

Part I

Introduction

This part contains introductory information.

Part I contains the following chapter:

	
Chapter 1, "Overview of SIP Servlet Application Development"

1 Overview of SIP Servlet Application Development

This chapter describes SIP servlet application development in the following sections:

	
Section 1.1, "What is a SIP Servlet?"

	
Section 1.2, "Differences from HTTP Servlets"

1.1 What is a SIP Servlet?

The SIP Servlet API is standardized as JSR289 of JCP (Java Community Process).

	
Note:

In this document, the term "SIP Servlet" is used to represent the API, and "SIP servlet" is used to represent an application created with the API.

Java Servlets are for building server-side applications, HttpServlets are subclasses of Servlet and are used to create Web applications. SIP Servlet is defined as the generic servlet API with SIP-specific functions added.

Figure 1-1 Servlet API and SIP Servlet API

[image: servlet APIs]

SIP Servlets are very similar to HTTP Servlets, and HTTP servlet developers can quickly adapt to the programming model. The service level defined by both HTTP and SIP Servlets is very similar, and you can easily design applications that support both HTTP and SIP. Listing 1 shows an example of a simple SIP servlet.

Example 1-1 SimpleSIPServlet.java

package oracle.example.simple;
import java.io.IOException;
import javax.servlet.*;
import javax.servlet.sip.*;

public class SimpleSIPServlet extends SipServlet {
 protected void doMessage(SipServletRequest req)
 throws ServletException, IOException
 {
 SipServletResponse res = req.createResponse(200);
 res.send();
 }
}

The above example shows a simple SIP servlet that sends back a 200 OK response to the SIP MESSAGE request. As you can see from the list, SIP Servlet and HTTP Servlet have many things in common:

	
Servlets must inherit the base class provided by the API. HTTP servlets must inherit HttpServlet, and SIP servlets must inherit SipServlet.

	
Methods doXxx must be overridden and implemented. HTTP servlets have doGet/doPost methods corresponding to GET/POST methods. Similarly, SIP servlets have doXxx methods corresponding to the method name (in the above example, the MESSAGE method). Application developers override and implement necessary methods.

	
The lifecycle and management method (init, destroy) of SIP Servlet are exactly the same as HTTP Servlet. Manipulation of sessions and attributes is also the same.

	
Although not shown in the example above, there is a deployment descriptor called sip.xml for a SIP servlet, which corresponds to web.xml. Application developers and service managers can edit this file to configure applications using multiple SIP servlets.

However, there are several differences between SIP and HTTP servlets. A major difference comes from protocols. The next section describes these differences as well as features of SIP servlets.

1.2 Differences from HTTP Servlets

This section describes differences between SIP Servlets and HTTP Servlets.

1.2.1 Multiple Responses

You might notice from Example 1-1 that the doMessage method has only one argument. In HTTP, a transaction consists of a pair of request and response, so arguments of a doXxx method specify a request (HttpServletRequest) and its response (HttpServletResponse). An application takes information such as parameters from the request to execute it, and returns its result in the body of the response.

protected void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException

For SIP, more than one response may be returned to a single request.

Figure 1-2 Example of Request and Response in SIP

[image: Request and response in SIP]

The above figure shows an example of a response to the INVITE request. In this example, the server sends back three responses 100, 180, and 200 to the single INVITE request. To implement such sequence, in SIP Servlet, only a request is specified in a doXxx method, and an application generates and returns necessary responses in an overridden method.

Currently, SIP Servlet defines the following doXxx methods:

protected void doInvite(SipServletRequest req);
protected void doAck(SipServletRequest req);
protected void doOptions(SipServletRequest req);
protected void doBye(SipServletRequest req);
protected void doCancel(SipServletRequest req);
protected void doSubscribe(SipServletRequest req);
protected void doNotify(SipServletRequest req);
protected void doMessage(SipServletRequest req);
protected void doInfo(SipServletRequest req);
protected void doPrack(SipServletRequest req);

1.2.2 Receiving Responses

One of the major features of SIP is that roles of a client and server are not fixed. In HTTP, Web browsers always send HTTP requests and receive HTTP responses: They never receive HTTP requests and send HTTP responses. In SIP, however, each terminal needs to have functions of both a client and server.

For example, both of two SIP phones must call to the other and disconnect the call.

Figure 1-3 Relationship between Client and Server in SIP

[image: Client and server in SIP]

The above example indicates that a calling or disconnecting terminal acts as a client. In SIP, roles of a client and server can be changed in one dialog. This client function is called UAC (User Agent Client) and server function is called UAS (User Agent Server), and the terminal is called UA (User Agent). SIP Servlet defines methods to receive responses as well as requests.

protected void doProvisionalResponse(SipServletResponse res);
protected void doSuccessResponse(SipServletResponse res);
protected void doRedirectResponse(SipServletResponse res);
protected void doErrorResponse(SipServletResponse res);

These doXxx response methods are not the method name of the request. They are named by the type of the response as follows:

	
doProvisionalResponse—A method invoked on the receipt of a provisional response (or 1xx response).

	
doSuccessResponse—A method invoked on the receipt of a success response.

	
doRedirectResponse—A method invoked on the receipt of a redirect response.

	
doErrorResponse—A method invoked on the receipt of an error response (or 4xx, 5xx, 6xx responses).

Existence of methods to receive responses indicates that in SIP Servlet requests and responses are independently transmitted an application in different threads. Applications must explicitly manage association of SIP messages. An independent request and response makes the process slightly complicated, but enables you to write more flexible processes.

Also, SIP Servlet allows applications to explicitly create requests. Using these functions, SIP servlets can not only wait for requests as a server (UAS), but also send requests as a client (UAC).

1.2.3 Proxy Functions

Another function that is different from the HTTP protocol is "forking." Forking is a process of proxying one request to multiple servers simultaneously (or sequentially) and used when multiple terminals (operators) are associated with one telephone number (such as in a call center).

Figure 1-4 Proxy Forking

[image: Proxy forking]

SIP Servlet provides a utility to proxy SIP requests for applications that have proxy functions.

1.2.4 Message Body

As the figure below, the structure of SIP messages is the same as HTTP.

Figure 1-5 SIP Message Example

[image: SIP message example]

HTTP is basically a protocol to transfer HTML files and images. Contents to be transferred are stored in the message body. HTTP Servlet defines stream manipulation-based API to enable sending and receiving massive contents.

1.2.4.1 Servlet Request

ServletInputStream getInputStream()
BufferedReader getReader()

1.2.4.2 Servlet Response

ServletOutputStream getOutputStream()
PrintWriter getWriter()
int getBufferSize()
void setBufferSize(int size)
void resetBuffer()
void flushBuffer()

In SIP, however, only low-volume contents are stored in the message body since SIP is intended for real-time communication. Therefore, above methods are provided only for compatibility, and their functions are disabled.

In SIP, contents stored in the body include:

	
SDP (Session Description Protocol)—A protocol to define multimedia sessions used between terminals. This protocol is defined in RFC2373.

	
Presence Information—A message that describes presence information defined in CPIM.

	
IM Messages—IM (instant message) body. User-input messages are stored in the message body.

Since the message body is in a small size, processing it in a streaming way increases overhead. SIP Servlet re-defines API to manipulate the message body on memory as follows:

1.2.4.3 SipServletMessage

void setContent(Object content, String contentType)
Object getContent()
byte[] getRawContent()

1.2.5 Role of a Servlet Container

The following sections describe major functions provided by OWLCS as a SIP servlet container:

	
Application Management—Describes functions such as application management by servlet context, lifecycle management of servlets, application initialization by deployment descriptors.

	
SIP Messaging—Describes functions of parsing incoming SIP messages and delivering to appropriate SIP servlets, sending messages created by SIP servlets to appropriate UAS, and automatically setting SIP header fields.

	
Utility Functions—Describes functions such as sessions, factories, and proxying that are available in SIP servlets.

1.2.5.1 Application Management

Like HTTP servlet containers, SIP servlet containers manage applications by servlet context (see Figure 6). Servlet contexts (applications) are normally archived in a WAR format and deployed in each application server.

	
Note:

The method of deploying in application servers varies depending on your product. Refer to the documentation of your application server.

Figure 1-6 Servlet Container and Servlet Context

[image: Servlet and SIP context]

A servlet context for a converged SIP and Web application can include multiple SIP servlets, HTTP servlets, and JSPs.

OWLCS can deploy applications using the same method as the application server you use as the platform. However, if you deploy applications including SIP servlets, you need a SIP specific deployment descriptor (sip.xml) defined by SIP servlets. The table below shows the file structure of a general converged SIP and Web application.

Table 1-1 File Structure Example of Application

	
File

	
Description

	
WEB-INF/

	
Place your configuration and executable files of your converged SIP and Web application in the directory. You cannot directly refer to files in this directory on Web (servlets can do this).

	
WEB-INF/web.xml

	
The Java EE standard configuration file for the Web application.

	
WEB-INF/sip.xml

	
The SIP Servlet-defined configuration files for the SIP application.

	
WEB-INF/classes/

	
Store compiled class files in the directory. You can store both HTTP and SIP servlets in this directory.

	
WEB-INF/lib/

	
Store class files archived as Jar files in the directory. You can store both HTTP and SIP servlets in this directory.

	
*.jsp, *.jpg

	
Files comprising the Web application (for example JSP) can be deployed in the same way as Java EE.

Information specified in the sip.xml file is similar to that in the web.xml except <servlet-mapping> setting that is different from HTTP servlets. In HTTP you specify a servlet associated with the file name portion of URL. But SIP has no concept of the file name. You set filter conditions using URI or the header field of a SIP request. The following example shows that a SIP servlet called "register" is assigned all REGISTER methods.

Example 1-2 Filter Condition Example of sip.xml

 <servlet-mapping>
 <servlet-name>registrar</servlet-name>
 <pattern>
 <equal>
 <var>request.method</var>
 <value>REGISTER</value>
 </equal>
 </pattern>
 </servlet-mapping>

Once deployed, lifecycle of the servlet context is maintained by the servlet container. Although the servlet context is normally started and shutdown when the server is started and shutdown, the system administrator can explicitly start, stop, and reload the servlet context.

1.2.5.2 SIP Messaging

SIP messaging functions provided by a SIP servlet container are classified under the following types:

	
Parsing received SIP messages.

	
Delivering parsed messages to the appropriate SIP servlet.

	
Sending SIP servlet-generated messages to the appropriate UA

	
Automatically generating a response (such as "100 Trying").

	
Automatically managing the SIP header field.

All SIP messages that a SIP servlet handles are represented as a SipServletRequest or SipServletResponse object. A received message is first parsed by the parser and then translated to one of these objects and sent to the SIP servlet container.

A SIP servlet container receives the following three types of SIP messages, for each of which you determine a target servlet.

	
First SIP Request—When the SIP servlet container received a request that does not belong to any SIP session, it uses filter conditions in the sip.xml file (described in the previous section) to determine the target SIP servlet. Since the container creates a new SIP session when the initial request is delivered, any SIP requests received after that point are considered as subsequent requests.

	
Note:

Filtering should be done carefully. In OWLCS, when the received SIP message matches multiple SIP servlets, it is delivered only to any one SIP servlet.
The use of additional criteria such as request parameters can be used to direct a request to a servlet.

	
Subsequent SIP Request—When the SIP Servlet container receives a request that belongs to any SIP session, it delivers the request to a SIP Servlet associated with that session. Whether the request belongs to a session or not is determined using dialog ID.

Each time a SIP Servlet processes messages, a lock is established by the container on the call ID. If a SIP Servlet is currently processing earlier requests for the same call ID when subsequent requests are received, the SIP Servlet container queues the subsequent requests. The queued messages are processed only after the Servlet has finished processing the initial message and has returned control to the SIP Servlet container.

This concurrency control is guaranteed both in a single containers and in clustered environments. Application developers can code applications with the understanding that only one message for any particular call ID gets processed at a given time.

	
SIP Response—When the received response is to a request that a SIP servlet proxied, the response is automatically delivered to the same servlet since its SIP session had been determined. When a SIP servlet sends its own request, you must first specify a servlet that receives a response in the SIP session. For example, if the SIP servlet sending a request also receives the response, the following handler setting must be specified in the SIP session.

SipServletRequest req = getSipFactory().createRequest(appSession, ...);
req.getSession().setHandler(getServletName());

Normally, in SIP a "session" means a real-time session by RTP/RTSP. On the other hand, in HTTP Servlet a "session" refers to a way of relating multiple HTTP transactions. In this document, session-related terms are defined as follows:

Table 1-2 Session-Related Terminology

	
Realtime Session

	
A realtime session established by RTP/RTSP.

	
HTTP Session

	
A session defined by HTTP Servlet. A means of relating multiple HTTP transactions.

	
SIP Session

	
A means of implementing the same concept as in HTTP session in SIP. SIP (RFC3261) has a similar concept of "dialog," but in this document this is treated as a different term since its lifecycle and generation conditions are different.

	
Application Session

	
A means for applications using multiple protocols and dialogs to associate multiple HTTP sessions and SIP sessions. Also called "AP session."

OWLCS automatically execute the following response and retransmission processes:

	
Sending "100 Trying"—When WebLogic Communications Server receives an INVITE request, it automatically creates and sends "100 Trying."

	
Response to CANCEL—When WebLogic Communications Server receives a CANCEL request, it executes the following processes if the request is valid.

	
Sends a 200 response to the CANCEL request.

	
Sends a 487 response to the INVITE request to be cancelled.

	
Invokes a doCancel method on the SIP servlet. This allows the application to abort the process within the doCancel method, eliminating the need for explicitly sending back a response.

	
Sends ACK to an error response to INVITE—When a 4xx, 5xx, or 6xx response is returned for INVITE that were sent by a SIP servlet, WebLogic Communications Server automatically creates and sends ACK. This is because ACK is required only for a SIP sequence, and the SIP servlet does not require it.

When the SIP servlet sends a 4xx, 5xx, or 6xx response to INVITE, it never receives ACK for the response.

	
Retransmission process when using UDP—SIP defines that sent messages are retransmitted when low-trust transport including UDP is used. WebLogic Communications Server automatically do the retransmission process according to the specification.

Mostly, applications do not need to explicitly set and see header fields In HTTP Servlet since HTTP servlet containers automatically manage these fields such as Content-Length and Content-Type. SIP Servlet also has the same header management function.

In SIP, however, since important information about message delivery exists in some fields, these headers are not allowed to change by applications. Headers that can not be changed by SIP servlets are called "system headers." The table below lists system headers:

Table 1-3 System Headers

	
Header Name

	
Description

	
Call-ID

	
Contains ID information to associate multiple SIP messages as Call.

	
From, To

	
Contains Information on the sender and receiver of the SIP request (SIP, URI, etc.). tag parameters are given by the servlet container.

	
CSeq

	
Contains sequence numbers and method names.

	
Via

	
Contains a list of servers the SIP message passed through. This is used when you want to keep track of the path to send a response to the request.

	
Record-Route, Route

	
Used when the proxy server mediates subsequent requests.

	
Contact

	
Contains network information (such as IP address and port number) that is used for direct communication between terminals. For a REGISTER message, 3xx, or 485 response, this is not considered as the system header and SIP servlets can directly edit the information.

1.2.5.3 Utility Functions

SIP Servlet defines the following utilities that are available to SIP servlets:

	
SIP Session, Application Session

	
SIP Factory

	
Proxy

1.2.5.3.1 SIP Session, Application Session

As stated before, SIP Servlet provides a "SIP session" whose concept is the same as a HTTP session. In HTTP, multiple transactions are associated using information like Cookie. In SIP, this association is done with header information (Call-ID and tag parameters in From and To). Servlet containers maintain and manage SIP sessions. Messages within the same dialog can refer to the same SIP session. Also, For a method that does not create a dialog (such as MESSAGE), messages can be managed as a session if they have the same header information.

SIP Servlet has a concept of an "application session," which does not exist in HTTP Servlet. An application session is an object to associate and manage multiple SIP sessions and HTTP sessions. It is suitable for applications such as B2BUA.

1.2.5.3.2 SIP Factory

A SIP factory (SipFactory) is a factory class to create SIP Servlet-specific objects necessary for application execution. You can generate the following objects:

Table 1-4 Objects Generated with SipFactory

	
Class Name

	
Description

	
URI, SipURI, Address

	
Can generate address information including SIP URI from String.

	
SipApplicationSession

	
Creates a new application session. It is invoked when a SIP servlet starts a new SIP signal process.

	
SipServletRequest

	
Used when a SIP servlet acts as UAC to create a request. Such requests can not be sent with Proxy.proxyTo. They must be sent with SipServletRequest.send.

SipFactory is located in the servlet context attribute under the default name. You can take this with the following code.

ServletContext context = getServletContext();
SipFactory factory =
 (SipFactory) context.getAttribute("javax.servlet.sip.SipFactory");

1.2.5.3.3 Proxy

Proxy is a utility used by a SIP servlet to proxy a request. In SIP, proxying has its own sequences including forking. You can specify the following settings in proxying with Proxy:

	
Recursive routing (recurse)—When the destination of proxying returns a 3xx response, the request is proxied to the specified target.

	
Record-Route setting—Sets a Record-Route header in the specified request.

	
Parallel/Sequential (parallel)—Determines whether forking is executed in parallel or sequentially.

	
stateful—Determines whether proxying is transaction stateful. This parameter is not relevant because stateless proxy mode is deprecated in JSR289.

	
Supervising mode—In the event of the state change of proxying (response receipts), an application reports this.

Part II

Developing and Programming SIP Applications

This part describes programming guidelines and procedures for SIP applications.

Part II contains the following chapters:

	
Chapter 2, "Developing Converged Applications"

	
Chapter 3, "SIP Protocol Programming"

	
Chapter 4, "Requirements and Best Practices for SIP Applications"

	
Chapter 5, "Composing SIP Applications"

	
Chapter 6, "Securing SIP Servlet Resources"

	
Chapter 7, "Enabling Message Logging"

2 Developing Converged Applications

This chapter describes how to develop converged HTTP and SIP applications with OWLCS, in the following sections:

	
Section 2.1, "Overview of Converged Applications"

	
Section 2.2, "Assembling and Packaging a Converged Application"

	
Section 2.3, "Working with SIP and HTTP Sessions"

	
Section 2.4, "Using the Converged Application Example"

2.1 Overview of Converged Applications

In a converged application, SIP protocol functionality is combined with HTTP or Java EE components to provide a unified communication service. For example, an online push-to-talk application might enable a customer to initiate a voice call to ask questions about products in their shopping cart. The SIP session initiated for the call is associated with the customer's HTTP session, which enables the employee answering the call to view customer's shopping cart contents or purchasing history.

You must package converged applications that utilize Java EE components (such as EJBs) into an application archive (.EAR file). Converged applications that use SIP and HTTP protocols must be packaged in a single SAR or WAR file containing both a sip.xml and a web.xml deployment descriptor file.You can optionally package the SIP and HTTP Servlets of a converged application into separate SAR and WAR components within a single EAR file.

The HTTP and SIP sessions used in a converged application can be accessed programmatically through a common application session object. The SIP Servlet API also helps you associate HTTP sessions with an application session.

2.2 Assembling and Packaging a Converged Application

The SIP Servlet specification fully describes the requirements and restrictions for assembling converged applications. The following statements summarize the information in the SIP Servlet specification:

	
Use the standard SIP Servlet directory structure for converged applications.

	
Store all SIP Servlet files under the WEB-INF subdirectory; this ensures that the files are not served up as static files by an HTTP Servlet.

	
Include deployment descriptors for both the HTTP and SIP components of your application. This means that both sip.xml and web.xml descriptors are required. A weblogic.xml deployment descriptor may also be included to configure Servlet functionality in the OWLCS container.

	
Observe the following restrictions on deployment descriptor elements:

	
The distributable tag must be present in both sip.xml and web.xml, or it must be omitted entirely.

	
context-param elements are shared for a given converged application. If you define the same context-param element in sip.xml and in web.xml, the parameter must have the same value in each definition.

	
If either the display-name or icons element is required, the element must be defined in both sip.xml and web.xml, and it must be configured with the same value in each location.

2.3 Working with SIP and HTTP Sessions

As shown in Figure 2-1, each converged application deployed to the OWLCS container has a unique SipApplicationSession, which can contain one or more SipSession and ConvergedHttpSession objects.

Figure 2-1 Sessions in a Converged Application

[image: Sessions in a converged application]

The API provided by javax.servlet.SipApplicationSession enables you to iterate through all available sessions in a given SipApplicationSession. It also provides methods to encode a URL with the unique application session when developing converged applications.

In prior releases, OWLCS extended the basic SIP Servlet API to provide methods for:

	
Creating new HTTP sessions from a SIP Servlet

	
Adding and removing HTTP sessions from SipApplicationSession

	
Obtaining SipApplicationSession objects using either the call ID or session ID

	
Encoding HTTP URLs with session IDs from within a SIP Servlet

This functionality is now provided directly as part of the SIP Servlet API version 1.1, and the proprietary API (com.bea.wcp.util.Sessions) is now deprecated. Table 2-0 lists the SIP Servlet APIs to use in place of now deprecated methods. See the SIP Servlet v1.1 API JavaDoc for more information.

Table 2-1 Deprecated com.bea.wcp.util.Sessions Methods

	Deprecated Method (in com.bea.wcp.util.Sessions)	Replacement Method	Description
	
getApplicationSession

	
javax.servlet.sip.SipSessionsUtil.

getApplicationSession

	
Obtains the SipApplicationSession object with a specified session ID.

	
getApplicationSessionsByCallId

	
None.

	
Obtains an Iterator of SipApplicationSession objects associated with the specified call ID.

	
createHttpSession

	
None.

	
Applications can instead cast an HttpSession into ConvergedHttpSession.

	
setApplicationSession

	
javax.servlet.sip.ConvergedHttpSession.

getApplicationSession

	
Associates an HTTP session with an existing SipApplicationSession.

	
removeApplicationSession

	
None.

	
Removes an HTTP session from an existing SipApplicationSession.

	
getEncodeURL

	
javax.servlet.sip.ConvergedHttpSession.

encodeURL

	
Encodes an HTTP URL with the jsessionid of an existing HTTP session object.

	
Note:

The com.bea.wcp.util.Sessions API is provided only for backward compatibility. Use the SIP Servlet APIs for all new development. OWLCS does not support converged applications that mix the com.bea.wcp.util.Sessions API and JSR 289 convergence APIs.
Specifically, the deprecated Sessions.getApplicationSessionsByCallId(String callId) method cannot be used with v1.1 SIP Servlets that use the session key-based targeting method for associating an initial request with an existing SipApplicationSession object. See Section 15.11.2 in the SIP Servlet Specification v1.1 (http://jcp.org/en/jsr/detail?id=289) for more information about this targeting mechanism.

2.3.1 Modifying the SipApplicationSession

When using a replicated domain, OWLCS automatically provides concurrency control when a SIP Servlet modifies a SipApplicationSession object. In other words, when a SIP Servlet modifies the SipApplicationSession object, the SIP container automatically locks other applications from modifying the object at the same time.

Non-SIP applications, such as HTTP Servlets, must themselves ensure that the application call state is locked before modifying it. This is also required if a single SIP Servlet needs to modify other call state objects, such as when a conferencing Servlet joins multiple calls.

To help application developers manage concurrent access to the application session object, OWLCS extends the standard SipApplicationSession object with com.bea.wcp.sip.WlssSipApplicationSession, and adds two interfaces, com.bea.wcp.sip.WlssAction and com.bea.wcp.sip.WlssAsynchronous Action, to encapsulate tasks performed to modify the session. When these APIs are used, the SIP container ensures that all business logic contained within the WlssAction and WlssAsynchronousAction object is executed on a locked copy of the associated SipApplicationSession instance. The sections that follow describe each interface.

2.3.1.1 Synchronous Access

Applications that need to read and update a session attribute in a transactional and synchronous manner must use the WlssAction API. WlssAction obtains an explicit lock on the session for the duration of the action. Example 2-1, "Example Code using WlssAction API" shows an example of using this API.

Example 2-1 Example Code using WlssAction API

final SipApplicationSession appSession = ...;
WlssSipApplicationSession wlssAppSession = (WlssSipApplicationSession) appSession;
wlssAppSession.doAction(new WlssAction() {
 public Object run() throws Exception {
 // Add all business logic here.
 appSession.setAttribute("counter", latestCounterValue);
 sipSession.setAttribute("currentState", latestAppState);
 // The SIP container ensures that the run method is invoked
 // while the application session is locked.
 return null;
 }
});

Because the WlssAction API obtains an exclusive lock on the associated session, deadlocks can occur if you attempt to modify other application session attributes within the action.

2.3.1.2 Asynchronous Access

Applications that need to update a different SipApplicationSession while in the context of a locked SipApplicationSession can perform asynchronous updates using the WlssAsynchronousAction API. This API reduces contention when multiple applications might need to update attributes in the same SipApplicationSession at the same time. Example 2-2, "Example Code using WlssAsynchronousAction API" shows an example of using this API.

To compile applications using this API, you need to include MIDDLEWARE_HOME/server/lib/wlss/wlssapi.jar, and MIDDLEWARE_HOME/server/lib/wlss/sipservlet.jar.

Example 2-2 Example Code using WlssAsynchronousAction API

SipApplicationSession sas1 = req.getSipApplicationSession(); // SipApplicationSession1 is already locked by the container
 // Obtain another SipApplicationSession to schedule work on it
 WlssSipApplicationSession wlssSipAppSession = SipSessionsUtil.getApplicationSessionById(conferenceAppSessionId);
 // The work is done on the application session asynchronously
 appSession.doAsynchronousAction(new WlssAsynchronousAction() {
 Serializable run(SipApplicationSession appSession) {
 // Add all business logic here.
 int counter = appSession.getAttribute("counter");
 ++ counter;
 appSession.setAttribute("counter", counter);
 return null;
 }
});

Performing the work on appSession in an asynchronous manner prevents nested locking and associated deadlock scenarios.

2.4 Using the Converged Application Example

OWLCS includes a sample converged application that uses the com.bea.wcp.util.Sessions API. All source code, deployment descriptors, and build files for the example can be installed in OWLCS_HOME\samples\sipserver\examples\src\convergence. See the readme.html file in the example directory for instructions about how to build and run the example.

3 SIP Protocol Programming

This chapter describes programming SIP applications and contains the following sections:

	
Section 3.1, "Using Compact and Long Header Formats for SIP Messages"

	
Section 3.2, "Using Content Indirection in SIP Servlets"

	
Section 3.3, "Generating SNMP Traps from Application Code"

3.1 Using Compact and Long Header Formats for SIP Messages

This section describes how to use the OWLCS SipServletMessage interface and configuration parameters to control SIP message header formats

3.1.1 Overview of Header Format APIs and Configuration

Applications that operate on wireless networks may want to limit the size of SIP headers to reduce the size of messages and conserve bandwidth. JSR 289 provides the SipServletMessage.setHeaderForm() method, which enables application developers to set a long or compact format for the value of a given header.

One feature of the SipServletMessage API provided in JSR 289 is the ability to set long or compact header formats for the entire SIP message using the setHeaderForm method.

In addition to SipServletMessage, OWLCS provides a container-wide configuration parameter that can control SIP header formats for all system-generated headers. This system-wide parameter can be used along with SipServletMessage.setHeaderForm and SipServletMessage.setHeader to further customize header formats.

3.1.2 Summary of Compact Headers

Table 3-1 defines the compact header abbreviations described in the SIP specification (http://www.ietf.org/rfc/rfc3261.txt). Specifications that introduce additional headers may also include compact header abbreviations.

Table 3-1 Compact Header Abbreviations

	Header Name (Long Format)	Compact Format
	
Call-ID

	
i

	
Contact

	
m

	
Content-Encoding

	
e

	
Content-Length

	
l

	
Content-Type

	
c

	
From

	
f

	
Subject

	
s

	
Supported

	
k

	
To

	
t

	
Via

	
v

3.1.3 Assigning Header Formats with WlssSipServletMessage

A pair of getter/setter methods, setHeaderForm and getHeaderForm, are used to assign or retrieve the header formats used in the message. These methods assign or return a HeaderForm object, which is a simple Enumeration that describes the header format:

	
COMPACT—Forces all headers in the message to use compact format. This behavior is similar to the container-wide configuration value of "force compact," as described in use-compact-form in the Configuration Reference Manual.

	
LONG—Forces all headers in the message to use long format. This behavior is similar to the container-wide configuration value of "force long," as described in use-compact-form in the Configuration Reference Manual.

	
DEFAULT—Defers the header format to the container-wide configuration value set in use-compact-form.

SipServletResponse.setHeaderForm can be used in combination with SipServletMessage.setHeader and the container-level configuration parameter, use-compact-form.

3.1.4 Summary of API and Configuration Behavior

Header formats can be specified at the header, message, and SIP Servlet container levels. Table 3-1 shows the header format that results when adding a new header with SipServletMessage.setHeader, given different container configurations and message-level settings with SipServletMessage.setHeaderForm.

Table 3-2 API Behavior when Adding Headers

	
SIP Servlet Container Header Configuration (use-compact-form Setting)

	
.SIPServletMessage

setHeaderForm Setting

	
SipServletMessage.

setHeader Value

	
Resulting Header

	
COMPACT

	
DEFAULT

	
"Content-Type"

	
"Content-Type"

	
COMPACT

	
DEFAULT

	
"c"

	
"c"

	
COMPACT

	
COMPACT

	
"Content-Type"

	
"c"

	
COMPACT

	
COMPACT

	
"c"

	
"c"

	
COMPACT

	
LONG

	
"Content-Type"

	
"Content-Type"

	
COMPACT

	
LONG

	
"c"

	
"Content-Type"

	
LONG

	
DEFAULT

	
"Content-Type"

	
"Content-Type"

	
LONG

	
DEFAULT

	
"c"

	
"c"

	
LONG

	
COMPACT

	
"Content-Type"

	
"c"

	
LONG

	
COMPACT

	
"c"

	
"c"

	
LONG

	
LONG

	
"Content-Type"

	
"Content-Type"

	
LONG

	
LONG

	
"c"

	
"Content-Type"

	
FORCE_COMPACT

	
DEFAULT

	
"Content-Type"

	
"c"

	
FORCE_COMPACT

	
DEFAULT

	
"c"

	
"c"

	
FORCE_COMPACT

	
COMPACT

	
"Content-Type"

	
"c"

	
FORCE_COMPACT

	
COMPACT

	
"c"

	
"c"

	
FORCE_COMPACT

	
LONG

	
"Content-Type"

	
"Content-Type"

	
FORCE_COMPACT

	
LONG

	
"c"

	
"Content-Type"

	
FORCE_LONG

	
DEFAULT

	
"Content-Type"

	
"Content-Type"

	
FORCE_LONG

	
DEFAULT

	
"c"

	
"Content-Type"

	
FORCE_LONG

	
COMPACT

	
"Content-Type"

	
"c"

	
FORCE_LONG

	
COMPACT

	
"c"

	
"c"

	
FORCE_LONG

	
LONG

	
"Content-Type"

	
"Content-Type"

	
FORCE_LONG

	
LONG

	
"c"

	
"Content-Type"

Table 3-1 shows the system header format that results when setting the header format with WlssSipServletResponse.setUseHeaderForm given different container configuration values.

Table 3-3 API Behavior for System Headers

	
SIP Servlet Container Header Configuration (use-compact-form Setting)

	
SipServletMessage.

setHeaderForm Setting

	
Resulting Contact Header

	
COMPACT

	
DEFAULT

	
"m"

	
COMPACT

	
COMPACT

	
"m"

	
COMPACT

	
LONG

	
"Contact"

	
LONG

	
DEFAULT

	
"Contact"

	
LONG

	
COMPACT

	
"m"

	
LONG

	
LONG

	
"Contact"

	
FORCE_COMPACT

	
DEFAULT

	
"m"

	
FORCE_COMPACT

	
COMPACT

	
"m"

	
FORCE_COMPACT

	
LONG

	
"Contact"

	
FORCE_LONG

	
DEFAULT

	
"Contact"

	
FORCE_LONG

	
COMPACT

	
"m"

	
FORCE_LONG

	
LONG

	
"Contact"

3.2 Using Content Indirection in SIP Servlets

This section describes how to develop SIP Servlets that work with indirect content specified in the SIP message body.

3.2.1 Overview of Content Indirection

Data provided by the body of a SIP message can be included either directly in the SIP message body, or indirectly by specifying an HTTP URL and metadata that describes the URL content. Indirectly specifying the content of the message body is used primarily in the following scenarios:

	
When the message bodies include large volumes of data. In this case, content indirection can be used to transfer the data outside of the SIP network (using a separate connection or protocol).

	
For bandwidth-limited applications. In this case, content indirection provides enough metadata for the application to determine whether or not it must retrieve the message body (potentially degrading performance or response time).

OWLCS provides a simple API that you can use to work with indirect content specified in SIP messages.

3.2.2 Using the Content Indirection API

The content indirection API provided by OWLCS helps you quickly determine if a SIP message uses content indirection, and to easily retrieve all metadata associated with the indirect content. The basic API consists of a utility class, com.bea.wcp.sip.util.ContentIndirectionUtil, and an interface for accessing content metadata, com.bea.wcp.sip.util.

SIP Servlets can use the utility class to identify SIP messages having indirect content, and to retrieve an ICParsedData object representing the content metadata. The ICParsedData object has simple "getter" methods that return metadata attributes.

3.2.3 Additional Information

Complete details about content indirection are available in RFC 4483.

See the Oracle Fusion Middleware WebLogic Communication Services API Reference for additional documentation about the content indirection API.

3.3 Generating SNMP Traps from Application Code

This section describes how to use the OWLCS SipServletSnmpTrapRuntimeMBean to generate SNMP traps from within a SIP Servlet.

3.3.1 Overview

OWLCS includes a runtime MBean, SipServletSnmpTrapRuntimeMBean, that enables applications to easily generate SNMP traps. The OWLCS MIB contains seven new OIDs that are reserved for traps generated by an application. Each OID corresponds to a severity level that the application can assign to a trap, in order from the least severe to the most severe:

	
Info

	
Notice

	
Warning

	
Error

	
Critical

	
Alert

	
Emergency

To generate a trap, an application simply obtains an instance of the SipServletSnmpTrapRuntimeMBean and then executes a method that corresponds to the desired trap severity level (sendInfoTrap(), sendWarningTrap(), sendErrorTrap(), sendNoticeTrap(), sendCriticalTrap(), sendAlertTrap(), and sendEmergencyTrap()). Each method takes a single parameter—the String value of the trap message to generate.

For each SNMP trap generated in this manner, OWLCS also automatically transmits the Servlet name, application name, and OWLCS instance name associated with the calling Servlet.

3.3.2 Requirement for Accessing SipServletSnmpTrapRuntimeMBean

In order to obtain a SipServletSnmpTrapRuntimeMBean, the calling SIP Servlet must be able to perform MBean lookups from the Servlet context. To enable this functionality, you must assign a OWLCS administrator role-name entry to the security-role and run-as role elements in the sip.xml deployment descriptor. Example 3-1 shows a sample sip.xml file with the required role elements highlighted.

Example 3-1 Sample Role Requirement in sip.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sip-app
 PUBLIC "-//Java Community Process//DTD SIP Application 1.0//EN"
 "http://www.jcp.org/dtd/sip-app_1_0.dtd">
<sip-app>
 <display-name>My SIP Servlet</display-name>
 <distributable/>
 <servlet>
 <servlet-name>myservlet</servlet-name>
 <servlet-class>com.mycompany.MyServlet</servlet-class>
 <run-as>
 <role-name>weblogic</role-name>
 </run-as>
 </servlet>
 <servlet-mapping>
 <servlet-name>myservlet</servlet-name>
 <pattern>
 <equal>
 <var>request.method</var>
 <value>INVITE</value>
 </equal>
 </pattern>
 </servlet-mapping>
 <security-role>
 <role-name>weblogic</role-name>
 </security-role>
</sip-app>

3.3.3 Obtaining a Reference to SipServletSnmpTrapRuntimeMBean

Any SIP Servlet that generates SNMP traps must first obtain a reference to the SipServletSnmpTrapRuntimeMBean. Example 3-2 shows the sample code for a method to obtain the MBean.

Example 3-2 Sample Method for Accessing SipServletSnmpTrapRuntimeMBean

public SipServletSnmpTrapRuntimeMBean getServletSnmpTrapRuntimeMBean() {
 MBeanHome localHomeB = null;
 SipServletSnmpTrapRuntimeMBean ssTrapMB = null;

 try
 {
 Context ctx = new InitialContext();
 localHomeB = (MBeanHome)ctx.lookup(MBeanHome.LOCAL_JNDI_NAME);
 ctx.close();
 } catch (NamingException ne){
 ne.printStackTrace();
 }

 Set set = localHomeB.getMBeansByType("SipServletSnmpTrapRuntime");
 if (set == null || set.isEmpty()) {
 try {
 throw new ServletException("Unable to lookup type 'SipServletSnmpTrapRuntime'");
 } catch (ServletException e) {
 e.printStackTrace();
 }
 }
 ssTrapMB = (SipServletSnmpTrapRuntimeMBean) set.iterator().next();
 return ssTrapMB;
}

3.3.4 Generating an SNMP Trap

In combination with the method shown in Example 3-2, Example 3-3 demonstrates how a SIP Servlet would use the MBean instance to generate an SNMP trap in response to a SIP INVITE.

Example 3-3 Generating a SNMP Trap

public class MyServlet extends SipServlet {
 private SipServletSnmpTrapRuntimeMBean sipServletSnmpTrapMb = null;

 public MyServlet () {
 }

 public void init (ServletConfig sc) throws ServletException {
 super.init (sc);
 sipServletSnmpTrapMb = getServletSnmpTrapRuntimeMBean();
 }

 protected void doInvite(SipServletRequest req) throws IOException {
 sipServletSnmpTrapMb.sendInfoTrap("Rx Invite from " + req.getRemoteAddr() + "with call id" + req.getCallId());
 }
}

4 Requirements and Best Practices for SIP Applications

This chapter describes requirements and best practices for developing applications for deployment to OWLCS. It contains the following sections:

	
Section 4.1, "Overview of Developing Distributed Applications for Oracle Communications Converged Application Server"

	
Section 4.2, "Applications Must Not Create Threads"

	
Section 4.3, "Servlets Must Be Non-Blocking"

	
Section 4.4, "Store all Application Data in the Session"

	
Section 4.5, "All Session Data Must Be Serializable"

	
Section 4.6, "Use setAttribute() to Modify Session Data in “No-Call” Scope"

	
Section 4.7, "send() Calls Are Buffered"

	
Section 4.8, "Mark SIP Servlets as Distributable"

	
Section 4.9, "Use SipApplicationSessionActivationListener Sparingly"

	
Section 4.10, "Session Expiration Best Practices"

	
Section 4.11, "Observe Best Practices for Java EE Applications"

4.1 Overview of Developing Distributed Applications for Oracle Communications Converged Application Server

In a typical production environment, SIP applications are deployed to a cluster of OWLCS instances that form the engine tier cluster. A separate cluster of servers in the SIP data tier provides a replicated, in-memory database of the call states for active calls. In order for applications to function reliably in this environment, you must observe the programming practices and conventions described in the sections that follow to ensure that multiple deployed copies of your application perform as expected in the clustered environment.

If you are porting an application from a previous version of OWLCS, the conventions and restrictions described below may be new to you, because the 2.0 and 2.1 versions of WebLogic SIP Server implementations did not support clustering. Thoroughly test and profile your ported applications to discover problems and ensure adequate performance in the new environment.

4.2 Applications Must Not Create Threads

OWLCS is a multi-threaded application server that carefully manages resource allocation, concurrency, and thread synchronization for the modules it hosts. To obtain the greatest advantage from the OWLCS architecture, construct your application modules according to the SIP Servlet and Java EE API specifications.

Avoid application designs that require creating new threads in server-side modules such as SIP Servlets:

	
The SIP Servlet container automatically locks the associated call state when invoking the doxxx method of a SIP Servlet. If the doxxx method spawns additional threads or accesses a different call state before returning control, deadlock scenarios and lost updates to session data can occur.

	
Applications that create their own threads do not scale well. Threads in the JVM are a limited resource that must be allocated thoughtfully. Your applications may break or cause poor OWLCS performance when the server load increases. Problems such as deadlocks and thread starvation may not appear until the application is under a heavy load.

	
Multithreaded modules are complex and difficult to debug. Interactions between application-generated threads and WebLogic Server threads are especially difficult to anticipate and analyze.

	
The WlssSipApplicationSession.doAction() method, described in "Use setAttribute() to Modify Session Data in “No-Call” Scope", does not provide synchronization for spawned Java threads. Any threads created within doAction() can execute another doAction() on the same WlssSipApplicationSession. Similarly, main threads that use doAction() to access a different wlssSipApplicationSession can lead to deadlocks, because the container automatically locks main threads when processing incoming SIP messages. "Use setAttribute() to Modify Session Data in “No-Call” Scope" describes a potential deadlock situation.

	
Caution:

If your application must spawn threads, you must guard against deadlocks and carefully manage concurrent access to session data. At a minimum, never spawn threads inside the service method of a SIP Servlet. Instead, maintain a separate thread pool outside of the service method, and be careful to synchronize access to all session data.

4.3 Servlets Must Be Non-Blocking

SIP and HTTP Servlets must not block threads in the body of a SIP method because the call state remains locked while the method is invoked. For example, no Servlet method must actively wait for data to be retrieved or written before returning control to the SIP Servlet container.

4.4 Store all Application Data in the Session

If you deploy your application to more than one engine tier server (in a replicated OWLCS configuration) you must store all application data in the session as session attributes. In a replicated configuration, engine tier servers maintain no cached information; all application data must be de-serialized from the session attribute available in SIP data tier servers.

4.5 All Session Data Must Be Serializable

To support in-memory replication of SIP application call states, you must ensure that all objects stored in the SIP Servlet session are serializable. Every field in an object must be serializable or transient in order for the object to be considered serializable. If the Servlet uses a combination of serializable and non-serializable objects, OWLCS cannot replicate the session state of the non-serializable objects.

4.6 Use setAttribute() to Modify Session Data in “No-Call” Scope

The SIP Servlet container automatically locks the associated call state when invoking the doxxx method of a SIP Servlet. However, applications may also attempt to modify session data in "no-call" scope. No-call scope refers to the context where call state data is modified outside the scope of a normal doxxx method. For example, data is modified in no-call scope when an HTTP Servlet attempts to modify SIP session data, or when a SIP Servlet attempts to modify a call state other than the one that the container locked before invoking the Servlet.

Applications must always use the SIP Session's setAttribute method to change attributes in no-call scope. Likewise, use removeAttribute to remove an attribute from a session object. Each time setAttribute/removeAttribute is used to update session data, the SIP Servlet container obtains and releases a lock on the associated call state. (The methods enqueue the object for updating, and return control immediately.) This ensures that only one application modifies the data at a time, and also ensures that your changes are replicated across SIP data tier nodes in a cluster.

If you use other set methods to change objects within a session, OWLCS cannot replicate those changes.

Note that the OWLCS container does not persist changes to a call state attribute that are made after calling setAttribute. For example, in the following code sample the setAttribute call immediately modifies the call state, but the subsequent call to modifyState() does not:

 Foo foo = new Foo(..);
 appSession.setAttribute("name", foo); // This persists the call state.
 foo.modifyState(); // This change is not persisted.

Instead, ensure that your Servlet code modifies the call state attribute value before calling setAttribute, as in:

 Foo foo = new Foo(..);
 foo.modifyState();
 appSession.setAttribute("name", foo);

Also, keep in mind that the SIP Servlet container obtains a lock to the call state for each individual setAttribute call. For example, when executing the following code in an HTTP Servlet, the SIP Servlet container obtains and releases a lock on the call state lock twice:

appSess.setAttribute("foo1", "bar2");
appSess.setAttribute("foo2", "bar2");

This locking behavior ensures that only one thread modifies a call state at any given time. However, another process could potentially modify the call state between sequential updates. The following code is not considered thread safe when done no-call state:

Integer oldValue = appSession.getAttribute("counter");
Integer newValue = incrementCounter(oldValue);
appSession.setAttribute("counter", newValue);

To make the above code thread safe, you must enclose it using the wlssAppSession.doAction method, which ensures that all modifications made to the call state are performed within a single transaction lock, as in:

wlssAppSession.doAction(new WlssAction() {
 public Object run() throws Exception {
 Integer oldValue = appSession.getAttribute("counter");
 Integer newValue = incrementCounter(oldValue);
 appSession.setAttribute("counter", newValue);
 return null;
 }
 });

Finally, be careful to avoid deadlock situations when locking call states in a "doSipMethod" call, such as doInvite(). Keep in mind that the OWLCS container has already locked the call state when the instructions of a doSipMethod are executed. If your application code attempts to access the current call state from within such a method (for example, by accessing a session that is stored within a data structure or attribute), the lock ordering results in a deadlock.

Example 4-1 shows an example that can result in a deadlock. If the code is executed by the container for a call associated with callAppSession, the locking order is reversed and the attempt to obtain the session with getApplicationSession(callId) causes a deadlock.

Example 4-1 Session Access Resulting in a Deadlock

WlssSipApplicationSession confAppSession = (WlssSipApplicationSession) appSession;
confAppSession.doAction(new WlssAction() {
 // confAppSession is locked
 public Object run() throws Exception {
 String callIds = confAppSession.getAttribute("callIds");
 for (each callId in callIds) {
 callAppSess = Session.getApplicationSession(callId);
 // callAppSession is locked
 attributeStr += callAppSess.getAttribute("someattrib");
 }
 confAppSession.setAttribute("attrib", attributeStr);
 }
}

See Section 6.3.1, "Modifying the SipApplicationSession" for more information about using the com.bea.wcp.sip.WlssAction interface.

4.7 send() Calls Are Buffered

If your SIP Servlet calls the send() method within a SIP request method such as doInvite(), doAck(), doNotify(), and so forth, keep in mind that the OWLCS container buffers all send() calls and transmits them in order after the SIP method returns. Applications cannot rely on send() calls to be transmitted immediately as they are called.

	
Caution:

Applications must not wait or sleep after a call to send() because the request or response is not transmitted until control returns to the SIP Servlet container.

4.8 Mark SIP Servlets as Distributable

If you have designed and programmed your SIP Servlet to be deployed to a cluster environment, you must include the distributable marker element in the Servlet's deployment descriptor when deploying the application to a cluster of engine tier servers. If you omit the distributable element, OWLCS does not deploy the Servlet to a cluster of engine tier servers. If you mark distributable in sip.xml it must also be marked in the web.xml for a WAR file.

The distributable element is not required, and is ignored if you deploy to a single, combined-tier (non-replicated) OWLCS instance.

4.9 Use SipApplicationSessionActivationListener Sparingly

The SIP Servlet 1.1 specification introduces SipApplicationSessionActivationListener, which can provide callbacks to an application when SIP Sessions are passivated or activated. Keep in mind that callbacks occur only in a replicated OWLCS deployment. Single-server deployments use no SIP data tier, so SIP Sessions are never passivated.

Also, keep in mind that in a replicated deployment OWLCS activates and passivates a SIP Session many times, before and after SIP messages are processed for the session. (This occurs normally in any replicated deployment, even when RDBMS-based persistence is not configured.) Because this constant cycle of activation and passivation results in frequent callbacks, use SipApplicationSessionActivationListener sparingly in your applications.

4.10 Session Expiration Best Practices

For a JSR289 application, the container is more "intelligent" in removing sessions. For example, there is no need to explicity call invalidate() on a session or sipappsession.

However, if setExpirs() is used on a session and the application is of a JSR289 type then that call has no effect unless setInvalidateWhenRead(false) is called on the session.

4.11 Observe Best Practices for Java EE Applications

If you are deploying applications that use other Java EE APIs, observe the basic clustering guidelines associated with those APIs. For example, if you are deploying EJBs you must design all methods to be idempotent and make EJB homes clusterable in the deployment descriptor. See "Clustering Best Practices" for more information.

5 Composing SIP Applications

This chapter describes how to use OWLCS application composition features, in the following sections:

	
Section 5.1, "Application Composition Model"

	
Section 5.2, "Using the Default Application Router"

	
Section 5.3, "Configuring a Custom Application Router"

	
Section 5.4, "Session Key-Based Request Targeting"

	
Note:

The SIP Servlet v1.1 specification (http://jcp.org/en/jsr/detail?id=289) describes a formal application selection and composition process, which is fully implemented in OWLCS. Use the SIP Servlet v1.1 techniques, as described in this document, for all new development. Application composition techniques described in earlier versions of OWLCS are now deprecated.
OWLCS provides backwards compatibility for applications using version 1.0 composition techniques, provided that:

	
you do not configure a custom Application Router, and

	
you do not configure Default Application Router properties.

5.1 Application Composition Model

Application composition is the process of "chaining" multiple SIP applications into a logical path to apply services to a SIP request. The SIP Servlet v1.1 specification introduces an Application Router (AR) deployment, which performs a key role in composing SIP applications. The Application Router examines an initial SIP request and uses custom logic to determine which SIP application must process the request. In OWLCS, all initial requests are first delivered to the AR, which determines the application used to process the request.

OWLCS provides a default Application Router, which can be configured using a text file. However, most installations can develop and deploy a custom Application Router by implementing the SipApplicationRouter interface. A custom Application Router enables you to consult data stores when determining which SIP application must handle a request.

In contrast to the Application Router, which requires knowledge of which SIP applications are available for processing a message, individual SIP applications remain independent from one another. An individual application performs a very specific service for a SIP request, without requiring any knowledge of other applications deployed on the system. (The Application Router does require knowledge of deployed applications, and the SipApplicationRouter interface provides for automatic notification of application deployment and undeployment.)

Individual SIP applications may complete their processing of an initial request by proxying or relaying the request, or by terminating the request as a User Agent Server (UAS). If an initial request is proxied or relayed, the SIP container again forwards the request to the Application Router, which selects the next SIP application to provide a service for the request. In this way, the AR can chain multiple SIP applications as needed to process a request. The chaining process is terminated when:

	
a selected SIP application acts as a UAS to terminate the chain, or

	
there are no more applications to select for that request. (In this case, the request is sent out.)

When the chain is terminated and the request sent, the SIP container maintains the established path of applications for processing subsequent requests, and the AR is no longer consulted.

Figure 5-1 shows the use of an Application Router for applying multiple service to a SIP request.

Figure 5-1 Composed Application Model

[image: Compose application mode]

Note that the AR may select remote as well as local applications; the chain of services need not reside within the same OWLCS container.

5.2 Using the Default Application Router

OWLCS includes a Default Application Router (DAR) having the basic functionality described in the SIP Servlet Specification v1.1 (http://jcp.org/en/jsr/detail?id=289), Appendix C: Default Application Router. In summary, the OWLCS DAR implements all methods of the SipApplicationRouter interface, and is configured using the simple Java properties file described in the v1.1 specification.

Each line of the DAR properties file specifies one or more SIP methods, and is followed by SIP routing information in comma-delimited format. The DAR initially reads the properties file on startup, and then reads it each time a SIP application is deployed or undeployed from the container.

To specify the location of the configuration file used by the DAR, configure the properties using the Administration Console, as described in "Configuring a Custom Application Router", or include the following parameter when starting the OWLCS instance:

-Djavax.servlet.sip.ar.dar.configuration

(To specify a property file, rather than a URI, include the prefix file:///) This Java parameter is specified at the command line, therefore it can be included in your server startup script.

See Appendix C in the SIP Servlet Specification v1.1 (http://jcp.org/en/jsr/detail?id=289) for detailed information about the format of routing information used by the Default Application Router.

Note that the OWLCS DAR accepts route region strings in addition to "originating," "terminating," and "neutral." Each new string value is treated as an extended route region. Also, the OWLCS DAR uses the order of properties in the configuration file to determine the route entry sequence; the state_info value has no effect when specified in the DAR configuration.

5.3 Configuring a Custom Application Router

By default OWLCS uses its DAR implementation.

If you develop a custom Application Router, you must store the implementation for the AR in the /approuter subdirectory of the domain home directory. Supporting libraries for the AR can be stored in a /lib subdirectory within /approuter. (If you have multiple implementations of SipApplicationRouter, use the -Djavax.servlet.sip.ar.spi.SipApplicationRouterProvider option at startup to specify which one to use.)

	
Note:

In a clustered environment, the custom AR is deployed to all engine tier instances of the domain; you cannot deploy different AR implementations within the same domain.

See Section 15 in the SIP Servlet Specification v1.1 (http://jcp.org/en/jsr/detail?id=289) for more information about the function of the AR. See also the SIP Servlet v1.1 API for information about how to implement a custom AR.

5.4 Session Key-Based Request Targeting

The SIP Servlet v1.1 specification also provides a mechanism for associating an initial request with an existing SipApplicationSession object. This mechanism is called session key-based targeting. Session key-based targeting is used to direct initial requests having a particular subscriber (request URI) or region, or other feature to an already-existing SipApplicationSession, rather than generating a new session. To use this targeting mechanism with an application, you create a method that generates a unique key and annotate that method with @SipApplicationKey. When the SIP container selects that application (for example, as a result of the AR choosing it for an initial request), it obtains a key using the annotated method, and uses the key and application name to determine if the SipApplicationSession exists. If one exists, the container associates the new request with the existing session, rather than generating a new session.

	
Note:

If you develop a spiral proxy application using this targeting mechanism, and the application modifies the record-route more than once, it must generate different keys for the initial request, if necessary, when processing record-route hops. If it does not, then the application cannot discriminate record-route hops for subsequent requests.

See section 15 in the SIP Servlet Specification v1.1 (http://jcp.org/en/jsr/detail?id=289) for more information about using session key-based targeting.

7 Enabling Message Logging

This chapter describes how to use message logging features on a development system, in the following sections:

	
Section 7.1, "Overview"

	
Section 7.2, "Enabling Message Logging"

	
Section 7.3, "Specifying Content Types for Unencrypted Logging"

	
Section 7.4, "Example Message Log Configuration and Output"

	
Section 7.5, "Configuring Log File Rotation"

7.1 Overview

Message logging records SIP and Diameter messages (both requests and responses) received by OWLCS. This requires that the logging level be set to at least the INFO level. You can use the message log in a development environment to check how external SIP requests and SIP responses are received. By outputting the distinguishable information of SIP dialogs such as Call-IDs from the application log, and extracting relevant SIP messages from the message log, you can also check SIP invocations from HTTP servlets and so forth.

When you enable message logging, OWLCS records log records in the Managed Server log file associated with each engine tier server instance by default. You can optionally log the messages in a separate, dedicated log file, as described in "Configuring Log File Rotation".

7.2 Enabling Message Logging

You enable and configure message logging by adding a message-debug element to the sipserver.xml configuration file. OWLCS provides two different methods of configuring the information that is logged:

	
Specify a predefined logging level (terse, basic, or full), or

	
Identify the exact portions of the SIP message that you want to include in a log record, in a specified order

The sections that follow describe each method of configuring message logging functionality using elements in the sipserver.xml file. Note that you can also set these elements using the Administration Console, in the Configuration->Message Debug tab of the SipServer console extension node.

7.2.1 Specifying a Predefined Logging Level

The optional level element in message-debug specifies a predefined collection of information to log for each SIP request and response. The following levels are supported:

	
terse—Logs only the domain setting, logging Servlet name, logging level, and whether or not the message is an incoming message.

	
basic—Logs the terse items plus the SIP message status, reason phrase, the type of response or request, the SIP method, the From header, and the To header.

	
full—Logs the basic items plus all SIP message headers plus the timestamp, protocol, request URI, request type, response type, content type, and raw content.

Example 7-1 shows a configuration entry that specifies the full logging level.

Example 7-1 Sample Message Logging Level Configuration in sipserver.xml

<message-debug>
 <level>full</level>
</message-debug>

7.2.2 Customizing Log Records

OWLCS also enables you to customize the exact content and order of each message log record. To configure a custom log record, you provide a format element that defines a log record pattern and one or more tokens to log in each record.

	
Note:

If you specify a format element with a <level>full</level> level element undefined) in message-debug, OWLCS uses "full" message debugging and ignores the format entry. The format entry can be used in combination with either the "terse" or "basic" message-debug levels.

Table 7-1 describes the nested elements used in the format element.

Table 7-1 Nested format Elements

	param-name	param-value Description
	
pattern

	
Specifies the pattern used to format a message log entry. The format is defined by specifying one or more integers, bracketed by "{" and "}". Each integer represents a token defined later in the format definition.

	
token

	
A string token that identifies a portion of the SIP message to include in a log record. Table 7-2 provides a list of available string tokens. You can define multiple token elements as needed to customize your log records.

Table 7-2 describes the string token values used to specify information in a message log record:

Table 7-2 Available Tokens for Message Log Records

	Token	Description	Example or Type
	
%call_id

	
The Call-ID header. It is blank when forwarding.

	
43543543

	
%content

	
The raw content.

	
Byte array

	
%content_length

	
The content length.

	
String value

	
%content_type

	
The content type.

	
String value

	
%cseq

	
The CSeq header. It is blank when forwarding.

	
INVITE 1

	
%date

	
The date when the message was received. ("yyyy/MM/dd" format)

	
2004/05/16

	
%from

	
The From header (all). It is blank when forwarding.

	
sip:foo@oracle.com;tag=438943

	
%from_addr

	
The address portion of the From header.

	
foo@oracle.com

	
%from_tag

	
The tag parameter of the From header. It is blank when forwarding.

	
12345

	
%from_uri

	
The SIP URI part of the From header. It is blank when forwarding.

	
sip:foo@oracle.com

	
%headers

	
A List of message headers stored in a 2-element array. The first element is the name of the header, while the second is a list of all values for the header.

	
List of headers

	
%io

	
Whether the message is incoming or not.

	
TRUE

	
%method

	
The name of the SIP method. It records the method name to invoke when forwarding.

	
INVITE

	
%msg

	
Summary Call ID

	
String value

	
%mtype

	
The type of receiving.

	
SIPREQ

	
%protocol

	
The protocol used.

	
UDP

	
%reason

	
The response reason.

	
OK

	
%req_uri

	
The request URI. This token is only available for the SIP request.

	
sip:foo@oracle.com

	
%status

	
The response status.

	
200

	
%time

	
The time when the message was received. ("HH:mm:ss" format)

	
18:05:27

	
%timestampmillis

	
Time stamp in milliseconds.

	
9295968296

	
%to

	
The To header (all). It is blank when forwarding.

	
sip:foo@oracle.com;tag=438943

	
%to_addr

	
The address portion of the To header.

	
foo@oracle.com

	
%to_tag

	
The tag parameter of the To header. It is blank when forwarding.

	
12345

	
%to_uri

	
The SIP URI part of the To header. It is blank when forwarding.

	
sip:foo@oracle.com

See "Example Message Log Configuration and Output" for an example sipserver.xml file that defines a custom log record using two tokens.

7.3 Specifying Content Types for Unencrypted Logging

By default OWLCS uses String format (UTF-8 encoding) to log the content of SIP messages having a text or application/sdp Content-Type value. For all other Content-Type values, OWLCS attempts to log the message content using the character set specified in the charset parameter of the message, if one is specified. If no charset parameter is specified, or if the charset value is invalid or unsupported, OWLCS uses Base-64 encoding to encrypt the message content before logging the message.

If you want to avoid encrypting the content of messages under these circumstances, specify a list of String-representable Content-Type values using the string-rep element in sipserver.xml. The string-rep element can contain one or more content-type elements to match. If a logged message matches one of the configured content-type elements, OWLCS logs the content in String format using UTF-8 encoding, regardless of whether or not a charset parameter is included.

	
Note:

You do not need to specify text/* or application/sdp content types as these are logged in String format by default.

Example 7-2 shows a sample message-debug configuration that logs String content for three additional Content-Type values, in addition to text/* and application/sdp content.

Example 7-2 Logging String Content for Additional Content Types

 <message-debug>
 <level>full</level>
 <string-rep>
 <content-type>application/msml+xml</content-type>
 <content-type>application/media_control+xml</content-type>
 <content-type>application/media_control</content-type>
 </string-rep>
 </message-debug>

7.4 Example Message Log Configuration and Output

Example 7-3 shows a sample message log configuration in sipserver.xml. Example 7-4, "Sample Message Log Output" shows sample output from the Managed Server log file.

Example 7-3 Sample Message Log Configuration in sipserver.xml

<message-debug>
 <format>
 <pattern>{0} {1}</pattern>
 <token>%headers</token>
 <token>%content</token>
 </format>
</message-debug>

Example 7-4 Sample Message Log Output

####<Aug 10, 2005 7:12:08 PM PDT> <Info> <WLSS.Trace> <jiri.bea.com> <myserver> <ExecuteThread: '11' for queue: 'sip.transport.Default'> <<WLS Kernel>> <> <BEA- 331802> <SIP Tracer: logger Message: To: sut <sip:invite@10.32.5.230:5060> <mailto:sip:invite@10.32.5.230:5060>
Content-Length: 136
Contact: user:user@10.32.5.230:5061
CSeq: 1 INVITE
Call-ID: 59.3170.10.32.5.230@user.call.id
From: user <sip:user@10.32.5.230:5061> <mailto:sip:user@10.32.5.230:5061> ;tag=59
Via: SIP/2.0/UDP 10.32.5.230:5061
Content-Type: application/sdp
Subject: Performance Test
Max-Forwards: 70
 v=0
o=user1 53655765 2353687637 IN IP4 127.0.0.1
s=-
c=IN IP4 127.0.0.1
t=0 0
m=audio 10000 RTP/AVP 0
a=rtpmap:0 PCMU/8000
>
####<Aug 10, 2005 7:12:08 PM PDT> <Info> <WLSS.Trace> <jiri.bea.com> <myserver> <ExecuteThread: '11' for queue: 'sip.transport.Default'> <<WLS Kernel>> <> <BEA- 331802> <SIP Tracer: logger Message: To: sut <sip:invite@10.32.5.230:5060> <mailto:sip:invite@10.32.5.230:5060>
Content-Length: 0
CSeq: 1 INVITE
Call-ID: 59.3170.10.32.5.230@user.call.id
Via: SIP/2.0/UDP 10.32.5.230:5061
From: user <sip:user@10.32.5.230:5061> <mailto:sip:user@10.32.5.230:5061> ;tag=59
Server: Oracle WebLogic Communications Server 10.3.1.0
 >

7.5 Configuring Log File Rotation

Message log entries for SIP and Diameter messages are stored in the main OWLCS log file by default. You can optionally store the messages in a dedicated log file. Using a separate file makes it easier to locate message logs, and also enables you to use OWLCS's log rotation features to better manage logged data.

Log rotation is configured using several elements nested within the main message-debug element in sipserver.xml. As with the other XML elements described in this section, you can also configure values using the Configuration->Message Debug tab of the SIP Server Administration Console extension.

Table 7-3 describes each element. Note that a server restart is necessary in order to initiate independent logging and log rotation.

Table 7-3 XML Elements for Configuring Log Rotation

	Element	Description
	
logging-enabled

	
Determines whether a separate log file is used to store message debug log messages. By default, this element is set to false and messages are logged in the general log file.

	
file-min-size

	
Configures the minimum size, in kilobytes, after which the server automatically rotate log messages into another file. This value is used when the rotation-type element is set to bySize.

	
log-filename

	
Defines the name of the log file for storing messages. By default, the log files are stored under domain_home/servers/server_name/logs.

	
rotation-type

	
Configures the criterion for moving older log messages to a different file. This element may have one of the following values:

	
bySize—This default setting rotates log messages based on the specified file-min-size.

	
byTime—This setting rotates log messages based on the specified rotation-time.

	
none—Disables log rotation.

	
number-of-files-limited

	
Specifies whether or not the server places a limit on the total number of log files stored after a log rotation. By default, this element is set to false.

	
file-count

	
Configures the maximum number of log files to keep when number-of-files-limited is set to true.

	
rotate-log-on-startup

	
Determines whether the server must rotate the log file at server startup time.

	
log-file-rotation-dir

	
Configures a directory in which to store rotated log files. By default, rotated log files are stored in the same directory as the active log file.

	
rotation-time

	
Configures a start time for log rotation when using the byTime log rotation criterion.

	
file-time-span

	
Specifies the interval, in hours, after which the log file is rotated. This value is used when the rotation-type element is set to byTime.

	
date-format-pattern

	
Specifies the pattern to use for rending dates in log file entries. The value of this element must conform to the java.text.SimpleDateFormat class.

Example 7-5 shows a sample message-debug configuration using log rotation.

Example 7-5 Sample Log Rotation Configuration

<?xml version='1.0' encoding='UTF-8'?>
<sip-server xmlns="http://www.bea.com/ns/wlcp/wlss/300" xmlns:sec="http://www.bea.com/ns/weblogic/90/security" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:wls="http://www.bea.com/ns/weblogic/90/security/wls">
 <message-debug>
 <logging-enabled>true</logging-enabled>
 <file-min-size>500</file-min-size>
 <log-filename>sip-messages.log</log-filename>
 <rotation-type>byTime</rotation-type>
 <number-of-files-limited>true</number-of-files-limited>
 <file-count>5</file-count>
 <rotate-log-on-startup>false</rotate-log-on-startup>
 <log-file-rotation-dir>old_logs</log-file-rotation-dir>
 <rotation-time>00:00</rotation-time>
 <file-time-span>20</file-time-span>
 <date-format-pattern>MMM d, yyyy h:mm a z</date-format-pattern>
 </message-debug>
</sip-server>

8 Parlay X Presence Web Services

This chapter describes support for the Parlay X 2.0 Presence Web services interfaces for developing applications. The Web service functions as a Presence Network Agent which can publish, subscribe, and listen for notifications on behalf of the users of the Web service. This chapter contains the following sections:

	
Section 8.1, "Introduction"

	
Section 8.2, "Installing the Web Services"

	
Section 8.3, "Configuring Web Services"

	
Section 8.4, "Presence Web Services Interface Descriptions"

	
Section 8.5, "Using the Presence Web Services Interfaces"

	
Section 8.6, "OWLCS Parlay X Presence Custom Error Codes"

	
Section 8.7, "Buddy List Manager API"

8.1 Introduction

OWLCS provides support for Part 14 of the Parlay X Presence Web Service as defined in the Open Service Access, Parlay X Presence Web Services, Part 14, Presence ETSI ES 202 391-14 specification. The OWLCS Parlay X Web service maps the Parlay X Web service to a SIP/IMS network according to the Open Service Access, Mapping of Parlay X Presence Web Services to Parlay/OSA APIs, Part 14, Presence Mapping, Subpart 2, Mapping to SIP/IMS Networks, ETSI TR 102 397-14-2 specification.

	
Note:

Due to the synchronous nature of the Web service, to receive a callback from the Web service the client must implement the Web service callback interface. For presence, the required interface is the PresenceNotification interface described in Open Service Access, Parlay X Presence Web Services, Part 14, Presence ETSI ES 202 391-14.

The HTTP server that hosts the presence Web service is a Presence Network Agent or a Parlay X to SIP gateway.

8.2 Installing the Web Services

The Web services are packaged as a standard .ear file and can be deployed the same as any other Web services through Admin Console. The .ear file contains two .war files that implement the two interfaces. The Web services use the Oracle SDP Platform, Client and Presence Commons shared libraries.

8.3 Configuring Web Services

The following four mbean attributes are configurable for the Presence Supplier Web service:

	
SIPOutboundProxy: SipURI of the outbound proxy for SIP message. Empty string means no outbound proxy. For example, sip:127.0.0.1:5060; lr;transport=tcp.

	
PublicXCAPRootUrl: URI where the Presence Server is deployed. This attribute is used to update the presence rules stored on the XDMS. Example: http://127.0.0.1:8001/services/

	
Expires: Set the time in seconds after which the PUBLISH by a presentity expires. Default value is 3600 (that is, 1 hour).

	
SessionTimeout: Set the time in seconds after which HTTP sessions times out. Data for all timed out sessions is discarded.

For Presence Consumer, there are three mbean attributes that can be configured.

	
SIPOutboundProxy: SipURI of the outbound proxy for SIP message. Empty string means no outbound proxy. For example, sip:127.0.0.1:5060; lr;transport=tcp.

	
Expires: Set the time in seconds after which the SUBSCRIBE by a watcher expires. Default value is 3600 (ie. 1 hour).

	
SessionTimeout: Set the time in seconds after which HTTP sessions times out. Data for all timed out sessions is discarded.

8.4 Presence Web Services Interface Descriptions

The presence Web services consist of three interfaces:

	
PresenceConsumer: The watchers use these methods to obtain presence data (Table 8-1).

	
PresenceNotification: The presence consumer interface uses the client callback defined in this interface to send notifications (Table 8-2).

	
PresenceSupplier: The presentity uses these methods to publish presence data and manage access to the data by its watchers (Table 8-3).

Table 8-1 PresenceConsumer Interface

	Operation	Description
	
subscribePresence

	
The Web Service sends a SUBSCRIBE to the presence server.

	
getUserPresence

	
Returns the cached presence status because the status changes of the presentity are asynchronously sent to the Web services through a SIP NOTIFY. The Web services actually have the subscription, not the Web services client.

	
startPresenceNotification

	
Enables the Web service client from receiving asynchronous notifications whenever a presentity makes change to its presence status, or presence rules document.

	
endPresenceNotification

	
Disables the web service client to receive asynchronous notifications.

Table 8-2 PresenceNotification Interface

	Operation	Description
	
statusChanged

	
The asynchronous operation is called by the Web Service when an attribute for which notifications were requested changes.

	
statusEnd

	
This method is called when the duration for the notifications (identified by the correlator) is over. In case of an error or explicit call to endPresenceNotification, this method is not called.

	
notifySubscription

	
This asynchronous method notifies the watcher that the presentity handled the pending subscription.

	
subscriptionEnded

	
This asynchronous operation is called by the Web Service to notify the watcher that the subscription has terminated.

Table 8-3 PresenceSupplier Interface

	Operation	Description
	
publish

	
Maps directly to a SIP PUBLISH.

	
getOpenSubscriptions

	
Called by the presentity (supplier) to check if any watcher wants to subscribe to its presence data. No SIP message maps to this method. Returns pending subscriptions currently in the Web service server.

	
updateSubscriptionAuthorization

	
The supplier uses this method to answer any open pending subscriptions. An XCAP PUT message is sent to the XDMS server to update the presence-rule document.

	
getMyWatchers

	
Retrieves the local list of watchers from the Web service server.

	
getSubscribedAttributes

	
Retrieves the local list of subscribed attributes from the Web service server. Currently, only returns Activity.

	
blockSubscription

	
Causes the Web service server to end a watcher subscription by modifying the XCAP document on the XDMS server (that is, putting the watcher on the block list).

8.5 Using the Presence Web Services Interfaces

This section describes how to use each of the operations in the interfaces, and includes code examples.

8.5.1 Interface: PresenceConsumer, Operation: subscribePresence

This is the first operation the application must call before using another operation in this interface. It serves two purposes:

	
It allows the Web services to associate the current HTTP session with a user.

	
It provides a context for all the other operations in this interface by subscribing to at least one presentity (SUBSCRIBE presence event).

8.5.1.1 Code Example

// Setting the attribute to activity
PresenceAttributeType pa = PresenceAttributeType.ACTIVITY;
List<PresenceAttributeType> pat = new ArrayList<PresenceAttributeType>();
pat.add(pa);

SimpleReference sr = new SimpleReference();
sr.setCorrelator("");
sr.setInterfaceName("");
sr.setEndpoint("");
consumer.subscribePresence ("sip.presentity@test.example.com" , pat, "unused", sr);

8.5.2 Interface: PresenceConsumer, Operation: getUserPresence

Call this operation to retrieve a subscribed presentity presence. If the person is offline, it returns ActivityNone and the hardstate note is written to PresenceAttribute.note. If it returns Activity_Other, the description of the activity is returned in the OtherValue field.

If the Name field is equal to "ServiceAndDeviceNote", OtherValue is a combination of the service note and the device note. Note that there can be more than one "ServiceAndDeviceNote" when the presentity is logged into multiple clients.

8.5.2.1 Code Example

PresenceAttributeType pat =
 PresenceAttributeType.ACTIVITY;
List<PresenceAttribute> result =
 consumer.getUserPresence(presentity, pat);
for (PresenceAttribute pa : result) {
 // Check to see if it is an activity type.
 if (pa.getTypeAndValue().getUnionElement() ==
 PresenceAttributeType.ACTIVITY){
 // Get the presence status.
 System.out.println("ACTIVITY: " +
 pa.getTypeAndValue().getActivity().toString());
 // Get the customized presence note.
 if (pa.getNote().length() > 0){
 System.out.println("Note: " + pa.getNote());
 }
 }
 // If this is of type OTHER, then we need to extract
 // different type of information.
 if (pa.getTypeAndValue().getUnionElement() ==
 PresenceAttributeType.OTHER){
 // This is "Activity_Other", a custom presence status.
 if (pa.getTypeAndValue().getOther()
 .getName().compareToIgnoreCase("ACTIVITY_OTHER") == 0){
 System.out.println("Other Activity->" +
 pa.getTypeAndValue().getOther().getValue() + "\n");
 } else {
 // Currently, the only other value beside ACTIVITY_OTHER is
 // "ServiceAndDeviceNote" which is the service note +
 // device note.
 System.out.println("Combined Note->" +
 pa.getTypeAndValue().getOther().getValue() + "\n");
 }
 }
}

8.5.3 Interface: PresenceNotification, Operation: statusChanged

This asynchronous operation is called by the Web Service when an attribute for which notifications were requested changes.

8.5.3.1 Code Example

public void
statusChanged(String context, String correlator, String uri,
List<PresenceAttribute> presenceAttributes) {
System.out.println("statusChanged Called:-");
System.out.println("Context = " + context);
System.out.println("Correlator = " + correlator);
System.out.println("Presentity = " + uri);
}

8.5.4 Interface: PresenceNotification, Operation: statusEnd

This method is called when the duration for the notifications (identified by the correlator) is over. In case of an error or explicit call to endPresenceNotification, this method is not called.

8.5.4.1 Code Example

public void statusEnd(String context, String correlator)
System.out.println("statusEnd Called:-");
System.out.println("Context = " + context);
System.out.println("Correlator = " + correlator);
}

8.5.5 Interface: PresenceNotification, Operation: notifySubscription

This asynchronous method notifies the watcher that the presentity handled the pending subscription.

8.5.5.1 Code Example

public void notifySubscription(String context, String uri,
List<PresencePermission> presencePermissions) {
System.out.println("notifySubscription Called:-");
System.out.println("Context = " + context);
System.out.println("Uri = " + uri);
if (presencePermissions.size() > 0){
for (PresencePermission p:presencePermissions){
System.out.println("Permission " +
p.getPresenceAttribute().value()
+ "->" + p.isDecision());
}
}
}

8.5.6 Interface: PresenceNotification, Operation: subscriptionEnded

This asynchronous operation is called by the Web Service to notify the watcher that the subscription has terminated.

8.5.6.1 Code Example

public void subscriptionEnded(String context, String uri, String reason) {
System.out.println("subscriptionEnded Called:-");
System.out.println("Context = " + context);
System.out.println("Uri = " + uri);
System.out.println("Reason = " + reason);
}

8.5.7 Interface PresenceSupplier, Operation: publish and Oracle Specific "Unpublish"

This is the first operation the application must call before using another operation in this interface. It serves three purposes:

	
It allows the Web services to associate the current HTTP session with a user.

	
It publishes the user's presence status.

	
It subscribes to watcher-info so that the Web services can keep track of any watcher requests.

There are three attributes that are of interest when performing a PUBLISH. These attributes can be set in a PresenceAttribute structure and passed into the PUBLISH method.

	
Presense status with a customized note: this is the customized note configured in the My Presence text box in Oracle Communicator. The <note> element is contained in the <person> element of the Presence Information Data Format (PIDF) XML file.

	
Device note: implicitly inserted by Oracle Communicator, or inserted from a Web service. The <note> element is contained in the <device> element of the Presence Information Data Format (PIDF) XML file.

	
Service note: configured in the Presence tab in the Oracle Communicator preferences. The <note> element is contained in the <tuple> element of the Presence Information Data Format (PIDF) XML file.

8.5.7.1 Code Example

// A simple way to publish the Presence Status
PresenceAttribute pa = new PresenceAttribute();
OtherValue other = new OtherValue();
//Set the name to "DeviceNote" to indicate the value must be used as device note.
other.setName("DeviceNote");
other.setValue("Device Name");
//More other values can be defined for ServiceNote etc
CommunicationValue comm = new CommunicationValue();
AttributeTypeAndValue typeValue = new AttributeTypeAndValue();
typeValue.setUnionElement(PresenceAttributeType.ACTIVITY);
typeValue.setActivity(activity);
typeValue.setPlace(PlaceValue.PLACE_NONE);
typeValue.setPrivacy(PrivacyValue.PRIVACY_NONE);
typeValue.setSphere(SphereValue.SPHERE_NONE);
typeValue.setCommunication(comm);
typeValue.setOther(other);
pa.setTypeAndValue(typeValue);
String note = "My Note";
pa.setNote(note);
XMLGregorianCalendar dateTime = null;
dateTime = DatatypeFactory.newInstance().newXMLGregorianCalendar(new GregorianCalendar());
pa.setLastChange(dateTime);
List<PresenceAttribute> pat = new ArrayList<PresenceAttribute>();
pat.add(pa);
supplier.publish(pat);

//To UNPUBLISH,set the OtherValue to (Expires, 0)
OtherValue other = new OtherValue();
other.setName("Expires");
other.setValue(0);

8.5.8 Interface: PresenceSupplier, Operation: getOpenSubscriptions

This operation retrieves a list of new requests to be on your watcher list.

8.5.8.1 Code Example

List<SubscriptionRequest> srList = getOpenSubscriptions();
for (SubscriptionRequest sr :srList) {
System.out.println(sr.getWatcher() .toString());
}

8.5.9 Interface: PresenceSupplier, Operation: updateSubscriptionAuthorization

This operation allows you to place a watcher on either the block or allow list.

8.5.9.1 Code Example

PresencePermission p = new PresencePermission();
p.setDecision(true);
List<PresencePermission> pp = new ArrayList<PresencePermission>();
p.setPresenceAttribute(PresenceAttributeType.ACTIVITY);
pp.add(p);
updateSubscriptionAuthorization("sip:allow@test.example.com",pp);

8.5.10 Interface: PresenceSupplier, Operation: getMyWatchers

This operation retrieves the list of watchers in your allow list.

8.5.10.1 Code Example

List<String> watchers = getMyWatchers();

for(String watcher: watchers){
System.out.println(watcher);
}

8.5.11 Interface: PresenceSupplier, Operation: getSubscribedAttributes

This operation returns only a single item of PresenceTypeAttribute.Activity. An exception is thrown if there is no existing subscription.

8.5.11.1 Code Example

List<PresenceAttributeType> pat = getSubscribedAttributes("sip:watcher@test.example.com");

8.5.12 Interface: PresenceSupplier, Operation: blockSubscription

This operation places a watcher into the block list.

8.5.12.1 Code Example

blockSubscription("sip:block.this.watcher@test.example.com");

8.6 OWLCS Parlay X Presence Custom Error Codes

Table 8-4 and Table 8-5 describe the error codes and their associated error message.

Table 8-4 OWLCS Parlay X Presence Custom Error Codes: PolicyException

	Error Code	Error Message
	
POL0001

	
General Policy Exception. It can be of following types:

SDP20201 Watcher is on the block, polite-block or pending list.

SDP20202 Subscription is pending.

	
POL0002

	
Privacy verification failed for address <address>, request is refused.

	
POL0003

	
Too many addresses specified in message part.

Table 8-5 OWLCS Parlay X Presence Custom Error Codes: ServiceException

	Error Code	Error Message
	
SVC0001

	
General Service Exception. It can be of the following types:

SDP20101 Invalid result from XDMS server.

SDP20102 Invalid HTTP session data.

SDP20103 Invalid uri.

SDP20104 Peer unavaliable.

SDP20105 Unknown host.

SDP20106 Service not avaliable.

SDP20107 Internal error.

SDP20108 User unauthenticated.

	
SVC0002

	
Invalid input value for message part.

	
SVC0003

	
Invalid input value for message part, valid values are <values>.

	
SVC0004

	
No valid addresses provided in message part.

	
SVC0005

	
Correlator <correlator> specified in message part is a duplicate

	
SVC0220

	
No subscription request from watcher <watcher> for attribute <attribute>.

	
SVC0221

	
<watcher> is not a watcher.

8.7 Buddy List Manager API

The Contact Management API (CMAPI) is an API for manipulating resource-lists (also known as Buddy Lists) and presence-rules documents. Through this high-level API it is possible to act on behalf of a user to add or remove buddies to the buddy list as well as allowing or blocking other users (watchers) from seeing the user's presence information. The CMAPI is capable of querying and manipulating those resources stored on the XDMS (XML Document Management Server). The CMAPI consists of a web service: XML Document Management Client (XDMC) Service and a Java client stub that is part of the oracle.sdp.client shared library.

8.7.1 Consuming the API

The CMAPI is part of the oracle.sdp.client shared library. Once this library is available, developers can import the package and use the API:

import oracle.sdp.presence.integration.Buddy;
import oracle.sdp.presence.integration.BuddyListManager;
import oracle.sdp.presence.integration.BuddyListManagerFactory;
import oracle.sdp.presence.integrationimpl.BuddyListManagerImpl;

8.7.1.1 Obtaining the BuddyListManagerFactory

The BuddyListManagerFactory itself follows the singleton pattern, and there is only one instance of a factory per XDMS/XDMC combination. That is, when creating a BuddyListManagerFactory, you must supply the XCAP root URL to the XDMS from where documents are downloaded, as well as supplying the URL to the XDM Client Service that is running on the client side; the XDMC Service URL is passed in through the BindingProvider.ENDPOINT_ADDRESS_PROPERTY property. For each such combination of XCAP root URL and XDM Client Service endpoint, there can only exist exactly one BuddyListManagerFactory instance. Therefore it is possible to create different factories pointing to the different XDMS/XDMC Service combinations.

Example 8-1 Obtaining an instance of the BuddyListManagerFactory

// Create the URI pointing to the XDMS.
URI xcapRoot = new URI("http://localhost:8001/services");
// Location of where the XDM Client webservice is.
String wsUrl = "http://localhost:8001/XdmClientService/services/XdmClient";
String sWsSecurityPolicy = new String[]{"oracle/wss11_saml_token_with_message_protection_client_policy"};
Map<String, Object> params = new HashMap<String,Object>();
params.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, wsUrl);
params.put(BindingProvider.USERNAME_PROPERTY, "alice");
params.put(ParlayXConstants.POLICIES, sWsSecurityPolicy);
// Obtain the instance to the factory
BuddyListManagerFactory factory = BuddyListManagerFactory.getInstance(xcapRoot, params);

Example 8-1 shows how to obtain a reference to a factory pointing to the XCAP root of localhost:8001/ services. Every operation performed on this factory is in the context of this particular XCAP root. Hence, when creating a BuddyListManager for a particular user, that BuddyListManager's XCAP root is the one of the factory through which it was created.

8.7.1.2 Creating a BuddyListManager

It is important to realize that a BuddyListManager (BLM) is acting on behalf of a particular user. Therefore, if a BLM is created for user Alice, all operations performed on that particular BLM are on behalf of Alice and manipulate her documents. Example 8-2 shows how to create a BLM for Alice through the factory created in the previous section.

Example 8-2 Obtaining a BuddyListManager for the user Alice

URI user = new URI("sip:alice@example.com");
Map<String, Object> params = new HashMap<String,Object>();
params.put(XDMClientFactory.PROP_ASSERTED_IDENTITY, assertedId);
BuddyListManager manager = factory.createBuddyListManager(user, params);

Example 8-2 shows how to create a BLM for the user Alice with SIP address of sip:alice@example.com. If manipulation of the buddy list and presence rules document of another user is required, then a separate BLM must be created with the appropriate SIP address.

8.7.1.3 Adding a Buddy to a Buddy List and Retrieving the List

Adding a buddy to a buddy list is done by first creating a buddy, setting the information needed on that buddy and then using the BLM to add it to the buddy list. Example 8-3 shows how to use the BLM representing Alice to add Bob as a new buddy of Alice and then getting the updated list back.

Example 8-3 Adding a New Buddy to the Buddy List of Alice

URI uri = new URI("sip:bob@example.com");
Buddy bob = manager.createBuddy(uri);
// Optionally, setting additional information.
manager.setDisplayname("Bobby");
VCard vcard = bob.getVCard();
vcard.setCity("San Francisco");
vcard.setCountry("USA");
// very important to set the VCard back on the buddy again
bob.setVCard(vcard);
// Update the buddy info using the BLM
manager.updateBuddy(bob);
// Getting the updated buddy list
List<Buddy> buddies = manager.getBuddies();

Example 8-3 shows how to create a new Buddy, Bob, and how that buddy is added to Alice's buddy list by using the BLM representing Alice. To add more information about the user Bob, such as the address and other information, access Bob's Vcard information and then set the appropriate properties.

	
Note:

Since the method getVCard() is actually returning a clone of the VCard, the method setVCard() must be called on the buddy again in order for the information to be updated.

8.7.1.4 Removing a Buddy from a Buddy List

Removing a buddy is very similar to adding a buddy. Use the method removeBuddy and pass in the buddy that is to be removed. If there are many buddies to remove, use the removeBuddies method and pass in the list of buddies to remove. Example 8-4 shows how Bob is removed from Alice's buddy list.

Example 8-4 Removing a Buddy

URI uri = new URI("sip:bob@example.com");
Buddy bob = manager.createBuddy(uri);
manager.removeBuddy(bob);

8.7.1.5 Manipulating your presence rules document

To allow a watcher to view the presence status, use the method allowWatcher(String watcher) to add the watcher to the allow list. Use blockWatcher(String watcher) to block someone from viewing your presence status.

Example 8-5 Allowing or blocking watchers

manager.allowWatcher("sip:bob@example.com");
manager.blockWatcher("sip:carol@example.com");

8.7.2 Exceptions

BuddyListException is the base exception, and if the program is not set to register the specific exception, then it can simply catch it.

XDMException is the base exception for all exceptions concerning communication with the remote XDMS. XDMException signals that an error occurred when communicating with the XDMS (for example: a connection problem, wrong path to the XCAP root, or something else).

DocumentConflictException is a subclass to the XDMException; it signals that a mid-air conflict was detected that could not be resolved. This can occur when multiple clients access the same document on the XDMS. BuddyListManager attempts to resolve such a clash, but if it cannot, it throws an exception.

9 Parlay X Web Services Multimedia Messaging API

This chapter describes support for the Parlay X 2.1 Multimedia Messaging Web Services interfaces for developing applications. The Web service functions as a Messaging Agent which can send, receive, and listen to notifies on behalf of the users of the Web service. This chapter contains the following sections:

	
Section 9.1, "Introduction"

	
Section 9.2, "Installing the Web Services"

	
Section 9.3, "Configuring Web Services"

	
Section 9.4, "Messaging Web Services Interface Descriptions"

	
Section 9.5, "Using the Messaging Web Services Interfaces"

9.1 Introduction

The following sections describe the semantics of each of the supported operations along with implementation-specific details for the Parlay X Gateway.

The product support the interfaces defined in the Parlay X 2.1 Multimedia Messaging Web Services specification.

9.2 Installing the Web Services

The Web services are packaged as a standard .ear file and can be deployed the same as any other Web services through Admin Console. The .ear file contains three .war files that implement the three interfaces. The Web services use the Oracle SDP Platform, Client and Presence Commons shared libraries.

9.3 Configuring Web Services

There are four mbean attributes that are configurable for the Messaging Web service:

	
SIPOutboundProxy - SipURI of the outbound proxy for SIP message. Empty string means no outbound proxy. Currently, only support IP address. For example, sip:127.0.0.1:5060; lr;transport=tcp.

	
SessionTimeout - Set the time in seconds after which HTTP sessions time out. Data for all timed out sessions is discarded.

	
MessageLifetime - Set the time in seconds after which messages expire from the message store. Setting this to 0 causes messages to be kept in the store indefinitely (never expire). Messages stay in the message store for at most MessageLifetime + MessageScanPeriod seconds. Setting this attribute has immediate effect (for instance, reducing the value could cause some messages to be immediately expired if they are older than the lifetime).

	
MessageScanPeriod - Set the period in seconds for scanning for and deleting expired messages. Setting this to 0 disables scanning. Setting this attribute has immediate effect.

9.4 Messaging Web Services Interface Descriptions

The messaging Web services consist of four interfaces:

	
SendMessage: Use these methods to send messages (Table 9-1).

	
ReceiveMessage: Use these methods to receive message content (Table 9-2).

	
MessageNotificationManager: Use these methods to manage which users are notified when messages are received through the Web service (Table 9-3).

	
MessageNotification: The client callback defined in this interface is used to send notifications (Table 9-4).

Table 9-1 SendMessage Interface

	Operation	Description
	
sendMessage

	
Sends a SIP MESSAGE to designated user(s). Returns an outgoing message ID.

	
getMessageDeliveryStatus

	
Returns a set of delivery statuses for each recipient of an outgoing message sent through sendMessage.

Table 9-2 ReceiveMessage Interface

	Operation	Description
	
getMessage

	
Receives an incoming message.

	
getMessageURIs

	
Not implemented.

	
getReceivedMessages

	
Returns a set of incoming messages for a given user.

Table 9-3 MessageNotificationManager Interface

	Operation	Description
	
startMessageNotification

	
Starts message notification at a given endpoint for a user. Notifies endpoint when messages are received for user.

	
stopMessageNotification

	
Stops message notification at an endpoint for a user.

Table 9-4 MessageNotification Interface

	Operation	Description
	
notifyMessageDeliveryReceipt

	
Client callback invoked to notify the user of a message's final delivery status.

	
notifyMessageReception

	
Client callback invoked to notify the client that the user received a message.

9.5 Using the Messaging Web Services Interfaces

This section describes how to use each of the operations in the interfaces, and includes code examples. The following requirements apply:

	
An argument of type "StringSipURI" means that the argument is a String but must be a valid URI with "sip" or "sips" scheme, otherwise a ServiceException gets thrown. Refer to the Oracle Fusion Middleware WebLogic Communication Services API Reference for additional documentation on the content indirection API.

9.5.1 Interface SendMessage, Operation: sendMessage

This operation sends a SIP MESSAGE to designated user(s). Returns an outgoing message ID.

Table 9-5 Interface: SendMessage, Operation: sendMessage

	Argument	Type	Required	Description
	
addresses

	
List<StringSipURI>

	
yes

	
Destination address(es) for this message.

	
senderAddress

	
StringSipURI

	
yes

	
Message sender address.

	
subject

	
String

	
no

	
Message subject. If there is no plain text attachment with the request, the subject is treated as the message content.

	
priority

	
MessagePriority

	
no

	
This value is ignored.

	
charging

	
ChargingInformation

	
no

	
This value is ignored.

	
receiptRequest

	
SimpleReference

	
no

	
Defines the application endpoint, interfaceName, and correlator that is used to notify the application of the final delivery status of the message.

	
Return Value

	
Type

	
Description

	
messageIdentifier

	
String

	
	
This identifier is used in a getMessageDeliveryStatus operation invocation to get the delivery status of sent messages.

9.5.1.1 Code Example

Map<String, Object> params = new HashMap<String, Object>();
params.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://webservicehost:7001/sendMessageEndpoint");
SendMessageClient sendMsgClient = new SendMessageClient(params);
List<String> recipients = new ArrayList<String>();
recipients.add("sip:receiver@example.com");
String correlator = UUID.randomUUID().toString();
SimpleReference ref = new SimpleReference();
ref.setCorrelator(correlator);
ref.setEndpoint("http://clienthost:8080/notificationEndpoint");
ref.setInterface("MessageNotification");
String msgID = sendMsgClient.sendMessage(recipients,
 "sip:sender@example.com", "message content",
 MessagePriority.DEFAULT, null, ref);

9.5.2 Interface SendMessage, Operation: getMessageDeliveryStatus

This operation returns a set of delivery statuses for each recipient of an outgoing message sent via sendMessage. Call this operation with the ID returned by sendMessage.

Table 9-6 Interface SendMessage, Operation: getMessageDeliveryStatus

	Argument	Type	Required	Description
	
messageIdentifier

	
String

	
yes

	
Identifier related to the delivery status request.

	
Return Value

	
Type

	
Description

	
status

	
List<DeliveryInformation>

	
	
A list of status of the messages that were previously sent. Each item represents a sent message, its destination address, and its delivery status.

9.5.2.1 Code Example

String msgID = sendMsgClient.sendMessage(...);
List<DeliveryInformation> infoList =
 sendMsgClient.getMessageDeliveryStatus(msgID);
for (DeliveryInformation info : infoList) {
 System.out.println(“recipient: “ + info.getAddress());
 System.out.println(“status: “ + info.getDeliveryStatus());
}

9.5.3 Interface MessageNotificationManager, Operation: startMessageNotification

This operation starts message notification at a given endpoint for a user. This means that when messages are received for this user, the client callback notifyMessageReception is invoked at the given MessageNotification endpoint. This also means that the web service stores received messages for this user, and the received messages can be obtained through the ReceiveMessage interface.

Table 9-7 Interface MessageNotificationManager, Operation: startMessageNotification

	Argument	Type	Required	Description
	
reference

	
SimpleReference

	
yes

	
Defines the application endpoint, interfaceName, and correlator that is used to notify the application when a message is received.

	
messageServiceActivationNumber

	
StringSipURI

	
yes

	
The application is notified when messages are received for this SIP address.

	
criteria

	
String

	
no

	
This value is ignored.

9.5.3.1 Code Example

Map<String, Object> params = new HashMap<String, Object>();
params.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://webservicehost:7001/msgNotiMgrEndpoint");
MessageNotificationManagerClient msgNotiMgrClient =
 new MessageNotificationManagerClient(params);
SimpleReference ref = new SimpleReference();
String correlator = UUID.randomUUID().toString()
ref.setCorrelator(correlator);
ref.setEndpoint("http://clienthost:8080/notificationEndpoint");
ref.setInterface("MessageNotification");
msgNotiMgrClient.startMessageNotification(ref,
 "sip:receiver@example.com","dummy_criteria_ignored");

9.5.4 Interface MessageNotificationManager, Operation: stopMessageNotification

This operation stops message notification at an endpoint for a user. If a user no longer has notification endpoints, all received messages for that user are no longer stored.

Table 9-8 Interface MessageNotificationManager, Operation: stopMessageNotification

	Argument	Type	Required	Description
	
correlator

	
String

	
yes

	
The correlator associated with an invocation of the startMessageNotification operation.

9.5.4.1 Code Example

msgNotiMgrClient.stopMessageNotification(correlator);

9.5.5 Interface ReceiveMessage, Operation: getReceivedMessages

This operation returns a set of incoming messages for a given user. Messages may only be received after notification has been enabled by invoking the startMessageNotifcation operation in the MessageNotificationManager interface.

Table 9-9 Interface ReceiveMessage, Operation: getReceivedMessages

	Argument	Type	Required	Description
	
registrationIdentifier

	
StringSipURI

	
yes

	
The recipient SIP address for incoming messages.

	
priority

	
MessagePriority

	
no

	
This value is ignored.

	
Return Value

	
Type

	
Description

	
references

	
List<MessageReference>

	
	
A list of messages received for this user. Each item may either have a message identifier or message content, but is not guaranteed to have both an identifier and content.

9.5.5.1 Code Example

Map<String, Object> params = new HashMap<String, Object>();
params.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://webservicehost:7001/receiveMessageEndpoint");
ReceiveMessageClient recvMsgClient = new ReceiveMessageClient(params);
List<MessageReference> msgs =
 recvMsgClient.getReceivedMessages("sip:receiver@example.com",
 MessagePriority.DEFAULT);
for (MessageReference ref : msgs) {
 System.out.println("to: "+ref.getMessageServiceActivationNumber();
 System.out.println("from: "+ref.getSenderAddress());
 System.out.println("subject: "+ref.getSubject());
 String id = ref.getMessageIdentifier();
 if (id == null || id.isEmpty()) {
 System.out.println("message: "+ref.getMessage());
 } else {
 System.out.println("ID: "+id);
 }
}

9.5.6 Interface: ReceiveMessage, Operation: getMessage

This operation receives an incoming message as an attachment. Messages may only be received after notification has been enabled by invoking the startMessageNotifcation operation in the MessageNotificationManager interface.

Table 9-10 Oracle WebLogic Communication ServicesInterface: ReceiveMessage, Operation: getMessage

	Argument	Type	Required	Description
	
messageIdentifier

	
String

	
yes

	
A string identifying the incoming message. This string is obtained either from the notifyMessageReception callback, or the getReceivedMessages operation invocation.

	
Return Value

	
Type

	
Description

	
n/a

	
n/a

	
	
After invoking the getMessage operation, the message content is stored in an attachment of type DataHandler.

9.5.6.1 Code Example

List<MessageReference> msgs =
 recvMsgClient.getReceivedMessages("sip:receiver@example.com",
 MessagePriority.DEFAULT);
for (MessageReference ref : msgs) {
 String id = ref.getMessageIdentifier();
 String msgContent;
 if (id == null || id.isEmpty()) {
 msgContent = ref.getMessage();
 } else {
 System.out.println("ID: " + id);
 recvMsgClient.getMessage(id);
 DataHandler dh = recvMsgClient.getAttachment();
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 BufferedOutputStream out = new BufferedOutputStream(baos);
 dh.writeTo(out);
 out.flush();
 msgContent = baos.toString();
 }
 System.out.println("message: " + msgContent);
}

Part IV

Call Control

This part describes using call control functionality.

Part V contains the following chapter:

	
Chapter 10, "Third Party Call Service"

Part V

Using Diameter

This part describes developing applications using Diameter. Diameter is a peer-to-peer protocol that involves delivering attribute-value pairs (AVPs). A Diameter message includes a header and one or more AVPs. The collection of AVPs in each message is determined by the type of Diameter application, and the Diameter protocol also allows for extension by adding new commands and AVPs. Diameter enables multiple peers to negotiate their capabilities with one another, and defines rules for session handling and accounting functions.

OWLCS includes an implementation of the base Diameter protocol that supports the core functionality and accounting features described in RFC 3588 (http://www.ietf.org/rfc/rfc3588.txt). OWLCS uses the base Diameter functionality to implement multiple Diameter applications, including the Sh, Rf, and Ro applications described later in this document.

You can also use the base Diameter protocol to implement additional client and server-side Diameter applications. The base Diameter API provides a simple, Servlet-like programming model that enables you to combine Diameter functionality with SIP or HTTP functionality in a converged application.

Part VI contains the following chapters:

	
Chapter 11, "Using the Diameter Base Protocol API"

	
Chapter 12, "Using the Profile Service API"

	
Chapter 13, "Developing Custom Profile Service Providers"

	
Chapter 14, "Using the Diameter Rf Interface API for Offline Charging"

	
Chapter 15, "Using the Diameter Ro Interface API for Online Charging"

12 Using the Profile Service API

The following chapter describes how to use the Diameter Sh profile service and the Profile Service API, based on the OWLCS Diameter protocol implementation, in your own applications, and contains the following sections:

	
Section 12.1, "Overview of Profile Service API and Sh Interface Support"

	
Section 12.2, "Enabling the Sh Interface Provider"

	
Section 12.3, "Overview of the Profile Service API"

	
Section 12.4, "Creating a Document Selector Key for Application-Managed Profile Data"

	
Section 12.5, "Using a Constructed Document Key to Manage Profile Data"

	
Section 12.6, "Monitoring Profile Data with ProfileListener"

12.1 Overview of Profile Service API and Sh Interface Support

The IMS specification defines the Sh profile service as the method of communication between the Application Server (AS) function and the Home Subscriber Server (HSS), or between multiple IMS Application Servers. The AS uses the Sh profile service in two basic ways:

	
To query or update a user's data stored on the HSS

	
To subscribe to and receive notifications when a user's data changes on the HSS

The user data available to an AS may be defined by a service running on the AS (repository data), or it may be a subset of the user's IMS profile data hosted on the HSS. The Sh interface specification, 3GPP TS 29.328, defines the IMS profile data that can be queried and updated through Sh. All user data accessible through the Sh profile service is presented as an XML document with the schema defined in 3GPP TS 29.328.

The IMS Sh profile service is implemented as a provider to the base Diameter protocol support in OWLCS. The provider transparently generates and responds to the Diameter command codes defined in the Sh application specification. A higher-level Profile Service API enables SIP Servlets to manage user profile data as an XML document using XML Document Object Model (DOM). Subscriptions and notifications for changed profile data are managed by implementing a profile listener interface in a SIP Servlet.

Figure 12-1 Profile Service API and Sh Provider Implementation

[image: Provider implementation]

OWLCS includes a provider for the Diameter Sh profile service. Providers to support additional interfaces defined in the IMS specification may be provided in future releases. Applications using the profile service API are able to use additional providers as they are made available.

12.2 Enabling the Sh Interface Provider

See "Configuring Diameter Sh Client Nodes and Relay Agents" in Configuring Network Resources for full instructions on setting up Diameter support.

12.3 Overview of the Profile Service API

OWLCS provides a simple profile service API that SIP Servlets can use to query or modify subscriber profile data, or to manage subscriptions for receiving notifications about changed profile data. Using the API, a SIP Servlet explicitly requests user profile documents through the Sh provider application. The provider returns an XML document, and the Servlet can then use standard DOM techniques to read or modify profile data in the local document. Updates to the local document are applied to the HSS after a "put" operation.

12.4 Creating a Document Selector Key for Application-Managed Profile Data

The document selector key identifies the XML document to be retrieved by a Diameter interface, and uses the format protocol://uri/reference_type[/access_key]. Servlets that manage profile data can explicitly obtain an Sh XML document from a Profile Service using a document selector key, and then work with the document using DOM.

The protocol portion of the selector identifies the Diameter interface provider to use for retrieving the document. Sh XML documents require the sh:// protocol designation.

With Sh document selectors, the next element, uri, generally corresponds to the User-Identity or Public-Identity of the user whose profile data is being retrieved. If you are requesting an Sh data reference of type LocationInformation or UserState, the URI value can be the User-Identity or MSISDN for the user.

Table 12-2 summarizes the possible URI values that can be supplied depending on the Sh data reference you are requesting. 3GPP TS 29.328 describes the possible data references and associated reference types in more detail.

Table 12-1 Possible URI Values for Sh Data References

	Sh Data Reference Number	Data Reference Type	Possible URI Value in Document Selector
	
0

	
RepositoryData

	
User-Identity or Public-Identity

	
10

	
IMSPublicIdentity

	

	
11

	
IMSUserState

	

	
12

	
S-CSCFName

	

	
13

	
InitialFilterCriteria

	

	
14

	
LocationInformation

	
User-Identity or MSISDN

	
15

	
UserState

	

	
17

	
Charging information

	
User-Identity or Public-Identity

	
17

	
MSISDN

	

The final element of the document selector key, reference_type, specifies the data reference type being requested. For some data reference requests, only the uri and reference_type are required. Other Sh requests use an access key, which requires a third element in the document selector key corresponding to the value of the Attribute-Value Pair (AVP) defined in the document selector key.

Table 12-2 summarizes the required document selector key elements for each type of Sh data reference request.

Table 12-2 Summary of Document Selector Elements for Sh Data Reference Requests

	Data Reference Type	Required Document Selector Elements	Example Document Selector
	
RepositoryData

	
sh://uri/reference_type/Service-Indication

	
sh://sip:user@oracle.com/RepositoryData/Call Screening/

	
IMSPublicIdentity

	
sh://uri/reference_type/[Identity-Set]

where Identity-Set is one of:

	
All-Identities

	
Registered-Identities

	
Implicit-Identities

	
sh://sip:user@oracle.com/IMSPublicIdentity/Registered-Identities

	
IMSUserState

	
sh://uri/reference_type

	
sh://sip:user@oracle.com/IMSUserState/

	
S-CSCFName

	
sh://uri/reference_type

	
sh://sip:user@oracle.com/S-CSCFName/

	
InitialFilterCriteria

	
sh://uri/reference_type/Server-Name

	
sh://sip:user@oracle.com/InitialFilterCriteria/www.oracle.com/

	
LocationInformation

	
sh://uri/reference_type/(CS-Domain | PS-Domain)

	
sh://sip:user@oracle.com/LocationInformation/CS-Domain/

	
UserState

	
sh://uri/reference_type/(CS-Domain | PS-Domain)

	
sh://sip:user@oracle.com/UserState/PS-Domain/

	
Charging information

	
sh://uri/reference_type

	
sh://sip:user@oracle.com/Charging information/

	
MSISDN

	
sh://uri/reference_type

	
sh://sip:user@oracle.com/MSISDN/

12.5 Using a Constructed Document Key to Manage Profile Data

OWLCS provides a helper class, com.bea.wcp.profile.ProfileService, to help you easily retrieve a profile data document. The getDocument() method takes a constructed document key, and returns a read-only org.w3c.dom.Document object. To modify the document, you make and edit a copy, then send the modified document and key as arguments to the putDocument() method.

	
Note:

If Diameter Sh client node services are not available on the OWLCS instance when getDocument() the profile service throws a "No registered provider for protocol" exception.

OWLCS caches the documents returned from the profile service for the duration of the service method invocation (for example, when a doRequest() method is invoked). If the service method requests the same profile document multiple times, the subsequent requests are served from the cache rather than by re-querying the HSS.

Example 12-1 shows a sample SIP Servlet that obtains and modifies profile data.

Example 12-1 Sample Servlet Using ProfileService to Retrieve and Write User Profile Data

package demo;
import com.bea.wcp.profile.*;
import javax.servlet.sip.SipServletRequest;
import javax.servlet.sip.SipServlet;
import org.w3c.dom.Document;
import java.io.IOException;
public class MyServlet extends SipServlet {
 private ProfileService psvc;
 public void init() {
 psvc = (ProfileService) getServletContext().getAttribute(ProfileService.PROFILE_SERVICE);
 }
 protected void doInvite(SipServletRequest req) throws IOException {
 String docSel = "sh://" + req.getTo() + "/IMSUserState/";
 // Obtain and change a profile document.
 Document doc = psvc.getDocument(docSel); // Document is read only.
 Document docCopy = (Document) doc.cloneNode(true);
 // Modify the copy using DOM.
 psvc.putDocument(docSel, docCopy); // Apply the changes.
 }
}

12.6 Monitoring Profile Data with ProfileListener

The IMS Sh interface enables applications to receive automatic notifications when a subscriber's profile data changes. OWLCS provides an easy-to-use API for managing profile data subscriptions. A SIP Servlet registers to receive notifications by implementing the com.bea.wcp.profile.ProfileListener interface, which consists of a single update method that is automatically invoked when a change occurs to profile to which the Servlet is subscribed. Notifications are not sent if that same Servlet modifies the profile information (for example, if a user modifies their own profile data).

	
Note:

In a replicated environment, Diameter relay nodes always attempt to push notifications directly to the engine tier server that subscribed for profile updates. If that engine tier server is unavailable, another server in the engine tier cluster is chosen to receive the notification. This model succeeds because session information is stored in the SIP data tier, rather than the engine tier.

12.6.1 Prerequisites for Listener Implementations

In order to receive a call back for subscribed profile data, a SIP Servlet must do the following:

	
Implement com.bea.wcp.profile.ProfileListener.

	
Create one or more subscriptions using the subscribe method in the com.bea.wcp.profile.ProfileService helper class.

	
Register itself as a listener using the listener element in sip.xml.

"Implementing ProfileListener" describes how to implement ProfileListener and use the susbscribe method. In addition to having a valid listener implementation, the Servlet must declare itself as a listener in the sip.xml deployment descriptor file. For example, it must add a listener element declaration similar to:

<listener>
 <lisener-class>com.mycompany.MyLisenerServlet</listener-class>
</listener>

12.6.2 Implementing ProfileListener

Actual subscriptions are managed using the subscribe method of the com.bea.wcp.profile.ProfileService helper class. The subscribe method requires that you supply the current SipApplicationSession and the key for the profile data document you want to monitor. See "Creating a Document Selector Key for Application-Managed Profile Data".

Applications can cancel subscriptions by calling ProfileSubscription.cancel(). Also, pending subscriptions for an application are automatically cancelled if the application session is terminated.

Example 12-2 shows sample code for a Servlet that implements the ProfileListener interface.

Example 12-2 Sample Servlet Implementing ProfileListener Interface

package demo;
 import com.bea.wcp.profile.*;
 import javax.servlet.sip.SipServletRequest;
 import javax.servlet.sip.SipServlet;
 import org.w3c.dom.Document;
 import java.io.IOException;
 public class MyServlet extends SipServlet implements ProfileListener {
 private ProfileService psvc;
 public void init() {
 psvc = (ProfileService) getServletContext().getAttribute(ProfileService.PROFILE_SERVICE);
 }
 protected void doInvite(SipServletRequest req) throws IOException {
 String docSel = "sh://" + req.getTo() + "/IMSUserState/";
 // Subscribe to profile data.
 psvc.subscribe(req.getApplicationSession(), docSel, null);
}
 public void update(ProfileSubscription ps, Document document) {
 System.out.println("IMSUserState updated: " + ps.getDocumentSelector());
 }
 }

13 Developing Custom Profile Service Providers

This chapter describes how to use the Profile Service API to develop custom profile rovider, in the following sections:

	
Section 13.1, "Overview of the Profile Service API"

	
Section 13.2, "Implementing Profile Service API Methods"

	
Section 13.3, "Configuring and Packaging Profile Providers"

	
Section 13.4, "Configuring Profile Providers Using the Administration Console"

13.1 Overview of the Profile Service API

OWLCS includes a profile service API, com.bea.wcp.profile.API, that may have multiple profile service provider implementations. A profile provider performs the work of accessing XML documents from a data repository using a defined protocol. Deployed SIP Servlets and other applications need not understand the underlying protocol or the data repository in which the document is stored; they simply reference profile data using a custom URL, and OWLCS delegates the request processing to the correct profile provider.

The provider performs the necessary protocol operations for manipulating the document. All providers work with documents in XML DOM format, so client code can work with many different types of profile data in a common way.

Figure 13-1 Profile Service API and Provider Implementation

[image: Profile service]

Each profile provider implemented using the API may enable the following operations against profile data:

	
Creating new documents.

	
Querying and updating existing documents.

	
Deleting documents.

	
Managing subscriptions for receiving notifications of profile document changes.

Clients that want to use a profile provider obtain a profile service instance through a Servlet context attribute. They then construct an appropriate URL and use that URL with one of the available Profile Service API methods to work with profile data. The contents of the URL, combined with the configuration of profile providers, determines the provider implementation that OWLCS to process the client's requests.

The sections that follow describe how to implement the profile service API interfaces in a custom profile provider.

13.2 Implementing Profile Service API Methods

A custom profile providers is implemented as a shared Java EE library (typically a simple JAR file) deployed to the engine tier cluster. The provider JAR file must include, at minimum, a class that implements com.bea.wcp.profile.ProfileServiceSpi. This interface inherits methods from com.bea.wcp.profile.ProfileService and defines new methods that are called during provider registration and unregistration.

In addition to the provider implementation, you must implement the com.bea.wcp.profile.ProfileSubscription interface if your provider supports subscription-based notification of profile data updates. A ProfileSubscription is returned to the client subscriber when the profile document is modified.

The Oracle Fusion Middleware WebLogic Communication Services API Reference describes each method of the profile service API in detail. Also keep in mind the following notes and best practices when implementing the profile service interfaces:

	
The putDocument, getDocument, and deleteDocument methods each have two distinct method signatures. The basic version of a method passes only the document selector on which to operate. The alternate method signature also passes the address of the sender of the request for protocols that require explicit information about the requestor.

	
The subscribe method has multiple method signatures to allow passing the sender's address, as well as for supporting time-based subscriptions.

	
If you do not want to implement a method in com.bea.wcp.profile.ProfileServiceSpi, include a "no-op" method implementation that throws the OperationNotSupportedException.

com.bea.wcp.profile.ProfileServiceSpi defines provider methods that are called during registration and unregistration. Providers can create connections to data stores or perform any required initializing in the register method. The register method also supplies a ProviderBean instance, which includes any context parameters configured in the provider's configuration elements in profile.xml.

Providers must release any backing store connections, and clean up any state that they maintain, in the unregister method.

13.3 Configuring and Packaging Profile Providers

Providers must be deployed as a shared Java EE library, because all other deployed applications must be able to access the implementation.

See "Creating Shared Java EE Libraries and Optional Packages". For most profile providers, you can simply package the implementation classes in a JAR file. Then register the library with OWLCS using the instructions in See "Deploying Shared Java EE Libraries and Dependent Applications".

After installing the provider as a library, you must also identify the provider class as a provider in a profile.xml file. The name element uniquely identifies a provider configuration, and the class element identifies the Java class that implements the profile service API interfaces. One or more context parameters can also be defined for the provider, which are delivered to the implementation class in the register method. For example, context parameters might be used to identify backing stores to use for retrieving profile data.

Example 13-1 shows a sample configuration for a provider that accesses data using XCAP.

Example 13-1 Provider Mapping in profile.xml

<profile-service xmlns="http://www.bea.com/ns/wlcp/wlss/profile/300"
 xmlns:sec="http://www.bea.com/ns/weblogic/90/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema=instance"
 xmlns:wls="http;//www.bea.com/ns/weblogic/90/security/wls">
 <mapping>
 <map-by>provider-name</map-by>
 </mapping>
 <provider>
 <name>xcap</name>
 <provider-class>com.mycompany.profile.XcapProfileProvider</provider-class>
 <param>
 <name>server</name>
 <value>example.com</name>
 </param>
 ...
 </provider>
</profile-service>

13.3.1 Mapping Profile Requests to Profile Providers

When an application makes a request using the Profile Service API, OWLCS must find a corresponding provider to process the request. By default, OWLCS maps the prefix of the requested URL to a provider name element defined in profile.xml. For example, with the basic configuration shown in Example 13-1, OWLCS would map Profile Service API requests beginning with xcap:// to the provider class com.mycompany.profile.XcapProfileProvider.

Alternately, you can define a mapping entry in profile.xml that lists the prefixes corresponding to each named provider. Example 13-2 shows a mapping with two alternate prefixes.

Example 13-2 Mapping a Provider to Multiple Prefixes

...
<mapping>
 <map-by>prefix</map-by>
 <provider>
 <provider-name>xcap</provider-name>
 <doc-prefix>sip</doc-prefix>
 <doc-prefix>subscribe</doc-prefix>
 </provider>
 <by-prefix>
<mapping>
...

If the explicit mapping capabilities of profile.xml are insufficient, you can create a custom mapping class that implements the com.bea.wcp.profile.ProfileRouter interface, and then identify that class in the map-by-router element. Example 13-3 shows an example configuration.

Example 13-3 Using a Custom Mapping Class

...
<mapping>
 <map-by-router>
 <class>com.bea.wcp.profile.ExampleRouter</class>
 </map-by-router>
</mapping>
...

13.4 Configuring Profile Providers Using the Administration Console

You can optionally use the Administration Console to create or modify a profile.xml file. To do so, you must enable the profile provider console extension in the config.xml file for your domain.

Example 13-4 Enabling the Profile Service Resource in config.xml

...
<custom-resource>
 <name>ProfileService</name>
 <target>AdminServer</target>
 <descriptor-file-name>custom/profile.xml</descriptor-file-name>
 <resource-class>com.bea.wcp.profile.descriptor.resource.ProfileServiceResource</resource-class>
 <descriptor-bean-class>com.bea.wcp.profile.descriptor.beans.ProfileServiceBean</descriptor-bean-class>
 </custom-resource>
</domain>

The profile provider extension appears under the SipServer node in the left pane of the console, and enables you to configure new provider classes and mapping behavior.

15 Using the Diameter Ro Interface API for Online Charging

The following chapter describes how to use the Diameter Ro interface API, based on the OWLCS Diameter protocol implementation, in your own applications, and contains the following sections:

	
Section 15.1, "Overview of Ro Interface Support"

	
Section 15.2, "Understanding Credit Authorization Models"

	
Section 15.3, "Configuring the Ro Application"

	
Section 15.4, "Overview of the Online Charging API"

	
Section 15.6, "Implementing Session-Based Charging"

	
Section 15.7, "Sending Credit-Control-Request Messages"

	
Section 15.8, "Handling Failures"

15.1 Overview of Ro Interface Support

Online charging, also known as credit-based charging, is used to charge prepaid services. A typical example of a prepaid service is a calling card purchased for voice or video. The Ro protocol allows a Charging Trigger Function (CTF) to issue charging events to an Online Charging Function (OCF). The charging events can be immediate, event-based, or session-based.

OWLCS provides a Diameter Online Charging Application that deployed applications can use to generate charging events based on the Ro protocol. This enables deployed applications to act as CTF to a configured OCF. The Diameter Online Charging Application uses the base Diameter protocol that underpins both the Rf and Sh applications.

The Diameter Online Charging Application is based on IETF RFC 4006: Diameter Credit Control Application (http://www.ietf.org/rfc/rfc4006.txt). However, the application supports only a subset of the RFC 4006 required for compliance with 3GPP TS 32.299: Telecommunication management; Charging management; Diameter charging applications (http://www.3gpp.org/ftp/Specs/html-info/32299.htm). Specifically, the OWLCS Diameter Online Charging Application provides no direct support for service-specific Attribute-Value Pairs (AVPs), but the API that is provided is flexible enough to allow applications to include custom service-specific AVPs in any credit control request.

15.2 Understanding Credit Authorization Models

RFC 4006 defines two basic types of credit authorization models:

	
Credit authorization with unit reservation, and

	
Credit authorization with direct debiting.

Credit authorization with unit reservation can be performed with either event-based or session-based charging events. Credit authorization with direct debiting uses immediate charging events. In both models, the CTF requests credit authorization from the OCF prior to delivering services to the end user. In both models

The sections that follow describe each model in more detail.

15.2.1 Credit Authorization with Unit Determination

RFC 4006 defines both Event Charging with Unit Reservation (ECUR) and Session Charging with Unit Reservation (SCUR). Both charging events are session-based, and require multiple transactions between the CTF and OCF. ECUR begins with an interrogation to reserve units before delivering services, followed by an additional interrogation to report the actual used units to the OCF upon service termination. With SCUR, it is also possible to include one or more intermediate interrogations for the CTF in order to report currently-used units, and to reserve additional units if required. In both cases, the session state is maintained in both the CTF and OCF.

For both ECUR and SCUR, the online charging client implements the "CLIENT, SESSION BASED" state machine described in RFC 4006.

15.2.2 Credit Authorization with Direct Debiting

For direct debiting, Immediate Event Charging (IEC) is used. With IEC, a single transaction is created where the OCF deducts a specific amount from the user's account immediately after completing the credit authorization. After receiving the authorization, the CTF delivers services. This form of credit authorization is a one-time event in which no session state is maintained.

With IEC, the online charging client implements the "CLIENT, EVENT BASED" state machine described in IETF RFC 4006.

15.2.3 Determining Units and Rating

Unit determination refers to calculating the number of non-monetary units (service units, time, events) that can be assigned prior to delivering services. Unit rating refers to determining a price based on the non-monetary units calculated by the unit determination function.

It is possible for either the OCF or the CTF to handle unit determination and unit rating. The decision lies with the client application, which controls the selection of AVPs in the credit control request sent to the OCF.

15.3 Configuring the Ro Application

The RoApplication is packaged as a Diameter application similar to the Sh application used for managing profile data. The Ro Diameter application can be configured and enabled by editing the Diameter configuration file located in DOMAIN_ROOT/config/custom/diameter.xml, or by using the Diameter console extension.

The application init parameter ocs.host specifies the host identity of the OCF. The OCF host must also be configured in the peer table as part of the global Diameter configuration. Alternately, the init parameter ocs.realm can be used to specify more than one OCF host using realm-based routing. The corresponding realm definition must also exist in the global Diameter configuration.

Example 15-1 shows a sample excerpt from diameter.xml that enables Ro with an OCF host name of "myocs.oracle.com."

Example 15-1 Sample Ro Application Configuration (diameter.xml)

 <application>
 <application-id>4</application-id>
 <class-name>com.bea.wcp.diameter.charging.RoApplication</class-name>
 <param>
 <name>ocs.host</name>
 <value>myocs.oracle.com</value>
 </param>
 </application>

Because the RoApplication is based on the Diameter Credit Control Application, its Diameter application id is 4.

15.4 Overview of the Online Charging API

OWLCS provides an online charging API to enable any deployed application to act as a CTF and issue online charging events to an OCS through the Ro protocol. All online charging requests use the Diameter Credit-Control-Request (CCR) message. The CC-Request-Type AVP is used to indicate the type of charging used. In the charging API, the CC-Request-Type is represented by the RequestType class in package com.bea.wcp.diameter.cc. Table 15-1 shows the request types associated with different credit authorization models.

Table 15-1 Credit Control Request Types

	
Type

	
Description

	
RequestType Field in com.bea.wcp.diameter.cc.RequestType

	
IEC

	
Immediate Event Charging

	
EVENT_REQUEST

	
ECUR

	
Event Charging with Unit Reservation

	
INITIAL or TERMINATION_REQUEST

	
SCUR

	
Session Charging with Unit Reservation

	
INITIAL, UPDATE, or TERMINATION_REQUEST

For ECUR and SCUR, units are reserved prior to service delivery and committed upon service completion. Units are reserved with INITIAL_REQUEST and committed with a TERMINATION_REQUEST. For SCUR, units can also be updated with UPDATE_REQUEST.

The base diameter package, com.bea.wcp.diameter, contains classes to support the re-authorization requests used in Ro. The com.bea.wcp.diameter.cc package contains classes to support credit-control applications, including Ro applications. com.bea.wcp.diameter.charging directly supports the Ro credit-control application. Table 15-2 summarizes the classes of interest to Ro credit-control.

Table 15-2 Summary of Ro Classes

	
Class

	
Description

	
Package

	
Charging

	
Constant definitions

	
com.bea.wcp.diameter.charging

	
RoApplication

	
Online charging application

	
com.bea.wcp.diameter.charging

	
RoSession

	
Online charging session

	
com.bea.wcp.diameter.charging

	
CCR

	
Credit Control Request

	
com.bea.wcp.diameter.cc

	
CCA

	
Credit Control Answer

	
com.bea.wcp.diameter.cc

	
ClientSession

	
Credit control client session

	
com.bea.wcp.diameter.cc

	
RequestType

	
Credit-control request type

	
com.bea.wcp.diameter.cc

	
RAR

	
Re-Auth-Request message

	
com.bea.wcp.diameter

	
RAA

	
Re-Auth-Answer message

	
com.bea.wcp.diameter

15.5 Accessing the Ro Application

If the Ro application is deployed, then applications deployed on OWLCS can obtain an instance of the application from the Diameter node (com.bea.wcp.diameter.Node class). Example 15-2 shows the sample Servlet code used to obtain the Diameter Node and access the Ro application.

Example 15-2 Accessing the Ro Application

private RoApplication roApp;
void init(ServletConfig conf) {
 ServletContext ctx = conf.getServletContext();
 Node node = (Node) ctx.getParameter("com.bea.wcp.diameter.Node");
 roApp = node.getApplication(Charging.RO_APPLICATION_ID);
 }

This code example would make RoApplication available to the Servlet as an instance variable. The instance of RoApplication is safe for use by multiple concurrent threads.

15.6 Implementing Session-Based Charging

The RoApplication can be used to create new sessions for session-based credit authorization. The RoSession class implements the appropriate state machine depending on the credit control type, either ECUR (Event-Based Charging with Unit Reservation) or SCUR (Session-based Charging with Unit Reservation). The RoSession class is also serializable, so it can be stored as a SIP session attribute. This allows the session to be restored when necessary to terminate the session or update credit authorization.

The example in Example 15-3 creates a new RoSession for event-based charging, and sends a CCR request to start the first interrogation. The RoSession instance is saved so that it can be terminated later, after the service has finished.

Note that the RoSession class automatically handles creating session IDs; the application is not required to set the session ID.

Example 15-3 Creating and Using a RoSession

RoSession session = roApp.createSession();
CCR ccr = session.createCCR(RequestType.INITIAL);
CCA cca = ccr.sendAndWait();
sipAppSession.setAttribute("RoSession", session);
...

15.6.1 Handling Re-Auth-Request Messages

The OCS may initiate credit re-authorization by issuing a Re-Auth-Request (RAR) to the CTF. The application can register a session listener for handling this type of request. Upon receiving a RAR, the Diameter subsystem invoke the session listener on the applications corresponding RoSession object. The application must then respond to the OCS with an appropriate RAA message and initiate credit re-authorization to the CTF by sending a CCR with the CC-Request-Type AVP set to the value UPDATE_REQUEST, as described in section 5.5 of RFC 4006 (http://www.ietf.org/rfc/rfc4006.txt).

A session listener must implement the SessionListener interface and be serializable, or it must be an instance of SipServlet. A Servlet can register a listener as follows:

 RoSession session = roApp.createSession();
 session.addListener(new SessionListener() {
 public void rcvMessage(Message msg) {
 System.out.println("Got message: id = " msg.getSession().getId());
 }
 });

Example 15-4 shows sample rcvMessage() code for processing a Re-Auth-Request.

Example 15-4 Managing a Re-Auth-Request

 RoSession session = roApp.createSession();
 session.addListener(new SessionListener() {
 public void rcvMessage(Message msg) {
 Request req = (Request)msg;
 if (req.getCommand() != Command.RE_AUTH_REQUEST) return;
 RoSession session = (RoSession) req.getSession();
 Answer ans = req.createAnswer();
 ans.setResultCode(ResultCode.LIMITED_SUCCESS); // Per RFC 4006 5.5
 ans.send();
 CCR ccr = session.createCCR(Ro.UPDATE_REQUEST);
 ... // Set CCR AVPs according to requested credit re-authorization
 ccr.send();
 CCA cca = (CCA) ccr.waitForAnswer();
 }

In Example 15-4, upon receiving the Re-Auth-Request the application sends an RAA with the result code DIAMETER_LIMITED_SUCCESS to indicate to the OCS that an additional CCR request is required in order to complete the procedure. The CCR is then sent to initiate credit re-authorization.

	
Note:

Because the Diameter subsystem locks the call state before delivering the request to the corresponding RoSession, the call state remains locked while the handler processes the request.

15.7 Sending Credit-Control-Request Messages

The CCR class represents a Diameter Credit-Control-Request message, and can be used to send credit control requests to the OCF. For both ECUR (Event-Based Charging with Unit Reservation) and SCUR (Session-Based Charging with Unit Reservation), an instance of RoSession is used to create new CCR requests. You can also use RoApplication directly to create CCR messages for IEC (Immediate Event Charging). Example 15-5 shows an example of how to create and send a CCR.

Example 15-5 Creating and Sending a CCR

 CCR ccr = session.createCCR(RequestType.INITIAL);
 ccr.setServiceContextId("sample_id");
 CCA cca = ccr.sendAndWait();

Once a CCR request is created, you can set whatever application- or service-specific AVPs that are required before sending the request using the addAvp() method. Because some of the same AVPs need to be included in each new request for the session, it is also possible to set these AVPs on the session itself. Example 15-6 shows a sample that sets:

	
Subscription-Id to identify the user for the session

	
Service-Identifier to indicate the service requested, and

	
Requested-Service-Unit to specify the units requested.

A custom AVP is also added directly to the CCR request.

Example 15-6 Setting AVPs in the CCR

 session.setSubscriptionId(...);
 session.setServiceIdentifier(...);
 CCR ccr = session.createCCR(RequestType.INITIAL);
 ccr.setRequestedServiceUnit(...);
 ccr.addAvp(CUSTOM_MESSAGE, "This is a test");
 ccr.send();

In this case, the same Subscription-Id and Service-Identifier are added to every new request for the session. The custom AVP "Custom-Message" is added to the message before it is sent out.

15.8 Handling Failures

Applications can examine the Result-Code AVP in CCA error responses from the OCF to detect the cause of a failure and take an appropriate action. Locally-generated errors, such as an unavailable peer or invalid route specification, cause the request send method to throw an IOException to with a detailed message indicating the nature of the failure.

Applications can also use the Diameter Timer Tx value for determining when the OCF fails to respond to a credit authorization request. Timer Tx has a default value of 10 seconds, but can be overridden using the tx.timer init parameter in the RoApplication configuration. Timer Tx starts when a CCR is sent to the OCF. The timer resets after the corresponding CCA is received.

If Tx expires before a corresponding CCA arrives, any call to waitForAnswer immediately returns null to indicate that the request has timed out. An application can then take action according to the value of the Credit-Control-Failure-Handling (CCFH) AVP in the request. See section 5.7, "Failure Procedures" in RFC 4006 (http://www.ietf.org/rfc/rfc4006.txt) for more details.

Example 15-7 terminates the credit control session if timer Tx expires before receiving the CCA. If the CCA is received later by the Diameter subsystem, the message is ignored because the session longer exists.

Example 15-7 Checking for Timer Tx Expiry

 CCR ccr = session.createCCR(RequestType.INITIAL);
 ccr.setCreditControlFailureHandling(RequestType.TERMINATION);
 ccr.send();
 CCA cca = ccr.waitForAnswer();
 if (cca == null) {
 session.terminate();
 }

16 Oracle User Messaging Service

This chapter describes Oracle User Messaging Service (UMS).

This chapter includes the following topic:

	
Section 16.1, "User Messaging Service Overview"

16.1 User Messaging Service Overview

Oracle User Messaging Service enables two-way communication between users and deployed applications. Key features include:

	
Support for a variety of messaging channels—Messages can be sent and received through Email, IM (XMPP), SMS (SMPP), and Voice. Messages can also be delivered to a user's SOA/WebCenter Worklist.

	
Two-way Messaging—In addition to sending messages from applications to users (referred to as outbound messaging), users can initiate messaging interactions (inbound messaging). For example, a user can send an email or text message to a specified address; the message is routed to the appropriate application which can then respond to the user or invoke another process according to its business logic.

	
User Messaging Preferences—End users can use a web interface to define preferences for how and when they receive messaging notifications. Applications immediately become more flexible; rather than deciding whether to send to a user's email address or instant messaging client, the application can simply send the message to the user, and let UMS route the message according to the user's preferences.

	
Robust Message Delivery—UMS keeps track of delivery status information provided by messaging gateways, and makes this information available to applications so that they can respond to a failed delivery. Or, applications can specify one or more failover addresses for a message in case delivery to the initial address fails. Using the failover capability of UMS frees application developers from having to implement complicated retry logic.

	
Pervasive integration within Fusion Middleware: UMS is integrated with other Fusion Middleware components providing a single consolidated bi-directional user messaging service.

	
Integration with Oracle BPEL—Oracle JDeveloper includes pre-built BPEL activities that enable messaging operations. Developers can add messaging capability to a SOA composite application by dragging and dropping the desired activity into any workflow.

	
Integration with Oracle Human Workflow—UMS enables the Human Workflow engine to send actionable messages to and receive replies from users over email.

	
Integration with Oracle BAM—Oracle BAM uses UMS to send email alerts in response to monitoring events.

	
Integration with Oracle WebCenter—UMS APIs are available to developers building applications for Oracle WebCenter Spaces. The API is a realization of Parlay X Web Services for Multimedia Messaging, version 2.1, a standard web service interface for rich messaging.

16.1.1 Components

There are three types of components that make up Oracle User Messaging Service. These components are standard Java EE applications, making it easy to deploy and manage them using the standard tools provided with Oracle WebLogic Server.

	
UMS Server: The UMS Server orchestrates message flows between applications and users. The server routes outbound messages from a client application to the appropriate driver, and routes inbound messages to the correct client application. The server also maintains a repository of previously sent messages in a persistent store, and correlates delivery status information with previously sent messages.

	
UMS Drivers: UMS Drivers connect UMS to the messaging gateways, adapting content to the various protocols supported by UMS. Drivers can be deployed or undeployed independently of one another depending on what messaging channels are available in a given installation.

	
UMS Client applications: UMS client applications implement the business logic of sending and receiving messages. A UMS client application might be a SOA application that sends messages as one step of a BPEL workflow, or a WebCenter Spaces application that can send messages from a web interface.

In addition to the components that make up UMS itself, the other key entities in a messaging environment are the external gateways required for each messaging channel. These gateways are not a part of UMS or Oracle WebLogic Server. Since UMS Drivers support widely-adopted messaging protocols, UMS can be integrated with existing infrastructures such as a corporate email servers or XMPP (Jabber) servers. Alternatively, UMS can connect to outside providers of SMS or text-to-speech services that support SMPP or VoiceXML, respectively.

16.1.2 Architecture

The system architecture of Oracle User Messaging Service is shown in Figure 16-1.

For maximum flexibility, the components of UMS are separate Java EE applications. This allows them to be deployed and managed independently of one another. For example, a particular driver can be stopped and reconfigured without affecting message delivery on all other channels.

Exchanges between UMS client applications and the UMS Server occur as SOAP/HTTP web service requests for web service clients, or through Remote EJB and JMS calls for BPEL messaging activities. Exchanges between the UMS Server and UMS Drivers occur through JMS queues.

Oracle UMS server and drivers are installed alongside SOA or BAM in their respective WebLogic Server instances. A WebCenter installation includes the necessary libraries to act as a UMS client application, invoking a server deployed in a SOA instance.

Figure 16-1 UMS architecture

[image: Description of Figure 16-1 follows]

17 Sending and Receiving Messages using the User Messaging Service Java API

This chapter describes how to use the User Messaging Service (UMS) API to develop applications, and describes how to build two sample applications, usermessagingsample.ear and usermessagingsample-echo.ear. It contains the following topics:

	
Section 17.1, "Overview of UMS Java API"

	
Section 17.2, "Creating a UMS Client Instance"

	
Section 17.3, "Sending a Message"

	
Section 17.4, "Receiving a Message"

	
Section 17.5, "Using the UMS EJB Client API to Build a Client Application"

	
Section 17.6, "Using the UMS EJB Client API to Build a Client Echo Application"

	
Section 17.7, "Creating a New Application Server Connection"

17.1 Overview of UMS Java API

The UMS Java API supports developing applications for EJB clients. It consists of packages grouped as follows:

	
Common and Client Packages

	
oracle.sdp.messaging

	
oracle.sdp.messaging.filter: A MessageFilter is used by an application to exercise greater control over what messages are delivered to it.

	
User Preferences Packages

	
oracle.sdp.messaging.userprefs

	
oracle.sdp.messaging.userprefs.tools

17.1.1 Creating a J2EE Application Module

There are two choices for a J2EE application module that uses the UMS EJB Client API:

	
EJB Application Module - Stateless Session Bean - This is a backend, core message-receiving or message-sending application.

	
Web Application Module - This is for applications that have an HTML or Web frontend.

Whichever application module is selected uses the UMS Client API to register the application with the UMS Server and subsequently invoke operations to send or retrieve messages, status, and register or unregister access points. For a complete list of operations refer to the Oracle Fusion Middleware User Messaging Service API Reference.

The samples with source code are available on Oracle Technology Network (OTN).

17.2 Creating a UMS Client Instance

This section describes the requirements for creating a UMS EJB Client. You can create a MessagingEJBClient instance by using the code in the MessagingClientFactory class.

When creating an application using the UMS EJB Client, the application must be packaged as an EAR file, and the usermessagingclient-ejb.jar module bundled as an EJB module.

17.2.1 Creating a MessagingEJBClient Instance Using a Programmatic or Declarative Approach

Example 17-1 shows code for creating a MessagingEJBClient instance using the programmatic approach:

Example 17-1 Programmatic Approach to Creating a MessagingEJBClient Instance

ApplicationInfo appInfo = new ApplicationInfo();
appInfo.setApplicationName("SampleApp");
appInfo.setApplicationInstanceName("SampleAppInstance");
MessagingClient mClient = MessagingClientFactory.createMessagingEJBClient(appInfo);

You can also create a MessagingEJBClient instance using a declarative approach. The declarative approach is normally the preferred approach since it allows you to make changes at deployment time.

You must specify all the required Application Info properties as environment entries in your J2EE module's descriptor (ejb-jar.xml, or web.xml).

Example 17-2 shows code for creating a MessagingEJBClient instance using the declarative approach:

Example 17-2 Declarative Approach to Creating a MessagingEJBClient Instance

MessagingClient mClient = MessagingClientFactory.createMessagingEJBClient();

17.2.2 API Reference for Class MessagingClientFactory

The API reference for class MessagingClientFactory can be accessed from the Oracle Fusion Middleware User Messaging Service API Reference.

17.3 Sending a Message

You can create a message by using the code in the MessageFactory class and Message interface of oracle.sdp.messaging.

The types of messages that can be created include plaintext messages, multipart messages that can consist of text/plain and text/html parts, and messages that include the creation of delivery channel (DeliveryType) specific payloads in a single message for recipients with different delivery types.

17.3.1 Creating a Message

This section describes the various types of messages that can be created.

17.3.1.1 Creating a Plaintext Message

Example 17-3 shows how to create a plaintext message using the UMS Java API.

Example 17-3 Creating a Plaintext Message Using the UMS Java API

Message message = MessageFactory.getInstance().createTextMessage("This is a Plain Text message.");
Message message = MessageFactory.getInstance().createMessage();
message.setContent("This is a Plain Text message.", "text/plain");

17.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)

Example 17-4 shows how to create a multipart or alternative message using the UMS Java API.

Example 17-4 Creating a Multipart or Alternative Message Using the UMS Java API

Message message = MessageFactory.getInstance().createMessage();
MimeMultipart mp = new MimeMultipart("alternative");
MimeBodyPart mp_partPlain = new MimeBodyPart();
mp_partPlain.setContent("This is a Plain Text part.", "text/plain");
mp.addBodyPart(mp_partPlain);
MimeBodyPart mp_partRich = new MimeBodyPart();
mp_partRich
 .setContent(
 "<html><head></head><body><i>This is an HTML part.</i></body></html>",
 "text/html");
mp.addBodyPart(mp_partRich);
message.setContent(mp, "multipart/alternative");

17.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with Different Delivery Types

When sending a message to a destination address, there could be multiple channels involved. Oracle UMS application developers are required to specify the correct multipart format for each channel.

Example 17-5 shows how to create delivery channel (DeliveryType) specific payloads in a single message for recipients with different delivery types.

Each top-level part of a multiple payload multipart/alternative message must contain one or more values of this header. The value of this header must be the name of a valid delivery type. Refer to the available values for DeliveryType in the enum DeliveryType.

Example 17-5 Creating Delivery Channel-specific Payloads in a Single Message for Recipients with Different Delivery Types

Message message = MessageFactory.getInstance().createMessage();

// create a top-level multipart/alternative MimeMultipart object.
MimeMultipart mp = new MimeMultipart("alternative");

// create first part for SMS payload content.
MimeBodyPart part1 = new MimeBodyPart();
part1.setContent("Text content for SMS.", "text/plain");

part1.setHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "SMS");

// add first part
mp.addBodyPart(part1);

// create second part for EMAIL and IM payload content.
MimeBodyPart part2 = new MimeBodyPart();
MimeMultipart part2_mp = new MimeMultipart("alternative");
MimeBodyPart part2_mp_partPlain = new MimeBodyPart();
part2_mp_partPlain.setContent("Text content for EMAIL/IM.", "text/plain");
part2_mp.addBodyPart(part2_mp_partPlain);
MimeBodyPart part2_mp_partRich = new MimeBodyPart();
part2_mp_partRich.setContent("<html><head></head><body><i>" + "HTML content for EMAIL/IM." +
"</i></body></html>", "text/html");
part2_mp.addBodyPart(part2_mp_partRich);
part2.setContent(part2_mp, "multipart/alternative");

part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "EMAIL");
part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "IM");

// add second part
mp.addBodyPart(part2);

// set the content of the message
message.setContent(mp, "multipart/alternative");

// set the MultiplePayload flag to true
message.setMultiplePayload(true);

17.3.2 API Reference for Class MessageFactory

The API reference for class MessageFactory can be accessed from the Oracle Fusion Middleware User Messaging Service API Reference.

17.3.3 API Reference for Interface Message

The API reference for interface Message can be accessed from the Oracle Fusion Middleware User Messaging Service API Reference.

17.3.4 API Reference for Enum DeliveryType

The API reference for enum DeliveryType can be accessed from the Oracle Fusion Middleware User Messaging Service API Reference.

17.3.5 Addressing a Message

This section describes type of addresses and how to create address objects.

17.3.5.1 Types of Addresses

There are two types of addresses, device addresses and user addresses. A device address can be of various types, such as email addresses, instant messaging addresses, and telephone numbers. User addresses are user IDs in a user repository.

17.3.5.2 Creating Address Objects

You can address senders and recipients of messages by using the class AddressFactory to create Address objects defined by the Address interface.

17.3.5.2.1 Creating a Single Address Object

Example 17-6 shows code for creating a single Address object:

Example 17-6 Creating a Single Address Object

Address recipient = AddressFactory.getInstance().createAddress("Email:john.doe@oracle.com");

17.3.5.2.2 Creating Multiple Address Objects in a Batch

Example 17-7 shows code for creating multiple Address objects in a batch:

Example 17-7 Creating Multiple Address Objects in a Batch

String[] recipientsStr = {"Email:john.doe@oracle.com", "IM:jabber|john.doe@oracle.com"};
Address[] recipients = AddressFactory.getInstance().createAddress(recipientsStr);

17.3.5.2.3 Adding Sender or Recipient Addresses to a Message

Example 17-8 shows code for adding sender or recipient addresses to a message:

Example 17-8 Adding Sender or Recipient Addresses to a Message

Address sender = AddressFactory.getInstance().createAddress("Email:john.doe@oracle.com");
Address recipient = AddressFactory.getInstance().createAddress("Email:jane.doe@oracle.com");
message.addSender(sender);
message.addRecipient(recipient);

17.3.5.3 Creating a Recipient with a Failover Address

Example 17-9 shows code for creating a recipient with a Failover address:

Example 17-9 Creating a Single Address Object with Failover

String recipientWithFailoverStr = "Email:john.doe@oracle.com, IM:jabber|john.doe@oracle.com";
Address recipient = AddressFactory.getInstance().createAddress(recipientWithFailoverStr);

17.3.5.4 API Reference for Class AddressFactory

The API reference for class AddressFactory can be accessed from the Oracle Fusion Middleware User Messaging Service API Reference.

17.3.5.5 API Reference for Interface Address

The API reference for interface Address can be accessed from the Oracle Fusion Middleware User Messaging Service API Reference.

17.3.6 Retrieving Message Status

You can use Oracle UMS to retrieve message status either synchronously or asynchronously.

17.3.6.1 Synchronous Retrieval of Message Status

To perform a synchronous retrieval of current status, use the following flow from the MessagingClient API:

String messageId = messagingClient.send(message);
Status[] statuses = messagingClient.getStatus(messageId);

or,

Status[] statuses = messagingClient.getStatus(messageId, address[]) --- where
 address[] is an array of one or more of the recipients set in the message.

17.3.6.2 Asynchronous Notification of Message Status

To retrieve an asynchronous notification of message status, perform the following:

	
Implement a status listener.

	
Register a status listener (declarative way)

	
Send a message (messagingClient.send(message);)

	
The application automatically gets the status through an onStatus(status) callback of the status listener.

17.4 Receiving a Message

This section describes how an application receives messages. To receive a message you must first register an access point. From the application perspective there are two modes for receiving a message, synchronous and asynchronous.

17.4.1 Registering an Access Point

AccessPoint represents one or more device addresses to receive incoming messages. An application that wants to receive incoming messages must register one or more access points that represent the recipient addresses of the messages. The server matches the recipient address of an incoming message against the set of registered access points, and routes the incoming message to the application that registered the matching access point.

You can use AccessPointFactory.createAccessPoint to create an access point and MessagingClient.registerAccessPoint to register it for receiving messages.

To register an SMS access point for the number 9000:

AccessPoint accessPointSingleAddress =
 AccessPointFactory.createAccessPoint(AccessPoint.AccessPointType.SINGLE_ADDRESS,
 DeliveryType.SMS, "9000");
messagingClient.registerAccessPoint(accessPointSingleAddress);

To register SMS access points in the number range 9000 to 9999:

AccessPoint accessPointRangeAddress =
 AccessPointFactory.createAccessPoint(AccessPoint.AccessPointType.NUMBER_RANGE,
 DeliveryType.SMS,"9000,9999");
messagingClient.registerAccessPoint(accessPointRangeAddress);

17.4.2 Synchronous Receiving

You can use the method MessagingClient.receive to synchronously receive messages. This is a convenient polling method for light-weight clients that do not want the configuration overhead associated with receiving messages asynchronously. This method returns a list of messages that are immediately available in the application inbound queue.It performs a non-blocking call, so if no message is currently available, the method returns null.

	
Note:

A single invocation does not guarantee retrieval of all available messages. You must poll to ensure receiving all available messages.

17.4.3 Asynchronous Receiving

Asynchronous receiving involves a number of tasks, including configuring MDBs and writing a Stateless Session Bean message listener. See the sample application usermessagingsample-echo for detailed instructions.

17.4.4 Message Filtering

A MessageFilter is used by an application to exercise greater control over what messages are delivered to it. A MessageFilter contains a matching criterion and an action. An application can register a series of message filters; they get applied in order against an incoming (received) message; if the criterion matches the message, the action is taken. For example, an application can use MessageFilters to implement desired blacklists, by rejecting all messages from a given sender address.

You can use MessageFilterFactory.createMessageFilter to create a message filter, and MessagingClient.registerMessageFilter to register it. The filter is added to the end of the current filter chain for the application. When a message is received, it is passed through the filter chain in order; if the message matches a filter's criterion, the filter's action is taken immediately. If no filters match the message, the default action is to accept the message and deliver it to the application.For example, to reject a message with the subject "spam":

MessageFilter subjectFilter = MessageFilterFactory.createMessageFilter("spam",
 MessageFilter.FieldType.SUBJECT, null, MessageFilter.Action.REJECT);
messagingClient.registerMessageFilter(subjectFilter);

To reject messages from e-mail address "spammer@foo.com":

MessageFilter senderFilter =
 MessageFilterFactory.createBlacklistFilter("spammer@foo.com");
messagingClient.registerMessageFilter(senderFilter);

17.5 Using the UMS EJB Client API to Build a Client Application

This section describes how to create an application called usermessagingsample, a Web client application that uses the UMS EJB Client API for both outbound messaging and the synchronous retrieval of message status. usermessagingsample also supports inbound messaging. Once you have deployed and configured usermessagingsample, you can use it to send a message to an e-mail client.

Of the two application modules choices described in Section 17.1.1, "Creating a J2EE Application Module", this sample focuses on the Web Application Module (WAR), which defines some HTML forms and servlets. You can examine the code and corresponding XML files for the Web App module from the provided usermessagingsample-src.zip source. The servlets uses the UMS EJB Client API to create an UMS EJB Client instance (which in turn registers the application's info) and sends messages.

This application, which is packaged as a Enterprise ARchive file (EAR) called usermessagingsample.ear, has the following structure:

	
usermessagingsample.ear

	
META-INF

	
application.xml -- Descriptor file for all of the application modules.

	
weblogic-application.xml -- Descriptor file that contains the import of the oracle.sdp.messaging shared library.

	
usermessagingclient-ejb.jar -- Contains the Message EJB Client deployment descriptors.

	
META-INF

	
 ejb-jar.xml

	
 weblogic-ejb-jar.xml

	
usermessagingsample-web.ear -- Contains the Web-based front-end and servlets.

	
WEB-INF

	
 web.xml

	
 weblogic.xml

The pre-built sample application, and the source code (usermessagingsample-src.zip) are available on OTN.

17.5.1 Overview of Development

The following steps describe the process of building an application capable of outbound messaging using usermessagingsample.ear as an example:

	
Section 17.5.2, "Configuring the E-Mail Driver"

	
Section 17.5.3, "Using JDeveloper 11g to Build the Application"

	
Section 17.5.4, "Deploying the Application"

	
Section 17.5.5, "Testing the Application"

17.5.2 Configuring the E-Mail Driver

To enable the Oracle User Messaging Service's E-Mail Driver to perform outbound messaging and status retrieval, configure the E-Mail Driver as follows:

	
Enter the name of the SMTP mail server as the value for the OutgoingMailServer property.

	
Note:

This sample application is generic and can support outbound messaging through other channels when the appropriate messaging drivers are deployed and configured.

17.5.3 Using JDeveloper 11g to Build the Application

This section describes using a Windows-based build of JDeveloper to build, compile, and deploy usermessagingsample through the following steps:

17.5.3.1 Opening the Project

	
Unzip usermessagingsample-src.zip, to the JDEV_HOME/communications/samples/ directory. This directory must be used for the shared library references to be valid in the project.

	
Note:

If you choose to use a different directory, you must update the oracle.sdp.messaging library source path to JDEV_HOME/communications/modules/oracle.sdp.messaging_11.1.1/sdpmessaging.jar.

	
Open usermessagingsample.jws (contained in the .zip file) in Oracle JDeveloper.

Figure 17-1 Oracle JDeveloper Main Window

[image: Description of Figure 17-1 follows]

In the Oracle JDeveloper main window the project appears.

Figure 17-2 Oracle JDeveloper Main Window

[image: Description of Figure 17-2 follows]

	
Verify that the build dependencies for the sample application have been satisfied by checking that the following library has been added to the Web module.

	
Library: oracle.sdp.messaging, Classpath: JDEV_HOME/communications/modules/oracle.sdp.messaging_11.1.1/sdpmessaging.jar. This is the Java library used by UMS and applications that use SDP Messaging to send and receive messages.

	
In the Application Navigator, right click on web module usermessagingsample-web, and select Project Properties.

	
In the left pane, select Libraries and Classpath.

Figure 17-3 Verifying Libraries

[image: Description of Figure 17-3 follows]

	
Click OK.

	
Verify that the usermessagingclient-ejb project exists in the application. This is an EJB module that packages the messaging client beans used by SDP Messaging applications. The module allows the application to connect with the UMS server.

	
Explore the Java files under the usermessagingsample-web project to see how the messaging client APIs are used to send messages, get statuses, and synchronously receive messages. The application info that is registered with the UMS Server is specified programmatically in SampleUtils.java in the project (Example 17-10).

Example 17-10 Application Information

 ApplicationInfo appInfo = new ApplicationInfo();
 appInfo.setApplicationName(SampleConstants.APP_NAME);
 appInfo.setApplicationInstanceName(SampleConstants.APP_INSTANCE_NAME);
 appInfo.setSecurityPrincipal(request.getUserPrincipal().getName());

17.5.4 Deploying the Application

Perform the following steps to deploy the application:

	
Create an Application Server Connection by right-clicking the application in the navigation pane and selecting New. Follow the instructions in Section 17.7, "Creating a New Application Server Connection".

	
Deploy the application by selecting the usermessagingsample application, Deploy, usermessagingsample, to, and SOA_server (Figure 17-4).

Figure 17-4 Deploying the Project

[image: Description of Figure 17-4 follows]

	
Verify that the message "Build Successful" appears in the log.

	
Verify that the message "Deployment Finished" appears in the deployment log.

You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in Oracle User Messaging Service and optionally configure a default device for the user receiving the message in User Messaging Preferences.

	
Note:

Refer to "Configuring Notifications" in the Oracle Fusion Middleware SOA Developer's Guide for more information.

17.5.5 Testing the Application

Once usermessagingsample has been deployed to a running instance of WLS, perform the following:

	
Launch a Web browser and enter the address of the sample application as follows: http://<host>:<http-port>/usermessagingsample/. For example, enter http://localhost:7001/usermessagingsample/ into the browser's navigation bar.

When prompted, enter login credentials. For example, username weblogic. The browser page for testing messaging samples appears (Figure 17-5).

Figure 17-5 Testing the Sample Application

[image: Description of Figure 17-5 follows]

	
Click Send sample message. The Send Message page appears (Figure 17-6).

Figure 17-6 Addressing the Test Message

[image: Description of Figure 17-6 follows]

	
As an optional step, enter the sender address in the following format:

Email:<sender_address>.

For example, enter Email:sender@oracle.com.

	
Enter one or more recipient addresses. For example, enter Email:recipient@oracle.com. Enter multiple addresses as a comma-separated list as follows:

Email:<recipient_address1>, Email:<recipient_address2>.

If you have configured user messaging preferences, you can address the message simply to "User:<username>". For example, User:weblogic.

	
As an optional step, enter a subject line or content for the e-mail.

	
Click Send. The Message Status page appears, showing the progress of transaction ("Message received by Messaging engine for processing," in Figure 17-7).

Figure 17-7 Message Status

[image: Description of Figure 17-7 follows]

	
Click Refresh to update the status. When the e-mail message has been delivered to the e-mail server, the Status Content field displays Outbound message delivery to remote gateway succeeded., as illustrated in Figure 17-8.

Figure 17-8 Checking the Message Status

[image: Description of Figure 17-8 follows]

17.6 Using the UMS EJB Client API to Build a Client Echo Application

This section describes how to create an application called usermessagingsample-echo, a demo client application that uses the UMS EJB Client API to asynchronously receive messages from an e-mail address and echo a reply back to the sender.

This application, which is packaged as a Enterprise ARchive file (EAR) called usermessagingsample-echo.ear, has the following structure:

	
usermessagingsample-echo.ear

	
META-INF

	
application.xml -- Descriptor file for all of the application modules.

	
weblogic-application.xml -- Descriptor file that contains the import of the oracle.sdp.messaging shared library.

	
usermessagingclient-ejb.jar -- Contains the Message EJB Client deployment descriptors.

	
META-INF

	
 ejb-jar.xml

	
 weblogic-ejb-jar.xml

	
usermessagingsample-echo-ejb.jar -- Contains the application session beans (ClientSenderBean, ClientReceiverBean) that process a received message and return an echo response.

	
META-INF

	
 ejb-jar.xml

	
 weblogic-ejb-jar.xml

	
usermessagingsample-echo-web.war -- Contains the Web-based front-end and servlets.

	
WEB-INF

	
 web.xml

	
 weblogic.xml

The pre-built sample application, and the source code (usermessagingsample-echo-src.zip) are available on OTN.

17.6.1 Overview of Development

The following steps describe the process of building an application capable of asynchronous inbound and outbound messaging using usermessagingsample-echo.ear as an example:

	
Section 17.6.2, "Configuring the E-Mail Driver"

	
Section 17.6.3, "Using JDeveloper 11g to Build the Application"

	
Section 17.6.4, "Deploying the Application"

	
Section 17.6.5, "Testing the Application"

17.6.2 Configuring the E-Mail Driver

To enable the Oracle User Messaging Service's E-Mail Driver to perform inbound and outbound messaging and status retrieval, configure the E-Mail Driver as follows:

	
Enter the name of the SMTP mail server as the value for the OutgoingMailServer property.

	
Enter the name of the IMAP4/POP3 mail server as the value for the IncomingMailServer property. Also, configure the incoming user name and password.

	
Note:

This sample application is generic and can support inbound and outbound messaging through other channels when the appropriate messaging drivers are deployed and configured.

17.6.3 Using JDeveloper 11g to Build the Application

This section describes using a Windows-based build of JDeveloper to build, compile, and deploy usermessagingsample-echo through the following steps:

17.6.3.1 Opening the Project

	
Unzip usermessagingsample.echo-src.zip, to the JDEV_HOME/communications/samples/ directory. This directory must be used for the shared library references to be valid in the project.

	
Note:

If you choose to use a different directory, you must update the oracle.sdp.messaging library source path to JDEV_HOME/communications/modules/oracle.sdp.messaging_11.1.1/sdpmessaging.jar.

	
Open usermessagingsample-echo.jws (contained in the .zip file) in Oracle JDeveloper (Figure 17-9).

Figure 17-9 Opening the Project

[image: Description of Figure 17-9 follows]

In the Oracle JDeveloper main window the project appears (Figure 17-10).

Figure 17-10 Oracle JDeveloper Main Window

[image: Description of Figure 17-10 follows]

	
Verify that the build dependencies for the sample application have been satisfied by checking that the following library has been added to the usermessagingsample-echo-web and usermessagingsample-echo-ejb modules.

	
Library: oracle.sdp.messaging, Classpath: JDEV_HOME/communications/modules/oracle.sdp.messaging_11.1.1/sdpmessaging.jar. This is the Java library used by UMS and applications that use SDP Messaging to send and receive messages.

Perform the following steps for each module:

	
In the Application Navigator, right click on the module and select Project Properties.

	
In the left pane, select Libraries and Classpath (Figure 17-11).

Figure 17-11 Verifying Libraries

[image: Description of Figure 17-11 follows]

	
Click OK.

	
Verify that the usermessagingclient-ejb project exists in the application. This is an EJB module that packages the messaging client beans used by SDP Messaging applications. The module allows the application to connect with the UMS server.

	
Explore the Java files under the usermessagingsample-echo-ejb project to see how the messaging client APIs are used to asynchronously receive messages (ClientReceiverBean), and send messages (ClientSenderBean).

	
Explore the Java files under the usermessagingsample-echo-web project to see how the messaging client APIs are used to register and unregister access points.

	
Note that the application info that is registered with the UMS Server is specified declaratively in the usermessagingclient-ejb project's ejb-jar.xml. (Example 17-11).

Example 17-11 Application Information

 <env-entry>
 <env-entry-name>sdpm/ApplicationName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>UMSEchoApp</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>sdpm/ApplicationInstanceName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>UMSEchoAppInstance</env-entry-value>
 </env-entry>

 <env-entry>
 <env-entry-name>sdpm/ReceivingQueuesInfo</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>OraSDPM/QueueConnectionFactory:OraSDPM/Queues/OraSDPMAppDefRcvQ1</env-entry-value>
 </env-entry>

 <env-entry>
 <env-entry-name> sdpm/MessageListenerSessionBeanJNDIName </env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value> ejb/umsEchoApp/ClientReceiverLocal</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name> sdpm/MessageListenerSessionBeanHomeClassName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value> oracle.sdp.messaging.sample.ejbApp.ClientReceiverHomeLocal </env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name> sdpm/StatusListenerSessionBeanJNDIName </env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>ejb/umsEchoApp/ClientReceiverLocal</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>sdpm/StatusListenerSessionBeanHomeClassName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>oracle.sdp.messaging.sample.ejbApp.ClientReceiverHomeLocal</env-entry-value>
 </env-entry>

	
Note that the ApplicationName ("UMSEchoApp") and ApplicationInstanceName ("UMSEchoAppInstance") are also used in the Message Selector for the MessageDispatcherBean MDB, which is used for asynchronous receiving of messages and statuses placed in the application receiving queue (Example 17-12).

Example 17-12 Application Information

<activation-config-property>
 <activation-config-property-name>
 messageSelector
 </activation-config-property-name>
 <activation-config-property-value>
 appName='UMSEchoApp' or sessionName='UMSEchoApp-UMSEchoAppInstance'
 </activation-config-property-value>
</activation-config-property>

	
Note:

If you chose a different ApplicationName and ApplicationInstanceName for your own application, remember to update this message selector. Asynchronous receiving does not work otherwise.

17.6.4 Deploying the Application

Perform the following steps to deploy the application:

	
Create an Application Server Connection by right-clicking the application in the navigation pane and selecting New. Follow the instructions in Section 17.7, "Creating a New Application Server Connection."

	
Deploy the application by selecting the usermessagingsample-echo application, Deploy, usermessagingsample-echo, to, and SOA_server (Figure 17-12).

Figure 17-12 Deploying the Project

[image: Description of Figure 17-12 follows]

	
Verify that the message "Build Successful" appears in the log.

	
Verify that the message "Deployment Finished" appears in the deployment log.

You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in Oracle User Messaging Service and optionally configure a default device for the user receiving the message in User Messaging Preferences.

	
Note:

Refer to "Configuring Notifications" in the Oracle Fusion Middleware SOA Developer's Guide for more information.

17.6.5 Testing the Application

Once usermessagingsample-echo has been deployed to a running instance of WLS, perform the following:

	
Launch a Web browser and enter the address of the sample application as follows: http://<host>:<http-port>/usermessagingsample-echo/. For example, enter http://localhost:7001/usermessagingsample-echo/ into the browser's navigation bar.

When prompted, enter login credentials. For example, username weblogic. The browser page for testing messaging samples appears (Figure 17-13).

Figure 17-13 Testing the Sample Application

[image: Description of Figure 17-13 follows]

	
Click Register/Unregister Access Points. The Access Point Registration page appears (Figure 17-14).

Figure 17-14 Registering an Access Point

[image: Description of Figure 17-14 follows]

	
Enter the access point address in the following format:

EMAIL:<server_address>.

For example, enter EMAIL:myserver@example.com.

	
Select the Action Register and Click Submit. The registration status page appears, showing "Registered" in Figure 17-15).

Figure 17-15 Access Point Registration Status

[image: Description of Figure 17-15 follows]

	
Send a message from your messaging client (for e-mail, your e-mail client) to the address you just registered as an access point in the previous step.

If the UMS messaging driver for that channel is configured correctly, you can expect to receive an echo message back from the usermessagingsample-echo application.

17.7 Creating a New Application Server Connection

Perform the following steps to create a new Application Server Connection.

	
Create a new Application Server Connection by right-clicking the project and selecting New, Connections, and Application Server Connection (Figure 17-16).

Figure 17-16 New Application Server Connection

[image: Description of Figure 17-16 follows]

	
Name the connection “SOA_server” and click Next (Figure 17-17).

	
Select "WebLogic 10.3" as the Connection Type.

Figure 17-17 New Application Server Connection

[image: Description of Figure 17-17 follows]

	
Enter the authentication information. The typical values are:

Username: weblogicPassword: weblogic

	
On the Connection screen, enter the hostname, port and SSL port for the SOA admin server, and enter the name of the domain for WLS Domain.

	
Click Next.

	
On the Test screen click Test Connection.

	
Verify that the message “Success!” appears.

The Application Server Connection has been created.

18 Parlay X Web Services Multimedia Messaging API

This chapter describes the Parlay X Multimedia Messaging Web Service that is available with Oracle User Messaging Service and how to use the Parlay X Web Services Multimedia Messaging API to send and receive messages through Oracle User Messaging Service.

	
Note:

To learn about the architecture and components of Oracle User Messaging Service, see Oracle Fusion Middleware Getting Started with Oracle SOA Suite.

This chapter contains the following sections:

	
Section 18.1, "Overview of Parlay X Messaging Operations"

	
Section 18.2, "Send Message Interface"

	
Section 18.3, "Receive Message Interface"

	
Section 18.4, "Oracle Extension to Parlay X Messaging"

	
Section 18.5, "Parlay X Messaging Client API and Client Proxy Packages"

	
Section 18.6, "Sample Chat Application with Parlay X APIs"

	
Note:

Oracle User Messaging Service also ships with a Java client library that implements the Parlay X API.

18.1 Overview of Parlay X Messaging Operations

The following sections describe the semantics of each of the supported operations along with implementation-specific details for the Parlay X Gateway. The following tables, describing input/output message parameters for each operation, are taken directly from the Parlay X specification.

Oracle User Messaging Service implements a subset of the Parlay X 2.1 Multimedia Messaging specification. Specifically Oracle User Messaging Service supports the SendMessage and ReceiveMessage interfaces. The MessageNotification and MessageNotificationManager interfaces are not supported.

18.2 Send Message Interface

The SendMessage interface allows you to send a message to one or more recipient addresses by using the sendMessage operation, or get the delivery status for a previously sent message by using the getMessageDeliveryStatus operation. The following requirements apply:

	
A recipient address must conform to the address format requirements of Oracle User Messaging Service (in addition to being a valid URI). The general format is <delivery_type>:<protocol_specific_address>, such as "email:user@domain", "sms:5551212", or im:user@jabberdomain".

	
Certain characters are not allowed in URIs; if it is necessary to include them in an address they can be encoded or escaped. Refer to the Oracle Fusion Middleware User Messaging Service API Reference for java.net.URI for details on how to create a properly encoded URI.

	
While the WSDL specifies that sender addresses can be any string, Oracle User Messaging Service requires that they be valid Messaging addresses.

	
Oracle User Messaging Service requires that you specify sender addresses on a per-delivery type basis. So for a sender address to apply to a recipient of a given delivery type, say EMAIL, the sender address must also have delivery type of EMAIL. Since this operation allows multiple recipient addresses but only one sender address, the sender address only applies to the recipients with the same delivery type.

	
Oracle User Messaging Service does not support the MessageNotification interface, and therefore does not produce delivery receipts, even if a receiptRequest is specified. In other words, the receiptRequest parameter is ignored.

18.2.1 sendMessage Operation

Table 18-1 describes message descriptions for the sendMessageRequest input in the sendMessage operation.

Table 18-1 sendMessage Input Message Descriptions

	Part Name	Part Type	Optional	Description
	
addresses

	
xsd:anyURI[0..unbounded]

	
No

	
Destination address for this Message.

	
senderAddress

	
xsd:string

	
Yes

	
Message sender address. This parameter is not allowed for all 3rd party providers. The Parlay X server needs to handle this according to a SLA for the specific application and its use can therefore result in a PolicyException.

	
subject

	
xsd:string

	
Yes

	
Message subject. If mapped to SMS this parameter is used as the senderAddress, even if a separate senderAddress is provided.

	
priority

	
MessagePriority

	
Yes

	
Priority of the message. If not present, the network assigns a priority based on the operator policy.Charging to apply to this message.

	
charging

	
common: ChargingInformation

	
Yes

	
Charging to apply to this message.

	
receiptRequest

	
common:SimpleReference

	
Yes

	
Defines the application endpoint, interfaceName and correlator that is used to notify the application when the message has been delivered to a terminal or if delivery is impossible.

Table 18-2 describes sendMessageResponse output messages for the sendMessage operation.

Table 18-2 sendMessageResponse Output Message Descriptions

	Part Name	Part Type	Optional	Description
	
result

	
xsd:string

	
No

	
This correlation identifier is used in a getMessageDeliveryStatus operation invocation to poll for the delivery status of all sent messages.

18.2.2 getMessageDeliveryStatus Operation

The getMessageDeliveryStatus operation gets the delivery status for a previously sent message. The input "requestIdentifier" is the "result" value from a sendMessage operation. This is the same identifier that is referred to as a Message ID in other Messaging documentation.

Table 18-3 describes the getMessageDeliveryStatusRequest input messages for the getMessageDeliveryStatus operation.

Table 18-3 getMessageDeliveryStatusRequest Input Message Descriptions

	Part Name	Part Type	Optional	Description
	
registrationIdentifier

	
xsd:string

	
No

	
Identifier related to the delivery status request.

Table 18-4 describes the getMessageDeliveryStatusResponse output messages for the getMessageDeliveryStatus operation.

Table 18-4 getMessageDeliveryStatusResponse Output Message Descriptions

	Part Name	Part Type	Optional	Description
	
result

	
DeliveryInformation [0..unbounded]

	
Yes

	
An array of status of the messages that were previously sent. Each array element represents a sent message, its destination address and its delivery status.

18.3 Receive Message Interface

The ReceiveMessage interface has three operations. The getReceivedMessages operation polls the server for any messages received since the last invocation of getReceivedMessages. Note that getReceivedMessages does not necessarily return any message content; it generally only returns message metadata.

The other two operations, getMessage and getMessageURIs, are used to retrieve message content.

18.3.1 getReceivedMessages Operation

This operation polls the server for any received messages. Note the following requirements:

	
The registration ID parameter is a string that identifies the endpoint address for which the application wants to receive messages. See the discussion of the ReceiveMessageManager interface for more details.

	
The Parlay X specification says that if the registration ID is not specified, all messages for this application must be returned. However, the WSDL says that the registration ID parameter is mandatory. Therefore our implementation treats the empty string ("") as the "not-specified" value. If you call getReceivedMessages with the empty string as your registration ID, you get all messages for this application. Therefore the empty string is not an allowed value of registration ID when calling startReceiveMessages.

	
According to the Parlay X specification, if the received message content is "pure ASCII text", then the message content is returned inline within the MessageReference object, and the messageIdentifier (Message ID) element is null. Our implementation treats any content with Content-Type "text/plain", and with encoding "us-ascii" as "pure ASCII text" for the purposes of this operation. As per the MIME specification, if no encoding is specified, "us-ascii" is assumed, and if no Content-Type is specified, "text/plain" is assumed.

	
The priority parameter is currently ignored.

Table 18-5 describes the getReceivedMessagesRequest input messages for the getReceivedMessages operation.

Table 18-5 getReceivedMessagesRequest Input Message Descriptions

	Part Name	Part Type	Optional	Description
	
registrationIdentifier

	
xsd:string

	
No

	
Identifies the off-line provisioning step that enables the application to receive notification of Message reception according to the specified criteria.

	
priority

	
MessagePriority

	
Yes

	
The priority of the messages to poll from the Parlay X gateway. ALl messages of the specified priority and higher get retrieved. If not specified, all messages shall be returned, that is, the same as specifying "Low."

Table 18-6 describes the getReceivedMessagesResponse output messages for the getReceivedMessages operation.

Table 18-6 getReceivedMessagesResponse Output Message Descriptions

	Part Name	Part Type	Optional	Description
	
registrationIdentifier

	
xsd:string

	
No

	
Identifies the off-line provisioning step that enables the application to receive notification of Message reception according to the specified criteria.

	
priority

	
MessagePriority

	
Yes

	
The priority of the messages to poll from the Parlay X gateway. ALl messages of the specified priority and higher get retrieved. If not specified, all messages shall be returned. This is the same as specifying Low.

18.3.2 getMessage Operation

The getMessage operation retrieves message content, using a message ID from a previous invocation of getReceivedMessages. There is no SOAP body in the response message; the content is returned as a single SOAP attachment.

Table 18-7 describes the getMessageRequest input messages for the getMessage operation.

Table 18-7 getMessageRequest Input Message Descriptions

	Part Name	Part Type	Optional	Description
	
messageRefIdentifier

	
xsd:string

	
No

	
The identity of the message.

There are no getMessageResponse output messages for the getMessage operation.

18.3.3 getMessageURIs Operation

The getMessageURIs retrieves message content as a list of URIs. Note the following requirements:

	
These URIs are HTTP URLs which can be dereferenced to retrieve the content.

	
If the inbound message has a Content-Type of "multipart", then multiple URIs are returned, one per sub-part. If the Content-Type is not "multipart", then a single URI is returned.

	
Per the Parlay X specification, if the inbound messages a body text part, defined as "the message body if it is encoded as ASCII text", it is returned inline within the MessageURI object. For the purposes of our implementation, we define this behavior as follows:

	
If the message's Content-Type is "text/*" (any text type), and if the charset parameter is "us-ascii", then the content is returned inline in the MessageURI object. There is no URI returned since there is no content other than what is returned inline.

	
If the message's Content-Type is "multipart/" (any multipart type), and if the first body part's Content-Type is "text/" with charset "us-ascii", then that part is returned inline in the MessageURI object, and there is no URI returned corresponding to that part.

	
Per the MIME specification, if the charset parameter is omitted, the default value of "us-ascii" is assumed. If the Content-Type header is not specified for the message, then a Content-Type of "text/plain" is assumed.

Table 18-8 describes the getMessageURIsRequest input messages for the getMessageURIs operation.

Table 18-8 getMessageURIsRequest Input Message Descriptions

	Part Name	Part Type	Optional	Description
	
messageRefIdentifier

	
xsd:string

	
No

	
The identity of the message to retrieve.

Table 18-9 describes the getMessageURIsResponse output messages for the getMessageURIs operation.

Table 18-9 getMessageURIsResponse Output Message Descriptions

	Part Name	Part Type	Optional	Description
	
result

	
MessageURI

	
No

	
Contains the complete message, consisting of the textual part of the message, if such exists, and a list of file references for the message attachments, if any.

18.4 Oracle Extension to Parlay X Messaging

The Parlay X Messaging specification leaves certain parts of the messaging flow undefined. The main area that is left undefined is the process for binding a client to an address for synchronous receiving (through the ReceiveMessage interface).

Oracle User Messaging Service includes an extension interface to Parlay X to support this process. The extension is implemented as a separate WSDL in an Oracle XML namespace to indicate that it is not an official part of Parlay X. Clients can choose to not use this additional interface or use it in some modular way such that their core messaging logic remains fully compliant with the Parlay X specification.

18.4.1 ReceiveMessageManager Interface

ReceiveMessageManager is the Oracle-specific interface for managing client registrations for receiving messages. Clients use this interface to start and stop receiving messages at a particular address. (This is analogous to the concept of registering/unregistering access points in the Messaging API).

18.4.1.1 startReceiveMessage Operation

Invoking this operation allows a client to bind itself to a given endpoint for the purpose of receiving messages. Note the following requirements:

	
An endpoint consists of an address and an optional "criteria", defined by the Parlay X specification as the first white space-delimited token of the message subject or content.

	
In addition to the endpoint information, the client also specifies a "registration ID" when invoking this operation; this ID is just a unique string which can be used later to refer to this particular binding in the stopReceiveMessage and getReceivedMessages operations.

	
If an endpoint is already registered by another client application, or the registration ID is already being used, a Policy Error results.

	
Certain characters are not allowed in URIs; if it is necessary to include them in an address they can be encoded/escaped. See the Oracle Fusion Middleware User Messaging Service API Reference for java.net.URI for details on how to create a properly encoded URI. For example, when registering to receive XMPP messages you must specify an address such as "IM:jabber|user@example.com", however the pipe "|" character is not allowed in URIs, and must be escaped before submitting to the server.

	
There is no guarantee that the server can actually receive messages at a given endpoint address. That depends on the overall configuration of Oracle User Messaging Service, particularly the Messaging drivers that are deployed in the system. No error is indicated if a client binds to an address where the server cannot receive messages.

The startReceiveMessage operation has the following inputs and outputs:

Table 18-10 describes the startReceiveMessageRequest input messages for the startReceiveMessage operation.

Table 18-10 startReceiveMessageRequest Input Message Descriptions

	Part Name	Part Type	Optional	Description
	
registrationIdentifier

	
xsd:string

	
No

	
A registration identifier.

	
messageService ActivationNumber

	
xsd:anyURI

	
No

	
Message Service Activation Number.

	
criteria

	
xsd:string

	
Yes

	
Descriptive string.

There are no startReceiveMessageResponse output messages for the startReceiveMessage operation.

18.4.1.2 stopReceiveMessage Operation

Invoking this operation removes the previously-established binding between a client and a receiving endpoint. The client specifies the same registration ID that was supplied when startReceiveMessage was called in order to identify the endpoint binding that is being broken. If there is no corresponding registration ID binding known to the server for this application, a Policy Error results.

Table 18-11 describes the stopReceiveMessageRequest input messages for the stopReceiveMessage operation.

Table 18-11 stopReceiveMessageRequest Input Message Descriptions

	Part Name	Part Type	Optional	Description
	
registrationIdentifier

	
xsd:string

	
No

	
A registration identifier.

There are no stopReceiveMessageResponse output messages for the stopReceiveMessage operation.

18.5 Parlay X Messaging Client API and Client Proxy Packages

While it is possible to assemble a Parlay X Messaging Client using only the Parlay X WSDL files and a Web Service assembly tool, we also provide pre-built Web Service stubs and interfaces for the supported Parlay X Messaging interfaces. Due to difficulty in assembling a Web Service with SOAP attachments in the style mandated by Parlay X, we recommend the use of the provided API rather than starting from WSDL.

For a complete listing of the classes available in the Parlay X Messaging API, see the Oracle Fusion Middleware User Messaging Service API Reference. The main entry points for the API are through the following client classes:

	
oracle.sdp.parlayx.multimedia_messaging.send.SendMessageClient

	
oracle.sdp.parlayx.multimedia_messaging.receive.ReceiveMessageClient

	
oracle.sdp.parlayx.multimedia_messaging.extension.receive_manager. ReceiveMessageManager

Each client class allows a client application to invoke the operations in the corresponding interface. Additional Web Service parameters such as the remote gateway URL and any required security credentials, are provided when an instance of the client class is constructed. See the Oracle Fusion Middleware User Messaging Service API Reference for more details. The security credentials are propagated to the server using standard WS-Security headers, as mandated by the Parlay X specification.

The general process for a client application is to create one of the client classes above, set the necessary configuration items (endpoint, username, password), then invoke one of the business methods (for example SendMessageClient.sendMessage(), etc). For examples of how to use this API, see the Messaging samples on Oracle Technology Network (OTN), and specifically usermessagingsample-parlayx-src.zip.

18.6 Sample Chat Application with Parlay X APIs

This chapter describes how to create, deploy and run the sample chat application with Parlay X APIs provided with Oracle User Messaging Service on OTN.

	
Note:

To learn about the architecture and components of Oracle User Messaging Service, see Oracle Fusion Middleware Getting Started with Oracle SOA Suite.

This chapter contains the following sections:

	
Section 18.6.1, "Overview"

	
Section 18.6.2, "Running the Pre-Built Sample"

	
Section 18.6.3, "Testing the Sample"

	
Section 18.6.4, "Creating a New Application Server Connection"

18.6.1 Overview

This sample demonstrates how to create a Web-based chat application to send and receive messages through e-mail, SMS, or IM. The sample uses standards-based Parlay X Web Service APIs to interact with a User Messaging server. The sample application includes web service proxy code for each of three Web service interfaces: the SendMessage and ReceiveMessage services defined by Parlay X, and the ReceiveMessageManager service which is an Oracle extension to Parlay X. You must define an Application Server connection in JDeveloper, and deploy and run the application.The application is provided as a pre-built Oracle JDeveloper project that includes a simple web chat interface.

18.6.1.1 Provided Files

The following files are included in the sample application:

	
Project – the directory containing the archived Oracle JDeveloper project files.

	
Readme.txt.

	
Release notes

18.6.2 Running the Pre-Built Sample

Perform the following steps to run and deploy the pre-built sample application:

	
Open the usermessagingsample-parlayx.jws (contained in the .zip file) in Oracle JDeveloper.

In the Oracle JDeveloper main window the project appears.

Figure 18-1 Oracle JDeveloper Main Window

[image: Description of Figure 18-1 follows]

	
In Oracle JDeveloper, select File > Open..., then navigate to the directory above and open workspace file "usermessagingsample-parlayx.jws".

This opens the precreated JDeveloper application for the Parlay X sample application. The application contains one Web module. All of the source code for the application is in place. You must configure the parameters that are specific to your installation.

	
Satisfy the build dependencies for the sample application by adding a library to the Web module.

	
In the Application Navigator, right click on web module usermessagingsample-parlayx-war, and select Project Properties.

	
In the left pane, select Libraries and Classpath.

Figure 18-2 Adding a Library

[image: Description of Figure 18-2 follows]

	
Click Add Library.

Figure 18-3 Adding a Library

[image: Description of Figure 18-3 follows]

	
Click New to define a new library.

	
For Library Name, enter "oracle.sdp.client".

Figure 18-4 Defining the Library

[image: Description of Figure 18-4 follows]

	
With "Class Path" selected, select Add Entry.

	
Navigate to <JDeveloper_Base_Directory>/communications/modules/oracle.sdp.client_11.1.1, and select jar file "sdpclient.jar".

Figure 18-5 Selecting sdpclient.jar

[image: Description of Figure 18-5 follows]

	
Click OK/Accept in all popups to create the library and add it as a dependency to the sample Web module.

	
Create an Application Server Connection by right-clicking the project in the navigation pane and selecting New. Follow the instructions in Section 18.6.4, "Creating a New Application Server Connection".

	
Deploy the project by selecting the usermessasgingsample-parlayx project, Deploy, usermessasgingsample-parlayx, to, and SOA_server (Figure 18-6).

Figure 18-6 Deploying the Project

[image: Description of Figure 18-6 follows]

	
Verify that the message "Build Successful" appears in the log.

	
Enter the default revision and click OK.

	
Verify that the message "Deployment Finished" appears in the deployment log.

You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in Oracle User Messaging Service and configure a default device for the user receiving the message in User Messaging Preferences, as described in the following sections.

	
Note:

Refer to "Configuring Notifications" in the Oracle Fusion Middleware SOA Developer's Guide for more information.

18.6.3 Testing the Sample

Perform the following steps to run and test the sample:

	
Open a Web browser.

	
Navigate to the URL of the application as follows, and log in:

http://<host>:<port>/usermessagingsample-parlayx/

The 'Messaging Parlay X Sample' Web page appears (Figure 18-7). This page contains navigation tabs and instructions for the application.

Figure 18-7 Messaging Parlay X Sample Web Page

[image: Description of Figure 18-7 follows]

	
Click Configure and enter the following values (Figure 18-8):

	
Specify the Send endpoint. For example, http://localhost:port/sdpmessaging/parlayx/SendMessageService

	
Specify the Receive endpoint. For example, http://localhost:port/sdpmessaging/parlayx/ReceiveMessageService

	
Specify the Receive Manager endpoint. For example, http://localhost:port/sdpmessaging/parlayx/ReceiveMessageMessageService

	
Specify the Username and Password.

	
Specify a Policy (required if the User Messaging Service instance has WS security enabled).

	

Figure 18-8 Configuring the Web Service Endpoints and Credentials

[image: Description of Figure 18-8 follows]

	
Click Save.

	
Click Manage.

	
Enter a Registration ID to specify the registration and address at which to receive messages (Figure 18-9). You can also use this page to stop receiving messages at an address.

Figure 18-9 Specifying a Registration ID

[image: Description of Figure 18-9 follows]

	
Click Start.

Verify that the message "Registration operation succeeded" appears.

	
Click Chat (Figure 18-10).

	
Enter recipients in the To: field in the format illustrated in Figure 18-10.

	
Enter a message.

	
Click Send.

	
Verify that the message is received.

	

Figure 18-10 Running the Sample

[image: Description of Figure 18-10 follows]

18.6.4 Creating a New Application Server Connection

Perform the following steps to create a new Application Server Connection.

	
Create a new Application Server Connection by right-clicking the project and selecting New, Connections, and Application Server Connection (Figure 18-11).

Figure 18-11 New Application Server Connection

[image: Description of Figure 18-11 follows]

	
Name the connection “SOA_server” and click Next (Figure 18-12).

	
Select "WebLogic 10.3" as the Connection Type.

Figure 18-12 New Application Server Connection

[image: Description of Figure 18-12 follows]

	
Enter the authentication information. The typical values are:

Username: weblogicPassword: weblogic

	
On the Connection screen, enter the hostname, port and SSL port for the SOA admin server, and enter the name of the domain for WLS Domain.

	
Click Next.

	
On the Test screen click Test Connection.

	
Verify that the message “Success!” appears.

The Application Server Connection has been created.

A Oracle User Messaging Service Applications

This appendix describes how to create your own Oracle User Messaging Service applications using the procedures and code provided.

This chapter includes the following sections:

	
Section A.1, "Send Message to User Specified Channel"

	
Section A.2, "Send Email with Attachments"

	
Note:

For more information, and for code samples, refer to Oracle Technology Network (http://otn.oracle.com).

A.1 Send Message to User Specified Channel

This chapter describes how to build and run the Send Message to User Specified Channel application provided with Oracle User Messaging Service.

	
Note:

To learn about the architecture and components of Oracle User Messaging Service, see Oracle Fusion Middleware Getting Started with Oracle SOA Suite.

This chapter contains the following sections:

	
Section A.1.1, "Overview"

	
Section A.1.2, "Installing and Configuring SOA and User Messaging Service"

	
Section A.1.3, "Building the Sample"

	
Section A.1.4, "Creating a New Application Server Connection"

	
Section A.1.5, "Deploying the Project"

	
Section A.1.6, "Configuring User Messaging Preferences"

	
Section A.1.7, "Testing the Sample"

A.1.1 Overview

The "Send Message to User Specified Channel" application demonstrates a BPEL process that allows a message to be sent to a user through a messaging channel specified in User Messaging Preferences. After you have configured a device and messaging channel addresses for each supported channel and the default device, Oracle User Messaging Service routes the message to the user based on the preferred channel setting that you configured.

A.1.1.1 Provided Files

The following files are included in the application:

	
SendMessage.pdf – this document.

	
Project – the directory containing Oracle JDeveloper project files.

	
Readme.txt.

	
Release notes

A.1.2 Installing and Configuring SOA and User Messaging Service

The installation of SOA and User Messaging Service has already been performed on your hosted instance, and the sample users have already been seeded. Perform the following steps to enable notifications in soa-infra, if not already done:

	
Using Enterprise Manager, go to "soa-infra" > (Menu) > Workflow Notification Properties, and set Notification Mode to ALL.

	
Configure the User Messaging drivers if required as described in "Configuring Drivers" in the Oracle Fusion Middleware SOA Administrator's Guide.

	
Set the email address for user "weblogic" by using the JXplorer LDAP browser. Refer to "Updating Addresses in Your LDAP User Profile".

	
Restart the server.

A.1.2.1 Updating Addresses in Your LDAP User Profile

Perform the following steps to set the email address for user "weblogic" by using the JXplorer LDAP browser:

A.1.2.1.1 Installing

Download and install JXplorer from http://www.jxplorer.org.

A.1.2.1.2 Connecting

	
Set the embedded LDAP server admin password as follows:

	
Login to the WLS Admin Console.

	
Click on the domain name link > Security > Embedded LDAP.

	
Enter a new "Credential" and "Confirm Credential" (for example, "weblogic").

	
Click Save.

	
Connect from JXplorer by specifying the fields in Table A-1:

Table A-1 JXplorer Connection Fields

	Field	Value
	
Host

	
WLS AdminServer hostname

	
Port

	
WLS AdminServer port

	
Protocol

	
LDAP v3

	
Security Level

	
User + Password

	
User DN

	
cn=Admin

	
Password

	
<password> (for example, weblogic)

A.1.2.1.3 Setting User Messaging Device Addresses in LDAP

The following example uses the user "weblogic". You may create and use additional users.

	
Expand the LDAP tree as follows: domain > myrealm > people > weblogic.

	
Click on the user entry.

	
Select the HTML view tab on the right.

	
Enter the desired Email Address and Mobile Phone Number.

	
Click Submit.

A.1.3 Building the Sample

Performing the following procedure of building the sample from scratch allows you to learn how to add messaging to your SOA Composite Applications, and use User Messaging Preferences.

	
Open Oracle JDeveloper 11g.

	
Create a new application by selecting File, New, General, Applications, and SOA Applications. Click OK.

	
Enter the Application Name and click Next (Figure A-1).

Figure A-1 Creating a New Application and Project (1 of 3)

[image: Description of Figure A-1 follows]

	
Enter the name for the project and click Next (Figure A-2).

	

Figure A-2 Creating a New Application and Project (2 of 3)

[image: Description of Figure A-2 follows]

	
Select the Composite With BPEL composite template (Figure A-3). Click Finish.

Figure A-3 Creating a New Application and Project (3 of 3)

[image: Description of Figure A-3 follows]

	
In the Create BPEL Process window, enter the BPEL process name as "SendMessage" (Figure A-4). Click OK.

Figure A-4 Creating the BPEL Process

[image: Description of Figure A-4 follows]

	
Verify that "Expose as a SOAP service" is checked. Click OK.

	
You have now created an empty and default BPEL application (Figure A-5).

In the Oracle JDeveloper main window you can view the following components of the application under the Composite.xml tab.

	
The left box is the definition of a Web Service client that is used to initiate an application.

	
The middle box is a BPEL process that creates and formats the message and calls the messaging service.

	
Note:

You must later create the messaging service resource that is used to send the message when you create the User Notification BPEL process (steps 13-19).

Figure A-5 Empty and Default BPEL Application

[image: Description of Figure A-5 follows]

	
Expand the xsd folder in the Application Navigator and open BPELProcess1.xsd by double-clicking it (Figure A-6).

Figure A-6 Accessing the BPELProcess1.xsd File

[image: Description of Figure A-6 follows]

	
Click on the Source tab (Figure A-7).

	
Perform the following modifications to the inputs of this BPEL application:

In the generated file, SendMessage.xsd, in the xsd folder in the application navigator under projects, the following element definition is created by default:

<element name="input" type="string"/>

This xsd element defines the input for the BPEL process.

Select the Source tab (Figure A-7), and replace the line above with the following three lines:

<element name="to" type="string"/>
<element name="subject" type="string"/>
<element name="body" type="string"/>

Figure A-7 Modifying the Inputs in the BPELProcess1.xsd File

[image: Description of Figure A-7 follows]

	
Perform a File, Save All.

	
View the expanded process element (Figure A-8).

Figure A-8 Viewing the Expanded Process Element

[image: Description of Figure A-8 follows]

	
To enable messaging in this process, drag and drop User Notification from BPEL Activities and Components located in the Component Palette between the receiveInput and callbackClient activities.

The User Notification activity appears (Figure A-9).

Figure A-9 User Notification Activity Before Configuring the Inputs

[image: Description of Figure A-9 follows]

	
Click the XPath Expression Builder icon to the right of the "To:" input box.

	
Modify the expression for the recipient, "to", as follows:

	
In the BPEL Variables pane, select Variables, inputVariable, Payload, clientprocess, and client:to (Figure A-10).

	
Click Insert Into Expression.

	
Click OK.

Figure A-10 Defining the Recipient ("to") Expression

[image: Description of Figure A-10 follows]

	
Click the XPath Expression Builder icon to the right of the "subject:" input box.

	
Modify the expression for the subject as follows:

	
In the BPEL Variables pane, select Variables, InputVariable, Payload, clientprocess, and client:subject (Figure A-11).

	
Click Insert Into Expression.

	
Click OK.

Figure A-11 Defining the Subject Expression

[image: Description of Figure A-11 follows]

	
Click the XPath Expression Builder icon to the right of the "body:" input box.

	
Modify the expression for the body as follows:

	
In the BPEL Variables pane, select Variables, InputVariable, Payload, clientprocess, and client:body (Figure A-12).

	
Click Insert Into Expression.

Figure A-12 Defining the Body Expression

[image: Description of Figure A-12 follows]

	
Click OK.

	
Click Apply and then OK to apply the changes (Figure A-13).

Figure A-13 Confirming the Changes to the Inputs

[image: Description of Figure A-13 follows]

The changes to the inputs are saved and the configuration of the User Notification Activity is complete. You can now see the User Notification Activity in the BPEL application (Figure A-14). The SOA Composite is complete.

Figure A-14 User Notification Activity After Configuration of Inputs

[image: Description of Figure A-14 follows]

A.1.4 Creating a New Application Server Connection

Perform the following steps to create a new Application Server Connection.

	
Create a new Application Server Connection by right-clicking the project and selecting New, Connections, and Application Server Connection (Figure A-15).

Figure A-15 New Application Server Connection

[image: Description of Figure A-15 follows]

	
Name the connection “SOA_server” and click Next (Figure A-16).

	
Select "WebLogic 10.3" as the Connection Type.

Figure A-16 New Application Server Connection

[image: Description of Figure A-16 follows]

	
Enter the authentication information. The typical values are:

Username: weblogicPassword: weblogic

	
On the Connection screen, enter the hostname, port and SSL port for the SOA admin server, and enter the name of the domain for WLS Domain.

	
Click Next.

	
On the Test screen click Test Connection.

	
Verify that the message “Success!” appears.

The Application Server Connection has been created.

A.1.5 Deploying the Project

Perform the following steps to deploy the project:

	
Deploy the project by selecting the SendMessage project, Deploy, SendMessageProj, to, and SOA_server (Figure A-17).

Figure A-17 Deploying the Project

[image: Description of Figure A-17 follows]

	
Verify that the message "Build Successful" appears in the log.

	
Enter the default revision and click OK.

	
Verify that the message "Deployment Finished" appears in the deployment log (Figure A-18).

Figure A-18 Verifying that the Deployment is Successful

[image: Description of Figure A-18 follows]

You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in Oracle User Messaging Service and configure a default device for the user receiving the message in User Messaging Preferences, as described in the following sections.

	
Note:

Refer to "Configuring Notifications" in the Oracle Fusion Middleware SOA Developer's Guide for more information.

A.1.6 Configuring User Messaging Preferences

For users to receive the notifications, they must register the devices that they use to access messages through User Messaging Preferences. Perform the following steps:

	
Log into the User Messaging Preferences application at one of the following URLs:

	
Directly at http://<server>:<port>/sdpmessaging/userprefs-ui

	
Through the Worklist application's Preferences > Notification tab at: http://<server>:<port>/integration/worklistapp

The User Messaging Preferences application appears.

	
Click on the Messaging Channels tab (Figure A-19).

Figure A-19 Messaging Channels Tab

[image: Description of Figure A-19 follows]

You are prompted for login credentials.

	
In the Messaging Channels tab, select a channel.

	
Set a channel as the default by expanding the device folder, and then clicking Set as Default adjacent to the selected channel.

A checkmark appears next to the selected channel, designating it as the default means of receiving notifications. All messages sent to that user are sent to that channel.

A.1.7 Testing the Sample

The following steps describe how to perform a test message transmission through Enterprise Manager.

Perform the following steps to run and test the sample:

	
Open a Web browser window and login to Enterprise Manager for the SOA domain. For example, http://<host>:<port>/em .

	
In Enterprise Manager, expand the SOA folder in the navigation tree, and click the deployed SendMessageProj composite application. Click the Test button to launch the test client page.

	
In the Input Arguments section provide the input values for invoking SendMessageProj.

Enter the following values:

	
to: weblogic (the user)

	
subject: notification test (the subject)

	
body: the message content

	
Click Test Web Service.

A.1.7.1 Verifying the Execution of Sending the E-mail

Log in to the Human Workflow Engine. Verify the outgoing notifications and their statuses from the Notification Manager tab. (Figure A-20).

Figure A-20 Viewing Outgoing Notifications

[image: Description of Figure A-20 follows]

A.2 Send Email with Attachments

This chapter describes how to build and run the Send Email with Attachments application provided with Oracle User Messaging Service.

	
Note:

To learn about the architecture and components of Oracle User Messaging Service, see Oracle Fusion Middleware Getting Started with Oracle SOA Suite.

This chapter contains the following sections:

	
Section A.2.1, "Overview"

	
Section A.2.2, "Installing and Configuring SOA and User Messaging Service"

	
Section A.2.3, "Running the Pre-Built Sample"

	
Section A.2.4, "Testing the Sample"

	
Section A.2.5, "Building the Sample"

	
Section A.2.6, "Creating a New Application Server Connection"

A.2.1 Overview

The "Send Email With Attachment" application demonstrates a BPEL process that sends an e-mail with an attached file. A BPEL process looks up a user's e-mail address from the identity store, reads a file from the file system, creates e-mail content and then sends an email to the user.Section A.2.5, "Building the Sample" shows you how to add an e-mail with attachments to your SOA composite application, allowing your applications to be enabled with messaging.If you want to model the application from scratch, go to the section titled Building the Sample. Or, you can directly use the pre-built project provided with this tutorial.Before you run the pre-built sample or build the application from scratch, you must install and configure the server as described in Section A.2.2, "Installing and Configuring SOA and User Messaging Service". By default, soa-infra does not send out notifications. The following steps describe installing and configuring the e-mail drivers needed to communicate with the e-mail server.

A.2.1.1 Provided Files

The following files are included in the sample application:

	
ns_sendemail.pdf – this document.

	
Project – the directory containing Oracle JDeveloper project files.

	
Readme.txt.

	
Release notes

A.2.2 Installing and Configuring SOA and User Messaging Service

The installation of SOA and User Messaging Service has already been performed on your hosted instance, and the sample user, "weblogic", has already been created. Perform the following steps to enable notifications in soa-infra, if not already done:

	
Using Enterprise Manager, go to "soa-infra" > (Menu) > Workflow Notification Properties, and set Notification Mode to ALL.

	
Configure the User Messaging drivers if required as described in "Configuring Drivers" in the Oracle Fusion Middleware SOA Administrator's Guide.

	
Set the email address for user "weblogic" by using the JXplorer LDAP browser. Refer to "Updating Addresses in Your LDAP User Profile".

	
Restart the server.

A.2.2.1 Updating Addresses in Your LDAP User Profile

Perform the following steps to set the email address for user "weblogic" by using the JXplorer LDAP browser:

A.2.2.1.1 Installing

Download and install JXplorer from http://www.jxplorer.org.

A.2.2.1.2 Connecting

	
Set the embedded LDAP server admin password as follows:

	
Login to the WLS Admin Console.

	
Click on the domain name link > Security > Embedded LDAP.

	
Enter a new "Credential" and "Confirm Credential" (for example, "weblogic").

	
Click Save.

	
Connect from JXplorer by specifying the fields in Table A-2:

Table A-2 JXplorer Connection Fields

	Field	Value
	
Host

	
WLS AdminServer hostname

	
Port

	
WLS AdminServer port

	
Protocol

	
LDAP v3

	
Security Level

	
User + Password

	
User DN

	
cn=Admin

	
Password

	
<password> (for example, weblogic)

A.2.2.1.3 Setting User Messaging Device Addresses in LDAP

The following example uses the user "weblogic". You may create and use additional users.

	
Expand the LDAP tree as follows: domain > myrealm > people > weblogic.

	
Click on the user entry.

	
Select the HTML view tab on the right.

	
Enter the desired Email Address and Mobile Phone Number.

	
Click Submit.

A.2.3 Running the Pre-Built Sample

Perform the following steps to run and deploy the pre-built sample application:

	
Open SendEmailWithAttachmentsApp.jws (contained in the .zip file) in Oracle JDeveloper.

In the Oracle JDeveloper main window you can view the following components of the sample application under the Composite.xml tab.

Figure A-21 Oracle JDeveloper Main Window

[image: Description of Figure A-21 follows]

	
The left box is the definition of a Web Service client that is used to initiate an application.

	
The middle box is a BPEL process that creates and formats the message and calls the messaging service.

	
The right box is the messaging service resource that is used to send the message.

	
Create an Application Server Connection by right-clicking the project in the navigation pane and selecting New. Follow the instructions in Section A.2.6, "Creating a New Application Server Connection".

	
Deploy the project by selecting the SendEmail project, Deploy, SendEmailProj, to, and SOA_server (Figure A-22).

Figure A-22 Deploying the Project

[image: Description of Figure A-22 follows]

	
Verify that the message "Build Successful" appears in the log.

	
Enter the default revision and click OK.

	
Verify that the message "Deployment Finished" appears in the deployment log.

You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in Oracle User Messaging Service and configure a default device for the user receiving the message in User Messaging Preferences, as described in the following sections.

	
Note:

Refer to "Configuring Notifications" in the Oracle Fusion Middleware SOA Developer's Guide for more information.

A.2.4 Testing the Sample

The following steps describe how to perform a test message transmission through Enterprise Manager.

Perform the following steps to run and test the sample:

	
Open a Web browser window and login to Enterprise Manager for the SOA domain. For example, http://<host>:<port>/em.

	
In Enterprise Manager, expand the SOA folder in the navigation tree, and click the deployed SendEmailWithAttachmentsProj composite application. Click the Test button to launch the test client page.

	
In the Input Arguments section provide the input values for invoking SendEmailWithAttachmentsProj.

Enter the following values:

	
to: weblogic (the user)

	
subject: notification test (the subject)

	
body: the message content

	
attachmentName: the name of the being attached, including extension.

	
attachmentMimeType: for example, image/gif.

To send files such as pdf, doc, gif or jpeg files, the following values can be used for the attachmentMimeType entry:

	
file-name.doc – attachmentMimeType: application/msword

	
file-name.pdf – attachmentMimeType: application/pdf

	
file-name.jpg – attachmentMimeType: image/jpeg

	
file-name.gif – attachmentMimeType: image/gif

	
attachmentURI: the URI for the attachment

	
Click Test Web Service.

A.2.4.1 Verifying the Execution

Check the weblogic e-mail account to verify it has received an email with attachment.

A.2.5 Building the Sample

Performing the following procedure of building the sample from scratch allows you to learn how to add messaging to your SOA Composite Applications, and use User Messaging Preferences.

	
Open Oracle JDeveloper 11g.

	
Create a new application by selecting File, New, Applications, and SOA Application. Click OK.

	
Enter the Application Name and click Next (Figure A-23).

Figure A-23 Creating a New Application and Project (1 of 3)

[image: Description of Figure A-23 follows]

	
Enter the name for the project and click Next (Figure A-24).

	

Figure A-24 Creating a New Application and Project (2 of 3)

[image: Description of Figure A-24 follows]

	
Select the Composite With BPEL composite template (Figure A-25). Click Finish.

Figure A-25 Creating a New Application and Project (3 of 3)

[image: Description of Figure A-25 follows]

	
In the Create BPEL Process window, enter the BPEL process name as "SendEmailWithAttachments" (Figure A-26). Click OK.

Figure A-26 Creating the BPEL Process

[image: Description of Figure A-26 follows]

	
Verify that "Expose as a SOAP service" is checked. Click OK.

	
You have now created an empty and default BPEL application.

In the Oracle JDeveloper main window you can view the following components of the sample application under the Composite.xml tab.

	
The left box is the definition of a Web Service client that is used to initiate an application.

	
The middle box is a BPEL process that creates and formats the message and calls the messaging service.

	
Note:

You must later create the messaging service resource that is used to send the message when you create the User Notification BPEL process (steps 13-19).

	
Expand the xsd folder in the Application Navigator and open SendEmailWithAttachments.xsd by double-clicking it (Figure A-27).

Figure A-27 Accessing the SendEmailWithAttachments.xsd File

[image: Description of Figure A-27 follows]

	
Click on the Source tab (Figure A-27).

	
Perform the following modifications to the inputs of this BPEL application:

In the generated file, SendEmailWithAttachments.xsd, in the xsd folder in the application navigator under projects, the following element definition is created by default:

<element name="process">
 <complexType>
 <sequence>
 <element name="input" type="string"/> </sequence>
 </complexType>
</element>

Select the Source tab, and replace the lines above with the following:

<element name="process">
<complexType>
 <sequence>
 <element name="to" type="string"/>
 <element name="subject" type="string"/>
 <element name="body" type="string"/>
 <element name="attachmentName" type="string"/>
 <element name="attachmentMimeType" type="string"/>
 <element name="attachmentURI" type="string"/>
 </sequence>
 </complexType>
 </element>

This xsd element defines the input for the BPEL process.

Figure A-28 Editing Email

[image: Description of Figure A-28 follows]

	
Save the project.

	
Select the SendEmailWithAttachments.bpel editor screen.

	
Drag and drop Email Activity from BPEL Activities and Components located in the Component Palette between the receiveInput and callbackClient activities (Figure A-28).

	
In the Edit Email window, leave the From account as “Default”.

Figure A-29 Edit Email Window

[image: Description of Figure A-29 follows]

	
To create the expression for To, select the Expression Builder (the second icon, Figure A-30) and perform the following steps:

	
Select Identity Service Functions from the functions drop down list.

	
Select the getUserProperty() function and select Insert into Expression.

	
Under BPEL variables select Variables->Process->Variables->inputVariable ->payload-> client:process->client:to.

	
Click Insert into Expression.

	
Type the string 'mail' manually.

	
Correct the parenthesis so they are matched.

	
Click OK.

This expression (Figure A-30) takes the data from the Web Service and maps it to the business e-mail of the local SOA user.

Figure A-30 Expression Builder for the To Path

[image: Description of Figure A-30 follows]

The expression must appear as follows:

ids:getUserProperty(bpws:getVariableData('inputVariable','payload', '/client:process/client:to'),'mail')

	
For Subject, select the Expression builder. Select getVariableData from Functions and click Insert Into Expression.

Figure A-31 shows the Expression Builder for the Subject.

Figure A-31 Expression Builder for the Subject

[image: Description of Figure A-31 follows]

The expression must appear as follows:

bpws:getVariableData('inputVariable', 'payload','/client:process/client:subject')

	
For “Body” select the Expression Builder and set the expression as shown in Figure A-32.

Figure A-32 Expression Builder for the Body

[image: Description of Figure A-32 follows]

The expression must appear as follows:

bpws:getVariableData('inputVariable','payload','/client:process/client:body')

	
In the Edit Email window (Figure A-33), ensure that the Multipart Message with attachments box is checked.

When an e-mail has multiple parts, the attachment count includes the body that is set with the Wizard above. The body specified by the Wizard above is set as the first body part. For example, to represent a multipart mail with one (1) attached file, enter “2” as the number of body parts. When there is one attachment, enter '1' as the number of body parts.

Figure A-33 Edit Email Window

[image: Description of Figure A-33 follows]

	
Set the attachments:

Each body part has three attributes: MimeType, BodyPartName and ContentBody. By default, the wizard generates default names, MIME types and contents for each of the attachments. The assignment of these body parts has to be changed to set the correct data by modifying the copy rules in the assign activity in the notification scope. The copy rules (specified in the Copy Operation tab) are grouped for each assignment in the following order (the copy-to constructs are also listed):

MimeType - <to variable="varNotificationReq" part="EmailPayload"
 query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[2]/
ns1:MimeType"/>

Name - <to variable="varNotificationReq" part="EmailPayload"
 query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[2]/
ns1:BodyPartName"/>

Contents - <to variable="varNotificationReq" part="EmailPayload"
 query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[2]/
ns1:ContentBody"/>

	
Expand the Email Node by selecting the plus sign icon (Figure A-34).

Figure A-34 Expanding the Email Node

[image: Description of Figure A-34 follows]

	
Double-click the EmailParamAssign node (Figure A-35).

Figure A-35 Email ParamAssign Node

[image: Description of Figure A-35 follows]

When making changes in the EmailParamAssign node (for example, editing the XPath variables), perform a Save All from the File menu after making each change. This ensures that the changes are reflected in the .bpel file.

	
To edit the mimeType of the second body part (the first body part is the contents set in the wizard) select the second body part variable ending with “MimeType” by double-clicking it (Figure A-36).

Figure A-36 Editing the mimeType of the Second Body Part

[image: Description of Figure A-36 follows]

	
Edit the XPath as shown below (Figure A-37):

From: /client:process/client:attachmentMimeType, To: /EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ ns1:BodyPart[2]/ns1:MimeType

Figure A-37 Editing the XPath for mimeType

[image: Description of Figure A-37 follows]

	
Save the project.

	
To edit the attachment name for the second attachment, select the second body part variable ending with “BodyPartName” by double-clicking it (Figure A-38).

Figure A-38 Editing the Attachment Name for the Second Attachment

[image: Description of Figure A-38 follows]

	
Edit the XPath as shown below:

From: /client:process/client:attachmentName To: /EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart /ns1:BodyPart[2]/ns1:BodyPartName

Figure A-39 Editing the XPath for BodyPartName

[image: Description of Figure A-39 follows]

	
Save the project.

	
To edit the attachment contents of the second attachment, select the second body part variable ending with “ContentBody” by double-clicking it (Figure A-40).

Figure A-40 Editing the Attachment Contents of the Second Attachment

[image: Description of Figure A-40 follows]

	
Edit the XPath as shown below (Figure A-41):

From: ora:readFile(bpws:getVariableData('inputVariable','payload','/client: process/client:attachmentURI')) To:/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ ns1:BodyPart[2]/ns1:ContentBody

ora:readFile() xpath function is available under “BPEL Xpath Extension Functions”.

Figure A-41 Editing the XPath from the ContentBody

[image: Description of Figure A-41 follows]

	
Click OK in the Edit Copy Operation screen.

Figure A-42 Copy Operations Tab

[image: Description of Figure A-42 follows]

	
Click OK in the assign activity. Save the project.

The Process Modeling procedure is complete. You can use the information in this procedure to add notification with attachments to your SOA composite application.You can now deploy and run the application as described in Section A.2.3, "Running the Pre-Built Sample".

A.2.6 Creating a New Application Server Connection

Perform the following steps to create a new Application Server Connection.

	
Create a new Application Server Connection by right-clicking the project and selecting New, Connections, and Application Server Connection (Figure A-43).

Figure A-43 New Application Server Connection

[image: Description of Figure A-43 follows]

	
Name the connection “SOA_server” and click Next (Figure A-44).

	
Select "WebLogic 10.3" as the Connection Type.

Figure A-44 New Application Server Connection

[image: Description of Figure A-44 follows]

	
Enter the authentication information. The typical values are:

Username: weblogicPassword: weblogic

	
On the Connection screen, enter the hostname, port and SSL port for the SOA admin server, and enter the name of the domain for WLS Domain.

	
Click Next.

	
On the Test screen click Test Connection.

	
Verify that the message “Success!” appears.

The Application Server Connection has been created.

C Developing SIP Servlets Using Eclipse

The following chapter describes how to use Eclipse to develop SIP Servlets for use with OWLCS, in the following sections:

	
Section C.1, "Overview"

	
Section C.2, "Setting Up the Development Environment"

	
Section C.3, "Building and Deploying the Project"

	
Section C.4, "Debugging SIP Servlets"

C.1 Overview

This document provides detailed instructions for using the Eclipse IDE as a tool for developing and deploying SIP Servlets with OWLCS. The full development environment requires the following components, which you must obtain and install before proceeding:

	
OWLCS

	
JDK 1.6.05

	
Eclipse version 3.4 or Eclipse 3.3 Europe. This includes a CVS client and server (required only for version control).

C.1.1 SIP Servlet Organization

Building a SIP Servlet produces a Web Archive (WAR file or directory) as an end product. A basic SIP Servlet WAR file contains the subdirectories and contents described in Figure C-1.

Figure C-1 SIP Servlet WAR Contents

[image: WAR contents]

C.2 Setting Up the Development Environment

Follow these steps to set up the development environment for a new SIP Servlet project:

	
Create a new OWLCS Domain.

	
Create a new Eclipse project.

The sections that follow describe each step in detail.

C.2.1 Creating a OWLCS Domain

In order to deploy and test your SIP Servlet, you need access to a OWLCS domain that you can reconfigure and restart as necessary. Follow the instructions in Oracle WebLogic Communication Services Installation Guide to create a new domain using the Configuration Wizard. When generating a new domain:

	
Select Development Mode as the startup mode for the new domain.

	
Select Sun SDK 1.6.05 as the SDK for the new domain.

C.2.2 Verifying the Default Eclipse JVM

Eclipse 3.4 uses the required version Java 6 (1.6) by default. Follow these steps to verify the configured JVM:

	
Start Eclipse.

	
Select Window >Preferences.

	
Expand the Java category in the left pane, and select Installed JREs.

	
Verify that Java 6 (1.6) is configured. If it is, proceed to step 10.

	
If not configured correctly, click Add... to add a new JRE.

	
Enter a name to use for the new JRE in the JRE name field.

	
Click the Browse... button next to the JRE home directory field. Then navigate to the MIDDLEWARE_HOME/jdk160_05 directory and click OK.

	
Click OK to add the new JRE.

	
Select the check box next to the new JRE to make it the default.

	
Click OK to dismiss the preferences dialog.

C.2.3 Creating a New Eclipse Project

Follow these steps to create a new Eclipse project for your SIP Servlet development, adding the OWLCS libraries required for building and deploying the application:

	
Start Eclipse.

	
Select File > New > Project...

	
Select Java Project and click Next.

	
Enter a name for your project in the Project Name field.

	
In the Location field, select "Create project in workspace" if you have not yet begun writing the SIP Servlet code. If you already have source code available in another location, select "Create project at external location" and specify the directory. Click Next.

	
Click the Libraries tab and follow these steps to add required JARs to your project:

	
Click Add External JARs...

	
Use the JAR selection dialog to add the MIDDLEWARE_HOME/server/lib/weblogic.jar file to your project.

	
Repeat the process to add the MIDDLEWARE_HOME/server/lib/wlss/sipservlet.jar and MIDDLEWARE_HOME/server/lib/wlss/wlssapi.jar files to your project.

	
Add any additional JAR files that you may require for your project.

	
To enable deploying directly from eclipse, change the build folder from /src/build to /src/WebContent/WEB-INF/classes. This means that you do not have to package the application before deploying it.

	
Click Finish to create the new project. Eclipse displays your new project name in the Package Explorer.

	
Right-click on the name of your project and use the New >Folder command to recreate the directory structure shown in Figure C-1, "SIP Servlet WAR Contents".

C.3 Building and Deploying the Project

The build.xml file that you created compiles your code, packages the WAR, and copies the WAR file to the /applications subdirectory of your development domain. OWLCS automatically deploys valid applications located in the /applications subdirectory.

C.4 Debugging SIP Servlets

In order to debug SIP Servlets, you must enable certain debug options when you start OWLCS. Follow these steps to add the required debug options to the script used to start OWLCS, and to attachthe debugger from within Eclipse:

	
Note:

On Linux, debug is enabled by default if you install in developer mode. However, the port is set to 8453.

	
Use a text editor to open the StartWebLogic.cmd script for your development domain.

	
Beneath the line that reads:

set JAVA_OPTIONS=
Enter the following line:
set DEBUG_OPTS=-Xdebug -Xrunjdwp:transport=dt_socket,address=9000,server=y,suspend=n

	
In the last line of the file, add the %DEBUG_OPTS% variable in the place indicated below:

"%JAVA_HOME%\bin\java" %JAVA_VM% %MEM_ARGS% %JAVA_OPTIONS% %DEBUG_OPTS%
-Dweblogic.Name=%SERVER_NAME% -Dweblogic.management.username=%WLS_USER%
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.management.server=%ADMIN_URL%
-Djava.security.policy="%MIDDLEWARE_HOME%\server\lib\weblogic.policy" weblogic.Server

	
Save the file and use the script to restart OWLCS.

	
To attach the debugger from within Eclipse select the Run > Open debug dialog.

	
Create a new "Remote Java Application".

	
Enter the host and port corresponding to the DEBUG_OPTS.

Index

A B C D H L M O P R S U X

A

	access points, 17.4.1
	application composition, 5.1
	Application Router, 5.1
	
	configuring a custom, 5.3

	assigning roles
	
	at deployment, 6.6.2
	dynamically, 6.6.2

	Attribute Value Pair (AVP), 11.7
	AVP, 11.7

B

	Buddy List Manager API, 8.7
	
	exceptions, 8.7.2

	BuddyListManager, 8.7.1.2
	BuddyListManagerFactory, 8.7.1.1
	buffer, 4.7

C

	CDF, 14.1
	charging
	
	event-based, 14.2.1, 14.4.3
	offline charging API, 14.4
	session-based, 14.2.2, 14.4.2, 15.6

	Charging Data Function (CDF), 14.1
	Charging Trigger Function (CTF), 14.1, 15.1
	CMAPI, 8.7
	constructed document key, 12.5
	Contact Management API (CMAPI), 8.7
	content indirection, 3.2
	converged applications, 2.1
	ConvergedHttpSession object, 2.3
	credit authorization models, 15.2
	CTF, 14.1, 15.1

D

	Default Application Router (DAR), 5.2
	Diameter
	
	API, overview of, 11.2
	Attribute Value Pair (AVP), 11.7
	creating converged Diameter and SIP applications
	
	SIP applications, 11.8

	Credit-Control-Request (CCR) message, 15.4, 15.6.1
	implementing applications, 11.4
	messages, 11.6
	nodes, 11.3
	offline charging API, 14.4
	protocol packages, 11.1
	Rf application, configuring, 14.3
	Rf interface, 14.1
	Ro interface, 15
	sessions, 11.5
	Sh interface support, 12.1

	Diameter applications, 11
	Diameter Rf interface, 14.1
	Diameter Ro application
	
	configuring, 15.3

	Diameter Ro interface, 15
	Diameter Sh interface
	
	monitoring data with ProfileListener, 12.6

	Diameter Sh profile service, 12
	distributed applications, 4.1
	document selector key, 12.4

H

	headers, 3.1

L

	log records
	
	tokens, 7.2.2

	logging, 7.1
	
	enabling message logging, 7.2
	example message log configuration and output, 7.4
	identifying parts of SIP messages for logging, 7.2
	level, 7.2
	log file rotation, 7.5
	log records, customizing, 7.2.2
	specifying content types, 7.3

M

	message filtering, 17.4.4
	MessageFilter, 17.4.4
	MessageFilterFactory, 17.4.4
	messages
	
	receiving, 17.4
	rejecting, 17.4.4

	MessagingClientFactory, 17.2.1
	MessagingClient.receive, 17.4.2
	MessagingClient.registerAccessPoint, 17.4.1
	MessagingClient.registerMessageFilter, 17.4.4

O

	OCF, 15.1
	offline charging API, 14.4
	Online Charging API, 15.4
	Online Charging Function (OCF), 15.1
	Oracle User Messaging Service (UMS)
	
	configuring, 16

P

	Parlay X
	
	Presence custom error codes, 8.6

	Parlay X 2.1 Multimedia Messaging Web Services, 9
	Parlay X 2.1 Third Party Call Communication Services, 10.1
	
	attributes and operations, 10.2.2
	call duration, 10.1.1.2
	call setup, 10.1.1.1
	configuring, 10.2
	supported networks, 10.1.2

	Parlay X Presence Web Services
	
	custom error codes, 8.6

	Parlay X Presence Web services, 8
	Parlay X Web Services, 8
	porting, 4.1
	Presence Network Agent, 8
	Presence Web Services interfaces, 8.4
	
	code examples, 8.5
	using, 8.5

	PresenceConsumer, 8.3
	PresenceConsumer interface, 8.4
	PresenceNotification, 8.1
	PresenceNotification interface, 8.4
	PresenceSupplier, 8.3
	PresenceSupplier interface, 8.4
	Profile Service API, 12
	PublicXCAPRootUrl, 8.3

R

	receiving a message, 17.4
	rejecting messages, 17.4.4
	response codes, 6.2
	RFC 3261, 10.3
	RFC 3725, 10.3
	RFC 4006, 15.1, 15.2
	role mapping, 6.4

S

	security, 6.1
	
	debugging, 6.9

	security realm, 6.3
	security-role definitions, 6.4
	session expiration, 4.10
	session key-based targeting, 5.4
	SIP applications
	
	asynchronous access, 2.3.1.2
	best practices, 4
	developing distributed applications, 4.1
	session data, 4.5
	session expiration, 4.10
	storing application data in the session, 4.4
	synchronous access, 2.3.1.1
	using setAttribute to modify session data, 4.6

	SIP messages
	
	using compact and long header formats, 3.1

	SIP response codes, 6.2
	SIP Servlets
	
	content indirection, in, 3.2
	marking as distributable, 4.8
	requirement to be non-blocking, 4.3
	security, 6.1
	specification, 5.2, 5.4

	SipApplicationRouter interface, 5.1
	SipApplicationSession object, 2.3
	SIPApplicationSessionActivationListener, 4.9
	SIPOutboundProxy, 8.3
	SIPServletMessage interface, 3.1
	sip.xml, 6.3, 6.5, 6.6.1
	SNMP traps, 3.3
	specification
	
	SIP Servlet, 5.4

	synchronous receiving, 17.4.2

U

	unpublish, 8.5.7
	User Agent Server (UAS), 5.1

X

	XDMS, 8.7, 8.7.1.1

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/img/ns_email13.gif
B0 90 XEE Q-0 5 - hiddm- > -&- A

(5]

ropiction ey
SendEmaiVithAtiachmentsapp -
= proecs Q@7 =
=-{3 50A Content
& s
3 tstes
=
& SendEmailWithAttachments.xsd
fop
o composite.xmi
|- [@] NotifcationService.wsdl
& Notificationservice.xsd
o SendEmalithAtischments.boel
N ———
Application Resources.
b Data Controls
1 Recenty Opened Fies

>

‘SsendEnalvitatiac.. | Tumbnal ()
o3
T ol +/ %

[SendEmalWithattachments.bpel
T

S

=[] Partner Links

& Process

Z, Proess - SendEmailwithAttachmer |

] Show Detaled Node Informaten

Source | BPEL

Refactor

Versioning Tools Window Help

team | S SendEmaiithatacments xsd O3 [@componentpaetie | (ire =]
V- D- S0 (68 Gawe- () | (e k!
H ! ~TH| & [>]
B 1 BPA Blue Prints
,e £pEL Actuites and Components
3 compensate A
f—

1

& creste ety
ELN
[emty

s
| .

5 | | @ rom

& 4

~rEer
bt £

@property Inspector
. BB /(@ &
— .) 5
zoom:| 0[] =—xiFl—cu @

[ElePeL-Log
& SendEmaiithAttachments.bpel \ o
i e
[(Vadatoncrors |
Vessages | Extensions | Feecback | 8PEL [ODG]

OEBPS/img/ns_email17.gif
 Edit Copy Operation

From

To

Type: [Varizble

Type: (bl

Varibles
5 Process
5 £ Veristes
- (x) inputvariable
payioad
-4 diert:process
© denito
> clentisubject
< dienbody
<{clentiattachmenttiame]
> dentiattachmenthimeType
< dienattachmentURT
(%) output¥ariable
(& Scope - Email_2

[Varibles
5 Process
Varisles
Scope -Email_2
Varisles
& (2) varNotificationRea
emaipayload
<> EmaiPayioad
< st FromAccountiame
@ meiiTo
< st ReplyToacress
< st iSubject
5 st iContent
© sttimeType
<>[nstiContentBody]
< sl ContentEncading
5 st Emibeaders
@ miice
@ sttt
< st otcationContext
(%) varNotificationResponse
(%) NotificationServiceFaultvariable

(] Show Detald Node Information

7] Shon Detaied Noce infamation

¥Path: [/cLient:process/client: attachuentiiane

xath: [eipare/nol:BoayPare(2]/nsl :BodyPar cliane|

OEBPS/img/ns_emailb.gif
Run Refactor Ver

9 @strtrage

YFRTX0

‘SendEmailiithAttachmentsProj

B@ v

=

| dysendEmaithattachments bpe

=-{3 50A Content

& s

3 tsttes

=

=

-off conposte.snl
@] Noticationservice.sd]
2 Notificationservice.xsd|
& SendemailWithattachmg

 C———

b Application Resources.

} Data Convls

) Recenty Opened Fes

—_— |
SendEmailithattachmentsProj.jor

@ new.
Edit Project Source Paths.
R Delete Project

@® Eind Project Files
Show Overview

dh Moke SendEmailihatachmentsPro or
8 Rebuid SendEmailithattachmentsProj jor

offgcomposite.xml ®
Compeste: SendEmaillithAttachmentsProj
Comnangnts External Refers
B
)
o

(@)
B Component Palette. (DJRe. 8]
@® >

- Servie Conganents
A oL process

R usnessrule
B

& rumanTase

<5 edistor

— Servie Adscters

perat
B> Run Project Fi1
3 sendll 1o 23R
& Debug sendFa
SendVoicetia
oAl sendstiSHioifc
o sendPageiatf.
Organize Imports corearo i
Sendictiicaton
Version SendEmailithatiachmentseroj fo. Senititcation
Compre Vit = 3
Replace With >
Restore from Local History. (s]
&) Project Propertes, b
T Tvee #of Emors
V¥ forocess/sequence invoke Tnvoke.)

Evrors: 0 Warnings: 1

Last Validated On: 12 Nov 2008 00:30:24 GMT

@ %

i New Connection.

Grroperty rspector

2B /(@

[vtdatonrrs

SearchResults

[aDc)

OEBPS/img/ns_image5.gif
> Create BPEL Process x

BPEL Process

Q
A BPEL process is a service orchestration, used to describe/execute business process or [81
large grained service), which is implem ented as a stateful service.

Mame: SendMessage

Namespace: [nttp://xmins oracle.com /SendMessageApp/SendMiessageProj/BPELProcess1

Template: (3R Asynchronous BPEL Process Bl-)

Seruice Name: [bpelprocess1_client

Expose as a SOAP service

Input: [{hmtp://xmins.aracle.com /SendMessageApp/SendMessagePral BPELPracess]

L p

QutpUt: [(http://xmins oracle. com /SendMiessageApp/SendMessagePro) /BPELProcess]

[]

OEBPS/img/ns_email19.gif
 Edit Copy Operation

From To
Type: [Expression ~| Tupe: [varizble ~

o [V 3
Bxression (5 process

ora: readFile (bpus: getVarishleData(
'inputyarieble’,'payload’,'/client
/client:attachnentURT' |}

Varisbles
Scope - Email_2
Variables
- (x) varNotificationReq
EmsiPayload

-4 EmaiPaylosd

< nstiFromAccountiiame

<> nstiTo

< nst ReplyToaddress

< nstiSubject

-4 nstiContent

< nstibimeType
<>{nsTiContentBady]
< st iContentEncoding
<> st iEmaiteaders
<> nstice
<> stiBec
<2 nstiNotficationContext
(x) varNotificationResponse
() NotificationServiceFaultvariable

7] Shon Detaied Noce infamation

N T ———

OEBPS/img/multi_response.gif
Client Server

INVITE

OEBPS/img/ns_arch.gif
Vi ConterPacay X
W Sevices Chent

sospmTT

SOARI it

Rancte BB

I

s Missaging Saver

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Weblogic
Communication Services
Developer's Guide, 11g
Release 1 (11.1.1)

OEBPS/dcommon/oracle.gif

OEBPS/img/ns_image3.gif
> Create SOA Application - Step 2 of 3

Name your project

Application tiame | Eroiect Name: [SendiessageProj

T Directory: [/scratchyaimel /ideveloper/mywork/SendMessageApp

Browse.

© Project S04 Settings

(Project Techmatogis |

Available

Selected
ADF Business Components
JADF Desktop Integration
ADF Faces

IADF Library Web Application Suppe
JADF Page Flow

\ADF Swing

ant

Database (Offline)
£

Technology Description:

SOA s the Service Oriented Architecture to build camposite applicatians.

S

OEBPS/img/ns_delete.gif

OEBPS/img/ns_image32.gif

OEBPS/img/ns_email1.gif
Name your application

© Application iame.

o Practane

‘Appication Name:

SencEmaiithattachmentsApn

Directory:

C:\DDeveloper\mywork\SendEmailithAtiachmentsApp

Browse...

Applcation Package Prefix:

OEBPS/img/ns_image26.gif
IE stbcz15:1 (aime1)

(& Applications Actions @& &% £\ I

Oracle JDeveloper 11g Development Bii

File

@ apicaton Navigator
Sendwessageaps
= projeats

R T ——
=

- dh BPELProcesst hpel

fe] wpeLrocesstvsal
o2 composie xmi

. Agplicaion Resources

. Dara Contrals

. Recently Opened Fies

BPELPracessLbp.

>3
T @

Edit View Search Navigate

R&BV-E

£ sPELProcessa. componentType

& Thumbnai

[E]
SendMessageApp.jws : SendMessageProj.jpr

Build Run Refactor Versioning Tools Window Help

Boa8 90 XUAmQ-@- % - hdda- > -&-14

e1/jdeveloper/mywork/Sendies II=EY

@0 @ component

EE)X)

Mon Oct 27, 13:38 {*|

- —

@
[

BPEL 3

() ppws |oficompositecmi | 4 BPELProcessabpel | % BPELProcessLxsd
@[A e S @i (e s @
[N~
~ | userNotification
(" General [Ravancea | Sensars |
o
Vi [ssgetvariabienatagmputvariaste, payioad fctientprocess etienttoyx | (2
Subject:
wariableData(inpurvariable, payload, /clientprocess/client:subjectysi> | [
ol
Notfcation Message:

getvariableData(inputvariable’ payload, fclient process/clientbody 56>|

@ EPELProCesSLpEr
Variables

Message Types

Correlation Sets

Schemas

Partner Links

[Rctivity Structure]

+/%

[show Detailed Node nformation

BPEL

Source

zZaom:

100

L] [>]
. BPA lue Prints
~ BPEL Activities and Campo.

T -
B
o |
Voice N v
% —

B Sevies

@ receiveinput-Prope..)
(| AB 7

Design | Source | History

OEBPS/img/ns_create.gif

