

18 Understanding OHW-RC Deployment

This chapter describes the OHW-RC delpoyment process and configuration files, how to install OHW-RC artifacts, how to configure OHW-RC to display custom helpsets, how to change the access URL, and how to deploy OHW-RC as a standalone web application and a part of another web application.

This chapter includes the following sections:

	
Section 18.1, "Overview of OHW-RC Deployment"

	
Section 18.2, "Verifying Requirements and Dependencies"

	
Section 18.3, "Verifying OHW-RC Library Files"

	
Section 18.4, "Installing OHW-RC Artifacts"

	
Section 18.5, "Understanding OHW-RC Configuration Files"

	
Section 18.6, "Configuring OHW-RC to Display Custom Helpsets"

	
Section 18.7, "Changing the OHW-RC Access URL"

	
Section 18.8, "Deploying OHW-RC as a Standalone Web Application"

	
Section 18.9, "Deploying OHW-RC as part of a Web Application"

	
Section 18.10, "Deploying Multiple Help Instances in a Web Application"

18.1 Overview of OHW-RC Deployment

After help authors have finished creating the help contents, then OHW-RC administrator needs to modify the Web configuration to deploy those help contents using OHW-RC.

You can deploy OHW-RC in more than one way. However, there are certain tasks that are common to all deployment modes. This chapter describes those common tasks that are a prerequisite for further steps.

If you are new to OHW-RC, you may start with deploying the demo file. For more information, see Chapter 17, "Deploying OHW-RC Demo File". The demo EAR file includes all files needed to deploy the sample helpsets immediately.

If you are creating a new OHW-RC helpset, the following sections will help you understand the OHW-RC deployment process and describe the steps required to create and deploy your own OHW-RC help system.

18.2 Verifying Requirements and Dependencies

The following requirements must be verified for OHW-RC:

Table 18-1 OHW-RC Deployment Minimum Requirements

	Requirement	Description
	
Application Server

	
The OHW-RC requires a Java EE 1.5 compatible application server that could support Java Servlet, JSP and JSF. Oracle WebLogic Server, standalone or integrated with JDeveloper, is recommended as it requires minimal configuration effort. For more information abot supported application servers, see Application Servers section in "Certification Information" on OTN.

	
Client

	
The client receives only HTML, and all it requires is a web browser to display and view the OHW-RC help content. The web browser must have JavaScript support enabled.

OHW-RC is supported in Microsoft Internet Explorer 7, Microsoft Internet Explorer 8, Mozilla FireFox 2, Mozilla FireFox 3, Apple Safari, and Google Chrome. For more information about supported browsers, see the ADF Faces and Data Visualizations section in "Release Notes - JDeveloper 11g" on OTN.

	
Rich ADF Faces

	
OHW-RC needs Rich ADF Faces libraries and their dependencies to be available. The application server should also be configured for ADF-based applications by installing the correct JAR files or by running the ADF Runtime Installer using Oracle JDeveloper. For more information, see the online help of Oracle WebLogic Application Console.

18.3 Verifying OHW-RC Library Files

The application server where you will deploy the OHW-RC help files, needs to be configured to support Rich ADF Faces, because OHW-RC depends on that technology.

If you are using Oracle WebLogic Server, review your Oracle WebLogic Application Console and confirm that following libraries are also deployed:

	
ADF (adf.oracle.domain(1.0,11.1.1.2.0))

	
Java Server Faces (jsf(1.2,1.2.9.0))

	
JavaServer Pages Standard Tag Library (jstl(1.2,1.2.0.1))

The libraries are listed on Deployment page of Oracle WebLogic Application Console. If the libraries are not installed, extend your WebLogic domain using Oracle WebLogic Configuration Wizard to include Oracle JRF libraries. After including Oracle JRF libraries, restart your Oracle WebLogic Server and you will notice the libraries listed in Deployments page of Oracle WebLogic Application Console. For more information about extending a domain, see Oracle Fusion Middleware Administrator's Guide.

If you are not using Oracle WebLogic Server, ensure that all ADF, JSF and JSTL library JAR files are copied in \WEB-INF\lib directory of WAR deployment file. You can download the library files from OTN, or copy them from the demo file. The libraries are available in ohw-rcf-demo-thick\ohw-rcf-demo-thick\WEB-INF\lib directory of ohw-rcf-demo-thick.ear file.

18.4 Installing OHW-RC Artifacts

There are some files needed to be installed on the server to make OHW-RC working. The details about this will be shown in different possible deployment of OHW-RC topics.

The OHW-RC distributable components consist of JAR files like ohw-rcf.jar, ohw-share.jar, help-share.jar, and ohw-rcf-webapp.zip. The ohw-rcf-webapp.zip contains the helppages directory, which contains installable files like jspx (XML style of a JSF page) that are needed to run OHW-RC properly.

All artifacts are available on OTN for download.

18.5 Understanding OHW-RC Configuration Files

Before you start deploying the OHW-RC helpset, there are some files that need to be created or modified to configure OHW-RC correctly. The following information will help you understand the XML configuration files:

	
application.xml : A manifest of all web modules that run under a given Java EE application. It points to each web module of each product that is deployed.

The name and location of application.xml is fixed by the Java EE standard. The file is available in <OHW-RC_HOME>\META-INF\ directory.

	
web.xml: Sets the initialization parameters for the OHW-RC components, including the location of the OHW-RC configuration file. There is one instance of web.xml for each web module. The file is available in <OHW-RC_HOME>\<OHW-RC_deployment_name>\WEB-INF\ directory.

There is a minimum set of parameters need to be set in order to assure all prerequisites for OHW-RC are loaded and initialized correctly:

	
JSF servlet and servlet mapping

	
Trinidad resource servlet, servlet mapping, filter and filter mapping

	
OHW-RC filter and filter mapping

	
help instance servlet and servlet mapping

The following example shows a sample web.xml file:

<context-param>
 <param-name>org.apache.myfaces.trinidad.CHANGE_PERSISTENCE</param-name>
 <param-value>oracle.adf.view.rich.change.FilteredPersistenceChangeManager</param-value>
</context-param>
<filter>
 <filter-name>trinidad</filter-name>
 <filter-class>org.apache.myfaces.trinidad.webapp.TrinidadFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>trinidad</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
</filter-mapping>
<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
</servlet-mapping>
<servlet>
 <servlet-name>resources</servlet-name>
 <servlet-class>org.apache.myfaces.trinidad.webapp.ResourceServlet</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/adf/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/afr/*</url-pattern>
</servlet-mapping>

<!-- configuration for product1 help front servlet -->
<servlet>
 <servlet-name>product1</servlet-name>
 <servlet-class>oracle.help.web.rich.OHWServlet</servlet-class>
 <init-param>
 <param-name>ohwConfigFileURL</param-name>
 <param-value>/helpsets/product1/ohwconfig.xml</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
</servlet>

<!-- configuration for product2 help front servlet -->
<servlet>
 <servlet-name>product2</servlet-name>
 <servlet-class>oracle.help.web.rich.OHWServlet</servlet-class>
 <init-param>
 <param-name>ohwConfigFileURL</param-name>
 <param-value>/helpsets/product2/ohwconfig.xml</param-value>
 </init-param>
 <load-on-startup>3</load-on-startup>
</servlet>

<!-- servlet mappings for the OHW-RC front servlets -->
<servlet-mapping>
 <servlet-name>product1</servlet-name>
 <url-pattern>/product1/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>product2</servlet-name>
 <url-pattern>/product2/*</url-pattern>
</servlet-mapping>

<!-- OHW-RC servlet filter definition and mappings -->
<filter>
 <filter-name>OHWRCFRequestFilter</filter-name>
 <filter-class>oracle.help.web.rich.OHWFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>OHWRCFRequestFilter</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
</filter-mapping>

	
ohwconfig.xml (default file name): Specify which helpsets to display and how to present them. You can also specify locales, branding information, and various other settings. For information about this configuration file, see Chapter 9, "Oracle Help for the Web Configuration File". The name and location of this file is set as a OHW-RC front servlet initialization parameter, which is handled differently for each servlet container. The ohwConfigFileURL initialization parameter could take a path that contains {%some_parameter} tokens. The tokens value will be resolved from Java System.getProperty calls. Always consult the servlet container documentation for current and complete information.

The file is available in <OHW-RC_HOME>\<OHW-RC_deployment_name>\helpsets directory. Note that you can also specify ohwConfigURL using the prop system property. For example, in web.xml, the ohwConfigURL would be configured as:

<param-name>ohwConfigFileURL</param-name>
<param-value>file:///{%prop}/help/ohwconfig.xml</param-value>

In adf-settings.xml, the ohwConfigURL would be configured as:

<property>
 <property-name>ohwConfigFileURL</property-name>
 <value>file:///{%prop}/help/ohwconfig.xml</value>
</property>

The prop property is predefined, or specified, by starting Oracle WebLogic Server with -Dprop option. For example, -Dprop=/Oracle/help.

	
trinidad-config.xml: Specify the configuration for the Trinidad and ADF Rich components. It specifies the skinning option to be used in OHW-RC. The file is available in <OHW-RC_HOME>\<OHW-RC_deployment_name>\WEB-INF\ directory.

	
faces-config.xml: This is the JSF configuration file. The file is available in <OHW-RC_HOME>\<OHW-RC_deployment_name>\WEB-INF\ directory.

You need to add the ADF Faces render kit information in this file:

<application>
 <default-render-kit-id>oracle.adf.rich</default-render-kit-id>
 <locale-config>
 <default-locale>en</default-locale>
 </locale-config>
</application>

18.6 Configuring OHW-RC to Display Custom Helpsets

The instructions in this section will help you create the directory structure required for OHW-RC help system, add your custom helpset files in the correct location, create or modify the configuration files, and deploy the help system on application server.

The instructions in this section also assume that you have installed the OHW-RC demo EAR file and you have a knowledge of the demo EAR file's directory structure. If you have not installed the demo file, install it following instructions in Chapter 17, "Deploying OHW-RC Demo File".

Follow these steps to set up your OHW-RC help system:

	
Set up the directory structure as following:

<OHW-RC_HOME>
 |
 — <OHW-RC_deployment_name>
 |
 — helppages
 — helpsets
 |
 — <custom_helpset_directory>
 — META-INF
 — WEB-INF
 |
 — lib
 — META-INF

For example:

my_module
 |
 — my_module_help
 |
 — helppages
 — helpsets
 |
 — my_ModuleHelpset
 — META-INF
 — WEB-INF
 |
 — lib
 — META-INF

	
Create your own helpset directory. Place all your help files in or under <OHW-RC_HOME>\<OHW-RC_deployment_name>\helpsets\<custom_helpset_directory> directory, including the helpset file, topic files, and the other control files (index, table of contents, etc.). Also, place any JAR files here, if you are using JAR files for your helpset. You can use JARred and unJARred helpsets together in the same deployment.

	
Create the configuration file. In an editor, create an XML file and save it as ohwconfig.xml, in the <OHW-RC_HOME>\<OHW-RC_deployment_name>\helpsets directory. You may also copy the ohwconfig.xml from demo EAR file and edit it to your requirement. The file is available in ohw-rc-thick-demo\ohw-rc-thick-demo\helpsets directory.

If you are creating a new ohwconfig.xml file, see Chapter 9, "Oracle Help for the Web Configuration File" for more information about behaviors you can configure.

If you are editing the demo EAR file's ohwconfig.xml, follow these instructions:

	
Modify the <books></books> section to direct it to your helpset. For example:

<books>
 <helpSet id="myModule" location="my_ModuleHelpset/my_ModuleHelpset.hs" />
</books>

	
Remove the helpsets which you do not wish to provide from the <books></books> section. If removed, the helpsets would not appear in the helpset switcher dropdown list of the OHW-RC user interface. If you have only one <helpSet> element in the <books></books> section, the helpset switcher is not available.

	
Update the <brandings></brandings> section to display your own brand. For example:

<brandings>
 <branding text="My Module" />
</brandings>

	
Download the ohw-rc-5_0.zip from OTN. Extract the contents of the zip file in a temporary directory, and then extract the contents of ohw-rcf-webapp.zip to <OHW-RC_HOME>\<OHW-RC_deployment_name>\helppages directory.

You may also copy the helppages directory from the demo EAR file. The files are available in ohw-rc-thick-demo\ohw-rc-thick-demo\helppages directory.

	
Copy the following library files to <OHW-RC_HOME>\<OHW-RC_deployment_name>\WEB-INF\lib directory.

	File Name	Location
	JSF library file (jsf-1.2.war)	<JDEV_HOME>\wlserver_10.3\common\deployable-libraries
	JSTL library file (jstl-1.2.war)	<JDEV_HOME>\wlserver_10.3\common\deployable-libraries
	ADF library files (adf-richclient-api-11.jar, adf-richclient-impl-11.jar)	<JDEV_HOME>\oracle_common\modules\oracle.adf.view_11.1.1

	
Create the XML configuration files, faces-config.xml and trinidad-config.xml, to configure JSF and JSTL support in OHW-RC. The files must be located in <OHW-RC_HOME>\<OHW-RC_deployment_name>\WEB-INF directory.

You may also copy the XML files from the demo EAR file and edit them. The files are available in ohw-rc-thick-demo\ohw-rc-thick-demo\WEB-INF directory.

The faces-config.xml is the JSF configuration file where you register a JSF application's resources and define the page-to-page navigation rules. The trinidad-config.xml allows you to configure ADF Faces features. Like faces-config.xml, the trinidad-config.xml file has a simple XML structure that enables you to define element properties using the JSF Expression Language (EL) or static values.

	
If you are using Oracle WebLogic Server, create the weblogic.xml deployment descriptor file in <OHW-RC_HOME>\<OHW-RC_deployment_name>\WEB-INF directory.

You may also copy the weblogic.xml from demo EAR file and edit it to your requirements. The file is available in ohw-rc-thick-demo\ohw-rc-thick-demo\WEB-INF directory.

	
Create web.xml to set the initialization parameters in <OHW-RC_HOME>\<OHW-RC_deployment_name>\WEB-INF directory.

You may also copy the web.xml from demo EAR file and edit it to your requirements. The file is available in ohw-rc-thick-demo\ohw-rc-thick-demo\WEB-INF directory.

If you are editing the demo EAR file's web.xml, follow these instructions:

	
Modify the <display-name></<display-name> and <description></description> section to display your custom helpset name. For example:

<web-app>
 <display-name>My Module</display-name>
 <description>My module help</description>
</web-app>

	
Optionally, you may wish to edit the <servlet-name> element under <servlet> element to change your URL used to access OHW-RC. For more information about changing the access URL, see Section 18.7, "Changing the OHW-RC Access URL" .

	
Compress the <OHW-RC_deployment_name> directory into a WAR file.

	
Create application.xml in <OHW-RC_HOME>\META-INF directory. In this file, you will provide the web module name of each product that you will deploy.

You may also copy the application.xml from demo EAR file and edit it to your requirements. The file is available in ohw-rc-thick-demo\META-INF directory. Specify the WAR file name, created in step 9, in <web-uri></web-uri> element. If you wish to change the access URL of the application, update the <context-root><context-root> element. For more information, see Section 18.7.2, "Changing the access URL to another name".

	
Compress the <OHW-RC_HOME> directory into a EAR file.

	
Start the Oracle WebLogic Server and deploy the EAR file. If Oracle WebLogic Server is already running, you must shut it down and then restart it before the changes made since you last started the servlet will be available. For more information about deploying an EAR file, see the "Install an Enterprise application" section in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.

	
Direct the browser to http://<hostname>:<port>/<OHW-RC_deployment_name>/ohguide/, where <hostname> is the name of the machine on which Oracle WebLogic Server is installed.

The first page of the demo help system displays in the browser. If there is more than one helpset, use the dropdown list in the toolbar to select a helpset, then click the helpset switcher to display the TOC and index from the selected helpset only. The text search will search only for items in the selected helpset.

18.7 Changing the OHW-RC Access URL

The URL to access OHW-RC is http://<hostname>:<port>/mymodule/ohguide/, where <hostname> is the name of the machine on which OHW-RC and Oracle WebLogic Server are installed.

You can change this URL in the following ways:

	
Changing the final URL element of the access URL

	
Changing the access URL to another name

18.7.1 Changing the final URL element of the access URL

To change the help at the end of the URL, edit web.xml in <OHW-RC_HOME>\<OHW-RC_deployment_name>\WEB-INF.

The <servlet-mapping> parameter <url-pattern> specifies the URL used to access OHW-RC. For example, if you change <url-pattern> from the default /help/* to /onlinereference/*, the URL used to access OHW-RC would become http://<hostname>:<port>/mymodule/onlinereference/.

For example:

<servlet-mapping>
 <servlet-name>mymodule</servlet-name>
 <url-pattern>/onlinereference/*</url-pattern>
</servlet-mapping>

18.7.2 Changing the access URL to another name

To change the access URL for your application , edit the <context-root> element entry under <web> element in application.xml, located in <OHW-RC_HOME>\META-INF:

<web>
 <web-uri>my_module.war</web-uri>
 <context-root>my_module</context-root>
</web>

For example, if you want the OHW-RC access URL to be http://<hostname>:<port>/jdeveloper/help/, modify the root element:

<web>
 <web-uri>my_module.war</web-uri>
 <context-root>jdeveloper</context-root>
</web>

18.8 Deploying OHW-RC as a Standalone Web Application

One of the ways that OHW-RC can be deployed is to have it as a standalone Web application. To deploy OHW-RC as a standalone application, an OHW-RC WAR file, containing all files needed to run the OHW-RC, must be copied into a separate deployment directory in the application server that has a dedicated context path.

The OHW-RC administrator needs to perform some primary tasks, and then go on to deploy the OHW-RC help system as a standalone Web application, as follows. To know more about the tasks, see Chapter 18, "Understanding OHW-RC Deployment".

18.8.1 Installing the OHW-RC Artifacts

The Oracle WebLogic Server and other servlet containers allow OHW-RC modules to be compressed as WAR (Web ARchive) files, which are then deployed as an EAR (Enterprise ARchive) file, which wraps any WAR and JAR (Java ARchive) files and the OHW-RC installable files. One way to do this is to create WAR or EAR files using the standard Java JAR utility.

Then the OHW-RC WAR or EAR file needs to be extracted by the application server so that the Web client can access the OHW-RC pages. You may consult the relevant application server guidelines on how to deploy WAR or EAR files.

Another way is to manually create the Web application using a web developer studio like Oracle JDeveloper Studio, include the ohw-rcf.jar, ohw-share.jar, help-share.jar in the library path, and extract the ohw-rcf-webapp.zip to the public html directory.

18.8.2 Configuring OHW-RC as Standalone Web Application

After all files have been put in the right locations, the OHW administrator still needs to modify some configuration files to make OHW-RC work:

	
Modify web.xml file to include JSF and Trinidad parameters.

For example:

<?xml version = '1.0' encoding = 'UTF-8'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ... >
 <context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>client</param-value>
 </context-param>
 <context-param>
 <param-name>org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION</param-name>
 <param-value>false</param-value>
 </context-param>
 ...
 ...
</web-app>

	
Modify web.xml to support OHW-RC front servlets and JSF filter.

For example:

<?xml version = '1.0' encoding = 'UTF-8'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ... >
 ...
 ...
 <filter>
 <filter-name>trinidad</filter-name>
 <filter-class>
 org.apache.myfaces.trinidad.webapp.TrinidadFilter
 </filter-class>
 </filter>
 <filter-mapping>
 <filter-name>trinidad</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet>
 <servlet-name>OHW Servlet 1</servlet-name>
 <servlet-class>oracle.help.web.rich.OHWServlet</servlet-class>
 <init-param>
 <param-name>ohwConfigFileURL</param-name>
 <param-value>/helpsets/ohwconfig.xml</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>OHW Servlet 1</servlet-name>
 <url-pattern>/ohguide/*</url-pattern>
 </servlet-mapping>
 ...
 ...
</web-app>

	
If you have not created ohwconfig.xml and helpsets directory, create the file and directory as described in steps 1, 2, and 3 of Section 18.6, "Configuring OHW-RC to Display Custom Helpsets".

If created, modify ohwconfig.xml, and edit the help content as required. It specifies which helpsets to display and how to present them. You can also specify locales, branding information, and various other settings. The name and location of this file is set as the ohwConfigFileURL servlet initialization parameter, which is handled differently for each servlet container. The ohwConfigFileURL parameter is defined in web.xml to specify param-value.

For information about this configuration file, see Chapter 9, "Oracle Help for the Web Configuration File".

If you want to provide the help content outside of the applcation's EAR file, you must configure the web.xml file. In the <param-value> element, you can use a variable to define the path of ohwconfig.xml using the following syntax:

<init-param>
 <param-name>ohwConfigFileURL</param-name>
 <param-value>
 file:///{%yourVariableName}/help/ohwconfig.xml
 </param-value>
</init-param>

When OHW-RC finds a variable (for example, {%yourVariableName}) in the path, it looks for the Java system property of the same name (yourVariableName), and then replaces the value of the variable with the value defined in Java system property. You can define Java system property in your Oracle WebLogic Server startup scripts.

Support for Ctrl+N Shortcut to Open a New Help Window

You can configure web.xml to open a new browser window when a users Ctrl+N shortcut. Add the following code in web.xml to enable the shortcut support:

<context-param>
 <param-name>oracle.adf.view.rich.newWindowDetect.OPTIONS</param-name>
 <param-value>on</param-value>
</context-param>

Support for Partial Page Navigation

To improve performance, you can enable partial page navigation support in OHW-RC. By default, the support is disabled in ADF Faces application, but you can enable it in your helpset by adding the following code in web.xml:

<context-param>
 <param-name>oracle.adf.view.rich.pprNavigation.OPTIONS</param-name>
 <param-value>onWithForcePPR</param-value>
</context-param>

18.9 Deploying OHW-RC as part of a Web Application

One way to deploy the OHW-RC is to make it co-exist with your Web application. The Web application could be a JSF, ADF, or JSP application or any Java EE Web application. OHW-RC then could be deployed as one of the Web projects within the existing application.

When you deploy OHW-RC as part of an existing web application, the web application and OHW-RC help system, both, share the same web.xml. This could limit the fine tuning of OHW-RC help system and may cause conflict with your application. It is recommended that you deploy OHW-RC separately from your web application, and then link the help system with your application. For more information, see Section 18.8, "Deploying OHW-RC as a Standalone Web Application". If your application is using ADF Faces, you may use helpTopicId attribute on the ADF Faces components for an ADF application. For more information, see Section 20.2, "Integrating Online Help With ADF Faces Application".

18.9.1 Installing the OHW-RC Artifacts

Extract the ohw-rcf-webapp.zip to the public_html folder (or the web application root directory) of the existing Web application.

Copy the ohw-rcf.jar, ohw-share.jar, help-share.jar files to the application's WEB-INF/lib folder, or to the defined library folder. If you are developing in JDeveloper, remember to add these jars to your project (Project Properties > Libraries and Classpath).

18.9.2 Configuring OHW-RC as Part of Web Application

After all files have been put in the right locations, the OHW administrator still needs to modify some configuration files to make OHW-RC work:

	
Modify web.xml file to include JSF and Trinidad parameters if it does not exist.

For example:

<?xml version = '1.0' encoding = 'UTF-8'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ... >
 <context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>client</param-value>
 </context-param>
 <context-param>
 <param-name>org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION</param-name>
 <param-value>true</param-value>
 </context-param>
 ...
 ...
</web-app>

	
Modify web.xml to support OHW-RC front servlets and JSF filter.

Since the OHW-RC is part of existing application, the OHW-RC administrator needs to make sure that the load-on-startup ordering is maintained in the right sequence.

For example:

<?xml version = '1.0' encoding = 'UTF-8'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ... >
 ...
 ...
 <filter>
 <filter-name>trinidad</filter-name>
 <filter-class>
 org.apache.myfaces.trinidad.webapp.TrinidadFilter
 </filter-class>
 </filter>
 <filter-mapping>
 <filter-name>trinidad</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet>
 <servlet-name>product1</servlet-name>
 <servlet-class>oracle.help.web.rich.OHWServlet</servlet-class>
 <init-param>
 <param-name>ohwConfigFileURL</param-name>
 <param-value>/helpsets/product1/ohwconfig.xml</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
 </servlet>
 ...
 ...
</web-app>

	
Modify ohwconfig.xml, and edit the help content as needed. If you have not created helpsets or ohwconfig.xml file, create them as described in steps 1, 2, and 3.

The ohwconfig.xml file specifies which helpsets to display and how to present them. You can also specify locales, branding information, and various other settings. The name and location of this file is set as the ohwConfigFileURL servlet initialization parameter (defined in web.xml), which is handled differently for each servlet container. For information about this configuration file, see Chapter 9, "Oracle Help for the Web Configuration File".

18.10 Deploying Multiple Help Instances in a Web Application

OHW-RC supports the deployment of multiple help instances (a single help instance may contain multiple helpsets) in a single Web application or enterprise application. One of the main reasons for providing this support is to minimize the changes needed when upgrading from a OHW-RC configuration. The deployment of multiple help instances for OHW-RC is achieved by providing an OHW-RC front servlet that forwards the request to the JSF servlet.

18.10.1 Application and OHW-RC Configuration Files and Setup

You need to modify the web.xml file of your application to add servlet mapping to the OHW-RC front servlets.

Here is an example of the changes that need to be done to the web.xml file, to support the deployment of multiple help instances for OHW-RC:

<!-- configuration for product1 help front servlet -->
<servlet>
 <servlet-name>product1</servlet-name>
 <servlet-class>oracle.help.web.rich.OHWServlet</servlet-class>
 <init-param>
 <param-name>ohwConfigFileURL</param-name>
 <param-value>/helpsets/product1/ohwconfig.xml</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
</servlet>

<!-- configuration for product2 help front servlet -->
<servlet>
 <servlet-name>product2</servlet-name>
 <servlet-class>oracle.help.web.rich.OHWServlet</servlet-class>
 <init-param>
 <param-name>ohwConfigFileURL</param-name>
 <param-value>/helpsets/product2/ohwconfig.xml</param-value>
 </init-param>
 <load-on-startup>3</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>product1</servlet-name>
 <url-pattern>/product1/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>product2</servlet-name>
 <url-pattern>/product2/*</url-pattern>
</servlet-mapping>

In the above sample code, there are two OHW-RC front servlets called product1 and product2. Each servlet can load a different OHW-RC configuration file that will determine the set of books and views shown in the user interface. The product1 servlet is mapped to URL pattern of /product1/*. So, if you specified a URL mapped to the rich OHW-RC context root that has product1 at the end portion of the URL, it will be re-routed to this servlet. Similarly, the product2 is mapped to the URL pattern of /product2/*.

18.10.2 Running the application

Once you have successfully deployed OHW-RC in the application server, you can connect to any OHW-RC front servlet you have configured, using a URL similar to the following:

http://www.myhelpserver.com:<port>/docs/product1

The above URL will call the servlet product1 that will load the OHW-RC configuration file from /helpsets/product1/ohwconfig.xml and will be redirected to a URL like this:

http://www.myhelpserver.com:<port>/docs/faces/helppages/main.jspx?config=product1

OHW-RC can also process locale and group information appended to the URL (similar to OHW-RC).

2 OHJ User Interface

This chapter describes Oracle Help for Java user interface components, such as Navigator window, Topic window, Index tab, Search tab, and Favorites tab.

This chapter contains the following sections:

	
Section 2.1, "Overview of Oracle Help for Java User Interface"

	
Section 2.2, "OHJ Topic Windows"

	
Section 2.3, "OHJ Navigator Window"

	
Section 2.4, "Merged Helpsets"

	
Section 2.5, "Other OHJ Features"

2.1 Overview of Oracle Help for Java User Interface

The Oracle Help for Java (OHJ) user interface has two main parts, Help Navigator window and Help Topic window. The Help Navigator window includes controls for finding topics and the Help Topic window displays HTML content.

Figure 2-1 Help Navigator and Help Topic Windows

[image: Description of Figure 2-1 follows]

Users can undock the windows, so they appear as panes in separate windows, as shown in Figure 2-1, or dock them so they appear in as single window as shown in Figure 2-2.

Figure 2-2 Docked Windows

[image: Description of Figure 2-2 follows]

2.2 OHJ Topic Windows

The OHJ Help Topic windows (or topic panes, when docked) display HTML content. Figure 2-3 shows topic windows with different types of HTML content.

Figure 2-3 Topic Windows

[image: Description of Figure 2-3 follows]

The default HTML display component included in the OHJDK is a special implementation of the ICEbrowser from ICEsoft Technologies, Inc. For more information about the browser and its supported technologies, see http://www.icesoft.com. You may use and redistribute this component free of charge as long as it is used as part of a help system using OHJ. This HTML display component supports the following:

	
HTML 4.0

	
Cascading Style Sheets (CSS) 1 and most of CSS 2. CSS 3 is not supported.

	
Java applets

	
Multimedia, as supported by Java Media Framework 2.0.

	
JavaScript

	
Support for Screen Reader software

	
Single topic and multiple topic printing

	
GIF animation

	
Popups with HTML support

	
Associative links, where a single index word or phrase can be associated with multiple topics. When the user selects one of these links, a list of all topics associated with the link is presented, and the user can choose a topic from the list.

	
Author-defined window types, where authors can specify colors such as background color, text color, and link color, window size and position, window title, and toolbar buttons.

	
Topic ID linking—hyperlink targets are specified by ID rather than URL

	
Synchronization with items in the table of contents

You do not have to use the default HTML display. You can replace it with a different HTML display component. Or, if your application and the help system are running as an applet in a Web browser, you can use a browser window as the topic window. Consequently, the display capabilities for your implementation of OHJ rely on the HTML display you chose to embed in the system.

2.3 OHJ Navigator Window

The navigator window is a tabbed control for navigating and finding topics in the help system. By default, the navigator window contains tabs for a Contents, Index, and Search. Authors can control several characteristics of the navigator window simply by setting parameters for the help system. For example, you can change the labels on the tabs and add icons. You could also display multiple tables of contents, for example, one for product help and one for a tutorial. For a more complex system, a Java programmer can create custom tabs, and the author can add them to the navigator window.

This topic contains the following sections:

	
Section 2.3.1, "Contents Tab"

	
Section 2.3.2, "Index Tab"

	
Section 2.3.3, "Search Tab"

	
Section 2.3.4, "Favorites Tabs"

	
Section 2.3.5, "Custom Navigator Tabs"

2.3.1 Contents Tab

The Contents tab displays topics in a hierarchical tree. The contents and structure of the tree are specified by the author. Multiple file formats are supported for defining the tree.

Figure 2-4 Contents Tab in the Navigator Window

[image: Description of Figure 2-4 follows]

When a user double-clicks a topic title in the table of contents, that topic is displayed in the topic window. The user may also open a topic in a new, additional, topic window by selecting a button on the toolbar, or by selecting a command from the right-click context menu.

The table of contents view has the following features:

	
The item selected (highlighted) in the table of contents is automatically synchronized to the topic shown in the topic window. For example, if you click a hyperlink in a topic and jump to a new topic, the selection in the table of contents switches from the old topic to the new one.

	
Unlimited levels of hierarchy are allowed.

	
The list of items in the navigator window can be printed.

2.3.2 Index Tab

The Index tab displays an alphabetical list of keywords associated with topics. The keywords are defined by the help author, and, like the table of contents, multiple file formats are supported for specifying the list.

Figure 2-5 Index Tab in the Navigator Window

[image: Description of Figure 2-5 follows]

Figure 2-5 numbered callouts identify the following user interface components:

	
Text entry field: The user types a word or words in this field.

	
Keyword list: As the user types, the first keyword in the list that matches the typed letters is selected. As more letters are typed, a more accurate selection is made. Alternatively, the user can simply select a keyword from this list.

	
Topic list: The titles of any topics that are associated with the keyword selected in Keyword List are displayed in this list. When the user double-clicks one of these titles, the topic is displayed in the topic window. The user may also select the topic and click Open.

The index provides many useful features:

	
One keyword can be associated with many topics, and many keywords can be associated with a single topic.

	
Two levels of indenting are supported.

	
When merging helpsets, one unified index is created with proper alphabetization for the entire index. In other words, the entries are merged and resorted; they are not concatenated.

	
Indexes are properly alphabetized when translated into languages other than that used to create the index.

	
Identical entries are collapsed to show only one.

2.3.3 Search Tab

The Search tab displays a text field where the user can enter text, then select Search. The titles of topics whose content contains that word or phrase are listed in the Results list at the bottom of the tab. When the user double-clicks a title, that topic appears in the topic window.

Figure 2-6 Search Tab in the Navigator Window

[image: Description of Figure 2-6 follows]

Figure 2-6 numbered callouts identify the following user interface components:

	
Search text: The user enters a word or words in this field.

	
Case Sensitive: A checkbox, when selected, enables searching for words having the same case as the words entered by the user.

	
Search for: A set of option buttons that allows a user to specify whether to list topics that contain any or all of the specified words, or perform a search based on a Boolean expression (AND, OR).

	
Topic List: The results area displays the Rank, Topic Title, and Source of each topic that matches the search criteria. The Rank column indicates the ranking of the topics according to how well they match the search criteria. All columns can be sorted in the ascending or descending alphabetical order. By default, all topics are sorted by Rank. When the user selects a particular result, the associated topic is displayed in the topic pane.

Users can set the following options when performing a search:

	
Enable or disable case-sensitivity of search keywords.

	
List topics that contain all search words or at least one of the search words.

	
Search based on a Boolean expression (AND, OR).

Search tab provides many useful features:

	
Results are ranked according to how well they match the search criteria.

	
Previously entered search criteria are saved and can be displayed in a drop-down list.

	
Results list the title of the topic and its source.

	
Users can sort results by rank, topic title, or topic source.

The search database is generated when authoring the help system. The OHJDK and as other authoring tools that support OHJ include a utility for generating this database, called the Text Search Indexer. The search database uses an Oracle-defined file format. This search database is always used when you implement it on the client. You can also implement your own search on a server. For example, if you store your topics in an Oracle database, you can use the database's text processing capabilities to perform the search.

For more information about Text Search Indexer, see Chapter 12, "Using the Text Search Indexer".

	
Note:

An Oracle database is not required to use OHJ.

2.3.4 Favorites Tabs

Users can mark topics in a helpset as favorites using the Favorites Navigator, similar to the Favorites functionality in web browsers.

Figure 2-7 Favorites Tab in the Navigator Window

[image: Description of Figure 2-7 follows]

Users can identify and manage favorite topics from a helpset:

	
Add or delete favorite topics

	
Create folders and subfolders

	
Rename current topics from the default topic title name

Users can access Favorites navigator functionality from the Tools menu of Help Topic window, which displays an Add Favorites dialog, or by right-clicking a favorite in the Favorites navigator.

	
Note:

Unlike Contents, Search, or Index, the Favorites navigator is displayed by invoking the method enableFavoritesNavigator() URL, which specifies a file, favorites.xml, to contain favorites information. For more information, see Section 14.4, "Adding the Favorites Tab or Custom Tab"

2.3.5 Custom Navigator Tabs

Among other features, the OHJ API allows you to customize the default OHJ user interface. For example, you can program custom tabs, also called navigators, in Java and add them to the navigator window. Figure 2-8 shows a custom tab Product Education.

Figure 2-8 Custom Navigator Tab in the Navigator Window

[image: Description of Figure 2-8 follows]

2.4 Merged Helpsets

A collection of help topics, with their associated control files, is called a helpset. Helpsets can be merged at runtime. That means that multiple authors can create multiple helpsets which will be seamlessly merged after authoring has been completed. Similarly, new components can be added to a user's help system without having to rework the entire system.

Several features support merged helpsets:

	
The Contents navigator merges helpsets into one tree with the contents from all merged helpsets. As of Oracle Help for Java and Oracle Help for the Web, the Contents navigator merges all tree nodes that have the same labels and do not have conflicting targets.

	
The index shows the index entries from all helpsets, properly sorted.

	
The text search searches through all merged helpsets.

	
Alternatively, authors can specify that selected helpsets are displayed in a drop down list in the toolbar. This can simplify the presentation of a complex help system to the user.

Figure 2-9 Merged Helpsets in a Choice List

[image: Description of Figure 2-9 follows]

When this implementation is used, the Contents and the Index tabs show only items from the helpset that is selected from the list. The Search text searches only for items in the selected helpset.

	
When an author provides associative links, the list of topics associated with a link includes items from the merged helpsets.

2.4.1 Merging Table of Contents

Oracle Help for Java and Oracle Help for the Web, both support the merging of TOC files from multiple helpsets to create one tree. The TOC that results from merging multiple tables is essentially the result of laying all trees on top of one another. If multiple TOCs contain identical nodes (nodes that have the same text and target topic Id), then these nodes are combined into one node that has all original nodes' children.

Consider the scenario when you have two helpsets that make use of toc1.xml and toc2.xml:

toc1.xml

<?xml version='1.0'?>
<toc version="1.0">
 <tocitem text="1" target="1_topic" />
 <tocitem text="2" target="2_topic" >
 <tocitem text="2.1" target="2.1_topic" />
 <tocitem text="2.2" target="2.2_topic" />
 </tocitem>
 <tocitem text="3" target="3_topic" />
</toc>

toc2.xml

<?xml version='1.0'?>
<toc version="1.0">
 <tocitem text="2" target="2_topic" >
 <tocitem text="2.2" target="2.2_topic">
 <tocitem text="2.2.1" target="2.2.1_topic" />
 <tocitem text="2.2.2" target="2.2.2_topic" />
 </tocitem>
 </tocitem>
</toc>

Figure 2-10 shows the TOC that results from merging toc1.xmland toc2.xml. You can see that there is only one node for 2 because the target is 2_topic for both the <tocitem> items with text=2. The same applies for the node with text=2.2 .

Figure 2-10 Results of the Merging

[image: Surrounding text describes Figure 2-10 .]

This example assumes that the <view> elements defining the Contents navigators for the helpsets do not have titles. If a <view> for a Contents navigator includes a <title>, then this title is used as a parent node to all <tocitem> items defined by the toc.xml file. For more information, see Chapter 6, "Metadata Files".

2.5 Other OHJ Features

Oracle Help for Java (OHJ) features, not otherwise mentioned in this Oracle Help Guide, include the following features:

	
Accessibility Features

	
Internationalization Features

	
Java Foundation Class (JFC) Swing Components

	
Open, Pluggable Architecture

2.5.1 Accessibility Features

OHJ has the following accessibility features:

	
All user interface features are keyboard accessible, including the default HTML display component (the ICEbrowser). Oracle has modified the ICEbrowser that ships with OHJ to provide this accessibility support.

	
The most recent versions of OHJ and of the ICEbrowser have been successfully tested with the JAWS for Windows Screen Reader from Freedom Scientific. For more information, see http://www.freedomscientific.com.

2.5.2 Internationalization Features

OHJ has the following internationalization features:

	
All text strings in the user interface are stored in resource files, for easy translation.

	
The locale and encoding can be set programmatically.

	
The default HTML display component (the ICEbrowser) supports wrapping for non-space separated languages.

	
Help authors can set the charset of the HTML file, using the IANA character set encoding names (when using the default ICEbrowser HTML display component).

	
The OHJ user interface has been translated by Oracle into several languages.

2.5.3 Java Foundation Class (JFC) Swing Components

The OHJ Help system is implemented using Java Foundation Class (JFC) Swing components.

2.5.4 Open, Pluggable Architecture

OHJ has an open, pluggable architecture. That means that you can substitute your own components for default components such as the search facility or the HTML display component. In addition, components such as the Navigator tabs and the HTML display can be embedded into an application's user interface, to provide completely integrated help.

All OHJ application class files, control files, and content files can be encapsulated and compressed into JAR (Java Archive) files. It is not necessary to unJAR these files to run the help system.

Part III

Authoring Oracle Help

This part contains information on authoring Oracle Help systems. It contains the following chapters:

	
Chapter 10, "Authoring Oracle Help Systems"

This chapter provides an introduction to Oracle Help authoring.

	
Chapter 11, "Helpset Authoring Wizard"

This chapter describes how to use the Oracle Help for Java authoring wizard to convert help systems created using other formats.

	
Chapter 12, "Using the Text Search Indexer"

This chapter describes how to use the text search indexer.

Index

A C D E F H I J L M O P R S T U W

A

	addBook() constructors, 14.3.2
	addComponent() constructors, 15.4.3
	Adding Books to Help, 14.3.2
	Adding Custom tab to OHJ, 14.4
	Adding Favorites tab to OHJ, 14.4
	Adding Help Data in a HelpBook, C.2
	Adding Help data to OHJ, 14.3
	Adding OHJ to Application, 14
	ADF Faces Help Provider
	
	ELHelpProvider, 20.5
	ResourceBundleHelpProvider, 20.5

	ADF Rich Client Help Provider, 20.1
	Authoring
	
	overview, 10.1
	step-by-step process, 10.1

	Authoring embedded help, 10.3
	Authoring Tools, 10.1
	Authoring utilities, 10.2

C

	Changing the Oracle Help for the Web - UIX URL, 22.5
	Comparing Oracle Help and JavaHelp File Formats, A
	
	Configuration File, A.7
	Helpset File, A.1
	Index File, A.4
	Link File, A.6
	Map File, A.2
	Search Index File, A.5
	Table of Contents File, A.3

	Constructing Help object, 14.2
	CSHManager() constructors, 15.4.1
	Custom Helpsets for Oracle Help for the Web - UIX, 22.4
	Custom Protocol, 9.8
	custom Protocol Links, 8.4
	Custom Tab
	
	Oracle Help for Java, 2.3.5

D

	Debugging helpset, 9.2.1
	Deploying Multiple Help Instances in a Web Application, 18.10
	Deploying OHW-RC as a Standalone Web Application, 18.8
	Deploying Oracle Help for Java
	
	Book constructors, 16.3.2
	creating JAR files, 16.3.1
	introduction, 16
	shipped JAR files, 16.2

	Deploying Oracle Help for the Web - Rich Client Demo File, 17
	dispose() constructors, 14.8
	Disposing Help object, 14.8
	Dynamic mapping, 8.8
	
	optimizing, 8.8.3
	oracle.help.engine.XMLMapConventionEngine engine, 8.8.2
	oracle.help.engine.XMLMapFixedConventionEngine engine, 8.8.1
	
	example, 8.8.1

E

	Enabling context-sensitive OHJ help, 15.1
	Enabling context-sensitive Oracle Help for the Web - Rich Client help, 19.1
	Enabling context-sensitive Oracle Help for the Web - UIX help, 23.1

F

	Favorites
	
	Oracle Help for Java, 2.3.4

	File Extensions, 5.2
	Free OHJ resources, 14.8

H

	Help() constructors, 14.2
	HelpBook File Name Extensions, C.1
	HelpBooks, C
	helpConfiguration Element
	
	debugMode attribute, 9.2.1

	Helpset Authoring Wizard, 11.1
	helpset element, 6.2.1
	Helpset File
	
	elements, 6.2
	helpset element, 6.2.1
	introduction, 6.2
	links element, 6.2.5
	maps element, 6.2.3
	
	child elements, 6.2.3

	sample file, 6.2.8
	subhelpset element, 6.2.7
	title element, 6.2.2
	view element, 6.2.6
	
	child elements, 6.2.6
	view types, 6.2.6.1

	wintype element, 6.2.4
	
	child elements, 6.2.4

	HelpSet() constructors, 14.3.1
	Helpsets
	
	merging, 2.4
	Merging table of contents, 2.4.1
	sharing resources, 9.5

	HelpTopicId attribute, 20.4

I

	ICEbrowser, 2.2
	
	support, 2.2
	technologies, 2.2

	Implementing Context-Sensitive Help in Oracle UIX-based Applications, 23.4
	Index
	
	Oracle Help for Java, 2.3.2
	Oracle Help for the Web - Rich Client, 3.4
	Oracle Help for the Web - UIX, 4.3

	Index File
	
	elements, 7.3.1
	example, 7.3.1
	introduction, 7.3

	Installing OHJDK, 13.3.1
	Installing Oracle Help for the Web - UIX Demo File on Oracle JDeveloper, 21.4
	Installing Oracle Help for the Web - UIX Demo File on Oracle WebLogic Server, 21.3
	Integrating Online Help With ADF Faces Application, 20.2

J

	Java Modal Window Problem
	
	Registering a Window, B.2
	Unregistering a Window, B.3

	JDeveloper
	
	Oracle Help, 1.5

L

	Licensing and Support, 1.6
	Link File
	
	elements, 7.5.1
	example, 7.5.1
	introduction, 7.5

	Locales in Oracle Help for the Web Configuration File, C.3
	
	The contentLocation Element, C.3.2
	The locale Child Element books, C.3.1

M

	Map File
	
	elements, 6.3.1
	introduction, 6.3

	Mapping Oracle Help for the Web - UIX Topic IDs to Help Topics, 23.2
	Mapping Topic IDs to OHJ Help Topics, 15.2
	Merging Helpsets, 2.4
	Metadata Files, 6.1
	
	Helpset File, 6.2

O

	OHJ Authoring Wizard
	
	converting popup window links, 11.10
	creating helpset file, 11.3
	defining Full-Text search, 11.7
	defining map file, 11.8
	defining Views, 11.6
	
	defining a new view, 11.6.1
	defining custom data engine, 11.6.3
	defining custom view, 11.6.2

	Finalizing helpset, 11.12
	introduction, 11.1
	select source and target, 11.4
	specifying source directory, 11.5
	starting the wizard, 11.2
	Window Types, 11.11
	
	Identity, 11.11.1
	Placements, 11.11.2
	Style, 11.11.3
	Toolbar buttons, 11.11.4

	OHJ components, 1.2
	OHJ Demo Files, 13.3.2.3
	OHJ Documentation, 13.3.2.4
	OHJ Engine, 13.3.2.1
	OHW configuration file, 9.1
	OHW Custom Protocol, 9.8
	ohwconfig.xml, 9.1
	OHW-UIX Components, 1.4
	Optimizing Dynamic Maps, 8.8.3
	Oracle Help
	
	authoring tools, 10.1
	JDeveloper, 1.5
	licensing, 1.6
	topic ids, 8.6

	Oracle Help for Java
	
	accessibility, 2.5.1
	addBook constructors, 14.3.2
	adding books, 14.3.2
	adding Custom tab, 14.4
	adding Favorites tab, 14.4
	adding help data, 14.3
	adding to an application, 14
	
	steps, 14.1

	architecture, 2.5.4
	components, 1.2
	constructing Help object, 14.2
	constructing HelpSet, 14.3.1
	CSHManager, 15.4
	
	associating topic ids with user interface components, 15.4.3
	constructors, 15.4.1
	explicitly showing help for components, 15.4.4
	setting default book, 15.4.2

	deploying, 16
	dispose constructors, 14.8
	Disposing Help object, 14.8
	enabling context sensitive help, 15.1
	Favorites Window
	
	Custom Navigator Tab, 2.3.5
	Search Tab, 2.3.4

	File Extensions, 5.2
	Help() constructors, 14.2
	internationalization, 2.5.2
	introduction, 1.2
	mapping topic ids to help topics, 15.2
	Merged helpsets, 2.4
	Navigator Window, 2.3
	
	Contents Tab, 2.3.1
	Index Tab, 2.3.2
	Search Tab, 2.3.3

	programming your application to support context-sensitive help, 15.3
	showing Navigator window, 14.6
	showing Topic window, 14.7
	showTopic constructors, 14.7
	Topic Window, 2.2
	TopicDisplay Exceptions, 14.7.1
	User Interface, 2.1
	window types, 8.7

	Oracle Help for Java Developer's Kit
	
	Contents, 13.3.2
	
	Demonstration files, 13.3.2.3
	OHJ Authoring Tools, 13.3.2.2
	OHJ Engine, 13.3.2.1

	Documentation, 13.3.2.4
	Getting Started, 13.3
	Installing, 13.3.1
	introduction, 13.1
	Java Runtime, 13.2
	Setting CLASSPATH, 13.3.3

	Oracle Help for the Web
	
	best practice for internationalization, 9.3.1
	brandings element, 9.3
	
	child elements, 9.3
	example, 9.3

	contentLocation element, 9.4.2, C.3.2
	
	absolute path content location, 9.4.2
	relative path content location, 9.4.2

	custom protocol, 9.8
	helpConfiguration element, 9.2
	locales element, 9.4
	
	books, 9.4.1, C.3.1
	child elements, 9.4
	example, 9.4
	sample, 9.4.3

	navigatorAliases element, 9.7
	
	example, 9.7

	parameters element, 9.6
	
	child elements, 9.6
	keyword child element, 9.6
	performance child element, 9.6

	preloading helpsets, 9.9
	sharing resources, 9.5

	Oracle Help for the Web - RC
	
	Bookmarking, 3.7.2
	File Extensions, 5.2
	introduction, 1.3
	Search, 3.5
	Single pane layout, 3.7.3
	Toolbar, 3.2
	Topic View, 3.6

	Oracle Help for the Web - Rich Client
	
	changing access URL, 18.7
	configuration files, 18.5
	Contents, 3.3
	Creating Context-Sensitive Links to the Help System, 19.3
	deploying as a part of web application, 18.9
	deploying as a standalone web application, 18.8
	deploying demo file, 17
	deploying multiple help instances, 18.10
	deployment requirements, 18.2
	display custom helpsets, 18.6
	HelpTopicId attribute, 20.4
	implementing context-sensitive help in a web application, 19.1
	Index, 3.4
	installing artifacts, 18.4
	installing demo file on Oracle JDeveloper, 17.4
	installing demo file on Oracle WebLogic Server, 17.3
	library files, 18.3
	Mapping Topic IDs to Help Topics, 19.2
	registering as an ADF-RC help provider, 20.3
	running demo file, 17.5
	understanding demo filles, 17.2
	understanding deployment process, 18.1
	upgrading from Oracle Help for the Web - UIX, 24.1
	User Interface, 3.1

	Oracle Help for the Web - UIX
	
	access url, 22.5
	comparison with Oracle Help for Java, 4.1
	components, 1.4
	configuration files, 22.3
	configuring custom helpsets, 22.4
	creating context sensitive links, 23.3
	File Extensions, 5.2
	implementing context sensitive help, 23.1
	implementing context-censitive help in Oracle UIX-based applications, 23.4
	Index, 4.3
	introduction, 1.4
	mapping topic ids to help topics, 23.2
	registering OHW-UIX in the OracleHelpProvider, 23.4.1
	requirements and dependencies, 22.2
	Search, 4.4
	Table of Contents, 4.2
	Topics, 4.5
	understanding deployment, 22.1
	upgrading, 22.6
	User Interface, 4

	Oracle Help for the Web - UIX Demo File
	
	Installing on Oracle JDeveloper, 21.4
	Installing on Oracle WebLogic Server, 21.3
	introduction, 21.2
	running, 21.5

	Oracle Help for the Web Configuration File, 9.1
	Oracle JDeveloper
	
	installing Oracle Help for the Web - Rich Client demo file, 17.4
	installing Oracle Help for the Web - UIX Demo File, 21.4

	Oracle WebLogic Server
	
	installing Oracle Help for the Web - Rich Client demo file, 17.3
	installing Oracle Help for the Web - UIX Demo File, 21.3

P

	Preloading Helpsets, 9.9
	Programming Your Application to Support Context-Sensitive OHJ Help, 15.3

R

	Registering OHW-Rich Client as an ADF Rich Client Help Provider, 20.3
	Registering OHW-UIX in the OracleHelpProvider, 23.4.1
	
	Databinding a Destination, 23.4.2

	Running the OHW-UIX Demo EAR File, 21.5

S

	Sample Helpset File, 6.2.8
	Sample locales element, 9.4.3
	Search
	
	Oracle Help for Java, 2.3.3
	Oracle Help for the Web - RC, 3.5
	Oracle Help for the Web - UIX, 4.4

	Search Index File, 7.4
	setDefaultBook() constructors, 15.4.2
	Sharing Resources across Helpsets, 9.5
	showHelpForCompponent() method, 15.4.4
	Showing Navigator window in OHJ, 14.6
	Showing Topic window in OHJ, 14.7
	showTopic() constructors, 14.7

T

	Table of Contents
	
	merging, 2.4.1
	Oracle Help for Java, 2.3.1
	Oracle Help for the Web - Rich Client, 3.3
	Oracle Help for the Web - UIX, 4.2

	Table of Contents File
	
	elements, 7.2.1
	example, 7.2.1
	introduction, 7.2

	Text Search Indexer
	
	introduction, 12.1
	Java Requirements, 12.2
	Running Indexer, 12.3, 12.4

	Topic Files
	
	associative links, 8.3
	custom protocol links, 8.4
	introduction, 8.1
	pop-ups, 8.5
	topic id, 8.2

	TopicDisplay Exceptions, 14.7.1

U

	Understanding Oracle Help for the Web - Rich Client Demo Files, 17.2
	Understanding Oracle Help for the Web - Rich Client Deployment, 18.1
	User Interface
	
	Oracle Help for Java, 2.1
	Oracle Help for the Web - Rich Client, 3.1
	Oracle Help for the Web - UIX, 4

W

	Window Types, 8.7

Part V

Oracle Help for the Web – Rich Client

This part contains information on using Oracle Help for Web – Rich Client. It contains the following chapters:

	
Chapter 17, "Deploying OHW-RC Demo File"

This chapter describes how to deploy an OHW-RC demo files. f you are new to OHW-RC, it is recommended to deploy the demo file before you start deploying your own help system

	
Chapter 18, "Understanding OHW-RC Deployment"

This chapter describes the OHW-RC deployment process.

	
Chapter 19, "Implementing Context-Sensitive Help in a Web Application"

This chapter describes how to implement a context-sensitive OHW-RC help in a web application.

	
Chapter 20, "ADF Rich Client Help Provider"

This chapter describes the ADF Rich client help providers and how OHW-RC could be used as a help provider.

	
Chapter 24, "Upgrading OHW-UIX"

This chapter describes information on upgrading to OHW-RC from OHW-UIX.

1 Introduction to Oracle Help

This chapter introduces Oracle Help technologies, Oracle Help for Java and Oracle Help for the Web. It also provides an overview of developing and displaying HTML-based help systems for Java-based environment applications and web applications.

This chapter includes the following sections:

	
Section 1.1, "Overview of Oracle Help"

	
Section 1.2, "Oracle Help for Java"

	
Section 1.3, "Oracle Help for the Web – Rich Client"

	
Section 1.4, "Oracle Help for the Web – UIX"

	
Section 1.5, "Oracle Help in Oracle JDeveloper"

	
Section 1.6, "Oracle Help Licensing and Support"

1.1 Overview of Oracle Help

Oracle Help technologies can be categorized into two: Oracle Help for Java and Oracle Help for the Web. Authors can create a single help system that can be displayed—without modification—both in a Java environment, using Oracle Help for Java (OHJ); and in a web environment, using Oracle Help for the Web. Alternatively, authors can just use Oracle Help for Java to create a help system for a Java environment application, or use Oracle Help for the Web to create a help system for a web environment application. Oracle Help for the Web is available in two versions: Oracle Help for the Web and Oracle Help for the Web – UIX.

Throughout this guide, Oracle Help is used when the comments apply to both Oracle Help for Java and Oracle Help for the Web. OHJ is used when the comments apply only to Oracle Help for Java. OHW is used when the comments apply only to Oracle Help for the Web.

1.2 Oracle Help for Java

Oracle Help for Java is a set of Java components, a Java API, and a file formats specification for developing and displaying HTML-based help content in a Java environment. OHJ is designed primarily for displaying help for Java applications, although it can also be implemented as a stand-alone document viewer for use in a Java environment.

The Oracle Help for Java Developer's Kit (OHJDK) includes the OHJ technology plus tools and documentation for developing context-sensitive help for Java applets and applications. This includes the following:

	
Java components: OHJ includes a set of default Java user interface components that together comprise a complete help system, with a table of contents, index, search, and topic windows

	
API: The OHJ API includes features for implementing context-sensitive help, for programmatically controlling how help is displayed (size, position, etc.), and for customizing and extending the help system. For example, you can replace a default component with your own, create custom controls, or embed selected components in an application

	
Documentation: Documentation includes this Guide, plus the API reference (provided as JavaDoc documentation).

	
Helpset Authoring Wizard: The Helpset Authoring Wizard helps you create Oracle Help control files without using a third-party authoring tool.

For more information about OHJ features, see Chapter 2, "OHJ User Interface".

1.3 Oracle Help for the Web – Rich Client

Oracle Help for the Web – Rich Client (OHW-RC), delivers HTML-based Help content in a Web environment. It uses the Oracle Application Developer Framework (ADF), which is based on the Java Server Faces (JSF) technology, to build a user interface that follows Oracle's Browser Look And Feel Plus (BLAF+) behaviors and guidelines.

Both OHW-RC and OHW-UIX share the same model layer to provide Help content, build the table of contents, process indexes, and execute searches. Similar to OHW-UIX, many users can have access to a single instance of OHW-RC, because the Help contents are processed at the server side.

The OHW-RC can be used in many different situations:

	
As a help system providing context-sensitive Help to a rich client application in a new browser window

	
As a standalone document viewer of Help content on a public website

	
When a user performs a search on any popular search engine and the results link to indexed OHW-RC content

	
When an ADF Faces component's runtime implementation requires to retrieve Embedded Help information (Definition Text, Instructions Text, or Full Help) using the HelpProvider interface it defines

OHW-RC includes the following:

	
The OHW-RC Front Servlet: This is installed on a Web server, which enables OHW-RC to support same URL syntax for context sensitive help requests that was used in OHW UIX. It also enables an easy configuration to support multiple OHW-RC helpsets in a single web application.

	
The OHW-RC Servlet Filter: This is used to pre-process requests sent to the JSF servlet.

	
Documentation: Documentation includes this Guide.

1.4 Oracle Help for the Web – UIX

Oracle Help for the Web – UIX is a Java servlet and a file formats specification for developing and delivering HTML-based help content in a web environment. OHW-UIX can be used to provide context-sensitive help for web applications or as means for processing and displaying structured views of independent HTML content on the web. With OHW-UIX, a user needs only a web browser to navigate and view help content. The processing takes place on the server, via the OHW-UIX servlet. Because the help content is managed on a server and displayed in any number of web browsers, many users have access to a single installation of the help.

You should use OHW-UIX if you are building applications with Oracle's ADF UIX technology. If you are not using ADF UIX technology, you must use Oracle Help for the Web - Rich Client help system. For more information, see Chapter 4, "OHW-UIX User Interface".

OHW-UIX includes the following:

	
The OHW-UIX servlet: The OHW-UIX servlet is installed on a web server to provide help to multiple users who access the help system via a web browser. Among other tasks, the OHW-UIX servlet does the following:

	
Parses and merges helpsets

	
Processes searches

	
Generates the OHW-UIX user interface and delivers it to users' web browsers

	
Delivers the help content for display through OHW-UIX in users' web browsers

The OHW-UIX user interface includes all features available in OHJ's Java user interface, but they are rendered as HTML in users' browsers. Features include a table of contents, index, and text search.

The help content files and control files (the same HTML and XML files that are used in OHJ) can be stored on the same server as the servlet or can be spread out over multiple servers in different locations.

	
Documentation: Documentation includes this Guide.

1.5 Oracle Help in Oracle JDeveloper

Besides being used for the internal JDeveloper help system itself, JDeveloper includes the Oracle Help for Java runtime library, so if you are developing Java applications with JDeveloper, it is easy to include OHJ as the Java help system technology. For more information, see Chapter 13, "Introduction to Oracle Help for Java Developer's Kit".

JDeveloper does not include the Oracle Help for the Web. You can obtain it, as well as the complete Oracle Help for Java development kit, from the Oracle Technology Network (OTN).

1.6 Oracle Help Licensing and Support

As a service to our customers and the software community, Oracle provides Oracle Help software and support for free. This includes both Oracle Help for Java (OHJ) and Oracle Help for the Web.

Oracle Help is available for free and may be redistributed as the help system for your application. For full information, see the license distributed with the release.

Post your questions on the Oracle Help Technologies Forum on the Oracle Technology Network, or send e-mail to ohinfo_us@oracle.com.

Contents

List of Figures

List of Tables

Title and Copyright Information

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New

Part I Oracle Help Overview

1 Introduction to Oracle Help

	1.1 Overview of Oracle Help
	1.2 Oracle Help for Java
	1.3 Oracle Help for the Web – Rich Client
	1.4 Oracle Help for the Web – UIX
	1.5 Oracle Help in Oracle JDeveloper
	1.6 Oracle Help Licensing and Support

2 OHJ User Interface

	2.1 Overview of Oracle Help for Java User Interface
	2.2 OHJ Topic Windows
	2.3 OHJ Navigator Window
	2.3.1 Contents Tab
	2.3.2 Index Tab
	2.3.3 Search Tab
	2.3.4 Favorites Tabs
	2.3.5 Custom Navigator Tabs

	2.4 Merged Helpsets
	2.4.1 Merging Table of Contents

	2.5 Other OHJ Features
	2.5.1 Accessibility Features
	2.5.2 Internationalization Features
	2.5.3 Java Foundation Class (JFC) Swing Components
	2.5.4 Open, Pluggable Architecture

3 OHW-RC User Interface

	3.1 Overview of Oracle Help for the Web – Rich Client (OHW-RC) Interface
	3.2 OHW-RC Global Toolbar
	3.3 OHW-RC Contents Navigator
	3.4 OHW-RC Index Navigator
	3.5 OHW-RC Search Navigator
	3.6 OHW-RC Topic Pane
	3.7 Other OHW-RC Features
	3.7.1 About OHW-RC Feature
	3.7.2 Bookmarking Feature
	3.7.2.1 Backward Compatibility

	3.7.3 Single Pane Layout Feature

4 OHW-UIX User Interface

	4.1 Overview of Oracle Help for the Web – UIX (OHW-UIX) User Interface
	4.2 OHW-UIX Table of Contents
	4.3 OHW-UIX Index
	4.4 OHW-UIX Search
	4.5 OHW-UIX Topics

Part II Oracle Help File Formats

5 Introduction to Oracle Help File Formats

	5.1 Overview of Oracle Help File Formats
	5.2 File Name Extensions

6 Metadata Files

	6.1 Overview of Metadata Files
	6.2 Helpset File
	6.2.1 The <helpset> Element
	6.2.2 The <title> Element
	6.2.3 The <maps> Element
	6.2.4 The <wintype> Element
	6.2.5 The <links> Element
	6.2.6 The <view> Element
	6.2.6.1 Data View Type and Engines

	6.2.7 The <subhelpset> Element
	6.2.8 Sample Helpset File

	6.3 Map Files
	6.3.1 Map File Elements

7 Help Information Files

	7.1 Overview of Help Information Files
	7.2 Table of Contents File
	7.2.1 TOC Elements

	7.3 Index File
	7.3.1 Index Elements

	7.4 Search Index File
	7.5 Link File
	7.5.1 Link File Elements

8 Topic Files

	8.1 Overview of Topic Files
	8.2 Topic ID Links
	8.3 Associative Links
	8.4 Custom Protocol Links
	8.5 Popups
	8.6 Topic IDs
	8.7 Window Types
	8.8 Dynamic Mapping of Topic IDs to Files
	8.8.1 The oracle.help.engine.XMLMapFixedConventionEngine Help Engine
	8.8.2 The oracle.help.engine.XMLMapConventionEngine Help Engine
	8.8.3 Optimizing Dynamic Maps

9 Oracle Help for the Web Configuration File

	9.1 Overview of Oracle Help for the Web Configuration File
	9.2 The <helpConfiguration> Element
	9.2.1 The debugMode Attribute

	9.3 The <brandings> Element
	9.3.1 Best Practice for Internationalization

	9.4 The <locales> Element
	9.4.1 The <locale> Child Element <books>
	9.4.2 The <contentLocation> Element
	9.4.3 Sample <locales> Section

	9.5 Sharing Resources Across Helpsets
	9.6 The <parameters> Element
	9.7 The <navigatorAliases> Element
	9.8 Custom Protocol Links
	9.9 Preloading Helpsets Containing Embedded Help

Part III Authoring Oracle Help

10 Authoring Oracle Help Systems

	10.1 Overview of Authoring
	10.2 Authoring Utilities Included with Oracle Help for Java
	10.3 Authoring Embedded Help
	10.3.1 HTML Files

11 Helpset Authoring Wizard

	11.1 Overview of Helpset Authoring Wizard
	11.2 Starting the Wizard
	11.3 Creating a Helpset File
	11.4 Specifying Authoring Tool and HTML Browser
	11.5 Specifying Source Directory
	11.6 Defining Views
	11.6.1 Defining a New View
	11.6.2 Defining a Custom View Type
	11.6.3 Defining a Custom Data Engine

	11.7 Defining Full-Text Search View
	11.8 Defining Map File
	11.9 Converting Associative Links
	11.10 Converting Popup Window Links
	11.11 Defining Window Types
	11.11.1 Window Identity
	11.11.2 Placement Attributes
	11.11.3 Style Attributes
	11.11.4 Toolbar Buttons

	11.12 Finalizing the HelpSet

12 Using the Text Search Indexer

	12.1 Overview of Text Search Indexer
	12.2 Java Requirements
	12.3 Running the Indexer
	12.4 Running the JapaneseIndexer

Part IV Oracle Help for Java

13 Introduction to Oracle Help for Java Developer's Kit

	13.1 Overview of Oracle Help for Java Developer's Kit
	13.2 Oracle Help for Java Runtime in JDeveloper
	13.3 Getting Started with the OHJDK
	13.3.1 Installing OHJDK
	13.3.2 Contents of an OHJDK Release
	13.3.2.1 OHJ Engine
	13.3.2.2 Authoring Tools
	13.3.2.3 Demonstration Files
	13.3.2.4 Documentation

	13.3.3 Setting the Java CLASSPATH for OHJDK Development

14 Adding OHJ to Your Application

	14.1 Overview of Adding OHJ to an Application
	14.2 Constructing the Help Object
	14.3 Adding the Help Data
	14.3.1 Constructing a HelpSet
	14.3.2 Adding Books to Help

	14.4 Adding the Favorites Tab or Custom Tab
	14.5 When to Create the Help object
	14.6 Showing the Navigator Window
	14.7 Showing a Topic
	14.7.1 Catching TopicDisplayExceptions

	14.8 Disposing of the Help Object

15 Enabling Context-Sensitive Help in Your Application

	15.1 Overview of Context-Sensitive Help
	15.2 Mapping Topic IDs to Help Topics
	15.3 Programming Your Application to Support Context-Sensitive Help
	15.4 Using CSHManager to Implement Context-Sensitive Help
	15.4.1 CSHManager Constructors
	15.4.2 Setting the Default Book
	15.4.3 Associating Topic IDs with User Interface Components
	15.4.4 Explicitly Showing Help for Components

16 Deploying an OHJ Help System

	16.1 Supported Java Virtual Machines
	16.2 Which OHJ JAR Files Must Be Shipped
	16.3 Deploying Compressed Help Content in JARs
	16.3.1 Creating JAR files
	16.3.2 Which Book Constructor to Use

Part V Oracle Help for the Web – Rich Client

17 Deploying OHW-RC Demo File

	17.1 Overview of Deploying OHW Demo Files
	17.2 Understanding the OHW-RC Demo Files
	17.3 Installing the OHW-RC Demo EAR File on Oracle WebLogic Server
	17.4 Installing the OHW-RC Demo EAR File on Oracle JDeveloper
	17.5 Running the OHW-RC Demo EAR File

18 Understanding OHW-RC Deployment

	18.1 Overview of OHW-RC Deployment
	18.2 Verifying Requirements and Dependencies
	18.3 Verifying OHW-RC Library Files
	18.4 Installing OHW-RC Artifacts
	18.5 Understanding OHW-RC Configuration Files
	18.6 Configuring OHW-RC to Display Custom Helpsets
	18.7 Changing the OHW-RC Access URL
	18.7.1 Changing the final URL element of the access URL
	18.7.2 Changing the access URL to another name

	18.8 Deploying OHW-RC as a Standalone Web Application
	18.8.1 Installing the OHW-RC Artifacts
	18.8.2 Configuring OHW-RC as Standalone Web Application

	18.9 Deploying OHW-RC as part of a Web Application
	18.9.1 Installing the OHW-RC Artifacts
	18.9.2 Configuring OHW-RC as Part of Web Application

	18.10 Deploying Multiple Help Instances in a Web Application
	18.10.1 Application and OHW-RC Configuration Files and Setup
	18.10.2 Running the application

19 Implementing Context-Sensitive Help in a Web Application

	19.1 Overview of Implementing Context-Sensitive Help In a Web Application
	19.2 Mapping Topic IDs to Help Topics
	19.3 Creating Context-Sensitive Links to the Help System
	19.3.1 Linking to the Front Main Page
	19.3.2 Linking to a Topic
	19.3.3 Specifying the Locale and Group

20 ADF Rich Client Help Provider

	20.1 Overview of ADF Rich Client Help Provider
	20.2 Integrating Online Help With ADF Faces Application
	20.3 Registering OHW-RC as an ADF Rich Client Help Provider
	20.4 Using HelpTopicId Attribute
	20.5 Using Other Help Providers

Part VI Oracle Help for the Web – UIX

21 Deploying OHW-UIX Demo File

	21.1 Overview of Deploying OHW-UIX Demo Files
	21.2 Understanding the OHW-UIX Demo File
	21.3 Installing the OHW-UIX Demo EAR File on Oracle WebLogic Server
	21.4 Installing the OHW-UIX Demo EAR File using Oracle JDeveloper
	21.5 Running the OHW-UIX Demo EAR File

22 Understanding OHW-UIX Deployment

	22.1 Overview of OHW-UIX Deployment
	22.2 Verifying Requirements and Dependencies
	22.3 Understanding OHW-UIX Configuration Files
	22.4 Configuring OHW-UIX to Display Custom Helpsets
	22.5 Changing the OHW-UIX Access URL
	22.5.1 Changing the final URL element of the access URL
	22.5.2 Changing the access URL to another name

	22.6 Upgrading OHW-UIX and UIX

23 Implementing Context-Sensitive Help in a Web Application

	23.1 Overview of Implementing Context-Sensitive Help In a Web Application
	23.2 Mapping Topic IDs to Help Topics
	23.3 Creating Context-Sensitive Links to the Help System
	23.3.1 Linking to the Front Page
	23.3.2 Linking to a Topic
	23.3.3 Specifying the Locale

	23.4 Implementing Context-Sensitive Help in Oracle UIX-based Applications
	23.4.1 Registering OHW-UIX in the OracleHelpProvider
	23.4.2 Databinding a Destination

24 Upgrading OHW-UIX

	24.1 Upgrading OHW-UIX to OHW-RC

A Oracle Help and JavaHelp File Formats

	A.1 Helpset File
	A.2 Map File
	A.3 Table of Contents File
	A.4 Index File
	A.5 Search Index File
	A.6 Link File
	A.7 OHW Configuration File

B Working Around the Java Modal Window Problem

	B.1 About the Java Modal Window Problem
	B.2 Registering a Window
	B.3 Unregistering a Window

C Working With HelpBooks

	C.1 HelpBook File Name Extensions
	C.2 Adding the Help Data in OHJ
	C.2.1 Constructing a HelpBook
	C.2.2 Adding Books to Help

	C.3 Locales in Oracle Help for the Web Configuration File
	C.3.1 The <locale> Child Element <books>
	C.3.2 The <contentLocation> Element

Index

This illustration shows the Associative Links page of the OHJ Authoring Wizard.

This image displays the Index tab in the Navigator window.

This illustration shows the Full-Text Search View page of the OHJ Authoring Wizard. Here, you can configure the full-text search index.

This illustration shows the Define Window Types – Style page of the OHJ Authoring Wizard.

This illustration shows the Welcome page of the OHJ Authoring Wizard.

This image displays the Favorites tab in the Navigator window.

This image displays the OHW-RC user interface.

This illustration shows the Define Window Types – Identity page of the OHJ Authoring Wizard.

This image displays the Index view in OHW-UIX help system.

This image displays the undocked navigator window and topic window of OHJ user interface.

This image displays the OHW-RC search navigator.

This illustration shows the Define the Custom Type dialog of the OHJ Authoring Wizard.

This illustration shows the Define Window Types page of the OHJ Authoring Wizard.

This image displays the Search Navigator in OHW-UIX help system.

This image displays the About OHW-RC topic in Topic pane.

This image displays the OHW-RC contents navigator.

This image displays the Search tab in the Navigator window.

This illustration shows the Define Window Types – Placement page of the OHJ Authoring Wizard.

This illustration shows the Define the Custom Data Engine dialog of the OHJ Authoring Wizard.

This illustration shows the Define Views file page with fields available for a new view configuration) of the OHJ Authoring Wizard.

This illustration shows the Popup Windows page of the OHJ Authoring Wizard.

This image displays the docked navigator window and topic window of OHJ user interface.

This image displays the OHW-RC index navigator.

This illustration shows the Specify Directory file page of the OHJ Authoring Wizard. Here, you can choose the source directory of the files.

This image displays the TOC view in OHW-UIX help system.

This image displays the OHW-UIX user interface.

This image displays the Topic view in OHW-UIX help system.

This illustration shows the Map page of the OHJ Authoring Wizard. Here, you can configure the map file for the helpset.

This image displays the Advanced Search Navigator in OHW-UIX help system.

This image displays the OHW-RC topic pane.

This illustration shows the Define Window Types – Toolbar Buttons page of the OHJ Authoring Wizard.

This image displays the merged helpsets.

This image displays the OHW-RC global toolbar.

This illustration shows the HelpSet file page of the OHJ Authoring Wizard. Here, you can choose the authoring tool and the browser.

This image displays the Contents tab in the Navigator window.

This illustration shows the HelpSet File page of the OHJ Authoring Wizard. The page allows you to create a new helpset file, or open an existing helpset file for editing.

This illustration shows the Define Views file page of the OHJ Authoring Wizard. Here, you can create different views available in the OHJ Navigator window.

This illustration shows the Finish HelpSet page of the OHJ Authoring Wizard.

This image displays the topic windows.

This image displays the navigation links in OHW-UIX help system.

This image displays the help icon and the associated help page in an ADF Faces application.

This image displays the Custom Navigator tab in the Navigator window.

22 Understanding OHW-UIX Deployment

This chapter describes the OHW-UIX delpoyment process and configuration files.

This chapter includes the following sections:

	
Section 22.1, "Overview of OHW-UIX Deployment"

	
Section 22.2, "Verifying Requirements and Dependencies"

	
Section 22.3, "Understanding OHW-UIX Configuration Files"

	
Section 22.4, "Configuring OHW-UIX to Display Custom Helpsets"

	
Section 22.5, "Changing the OHW-UIX Access URL"

	
Section 22.6, "Upgrading OHW-UIX and UIX"

22.1 Overview of OHW-UIX Deployment

Help authors create help content using the authoring tools of their choice. Help authors usually also create the Oracle Help control files that are needed for deploying the help content as OHW-UIX help systems. OHW-UIX administrators typically perform all tasks necessary to deploy a helpset.

Because both help authors and OHW-UIX administrators may need to perform deployments for testing or production, demo deployment files are provided. You can download the latest demo files from OTN.

If you are new to OHW-UIX, you may start with deploying the demo ohw-uix-demo.ear file. For more information, see Section 21.2, "Understanding the OHW-UIX Demo File". The demo EAR file includes the files needed to deploy the sample helpsets immediately.

If you are creating a new OHW-UIX helpset, the following sections will help you understand the OHW-UIX deployment process and describe the steps required to create and deploy your own OHW-UIX help system.

22.2 Verifying Requirements and Dependencies

Verify all requirements and dependencies before beginning any deployment:

Table 22-1 OHW-UIX Deployment Minimum Requirements

	Requirement	Description
	
Servlet Container

	
OHW-UIX requires a JavaEE 1.5 compatible application server. Oracle WebLogic Server, standalone or integrated with JDeveloper, is recommended as it requires minimal configuration effort.

	
Client

	
The client receives only HTML, and all it requires is a web browser to display and view the OHW-UIX help content. The web browser must have JavaScript support enabled.

OHW-UIX is supported on Microsoft Internet Explorer 7, Microsoft Internet Explorer 8, Mozilla FireFox 2, Mozilla FireFox 3, Apple Safari, and Google Chrome.

	
UIX

	
OHW-UIX is a UIX application.

	
UNIX Only:X Server

	
On Unix, the servlet container must be configured to connect to an X server in order for dynamic image generation to succeed.

22.3 Understanding OHW-UIX Configuration Files

Before you start deploying the OHW-UIX helpset, there are some files that need to be modified to configure OHW-UIX correctly. The following information will help you understand the XML configuration files:

	
application.xml: A manifest of all web modules that run under a given Java EE application. It points to each web module of each product that is deployed. Oracle recommends using two instances of application.xml:

	
A relatively stable version for the UIX application (optional).

	
A version for the OHW-UIX application that changes frequently as web modules are added or reconfigured.

The name and location of application.xml is fixed by the Java EE standard. In OHW-UIX, the file must be located <OHW-UIX_HOME>\META-INF directory.

	
web.xml: Sets the initialization parameters for the servlet, including the location of the OHW-UIX configuration file. There is one instance of web.xml for each web module. If OHW-UIX configuration files are located and named in a uniform manner, then this file should be the same for all OHW-UIX web modules. The file must be located in <OHW-UIX_HOME>\<OHW-UIX_deployment_name>\WEB-INF\directory.

	
ohwconfig.xml (default file name): Specify which helpsets to display and how to present them. You can also specify locales, branding information, and various other settings. For information about the configuration file, see Chapter 9, "Oracle Help for the Web Configuration File". The name and location of this file is set as a servlet initialization parameter, which is handled differently for each servlet container. The file must be located in <OHW-UIX_HOME>\<OHW-UIX_deployment_name> directory.

22.4 Configuring OHW-UIX to Display Custom Helpsets

The instructions in this section will help you create the directory structure required for OHW-UIX help system, add your custom helpset files in the correct location, create or modify the configuration files, and deploy the help system on application server.

The instructions in this section also assume that you have installed the OHW-UIX demo EAR file and you have a knowledge of the demo EAR file's directory structure. If you have not installed the demo file, install it following instructions in Chapter 21, "Deploying OHW-UIX Demo File".

Follow these steps to set up OHW-UIX help system:

	
Set up the directory structure as following:

<OHW-UIX_HOME>
 |
 — <OHW-UIX_deployment_name>
 |
 — cabo
 — helpsets
 |
 — <custom_helpset_directory>
 — META-INF
 — WEB-INF
 |
 — lib
 — META-INF

For example:

my_module
 |
 — my_module_help
 |
 — cabo
 — helpsets
 |
 — my_ModuleHelpset
 — META-INF
 — WEB-INF
 |
 — lib
 — META-INF

	
Create your own helpset directory. Place all your help files in or under <OHW-UIX_HOME>\<OHW-UIX_deployment_name>\helpsets\<custom_helpset_directory> directory, including the helpset file, topic files, and the other control files (index, table of contents, etc.). Also, place any JAR files here, if you are using JAR files for your helpset. You can use JARred and unJARred helpsets together in the same deployment.

	
Create the configuration file. In an editor, create an XML file and save it as ohwconfig.xml, in the <OHW-UIX_HOME>\<OHW-UIX_deployment_name>\helpsets directory. You may also copy the ohwconfig.xml from demo EAR file and edit it to your requirement. The file is available in ohw-uix-demo\ohw-uix-demo\helpsets directory.

If you are creating a new ohwconfig.xml file, see Chapter 9, "Oracle Help for the Web Configuration File" for more information about behaviors you can configure.

If you are editing the demo EAR file's ohwconfig.xml, follow these instructions:

	
Modify the <books></books> section to direct it to your helpset. For example:

<books>
 <helpSet id="myModule" location="my_ModuleHelpset/my_ModuleHelpset.hs" />
</books>

	
Remove the helpsets which you do not wish to provide from the <books></books> section. If removed, the helpsets would not appear in the helpset switcher dropdown list of the OHW-UIX user interface. If you have only one <helpSet> element in the <books></books> section, the helpset switcher is not available.

	
Update the <brandings></brandings> section to display your own brand. For example:

<brandings> <branding text="My Module" /></brandings>

	
Download the cabo and OHW-UIX library files from OTN. Copy the cabo files in <OHW-UIX_HOME>\<OHW-UIX_deployment_name>\cabo and library files in <OHW-UIX_HOME>\<OHW-UIX_deployment_name>\WEB-INF\lib directory.

You may also copy the library files from demo EAR file. The files are available in ohw-uix-demo\ohw-uix-demo\cabo and ohw-uix-demo\ohw-uix-demo\WEB-INF\lib directory.

	
Create the UIX configuration file uix-config.xml in <OHW-UIX_HOME>\<OHW-UIX_deployment_name>\WEB-INF directory.

You may also copy the uix-config.xml from demo EAR file and edit it to your requirements. The file is available in ohw-uix-demo\ohw-uix-demo\WEB-INF directory.

	
Create web.xml to set the initialization parameters in <OHW-UIX_HOME>\<OHW-UIX_deployment_name>\WEB-INF directory.

You may also copy the web.xml from demo EAR file and edit it to your requirements. The file is available in ohw-uix-demo\ohw-uix-demo\WEB-INF directory.

If you are editing the demo EAR file's web.xml, follow these instructions:

	
Modify the <display-name></<display-name> and <description></description> section to display your custom helpset name. For example:

<web-app>
 <display-name>My Module</display-name>
 <description>My module help</description>
</web-app>

	
Optionally, you may wish to edit the <servlet-name> element under <servlet> element to change your URL used to access OHW-UIX. For more information about changing the access URL, see Changing the OHW-UIX Access URL .

	
Compress the <OHW-UIX_deployment_name> directory into a WAR file.

	
Create application.xml in <OHW-UIX_HOME>\META-INF directory. In this file, you will provide the web module name of each product that you will deploy.

You may also copy the application.xml from demo EAR file and edit it to your requirements. The file is available in ohw-uix-demo\META-INF directory. Specify the WAR file name, created in step 7, in <web-uri></web-uri> element. If you wish to change the access URL of the application, update the <context-root><context-root> element. For more information, see Section 22.5.2, "Changing the access URL to another name".

	
Compress the <OHW-UIX_HOME> directory into a EAR file.

	
Start the Oracle WebLogic Server and deploy the EAR file. If Oracle WebLogic Server is already running, you must shut it down and then restart it before the changes made since you last started the servlet will be available.

	
Direct the browser to http://<hostname>:<port>/<OHW-UIX_deployment_name>/help/, where <hostname> is the name of the machine on which OHW-UIX and Oracle WebLogic Server are installed.

The first page of the demo help system displays in the browser. If there is more than one helpset, use the dropdown list in the toolbar to select a helpset, then click the helpset switcher to display the TOC and index from the selected helpset only. The text search will search only for items in the selected helpset.

22.5 Changing the OHW-UIX Access URL

The URL to access OHW-UIX is http://<hostname>:<port>/mymodule/help/, where <hostname> is the name of the machine on which OHW-UIX and Oracle WebLogic Server are installed.

You can change this URL in the following ways:

	
Changing the final URL element of the access URL

	
Changing the access URL to another name

22.5.1 Changing the final URL element of the access URL

To change the help at the end of the URL, edit web.xml in <OHW-UIX_HOME>\<OHW-UIX_deployment_name>\WEB-INF.

The <servlet-mapping> parameter <url-pattern> specifies the URL used to access OHW-UIX. For example, if you change <url-pattern> from the default /help/* to /onlinereference/*, the URL used to access OHW-UIX would become http://<hostname>:<port>/mymodule/onlinereference/.

For example:

<servlet-mapping>
 <servlet-name>mymodule</servlet-name>
 <url-pattern>/onlinereference/*</url-pattern>
</servlet-mapping>

22.5.2 Changing the access URL to another name

To change the access URL for your application , edit the <context-root> element entry under <web> element in application.xml, located in <OHW-UIX_HOME>\META-INF:

<web>
 <web-uri>my_module.war</web-uri>
 <context-root>my_module</context-root>
</web>

For example, if you want the OHW-UIX access URL to be http://<hostname>:<port>/jdeveloper/help/, modify the root element:

<web>
 <web-uri>my_module.war</web-uri>
 <context-root>jdeveloper</context-root>
</web>

22.6 Upgrading OHW-UIX and UIX

When new versions of OHW-UIX and UIX are released, be sure to check the OHW-UIX and UIX download pages for the latest download and install instructions before upgrading your OHW-UIX installation.

	
To upgrade OHW-UIX to a newer version, you need to replace the OHW-UIX JAR file located in the WEB-INF/lib directory.

	
To upgrade UIX to a newer version, you need to replace the UIX JAR file located in the WEB-INF/lib directory, and also replace the UIX installable resource files (distributed in uix2-install.zip) by unpacking them into the cabo directory.

To test your upgrade, restart the servlet container and point your browser to http://<hostname>:<port>/ohw-uix-demo/help/, or wherever you have mapped the OHW-UIX application.

Part VI

Oracle Help for the Web – UIX

This part contains information on using Oracle Help for the Web – UIX. It contains the following chapters:

	
Chapter 21, "Deploying OHW-UIX Demo File"

This chapter describes how to deploy the demo OHW-UIX EAR file. If you are new to OHW-UIX, it is recommended to deploy the demo file before you start deploying your own help system.

	
Chapter 22, "Understanding OHW-UIX Deployment"

This chapter describes the OHW-UIX deployment process.

	
Chapter 23, "Implementing Context-Sensitive Help in a Web Application"

This chapter describes how to implement a context-sensitive OHW-UIX help in a web application.

14 Adding OHJ to Your Application

This chapter describes how to integrate OHJ with your product application. It contains the following sections:

	
Section 14.1, "Overview of Adding OHJ to an Application"

	
Section 14.2, "Constructing the Help Object"

	
Section 14.3, "Adding the Help Data"

	
Section 14.4, "Adding the Favorites Tab or Custom Tab"

	
Section 14.5, "When to Create the Help object"

	
Section 14.6, "Showing the Navigator Window"

	
Section 14.7, "Showing a Topic"

	
Section 14.8, "Disposing of the Help Object"

These steps are explained in more detail in the following sections.

14.1 Overview of Adding OHJ to an Application

The basic steps for adding OHJ to an application are:

	
Construct the Help object.

	
Populate the Help object with help content, as follows:

	
Create Book objects that represent your help data.

	
Add the Book objects to the Help object.

	
Implement methods for showing the OHJ navigator window and for showing help topics.

	
Dispose of the Help object at the end of your product's lifecycle

14.2 Constructing the Help Object

The Help object is the main entry point for Oracle Help for Java. It includes methods for adding help content, showing the OHJ navigator window, and displaying specific topics. There are several options that can only be set at the time the Help object is constructed.

The boolean combineBooks parameter in the Help object constructor determines how OHJ displays multiple Books, or HelpSets. If the boolean combineBooks parameter is set to true, OHJ merges all author-defined views that have the same type and label. For example, if multiple books include a Keyword Index view with the same label, OHJ displays one keyword index navigator tab with a merged, sorted list of keywords. If the combineBooks parameter is set to false, the views from each book are displayed separately, and the end user can select which book to display using a drop-down list in the OHJ navigator window.

The versions of the Help object constructor are summarized below. For more information on API documentation of oracle.help.Help , see Section 13.3.2, "Contents of an OHJDK Release".

Table 14-1 Help() Constructors

	Constructor	Description
	
Help()

	
Creates an instance of the Help object with the ICEBrowser as the HTMLBrowser component used for topic display. This constructor will instruct the help system to show all of the views from the added books in one tab panel, and to ignore author defined tab labels in favor of standard tab labels.

	
Help(boolean combineBooks, boolean useLabelInfo)

	
Creates an instance of the Help object with the ICEBrowser as the HTMLBrowser component used for topic display.

Parameters:

	
combineBooks – If true, the help system shows all of the views from the books added to the help system in one tab panel. If false, the help system creates a different tab panel for each book and allows the end user to choose which book is displayed.

	
useLabelInfo – If true, the help system uses the author-defined label information for display and view merging. If false, the help system uses default labels.

	
Help(Class htmlBrowserClass, boolean combineBooks, boolean useLabelInfo)

	
Creates an instance of the Help object using the specified HTMLBrowser component for topic display. The ICEBrowser is the only HTMLBrowser subclass currently distributed with OHJ.

Parameters:

	
htmlBrowserClass – The HTMLBrowser subclass to use as the topic display component

	
combineBooks – If true, the help system shows all of the views from the books added to the help system in one tab panel. If false, the help system creates a different tab panel for each book and allows the end user to choose which book is displayed.

	
useLabelInfo – If true, the help system uses the author-defined label information for display and view merging. If false, the help system uses default labels.

	
Help(Class htmlBrowserClass, boolean combineBooks, boolean useLabelInfo, boolean standAloneMode)

	
Creates an instance of the Help object using the specified HTMLBrowser component for topic display. The ICEBrowser is the only HTMLBrowser subclass currently distributed with OHJ. This constructor contains an extra parameter enabling a "stand-alone" mode for running OHJ, where the Help object will exit the JVM (via System.exit) once all help windows have been closed. The standAloneMode parameter should be set to false if you are launching OHJ from a Java application (otherwise closing help would exit your application!).

Parameters:

	
htmlBrowserClass – The HTMLBrowser subclass to use as the topic display component

	
combineBooks – If true, the help system shows all of the views from the books added to the help system in one tab panel. If false, the help system creates a different tab panel for each book and allows the end user to choose which book is displayed.

	
useLabelInfo – If true, the help system uses the author-defined label information for display and view merging. If false, the help system uses standard default labels.

	
standAloneMode – If true, the help system exits the JVM when all help windows have been closed. Set this to false if you are launching OHJ from your Java application.

14.3 Adding the Help Data

After creating a Help object, you must add one or more Book objects to it. A Book object encapsulates a collection, or "book," of help content.

The HelpSet book implementation handles the preferred Oracle Help file formats, as documented in Oracle Help File Formats. These files include the helpset file, which defines the characteristics of the help system.

The following sections describe how to add the help sets, and other optional features:

	
Section 14.3.1, "Constructing a HelpSet"

	
Section 14.3.2, "Adding Books to Help"

14.3.1 Constructing a HelpSet

The Table 14-2 lists HelpSet() constructors:

Table 14-2 HelpSet() Constructors

	Constructor	Description
	
HelpSet(URL fileURL)

	
Constructs a HelpSet object using the helpset file at the specified URL location. Use this constructor when you know the exact location of the helpset file.

Parameters:

	
fileURL – A URL specifying the exact location of the helpset file.

	
HelpSet(Class pathClass, String pathExtension)

	
Use this constructor when you know only the path to the helpset file relative to your application implementation.

Parameters:

	
pathClass – One of your application classes. The HelpSet object uses the location of this class to determine the location of your helpset file.

	
pathExtension – The path to the helpset file relative to the location of pathClass. The value of this parameter is appended to the absolute path to the directory containing the pathClass. The resulting path should be the path to your helpset file.

For more information, see the API documentation for oracle.help.library.helpset.HelpSet.

14.3.2 Adding Books to Help

Once you have constructed a Book instance using the HelpSet constructors, you must add the Book to your Help instance. This is accomplished by calling the following method on the Help instance:

Table 14-3 addBook() Constructors

	Constructor	Description
	
addBook(Book book)

	
This method adds a Book instance to the help system. Author-defined views contained in the Book are displayed in the navigator window, and topics from the Book are available to display.

Parameters:

	
book - The Book instance to add to the help system.

14.4 Adding the Favorites Tab or Custom Tab

You have the option of adding a Favorites tab or a custom tab after the help object is constructed and before the Navigator window is displayed:

	
To add a Favorites tab to the navigator window, use the function enableFavoritesNavigator(URL). For more information on API documentation of oracle.help.Help.enableFavoritesNavigator(URL), see Section 13.3.2, "Contents of an OHJDK Release", or find this code in PreviewHelpSet.java for an example:

if (!"".equals(_favoritesPath))
 {
 try
 {
 File file = new File(_favoritesPath);
 _help.enableFavoritesNavigator(file.toURL());
 }
 catch (MalformedURLException e)
 {
 e.printStackTrace();
 }
 }

	
To add a custom tab, see the API documentation for oracle.help.navigator.Navigator in Section 13.3.2, "Contents of an OHJDK Release".

14.5 When to Create the Help object

A single instance of the Help object should be created and help data should be added at application startup. You should use this single instance of the Help object throughout the application session. It is not efficient to create unique Help objects each time the user requests help in your application.

14.6 Showing the Navigator Window

Instruct your Help instance to show the OHJ navigator window by calling the showNavigatorWindow() method. Some versions of this method take additional parameters to show the navigator window with a specified navigator tab selected (for example, Contents, Index, Search, etc.).

Table 14-4 showNavigatorWindow() Constructors

	Constructor	Description
	
showNavigatorWindow()

	
Shows the navigator window with the first tab of the first book selected.

Parameters:

	
activeBook - The Book object whose associated set of navigators should be initially displayed when the navigator window is shown.

	
showNavigatorWindow(Book activeBook)

	
Shows the navigator window with the associated set of navigators from the given book displayed.

Parameters:

	
activeBook - The Book object whose associated set of navigators should be initially displayed when the navigator window is shown.

	
showNavigatorWindow(Navigator activeNavigator)

	
Shows the navigator window with a specific navigator tab selected. Use this method if you want to show a specific navigator from a specific book.

Parameters:

	
activeNavigator - The navigator to show when initially selected.

14.7 Showing a Topic

Instruct your Help instance to show a specific help topic by calling the showTopic() method and providing the topic ID and the Book instance for that topic. Some versions of this method take additional parameters to specify how the topic should be displayed.

Table 14-5 showTopic() Constructors

	Constructor	Description
	
showTopic(Book book, String topicID)

	
Shows the given topic from the given book in a currently existing topic window. If no topic windows currently exist, a new topic window will be created with the default size and position.

Parameters:

	
book - The Book from which to show the topic.

	
topicID - The topic ID for the topic to show (as specified in the map file of the book)

	
showTopic(Book book, String topicID, boolean alwaysCreate)

	
Shows the given topic from the given book. If alwaysCreate is true, a new window will always be created. If false, a new window will only be created if no windows currently exist.

Parameters:

	
book - The Book to show the topic from.

	
topicID - The topic ID for the topic to show (as specified in the map file of the book).

	
alwaysCreate - If true, always create a new window. If false, reuse a window if possible

	
showTopic(Book book, String topicID, boolean alwaysCreate, Point location, Dimension size)

	
Shows the given topic from the given book. If alwaysCreate is true, a new window will always be created; if it is false, a new window will only be created if no windows currently exist. The topic window will be shown using the given location and size.

Parameters:

	
book - The Book to show the topic from.

	
topicID - The topic ID for the topic to show (as specified in the map file of the book).

	
alwaysCreate - If true, always create a new window. If false, reuse a window if possible.

	
location - Location of the topic window in screen coordinates.

	
size - Size of the topic window in pixels.

14.7.1 Catching TopicDisplayExceptions

Exceptions are thrown by the showTopic() method when an error is encountered when trying to display a topic. For example, if you attempt to display a topic ID which is not in the map file, a TopicDisplayException is thrown. By catching the TopicDisplayException, you have the opportunity to take action when an error occurs. In the following example, an author-defined error topic is displayed when TopicDisplayException is thrown.

For example:

try
{
 myHelp.showTopic(myhelpset, "nonExistingTopic");
}
catch (TopicDisplayException e)
{
 //An error has occurred, try to show an error topic
 myHelp.showTopic(myhelpset, "onErrorTopic");
}

14.8 Disposing of the Help Object

Disposing of the Help object frees OHJ resources. You should dispose of the Help object when you no longer need the help engine. Typically, this would be done at end of the user's application session. Disposing closes all files and frees memory used by the Help object. To dispose of the Help object, call the dispose() method:

Table 14-6 dispose() Constructors

	Constructor	Description
	
dispose()

	
Dispose of the help system. This method frees up all resources used by the help system. Applications should call this method when they do not need help anymore. You should not call any methods on the Help object after calling dispose().

The dispose() method will eliminate any references to objects held by the OHJ classes, but not other references that you have created from your application to Help objects.

Therefore, after you call dispose() you should eliminate any references to OHJ objects (Help or Book objects) in your application code. This allows the Java garbage collection process to free the OHJ objects.

19 Implementing Context-Sensitive Help in a Web Application

This chapter describes how to enable context-sensitive help in your web application and how to map topic IDs with the help topics.

This chapter includes the following sections:

	
Section 19.1, "Overview of Implementing Context-Sensitive Help In a Web Application"

	
Section 19.2, "Mapping Topic IDs to Help Topics"

	
Section 19.3, "Creating Context-Sensitive Links to the Help System"

19.1 Overview of Implementing Context-Sensitive Help In a Web Application

Oracle Help for the Web (OHW-RC) provides a context-sensitive help mechanism that launches help topics that are associated with some context in the Web application user interface. Typically, help topics are written to describe the function of a particular page, table, or input field in a Web application. When a user requests help for a user interface control—for example, by clicking a Help button—the appropriate topic for that context (or control) is displayed.

To provide context-sensitive help for a Web application, the help system must include one or more map files, and the appropriate help code must be added to the application code.

19.2 Mapping Topic IDs to Help Topics

OHW-RC context-sensitive help systems rely on one or more map files that map topic IDs to help topic HTML files. In a helpset, the map file is saved in XML file format as map.xml.

The map file is usually created by the help author. As a Web application developer, when associating Web application controls with context-sensitive topics you must use the topic IDs specified in the author's map file. Thus, you will have to coordinate your efforts with the help author.

Here is a sample map file in XML format:

 <?xml version='1.0' ?>
 <map version="1.0">
 <mapID target="topic_1" url="file_1.html" />
 <mapID target="topic_2" url="file_2.html#a1" />
 <mapID target="topic_3" url="file_3.html" wintype="intro" />
 </map>

The target attribute specifies a unique ID for the associated HTML file within a helpset. The url attribute specifies the location of the file to associate with the ID. The wintype attribute is optional; it specifies the name of a window type that the topic will be displayed in. For more information about the elements used in the map file, see Section 6.3, "Map Files".

19.3 Creating Context-Sensitive Links to the Help System

Applications that rely on OHW-RC for context-sensitive help request the context-sensitive topics via specially formulated URLs to the OHW-RC servlet. Any user interface control with a URL destination (links, images, etc.) can be associated with a context-sensitive topic.

When creating a link to OHW-RC for context-sensitive help, you can either use the URL destination for the front main page, which is a tripane-layout UI with the Contents, Index, and Search navigators on the left side, or you can create a URL destination for displaying a topic in tripane-layout UI using the topic ID. You can also specify a locale and a group in the URL destination.

	
Section 19.3.1, "Linking to the Front Main Page"

	
Section 19.3.2, "Linking to a Topic"

	
Section 19.3.3, "Specifying the Locale and Group"

19.3.1 Linking to the Front Main Page

The URL to the front main page is simply the URL to the OHW-RC servlet:

http://<server>:<port>/<servlet mapping>

where, <server> is the name of your server running the servlet container, <port> is the port used by the servlet container, and <servlet mapping> is the servlet mapping set up in the web.xml file for the OHW-RC servlet (oracle.help.web.rich.OHWServlet).

For example, in the web.xml, it has the following servlet definition and servlet mapping:

<!-- configuration for product1 help front servlet -->
<servlet>
 <servlet-name>product1</servlet-name>
 <servlet-class>oracle.help.web.rich.OHWServlet</servlet-class>
 <init-param>
 <param-name>ohwConfigFileURL</param-name>
 <param-value>/helpsets/product1/ohwconfig.xml</param-value>
 </init-param>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>product1</servlet-name>
 <url-pattern>/product1/*</url-pattern>
</servlet-mapping>

In this example, the URL to the front main page is:

http://www.myhelpserver.com:8888/docs/product1/

When a user requests help for a user interface control that is linked to the front main page, the OHW-RC tripane-layout main page will be displayed in the user's browser, showing the Contents, Index, and Search navigators on the left side.

19.3.2 Linking to a Topic

To create the URL for linking to a topic, add a topic parameter to the URL of the OHW-RC servlet. The value of the topic parameter is the topic ID of the help topic:

http://<server>:<port>/<servlet mapping>/?topic=<topic-id>

For example, the following URL requests the topic associated with the topic ID topic_1:

http://www.myhelpserver.com:8888/docs/product1/?topic=topic_1

When implementing context-sensitive links to OHW-RC, you may also wish to use JavaScript to open the link in a secondary window rather than replace the main application page.

When a user requests help for a user interface control that is linked to a topic ID, OHW-RC displays the tripane-layout UI with the topic file shown in the Topic Navigator (the right side), and Contents Navigator is shown in the left side with the topic highlighted in the TOC tree.

19.3.3 Specifying the Locale and Group

When you link to any OHW-RC page, including topic pages or front pages, you can include a locale and a group in the URL of the OHW-RC servlet with the locale and group query parameter.

The topic syntax is:

http://<server>:<port>/<servlet-mapping>/?topic=<topic-id>&locale=<ISO-code>
http://<server>:<port>/<servlet-mapping>/?topic=<topic-id>&locale=<ISO-code>&group=<aGroup>

and the fornt page syntax is:

http://<server>:<port>/<servlet-mapping>/?locale=<ISO-code>
http://<server>:<port>/<servlet-mapping>/?locale=<ISO-code>&group=<aGroup>

If you specify the locale, OHW-RC switches to the localized helpset if it is available, and will keep using the specified locale until it is overridden or removed. If the specified localized helpset is not available, the parameter is ignored.

For example:

http://www.myhelpserver.com:7101/docs/product1/?topic=topic_1&locale=sp

For more information about locale and group, see Chapter 9, "Oracle Help for the Web Configuration File".

8 Topic Files

This chapter describes the topic files, topic ID and associative links, popups, window types, and custom protocol links used by OHJ , OHW-RC, and OHW-UIX.

This chapter includes the following sections:

	
Section 8.1, "Overview of Topic Files"

	
Section 8.2, "Topic ID Links"

	
Section 8.3, "Associative Links"

	
Section 8.4, "Custom Protocol Links"

	
Section 8.5, "Popups"

	
Section 8.6, "Topic IDs"

	
Section 8.7, "Window Types"

8.1 Overview of Topic Files

Topic files are HTML files that contain the content for a help topic. The features supported in the HTML files depend on the browser (or HTML display component) used to display them.

For these features to work in OHJ, you must use the default ICEbrowser version of OHJ. If you substitute a different HTML display component, these features will not work. Also, if you display your HTML topic files directly in a web browser, that browser will not recognize the protocols and metadata documented on this page; therefore these features will not work.

OHW-UIX and OHW-RC do support these features. However, the process is different than in OHJ. An Oracle Help for the Web help system can be viewed in any current web browser, and those browsers do not directly support these conventions. Therefore, these custom features are processed in the OHW-UIX or OHW-RC servlet on the web server and are streamed to users' browsers as standard HTML links and as browser-specific JavaScript.

8.2 Topic ID Links

The target of an HTML link can be specified using either a URL (as with standard HTML links), anchor links, or by using the Oracle Help topicid protocol, along with a topic ID specified in the helpset's map file. For example:

Getting Started

When the Getting Started link is clicked, Oracle Help references the map file and jumps to the HTML file associated with the link's topic ID.

The topicid protocol also supports anchor links. For example:

Getting Started

When the Getting Started link is clicked, Oracle Help references the map file and jumps to the advanced anchor position in HTML file associated with the link's topic ID.

8.3 Associative Links

An associative link is a link that is associated with more than one target. When the user selects an associative link in a topic, a list of all topics associated with the link is displayed, and the user can choose a topic from the list.

Oracle Help supports associative links through the Oracle Help alink protocol, along with the link file that specifies the associative links for the helpset. For example, an associative link that displays all topics associated with the "worksheet" keyword is specified as follows:

Related Topics

Oracle Help uses the associative link keyword (in this case "worksheet") to search the link file (or files) and display a pop-up window with a list of related topics. This feature is particularly useful when link files from multiple helpsets are merged.

For example, select this link to display a list of associative links defined as follows:

this link

For more information about link file, see Section 7.5, "Link File".

8.4 Custom Protocol Links

Oracle Help for Java support links for custom protocols through the Oracle Help custom protocol. For example, a link that uses a custom protocol named myProtocol is specified as follows:

Link to activate custom protocol

Defining custom protocols is a powerful way for your help system to call back into your application. You can handle such links in your application by registering a CustomProtocolHandler with your Help instance. Create an implementation of oracle.help.CustomProtocolHandler and register it with your oracle.help.Help instance via the registerCustomProtocolHandler method. For this example link, you would register an instance of your CustomProtocolHandler using the string myProtocol as the first argument to the registerCustomProtocolHandler method.

When Oracle Help for Java encounters custom protocol links, it searches for a CustomProtocolHandler registered with the Help object using the identifier myProtocol. If one is found, the handleValue(String value) method of the CustomProtocolHandler is invoked, passing myValue as the value.

8.5 Popups

Popups are supported through the Oracle Help popup protocol. For example:

Sheet Definition

The keyword that follows the popup protocol is a topic ID, as specified in the helpset's map file. When the pop-up link is clicked, the contents of the file associated with the topic ID is displayed in a lightweight pop-up window.

For example:

this link

8.6 Topic IDs

Oracle Help topic IDs are maintained in the map file, and when Oracle Help needs to reference a topic ID, it uses the data from the map file. However, you can specify topic IDs in the topics file themselves and then use the Helpset Authoring Wizard to generate a map file from that information. To define a topic ID in a topic file, insert a META tag with this syntax:

<META name="topic-id" content="topic_id_name">

where topic_id_name specifies the topic ID to be used in the map file.

	
Note:

Third-party authoring tools may use this META tag for generating map files

For more information about Helpset Authoring Wizard, see Chapter 11, "Helpset Authoring Wizard".

8.7 Window Types

The helpset file can contain a WinType section where you can define one or more named windows with characteristics such as size, position, and background color. You can associate topics (and topic IDs) with these window types in the map file so that whenever the topic is displayed, it is displayed in the specified window.

	
Note:

Window Types are available for OHJ only.

If you plan to use the Helpset Authoring Wizard, you can associate a window type with a topic in the topic file itself. If you want to do this, you must also specify a topic ID in the topic-id META tag for the topic. Then the wizard uses the information from both META tags to generate the map file.

To associate a window with a topic in a topic file, insert a META tag with this syntax:

<META name="window-type" content="window_name">

where window_name is the name of a window defined in the helpset file.

	
Note:

	
You do not have to use this method for associating topics with window types. It may be easier to do it directly in the map file.

	
Third-party authoring tools may use this META tag for associating topics with window types.

	
In older versions of OHJ, the OHJ display engine read and used this META tag directly. This is no longer the case: the map file is now the central repository for this information.

8.8 Dynamic Mapping of Topic IDs to Files

If your helpset uses a simple convention to map between topic IDs and map files, you may be able to significantly enhance Oracle Help's memory usage and startup time with dynamic mapping.

Oracle Help supports an engine attribute on the <mapref> subelement of the helpset's <maps> area. By setting the engine attribute, one can use a custom engine to parse the map file and create an object used to map between topic IDs and files. In fact, by using certain engines, you may actually eliminate the map file altogether.The engine attribute is optional, so if it goes unspecified, Oracle Help will expect the location attribute to be set on the <mapref>, and the map file will be parsed and stored in the same manner as it was in older versions of Oracle Help.However, Oracle Help supports two engines that support certain common conventions for mediating between topic IDs and files:

	
oracle.help.engine.XMLMapFixedConventionEngine

	
oracle.help.engine.XMLMapConventionEngine

If those two engines do not satisfy your needs for dynamic mapping, you can write a custom implementation of oracle.help.engine.DataEngine.

8.8.1 The oracle.help.engine.XMLMapFixedConventionEngine Help Engine

In many cases, for a filename of myfile.html, the corresponding topic ID is just myfile_html. If your map file is simply a long, redundant list of obvious topic mappings of this form, you will want to set the engine attribute on <mapref> to oracle.help.engine.XMLMapFixedConventionEngine.

While using Oracle Help, setting the engine to this value will make your old map file expendable. However, if your help content may be viewed using an older version of Oracle Help, you should keep your old map file around so that the older versions of Oracle Help can fall back to the standard mechanism of topic mapping.

If you are concerned about the help system's memory usage and startup time, it is strongly recommended that you use this new engine. Doing so implies that your map file is never read, and therefore its contents are not stored in the memory. However, there is one caveat to the engine's use:

All help content (HTML files) must reside in the same directory as the helpset file. In addition, any subhelpsets must also reside in the same directory as the master helpset file. Subdirectories for subhelpsets are not permitted because the help system will not be able to find your content unless it is in the same directory as the master helpset. However, different helpsets may reside in different directories.:

In the following example, the map IDs topic_1 and topic_2 are not associated with window types and therefore use the helpset's default window type. The map IDs topic_3 and topic_4 map to topic files that will be displayed in the window defined by the intro window type. Map ID topic_5.tsk will display File_5.html in the window defined by the task window type. Map ID topic_5.cncpt will display the same topic file (File_5.html) in a different window type (concept). Note also that the association between URL and wintype will be used when linking from topic to topic using URLs instead of topic IDs. For example, if a topic had a hard-coded target to File_5.html, clicking the link would display the HTML content in a task window type.

<?xml version='1.0' ?>
<map version="1.0">
 <mapID target="topic_1" url="file_1.html" />
 <mapID target="topic_2" url="file_2.html#a1" />
 <mapID target="topic_3" url="file_3.html" wintype="intro" />
 <mapID target="topic_4" url="file_4.html#a2" wintype="intro" />
 <mapID target="topic_5.tsk" url="file_5.html" wintype="task" />
 <mapID target="topic_5.cncpt" url="file_5.html" wintype="concept" />
</map>

This scheme allows authors to assign window types to HTML files and to also override those associations by linking to an alternate topic ID. For example, for topic-to-topic links, TOC links, index links, and hard-coded links to File_5.html, the author might use topic_5.tsk, but for links from a tutorial, the author might use topic_5.cncpt. By keeping this information in the map file, the author has one central repository for managing these assignments.

8.8.2 The oracle.help.engine.XMLMapConventionEngine Help Engine

If on your <mapref> element you set engine to be oracle.help.engine.XMLMapConventionEngine you may define your own topic name convention in your map file. For example, consider the following <maps> definition in a helpset:

<maps>
 <mapref location="map.xml" engine="oracle.help.engine.XMLMapConventionEngine"/>
</maps>

The XMLMapConventionEngine supports the standard mechanisms for setting up topic ID and window type mappings. However, it also supports the new <topicNameConvention> element.

If using the XMLMapConventionEngine, your map.xml may resemble the following:

<map version="1.1">
 <topicNameConvention urlbase="http://www.example.org/help">
 <text>beginningText</text>
 <filename/>
 <text>_</text>
 <extension/>
 <text>endingText</text>
 </topicNameConvention>
</map>

The idea of the <topicNameConvention> is simple.You simply specify how your topic IDs are structured. If you set the urlBase attribute on the <topicNameConvention>, all help content files are assumed to be located at that URL. If all of your topic IDs begin with a string that is not a part of the filename or extension, you can specify a value for <text> at the beginning of the convention. Then you must specify either the <filename/> or the <extension/> to indicate whether the filename or extension appears first in your topic name convention. Then you can specify the <text> that separates the filename and extension. Either the <filename/> or the <extension/> should follow to indicate whether the filename or extension appears second in the convention. A final <text> may be specified if all topic IDs end with some text that is not part of the filename or extension.

According to the above topic name convention, the topic ID of beginningTextmyfile_htmlendingText would resolve to the file http://www.example.org/help/myfile.html. If the urlBase attribute was unspecified, it would be assumed that myfile.html is in the same directory as the helpset file.

If you want to set up some standard topic mappings and window types in your map file but still use the topic name convention provided by the XMLMapFixedConventionEngine, you could define a topicNameConvention in your map file as follows:

<map version="1.1">
 <topicNameConvention>
 <filename/>
 <text>_</text>
 <extension/>
 </topicNameConvention>
 <mapID etc.../>
</map>

In the above convention and the XMLMapFixedConventionEngine, the text that separates the filename and extension can appear multiple times in the topic ID. For example, consider the topic my_file_html. The engines assume that the separator between filename and extension is actually the last appearance of the "_" character in the topic ID. Therefore, the topic resolves to my_file.html.

8.8.3 Optimizing Dynamic Maps

Dynamic mapping of topic IDs to files can result in great improvements in your help system performance. However, context sensitive help calls to specific topics may take a long time to resolve if your library includes many helpsets.

The fundamental reason for this is that the convention-based mapping engines return URLs for topic IDs even if the URLs do not resolve to anything. Because of this, context sensitive help calls go through each helpset in the library and check whether the URLs generated by the engines actually resolve.

In the worst case, for a single context sensitive help call, the help system will attempt to connect to as many URLs as there are helpsets in your library. However, Oracle Help provides a simple remedy to alleviate the problem. If you set an engine on your <mapref> element, you may also set the engineParams attribute.

If you use the XMLMapConventionEngine or the XMLMapFixedConventionEngine, you may want to set engineParams to be a space-separated list of prefixes for the topics in your helpset. For example, if all topics in your helpset begin with either oh or help, your mapref would look like the following:

<mapref engine="XMLMap..." engineParams="oh help">

Setting engineParams for either of the convention-based engines ensures that the helpset will only try to resolve topics if they start with a valid prefix, preventing an attempted connection to an URL. Failure to set engineParams will not break your help system, but performance will not be optimal.

17 Deploying OHW-RC Demo File

This chapter describes how to deploy OHW-RC demo file on standalone Oracle WebLogic Server and JDevelolper integrated Oracle WebLogic Server.

This chapter includes the following sections:

	
Section 17.1, "Overview of Deploying OHW Demo Files"

	
Section 17.2, "Understanding the OHW-RC Demo Files"

	
Section 17.3, "Installing the OHW-RC Demo EAR File on Oracle WebLogic Server"

	
Section 17.4, "Installing the OHW-RC Demo EAR File on Oracle JDeveloper"

	
Section 17.5, "Running the OHW-RC Demo EAR File"

17.1 Overview of Deploying OHW Demo Files

The OHW-RC demo EAR file contains all class libraries that you need to view the demo and try out the release. It includes sample helpsets, OHW-RC servlet file, and XML configuration files. You can deploy the demo file to experience the OHW-RC interface, or replace the existing helpsets and add your own.

17.2 Understanding the OHW-RC Demo Files

The OHW-RC demo file is available in two variants: ohw-rcf-demo-thin.ear and ohw-rcf-demo-thick.ear.

The ohw-rcf-demo-thick.ear contains ADF, JSF and JSTL libraries preconfigured for deployment. The file is recommended if you are not using a supported application server or JDeveloper, or if you are using a supported application server but do not have the libraries installed. For more information about supported application servers, see the "Certification Information" page on OTN.

The ohw-rcf-demo-thin.ear does not contain ADF, JSF and JSTL libraries, hence it is required that the libraries must be installed on the application server before deployment. JDeveloper is required for this demo file. For more information on how to deploy libraries, see Section 17.3, "Installing the OHW-RC Demo EAR File on Oracle WebLogic Server".

	
Note:

Do not deploy both ohw-rcf-demo-thin.ear and ohw-rcf-demo-thick.ear on Oracle WebLogic Server as they would conflict when you run the demo EAR files.

Both OHW-RC demo EAR files, ohw-rcf-demo-thin.ear and ohw-rcf-demo-thick.ear, contain two OHW-RC sample helpsets along with their help topics, helpset file, and control files. They also contain ohwconfig.xml which is needed to configure OHW-RC.

When extracted into a directory, the OHW-RC demo file extracts files into their respective name directories, ohw-rcf-demo-thin and ohw-rcf-demo-thick. The EAR file contains a WAR file and a META-INF directory, which contains the application.xml file. The WAR file contains all helpset directories along with their help topics, helpset file, and control files.

Table 17-1 describes the files and directories in OHW-RC demo EAR files.

Table 17-1 OHW-RC Demo Files and Directories

	File	Description
	
application.xml

	
Java EE application file.

The file is available in META-INF directory.

	
helpsets directory

	
Web module containing two helpsets: ohguide and the sample shakespeare, in their respective directories.

The helpsets directory exists in the respective WAR files (ohw-rcf-demo-thick.war or ohw-rcf-demo-thin.war).

	
trinidad-config.xml

faces-config.xml

web.xml

weblogic.xml

	
Contains configuration and deployment information that affects OHW-RC thin and thick clients.

The files are available in WEB-INF directory of WAR files.

	
help-share.jar

ohw-rcf.jar

ohw-share.jar

The following library files are available for thick clients only:

	
adf-richclient-api-11.jar

	
adf-richclient-impl-11.jar

	
trinidad-api.jar

	
trinidad-impl.jar

	
OHW-RC library files required for deployment.

The files are available in WEB-INF\lib directory of WAR files.

	
ohwconfig.xml

	
OHW-RC configuration file.

The file is available in helpsets directory.

17.3 Installing the OHW-RC Demo EAR File on Oracle WebLogic Server

Before you start the demo file installation, verify that ADF, JSF, and JSTL libraries are installed in Oracle WebLogic Server. For more information, see Section 18.3, "Verifying OHW-RC Library Files".

After the library verification, installing the demo EAR file is a very simple process:

	
Download the OHW-RC demo EAR file from OTN. The name of the demo file is ohw-rcf-demo-thick.ear. This file includes OHW-RC library files and sample helpsets.

	
Start the Oracle WebLogic Administration Console and navigate to Deployments page.

	
In the Deployments page, click Install to start the deployment wizard.

	
In the Path field, enter the location where you saved the ohw-rcf-demo-thick.ear file, or in the Current Location, browse and select the EAR file.

Click Next to continue.

	
In the Choose targeting style page, select Install this deployment as an application, and click Next.

	
In the Optional Settings page, verify the settings. It is recommended that you leave the settings as default. Click Next to continue, or click Finish to complete the deployment.

	
In the Additional Configuration page, select Yes, take me to the deployment's configuration screen and click Finish to complete the deployment.

The deployment wizard, after successful deployment, returns you to the Settings page of ohw-rcf-demo-thick.ear. If there are errors while deploying the file, you are navigated to Deployment home page where the errors are listed in red text.

17.4 Installing the OHW-RC Demo EAR File on Oracle JDeveloper

To install the demo file on Oracle JDeveloper, follow these steps:

	
Download the OHW-RC demo EAR file from OTN. The name of the demo file is ohw-rcf-demo-thin.ear. This file includes OHW-RCF and sample helpsets.

	
Start JDeveloper.

	
Create a new application from the ohw-rcf-demo-thin.ear file. From the File menu, select New. In the New Gallery dialog, select Applications under General category, and then select Application from EAR File from the Items list.

	
In the Location page of Create Application from EAR File wizard, browse and select the ohw-rcf-demo-thin.ear file. You may also change the application name and the location of application. Click Next to continue.

	
The EAR Modules page of the wizard shows the project name and the module name. Click Next to continue, or click Finish to create the application from EAR file.

	
The Finish page of the wizard shows a summary of your settings for the application. Click Finish to create the application from EAR file. JDeveloper extracts all files from the EAR file and creates an application which is ready to edit and deploy.

	
In the Application Navigator, open the project and edit the desired files.

	
To deploy the application, start the integrated Oracle WebLogic Server instance. From Run menu, choose Start Server Instance to start the integrated Oracle WebLogic Server.

	
In the Application Navigator, select the ohw-rcf-demo-thin project. From the Application menu, select Deploy. Then from the submenu, select ohw-rcf-demo-thin, to, and then select IntegratedWLSConnection. JDeveloper starts the deployment process and the status of the deployment is reflected in the Log window.

When the application is successfully deployed, JDeveloper prompts with Deployment finished message in the Log window.

17.5 Running the OHW-RC Demo EAR File

After successful deployment of demo file, open your browser and navigate to the following URL:

http://<yourHost>:<yourPort>/<jdevProjectName>/ohguide/

If you have installed the OHW-RC demo EAR file using Oracle WebLogic Administration Console, use the following URL:

http://localhost:7101/ohw-rcf-demo/ohguide

If you have installed the OHW-RC demo EAR file using Oracle JDeveloper, use the following URL:

http://localhost:7101/ohw-rcf-demo-thin/ohguide

For more information on user interface of OHW-RC, see Chapter 3, "OHW-RC User Interface".

A Oracle Help and JavaHelp File Formats

The Oracle Help file formats are based on the JavaHelp Specification. Oracle Corporation has extended the JavaHelp file definitions to support additional features.

This appendix includes the following sections:

	
Section A.1, "Helpset File"

	
Section A.2, "Map File"

	
Section A.3, "Table of Contents File"

	
Section A.4, "Index File"

	
Section A.6, "Link File"

	
Section A.5, "Search Index File"

	
Section A.7, "OHW Configuration File"

These conventions apply to the following tables:

	
In the Element column, child elements are indented under parent elements.

	
The items in the Attribute column are attributes of the element listed directly above the attribute(s).

	
In the Origin column, "JH" refers to the JavaHelp 1.0 file format specification. "OH" refers to Oracle Help. Oracle's extensions to JavaHelp were originally developed for Oracle Help for Java (OHJ). However, most of the formats now apply to both OHJ and Oracle Help for the Web (OHW). Therefore, "OH" alone is used.

	
In the Supported By column, "OH" refers both to OHJ and OHW.

A.1 Helpset File

For more information about this file, see Section 6.2, "Helpset File".

Table A-1 Helpset Elements

	Element	Attribute	Origin	Supported By
	
<helpset>

	
-

	
JH

	
OH & JH - Differences as shown below

	
-

	
xml:lang

	
JH

	
JH only

	
-

	
version

	
JH

	
JH only

	
<title>

	
-

	
JH

	
OH & JH

	
<maps>

	
-

	
JH

	
OH & JH

	
<homeID>

	
-

	
JH

	
JH & OH (in some circumstances)

	
<mapref>

	
-

	
JH

	
OH & JH - Differences as shown below

	
-

	
location

	
JH

	
OH & JH

	
-

	
class

	
OH

	
OH only

	
<wintype>

	
-

	
OH

	
OH only

	
-

	
default

	
OH

	
OH only

	
<name>

	
-

	
OH

	
OH only

	
<height>

	
-

	
OH

	
OH only

	
<width>

	
-

	
OH

	
OH only

	
<x>

	
-

	
OH

	
OH only

	
<y>

	
-

	
OH

	
OH only

	
<textfg>

	
-

	
OH

	
OH only

	
<linkfg>

	
-

	
OH

	
OH only

	
<bg>

	
-

	
OH

	
OH only

	
<title>

	
-

	
OH

	
OH only

	
<toolbar>

	
-

	
OH

	
OH only

	
<links>

	
-

	
OH

	
OH only

	
<linkref>

	
-

	
OH

	
OH only

	
-

	
location

	
OH

	
OH only

	
<view>

	
-

	
JH

	
OH & JH - Differences as shown below

	
<name>

	
-

	
JH

	
JH only

	
<label>

	
-

	
JH

	
OH & JH

	
-

	
image

	
OH

	
OH only

	
<title>

	
-

	
OH

	
OH only

	
-

	
image

	
OH

	
OH only (TOC view only)

	
<type>

	
-

	
JH

	
OH & JH

	
<data>

	
-

	
JH

	
OH & JH - Differences as shown below

	
-

	
class

	
OH

	
OH only

	
-

	
engine

	
JH

	
OH & JH

	
<subhelpset>

	
-

	
OH

	
OH only

	
-

	
location

	
OH

	
OH only

	
-

	
class

	
OH

	
OH only

A.2 Map File

For more information about this file, see Section 6.3, "Map Files".

Table A-2 Map File Elements

	Element	Attribute	Origin	Supported By
	
<toc>

	
-

	
JH

	
OH & JH - Differences as shown below

	
-

	
xml:lang

	
JH

	
JH only

	
-

	
version

	
JH

	
JH only

	
<tocitem>

	
-

	
JH

	
Differences as listed below

	
-

	
target

	
JH

	
OH & JH

	
-

	
text

	
JH

	
OH & JH

	
-

	
image

	
JH

	
OH & JH

	
-

	
xml:lang

	
JH

	
JH only

A.3 Table of Contents File

For more information about this file, see Section 7.2, "Table of Contents File".

Table A-3 Table of Contents Elements

	Element	Attribute	Origin	Supported By
	
<toc>

	
-

	
JH

	
OH & JH - Differences as shown below

	
-

	
xml:lang

	
JH

	
JH only

	
-

	
version

	
JH

	
JH only

	
<tocitem>

	
-

	
JH

	
Differences as listed below

	
-

	
target

	
JH

	
OH & JH

	
-

	
text

	
JH

	
OH & JH

	
-

	
image

	
JH

	
OH & JH

	
-

	
xml:lang

	
JH

	
JH only

A.4 Index File

For more information about this file, see Section 7.3, "Index File".

Table A-4 Index File Elements

	Element	Attribute	Origin	Supported By
	
<index>

	
-

	
JH

	
OH & JH - Differences as shown below

	
-

	
xml:lang

	
JH

	
JH only

	
-

	
version

	
JH

	
JH only

	
<indexitem>

	
-

	
JH

	
OH & JH - Differences as shown below

	
-

	
target

	
JH

	
OH & JH

	
-

	
text

	
JH

	
OH & JH

	
<indexentry>

	
-

	
OH

	
OH only

	
-

	
target

	
OH

	
OH only

	
-

	
text

	
OH

	
OH only

A.5 Search Index File

This file is unique to Oracle Help. For more information, see Section 7.4, "Search Index File".

A.6 Link File

This file is unique to Oracle Help. For more information, see Section 7.5, "Link File".

A.7 OHW Configuration File

This file is unique to Oracle Help. For more information, see Chapter 9, "Oracle Help for the Web Configuration File".

Part II

Oracle Help File Formats

This part describes the Oracle Help file formats. It contains the following chapters:

	
Chapter 5, "Introduction to Oracle Help File Formats"

This chapter provides an introduction to Oracle Help file formats.

	
Chapter 6, "Metadata Files"

This chapter describes the metadata files used in Oracle Help. These include helpset files and map files.

	
Chapter 7, "Help Information Files"

This chapter describes the information files used in Oracle Help. These include Table of Contents file, Index file, Search Index file, and Link file.

	
Chapter 8, "Topic Files"

This chapter describes the topic files used in Oracle Help.

	
Chapter 9, "Oracle Help for the Web Configuration File"

This chapter describes the configuration files of Oracle Help for Web.

3 OHW-RC User Interface

This chapter describes Oracle Help for the Web user interface components, such as global toolbar, topic navigator, index navigator, and search navigator.

This chapter contains the following sections:

	
Section 3.1, "Overview of Oracle Help for the Web – Rich Client (OHW-RC) Interface"

	
Section 3.2, "OHW-RC Global Toolbar"

	
Section 3.3, "OHW-RC Contents Navigator"

	
Section 3.4, "OHW-RC Index Navigator"

	
Section 3.5, "OHW-RC Search Navigator"

	
Section 3.6, "OHW-RC Topic Pane"

	
Section 3.7, "Other OHW-RC Features"

3.1 Overview of Oracle Help for the Web – Rich Client (OHW-RC) Interface

The Oracle Help for the Web – Rich Client (OHW-RC) user interface provides the same features as that of OHJ. However, since OHW-RC is a Web application, there are some differences in appearance and behavior.

Figure 3-1 shows OHW-RC in a Web browser.

Figure 3-1 Oracle Help for the Web - Rich Client User Interface

[image: Description of Figure 3-1 follows]

Figure 3-1 numbered callouts identify the following user interface components:

	
Branding area: Located at the top of the rich client interface, this area can contain text, an image, or both. Typically, this area identifies the help content or provides company information, such as the name and logo.

	
Toolbar area: Located below the branding area, this area provides the main menu items, a helpset switcher (where applicable), and a quick search control.

	
Navigator area: Located on the left side of the page, this area uses the accordions approach, and each accordion panel represents one navigator. The OHW-RC framework provides three standard navigators: Contents, Index, and Search. The exact set of navigators in an OHW-RC instance is dynamically determined from the helpset definition file (for example, the.hs file).

	
Topic view area: When a topic is selected in any tab of the Navigator area, the contents of that topic appear in this area.

With the exception of the branding area, these elements are configured in the helpset file. OHW-RC and OHJ use the exact same file formats, including the helpset file. That means that one can take an existing OHJ help system and deploy it as an OHW-UIX or OHW-RC system, without changing any of the existing control files. OHW-RC uses the same directives from the helpset file to construct its user interface as are used by OHJ to configure its user interface.

For more information about deploying OHW-RC system, see Chapter 17, "Deploying OHW-RC Demo File".

3.2 OHW-RC Global Toolbar

The top area of the rich client contains a helpset switcher (where applicable), a quick search control, a View menu that enables users to manipulate areas on the page, and a toolbar.

Figure 3-2 OHW-RC Global Toolbar

[image: Description of Figure 3-2 follows]

Figure 3-2 numbered callouts identify the following user interface components:

	
Helpset Switcher: A dropdown list that contains all helpsets defined in an OHW-RC application. The helpset that is currently open is shown in the dropdown box, and users can use the list to switch to a different helpset. The Helpset Switcher is visible only when there are multiple independent sets of content and the combineBooks parameter, in the ohwconfig.xml file, is set to false.

	
Search This Helpset: A quick search control that allows users to perform a quick search without switching to the Search navigator. The default search options in this case will be set to case insensitive, all words and all sources. If there are multiple search navigators, the quick search control is not displayed. Multiple search navigators can be present when the helpset file contains more than one views with the navigator of type: oracle.help.navigator.searchNavigator.SearchNavigator.

	
View: A menu that provides a list of command menu items to control visibility and navigation of the helpset. The command items are grouped into similar functionalities as follows:

	
Maximize Reading Pane toggles the expansion or collapse of the navigator pane.

	
Restore Default Window Layout rearranges the panes according to the default layout.

	
The navigator items section contains command items to navigate to all available navigators panes (Contents, Index, and Search, and the custom navigators, if any).

	
Show bookmarkable link for this topic page displays a popup that contains the permanent link to the current topic, which can then be used to create a bookmark.

	
The toolbar contains the following buttons:

	
Back To Topic: reopens the topic the user previously visited

	
Forward To Topic: reopens the topic the user just returned from.

	
Print this topic page: prints the current topic.

	
Email link to this topic page: opens the default email application, copies the URL of the current topic into the message body, and the topic title into the subject field.

	
Show permanent link for this topic page: displays a popup that contains the permanent link to the current topic, which can then be used to create a bookmark.

A Collapse Pane button is also available to hide the toolbar and maximize the Topic Pane.

3.3 OHW-RC Contents Navigator

The Contents Navigator displays topics in a hierarchical tree. The contents and structure of the tree shows the merged data from the table of contents views in the loaded helpsets. Users can expand or collapse branches of the tree and select leaves (and branches that have associated topics). When a leaf or branch associated with a topic is selected, the topic is displayed in the Topic Pane on the right. A scroll bar will be shown when necessary.If the Table of Contents in the Contents Navigator is not visible, use the View menu in the global toolbar to navigate to the tab.

Figure 3-3 OHW-RC Contents Navigator

[image: Description of Figure 3-3 follows]

The Contents Navigator is always in sync with the topic displayed in the Topic Pane. For example, if you click a link in a topic and jump to another topic, the new topic is automatically highlighted in the Contents tab.The state of the Contents tab is maintained even when a user switches between navigators. For example, if a user selects a topic and switches to the Index navigator and back (without opening any other topic), the selected topic, scroll position, and expansion state of the tree remain unchanged. This works together with the auto-sync functionality.The context menu provides a list of command menu items to control visibility and navigation of the helpset. The items are:

	
Print This Page: prints the contents of the selected topic.

	
Email This Page: opens the default email application, copies the URL of the current topic into the message body, and the topic title into the subject field (also available through the global toolbar).

	
Link to This Page: displays a popup that contains the permanent link to the selected topic, which can then be used to create a bookmark (also available through the global toolbar).

	
Expand: expands the tree to display the child topics of the selected node.

	
Collapse: collapses the tree to hide the child topics of the selected node.

	
Expand All Below: expands all nodes under the selected node to display their respective child topics.

	
Collapse All Below: collapses all nodes under the selected node to hide their respective child topics.

	
Show As Top: displays the current node as the root of the tree.

	
Note:

The functions provided by the first three context menu items are also available through the global toolbar. For more information, see Section 3.2, "OHW-RC Global Toolbar".

3.4 OHW-RC Index Navigator

The Index Navigator displays a sorted list of keywords, in a hierarchy of two levels. A keyword can be associated with multiple topics. The hierarchy is indicated by indented child items.

Figure 3-4 OHW-RC Index Navigator

[image: Description of Figure 3-4 follows]

Figure 3-4 numbered callouts identify the following user interface components:

	
Jump to keyword: The user enters a word or words in this field. As the user types, the first keyword in the list that matches the typed letters is selected. As more letters are typed, a more accurate selection is made. Alternatively, the user can simply select a keyword from the keyword list.

	
Keyword list: A list that contains a 2-level locale-sensitive collated list of keywords. Selecting a keyword in the list displays the associated topics in the topic list.

	
Expand/Collapse: Click the button to hide the Keyword List and Jump to keyword text field, and expand the topic list to occupy all Index navigator. The button is useful if you have list of topics for the search keyword and you want to browse through them.

	
Topic list: A list that displays the title and source of each topic that is associated with the keyword selected in the keyword list. When the user selects one of these titles, the topic is displayed in the Topic pane. Both the Topic and Source columns can be sorted in the ascending or descending alphabetical order.

3.5 OHW-RC Search Navigator

The Search Navigator provides a user interface for constructing a full-text search query. The user may enter multiple words for the search string.

Figure 3-5 OHW-RC Search Navigator

[image: Description of Figure 3-5 follows]

Figure 3-5 numbered callouts identify the following user interface components:

	
Search text: The user enters a word or words in this field. To search for an exact phrase, enclose the search phrase in double quotes.

You can also use the * wildcard character in your search string. Note that the support for the * wildcard character is available in between and in the end of the search string, but not in the beginning of the search string. For example, John*Doe and John* are valid search strings, *Doe is an invalid search string.

	
Source: A dropdown that allows users to specify the set source topics among which the search is to be performed.

	
Match: A dropdown that allows users to specify whether to list topics that contain any or all of the specified words, or perform a search based on a Boolean expression (AND, OR).

	
Case Sensitive: A checkbox, when selected, enables searching for words having the same case as the words entered by the user.

	
Expand/Collapse: Click the button to hide the Search text, Source, Match, and Case Sensitive fields; and expand the topic list to occupy all Search navigator. The button is useful if you have list of topics for the search keyword and you want to browse through them.

	
Topic List: The results area displays the Topic Title, Score and Source of each topic that matches the search criteria. The Score column indicates the ranking of the topics according to how well they match the search criteria. All columns can be sorted in the ascending or descending alphabetical order. By default, all topics are sorted by Score. When a user hovers the mouse on an item, a tooltip appears to show the full names of relevant folders, topics, and source data. When the user selects a particular result, the associated topic is displayed in the topic pane.

3.6 OHW-RC Topic Pane

The Topic pane displays the HTML help content.

Figure 3-6 OHW-RC Topic Pane

[image: Description of Figure 3-6 follows]

The Topic pane has its own toolbar to manipulate the currently displayed topic. Figure 3-6 numbered callouts identify the following user interface components:

	
Find in page: The user enters some specific text, which is to be searched in the topic content, in this field.

	
Next: Searches for the next occurrence of the text specified by the user, and highlights the same if a match is found.

	
Previous: Searches for the previous occurrence of the text specified by the user, and highlights the same if a match is found.

	
Topic Pane: The pane with the help content.

3.7 Other OHW-RC Features

OHW-RC features, not otherwise mentioned in this Oracle Help Guide, include the following.

3.7.1 About OHW-RC Feature

The About OHW-RC feature displays information about the OHW-RC help system, Oracle copyright information, and the OHW-RC build you are using.

	
Note:

Oracle Help for Java supports the About OHW-RC feature using the request query parameter aboutOHW.

To view the About OHW-RC page, the user must navigate to the following URL:

http://localhost:<port_number>/<help ohw-rcf context-root>/faces/helppages/main.jspx?config=OHW+Servlet+1&aboutOHW=true

Upon navigating to this URL, the Topic pane will displays the current OHW-RC build information along with copyright information.

Figure 3-7 About OHW-RC Window

[image: Description of Figure 3-7 follows]

3.7.2 Bookmarking Feature

Users can bookmark a page, and the same topic will be displayed when navigating to the bookmark. Users will also be able to save a URL link and send the link by email. The following points must be noted for Bookmarking feature:

	
To bookmark a page, users need to use the Show permanent link for this topic page button on the global toolbar, which will refresh the rich client URL to a bookmarkable URL. Users can then use then browser's bookmarking feature to save the URL.

	
The state of the Index and Search navigators will not be part of the bookmark information. The Contents navigator will automatically be in sync with the displayed topic.

3.7.2.1 Backward Compatibility

A bookmark from OHW-RC will be able to display the same topic view in OHW-RC given the topic ID, group, and locale. However, since OHW-RC bookmarks have many other parameters besides the ones that are supported, the state of all navigators may not be restored.

OHW-RC URLs indexed by search engines will still link to valid help content.

3.7.3 Single Pane Layout Feature

Users can view the current topic in a single pane layout by altering the URL.

For example:

topicId

http://localhost:7101/help-ohw-rcf-context-root/ohguide/?topic=ohg_about_about_html&linkHelp=false

vtTopicFile

http://localhost:7101/help-ohw-rcf-context-root/ohguide/?vtTopicFile=ohguide/ohg_about_about.html&linkHelp=false

[image: Oracle Corporation]

B Working Around the Java Modal Window Problem

This appendix describes how Java handles modal windows that causes a problem when trying to display a context-sensitive help topic for a modal window. A modal window is one that does not allow focus to be shifted away from it. A nonmodal window is one that allows focus to be switched to another window.

This appendix includes the following sections:

	
Section B.1, "About the Java Modal Window Problem"

	
Section B.2, "Registering a Window"

	
Section B.3, "Unregistering a Window"

B.1 About the Java Modal Window Problem

If a user requests help from a nonmodal window, it is possible to switch back and forth between the help window and the window requesting help. However, this is not possible when requesting help from a modal window. In Java, a modal window blocks access to all other windows created by the Java Virtual Machine, except yet another modal window. Thus, if help is requested from a modal window, OHJ must display help in a modal help window. Then, because OHJ is itself shown in a modal window, the user must close the help window to return to the application.

When help is requested, OHJ determines whether the active window is modal. If it is, then it re-parents the normal OHJ topic windows and the OHJ navigator window into a new modal window. That new window appears in the foreground of the user's display, and the user can interact with it; in fact, they must interact with it if only to close the modal help window. Given the coarse implementation of modality in Java, this is the only solution that will work for all of the Java Virtual Machines currently supported by OHJ.

B.2 Registering a Window

In order for the OHJ workaround to work, OHJ must be able to track the currently active window. Use the registerClientWindow() method to register each window (Frame or Dialog) you create with the Help object.

Table B-1 registerClientWindow() Method

	Constructor	Description
	
registerClientWindow(Window aWindow)

	
Window instances registered with the Help object are tracked. If the active window is a modal dialog and help is requested, the Help object will take special action so that the help windows are not blocked by the active modal dialog.

Parameters:

	
aWindow - The Window instance to register.

B.3 Unregistering a Window

If you registered your Window objects using Help.registerClientWindow(), you must also unregister them. When you know that a Window will no longer be active, you should unregister the window with the Help object using the unregisterClientWindow() method. It is important to note that failure to unregister Window instances may result in the window not being garbage collected.

Table B-2 unregisterClientWindow() Method

	Method	Description
	
unregisterClientWindow(Window aWindow)

	
Clients should unregister each Window instance they registered with the registerClientWindow() method once the window will no longer be active. Failure to unregister Window instances may result in the window not being garbage collected.

Parameters:

	
aWindow - The Window instance to register.

What's New

Oracle Help Release 5.0 includes many features that help you create and manage help systems for your application. In the current release, Oracle Help includes Oracle Help for Java Release 5.0, Oracle Help for the Web – UIX Release 5.0, and Oracle Help for the Web – Rich Client Release 5.0. Oracle Help Release 5.0 also supports Oracle Fusion Middleware 11g Release 1 (11.1.1.6.0).

The most significant feature of this release is the Oracle Help for the Web – Rich Client (OHW-RC). OHW-RC provides the following functionality enhancements over Oracle Help for the Web – UIX (OHW-UIX):

	
A user interface that:

	
looks and functions like the familiar tri-pane (menu toolbar, navigator, topic view) design of native help systems, similar to Oracle Help for Java.

	
has a better Index navigator, which provides scrolling instead of paging, supports incremental search.

	
enables users to view the current navigator and the current topic at the same time.

	
Quick search and bookmarking support

	
Support for Custom Protocol Links or xlinks

	
Support for Embedded Help

	
Usage as an inline Help provider for applications built on Oracle ADF

Other enhancements include:

	
Oracle WebLogic Server and Oracle JDeveloper support for OHW-UIX and OHW-RC

	
Debug mode in OHW-UIX and OHW-RC that indicates how many malformed helpsets were skipped while running the application

9 Oracle Help for the Web Configuration File

This chapter describes the Oracle Help for the Web configuration file and the various elements (such as helpConfiguration, brandings, locales, parameters, and navigatorAliases) of the file.

This chapter includes the following sections:

	
Section 9.1, "Overview of Oracle Help for the Web Configuration File"

	
Section 9.2, "The <helpConfiguration> Element"

	
Section 9.3, "The <brandings> Element"

	
Section 9.4, "The <locales> Element"

	
Section 9.5, "Sharing Resources Across Helpsets"

	
Section 9.6, "The <parameters> Element"

	
Section 9.7, "The <navigatorAliases> Element"

	
Section 9.8, "Custom Protocol Links"

	
Section 9.9, "Preloading Helpsets Containing Embedded Help"

9.1 Overview of Oracle Help for the Web Configuration File

The Oracle Help for the Web configuration file is an XML file that defines a OHW configuration. This configuration controls all adjustable features of the OHW-RC and OHW-UIX servlet. A typical name for this file is ohwconfig.xml, but it can have any name, as long as that name is specified as the value of the configFileName initialization parameter for the servlet. The OHW-UIX and OHW-RC demonstration files uses ohwconfig.xml.

9.2 The <helpConfiguration> Element

The <helpConfiguration> element is the top-level element in the help configuration file. All of the elements of the configuration, described below, should appear between the <helpConfiguration> tag and the </helpConfiguration> tag. The helpConfiguration element has two attributes, version and debugMode.

You must always set the version attribute of helpConfiguration element. For Oracle Help for the Web, the value of the attribute should be 2.0.

For example:

<helpConfiguration version="2.0">

9.2.1 The debugMode Attribute

Enable debug mode by setting debugMode="true" on the <helpConfiguration> element in ohwconfig.xml. This allows helpsets to be loaded in debug mode, where malformed helpsets are skipped over. The debug text is displayed along with the branding information in the upper left corner of the screen and in the title bar of the browser. The debug text indicates how many malformed helpsets have been skipped over while running the application.

If there are no malformed helpsets, following message is displayed in the branding area, also shown in Figure 9-1:

Debug Mode: 0 Missing Helpsets".

Figure 9-1 Helpset Information in Debug Mode

[image: Surrounding text describes Figure 9-1 .]

There could be many reasons for a malformed helpset. The following are some common reasons:

	
id attribute is missing

	
id attribute is a duplicate id

	
location attribute is missing

	
location points to an invalid location

Whe you deploy the help system, a WARNING message is logged to indicate that debug mode is being used. Whenever a helpset is skipped over, a SEVERE message is logged (instead of throwing an exception), and the log message displays the id and location attributes of the helpset that was skipped over. By default, the log messages are logged through System.err stream and are displayed in the developer environment's console window. If you're using JDeveloper, the messages are logged in the Log window and a log file is created at <JDEV_HOME>\jdeveloper\systemversion\DefaultDomain\servers\DefaultServer\logs\DefaultDomain.log.

For example:

Let's assume you enabled the debugMode as follows:

<helpConfiguration version="2.0"
 xmlns="http://xmlns.oracle.com/help/web/config" debugMode="true" >

Then, if you changed the location of your ohguide helpset to ohguide_new directory, but forgot to update the corresponding path in ohwconfig.xml:

<books>
 <helpSet id="ohguide" location="ohguide/ohguide.hs"/>
 <helpSet id="shake" location="shakespeare/shakespeare.hs"/>
</books>

The following message is displayed in the branding area, also shown in Figure 9-2:

Debug Mode: 1 Missing Helpsets".

Figure 9-2 Missing Helpset Information in Debug Mode

[image: Surrounding text describes Figure 9-2 .]

9.3 The <brandings> Element

The <brandings> element specifies the product branding text or image that appears above the tab bar. The <brandings> does not have any attributes, and is a placeholder for all brandings information.

The <brandings> element can contain only one of the elements described in the following table. If no branding information is specified, the default branding text is used.

Table 9-1 <brandings> Child Elements

	Element	Description
	
<branding>

	
Renders branding information from attribute information and can be specified to work with certain locales. This element supports the following attributes:

	
text – The text to be rendered. Note that you can provide simple HTML attributes such as italics by using the special character named entities (escape characters). For example, to preserve the italics in the name MyItalics, the branding text line would be:

<branding text="My<i>Italics</i>" />

	
imageHeight – The image height for the branding image. If not specified, the image is displayed with default height of 25 pixels.

	
imageSource – The image source for a branding image. This takes precedence over the text if both are set.

The declaration of an image location is not always the same as the translated path:

	
For a servlet path like /foo/myImage.jpg,

the translated path is /<context-root>/foo/myImage.jpg

	
For an absolute path like http://mydomain.com/myImage.jpg

the translated path is http://mydomain.com/myImage.jpg

	
For an off the server root path like //foo/myImage.jpg

the translated path is /foo/myImage.jpg

	
imageShortDesc – A short description for the image. This text is displayed in the same way an ALT description is handled in HTML. For example, it appears when the mouse rolls over the image.

	
locales – A space deliminated list of locales that this branding should be supplied for. If this is missing, the branding information will be applied across all registered locales.

OHW narrows the locale used, but does not expand it. For instance, if you specified a locale nl and the browser was set to use locale nl_NL, OHW will first try and fail to find nl_NL, then try and succeed in finding nl. Thus, if you specify a more specific locale in OHW (nl_NL) and a less specific locale in the browser (nl), the specification will be ignored, in alignment with other standard locale mechanisms such as resource bundle.

	
<brandingFromResource>

	
Renders branding information from a ResourceBundle. This element supports the following attributes:

	
resource - Java classname of ResourceBundle to use.

	
textKey - The key into the ResourceBundle for the branding text.

	
imageSourceKey - The key into the ResourceBundle for the branding image source. This takes precedence over the textKey is both are present.

	
imageShortDescKey - The key into the ResourceBundle for the branding image description. This text is displayed in the same way an alt description is handled in HTML. For example, it appears when the mouse rolls over the image.

	
locales - A space deliminated list of locales that this branding should be supplied for. If this is missing, the branding information will be applied across all registered locales.

OHW narrows the locale used, but does not expand it. For instance, if you specified a locale nl and the browser was set to use locale nl_NL, OHW will first try and fail to find nl_NL, then try and succeed in finding nl. As a consequence of this, if you specify a more specific locale in OHW (nl_NL) and a less specific locale in the browser (nl), the specification will be ignored, in alignment with other standard locale mechanisms such as the resource bundle.

For example:

<brandings>
 <branding text="Oracle Help" />
</branding>

or

<brandings>
 <branding text="Help" locales="en en_US" />
 <branding text="Ayuda" locales="es" />
</brandings>

or

<brandings>
 <brandingFromResource resource="myApp.resource.MyBundle" textKey="title" />
</brandings>

9.3.1 Best Practice for Internationalization

When implementing internationalization, you can avoid having to translate ohwconfig.xml by using these best practices for helpsets that require translation:

	
Use <brandingFromResource> to reference a bundle that is translated for all locales, instead of putting the branding information directly into ohwconfig.xml. Because the branding information comes from a standard Java resource bundle, the bundle can be translated as part of the regular translation process.

	
Put an XML declaration at the top of all help control files: map, TOC, index, and helpset files. If you do this, you do not need to use <controlFileEncoding>. Use the same encoding for all control files in a given localized helpset. The encoding specified in the helpset file will be used to read in all of the control files.

	
Note:

If you are using an old version of OHJ, the helpset may not recognize an XML declaration and so may require <controlFileEncoding> to be set.

	
You need not separate out each different locale into a different file, because the file has nothing that needs to be translated. Some sites may wish to maintain the separation for other reasons.

9.4 The <locales> Element

You can specify a single locale or multiple locales in the <locales> section of the ohwconfig.xml file. The locales section has one or more tags specifying a single locale in the system. These tags are either of type <locale> element or <localeFromFile> element. As the names suggest, the <locale> element specifies the locale inline, whereas the <localeFromFile> element delegates the declaration of the locale to an external file. The external file, in turn, will contain a single <locale> element.

Table 9-2 <locales> Child Element

	Element	Description
	
<localeFromFile>

	
The <localeFromFile> element contains a single attribute and no children. The <locale> element within the external file will effectively replace the <localeFromFile> element functionally. This element supports the following attribute:

	
source - The source of the file containing the <locale> element for this locale. This filename is relative to the configuration file.

	
<locale>

	
Specifies the ISO language, country, and (optionally) variant codes that will be used to construct a Java Locale for locale-sensitive operations. Also specifies the Java-supported encoding name for the character set encoding of the Oracle Help control files (for example, ISO8859_1). The first <locale> element listed is the default locale. This element supports the following attributes:

	
language - A lowercase two-letter language code as defined by ISO-639 (for example, en for English).

	
country - An uppercase two-letter country code as defined by ISO-3166 (for example, US for United States).

	
variant - Optional variant code for browser or platform specific locales.

	
group - Optional group that the locale is associated with. Group selection occurs on the URL with the special group parameter.

The <locale> section supports children of type <book>.

For example:

<locales>
 <locale language="en">
 ... set of books for this locale ...
 </locale>
</locales>

9.4.1 The <locale> Child Element <books>

The <books> element specifies the content to be displayed in Oracle Help for the Web. The <books> element can contain any number of helpsets. Helpsets are also called as books.

The <books> element can contain the following elements:

Table 9-3 <books> Child Elements

	Element	Description
	
<helpSet>

	
A helpset to include in this instance of OHW. This element has the following attributes:

	
id – Unique id to this book. This attribute is required.

	
jar – The location of the JAR (Java Archive) file, if the helpset is in a JAR file. If this attribute is used, the location attribute must also be used to specify the location of the helpset file inside the JAR file.

	
location – The location of the helpset file. If the helpset is not JARred, this is name of the helpset file, with any appropriate path information. The path can be either absolute or relative to the location of the configuration file. If this attribute is used with the jar attribute, the location is the location of the helpset file in the JAR file.

	
controlFileencoding – A Java-supported encoding name. The set of supported encodings varies with JDK version. For a list of supported encodings for Java SE, see http://download.oracle.com/javase/1.5.0/docs/guide/intl/encoding.doc.html.

For example:

<books>
 <helpSet id="shakre" location="shakespeare/shakespeare.hs" />
 <helpSet id="myproduct" location="myProduct/myProductHelp.hs" />
 <helpSet id="myhelpset" jar="myJar.jar" location="myHelpset.hs" />
</books>

The <helpSet> elements can contain zero or more <contentLocation> elements for situation when help topic files are located in locations other than those expected by Oracle Help.

9.4.2 The <contentLocation> Element

By default OHW automatically processes help topic files that are located in the same locations as helpset (.hs) files.

In helpsets, OHW processes help topic HTML files:

	
in the same directory as the .hs file and subdirectories under that location

	
or if the helpset is in a JAR file, all help topic files in the same JAR

If you have help topic files in some other location, you must use the <contentLocation> element to point to that location.

The <contentLocation> element has the attribute baseURI. It represents a URI to the root location of a set of help content, using a path that is either absolute or relative.

The <contentLocation> element can be a child of <helpSet> (which are themselves children of <books>). A <helpSet> can contain zero or more <contentLocation> elements.

This element is needed because, unlike plain HTML files, Oracle Help help topic files must be processed by the servlet in order to be displayed. Therefore, it is necessary to explicitly list the locations where help topic files referenced in the helpset reside, if they are not in the default locations. This can happen if your helpset includes a subhelpset in another location or even on another web server or if your context sensitive map file contains references to help topic files located elsewhere on the same server or on a different server.

Absolute Path Content Locations

If you know the absolute path of content location, you can specify the absolute path.

For example, if OHW is configured with a local helpset, myHelpSet.hs, that references a subhelpset on another server, http://www.myCompany.com/help/remoteHelpSet.hs, the configuration file should contain:

<books>
 <helpSet id="myhelpset" location="myHelpSet.hs">
 <contentLocation baseURI="http://www.myCompany.com/help/" />
 </helpSet>
</books>

This configuration informs OHW that the local myHelpSet.hs file references help content on that server. For example, http://www.myCompany.com/help/remoteHelpSet.hs.

OHW thus processes help topic files both in the same location as myHelpSet.hs and in the remote location.

Relative Path Content Locations

If you do not know the absolute path of the content location, you can specify a relative content location. These locations are relative to the configuration file, not the helpset file, and must be terminated with a trailing slash.

For example, to specify a content location that is under images directory, which is located in the same directory as the configuration file, you could declare the following:

<contentLocation baseURI="images/" />

To specify a content location pointing to an images directory that is located one directory below the configuration file, you can declare the following:

<contentLocation baseURI="../images/" />

The location is relative to the helpset. If the helpset is inside a JAR file, the JAR file is evaluated as a directory when resolving the relative path. For instance, assume these directory paths:

/myhelpsets/myhs.jar
/myhelpsets/myhs.jar!myhelpset.xml
/common_images

The <baseURI> value would be:

../../common_images

9.4.3 Sample <locales> Section

This sample of the section of a configuration file specifies an English and Japanese configuration file.

<locales>

 <!-- An English locale -->
 <locale language="en" country="US" controlFileEncoding="UTF-8">
 <books>
 <helpSet id="hs1" location="ohguide/ohguide.hs"/>
 <helpSet id="hs2" location="shakespeare/shakespeare.hs"/>
 </books>
 </locale>

 <!-- A Japanese locale from an external file -->
 <localeFromFile source="jp_config.xml" />

</locales>

9.5 Sharing Resources Across Helpsets

If you have many localized helpsets all using the same images, CSS stylesheets, or other resources, OHW can support the sharing of these resources across the helpsets. Typically, shared resources exist in a separate directory, usually below any subdirectories holding the localized helpeset information. For instance, the following is a typical directory structure for using shared resources:

<main directory>
 ohwconfig.xml
 /en
 - owh_helpset_en.hs
 - English helpset files
 /es
 - ohw_helpset_es.hs
 - Spanish helpset files
 /shared
 /images
 - shared images
 /css
 - shared stylesheets

Since OHW by default can only access directories that are underneath the .hs file. Thus to make the shared directory available to OHW, you will need to define a content location for this directory. For best results, use a relative content location for this task.

OHW supports relative paths when dealing with resources, and will appropriately convert these paths to the correct paths at runtime. To make use of shared resources, an HTML file can point to the resource using a relative path. For example, if you have an HTML file in the ./en directory that you want to point to a shared image resource, the HTML file should contain the following code:

If you have the content location defined, OHW will fix this path so that it works under runtime. You can also use relative paths within the control files for your helpset. For example, you could define the following code in your map file that is located in the ./en directory:

<mapID target="someDescriptor" url="../shared/html_files/theContent.html" />

Finally, if your localized helpset is contained in a JAR file, then the JAR file is counted as a directory when specifying the relative path. Thus, if all helpset files are contained in a JAR under the ./en directory, and you wish to point to a shared image resource, the HTML file should contain this code:

The extra .. in above code is required because the JAR file counts as a directory.

9.6 The <parameters> Element

The <parameters> element specifies the values of various other OHW parameters. These parameters are all case-insensitive.

Table 9-4 <parameters> Child Elements

	Element	Description
	
<combineBooks>

	
If true, the views from all books are displayed in one set of navigators (tabs). If false, each book has its own set of navigators displaying just the information for that book.

	
<useLabelInfo>

	
If true, the author-defined labels are used for the navigators of merged helpsets. If false, the default labels are used, for example, the tab labels Contents, Index, and Search.

	
<displaySiteNavigation>

	
If true, turns on site navigation links across all supported navigators. For browsers that support site navigation, the appropriate links will be generated in the meta content of pages served by OHW.

When combineBooks is true, only navigators of the same type and with the same label are merged into the same navigator, for example the Index tab. That can lead to unintended results if you have set useLabelInfo to true. For example, if one helpset has overridden the default Index label with Keyword Index and left another with the default, the indexes won't be merged in the same tab. You can change this by setting the labels to be the same (in the helpset file for a helpset) or by setting useLabelInfo to false in the configuration file.

For example:

<parameters>
 <combineBooks>true</combineBooks>
 <useLabelInfo>false</useLabelInfo>
</parameters>

Other important parameters include:

Table 9-5 <parameters> Keyword Child Elements

	Element	Description
	
<keywordBlockSize>

	
The number of keywords to show on one page. The default value is 10.

	
<keywordTopicsBlockSize>

	
The number of topics to show on one page. The default value is 10.

	
<searchBlockSize>

	
The number of search results to show on one page. The default value is 10.

These elements are used to support performance tuning or specify non-default error, state, or locale handling.

Table 9-6 <parameters> Performance Child Elements

	Element	Description
	
<maxSearchThreads>

	
The maximum number of threads that OHW can use to perform searches. Default value is 10.

	
<errorPage>

	
When a topic is not found, OHW displays this topic instead. The value of this parameter is a topic ID. OHW provides a standard error page if no value is set.

	
<stateManager>

	
Specifies the state manager OHW should use. If set to 'cookie', user state will be saved for one month. If set to 'session', the user state will be saved through single request. The default is 'session'.

	
<localeDeterminer>

	
OHW uses the specified locale determiner to select a localized helpset based on a user request. OHW provides a default locale determiner that uses browser settings to determine the locale if no value is set.

	
<cacheSize>

	
The number of active localized helpsets to be kept in memory at one time. The default value is 3.

9.7 The <navigatorAliases> Element

The optional <navigatorAliases> element allows you to use classnames in your helpset file that do not correspond to the classnames of the navigators in OHW. Alias registrations are done through the use of the <alias> element. The <alias> elements are contained within a single <navigatorAliases> element, and has the following attributes:

	
name - The name to use as the alias.

	
value - The value this alias should map to.

For example:

<navigatorAliases>
 <alias name="oracle.help.navigator.tocNavigator.TOCNavigator" value="oracle.help.web.navigator.tocNavigator.TOCTreeNavigator" />
</navigatorAliases>

	
Note:

The tree-based TOC Navigator of OHW uses the oracle.help.web.navigator.tocNavigator.TOCTreeNavigator class name.

9.8 Custom Protocol Links

OHW supports links for custom protocols through the Oracle Help custom protocol. For information about custom protocol links in OHJ, see Section 8.4, "Custom Protocol Links".

In order to handle custom protocol links in OHW, clients need to register Custom Protocol Converters in the ohwconfig.xml file for each custom protocol used in their help content. The syntax in the ohwconfig.xml file looks like this:

<customProtocolRegistry>
 <customProtocol name="xlink" class="oracle.help.web.converter.ConfigurableCustomProtocolConverter">
 <parameters>
 <prepend>http://www.myserver.com/index.jsp?someParam=</prepend>
 <targetFrame>_blank</targetFrame>
 </parameters>
 </customProtocol>
</customProtocolRegistry>

Users may write their own implementations of CustomProtocolConverter. However, OHW includes the ConfigurableCustomProtocolConverter, which is configurable using parameters set in ohwconfig.xml. The supported parameters are:

<prepend>optional string to be prepended to the value</prepend>
<append>optional string to be appended to the value</append>
<targetFrame>optional target frame</targetFrame>

In an HTML topic file, authors could use the standard Oracle Help custom protocol syntax. For example:

An Example Custom Protocol Link

OHW will process all custom:links and run them through the Custom Protocol Converter registered for that custom protocol name.

The link in the above example would be replaced with:

In OHJ, it is a popular convention to use custom:external: to launch a link in a new browser window. In OHW, the built-in CustomProtocolConverter for the external protocol enables the links to work without the users having to explicitly register a converter.

9.9 Preloading Helpsets Containing Embedded Help

OHW supports the <locale> tag in the OHW configuration file, which defines a single instance of a locale that OHW supports. The <locale> tag specifies the ISO language, country, and (optionally) variant codes that will be used to construct a Java Locale for locale-sensitive operations. It also specifies the Java-supported encoding name for the character set encoding of the Oracle Help control files (for example, ISO8859_1). The first <locale> element listed is the default locale.

In OHW-UIX, all helpsets for a locale are loaded on demand and all at once. In OHW-RC, the loading of helpsets is handled in a different manner. The OHW-RC as an RCF application may have a screen with 50 components, with Definition Text content, specified in a single file within its own helpset. To avoid loading all helpsets and reduce the lag that this would cause when a user simply opens that screen, preloading of a selected helpset is desirable.

So, for OHW-RC, the configuration file supports an optional attribute for the <locale> tag, which is called preload. The possible values that this attribute can take are NONE, ALL, and TOPICMAP. If not specified, its value defaults to NONE.

The behaviors of each value are:

Table 9-7 Preload Value Behavior

	Preload Value	Initial Start of OHW	When Topic is Accessed	When UI is Accessed
	
NONE

	
No action required.

	
Load the topic map until the requested topic is found.

	
Load all views and navigators in the selected helpset.

	
ALL

	
Load all helpsets in the locale (which initializes all views and navigators) and also load all topic maps.

	
Access from cache.

	
Access from cache.

	
TOPICMAP

	
Load only the topic maps for all helpsets in the locale.

	
Access from cache.

	
Load all views and navigators in the selected helpset.

For example, the configuration file could look like this:

<?xml version='1.0' ?>
<helpConfiguration>
 ...
 <locales>
 <locale language="en" preload="ALL">
 <books>
 <helpset id="helpset1" location=" helpset1.hs"/>
 <helpset id=" helpset2" location=" helpset2.hs"/>
 </books>
 ...
 </locale>
 </locales>
 ...
</helpConfiguration>

