

Index

A B D E G J M N P R S W

A

	ADF Mobile browser
	
	definition, 1.1
	Java Server Faces (JSF) and, 1.1.1
	skinning, 4.1
	supported Apache MyFaces Trinidad components, 3.1

	ADF Mobile browser application development
	
	configuring development environment for, 2.2
	creating JSP pages and, 2.3.1
	developing desktop applications, 2.3
	differences from ADF Web application development, 2.1
	e-mail support and, 8.1
	telephone links and, 8.1
	testing applications, 2.4
	unsupported Apache MyFaces Trinidad components, 3.8
	using Apache MyFaces Trinidad layout components, 3.4, 6.4
	using Apache MyFaces Trinidad navigation components, 3.5
	using Apache MyFaces Trinidad output components, 3.3
	using Apache MyFaces Trinidad table components, 3.7.1
	using Apache MyFaces Trinidad tree components, 3.7.2
	using Apache MyFaces Trinidad user input components, 3.2

	ADF Mobile browser applications
	
	Google Maps in, 8.1
	JavaScript support on BlackBerry browsers and, 2.4.2
	testing limitations of desktop browsers and mobile devices, 2.4
	testing on emulators, 2.4.1

	Apache MyFaces Trinidad
	
	categorizing the skin family type of incoming requests, 7.2.1.1
	component library in JDeveloper, 2.2.2
	components optimized for narrow screens, 7.1
	determining screen width, 7.1.1
	developing ADF Mobile browser applications with, 1.1.2
	exposing browser capabilities, 7.2.2
	exposing details of user-agent strings, 7.2.1
	layout components, 3.4, 6.4
	navigation components, 3.5, 8.2, 8.3, 8.4
	output components, 3.3
	support for narrow screens, 7.1
	support on mobile browsers, 1.2
	supported components for ADF Mobile browser, 3.1
	table components, 3.7.1
	tree components, 3.7.2
	unsupported components, 3.8
	user input components, 3.2

B

	basic HTML mobile browsers
	
	basic CSS support for, 5.3
	limitations of, 5.2

	BlackBerry 4.5
	
	horizontal scrolling limitations of, 3.1.4, 6.1

	BlackBerry browsers
	
	adjusting browser settings for ADF Mobile browser applications, 2.4.2
	appropriate page scaling and, 8.5
	avoiding word wrap in tables, 6.2
	display behavior and font size, 6.5.1
	display behavior and screen size, 6.5.2
	enabling JavaScript support for displaying ADF Mobile browser applications, 2.4.2
	formatting column width, 6.4
	formatting label and message panels, 6.3
	horizontal scrolling limitations of BlackBerry 4.5 and earlier, 3.1.4, 6.1

D

	dialogs
	
	ADF Mobile browser support of, 3.1.3

E

	EL expressions
	
	defining the browser type in the skin-family element, 4.2.1.1
	determining browser capabilities with, 7.2.2
	determining the skin family type of incoming requests, 7.2.1.1
	exposing user-agent details, 7.2
	switching skins using the skin-family, 4.2.1.2

	emulators
	
	testing ADF Mobile browser applications and, 2.4.1

G

	goButton
	
	e-mail application integration and, 8.2
	Google Maps integration and, 8.4
	telephony dialogs and, 8.3

	goLink
	
	e-mail application integration and, 8.2
	Google Maps integration and, 8.4
	telephony dialogs and, 8.3

	Google Maps
	
	associating driving directions with, 8.4.1
	iPhone Safari support, 8.4.2

J

	JavaScript
	
	lack of support on basic HTML browsers and, 5.2

	JSF (Java Server Faces)
	
	use of renderkits for document encoding, 1.1.1

M

	mobile browsers
	
	ADF Mobile browser support of, 1.2
	AJAX support for PPR (Partial Page Rendering), 1.1.2, 3.1.2

N

	narrow screens
	
	optimization through Apache MyFaces Trinidad, 7.1

P

	Partial Page Rendering (PPR)
	
	ADF Mobile browser support of, 1.1.2, 3.1.2
	AJAX support on mobile browsers and, 1.1.2, 3.1.2

R

	renderkits
	
	JSF (Java Server Faces) and, 1.1.1

S

	skinning
	
	specifying renderkits and style sheets, 4.2.2
	using an EL expression within the skin-family element to determine browser types, 4.2.1.1
	using an EL expression within the skin-family element to switch skins, 4.2.1.2

W

	Windows Mobile browsers
	
	adjusting browser settings for ADF Mobile browser applications, 2.4.2

Contents

Title and Copyright Information

Preface

	Documentation Accessibility
	Audience
	Related Documents
	Conventions

1 Overview of Oracle ADF Mobile Browser

	1.1 About ADF Mobile Browser
	1.1.1 About Java Server Faces and the Application Development Framework
	1.1.2 Developing Mobile Applications Using ADF Mobile Browser

	1.2 Supported Mobile Browsers

2 Configuring the ADF Mobile Browser Environment

	2.1 About the ADF Mobile Browser Development Environment
	2.2 Configuring the ADF Mobile Browser Development Environment
	2.2.1 How to Configure the Environment by Creating a Mobile Application and Project
	2.2.2 What Happens When You Create a Mobile Application and Project

	2.3 Developing an ADF Mobile Browser Application
	2.3.1 How to Develop an ADF Mobile Browser Application by Creating a Mobile JSF Page
	2.3.2 What Happens When You Create a Mobile JSF Page

	2.4 Testing an ADF Mobile Browser Application
	2.4.1 How to Test ADF Mobile Browser Applications on Emulators
	2.4.2 What You May Need to Know About Browser Settings

3 Component Support

	3.1 About Apache My Faces Trinidad Components
	3.1.1 Supported Features
	3.1.2 Partial Page Rendering
	3.1.3 Dialogs
	3.1.4 Rendering Specific to the BlackBerry Browser 4.5 and Earlier Versions

	3.2 Input Components
	3.2.1 Creating Input Text Fields
	3.2.2 Creating Lists

	3.3 Output Components
	3.3.1 Displaying Text
	3.3.2 Displaying Images
	3.3.3 Showing (or Hiding) Components

	3.4 Layout Components
	3.4.1 Managing the Page
	3.4.2 Laying Out Sections of the Page
	3.4.3 Inserting Spaces

	3.5 Navigation Components
	3.5.1 Creating Buttons
	3.5.2 Creating Links
	3.5.3 Navigation Components

	3.6 Data Visualization (Graphs and Gauges)
	3.7 Tables and Trees
	3.7.1 Creating Tables
	3.7.2 Creating Trees

	3.8 Unsupported Components and Attributes
	3.8.1 Unsupported Components
	3.8.2 Unsupported Attributes

4 Skinning

	4.1 About ADF Mobile Browser Skinning
	4.2 Implementing ADF Mobile Browser Skinning
	4.2.1 How to Implement Skinning in an ADF Mobile Browser Application
	4.2.1.1 How to Define the <skin-family> in trinidad-config.xml
	4.2.1.2 How to Define <skin-family> in trinidad-config.xml to Enable Switching Between Skins

	4.2.2 How to Specify the Renderkit and Style Sheet Name in trinidad-skins.xml
	4.2.3 How to Add the CSS Files to the ADF Mobile Browser Application Project
	4.2.4 What Happens at Runtime

	4.3 Example iPhone Components
	4.3.1 How to Create Headers in iPhone Applications
	4.3.1.1 Using the styleClass Attribute to Create Header Components

	4.3.2 How to Create Navigation Panels in iPhone Applications
	4.3.2.1 Using the Panel List Style Class to Create a Static List of Navigation Panels
	4.3.2.2 Using the Table List Style Component to Create a Dynamic List of Navigation Items

	4.3.3 How to Create Detail Items in iPhone Applications
	4.3.3.1 Field Set Style Classes

	4.3.4 What You May Need to Know About CSS Classes in iPhone Applications

5 Supporting Basic HTML Mobile Browsers

	5.1 About Basic HTML Mobile Browser Support
	5.1.1 Requirements for Basic HTML Mobile Browser Support

	5.2 Developing Applications for Basic HTML Mobile Browsers
	5.3 Styling Basic HTML Mobile Browsers

6 Design Guidelines for BlackBerry 4.2 to 4.5

	6.1 About BlackBerry Browser Display Behavior
	6.2 Formatting Tables to Prevent Wrapping
	6.2.1 How to Prevent Fields from Wrapping in Tables

	6.3 Formatting Label and Message Panels
	6.4 Formatting Column Width
	6.5 What You May Need to Know About Display Variations on BlackBerry Smartphones
	6.5.1 Changing the Minimum Font Size
	6.5.2 Form Factor Variations

7 Narrow Screen Support and User-Agent Details Support

	7.1 Determining Narrow Screen Support
	7.1.1 How Trinidad Determines Narrow-Screen Optimization

	7.2 Determining User-Agent Capabilities Using EL Expressions
	7.2.1 How To Determine User-Agent Details
	7.2.1.1 Determining the Skin Type

	7.2.2 How to Determine Browser Capabilities

8 Extending ADF Mobile Browser Applications

	8.1 Introduction to Extending Applications for E-Mail, Telephony, and Google Maps
	8.2 Integrating an E-Mail Client
	8.2.1 Adding Mail Properties

	8.3 Integrating Telephony
	8.4 Integrating Google Maps
	8.4.1 Programming Driving Directions
	8.4.2 Supporting Google Maps on iPhone

	8.5 What You May Need to Know About Page Display Dimensions
	8.5.1 Setting the Viewports for iPhone

Index

6 Design Guidelines for BlackBerry 4.2 to 4.5

This chapter describes how to accommodate the behavior of BlackBerry browsers 4.2 to 4.5.

This chapter includes the following sections:

	
Section 6.1, "About BlackBerry Browser Display Behavior"

	
Section 6.2, "Formatting Tables to Prevent Wrapping"

	
Section 6.3, "Formatting Label and Message Panels"

	
Section 6.4, "Formatting Column Width"

	
Section 6.5, "What You May Need to Know About Display Variations on BlackBerry Smartphones"

6.1 About BlackBerry Browser Display Behavior

The BlackBerry browser behaves differently than many other browsers in that it does not display pages using horizontal scrolling. Instead, it fits a page to the width of the screen. This chapter presents guidelines to help you format pages to display properly on BlackBerry smartphones.

6.2 Formatting Tables to Prevent Wrapping

Because browsers wrap long words between fields, avoid long words on lines that contain multiple fields when formatting tables.

	
Note:

Within this chapter, a word refers to a series of characters. In this context, a word does not include white space.

Because the default mode of the BlackBerry browser limits the browser width to that of the physical screen, any field that does not fit in a line is displayed on the next line. If the intent of an application is to display multiple elements in one line, then you must ensure that the total width of the fields are within the width of the browser. Like other browsers, the BlackBerry browser wraps multiple lines when needed. The column width cannot be reduced beyond the size of the longest word in the field.

6.2.1 How to Prevent Fields from Wrapping in Tables

To prevent fields from wrapping, ensure that the total of the size attribute values in a table's row satisfies the following formula when all of the fields in a row are input fields.

3*Number of columns + the Sum of the size attributes in all columns <=X, when X=48

In general, field sizes in table columns should satisfy the following formula:

3 * Number of Columns +
Sum of size attributes in all input field columns +
Sum of number of characters in longest words in all output field columns <= X, when X=48

If the fields still wraps, decrease the value of X until it fits.

6.3 Formatting Label and Message Panels

To preserve the intended programming flexibility, nowrap attributes are supported and inserted when they are explicitly programmed for the Trinidad component. You may encounter problems if you add nowrap to a component definition when you program pages.

6.4 Formatting Column Width

When formatting columns, set the percentage width specification for both the label and the field in the tr:panelFormLayout component so that the total width is at 100%.

6.5 What You May Need to Know About Display Variations on BlackBerry Smartphones

This section describes how the same application can display differently on different devices. This section includes the following topics:

	
Changing the Minimum Font Size

	
Form Factor Variations

6.5.1 Changing the Minimum Font Size

Changing the minimum font size through user preferences affects the formatting ability of the ADF Mobile browser renderer. For example, input fields and their corresponding labels align properly when the font is set to its default size of 6 pt., as shown in Figure 6-1.

Figure 6-1 Application Display Using the Default Font Size of 6 pt.

[image: Properly alligned fields and labels]

However, increasing the font size to 10 pt. disrupts the display by shifting the input fields beneath their corresponding labels. As a result, the page is difficult to read.

Figure 6-2 shows a page that is too large for the display screen.

Figure 6-2 Increasing the Font Size

[image: Effect of increased font size]

6.5.2 Form Factor Variations

Differing screen sizes can affect display. Even if the font size is at the default of 6 pt. (illustrated in Figure 6-1), the same application appears differently on different devices. In Figure 6-3, the input fields barely fit the device's screen, even though they are easily accommodated on other devices running the same application as shown in Figure 6-1.

Figure 6-3 Difficulty Displaying Input Fields and Labels with Font Size at 6 pt.

[image: Improper field and label display]

In addition, input fields may display properly on the screen of one device, but may appear crowded on the screen of another type of device.

Figure 6-4 shows an application whose table cells are not wide enough to accommodate the text, causing it to wrap.

Figure 6-4 Wrapping Text

[image: A table with wrapping contents]

[image: Oracle Corporation]

4 Skinning

This chapter describes skinning for ADF Mobile browser applications.

This chapter includes the following sections:

	
Section 4.1, "About ADF Mobile Browser Skinning"

	
Section 4.2, "Implementing ADF Mobile Browser Skinning"

	
Section 4.3, "Example iPhone Components"

4.1 About ADF Mobile Browser Skinning

Skinning enables a page to display consistently on a variety of devices through the automatic delivery of device-dependent style sheets. These style sheets enable optimal display of pages that share the same page definitions on various mobile browsers. Within these style sheets, which enable you to set the look and feel of an application, you not only tailor a component to a specific browser by setting its size, location, and appearance, but you also specify the types of browsers on which components can be displayed or hidden. For more information, see Section 4.2, "Implementing ADF Mobile Browser Skinning." For examples of how to use skinning, see Section 4.3, "Example iPhone Components," which includes an example of an iPhone skin. You can apply a similar style sheet to other mobile browsers, such as BlackBerry, Windows Mobile 6, and Nokia S60. Sample implementations are available from Oracle Technology Network (www.oracle.com/technology).

	
Note:

Browsers must support the Cascading Style Sheet (CSS) syntax.

Features supported on specific browsers require means other than customizing style sheets.

4.2 Implementing ADF Mobile Browser Skinning

To create a skin, refer to Apache Trinidad Skinning in the Development Guidelines for Apache MyFaces Trinidad (http://myfaces.apache.org/trinidad/devguide/skinning.html) which includes descriptions on how to:

	
Create a skin (trinidad-skins.xml, located in the either the WEB-INF or META-INF directories).

	
Create a style sheet.

	
Set the skin family in trinidad-config.xml (located in the WEB-INF directory).

4.2.1 How to Implement Skinning in an ADF Mobile Browser Application

For ADF Mobile browser, you implement skinning by performing the following tasks:

	
Within the trinidad-config.xml component, define the <skin-family> tag with the EL (Expression Language) expression, #{requestContext.agent.skinFamilyType}, that returns the skin family type of the browser. See Section 7.2.1.1, "Determining the Skin Type."

	
Specify the renderkit and style sheet in trinidad-skins.xml

	
Include the CSS files within the ADF Mobile browser project

4.2.1.1 How to Define the <skin-family> in trinidad-config.xml

As illustrated in Example 4-1, add the <skin-family> tag within the <trinidad-config> element and specify an EL expression that evaluates to the string that returns the skin family type of the browser.

Example 4-1 Defining the Skin Family

<?xml version="1.0" encoding="windows-1252"?>
<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
 <skin-family>#{requestContext.agent.skinFamilyType}</skin-family>
 ...
</trinidad-config>

4.2.1.2 How to Define <skin-family> in trinidad-config.xml to Enable Switching Between Skins

After you create the skin, you can switch between the default skin and another skin, such as an iPhone skin as illustrated in Example 4-2, using the <skin-family> element in Trinidad-config.xml. As shown in Figure 4-1, this component, which is located within WEB-INF enables you to set the default skins for an application. To switch between the default skin and an alternate skin, use Expression Language (EL).

To enable switching between skins:

	
Open the Trinidad-config.xml file.

	
Define the EL expression in the <skin-family> element as illustrated in Example 4-2, which shows switching between the default (minimal) and iPhone skins.

Example 4-2 Setting an Alternative Skin

<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
 <skin- family>
 #{requestContext.agent.skinFamilyType == 'iPhonewebkit' ? 'iPhonewebkit': 'minimal'}
 </skin- family>
</trinidad-config>

	
Save the file. See also Section 7.2.1.1, "Determining the Skin Type."

4.2.2 How to Specify the Renderkit and Style Sheet Name in trinidad-skins.xml

Under <skins>, define the <skin> tags that specifies the render-kit-id and style-sheet-name (org.apache.myfaces.trinidad.desktop and iPhone/iPhone.css, respectively in Example 4-3) for browser types identified in <family>. The value of <family> is the string resulting from the EL expression in the <skin-family> tag in trinidad-config.xml (illustrated in Example 4-1). See also Section 7.2.1.1, "Determining the Skin Type."

Example 4-3 Defining the Skins

<?xml version="1.0" encoding="ISO-8859-1"?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">
<skin>
 <id>iphone</id>
 <family>iPhonewebkit</family>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name> iPhone/iPhone.css </style-sheet-name>
</skin>
<skin>
 <id>symbian</id>
 <family>nokiawebkit</family>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name> symbian/symbian.css </style-sheet-name>
</skin>
<skin>
 <id>windowsMobile</id>
 <family>windowsmobile</family>
 <render-kit-id>org.apache.myfaces.trinidad.pda</render-kit-id>
 <style-sheet-name> windowsMobile/windowsMobile.css </style-sheet-name>
 </skin>
<skin>

4.2.3 How to Add the CSS Files to the ADF Mobile Browser Application Project

Include all of the CSS files (such as blackberry.css and iphone.css in Figure 4-1) in the View-Controller project as specified in trinidad-skins.xml.

Figure 4-1 CSS Files in the ADF Mobile Browser Project

[image: Device CSS files in project]

4.2.4 What Happens at Runtime

The EL expressions defined within <skin-family> returns the skin family type of the browser.

4.3 Example iPhone Components

CSS 3.0 features enables a Web application to have the same look and feel as a native iPhone application. By creating a new skin in Trinidad for iPhone, you can include iPhone-specific components. Examples of these components include:

	
Header

	
Navigation Panel

	
Field Set

These components illustrate how to apply style classes and how to define style classes using the styleClass attribute.

4.3.1 How to Create Headers in iPhone Applications

The backButton, toolBar, toolBar > h1, and button style classes used with the <tr:panelHeader> and <tr:commandLink> components set the appearance of the Header (Figure 4-2).

Figure 4-2 The Header Component

[image: The header component]

Table 4-1 lists the tags used to build headers, the style classes that you define within them, and the layout effects of these classes.

Table 4-1 Header Component Classes

	Tag	Style Class	Layout Effects
	
<tr:panelHeader>

	
toolbar, toolbar > h1

	
Sets the height, width, border, and background of the header

	
<tr:commandLink>

	
backButton

	
Sets the width, height, color, and position of the back button in the header

	
<tr:commandLink>

	
button

	
Sets the width, height, color, and position of the button in the header

toolbar

Example 4-4 illustrates the toolbar style class, which sets the height, width, border, and background for the header.

Example 4-4 The toolbar Style Class

.toolbar {
 box-sizing: border-box !important;
 -webkit-box-sizing: border-box !important;
 -moz-box-sizing: border-box !important;
 border-bottom: 1px solid #2d3642 !important;
 border-top: 1px solid #000000 !important;
 padding: 10px !important;
 height: 45px !important;
 background: url(/images/toolbar.png) #6d84a2 repeat-x !important;
 display: block !important;
}

toolbar > h1

Example 4-5 illustrates the toolbar > h1 style class, which sets the height, width, font size, and style of the toolbar title.

Example 4-5 The toolbar > h1 Style Class

.toolbar > h1 {
 position: absolute !important;
 overflow: hidden !important;
 left: 50% !important;
 margin: 1px 0 0 -75px !important;
 height: 45px !important;
 font-size: 20px !important;
 width: 150px !important;
 font-weight: bold !important;
 text-shadow: rgba(0, 0, 0, 0.4) 0px -1px 0 !important;
 text-align: center !important;
 text-overflow: ellipsis !important;
 white-space: nowrap !important;
 color: #FFFFFF !important;
 border-bottom: none !important;
}

button

Example 4-6 illustrates the button style class, which sets the width, height, color, and position of a button in the header.

Example 4-6 The button Style Class

.button {
 position: absolute !important;
 overflow: hidden !important;
 top: 8px !important;
 right: 6px !important;
 margin: 0 !important;
 border-width: 0 5px !important;
 padding: 0 3px !important;
 width: auto !important;
 height: 30px !important;
 line-height: 30px !important;
 font-family: inherit !important;
 font-size: 12px !important;
 font-weight: bold !important;
 color: #FFFFFF !important;
 text-shadow: rgba(0, 0, 0, 0.6) 0px -1px 0 !important;
 text-overflow: ellipsis !important;
 text-decoration: none !important;
 white-space: nowrap !important;
 background: none !important;
 -webkit-border-image: url(/images/toolButton.png) 0 5 0 5 !important;
}

backButton

Example 4-7 illustrates the backbutton style class, which sets the width, height, color, and position of the back button in the header.

Example 4-7 The backbutton style class

.backButton {
 position: absolute !important;
 overflow: hidden !important;
 top: 8px !important;
 left: 6px !important;
 margin: 0 !important;
 height: 30px !important;
 max-width: 45px !important;
 line-height: 30px !important;
 font-family: inherit !important;
 font-size: 12px !important;
 font-weight: bold !important;
 color: #FFFFFF !important !important;
 text-shadow: rgba(0, 0, 0, 0.6) 0px -1px 0 !important;
 text-overflow: ellipsis !important;
 text-decoration: none !important;
 white-space: nowrap !important;
 background: none !important;
 -webkit-border-image: url(/images/toolButton.png) 0 5 0 5 !important;
 padding: 0 !important;
 border-width: 0 8px 0 14px !important;
 -webkit-border-image: url(/images/backButton.png) 0 8 0 14 !important;
}

4.3.1.1 Using the styleClass Attribute to Create Header Components

Example 4-8 illustrates how to define the styleClass attribute to create the header components.

Example 4-8 Defining the Header Component

<tr:panelHeader id = "panelHeader" styleClass="toolbar" text="Title">
 <tr:commandLink styleClass="button" text="Forward"/>
 <tr:commandLink styleClass="backButton" text="Back"/>
</tr:panelHeader>

4.3.2 How to Create Navigation Panels in iPhone Applications

There are two style classes that define the navigation panel:

	
For static lists, use the Panel List style class. This style class displays a simple list of navigation items. It sets the width, position, and height of this list.

	
For dynamic lists, use the Table List style class.

4.3.2.1 Using the Panel List Style Class to Create a Static List of Navigation Panels

You define the Panel List style class within a <tr:panelList> component, using <tr:commandLink> tags for each navigation item as illustrated in Example 4-9.

Example 4-9 Defining a Static List of Navigation Items

<tr:panelList styleClass="panelList">
 <tr:commandLink text="commandLink 1"/>
 <tr:commandLink text="commandLink 2"/>
 <tr:commandLink text="commandLink 3"/>
</tr:panelList>

Many CSS features are applied by default on this component when using expressions similar to the ones listed in Table 4-2 on an iPhone skin, as shown in Figure 4-3.

Table 4-2 CSS Expressions

	CSS Expression	Layout Effect
	
panelList ul

	
Sets the width, position, and height of the list

	
panelList ul > li

	
Sets the position and border at the bottom for each item in the list

	
panelList ul > li > a

	
Sets the margin, font size, height, and background for each navigation item defined within the <tr:commandLink> elements

Figure 4-3 A Static List of Navigation Items

[image: A static list of navigation items]

panelList ul

Example 4-10 illustrates the panelList ul style class, which sets the width, position, and height of the list.

Example 4-10 The panelList ul Style Class

.panelList ul {
 position: absolute !important;
 margin: 0 !important;
 padding: 0 !important;
 left: 0 !important;
 top : 45px !important;
 width: 100% !important;
 min-height: 372px !important;
}

panelList ul > li

Example 4-11 illustrates the panelList ul > li style class, which sets the position and border at the bottom for each item in the list.

Example 4-11 The panelList ul > li Style Class

.panelList ul > li {
 position:relative !important;
 margin:0 !important;
 border-bottom:1px solid #E0E0E0 !important;
 padding:8px 0 8px 10px !important;
 list-style:none !important
}

panelList ul > li > a

Example 4-12 illustrates the panelList ul > li > a style class, which sets the margin, font size, height, and background for each navigation item.

Example 4-12 The panelList ul > li > a Style Class

.panelList ul > li > a {
 display:block !important;
 margin:-8px 0 -8px -10px !important;
 padding:8px 32px 8px 10px !important;
 text-decoration:none !important;
 color:inherit !important;
 background:url(/images/listArrow.png) no-repeat right center !important;
 min-height:34px !important;
 font-size:20px;
 font-weight:bold;
 }

4.3.2.2 Using the Table List Style Component to Create a Dynamic List of Navigation Items

The Table List component enables you to build dynamic tables, such as a table that includes a list of dynamic links as illustrated by Example 4-13. Because the Table List component is a table, it includes built-in navigation. Unlike Panel List, the Table List includes style classes for including images and detailed descriptions below the navigation items, shown in Figure 4-4.

Example 4-13 Building a List of Dynamic Links

<tr:table value="#{bindings.EmployeesView15.collectionModel}"
 var="row"
 rows="7"
 width="100%"
 styleClass = “iphoneTable”
 emptyText="#{bindings.EmployeesView15.viewable ? 'No rows yet.' :
 id="mainTable" horizontalGridVisible="false" >
 <tr:column >
 <tr:panelGroupLayout layout="vertical" styleClass="listing">
 <tr:outputText value="#{row.bindings.PhoneNumber.inputValue}"
 styleClass="listingDetails"/>
 <tr:commandLink text="#{row.bindings.LastName.inputValue} ,
 #{row.bindings.FirstName.inputValue} “
 styleClass="listingLink"
 partialSubmit="true"
 actionListener = "#{agentUtil.gotoPage2}"
 id="myLink1"
 disabled="#{!bindings.Execute.enabled}"
 onclick='iPhone.slideFragments("page2", "page1")'>
 </tr:commandLink>
 <tr:image styleClass="listingImage"
 source="/images/326425649.png"/>
 </tr:panelGroupLayout>
 </tr:column>
</tr:table>

To create a table of dynamic links:

	
Create a Trinidad read-only table using data control.

	
Set the styleClass attribute for the table as iphoneTable.

The expressions listed in Table 4-3 apply the needed iPhone-related CSS properties when you set the styleClass as iPhoneTable.

Table 4-3 CSS Expression

	Expression	Layout Effects
	
.iphoneTable .af_table_content

	
Sets the background color for the table content. It overrides the table's default outer-border style to none.

	
.iphoneTable .af_table_control-bar-top

	
Sets the background color for the table controller (pagination)

	
.iphoneTable .af_column_cell-text

	
Sets the background color of the column

	
Set the width of the table to 100.

	
Set the horizontalGridVisible attribute to false.

	
Note:

There must be only one column within the <tr:table> tag. Within this column, all tags must be wrapped by a <tr:panelGroupLayout> component with a styleClass set as listing.

Table 4-4 lists the style classes used within the subelements of the <column> tag.

Table 4-4 Table Listing Style Classes

	Element	Style Class	Layout Effects
	
<tr:panelGroupLayout> with layout attribute as vertical

	
listing

	
Sets the position and the border for each row

	
<tr:panelList>

	
listingImage

	
Sets the width, position, and height of the image

	
<tr:commandLink> : (navigation items)

	
listingLink

	
Sets the position, height, font size, text alignment, background image, and color of the navigation item

	
<tr:outputText> : (description of the navigation)

	
listingDetails

	
Sets the position, height, font size, text alignment, background image, and color of the navigation description

Figure 4-4 A Listing of Dynamic Links

[image: dynamic links and their components.]

listing

Example 4-14 illustrates the listing style class, which sets the position and the border for each row.

Example 4-14 The listing StyleClass

.listing {
 position: relative !important;
 margin: 0 !important;
 border-bottom: 1px solid #E0E0E0 !important;
 padding: 8px 0 8px 10px !important;
 font-size: 20px !important;
 font-weight: bold !important;
 list-style: none !important;
}

listingLink

Example 4-15 illustrates the listingLink style class, which sets the width, position, and height of the image.

Example 4-15 The listingLink StyleClass

.listingLink {
 display: block !important;
 margin: -8px 0 -8px -10px !important;
 padding: 8px 32px 8px 10px !important;
 text-decoration: none !important;
 color: inherit !important;
 background: url(/images/listArrow.png) no-repeat right center !important ;
 padding-left: 54px !important;
 padding-right: 40px !important;
 min-height: 34px !important;
 font-size: 20px !important;
 font-weight: bold !important;
}

listingDetails

Example 4-16 illustrates the listingDetails style class, which sets the position, height, font size, text alignment, background image, and color of the navigation item.

Example 4-16 The listingDetails StyleClass

.listingDetails {
 display: block !important;
 position: absolute !important;
 margin: 0 !important;
 left: 54px !important;
 top: 27px !important;
 text-align: left !important;
 font-size: 12px !important;
 font-weight: normal !important;
 color: #666666 !important;
 text-decoration: none !important;
 height: 13px !important;
 padding: 3px 0 0 0 !important;

}

listingImage

Example 4-17 illustrates the listingImage style class, which sets the position, height, font size, text alignment, background image, and color of the navigation description.

Example 4-17 The listingImage Style Class

.listingImage {
 display: block !important;
 position: absolute !important;
 margin: 0 !important;
 left: 6px !important;
 top: 7px !important;
 width: 35px !important;
 height: 27px !important;
 padding: 7px 0 10px 0 !important;
}

4.3.3 How to Create Detail Items in iPhone Applications

On the destination page, this component displays the detail of an item selected through panel navigation. As illustrated in Figure 4-5, these details include salary, phone numbers, and a hire date for a selected employee.

Figure 4-5 Field Set

[image: The details for a selected item]

The Destination Page - Field Set component contains one or more rows where each row contains a label or a message (which can be simple text or another navigation item). As illustrated in Example 4-18, you use the <div> tags to create these rows. The <div> tags are subelements of a <tr:panelCaptionGroup> component.

Example 4-18 Creating a Field Set

<div class="panelBase“>
 <tr:panelCaptionGroup>
 <div class="row">
 <tr:outputText styleClass="labeltext" value="#{agentUtil.name}"
 truncateAt="0"/>
 <tr:outputText styleClass="messageText"
 value="#{sessionScope.FirstName}" />
 </div>
 <div class="row">
 <tr:outputText styleClass="labeltext" value="Last Name"/>

 <tr:commandLink text="#{sessionScope.LastName}"
 styleClass="messageLink"
 partialSubmit="true"
 id="myLink2"
 actionListener="#{agentUtil.gotoPage3}"
 onclick='iPhone.slideFragments("page3", "page2");'
 />
 </div>
 </tr:panelCaptionGroup>

 <tr:panelCaptionGroup>
 <div class="row">
 <tr:outputText styleClass="labeltext" value="Email"/>
 <tr:outputText styleClass="messageText"
 value="#{bindings.LastName}@oracle.com"/>
 </div>

 <div class="row">
 <tr:outputText styleClass="labeltext" value="Salary"/>
 <tr:outputText styleClass="messageText" }"
 value="#{sessionScope.Salary}"/>
 </div>
 <div class="row">
 <tr:outputText styleClass="labeltext" value="Phone"
 truncateAt="5"/>
 <tr:outputText styleClass="messageText"
 value="#{sessionScope.PhoneId}"/>
 </div>
 <div class="row">
 <tr:outputText styleClass="labeltext" value="Hired"
 truncateAt="7"/>
 <tr:outputText styleClass="messageText"
 value="#{sessionScope.HireDate}"/>
 </div>
 <div class="row">
 <tr:outputText styleClass="labeltext" value="Phone"
 truncateAt="5"/>
 <tr:outputText styleClass="messageText"
 value="#{sessionScope.PhoneId}"/>
 </div>
 <div class="row">
 <tr:outputText styleClass="labeltext" value="Hired"
 truncateAt="7"/>
 <tr:outputText styleClass="messageText"
 value="#{sessionScope.HireDate}"/>
 </div>
 <div class="row">
 <tr:outputText styleClass="labeltext" value="Hired"
 truncateAt="7"/>
 <tr:outputText styleClass="messageText"
 value="#{sessionScope.HireDate}"/>
 </div>
 </tr:panelCaptionGroup>

 </div>

To create field set components:

	
Insert as many <div> tags as needed within a <tr:panelCaptionGroup> component (illustrated in Example 4-18).

	
To create rows, define each <div> tag with the row class attribute. For example:

 <div class="row">

The row attribute sets the position, height, and border for each row.

	
Within each <div> tag, create a label element as follows:

	
Create a <tr:outputText> tag.

	
Set the position, width, font, and color of the label element by defining the StyleClass as labeltext.

For example:

<tr:outputText styleClass="labeltext" value="Phone"
 truncateAt="5"/>

	
Create a message element using either the <tr:outputText> tag or the <tr:commandLink> component as follows:

	
The <tr:outputText> component with styleClass set as messageText. For example:

<tr:outputText styleClass="messageText"
 value="#{sessionScope.PhoneId}"/>

The messageText style class sets the position, width, font, and color for the label element.

	
Example 4-19 illustrates the <tr:commandLink> component with styleClass set as messageLink.

Example 4-19 Setting the styleClass Attribute as messageLink

<tr:commandLink text="#{sessionScope.LastName}"
 styleClass="messageLink"
 partialSubmit="true"
 id="myLink2"
 actionListener="#{agentUtil.gotoPage3}"
 onclick='iPhone.slideFragments("page3", "page2");'
 />

The messageLink element sets the position, width, font, height, and color for the message element.

	
For a panel base background, wrap the <div> tags with the panelBase class attribute (illustrated in Example 4-18).

	
Note:

The panelBase fieldset sets rounded edges. The fieldset element is added by the renderer for the <tr:panelCaptionGroup> component.

4.3.3.1 Field Set Style Classes

This section lists the style classes for field set components and their layout properties.

labeltext

Example 4-19 illustrates the labeltext style class, which sets the position, width, font, and color of the label element

Example 4-20 The labeltext Style Class

.labeltext {
 position: absolute !important;
 margin: 0 0 0 14px !important;
 line-height: 42px !important;
 font-weight: bold !important;
 color: #7388a5 !important;
 text-align: right !important;
 width: 90px !important;
 white-space: nowrap !important;
}

messageText

Example 4-21 illustrates the messageText style class, which sets the position, width, font, and color for the message element.

Example 4-21 The messageText Style Class

.messageText {
 display: block !important;
 margin: 0 !important;
 border: none !important;
 padding: 12px 10px 0 110px !important;
 text-align: left !important;
 font-weight: bold !important;
 text-decoration: inherit !important;
 height: 42px !important;
 color: inherit !important;
 box-sizing: border-box !important;
 -webkit-box-sizing: border-box !important;
}

messageLink

.messageLink {
 display: block !important;
 text-align: left !important;
 text-decoration: none !important;
 color: inherit !important;
 background: url(/images/listArrow.png) no-repeat right center !important ;
 padding-top: 12px !important;
 padding-left: 111px !important;
 padding-right: 40px !important;
 min-height: 34px !important;
 font-size: 16px !important;
 font-weight: bold !important;
}

panelBase

Example 4-22 illustrates the panelBase style class, which sets the background of the panel base.

Example 4-22 The panelBase Style Class

.panelBase {
 box-sizing: border-box !important;
 -webkit-box-sizing: border-box !important;
 padding: 10px !important;
 background: #c8c8c8 url(/images/pinstripes.png) !important;
}

panelBase fieldset

Example 4-23 illustrates the panelBase fieldset style class, which sets rounded edges. The <fieldSet> element is rendered by the renderer for the <tr:panelCaptionGroup> component.

Example 4-23 The panelBase fieldset Style Class

.panelBase fieldset {
 position: relative;
 margin: 0 0 20px 0;
 padding: 0;
 background: #FFFFFF;
 -webkit-border-radius: 10px;
 border: 1px solid #999999;
 text-align: right;
 font-size: 16px;
}

row

Example 4-24 illustrates the row style class, which sets the position, height, and border for each row.

Example 4-24 The row Style Class

.row {
 position: relative !important;
 min-height: 42px !important;
 border-top: 1px solid #999999 !important;
 -webkit-border-radius: 0 !important;
 text-align: right !important;
}

row:first-child

Example 4-25 illustrates the row:first-child style class.

Example 4-25 The row:first-child style class

.row:first-child {
 border-top: none !important;

}

4.3.4 What You May Need to Know About CSS Classes in iPhone Applications

Although you manually apply most of the CSS classes to specific components using the styleClass attribute (as in Example 4-8), some CSS features are applied by default when you use the iPhone skin.

7 Narrow Screen Support and User-Agent Details Support

This chapter describes how the Trinidad infrastructure determines narrow screen support and how it uses EL expressions to expose user-agent details.

This chapter includes the following sections:

	
Section 7.1, "Determining Narrow Screen Support"

	
Section 7.2, "Determining User-Agent Capabilities Using EL Expressions"

7.1 Determining Narrow Screen Support

Mobile devices come with a wide range of screen widths. As a result, the UI components of a web application may render properly on a device with a screen width measuring 240 pixels, but not align correctly when the application runs on a device that has a screen width of only 100 pixels. In such a situation, Trinidad optimizes its rendering for narrow-screen devices. Trinidad considers any device with a screen width of less than 240 pixels as a narrow screen and optimizes the rendering for the following components accordingly:

	
tr:breadcrumbs

	
tr:inputText

	
tr:navigationPane

	
tr:panelFormLayout

	
tr:panelLabelAndMessage

	
tr:panelRadio

	
tr:processChoiceBar

	
tr:selectRangeChoiceBar

7.1.1 How Trinidad Determines Narrow-Screen Optimization

Because Trinidad only considers a device with a screen width that measures less than 240 pixels as a narrow screen, it does not consider iPods (Safari browsers) or BlackBerry smartphones (BlackBerry browsers), which usually have screens that are greater than 240 pixels, as such. For a Windows Mobile browser, Trinidad determines the screen width from the UA-pixels request header and only applies narrow screen optimization if the screen-width is less than 240 pixels. For all other user agents, however, Trinidad optimizes its rendering for a narrow screen device.

7.2 Determining User-Agent Capabilities Using EL Expressions

Trinidad exposes a requesting user-agent's details to developers using the EL expression, #{requestContext.agent}, which returns an agent object that describes the requesting user agent. By adding the detail name or capability name properties to this expression, you enable Trinidad to return details that include the user-agent's name, version, platform, the version of the platform, the model (which is applicable only to BlackBerry), and the browser's support for JavaScript and PPR (Partial Page Rendering). For information on exposing user-agent details, see Section 7.2.1, "How To Determine User-Agent Details." For information on determing browser capabilities, see Section 7.2.2, "How to Determine Browser Capabilities."

7.2.1 How To Determine User-Agent Details

When Trinidad receives a request, it parses user-agent strings for a variety of user-agent details (listed in Table 7-1) that include type, the name and version of the agent, and the agent's platform name and platform version. Trinidad uses the EL expression #{requestContext.agent.<detail-name>}to expose these details to developers. For example, to enable developers to retrieve the category appropriate to the user-agent type (that is, desktop for a desktop browser or PDA for mobile browsers), Trinidad uses the type detail in the EL expression as follows:

#{requestContext.agent.type}

	
Note:

Trinidad may return a null value for such details as PlatformName, PlatformVersion if it cannot parse them from the user-agent string.

Table 7-1 Browser Details Exposed through EL Expressions

	Detail Name	Description
	
type

	
Identifies a user-agent type. For desktop and mobile browsers, the values are desktop and PDA, respectively. Because Safari provides all desktop browser features when it runs in a mobile device, the agent object exposes this detail as a desktop type.

	
agentName

	
The name of the agent

	
agentVersion

	
The version of the agent

	
platformName

	
The platform on which the agent runs

	
platformVersion

	
The version of the platform on which the agent runs.

	
hardwareMakeModel

	
The model of the mobile device

	
skinFamilyType

	
Trinidad categorizes the mobile browsers into different skin types based on their CSS capabilties. For more information, see Section 7.2.1.1, "Determining the Skin Type."

7.2.1.1 Determining the Skin Type

Trinidad categorizes incoming user-agents into different skin family types based on the CSS support and exposes the skin family type to developers using the #{requestContext.agent.skinFamilyType} EL expression. For example, for a Safari user-agent running in a Windows platform, Trinidad uses this EL expression to provide developers with the value of windowswebkit. For Safari browsers running on Symbian devices, this expression returns the Nokia Webkit (nokiawebkit). Table 7-2 lists the skin family types returned by #{requestContext.agent.skinFamilyType} according to user-agent, platform, and platform version.

Table 7-2 Skin Family Types Returned by the SkinFamilyType Attribute

	User-Agent	Platform	Skin Family Type
	
	
Windows mobile

	
windowsmobile

	
Safari

	
iPhone/iPod

	
iPhonewebkit

	
Safari

	
linux

	
linuxwebkit

	
Safari

	
Macintosh

	
macwebkit

	
Safari

	
Symbian

	
nokiawebkit

	
Safari

	
Windows

	
windowswebkit

	
Safari

	
Unknown platforms

	
defaultwebkit

	
Blackberry

	
	
blackberryminimal

	
Blackberry (versions 4.5 and higher)

	
	
blackberry

	
All other mobile browsers

	
	
genericpda

7.2.2 How to Determine Browser Capabilities

Trinidad sends its response to a user-agent's request based on capabilities it assigns to a user agent. These capabilities include a user-agent's support for JavaScript, PPR, and so on. Some of these capabilities (listed in Table 7-3) are exposed to developers through the EL expression #{requestContext.agent.capabilities}.

Use the EL expression #{requestContext.agent.capabilities.<capability-name>}to determine the specific capability assigned to a user-agent by Trinidad. For example, to determine whether Trinidad assigns JavaScript capability to a user agent, use the following EL expression:

{requestContext.agent.capabilities.scriptingSpeed!='none'}.

Table 7-3 Browser Capabilities Exposed through EL Expressions

	Capability Name	Detail
	
narrowScreen

	
Indicates whether Trinidad optimizes is rendering for a narrow-screen device. It returns true (a boolean type) if Trinidad optimizes its rendering for a narrow-screen device.

	
scriptingSpeed

	
Indicates JavaScript support for a user-agent. Returns "none"(a String type) if the user-agent does not support JavaScript.

	
partialRendering

	
Indicates PPR support for a user-agent. Returns true (a boolean type) if the browser supports PPR.

1 Overview of Oracle ADF Mobile Browser

This chapter provides an overview of Oracle Application Development Framework Mobile (ADF Mobile) browser.

This chapter includes the following sections:

	
Section 1.1, "About ADF Mobile Browser"

	
Section 1.2, "Supported Mobile Browsers"

1.1 About ADF Mobile Browser

Oracle Application Development Framework Mobile (ADF Mobile) browser is a standards-based framework that enables the rapid development of enterprise mobile applications. Oracle Fusion Middleware 11g release 1 of ADF Mobile browser extends Oracle ADF to browsers running on mobile devices. Because ADF Mobile browser is built upon the component model of Java Server Faces (JSF), you can quickly develop applications for mobile browsers. ADF Mobile browser's mobile-specific extensions to JSF enable you to develop mobile applications using the same methodologies for developing JSF applications for the desktop.

When developing an ADF Mobile browser application, you need not focus on the limitations or capabilities of different browsers, as ADF Mobile browser enables you to develop applications that function properly on different browser types. The ADF Mobile browser renderer ensures that contents can be consumed correctly by the target browser. It handles the variations in both browser implementations of HTML, JavaScript, CSS, DOM, XMLHttpRequest, and in system performance. For example, if a browser does not support XMLHttpRequest and is incapable of posting a partial page request to a server, ADF Mobile browser's support for AJAX (Asynchronous JavaScript and XML) enables the application to revert automatically to a full page submit so that the same page functions whether the browser supports XMLHttpRequest or not.

	
Note:

For Oracle Fusion Middleware 11g release 1, ADF Mobile browser requires HTML and JavaScript support.

1.1.1 About Java Server Faces and the Application Development Framework

Java Server Faces (JSF) is a standard specified by JSR-127 that enables developers to create applications using pre-built components that define functionality and behavior. JSF provides a clean Model-View-Controller (MVC) mechanism that simplifies the development of Web applications through its renderkit, which converts components both to and from a specific markup language. The renderkit's renderers abstract the production of markup and responses to browser requests by generating the markup representations of components and the way in which these components should interpret browser requests.

JSF development focuses on components, not markup. Using JSF, you create a JSP page containing JSF component tags. When a user visits this page (through the FacesServlet), JSF uses the renderkit specified by the user's device to encode the markup for the appropriate output. For example, if the user's device specifies HTML for a desktop browser, then the renderkit's markup encoding results in an HTML page. In addition to rendering appropriate content, JSF supports user interaction.

Application Development Framework (ADF) is built on the standard JSF technology and provides the following:

	
A large component set (since JSF provides only basic components)

	
Renderers that support these components in HTML browsers, including a rich renderkit for applications using AJAX technologies

	
Converters, validators, and events

1.1.2 Developing Mobile Applications Using ADF Mobile Browser

You can use the same programming model and component set for developing desktop browser applications to develop mobile browser applications for mobile devices. ADF Mobile browser application development is almost identical to ADF Web application development, except that ADF Mobile browser application development uses only mobile JSF pages that consist of Apache MyFaces Trinidad components. For more information on developing ADF Web applications, see Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework

	
Note:

You cannot use ADF Faces components to develop an ADF Mobile browser application. You must use Apache MyFaces Trinidad components.

Developing mobile browser applications for mobile devices with ADF Mobile browser leverages the same methodologies used in developing JSF applications for the desktop but with a few specific mobile extensions. With support for over 60 Apache MyFaces Trinidad components, you can build applications with the rich component set, each of which renders appropriately for small-screen mobile devices. In this way, you can reuse the desktop browser application's model and controller layers to assemble a new view layer for mobile devices by using similar Apache MyFaces Trinidad components.

	
Note:

Oracle JDeveloper only supports the JSF page flows for ADF Mobile browser application development. The ADF task flow is not supported.

How ADF Mobile Browser Improves Performance

The PDA component renderers have been optimized to minimize the payload of the Web page sent to the mobile device for improved performance over wireless networks. In mobile environments with high-latency and low-bandwidth wireless networks, Partial Page Rendering (PPR) is essential to providing end-users with an efficient application. For mobile browsers supporting AJAX, ADF Mobile browser supports PPR for certain components to minimize the amount of data requested from the server and improve the responsiveness of the applications. See also Section 3.1.2, "Partial Page Rendering."

1.2 Supported Mobile Browsers

ADF Mobile browser supports Apache MyFaces Trinidad components on the browsers listed in Table 1-1. Later versions of Trinidad can be integrated into Oracle JDeveloper and used with Oracle Fusion Middleware 11g release 1 of ADF Mobile browser.

Table 1-1 Supported Browsers and Supported Mobile Features

	Browser	JavaScript Support	CSS Support	PPR Support
	
BlackBerry version 4.6 and later

	
Yes

	
Yes

	
Yes

	
Blackberry versions 4.2 through 4.5

	
No

	
Yes

	
No

	
Microsoft Windows Mobile 5

	
Yes

	
Yes

	
Yes (with nuances)

	
Microsoft Windows Mobile 6

	
Yes

	
Yes

	
Yes

	
Apple iPhone Safari

	
Yes

	
Yes

	
Yes

	
Nokia s60 series

	
Yes

	
Yes

	
No

	
Plain HTML (such as Opera Mini, Opera Mobile and Skyfire)

	
No

	
Yes

	
No

Oracle® Fusion Middleware

Mobile Browser Developer's Guide for Oracle Application Development Framework

11g Release 1 (11.1.1.6.0)

E10140-05

November 2011

Documentation for Oracle Application Development Framework (Oracle ADF) developers that describes how to use Oracle JDeveloper to create mobile browser-based applications comprised of Apache MyFaces Trinidad web-client components.

Oracle Fusion Middleware Mobile Browser Developer's Guide for Oracle Application Development Framework 11g Release 1 (11.1.1.6.0)

E10140-05

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: John Bassett

Contributing Author: Mamallan Uthaman

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Preface

Welcome to Mobile Browser Developer's Guide for Oracle Application Development Framework.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Audience

This document is intended for developers of browser applications for mobile devices.

Related Documents

For more information, see the following:

	
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

	
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

