Getting Started Guide for Oracle Complex Event Processing
11g Release 1 (11.1.1.6.3)
E14476-10
August 2012
Documentation for administrators and developers that describes how to get started with Oracle Complex Event Processing (Oracle CEP), a Java server for developing high-performance event-driven applications. It includes an overview of features and concepts, sample applications, and installation guidelines.
Oracle Fusion Middleware Getting Started Guide for Oracle Complex Event Processing 11g Release 1 (11.1.1.6.3)
E14476-10
Copyright © 2007, 2012, Oracle and/or its affiliates. All rights reserved.
Primary Author: Steve Traut, Peter Purich
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This document provides general background information and detailed code samples to help you learn about Oracle Complex Event Processing (Oracle CEP) and the Oracle Continuous Query Language (Oracle CQL).
This document is intended for users interested in learning about Oracle CEP and Oracle CQL. Readers should be familiar with basic Java development. Some knowledge of SQL would be helpful.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following:
http://download.oracle.com/docs/cd/B28359_01/server.111/b28286/toc.htm
http://forums.oracle.com/forums/forum.jspa?forumID=820
http://www.oracle.com/technologies/soa/complex-event-processing.html
http://www.oracle.com/technology/sample_code/products/event-driven-architecture
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.	
For Release 11.1.1.6.x, this guide has been updated in several ways. The following table lists the sections that have been added or changed. If a feature was not available in the first release of 11.1.1.6.x, the last columns denote which documentation release contains the update.	
For a list of known issues (release notes), see the "Known Issues for for Oracle SOA Products and Oracle AIA Foundation Pack" at http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesindex-364630.html	
.	
Sections	Changes Made
---	---
None	
This chapter provides an overview of Oracle Complex Event Processing (Oracle CEP). It describes key concepts, features, and use cases, including event processing networks, developing with the Eclipse IDE, and managing applications with Oracle CEP Visualizer.	
Oracle CEP (formally known as the WebLogic Event Server) is a Java server for the development and deployment of high-performance event driven applications. It is a lightweight Java application container based on Equinox OSGi, with shared services, including the Oracle CEP Service Engine, which provides a rich, declarative environment based on Oracle Continuous Query Language (Oracle CQL) - a query language based on SQL with added constructs that support streaming data - to improve the efficiency and effectiveness of managing business operations. Oracle CEP supports ultra-high throughput and microsecond latency using JRockit Real Time and provides Oracle CEP Visualizer and Oracle CEP IDE for Eclipse developer tooling for a complete real time end-to-end Java Event-Driven Architecture (EDA) development platform.	
Oracle CEP has the capability of deploying user Java code (POJOs) which contain the business logic. Running the business logic within Oracle CEP provides a highly tuned framework for time and event driven applications.	
Figure 1-1 provides a high level view of an event-driven system.	
An event-driven system is generally comprised of several event sources, the real-time event-driven applications, and event sinks. Oracle CEP server and the Oracle CEP applications you deploy to it comprises the event-driven applications. The event sources generate streams of ordinary event data. The Oracle CEP applications listen to the event streams, process these events, and generate notable events. Event sinks receive the notable events.	
Event sources, event-driven applications, and event sinks are decoupled from each other; one can add or remove any of these components without causing changes to the other components. This is a key attribute of event-driven architectures.	
Event-driven applications are rule-driven. In Oracle CEP, rules are expressed as queries using the Oracle Continuous Query Language (Oracle CQL). These queries are persisted to a data store and are used for processing the inbound stream of events and generating the outbound stream of events. Queries typically perform filtering and aggregation functions to discover and extract notable events from the inbound event streams. As a result, the number of outbound events is generally much lower than that of the inbound events.	
Oracle CEP is a middleware for the development of event-driven applications. An Oracle CEP application is essentially an event-driven application.	
Next, consider the application itself, which is hosted by the Oracle CEP server, a light-weight container as shown in Figure 1-2.	
An Oracle CEP application is typically composed of the following main component types:	
Adapters, channels, processors, and business logic POJOs can be connected arbitrarily to each other, forming event processing networks (EPN). Examples of topologies of EPNs are:	
Scenario: no processing is needed; only adaptation from proprietary protocol to some normalized model.	
Scenario: straight through processing to user code.	
Scenario: two layers of event processing; the first processor creates causality between events and the second processor aggregates events into complex (notable) events.	
EPNs have two important attributes:	
The use cases for Oracle CEP span a variety of businesses and applications. Just a few of these diverse use cases include:	
Automate stock trading based on market movement. Sample query: if, within any 20 second window, StockB rises by more than 2% and StockA does not, then automatically buy StockA.	
For an example, see Section 2.10, "Signal Generation Example".	
Discover fraudulent activity by detecting patterns among events. Sample query: if a single ID card is used twice in less than 5 seconds to gain access to a city's subway system, alert security for piggybacking.	
Reduce false positive alarms. Sample query: When 15 alarms are received within any 5 second window, but less than 5 similar alarms detected within 30 seconds, then do nothing.	
Monitor the vital signs of a patient and perform some task if a particular event happens. Sample query: When a change in medication is followed by a rise in blood pressure within 20% of maximum allowable for this patient within any 10 second window, alert nearest nurse.	
The following list summarizes the main features of Oracle CEP:	
java.lang.Math	
functions), and statements. Oracle CQL supersedes EPL. wlevs.Admin	
. javax.sql.DataSource	
implementation and thin JDBC drivers for accessing a relational database. For detailed information on the platforms that Oracle CEP supports, see: http://www.oracle.com/technology/software/products/ias/files/oracle%20fusion%20middleware%2011gR1%20(11.1.1.x)%20certification%20matrix.xls	
.	
You can find the installation program appropriate for your platform here: http://www.oracle.com/technology/software/products/middleware/htdocs/111110_fmw.html	
. For more information, see Section 3.1, "Installation Overview".	
Oracle CEP IDE for Eclipse is targeted specifically to programmers that want to develop Oracle CEP applications as Figure 1-3 shows.	
The Oracle CEP IDE for Eclipse is a set of plugins for the Eclipse IDE designed to help develop, deploy, and debug Oracle CEP applications.	
The key features of Oracle CEP IDE for Eclipse are:	
For more information, see:	
Oracle CEP provides an advanced run-time administration console called the Oracle CEP Visualizer as Figure 1-4 shows.	
Using Oracle CEP Visualizer, you can manage, tune, and monitor Oracle CEP server domains and the Oracle CEP applications you deploy to them all from a browser. Oracle CEP Visualizer provides a variety of sophisticated run-time administration tools, including support for Oracle CQL and EPL rule maintenance and creation.	
Oracle CEP Visualizer is pre-installed in every Oracle CEP server.	
For more information, see Oracle Fusion Middleware Visualizer User's Guide for Oracle Complex Event Processing	
See:	
See:	
See:	
See "Overview of Creating Oracle CEP Applications" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.	
http://forums.oracle.com/forums/forum.jspa?forumID=820	
This chapter introduces sample code provided with Oracle Complex Event Processing (Oracle CEP), describing how to set up and use code ranging from simple "Hello World" to applications of Oracle Continuous Query Language (CQL), as well as for spatial and industry-focused scenarios.	
Oracle CEP includes the following samples:	
These samples are provided in two forms, as follows:	
The samples use Ant as their development tool; for details about Ant and installing it on your computer, see http://ant.apache.org/	
.	
Note: "Additional Oracle CEP sample code can be found at	
Out-of-the-box sample domains pre-configured to deploy an assembled application; each sample has its own domain for simplicity. Each domain is a standalone server domain; the server files are located in the defaultserver	
subdirectory of the domain directory. To deploy the application you simply start the default server in the domain.	
\MIDDLEWARE_HOME	
\ocep_11.1\samples\domains\helloworld_domain	
, where MIDDLEWARE_HOME	
refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware	
. See Section 2.6.1, "Running the HelloWorld Example from the helloworld Domain" for details.	
MIDDLEWARE_HOME	
\ocep_11.1\samples\domains\cql_domain	
. See Section 2.7.1, "Running the CQL Example" for details.	
MIDDLEWARE_HOME	
\ocep_11.1\samples\domains\spatial_domain	
. See Section 2.8.1, "Running the Oracle Spatial Example" for details.	
MIDDLEWARE_HOME	
\ocep_11.1\samples\domains\fx_domain	
. See Section 2.9.1, "Running the Foreign Exchange Example" for details.	
MIDDLEWARE_HOME	
\ocep_11.1\samples\domains\signalgeneration_domain	
. See Section 2.10.1, "Running the Signal Generation Example" for details.	
MIDDLEWARE_HOME	
\ocep_11.1\samples\domains\recplay_domain	
. See Section 2.11.1, "Running the Event Record/Playback Example" for details.	
The Java and configuration XML source for each sample is provided in a separate source directory that describes a sample development environment.	
MIDDLEWARE_HOME	
\ocep_11.1\samples\source\applications\helloworld	
, where MIDDLEWARE_HOME	
refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware	
. See Section 2.6.4, "Implementation of the HelloWorld Example" for details.	
MIDDLEWARE_HOME	
\ocep_11.1\\samples\source\applications\cql	
. See Section 2.7.4, "Implementation of the CQL Example" for details.	
MIDDLEWARE_HOME	
\ocep_11.1\\samples\source\applications\spatial	
. See Section 2.8.4, "Implementation of the Oracle Spatial Example" for details.	
MIDDLEWARE_HOME	
\ocep_11.1\samples\source\applications\fx	
. See Section 2.9.4, "Implementation of the FX Example" for details.	
MIDDLEWARE_HOME	
\ocep_11.1\samples\source\applications\signalgeneration	
. See Section 2.10.4, "Implementation of the Signal Generation Example" for details.	
MIDDLEWARE_HOME	
\ocep_11.1\\samples\source\applications\recplay	
. See Section 2.11.4, "Implementation of the Record and Playback Example" for details.	
To install all Oracle CEP components including the default ocep_domain	
domain (with default passwords) and the samples, you must chose the Custom	
option to also install the samples. The Typical	
option does not include the default ocep_domain	
and samples.	
If you previously installed Oracle CEP using the Typical	
option, and you now want to also install the samples, re-run the Oracle CEP installation process and specify the same Oracle CEP home directory; a later step in the installation process allows you to then install just the samples.	
The Oracle CEP Visualizer is a Web 2.0 application that consumes data from Oracle CEP, displays it in a useful and intuitive way to system administrators and operators, and, for specified tasks, accepts data that is then passed back to Oracle CEP so as to change it configuration.	
Visualizer is itself an Oracle CEP application and is automatically deployed in each server instance. To use it with the samples, be sure you have started the server (instructions provided for each sample below) and then invoke the following URL in your browser:	
where host	
refers to the name of the computer hosting Oracle CEP; if it is the same as the computer on which the browser is running you can use localhost	
.	
Security is disabled for the HelloWorld application, so you can click Logon at the login screen without entering a username and password. For the FX and signal generation samples, however, security is enabled, so use the following to logon:	
For more information about Visualizer, see Section 1.8, "Oracle CEP Visualizer".	
To increase the throughput and latency when running the samples, and Oracle CEP applications in general, Oracle recommends the following:	
-dgc	
parameter to the command that starts the Oracle CEP instance for the appropriate domain: By default the deterministic garbage collector is disabled for the samples.	
For more information on Oracle JRockit Real Time, see http://www.oracle.com/technology/products/jrockit/jrrt/index.html	
.	
You must set your development environment before you can start Oracle CEP instances and run the samples. In particular, you must set the PATH	
and JAVA_HOME	
environment variables so that you are using the correct version of the JRockit JDK.	
There are two ways in which JRockit might have been installed on your computer:	
Although not required, Oracle recommends that you run Oracle CEP using the JRockit JDK version included in Oracle JRockit Real Time for best results; however, the following procedures describe how to set your environment for either case.	
For more information about JRockit, see Section 2.4, "Increasing the Performance of the Samples".	
This section describes:	
This procedure describes how to set your development environment on Windows.	
To make it easier to reset your development environment after logging out of a session, you can create a command file, such as setEnv.cmd	
, that contains the set	
commands this section describes.	
You can also set the required environment variables permanently on your Windows computer by invoking the Control Panel > System window, clicking the Advanced tab, and then clicking the Environment Variables button. You can set the environment variables for the current user or for the entire system.	
To set your development environment on Windows:	
PATH	
environment variable to include the bin	
directory of the JRockit JDK. Also, be sure that your PATH	
environment variable includes the bin	
directory of your Ant installation: If you installed Oracle JRockit Real Time in the d:\jrockit	
directory and Ant is installed in the d:\ant	
directory, set your PATH environment variable as shown:	
where JRRT_HOME	
is the JRockit Real Time directory.	
If you installed Oracle CEP in the d:\Oracle\Middleware	
directory and Ant is installed in the d:\ant	
directory, set your PATH	
environment variable as shown:	
JAVA_HOME	
variable in the setDomainEnv.cmd	
script points to the correct JRockit JDK. If it does not, edit the script. The setDomainEnv.cmd	
script is located in the defaultserver	
subdirectory of the main domain directory; the defaultserver	
subdirectory contains the files for the standalone server of each domain. For example, the HelloWorld	
domain is located in MIDDLEWARE_HOME	
\ocep_11.1\samples\domains\helloworld_domain	
, where MIDDLEWARE_HOME	
refers to the Middleware home directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware	
.	
The set	
command should be as follows:	
where JRRT_HOME	
is the JRockit Real Time directory.	
The set	
command should be as follows:	
JAVA_HOME	
variable in your own development environment to point to the JRockit JDK. The set	
command should be as follows:	
where JRRT_HOME	
is the JRockit Real Time directory.	
The set	
command should be as follows:	
This procedure describes how to set your development environment on UNIX.	
To make it easier to reset your development environment after logging out of a session, you can create a command file, such as setEnv.sh	
, that contains the set	
commands this section describes.	
To set your development environment on UNIX:	
PATH	
environment variable to include the bin	
directory of the JRockit JDK. Also, be sure that your PATH	
environment variable includes the bin	
directory of your Ant installation. If you installed Oracle JRockit Real Time in the /jrockit	
directory and Ant is installed in the /ant	
directory, set your PATH	
environment variable as follows:	
where JRRT_HOME	
is the JRockit Real Time directory.	
If you installed Oracle CEP in the /Oracle/Middleware	
directory and Ant is installed in the /ant	
directory, set your PATH	
environment variable as shown:	
JAVA_HOME	
variable in the setDomainEnv.sh	
script points to the correct JRockit JDK. If it does not, edit the script. The setDomainEnv.sh	
script is located in the defaultserver	
subdirectory of the main domain directory; the defaultserver	
subdirectory contains the files for the standalone server of each domain. For example, the HelloWorld domain is located in MIDDLEWARE_HOME	
/ocep_11.1/samples/domains/helloworld_domain	
, where MIDDLEWARE_HOME	
refers to the Middleware home directory you specified when you installed Oracle CEP, such as /Oracle/Middleware	
.	
The JAVA_HOME	
variable should be set as follows:	
where JRRT_HOME	
is the JRockit Real Time directory.	
The JAVA_HOME	
variable should be set as follows:	
JAVA_HOME	
variable in your development environment to point to the JRockit JDK. The JAVA_HOME	
variable should be set as follows:	
where JRRT_HOME	
is the JRockit Real Time directory.	
The JAVA_HOME	
variable should be set as follows:	
The first example that shows how to create an Oracle CEP application is the ubiquitous HelloWorld.	
Figure 2-1 shows the HelloWorld example Event Processing Network (EPN). The EPN contains the components that make up the application and how they fit together.	
The example includes the following components:	
helloworldAdapter	
—Component that generates Hello World messages every second. In a real-world scenario, this component would typically read a stream of data from a source, such as a data feed from a financial institution, and convert it into a stream of events that the complex event processor can understand. The HelloWorld application also includes a HelloWorldAdapterFactory	
that creates instances of HelloWorldAdapter	
. helloworldInputChannel	
—Component that streams the events generated by the adapter (in this case Hello World messages) to the complex event processor. helloworldProcessor	
—Component that simply forwards the messages from the helloworldAdapter	
component to the POJO that contains the business logic. In a real-world scenario, this component would typically execute additional and possibly much more complex processing of the events from the stream, such as selecting a subset of events based on a property value, grouping events, and so on using Oracle CQL. helloworldOutputChannel	
—Component that streams the events processed by the complex event processor to the POJO that contains the user-defined business logic. helloworldBean	
—POJO component that simply prints out a message every time it receives a batch of messages from the processor via the output channel. In a real-world scenario, this component would contain the business logic of the application, such as running reports on the set of events from the processor, sending appropriate emails or alerts, and so on. The HelloWorld application is pre-deployed to the helloworld	
domain. To run the application, you simply start an instance of Oracle CEP server.	
To run the HelloWorld example from the helloworld domain:	
MIDDLEWARE_HOME	
\ocep_11.1\samples\domains\helloworld_domain\defaultserver	
, where MIDDLEWARE_HOME	
refers to the Middleware home directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware	
. For more information, see Section 2.5, "Setting Your Development Environment."	
-dgc	
parameter to the command: -dgc	
parameter to the command: After server status messages scroll by, you should see the following message printed to the output about every second:	
This message indicates that the HelloWorld example is running correctly.	
The HelloWorld sample source directory contains the Java source, along with other required resources such as configuration XML files, that make up the HelloWorld application. The build.xml	
Ant file contains targets to build and deploy the application to the helloworld domain.	
For more information, see Section 2.6.3, "Description of the Ant Targets to Build Hello World".	
To build and deploy the HelloWorld example from the source directory:	
You must have a running server to successfully deploy the rebuilt application.	
MIDDLEWARE_HOME	
\ocep_11.1\samples\source\applications\helloworld	
where MIDDLEWARE_HOME	
is the Middleware home directory you specified when you installed Oracle CEP. For example:	
For more information, see Section 2.5, "Setting Your Development Environment."	
all	
Ant target to compile and create the application JAR file: deploy	
Ant target to deploy the application JAR file to Oracle CEP: Caution: This target overwrites the existing helloworld application JAR file in the domain directory.	
You should see the following message printed to the output about every second:	
This message indicates that the HelloWorld example has been redeployed and is running correctly.	
The build.xml	
file, located in the top level of the HelloWorld source directory, contains the following targets to build and deploy the application:	
clean	
—This target removes the dist	
and output	
working directories under the current directory. all	
—This target cleans, compiles, and JARs up the application into a file called com.bea.wlevs.example.helloworld_11.1.1.4_0.jar	
, and places the generated JAR file into a dist	
directory below the current directory. deploy	
—This target deploys the JAR file to Oracle CEP using the Deployer utility. For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.	
The implementation of the HelloWorld example generally follows "Creating Oracle CEP Applications: Typical Steps" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.	
Refer to that section for a task-oriented procedure that describes the typical development process.	
The HelloWorld example, because it is relatively simple, does not use all the components and configuration files described in the general procedure for creating an Oracle CEP application.	
All the example files are located relative to the MIDDLEWARE_HOME	
\ocep_11.1\samples\source\applications\helloworld	
directory, where MIDDLEWARE_HOME	
refers to the Middleware directory you specified when you installed Oracle CEP c:\Oracle\Middleware	
. Oracle recommends that you use this example directory setup in your own environment, although it is obviously not required.	
The files used by the HelloWorld example include:	
In the example, the file is called com.bea.wlevs.example.helloworld-context.xml	
and is located in the META-INF/spring	
directory.	
For details, see Section 2.6.5, "The HelloWorld EPN Assembly File."	
helloworldAdapter	
component. In the example, the file is called HelloWorldAdapter.java	
and is located in the src/com/bea/wlevs/adapter/example/helloworld	
directory.	
For a detailed description of this file and how to program the adapter Java files in general, see "Extending the Oracle CEP Event Processing Network" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.	
HelloWorldEvent	
event type. In the example, the file is called HelloWorldEvent.java	
and is located in the src/com/bea/wlevs/event/example/helloworld	
directory.	
For a detailed description of this file, as well as general information about programming event types, see "Creating the Event Types" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.	
helloworldProcessor	
and helloworldOutputChannel	
components. An important part of this file is the set of EPL rules that select the set of events that the HelloWorld application processes. You are required to include a processor configuration file in your Oracle CEP application, although the adapter and channel configuration is optional. In the example, the file is called config.xml	
and is located in the META-INF/wlevs	
directory.	
For details, see Section 2.6.6, "The HelloWorld Component Configuration File."	
helloworldBean	
component of the application, a POJO that contains the business logic. In the example, the file is called HelloWorldBean.java	
and is located in the src/com/bea/wlevs/example/helloworld	
directory.	
For a detailed description of this file, as well as general information about programming event sinks, see "Extending the Oracle CEP Event Processing Network" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.	
MANIFEST.MF	
file that describes the contents of the OSGi bundle that will be deployed to Oracle CEP. In the example, the MANIFEST.MF	
file is located in the META-INF	
directory.	
For more information about creating this file, as well as a description of creating the OSGi bundle that you deploy to Oracle CEP, see "Overview of Application Assembly and Deployment" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.	
The HelloWorld example uses a build.xml	
Ant file to compile, assemble, and deploy the OSGi bundle; see Section 2.6.2, "Building and Deploying the HelloWorld Example from the Source Directory" for a description of this build.xml	
file if you also use Ant in your development environment.	
One of the main purposes of the EPN assembly file is to define the event processing network by declaring the components of the application and how they are all connected, or in other word, which components listen to which other components. Oracle CEP provides a set of custom Spring tags used to declare the network. You also use the EPN assembly file to register the event types used by your application and its EPL rules.	
You use the EPN assembly file in the typical way to define the application component beans in the Spring application context; the application components beans are those implemented with Java classes, such as adapters and the POJO that contains the business logic.	
For more information, see:	
Example 2-1 shows the EPN assembly file used in the HelloWorld sample application; see the explanation after the example for details about the entries in bold.	
Example 2-1 HelloWorld EPN Assembly File	
In the preceding example:	
wlevs:event-type-repository	
element registers the event types that are used throughout the application; in the HelloWorld application, there is just a single event type: HelloWorldEvent	
, implemented with the com.bea.wlevs.event.example.helloworld.HelloWorldEvent	
class. Oracle CEP automatically creates instances of this data type when needed. You can also reference this data type in the EPL rules of the application. wlevs:adapter	
, wlevs:processor	
, and wlevs:channel	
elements together define the event processor network by declaring each component in the network: wlevs:adapter	
element defines the adapter component of the HelloWorld application: The id	
attribute specifies a unique identifier for this component; the id will be referenced later by other components. The class	
attribute specifies the class that implements the adapter; in this case it is com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter	
.	
The wlevs:instance-property	
child element passes an instance variable to the adapter instance; the name of the variable is message	
and the value is HelloWorld - the current time is:	
.	
wlevs:processor	
element defines the processor component of the application: The id	
attribute functions the same as that of wlevs:adapter	
element.	
wlevs:channel	
elements define the two channel components of the application: The id	
attribute for streams functions the same as that of wlevs:adapter	
. The manageable	
attribute enables monitoring of the channel; by default the manageability of components is disabled.	
The wlevs:channel	
element with id="helloworldInstream"	
uses the wlevs:listener	
child element to specify that the helloworldProcessor	
listens to the channel, and the wlevs:source	
child element to specify that the channel gets its events from the helloworldAdapter	
component.	
The wlevs:channel	
element with id="helloworldOutstream"	
also uses these listener and source tags. One difference, however, is that it directly nests the definition of the business logic POJO in the wlevs:listener	
element rather than reference a unique identifier. In this case, the nested tag is a standard Spring bean	
element that specifies that the POJO is implemented with the com.bea.wlevs.example.helloworld.HelloWorldBean	
class.	
The HelloWorld application configures the processor in the component configuration file that Example 2-2 shows.	
Example 2-2 HelloWorld Component Configuration File	
If your application contains multiple processors, adapters or streams, you can either declare them all in a single configuration file, or create separate configuration files for each component; the method you chose depends on which you find easier to manage.	
For each component you configure, you must add the name	
child element to explicitly declare the specific component to which you are referring. The value of the name	
element must correspond to the component's unique identifier of its declaration in the EPN assembly file.	
For example, assume a processor is declared in the EPN assembly file as follows:	
Then its corresponding XML configuration would be as follows:	
The HelloWorld example uses a single configuration file for one processor with the name helloworldProcessor	
. This name corresponds with the declaration of the components in the EPN assembly file.	
The processor	
element configures the processor component. The most important part of the processor configuration is the declaration of the set of Oracle Continuous Query Language (Oracle CQL) rules that this processor executes; these rules select the set of events that are eventually passed to the application business object. Each rule is declared with a query	
or relation	
element using an XML <![CDATA[...]]>	
section; all query	
and relation	
elements are grouped together within a single rules	
element. You can define as many rules as you want for a particular processor.	
The HelloWorld application has a single, very simple rule:	
The purpose of this query is to show how to pass input data through as is (without manipulation) and output this data as a stream (not a relation). That is why this query does not use a window operator (such as [now]	
or [range 1]	
). With a window operator, the output is a relation and not a stream. Consider the downstream HelloWorldBean	
POJO: it only implements StreamSink	
(and not RelationSink	
) because the output of this query is a stream (not a relation generated by a window operator). Consequently, the HelloWorldBean	
POJO prints only the insert events. It will not print the delete events since it does not implement RelationSink	
.Typically, you create queries (and views) that output relations (using a window operator) for consumption by subsequent queries or views that produce streams.	
For additional information and samples about using Oracle CEP query languages, see:	
Note: Oracle EPL is superseded by Oracle CQL.	
The CQL example shows how to use the Oracle CEP Visualizer Query Wizard to construct various types of Oracle CQL queries.	
Figure 2-2 shows the CQL example Event Processing Network (EPN). The EPN contains the components that make up the application and how they fit together.	
The application contains three separate event paths in its EPN:	
orderCVSAdapter	
connected to a channel orderChannel	
. The orderChannel	
is connected to processor orderProcessor	
which is connected to channel alertChannel	
which is connected to adapter alertOutput	
. This event path is used to detect missing events in a customer order workflow.	
For more information on how to construct the query that the cqlProc	
processor executes, see Section 2.7.4.1, "Creating the Missing Event Query".	
stockChannel	
connected to processor stockProcessor	
which is connected to channel movingAvgChannel	
which is connected to adapter movingOutput	
. This event path is used to compute a moving average on stock whose volume is greater than 1000.	
For more information on how to construct the query that the cqlProc	
processor executes, see Section 2.7.4.2, "Creating the Moving Average Query".	
adapter	
connected to channel S1	
connected to Oracle CQL processor cacheProcessor	
connected to channel S2	
connected to bean Bean	
. There is a cache stockCache	
also connected to the Oracle CQL processor cacheProcessor	
. There is also a bean Loader	
. This event path is used to access information from a cache in an Oracle CQL query.	
Note: For more information about the various components in the EPN, see the other samples in this book.	
For optimal demonstration purposes, Oracle recommends that you run this example on a powerful computer, such as one with multiple CPUs or a 3 GHz dual-core Intel, with a minimum of 2 GB of RAM.	
The CQL application is pre-deployed to the cql_domain	
domain. To run the application, you simply start an instance of Oracle CEP server.	
To run the CQL example:	
MIDDLEWARE_HOME	
\ocep_11.1\samples\domains\cql_domain\defaultserver	
, where MIDDLEWARE_HOME	
refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware	
. -dgc	
parameter to the command: -dgc	
parameter to the command: The CQL application is now ready to receive data from the data feeds.	
MIDDLEWARE_HOME	
\ocep_11.1\utils\load-generator	
directory, where MIDDLEWARE_HOME	
refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.	
orderData.prop	
properties file: MIDDLEWARE_HOME	
\ocep_11.1\utils\load-generator	
directory, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.	
stockData.prop	
properties file: The load data is generated by Adaptor.java	
and the cache data is generated by Loader.java	
. You can verify that data is flowing through by turning on statistics in the Oracle CEP Visualizer Query Plan.	
The CQL sample source directory contains the Java source, along with other required resources such as configuration XML files, that make up the CQL application. The build.xml	
Ant file contains targets to build and deploy the application to the cql_domain	
domain, as described in Section 2.7.3, "Description of the Ant Targets to Build the CQL Example."	
To build and deploy the CQL example from the source directory:	
You must have a running server to successfully deploy the rebuilt application.	
MIDDLEWARE_HOME	
\ocep_11.1\samples\source\applications\cql	
, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware	
. all	
Ant target to compile and create the application JAR file: deploy	
Ant target to deploy the application JAR file to Oracle CEP: Caution: This target overwrites the existing CQL application JAR file in the domain directory.	
The build.xml	
file, located in the top-level directory of the CQL source, contains the following targets to build and deploy the application:	
clean	
—This target removes the dist	
and output	
working directories under the current directory. all	
—This target cleans, compiles, and jars up the application into a file called com.bea.wlevs.example.cql_11.1.1.4_0.jar	
, and places the generated JAR file into a dist	
directory below the current directory. deploy	
—This target deploys the JAR file to Oracle CEP using the Deployer utility. For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.	
This section describes how to create the queries that the CQL example uses, including:	
This section describes how to use the Oracle CEP Visualizer Query Wizard to create the Oracle CQL pattern matching query that the cqlProc	
processor executes to detect missing events.	
Consider a customer order workflow in which you have customer order workflow events flowing into the Oracle CEP system.	
In a valid scenario, you see events in the order that Table 2-1 lists:	
However, it is an error if an order is shipped without an approval event as Table 2-2 lists:	
You will create and test a query that detects the missing approval event and generates an alert event:	
To create the missing event query:	
You must have a running server to use the Oracle CEP Visualizer.	
where host refers to the name of the computer on which Oracle CEP is running and port refers to the Jetty NetIO port configured for the server (default value 9002	
).	
The Logon screen appears as Figure 2-3 shows.	
wlevs	
and Password wlevs	
, and click Log In. The Oracle CEP Visualizer dashboard appears as Figure 2-4 shows.	
For more information about the Oracle CEP Visualizer user interface, see "Understanding the Oracle CEP Visualizer User Interface" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Complex Event Processing.	
The CQL application screen appears as Figure 2-5 shows.	
The Event Processing Network screen appears as Figure 2-6 shows.	
The Oracle CQL processor screen appears as Figure 2-7 shows.	
The Query Wizard screen appears as Figure 2-8 shows.	
You can use the Oracle CQL Query Wizard to construct an Oracle CQL query from a template or from individual Oracle CQL constructs.	
In this procedure, you are going to create an Oracle CQL query from a template.	
For more information, see "Creating a Rule in an Oracle CQL Processor Using the Query Wizard" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Complex Event Processing.	
The Templates tab appears as Figure 2-9 shows.	
The SSource configuration screen appears as Figure 2-10 shows.	
The source of your query will be the orderChannel	
stream.	
The Pattern configuration screen appears as Figure 2-11 shows.	
Using the Pattern tab, you will define the pattern expression that matches when missed events occur. The expression is made in terms of named conditions that you will specify on the Define tab in a later step.	
This pattern uses the Oracle CQL pattern quantifiers that Table 2-3 lists. Use the pattern quantifiers to specify the allowed range of pattern matches. The one-character pattern quantifiers are maximal or "greedy"; they will attempt to match the biggest quantity first. The two-character pattern quantifiers are minimal or "reluctant"; they will attempt to match the smallest quantity first.	
Table 2-3 MATCH_RECOGNIZE Pattern Quantifiers	
Maximal	Minimal
---	---
0 or more times	
1 or more times.	
0 or 1 time.	
For more information, see:	
PARTITION BY	
clause. This ensures that Oracle CEP evaluates the missing event query on each order.	
This assigns an alias (Orders	
) for the pattern to simplify its use later in the query.	
The Define tab appears as Figure 2-12 shows.	
You will now define each of the conditions named in the pattern clause as Table 2-4 lists:	
'C'	
. The condition definition is added to the Object List as Figure 2-14 shows.	
'A'	
. The condition definition is added to the Object List.	
'S'	
. The Define tab appears as Figure 2-17 shows.	
The Measure tab appears as Figure 2-18 shows.	
Use the Measure tab to define expressions in a MATCH_RECOGNIZE	
condition and to bind stream elements that match conditions in the DEFINE	
clause to arguments that you can include in the select statement of a query.	
Use the Measure tab to specify the following:	
CustOrder.orderid AS orderid	
CustOrder.amount AS amount	
For more information, see:	
The Measure tab appears as Figure 2-21 shows.	
The Select configuration screen appears as Figure 2-22 shows.	
"Error - Missing Approval"	
and select alertType from the Select or Input Alias pull-down menu. The Project tab appears as Figure 2-23 shows.	
The Output configuration screen appears as Figure 2-24 shows.	
The Inject Rule Confirmation dialog appears as Figure 2-25 shows.	
The Query Wizard adds the rule to the cqlProc	
processor.	
The CQL Rules tab appears as Figure 2-26 shows.	
Confirm that your Tracking	
query is present.	
To test the missing event query:	
MIDDLEWARE_HOME	
\ocep_11.1\utils\load-generator	
directory, where MIDDLEWARE_HOME refers to the Middleware directory created when you installed Oracle CEP, such as d:\Oracle\Middleware.	
orderData.prop	
properties file: The Stream Visualizer screen appears as Figure 2-27 shows.	
As missing events are detected, the Oracle CEP updates the Received Messages area showing the AlertEvents	
generated.	
This section describes how to use the Oracle CEP Visualizer Query Wizard to create the Oracle CQL moving average query that the stockProc	
processor executes.	
You do this in two steps:	
See "To create a view source for the moving average query:".	
See "To create the moving average query using the view source:".	
To create a view source for the moving average query:	
You must have a running server to use the Oracle CEP Visualizer.	
where host refers to the name of the computer on which Oracle CEP is running and port refers to the Jetty NetIO port configured for the server (default value 9002	
).	
The Logon screen appears as Figure 2-28 shows.	
wlevs	
and Password wlevs	
, and click Log In. The Oracle CEP Visualizer dashboard appears as Figure 2-29 shows.	
For more information about the Oracle CEP Visualizer user interface, see "Understanding the Oracle CEP Visualizer User Interface" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Complex Event Processing.	
The CQL application screen appears as Figure 2-30 shows.	
The Event Processing Network screen appears as Figure 2-31 shows.	
The Oracle CQL processor screen appears as Figure 2-32 shows.	
The Query Wizard screen appears as Figure 2-33 shows.	
You can use the Oracle CQL Query Wizard to construct an Oracle CQL query from a template or from individual Oracle CQL constructs.	
In this procedure, you are going to create an Oracle CQL view and query from individual Oracle CQL constructs.	
For more information, see "Creating a Rule in an Oracle CQL Processor Using the Query Wizard" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Complex Event Processing.	
The SSource configuration screen appears.	
The source of your view will be the stockChannel	
stream. You want to select stock events from this stream where the volume is greater than 1000. This will be the source for your moving average query.	
The source of your view is the stockChannel	
stream.	
StockVolGt1000	
in the AS field. Next, you will add an Oracle CQL filter.	
The Filter configuration screen appears as Figure 2-38 shows.	
The Expression Builder dialog appears.	
The Query Wizard adds the expression to the Generated CQL Statement as Figure 2-40 shows.	
Next you want to add a select statement.	
The Select configuration screen appears.	
You want to select price	
, symbol	
, and volume	
from your StockVolGt1000	
stream.	
The Query Wizard adds the property to Generated CQL Statement	
The Select configuration dialog appears as Figure 2-42 shows.	
Finally, you will add an Output.	
The Output configuration screen appears.	
StockVolGt1000	
. You can let the Oracle CEP server define the view schema for you.	
The Inject Rule Confirmation dialog appears as Figure 2-45 shows.	
The Query Wizard adds the rule to the cqlProc	
processor.	
The CQL Rules tab appears as Figure 2-46 shows.	
Confirm that your StockVolGt1000	
view is present.	
To create the moving average query using the view source:	
You must have a running server to use the Oracle CEP Visualizer.	
where host refers to the name of the computer on which Oracle CEP is running and port refers to the Jetty NetIO port configured for the server (default value 9002	
).	
The Logon screen appears as Figure 2-47 shows.	
wlevs	
and Password wlevs	
, and click Log In. The Oracle CEP Visualizer dashboard appears as Figure 2-48 shows.	
For more information about the Oracle CEP Visualizer user interface, see "Understanding the Oracle CEP Visualizer User Interface" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Complex Event Processing.	
The CQL application screen appears as Figure 2-49 shows.	
The Event Processing Network screen appears as Figure 2-50 shows.	
The Oracle CQL processor screen appears as Figure 2-51 shows.	
The Query Wizard screen appears as Figure 2-52 shows. If you have been recently creating or editing queries for this processor, you might see those queries on the Query Wizard canvas. Otherwise, the canvas will be blank.	
You can use the Oracle CQL Query Wizard to construct an Oracle CQL query from a template or from individual Oracle CQL constructs.	
In this procedure, you are going to create an Oracle CQL view and query from individual Oracle CQL constructs.	
For more information, see "Creating a Rule in an Oracle CQL Processor Using the Query Wizard" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Complex Event Processing.	
The SSource configuration screen appears.	
The SSource configuration screen appears.	
You want to create a sliding window over the last 2 events, partitioned by symbol	
.	
The Query Wizard adds the sliding window to the Generated CQL Statement as Figure 2-56 shows.	
The Select configuration screen appears.	
This is the source of moving average query: the view you created earlier (see "To create a view source for the moving average query:").	
This is the output event your moving average query will produced. You will map properties from the source events to this output event.	
The selected source property is added to the Project Expression as Figure 2-58 shows.	
In this case, you just want to map the source property symbol	
to output event property symbol	
as is.	
The source property is added to the project expression of the Generated CQL Statement as Figure 2-59 shows.	
The selected source property is added to the Project Expression as Figure 2-60 shows.	
In this case, you want to process the source property price	
before you map it to the output event.	
The Expression Builder dialog appears.	
A list of the aggregate functions that Oracle CQL provides is displayed. You are going to use the AVG function.	
The AVG()	
function is wrapped around your selection in the Expression Builder field as Figure 2-61 shows.	
The expression is added to the Project Expression field as Figure 2-62 shows.	
The source property is added to the project expression of the Generated CQL Statement as Figure 2-63 shows.	
A validation error dialog is shown as Figure 2-64 shows.	
Because you are partitioning, you must specify a GROUP BY	
clause.	
The Group tab appears.	
The symbol	
property is added to GROUP BY	
clause as Figure 2-65 shows.	
Next, you want to connect the query to an output.	
The Output configuration screen appears.	
The Inject Rule Confirmation dialog appears as Figure 2-68 shows.	
The Query Wizard adds the rule to the cqlProc	
processor.	
The CQL Rules tab appears as Figure 2-69 shows.	
Confirm that your MovingAverage	
query is present.	
To test the moving average query:	
MIDDLEWARE_HOME	
\ocep_11.1\utils\load-generator	
directory, where MIDDLEWARE_HOME	
refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.	
stockData.prop	
properties file: The Stream Visualizer screen appears as Figure 2-70 shows.	
/stockmoving	
in the Initialize client field. As the moving average query outputs events, the Oracle CEP updates the Received Messages area showing the events generated.	
This example shows how to use Oracle Spatial with Oracle CQL queries to process a stream of Global Positioning System (GPS) events to track the GPS location of buses and generate alerts when a bus arrives at its pre-determined bus stop positions.	
Figure 2-71 shows Oracle Spatial example Event Processing Network (EPN). The EPN contains the components that make up the application and how they fit together.	
The example includes the following components:	
BusPositionGen	
—Component that simulates an input stream of bus position GPS events. It uses the Oracle CEP loadgen utility and csvgen adapter provider to read in comma separated values (CSV) and deliver them to the EPN as BusPos	
events. BusStopAdapter	
—Custom adapter component that generates bus stop positions based on MIDDLEWARE_HOME	
\ocep_11.1\samples\domains\spatial_domain\defaultserver\applications\spatial_sample\bus_stops.csv	
, where MIDDLEWARE_HOME	
refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware	
. BusPosStream	
—Component that transmits BusPos	
events to the Processor	
as a stream. BusStopRelation	
—Component that transmits BusPos	
events to the Processor	
as a relation. Processor	
—Component that executes Oracle CQL queries on the incoming BusPos	
events. BusStopChannel	
, BusPosChannel	
, and BusStopArrivalChannel	
—Components that each specify a different selector to transmit the results of a different query from the Processor	
component to the appropriate outbound adapter or output bean. BusStopPub	
, BusPosPub	
, and BusStopArrivalPub	
—Components that publish the results of the Processor	
component's queries. BusStopArrivalOutputBean	
—POJO event bean component that logs a message for each insert, delete, and update event to help visualize the relation offered by the BusStopArrivalChannel	
. Note: For more information about data cartridges, see:	
The Oracle Spatial application is pre-deployed to the spatial_domain	
domain. To run the application, you simply start an instance of Oracle CEP server.	
To run the Oracle Spatial example from the spatial_domain domain:	
MIDDLEWARE_HOME	
\ocep_11.1\samples\domains\spatial_domain\defaultserver	
, where MIDDLEWARE_HOME	
refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware	
. For more information, see Section 2.5, "Setting Your Development Environment."	
-dgc	
parameter to the command: -dgc	
parameter to the command: Wait for the console log to show:	
This message indicates that the Oracle Spatial example is running correctly.	
http://localhost:9002/bus/main.html	
. Note: You cannot run this example on one host and browse to it from another host. This is a limitation of the Google API Key that the example uses and is not a limitation of Oracle CEP.	
The Oracle Spatial example Web page appears as Figure 2-72 shows.	
Click the Bus Top Arrivals tab to view bus stop arrivals as Figure 2-73 shows.	
MIDDLEWARE_HOME	
/ocep_11.1/utils/load-generator	
runloadgen.cmd bus_positions.prop	
MIDDLEWARE_HOME	
/ocep_11.1/utils/load-generator	
runloadgen.sh bus_positions.prop	
The Oracle Spatial sample source directory contains the Java source, along with other required resources such as configuration XML files, that make up the Oracle Spatial application. The build.xml	
Ant file contains targets to build and deploy the application to the spatial_domain	
domain.	
For more information, see Section 2.8.3, "Description of the Ant Targets to Build the Oracle Spatial Example".	
To build and deploy the Oracle Spatial example from the source directory:	
spatial_domain	
Oracle CEP instance is not already running, follow the procedure in Section 2.8.1, "Running the Oracle Spatial Example" to start the server. You must have a running server to successfully deploy the rebuilt application.	
MIDDLEWARE_HOME	
\ocep_11.1\samples\source\applications\spatial	
where MIDDLEWARE_HOME	
is the Middleware directory you specified when you installed Oracle CEP. For example:	
For more information, see Section 2.5, "Setting Your Development Environment."	
all	
Ant target to compile and create the application JAR file: deploy	
Ant target to deploy the application JAR file to Oracle CEP: Caution: This target overwrites the existing Oracle Spatial application JAR file in the domain directory.	
The build.xml	
file, located in the top level of the Oracle Spatial source directory, contains the following targets to build and deploy the application:	
clean	
—This target removes the dist	
and output	
working directories under the current directory. all	
—This target cleans, compiles, and JARs up the application into a file called com.bea.wlevs.example.helloworld_11.1.1.4_0.jar	
, and places the generated JAR file into a dist	
directory below the current directory. deploy	
—This target deploys the JAR file to Oracle CEP using the Deployer utility. For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.	
The implementation of the Oracle Spatial example generally follows "Creating Oracle CEP Applications: Typical Steps" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.	
Refer to that section for a task-oriented procedure that describes the typical development process.	
All the files of the Oracle Spatial example are located relative to the MIDDLEWARE_HOME	
\ocep_11.1\samples\source\applications\spatial	
directory, where MIDDLEWARE_HOME	
refers to the Middleware directory you specified when you installed Oracle CEP, such as c:\Oracle\Middleware	
. Oracle recommends that you use this example directory setup in your own environment, although it is obviously not required.	
The files used by the Oracle Spatial example include:	
In the example, the file is called context.xml	
and is located in the META-INF/spring	
directory.	
For details, see Section 2.8.5, "Oracle Spatial Example EPN Assembly File."	
In the example, this file is called config.xml	
and is located in the META-INF/wlevs	
directory.	
For details, see Section 2.8.6, "Oracle Spatial Example Component Configuration File."	
BusStopAdapter	
: Custom adapter component that generates bus stop positions based on MIDDLEWARE_HOME	
\ocep_11.1\samples\domains\spatial_domain\defaultserver\applications\spatial_sample\bus_stops.csv	
, where MIDDLEWARE_HOME	
refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware	
. OutputBean	
: POJO event bean component that logs a message for each insert, delete, and update event to help visualize the relation offered by the BusStopArrivalChannel	
OrdsHelper	
: Helper class that provides method getOrds	
to return the ordinates from a JGeometry	
as a List	
of Double	
values. These Java files are located in the source\applications\spatial\src\com\oracle\cep\sample\spatial	
directory.	
For additional information about the Oracle CEP APIs referenced in this POJO, see Oracle Fusion Middleware Java API Reference for Oracle Complex Event Processing.	
MANIFEST.MF	
file that describes the contents of the OSGi bundle that will be deployed to Oracle CEP. In the example, the MANIFEST.MF	
file is located in the META-INF	
directory.	
For more information about creating this file, as well as a description of creating the OSGi bundle that you deploy to Oracle CEP, see "Overview of Application Assembly and Deployment" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.	
The Oracle Spatial example uses a build.xml	
Ant file to compile, assemble, and deploy the OSGi bundle; see Section 2.8.2, "Building and Deploying the Oracle Spatial Example" for a description of this build.xml	
file if you also use Ant in your development environment.	
One of the main purposes of the EPN assembly file is to define the event processing network by declaring the components of the application and how they are all connected, or in other word, which components listen to which other components. Oracle CEP provides a set of custom Spring tags used to declare the network. You also use the EPN assembly file to register the event types used by your application and its Oracle CQL or EPL rules.	
You use the EPN assembly file in the typical way to define the application component beans in the Spring application context; the application components beans are those implemented with Java classes, such as adapters and the POJO that contains the business logic.	
For more information, see:	
Example 2-3 shows the EPN assembly file used in the Oracle Spatial sample application.	
Example 2-3 Oracle Spatial Example EPN Assembly File	
The Oracle Spatial application uses five processors: three to handle the three data feeds, one that joins the resulting events, and one that generates summarized results.	
These XML files contain the Oracle CEP queries executed against input events. This sample uses the Oracle CQL language. For additional information and samples about using Oracle CEP query languages, see:	
Note: Oracle EPL is superseded by Oracle CQL.	
Example 2-4 shows the component configuration file used in the Oracle Spatial sample application.	
The processor element contains the Oracle CQL views and queries that use the Oracle Spatial to process geometric data using Oracle CEP.	
Note: For more information about data cartridges, see:	
Example 2-4 Oracle Spatial Example Component Configuration File	
The foreign exchange example, called FX for simplicity, is a more complex example than the HelloWorld example because it includes multiple processors that handle information from multiple data feeds. In the example, the data feeds are simulated using the Oracle CEP load generator utility.	
Figure 2-75 shows the FX example Event Processing Network (EPN). The EPN contains the components that make up the application and how they fit together.	
In this scenario, three data feeds, simulated using the load generator, send a constant pair of values from different parts of the world; the value pairs consist of a currency pair, such as USDEUR for US dollar - European euro, and an exchange rate between the two currencies. The fxMarketAmer	
, fxMarketAsia	
, and fxMarketEuro	
adapters receive the data from the feeds, convert them into events, and pass them to the corresponding FilterAmer	
, FilterAsia	
, and FilterEuro	
processors. Each processor performs an initial stale check to ensure that no event is more than 1 second old and then a boundary check to ensure that the exchange rate between the two currencies is within a current boundary. The processor also only selects a specific currency pair from a particular channel; for example, the server selects USDEUR from the simulated American data feed, but rejects all other pairs, such as USDAUD (Australian dollar).	
After the data from each data feed provider passes this initial preparation phase, a different processor, called FindCrossRate	
, joins all events across all providers, calculates the mid-point between the maximum and minimum rate, and then applies a trader-specified spread. Finally, the processor forwards the rate to the POJO that contains the business code; in this example, the POJO simply publishes the rate to clients.	
The Oracle CEP monitor is configured to watch if the event latency in the last step exceeds some threshold, such as no updated rates in a 30 second time-span, and if there is too much variance between two consecutive rates for the same currency pair. Finally, the last rate of each currency pair is forwarded to the Oracle CEP http pub-sub server.	
For optimal demonstration purposes, Oracle recommends that you run this example on a powerful computer, such as one with multiple CPUs or a 3 GHz dual-core Intel, with a minimum of 2 GB of RAM.	
The Foreign Exchange (FX) application is pre-deployed to the fx_domain	
domain. To run the application, you simply start an instance of Oracle CEP server.	
To run the foreign exchange example:	
MIDDLEWARE_HOME	
\ocep_11.1\samples\domains\fx_domain\defaultserver	
, where MIDDLEWARE_HOME	
refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware	
. -dgc	
parameter to the command: -dgc	
parameter to the command: The FX application is now ready to receive data from the data feeds.	
To simulate an American data feed, open a new command window and set your environment as described in Section 2.5, "Setting Your Development Environment."	
MIDDLEWARE_HOME	
\ocep_11.1\utils\load-generator	
directory, where MIDDLEWARE_HOME	
refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.	
Run the load generator using the fxAmer.prop	
properties file:	
fxAsia.prop	
properties file: fxEuro.prop	
properties file: After the server status messages scroll by in the command window from which you started the server, and the three load generators start, you should see messages similar to the following being printed to the server command window (the message will likely be on one line):	
These messages indicate that the Foreign Exchange example is running correctly. The output shows the cross rates of US dollars to Japanese yen and US dollars to UK pounds sterling.	
The Foreign Exchange (FX) sample source directory contains the Java source, along with other required resources such as configuration XML files, that make up the FX application. The build.xml	
Ant file contains targets to build and deploy the application to the fx_domain domain, as described in Section 2.9.3, "Description of the Ant Targets to Build FX."	
To build and deploy the foreign exchange example from the source directory:	
You must have a running server to successfully deploy the rebuilt application.	
MIDDLEWARE_HOME	
\ocep_11.1\samples\source\applications\fx	
, where MIDDLEWARE_HOME	
refers to the Middleware directory you specified when you installed Oracle CEP installation directory, such as d:\Oracle\Middleware	
. all	
Ant target to compile and create the application JAR file: deploy	
Ant target to deploy the application JAR file to Oracle CEP: Caution: This target overwrites the existing FX application JAR file in the domain directory.	
After server status messages scroll by, you should see the following message printed to the output:	
This message indicates that the FX example has been redeployed and is running correctly.	
The build.xml	
file, located in the top-level directory of the FX source, contains the following targets to build and deploy the application:	
clean	
—This target removes the dist	
and output	
working directories under the current directory. all	
—This target cleans, compiles, and jars up the application into a file called com.bea.wlevs.example.fx_11.1.1.4_0.jar	
, and places the generated JAR file into a dist	
directory below the current directory. deploy	
—This target deploys the JAR file to Oracle CEP using the Deployer utility. For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.	
The implementation of the foreign exchange (FX) example generally follows "Creating Oracle CEP Applications: Typical Steps" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.	
Refer to that section for a task-oriented procedure that describes the typical development process.	
All the files of the FX example are located relative to the MIDDLEWARE_HOME	
\ocep_11.1\samples\source\applications\fx	
directory, where MIDDLEWARE_HOME	
is the Middleware home directory you specified when you installed Oracle CEP c:\Oracle\Middleware	
. Oracle recommends that you use this example directory setup in your own environment, although it is obviously not required.	
The files used by the FX example include:	
In the example, the file is called com.oracle.cep.sample.fx.context.xml	
and is located in the META-INF/spring	
directory.	
For details, see Section 2.9.5, "The FX EPN Assembly File."	
The first XML file configures the filterAmer	
, filterAsia	
, filterEuro	
, and FindCrossRates	
processors, all in a single file. This XML file includes the Oracle CQL rules that select particular currency pairs from particular simulated market feeds and joins together all the events that were selected by the pre-processors, calculates an internal price for the particular currency pair, and then calculates the cross rate. In the example, this file is called spreader.xml	
and is located in the META-INF/wlevs	
directory.	
The second XML file configures the summarizeResults	
processor and includes the Oracle CQL rule that summarizes the results of the FindCrossRates	
processor. In the example, this file is called SummarizeResults.xml	
and is located in the META-INF/wlevs	
directory.	
For details, see Section 2.9.6, "The FX Processor Component Configuration Files."	
PublishSummaryResults	
http pub-sub adapter. In the example, this file is called PubSubAdapterConfiguration.xml	
and is located in the META-INF/wlevs	
directory. OutputBean	
component of the application, a POJO that contains the business logic. This POJO prints out to the screen the events that it receives, programmed in the onEvent	
method. The POJO also registers into the event type repository the ForeignExchangeEvent	
event type. In the example, the file is called OutputBean.java	
and is located in the src/com/oracle/cep/sample/fx	
directory.	
For additional information about the Oracle CEP APIs referenced in this POJO, see Oracle Fusion Middleware Java API Reference for Oracle Complex Event Processing.	
MANIFEST.MF	
file that describes the contents of the OSGi bundle that will be deployed to Oracle CEP. In the example, the MANIFEST.MF	
file is located in the META-INF	
directory.	
For more information about creating this file, as well as a description of creating the OSGi bundle that you deploy to Oracle CEP, see "Overview of Application Assembly and Deployment" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.	
The FX example uses a build.xml	
Ant file to compile, assemble, and deploy the OSGi bundle; see Section 2.9.2, "Building and Deploying the Foreign Exchange Example from the Source Directory" for a description of this build.xml	
file if you also use Ant in your development environment.	
One of the main purposes of the EPN assembly file is to define the event processing network by declaring the components of the application and how they are all connected, or in other word, which components listen to which other components. Oracle CEP provides a set of custom Spring tags used to declare the network. You also use the EPN assembly file to register the event types used by your application and its Oracle CQL or EPL rules.	
You use the EPN assembly file in the typical way to define the application component beans in the Spring application context; the application components beans are those implemented with Java classes, such as adapters and the POJO that contains the business logic.	
For more information, see:	
Example 2-5 shows the EPN assembly file used in the FX sample application; see the explanation after the example for details about the entries in bold.	
Example 2-5 FX EPN Assembly File	
In the preceding example:	
wlevs:event-type-repository	
element registers the event types that are used throughout the application. These events are all of type tuple and include: StockTick	
: input events. CrossRateEvent	
: event type output by the FilterAmer	
, FilterAsia	
, and FilterEuro	
processors. SpreaderOutputEvent	
: event type output by the FindCrossRates	
processor. CrossrateSummaryEvent	
: event type output by the summarizeResults	
processor. Oracle CEP automatically creates instances of these event types when needed. You can then reference this data in the Oracle CQL rules of the application, the adapter Java class, and the POJO.	
For more information, see "Event Types" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse .	
wlevs:adapter	
, wlevs:processor	
, and wlevs:channel	
elements set up the event processor network by declaring each component in the network. The network consists of three adapters, four processors, and five streams, as described in Figure 2-75. Each component is given a unique ID which can be referenced by other components when they declare their listeners and sources.	
wlevs:adapter	
elements specify adapter components, for example: The fxMarketAmer	
, fxMarketAsia	
, and fxMarketEuro	
adapters provide the principle input data sources. These adapters use the provider="loadgen"	
attribute of each wlevs:adapter	
element to specify that the adapters get their data from the Oracle CEP load generator utility. The wlevs:instance-property	
child element specifies the port number to which the adapter should listen.	
The csvTestData	
adapter is an optional adapter you can use to feed test data into the application. This adapter uses the provider="csvgen"	
attribute to specify that this adapter gets its data from a comma separated value (CSV) file. For more information, see "Testing Applications With the Load Generator and csvgen Adapter" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse	
The PublishSummaryResults	
adapter outputs events to the Oracle CEP http pub-sub server.	
wlevs:processor	
elements specify the complex event processors, for example: You can use the listeners	
attribute, common to all component elements, or a wlevs:listener	
child element to specify the components that listen to the processor; in this case, it is a channel called FxQuoteStream	
.	
wlevs:channel	
elements specify the event streams between components, for example: As with all components, you can use the wlevs:listener	
and wlevs:source	
child elements to specify the other components that act as listeners and sources for this component.	
In the example, the FindCrossRates	
processor listens to the FxQuoteStream	
channel.	
Example 2-6 shows how you can nest the definition of a component inside a wlevs:listener	
element:	
Example 2-6 Nested Component Definition	
In Example 2-6, the OutputBean	
POJO, declared as a standard Spring bean using the <bean>	
tag, listens to the CrossRateStream	
channel.	
The FX application uses five processors: three to handle the three data feeds, one that joins the resulting events, and one that generates summarized results.	
The first four processors are configured in a single XML file, called spreader.xml	
. For more information, see Section 2.9.6.1, "FX Processor Component Configuration File: spreader.xml."	
The fifth processor is configured in the XML file called SummarizeResults.xml	
. For more information, see Section 2.9.6.2, "FX Processor Component Configuration File: SummarizeResults.xml."	
These XML files contain the Oracle CEP queries executed against input events. This sample uses the Oracle CQL language. For additional information and samples about using Oracle CEP query languages, see:	
Note: Oracle EPL is superseded by Oracle CQL.	
The first four processors are configured in a single XML file, called spreader.xml	
, as Example 2-7 shows.	
Example 2-7 FX Processor Component Configuration File: spreader.xml	
The FilterAmer	
, FilterAsia	
, and FilterEuro	
processors in this file are all essentially the same; the differences lie only in the values used in the Oracle CQL queries for querying different items from the data feeds and applying different boundary conditions. For this reason, this section will discuss just the FilterAmer processor.	
The Oracle CQL rules executed by the FilterAmer	
processor are:	
To understand the query, one must look at the various clauses, as follows:	
UsdToEur	
view serves as a subquery that selects only those items from the StockTick	
data feed in which the symbol	
value is USDEUR	
(US dollar - European euro exchange) and should reject all other items. The from	
clause specifies also specifies that the window of time for which this Oracle CQL query executes is 1 second. UsdToEurPre	
view serves as a subquery that selects from the UsdToEur	
view. Its where	
clause specifies the boundary condition to ensure that the rates for a particular item from the feed fall within an accepted range; in this case, the lastPrice	
for a particular item from the feed must be between $3.00 and $0.25. The Oracle CQL rule executed by the FindCrossRates	
processor are:	
To understand the query, one must look at the various clauses, as follows:	
from	
and where	
clauses join two events from the CrossRateEvent	
object (which contains events selected by the FilterAmer	
, FilterAsia	
, and FilterEuro	
processors) where the value of the toRate	
and fromRate	
are the same. The from	
clause also sets the processing window, again of 1 second. select	
clause calculates an internal price of a particular currency, which averages the to and from rate of a the currency plus a fee of $.05, and also calculates a cross rate, which is defined as the price of one currency in terms of another currency in the market of a third country. The result of this query is then sent to the business object POJO and the summarizeResults	
processor.	
The fifth processor is configured in the XML file called SummarizeResults.xml	
as Example 2-8 shows.	
Example 2-8 FX Processor Component Configuration File: SummarizeResults.xml	
The result of this query is then sent to the business object POJO and the PublishSummaryResults	
adapter.	
The signal generation sample application receives simulated market data and verifies if the price of a security has fluctuated more than two percent. The application also detects if there is a trend occurring by keeping track of successive stock prices for a particular symbol; if more than three successive prices fluctuate more than two percent, this is considered a trend.	
Figure 2-76 shows the signal generation example Event Processing Network (EPN). The EPN contains the components that make up the application and how they fit together.	
The application simulates a market data feed using the Oracle CEP load generator utility; in this example, the load generator generates up to 10,000 messages per second. The example includes an HTML dashboard which displays the matched events along with the latencies; events consist of a stock symbol, a timestamp, and the price.	
The example demonstrates very low latencies, with minimum latency jitter under high throughputs. Once the application starts running, the processor matches an average of 800 messages per second. If the application is run on the minimum configured system, the example shows very low average latencies (30-300 microsecond, on average) with minimal latency spikes (low milliseconds).	
The example computes and displays latency values based on the difference between a timestamp generated on the load generator and timestamp on Oracle CEP. Computing valid latencies requires very tight clock synchronization, such as 1 millisecond, between the computer running the load generator and the computer running Oracle CEP. For this reason, Oracle recommends running both the load generator and Oracle CEP on a single multi-CPU computer where they will share a common clock.	
The example also shows how to use the Oracle CEP event caching feature. In particular the single processor in the EPN sends events to both an event bean and a cache.	
The example also demonstrates how to use Oracle CQL queries.	
For optimal demonstration purposes, Oracle recommends that you run this example on a powerful computer, such as one with multiple CPUs or a 3 GHz dual-core Intel, with a minimum of 2 GB of RAM.	
The signalgeneration_domain	
domain contains a single application: the signal generation sample application. To run the signal generation application, you simply start an instance of Oracle CEP in that domain.	
To run the signal generation example:	
signalgeneration_domain	
domain directory, located in MIDDLEWARE_HOME	
\ocep_11.1\samples\domains\signalgeneration_domain\defaultserver	
, where MIDDLEWARE_HOME	
refers to the Middleware home directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware	
. -dgc	
parameter to the command: -dgc	
parameter to the command: The signal generation application is now ready to receive data from the data feeds.	
Next, to simulate a data feed, you use a load generator programmed specifically for the example.	
MIDDLEWARE_HOME	
\ocep_11.1\samples\domains\signalgeneration_domain\defaultserver\utils	
directory, where MIDDLEWARE_HOME	
refers to the Middleware home directory you specified when you installed Oracle CEP, such as d:Oracle\Middleware	
. startDataFeed	
command: host	
:9002/signalgeneration/dashboard.htmlReplace host	
with the name of the computer on which Oracle CEP is running; if it is the same computer as your browser, you can use localhost	
.	
You should start seeing the events that match the Oracle CQL rules configured for this example as Figure 2-77 shows.	
The signal generation sample source directory contains the Java source, along with other required resources, such as configuration XML files, EPN assembly file, and DOJO client JavaScript libraries, that make up the signal generation application. The build.xml	
Ant file contains targets to build and deploy the application to the signalgeneration_domain	
domain, as described in Section 2.10.3, "Description of the Ant Targets to Build Signal Generation."	
To build and deploy the signal generation example from the source directory:	
MIDDLEWARE_HOME	
\ocep_11.1\samples\source\applications\signalgeneration	
, where MIDDLEWARE_HOME	
refers to the Middleware home directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware	
. all	
Ant target to compile and create the application JAR file: deploy	
Ant target to deploy the application JAR file to the MIDDLEWARE_HOME	
\ocep_11.1\samples\domains\signalgeneration_domain\defaultserver\applications\signalgeneration	
directory: Caution: This target overwrites the existing signal generation application JAR file in the domain directory.	
The build.xml	
file, located in the top-level directory of the signal generation example source, contains the following targets to build and deploy the application:	
clean	
—This target removes the dist	
and output	
working directories under the current directory. all	
—This target cleans, compiles, and jars up the application into a file called com.bea.wlevs.example.signalgen_11.1.1.4_0.jar	
, and places the generated JAR file into a dist	
directory below the current directory. deploy	
—This target deploys the JAR file to Oracle CEP using the Deployer utility. For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.	
The implementation of the signal generation example generally follows "Creating Oracle CEP Applications: Typical Steps" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.	
Refer to that section for a task-oriented procedure that describes the typical development process.	
All the files of the signal generation are located relative to the MIDDLEWARE_HOME	
\ocep_11.1\samples\source\applications\signalgeneration	
directory, where MIDDLEWARE_HOME	
refers to the Middleware home directory you specified when you installed Oracle CEP, such as c:\Oracle\Middleware	
. Oracle recommends that you use this example directory setup in your own environment, although it is obviously not required.	
The files used by the signal generation example include:	
In the example, the file is called epn_assembly.xml	
and is located in the META-INF/spring	
directory.	
For details, see Section 2.10.5, "The Signal Generation EPN Assembly File."	
config.xml	
and is located in the META-INF/wlevs	
directory The config.xml	
file configures the processor1	
Oracle CQL processor, in particular the Oracle CQL rules that verify whether the price of a security has fluctuated more than two percent and whether a trend has occurred in its price.	
For details, see Section 2.10.6, "The Signal Generation Component Configuration Files."	
SignalgenOutputBean	
component of the application, a POJO that contains the business logic. This POJO is an HttpServlet	
and an EventSink	
. Its onEvent	
method consumes PercentTick	
and TrendTick	
event instances, computes latency, and displays dashboard information. In the example, the file is called SignalgenOutputBean.java	
and is located in the src/oracle/cep/example/signalgen	
directory.	
For a detailed description of this file, as well as general information about programming event sinks, see "Stream Sources and Stream Sinks and Relation Sources and Relation Sinks" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.	
MANIFEST.MF	
file that describes the contents of the OSGi bundle that will be deployed to Oracle CEP. In the example, the MANIFEST.MF	
file is located in the META-INF	
directory	
For more information about creating this file, as well as a description of creating the OSGi bundle that you deploy to Oracle CEP, see "Overview of Application Assembly and Deployment" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.	
dashboard.html	
file in the main example directory; this HTML file is the example dashboard that displays events and latencies of the running signal generation application. The HTML file uses Dojo JavaScript libraries from http://dojotoolkit.org/	
, located in the dojo	
directory. For additional information about the Oracle CEP APIs referenced in ForeignExchangeBuilderFactory	
, see Oracle Fusion Middleware Java API Reference for Oracle Complex Event Processing.	
The signal generation example uses a build.xml	
Ant file to compile, assemble, and deploy the OSGi bundle; see Section 2.10.2, "Building and Deploying the Signal Generation Example from the Source Directory" for a description of this build.xml	
file if you also use Ant in your development environment.	
One of the main purposes of the EPN assembly file is to define the event processing network by declaring the components of the application and how they are all connected, or in other word, which components listen to which other components. Oracle CEP provides a set of custom Spring tags used to declare the network. You also use the EPN assembly file to register the event types used by your application and its Oracle CQL rules.	
You use the EPN assembly file in the typical way to define the application component beans in the Spring application context; the application components beans are those implemented with Java classes, such as adapters and the POJO that contains the business logic.	
For more information, see:	
Example 2-9 shows the EPN assembly file used in the signal generation sample application; see the explanation after the example for details about the entries in bold.	
Example 2-9 Signal Generation EPN Assembly File	
In the preceding example:	
wlevs:event-type-repository	
element creates the event types that are used throughout the application as tuples; in the signal generation application, there are the following events: TrendTick	
: defined in the EPN assembly file. PercentTick	
: defined in the EPN assembly file. Symbols	
: defined in the EPN assembly file. wlevs:adapter	
, wlevs:processor	
, wlevs:channel	
, and wlevs:caching-system	
entries set up the event processor network by declaring each component in the network as described in Figure 2-76. Each component is given a unique ID which can be referenced by other components when they declare their listeners and sources.	
wlevs:adapter	
element specifies the adapter, for example: The wlevs:adapter	
element provider="loadgen"	
attribute specifies that the adapter gets its data from the Oracle CEP load generator utility. The wlevs:instance-property	
child element specifies the port number to which the adapter should listen.	
wlevs:processor	
element specifies the Oracle CQL processor, for example: The listener	
attribute, common to all component tags, specifies the component that listens to the processor; in this case, the listener is symbolsCache	
.	
wlevs:caching-system	
element specifies the Oracle CEP local event cache the application uses to improve performance, for example: For more information on caches, see "Configuring Oracle CEP Caching" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.	
The Signal Generation application configures its processor and cache in a component configuration file that Example 2-10 shows.	
Example 2-10 Signal Generation Component Configuration File	
If your application contains multiple processors, adapters or channels, you can either declare them all in a single configuration file, or create separate configuration files for each component; the method you chose depends on which you find easier to manage.	
For each component you configure, you must add the name	
child element to explicitly declare the specific component to which you are referring. The value of the name	
element must correspond to the component's unique identifier of its declaration in the EPN assembly file.	
For example, assume a processor is declared in the EPN assembly file as follows:	
Then its corresponding XML configuration would be as follows:	
The Signal Generation example uses a single configuration file for one processor with the name processor1	
and one cache with the name symbolsCache	
. These names correspond with the declaration of the components in the EPN assembly file.	
The processor	
element configures the processor component. The most important part of the processor configuration is the declaration of the set of Oracle Continuous Query Language (Oracle CQL) rules that this processor executes; these rules select the set of events that are eventually passed to the application business object. Each rule is declared with a query	
or relation	
element using an XML <![CDATA[...]]>	
section; all query	
and relation	
elements are grouped together within a single rules	
element. You can define as many rules as you want for a particular processor.	
The Signal Generation application has the following rules:	
For more information, see Oracle Fusion Middleware CQL Language Reference for Oracle Complex Event Processing.	
The record and playback example shows how to configure a component to record events to an event store and then configure another component in the network to playback events from the store. The example uses the Oracle CEP-provided default Berkeley database to store the events. The example also shows how to configure a publishing HTTP pub-sub adapter as a node in the event processing network.	
Figure 2-78 shows the event record and playback example Event Processing Network (EPN). The EPN contains the components that make up the application and how they fit together.	
The application contains four components in its event processing network:	
simpleEventSource	
: an adapter that generates simple events for purposes of the example. This component has been configured to record events, as shown in the graphic. The configuration source for this adapter is:	
eventStream	
: a channel that connects the simpleEventSource	
adapter and recplayEventSink	
event bean. This component has been configured to playback events. The configuration source for this channel is:	
recplayEventSink	
: an event bean that acts as a sink for the events generated by the adapter. playbackHttpPublisher	
: a publishing HTTP pub-sub adapter that listens to the recplayEventSink	
event bean and publishes to a channel called /playbackchannel	
of the Oracle CEP HTTP Pub-Sub server. The recplay_domain	
domain contains a single application: the record and playback sample application. To run this application, you first start an instance of Oracle CEP in the domain, as described in the following procedure.	
The procedure then shows you how to use Oracle CEP Visualizer to start the recording and playback of events at the simpleEventSource	
and eventStream	
components, respectively. Finally, the procedure shows you how to use Oracle CEP Visualizer to view the stream of events being published to a channel by the playbackHttpPublisher	
adapter.	
To run the event record/playback example:	
recplay_domain	
domain directory, located in MIDDLEWARE_HOME	
\ocep_11.1\samples\domains\recplay_domain\defaultserver	
, where MIDDLEWARE_HOME	
refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware	
. -dgc	
parameter to the command: -dgc	
parameter to the command: After server status messages scroll by, you should see the following message printed to the output:	
This message indicates that the Oracle CEP server started correctly and that the simpleEventSource	
component is creating events.	
where host refers to the name of the computer on which Oracle CEP is running and port refers to the Jetty NetIO port configured for the server (default value 9002	
).	
The Logon screen appears as Figure 2-79 shows.	
wlevs	
and Password wlevs	
, and click Log In. The Oracle CEP Visualizer dashboard appears as Figure 2-80 shows.	
For more information about the Oracle CEP Visualizer user interface, see "Understanding the Oracle CEP Visualizer User Interface" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Complex Event Processing.	
The DataSet Name field contains the value of the record-parameters	
child element dataset-name	
element from the simpleEventSource	
adapter application configuration file ORACLE-CEP-HOME	
\ocep_11.1\samples\domains\recplay_domain\defaultserver\applications\recplay\config.xml	
as Example 2-11 shows.	
Example 2-11 recplay Application Configuration File config.xml: adapter Element	
An Alert dialog appears as shown in Figure 2-82.	
The Current Status field reads Recording....	
As soon as you click OK, events start to flow out of the simpleEventSource	
component and are stored in the configured database.	
You can further configure when events are recorded using the Start Recording and Stop Recording fields.	
An Alert dialog appears as shown in Figure 2-84.	
The Current Status field reads Playing....	
As soon as you click OK, events that had been recorded by the simpleEventSource	
component are now played back to the simpleStream	
component.	
You should see the following messages being printed to the command window from which you started Oracle CEP server to indicate that both original events and playback events are streaming through the EPN:	
You can further configure the playback parameters, such as the recorded time period for which you want playback events and the speed that they are played back, by updating the appropriate field and clicking Change Parameters. You must restart the playback after changing any playback parameters.	
playbackHttpPublisher	
adapter is publishing to a channel, follow these steps: The Viewstream window appears as shown in Figure 2-85.	
/playbackchannel	
. The Received Messages text box displays the played back event details. The played back events show the time at which the event was created and the time at which it was played back.	
The record and playback sample source directory contains the Java source, along with other required resources, such as configuration XML file and EPN assembly file that make up the application. The build.xml	
Ant file contains targets to build and deploy the application to the signalgeneration_domain domain, as described in Section 2.11.3, "Description of the Ant Targets to Build the Record and Playback Example."	
To build and deploy the event record/playback example from the source directory:	
MIDDLEWARE_HOME	
\ocep_11.1\samples\source\applications\recplay	
, where MIDDLEWARE_HOME	
refers to the Middleware home directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware	
. Execute the all	
Ant target to compile and create the application JAR file:	
deploy	
Ant target to deploy the application JAR file to the MIDDLEWARE_HOME	
\ocep_11.1\samples\domains\recplay_domain\defaultserver\applications\recplay	
directory: Caution: This target overwrites the existing event record/playback application JAR file in the domain directory.	
After an application redeploy message, you should see the following message printed to the output about every second:	
This message indicates that the record and playback example has been redeployed and is running correctly.	
The build.xml	
file, located in the top-level directory of the record/playback source, contains the following targets to build and deploy the application:	
clean	
—This target removes the dist	
and output	
working directories under the current directory. all	
—This target cleans, compiles, and jars up the application into a file called com.bea.wlevs.example.recplay_11.1.1.4_0.jar	
, and places the generated JAR file into a dist	
directory below the current directory. deploy	
—This target deploys the JAR file to Oracle CEP using the Deployer utility. For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.	
The implementation of the signal generation example generally follows "Creating Oracle CEP Applications: Typical Steps" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.	
Refer to that section for a task-oriented procedure that describes the typical development process.	
All the files of the example are located relative to the MIDDLEWARE_HOME	
\ocep_11.1\samples\source\applications\recplay	
directory, where MIDDLEWARE_HOME	
refers to the Middleware home directory you specified when you installed Oracle CEP, such as c:\Oracle\Middleware	
. Oracle recommends that you use this example directory setup in your own environment, although it is obviously not required.	
The files used by the record and playback example include:	
In the example, the file is called com.bea.wlevs.example.recplay-context.xml	
and is located in the META-INF/spring	
directory.	
simpleEventSource	
adapter. In the example, the file is called SimpleEventSource.java	
and is located in the src/com/bea/wlevs/adapter/example/recplay	
directory.	
For a detailed description of this file and how to program the adapter Java files in general, see "Creating Custom Adapters and Event Beans" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.	
PlayedBackEvent	
and SimpleEvent	
event types. The SimpleEvent	
event type is the one originally generated by the adapter, but the PlayedBackEvent	
event type is used for the events that are played back after having been recorded. The PlayedBackEvents	
look almost exactly the same as SimpleEvent	
except they have an extra field, the time the event was recorded. In the example, the two events are called SimpleEvent.java	
and PlayedBackEvent.java	
and are located in the src/com/bea/wlevs/event/example/recplay	
directory.	
For a detailed description of this file, as well as general information about programming event types, see "Creating the Event Types" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.	
recplayEventSink	
event bean of the application, which is an event sink that receives both realtime events from the simpleEventSource	
adapter as well as playback events. In the example, the file is called RecplayEventSink.java	
and is located in the src/com/bea/wlevs/example/recplay	
directory.	
For a detailed description of this file and how to program the adapter Java files in general, see "Creating Custom Adapters and Event Beans" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.	
simpleEventSource	
adapter and eventStream	
channel components. The adapter includes a <record-parameters>	
element that specifies that the component will record events to the event store; similarly, the channel includes a <playback-parameters>	
element that specifies that it receives playback events. In the example, the file is called config.xml	
and is located in the META-INF/wlevs	
directory.	
MANIFEST.MF	
file that describes the contents of the OSGi bundle that will be deployed to Oracle CEP. In the example, the MANIFEST.MF	
file is located in the META-INF	
directory	
For more information about creating this file, as well as a description of creating the OSGi bundle that you deploy to Oracle CEP, see "Overview of Application Assembly and Deployment" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.	
The record/playback example uses a build.xml	
Ant file to compile, assemble, and deploy the OSGi bundle; see Section 2.11.2, "Building and Deploying the Event Record/Playback Example from the Source Directory" for a description of this build.xml	
file if you also use Ant in your development environment.	
This chapter describes how to install and upgrade Oracle Complex Event Processing (Oracle CEP), including development tools for use with the Eclipse IDE.	
To install Oracle CEP 11g Release 1 (11.1.1.6.3):	
See Section 3.1.3, "Default Oracle CEP Domain ocep_domain and Samples".	
See Section 3.1.4, "Oracle Fusion Middleware Directory Structure and Concepts".	
See Section 3.8, "Upgrading to Oracle CEP 11g Release 1 (11.1.1.6.3)".	
See the Apache Ant Project at http://ant.apache.org/	
.	
Before you start the installation program, review the following information:	
umask	
to 027	
on your system prior to installation. This ensures that WebLogic Server file permissions will be set properly during installation. Use the following command: umask 027	
You must enter this command in the same terminal window from which you plan to run the Oracle CEP installer.	
Oracle CEP supports the following Java Virtual Machines (JVM):	
By default, Oracle CEP includes its own version of JRockit (in MIDDLEWARE_HOME	
/jrockit_	
JAVA-VERSION	
_R	
JROCKIT-VERSION	
), but it does not include the deterministic garbage collector.	
Note: The Oracle CEP installer for the Sun JVM does not include a version of JRockit.	
Oracle CEP performs optimally when it can access certain features from Oracle JRockit Real Time, in particular the JRockit deterministic garbage collector.	
If your application requires low latency, optionally install Oracle JRockit Real Time.	
Caution: Be sure you install the version of Oracle JRockit Real Time for Java version 5.0 or 6.0. Oracle JRockit Real Time for Java version 1.4.2 is not compatible with this version of Oracle CEP.	
For more information on Oracle JRockit Real Time, see http://www.oracle.com/technology/products/jrockit/jrrt/index.html	
.	
The Sun JVM is the default JVM on Solaris SPARC and is included in the Solaris SPARC installer. If you want to use the Sun JVM (instead of JRockit) on platforms other than Solaris, download the JVM from the Oracle Java SE download site.	
For more information, see:	
When you choose a Typical install, the installation does not include the default ocep_domain	
domain (with default passwords) and the product samples.	
If you want to install the default ocep_domain	
and samples (recommended), choose the Custom option.	
The Typical install is appropriate for a production environment while the Custom install is appropriate for a development environment.	
When you install Oracle CEP, consider the following scenarios:	
For more information, see "Oracle Fusion Middleware Directory Structure and Concepts" in the Oracle Fusion Middleware Installation Planning Guide.	
In this scenario, you install Oracle CEP in a stand-alone configuration, in its own Middleware Home directory as Figure 3-1 shows.	
Table 3-1 lists the various home directories applicable to Oracle CEP in this scenario.	
Table 3-1 Home Directories and Oracle CEP-Specific Middleware Home	
Home Directory Type	Home Directory
---	---
Middleware Home	As selected by the user at Oracle CEP install time.
WebLogic Server Home	N/A
Oracle Product HomeFoot 1	
Oracle Common Home	N/A
Domain	
Footnote 1 Also known as simply the Oracle Home.	
In this scenario, you install Oracle CEP into an existing Oracle Fusion Middleware home as Figure 3-2 shows.	
In this scenario, you install Oracle CEP into its own Product Oracle Home but you create Oracle CEP domains in the existing ORACLE_FUSION_MIDDLEWARE_HOME	
/user_projects/domains	
directory as Figure 3-2 shows.	
In this example topology, there are two Oracle products installed in the same Middleware Home:	
Table 3-2 lists the various home directories applicable to Oracle CEP in this scenario.	
Table 3-2 Home Directories and Existing Middleware Home	
Home Directory Type	Home Directory
---	---
Middleware Home	As selected by the user at Oracle Fusion Middleware install time.
WebLogic Server Home	As determined by Oracle Fusion Middleware installer.
Oracle Product HomeFoot 1	
Oracle Common Home	As determined by Oracle Fusion Middleware installer.
Domain	
Footnote 1 Also known as simply the Oracle Home.	
You use the Oracle CEP installer in the following modes:	
Graphical-mode installation is an interactive, GUI-based method for installing your software. It can be run on both Windows and UNIX systems. See Section 3.2, "Installing Oracle CEP in Graphical Mode."	
Caution: If you want to run graphical-mode installation, the console attached to the machine on which you are installing the software must support a Java-based GUI. All consoles for Windows systems support Java-based GUIs, but not all consoles for UNIX systems do. If you attempt to start the installation program in graphical mode on a system that cannot support a graphical display, the installation program automatically starts console-mode installation.	
Console-mode installation is an interactive, text-based method for installing your software from the command line, on either a UNIX system or a Windows system. See Section 3.3, "Installing Oracle CEP in Console Mode."	
Silent-mode installation is a non-interactive method of installing your software that requires the use of an XML properties file for selecting installation options. You can run silent-mode installation in either of two ways: as part of a script or from the command line. Silent-mode installation is a way of setting installation configurations only once and then using those configurations to duplicate the installation on many machines. See Section 3.4, "Installing Oracle CEP in Silent Mode."	
This section describes how to install using the Oracle CEP installer in graphical mode.	
For more information, see Section 3.1, "Installation Overview".	
To install Oracle CEP in graphical mode:	
Be sure you log in to the computer as the user that will be the main administrator of the Oracle CEP installation.	
Platform	Instructions
---	---
Windows	Using Windows Explorer, double-click the appropriate installation program file from its download directory.
Linux or Solaris	Open a command window, change to the download directory, and enter these commands: prompt> chmod a+x filename prompt> ./filename In the preceding commands, If you want to create an installation log, use the prompt> ./filename -log=C:\logs\server_install.log
After the installation program has finished loading, you will see the standard Welcome window.	
The Oracle Middleware Home directory is the main installation directory for Oracle CEP, such as c:\oracle_cep	
. You can have one or many Oracle Middleware Home directories on your computer, whichever suits your development and production environments best.	
For more information, see Section 3.1.4, "Oracle Fusion Middleware Directory Structure and Concepts".	
In the Choose Install Type window, you can choose one of the following options:	
The installer program checks to see if the Oracle Middleware Home directory contains the version of JRockit required by this release of Oracle CEP:	
ocep_domain	
domain (with default passwords) and the samples and select a previously installed Sun or platform-specific JVM (or use the Oracle JRockit JVM included with Oracle CEP): Note: By default, the complete installation does not include the default If you want to use a Sun or platform-specific JVM, you must choose the Custom option.	
The installer program allows you to choose the JDK to use and to decide whether or not to install the Oracle JRockit JVM included with Oracle CEP.	
In the JDK Selection window, you can choose the JDK for the Oracle CEP server.	
Use the Browse button to select the Sun or platform-specific JDK you installed previously.	
If you do not want the installer to install the Oracle JRockit JVM included with Oracle CEP, uncheck this item.	
In the Choose Product Installation Directories window, you can change the default name of the Oracle Product Home directory for Oracle CEP, ocep_11.1	
.	
Although you can name this directory anything you want, Oracle recommends that you use the default name for clarity and standardization. For example, the documentation assumes that the Oracle Product Home directory is ocep_11.1	
.	
For more information, see Section 3.1.4, "Oracle Fusion Middleware Directory Structure and Concepts".	
If you select . . .	The following occurs . . .
---	---
All Users	Recommended. All users registered on the machine are provided with access to the installed software. Subsequently, if users without Administrator privileges use the Configuration Wizard from this installation to create domains, Start menu shortcuts to the domains are not created. In this case, users can manually create shortcuts in their local Start menu folders, if desired.
Local user	Other users registered on this machine will not have access to the Start menu entries for this installation.
If you logged in as a user without Administrator privileges, the Start menu entries are created in your user's local Start menu folder.	
The installer program installs Oracle CEP. The Installation Complete window indicates that the product was installed successfully.	
This section describes how to install using the Oracle CEP installer in console mode.	
Console-mode installation is an interactive, text-based method for installing your software from the command line, on either a UNIX or Windows system.	
When installing in console-mode, respond to the prompts in each section by entering the number associated with your choice or by pressing Enter to accept the default. To exit the installation process, enter exit	
(or x	
, for short) in response to any prompt. To review or change your selection, enter previous	
(or p	
, for short) at the prompt. To proceed to the following window, enter next	
(or n	
, for short).	
Note: In the following procedure, Windows conventions (such as back-slashes in pathnames) are used, for example,	
For more information, see Section 3.1, "Installation Overview".	
To install Oracle CEP in graphical mode:	
Be sure you log in to the computer as the user that will be the main administrator of the Oracle CEP installation.	
Platform	Instructions
---	---
Windows	Open a command window, change to the download directory, and enter the following command: prompt> filename -mode=consoleIn the preceding command, If you want to create an installation log, use the prompt> filename -mode=console -log=C:\logs\server_install.log
Linux	Open a command window, change to the download directory, and enter these commands: prompt> chmod a+x filename prompt> ./filename -mode=console In the preceding commands, If you want to create an installation log, use the prompt> ./filename -mode=console -log=C:\logs\server_install.log
next	
(or n	
for short) or press Enter to continue with the installation process. 1	
to create a new Oracle Middleware Home directory. Be sure to enter the full path of the Oracle Middleware Home directory, for example C:\oracle_cep2	
.	
Note: Do not terminate the path with a file separator character. That is, enter	
If you specify a directory that does not exist, the installation program creates it for you.	
The Oracle Middleware Home directory is the main installation directory for Oracle CEP, such as c:\oracle_cep	
. You can have one or many Oracle Middleware Home directories on your computer, whichever suits your development and production environments best.	
For more information, see Section 3.1.4, "Oracle Fusion Middleware Directory Structure and Concepts".	
next	
(or n	
). 1	
to choose a Typical install. The installer program checks to see if the Oracle Middleware Home directory contains the version of JRockit required by this release of Oracle CEP:	
ocep_domain	
domain (with default passwords) and the samples and select a previously installed Sun or platform-specific JVM (or use the Oracle JRockit JVM included with Oracle CEP): 2	
to choose a Custom install. next	
(or n	
) when you have chosen the components. Note: By default, the complete installation does not include the default If you want to use a Sun or platform-specific JVM, you must choose the Custom option.	
The installer program allows you to choose the JDK to use and to decide whether or not to install the Oracle JRockit JVM included with Oracle CEP.	
1	
). The installation program guides you through the required steps to add a local JDK.	
Be sure to enter the full path to the JDK directory, for example:	
To add additional JDKs, select 1	
again.	
If you do not want the installer to install the Oracle JRockit JVM included with Oracle CEP, uncheck this item.	
next	
(or n	
) when you have selected the local JDK. In the Choose Product Installation Directories window, you can change the default name of the Oracle Product Home directory for Oracle CEP, ocep_11.1	
.	
Although you can name this directory anything you want, Oracle recommends that you use the default name for clarity and standardization. For example, the documentation assumes that the Oracle Product Home directory is ocep_11.1	
.	
For more information, see Section 3.1.4, "Oracle Fusion Middleware Directory Structure and Concepts".	
Enter next	
(or n	
) when you are done.	
If you select . . .	The following occurs . . .
---	---
1 "All Users"	Recommended. All users registered on the machine are provided with access to the installed software. Subsequently, if users without Administrator privileges use the Configuration Wizard from this installation to create domains, Start menu shortcuts to the domains are not created. In this case, users can manually create shortcuts in their local Start menu folders, if desired.
2 "Local user"	Other users registered on this machine will not have access to the Start menu entries for this installation.
If you logged in as a user without Administrator privileges, the Start menu entries are created in your user's local Start menu folder.	
Enter the appropriate number.	
next	
(or n	
) when you are done. Previous	
to return to the appropriate window. next	
(or n	
). The installer program installs Oracle CEP. The Installation Complete window indicates that the product was installed successfully.	
exit	
to exit the program. This section describes how to install using the Oracle CEP installer in silent mode.	
Silent-mode installation is a non-interactive method of installing your software that requires the use of an XML properties file for selecting installation options.	
For more information, see Section 3.1, "Installation Overview".	
To install Oracle CEP in silent mode:	
Be sure you log in to the computer as the user that will be the main administrator of the Oracle CEP installation.	
silent.xml	
file that defines the configuration settings normally entered by a user during an interactive installation process. See Section 3.4.1, "Creating a silent.xml File for Silent-Mode Installation."	
Note: Incorrect entries in the	
Platform	Instructions
---	---
Windows	Open a command window, change to the download directory, and enter the following command: prompt> filename -mode=silent -silent_xml=path_to_xml_fileIn the preceding command, If you want to create an installation log, use the prompt> filename -mode=silent -silent_xml=path_to_xml_file -log=C:\logs\server_install.log
Linux or Solaris	Open a command window, change to the download directory, and enter these commands: prompt> chmod a+x filename prompt> ./filename -mode=silent -silent_xml=path_to_xml_file In the preceding commands, If you want to create an installation log, use the prompt> ./filename -mode=silent -silent_xml=path_to_xml_file -log=C:\logs\server_install.log
An Oracle Installer window is displayed, indicating that the files are being extracted. No other prompt or text is displayed.	
The installation is complete when the Oracle Installer window disappears.	
See Section 3.4.3, "Returning Exit Codes to the Command Window" for getting information about the success or failure of the silent installation.	
When you install Oracle CEP in silent mode, the installation program uses an XML file (silent.xml	
) to determine which installation options should be implemented.	
To create a silent.xml file for silent-mode installation:	
silent.xml	
on the computer on which you want to install Oracle CEP in silent mode. silent.xml	
file. Example 3-1 Sample silent.xml File for Silent-Mode Installation	
silent.xml	
file you just created, edit the values for the keywords shown in Table 3-3 to reflect your configuration. For example, if you want to install into the ORACLE_CEP_HOME directory e:\oracle_cep	
, update the corresponding <data-value>	
element as follows	
Table 3-3 Values for the silent.xml File	
For this data-value name...	Enter the following value...
---	---
The full pathname for the Oracle Middleware Home directory of your choice. For more information, see Section 3.1.4, "Oracle Fusion Middleware Directory Structure and Concepts".	
The full pathname for the Oracle Product Home directory for Oracle CEP of your choice. For more information, see Section 3.1.4, "Oracle Fusion Middleware Directory Structure and Concepts".	
Windows only. Specify:	
The user performing the installation must have Administrator privileges to install the Start menu shortcuts in the All Users folder. The default value for this parameter, if you do not specify it, is	
Specify the components and subcomponents of Oracle CEP you want to install on your system. Use the following values:	
For additional information about entering these values, see Section 3.4.2, "Guidelines for Component Selection." If you do not include the	
Option to select supported JVM, which is already installed. Note: The presence of the	
Footnote 1 Do not terminate the pathname with a file separator. That is, enter this C:\mydirectory
and not C:\mydirectory\
.
Note: Silent install does not support the |
Use the following guidelines when you specify values for the COMPONENT_PATHS
data-value name:
Note: Because this release of Oracle CEP includes only the server itself and samples, the preceding example is equivalent to the example in the first bullet. |
When run in silent mode, the installation program generates exit codes that indicate the success or failure of the installation. These exit codes are shown in Table 3-4.
Table 3-4 Exit Codes
Code | Description |
---|---|
0 | Installation completed successfully |
-1 | Installation failed due to a fatal error |
-2 | Installation failed due to an internal XML parsing error |
Example 3-2 provides a sample Windows command file that invokes the installation program in silent mode and echoes the exit codes to the command window from which the script is executed.
Example 3-2 Sample Windows Command File Displaying Silent-Mode Exit Codes
You can download maintenance and security updates for Oracle CEP from My Oracle Support. For more information, see Oracle Smart Update Applying Patches to Oracle WebLogic Server.
See:
Note: If you installed Oracle CEP using the default option, you must create your own Oracle CEP domain. For more information, see Section 3.1.3, "Default Oracle CEP Domain ocep_domain and Samples". |
For a description of the programming model, details about the various components that make up an application, and how they all fit together, see "Overview of Creating Oracle CEP Applications" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.
If you installed Oracle CEP for use with the IBM JDK, depending on your operating system and processor architecture, you must make changes to the IBM AIX network options and the setDomainEnv
script in each Oracle CEP domain directory. This section describes:
If you installed Oracle CEP for use with the IBM JDK on IBM AIX (64-bit), you must make changes to the IBM AIX network options and the setDomainEnv
script in each Oracle CEP domain directory.
To configure Oracle CEP for the IBM JVM on IBM AIX (64-bit):
sudo
) to modify the AIX network options: For example, MIDDLEWARE_HOME
/user_projects/domains/ocep_domain/defaultserver
setDomainEnv.sh
script and add the following line: Oracle CEP IDE for Eclipse is a set of plugins for the Eclipse IDE designed to help develop, deploy, and debug applications for Oracle CEP.
For more information, see:
Upgrading to Oracle CEP 11g Release 1 (11.1.1.6.3) is a two-step process: first you must upgrade your applications and then you must upgrade the domain to which the applications are deployed.
Table 3-5 lists the steps you must take for each supported upgrade path:
Table 3-5 Upgrade Paths
For more information, see Section 3.8.5, "Backward Compatibility Issues".
This section describes the steps you must take to upgrade a WebLogic Event Server 2.0 domain so that it runs correctly in Oracle CEP 10.3. For clarity, it is assumed that the existing WebLogic Event Server 2.0 domain is located in the /bea/user_projects/domains/mydomain20
directory.
To upgrade a WebLogic Event Server 2.0 domain to Oracle CEP 10.3:
For the purposes of this procedure, it is assumed that the new Oracle CEP 10.3 domain is called mydomain30
, it contains a single server called defaultserver
, and the server files are located in the /oracle_cep/user_projects/domains/mydomain30/defaultserver
directory.
See "Creating an Oracle CEP Standalone-Server Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.
lib/XACMLAuthorizerInit.ldift
lib/XACMLRoleMapperInit.ldift
The WebLogic Event Server 2.0 files are located relative to the domain directory (/bea/user_projects/domains/mydomain20
in our example) and the Oracle CEP 10.3 files are located relative to the server directory under the domain directory (/oracle_cep/user_projects/domains/mydomain30/defaultserver
in our example).
atnstore.txt
file in the WebLogic Event Server 2.0 domain, located in the config
sub-directory of the main domain directory, and add the new Oracle 10.3 groups: FileBasedDefaultCredentialMappermy-realmInit.initialized
FileBasedXACMLAuthorizermy-realmInit.initialized
FileBasedXACMLRoleMappermy-realmInit.initialized
rm
cm
atz
startwlevs.cmd
(Windows) or startwlevs.sh
(Unix) command scripts in the WebLogic Event Server 2.0 domain to point to the new Oracle 10.3 binaries. stopwlevs.cmd
(Windows) or stopwlevs.sh
(Unix) command scripts in the WebLogic Event Server 2.0 domain to point to the new Oracle 10.3 binaries. "Starting and Stopping an Oracle CEP Server in a Standalone-Server Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.
See:
This section describes the steps you must take to upgrade an Oracle CEP 10.3 domain so that it runs correctly in Oracle CEP 11g Release 1 (11.1.1). For clarity, it is assumed that the existing Oracle CEP 10.3 domain is located in the /bea/user_projects/domains/mydomain103
directory.
To upgrade an Oracle CEP 10.3 domain to Oracle CEP release 11g Release 1 (11.1.1.6.3):
For the purposes of this procedure, it is assumed that the new Oracle CEP 11g Release 1 (11.1.1) domain is called mydomain11
, it contains a single server called defaultserver
, and the server files are located in the /oracle_cep/user_projects/domains/mydomain11/defaultserver
directory.
See "Creating an Oracle CEP Standalone-Server Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.
lib/XACMLAuthorizerInit.ldift
lib/XACMLRoleMapperInit.ldift
The WebLogic Event Server 10.3 files are located relative to the domain directory (/bea/user_projects/domains/mydomain30
in our example) and the Oracle CEP 11g Release 1 (11.1.1) files are located relative to the server directory under the domain directory (/oracle_cep/user_projects/domains/mydomain11/defaultserver
in our example).
atnstore.txt
file in the WebLogic Event Server 10.3 domain, located in the config
sub-directory of the main domain directory, and add the new Oracle 11g Release 1 (11.1.1.6.3) groups: FileBasedDefaultCredentialMappermy-realmInit.initialized
FileBasedXACMLAuthorizermy-realmInit.initialized
FileBasedXACMLRoleMappermy-realmInit.initialized
rm
cm
atz
startwlevs.cmd
(Windows) or startwlevs.sh
(Unix) command scripts in the WebLogic Event Server 10.3 domain to point to the new Oracle 11g Release 1 (11.1.1.6.3) binaries. stopwlevs.cmd
(Windows) or stopwlevs.sh
(Unix) command scripts in the WebLogic Event Server 10.3 domain to point to the new Oracle 11g Release 1 (11.1.1.6.3) binaries. "Starting and Stopping an Oracle CEP Server in a Standalone-Server Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.
See:
This section describes the steps you must take to upgrade an application that you developed in Version 2.0 of WebLogic Event Server so that it runs on Oracle CEP 10.3.
To upgrade a WebLogic Event Server 2.0 application to run on Oracle CEP 10.3:
MANIFEST.MF
file to import new versions of Spring framework and Oracle CEP packages, as well as new required packages. In particular: Note: This change is a result of the upgrade of the Spring framework (from 2.0 to 2.5) that occurred between WebLogic Event Server 2.0 and Oracle CEP 10.3, not as a direct result of the Oracle CEP upgrade |
Refer to the appropriate 2.5 XSD Schemas for any changes:
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi/spring-osgi.xsd
The following bullets list some of the typical changes you might have to make; the following list is not complete:
<osgi:service-property>
tag, use the <entry>
tag with the key and value attributes, rather than the old <prop>
tag. For example, change the following 2.0 tag from:
To:
value
or ref
attribute of an instance-property
must always be set to an explicit value; it can no longer be an empty string to indicate an implicit use of a default value. For example, change the following 2.0 tag from:
To:
http://download.oracle.com/docs/cd/E13157_01/wlevs/docs30/javadocs/wlevs/index.html
) that describe the new Oracle CEP APIs and make the appropriate source code changes. loadgen
provider as Example 3-3 shows, then you must register a StockTick
event type in your EPN assembly file as Example 3-4 shows. See "Assembling and Deploying Oracle CEP Applications" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.
If, during deployment, you get an exception that indicates that a package is invisible, add this package to the Import-Package header of the MANIFEST.MF
file, then reassemble and redeploy the application. Keep adding packages in this manner until the application deploys successfully.
This section describes the steps you must take to upgrade an application that you developed in Oracle CEP 10.3 so that it runs on Oracle CEP 11g Release 1 (11.1.1.6.3).
To upgrade an Oracle CEP 10.3 application to run on Oracle CEP release 1111g Release 1 (11.1.1.6.3):
MANIFEST.MF
file to import new versions of Spring framework and Oracle CEP packages, as well as new required packages. Note that alternatively you can specify unversioned packages which will not require updating and also that you can specify larger versions in order to avoid minor version updates, that is, use "2.5" instead of "2.5.6".
In particular:
Note: This change is a result of the upgrade of the Spring-DM framework (from 1.1 to 1.2) that occurred between Oracle CEP 10.3 and Oracle CEP 11.1, not as a direct result of the Oracle CEP upgrade. |
Refer to the appropriate 2.5 XSD Schemas for any changes:
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi/spring-osgi.xsd
In particular convert any Spring-DM declared adapter factories to use the <wlevs:factory/>
tag instead. For example, if your 10.3 EPN assembly file contains the service
that Example 3-5 shows, then you must replace this service with the wlevs:factory
that Example 3-6 shows.
Example 3-5 Spring-DM Declared Adapter Factory
Consider changing deprecated Java API and Oracle CEP schema:
See "Assembling and Deploying Oracle CEP Applications" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.
If, during deployment, you get an exception that indicates that a package is invisible, add this package to the Import-Package header of the MANIFEST.MF
file, then reassemble and redeploy the application. Keep adding packages in this manner until the application deploys successfully.
The following are non-backward compatible changes in the management framework:
com.bea.wlevs.management.ManagementException
com.bea.wlevs.management.ManagementRuntimeException
com.bea.wlevs.management.MbeanOperationsException
isRegistered()
, preRegister()
, postRegister()
, getMBeanInfo()
. StageMBean
and replaced by com.bea.wlevs.monitor.management.MonitorRuntimeMBean
. com.bea.wlevs.management.boot.BootMBean
has been removed. com.bea.wlevs.management.configuration.ConfigSessionBean
has been removed. ObjectName
for the AppDeploymentMBean
has been changed to include the DomainMBean
as a parent. com.bea.wlevs.server.management.mbean.ServerRuntimeMBean
has been changed to com.bea.wlevs.management.runtime.ServerRuntimeMBean
. com.bea.wlevs.management.api_*
and com.bea.wlevs.management.spi_*
, in addition to the existing com.bea.wlevs.management_*
. com.bea.wlevs.spi.ManagementService
has been moved from bundle com.bea.wlevs.spi_*
to com.bea.wlevs.management.spi_*
. Adapter
An element of the EPN that interfaces directly to an inbound event source. Adapters understand the inbound protocol, and are responsible for converting the event data into a normalized form that can be queried by a POJO. Adapters forward the normalized event data into a Stream.
Aggregate Function
Aggregate functions return a single aggregate result based on group of tuples, rather than on a single tuple.
See also Function and Single-Row Function.
CEP
Complex Event Processing.
Channel
A channel represents the physical conduit through which events flow between other types of components, such as between an Adapter and a Processor, and between a Processor and an Event Bean. A channel can model a Stream or Relation.
Condition
An Oracle CQL condition specifies a combination of one or more expressions and logical (Boolean) operators and returns a value of TRUE
, FALSE
, or UNKNOWN
.
Destination
An Oracle CQL destination identifies a consumer of query results such as the Enterprise Link BAM Adapter, JMS queue or topic, or file.
Deterministic Garbage Collection
Short, predictable pause times for memory heap garbage collection, which is the process of clearing dead objects from the heap, thus releasing that space for new objects.
DStream
A relation-to-stream operator that represents deleted tuples.
EDA
Event-Driven Architecture.
EPN
Oracle Event Processing Network. An EPN is the arbitrary interconnection of Adapter, Stream, POJO, and business logic POJOs used by Oracle CEP to process events.
Event Bean
A POJO to that contains the business logic executed when a notable event is detected. An event bean is an Event Sink.
Event Source
A component that provides events, such as a sensor, wire service, or stock ticker.
See also Data Feed and Event Sink.
Expressions
An Oracle CQL expression is a combination of one or more values, operators, and Oracle CQL functions that evaluates to a value. An expression generally assumes the datatype of its components.
Format model
A character literal that describes the format of datetime or numeric data stored in a character string.
Function
Oracle CQL functions are similar to operators in that they manipulate data items and return a result. Functions differ from operators in the format of their arguments. This format enables them to operate on zero, one, two, or more arguments.
See also Condition, Aggregate Function, and Single-Row Function.
Incremental Processing
A user-defined aggregate function design pattern that improves scalability and performance by ensuring that the cost of (re)computation on arrival of new events will be proportional to the number of new events as opposed to the total number of events seen thus far.
If your user-defined aggregate function supports incremental processing, you specify the supports incremental processing
clause in the register function
statement to instruct the Oracle CEP Service Engine to supply only the new event data as opposed to performing a rescan over already processed event data.
IStream
A relation-to-stream operator that represents inserted tuples.
Join
A query that combines rows from two or more streams, views, or relations.
Latency
An expression of how much time it takes for data to get from one designated point to another.
Monotonic
A sequence of values that are consistently increasing and never decreasing or consistently decreasing and never increasing. The sequence may contain multiple consecutive occurrences of the same value.
Now window
A special case of the time-based sliding window on a stream S
that takes a time-interval T
as a parameter and is specified by: S [Range T]
. A Now
window is defined as: S [Now]
(short for S [Range 0]
). When T = 0
, the relation at time t
consists of tuples obtained from elements of S
with timestamp t
.
See also Sliding window.
Operators
Oracle CQL operators manipulate data items and return a result. Syntactically, an operator appears before or after an operand or between two operands.
OSGi
A dynamic module system for Java that provides a service-oriented, component-based environment and standardized software lifecycle management. Oracle CEP applications are packaged and deployed as OSGi bundles. For more information, see http://www.osgi.org/
.
Partitioned window
A partitioned sliding window on a stream S
takes a positive integer number of tuples N
and a subset {A1,... Ak}
of the stream's attributes as parameters and is specified by: S[Partition By A1 ... Ak Rows N]
or, optionally, S[Partition By A1 ... Ak Rows N Range T]
.
See also Sliding window.
POJO
A Plain Old Java Object. A Java class that is not required to implement a third-party interface or extend a third-party class. In Oracle CEP, you can express your business logic using POJOs.
Processor
An element of the EPN that consumes normalized event data from a stream, processes it using queries (expressed in CQL or EPL), and may generate new events to an output stream.
Query
A query is an operation that retrieves data from one or more streams or views. In this reference, a top-level SELECT
statement is called a query.
Real-time
A level of computer responsiveness that a user senses as sufficiently immediate or that enables the computer to keep up with some external process (for example, to present visualizations of the weather as it constantly changes).
Relation
A relation is time-varying bag of tuples. Here "time" refers to an instant in the time domain. At every instant of time, a relation is a bounded set. It can also be represented as a sequence of timestamped tuples that includes insertions, deletions, and updates to capture the changing state of the relation. The updates are required to arrive at the system in the order of increasing timestamps. Like streams, relations have a fixed schema to which all tuples conform.
RStream
A relation-to-stream operator that maintains the entire current state of its input relation and outputs all of the tuples as insertions at each time step.
Single-Row Function
Single-row functions return a single result row for every row of a queried stream or view.
See also Function and Aggregate Function.
Sliding window
A stream-to-relation operator based on the window specification derived from SQL99.
See also: Now window, Partitioned window, Unbounded window, tuple-based, and Unbounded window, time-based.
Source
An Oracle CQL source identifies a producer of data that a Oracle CQL query operates on such as the Enterprise Link BAM Adapter, JMS queue or topic, or file.
Spring Framework
A light-weight, open source application framework for Java. Oracle CEP server uses the Spring Framework to host Oracle CEP applications. For more information, see http://www.springframework.org/
.
Stream
A stream is a sequence of timestamped tuples. There could be more than one tuple with the same timestamp. The tuples of an input stream are required to arrive at the system in the order of increasing timestamps. A stream has an associated schema consisting of a set of named attributes, and all tuples of the stream conform to the schema.
A stream is a bag (or multi-set) of tuple-timestamp pairs, which can be represented as a sequence of timestamped tuple "insertions".
In Oracle CEP, a stream is modeled as a channel component.
Throughput
An Oracle CQL source identifies a producer of data that a Oracle CQL query operates on such as the Enterprise Link BAM Adapter, JMS queue or topic, or file.
Tuple
The term "tuple of a stream" denotes the ordered list of data (excluding timestamp data) portion of a stream element (the s
of <s,t>
). For example, a stock ticker data stream might appear like this where each stream element is made up of <timestamp value>
, <stock symbol>
, and <stock price>
:
In the stream element <timestampN+1> ORCL,62
, the tuple is ORCL,62
.
See also Stream.
Unbounded window, time-based
A special case of the time-based sliding window on a stream S
that takes a time-interval T
as a parameter and is specified by: S [Range T]
. An Unbounded
window is defined as: S [Range Unbounded]
(short for S [Range infinity]
). When T = infinity
, the relation at time t
consists of tuples obtained from all elements of S
up to t
.
See also Sliding window.
Unbounded window, tuple-based
A special case of the tuple-based sliding window on a stream S
that takes a number of tuples N
as a parameter and is specified by: S [Rows N]
. An Unbounded
window is defined as: S [Rows Unbounded]
(short for S [Rows infinity]
and equivalent to S [Range Unbounded]
). When T = infinity
, the relation at time t
consists of tuples obtained from all elements of S
up to t
.
See also Sliding window.
View
An Oracle CQL view represents an alternative selection on a stream or relation. In Oracle CQL, you use a view instead of a subquery.
Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.