning and Query Caching" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.

The following list summarizes methods that you can use to improve query performance:

	
Tuning and indexing underlying databases: For Oracle BI Server database queries to return quickly, the underlying databases must be configured, tuned, and indexed correctly. Note that different database products have different tuning considerations.

If there are queries that return slowly from the underlying databases, then you can capture the SQL statements for the queries in the query log and provide them to the database administrator (DBA) for analysis. See "Managing the Query Log" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about configuring query logging on the system.

	
Aggregate tables: It is extremely important to use aggregate tables to improve query performance. Aggregate tables contain precalculated summarizations of data. It is much faster to retrieve an answer from an aggregate table than to recompute the answer from thousands of rows of detail.

The Oracle BI Server uses aggregate tables automatically, if they have been properly specified in the repository. See Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition for examples of setting up aggregate navigation.

	
Query caching: The Oracle BI Server can store query results for reuse by subsequent queries. Query caching can dramatically improve the apparent performance of the system for users, particularly for commonly used dashboards, but it does not improve performance for most ad-hoc analysis.

See "About the Oracle BI Server Query Cache" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about query caching concepts and setup.

	
Setting parameters in Fusion Middleware Control: You can set various performance configuration parameters using Fusion Middleware Control to improve system performance. See "Setting Performance Parameters in Fusion Middleware Control" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information.

	
Setting parameters in NQSConfig.INI: The NQSConfig.INI file contains additional configuration and tuning parameters for the Oracle BI Server, including parameters to configure disk space for temporary storage, set virtual table page sizes, and several other advanced configuration settings. See "NQSConfig.INI File Configuration Settings" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information.

22.3 Oracle BI Server Query Cache Performance Tuning

You can configure the Oracle BI Server to maintain a local, disk-based cache of query result sets (query cache). The query cache allows the Oracle BI Server to satisfy many subsequent query requests without having to access back-end data sources (such as Oracle or DB2). This reduction in communication costs can dramatically decrease query response time. See "About the Oracle BI Server Query Cache" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.

22.4 Oracle BI Web Client Performance Tuning

You can improve the performance of the Oracle BI web client (UI) by configuring your Web server to serve up all static files, as well as enabling compression for both static and dynamic resources. BI 11g ships with WebLogic Server (WLS) serving as the default HTTP server for the BI web client. By allowing the Oracle HTTP Server (OHS) to proxy requests to WLS instead, you may see an improvement in BI Web Client performance. See "Improving Oracle BI Web Client Performance" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.

24 Oracle Virtual Directory Performance Tuning

This chapter provides tuning tips for Oracle Virtual Directory. It contains the following sections:

	
Section 24.1, "About Oracle Virtual Directory"

	
Section 24.2, "Basic Tuning Considerations"

	
Section 24.3, "Advanced Tuning Configurations"

24.1 About Oracle Virtual Directory

Oracle Virtual Directory is an LDAP Version 3-enabled service that provides an abstracted view of one or more enterprise data sources. Oracle Virtual Directory consolidates multiple data sources into a single directory view, enabling you to integrate LDAP-aware applications with diverse directory server data stores.

The information in this chapter assumes that you have reviewed the concepts and administration information in the Oracle Fusion Middleware Administrator's Guide for Oracle Virtual Directory.

	
Note:

Oracle Virtual Directory's out of box configuration may not be optimal for many production and test deployments. You are encouraged to incorporate the recommendations listed in "Basic Tuning Configurations" to achieve optimal performance and availability.

24.2 Basic Tuning Considerations

The tuning considerations in this section apply to most deployments and usage scenarios. It is highly recommended that you review these configurations and implement those that are appropriate for your use case scenarios. The tuning information is summarized in Table 24-1.

	
Increase the ping interval to 60 seconds (or more as needed) in the opmn.xml file.

When the system is busy, a ping from the Oracle Process Manager and Notification Server (OPMN) to Oracle Virtual Directory may fail. As a result, OPMN will restart Oracle Virtual Directory after 20 seconds (the default ping interval). To avoid this, consider increasing the ping interval to 60 seconds or more.

The ping interval can be modified in the $ORACLE_INSTANCE/config/OPMN/opmn/opmn.xml as shown below:

<process-type id="OVD" module-id="OVD">
 <module-data>
 <category id="start-options">
 <data id="java-bin" value="$ORACLE_HOME/jdk/bin/java"/>
 <data id="java-options" value="-server -Xms2056m -Xmx2056m -Dvde.soTimeoutBackend=0 -DdisableECID=1 -Didm.oracle.home=$ORACLE_HOME -Dcommon.components.home=$ORACLE_HOME/../oracle_common -Doracle.security.jps.config=$ORACLE_INSTANCE/config/JPS/jps-config-jse.xml"/>
 <data id="java-classpath" value="$ORACLE_HOME/ovd/jlib/vde.jar$:$ORACLE_HOME/jdbc/lib/ojdbc6.jar"/>
 </category>
 </module-data>
 <stop timeout="120"/>
 <ping interval="60"/>
 </process-type>

	
Tune the number of worker threads based on the number of central processing units (CPU) available for Oracle Virtual Directory Server on the system.

The 'Threads' configuration parameter in the Oracle Virtual Directory Listener settings should be set to an appropriate value. The default out of box value for Threads in the Admin Gateway listener and DSML Gateway listener should be generally optimal and need not be changed. The number of Threads for the LDAP Listeners are typically the threads that need to be tuned since typically it is the LDAP Listeners that take on concurrent traffic from applications. A common configuration is to have 10 threads per CPU. For example, if there are 4 central processing units on the system, then there would be 40 threads.

For more information, see "Managing Listeners" in Oracle Fusion Middleware Administrator's Guide for Oracle Virtual Directory.

	
Tune the Work Queue Capacity based on the expected maximum number of concurrent clients to a given LDAP Listener.

The 'WorkQueueCapacity' configuration parameter in the Oracle Virtual Directory Listener settings should be set to an appropriate value. This ensures that the connection requests from LDAP clients are not rejected due to a lack of work queue capacity. Work elements are allocated on demand only, therefore a value higher than the actual estimate can be used.

The Fusion Middleware Control Performance Monitor provides a historical report which contains the maximum number of connections. Use this report to determine how to adjust the connection value based on production data.

If Oracle Virtual Directory needs to support high number of concurrent clients, then set the ulimit 'nofiles' (descriptor) parameter to the number of LDAP Clients expected. For example, in the command window where OPMN is started, set the following ulimit when 8000 concurrent clients are expected:

ulimit -n 8192

This change requires restart of OPMN and Oracle Virtual Directory to take effect.

For more information, see "Managing Listeners" in Oracle Fusion Middleware Administrator's Guide for Oracle Virtual Directory.

	
Tune the size of the LDAP connection pool in Oracle Virtual Directory LDAP Adapter to be at least as high as the total number of Threads configured in the Oracle Virtual Directory Listeners that actively use the LDAP Adapter.

This ensures that in the worker threads have enough LDAP connections to process requests. The actual number of active adapters, active listeners and traffic pattern control the usage of connections. However, since connections that are idle in the LDAP Adapter connection pool are periodically closed, a higher value should not impact performance. Ensure that the back-end Directory Server is configured to handle the number of concurrent connections from Oracle Virtual Directory LDAP Adapter connection pool.

For more information, see "Configuring LDAP Adapter" in Oracle Fusion Middleware Administrator's Guide for Oracle Virtual Directory.

	
Tune the maximum Java heap size of the JVM running Oracle Virtual Directory. This is to ensure that Oracle Virtual Directory has sufficient heap to handle the concurrent load.

For more information, see "Controlling the Maximum Heap Size Allocated to the Oracle Virtual Directory Server" in Oracle Fusion Middleware Administrator's Guide for Oracle Virtual Directory.

Table 24-1 Basic Tuning Configurations

	Configuration Attribute	Category	Default Value	Recommended Value	Notes
	
Threads

	
Listener Properties

	
10

	
10 * Number Of central processing units (CPUs) available for Oracle Virtual Directory Server

	
Recommendation applies only to the active LDAP Listeners.

	
Work Queue Capacity

	
Listener Properties

	
2048

	
Expected Number of Max Concurrent Clients * 2

	
2048 operations are executed concurrently. Some clients may send asynchronous operations as well.

	
Max, Initial Pool Connections

	
LDAP Adapter Properties

	
10

	
Total Number of 'Threads parameter values for all active Listeners that use this Adapter

	
Ensure that the back-end Directory Servers can handle these connections.

	
Max Heap Size

	
System Properties

	
256 MB

	
Up to 2 GB on 32-bit systems and higher values on 64-bit systems.

	
Higher values protect against Out Of Memory errors. Ensure that there is sufficient RAM on the system to handle the configured value.

24.3 Advanced Tuning Configurations

Depending on your Oracle Virtual Directory deployment's use case scenarios, the following tuning configurations may improve performance.

24.3.1 Database Adapters

The Database Adapter is a fully featured LDAP-to-JDBC gateway supporting translation of all LDAP operations (add, bind, delete, baseSearch, modify, wildCardSearch) into equivalent SQL prepared statement code. The Database Adapter uses JDBC class libraries to form connections to databases for the purpose of performing LDAP searches. The database libraries are generally provided by the database vendor.

	
Note:

For improved performance, tune the database before using the Database adapter. Consult your database documentation for more information. If the database being used is an Oracle database, see Oracle Database Performance Tuning Guide.

For optimal performance, consider the following configuration options for the database schema against which the Oracle Virtual Directory database adapter is configured:

	
In general, the mapped columns in the underlying database schema should have an index defined if the mapped LDAP attribute is used in LDAP search filters.

	
In scenarios where an LDAP attribute that is used in an LDAP search filter has a matching rule of 'caseIgnoreMatch', the mapped database table column for this attribute needs a function index to be defined for optimal look-up performance.

For example, if LDAP attribute 'CN' is mapped to database schema column EMP.NAME, then a function index on UPPER(EMP.NAME) is required for optimal performance of LDAP search filters involving CN attribute.

For more information on function-based indexes, see "Using Function-based Indexes for Performance" in Oracle Database Performance Tuning Guide.

Table 24-2 describes some additional Database Adapter settings:

Table 24-2 Database Adapter Settings

	Parameter	Value	Notes
	
Adapter

	
Default: Active

	
An adapter can be configured as Active or Inactive. An inactive adapter can not start during a server restart or when you try to start it. The purpose of the Inactive setting is to keep old configurations available or on stand-by without having to delete them from the configuration.

	
Maximum Connections

	
Default: 10 connections

	
This defines the maximum connections the Database Adapter may make with the database.

	
Database Connection Timeout

	
Default: 10 seconds

	
The database connection timeout adapter property controls the LDAP request to wait for a connection to become available in the cache after reaching the maximum number of connections limit.

If a connection does not become available within the number of seconds defined, the LDAP request fails. If database connection timeout system property is not used, the LDAP request waits 10 seconds for a connection to become available.

24.3.2 Join Adapters

If you are using Join Adapters, join only appropriate sources. For example if a deployment requires only to link attributes in the primary source under "cn=users" branch, create a primary adapter that only exposes this branch. And then create the join rule with that adapter. This can reduce the need for Oracle Virtual Directory to try to join entries that may never have corresponding linked entries.

	
Tip:

Always make sure that the attributes used by join rules are properly indexed.

24.3.3 General Filter Tuning

If a known client search filter does not apply to certain adapters, apply the filter to all applicable "Exclude Filters" to improve performance and reduce network traffic.

24.3.4 Load Balancer Local Store Adapter Tuning

Some load balancers query an LDAP server to determine if it is up or down. If your load balancer uses this feature - consider creating a local store adapter with a separate namespace (for example dc=loadbalancer) that is used only for the load balancer. While the performance impact of the load-balancer is probably not noticeable, by keeping it in a separate namespace. it makes it easier to exclude the load-balancer KeepAlive requests from creating large log files during troubleshooting.

24.3.5 Cache Plug-In Tuning

The CachePlug-in provides an in-memory cache for Oracle Virtual Directory. It has the ability to cache query results from any source for re-use by LDAP clients. This plug-in can improve performance for those applications where queries are highly repetitive.

To review cache operation and configuration, set VE logging level to 'Dump' to see more details. Because the cache is a normal plug-in, the cache can be configured to run anywhere within Oracle Virtual Directory. It can be executed globally, or within the context of a single adapter. It can also be restricted to specific namespaces by using the namespace filtering available in standard plug-in configuration.

24.3.5.1 Cache Hit Logic

The cache works by storing query results and making them available for later use. If a query is repeated by the same user and the same attributes or a subset of attributes are requested, the cache can return its results instead of having Oracle Virtual Directory pull the information from the source. The plug-in can also be configured to allow cache hits to be shared between users.

Sharing cache entries between users should not be used unless the pass credentials are not being passed to back-end sources and Oracle Virtual Directory is solely responsible for security enforcement. Careful consideration should be given when sharing cache hits between users as it would then be possible for one user to see something they should not, since they may have access to a cache result from a more privileged user.

24.3.5.2 Cache Plug-in Memory Management

This plug-in periodically reviews the cache and checks for expired results, or entries that have been invalidated by a previous modify transaction. In the event that the cache quota is exceeded, the plug-in attempts to trim memory by purging the queries that were least recently used (LRU).

Table 24-3 describes some parameters used to tune the Memory Management Plug-in:

Table 24-3 Memory Management Plug-in Settings

	Parameter	Value	Notes
	
Size

	
Default: 1000 entries

	
The maximum number of entries that may be cached at any one time.

	
MaxResultSize

	
Default: 1000 entries

	
The maximum number of entries that may be cached for any particular query.

	
Trimsize

	
Default: 1000 entries

	
When the maximum cache size is exceeded, the amount by which the cache manager must reduce the balance. Note: when necessary, trimming is done by purging expired queries first followed by queries in order of least recent use.

	
MaximumAge

	
Default: 600 seconds

	
The maximum age in seconds for any query/entry stored in the cache.

	
MaintenanceInterval

	
Default: 60 seconds

	
The interval in seconds between when the cache manager checks for expired queries.

	
BySubject

	
Default: 1 (not shared)

	
A flag (1 or 0) indicating whether cache results are shared between subjects. A value of 1 indicates that results are not be shared between subjects.

24.3.6 LDAP Listener Tuning

Table 24-4 describes some parameters used to tune the LDAP Listener:

Table 24-4 Listener Parameters

	Parameter	Value	Notes
	
Backlog

	
Default: 128 requests

	
Specifies the maximum number of pending connection requests that are allowed to queue up before the server starts rejecting new connection attempts.

The default value is sufficient in most cases and the need to change this value is very rare.

	
Reuse address

	
Default: False

	
This option determines whether LDAP listener should reuse socket descriptors.

If enabled, the SO_REUSEADDR socket option is used on the Oracle Virtual Directory server listen socket to potentially allow the reuse of socket descriptors for clients in TIME_WAIT state.

	
Keep Alive

	
Default: False

	
This option determines whether the LDAP connection should use TCP keep-alive.

If enabled, the SO_KEEPALIVE socket option is used to indicate that TCP keepalive messages should periodically be sent to the client to verify that the associated connection is still valid.

	
TCP No delay

	
Default: True

	
This option determines whether the LDAP connection should use TCP no-delay.

If enabled, TCP_NODELAY socket option is used to ensure that response messages to the client are sent immediately rather than potentially waiting to determine whether additional response messages can be sent in the same packet.

	
Read Timeout

	
Default: 0

	
This option enables/disables SO_TIMEOUT with the specified timeout, in milliseconds.

With this option set to a nonzero timeout, client connection to the Oracle Virtual Directory server can remain idle only for this amount of time. If the connection is idle for a period longer than the specified timeout, the client connection is terminated.

A timeout of zero is interpreted as an infinite timeout.

Warning: This option is equivalent to vde.soTimeoutFrontend system property in Oracle Virtual Directory version 10g. The vde.soTimeoutFrontend system property is not supported for 11g. Users must modify the value specified in system property

The mapping of values from 10g to 11g are:.Enabled to 0

Disabled to nonzero amount of time in milliseconds

24.3.7 Server Tuning

Table 24-5 describes some basic parameters used to tune the server:

Table 24-5 Server Parameters

	Parameter	Value	Notes
	
Anonymous Search Limit

	
Default: 1000

	
The maximum number of entries returned for an anonymous client.

	
Connection Timeout

	
Default: 120 (minutes)

	
The Connection Timeout system property is used to prevent service outages caused by clients that do not properly close connections. The value can be set in Oracle Enterprise Manager's Server Properties page.

Warning: Setting to 0 disables the enforcement and client connections can not be closed regardless of how long they are inactive. The system property is not enforced on IP addresses and subjects that are exempt from the quota limit or that have disabled quota enforcement.

	
Logging Levels

	
Default: Error:1 (Severe)

	
By default, log messages are written to the access.log file only when logging is set to NOTIFICATION:1. To maintain performance, consider keeping the default log level or use WARNING:1 (WARNING) to limit the amount of information written to the access.log file.

25 Oracle Identity Federation Performance Tuning

Oracle Identity Federation is a standalone, self-contained federation server that enables single sign-on and authentication in a multiple-domain identity network. It contains the following sections:

	
Section 25.1, "About Oracle Identity Federation"

	
Section 25.2, "LDAP Tuning"

	
Section 25.3, "Database Tuning"

	
Section 25.4, "Oracle HTTP Server Tuning"

	
Section 25.5, "SAML Protocol Tuning"

	
Note:

The configuration examples and recommended settings described in this chapter are for illustrative purposes only. Consult your own use case scenarios to determine which configuration options can provide performance improvements.

25.1 About Oracle Identity Federation

Oracle Identity Federation is a standalone, self-contained federation server that enables single sign-on (SSO) and authentication in a multiple-domain identity network. The federation single sign-on capabilities are based on the SAML 1.x/SAML 2.0/WS-Fed protocols. The server is a Java EE Application deployed in a WebLogic Managed Server. This enables users to federate in heterogeneous environments and business associations, whether they have implemented other Oracle Identity Management products in their solution set.

For more information see Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation.

25.2 LDAP Tuning

This section provides configuration settings that can be used to tune LDAP such as:

	
Connection Pool Settings

	
Connection Settings

	
Federation Data Store Settings

For the best performance, review the tuning configurations in Chapter 2, "Top Performance Areas" before tuning Oracle Identity Federation.

25.2.1 Connection Pool Settings

When Oracle Identity Federation is integrated with LDAP Servers as a user data store, federation data store, or authentication engine, the server keeps a pool of LDAP connections that can be re-used for subsequent requests.

Oracle Identity Federation performs the following kind of operations to the LDAP Servers:

	
User Data Store

	
Locate users during assertion mappings

	
Retrieve attributes from the user record when creating an assertion

	
Authentication Engine

	
Locate user

	
Validate user credentials during authentication operations

	
Federation Data Store, if used

	
Create a federation record

	
Locate a federation record

	
Update or delete a federation record. The LDAP Connection Pool can be configured by:

	
Setting Maximum Connections to indicate how many LDAP connections can the pool contain.

	
Setting the Connection Wait Timeout which is the time that a thread waits before re-trying to get an LDAP connection when none are available in the pool and that the pool is at maximum capacity.

See "Configuring Oracle Identity Federation" in Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation for more information on the User and Federation Stores as well as the LDAP Authentication Engine.

25.2.2 Connection Settings

When Oracle Identity Federation is integrated with LDAP Servers as a user data store, federation data store, or authentication engine, the LDAP run time connections can be configured. For more information, see "Configuring Oracle Identity Federation" in Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation.

The LDAP Connections can be configured by:

	
Setting the LDAP Inactivity setting which tells Oracle Identity Federation how long an LDAP connection should be kept in a pool before being removed due to inactivity. Over time, the LDAP server may close some connections due to a long inactivity period, and if left unchecked, this can result in errors and may impact performance in Oracle Identity Federation.

See "Configuring the LDAP Inactivity Setting" in Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation.

	
Setting the LDAP Read Timeout Setting. Sometimes the LDAP server can become unresponsive, causing the thread/user to wait for a response or an error. To avoid waiting too long for an error when the server is not responding, Oracle Identity Federation sets a read timeout property on the LDAP connection. If the LDAP server does not respond before the read timeout period, an error is generated. Oracle Identity Federation closes the connection, open a new one and re-issue the LDAP command.

See "Configuring the LDAP Read Timeout Setting" in Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation.

	
Setting the High Availability (HA) LDAP Flag. When integrated with LDAP Servers that are deployed in HA mode, Oracle Identity Federation must configured to indicate that the LDAP Servers are in HA mode.

See "Configuring High Availability LDAP Servers" in Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation.

25.2.3 Federation Data Store Settings

When using Oracle Internet Directory as the Federation Data Store, Oracle Identity Federation creates, locates, updates and deletes federation records containing Account Linking Information.

Oracle Identity Federation uses specific queries when interacting with Oracle Internet Directory, and the performance can be improved by creating filters in Oracle Internet Directory. If Oracle Internet Directory is used as the Federation Data Store, it is possible to tune the LDAP Server to improve the performance of the lookup operations. Oracle Identity Federation server can be configured to use a Federation Store to persist Federated Identities records.

The Federation server uses this store to:

	
Lookup a federation record through different queries

	
Create a federation record

	
Delete a federation

In addition to the Oracle Identity Federation-related orclinmemfiltprocess filter (objectclass=orclfeduserinfo), which is included by default, some Oracle Identity Federation environments might benefit from additional filters with the following formats:

(orclfedserverid=local_oif_server_id)

(orclfedproviderid=providerid_of_remote_server)

(orclfedfederationtype=n)

where orclfedserverid denotes the Oracle Identity Federation server that is making the query, orclfedproviderid is the identifier of a remote SAML server, and orclfedfederationtype is 1 or 3. Use 1 as the value for orclfedfederationtype when Oracle Identity Federation is an Identity Provider and the remote provider is a Service Provider. Use 3 when Oracle Identity Federation is a Service Provider and the remote provider is an Identity Provider.

A deployment can be configured to work with many remote SAML servers, so there can be several orclfedproviderid filters and more than one orclfedfederationtype filter.

For example:

(orclfedserverid=my_oif_server)

(orclfedproviderid=http://server.example.com:7499/fed/idp)

(orclfedproviderid=http://server2.example.com:7492/fed/idp)

(orclfedfederationtype=1)

(orclfedfederationtype=3)

25.3 Database Tuning

This section provides configuration settings that can be used to tune the database.

See "Additional RDBMS Configuration" in Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation.

25.3.1 Data Sources

Oracle Identity Federation uses a Java EE data source to interact with a database for various operations, such as:

	
Locating a user record in the User Data Store

	
Retrieving attributes from a user record in the User Data Store

	
Locating, creating, or deleting an Oracle Identity Federation record from the Federation Data Store

	
Locating, creating, or deleting an Oracle Identity Federation transient record from the Session or Message Data Store. (A transient record can be a user session, an artifact record, or federation protocol or session state.)

When creating a data source in the WebLogic Administration Console that can be used by Oracle Identity Federation, the maximum and minimum connection settings should be tuned for better performance. Consult your use case scenarios to determine what the connections settings should be to improve performance in your application.

25.3.2 RDBMS Session Cache

When Oracle Identity Federation is integrated with RDBMS for its Session Data Store, the server uses a caching mechanism to improve performance at run time. This enables the server to keep a reference to recently used session objects in memory to avoid read access to the database.

To optimize RDBMS session caching, configure the following:

	
Number of session objects kept in memory at a given time

	
Length of time a specific session object is kept in memory

	
Note:

if Oracle Identity Federation is in High Availability (HA) mode with a load balancer, sticky sessions must be enabled to ensure that the cache is always reflecting accurate data.

See "Configuring RDBMS Session Cache" in Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation.

25.3.3 RDBMS Compression

To decrease the amount of data to be stored in an RDBMS, Oracle Identity Federation provides the capability to compress the data before storing it to the database.There are three kinds of data that can be compressed:

	
AuthnRequest for SSO Artifact profile: when Oracle Identity Federation acts as an IdP for Liberty 1.x protocol, the server stores the AuthnRequest message in the RDBMS when the artifact profile is used.

	
Assertion Response for SSO Artifact profile: when Oracle Identity Federation acts as an IdP for SSO protocols, the server stores the Response message containing the Assertion in the RDBMS when the artifact profile is used. This must be enabled if attributes are contained in the assertion.

	
User Session Data: Oracle Identity Federation stores some session data related to the user at run time. If several attributes are stored in the User Session (set by a custom Authentication Engine, or because the Attributes Assertion storage was enabled when Oracle Identity Federation was a service provider), then compression should be used.

See "Configuring RDBMS Data Compression" in Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation.

25.4 Oracle HTTP Server Tuning

If Oracle Identity Federation is fronted by Oracle HTTP Server (OHS), then the configuration of the HTTP Server can be tuned to increase performance. For more information on Oracle HTTP Server, see Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server.

The following parameters can be changed in the httpd.conf file of the OHS. For additional Oracle HTTP tuning configurations, see Chapter 5, "Oracle HTTP Server Performance Tuning". Consult your use case scenarios to determine what your settings should be.

	
Timeout

	
KeepAlive

	
MaxKeepAliveRequests

	
KeepAlive TimeOut

	
MinSpareServers

	
MaxSpareServers

	
StartServers

	
MaxClients

	
MaxRequestPerChild

After modifying these parameters, save and restart OHS.

25.5 SAML Protocol Tuning

The Security Assertion Markup Language (SAML) protocol involves interacting with remote servers through the use of the Simple Object Access Protocol (SOAP).

25.5.1 SOAP Connections

The Oracle Identity Federation server uses the SOAP protocol to send SAML Requests and to receive SAML Responses.

To optimize performance, configure the following SOAP connections:

	
Total maximum number of SOAP connections that Oracle Identity Federation can open at the same time

	
Maximum number of SOAP connections that Oracle Identity Federation can open at the same time to a given remote server

For more information, see "SOAP Binding" in Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation.

25.5.2 XML Digital Signatures

The SAML and WS-Fed protocols of Oracle Identity Federation rely on XML Digital Signatures to ensure the authenticity of messages and that messages are not tampered with.

When possible, sign the Assertion and/or the Response to prevent any modifications. When no XML Digital Signature is present on the message, the audited message that is archived does not contain any data that proves the authenticity and integrity of the message.

Configuring Oracle Identity Federation to not sign Assertion and/or Response may be appropriate if:

	
Performance must be improved

	
SSL with SSL authentication is enabled for SOAP communications

	
Disabling XML Digital Signatures is compliant with company security regulations

	
Note:

The content of the Assertion is viewable unless SAML 2 Encryption is used. Encrypting the Assertion is optional, but XML Encryption is resource intensive and decreases performance

25.5.3 POST and Artifact Single Sign-On Profiles

There are two Single Sign-On profiles defined by the SAML specifications:

	
POST Profile

In the POST profile, the Assertion transits through the user's browser, therefore the Assertion and/or the Response must be signed to ensure that the content has not been modified.

	
Note:

If the performance must be improved and if using the POST profile is compliant with company security regulations, then configuring Oracle Identity Federation to use the POST profile may be an option to improve performance.

	
Artifact Profile

In the Artifact profile, the Identity Provider creates a random identifier referencing the Assertion in the IdP's local store. (The Assertion is provided directly from the Identity Provider to the Service Provider.) That identifier is carried by the user's browser and presented to the Service Provider that contacts the Identity Provider to de-reference the identifier and retrieve the corresponding Assertion.

If the SOAP connection made from the SP to the IdP is encrypted using the SSL protocol with an SSL Server Certificate, then the SP authenticates the IdP and the content of the communication has not been tampered with: in this case, the transport layer is providing the authenticity and the integrity of the message, and the XML Digital Signature on the SAML Response and Assertion can be optional.

If no XML Digital Signature is present on the message, then the audited message that is archived does not contain any data that proves the authenticity and integrity of the message.

	
Note:

Since the Artifact profile involves additional communication flow between the Service Provider and the Identity Provider, performance may be slower when using the Artifact profile.

26 Oracle Fusion Middleware Security Performance Tuning

Oracle Fusion Middleware security services enable you to secure critical applications and sensitive data. This chapter describes how you can configure security services for optimal performance.

This chapter contains the following topics:

	
Section 26.1, "About Security Services"

	
Section 26.2, "Detecting General Performance Issues"

	
Section 26.3, "Oracle Platform Security Services Tuning"

	
Section 26.4, "Oracle Web Services Security Tuning"

26.1 About Security Services

Oracle Fusion Middleware provides security services through Oracle Platform Security Services (OPSS) and Oracle Web Services.

	
Oracle Platform Security Services

Oracle Platform Services is a key component of Oracle Fusion Middleware. It offers an integrated suite of security services and is easily integrated with Java SE and Java EE applications that use the Java security model. Security Services includes features that implement user authentication, authorization, and delegation services that developers can integrate into their application environments. Instead of devoting resources to developing these services, application developers can focus on the presentation and business logic of their applications.

Using Oracle Platform Security for Java, applications can enforce fine-grained access control upon resource users. The three key steps are:

	
Configure and invoke a login module, as appropriate. You can use provided login modules, or you can use custom login modules.

	
Authenticate the user attempting to log in, which is the role of the identity store service.

	
Authorize the user by checking permissions for any roles the user belongs to for whatever the user is attempting to accomplish, which is the role of the policy store service.

	
Oracle Web Services Security

Oracle Web Services Security provides a framework of authorization and authentication for interacting with a web service using XML-based messages.

	
Note:

The information in this chapter assumes that you have reviewed and understand the concepts and administration information for Oracle Fusion Middleware Security Services. For more information, see the Oracle Fusion Middleware Security and Administrator's Guide for Web Services before tuning any security parameters.

26.2 Detecting General Performance Issues

This section offers some general guidelines on how to identify a performance bottleneck and how to approach addressing such problems.

If you discover a performance bottleneck, you should first verify that you have addressed the expected traffic load throughout your Web services deployment. If there is a system in the critical path that is at 100% CPU usage, you may simply need to add one or more computers to the cluster.

If there is a bottleneck in your deployment, it is likely to be within one of the following:

	
Traffic through a slow connection with an agent

	
Latency in connections to third-party queuing systems like JMS

For any of these problems, check the following potential sources:

	
Problems with policy assertions that include connections to outside resources, especially the following types:

	
Database Repositories

	
LDAP Repositories

	
Secured Resources

	
Proprietary Security Systems

	
Problems with database performance

If you identify one of these as the cause of a bottleneck, you may need to change how you manage your database or LDAP connections or how you secure resources.

26.3 Oracle Platform Security Services Tuning

This section provides the following basic tuning configurations for Oracle Platform Security Services (OPSS):

	
JVM Tuning Parameters

	
LDAP Tuning Parameters

	
Authentication Tuning Parameters

	
Authorization Tuning Properties

	
OPSS PDP Service Tuning Parameters

26.3.1 JVM Tuning Parameters

Tuning the JVM parameters can greatly improve performance. For example, the JVM Heap size should be tuned depending upon the number of roles and permissions in the store. At run time, all roles and permissions are stored in the in-memory cache. For more JVM tuning information, see Section 2.4, "Tuning Java Virtual Machines (JVMs)".

26.3.2 LDAP Tuning Parameters

This section covers Lightweight Directory Access Protocol (LDAP) tuning. Oracle supports the management of policies in file-based repositories: Oracle Internet Directory and Oracle Virtual Directory.

If you encounter increased CPU usage due to high SQL execution times, see the following chapters for basic tuning configurations for large deployments:

	
Oracle Internet Directory configuration settings can impact performance. For more information, see Chapter 23, "Oracle Internet Directory Performance Tuning".

	
In addition to being configured as a LDAP server, Oracle Virtual Directory can also be configured as a local storage adapter (LSA). See Chapter 24, "Oracle Virtual Directory Performance Tuning".

26.3.3 Authentication Tuning Parameters

For OPSS Authentication tuning, see "Improving the Performance of WebLogic and LDAP Authentication Providers" in the Oracle Fusion Middleware Securing Oracle WebLogic Server guide at the Oracle Technology Network http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/atn.html#wp1199087.

26.3.4 Authorization Tuning Properties

The following Java system properties can be used to optimize authorization:

Table 26-1 Authorization Properties

	Java System Properties	Default Value	Valid Values	Notes
	
-Djps.subject.cache.key

	
4

	
3

4

5

	
JPS uses a Subject Resolver to convert a platform subject to JpsSubject which contains user/enterprise-role information, as well as ApplicationRole information. This information is represented as principals in the subject.

This conversion can be CPU intensive, especially if the subject's principal set has a large population. To improve performance, JPS code caches the conversion between Platform subject and JpsSubject. Note that two subjects could be confused if their contents are the same, but the case of the principals' name is different.

The following settings can be used to configure the cache key:

	
3: Use the platform subject directly as the key. Note: On WLS if the principalEqualCaseinsensitive flag is enabled, two subjects could confused if their contents are the same, but the case of the principals is different.

	
4: This setting is similar to '3' but overcomes the case-sensitive issue. This is the out-of-the-box setting.

	
5: Instead of using the whole subject as the key, this settings uses a subset of the principal set inside the subject as the key (actually use principals of WLSUSerImpl type).

This setting will accelerate the cache retrieval operation if the subject has a large principal set. On a non WLS platform (such as WAS and JBOSS, this reverts back to case '4'), so this setting is for WLS only. For this case, there is also a Time To Live setting (TTL) flag which controls how long the cache is valid, as explained below.

	
-Djps.subject.cache.ttl

	
60000ms

	
	
Cache's Time To Live (TTL) for case '5' (above). This system property controls how long the cache is valid. When the time expired, the cahed value is dumped. The setting can be controlled by the flag of -Djps.subject.cache.ttl=xxxx, where 'xxx' is the duration in milliseconds.

Consider setting the duration of this TTL setting to the same value as the value used for the group and user cache TTL in WLS LDAP authenticator.

	
-Djps.combiner.optimize=true

	
True

	
True

False

	
This system property is used to cache the protection domains for a given subject. Setting -Djps.combiner.optimize=true can improve Java authorization performance.

	
-Djps.combiner.optimize.lazyeval=true

	
True

	
True

False

	
This system property is used to evaluate a subject's protection domain when a checkPermission occurs. Setting -Djps.combiner.optimize.lazyeval=true can improve Java authorization performance.

	
-Djps.policystore.hybrid.mode=true

	
True

	
True

False

	
This 'hybrid mode' property is used to facilitate transition from SUN java.security.Policy to OPSS Java Policy Provider.

The OPSS Java Policy Provider reads from both java.policy and system-jazn-data.xml."Hybrid" mode can be disabled by setting the system property jps.policystore.hybrid.mode to false when starting the WebLogic Server. Setting -Djps.policystore.hybrid.mode=false can reduce runtime overhead.

	
-Djps.authz=ACC

	
ACC

	
ACC

SM

	
Delegates the call to JDK API AccessController.checkPermission which can reduce the performance impact at run time or while debugging.

ACC: delegate to AccessController.checkPermission

SM: delegate to SecurityManager if SecurityManager is set.

26.3.5 OPSS PDP Service Tuning Parameters

Table 26-2 provides OPSS tuning parameters for policy store:

Table 26-2 OPSS PDP Service Tuning Parameters

	Parameter	Default Value	Valid Values	Notes
	
oracle.security.jps.policystore.rolemember.cache.type

	
STATIC

	
STATIC, SOFT, WEAK

	
This parameter specifies the type of role member cache.Valid only in Java EE applications.

Valid values:

	
STATIC: Cache objects are statically cached and can be cleaned explicitly only according the applied cache strategy, such as FIFO. The garbage collector does not clean a cache of this type.

	
SOFT: The cleaning of a cache of this type relies on the garbage collector when there is a memory crunch.

	
WEAK: The behavior of a cache of this type is similar to a cache of type SOFT, but the garbage collector cleans it more frequently.

Consider maintaining the default value for the best performance.

	
oracle.security.jps.policystore.rolemember.cache.strategy

	
FIFO

	
FIFO

NONE

	
The type of strategy used in the role member cache. Valid only in Java EE applications.

Valid values:

	
FIFO: The cache implements the first-in-first-out strategy.

	
NONE: All entries in the cache grow until a refresh or reboot occurs; there is no control over the size of the cache; not recommended but typically efficient when the policy footprint is very small.

Consider maintaining the default value for the best performance.

	
oracle.security.jps.policystore.rolemember.cache.size

	
1000

	
	
The size of the role member cache. The role being referred to is the enterprise role (group). You can find out the number of the groups you have in your ID store first. Then, based on your performance requirement, you can set this number to the number of the groups - full cache scenario. Or you can change to a certain percentage of the number of the groups - partial group cache scenario.

	
oracle.security.jps.policystore.policy.lazy.load.enable

	
True

	
True

False

	
Enables or disables the policy lazy loading. If this parameter is set to false, the server initial startup time will take longer - especially in a large policy store. For faster start-up time, the recommended value is true.

	
oracle.security.jps.policystore.policy.cache.strategy

	
PERMISSION_FIFO

	
PERMISSION_FIFO

NONE

	
The type of strategy used in the permission cache. Valid only in Java EE applications.

Valid Values:

	
PERMISSION_FIFO: The cache implements the first-in-first-out strategy.

	
NONE: All entries in the cache grow until a refresh or reboot occurs; there is no control over the size of the cache; not recommended but typically efficient when the policy footprint is very small.

Consider using the default value for the best performance.

	
oracle.security.jps.policystore.policy.cache.size

	
1000

	
	
The size of the permission cache. If you cache all policies, then you can set this value to the total number of grants.

	
oracle.security.jps.policystore.cache.updatable

	
True

	
True

False

	
This property is used for refresh enabling. Consider maintaining the default value for the best performance.

	
oracle.security.jps.policystore.refresh.enable

	
True

	
True

False

	
This property is used for refresh enabling. Consider maintaining the default value for performance.

	
oracle.security.jps.policystore.refresh.purge.timeout

	
43200000

	
	
The time, in milliseconds, after which the policy store is refreshed. Consider maintaining the default value for the best performance.

	
oracle.security.jps.ldap.policystore.refresh.interval

	
600000 (10 minutes)

	
	
The interval, in milliseconds, at which the policy store is polled for changes. Consider maintaining the default value for the best performance. This property is valid in Java EE and J2SE applications.

	
oracle.security.jps.policystore.rolemember.cache.warmup.enable

	
False

	
True

False

	
This property controls the way the ApplicationRole membership cache is created. If set to True, the cache is created at server startup; otherwise, it is created on demand (lazy loading).

Set to True when the number of users and groups is significantly higher than the number of application roles; set to False otherwise, that is, when the number of application roles is very high.

26.4 Oracle Web Services Security Tuning

Oracle Web Services Security provides a framework of authorization and authentication for interacting with a web service using XML-based messages. This section provides information on factors that might affect performance of the web service.

	
Choosing the Right Policy

	
Policy Manager

	
Configuring the Log Assertion to Record SOAP Messages

	
Monitoring the Performance of Web Services

26.4.1 Choosing the Right Policy

Oracle Web Services Security supports many policies and the appropriate policies must be implemented based on the security need of the deployment. Careful consideration should be given to performance, since each additional policy can impact performance. For example Transport level security (SSL) is faster than Application level security, but transport level security can be vulnerable in multi-step transactions. Application level security has more performance implications, but provides end-to-end security.

See "Configuring Policies" in Oracle Fusion Middleware Security and Administrator's Guide for Web Services to determine which security policies are required for a deployment.

26.4.2 Policy Manager

There is an inherent performance impact when using the database-based policy enforcement. When database policy enforcement is chosen, careful consideration must be given to the "polling" frequency of the agent to the database.

26.4.3 Configuring the Log Assertion to Record SOAP Messages

The request and response pipelines of the default policy include a log assertion that causes policy enforcement points (PEP) to record SOAP messages to either a database or a component-specific local file. There can be potential performance impacts to the logging level. To prevent performance issues, consider using the lowest logging level that is appropriate for your deployment.

The following logging levels can be configured in the log step:

	
Header - Only the SOAP header is recorded.

	
Body - Only the message content (body) is recorded.

	
Envelope - The entire SOAP envelope, which includes both the header and the body, is recorded. Any attachments are not recorded.

	
All - The full message is recorded. This includes the SOAP header, the body, and all attachments, which might be URLs existing outside the SOAP message itself.

Note: Typically, system performance improves when log files are located in topological proximity to the enforcement component. If possible, use multiple distributed logs in a highly distributed environment.

26.4.4 Configuring Connection Pooling

When you request that a Context instance use connection pooling by using the "com.sun.jndi.ldap.connect.pool" environment property, the connection that is used might or might not be pooled. The default rule is that plain (non-SSL) connections that use simple or no authentication are allowed to be pooled. You can change this default to include SSL connections and the DIGEST-MD5 authentication type by using system properties. To allow both plain and SSL connections to be pooled, set the "com.sun.jndi.ldap.connect.pool.protocol" system property to the string "plain ssl" as shown below:

”-Dcom.sun.jndi.ldap.connect.pool.protocol=”plain ssl”

26.4.5 Monitoring the Performance of Web Services

You can monitor the performance on the following Oracle Web Services through the Web Services home page of Oracle Fusion Middleware Control:

	
Endpoint Enabled Metrics such as:

	
Policy Reference Status

	
Total Violations

	
Security Violations

	
Invocations Completed

	
Response Time, in seconds

	
Policy Violations such as:

	
Total Violations

	
Authentication Violations

	
Authorization Violations

	
Confidentiality Violations

	
Integrity Violations

	
Total Faults

For general information on monitoring Oracle Fusion Middleware components, see Chapter 4, "Monitoring Oracle Fusion Middleware".

For detailed information on using Oracle Fusion Middleware Control to monitor Oracle Web Services, see "Monitoring the Performance of Web Services" in Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

Part VI

Oracle WebCenter Components

This part describes configuring Oracle WebCenter components to improve performance. It contains the following chapter:

	
Chapter 27, "Oracle WebCenter Portal Performance Tuning"

27 Oracle WebCenter Portal Performance Tuning

This chapter outlines how to tune configuration properties for the operating system on which WebCenter Portal applications are installed, WebCenter Portal applications, and their back-end components.

	
Section 27.1, "About Oracle WebCenter Portal"

	
Section 27.2, "Basic Tuning Considerations"

	
Section 27.3, "Tuning WebCenter Portal Application Configuration"

	
Section 27.4, "Tuning Back-End Component Configuration"

	
Section 27.5, "Tuning Portlet Configuration"

27.1 About Oracle WebCenter Portal

Oracle WebCenter Portal 11g is an integrated suite of products used to create social applications, enterprise portals, communities, composite applications, and internet or intranet Web sites on a standards-based, service-oriented architecture (SOA). Oracle WebCenter Portal combines the development of rich internet applications, a multi-channel portal framework, and a suite of horizontal Enterprise 2.0 applications, which provide content, presence, and social networking capabilities to create a highly interactive user experience. Interacting with services such as instant messaging, blogs, wikis, RSS, tags, discussion forums, activities and social networks directly within the context of a portal or an application improves user and group productivity and enhances the return on IT investments.

Oracle WebCenter Portal: Spaces is an out-of-the-box WebCenter Portal application that brings you the latest technology in terms of social networking, communication, collaboration, and personal productivity with no development effort. Through the robust set of integrated services and applications provided by Oracle WebCenter Portal's Framework, Composer, and Resource Catalog, the Spaces application enables you to deploy instant community portals, team sites and other collaborative applications.

For more information about Oracle WebCenter Portal, see Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal and Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Portal.

27.2 Basic Tuning Considerations

The tuning considerations in this section apply to most WebCenter Portal and WebCenter Portal: Spaces deployments and usage scenarios. It is highly recommended that you review these configurations and implement those that are appropriate for your use case scenarios.

27.2.1 Setting System Limit

To run a WebCenter Portal application at moderate load, set the open-files-limit to 4096. If you encounter errors, such as running out of file descriptors, then increase the system limit.

For example, on Linux, you can use this command:

ulimit -n 8192

Refer to your operating system documentation to find out how to change this system limit.

27.2.2 Setting JDBC Data Source

The following data source settings are the defaults for mds-SpacesDS and WebCenterDS. These settings can be adjusted depending on the application's usage pattern and load.

 <jdbc-connection-pool-params>
 <initial-capacity>10</initial-capacity>
 <max-capacity>50</max-capacity>
 <capacity-increment>1</capacity-increment>
 <shrink-frequency-seconds>0</shrink-frequency-seconds>
 <highest-num-waiters>2147483647</highest-num-waiters>
 <connection-creation-retry-frequency-seconds>0</connection-creation-retry-frequency-seconds>
 <connection-reserve-timeout-seconds>60</connection-reserve-timeout-seconds>
 <test-frequency-seconds>0</test-frequency-seconds>
 <test-connections-on-reserve>true</test-connections-on-reserve>
 <ignore-in-use-connections-enabled>true</ignore-in-use-connections-enabled>
 <inactive-connection-timeout-seconds>0</inactive-connection-timeout-seconds>
 <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
 <login-delay-seconds>0</login-delay-seconds>
 <statement-cache-size>5</statement-cache-size>
 <statement-cache-type>LRU</statement-cache-type>
 <remove-infected-connections>true</remove-infected-connections>
 <seconds-to-trust-an-idle-pool-connection>60</seconds-to-trust-an-idle-pool-connection>
 <statement-timeout>-1</statement-timeout>
 <pinned-to-thread>false</pinned-to-thread>
 </jdbc-connection-pool-params>

To edit JDBC data source settings:

	
Login to WebLogic Server Administration Console.

	
From the Home page, select Summary of JDBC Data Sources, Settings for mds-SpacesDS, and then the Connection Pool tab.

	
Edit properties, as required.

To edit WebCenter Portal data source settings:

	
Login to WebLogic Server Administration Console.

	
From the Home page, select Summary of JDBC Data Sources and navigate to the Connection Pool tab.

See also "Tuning Data Source Connection Pools" in Oracle Fusion Middleware Configuring and Managing JDBC Data Sources for Oracle WebLogic Server.

27.2.3 Setting JRockit Virtual Machine (JVM) Arguments

JVM arguments are set in the setDomainEnv.sh file on Unix operating systems and setDomainEnv.cmd on Windows operating systems. The setDomainEnv file is located in the <domain_dir>/bin directory.

	
See Also:

Section 2.4, "Tuning Java Virtual Machines (JVMs)"

	
WebLogic Server production mode: When Webcenter is installed for production deployment, the WebLogic Server is set to production mode. However, if it is installed for development and then switched to production mode for better performance, you need to include the following parameter in the startup command:

-Dweblogic.ProductionModeEnabled=true

For information on setting your domain to production mode using the Administration Console, see "Change to production mode" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.

	
Heap size: If the server is overloaded, that is, garbage is collected or out of memory error occurs frequently, then increase the heap size as appropriate to your server's available physical memory.

For more information, see Section 2.4.1.1, "Specifying Heap Size Values" and "Set Java options for servers started by Node Manager" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.

The following parameters can be modified in the server's startup command or through the Administration Console to increase heap size:

jrockit vm: -Xms2048M -Xmx2048M -Xns512M

hotspot vm: -Xms2048M -Xmx2048M -XX:MaxPermSize512M

27.2.4 Using Content Compression to Reduce Downloads

If clients connect to your server using relatively slow connections, that is, using modems or VPN from remote locations, consider compressing content before it downloads to the client. While content compression increases the load on the server, the client's download experience is much improved.

Several content compression methods are available. The following steps describe how to use the mod_deflate module from Apache.

	
Enable mod_deflate module on Apache.

To do this, add the following to httpd.conf ($OH/instances/$INSTANCE_NAME/config/OHS/$OHS_NAME)

LoadModule deflate_module "${ORACLE_HOME}/ohs/modules/mod_deflate.so"

	
Setup the Output Filter and specify the rules for compression.

Here is a sample snippet that you can add to the httpd.conf (same location mentioned above). Modify the content based on your content and the compression requirements.

<IfModule mod_deflate.c>
SetOutputFilter DEFLATE
AddOutputFilterByType DEFLATE text/plain
AddOutputFilterByType DEFLATE text/xml
AddOutputFilterByType DEFLATE application/xhtml+xml
AddOutputFilterByType DEFLATE text/css
AddOutputFilterByType DEFLATE application/xml
AddOutputFilterByType DEFLATE image/svg+xml
AddOutputFilterByType DEFLATE application/rss+xml
AddOutputFilterByType DEFLATE application/atom+xml
AddOutputFilterByType DEFLATE application/x-javascript
AddOutputFilterByType DEFLATE text/html
SetEnvIfNoCase Request_URI \.(?:gif|jpe?g|png)$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.(?:exe|t?gz|zip|bz2|sit|rar)$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.(?:pdf|doc?x|ppt?x|xls?x)$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.avi$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.mov$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.mp3$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.mp4$ no-gzip dont-vary
</IfModule>

For more information about mod_deflate, refer to: http://httpd.apache.org/docs/2.0/mod/mod_deflate.html

27.3 Tuning WebCenter Portal Application Configuration

This section describes parameters that enable administrators to tune performance of WebCenter Portal applications.

This section includes the following:

	
Setting Session Timeout for a Spaces Application

	
Setting HTTP Session Timeout

	
Setting JSP Page Timeout

	
Setting ADF Client State Token

	
Setting ADF View State Compression

	
Setting MDS Cache Size and Purge Rate

	
Configuring Concurrency Management

27.3.1 Setting Session Timeout for a Spaces Application

The default session timeout for a Spaces application is derived from the HTTP session timeout specified in web.xml. The out-of-the-box web.xml setting for <session-timeout> is 45 minutes. See Setting HTTP Session Timeout.

Administrators can use the wcSessionTimeoutPeriod attribute in webcenter-config.xml to increase or decrease the session timeout if required. See also "webcenter-config.xml" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.

27.3.2 Setting HTTP Session Timeout

To manage overall resource usage, adjust the application's http session timeout value, in minutes, in the web.xml file. In general, shorter session timeout values correspond to less memory and CPU usage on the server.

If you must modify this property, post deployment, you must edit web.xml manually. See "Editing web.xml Properties" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.

The following is a sample snippet of web.xml:

<session-config>
 <session-timeout>
 45
 </session-timeout>
</session-config>

27.3.3 Setting JSP Page Timeout

You can specify an integer value, in seconds, after which any JSP page will be removed from memory if it has not been requested in the web.xml file. This frees up resources in situations where some pages are called infrequently.

Increasing the value reduces user response time, and decreasing it reduces application memory foot print. The default value for is 600 seconds or 10 minutes. If jsp_timeout is not specified, it means there is no timeout.

To modify this property post deployment, you must edit web.xml manually. See "Editing web.xml Properties" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.

The following is a sample snippet of web.xml:

<servlet>
 <servlet-name>
 oraclejsp
 <init-param>
 <param-name>
 jsp_timeout
 </param-name>
 <param-value>
 600
 </param-value>
 </init-param>

27.3.4 Setting ADF Client State Token

Through this setting, you can control the number of pages users can navigate using the browser Back button without losing page state. To reduce CPU and memory usage, you can decrease the value in the web.xml file.

If you must modify this property, post deployment, you must edit web.xml manually. See "Editing web.xml Properties" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.

The following is a sample code snippet of web.xml:

<context-param>
 <param-name>
 org.apache.myfaces.trinidad.CLIENT_STATE_MAX_TOKENS
 </param-name>
 <param-value>
 3
 </param-value>
</context-param>

27.3.5 Setting ADF View State Compression

Through this setting, you can control ADF View State Compression. By default this setting is enabled (parameter value is 'True') and all non-current view states are compressed before saving in memory, which reduces the heap usage.

Though not recommended for WebCenter Portal, you can disable this property by editing the web.xml manually. See "Editing web.xml Properties" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal

The following is a sample code snippet of web.xml:

<context-param>
 <param-name> org.apache.myfaces.trinidad.COMPRESS_VIEW_STATE
 </param-name>
 <param-value> false </param-value>
</context-param>

27.3.6 Setting MDS Cache Size and Purge Rate

The default MDS cache size is 100MB. If you encounter the error message, JOC region full, then you can increase the MDS cache size in the adf-config.xml file.

Post deployment, modify these properties through the System MBeans Browser. For more information, see the section "Changing MDS Configuration Attributes for Deployed Applications" in Oracle Fusion Middleware Administrator's Guide.

The following is a sample snippet of adf-config.xml:

<cache-config>
<max-size-kb>150000</max-size-kb>
</cache-config>

Consider setting the MDS auto-purge seconds-to-live parameter (as shown in the example below) to remove older versions of metadata automatically every hour. By default the auto-purge seconds-to-live="-1" which means no purge. However, if the WebCenter Portal site changes frequently, such as when creating or editing spaces or pages, then auto-purge should be set to an appropriate value to remove older version of metadata for optimal performance.

If excessive metadata is accumulated and each purge is very expensive, reduce this interval in the adf-config.xml file.

The following is a sample snippet of adf-config.xml:

<auto-purge seconds-to-live="3600"/>

To ensure the initial purge does not impact ongoing user activities, consider using the following WLST command to induce an MDS purge immediately before the bulk of the user load hits the system:

The following example shows how to purge all documents in the application repository whose versions are older than 10 seconds:

wls:/weblogic/serverConfig>purgeMetadata(application='[AppName]',server='[ServerName]',olderThan=10)

27.3.7 Configuring Concurrency Management

Concurrency management includes global settings that impact the entire WebCenter Portal and service- and resource-specific settings that only impact a particular service.

You can define deployment-specific overrides or additional configuration in the adf-config.xml file. For example, you can specify resource-specific (producers) values that are appropriate for a particular deployment.

The following describes the format of the global, service, and resource entries in adf-config.xml:

<concurrent:adf-service-config
 xmlns="http://xmlns.oracle.com/webcenterportal/concurrent/config">
 <global
 queueSize="SIZE"
 poolCoreSize="SIZE"
 poolMaxSize="SIZE"
 poolKeepAlivePeriod="TIMEPERIOD"
 timeoutMinPeriod="TIMEPERIOD"
 timeoutMaxPeriod="TIMEPERIOD"
 timeoutDefaultPeriod="TIMEPERIOD"
 timeoutMonitorFrequency="TIMEPERIOD"
 hangMonitorFrequeny="TIMEPERIOD"
 hangAcceptableStopPeriod="TIMEPERIOD" />
 <service
 service="SERVICENAME"
 timeoutMinPeriod="TIMEPERIOD"
 timeoutMaxPeriod="TIMEPERIOD"
 timeoutDefaultPeriod="TIMEPERIOD" />
 <resource
 service="SERVICENAME"
 resource="RESOURCENAME"
 timeoutMinPeriod="TIMEPERIOD"
 timeoutMaxPeriod="TIMEPERIOD"
 timeoutDefaultPeriod="TIMEPERIOD" />
</concurrent:adf-service-config>

Where:

SIZE: A positive integer. For example: 20.

TIMEPERIOD: Any positive integer followed by a suffix indicating the time unit, which must be one of: ms for milliseconds, s for seconds, m for minutes, or h for hours. For example: 50ms, 10s, 3m, or 1h. The following are examples of default settings for different services. These settings are overwritten with any service-specific configurations in connections.xml or adf-config.xml files:

<concurrent:adf-service-config
 xmlns="http://xmlns.oracle.com/webcenter/concurrent/config">
 <service service="oracle.webcenter.community" timeoutMinPeriod="2s" timeoutMaxPeriod="50s" timeoutDefaultPeriod="30s"/>
 <resource service="oracle.webcenter.community"
 resource="oracle.webcenter.doclib"
 timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/>
 <resource service="oracle.webcenter.community"
 resource="oracle.webcenter.collab.calendar.community"
 timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/>
 <resource service="oracle.webcenter.community"
 resource="oracle.webcenter.collab.rtc"
 timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/>
 <resource service="oracle.webcenter.community"
 resource="oracle.webcenter.list"
 timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/>
 <resource service="oracle.webcenter.community"
 resource="oracle.webcenter.collab.tasks"
 timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/>
</concurrent:adf-service-config>

	
Note:

All of the attributes except service and resource are optional, and therefore, for example, the following tags are valid:

<global queueSize="20"/>
 <resource service="foo" resource="bar" timeoutMaxPeriod="5s"/>

You can use the Enterprise Manager System MBean Browser to view, add, modify, and delete the concurrency configuration based on your usage pattern. To access the MBean Browser for your WebCenter Portal application, see "Accessing the System MBean Browser" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.

	
In System MBean Browser, navigate to:

Application Defined MBeans -> oracle.adf.share.config -> Server: (your server name) -> Application: (your application name) ->ADFConfig -> ADFConfig (bean) -> ADFConfig -> WebCenterConcurrentConfiguration -> Operations -> listResource

Figure 27-1 System MBean Browser - WebCenterConcurrentConfiguration

[image: Surrounding text describes Figure 27-1 .]

	
To view the current concurrency settings, select listResource, and then click Invoke (Figure 27-2).

Figure 27-2 System MBean Browser - listResource

[image: System MBean Browser - listResource]

	
To change a setting, select setResource, enter the resource details, and then click Invoke (Figure 27-3).

Figure 27-3 System MBean Browser - setResource

[image: SetResources MBean Browser]

Take care to enter the correct values for service, resource, name and value.

NOTE: If the resource parameter you are attempting to modify already has a [value] setting, you must remove the setting first by invoking the [removeResource] operation (Figure 27-4).

Figure 27-4 System MBean Browser - removeResource

[image: Surrounding text describes Figure 27-4 .]

	
To save changes, navigate to Application Defined MBeans: ADFConfig:ADFConfig -> save, and click Invoke.

27.4 Tuning Back-End Component Configuration

This section describes performance configuration for back-end services used by WebCenter Portal applications. Performance of back-ends such BPEL servers or Oracle WebCenter Content servers, for example, should be tuned as described in guidelines for those back-ends.

This section includes the following sub sections:

	
Tuning Performance of the Announcements Service

	
Tuning Performance of the Discussions Service

	
Tuning Performance of the Instant Messaging and Presence (IMP) Service

	
Tuning Performance of the Mail Service

	
Tuning Performance of the Personal Events Service

	
Tuning Performance of the RSS News Feed Service

	
Tuning Performance of the Search Service

	
Tuning Policy Store Parameters

27.4.1 Tuning Performance of the Announcements Service

To manage overall resource usage for the Announcements service, you can tune the Connection Timeout property:

	
Default: 10 seconds

	
Minimum: 0 seconds

	
Maximum: 45 seconds

Post deployment, modify the Connection Timeout property through Fusion Middleware Control or using WLST. For details, see:

	
"Modifying Discussions Server Connection Details Using Fusion Middleware Control" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal

	
"Modifying Discussions Server Connection Details Using WLST" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal

The following is a sample code snippet of the connections.xml to change the default timeout to 5 seconds:

<Reference name="Jive-7777" className="oracle.adf.mbean.share.connection.webcenter.Announcement. AnnouncementConnection">
<Factory className="oracle.adf.mbean.share.connection.webcenter.forum.ForumConnectionFactory"/>
 <StringRefAddr addrType="connection.time.out">
 <Contents>5</Contents>
 </StringRefAddr>
 </RefAddresses>
</Reference>

27.4.2 Tuning Performance of the Discussions Service

To manage overall resource usage for the Discussions service, you can tune the Connection Timeout property:

	
Default: 10 seconds

	
Minimum: 0 seconds

	
Maximum: 45 seconds

Post deployment, modify the Connection Timeout property through Fusion Middleware Control or using WLST. For details, see:

	
"Modifying Discussions Server Connection Details Using Fusion Middleware Control" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal

	
"Modifying Discussions Server Connection Details Using WLST" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal

The following is a sample snippet of connections.xml:

<Reference name="Jive-7777" className="oracle.adf.mbean.share.connection.webcenter.forum.ForumConnection">
 <Factory className="oracle.adf.mbean.share.connection.webcenter.forum.ForumConnectionFactory"/>
 <RefAddresses>
 <StringRefAddr addrType="forum.url">
 <Contents>http://[machine]:[port]/owc_discussions_5520</Contents>
 <StringRefAddr addrType="connection.time.out">
 <Contents>5</Contents>
 </StringRefAddr>
 </RefAddresses>
</Reference>

27.4.3 Tuning Performance of the Instant Messaging and Presence (IMP) Service

To manage overall resource usage for the IMP service, you can tune the Connection Timeout property:

	
Default: 10 seconds

	
Minimum: 0 seconds

	
Maximum: 45 seconds

Post deployment, modify the Connection Timeout property through Fusion Middleware Control or using WLST. For details, see:

	
"Modifying Instant Messaging and Presence Connections Details Using Fusion Middleware Control" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal

	
"Modifying Instant Messaging and Presence Connections Details Using WLST" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal

The following is a sample code snippet of the connections.xml to change the default timeout to 5 seconds:

<Reference name="IMPService-LCS"
 className="oracle.adf.mbean.share.connection.webcenter.rtc.RtcConnection">
 <Factory className="oracle.adf.mbean.share.connection.webcenter.rtc.RtcConnectionFactory"/>
 <RefAddresses>
 <StringRefAddr addrType="connection.time.out">
 <Contents>5</Contents>
 </StringRefAddr>
 </RefAddresses>
</Reference>

27.4.4 Tuning Performance of the Mail Service

To manage overall resource usage for the Mail service, you can tune the Connection Timeout property:

	
Default: 10 seconds

	
Minimum: 0 seconds

	
Maximum: 45 seconds

Post deployment, modify the Connection Timeout property through Fusion Middleware Control or using WLST. For details, see:

	
"Modifying Mail Server Connection Details Using Fusion Middleware Control" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal

	
"Modifying Mail Server Connection Details Using WLST" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal

The following is a sample code snippet of the connections.xml to change the default timeout to 5 seconds:

<Reference name="MailConnection"
className="oracle.adf.mbean.share.connection.webcenter.mail.MailConnection">
 <StringRefAddr addrType="connection.time.out">
 <Contents>5</Contents>
 </StringRefAddr>
</Reference>

27.4.5 Tuning Performance of the Personal Events Service

To manage overall resource usage for the Personal Events service, you can tune the Connection Timeout property:

	
Default: 10 seconds

	
Minimum: 0 seconds

	
Maximum: 45 seconds

You can also set a cache expiration period:

	
Default: 10 seconds

	
Minimum: 0 seconds

	
Maximum: 45 seconds

Post deployment, modify the Connection Timeout and Cache Expiration properties through Fusion Middleware Control or using WLST. For details, see:

	
"Modifying Event Server Connection Details Using Fusion Middleware Control" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal

	
"Modifying Event Server Connection Details Using WLST" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal

The following is a sample code snippet of the connections.xml to change the default timeout to 5 seconds:

<Reference name="MSExchange-my-pc"className="oracle.adf.mbean.share.connection.webcenter.calendar.PersonalEventConnection">
 <Factory className="oracle.adf.mbean.share.connection.webcenter.calendar.PersonalEventConnectionFactory"/>
 <StringRefAddr addrType="eventservice.connection.timeout">
 <Contents>5</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="eventservice.cache.expiration.time">
 <Contents>5</Contents>
 </StringRefAddr>
 </RefAddresses>
</Reference>

27.4.6 Tuning Performance of the RSS News Feed Service

To manage overall resource usage for the RSS News Feed service, you can adjust the refresh interval and timeout in the adf-config.xml file.

If you must modify these properties, post deployment, use the System MBeans Browser.

The following is a sample snippet of adf-config.xml:

<rssC:adf-rss-config>
 <rssC:RefreshSecs>3600</rssC:RefreshSecs>
 <rssC:TimeoutSecs>3</rssC:TimeoutSecs>
 <rssC:Configured>true</rssC:Configured>
</rssC:adf-rss-config>

27.4.7 Tuning Performance of the Search Service

To manage overall resource usage and user response time for searching, you can adjust the number of saved searches displayed, the number of results displayed, and these timeout values:

	
prepareTimeoutMs - Maximum time that a service is allowed to initialize a search (in ms).

	
timeoutMs - Maximum time that a service is allowed to execute a search (in ms).

	
showAllTimeoutMs - Maximum time that a service is allowed to display search all results (in ms).

Post deployment, modify timeout properties through Fusion Middleware Control or using WLST. For details, see:

	
"Modifying Oracle SES Connection Details Using Fusion Middleware Control" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.

	
"Modifying Oracle SES Connection Details Using WLST" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.

The following is a sample snippet of adf-config.xml:

<searchC:adf-search-config xmlns="http://xmlns.oracle.com/webcenter/search/config">
 <display-properties>
 <common numSavedSearches="25"/>
 <region-specific>
 <usage id="simpleSearchResultUIMetadata" numServiceRows="5"/>
 <usage id="searchResultUIMetadata" numServiceRows="5"/>
 <usage id="localToolbarRegion" numServiceRows="5"/>
 </region-specific>
 </display-properties>
 <execution-properties prepareTimeoutMs="1000" timeoutMs="3000" showAllTimeoutMs="20000" />
 </execution-properties>
</searchC:adf-search-config>

27.4.8 Tuning Policy Store Parameters

If you are experiencing performance issues post login, especially in the area of permission checks, you may need to tune the policy store parameters as described in Section 26.3.5, "OPSS PDP Service Tuning Parameters". Depending on your use case scenarios, performance of WebCenter Portal and WebCenter Portal: Spaces, specifically, can be improved by modifying the following parameters:

	
Set oracle.security.jps.policystore.rolemember.cache.warmup.enable to True

	
Modify oracle.security.jps.policystore.rolemember.cache.size based on the number of active groups you expect to have in your WebCenter Portal - Spaces environment.

NOTE: This parameter should only be modified if you expect to have more than 3000 active Spaces in your WebCenter Portal: Spaces environment.

	
Set oracle.security.jps.policystore.policy.cache.size to 5 times the number of group spaces

	
Note:

Always refer to your own use case scenarios before modifying the policy store parameters. For more information, see the Oracle Fusion Middleware Security and Administrator's Guide for Web Services before tuning any security parameters.

27.5 Tuning Portlet Configuration

This section describes portlet performance-related configuration. This section includes the following sub sections:

	
Tuning Performance of the Portlet Service

	
Configuring Portlet Cache Size

	
Enabling Java Object Cache for WSRP Producers

	
Suppressing Optimistic Rendering for WSRP Portlets

	
Tuning Performance of Oracle PDK-Java Producers

	
Setting Portlet Container Runtime Options

	
Setting DefaultServedResourceRequiresWsrpRewrite for WSRP Portlets

	
Setting DefaultProxiedResourceRequiresWsrpRewrite for WSRP Portlets

	
Importing Consumer CSS Files in IFrame Portlets

	
Configuring Portlet Timeout

	
Tuning Performance of OmniPortlet

27.5.1 Tuning Performance of the Portlet Service

To manage overall resource usage and user response time, you can remove unnecessary locale support, modify portlet timeout and cache size in the adf-config.xml file.

For the Portlet service, 28 supported locales are defined out-of-the-box. You can remove the locales that are unnecessary for your application.

If you must modify these properties, post deployment, you must edit adf-config.xml manually. See "Editing adf-config.xml" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.

The following is a sample snippet of adf-config.xml:

<portletC:adf-portlet-config xmlns="http://xmlns.oracle.com/adf/portlet/config">
 <supportedLocales>
 <value>es</value>
 <value>ko</value>
 <value>ru</value>
 <value>ar</value>
 <value>fi</value>
 <value>nl</value>
 <value>sk</value>
 <value>cs</value>
 <value>fr</value>
 <value>no</value>
 <value>sv</value>
 <value>da</value>
 <value>hu</value>
 <value>pl</value>
 <value>th</value>
 <value>de</value>
 <value>it</value>
 <value>pt</value>
 <value>tr</value>
 <value>el</value>
 <value>iw</value>
 <value>pt_BR</value>
 <value>zh_CN</value>
 <value>en</value>
 <value>ja</value>
 <value>ro</value>
 <value>zh_TW</value>
 </supportedLocales>
 <defaultTimeout>20</defaultTimeout>
 <minimumTimeout>1</minimumTimeout>
 <maximumTimeout>300</maximumTimeout>
 <parallelPoolSize>10</parallelPoolSize>
 <parallelQueueSize>20</parallelQueueSize>
 <cacheSettings enabled="true">
 <maxSize>10000000</maxSize>
 </cacheSettings>
</portletC:adf-portlet-config>

27.5.2 Configuring Portlet Cache Size

You can modify the portlet cache size in the adf-config.xml file. The default portlet cache size is set to 10 MB.

If you must modify these properties, post deployment, you must edit adf-config.xml manually.

The following is a sample snippet of adf-config.xml:

<adf-portlet-config>

 <supportedLocales>
 <cacheSettings enabled="true">
 <maxSize>10000000</maxSize>
 </cacheSettings>
</adf-portlet-config>

27.5.3 Enabling Java Object Cache for WSRP Producers

Oracle recommends that you enable the Java Object Cache (JOC) for WSRP producers so that objects written to the persistent store are cached.

The following is a sample snippet of web.xml:

<env-entry>
 <env-entry-name>oracle/portal/wsrp/server/enableJavaObjectCache
 </env-entry-name>
 <env-entry-type>java.lang.String
 </env-entry-type>
 <env-entry-value>false
 </env-entry-value>
</env-entry>

27.5.4 Suppressing Optimistic Rendering for WSRP Portlets

To suppress the optimistic render of WSRP portlets after a WSRP PerformBlockingInteraction or HandleEvents call, set the Portlet container runtime option (specified in portlet.xml) as follows: com.oracle.portlet.suppressWsrpOptimisticRender=true.

	
true - optimistic render always suppressed

	
false - optimistic render may be performed

Normally, if a WSRP portlet receives a WSRP PerformBlockingInteraction request (processAction in JSR168/JSR286 portlets) and the portlet does not send any events as a result, the WSRP producer renders the portlet and returns the portlet's markup in the response to the PerformBlockingInteraction SOAP message. This markup may be cached by the consumer until the consumer's page renders, and if nothing else affecting the state of the portlet happens (such as the portlet receiving an event), the cached markup can be used by the consumer, eliminating the need for a second SOAP call to GetMarkup.

This assumes that the portlet's render phase is idempotent, which is always a best practice. However, if the portlet expects to receive an event, or rendering the portlet is more costly than a second SOAP message for GetMarkup, the developer may use this container option to suppress the optimistic render of the portlet after a processAction or handleEvent call. The portlet still renders normally when the producer receives the WSRP GetMarkup request.

27.5.5 Tuning Performance of Oracle PDK-Java Producers

To manage overall resource usage for a Web producer, you can tune the Connection Timeout property:

	
Default: 30000 ms

	
Minimum: 5000 ms

	
Maximum: 60000 ms

Post deployment, modify the Connection Timeout property through Fusion Middleware Control or using WLST. For details, see:

	
"Editing Producer Registration Details Using Fusion Middleware Control" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.

	
"Editing Producer Registration Details Using WLST" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.

The following is a sample snippet of connections.xml:

<webproducerconnection producerName="wc-WebClipping" urlConnection="wc-WebClipping-urlconn" timeout="10000" establishSession="true" mapUser="false"/>

27.5.6 Setting Portlet Container Runtime Options

You can use the WebCenter Portal-specific excludedActionScopeRequestAttributes container runtime option to specify how to store action-scoped request attributes so that they are available to portlets until a new action occurs.

Request attributes which match any of the regular expressions are not stored as action-scoped request attributes if the javax.portlet.actionScopedRequestAttributes container runtime option is used, in addition to any request parameters whose values match the regular expressions defined in the com.oracle.portlet.externalScopeRequestAttributes container runtime option.

If set to true, you can specify a second value of numberOfCachedScopes and a third value indicating the number of scopes to be cached by the portlet container.

27.5.7 Setting DefaultServedResourceRequiresWsrpRewrite for WSRP Portlets

To specify the default WSRP requiresRewrite flag to use when generating Resource URLs for portlet-served resources, set the Portlet container runtime option (specified in portlet.xml) as follows: com.oracle.portlet.defaultServedResourceRequiresWsrpRewrite.

This setting is used for all ResourceURLs created by the portlet, unless overridden by the presence of the oracle.portlet.server.resourceRequiresRewriting request attribute when the ResourceURL methods write() or toString() are called. This setting is also used to specify the WSRP requiresRewriting flag on the served resource response, but can be overridden by the presence of the oracle.portlet.server.resourceRequiresRewriting request attribute when the portlet's serveResource() method returns.

Valid values:

	
unspecified - (Default) The requiresRewrite URL flag is not given a value, and the requiresRewriting response flag for a serveResource operation is based on the MIME type of the response.

	
true - The requiresRewrite URL flag and requiresRewriting response flag is set to true, indicating that the resource should be rewritten by the consumer.

	
false - The requiresRewrite URL flag and requiresRewriting response flag is set to false, indicating that the resource does not necessarily need to be rewritten by the consumer, though the consumer may choose to rewrite the resource.

27.5.8 Setting DefaultProxiedResourceRequiresWsrpRewrite for WSRP Portlets

To specify the default WSRP requiresRewrite flag to use when encoding URLs for resources not served by the portlet, set the Portlet container runtime option (specified in portlet.xml) as follows: com.oracle.portlet.defaultProxiedResourceRequiresWsrpRewrite.

This setting is used for all URLs returned by the PortletResponse.encodeURL() method, unless overridden by the presence of the oracle.portlet.server.resourceRequiresRewriting request attribute when the PortletResponse.encodeURL() method is called.

Valid values:

	
true - (Default) The requiresRewrite URL flag is set to true, indicating that the resource should be rewritten by the consumer.

	
false - The requiresRewrite URL flag is set to false, indicating that the resource does not necessarily need to be rewritten by the consumer.

27.5.9 Importing Consumer CSS Files in IFrame Portlets

To specify to a portal consumer that the CSS file is imported to an IFramed portlet, set the Portlet container runtime option (specified in portlet.xml) as follows: com.oracle.portlet.importCssToIFrame.

Valid values:

	
true - The CSS file from the consumer is applied to an IFramed portlet.

	
false - (Default) Nothing is done.

27.5.10 Configuring Portlet Timeout

You can modify the portlet timeout value in the adf-portlet-config element of the adf-config.xml file. Default: 10 seconds, minimum: 0.1 seconds, maximum: 60 seconds.

If you must modify these properties, post deployment, you must edit adf-config.xml manually. See "Editing adf-config.xml" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.

The following is a sample snippet of adf-config.xml:

<adf-portlet-config>

 <defaultTimeout>5</defaultTimeout>
 <minimumTimeout>2</minimumTimeout>
 <maximumTimeout>300</maximumTimeout>
</adf-portlet-config>

27.5.11 Tuning Performance of OmniPortlet

To manage overall resource usage for OmniPortlets, you can tune the Connection Timeout property:

	
Default: 30000 ms

	
Minimum: 5000 ms

	
Maximum: 60000 ms

Post deployment, modify the Connection Timeout property through Fusion Middleware Control or using WLST. For details, see:

	
"Editing Producer Registration Details Using Fusion Middleware Control" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.

	
"Editing Producer Registration Details Using WLST" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.

The following is a sample snippet of connections.xml:

<webproducerconnection producerName="wc-OmniPortlet" urlConnection="wc-OmniPortlet-urlconn" timeout="10000" establishSession="false" mapUser="false"/>

Part VII

Capacity Planning, Scalability, and Availability

This part describes how to plan your site for high traffic, scalability, and availability. It contains the following chapters:

	
Chapter 28, "Capacity Planning"

	
Chapter 29, "Using Clusters and High Availability Features"

29 Using Clusters and High Availability Features

A high availability architecture is one of the key requirements for any Enterprise Deployment. Oracle Fusion Middleware has an extensive set of high availability features, which protect its components and applications from unplanned down time and minimize planned downtime.

This chapter provides an overview of the architecture, interaction, and dependencies of Oracle Fusion Middleware components, and explains how they can be deployed in a high availability architecture to maximize performance.

This chapter includes the following sections:

	
Section 29.1, "About Clusters and High Availability Features"

	
Section 29.2, "Using Clusters with Oracle Fusion Middleware"

	
Section 29.3, "Using High Availability Features with Oracle Fusion Middleware"

	
Note:

Using clusters and other high availability options is a complex and detailed process. This chapter is meant to introduce the concepts as they relate to Oracle Fusion Middleware. Table 29-1 provides a list of Oracle Fusion Middleware guides that contain detailed high availability information.

29.1 About Clusters and High Availability Features

One of the most important factors in both high availability and performance is the use of clusters. A cluster is a set of processes running on single or multiple computers that share the same workload. Using a clustered configuration promotes scalability, high availability, and performance.

High availability refers to the ability of users to access a system without loss of service. Deploying a high availability system minimizes the time when the system is down, or unavailable and maximizes the time when it is running, or available. See

Details about using clusters and other high availability features can be located in the application-specific guides listed in Table 29-1:

Table 29-1 Clusters and High Availability Information in Oracle Fusion Middleware Documentation

	Component	Location of Information
	
Oracle Fusion Middleware

	
Oracle Fusion Middleware Administrator's Guide

	
Oracle WebLogic Server

	
Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server

Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server

	
Oracle SOA Suite

	
The Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite

The Oracle Fusion Middleware Enterprise Deployment Guide for Oracle SOA Suite

	
Oracle WebCenter

	
The Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal

The Oracle Fusion Middleware Enterprise Deployment Guide for Oracle WebCenter Portal

	
Oracle ADF

	
The Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

The Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework

	
Oracle Fusion Middleware Backup and Recovery

	
The Oracle Fusion Middleware Administrator's Guide

	
Oracle Web Cache

	
The Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

	
Oracle Identity Management

	
The Oracle Fusion Middleware Installation Guide for Oracle Identity Management

The Oracle Fusion Middleware Enterprise Deployment Guide for Oracle Identity Management

	
Oracle Virtual Directory

	
The Oracle Fusion Middleware Administrator's Guide for Oracle Virtual Directory

	
Oracle HTTP Server

	
The Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

	
Oracle Internet Directory

	
The Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory

	
Oracle Repository Creation Utility (RCU)

	
The Oracle Fusion Middleware Repository Creation Utility User's Guide

	
Oracle Portal

	
The Oracle Fusion Middleware Administrator's Guide for Oracle Portal

29.2 Using Clusters with Oracle Fusion Middleware

For production environments that require increased application performance, throughput, or high availability, you can configure two or more Managed Servers to operate as a cluster. A cluster is a collection of multiple Oracle WebLogic Server server instances running simultaneously and working together to provide increased scalability and reliability.

For more information on using clusters with Oracle Fusion Middleware, see the following:

	
"Understanding Managed Servers and Managed Server Clusters" in Oracle Fusion Middleware Administrator's Guide

	
Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server

	
Oracle Real Application Clusters Administration and Deployment Guide

29.3 Using High Availability Features with Oracle Fusion Middleware

In addition to using a clustered architecture within your Fusion Middleware components, there are a number of high availability features built-in to ensure your applications are continuously accessible by the users. The following list provides a few options for setting up a comprehensive high availability system. The options that you integrate depend on your overall performance goals as well as your system architecture. This list is meant to provide examples only.

	
Process death detection and automatic restart

Processes may die unexpectedly due to configuration or software problems. A proper process monitoring and restart system should constantly check the health of the applications and restart them when problems appear.

A system process should also maintain the number of restarts within a specified time interval. This is also important since continually restarting within short time periods may lead to additional faults or failures. Therefore a maximum number of restarts or retries within a specified time interval should also be designed as well.

	
State replication and routing

For stateful applications, client state can be replicated to enable stateful failover of requests in the event that processes servicing these requests fail.

	
Failover

With a load-balancing mechanism in place, the instances are redundant. If any of the instances fail, requests to the failed instance can be sent to the surviving instances.

	
Server load balancing

When multiple instances of identical server components are available, client requests to these components can be load balanced to ensure that the instances have roughly the same workload.

	
Disaster Recovery

Disaster recovery solutions typically set up two homogeneous sites, one active and one passive. Each site is a self-contained system. The active site is generally called the production site, and the passive site is called the standby site. During normal operation, the production site services requests; in the event of a site failover or switchover, the standby site takes over the production role and all requests are routed to that site. To maintain the standby site for failover, not only must the standby site contain homogeneous installations and applications, data and configurations must also be synchronized constantly from the production site to the standby site.

For more information see the Oracle Fusion Middleware High Availability Guide.

Index

A B C D E F G H I J K L M N O P Q R S T U V W

A

	Advanced Replication-based replication
	
	tuning, 23.3.1

	ANALYZE function of DBMS_STATS package, 23.8
	Announcements service
	
	performance tuning, 27.4.1

	attributes
	
	garbage collection
	
	tuning, 23.13

	orclskewedattribute, 23.7.2
	skewed, optimizing searches for, 23.7.2
	tuning, 23.3.1, 23.3.2

	automatic restart, 29.3

B

	bulk tools
	
	performance, 23.3.1

	bulkdelete command
	
	performance tuning, 23.3.1
	tuning database parameters, 23.6.2

	bulkload command
	
	on Oracle RAC database, 23.4.4
	performance tuning, 23.3.1
	tuning, 23.6.1

C

	cache
	
	server entry, 23.4.5

	change logs
	
	generation, tuning, 23.3.2
	purging
	
	tuning, 23.4.3

	purging configuration entry
	
	tuning, 23.13

	when to disable generation, 23.6.3

	Concurrency Management, 27.3.7
	conflict resolution
	
	tuning, 23.4.2

	connection timeout
	
	tuning, 23.5.3

D

	database
	
	queries, optimization of, 23.7.2
	redo log files
	
	tuning, 23.6.3

	SQL execution plans
	
	performance impact, 23.3.3

	statistics
	
	tuning, 23.3.3

	db_cache_size database instance parameter
	
	tuning, 23.3.1

	DBMS_STATS package, 23.8
	death detection, 29.3
	dedicated LDAP server for Oracle Directory Integration Platform and replication
	
	tuning, 23.4.4

	directives
	
	See also httpd.conf directives

	Disaster Recovery, 29.3
	Discussions service
	
	performance tuning, 27.4.2

	DMS
	
	Event sensors, 6.1.1.3.2
	PhaseEvent sensors, 6.1.1.3.1
	sensors
	
	definition of, 6.1.1.3

	State sensors, 6.1.1.3.2
	testing metrics, 6.8

	DMS execution context, 6.6, 6.6
	DNS
	
	domain name server, 5.3.2

E

	entries
	
	returned by a search
	
	tuning, 23.5.1

	entry cache, 23.4.5
	
	optimizing, 23.4.6.3
	when to use, 23.4.5

	Event sensors, 6.1.1.3.2
	event tracking
	
	tuning, 23.4.6.3

	Execution Context, 6.3

F

	failover, 29.3
	
	on Oracle RAC database, 23.4.4

G

	garbage collection
	
	tuning, 23.4.3

	garbage collector, 27.2.3
	group cache, enabling
	
	tuning, 23.5.2

	group entries
	
	large
	
	optimizing searches for, 23.7.1

H

	heap size, 27.2.3
	high LDAP write operations load
	
	tuning, 23.6.3

	HIQ
	
	See human intervention queue

	HostNameLookups
	
	directive, 5.3.2

	httpd.conf
	
	directives
	
	HostNameLookups, 5.3.2
	KeepAlive, 5.2
	KeepAliveTimeout, 5.2, 5.2.1
	ListenBacklog, 5.2
	MaxClients, 5.2
	MaxKeepAliveRequests, 5.2, 5.2.1
	MaxRequestsPerChild, 5.2
	Timeout, 5.2

	human intervention queue
	
	changes
	
	tuning, 23.4.2

I

	IBM WebSphere, 6.4.6
	idle connection timeout
	
	tuning, 23.3.2

	IMP (Instant Messaging and Presence) service
	
	performance tuning, 27.4.3

	in-memory processing of search filters, 23.7.3
	iostat utility performance evaluation, 23.8

J

	job_queue_processes database instance parameter
	
	tuning, 23.3.1

	JSP Page Timeout, 27.3.3
	JVM arguments, 27.2.3

K

	KeepAlive directive, 5.2
	KeepAlive httpd.conf directive, 5.2.1, 5.2.1
	KeepAliveTimeout httpd.conf directive, 5.2, 5.2.1

L

	large group entries
	
	optimizing searches, 23.7.1

	ListenBacklog httpd.conf directive, 5.2
	load balancing
	
	on Oracle RAC database, 23.4.4

	logging
	
	performance implications of, 5.3

M

	Mail service
	
	performance tuning, 27.4.4

	matchDN information
	
	tuning, 23.3.2

	max_commit_propagation_delay database instance parameter
	
	tuning, 23.3.1

	MaxClients directive, 5.2
	MaxKeepAliveRequests httpd.conf directive, 5.2, 5.2.1
	MaxRequestsPerChild httpd.conf directive, 5.2
	MDS Cache Size, 27.3.6
	MDS repository
	
	setting MDS cache size, 27.3.6
	setting MDS purge rate
	
	MDS Purge Rate, 27.3.6

	mpstat utility performance evaluation, 23.8

N

	nouns
	
	type, 6.1.1.2

	number of processes and threads
	
	tuning, 23.3.2

O

	ODSM
	
	configuring changelog purging, 23.13.2
	navigating to the changelog purging configuration entry, 23.13.2

	OmniPortlet
	
	performance tuning, 27.5.11

	open-files-limit, 27.2.1
	optimizing
	
	See also tuning

	optimizing searches, 23.7
	
	large group entries, 23.7.1

	Oracle Business Rules, 12.1
	Oracle Directory Integration Platform
	
	tuning, 23.4.1

	Oracle Process Manager and Notification Server (OPMN), 4.7
	Oracle RAC
	
	failover, 23.4.4
	load balancing, 23.4.4

	Oracle RAC database
	
	bulkoad command, 23.4.4
	tuning Oracle Internet Directory with, 23.4.4

	Oracle WebLogic Scripting Tool (WLST)
	
	See Also WLST commands

	orclchangeretrycount attribute
	
	tuning, 23.4.2, 23.4.2

	orclconflresolution attribute
	
	tuning, 23.4.2, 23.4.2

	orclecacheenabled attribute
	
	server entry cache optimization, 23.4.6.3

	orclecachemaxentries attribute
	
	server entry cache optimization, 23.4.6.3

	orclecachemaxentsize attribute
	
	optimizing searches for large group entries, 23.7.1.1
	server entry cache optimization, 23.4.6.3

	orclecachemaxsize attribute
	
	server entry cache optimization, 23.4.6.3

	orclenablegroupcache attribute
	
	tuning group cache, 23.5.2

	orclgeneratechangelog attribute
	
	tuning, 23.3.2

	orclhiqschedule attribute
	
	tuning, 23.4.2

	orclinmemfiltprocess attribute
	
	examples, 23.7.3
	optimizing performance of complex search filters, 23.7.3

	orclldapconntimeout attribute
	
	tuning, 23.3.2, 23.3.2

	orclmatchdnenabled attribute
	
	tuning, 23.3.2, 23.3.2

	orclmaxcc attribute
	
	server entry cache optimization, 23.4.6.3
	tuning, 23.3.2, 23.3.2

	orclnwrwtimeout attribute
	
	tuning connection timeout, 23.5.3

	orcloptrackmaxtotalsize attribute
	
	security event tracking, 23.4.8

	orcloptracknumelemcontainers attribute
	
	security event tracking, 23.4.8

	orclpurgeinterval attribute
	
	tuning, 23.4.3, 23.13

	orclpurgetargetage attribute
	
	tuning, 23.4.3, 23.13

	orclserverprocs attribute
	
	server entry cache optimization, 23.4.6.3
	tuning, 23.3.2, 23.3.2

	orclskewedattribute attribute, 23.7.2
	
	optimizing searches for skewed attributes, 23.7.2

	orclskiprefinsql attribute
	
	tuning, 23.3.2, 23.3.2

	orclthreadspersupplier attribute
	
	tuning, 23.4.2, 23.4.2

	orclupdateschedule attribute
	
	tuning, 23.4.2, 23.4.2

P

	parameters
	
	KeepAlive, 5.2, 5.2.1
	KeepAliveTimeout, 5.2
	ListenBacklog, 5.2
	MaxClients, 5.2
	MaxKeepAliveRequests, 5.2
	MaxRequestsPerChild, 5.2
	Timeout, 5.2

	password policies
	
	tuning, 23.4.5

	PDK-Java producers
	
	performance tuning, 27.5.5

	performance
	
	See also tuning
	tuning, tools for, 23.8

	performance tuning
	
	number of threads, 20.3

	persistent connections
	
	KeepAlive directive, 5.2.1

	Personal Events service
	
	performance tuning, 27.4.5

	pga_aggregate_target database parameter
	
	tuning bulkload, 23.3.1, 23.6.1

	PhaseEvent sensors, 6.1.1.3.1
	portlets
	
	cache size, 27.5.2
	locale support, 27.5.1
	timeouts, 27.5.10
	tuning, 27.5.1

	process death detection, 29.3
	processes database instance parameter
	
	tuning, 23.3.1

Q

	queries, database
	
	optimizing, 23.7.2

R

	RAC database
	
	deployments
	
	tuning, 23.3.1

	redo log files
	
	tuning, 23.6.3

	replication
	
	performance tuning, 23.4.2
	tuning, 23.4.1, 23.4.2

	RSS News Feed service
	
	performance tuning, 27.4.6

	rule engine, 12.2.1
	rule patterns, 12.2.5

S

	sar utility performance evaluation, 23.8
	search
	
	filters
	
	processing in memory, 23.7.3

	number of entries returned
	
	tuning, 23.5.1

	Search service
	
	performance tuning, 27.4.7

	security event tracking
	
	tuning, 23.4.6.3

	server attributes
	
	tuning, 23.3.1

	server entry cache, 23.4.5
	
	attribute settings, 23.4.6.3
	optimizing, 23.4.6.3
	tuning, 23.4.5
	when to use, 23.4.5

	server load balancing, 29.3
	session_cached_cursors database instance parameter
	
	tuning, 23.3.1

	setDomainEnv.sh, 27.2.3
	SGA Auto Tuning, 23.3.1
	sga_max_size database instance parameter
	
	tuning, 23.3.1

	sga_target database parameter
	
	tuning, 23.3.1
	tuning bulkdelete, 23.6.2

	shared_pool_size database instance parameter
	
	tuning, 23.3.1

	sizing wizard, 23.9
	skewed attributes, 23.7.2
	
	optimizing searches for, 23.7.2

	skip referral for search
	
	tuning, 23.3.2

	state replication and routing, 29.3
	State sensors, 6.1.1.3.2

T

	Timeout httpd.conf directive, 5.2
	timeouts
	
	concurrency management, 27.3.7
	JSP page, 27.3.3
	portlets, 27.5.10
	services and portlets, 27.4

	tools
	
	evaluating performance, 23.8
	for tuning, 23.8

	top utility
	
	performance evaluation, 23.8

	tuning
	
	advanced configurations, 23.3.3
	Advanced Replication-based replication, 23.3.1
	Announcements service, 27.4.1
	bulkload, 23.6.1
	change log generation, 23.6.3
	Discussions service, 27.4.2
	high LDAP write operations load, 23.6.3
	IMP service, 27.4.3
	Mail service, 27.4.4
	modifying garbage collection attributes, 23.13
	number of processes and threads, 23.3.2
	Omniportlet producers, 27.5.11
	optimizing searches for large group entries, 23.7.1
	optimizing searches for skewed attributes, 23.7.2
	password policies, 23.4.5
	PDK-Java producers, 27.5.5
	performance evaluation tools, 23.8
	Personal Events service, 27.4.5
	portlets, 27.5.1
	RAC Database deployments, 23.3.1
	recommendations
	
	tuning and sizing wizard, 23.9

	replication, 23.4.2
	RSS service, 27.4.6
	Search service, 27.4.7
	security event tracking, 23.4.6.3
	server attributes, 23.3.1
	server entry cache, 23.4.5
	SGA Auto Tuning, 23.3.1
	skewed attributes
	
	optimizing searches, 23.7.2

	timeout for write operations, 23.5.3
	tools, 23.8, 23.8
	verifier policies, 23.4.5
	when replication or Directory Integration Platform deployed, 23.4.1

	tuning and sizing wizard, 23.9
	tuning entries to be returned by a search, 23.5.1

U

	undo tablespace size
	
	tuning for high LDAP write operations load, 23.6.3

	UTLBSTAT.SQL, 23.8
	UTLESTAT.SQL, 23.8

V

	verifier policies
	
	tuning, 23.4.5

	vmstat utility performance evaluation, 23.8

W

	WebCenter applications
	
	tuning, 27.3

	WebSphere
	
	IBM WebSphere, 6.4.6

	Windows
	
	Task Manager
	
	evaluating performance, 23.8

	Windows Performance Monitor
	
	performance evaluation, 23.8

	wizards
	
	tuning and sizing, 23.9

	write operation timeout
	
	tuning, 23.5.3

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/img/wldf1.gif
Watch and

Instrumentation e
DataCreators | Data Collectors
Data Publishers Logger
Data Providers Harvester
Image Capture Archive

OEBPS/img/dmsspy1.gif
Metric Tables Metric Tables

DMS Metrics
WebLogic Metrics

DMS Metrics
‘WebLogic Metrics

DMS Metrics DMS Metrics
ADF ADF

WM WM
VM_ClassLaader VM_ClassLaader
VM_Compier VM_Compler
WM_GC WM_GC
VM_Memory VM_Memary

VM_MemoryPacl
VM_Memoryset

VM_MemoryPacl
VM_Memoryset

WM_0S WM_0S
VM_Runtime VM_Runtime
VM_Thread VM_Thread
WM_Threadstats WM_Threadstats
MDS MDS
MDS_Applcation MDS_Applcation
MDS_Core MDS_Core

MDS_Metadatastore
MDS_Partition
MDS_Persistence
HDS_Repository
PORTLET

MDS_Metadatastore
MDS_Partition
MDS_Persistence
HDS_Repository
PORTLET
trace_info

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware
Performance and Tuning
Guide, 11g Release 1
(11.1.1)

OEBPS/dcommon/oracle.gif

OEBPS/img/reui.gif

OEBPS/img/empview.gif
General Wiew Object: EmpWiev

Entity Objects. Wiew abjects are for joining, filtering, projecting, and sorting your business data for the specific needs of a given
Atabuces applcation sl
Query
2o Name e/
ew Accessors
Package ihuang
List UI Hinks 7
Extends: <tines /
Propety Set <tines /

Business Components Project: Model

Enter tuning parameters or this View, to control SQL execution and how data s fetched from the database.

Retrieve from the Database
5 AllRows) Only up to row rumber
inBatchesof [1
) hsNeeded C) Al Once
At Most One Row
o Rows (.. used only For inserting new rows)

Query Optiizer Hint
g FIRST_ROWS, ALL_ROWS, .

] Fillast Page of Rows when Paging throuch Rowset

7] Passivate State (e.q. Current Row, Bind Valuss, etc.)
[Inchucing Al Transient Values

] RetainView Link Accessor

OEBPS/img/soa_arch.gif
BPEL BPMN

Business § ediator
Process Core

CAbased connectivity infrastructure e

/. Meamm
Oracle Service Bus

EM console
e

[$2 ' @5 @W @sm @w +BPMN Screens

Microsoft

OEBPS/img/asper_dt_002.gif
Other FMW.
Components

ADF

JDBC

Fuw

FMW Diagnostios
LIS

> Metrics >| spySenviet

Execution Context —>| MBeans

i

Events and Tracing |

o

oL

) v
JRocket Fight Enterprise
Recorder Manager

JConsole

